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Preface

In its lucky 12+1 edition, during April 7–9, 2010, the European Conference on
Genetic Programming (EuroGP) travelled to its most easterly location so far,
the European City of Culture 2010, Istanbul, Turkey. EuroGP is the only confer-
ence worldwide exclusively devoted to genetic programming and the evolutionary
generation of computer programs.

For over a decade, genetic programming (GP) has been considered the new
form of evolutionary computation. With nearly 7,000 articles in the online GP
bibliography maintained by William B. Langdon, we can say that it is now a
mature field. EuroGP has contributed to the success of the field substantially,
by being a unique forum for expressing new ideas, meeting, and starting up
collaborations.

The wide range of topics in this volume reflect the current state of research in
the field, including representations, theory, operators and analysis, novel mod-
els, performance enhancements, extensions of genetic programming, and various
applications. The volume contains contributions in the following areas:

– Understanding GP behavior and GP analysis include articles on cross-
over operators and a new way of analyzing results.

– GP performance presents work on performance enhancements through
phenotypic diversity, simplification, fitness and parallelism.

– Novel models and their application present innovative approaches with
artificial biochemical networks, genetic regulatory networks and geometric
differential evolution.

– Grammatical evolution introduces advances in crossover, mutation and
phenotype–genotype maps in this relatively new area.

– Machine learning and data mining include articles that present data
mining or machine learning solutions using GP and also combine data mining
and machine learning with GP.

– Applications range from solving differential equations, routing problems to
file type detection, object-oriented testing, agents.

This year we received 48 submissions, of which 47 were sent to the reviewers.
The papers underwent a rigorous double-blind peer review process, each being
reviewed by at least three members of the International Program Committee
from 20 different countries. The selection process resulted in this volume, with
21 papers accepted for oral presentation (43.75% acceptance rate) and seven
for poster presentation (58.33% global acceptance rate for talks and posters).
Papers were submitted, reviewed, and selected using the MyReview conference
management software. We are sincerely grateful to Marc Schoenauer of INRIA,
France, for his great assistance in providing, hosting, and managing the software.

EuroGP 2010 was part of the Evo* 2010 event, which included three ad-
ditional conferences: EvoCOP 2010, EvoBIO 2010 and EvoApplications 2010
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(formerly known as EvoWorkshops). Many people helped to make this event a
success. Firstly we would like to thank the great community of researchers and
practitioners who contributed to the conference by both submitting their work
and reviewing others’ as part of the Program Committee. The hard work of both
sides resulted in a high-quality conference. The local team (Gülşen Eryiğit, Şule
Gündüz Öğüdücü, Sanem Sarıel Talay, Ayşegül Yayımlı) led by A. Şima Uyar
must also be thanked: the smooth development of the conference has been their
feat. Also thanks to Cecilia Di Chio for helping maintain the official EvoStar
website, and to H. Turgut Uyar, who was in charge of the local information
website.

We also thank the following institutions for their financial support: Istan-
bul Technical University, Microsoft Turkey, and the Scientific and Technological
Research Council of Turkey.

We would also like to express our sincerest gratitude to our invited speak-
ers, who gave the inspiring keynote talks: Kevin Warwick, of the University of
Reading, UK, and Luigi Cavalli-Sforza of the Stanford School of Medicine, USA.

We especially want to express a heartfelt thanks to Jennifer Willies and the
Centre for Emergent Computing at Edinburgh Napier University. Ever since
its inaugural meeting in 1998 this event has relied on her dedicated work and
continued involvement and we do not exaggerate when we state that without
her, Evo* could not have achieved its current status.

April 2010 Anna I Esparcia-Alcázar
Anikó Ekárt

Sara Silva
Stephen Dignum

A. Şima Uyar



Organization

Administrative details were handled by Jennifer Willies, Edinburgh Napier Uni-
versity, Centre for Emergent Computing, Scotland, UK.

Organizing Committee

Program Co-chairs: Anna Isabel Esparcia-Alcázar (Universidad
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Genetic Programming for Classification with
Unbalanced Data

Urvesh Bhowan, Mengjie Zhang, and Mark Johnston

Evolutionary Computation Research Group,
Victoria University of Wellington, New Zealand

{urvesh.bhowan,mengjie.zhang}@ecs.vuw.ac.nz,
mark.johnston@msor.vuw.ac.nz

Abstract. Learning algorithms can suffer a performance bias when data sets only
have a small number of training examples for one or more classes. In this scenario
learning methods can produce the deceptive appearance of “good looking” results
even when classification performance on the important minority class can be poor.
This paper compares two Genetic Programming (GP) approaches for classifica-
tion with unbalanced data. The first focuses on adapting the fitness function to
evolve classifiers with good classification ability across both minority and major-
ity classes. The second uses a multi-objective approach to simultaneously evolve
a Pareto front (or set) of classifiers along the minority and majority class trade-
off surface. Our results show that solutions with good classification ability were
evolved across a range of binary classification tasks with unbalanced data.

1 Introduction

Classification is a systematic way of predicting class membership for a set of exam-
ples using properties of the examples [1]. This is a non-trivial task; many real-world
data sets involve a large number of examples, high dimensionality, and complicated re-
lationships between classification rules and example properties. Genetic Programming
(GP) is an evolutionary technique which has been successful in building reliable and
accurate classifiers to solve a range of classification problems [2][3][4].

However, working with unbalanced data sets is still a major obstacle in classifier
learning [5][6]. Data sets are unbalanced when they have an uneven distribution of
class examples, that is, when at least one class is represented by only a small num-
ber of examples (minority class) while the other class(es) make up the rest (majority
class). Unbalanced data sets are common; fraud detection [7], medical diagnostics [8],
financial risk modelling [9], and image recognition [10][11] are just a few examples.

Recent research has shown that using an uneven distribution of class examples in the
learning (or training) process can leave the learning algorithm with a performance bias:
poor accuracy on the minority class(es) but high accuracy on the majority class(es)
[5][12]. This is because traditional training criteria such as overall success or error
rate can be influenced by the larger number of examples from the majority class [12].
However, as the minority class often represents the main (or positive) class in many
class imbalance classification problems, accurately classifying examples from this class

A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 1–13, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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can be at least as important, and in some scenarios more important, than accurately
classifying examples from the majority class [7][13].

Addressing this learning bias to find classifiers that are accurate on both classes
is an important area of research [5][12]. In GP, much work has focused on directly
adapting the fitness function in class imbalance problems; this includes using fixed
misclassification costs for minority class examples to boost classification rates [8][14],
or training metrics that are insensitive to the learning bias such as the Area under the
ROC Curve (AUC) [15] or the average accuracy of each class [4][16]. While these
techniques have improved performance, results often focus on gains in minority class
accuracy with little analysis on the effects of the overall classification ability of evolved
solutions [4][14][16]. These objectives are usually in conflict, that is, increasing the
performance of one class can result in a trade-off in performance for the other [16][17].

This paper aims to address these issues by developing two different GP approaches to
the class imbalance problem. The first uses a traditional single-objective GP system and
focuses on adapting the fitness function to evolve classifiers with good overall classifi-
cation ability across both the minority and majority classes. We present four improved
fitness functions for classification with unbalanced data, and compare the overall clas-
sification ability of evolved solutions using the AUC, as well as a detailed analysis of
the individual class performances using these fitness functions. The second approach
uses a multi-objective GP (MOGP) system to simultaneously evolve a Pareto front (or
set) of classifiers along the optimal minority and majority class trade-off surface. Based
on the popular NSGA-II algorithm [18], the MOGP approach uses the notion of Pareto
ranking in fitness to treat these two objectives separately in the learning process. This
offers the advantages of discovering insights into the performance trade-off inherent
in a particular classification task, and the ability to readily choose a preferred solution
along the evolved Pareto front after the search process [19].

The rest of this paper is organised as follows. Section 2 outlines the GP framework.
Section 3 describes the improved GP system using the new fitness functions. Section
4 briefly outlines the multi-objective GP approach. Section 5 presents the unbalanced
data sets, and full experiment results and analysis. Section 6 concludes this paper and
gives directions for future work.

2 GP Framework for Classification

This section outlines the program representation, classification strategy, fitness function
and evolutionary parameters used in our basic GP framework.

2.1 Program Representation and Classification Strategy

A tree-based structure was used to represent genetic programs [2]. We used feature ter-
minals (example features) and constant terminals (randomly generated floating point
numbers) in the terminal set. We used a function set including the four standard arith-
metic operators, +,−, %, and ×, and a conditional operator, if. The +,− and × opera-
tors have their usual meanings (addition, subtraction and multiplication) while % means
protected division, that is, usual division except that a divide by zero gives a result of
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zero. Each of these four operators take two arguments and return one. The conditional
if function takes three arguments. If the first is negative, the second argument is re-
turned; otherwise it returns the third argument. The if function allows a program to
contain a different expression in different regions of feature space, and allows discon-
tinuous programs rather than insisting on smooth functions.

For the classification strategy we translated the output of a genetic program (floating
point number) into two class labels using the division between positive and non-positive
numbers. If the genetic program output is positive or zero, the example is predicted as
belonging to the minority class, otherwise the example is predicted as the majority class.

2.2 Standard Fitness Function for Classification

A typical fitness measure in classification is the success or error rate of a solution on the
training examples [3][14][16]. Using the four outcomes for binary classification shown
Table 1, the overall classification accuracy can be defined by equation (1).

foverall =
TP + TN

TP + TN + FP + FN
(1)

Table 1. Outcomes of a two-class classification problem

Predicted Object Predicted non-object
Actual Object True Positive (TP) False Negative (FN)
Actual non-object False Positive (FP) True Negative (TN)

2.3 Evolutionary Parameters

The ramped half-and-half method was used for generating programs in the initial pop-
ulation and for the mutation operator [2] . The population size was 500. Crossover,
mutation and elitism rates were 60%, 30%, and 10% respectively, and the maximum
program depth was 8 to restrict very large programs in the population. The evolution
ran for 50 generations or until an optimal solution was found. Half of each data set was
randomly chosen as the training set and the other half as the test set, both preserving
the original class imbalance ratio.

3 Improving GP with New Fitness Functions

Recent research has shown that the standard GP fitness function for classification,
foverall (eq. 1), can be unsuitable for some class imbalance problems as it can favour
solutions with a performance bias. Adapting the fitness function to consider the ac-
curacy of each class as equally important has lead to improvements in minority class
accuracy [4][16][20]. However, these developments offer little analysis on the effects
on the overall classification ability of evolved classifiers [16][17]. To address this we
present four improved fitness functions for classification with unbalanced data with the
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goal of evolving classifiers with a good AUC. It must be mentioned that the AUC itself
is difficult to use directly in the fitness function as it significantly increases training
times. This is due to the computational overhead required to calculate the AUC (i.e.,
a ROC curve must be constructed) for every solution in the population during fitness
evaluation. Note, the term “class observation” is used below to describe aspects of these
improved fitness functions; this term corresponds to the output of a genetic program
when evaluated on an example from either the majority or minority class.

3.1 New Fitness Functions for Classification with Unbalanced Data

New Fitness Function 1. In many classification problems, correctly classifying exam-
ples from the minority class (true positives) can be more important than correctly classi-
fying examples from the majority class (true negatives). In equation (2), fweighted uses
a weighted average of the true positive (TP) and true negative (TN) rates. We evaluated
five different weighting factors, 0.5, 0.55, 0.6, 065, 0.7 and 0.75, for each classification
task. When W=0.5 in fweighted, the classification accuracy of both classes is treated
as equally important. When W>0.5, minority class accuracy will contribute more to
program fitness than majority class accuracy by factor W .

This fitness function is designed to investigate two aspects. The first is how to effec-
tively balance between TP and TN rates as demanded by a particular classification task.
The second aspect is whether classifiers evolved with stronger accuracy on the minority
class (i.e., W in favour of the TP rate), will have better classification ability compared
to classifiers evolved when the fitness function treats the accuracy of both classes as
equally important.

fweighted = W ×
(

TP

TP + FN

)
+ (1 − W ) ×

(
TN

TN + FP

)
(2)

New Fitness Function 2. The function fcorrelation (eq. 3) is based on the well-known
statistical measure, the correlation ratio, which measures the relationship between linear
statistical dispersions within sets of class observations [21]. The correlation ratio can be
adapted for classification to measure how well two sets of genetic program class obser-
vations are separated with respect to each other. The higher the correlation ratio for a
program classifier, the better the separation of class observations. The goals of this new
fitness function are to explore the effectiveness of new separability-based evaluation
metrics in program fitness, and investigate whether this particular metric will evolve
solutions with good classification ability compared to typical accuracy-based metrics in
fitness.

To estimate the correlation ratio r in equation (3), let class observation Pci represent
the output of a genetic program classifier P when evaluated on the ith example belong-
ing to class c, where N is the number of total examples, Nc is the number of examples
in class c, and M is the number of classes (note that N=

∑M
c=1 Nc).

r =

√√√√ ∑M
c=1 Nc(μ̄c − μ̄)2∑M

c=1
∑Nc

i=1 (Pci − μ̄)2
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Here μ̄c represents the mean of class observations for class c only, and μ̄ represents the
overall mean of both minority and majority class observations:

μ̄c =
∑Nc

i=1 Pci

Nc
and μ̄ =

∑M
c=1 Ncμ̄c∑M

c=1 Nc

The correlation ratio r will return values ranging between 0 and 1, where values close
to 1 represent a better separation of class observations and values close to 0 represent a
poor separation [21]. However, for classification it is preferable that the class observa-
tions are not simply well separated, but separated according to the classification strat-
egy, that is, minority class observations should be positive numbers and majority class
observations negative. This ordering preference is incorporated into the fitness function
in equation (3) using an indicator function I(.), which takes the means of all minority
and majority class observations as inputs and returns 1 if the mean of the minority and
majority class observations are positive and negative, respectively, or 0 otherwise. Fit-
ness values from this fitness function range between 0 and 2, where values close to 2
represent optimal fitness and values close to 0 poor fitness.

fcorrelation = r + I(μ̄min, μ̄maj) (3)

3.2 Recently Improved Fitness Functions for Class Imbalance

Two recently improved fitness functions for class imbalance are presented below. These
were shown to improve minority class accuracy in evolved solutions using unbalanced
training data [16]. However, a detailed analysis of the classification ability of evolved
solutions using these improved fitness functions was not previously explored.

Improved Fitness Function 1. The function ferrors (eq. 4) uses new performance
objectives in combination with the (equally-weighted) accuracy of each class in pro-
gram fitness. These new objectives measure the “level of error” for each class, and
are designed to add a finer-grain to the fitness landscape – this can guide greedy hill-
climbing search better [3]. The “level of error” aims to differentiate between solutions
which score the same classification accuracy on each class but with different internal
classification models. Solutions with smaller levels of error for each class are closer to
correctly labelling any incorrectly predicted examples; these solutions will have better
classification models and are favoured over solutions with a larger levels of error.

The level of error, Errc, for class c in Equation (4) is estimated using the largest and
smallest incorrect genetic program class observation (i.e., program output value) for a
particular class, Pmx

c and Pmn
c , respectively. As the genetic program class observations

can be positive or negative numbers, the absolute value is taken. These values are scaled
to between 1 and 0 where 1 indicates the highest level of error and 0 the lowest. Optimal
fitness for this fitness functions is obtained by scoring 1 on all four objectives.

ferrors =
TP

TP + FN
+

TN

TN + FP
+ (1 − Errmin) + (1 − Errmaj) (4)

where
Errc = (|Pmx

c | + |Pmn
c |)/2
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Improved Fitness Function 2. The function fwmw (eq. 5) uses the Wilcoxon-Mann-
Whitney (WMW) statistic, a well-known approximation for the Area under a ROC
Curve (AUC) without having to construct the ROC curve itself [15]. This fitness func-
tion also explores the use of a separability-based metric directly in program fitness.
However, the WMW statistic can be computationally expensive to calculate [4] [22].

In Equation (5), Pi and Pj represent minority and majority class observations, re-
spectively; and Nmin and Nmaj correspond to the number of examples in the minority
and majority class, respectively. Equation (5) conducts a series of pairwise comparisons
(i.e, example-by-example) between minority class and majority class observations, col-
lecting “rewards” (1 point) when indicator function I(.) enforces two constraints. The
first constraint (Pi > 0) requires that minority class observations are positive (i.e.,
correctly labelled). The second constraint (Pi > Pj) requires that minority class ob-
servations are greater than majority class observations; this constraint establishes an
ordering of class observations.

The pairwise ordering of class observations in fwmw can be useful in program fitness
as solutions are rated not only on their classification accuracy per class, but also by how
separable these class observations are. For example, if two solutions S1 and S2 have
the same individual class accuracy, this fitness function will rank the solution with a
better ordering of class observations as fitter.

fwmw =

∑Nmin

i=1
∑Nmaj

j=1 I(Pi, Pj)
Nmin × Nmaj

(5)

where
I(Pi, Pj) = 1 if Pi > 0 and Pi > Pj , and 0 otherwise.

4 Improving GP with Multi-objective Search

In traditional evolutionary multi-objective optimisation (EMO), the evolutionary search
is focused on improving the set of non-dominated solutions until they are optimal [23].
This requires two major adaptations to canonical (single-objective) GP: modifying the
evolutionary search algorithm to evolve of a Pareto front (of solutions), and using Pareto
Dominance in fitness. The multi-objective GP (MOGP) approach used minority and
majority class accuracy as the two learning objectives.

4.1 Evolutionary Search Algorithm

MOGP is based on the well known EMO algorithm NSGA-II [18]. We used NSGA-II
because it is a fast and simple algorithm, and performs well compared to other EMO
algorithms across a range of problem domains [23][18]. In NSGA-II the parent and
offspring populations are merged together at every generation. The fittest individu-
als of this combined parent-child population are then copied into a new population
(archive population). The archive population serves as the parent population in the next
generation (the archive population size is also 500). The offspring population at every
generation is generated using traditional crossover and mutation operators; the archive
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population is used to preserve elitism in the population over generations. The classifica-
tion strategy, function and terminal sets, and evolutionary parameters remain the same
as the single-objective GP approach. The basic idea of MOGP can be seen in [19].

4.2 MOGP Fitness

Fitness in NSGA-II comprises of two hierarchical aspects: non-dominance rank and a
“crowding” distance measure [18]. The non-dominance rank serves as the primary fit-
ness attribute – “crowding” is only used to resolve selection when the non-dominance
rank is equal between two or more solutions. Non-dominance rank measures how well
a solution performs on all objectives with respect to every other member in the pop-
ulation. In Pareto dominance, a single solution dominates another solution if it is at
least as good as the other solution on all the objectives and better on at least one ob-
jective [23]. The non-dominance rank for a solution is the number of other solutions
in the population that dominate the given solution. The optimal non-dominance rank
is 0. “Crowding” is an estimate of solution diversity based on Euclidean distance be-
tween solutions in objective-space. Solutions in densely populated areas of objective-
space (similarly performing solutions) are penalised to a greater extent over solutions
in sparsely populated regions to promote solution diversity in the population.

5 Experiment Results

5.1 Unbalanced Data sets

Four benchmark binary classification problems were used in the experiments based on
their uneven distribution of class examples. The first two, Spect and Yeast, are from
the UCI Repository of Machine Learning Databases [24]. The second two, Face and
Pedestrian, are well-known image classification problems. Face is a collection of face
and non-face image cut-outs from the Center for Biological and Computational Learn-
ing at MIT [10], and Pedestrian is a collection of pedestrian and non-pedestrian image
cut-outs from the Intelligent Systems Lab at the University of Amsterdam [11].

Figure 1 shows example pedestrian and non-pedestrian (1.a), and face and non-face
(1.b) images. Low-level pixel statistical features corresponding to the mean and vari-
ance of pixel values around certain local regions within each image were used as image
features. These features represent overall pixel brightness/intensity and the contrast of
a given region. Details can be seen in [25].

SPECT Heart data. This data set contains 267 records derived from cardiac Single
Proton Emmision Computed Tomography (SPECT) images. There are 55 instances of
the “abnormal” class (20.6%) and 212 instances of the “normal” class (79.4%), a class
imbalance ratio of approximately 1:4. Each SPECT image was processed to extract 44
continuous features, these were further pre-processed to form 22 binary features (F1–
F22) that make up the attributes for each instance [24]. There are no missing attributes.

Yeast data. This data set contains 1482 instances of protein localisation sites in yeast
cells. There are eight numeric features calculated from properties of amino acid
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sequences (F1–F8) [24]. This is a multi-class classification problem; there are nine dis-
tinct classes each with a different degree of class imbalance. For our purposes, we de-
composed this data set into many binary classification problems with only one “main”
(minority) class and everything else as the majority class. We use a “main” class con-
taining 244 minority class examples (16%), an imbalance ratio of 1:5.

Pedestrian image data. This data set contains 24,800 PGM-format cut-outs split into
4,800 pedestrian (19.4%) and 20,000 (80.6%) non-pedestrian (background) images, an
imbalance ratio of approximately 1:4. These images are 19×36 pixels in size, and 22
pixel statistics were extracted as features F1–F22 [25].

Face image data. This image data contains 30,821 PGM-format cut-outs split into
2,901 face (9.5%) and 28,121 (90.5%) non-face (background) images, an imbalance
ratio of approximately 1:9. These images are 19×19 pixels in size, and 14 pixel statistics
were extracted as features F1–F14 [25].

(a) (b)

Fig. 1. (a) Example pedestrian and non-pedestrian, and (b) face and non-face, images

5.2 AUC Results: GP Fitness Functions

Table 2 presents the classification results of the GP system using the standard fitness
function for classification (eq. 1), and the improved fitness functions for class imbalance
(eq. 2–5). All the experiments were repeated 50 times with a different random seed used
for every run. Table 2 reports the average (and standard deviation) AUC on the test set
and average training time using each fitness function on the classification tasks. The
average training times are presented in seconds (s), minutes (m) or hours (h). For each
task the fitness function with the best AUC performance is underlined, and for function
fweighted the weight factor W with the best AUC performance is highlighted in italics.
If the best AUC is the same for two or more functions, we prefer the result with lower
standard deviation.

The AUC was chosen as the primary evaluation measure because it is known to
be a good estimate of classification ability in class imbalance learning [6][15]. The
AUC is insensitive to the class imbalance learning bias and considers the classification
performance across varying classification thresholds. Standard evaluation metrics such
as overall accuracy or error rate can lead to the deceptive appearance of “good looking”
results when classifier performance suffers the learning bias [16][17]. The AUC was
estimated using the trapezoidal technique, that is, as the sum of the areas of individual
trapezoids fitted under the points of a given ROC Curve [15]. Note that the MOGP is not
included in Table 2 as this requires the AUC of the set of evolved Pareto-front solutions
to be considered – we leave this comparison as future work.
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Table 2. AUC results and training times using GP fitness functions on the classification tasks

Fitness Spect Yeast Pedestrian Face
Function AUC Time AUC Time AUC Time AUC Time

Overall (eq. 1) 0.71 ± 0.15 1.8s 0.72 ± 0.09 8.0s 0.80 ± 0.13 1.4m 0.63 ± 0.11 1.5m
Weighted50

(eq. 2)

0.71 ± 0.05 2.5s 0.75 ± 0.05 12.7s 0.91 ± 0.03 3.2m 0.79 ± 0.04 4.1m
Weighted55 0.70 ± 0.07 3.3s 0.72 ± 0.06 14.7 0.92 ± 0.05 4.3m 0.78 ± 0.05 6.4m
Weighted60 0.71 ± 0.05 3.2s 0.75 ± 0.05 14.7 0.92 ± 0.02 4.2m 0.78 ± 0.05 6.6m
Weighted65 0.74 ± 0.04 3.2s 0.74 ± 0.05 14.7 0.90 ± 0.05 4.3m 0.77 ± 0.06 6.4m
Weighted70 0.69 ± 0.04 3.3s 0.75 ± 0.02 14.6 0.90 ± 0.04 4.3m 0.76 ± 0.06 6.4m
Weighted75 0.71 ± 0.05 3.3s 0.73 ± 0.07 14.7 0.89 ± 0.05 4.1m 0.76 ± 0.05 6.5m
Correlation (eq. 3) 0.74 ± 0.05 1.5s 0.79 ± 0.02 7.4s 0.91 ± 0.02 4.2m 0.83 ± 0.01 4.3m
Errors (eq. 4) 0.72 ± 0.05 3.1s 0.78 ± 0.03 17.0s 0.91 ± 0.03 5.3m 0.80 ± 0.04 6.0m
WMW (eq. 5) 0.73 ± 0.05 5.1s 0.79 ± 0.03 69.3s 0.93 ± 0.01 4.5h 0.82 ± 0.02 5.8h

5.3 Individual Class Performances: GP Fitness Functions vs. MOGP

Table 2 provides a “single-figure” value of classification performance for a particular
task. However, it is also important to consider the individual minority and majority
class accuracies when evaluating classifier performance. Figure 2 shows the average
minority and majority class performance using the GP fitness functions, along with the
results of the MOGP approach on the classification tasks. This allows for a visual-based
interpretation of the performance trade-off exhibited by a particular GP fitness function,
as well as a direct comparison between the performance of solutions found using the
(single-objective) GP and MOGP approach.

For fitness function fweighted only two weight factors are included in Figure 2. These
are using W=0.5 and the W value with the highest corresponding AUC from Table 2 for
a particular task (unless the optimal W was 0.5). This allows for a comparison when the
accuracy of each class is equally weighted in the fitness function (W=0.5), and when
minority accuracy is weighed higher (by some optimal amount). The optimal weighting
for the Spect, Yeast, Pedestrian and Face tasks were 0.65, 0.7, 0.6 and 0.5, respectively.

All MOGP experiments were also repeated 50 times with a different random seed for
every experiment. Summary attainment surfaces were used to approximate a average-
performing and the best-performing evolved Pareto front of solutions with respect to all
experiments; both these fronts are presented in Figure 2. Attainment surfaces summarise
multiple evolved Pareto fronts of solutions (i.e., multiple MOGP experiments) into a
single approximated set of solutions. The “average” set are those solutions with a 50%
probability of attainment (median surface) and the “best” set those solutions with the
lowest probability of attainment (first surface), with respect to all experiments [26].

Analysis of Learning Bias

According to Table 2, function foverall (eq. 1) produced relatively low AUC results
compared to the other fitness functions. Figure 2 shows that these solutions were biased
toward the majority class in all tasks, that is, majority class accuracy was high (≥ 90%)
but minority class accuracy low (< 50%). As the level of class imbalance increases
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Fig. 2. Average class performance of solutions using GP with six fitness functions (blue markers),
and the “best” and “average” MOGP Pareto-approximated fronts (red and blue lines) on the clas-
sification tasks. The horizontal axis represent minority class accuracy and vertical axis majority
class accuracy. Note that the axis ranges are different in each plot.

for a particular task, more examples were classified as belonging the majority class.
These results show that this fitness function is ill-suited for these class imbalance tasks
as evolved solutions had comparatively low classification ability and did not learn to
classify the minority class examples very well.

Analysis of New Fitness Functions

Table 2 shows that the four improved fitness functions succeeded in improving classi-
fication ability (compared to foverall) by evolving solutions with higher AUC perfor-
mances. This suggests that these improvements to the fitness function had a beneficial
effect on the classification tasks. However, Figure 2 illustrates the variation in class
performance when different GP fitness functions are used. In each case, a different mi-
nority and majority class trade-off is exhibited. Some trends across the tasks include:

1. The fitness functions that consistently achieved the best AUC results were the
separability-based functions fcorrelation (eq. 3) and fwmw (eq. 5). This suggests
that these new separability measures were effective training criteria for these clas-
sification tasks. However, the training times using fwmw were significantly higher
on the large data sets (hours instead of minutes), due to the overhead in calculating
the WMW statistic during fitness evaluation. The training times using fcorrelation
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were comparably low – suggesting that this fitness function was the most effective
in quickly evolving solutions with high AUC on these classification tasks.

2. The new “level of error” measure in program fitness (eq. 4) produced better AUC
performances in three classification tasks (exception was Pedestrian) with only a
relatively small increase in training time, compared to without (fweighted where
W is 0.5). This suggest that this new program measure was effective in improving
classification performance in some of the tasks, and provides a useful new direction
for further improvements to the fitness function for class imbalance.

3. In fweighted (eq. 2), the best AUC results when W was weighted in favour of mi-
nority class accuracy (W>0.5) was marginally better in most tasks compared to
an equal weighting (W=0.5); the exception was Face where the best AUC was
achieved using an equal weighting. However, this fitness function produced the
highest minority class accuracies in all tasks indicating that for some problems
(Spect and Pedestrian), the improvement in minority accuracy did not negatively
impact on majority class accuracy as the AUC was also improved. For other tasks
(Yeast and Face) this improvement in minority accuracy came at the expense of
majority accuracy. This suggests that weighting the minority class accuracy higher
(by some optimal amount) can improve classification ability (compared to an equal
weighting) but that this is problem specific.

Analysis of MOGP Pareto Fronts

Figure 2 shows that the MOGP approach evolved a diverse set of solutions along the
minority and majority class trade-off surface for the classification tasks. MOGP found
multiple good solutions around the important middle region of the trade-off surface
where the two objectives are at their highest together. This is an important advantage of
MOGP over traditional (single-objective) GP. In the latter, only one solution is found
along the objective trade-off surface, whereas in MOGP the decision-maker can a pos-
teriori choose a preferred classifier from the evolved Pareto front with the desired ob-
jective trade-off.

6 Conclusions

The goals of this paper were to develop and compare two genetic programming tech-
niques to class imbalance learning by evolving classifiers with good classification abil-
ity on both the minority and majority classes, and investigate the performance trade-off
inherent in optimising these two conflicting objectives. These goals were achieved by
examining the classification performance of evolved solutions using both our new GP
fitness functions and our Pareto-based multi-objective GP.

The improved fitness functions for class imbalance found solutions with better AUC
results than the standard GP fitness function for classification, which produced solutions
with poor minority class accuracy on the classification tasks. The new separability-
based program metrics in fitness generally achieved the best AUC on the classification
tasks with the function using the correlation ratio being the most effective in quickly
evolving solutions with a high AUC. The new “level of error” measure improved solu-
tion performance compared to without. Weighting the true-positive rate higher than the
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true-negative rate in the fitness function only improved classification ability for some
tasks when compared with an equal weighting.

Using the multi-objective GP, a single experiment evolved multiple solutions with
good individual class accuracies allowing users to choose between these solutions de-
pending on their requirements. This can be advantageous compared to canonical (single-
objective) GP where only a single solution is evolved in a single experiment.

In terms of future work we plan to evaluate these improved fitness functions, and
develop new fitness functions, using more class imbalance problems. We also plan to
investigate the AUC of the evolved MOGP solutions along the Pareto front.
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Abstract. This study attempts to decompose the behaviour of mutation
in Grammatical Evolution (GE). Standard GE mutation can be divided
into two types of events, those that are structural in nature and those
that are nodal. A structural event can alter the length of the phenotype
whereas a nodal event simply alters the value at any terminal (leaf or in-
ternal node) of a derivation tree. We analyse the behaviour of standard
mutation and compare it to the behaviour of its nodal and structural
components. These results are then compared with standard GP oper-
ators to see how they differ. This study increases our understanding of
how the search operators of an evolutionary algorithm behave.

1 Introduction

Much attention has been directed towards the behaviour of crossover in Gram-
matical Evolution due to the traditional importance placed on this search oper-
ator in Genetic Programming [1] in general (e.g., [2,3,4]). However, aside from
simple studies which examined mutation rates, there has been little analysis
of the behaviour of mutation on search in GE. The notable exceptions to this
include Rothlauf and Oetzel’s locality study on binary mutation [5], a study
comparing performance of binary and integer forms of mutation [8] and our first
study on standard GE mutation [11]. This study extends this research by exam-
ining how each behavioural component of mutation moves the solution through
the problem space. Search operators are a key component of any genetic and
evolutionary computation representation, and as such it is critical that we un-
derstand their behaviour. This study addresses this important research gap by
conducting an analysis of the behaviour of GE’s mutation operator, focusing on
the types of changes that occur when it is applied, and their impact on evolu-
tionary performance.

The remainder of the paper is structured as follows. Firstly, the related re-
search in this area is discussed in Section 2. A brief explanation on the locality
of binary mutation is provided in Section 3 before an analysis of the behaviour
of mutation in GE is undertaken in Section 4. Three separate experiments are
carried out and their results are discussed in Sections 5, 6 and 7. In light of the
results further analysis is described in Section 8, before finishing the paper in
Section 9 with Conclusions and Future Work.

A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 14–25, 2010.
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2 Related Research

In a recent study examining the locality of the mutation operator in Grammatical
Evolution it was found that in some cases (less than ten percent of the time)
mutation events resulting in small changes to the genotype can result in large
changes to the structures generated [5]. More specifically, given a single unit of
change at the genotype level (i.e., a bit flip), changes of one unit or greater at
the derivation tree level occurred approximately ten percent of the time. 14% of
these had a distance of greater than 5 units at the tree level. A unit of change at
the phenotypic tree level corresponded to tree edit distance calculations which
included deletion (delete a node from the tree), insertion (insert a node into the
tree) and replacement (change a node label) change types. It is worth stating
that the other 90% of the time mutation has no effect due to the many-to-one
mapping adopted in GE which allows multiple values to correspond to the same
production rule choice. The genotype change therefore is neutral upon phenotype
structure and fitness in these cases.

In this paper we turn our attention to what is occuring that critical 10% of
the time when a unit of change arising from mutation at the genotype level
does not perfectly correspond with a unit of change at the phenotype level. We
wish to establish if it is possible to design a mutation-based search operator that
exhibits better properties of locality than the one currently adopted in GE.

3 A Component-Based View of Mutation in GE

In order to expose the impact of mutation on derivation tree structure we design
a simple grammar, which uses binary rule choices. This allows us to condense
codons (elements in the string representing the individual) to single bits. This
simplifies our analysis without loss of generality to more complex grammars with
more than two productions for each non-terminal.

Below is a simple binary grammar which might be used in a symbolic regres-
sion type problem with two variables (x and y).

<e> ::= <o><e><e> (0)
| <v> (1)

<o> ::= + (0)
| * (1)

<v> ::= x (0)
| y (1)

We can then construct genomes with binary valued codons to construct sen-
tences in the language described by the above grammar. Consider all genomes
of length two codons (22 of them) and draw an edge between genomes that are
a Hamming distance of one apart. If we then present the corresponding partial
derivation trees resulting from those genomes we see the arrangement outlined in

x
y
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Fig. 1. The 2D neighbourhood for the example grammar (i.e., using the first two
codons)

Fig. 1. In this particular example we see that a mutation event at the first codon
corresponds to a new derivation tree structure. Here we define a new derivation
tree structure as being one that has changed in length, that is, it contains more
non-terminal symbols than its neighbour. Mutations from 00 to 10 (and vice
versa) and from 01 to 11 (and vice versa) result in these structural changes.
Whereas the remaining mutation events result in node relabelling.

Extending the genomes by an additional codon we can visualise the Hamming
neighbourhood between the 23 genomes both in terms of codon values and par-
tial phenotype structures. These are illustrated in Fig. 2. Again, we see a clear
distinction between mutation events that result in structural and non-structural
modifications.

Mapping these codons back to the grammar we see that structural mutations
occur in the context of a single non-terminal symbol, <e>. We can see from this
grammar that this non-terminal alone is responsible for structural changes, as it

Fig. 2. The 3D neighbourhood for the example grammar (i.e., using the first three
codons)

00
10
01
11
<e>
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alone can increase the size of the developing structure. The rules for the <o> and
<v> non-terminals are non-structural as they simply replace an existing symbol
without changing structural length.

Effectively we can now decompose the behaviour of mutation into two types
of events. The first are events that are structural in their effect and the second
are those which are nodal in their effect. By logical extension we could consider
both types of events as operators in their own right, and therefore define a
structural mutation and a nodal mutation. It should be noted, however, that this
is a specialisation of standard GE mutation, as it is possible for both types of
events to occur during standard application of GE mutation to an individuals
genome. Perhaps the locality of mutation could be improved by simply reducing
the number of occurances of the structural form of mutation, or even removing
this form of mutation completely?

If mutation was the sole search operator employed in a GE search, its elimina-
tion would have the consequence of removing structural change and structural
search. This of course should have detrimental consequences for search as in
Genetic Programming we must explore both structures and their contents. Part
of the strength of GP approaches as problem solvers is their ability to search
variable-length structures, so the removal of this ability would be undesirable.
The following analysis and experiments seek to determine the relative impor-
tance of these behavioural components of mutation and begin to answer these
kinds of questions.

4 An Analysis of Mutation in GE

To show the impact of decomposing mutation into its constituent parts we will
look at how well each component of the operator performs on the Max problem.
The aim of the Max problem is to generate a tree that returns the largest real
value within a set depth limit. The optimal solution to this problem is to have
addition operators at the root of the tree so that it creates a large enough variable
for multiplication to have an effect. This problem is considered difficult for GP as
populations converge quickly on suboptimal solutions that are difficult to escape
from, except through a randomised search [7]. As such, this problem should be
amenable to the right form of mutation operator. The grammar for this problem
is given below:

<expr> ::= <op> <expr> <expr> | <var>
<op> ::= + | *
<var> ::= 0.5

This problem is an interesting application for the new component behaviours
of the mutation operator as it highlights the different methods each component
uses for exploring the search space. The grammar is suitable for illustrating
the mutational differences as it consists of one structural rule(<expr>) and one
nodal rule(<op>). Its simplicity also removes any extraneous factors that could
complicate the result. The Max problem also requires that every element of the

<o>
<v>
<expr>
<op>
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Fig. 3. An Example Max problem parse tree. Total =0.125.

Fig. 4. Nodal mutation performed on
parse tree. Total = 0.5.

Fig. 5. Structural mutation performed
on parse tree. Total = 0.25.

tree contributes to the final solution. i.e. there are no introns [7], which further
removes any confounding factors.

4.1 Experimental Procedure

The experiments described in Sections s 5, 6 and 7 were implemented using
GEVA[12,13], this is an open source framework for Grammatical Evolution in
Java designed by the NCRA group in UCD. The following properties were kept
constant for each experiment execution, these are as follows: Population size =
500, replication rate = 0.1, maximum generations = 50, the Mersenne Twister
as the random number generator and fitness proportionate selection using the
tournament selection operator with the tournament size set to 3. Generational
replacement with an elite size of 1 was used as our replacement operator.

Wrapping was turned off as it could lead to conditions where a codon was
both structural and nodal. The experiment was run using mutation exclusively as
crossover would have had a confounding effect in combination with the mutation
operators. A ramped half and half initialiser was used to create the derivation
trees with an initialisation depth of 10. This equates to a phenotype tree of depth
8, the maximum depth allowed for this problem. This was necessary because
nodal mutation by itself cannot alter the length of a phenotype and it required
trees initialised to the maximum depth for a fair comparison.

5 Analysis of Mutations Effect on Search

This experiment investigates whether there is a statistically significant difference
in performance between standard GE mutation and its structural and nodal
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components. The two component behaviours have been implemented as oper-
ators in their own right so that we may measure the relative impact on the
overall behaviour of integer mutation. We then examine whether these differ-
ent components could have a beneficial impact on traversing the search space.
Our experiment was carried out on the problem described above. As Nodal and
Structural mutation act on subsets of the chromosome, the standard method of
mutation had to be altered. Instead of applying the operator to each codon with
a certain probability of mutation, only one mutation event was allowed per indi-
vidual. This meant that each operator produced the same number of mutation
events. 500 trial runs were carried out for each operator.

5.1 Experiment Results

The results from this experiment show that selectively altering subsets of codons
from the chromosome can have a dramatic effect on how GE navigates the search
space. The results are shown in the graphs below, see Figures 6 and 7. The fit-
ness was based on a minimising function (1 over the result), so smaller results
are better. As the results were on a logarithmic scale, a Wilcoxon rank-sum test
(two-tailed, unpaired) was performed on the nodal and structural distributions
that showed they were significantly different. The nodal component behaviour
performs the best as it will explore the configurations of the particular tree
structure to optimise it, something this problem requires to reach an optimal
solution. Conversely structural changes does not explore the contents of the tree
but instead explores configurations of derivation tree structures. This leads to
poor performance on this problem. This is even more discernible when looking
at the average fitness of the population (Figure 7). The fitness of standard muta-
tion matches more closely with structural mutation suggesting it has a damaging
effect on the nodal search component, changing the tree structure before it can
be fully explored. This result clearly indicates that there are two separate be-
havioural components operating in standard GE mutation and it also indicates
that they might not be complementary behaviours.

6 Comparison with GP Mutation

By splitting GE mutation into its components we now have two operators that
are analogous to standard tree-based GP operators, point mutation and subtree
mutation. Nodal mutation is identical in behaviour to point mutation so no
comparison is needed but while subtree and structural mutation both explore
the structure of trees there is a significant difference. There is a dependency on
codon placement in GE as it uses a linear genome representation. As the genome
is read from left to right, it means a change to a structural codon could change
the meaning of the codons that follow it. In the most extreme case a single
mutation early on in the genome could generate an entirely different tree. This
effect is called ‘ripple’ mutation, and is similar in effect to ripple crossover [14].
Subtree mutation, on the other hand, replaces a subtree with another randomly
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Fig. 7. Log of average fitness for GE op-
erators on Depth 8 Max Problem

generated subtree, while leaving the rest of the tree intact [9]. In the following
experiment we will apply standard tree-based mutation operators, point and
subtree mutation, to the GE derivation tree representation. This allows us to
compare a search of the structural space both with and without the ripple effect.
We can then determine whether this ripple effect is advantageous to the search
process. 500 trial runs were carried out for each operator.

6.1 Experiment Results

This experiment investigated how structural mutation performed against GP
subtree mutation and whether the ripple effect was beneficial to the search pro-
cess. A pairwise Wilcoxon rank-sum test was performed on the final results of
both best and average fitness. It showed that all the results were significant ex-
cept for nodal compared with standard mutation. Figure 8 shows that subtree
mutation outperformed structural mutation. When the average individual fitness
was examined it showed that despite subtree mutations better performance, most
mutations created exponentially worse individuals during the course of the run
(Figure 9). This shows that the ripple effect of structural mutation did not have
a significantly detrimental effect on the search.

A further experiment was run where the maximum depth was set to 100 while
leaving the maximum initialisation depth at 8. This in effect gave nodal muta-
tion a significant disadvantage over the other operators as it cannot increase the
derivation tree depth. The results for this experiment are shown in figures 10
and 11. Nodal mutation still performed better than structural and standard mu-
tation but subtree mutation greatly outperformed it. Average fitness in subtree
mutation also improved at the greater depth. Upon closer investigation the cause
for this was found to be an explosive growth in the derivation tree depth and
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Depth 8 Max Problem
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Fig. 9. Log of average fitness results for
Depth 8 Max Problem
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Fig. 11. Log of average fitness results for
Depth 100 Max Problem

used codon length. This is shown in figures 12 and 13. Subtree mutation ap-
proached the problem by exploiting the fact that it makes larger subtrees. This
meant that while it generated better mutations as regards fitness there was also
a significant price to be paid in code bloat. Nodal mutation instead took the ap-
proach of optimising the structures present in the population to correctly target
the position of the terminal set of operators(+,*). This led to the creation of
highly efficient trees that could compete with subtree results despite their depth
limitation.
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7 Analysis of Mutation Events on Fitness

The previous experiments show how each operator performs during the course
of a run but they do not have the granularity to see what was actually hap-
pening during each mutation event. Next we conducted an experiment in order
to undertake an analysis of the operators’ impact on individual independent
mutation events. In previous studies [5] changes to the derivation tree were
recorded but as we know what kind of phenotypic impact our operators have,
we instead look at changes to the fitness of the individual. The experiment was
run using the Max Problem with the same settings as described in Section 4.1.
The mutation was carried out on a random codon in a randomly initialised
individual. When a mutation occurred the change in fitness was recorded and
then the codon was returned to its original value. Any mutation events that
broke the depth limit were not counted. If a mutation created an invalid in-
dividual then this was recorded but no penalty was added to the fitness. This
was continued until a sample size of 1,000,000 mutations was gathered for each
operator. This experiment does not intend to show how these search opera-
tors work in practice. For example the quantity of bad fitness generated by
an operator is generally irrelevant as it is bred out of the population(although
it reduces the efficiency of the mutation operator). Conversely, a good muta-
tion is always of benefit to a population regardless of its size. There is also a
potential interplay of the operators as they are components of standard mu-
tation and multiple codon sites can be mutation during standard application.
Instead what these metrics do is focus on some of the mechanics at play during
mutation.
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7.1 Experiment Results

This experiment attempts to highlight the effects of individual mutation events
on the overall fitness of an individual. The results are shown in table 1. It should
be noted that over half the time the GE mutation operators generated a neutral
mutation. This was because of the structure of the grammar. Each rule had
two possible outcomes, mutation would either change the outcome or leave it
untouched. Nodal and subtree mutation did not generate any invalids. In nodal
mutations case it is because it is incapable of making them whereas it is in
the definition of subtree mutation that it cannot generate invalids, so it would
keep generating new subtrees until a valid one was produced. This factor also
meant that subtree produced a large amount of neutral mutations as many of
the alternatives would have made invalid individuals.

Nodal generated the greatest number of beneficial mutation events followed by
subtree, standard and structural. As for the quality of these mutations, subtree
outperformed the other operators by a factor of three. Nodal also produced
the greatest number of bad mutations, followed by standard, and structural
with subtree only producing bad mutations 2.9% of the time, unfortunately
each bad subtree mutation was massively worse than the others. Overall nodal
mutation was the least destructive operator, rarely generating large changes but
cumulatively generating the greatest fitness change. Structural performed far
worse than nodal but it was still not nearly as destructive as subtree mutation.
Upon further investigation into the poor results for average fitness, as shown in
Fig 9, it was found that the variance in average fitness increased exponentially
at certain points during the run. This would indicate that subtree mutation
occasionally produced very unfit subtrees that, depending on the root node of
the tree, could make the overall fitness far worse.

Table 1. Results for mutation events on the Max Problem

Mutation Op Good Bad Neutral Invalid Avr. Good Avr. Bad total Change
Standard 10.1% 26.2% 51.1% 12.6% 9.857 322.648 -138,580,712
Structural 5.2% 24.5% 51.6% 18.6% 11.385 1040.559 -137,691,951

Nodal 18.5% 31% 50.5% 0 10.462 63.106 -17,648,412
Subtree 11.4% 2.9% 85.6% 0 28.865 75461.321 -2,222,353,022

8 Discussion

This study highlighted the two contradictory components of standard GE muta-
tion. The nodal behaviour was more akin to the standard GP point mutation as
phenotypic changes consisted of replacing one terminal for another, leaving the
derivation tree untouched. This could be beneficial in GE, where the outcome
of a particular rule choice is dependent on all the choices that precede it. The
behaviour of structural mutation was more explorative, creating variations of
the tree structure itself. The results from the comparison with subtree mutation
showed that it had a comparable effect on search despite the possibility of the
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ripple effect changing every codons meaning. Even though it did not perform as
well as subtree at the greater depth limit it showed that it was not as susceptible
to code bloat as it explored the structure space of the trees.

The point of this paper was not to show which was the best operator, some-
thing which is problem dependent anyway. Instead it was to decompose GE’s
standard mutation operator into it’s component behaviours. Despite our inten-
tions, this information could now be used to create a mutation operator that
applies these behaviours to a problem as and when they are needed. We have
also applied this analysis on a range of other benchmark problems with similar
results. The use of intelligent operators might help GE escape local optima as
well as find the optimal solution more efficiently. This could be of particular
benefit in dynamic environments where an evolutionary algorithm must be able
to adjust quickly in response to a changing fitness function [10].

9 Conclusion and Future Work

This study analysed the behavior of mutation in GE. We initially described
standard mutation in GE and then broke it into two components which we
called Structural and Nodal mutation. We then investigated the effects of these
mutation operators as applied to the Max Problem to ascertain if there was
any discernible difference between these components. We then compared the
operators against GP subtree mutation. Further investigation was carried out
on the impact of individual mutation events.

Future work will involve using this information to design a better approach to
mutation in GE. This could involve switching from one type of mutation to the
other during the course of the run. It is natural to expect that the importance
of different types of operators will vary over the course of a run as well as from
problem to problem. In this respect we hypothesise that we would observe a
greater difference in performance between the different forms of mutation during
the end-phase of a run versus the mid and early-phases. In the later phase of
a run we would hypothesise that nodal mutation might have a more positive
impact than during the early phase, and we would hypothesise the opposite
behaviour for structural mutation.
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Abstract. An often-mentioned issue with Grammatical Evolution is
that a small change in the genotype, through mutation or crossover, may
completely change the meaning of all of the following genes. This paper
analyses the crossover and mutation operations in GE, in particular ex-
amining the constructive or destructive nature of these operations when
occurring at points throughout a genotype. The results we present show
some strong support for the idea that events occurring at the first posi-
tions of a genotype are indeed more destructive, but also indicate that
they may be the most constructive crossover and mutation points too.
We also demonstrate the sensitivity of this work to the precise definition
of what is constructive/destructive.

Keywords: Grammatical Evolution, crossover, mutation, position, bias.

1 Introduction

A desirable trait of the genetic operations of crossover and mutation in evo-
lutionary algorithms, is that they should have high locality; small genotypic
changes should result in similarly small changes in the phenotype [1]. This al-
lows the algorithm to more smoothly navigate the search space. Grammatical
Evolution (GE) [2] represents programs as a linear genome (genotype) which is
then converted to executable code (phenotype), through a mapping operation.

It has been proposed that as a result of the mapping operation, the genetic
operators in GE do not maintain high locality [3]. One potential reason for this
is that an alteration in the chromosome will change the meaning and context
of all following codons, even if those codons remain the same. The expectation
therefore, is that mutation and crossover events that occur at points towards the
beginning of the genome will on average be far more destructive than those at
the end. This paper investigates the extent to which this is true.

The following section gives an introduction to the GE technique and the
crossover and mutation operators being considered, followed by a brief review of
some existing, similar work. A detailed description of the experiments performed
is given, before the results of the experiments are presented along with some
discussion as to what they show. Finally, the paper will be concluded with some
suggestions for future work.

A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 26–37, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 Background

2.1 Grammatical Evolution

Grammatical Evolution [2] is an evolutionary approach to generating computer
programs which is similar to Genetic Programming (GP) [4]. GE allows the
generation of programs in any language definable in Backus Naur Form (BNF).
The GE algorithm uses a variable length binary string called a chromosome to
represent individuals. The chromosome is made up of a sequence of codons, which
are simply integer values (we use a full range of positive 32-bit integers in this
study). During fitness evaluation the chromosome is translated into a phenotype
source string, which is valid according to the BNF grammar. This conversion is
achieved using the mapping operation.

Mapping is performed by traversing the grammar. At each rule with multiple
productions, the production to use is decided by the program’s next codon. The
integer codon value taken is then divided by the number of available productions
with the remainder used as the index of the rule to map to. For example, given
the example grammar rule below, the expr may be replaced by any of the 3 pro-
ductions. The codon Cx is taken from the program to be mapped, and then the
rule to use will be decided by: Cx MOD 3, where 3 is the number of productions
in this case.

expr ::= conditional {0}
| loop {1}
| assignment {2}

Mapping is complete when all non-terminal grammar rules have been replaced
by terminals, or, if the program is deemed to be invalid, which may occur if there
are insufficient codons to complete the mapping or some maximum depth/length
limit is exceeded. In the case of insufficient codons it is typical to use a wrapping
operator whereby mapping continues from the first codon, but this is usually
accompanied by a maximum number of wraps.

GE uses the standard genetic operators of crossover and mutation. Mutation
is a single point mutation where an individual selected to undergo mutation has
a codon selected at random, and this codon is replaced with a new randomly
generated codon. Similarly, crossover uses single point crossover, where two par-
ents selected for crossover will have points chosen randomly within each of them,
and the two sets of codons following these points exchanged.

A characteristic of the mapping process is the presence of a number of unused
codons at the end of an individual. Crossover and mutation events still occur
within this unused portion, but the change has no impact on the phenotype
or fitness. Throughout the rest of this paper we will only be considering those
change events that occur within the active region, defined to be those codons
that are translated in program code.
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2.2 Related Work

Numerous studies have looked into the effect of crossover in various forms of
genetic programming. Nordin et al [5] and Johnson [6] independently looked at
the fitness change caused by crossover for tree-based GP. Similar studies have
also been conducted for linear [7] and graph [8] representations. The consistent
conclusion is that most crossover events result in either a reduction in fitness or
no change. Our work seeks to confirm whether this is the case in GE too, but in
particular is more concerned with the effect crossover position has on this fitness
change.

A number of researchers have considered crossover in the grammatical evolu-
tion algorithm. Harper and Blair proposed alternatives to the standard one-point
crossover, with self-selecting crossover [9] and structure preserving crossover [10],
and Keijzer et al. introduced a form of ripple crossover to GE [11]. O’Neill and
Ryan [12] sought to identify a homologous crossover for GE. They determined
that rather than causing the “mass destruction” expected, the standard one-
point crossover operator itself acts as a form of homologous crossover, recombin-
ing individuals such that the context of building blocks is preserved.

There has been much less work focusing on the mutation operator in gram-
matical evolution. Rothlauf and Oetzel [3] examined mutation in relation to
locality, determining that the representation used by GE does lead to lower lo-
cality. Another study by Hugosson et al. [13] compared a number of mutation
operators, leading to the conclusion that the standard bit-flipping mutation is
the best choice for locality. They also question whether higher locality in GE is
actually beneficial.

3 Method

For each of even-five parity, Santa Fe trail, 6-bit multiplexer and a symbolic
regression problem, 1000 runs were carried out to provide a large quantity of
crossover and mutation data. The fitness of each individual selected for crossover
and mutation was logged before and after the operation, along with the point
at which the operation was carried out. The destructive or constructive nature
of the operation could then be analysed in relation to the position at which it
occurred. If the standardised fitness decreased then this was considered a positive
change, if it increased it was negative and no change signalled a neutral effect.

Since crossover operations involve the exchange of material on two candidate
solutions, it is more difficult to define what is positive/neutral/negative than for
mutation. There are many ways in which to compare the resultant children’s
fitness to the fitness of the parents:

– average of both children compared to average of both parents
– each child compared to the average fitness of the population
– each child compared to one parent
– each child compared to the average fitness of the parents
– . . .
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Table 1. Even-five parity parameter tableau for GE

Raw fitness: Number of inputs producing incorrect out-
puts, on all 25 possible cases.

Standardised fitness: Same as raw fitness.
Population size: 500
Number of generations: 100
Mutation probability: 0.1
Crossover probability: 0.9

Table 2. Santa Fe trail parameter tableau for GE

Raw fitness: Number of pieces of food before the ant
times out with 600 operations.

Standardised fitness: Total number of pieces of food, minus the
raw fitness.

Population size: 500
Number of generations: 100
Mutation probability: 0.1
Crossover probability: 0.9

None of these definitions are perfect, so two approaches are presented here. In
one approach the fitness of each child is compared to one parent program, in the
other to the average of both of its parents. These approaches will allow us to
consider each crossover operation as two events—one for each crossover point.

Variable length chromosomes make it necessary that some form of normalisa-
tion take place in order to compare separate operator events. This was performed
by grouping into deciles, so that all crossovers occurring in the first 10% of the
chromosome are grouped together, and so forth. Events at points outside the
active portion of the chromosome were ignored due to their neutrality and as
such, deciles were resolved based upon the position of the change within the
active portion of the chromosome.

The parameters used for each run are outlined in tables 1, 2, 3 and 4. Chromo-
somes were allowed to wrap, but it should be noted that the effects of wrapping
were negligible as a result of few individuals requiring it on the given problems.

Table 3. Multiplexer 6-bit parameter tableau for GE

Raw fitness: Number of inputs producing incorrect out-
puts, on all 26 possible cases.

Standardised fitness: Same as raw fitness.
Population size: 500
Number of generations: 100
Mutation probability: 0.1
Crossover probability: 0.9
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Table 4. Symbolic regression parameter tableau for GE

Raw fitness: Sum of the error, for a sample of 20 data
points in the interval -1.0 to 1.0.

Standardised fitness: Same as raw fitness.
Population size: 500
Number of generations: 100
Mutation probability: 0.1
Crossover probability: 0.9

4 Results and Discussion

The results of our experiments are presented in this section. We consider firstly
mutation, and then crossover (measuring fitness change in two different ways).
For each operator, three groups of bar charts are presented. These represent the
proportion of positive, neutral and negative changes. Each bar represents one
decile, as explained above.

4.1 Mutation

The results of our mutation experiments are presented in figures 1, 2 and 3. The
results are not strongly problem-dependent: the same trends can be observed for
each problem.

The positive events show the weakest overall pattern in the results: towards
the end of the active region, there is typically a declining trend in the proportion
of positive events; towards the beginning there is not a strong pattern, though
three of the problems show a noticeably lower proportion in the first decile. The
neutral events all have an upward trend, and the negatives all demonstrate a
rapid downward trend.

Considering the neutral changes, one notable feature is the very high propor-
tion of neutral changes in the later positions in the active region. This suggests
that a mutation operator that was biased towards the earlier part of the active
region might have a better effect. The results suggest that such an operator would
create more movement in the search space; whilst by far the largest proportion of
this would be negative, it would also increase the proportion of positive events.
Using this alongside a local search operator (e.g. a mutation variant on brood
crossover [14]) might help to counteract the number of negatives generated using
such a mutation method.

4.2 Crossover

The crossover results are presented using the two different definitions of the
positive-neutral-negative classification discussed above.

The results using the first definition, the averaged parent fitness where the
fitness of the child is compared with the average fitness of its two parents, are
presented in figures 4, 5 and 6. As with the mutation results, these results do
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Fig. 1. Proportion of mutations in each decile that had a positive effect on fitness
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Fig. 2. Proportion of mutations in each decile that had no effect on fitness
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Fig. 3. Proportion of mutations in each decile that had a negative effect on fitness
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Fig. 4. Proportion of crossover events in each decile that had a positive effect on fitness.
Using the averaged parent fitness definition of positive crossover.
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Fig. 5. Proportion of crossover events in each decile that had no effect on fitness. Using
the averaged parent fitness definition of neutral crossover.
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Fig. 6. Proportion of crossover events in each decile that had a negative effect on
fitness. Using the averaged parent fitness definition of negative crossover.
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Fig. 7. Proportion of crossover events in each decile that had a positive effect on fitness.
Using the change to first parent definition of positive crossover.
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Fig. 8. Proportion of crossover events in each decile that had no effect on fitness. Using
the change to first parent definition of neutral crossover.
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Fig. 9. Proportion of crossover events in each decile that had a negative effect on
fitness. Using the change to first parent definition of negative crossover.

not show a strong problem-dependence, having similar patterns for all problems.
The positive and neutral events both show a strong upwards trend, whereas the
negative results show a steep downward trend.

The behaviour of both the negative and neutral events is similar to the be-
haviour observed in the mutation events. A large proportion of the crossovers
towards the end of the active region result in a neutral change to the fitness.
This perhaps suggests that these crossovers are placing the crossed over code
from the second parent into a region on the first parent that, whilst encoded for,
is redundant or inaccessible in the phenotype. One way to address this would
be to use a data-flow analysis [15] to ensure that the crossover point is in an
accessed part of the code (this idea of choosing a good crossover point has been
explored in the technique called context-aware crossover [16]). Furthermore, it
is possible that phenotypically identical material is being crossed over. This has
a positional bias due to shorter regions needing to be equivalent towards the end
of the active region.

When compared with the mutation events, the positive crossover events
demonstrate a very different pattern of behaviour. Crossover events towards the
end of the active region are much more likely to produce a positive effect than
those towards the beginning. This suggests that crossover is not simply acting as
another form of mutation operator; the code crossed in from the second parent
is having a positive effect on the fitness, especially if it makes a smaller change
by being towards the end of the active region.
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One surprising feature of this analysis is how large a proportion of crossovers
are neutral, given that this requires the child to have exactly the same fitness
as the average of the two parents. This seems unlikely to occur as a result of a
crossover event that takes two parents with different fitnesses; it would seem more
likely that these are the result of identical or identical-fitness parents crossing
over. An interesting piece of future work would be to do a further analysis in
which these events were considered separately, as in [6].

By contrast with the mutation results, these suggest that a positional bias in
crossover towards the end of the active region would be an obvious improvement,
as this should increase the number of positive events and decrease the number
of negative events. However, it is perhaps important not to eliminate too many
negative events, as otherwise this will simply reduce the search to a hillclimber,
which is unlikely to be effective in such a complex search space.

This analysis is made more complex, however, when we look at the alternative
definition of positive-neutral-negative events using the change to first parent
definition, i.e. the child is compared to the first of its parents. The results for
this are given in figures 7, 8 and 9. In these results, the effects of crossover
have very similar trends to those obtained using mutation, the most notable
change being the larger proportion of positives in the first decile for three of the
problems. By contrast with the results from the previous definition, these results
suggest that crossover is acting as a kind of mutation operator.

Therefore, it is hard to draw any definitive conclusions about crossover from
these analyses—it appears that this depends highly on the specific definition of
positive/neutral/negative chosen.

5 Future Work

Future work includes examining how these effects change through the genera-
tions of the GE run, looking at a wider range of definitions for constructive and
destructive operators, and, finally, designing and testing new operators based on
what we have learned from our analysis.
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Abstract. Recent theoretical work has characterised the search bias of GP sub-
tree swapping crossover in terms of program length distributions, providing an
exact fixed point for trees with internal nodes of identical arity. However, only
an approximate model (based on the notion of average arity) for the mixed-arity
case has been proposed. This leaves a particularly important gap in our knowl-
edge because multi-arity function sets are commonplace in GP and deep lessons
could be learnt from the fixed point. In this paper, we present an accurate theo-
retical model of program length distributions when mixed-arity function sets are
employed. The new model is based on the notion of an arity histogram, a count
of the number of primitives of each arity in a program. Empirical support is pro-
vided and a discussion of the model is used to place earlier findings into a more
general context.

Keywords: Genetic Programming, Sub-Tree Swapping Crossover, Program
Length, Arity Histograms.

1 Introduction

Understanding how Genetic Programming (GP) explores the space of computer pro-
grams requires two things [12, Chapter 11]: a) characterising the search space itself,
e.g., in terms of how fitness is distributed in it, and b) explaining how GP explores it,
particularly in terms of the search biases of its genetic operators.

Research on the characterisation of the search space has provided evidence of how
program functionality and fitness are distributed in program spaces (e.g., showing that
beyond a certain minimum program length the distributions of program functionality
and, therefore, fitness converge to a limit [6–9]). Research has also characterised the
search bias of GP sub-tree swapping crossover in terms of program length distributions,
providing an exact fixed point for trees with internal nodes of identical arity [11,13] and
an approximate fixed point for the mixed-arity case [1, 2].

Understanding the sampling of program length is of particular importance to GP. For
example, this has the potential to shed light on the phenomenon of bloat (see [12, Chap-
ter 11] for a recent survey on the topic). Indeed, the work on the fixed-point distribu-
tions of program lengths under sub-tree crossover mentioned above has led to a new
bloat theory – crossover-bias – a number of suggestions for experimental parameter
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selection and a new method to control sampling, by length, of GP operators – operator
equalisation.

One crucial question still open is how to exactly model the limiting distribution of
program lengths when mixed-arity function sets are employed. This is particularly inter-
esting because multi-arity function sets are commonplace in GP and important lessons
could be learnt from knowing the fixed point.

Note, this is not just a question of better accuracy. Until now, it has not been possible
to explain a number of strange empirical findings for mixed arity representations. Why,
for instance, are programs with certain compositions of primitives much more likely
to be sampled than programs with another composition even if both have exactly the
same length? Also, why is it that for smaller lengths, the empirical limiting distribution
of program lengths shows a rugged zigzagging profile instead of following the smooth
descent, with each succeeding length class sampled with less frequency, seen with com-
mon arity function sets? What we need is a model that can explain these phenomena. In
this paper we present an accurate theoretical model of program length distributions for
mixed-arity function sets which does just that.

The paper is organised as follows. In section 2, we describe a number of models for
the prediction of program length based on the repeated application of GP sub-tree swap-
ping crossover, with uniform selection of crossover points, on a flat fitness landscape,
i.e., to determine the bias of this operator by removing all other effects. In Section 3, we
extend this work and use a number of mathematical generalisations to produce a new
model to predict individual occurrence in a population using arity histograms. This is
then used to model length class frequencies exactly. Strong empirical evidence is pro-
vided in Section 4 to support both models; in particular we show how the length model
can be successfully fitted to shorter length classes for mixed arity cases. In Section 5,
we discuss the sampling implications of the models and their relationship to the work
presented previously in this area notably its implications for program length sampling
and GP bloat. Finally, we summarise our findings in Section 6.

2 Background

In [11], a number of models were proposed to predict a limiting distribution of GP tree
sizes when sub-tree swapping crossover, with uniform selection of crossover points,
was applied on a flat fitness landscape. The limiting distribution of internal nodes for
a-ary trees, those whose internal functions have a common arity, a, was shown to be the
following Lagrange distribution of the second kind:

Pr{n} = (1−apa)
(

an + 1
n

)
(1− pa)(a−1)n+1pa

n, (1)

where Pr{n} is the probability of selecting a tree with n internal nodes and a is the
arity of functions that can be used in the creation an individual. The parameter pa was
shown to be related to a and the average size of the individuals in the population at
generation 0, µ0, according to the formula:

pa =
2µ0 +(a−1)−

√
((1−a)−2µ0)2 + 4(1−µ2

0)

2a(1 + µ0)
. (2)
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In [1], Equation (1) was generalised for mixed arity cases with an average internal
arity ā replacing a. ā can be predicted from experimental parameters for traditional
initialisation methods such as GROW and FULL [10] or determined at run time by
calculating the average internal arity at generation 0. The Gamma function, Γ, was used
to redefine the binomial coefficient (factorials are replaced using Γ(n+1) = n!) so that
the model could accept non-integer average arity values. This resulted in the following
equation:

Pr{n} = (1− āpā)
Γ(ān + 2)

Γ((ā−1)n + 2)Γ(n + 1)
(1− pā)(ā−1)n+1 pn

ā. (3)

Note that this equation is also expressed in terms of internal node counts. Strong em-
pirical support was found in [1] for both Equations (1) and (3).

A further generalisation to length classes,1 i.e., to also include external nodes, or
leaves, was found to be successful for a-ary trees in [2]. However, the generalisation
to length classes for mixed-arity trees was found to be less successful, being unable
to precisely predict the frequency for the smaller length classes, where a smooth de-
scent was predicted by the models but a more rugged shape was found to occur. As
an example, Figure 1 shows experimental and predicted results for sub-tree swapping
crossover acting on trees with available arities of 1, 2, 3 and 4 (the experimental set-up
is as described in section 4).

In related work [4], empirical evidence was provided to suggest that the probability
of the occurrence of an individual in a GP population after repeated application of
sub-tree swapping crossover on a flat fitness landscape would be determined by the
individual’s arity histogram – a count of the number of nodes in a tree of each arity (see
Figure 2 for an example). Within length classes, programs with certain arity histograms
were more likely to be found than others. However, within arity histogram classes there
is no bias to sample certain program shapes, indicating that arity histograms represent
the lowest level of granularity at which length-related biases occur in the presence of
sub-tree swapping crossover.2

In the following sections we embrace the idea that if we are to exactly predict length
distributions for mixed-arity cases, we will have to incorporate arity histograms in our
models. For a-ary trees the arity histogram is, of course, simply the associated internal
and external node counts, which explains the earlier success with the a-ary models.

3 Arity Histogram Model

From the work described the previous section, we know that we wish to predict the
probability of occurrence of an individual with a particular arity histogram. If we choose
na to represent a count of arity a nodes, we can define a particular arity histogram
of an individual, as the tuple (n0, . . . ,namax). Note, n0, is the number of leaves, i.e.,
nodes with an arity of zero. Using our new notation we can term our target probability,
Pr{n0, . . . ,namax}.

1 Length was derived using the relation � = an+1.
2 Note that unique programs are a subclass of program shapes which are a subclass of arity

histogram classes which are in turn a subclass of program lengths.
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Fig. 1. Comparison between model (ā = 2.5) and empirical program length distributions for trees
created with arity 1, 2, 3 and 4 functions and terminals only, initialised with FULL method (depth
= 3, initial mean size µ0 = 25.38, mean size after 500 generations µ500 = 23.72). Population size
= 100,000.

Below, we will attempt to identify this function by means of generalisation from
previous results and intuition. The ‘acid test’ for the result of our generalisation will be
whether or not it fits the empirical data in a variety of conditions.

Let us start by reviewing Equation (1), the original model for a-ary representations.
We can see that in order to generalise it, we need to introduce the concept of multiple
arities, particularly the associated pa and na values.

First, we postulate that we now have a set of pa values each associated with a single
arity. If we interpret these as forming a probability distribution, we can then imagine
that product apa in the first term of the equation, actually represents an ‘expectation’ of
a.3 If this is correct, then the first term (1−apa) should be changed to (1−∑a≥1 apa).

The original binomial coefficient term represents the number of ways of choosing
internal nodes of the same arity, a, from the length of the resulting tree, an + 1. We
need to alter this by selecting each arity count, na, from the tree length that can be built
with this collection of arities, ∑a≥1 ana + 1. Our binomial coefficient term, therefore,
becomes the multinomial coefficient

(∑a≥1 ana+1
n0,...,namax

)
, where n0 is the count of leaves, n1 is

the count of the functions with arity 1, etc.
The third term, (1− pa)(a−1)n+1, can be broken into two parts. The superscript is

simply the number of terminals for the tree, which we know to be n0. As with the
first term we alter (1− pa) to a mixed arity equivalent, which we postulate to be (1−
∑a≥1 pa).

3 In our a-ary model: E[a] = 0× (1− pa)+a× pa = apa.
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Fig. 2. A proposed solution for the Artificial Ant problem [5] (a) and its associated arity his-
togram (b)

Continuing this analogy, the final term, pn
a, represents the value, pa, to the power of

the number of nodes, n. We need to now split out the term so that each value of pa is
associated with the appropriate na value. The most natural way to do this is to turn the
final term into the product ∏a≥1 pna

a .
Putting this altogether, we obtain our mixed-arity model for the limiting distribution

of arity histograms created by sub-tree swapping crossover:

Pr{n0, . . . ,namax} = (1− ∑
a≥1

apa)
(

∑a≥1 ana + 1
n0, . . . ,namax

)
(1− ∑

a≥1
pa)n0 ∏

a≥1
pna

a . (4)

This equation has now become a multivariate Lagrange distribution of the second kind.
Note, the introduction of counts for program leaves will only affect the second and third
terms. On closer inspection we can also see that there is in fact no need to calculate p0.4

Next, we need to create a model that will turn arity histogram probabilities into those
of length classes. The set of arity histograms that represent a particular program length
� can be defined as: {

n0, . . . ,namax : ∑
a≥1

ana + 1 = �

}
. (5)

We can, therefore, calculate the probability of a particular program length by summing
the probabilities for each of the associated arity histograms, i.e.,

Pr{�} = ∑
n0,...,namax :∑a≥1 ana+1=�

Pr{n0, . . . ,namax}. (6)

4 If we define p0 to be 1−∑a≥1 pa and allow the fourth term to run from a = 0, we could also
omit the third term.
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We term this a Lagrange distribution of the third kind. The formula clarifies that the
length bias with which sub-tree swapping crossover samples program spaces is, in fact,
the result of an even more primitive bias associated with arity histograms.

In the next section we will provide empirical support for our new models of arity-
histogram and length distributions, to ensure that they continue to predict a-ary repre-
sentation length distributions and will now accurately model mixed arity representations.

4 Empirical Validation

In order to verify empirically the models proposed, a number of runs of a GP system
in Java were performed. A relatively large population of 100,000 individuals was used
in order to reduce drift of average program size and to ensure that enough programs of
each length class were available. The FULL initialisation method was used with non-
terminals being chosen with uniform probability. Each run consisted of 500 generations.
All results were averaged over 20 runs.

To check if the models presented in the previous section match experimental data we
need to fit them to the data so as to identify the parameters pa. This fit was achieved
using a hill climber search program that reduced the mean squared error from that ob-
served in the final generation and that predicted by the theoretical distribution, by alter-
ing the pa values.5

Our first step was to see if there is evidence that arity histogram occurrence is mod-
eled correctly. In Figure 3, we can see two views of the modeled and empirical data for
each experiment. The X-Y plots on the left report the frequency for each arity histogram
predicted via Equation (4) vs the corresponding empirical frequency. Note how the data
points lie on, or very close to, the diagonal line that represents perfect prediction. Each
point in the scatter plots on the right shows either the actual or the predicted frequency
for an arity histogram vs the length class it corresponds to. The multiple points at each
length are the elements of the set in Equation (5). Of particular interest is that even with
a relatively large population size, certain histograms are exceptionally rare. For exam-
ple, occurrences for a histogram consisting of arity one functions and a single terminal
for the 1 & 3 arity experiment, are predicted to be less than 1 by the time we reach a
length of 9 nodes and far less in the other experiment.

As we can see in Figures 4 and 5, the model in Equation (6) fits very well the fre-
quencies associated to all length classes for mixed arities. Note in particular how the
model, that incorporates the arity histogram model from Equation (4), now captures the
fluctuating early values for mixed arity representations.

In order to confirm that Equation (6) is in fact a generalisation of earlier work and
accurately predicts a-ary distributions, Figures 6 and 7 show the model and observed
data from the final generation for 1-ary and 2-ary trees. In this case the pa values for
the model were calculated using Equation (2).

In essence, we now have evidence that we have isolated the fundamental compo-
nents of the limiting length distribution for sub-tree swapping crossover. Further work is

5 Initial values of pa were set uniform randomly between 0 and 0.2. A number of runs were
performed and best results were found using small variations (less than 0.001%) with a high
number of alternatives at each step (typically 100).
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Fig. 3. Comparison between unique arity histogram count observations and arity histogram model
predictions obtained by best fit for trees created with arity 1 and 3 functions (a) & (b), arity 1, 2,
3 and 4 functions (c) & (d), and terminals only. Experimental parameters as described in figures
4 and 5 respectively. Diagonal lines added to (a) & (c) represent perfect prediction.

required to make this a complete predictive model, i.e., we need a formula to determine
pa values for mixed arity representations. However, we can now place the findings from
earlier work in this area into further context. This is discussed in the next section.

5 Sampling Implications

From our analysis we can now be confident in the assertion that the limiting distribution
of program lengths for a GP population after the repeated application of sub-tree swap-
ping crossover, with uniform selection of crossover points, on a flat fitness landscape,
is determined solely by the mix of node arities in the initial population.

From the work provided in [4], we know that there is empirical evidence to show that
there is no bias for sub-tree swapping crossover to place a particular node label at any
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Fig. 4. Comparison between empirical length distributions and an arity histogram model obtained
by best fit for trees created with arity 1 and 3 functions and terminals only, initialised with FULL
method (depth = 3, initial mean size µ0 = 15.00, mean size after 500 generations µ500 = 15.75).
Population size = 100,000. p1 = 0.2186684078761787, p3 = 0.15804781356057954.
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Fig. 5. Comparison between empirical length distributions and an arity histogram model obtained
by best fit for trees created with arities 1, 2, 3 and 4 functions and terminals only, initialised with
FULL method (depth = 3, initial mean size µ0 = 25.38, mean size after 500 generations µ500 =
23.72). Population size = 100,000. p1 = 0.09117030091320417, p2 = 0.08112567496250808, p3
= 0.0702296050436014, p4 = 0.0643780797663895.
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Fig. 6. Comparison between empirical length distributions and an arity histogram model created
with arity 1 functions and terminals only, initialised with FULL method (depth = 15, initial mean
size µ0 = 16.00, mean size after 500 generations µ500 = 16.15). Population size = 100,000.
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Fig. 7. Comparison between empirical length distributions and an arity histogram model created
with arity 2 functions and terminals only, initialised with FULL method (depth = 3, initial mean
size µ0 = 15.00, mean size after 500 generations µ500 = 14.19). Invalid even lengths are ignored.
Population size = 100,000.
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position in a tree. All programs with a particular arity histogram are, therefore, equally
likely to be sampled by the application of sub-tree swapping crossover in the absence
of other operators. By extension, we can also say that all programs of a certain length
are equally likely to be sampled for a-ary trees; this is not true, however, for mixed
arity representations. If one wishes to ensure uniform sampling within length classes,
alternative variation operators will need to be devised when mixed arity representations
are employed with sub-tree swapping crossover.

Looking more closely at Equation (4), we can see that the first term will remain
constant for all arity histograms whilst the second term, the multinomial coefficient,
will increase the probability for arity histograms that can produce more shapes. The
third and final terms decrease rapidly with increasing values of the na’s producing the
eventual smooth curve. Therefore, arity histograms presented to Equation (6), that can
produce more shapes than other arity histograms in a particular length class, will have
a higher probability of being sampled within that class.

Disregarding the fluctuations shown in earlier length classes for mixed arity classes,
Equation (6) is decreasing. The crossover bias bloat theory was originally proposed
based upon evidence presented by the internal node count models and their decreasing
nature, to recap:

I In each generation selection populates the mating pool with relatively fit programs
II The sub-tree swapping crossover operator will then produce children with a length

distribution biased towards smaller programs irrespective of their fitness6

III If smaller programs cannot obtain a relatively high fitness, which after the initial
generations of any non-trivial GP problem is highly likely, they will be ignored by
selection in the next generation

IV Hence, average program size will increase as ever larger programs are placed into
the mating pool

Equation (6) and the empirical work provided in Section 4 provide extra evidence to
support this theory for sub-tree swapping crossover, in that our more pertinent length
model varies only slightly from the smooth descent described for the internal node
models presented in Section 2 and used as the basis for the theory in [1]. One can argue
that any variation operator that has a bias towards smaller programs will cause bloat in
this way and the theory should be renamed to operator length bias.

Recent work by Soule [15] has shown empirical evidence of a similar sampling ef-
fect for other types of crossover, in addition particular emphasis is placed on variations
to sampling caused by altering the nature of the fitness landscape. Future research may
look into the speed of convergence to Lagrangian type distributions for different varia-
tion operator and problem combinations, i.e., to enable us to gauge which experimental
set-ups are likely encounter bloat earlier during an experimental run.

The internal node and length a-ary models presented in Section 2 can be used as pre-
dictive models without modification. The length model for mixed arity trees developed

6 It is important to note that there is no change in the average size of programs found in the
mating pool from those produced in the resulting child population, i.e., the next generation.
However, the distribution has a sampling bias towards smaller programs, with relatively few
larger programs.
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there remains a strong model for approximation if an exact fit for earlier length classes
is not required. One could, for example, use this to implement broad structural conver-
gence measures suggested in [4]. If a more exact model was required, a fit to internal
node counts could be used.

The generalised mixed arity internal node model (Equation (3)) is also an interesting
starting point to further analyse the arity histogram model proposed here. We can ask
how was such a generalised model so successful when only leaves were removed from
the investigation? For example, would Equation (6) collapse to Equation (3) with further
analysis? This is left to future work.

Finally, recent work using length based operator equalisation methods [3, 14], i.e.,
those that modify selection probabilities according to current and desired length dis-
tributions, do not guarantee uniform sampling of unique programs within the length
classes desired.7 One could imagine an extension to the method, however, to sample
uniformly within length classes by storing a histogram of arity histograms, possibly
using a hashing function as lengths increase. Indeed, as an alternative, it is possible to
design an arity histogram equaliser to ensure that certain, desired, distributions of arity
counts are selected.

6 Conclusions

In this paper we have generalised the Lagrange distribution of the second kind that
has recently been shown to represent the limit program length distributions for sub-tree
swapping crossover in the presence of single-arity function sets to the important and
much more common multi-arity case.

The generalisation has required to express this fixed point via the use of arity his-
tograms which effectively generalise the internal node counts and average arities used
in prior work. Arity histograms are the fundamental components of GP sub-tree swap-
ping crossover with regard to program sampling.

This model has allowed us to understand a number of sampling effects and to accu-
rately model not just the smooth descending curves of the internal node models but also
those of the more rugged true length distributions, i.e., those that also include leaves.
From this, we can now place a number of earlier findings into a more general context.
We can also start making use of our new knowledge about the biases of crossover. For
example, we can confirm hypotheses about bloat and generalise cures for it.
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Abstract. We present an empirical analysis of the effects of incorporat-
ing novelty-based fitness (phenotypic behavioral diversity) into Genetic
Programming with respect to training, test and generalization perfor-
mance. Three novelty-based approaches are considered: novelty compar-
ison against a finite archive of behavioral archetypes, novelty comparison
against all previously seen behaviors, and a simple linear combination of
the first method with a standard fitness measure. Performance is eval-
uated on the Santa Fe Trail, a well known GP benchmark selected for
its deceptiveness and established generalization test procedures. Results
are compared to a standard quality-based fitness function (count of food
eaten). Ultimately, the quality style objective provided better overall
performance, however, solutions identified under novelty based fitness
functions generally provided much better test performance than their
corresponding training performance. This is interpreted as representing
a requirement for layered learning/ symbiosis when assuming novelty
based fitness functions in order to more quickly achieve the integration
of diverse behaviors into a single cohesive strategy.

1 Introduction

A novelty-based fitness measure is one inspired by inter-species evolution,
wherein individuals are awarded not for the quality of their behavior, but for
discovering behaviors in which no/ few individual are presently engaged i.e., phe-
notypic behavioral diversity [5]. Thus, in a pure novelty-based fitness function
individuals are rewarded based only on how different their observed phenotypic
behaviors are from the rest of the population. Conversely, an objective or qual-
ity based measure of fitness would reward individuals for finding solutions that
minimize some concept of ‘error’; thus the population as a whole might converge
to solutions that are behaviorally very similar e.g., all individuals returning the
same classification count.1 Previous works have considered the utility of niching
operators to provoke diversity maintenance, but the utility of such operators
under Genetic Programming (GP) is not necessarily straight forward. However,

1 This might imply some diversity relative to the exemplars correctly classified, al-
though this is generally not explicitly articulated in the fitness function.

A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 50–61, 2010.
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recent work suggests that purely novelty-based evolutionary searches can be
particularly effective [5,1,10,9].

Recent research using novelty-based fitness measures for genetic programming
include both the aforementioned novelty only formulation and combined novelty–
quality fitness functions. Specifically, several authors have employed combined
novelty–quality objectives under the domain of classification [7,8]. This is very
different from the standard approach to ensemble methods as the novelty ob-
jective makes explicit the desire to avoid solely ‘cherry picking’ the exemplars
that are easy to classify. The resulting team of individuals exhibit explicitly
non-overlapping behaviors [8]. Other works consider the effects of novelty-based
fitness in detail, but have considered post training generalization [5,9,10]. This
presents a problem, as the effects directly attributable to novelty-based fitness
measures remain unknown, especially the effects on model generalization. With
this in mind, we present a detailed empirical study of the effects of various com-
binations of quality and novelty-based fitness metrics on training and test per-
formance using a classic GP benchmark, the Santa Fe Trail. Two novelty-based
fitness measures are considered, as well as a simple combination novelty–quality
measure. Particular attention is paid to the effects of novelty-based fitness on
generalization performance.

2 Background Concepts

2.1 Generalization

Generalization measures the relative change in behavior of a candidate solution
vis-a-vis the environment it was trained on versus an independent set of envi-
ronments on which testing is performed [3,4]. In maze navigation the navigator
often starts in a fixed location and attempts to reach a fixed exit. A system
which memorizes the correct sequences of movements and rotations to navigate
a specific maze is nearly useless, since it would fail to navigate any maze with
an even slightly different structure, starting place, or destination. In contrast, a
navigator which has learned a true maze navigating behavior would be capable
of ‘generalizing’ the training scenario to a wide range of previously unseen maze
architectures. Needless to say, decisions made regarding representation, credit
assignment and cost function all impact on the resulting generalization ability
of solutions [4]. Several benchmark problems – e.g., parity and the multiplexer –
are frequently deployed without assessing generalization at all [2]. In this work
we focus on the contribution of the cost function alone, and keep representation
and credit assignment processes constant.

2.2 Novelty Search

Novelty-based search heuristics are those which reward the discovery of unique
behaviors, in contrast to quality-based heuristics which reward individuals that
are believed to be closer to the domain goal. Thus quality/ goal style objec-
tives tend to reinforce cherry picking of the scenarios that are easier to solve.
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The assumption being that this forms a learning gradient from which stronger
behavior develops. Conversely, a novelty style objective is more effective at main-
taining population diversity and as a consequence might lead to a better supply
of building blocks for providing a more general solution. Recent work suggests
that novelty-based fitness measures can outperform quality-based fitness mea-
sures in maze navigation [5,10,9] since solutions are under no pressure to cluster
around local maxima in the search space. Other work has incorporated solution
novelty into a Pareto multi-criteria objective function to promote problem de-
composition [8], rewarding individuals not for correctly labeling all the data, but
for labeling some unique subset of it correctly.

That said, the fact that novelty-based search places less emphasis (or none
at all) on finding goal orientated solutions raises concerns about its effects on
generalization error. It might be supposed that solutions created without any
emphasis on correctness might be correct only coincidentally rather than by
virtue of having learned a particular task, and that novelty-based search would
produce solutions that fail to generalize.

2.3 The Santa Fe Trail

The Santa Fe Trail is a widely used benchmark in genetic programming [2,3,4].
The problem consists of evolving a controller for an “artificial ant” on a toroidal
grid such that the ant correctly follows a trail of food. An ant solves the problem
if it eats all of the food on the grid within a certain number of time steps. At each
time step the ant can either change the direction it faces by 90 degrees, or move
forward one square. As discussed in [4], the ant problem is “deceptive”, meaning
that there are many local maxima in the space of possible controller programs.
These local maxima result from ants which loose the trail and stumble into more
food at a later point in the trail. Ants of this type are not very close to solving the
problem i.e., they are very unlikely to find the stretch of trail that they missed
within the time limit. In contrast, ants that eat more of the trail in order may
not eat as much food in total. Consequently, GP does not perform significantly
better than random search on this problem, since the most commonly used
heuristic (more food = higher fitness) is deceptive [4]. Previous work suggests
that novelty-based search should be more effective in deceptive problems [5].
Consequently, the Santa Fe Trail may be a good choice for determining effects
of novelty-based search on generalization.

In addition to being a deceptive problem, the ant trail has several advantages.
First and foremost is a previously established method of measuring generaliza-
tion error [3]. This entails generating a set of random trails which share certain
properties with the Santa Fe trail, including maximum distance between food,
shapes of corners in the trail, and density of food in the trail. The trails may
be of different lengths, and may have differing amounts of food. An ant which
has successfully learned a general solution to the Santa Fe trail should do well
on these trails, while one which has learned specialized strategies (memorizing
the turns in the trail) will not. Additionally, the Santa Fe Trail has an easily
representable space of program behaviors, namely the order in which the food on
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the trail is eaten. An ant which follows the trail diligently will thus end up with
a very different behavior from one that tessellates the grid, and those behaviors
may be concisely represented and quickly compared.

3 Methodology

To test the effects of novelty-based fitness on generalization error, we considered
two different methods for determining novelty, hereafter denoted Methods 1 and
2. In this context a novel solution is one in which the ant consumes food on
the trail in a sequence that differs from all previously observed behaviors as
summarized in terms of a pair-wise similarity metric. Needless to say, the metric
employed for the pairwise comparison has a significant impact on the quality of
the resulting evaluation [1], with Hamming Distance being assumed in this work
i.e., one of the two recommended metrics identified by the earlier study. This
also raises the question as to how dissimilar individuals need to be before they
are considered novel. Two methods are considered. In Method 1 (Algorithm
1), an archive of fixed size stores “archetypes”; or solutions which represent
broad classes of behaviors. Individuals are added to the archive if the behavioral
difference between them and all archetypes is larger than the difference between
the closest pair of archetypes presently in the archive (line 7). In this case the
individual will replace one of the two archetypes which are most similar to each
other, causing the inter-archetype difference to increase monotonically over the
course of a run (line 11). Archives were fixed at a size of 100 archetypes in all
runs. In Method 2 (Algorithm 4), an archive of variable size stores archetypes
that differ from each other by at least some constant amount Δmin (as in [5,10]).
New individuals are added to the archive if their behavior differs from that of
every archetype presently in the archive by at least Δmin (line 10). In the case
of both methods, individuals are awarded fitness as a function of how far their
behavior is from that of any archetype presently in the archive, with radically
different behaviors receiving the highest fitness and those whose behavior is
identical to that of some archive member receiving the lowest fitness.

Two additional methods are now introduced to provide a relative baseline on
the performance of the purely behavioral performance functions. Method 3 uses
the finite archive of Method 1 in a combined equally weighted contribution from
novelty and quality objectives, or the average of the fitness returned from the
archive method and the fitness returned by the typical “eat most food” fitness
evaluation, i.e. Fitness = Fnovelty+Fquality

2 . Thus, a solution that eats all the
pieces of food in a completely unique order will have a fitness of 1; whereas
an individual that eats half the food in a previously observed order will have a
fitness of 0.25 (0 for having the same behavior as some archive member, 0.25 for
eating half the food).

All three of the above methods were implemented with a modified version
of the lilgp package [11]. This provides us with the original code for the Santa
Fe Trail and therefore a quality-based method for fitness evaluation or items
of food eaten (Method 4). The only substantial modification made to the code
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Algorithm 1. Novelty-Based Fitness Evaluation with finite archive. Returns
the fitness of an individual and adds it to the archive if it qualifies.
1: Let A be an archive storing > 0 individuals.
2: Let I be an individual.
3: procedure Fitness(A,I)
4: mindiff=+∞
5: for all a ∈ A do
6: if mindiff > ham(a, I) then mindiff = ham(a, I)
7: end if � ham(. , .) (Algorithm 2)
8: end for
9: if mindiff > A.current mindiff then

10: insert I replacing A.minidx
11: recompute mindiff(A) � recompute mindiff(.) (Algorithm 3)
12: end if

return mindiff
13: end procedure

Algorithm 2. Pairwise Hamming Distance Estimation
1: Let i and j be individuals
2: Let {i, j}.foodvect be vectors showing the order in which the individual ate food
3: Let {i, j}.foodvect(n) = (x, y) iff the nth piece of food eaten was at (x, y)
4: procedure ham(i,j)
5: if |i.foodvect| < |j.foodvect| then swap i and j
6: end if
7: hamsum = 0
8: for z = 1to|j.foodvect| do
9: if i.foodvect �= j.foodvect then hamsum++

10: end if
11: end for
12: hamsum + = |i.foodvect| − |j.foodvect|

return hamsum
13: end procedure

Algorithm 3. Recomputing of the minimum difference between any two mem-
bers of the archive
1: Let A be an archive storing > 0 individuals.
2: recompute mindiff(A)
3: if |A| < A.maxsize then
4: A.current mindiff = 0
5: A.minidx = A.currentsize
6: end if
7: mindiff=+∞
8: for all i, j ∈ A; where i �= j do
9: if mindiff > ham(i, j) then � ham(. , .) (Algorithm 2)

10: A.current mindiff = ham(i, j)
11: A.minidx = i
12: end if
13: end for
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Algorithm 4. Novelty-Based Fitness Evaluation with Infinite Archiving. Re-
turns the fitness of an individual and adds it to the archive if it qualifies.
Δmin = 10 for all our runs.
1: Let A be an archive storing > 0 individuals.
2: Let I be an individual
3: Let Δmin be a constant s.t. for i and j ∈ A, ham(i, j) >= Δmin

4: procedure Fitness(A,I, Δmin)
5: mindiff = +∞
6: for all a ∈ A do
7: if mindiff > ham(a, I) then mindiff = ham(a, I)
8: end if � ham(. , .) (Algorithm 2)
9: end for

10: if mindiff > Δmin then insert I → A
11: end if

return mindiff
12: end procedure

other than changing the fitness functions was to allow solutions to be run on
test environments after the completion of training.

To compare the four fitness methods, at the end of each run, the individual
who had eaten the most food was selected as the champion. We evaluated the
champions on a fixed set of 100 test trails generated according to the algorithm
in [3], with results measured in terms of the percentage of food eaten on each
trail. Each method was run with 500 unique random seeds.

We selected parameters to avoid optimizing any method at the expense of the
others. The archive size for Method 1 and Δmin for Method 2 were selected by
trying 10 values on single runs with the same random seed and adopting the best
performing parameterization. The 10 values were selected at even intervals over
(10,200) for archive size, and (5,40) for Δmin. The values of the other parameters
are the defaults found in the Santa Fe Trail implementation provided with [11],
with the single change of swapping crossover for mutation in the reproduction
operators, as in [4]. Table 1 summarizes the complete parameterization.

Table 1. GP Parameters, based on [4,2]

Parameter Value
Terminal Set Left, Right, Move Ahead
Function Set If Food Ahead, Prog2, Prog3

Selection Method Stochastic Elitism
Max Time steps 400

Max Program Depth 17
Initialization “Ramped half and half”, max depth 6

Reproduction Operators 90% Mutation, 10% Reproduction
Population Size 1000

Maximum Generations 50
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4 Results and Analysis

The results have been separated into training, testing, and generalization per-
formance. For simplicity, all results were tested for statistical significance at a
confidence level of 95%, with a Bonferroni correction used to compare the means
of each pair of samples. A Jarque-Bera test was used to determine whether data
were normally distributed. One-way ANOVA tests followed by student t-tests
were used to compare normally distributed data, while Kruskal-Wallis tests fol-
lowed by Wilcoxon Rank-Sum tests were used to compare data which was not
normally distributed. In the graphs presented, the limited archive approach of
Method 1, the infinite archiving approach of Method 2, the combination novelty–
quality formulation of Method 3, and the standard quality-based approach of
Method 4 are denoted by the labels “Fixed Archive”, “Infinite Archive”, “Com-
bination”, and “Quality-Based” respectively.

4.1 Training Performance

We gathered training data by measuring the proportion of food eaten by each
champion individual in the training enviroment (the Santa Fe Trail). Data from
all four methods were normally distributed, and statistically significant differ-
ences were returned between all pairs of methods (Figure 1). The quality based
function performed best, eating 66% of the food on average, compared with 59%,
56%, and 53% for the combination, infinite archive and fixed archive respectively.
Relative to the original Santa Fe study of Koza [2] we note that the level of per-
formance is generally lower. However, this is in part likely due to adopting the
400 time step limit reported by Koza whereas this was apparently 600 in his
experiments (see the commentary in [4]).

Quality Based Combination Fixed Archive Infinite Archive
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0.7

0.8

0.9
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Fig. 1. Plot showing 1st, 2nd, and 3rd quartiles for the distribution of training perfor-
mance. Whiskers identify the limit of points within 1.5 times the inter quartile distance
with crosses marking any outliers.
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4.2 Testing Performance

We produced test data by measuring the proportion of food eaten by the cham-
pion from each run on 100 test environments. The champions are compared using
summary statistics of the collected data, in particular the median, maximum,
and minimum proportion of food eaten by each champion on the test environ-
ments. The median performance of the champions was normally distributed for
all 4 methods. We did not find a statistically significant difference between the
performance of the quality-based and combination methods, but did find signifi-
cant differences between the performance of all other pairs of samples (Figure 2).
Both the combination and quality-based methods consumed an average of 35%
of the food or more in at least half their runs, while the average was only 32%
for the fixed archive method, and 29% for the infinite archive method.
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Fig. 2. Plot showing first, second and third quartiles for the distribution of median
test performance. See Figure 1 caption for interpretation of the whiskers.
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Fig. 3. Plot showing first, second and third quartiles for the distribution of maximum
(left) and minimum (right) test performance. See Figure 1 caption for interpretation
of the whiskers.
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Results for maximum and minimum performance were not normally dis-
tributed (Figure 3). We found significant differences between all pairs of samples
for maximum performance, with no more than 78% of food being eaten on any
test enviroment, on average, for the quality-based method, 77% for the combina-
tion method, and only 73% and 71% for the fixed and infinite archive methods.
For minimum performance, we found a statistically significant difference between
the combination and infinite archive methods, and between the quality-based
method and both the fixed and infinite archive methods. On average, champions
ate no less than 8% of the food on any test enviroment using the quality-based
method, 7% using the combination method, and 6% using the fixed or infinite
archiving methods.

4.3 Paired Generalization Error

The final measure considered is paired ‘generalization error’ or the relative nor-
malized2 difference between training and test performance of the same individ-
ual. A drop in performance is generally assumed to appear between training and
test performance. However, as this difference increases lack of generalization is
a more likely candidate. Hence, higher negative differences are taken as indi-
cating that the model has learned to memorize the Santa Fe Trail in particular;
whereas positive values indicate that more food is eaten under the test condition
than in training. We found the median generalization error for champions from
all four methods to be normally distributed, with statistically significant differ-
ences between all pairs of models (Figure 4). The fixed archive method has the
lowest median generalization error, with a difference in the proportions of food
eaten in the training and median test environments being 21% on average. The
combination method has a mean difference of 24%, while the infinite archive has
27%, and the quality based method 31%.

This distribution is further emphasized by considering performance from the
perspective an interquartile distance function. Letting training and test perfor-
mance as a whole be two ‘clusters’ and comparing the normalized inter cluster
distance illustrates the degree to which test and training performance diverge.
Thus, given the standard inter cluster distance metric of,

μ(test) − μ(train)√
σ2(test) + σ2(train)

(1)

where μ and σ2 are the mean and variance of normalized ‘training’ and ‘test’ per-
formance. Figure 5 summarizes the corresponding inter cluster distance for each
fitness function. The strong correlation between training and test performance
under the Fixed archive version of novelty objective is immediately apparent.
Conversely, the Quality and Infinite archive schemes experience in the region
of a 40% decline in performance from training to test; whereas the combined
2 By ‘normalized’ we imply that the number of food items can vary under test con-

ditions [3], hence both training and test performance are normalized relative to the
total of food items available in that scenario.
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Fig. 4. Plot showing first, second and third quartiles for the distribution of median
generalization error. See Figure 1 caption for interpretation of the whiskers.

Fig. 5. Plot of inter cluster distance (defined in Eq. (1)) between normalized training
and test performance). Negative values express the percent by which food counts under
training exceeded that under test.

quality–novelty metric returned an intermediate decline in performance (in the
order of 20%).

5 Conclusions and Future Work

Taking as a starting point the Santa Fe trail as a benchmark with known de-
ceptive properties [4] and introducing the test for generalization methodology of
Kushchu [3], we evaluated a cross-section of novelty only, combined novelty and
quality, and quality only fitness functions. Several general trends are apparent.
The classical quality based performance metric provided the strongest training
and test performance of all methods; thus, reinforcing the view that if a goal
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orientated objective can be defined for the domain in question, then assessing
performance with such an objective is still very important. A simple linear com-
bination of novelty and quality objectives provided the next best performance
under training and test conditions. In the case of the novelty only fitness func-
tions, imposition of a finite archive was generally beneficial under test conditions,
but was the worst performing approach under training conditions. We suspect
the poor training performance to be the result of rapidly increasing novelty re-
quirements for entry into the archive, such that a solution which follows the trail
slightly further than its parent will receive a low fitness value, i.e., on account
of having eaten most of its food in the same order as its parent. The higher test
performance is likely due to the same factor. Since individuals cannot gain entry
into the archive for following the trail, they develop an extremely diverse set of
strategies for eating the food, potentially generalizing strategies for any trail. In
particular, tessellating strategies were often observed among the solutions from
the finite archive method, but rarely observed among solutions from the other
methods.

As highlighted above, both the fixed archive and infinite archive methods
produce lower quality solutions than the traditional quality only fitness measure.
In the case of training performance, this may be in part due to the deceptive
nature of the problem. No method produced a true solution which managed to
follow the entire trail, but the quality based solutions may not have been any
closer to finding a true solution despite eating more of the food. While previous
work [5,9,10] suggests novelty-based search may find better solutions sooner than
quality based objective approaches in deceptive landscapes, our work suggests
that intermediate solutions produced by novelty-based approaches may be of
lower quality in terms of both training and test performance. In problems where
finding a true solution is impossible or prohibitively expensive, this may be
a concern. Indeed, purely novelty based schemes may encounter an overhead in
the time necessary to recombine independent solutions (individuals) into a single
solution that subsumes the behaviors from multiple individuals.

Future work will continue to look at the role of novelty in evolution. Earlier
work using an explicitly Pareto multi-criterion objective composition of novelty
and quality objectives indicates that such paradigms are effective at problem
decomposition as opposed to forcing solutions to take the form of a single solution
[8]. Indeed, evolution through novelty only fitness functions might support multi-
level symbiotic/ teaming style models of evolution in GP. In particular, a novelty
based phase of evolution might be followed/ combined with a combinatorial
style search for the best combinations of solutions from the novelty based search
i.e., behaviors can exist symbiotically as independent entities within a ‘host’
individual at a higher level of representation. Models of this nature in which
fitness is shared over a quality style objective have already appeared [6], however,
doing so under purely novelty based fitness has not as yet been demonstrated.
Likewise, the use of schemes such as NEAT – as was in the case in [5] and [10] –
that explicitly support the identification and incorporation of traits from parent
individuals into the children may provide a better basis for incorporating initially
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independent behaviors into a single model. Thus, frameworks such as NEAT and
GP teaming – as opposed to canonical GP – might well be in a better position
to make use of properties developed under novelty only style fitness functions.
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Abstract. We present an analysis of the genotype-phenotype map in
Grammatical Evolution (GE). The standard map adopted in GE is a
depth-first expansion of the non-terminal symbols during the derivation
sequence. Earlier studies have indicated that allowing the path of the
expansion to be under the guidance of evolution as opposed to a de-
terministic process produced significant performance gains on all of the
benchmark problems analysed. In this study we extend this analysis to in-
clude a breadth-first and random map, investigate additional benchmark
problems, and take into consideration the implications of recent results
on alternative grammar representations with this new evidence. We con-
clude that it is possible to improve the performance of grammar-based
Genetic Programming by the manner in which a genotype-phenotype
map is performed.

1 Introduction

Within the field of Genetic Programming (GP) [11,19] the use of a genotype-
phenotype map is not new [9,1,10,20,13,5,4,8] and a number of variants to the
standard tree-based form of GP exist, amongst which some of the most popular
are Linear GP [2], Cartesian GP [14] and Grammatical Evolution (GE) [3,18]. GE
is a grammar-based form of GP which adopts a mapping from a linear genotype
to phenotypic GP trees. O’Neill [15] presented a series of arguments for the
adoption of a genotype-phenotype map for GP as it can provide a number of
advantages. These include a generalised encoding that can represent a variety of
structures allowing GP to generate structures in an arbitrary language, efficiency
gains for evolutionary search (e.g. through neutral evolution), maintenance of
genetic diversity through many-to-one maps, preservation of functionality while
allowing continuation of search at a genotypic level, reuse of genetic material
potentially allowing information compression, and positional independence of
gene functionality.

For the first time this study presents an examination of the genotype-phenotype
map of GE. A number of alternative mappers are proposed and performance is
compared against the standard genotype-phenotype map. The remainder of the
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paper is structured as follows. A brief overview of the essentials of GE are provided
in Section 2 before an example of the standard genotype-phenotype map of GE
in Section 3. The next part of the paper describes the experimental setup (Sec-
tion 4), the results found (Section 5) and a discussion (Section 6) before drawing
conclusions and pointing to future work.

2 Grammatical Evolution Essentials

GE marries principles from molecular biology to the representational power of
formal grammars. GE’s rich modularity gives a unique flexibility, making it pos-
sible to use alternative search strategies, whether evolutionary, or some other
heuristic (be it stochastic or deterministic) and to radically change its behaviour
by merely changing the grammar supplied. As a grammar is used to describe
the structures that are generated by GE, it is trivial to modify the output struc-
tures by simply editing the plain text grammar. The explicit grammar allows GE
to easily generate solutions in any language (or a useful subset of a language).
For example, GE has been used to generate solutions in multiple languages in-
cluding Lisp, Scheme, C/C++, Java, Prolog, Postscript, and English. The ease
with which a user can manipulate the output structures by simply writing or
modifying a grammar in a text file provides an attractive flexibility and ease
of application not as readily enjoyed with the standard approach to GP. The
grammar also implicitly provides a mechanism by which type information can
be encoded thus overcoming the property of closure, which limits the traditional
representation adopted by GP to a single type. The genotype-phenotype map-
ping also means that instead of operating exclusively on solution trees, as in
standard GP, GE allows search operators to be performed on the genotype (e.g.,
integer or binary chromosomes), in addition to partially derived phenotypes,
and the fully formed phenotypic derivation trees themselves. As such, standard
GP tree-based operators of subtree-crossover and subtree-mutation can be eas-
ily adopted with GE. By adopting the GE approach one can therefore have the
expressive power and convenience of grammars, while operating search in a stan-
dard GP or Strongly-Typed GP manner. For the latest description of GE please
refer to Dempsey et al. [3].

3 GE’s Genotype-Phenotype Map

The genotype-phenotype map of GE operates as follows. The process begins
from the embryonic start symbol of the grammar. Taking the simple gram-
mar adopted for the Max problem provided in Fig. 6 this is <prog>, which
by default is transformed into the non-terminal <expr>. There are two possi-
ble transformations which can be applied to <expr>. Either it will be replaced
with <op><expr><expr> or with <var>. To decide what happens the next un-
used codon (an integer in this study) is read from the genome and we mod it’s
value by the number of choices available (i.e., choice = integer % 2). Lets
assume <expr> is transformed into <op><expr><expr>. In this situation there
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is more than one non-terminal symbol in the current structure which needs to
be transformed. The standard mapper in GE always selects the left-most non-
terminal, which means in this case <op>. In the Max grammar <op> can be
transformed into one of + or *, again by reading the next codon value and ap-
plying the mapping function with modulus 2. Assuming * is selected we end up
with the structure *<expr><expr>. The mapping continues by taking the left-
most non-terminal until we end up with a structure that is comprised exclusively
of terminal symbols (i.e., in the case of the Max grammar these are +, *, and
0.5).

A sample grammar is outlined below including an example chromosome. Fig. 1
outlines the depth-first order of expansion of the non-terminal symbols of the
standard mapping process in GE. Potentially this introduces a structure bias
to the search process as the focus of search is directed towards the left-hand
branches and sub-trees of an individual structure. Alternatively if a breadth-
first expansion was adopted, Fig. 2 illustrates how the order changes and thus
the focus of evolutionary search takes a different direction towards broader tree
structures. With the πGE approach [16] the order of expansion is itself evolvable
with the genome being consulted as to which non-terminal to expand at each
point of the derivation sequence.

<e> ::= <e> <o> <e> | <v>
<o> ::= + | -
<v> ::= X | Y
Chromosome ::= 12,2,8,3,5,2,9,14,6,3,8,10,7,12

<e>

<e> <o> <e>

1

<e> <o> <e>
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Fig. 1. An illustration of the order of
a depth first expansion of the non-
terminals in a derivation tree, leading
to a solution of Y+X+X+X
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Fig. 2. An illustration of the order of
a breadth first expansion of the non-
terminals in a derivation tree, leading
to a solution of X+Y+X
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4 Experimental Setup

We wish to test the null hypothesis that there is no difference in performance
when alternative mapping strategies are adopted with GE. We will measure
performance both in terms of the number of successful solutions found to each
problem instance, and by examining the average best fitness.

We adopted GEVA v1.1 [17] for the experiments conducted in this study. The
evolutionary parameters adopted on all problems are presented in Table 1. Note
that we deliberately use a relatively small population size of 100 compared to
the standard 500 that would typically be adopted for these problem instances.
This was to make it harder for the mappers to find a perfect solution, and
therefore allow us to discriminate more clearly performance differences on these
toy benchmark problems.

Table 1. Parameter settings adopted on all problems examined

Parameter Value

generations 100
population size 100
replacement strategy generational with elitism (10%)
selection tournament (tsize=3)
mutation probability 0.01 (integer mutation)
crossover probability 0.9 (ripple)
initial chromosome length 200 codons (random init)
max wrap events 3

4.1 Benchmark Problems

Four standard GP benchmark problems were examined, and 50 independent runs
performed for each setup on each problem. The grammar adopted in each case
appear in Figs. 3, 4, 5, and 6.

Even-5-parity. This is the classic benchmark problem in which evolution at-
tempts to find the five input even-parity boolean function. The optimal fitness
is obtained when the correct output is generated for each of the 32 test cases.

Symbolic Regression. The classic quartic function is used here x + x2 + x3 + x4

with 20 input-output test cases drawn from the range -1 to 1. Fitness is simply
the sum of the errors. We measure success on this problem using the notion of
hits, where a hit is achieved when the error is less than 0.01.

Santa Fe ant trail. The objective is to evolve a program to control the movement
of an artificial ant on a toroidal grid of size 32 by 32 units. 89 pieces of food
are located along a broken trail, and the ant has 600 units of energy to find all
the food. A unit of energy is consumed when the ant uses one of the following
operations: move(), right() or left(). The ant also has the capability to look
ahead into the square directly facing it to determine if there is food present.
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<prog> ::= <expr>

<expr> ::= <expr> <op> <expr>
| ( <expr> <op> <expr> )
| <var>
| <pre-op> ( <var> )

<pre-op> ::= not

<op> ::= "|"
| &
| ^

<var> ::= d0 | d1 | d2 | d3 | d4

Fig. 3. The grammar adopted for the
Even-5-parity problem

<prog> ::= <expr>

<expr> ::= <expr> <op> <expr>
| ( <expr> <op> <expr> )
| <pre-op> ( <expr> )
| <protected-op>
| <var>

<op> ::= + | * | -

<protected-op> ::= div( <expr>, <expr>)

<pre-op> ::= sin | cos | exp | inv | log

<var> ::= X | 1.0

Fig. 4. The grammar adopted for the
Symbolic Regression problem instance

<prog> ::= <code>

<code> ::= <line> | <code> <line>

<line> ::= <condition>\n
| <op>\n

<condition> ::= if(food_ahead()==1){
<opcode>

}
else { <opcode> }

<op> ::= left(); | right(); | move();

<opcode> ::= <op> | <opcode> <op>

Fig. 5. The grammar adopted for the
Santa Fe ant trail problem

<prog> ::= <expr>

<expr> ::= <op> <expr> <expr>
| <var>

<op> ::= +
| *

<var> ::= 0.5

Fig. 6. The grammar adopted for the
Max problem instance

Max. The aim of the problem is to evolve a tree that returns the largest value
within a set depth limit (8 in this study). A minimal function set of addition
and multiplication is provided alongside a single constant (0.5). The optimal
solution to this problem will have addition operators towards the leaves of the
tree to create as large a variable as possible greater than 1.0 in order to exploit
multiplication operators towards the root of the tree. This problem is considered
difficult for GP as solutions tend to converge on suboptimal solutions which can
be difficult to escape from as is shown by Langdon et al [12].

4.2 Mappers

Four alternative mapping strategies are examined in this study. The standard
mapper adopted in GE we refer to as Depth-first. The name reflects the path
this mapper takes through the non-terminal symbols in the derivation tree. The
opposite Breadth-first strategy was implemented, which maps all of the non-
terminal symbols at each successive level of the derivation tree before moving
on to the next deepest level. The πGE mapper as first described by O’Neill
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et al. [16] is the third mapper analysed. πGE lets the evolving genome decide
which non-terminal to expand at each step in the derivation sequence. Finally
we adopt a Random control strategy, which randomly selects a non-terminal
to expand amongst all of the non-terminals that currently exist in an expanding
derivation sequences. This is equivalent to a randomised πGE approach where
the order of expansion is not evolved, rather it is chosen at random each time it
is performed.

5 Results

The number of runs (out of 50) that successfully found a perfect solution to each
problem is presented in Table 2. On three out of the four problems the πGE
mapper is the most successful. None of the mappers found a perfect solution to
the Max problem with the parameter settings adopted.

Average best fitness plots (over 50 runs) for each problem can be seen in
Figs. 7, 8, 9 and 10. Table 3 records the average best fitness and standard
deviation at the final generation. The results presented in these figures and
table support the success rate data, with the πGE mapper variant outperforming
the alternatives on Even-5-Parity, Symbolic Regression and the Santa Fe Ant.

Table 2. Instances of Successful Solution Found over 50 runs

Mapper Even 5 Santa Fe Sym Reg Max

BF 29 1 9 0
DF 31 2 9 0

Rand 13 0 0 0
πGE 38 4 17 0
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Fig. 7. Average Best Fitness on the Sym-
bolic Regression problem instance
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Fig. 8. Average Best Fitness on the
Santa Fe ant problem



68 D. Fagan et al.

0 20 40 60 80 100

2
4

6
8

10
12

14
Even 5 − Avg Best Fitness

Generations

F
itn

es
s

BF
DF
piGE
Rand

Fig. 9. Average Best Fitness on the
Even-5-parity problem
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Fig. 10. Average Best Fitness on the
Max problem instance

Table 3. Average Best Fitness Values after 100 generations over 50 independent runs

Mapper Even 5 Santa Fe Sym Reg Max
Avg.Best(std) Avg.Best(std) Avg.Best(std) Avg.Best(std)

BF 2.68(3.41) 30.4(13.92) 0.56(0.65) 16.44(14.66)
DF 2.32(3.26) 30.34(14.39) 0.52(0.89) 7.23(10.14)

Rand 4.82(3.29) 29.26(12.07) 0.89(0.76) 121.89(27.45)
πGE 1.52(2.92) 25.64(14.52) 0.33(0.56) 39.31(24.97)
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Fig. 11. Average size of individual on the
Symbolic Regression problem instance
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Santa Fe ant problem
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However, on the Max problem instance the standard depth-first mapper has a
performance edge.

It is worth noting that the random ”control” mapper performs the worst on
all of the problems examined in terms of success rates and in terms of the average
best fitness attained. A slight exception is on the Santa Fe ant trail where the
random mappers performs as well as both depth and breadth-first alternatives,
in terms of the average best fitness at the final generation.

We also recorded the size of evolving genomes (Figs. 11, 12, 13 and 14) and
derivation trees. Derivation tree size was measured both in terms of the number
of nodes in a tree (Figs. 15, 16, 17 and 18) and the depth of a tree (Figs. 19, 20,
21 and 22).
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Fig. 13. Average size of individual on the
Even-5-Parity problem
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Fig. 14. Average size of individual on the
Max problem instance
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Fig. 15. Average number of Derivation
Tree Nodes on the Symbolic Regression
problem instance
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Fig. 17. Average number of Derivation
Tree Nodes on the Even-5-parity problem
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Fig. 18. Average number of Derivation
Tree Nodes on the Max problem
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Fig. 19. Average Derivation Tree Depth
on the Symbolic Regression problem
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Fig. 20. Average Derivation Tree Depth
on the Santa Fe ant problem

6 Discussion

While the results show that πGE did not perform as well on the Max problem,
relative to the other problems, it is worth noting that solving the Max problem is
more about refining the content of the tree not the structure [7]. The Depth-first
map appears to be able to generate larger tree structures more rapidly (both in
terms of number of nodes and tree depth, see Figs. 18 and 22) when compared to
the alternative mapping strategies. This allows search additional time to focus
on tree content towards the desired *’s towards the root and +’s towards the
function nodes near the leaves. The Max problem is more suited to a systematic
pre-order (Depth-first) or level-order (Breadth-first) traversal of the tree, leading
to better results faster than the πGE alternative. On all the other problems the
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Fig. 21. Average Derivation Tree Depth
on the Even-5-parity problem
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Fig. 22. Average Derivation Tree Depth
on the Max problem instance

Breadth-first map produces larger tree structures both in terms of node count
and tree depth (Figs. 15-22).

With respect to the length of the integer genomes it is clear from Figs. 11-
14 that the control random mappers lack of order results in the overall lengths
of individuals remaining relatively constant over time. The opposite behaviour
is observed in the cases of Depth-first, Breadth-first and πGE with the usual
GP-bloat behaviour being observed.

In light of the comparison between a Depth-first and Breadth-first mapper
presented here, it is interesting to recall the observations made in a study by
Hemberg et al. [6]. In the earlier research three grammar variants were examined
in the context of Symbolic Regression. The language represented by each of the
grammars were all semantically equivalent in terms of the phenotypic behaviour
of the solutions that could be generated. The only difference was syntactical.
That is, postfix, prefix and infix notations were adopted for the same set of
terminal symbols of the language. Performance advantages were observed on
the problems examined for the postfix notation over both alternatives. If one
examines the behaviour of postfix notation it amounts to a postorder expansion
of the tree. In terms of a generative grammar this means that the contents of
subtrees are determined before the operator at the root of the subtree.

Effectively the order of the mapping sequence was modified in the Hemberg
et al. study to a Postorder mapper purely by modifying the syntax of the expres-
sions being evolved. Given that the Breadth-first map adopted in this study is
producing similar performance characteristics to the standard Depth-first map,
there must be some advantage in conducting the mapping sequence at least
partly Breadth-first, and partly in a Depth-first manner. Given the earlier find-
ings on the Postorder mapping, there may also be an advantage in reversing
the order of expansion between a pre-, post-order, and possibly in-order. It will
require further analysis to ascertain if a similar mixture of mapping order is
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effectively being evolved with the πGE approach, which may go some way to
explain the relative advantage πGE has over the other mappers.

7 Conclusions and Future Work

We presented an analysis of the genotype-phenotype map in Grammatical Evolu-
tion by comparing performance of the standard depth-first approach to breadth-
first, πGE, and random variations. Across the benchmark problems analysed
we observe an advantage to the adoption of the more flexible πGE map, which
is under the control of evolution. Given the additional overhead that the πGE
map has, due to the extra degree of freedom which allowing the path of the
derivation sequence to be evolvable and the subsequent increase of the overall
search space size that this entails, the results are even more impressive. Further
research is required to establish Why the more evolvable approach is providing
a performance advantage, and this is the current focus of our efforts. With this
deeper understanding we can then potentially improve upon the πGE approach
and/or develop novel mappers with more evolvable characteristics. We are es-
pecially interested in how evolvable genotype-phenotype maps will perform in
dynamic environments, and this will form an integral part of the next phase of
this research.
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Abstract. Using Genetic Programming (GP) for classifying data
streams is problematic as GP is slow compared with traditional sin-
gle solution techniques. However, the availability of cheaper and better-
performing distributed and parallel architectures make it possible to
deal with complex problems previously hardly solved owing to the large
amount of time necessary. This work presents a general framework based
on a distributed GP ensemble algorithm for coping with different types
of concept drift for the task of classification of large data streams. The
framework is able to detect changes in a very efficient way using only a
detection function based on the incoming unclassified data. Thus, only if
a change is detected a distributed GP algorithm is performed in order to
improve classification accuracy and this limits the overhead associated
with the use of a population-based method. Real world data streams
may present drifts of different types. The introduced detection function,
based on the self-similarity fractal dimension, permits to cope in a very
short time with the main types of different drifts, as demonstrated by
the first experiments performed on some artificial datasets. Furthermore,
having an adequate number of resources, distributed GP can handle very
frequent concept drifts.

1 Introduction

In the last few years, many organizations are collecting a tremendous amount
of data that arrives in the form of continuous stream. Credit card transactional
flows, telephone records, sensor network data, network event logs, urban traffic
controls are just some examples of streaming data.

The ever changing nature, the need of storage and the high volume of these
data can put in crisis traditional data mining algorithms, as they are not able
to capture new trends in the stream. In fact, traditional algorithms assume that
data is static, i.e. a concept, represented by a set of features, does not change
because of modifications of the external environment. In the above mentioned
applications, instead, a concept may drift due to several motivations, for example
sensor failures, increases of telephone or network traffic. Concept drift (a radical
change in the target concept in unforeseen way) can cause serious deterioration
of the model performance and thus its detection allows to design a model that
is able to revise itself and promptly restore its classification accuracy.

A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 74–85, 2010.
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Incremental (online) systems [24] evolve and update a model as new instances
of the data arrives and are an approach able to support adaptive ensembles on
evolving data streams. These methods build a single model that represents the
entire data stream and continuously refine their model as data flows. However,
maintaining a unique up-to-date model is not a good solution, as previously
trained classifiers would be discarded and an important part of information could
be lost. On the contrary, update the model as soon as new data arrive could
not be practicable as usually the stream of data is very fast. Furthermore, for
many applications, i.e. intrusion detection, user feedback is needed for labeling
the data, which also requires time and other resources. A way to overcome this
problem is to detect changes and adapt the model only if a concept drift happens.

Ensemble learning algorithms [3,2,7] have been gathering an increasing inter-
est in the research community; these approaches have been applied to many real
world problems and they have successfully exploited for the task of classifying
data streams [25,22,10], as an example of incremental systems. In particular, cou-
pled with GP demonstrated the improvements that GP obtains when enriched
with these methods [9,11,6].

The usage of fractal dimension for keeping into account changes in the distri-
bution of the points of a dataset have been explored in the field of knowledge
discovery [1], i.e. in the task of clustering [13] and association rules [21] , because
of the fast algorithms existing for computing it and for its capacity to detect con-
cept drifts. However, to the best of our knowledge it has not been applied to the
field of classification.

This work presents a general framework based on a distributed GP ensem-
ble algorithm for coping with different types of concept drift for the task of
classification of large data streams. The architecture of the framework consists
of a distributed GP ensemble classifier used in the training (stationary) phase
and a fractal dimension-based function for detecting concept drifts in the non-
stationary phase. The system is able to detect different kinds of concept drift in
a very efficient way. It is worth noticing that the detection function only works
on the incoming unclassified data. Thus, only if a change is detected the dis-
tributed GP algorithm is performed in order to improve classification accuracy.
The GP algorithm builds and updates an ensemble of classifiers, removing the
old not-updated classifiers. This latter is one of the many possible choices. A
different procedure showed in [25] maintains the classifier having a class distri-
bution similar of that of the current data and it deserves to be investigated in
future works.

A previous approach [5] demonstrated that GP ensembles and fractal di-
mension can be successfully applied for classifying continuous data streams and
handling concept drifts. The main strategy used in the above cited paper to de-
tect changes is based on the computing of the fractal dimension of the fitness of
incoming data. The limit inherent in this approach is that it needs a continuous
phase of training and, in addition, computing the fitness of new data requires
that at least a significant sample of these data are pre-classified. In real data
streams, this can be very costly, as in many cases it would require a work made
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by experts or a heavy method for computing real classes of the examples. Fur-
thermore, it is hard to decide when changes may happen. In some cases drift are
quite frequent, while in other cases they can require hours, days or months (i.e.
the intrusion detection problem).

On the contrary, in our work, changes are detected only on the basis of the
fractal dimension computed directly on the new chunks of data. So, labelled
training data are necessary only when new drifts are discovered, which can be
very rare.

To summarize, the main contributions of this work are that the overhead of han-
dling a population of GP trees is overcome by the usage of a parallel/distributed
architecture, that the algorithm detects changes on new not labelled data and that
the heavy training phase is executed only when a change is detected and only for
a limited number of windows.

The paper is organized as follows. Section 2 introduces the architecture of
the system and the main components for training the classifiers and detecting
the changes. In Section 3, the different types of drift analyzed and the strategy
for detecting changes based on the fractal dimension are discussed in detail.
Section 4 presents the experiments performed on some artificial datasets. Finally,
Section 5 concludes the paper and presents some interesting future developments.

2 The Streaming Distributed GP Algorithm

In this section, we introduce the ensemble-based GP tool (BoostCGPC) used in
the training phase and the framework used to classify the large data streams in
presence of drifts.

2.1 The Distributed GP Tool

Ensemble [7,2] is a learning paradigm where multiple component learners are
trained for the same task by a learning algorithm, and the predictions of the
component learners are combined for dealing with new unseen instances. Let
S = {(xi, yi)|i = 1, . . . , N} be a training set where xi, called example or tuple
or instance, is an attribute vector with m attributes and yi is the class label
associated with xi. A predictor (classifier), given a new example, has the task to
predict the class label for it.

Ensemble techniques build T predictors, each on a different training set,
then combine them together to classify the test set. Boosting was introduced
by Schapire [18] and Freund [19] for boosting the performance of any “weak”
learning algorithm, i.e. an algorithm that ”generates classifiers which need only
be a little bit better than random guessing” [19].

The boosting algorithm, called AdaBoost, adaptively changes the distribu-
tion of the training set depending on how difficult each example is to classify.
Given the number T of trials (rounds) to execute, T weighted training sets
S1, S2, . . . , ST are sequentially generated and T classifiers C1, . . . , CT are built
to compute a weak hypothesis ht. Let wt

i denote the weight of the example xi
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at trial t. At the beginning w1
i = 1/n for each xi. At each round t = 1, . . . , T ,

a weak learner Ct, whose error εt is bounded to a value strictly less than 1/2,
is built and the weights of the next trial are obtained by multiplying the weight
of the correctly classified examples by βt = εt/(1 − εt) and renormalizing the
weights so that Σiw

t+1
i = 1. Thus “easy” examples get a lower weight, while

“hard” examples, that tend to be misclassified, get higher weights. This induces
AdaBoost to focus on examples that are hardest to classify. The boosted clas-
sifier gives the class label y that maximizes the sum of the weights of the weak
hypotheses predicting that label, where the weight is defined as log(1/βt). The
final classifier hf is defined as follows:

hf = arg max (
T∑
t

log(
1
βt

)ht(x, y))

Ensemble techniques have been shown to be more accurate than component
learners constituting the ensemble [2,16], thus such a paradigm has gained im-
portance in recent years and has already been successfully applied in many ap-
plication fields.

A key feature of the ensemble paradigm, often not much highlighted, concerns
its ability to solve problems in a distributed and decentralized way.

A GP ensemble offers several advantages over a monolithic GP that uses a
single GP program to solve the intrusion detection task. First, it can deal with
very large data sets. Second, it can make an overall system easier to understand,
modify and implement in a distributed way. Last, it is more robust than a
monolithic GP, and can show graceful performance degradation in situations
where only a subset of GPs in the ensemble are performing correctly.

Diversity is an important problem that must be considered for forming suc-
cessful ensembles. Genetic programming does not require any change in a train-
ing set to generate individuals of different behaviors. BoostCGPC, presented in
[4], builds GP ensembles using a hybrid variation of the classic island model that
leads not only to a faster algorithm, but also to superior numerical performance.
The pseudocode of this algorithm is reported in figure 1.

It uses a cellular GP algorithm (cGP), presented in [4] to inductively generate
a GP classifier as a decision tree for the task of data classification. cGP runs for
T rounds; for every round it generates a classifier per node, exchanges it with the
other nodes, and updates the weights of the tuples for the next round, according
to the boosting algorithm AdaBoost.M2.

Each node is furnished with a cGP algorithm enhanced with the boosting
technique AdaBoost.M2 and a population initialized with random individuals,
and operates on the local data weighted according to a uniform distribution. The
selection rule, the replacement rule and the asynchronous migration strategy
are specified in the cGP algorithm. Each node generates the GP classifier by
running for a certain number of generations, necessary to compute the number
of boosting rounds. During the boosting rounds, each classifier maintains the
local vector of the weights that directly reflect the prediction accuracy. At each
boosting round the hypotheses generated by each classifier are exchanged among
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all the processors in order to produce the ensemble of predictors. In this way
each node maintains the entire ensemble and it can use it to recalculate the new
vector of weights. After the execution of the fixed number of boosting rounds,
the classifiers are updated.

Refer to the paper [4] for a more detailed description of BoostCGPC.

Given a network constituted by N nodes,
each having a data set Sj

For j = 1, 2, . . ., N (for each island in parallel)
Initialize the weights associated with each tuple
Initialize the population Qj with random individuals

end parallel for
For t = 1,2,3, . . ., T (boosting rounds)

For j = 1, 2, . . ., N (for each island in parallel)
Train cGP on Sj using a weighted fitness
according to the weight distribution
Compute a weak hypothesis
Exchange the hypotheses among the N islands
Update the weights

end parallel for
end for t

Output the hypothesis

Fig. 1. The BoostCGPC algorithm based on AdaBoost.M2

2.2 Using BoostCGPC for the Streaming of Data

The streaming algorithm, introduced in this paper, alternates two phases: a non-
stationary phase in which a function based on the fractal dimension for detecting
changes in new unlabeled data is adopted and a (usually not frequent) stationary
phase in which the distributed GP algorithm is run in order to recover from a
drift.

The pseudo-code of the algorithm, after an initial phase of training, is shown
in figure 2. The initial phase simply consists in the building of the ensemble
by means of BoostCGPC. We consider an infinite stream of data composed by
unlabeled tuples T1, T2, . . . , T∞ and an ensemble E = {C1, C2, . . . , Cm} previ-
ously built by BoostCGPC. A limit is placed on the size of the ensemble, i.e. the
maximum number of classifiers is set to M . In order to detect changes, different
windows of data are analyzed. The size of each window is set to Twind and, to
avoid the overhead associate to the analysis of each tuple, the detection of the
change is detected each Tincr tuples.

The fractal dimension computed on each window is added to the set of ele-
ments to be analyzed by the detection function and the the oldest element is
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Given a network constituted by N nodes to train BoostCGPC.
Let Twind and Tincr be respectively the size of the window
examined and the increment considered.
Given T1, T2, . . . T∞, the unlabeled tuples composing the stream.
Consider M as the maximum number of classifiers forming the ensemble,
TS = ∅ (a set of tuples to analyze),
the boosting ensemble E = {C1, C2, . . . , Cm} where m < M ,
a fractal set FS = {Fd1, Fd2, . . . , FdK} where K = Twind

Tincr

while (more Tuples)
TA = ∅ (new tuples to analyze)
while (|TA| < Tincr)

Add new tuples to TA
end while
TS = TS ∪ TA and remove the oldest tuples, until |TS| = Twind

compute the fractal dimension Fd of the set TS
Add Fd to the set FS and remove the oldest element
if (detection function (FS))

Generate a set T l = {T l1, T l2, . . . , T lk} of labeled tuples
Train BoostCGPC on T l for T rounds of boosting, using N nodes
and it outputs T × N classifiers
Add these classifiers to the ensemble E

end if
if (| E |> M)

prune the ensemble E, removing the oldest M − |E| classifiers
end if

end while

Fig. 2. The overall algorithm

removed in order to maintain the same size. More details on how the fractal
dimension is computed and on how the detection function acts are reported in
subsection 3.2.

When a change is detected, a new set of labelled tuples T l is produced (i.e.
taking the labelled tuples from the stream, if they are present or using an auto-
matic/manual classifier). BoostCGPCruns for T rounds on N nodes using this
set of tuples and it will produce T × N classifiers, which will be added to the
ensemble removing the oldest classifiers so that the overall number of classifiers
remains M. If the size of the ensemble is greater than the maximum fixed size
M , the ensemble is pruned by retiring the oldest T × N predictors and adding
the new generated ones.

3 Concept Drifts and Fractal Dimension

In this section, we illustrate the main types of concept drift presented in literature
and show how the fractal dimension can be used to detect them.
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3.1 Artificial Datasets and Concept Drifts

Concept drifts can be classified on the basis of the speed of the change as gradual
or abrupt drifts, or they can be considered recurrent if they are periodic. They
are predictable if we can predict when it is likely they occur. Studying different
types of concept drift in real world datasets is really hard, as it is not possible
to categorize them, to predict their presence and the type and so on; thus us-
ing artificial datasets is a better way to analyze this aspect. In [15] a detailed
description of the main different types of drift is given. In our work, we use
the same categories treated in this paper and modified the dataset generator1

supplied by the authors.
The datasets simulated comprises the circle function, the sine function, the

SEA moving hyperplane [22] and the STAGGER boolean concept [20]. The SEA
generator can also be used to generate lines and planes.

In the experiment of thenext section, all the data sets contain anoise level of 10%
obtainedbyflipping randomly the class of the tuples from 0 to 1 andvice versa, with
probability 0.1.Furthermore, the drifts are orderedby increasing class severity (i.e.
the percentage of input space having its target changed after the drift).

The circle data set is a 2-dimensional unit hypercube, thus an example x is
a vector of 2 features xi ∈ [0, 1]. The class boundary is a circle of radius r and
center c of coordinates (a, b). If an example x is inside the circle then it is labelled
class 1, class 0 otherwise. Drift is simulated moving the radius of the circle. We
fixed the center to (0.5, 0.5) and varied the radius from 0.2 to 0.3 (16%), from
0.2 to 0.4(38%) and from 0.2 to 0.5(66%). This simulates drifts more and more
abrupt (the class severity is reported in brackets).

The sine function is defined by the formula a · sin(bx + c) + d where a =
b = 1, c = 0 and d varying from −2 to 1(15%), from −5 to 4(45%), from −8 to
7(75%).

The SEA moving hyperplane in d dimensions is defined by the class boundary∑d
i=1 aixi < a0 where a1 = a2 = · · · = ad = 0.1 and a0 varies from −2 to

−2.7(14%), from −1 to −3.2(44%) and from −0.7 to −4.4(74%).
In the STAGGER dataset, each tuple consists of three attribute values:

color ∈ {green, blue, red}, shape ∈ {triangle, circle, rectangle}, and size ∈
{small, medium, large}. The drift is simulated changing the target concept,
i.e. the boolean function. In our case, as in [15], we simplify the function to
y = (color = / �= a) ∧ / ∨ (shape = / �= b) and it varies from y = (color =
red) ∧ (shape = rectangle) to y = (color = red) ∨ (shape = rectangle)(11%),
from y = (color = red) ∧ (shape = rectangle) to y = (color = red) ∧ (shape �=
circle)(44%), and from y = (color = red)∧ (shape = rectangle) to y = (color �=
blue) ∨ (shape �= circle)(67%) .

3.2 Fractal Dimension and Detection Function

Fractals [14] are particular structures that present self-similarity, i. e. an in-
variance with respect to the scale used. A family of functions, named fractal
1 www.cs.bham.ac. uk/˜flm/opensource/DriftGenerator.zip
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dimension (FD)[8], can be usefully adopted to characterize changes in the data.
Among the properties of FD is worth to notice that the presence of a noise
smaller than the signal does not affect it [23].

We can compute the fractal dimension of a dataset by embedding it in a d-
dimensional grid whose cells have size r and computing the frequency pi with
which data points fall in the i-th cell. The fractal dimension is given by the
formula FD = 1

q−1
log

∑
i pq

i

log r . Among the fractal dimensions, the correlation di-
mension, obtained when q = 2 measures the probability that two points chosen
at random will be within a certain distance of each other. Changes in the corre-
lation dimension mean changes in the distribution of data in the data set, thus
it can be used as an indicator of concept drift. Fast algorithms exist to com-
pute the fractal dimension. We used the FD3 algorithm of [17] that efficiently
implements the box counting method [12].

Differently from other works, here the fractal dimension is directly computed
on the unlabeled data coming from the stream. The application of FD in an
adaptive way permits to detect the changes. Fractal dimension is computed on
a window of fixed size (FDwind = 500 tuples) with a increment FDincr = 50.
As the stream goes, we will obtain a fractal set FS = {Fd1, Fd2, . . . , Fdk}
where k is the number of elements considered for applying the detection func-
tion as described in figure 2. In practice, this detection function, first compute
the linear regression of the set FS and then if the absolute value of the angle
coefficient is greater than 1 (i.e. an angle of π

4 ), a change is detected. Choosing
angle coefficients greater (minor) than 1 permits to cope with heavier (lighter)
drifts.

4 Performance Evaluation

4.1 Fractal Analysis

In this section, the performance of our framework is analyzed on the artificial
datasets described in the subsection 3.1.

The algorithm is run on 30,000 tuples and the concept drifts are simulated
each 5,000 steps for a total of 5 drifts, as described in the above cited subsection.
It worth remembering that we increased the drift from mild to severe every 5,000
steps.

Figures 3 reports, on the y axis, the fractal dimension for all the datasets and
the relative drift detected (vertical lines). The width of the drift shown in the
figure is proportional to the number of windows in which the detection function
identifies the change. In spite of the different behavior of the datasets generated,
our function is able to capture all the drifts, a few windows after they happen.
Furthermore, the detection function is quite robust to the noise. In fact, only in
the case of the circle and of the sine dataset, two false drifts are detected (and
only one in the case of the line and of the hyperplane) because of the presence
of the noise and they are very narrow and could be filtered.
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Fig. 3. Fractal Dimension (and Drift Detection) results for (a)Line (b) Sine (c) Plane
(d) Hyperplane (e) Circle (f) Boolean with 30,000 tuples, with a concept drift each
5,000 tuples for a total of 5 concept drifts

4.2 Effort Evaluation

The aim of this subsection is to evaluate how quickly BoostCGPC can answer to
a concept drift and to understand in which cases it can be applied and in which
case it is better to use single-solution traditional techniques that are notoriously
faster than GP. If concept drift does not occur too frequently, our algorithm
can quickly recover from the drift; even in the case that the frequency is quite
high, our distributed algorithm can be used, provided that we have resources
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sufficient to run it in the time requirements we have to meet. To summarize, we
want to evaluate which kind of drifts the ensemble can handle, having a fixed
number of nodes or, on the contrary, how many resources we need to reserve
(i.e. in a cloud computing environment), in order to handle a very frequent drift.
Thus, we run some experiments on different distributed machines using the same
standard parameters adopted in [4] and measured the execution times. In the
same paper, it is demonstrated that BoostCGPC obtains a good performance
using a small sample of the training set. Furthermore, also for very large and
complex datasets, a population of 1000 individuals and 5 or 10 rounds of 100
generations of boosting are sufficient to obtain a good accuracy.

Table 1. Environments used in the experiments

Name CPU Memory per Node Number of Nodes

Aleph Xeon E5520 2,26 GHz 16 GB 16
Spaci Itanium 2 1.4 GHz 2 GB 64

We fixed a probability of 0.1 for reproduction, 0.8 for crossover and 0.1 for
mutation. The maximum depth of the new generated subtrees is 4 for the step
of population initialization, 17 for crossover and 2 for mutation. We fixed to
5 the number of rounds for the boosting and we execute 100 generations each
round. The dataset is an artificial hypersphere (the circle function extended to
a 6-dimensional space) with a noise level of 10% and 100,000 tuples.

Two configurations, consisting respectively of (1) a population of 1280 indi-
viduals (2) a population of 320 individuals, are used on the two different envi-
ronments summarized in table 1. The first, named Aleph, is a modern cluster
having 16 nodes, while the second, named Spaci, is an older machine, but having
64 nodes.

The execution times and the standard deviation averaged over 40 tries are
reported in table 2. It worth to notice that the algorithm takes about 4 minutes
on the modern machine using only one node and 21 seconds on the same machine
using 16 nodes. Anyway, if we have very strict time requirements, we can use
a smaller population (reducing slightly the accuracy) and obtain a very fast
execution time of about 5 seconds both on 64 nodes of Spaci and on 16 nodes of
Aleph.

Table 2. Execution times and standard deviation for the two clusters and for (1) a
population of 1280 individuals (2) a population of 320 individuals

Nodes 1 2 4 8 16 64
Spaci (1) 817.56 ± 125.8 398.82 ± 59.5 217.18 ± 33.2 121.50 ± 20.8 74.39 ± 17.2 25.07 ± 5.7
Spaci (2) 150.05 ± 22.6 79.61 ± 18.8 43.73 ± 12.2 21.61 ± 3.6 14.31 ± 5.0 4.97 ± 1.3
Aleph (1) 289.15 ± 39.2 141.27 ± 31.7 66.17 ± 21.5 35.63 ± 8.5 21.88 ± 4.4 −
Aleph (2) 56.25 ± 7.4 28.81 ± 6.3 13.29 ± 3.1 6.90 ± 0.8 4.64 ± 1.1 −
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Note that, if we need a fast recovery from the drift, GP can be stopped
early and the current generated ensemble, generally, maintains a good grade of
accuracy.

5 Conclusions

This work provides evidence that Genetic Programming can be profitably applied
to the problem of classifying large data streams, coupling fast detection methods
and modern distributed architectures. An adaptive method based on the fractal
dimension is able to detect both medium and abrupt drifts. The distributed
GP algorithm can quickly recover from drifts, provided that we have sufficient
resources to run it in the time requirements we have to meet.

Future works aims to evaluate the framework on real world datasets, to ex-
plore different concept drift functions that can overcome the limit of the fractal
dimension-based function. In fact, the fractal dimension is not able to detect
changes that are gradual during a long period of time. To this aim, other func-
tions must be coupled with FD. Furthermore, different pruning strategies apt to
reduce the size of ensemble deserve to be explored.
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Abstract. This paper explores an indirect approach to the Three-
dimensional Multi-pipe Routing problem. Variable length pipelines are
built by letting a virtual robot called a turtle navigate through space,
leaving pipe segments along its route. The turtle senses its environment
and acts in accordance with commands received from heuristics currently
under evaluation. The heuristics are evolved by a Gene Expression Pro-
gramming based Learning Classifier System. The suggested approach is
compared to earlier studies using a direct encoding, where command lines
were evolved directly by genetic algorithms. Heuristics generating higher
quality pipelines are evolved by fewer generations compared to the direct
approach, however the evaluation time is longer and the search space is
more complex. The best evolved heuristic is short and simple, builds
modular solutions, exhibits some degree of generalization and demon-
strates good scalability on test cases similar to the training case.

1 Introduction

Inspired by evolution in natural systems, evolutionary algorithms (EAs) [1] have
been successful at optimizing large and complex problems commonly encoun-
tered in industry. Examples range from parameter optimization involving a vast
number of variables as well as finding near optimal solutions to large and diffi-
cult combinatorial problems. However, scalability often becomes challenging as
the size of the search space tends to grow exponentially with the problem size.
This is commonly caused by the use of a direct representation, where every el-
ement in the phenotype is represented as an element in the genotype. The field
of Artificial Embryogeny (AE) [2] attempt to alleviate this problem by evolving
indirect representations in the form of e.g. a rule base represented as bit strings,
an artificial neural network, or a set of symbolic expressions, which are used to
build phenotypes of arbitrary sizes. The computational cost is often higher for
evolving indirect solutions, however, once completed it may provide a general
solution for a whole class of problems, while a direct approach only provides the
solution to the actual problem that was optimized. Furthermore, penalty and
repair functions, often necessary for direct approaches, may be avoided since
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phenotypes may be built so that feasible solutions are guaranteed. Finally, by
carefully selecting a symbolic form of representation, knowledge can be extracted
from the process and results may be verified analytically.

The Three-dimensional Multi-pipe Routing (3DMPR) problem is concerned
with automating and optimizing pipe routing design involving several pipelines
in three dimensions. Pipe routing can be understood as to be a subset of assembly
design and is important for several industrial applications such as factory layout,
circuit layout, aircraft and ship design. The design is normally done by human
experts following a piping and instrumentation diagram (P&ID), as illustrated
in figure 1, where the location of various equipment is predetermined. This,
however, is a very time consuming process, making it practically impossible for
the designer to test several scenarios.

Pipe routing can be seen as a special case of general path planning in robotics
in which there are two major families of approaches known as cell decomposition
and skeletonization [3]. Each approach reduces the continuous path-planning
problem to a discrete graph search problem. Deterministic shortest path algo-
rithms guarantee an optimal solution given sufficient time; however, pipe routing
belongs to a class of optimization problems with very large, multimodal search
spaces, where one is more interested in finding feasible solutions in practical
time than trying to find the absolute optimal solution. This suggests the 3DMPR
problem to be a good candidate for optimization by stochastic search algorithms
such as Genetic Algorithms (GAs).

Most research on pipe routing limits the problem to single pipelines in two
dimensions [4] [5] [6], multiple pipelines in two dimensions [7] [8] [9] (multiple
2D layers) or single pipelines in three dimensions [10]. GA was compared to
deterministic methods in [5] and [6] and it was concluded that GA managed to
locate near-optimal solutions in a considerable less time, but that GA’s limita-
tion was mainly related to obtaining accurate solutions. Multiple pipes in three
dimensions was investigated in [11] and [12], however, in all the reviewed litera-
ture the authors implement a direct encoding and test their approach on smaller
problems.

The concept of indirect evolution has been proposed for several other applica-
tion areas. Evolution of heuristics for packing problems [13] [14] [15] [16], schedul-
ing problems [17] [18] [19], and facility layout problems [20] demonstrated that
heuristics were generated which in many cases were equal to, or better than, pre-
viously known human made heuristics. The Evolutionary Robotics community
commonly applies neuroevolution (evolution of neural networks) for automati-
cally generating robot controllers [21] but also Genetic Programming [22] [23] [24],
and Gene Expression Programming [25] [26] has been explored for similar applica-
tions. A generative representation for the automated design of modular physical
robots was proposed by Hornby et al. in [27] while the evolution of structural de-
sign through artificial embryogeny was suggested by Kowaliw et al. in [28].

In a previous study we implemented a direct encoding and compared stan-
dard GA (SGA), Incremental GA (IGA) and Coevolutionary GA (CGA) on three
proposed 3DMPR benchmark problems. In this paper we present and compare,
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for the first time, an indirect approach which automatically generates 3DMPR
heuristics. The heuristics are evolved by a Gene Expression Programming (GEP)
based Learning Classifier System (LCS) called GEPLCS. The pipelines are op-
timized by minimizing material use, minimizing the number of bends as well
as minimizing the offset between the pipeline terminals and the goal positions.
Collisions are implicitly avoided during the pipeline building process and safety
zone requirements are handled by the problem representation.

The next section explains the method, the experimental setup and the results
are presented in section 3 and discussed in section 4 while section 5 concludes.

2 Method

This section first explains how the 3DMPR problem is represented and how
pipelines are built. Second, we show how heuristics are generated from a set of
evolutionary building blocks. Finally, we explain how pipelines are evaluated,
and three benchmark problems are presented.

2.1 Building Pipelines

Pipelines are built by letting a virtual robot called a turtle [29] move about in
a three dimensional Euclidean space from the start position S, as illustrated for
two dimensions in figure 2 and described formally in algorithm 1. For each time
step t, the turtle moves one step forward unless it collides with an obstacle or
has reached the goal position G. When moving forward, the turtle allocates a
new pipe segment to the departing location. The turtle senses its environment
through a set of sensors and acts in its environment according to an evolved
heuristic. For each time step, the heuristic evaluates the sensor data and sets
the orientation of the turtle by executing one of the actions in the action set
A = {R, L, U, D, #} coding for turn right/left/up/down and do nothing. The
turtle rotates around the axis indicated in the illustration while the required
safety distance SD is determined by the dimension of the turtle and the pipe
diameter PD. The turtle remembers its previous actions by storing what action
was actually performed to a build step array. E.g. if the turtle moves one step
forward, the symbol f is reported while if the turtle collides, the symbol s is
reported. If the ”do nothing” command is triggered, no symbol is reported to
the build step array.

2.2 Evolving Heuristics by GEPLCS

This section first introduces the concept of a Learning Classifier System (LCS);
second, the Gene Expression Programming (GEP) representation and finally,
the GEP based LCS system (GEPLCS) which is illustrated in figure 3.

First described by John Holland in [30], a LCS is a Machine Learning sys-
tem that learns rules (in our case in the form of heuristics), called classifiers.
The classifiers are used to classify different input states into appropriate actions
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Fig. 2. The turtle leaves pipe segments
on its route while navigating from S to
G using sensor information

Algorithm 1. Pipeline Builder
h ← heuristic
T ← max number of build step iterations
P ← number of pipelines
t ← 0
for each pipeline p in P do

Place turtle at the start position Sp

while last pipe segment in pipeline has not reached goal position Gp and t < T do
if turtle not colliding with any obstacles then

Go forward and leave a pipe segment in departing position
end if
Feature vector x ← get feature vector
Action vector a ← h(x)
Action amax ← MAX(a1, a2, ..., an)
do amax

t ← t + 1
end while

end for

[31]. The framework has strong links to Reinforcement Learning, however GAs
are used to optimize the classifiers. In a Michigan type LCS, a GA focuses on
selecting the best classifiers within a single rule set, while in a Pittsburgh type
LCS, a GA acts upon a population where each individual codes for an entire
rule set. While most LCS implements a binary encoding of the rule sets, Genetic
Programming (GP) as well as Artificial Neural Networks have also been used. In
this work we implement GEP, which was recently explored in conjunction with
LCS by Wilson et al. in [32]. To the authors best knowledge, no papers have
been published on the application of LCS for building physical design solutions
such as pipelines.

Originally developed by Ferreira [33], GEP is based upon fixed length linear
genomes which are translated into executable parse trees of various sizes. The
genomes are represented as a collection of symbol strings called genes consisting
of a head and a tail part. The tail consists of members from a terminal set while
the head additionally consists of members from a function set. The length of
the tail t is set by the formula t = h(nmax − 1) + 1 where h is the length of
the head and nmax is the arity of the function with the most arguments. The
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Fig. 3. A Gene Expression Programming based Learning Classifier System (GEPLCS)

linear structure of the genomes enables traditional GA-style crossover and point
mutation to be easily implemented. The fixed size of the genomes sets an upper
bound on the size of the parse trees, avoiding the problem of bloat, commonly
encountered in GP. All solutions generated by GEP are syntactically correct,
therefore avoiding the use of repair functions often necessary in GP. For more
details on GEP we refer to [33].

In GEPLCS, each individual codes for a complete set of classifiers, thus we
may categorize the proposed approach as a Pittsburg type LCS. Each gene in the
GEP genome is encoded as a heuristic and corresponds to a single classifier, and
each classifier codes for a specific action a. When exposed to a feature vector x
sampled from the current state st of the phenotype/environment, the classifiers
output a real valued action vector a. The action with the highest value amax

is selected and executed in the environment. The evolved parse trees are easily
translated into symbolic expressions examinable by humans.

2.3 Evolutionary Building Blocks

The selected functions and terminals for the 3DMPR problem are listed in table
1. The terminals report values from various sensors as well as selected constants.
The turtle is equipped with 13 distance sensors reporting the distance to the
closest obstacle. If the ray of a sensor does not hit any obstacle, the value 1010

is reported. The turtle is also equipped with sensors monitoring the relative
distance to the goal position in each dimension, and the current orientation is
monitored in yaw, pitch and roll dimension. The previous action prev is reported
as the last entry in the build step array, acting as a memory.

2.4 Fitness Evaluation

A pipeline should reach the goal position G, stay clear from obstacles, mini-
mize the number of bends, and minimize the overall length. Notice the added
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Table 1. Functions and Terminals

Functions Arity Description

Abs 1 Returns the absolute value
Add 2 Addition
Sub 2 Subtraction
Mult 2 Multiplication
Div 2 Protected Division. Division by zero returns 1
Max 2 Returns the largest of two arguments
IFLTE 4 If first argument is larger than second argument, third ar-

gument is returned, else fourth argument is returned

Terminals Values Description

sF, sR, sU, sL, sD, sFR, sFU,
sFL, sFD, sRU, sRD, sLU,
sLD

double Sensors reporting the distance to closest obstacle in the spec-
ified direction (F=Forward, R =Right, L = left, U = Up, D
= Down)

dF, dL, dU double Manhattan distance to goal in specified direction
yaw, pitch, roll 1/-1 Yaw, pitch and roll orentation
prev 1-6 Previous action
col 1/0 Collide
k0 0.0 Constant
k1 0.5 Constant
k2 1.0 Constant

complexity introduced by the multi-pipe scenario; a pipeline must not collide
with the obstacles, with itself or with any other pipeline in the problem. Col-
lision detection during evaluation is unnecessary, since the turtle cannot move
forward if it collides with an obstacle. A set of P pipelines are evaluated by the
following aggregate scalar error function to be minimized

Error =
P∑

i=1

(w1di + w2bi + w3si) (1)

where di is the Manhattan distance between the outlet of the last pipe segment of
the i’th pipeline and the goal position. The variable bi is the number of bends and
si the number of segments of pipeline i. The different components are weighted
by the values w1 = 150, w2 = 10, and w3 = 1, which were set manually by trial
and error.

2.5 Benchmark Problems

To the author’s best knowledge, no benchmark problems exist for the 3DMPR
problem. We therefore propose three problems in table 2, each problem consisting
of four pipelines to be connected. The ”Square” problem consists of four equal
sized modules to be interconnected, as illustrated in the P&ID in figure 1. The
IO points are evenly distributed and located in the horizontal plane; however,
the turtle navigates in three dimensions, as illustrated by the evolved solution in
figure 5 A). The ”Twist” problem consists of two modules to be interconnected
by four pipes. Each pipe should connect to the opposite side but at different
locations, as illustrated by the evolved solution in 5 B). The ”Hub” problem is
a common industrial scenario where several modules must connect to a central
unit, as illustrated by the evolved solution in 5 C).
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Table 2. 3DMPR Benchmark Problems

Square Twist Hub

Modules Pipelines Modules Pipelines Modules Pipelines

ID Dim Pos ID Start Goal ID Dim Pos ID Start Goal ID Dim Pos ID Start Goal

A 4,4,4 -5,-5,0 AB -3,-5,0 3,5,0 A 4,8,8 -5,0,0 AB1 -3,2,-2 3,-2,2 A 6,12,6 0,0,1 BA -14,0,0 -3,-3,1
B 4,4,4 5,5,0 BC 7,5,0 3,-5,0 B 4,8,8 5,0,0 AB2 -3,-2,-2 3,2,2 B 4,4,4 -16,0,0 CA -3,15,0 -3,3,1
C 4,4,4 5,-5,0 CD 7,-5,0 -7,5,0 AB3 -3,2,2 3,-2,-2 C 4,4,4 -5,15,0 DA 12.5,8,0 3,3,1
D 4,4,4 -5,5,0 DA -3,5,0 -7,-5,0 AB4 -3,-2,2 3,2,-2 D 4,4,4 14.5,0,0 EA 16.5,0,0 3,-3,1

E 4,4,4 10.5,8,0

3 Experiments and Results

In this section, the experimental setup is reviewed, the results are presented and
compared to a directly encoded GA, and finally, we analyze the best generated
heuristic.

10 heuristics were generated by executing 10 independent evolutionary runs
with a fixed number of generations G = 1000, population size μ = 100, and
elitism enabled. The head length h = 10 was set by experimentation and the
resulting gene length Gl = 41 was determined by the formula described in section
2.2. The mutation rate was set to pm = 0.1 while crossover was found to have a
destructive effect and was thus not used. Inversion, a common genetic operator
in GEP, works by inverting the alleles in a randomly selected region, in either
the tail or head region of a gene. The inversion rate pi = 0.1, determines the
probability that a single gene will undergo inversion.

The heuristics were trained on only one fitness case, the ”Square” problem,
a similar approach as e.g. Koza in [24] and Nordin et al. in [34]. In a machine
learning paradigm, several fitness cases are usually required in order to gener-
ate generalizable solutions. However, since four pipes are built in one fitness
case, some generalizable behavior was expected. The training error, computed
by function 1, of the best individual for each run, as well as the training error
averaged over all runs, is plotted in figure 4 A).

In another study, we applied a Standard GA (SGA) using a direct encoding by
letting a ”blind” turtle interpret evolved command lines from the symbol set C =
{F, R, L, U, D, #}, coding for move one step forward, turn right/left/up/down
and ”do nothing”. Figure 4 B) shows 10 runs by applying SGA to the ”Square”
problem.

Comparing plot A) and B) in figure 4, the average performances of the indirect
approach is better than for the direct approach per generation. However, for
GEPLCS, several plateaus are encountered and the deviation is larger, indicating
a more complex search space. More time is also required (per generation) for
evolving the heuristics, mainly due to the building process. The best solution
using SGA had an error E = 1799, while the best found heuristic generated the
solution illustrated in figure 5 A), achieving an error of E = 268 which is close
to optimal for the ”Square” problem. The best found heuristic, which we will
call the 3DMPR-H1 heuristic, will be analyzed in the following section.
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3.1 Analysis of the 3DMPR-H1 Heuristic

As explained in section 2.1; for each time step t in the pipeline building process,
the turtle moves one step forward, unless it collides with an obstacle or has
reached the goal. The orientation at t is determined by executing the action
corresponding to the heuristic expression currently yielding the highest value.
The 3DMPR-H1 heuristic is

Right : prev(sD−2k2)−dL, Left : sRU , Up : yaw(sFR−dF ), Down :
dU and Nothing : dF + sFD.

The heuristic is easily interpretable and generates a high-quality solution when
applied to the ”Square” problem (the problem used for training). All pipelines
reaches their respective goals with only 18 bends and 88 pipe segments. Apply-
ing the heuristic to the ”Twist” problem builds the phenotype in figure 5 B)
with error E = 3432. Only two pipelines are close to connecting at the goal
position, while the other two are ”trapped” by the other pipelines. The average
error generated by SGA on the ”Twist” problem was E = 773 after 1000 gener-
ations. On the ”Hub” problem, the heuristic generated the solution in figure 5
C) with error E = 1695, while SGA obtained an average error E = 1214 after
1000 generations. Despite a higher error (limited generalizability), the heuristic
generates pipelines which avoids obstacles, seeks their individual goals, and have
few bends.

The scalability of the heuristic was compared to the scalability of SGA by
increasing the distance between the modules in the benchmark problems. The
resulting error is plotted in figure 4 C) for the ”Square” problem. The error of
the solutions generated by the heuristic scales linearly with the problem size, as
illustrated for the ”Square” in figure 6 A). By applying SGA for a fixed number
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Fig. 5. The 3DMPR-H1 heuristica applied to A) the ”Square” problem B) the ”Twist”
problem and C) the ”Hub” problem

Fig. 6. The 3DMPR-H1 heuristic A) applied to a uniformly scaled verion of the
”Square” problem B) avoiding obstacles and C) connecting to a central hub

of generations G = 1000, the plot shows that the error (and the evaluation time)
scales exponentially with the problem size. The heuristic also manages to avoid
obstacles, as illustrated in 6 B), and approximate large scale solutions inspired
by the ”Hub” problem, as illustrated in figure 6 C).

4 Discussion

The question implicitly asked in this paper is whether it is possible to evolve
heuristics in a minimum training environment which are capable of generating
high quality solutions to arbitrary large and complex problems. The proposed
approach has links to both artificial development as well as machine learning.

We demonstrated the possibility of training a heuristic on a small problem
and successfully applying the heuristic on larger, similar problems with a linear
scaling of error. The system is capable of building arbitrary large phenotypes
independently of the size of the genotype, and the phenotypes are built in close
interaction with its environment.

The best found heuristic demonstrated a limited capability of generalization.
However, as the size of the problem grows, the cost of optimization by means of
direct representations grows exponentially. Thus, when dealing with large scale
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problems, the evolvedheuristic may yield better results. For practical applications,
postprocessingwouldhowever benecessary.Better generalizationmaybeobtained
by including all benchmarks; however, this would also increase training time.

As discussed by Hornby et al. in [27], indirect approaches are most suitable
on problems where regularity, modularity and hierarchy can be exploited. Such
features are observable in the evolved solutions in figure 5 and 6 where several
pipelines share similar design features. In an engineering perspective, this is an
attractive feature enabling standardization and ease of manufacturing.

The evolved 3DMPR-H1 heuristic is simple in its form and possible to un-
derstand analytically; it is, however, beyond the scope of present work to give
a thorough analysis. Several other, more complex heuristics were also generated
which were less interpretable.

Conclusively, we hypothesize that the benefit of using indirect endocings is
proportionate to the compressibility of the problem to be solved. High compress-
ibility enables a) the limitation of training time by representing the problem as
small scale training cases; b) high generalizability to similar problems; and c)
knowledge extraction for human learning. It is, however, unclear how to design
the best training environment, as well as how to determine the compressibility
of the problem in advance.

5 Conclusions and Future Work

In this paper, for the first time, an approach for evolving heuristics for the
Three-dimensional Multi-pipe Routing problem was proposed. A Gene Expres-
sion Programming based Learning Classifier System was implemented for evolv-
ing the heuristics. The results are encouraging in the sense that the approach
managed to automatically generate heuristics for a complex, three dimensional
problem, which demonstrated good scalability and reasonable generalization to
similar problems. It was found that the error of the best found heuristic scales
linearly with the size of the problem (length of pipelines) as compared to a direct
encoding where both time and error scales exponentially.

Future research may use the proposed approach for evolving pipe routing
heuristics which can be used as part of a fitness function for plant layout opti-
mization. Optionally, pipe routing heuristics and plant layout heuristics may be
coevolved in a similar approach as suggested by Furuholmen et al. in [20] and [16].
In this work a scalar aggregate error function describing several (sometimes) con-
flicting objectives was implemented. This may be addressed by a multi-objective
optimization approach by locating the Pareto front and thus being able to choose
among several equally good solutions.
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Abstract. A key factor in the success or otherwise of a genetic programming 
population in evolving towards a solution is the extent of diversity amongst its 
members. Diversity may be viewed in genotypic (structural) or in phenotypic 
(behavioural) terms, but the latter has received less attention. We propose a 
method for measuring phenotypic diversity in terms of the run-time behaviour 
of programs. We describe how this is applicable to a range of problem domains 
and show how the promotion of such diversity in initial genetic programming 
populations can have a substantial impact on solution-finding performance. 

1   Introduction 

In genetic programming (GP), the evolutionary process is often characterised by a 
loss of diversity over time [1,2], with the population settling towards a mixture of just 
a few high-ranking individuals. This may make it impossible for the process to escape 
from local optima in the fitness landscape, thereby preventing it from discovering 
solutions. It is therefore generally accepted that it is important to take steps to instil 
and subsequently preserve a degree of diversity in GP populations. 

One of the difficulties associated with this aim is that there is no general consensus 
as to how diversity should be measured, and consequently how it should be 
maintained. Essentially, however, the definitions fall into two camps: genotypic, or 
structural diversity; and phenotypic, or behavioural diversity. We shall describe both 
of these in more depth in Section 2, but the main focus of our paper is on the latter. 
Existing research on phenotypic diversity has largely concentrated on the fitness 
values of individuals in a population, and although metrics have been defined to 
assess its extent, little has been done to promote it. 

Our own approach to diversity differs from others in that, rather than involving 
static analysis or comparisons of fitness, it relies on observations made of the 
dynamic execution behaviour of individuals. We describe this approach to measuring 
phenotypic diversity in more detail in Section 3. 

In Section 4 we describe experiments which measure phenotypic diversity across a 
range of problems, and we relate the findings to other diversity metrics. Following 
this, we investigate the effects of promoting diversity in a population. Another 
difference from previous work is that we are not concerned here with preserving 
diversity throughout the lifetime of a run. Instead, we concentrate solely on the role 
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that behavioural diversity can play in the initial population. Studies suggest that the 
constitution of the population at generation zero can have a significant impact on the 
dynamics of the remainder of a run [3], and we wish to discover whether that is so for 
initial populations with altered diversity. 

Finally, Section 5 offers some concluding remarks and pointers to future work. 

2   Related Work 

As it relates to genetic programming, the term ‘diversity’ has a variety of 
interpretations, and hence a number of different ways have been proposed for 
measuring it, creating it and maintaining it. Overviews of diversity measures can be 
found in [4] and [5], while Burke et al [6] give a more extensive analysis of these 
measures and of how they relate to fitness. 

The most common usage of the term is concerned with differences in the structure 
of individual program trees; that is, in their size, their shape, and in the functions and 
terminals used at individual nodes. Recognizing the importance of including a wide 
range of structures in the initial population, Koza [7] proposed the use of a ‘ramped 
half-and-half’ algorithm, and many implementations have continued to follow his 
advice. In this initialisation method, the population is partitioned into a series of tree 
depths ranging from 2 to some upper value (usually 6). At each of these depths d, half 
the program trees are created using the so-called ‘full’ method and half using the 
‘grow’ method. A tree created using the ‘full’ method has the property that every path 
from root to terminal node has the same depth d. Creating such a tree involves 
choosing nodes from the problem function set at each tree level until the maximum 
depth is reached. In the ‘grow’ method, on the other hand, nodes at each tree level 
lower than the maximum are selected randomly from the function and terminal sets. 
This means that some path lengths may reach the upper value d, but others may be 
shorter. 

The ramped half-and-half approach is claimed to give good diversity in the 
structure of program fragments which can then be combined and integrated to 
produce more complex and hopefully fitter programs. What it does not do, however, 
is to ensure that each member of the initial population is unique in its structure. In his 
first book [7], Koza therefore recommends that the initialisation code in a GP system 
should also strive to ensure such uniqueness. 

Measurements of structural diversity may involve nothing more than simple node-
for-node comparison of program trees; where trees are stored in a ‘flattened’ character 
form, this may equate to basic string operations. More sophisticated structural 
diversity metrics may be based on edit distance [8], where the similarity between two 
individuals is measured in terms of the number of edit operations required to turn one 
into the other. 

A difficulty with comparing individuals based on their apparent structure is that 
program trees which are seemingly very different in appearance may in fact compute 
identical functions. Seeing beyond these surface differences requires the use of graph 
isomorphism techniques, but these are computationally expensive and become even 
more so as program trees grow larger over time. A simpler, less costly alternative is to 
check for pseudo-isomorphism [5], in which the possibility of true isomorphism is 
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assessed based on characteristics such as tree depth and the numbers of terminals and 
functions present. However, the accuracy of this assessment may be subject to the 
presence of introns in the code; Wyns et al [9] describe an attempt to improve on this 
situation through the use of program simplification techniques to remove redundant 
code. 

In contrast, behavioural or phenotypic diversity metrics are based on the 
functionality of individuals, i.e. the execution of program trees rather than their 
appearance. Usually, behavioural diversity is viewed in terms of the spread of fitness 
values obtained on evaluating each member of the population [10]. One way of 
measuring such diversity is by considering the fitness distribution as an indicator of 
entropy, or disorder, in the population [11, 9]. Other approaches consider sets or lists 
of fitness values and use them in combination with genotypic measures  [12, 13]. For 
certain types of problem it may be possible to achieve the effect of behavioural 
diversity without invoking the fitness function, via the use of semantic sampling 
schemes [14]. 

Semantic analysis of programs is also used in the diversity enhancing techniques 
described by Beadle and Johnson [15]. In their population initialisation experiments, 
unique behaviours are generated and converted to the corresponding syntax. The 
approach seems most applicable to problems in the Boolean domain, although it adds 
considerably to the initialisation time and is not always an improvement over standard 
GP at finding solutions (e.g. the 11-multiplexer and Majority-5 problems).  

3   Phenotypic Diversity 

Our own approach to diversity differs from others in that it does not involve structural 
considerations, fitness values or semantic analysis of programs. Instead, it focuses on 
the observed behaviour of individuals when they are executed. To investigate this 
fully, we have applied it to a variety of problem domains; these comprise two Boolean 
problems (6-multiplexer and even-4 parity), two navigation problems (Santa Fe and 
maze traversal), and one numeric problem (symbolic regression of a polynomial).  

In the 6-mux problem, the aim is to evolve a program that interprets the binary 
value on two address inputs (A0 and A1) in order to select which of the four data 
inputs (D0-D3) to pass onto the output. The function set is {AND, OR, NOT, IF}. 
Fitness evaluation is exhaustive over all 64 combinations of input values, with an 
individual’s fitness being given in terms of the number of mismatches with expected 
outputs. 

In the even-4 parity problem we search for a program which, given 4 binary inputs, 
returns TRUE if the number of inputs set to logic 1 is even, and FALSE otherwise. 
The function set is {AND, OR, NAND, NOR} and fitness is in the range 0-16. 

The Santa Fe artificial ant problem consists of evolving an algorithm to guide an 
artificial ant through a 32x32 matrix in such a way that it discovers as many food 
pellets as possible. The 89 pellets are laid in a path which frequently changes 
direction and which contains gaps of varying sizes. The ant can move directly ahead, 
move left, move right, and determine if food is present in the square immediately 
ahead of it. These faculties are all encoded in the function and terminal sets of the 
problem, along with Lisp-like PROGN connectives for joining actions in sequence. 
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To prevent exhaustive or interminable searching, the ant is allowed  a maximum of 
600 steps in which to complete the task. 

Our other navigation problem is that of finding a route through a maze. Although 
less well-known than the ant problem, it has been used as the subject for research on 
introns in several studies [16-18]. The maze is shown in Fig. 1, with the initial 
position and orientation of the agent to be guided through it indicated by the arrow. 
The agent can turn left or right, move forward or backward, and test whether there is a 
wall ahead or not. A no-op terminal does nothing except to expend an instruction 
cycle. Decision making is via an if-then-else function, whilst iteration is achieved via 
a while function. Program fitness is measured in terms of how close the agent gets to 
the exit: zero fitness indicates escape from the maze. Navigation continues until the 
maze is successfully completed, or an upper bound of 1000 instruction cycles is 
reached. 
 

                    

                    

                    

                    

                    

                   

                    

                    

                    

                    

                    

Fig. 1. Pre-defined maze used in the maze navigation problem 

Our final problem is symbolic regression of a polynomial. In our version of this, 
the polynomial we attempt to match through evolution is 4x4 – 3x3 + 2x2 – x. The only 
terminal is x, and the function set is {+, -, *, /}, with the division operator being 
protected to ensure that divide-by-zero does not occur. The fitness cases consist of 32 
x-values in the range [0,1), starting at 0.0 and increasing in steps of 1/32, plus the 
corresponding y-values. Fitness is calculated as the sum of absolute errors in the y-
values computed by an individual, whilst success is measured in terms of the number 
of ‘hits’ – a hit being a y-value that differs from the expected output by no more than 
0.01 in magnitude. 

Aside from the maze traversal problem, all of the above are commonly-used 
benchmark problems that are described more fully elsewhere (e.g. by Koza [7]). Other 
parameters as they apply to the experiments described in the remainder of this paper 
are shown in Table 1. 

In the case of the Boolean problems, the behaviour of an individual is measured in 
terms of the outputs it produces; this is recorded as a string of binary values for each 
of the test cases used during fitness evaluation. So, for the 6-mux problem, there is a  
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Table 1. GP system parameters common to all experiments 

Population size 500 
Initialisation method Ramped half-and-half 
Evolutionary process Steady state 
Selection 5-candidate tournament 
No. generations 51 generational equivalents (initial+50) 
No. runs 100 
Prob. crossover 0.9 
Mutation  None 
Prob. internal node used as crossover 
point 

0.9 

 
64-bit string associated with each member of the population, while for the even-4 
parity problem only a 16-bit string need be recorded. To save memory, these can be 
packed into 64-bit and 16-bit integers, respectively. We say that two individuals 
exhibit phenotypic differences if they differ in any of the corresponding bits in their 
output strings, and that an individual is phenotypically unique in a population if there 
are no other members of that population with exactly the same binary output string. 

For the symbolic regression problem, we again record the outputs produced for 
each test case, but this time it is a vector of 32 floating point results. In comparing 
phenotypes we choose not to look for exact matches, but instead check whether the 
differences between corresponding outputs lie within some pre-defined value epsilon. 
Hence, two individuals are said to be behaviourally identical if, for each x-value, the 
absolute difference between the corresponding y-values is less than epsilon. The value 
for epsilon was arbitrarily chosen to be the same as that used to check for ‘hits’ in 
fitness assessment, i.e. 0.01.  

For the two navigation problems, the situation is complicated by the fact that the 
evolving programs do not produce outputs as such: their behaviour is measured in 
terms of the movements produced by function and terminal execution. Because of 
this, the record we make of an individual’s behaviour is the sequence of moves it 
makes in the grid or maze during execution. We are not concerned with recording any 
left or right turns that are executed while remaining on a square, nor with any decision 
making via execution of statements such as IF_FOOD_AHEAD or WALL_AHEAD. 

To record the path histories, we associate with each individual in the population a 
vector of {north, east, south, west} moves. Each time the executing program moves to 
a different square, the heading is added to the end of the vector. Since a program 
times-out after a fixed number of steps (600 for the ant problem, 1000 for the maze), 
we know that the vector cannot be longer than that number of elements per individual, 
and so memory occupancy is not a huge issue. Determining behavioural differences 
between individuals becomes simply a matter of comparing these direction vectors. 

4   Diversity Experiments 

The first question to be addressed is whether there is in fact a substantial lack of 
diversity in initial, randomly-generated populations. To determine this, we can count the 



 Phenotypic Diversity in Initial Genetic Programming Populations 103 

 

number of distinct program structures present in the population and, using the methods 
outlined above, we can also determine the number of distinct behaviours. One other 
metric we can include is the fitness diversity, which represents the spread of fitness 
values present in the population. Unlike either structural or behavioural diversity, in 
which every member of the population can be unique, the range of possible fitness 
values tends to be much smaller than the population size, and varies from problem to 
problem. We therefore define fitness diversity (FD) to be the number of distinct fitness 
values found in the population divided by the number of possible values. For example, 
if a given population in the even-4 parity problem contained a total of 5 different fitness 
values, then its FD would be 5/17 = 0.294, since the problem allows for 17 possible 
fitness values (0-16). On this scale, a value of 1.0 would indicate full fitness diversity 
(which would also imply that the population contained a solution!). 

Table 2 presents the structural diversity (SD), the behavioural diversity (BD), and 
the fitness diversity (FD) for each of our problems. It also shows the best and average 
fitness of the initial populations, normalised in the range [0, 1], with lower values 
being better and zero representing a solution. All the figures are averages taken over 
100 runs. 

Table 2. Diversity and fitness in initial populations 

Problem SD BD FD Best Av 
6-mux 315 257 0.372 0.258 0.46 
Even-4 330 170 0.276 0.386 0.5 
Regression 326 202 0.153 0.773 0.977 
Ant 395 290 0.282 0.603 0.965 
Maze 314 29 0.160 0.883 0.998 

 
The first thing to note about this table is that the ramped half-and-half method 

produces a large number of structural duplicates in the initial population. The number 
of distinct structures in the population of 500 ranges from 314 in the maze problem to 
395 in the ant problem; the other programs are all structural clones of these. To put it 
another way, 21% to 37% of all population members are copies of other individuals. 
This suggests that Koza’s advice to remove structural duplicates may indeed have 
some merit. 

The situation with regard to behaviour is worse still. At best, the ramped half-and-
half algorithm manages to produce 290 distinct behaviours, but that still means there 
are 210 individuals (42% of the population) behaving in an identical way to other 
programs. This figure for redundant behaviours rises to a remarkable 94% in the case 
of the maze problem. Closer investigation reveals that the vast majority of duplicates 
in this problem are those programs which fail to move the agent from the initial 
square of the maze, i.e. their recorded path lengths are zero. 

In almost all respects, the maze problem seems to come off worst in the make-up 
of its initial populations. Aside from fitness diversity, in which it is almost as bad as 
the regression problem, it has the lowest diversity and fitness values of all the 
problems. By contrast, the 6-mux problem has amongst the highest behavioural and 
fitness diversity levels and is ‘closest’ to a solution in terms of its best and average 



104 D. Jackson 

 

fitness values. In general, however, there appears to be little in the way of correlation 
between the table columns. The ant problem, for example, has SD and BD levels that 
are higher than those of 6-mux, but it has a worse FD level and an average fitness that 
is more than twice as poor. 

If we are to attempt to eliminate duplicates being created in the initial population, 
we need to make alterations to the ramped half-and-half algorithm. We can define the 
following pseudo-code for this: 

 
function duplicated(prog) 
   for each member of population created prior to prog 
      if member is equivalent to prog 
         return TRUE 
      endif 
   endfor 
   return FALSE 
endfunction 
 
function initialise_population 
   for each prog in the population 
      attempts = 0 
      depth = assigned depth of this program tree 
      do 
         create prog tree using ramped half-and-half 
                                       at current depth 
         attempts = attempts + 1 
         if (attempts >= MAX_ATTEMPTS and depth < MAX_DEPTH) 
            attempts = 0 
            depth = depth + 1 
         endif 
         test_fitness(prog) 
      while (duplicated(prog)) 
   endfor 
endfunction 

 
As described earlier, the ramped half-and-half method partitions the population into a 
sequence of initial depths, usually from 2 up to 6. For each individual, the algorithm 
above creates a program tree with the assigned depth, then immediately tests its 
fitness so that its behaviour can be recorded. The program is then compared with 
previously created members using the duplicated() function, which can be 
implemented as necessary to check either for genotypic or phenotypic equivalence. If 
the new program is a duplicate, the tree creation code is executed again and another 
check made. If a pre-defined number of attempts using the assigned tree depth is ever 
exceeded, that depth is incremented to give the algorithm a greater chance of finding a 
program that differs from other members. In our experiments we set 
MAX_ATTEMPTS to 5. 

An interesting question is how much impact the elimination of structural clones (as 
advocated by Koza) has on phenotypic diversity. Clearly, two programs that are 
genotypically identical will also be phenotypically identical, and so structural diversity 
should help to increase behavioural diversity. Table 3 shows the effects produced when 
the algorithm given above is used to eliminate identical program structures. 
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Table 3. Diversity and fitness measures when structural clones prevented. Figures in parenthe-
ses show differences from Table 2. 

Problem SD BD FD Best Av 
6-mux 500 

(+185) 
368 
(+111) 

0.383 
(+0.011) 

0.249 
(-0.009) 

0.464 
(+0.004) 

Even-4 500 
(+170) 

222 
(+52) 

0.280 
(+0.004) 

0.378 
(-0.008) 

0.5 
(0.00) 

Regression 500 
(+174) 

272 
(+70) 

0.182 
(+0.029) 

0.789 
(+0.016) 

0.980 
(+0.003) 

Ant 500 
(+105) 

338 
(+48) 

0.286 
(+0.004) 

0.603 
(0.00) 

0.964 
(-0.001) 

Maze 500 
(+186) 

29 
(0) 

0.160 
(0.0) 

0.85 
(-0.033) 

0.998 
(0.0) 

 
For all problems, our algorithm has managed to eliminate all structural duplicates 

from the initial population. However, the number of new behaviours introduced in 
each case falls far short of the number of new structures added. Creating an individual 
that is genotypically unique does not necessarily mean it will be phenotypically 
unique. The maze problem again provides the most striking illustration of this: 
although it adds the most new structures (186) to its population, it adds by far the 
fewest new behaviours (i.e. none!). We still have 94% of the population exhibiting 
behaviour that appears elsewhere, and such programs therefore have identical fitness. 
Even in the best case (6-mux), 26% of the population are still behavioural clones. 

The effects on fitness diversity and on best and average fitnesses are fairly 
minimal. The largest increase in FD is in the regression problem, but even here, this 
increase is equivalent to moving from 5 distinct fitness vales to 6 values; moreover, 
the best and average fitness values actually worsen. 

The next step is to examine the impact of eliminating behavioural clones, using the 
algorithm outlined earlier (clearly this will also eliminate structural duplicates). Table 
4 shows what happens to fitness diversity and the best and average fitnesses when this 
is implemented. 

Although the increases in fitness diversity are greater than those obtained by re-
moving structural duplicates, they are still small. Even for the maze problem, the 
increase represents a shift from 4 or 5 distinct fitness values per initial population to 
only 6 per population. Best and average fitness values also alter little, with average 
values sometimes even degrading (although not by a statistically significant amount). 
Again, the biggest improvement in the best fitness value is in the maze problem. 

If our measures to promote genotypic and phenotypic diversity have so little effect 
on fitness diversity and the overall fitness of the initial populations, it must be 
wondered whether these techniques are sufficient in themselves to improve the 
performance of a genetic programming system. Table 5 compares the number of 
solutions found in 100 runs of GP on each of our benchmark problems. A ‘standard’ 
GP system with no attempt at duplicate removal is presented alongside a system 
which removes structural duplicates and one which removes behavioural duplicates. 
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Table 4. Fitness values when behavioural duplicates prevented. Figures in parentheses give 
differences from Table 2. 

Problem FD Best Av 
6-mux 0.395 

(+0.023) 
0.243 
(-0.015) 

0.469 
(+0.009) 

Even-4 0.330 
(+0.054) 

0.355 
(-0.031) 

0.5 
(0.0) 

Regression 0.195 
(+0.042) 

0.762 
(-0.011) 

0.983 
(+0.006) 

Ant 0.312 
(+0.030) 

0.568 
(-0.035) 

0.956 
(-0.009) 

Maze 0.316 
(+0.156) 

0.652 
(-0.231) 

0.966 
(-0.032) 

 

Table 5. Solution rate for GP systems with and without duplicate prevention. Figures are per-
centages of solutions found in 100 runs. 

Problem Standard No Struct Dups No Behav Dups 
6-mux 56 66 79 
Even-4 14 11 23 
Regression 10 10 24 
Ant 13 9 18 
Maze 14 18 51 

 
It can be seen from this table that the removal of structural duplicates does not 

always have a beneficial effect on solution finding performance. However, when 
behavioural duplicates are eliminated, the performance improves dramatically. This is 
especially true of the maze problem, in which the solution rate jumps from 14% to 
51%. A t-test (p < 0.05) performed on the best fitness values found at the end of each 
run indicates that the improvements are statistically significant. 

To make the comparison fair, we have to ask at what cost our improvements are 
obtained. One commonly used method of comparing cost is Koza’s computational 
effort metric [7], which computes the minimum number of individuals that must be 
processed to obtain a certain probability (usually 0.99) that a solution will be found. 
However, Koza’s metric assumes a fixed number of fitness evaluations per 
generation, which for our purposes is not applicable because of the additional effort 
required to create the initial populations. 

Table 6 shows precisely how much extra effort is required for each problem when 
ensuring that phenotypic duplication is suppressed in generation zero. The metric we 
have used is a count of the fitness evaluations performed during initialization. In our 
standard GP system, and in GP systems in which it is only structural uniqueness that 
is desired, each individual is tested for fitness only once, and so the total number of 
fitness evaluations is equal to the population size (500 in our example problems). 
Table 6 shows how much this figure increases when we have to perform repeated  
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Table 6. Count of fitness evaluations required for initial populations when behavioural duplica-
tion prevented. Figures averaged over 100 runs. 

Problem Evaluations 
6-mux 1847 
Even-4 3759 
Regression 2494 
Ant 1933 
Maze 4232953 

 
evaluations to find behaviourally unique programs. Particularly striking is (as usual) 
the maze problem, in which it is extremely difficult to discover programs that exhibit 
behaviour not previously found in the population. 

These figures do not tell the whole story, however, since the increased initial effort 
may be counter-balanced by the reduction of effort required to find solutions in 
subsequent generations. Hence, to achieve a proper comparison, we count the number 
of fitness evaluations performed over all runs and divide this figure by the number of 
solutions found. This gives us measured effort in terms of the number of evaluations 
per solution. Table 7 compares the results obtained for the various approaches to 
creating the initial population. 

Table 7. Effort (evaluations per solution) for GP systems with and without duplication  
prevention 

Problem Standard No Struct Dups No Behav Dups 
6-mux 23263 16416 12140 
Even-4 151518 195781 101570 
Regression 217612 217486 88430 
Ant 158498 240285 118068 
Maze 150959 115998 8329286 

 
In all cases except the maze problem, the effort required when behavioural 

duplicates are prevented in the initial population is significantly lower than that 
needed for standard GP and for GP with no structural clones. Despite the substantial 
increase in the number of solutions obtained in the maze problem, this is not enough 
to counter the large number of fitness evaluations required for initialisation in that 
problem. 

5   Conclusions 

While it is generally accepted that it is important to create and maintain diversity in 
evolving populations, opinions differ as to how such diversity should be assessed, and 
consequently how it should be enhanced. The usual approach is to base it on static 
comparisons of program structure, with many GP systems following Koza’s advice to 
prohibit structural duplication in the initial GP population. Our experiments, however, 
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suggest that such approaches are limited in their effectiveness. As an alternative, we 
have proposed the introduction of phenotypic diversity into populations, this being 
based on the dynamic behaviour of individuals. We have shown that the approach is 
not specific to one type of problem, but is applicable to a range of domains, including 
Boolean problems, numeric problems, and navigation scenarios. 

Although the introduction of phenotypic diversity into an initial population does 
not radically alter its fitness characteristics, the variety of new behaviours is sufficient 
to encourage more widespread search of the program space, and therefore to improve 
solution-finding performance in all the problems we investigated. The associated cost 
is an increase in the number of fitness evaluations required to generate the initial 
population, but, for most problems, this is outweighed by the overall reduction in the 
cost per solution. In the case of the maze problem, the difficulty of ensuring 
uniqueness in the initial population leads to a huge number of fitness evaluations at 
the creation stage. For problems such as this, it might be better to place an upper limit 
on the number of new programs that are created for each member that enters the 
population. This would promote diversity but allow some duplication. 

Other avenues for future research concern the ways in which differences in 
behaviour are measured. At present, two individuals are considered different if their 
outputs differ in just one test case, or their navigational paths differ by one coordinate. 
We wish to examine the use of phenotypic diversity metrics which can be ‘tuned’ to 
create greater differences between members of a population. We also plan to 
investigate the use of diversity-promoting algorithms in the post-initialisation stages 
of the evolutionary process. 
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Abstract. We propose a novel approach to program simplification in
tree-based Genetic Programming, based upon numerical relaxations of
algebraic rules. We also separate proposal of simplifications from an ac-
ceptance criterion that checks the effect of proposed simplifications on
the evaluation of training examples, looking several levels up the tree.
We test our simplification method on three classification datasets and
conclude that the success of linear regression is dataset dependent, that
looking further up the tree can catch ineffective simplifications, and that
CPU time can be significantly reduced while maintaining classification
accuracy on unseen examples.

1 Introduction

One problem that limits the effective application of Genetic Programming is pro-
gram bloat [1][2][3][4][5][6][7][8], where program trees tend to grow in size over
the generations, causing the GP process to be computationally expensive. Bloat
may arise from “model overfitting” (formulating a model that is more compli-
cated than necessary to fit a set of training examples) but equally may occur
with no fitness benefit. In addition, program trees sometimes appear contrived
to make the best use of the available constant values set in the initial popula-
tion. Several methods have been proposed to combat bloat: setting a maximum
depth or number of nodes of a GP tree [1][4][9]; modifying the fitness function to
reward smaller programs (parsimony pressure) [10][11][12]; dynamically creating
fitness holes [5]; and operator equalisation [3].

In tree-based GP, program trees in the population may exhibit some algebraic
redundancy, i.e., the mathematical expressions that the trees represent can often
be directly mathematically simplified during the evolutionary process. This was
first proposed by Koza [1] with his editing operation. Two approaches to simpli-
fication of programs are the algebraic and numerical approaches. In the algebraic
approach [13][14][15], the rules of algebra are used (in a bottom-up fashion) to
directly simplify the mathematical expression that the tree represents. In the
numerical approach [16][17], the evaluation of each of the set of training exam-
ples is examined to determine if particular subtrees can be approximated by a
single constant, removed altogether, or replaced by a smaller subtree. This is
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similar to “lossy compression” of images and aims for a minimal effect upon the
evaluation of training examples.

In this paper, we propose to split the process of simplification into two roles:
proposers which propose a local change to the program tree; and an acceptor
which evaluates the proposed local change and determines whether to accept or
reject it. The novel aspects are that the proposers use numerical relaxations of
algebraic simplification rules, including linear regression, and that the acceptor
evaluates the effect of the proposed local change further up the tree. The overall
research goal is to determine how simplification affects classification accuracy
and computational effort for classification problems. In particular, we wish to
balance the number and severity of simplifications proposed (reduction in tree
size or wasted proposals that are not accepted) and the additional workload in
evaluating them.

The remainder of this paper is structured as follows. Section 2 provides back-
ground on algebraic and numerical approaches to simplification in GP programs.
Section 3 develops our new approach to simplification of GP programs based upon
a relaxation of the algebraic rules and separating the roles of simplification pro-
poser and simplification acceptor. Section 4 describes computational experiments
on three datasets and Section 5 discusses the results. Finally, Section 6 draws some
conclusions and makes recommendations for future research directions.

2 Algebraic and Numerical Approaches to Simplification

In this section we review some existing algebraic and numerical approaches to the
simplification of a program in tree-based GP. We consider a simple GP system
which includes the basic arithmetic operators (+, −, × and protected division
%) together with an ifpos operator (which returns the middle child if the left
child is positive, and otherwise returns the right child).

2.1 Algebraic Simplification

Algebraic simplification of a GP tree involves the exact application of the simple
rules of algebra to nodes of the tree in order to produce a smaller tree representing
an exactly equivalent mathematical expression. For example, for constants a and
c and subtree B, we can replace the subtree a× (B × c) with the subtree b × B
where b = a×c is a new constant node. This can be implemented efficiently using
hashing in the finite field Zp for prime p [14,15]. The strength of this approach
is that any proposed simplification has no global effect on the evaluation of any
training example. The weakness is that the rules of algebra are applied exactly,
i.e., there is no scope for approximate equivalence, nor equivalence across the
domain of the training examples. There are also some algebraic simplifications
that are difficult for a basic set of locally applied algebraic rules to recognise
when applied in a bottom-up fashion.
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Fig. 1. An example where range simplification causes a (possibly) significant change
to the tree one level up. The left subtree (S1) has relatively large values in its results
vector (the evaluation of the subtree on the training examples), and is divided by the
right subtree (S2) which has relatively small evaluation values. Even though the range
of S2 is only 0.009, the division means the simplification potentially magnifies the
changes further up the tree.

2.2 Numerical Simplification

Numerical simplification of a GP tree involves the replacement of a subtree with
a smaller (possibly approximate) substitute based upon the local effect on the
evaluation of the training examples. Two simple methods recently investigated
are:

1. Range simplification [16]. In evaluating the training examples, if the range
of values a node takes is sufficiently small (less than a range threshold),
then the node is replaced by a single constant-node (the average value). The
strengths of range simplification are that equivalence is based only upon the
observed range of the training examples; it also deals with nodes that are
calculated from constant values; it allows for features or subtrees with a very
small range of values to be simplified; and it is computationally inexpensive.
However, the weakness is that local simplifications can have an adverse effect
further up the tree in some cases. Figure 1 gives an indication of the potential
effect of a local range simplification further up the tree. These changes may
have a large effect on the outcome, but could otherwise be swamped by other
sources of noise or uncertainty.

2. Removing redundant children [17]. In evaluating the training examples, if the
difference between the values at a parent node and its child are sufficiently
small (less than a redundancy threshold in this paper) then the parent can be
replaced by the child. Song et al [17] use the criterion that the sum of absolute
deviations (SAD) be zero over all training examples, i.e.,

∑
i |pi − ci| = 0

where pi and ci are the evaluation of the ith training example at the parent
and child respectively. This is a slight relaxation of algebraic simplification
to the actual range of values taken by the training examples.
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3 New Relaxed Approach to Simplification

We propose a new relaxed approach to simplification. Firstly, we use numerical
evaluation of the training examples to determine if the algebraic rules are ap-
proximately satisfied. Secondly, we evaluate the numerical effect of any proposed
local simplifications further up the tree before accepting them. Hence, we clearly
separate the proposal of a local simplification from the acceptance or rejection
of the proposal based upon its effect on the numerical evaluation of the train-
ing examples. This addresses the weakness of exact algebraic simplification by
covering simple algebraic rules and allows for approximate satisfaction of these
rules. It also addresses the weakness of local numerical simplification by looking
at the effect further up the tree before accepting a proposed simplification.

3.1 Proposers

In this paper we use three numerical simplification operators — range simplifica-
tion and removal of redundant children (as in Section 2.2), and linear regression
(described further below) — to numerically evaluate possible algebraic simpli-
fications, relaxing each equality slightly. Between the three operators, we cover
most simple algebraic rules. We make a small modification to each of the first
two operators presented before: for simplicity, we use a constant range threshold
for range simplification; and we use mean square error (MSE) for redundancy
checking (rather than SAD).

Linear regression. Consider the nodes Y and S in a GP tree, where S is a child
or grandchild subtree of Y . If we can approximate Y by

Y = b × S + a (1)

or
Y = b % S + a (2)

sufficiently closely for some constants a and b, then we may be able to signifi-
cantly reduce the size of the tree. This is an extension of simple algebraic rules
and allows for approximate linearity of node Y against subtree S (or 1

S ). Figure
2 gives two examples in which linear regression will reduce a tree where other
simplification methods do not. A candidate simplification’s tree size using this
method will be a maximum of 4 + |S| nodes, with a possible simplification to
2 + |S| under certain conditions on a and b, where |S| is the number of nodes
in subtree S. To evaluate linearity, we use Pearson’s correlation coefficient. We
consider all children and grandchildren of Y as S for simplification and choose
the one with the highest value of Pearson’s r2 greater than a regression threshold.
The proposal is to replace node Y by the simplest version of equation (1) or (2)
as appropriate.

3.2 Acceptor

In order to check that a proposed simplification won’t cause a significant change
further up the tree, we compare the results vectors (the evaluation of the subtree
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Fig. 2. Simplification examples that are not covered by simple (local) algebraic rules,
but are covered by linear regression. Here S represents a particular repeated subtree
in each example and Y corresponds to the entire subtree.

Fig. 3. The acceptor evaluates the effect of a proposed simplification n levels up the
tree. Here, arrows point to the node that the MSE calculation applies.

on all training examples) of the old and new (simplified) tree. Figure 3 illustrates
which nodes are checked against for different values of n. We go to the ancestor
node n levels up and calculate the mean square error (MSE) at that node, i.e.,∑

i(newi − oldi)2, where oldi and newi are the original and newly simplified
evaluations of the ith training example respectively. If the MSE is less than an
acceptance threshold, then we accept the simplification and make the change to
the tree; if it is not, then we reject the simplification and keep the old tree. In
this way we aim to change the tree’s fitness as little as possible.

4 Experimental Design

Datasets. To test our simplification system we ran experiments on three different
classification datasets: Coins (14 features, 3 classes, [14][16]), Wine (13 features,
3 classes, [18]) and Breast-Cancer Wisconsin (9 features, 2 classes, [19]). Coins
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consists of 600 images (each 64× 64 pixels) of five cent pieces against a random
noisy background. Wine gives the result of a chemical analysis of Italian wines
from three cultivars (the classes). Each instance of the Breast-Cancer Wisconsin
dataset corresponds to a benign or malignant diagnosis.

GP system setup. All experiments were run with the following setup: population
size 100, number of generations 100, maximum depth of tree 40, mutation rate
28%, crossover rate 70%, elitism rate 2%. The terminal set consists of the features
and random float numbers in the range [−10, 10]. We used static range selection
[20] to choose the class from the tree output and ten-fold cross validation to
evaluate each tree in the population.

Simplification frequency. We perform simplification checks on the whole popula-
tion every k generations, simplifying the population before the selection process
occurs for the next generation. We do not simplify the initial population as this
may remove too many of the useful “building blocks” present.

Choice of threshold values. For the operators we have implemented there are six
different thresholds that we need to test in our experiments: the proposal thresh-
olds (range width, redundant MSE and regression r2); the acceptance thresholds
(acceptance MSE and the number of levels to look up n); and simplifying the
population every k generations. Preliminary experiments suggested a reasonable
range of values of each threshold. The set of values for each threshold used in our
more extensive experiments can be seen in Table 1, so considering all combina-
tions we have 35×4 = 972 configurations in total, and we ran each configuration
on the same set of 100 random seeds.

5 Results and Discussion

Classification accuracy vs computational effort. Table 1 summarises the results
for each dataset. The base result is a standard GP with no simplification (and
recall that the maximum tree depth is 40), for comparison with all other results.
All datasets performed differently in our tests. Regarding average test accuracy,
the Coins dataset fluctuated greatly over all configurations, some performing
much worse than the base system, but some also a lot better (see Figure 4).
On the other hand, the Wisconsin dataset’s average test accuracy is virtually
unchanged in the range [95.22%, 95.71%], while the Wine dataset is at least 8–
9% worse than the base system. When considering computational effort (CPU
time), all datasets show significant savings. The biggest ‘reasonable’ time savings
(meaning not too much degradation in test accuracy) for the Coins dataset is
approximately 75% savings, Wisconsin 60%, and Wine 35%. The Wine dataset
runs so quickly, however, that changes in CPU time are difficult to measure accu-
rately, and the time taken across all configurations varies within approximately
0.1 of a second.

Proposal and acceptance thresholds. In general as we increase the value of each
of the range width, redundant MSE and acceptance MSE thresholds, CPU time
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Fig. 4. Two scatter plots showing the average test accuracy vs average CPU time for
the Coins dataset. Each point is one of the 972 configurations. The top graph highlights
the different values for the regression threshold (‘◦’ = no regression, ‘1’ = 0.99, ‘5’
= 0.95, and ‘8’ = 0.80), and the bottom graph highlights looking n levels up. The lines
represent the performance of the base system for comparison.
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Table 1. Average CPU time taken (in seconds) and test classification accuracy (as a
proportion) grouped by different thresholds for each dataset. Results for each of the
three levels of the range threshold are collected over 34 × 4 = 324 combinations of the
other five thresholds, etc.

Coins Wine Wisconsin

Time (s.d.) T.Acc (s.d.) Time (s.d.) T.Acc (s.d.) Time (s.d.) T.Acc (s.d.)
Base 4.87 1.80 0.8594 0.0314 1.09 0.40 0.7346 0.0379 6.66 2.27 0.9532 0.0063

Range Threshold
0.1 2.07 0.25 0.8490 0.0205 0.70 0.02 0.6567 0.0305 3.93 0.55 0.9546 0.0020
0.5 1.96 0.22 0.8498 0.0202 0.70 0.02 0.6503 0.0295 3.89 0.53 0.9546 0.0021
1.0 1.89 0.20 0.8489 0.0192 0.70 0.02 0.6466 0.0287 3.84 0.52 0.9545 0.0021

Redundancy Threshold
0.01 2.11 0.26 0.8540 0.0188 0.70 0.02 0.6531 0.0295 3.92 0.54 0.9546 0.0020
0.05 1.94 0.21 0.8491 0.0203 0.70 0.02 0.6507 0.0294 3.88 0.53 0.9546 0.0021
0.10 1.88 0.20 0.8445 0.0205 0.70 0.02 0.6498 0.0296 3.86 0.53 0.9546 0.0021

Regression Threshold
none 1.96 0.26 0.8632 0.0210 0.70 0.02 0.6399 0.0295 3.42 0.57 0.9541 0.0024
0.99 2.07 0.25 0.8547 0.0220 0.71 0.02 0.6582 0.0314 4.22 0.61 0.9543 0.0022
0.95 1.96 0.21 0.8446 0.0201 0.70 0.02 0.6548 0.0300 4.04 0.53 0.9549 0.0021
0.80 1.90 0.19 0.8343 0.0175 0.70 0.02 0.6520 0.0280 3.86 0.47 0.9549 0.0018

Levels Up
0 1.49 0.11 0.8301 0.0192 0.68 0.02 0.6241 0.0215 3.15 0.31 0.9550 0.0019
1 2.18 0.28 0.8585 0.0210 0.71 0.03 0.6630 0.0349 4.35 0.70 0.9543 0.0022
2 2.25 0.29 0.8590 0.0208 0.71 0.03 0.6665 0.0343 4.15 0.61 0.9543 0.0023

Acceptance Threshold
0.01 2.21 0.29 0.8534 0.0193 0.70 0.02 0.6563 0.0306 3.98 0.56 0.9545 0.0021
0.05 1.90 0.20 0.8485 0.0199 0.70 0.02 0.6499 0.0296 3.87 0.53 0.9546 0.0020
0.10 1.80 0.18 0.8457 0.0201 0.70 0.02 0.6474 0.0285 3.81 0.51 0.9546 0.0020

Simply Every k Generations
3 2.08 0.24 0.8487 0.0200 0.71 0.02 0.6585 0.0309 4.29 0.60 0.9546 0.0021
4 1.94 0.22 0.8490 0.0194 0.70 0.02 0.6488 0.0290 3.81 0.53 0.9546 0.0022
5 1.89 0.22 0.8499 0.0201 0.70 0.02 0.6463 0.0297 3.55 0.48 0.9545 0.0022

goes down (Wine stays constant however), but so does average test accuracy
(except for Coins when the range threshold is 0.5 and Wisconsin which stays
fairly constant). It appears that linear regression is causing more computational
overhead than it is worth. The Coins dataset shows this most clearly (see the top
graph in Figure 4): the time taken with no regression is similar to that with 0.95
and 0.80 values, but the test accuracy stays higher, i.e., additional computational
overhead is not offset by the simplifications made. We see similar CPU time
savings without regression in the Wisconsin dataset, but test accuracy remains
fairly constant. On the Wine dataset, however, using linear regression has higher
test accuracy than not using it, but the test accuracy is still significantly less
than that of the base system.

How far up the tree to evaluate. In general it seems that as we increase the
number of levels we look up before accepting a simplification, the overall average
CPU time increases (with the exception of Wisconsin with 2 levels), but so
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does the test accuracy (Wisconsin’s test accuracy remains relatively constant
however). This is best displayed in the Coins dataset where both CPU time and
test accuracy change significantly (see the bottom graph in Figure 4). In general,
looking 0 levels up amounts to a significant time reduction but also a significant
reduction in test accuracy, while looking 1 or 2 levels up only is slightly more
computationally expensive but maintains a lot higher test accuracy.

How often to simplify. Overall, there doesn’t seem to be much change in test
accuracy among the different values for k. As we simplify less often, the CPU
time reduces significantly on the Coins and Wisconsin datasets, while the time
remains unchanged on Wine. This indicates that it might be useful to investigate
simplifying even less often.

Comparing number of proposals vs number of acceptances. A central research
question is how much computational overhead arises from generating propos-
als and testing for acceptance. We expect that relaxing the proposal thresholds
generates more proposals, each of which must be tested for acceptance. Table 2
compares the number of simplifications proposed and accepted, and percent-
age accepted, for each proposal operator. It shows the effect of increasing the
acceptance threshold within each of these for the Coins dataset (however, the fol-
lowing general observations apply across all datasets) as follows. Unexpectedly,
we see fewer proposed simplifications (it is apparent that there may be some
“repeat proposing” of simplifications, i.e., a candidate gets rejected but is pro-
posed again later on since it is still a good candidate at the local level—this also
explains the higher CPU time for more stringent acceptance threshold values).
As expected, the number of accepted proposals increases (except for Coins when
the regression threshold is in {0.99, 0.95}, where the number accepted is rela-
tively similar for acceptance threshold in {0.05, 0.10}). The average percentage
of proposals accepted also increases, although at different rates for each dataset
and proposal operator (the best acceptance percentage was just over 50%). The
CPU time decreases due to a combination of fewer proposals (lower calculation
overhead) and higher number of proposals accepted (overhead incurred in our
implementation if a simplification proposal is rejected). The Coins dataset shows
the largest reduction in CPU time, while none is observed on the Wine dataset.
As expected, the average test accuracy decreases—as we accept less accurate
approximations of portions of the tree, this causes the tree itself to have poorer
accuracy in general. Again, Wisconsin is an exception, showing little change in
test accuracy. Coins shows the highest reduction in test accuracy as well as CPU
time seen above, so there seems to be a tradeoff. It is interesting to note, how-
ever, that some individual combinations of the simplification operators actually
increase the average test accuracy compared to the base system (see the top
graph in Figure 4). This could mean that simplifications are taking place in an
early generation, allowing more of the search space to be covered in less time,
but further research would be required to establish this.

How the proposal thresholds affect the number of proposals and acceptances.
Across all datasets, for the linear regression operator, decreasing the value of
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Table 2. Comparison of number of simplifications proposed vs number accepted for
the Coins dataset. Results for each of the three levels of the range threshold by three
levels of the acceptance threshold are collected over 33 × 4 = 108 combinations of the
other four thresholds, etc.

Proposal Thresh. Accept Thresh. #Prop #Acpt %Acpt Time (s) (sd) T.Acc (sd)

Base Sys. - - - - 4.87 1.8 0.8594 0.0314

R
a
n
g
e

T
h
re

sh
. 0.1

0.01 468.37 131.54 28.09 2.29 0.52 0.8531 0.0218
0.05 340.77 142.53 41.82 2.00 0.35 0.8483 0.0199
0.10 301.51 147.29 48.85 1.91 0.32 0.8455 0.0193

0.5
0.01 428.95 111.66 26.03 2.18 0.49 0.8535 0.0208
0.05 305.13 120.69 39.55 1.89 0.31 0.8492 0.0192
0.10 270.29 125.77 46.53 1.81 0.28 0.8467 0.0188

1.0
0.01 422.51 95.31 22.56 2.17 0.65 0.8535 0.0223
0.05 284.44 103.66 36.44 1.83 0.41 0.8481 0.0197
0.10 228.95 96.33 42.07 1.68 0.31 0.8450 0.0186

R
ed

u
n
d
a
n
t

T
h
re

sh
.

0.01
0.01 486.03 136.64 28.11 2.27 0.51 0.8566 0.0190
0.05 370.32 159.29 43.01 2.07 0.38 0.8537 0.0180
0.10 326.42 162.73 49.85 1.98 0.35 0.8517 0.0175

0.05
0.01 436.42 109.46 25.08 2.20 0.57 0.8537 0.0215
0.05 291.89 111.38 38.16 1.84 0.31 0.8477 0.0188
0.10 255.86 114.56 44.78 1.77 0.27 0.8460 0.0183

0.10
0.01 397.38 92.41 23.26 2.16 0.60 0.8498 0.0235
0.05 268.14 96.21 35.88 1.80 0.34 0.8442 0.0207
0.10 218.47 92.10 42.16 1.66 0.24 0.8394 0.0188

R
eg

re
ss

io
n

T
h
re

sh
.

none
0.01

– – –
2.13 0.42 0.8653 0.0076

0.05 1.90 0.30 0.8629 0.0066
0.10 1.83 0.29 0.8614 0.0066

0.99
0.01 252.68 78.89 31.22 2.31 0.56 0.8580 0.0124
0.05 181.62 81.38 44.81 2.00 0.37 0.8539 0.0100
0.10 157.63 81.11 51.46 1.90 0.32 0.8520 0.0093

0.95
0.01 517.82 142.15 27.45 2.22 0.59 0.8500 0.0201
0.05 365.83 151.47 41.40 1.89 0.37 0.8439 0.0161
0.10 313.79 151.09 48.15 1.78 0.30 0.8399 0.0138

0.80
0.01 989.28 230.30 23.28 2.18 0.65 0.8401 0.0300
0.05 693.01 256.32 36.99 1.81 0.40 0.8333 0.0254
0.10 596.26 260.33 43.66 1.70 0.32 0.8296 0.0231

the threshold increases the number of simplification proposals. Proportionately,
the number of proposals accepted increases but on average the percentage of pro-
posals accepted decreases, indicating the acceptance operator is working. Sur-
prisingly, for range simplification and redundancy, as we increase the value of
the threshold, we actually see a reduction in proposals on average, and therefore
a reduction in proposals accepted as well. A possible reason for this reduction
could be the nature of the proposal operators: in both cases, once a simplifica-
tion has occurred, those nodes can no longer be further simplified through these
two methods. However, a linear regression simplification could in turn allow for
another simplification the next level up the tree, a sort of cascading effect.
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6 Conclusions

All configurations of the simplification operators significantly reduced the CPU
time for the GP process to run. However, the tradeoff between CPU time and
classification accuracy was different for different configurations and different
datasets. Range simplification and removing redundant children appear to be
useful simplification operators to use because they are simple and computation-
ally efficient. However, the computational tests were inconclusive as to whether
the linear regression operator we introduced is worth using (good for Coins, poor
for Wine, no change for Wisconsin). Evaluating the effect of proposed simplifi-
cations further up the tree (rather than blind acceptance) appears to be very
effective (Coins and Wine show that classification accuracy improves); looking
one level up seems to be sufficient. As there is little reduction in test accuracy
for any of the acceptance MSE threshold values tested in this paper, a more le-
nient MSE value may be desired for further CPU time reductions. Finally, when
simplifying a population, it seems to be better to do so less often because of the
high overhead incurred, so the less often you simplify, the faster the GP process
runs (our best results were simplifying every five generations).

Avenues for future research include investigating the effect of simplification
on tree size and tree depth across different generations, eliminating repeat pro-
posal of the same simplification by the regression operator, applying the linear
regression operator on more datasets to see if there is any consistency amongst
different types of problems, and further investigating simplifying less often to
find the optimal balance between size reduction and computational overhead.
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Abstract. We propose a new framework based on Genetic Programming (GP)
to automatically decompose problems into smaller and simpler tasks. The frame-
work uses GP at two levels. At the top level GP evolves ways of splitting the
fitness cases into subsets. At the lower level GP evolves programs that solve the
fitness cases in each subset. The top level GP programs include two components.
Each component receives a training case as the input. The components’ outputs
act as coordinates to project training examples onto a 2-D Euclidean space. When
an individual is evaluated, K-means clustering is applied to group the fitness cases
of the problem. The number of clusters is decided based on the density of the
projected samples. Each cluster then invokes an independent GP run to solve its
member fitness cases. The fitness of the lower level GP individuals is evaluated as
usual. The fitness of the high-level GP individuals is a combination of the fitness
of the best evolved programs in each of the lower level GP runs. The proposed
framework has been tested on several symbolic regression problems and has been
seen to significantly outperforming standard GP systems.

1 Introduction

Problem decomposition aims to simplify complex real world problems in order to better
cope with them. This strategy is regularly used by humans when solving problems. For
example, computer programmers often organise their code into functions and classes.

Problem decomposition is important for two reasons. Firstly, it reduces the complex-
ity of a problem and, therefore, makes the problem easier to solve by standard machine
learning techniques. Secondly, automated problem decomposition may help researchers
to better understand a problem domain by discovering regularities in the problem space.
One way to formalise the decomposition process is to assume there exist different pat-
terns in the problem space, each pattern has particular characteristics and therefore it
needs a special solution.

Generally, problem decomposition allows a better understanding and control of the
problem’s complexity. However, while it is not difficult to split a problem into sev-
eral sub-problems to be solved in cooperation with different methods, using the wrong
decomposition may actually increase the problems complexity.

An ideal problem decomposition system would be one that gets the data from the
user and identifies different groups in the data; each of these groups should be simpler to
solve than the original problem. An intelligent decomposition of problems requires un-
derstanding the problem domain and usually can only be carried out by experts. In this
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paper, we propose a GP system that can evolve programs that automatically decompose
a problem into a collection of simpler and smaller sub-problems while simultaneously
solving the sub-problems. This is an area of GP that has not been thoroughly explored
thus far.

The structure of the paper is as follows. In the next section we briefly review previ-
ous work on problem decomposition. Section 3 provides a detailed description of our
proposed framework. This is followed by details on our experimental setting and results
in Sections 4 and 5, respectively. Finally, conclusive remarks are given in Section 6.

2 Related Work

The solution to complex problems typically requires the construction of highly com-
plex systems. These systems typically use hierarchical, modular structures to manage
and organise their complexity. Modular structures are widespread in engineering and
nature. So, it is reasonable to expect that they could be valuable in GP as well. In
particular, modularity and hierarchy can be essential tools for problem decomposition.
Consequently, starting from Koza’s automatically defined functions (ADFs) [1], they
have been a subject of substantial empirical exploration from the early days of GP (e.g.,
see [2,3,4,5,6,7,8]). Due to space limitations, in this section we will review problem
decomposition approaches that are based on the notion of dividing up the test cases into
(possibly overlapping) subsets, since these are directly relevant to the work reported in
this paper.

Rosca et al. [9] proposed a system called Evolutionary Speciation Genetic Program-
ming (ESGP) to automatically discover natural decompositions of problems. Each in-
dividual consisted of two parts: condition and output. The condition element represents
a Boolean function that receives a fitness case presented as an argument and returns
feedback on whether the individual chooses to specialise in that case. The output ele-
ment is a standard GP tree, which receives the chosen fitness cases as input. Naturally,
some of the fitness cases may be claimed by more than one individual while others are
never chosen. Thus, a fitness function was proposed which encourages individuals to
fully cover the problem space and minimise the overlap of the claimed fitness cases.
The approach was tested with symbolic regression problem and compared with stan-
dard GP and with GP(IF), which additionally includes if-then-else in the function set.
GP(IF) is selected as it may implicitly split the problem space into different regions.
Indeed, experimentation revealed that GP(IF) evolved conditions in such a way as to
effectively assign different fitness cases to different pieces of code and, moreover, that
GP(IF) outperformed ESGP.

Iba [10] proposed to extend GP using two well-known resampling techniques known
as Bagging and Boosting and presented two systems referred to as BagGP and BoostGP.
In these systems the whole population is divided into subpopulations. Each subpopula-
tion is evolved independently using a fitness function based on a subset of the fitness
cases, which are allocated by the two resampling techniques, i.e., Bagging and Boost-
ing. Later, the best individual from each subpopulation is selected to form a voting
scheme to classify unseen data. In both BagGP and BoostGP the number of subpopu-
lations is determined by the user. Experiments on three benchmark problems showed
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that BagGP and BoostGP outperformed conventional GP. However, when BagGP and
BoostGP were applied to a complex real world problem– the prediction of the Japanese
stock market– they performed almost identically to standard GP.

More recently, Jackson [11] proposed a hierarchical architecture for GP for prob-
lem decomposition based on partitioning the input test cases into subsets. The approach
requires a manual partitioning of the test cases. Then, each subset is independently pro-
cessed in separate evolved branches rooted at a selection node. This node decides which
branch to activate based on the given input case. The branches are evolved in isolation
and do not interact with each other. The number of branches is determined by the num-
ber of subsets into which the test cases have been divided. The proposed architecture
has been tested with the 4-, 5- and 10-even-parity problems and polynomial symbolic
regression problems with different numbers of branches. In addition, comparisons with
standard GP and GP with ADFs have been performed. Experiments showed that this
architecture has outperformed conventional GP systems. Its main disadvantage is that
the user is required to manually decompose the test cases.

As one can see, none of the previous methods for problem decomposition via test
case subdivision is fully automated. Overcoming this limitation is one of the aims of
the work presented in this paper.

3 The Approach

Our problem decomposition system works in two main stages: i) Training, where the
system learns to divide the training cases into different groups based on their similarity
and ii) Testing, where the system applies what it has learnt to solve unseen data. The
training phase is divided into two main steps i) resampling, where the system tries to
discover the best decomposition for the problem space and ii) solving, where the system
tries to solve the problem by solving the sub-problems discovered in the resampling
stage independently.

In the resampling stage, the system starts by randomly initialising a population of
individuals using the ramped half-and-half method (e.g., see [12]). Each individual is
composed of two trees: projector X and projector Y. Each tree receives a fitness case
as input and returns a single value as output. The two outputs together are treated as
coordinates for a fitness case in a 2-D plane. The process of mapping fitness cases to
2-D points is repeated for all the training examples. For this task, GP has been supplied
with a language which allows the discovery of different patterns in the training set.
Table 1 reports the primitive set of the system.

Once the training cases are projected via the two components (projector X and Y), K-
means clustering is applied in order to group similar instances in different clusters. Each
cluster then invokes an independent GP run to solve cases within its members. Thus,
each cluster is treated as an independent problem. The next subsection will describe the
clustering process in detail.

3.1 Clustering the Training Examples

We used a standard pattern classification approach on the outputs produced by the two
projection trees to discover regularities in the training data. In principle, any classification



Unsupervised Problem Decomposition Using Genetic Programming 125

Table 1. Primitives set

Function Arity Input Output

+/, -, /, *, pow 2 Real Number Real Number
Sin, Cos, Sqrt, log 1 Real Number Real Number

Constants 1-6 0 N/A Real Number
X 0 N/A Real Number

method can be used with our approach. Here, we decided to use K-means clustering
(e.g., see [13]) to organise the training data (as re-represented by their two projection
trees) into groups. With this algorithm, objects within a cluster are similar to each other
but dissimilar from objects in other clusters. The advantage of this approach is that the
experimenter doesn’t need to split the training set manually. Also, the approach does not
impose any significant constrains on the shape or size of the clusters. Once the training
set is clustered, we can use the clusters found by K-means to perform classification of
unseen data by simply assigning a new data point to the cluster whose centroid is closest
to it.

K-means is a partitioning algorithm that normally requires the user to fix the number
of clusters to be formed. However, in our case the optimal number of subdivisions for
the problem into sub-problems is unknown. Hence, we use a simple technique to find
the optimal number of classes in the projected space based on the density of the samples.
Once the system groups the projected samples into classes, it invokes an independent
GP search for each cluster.

Since K-means is a very fast algorithm, to find the optimal number of clusters the
system repeatedly instructs K-means to divide the data set into k clusters, where k =
2,3, ...Kmax (Kmax = 10, in our implementation). After each call the system computes
the clusters’ quality. The value of k which provided the best quality clusters is then
used to split the training set and invoke GP runs on the corresponding clusters.

The quality of the clusters is calculated by measuring cluster separation and repre-
sentativeness. Ideal clusters are those that are separated from each other and densely
grouped near their centroids.

A modified Davis Bouldin Index (DBI) [14] was used to measure cluster separation.
DBI is a measure of the nearness of the clusters’ members to their centroids, divided
by the distance between clusters’ centroids. Thus, a small DBI index indicates well
separated and grouped clusters. Therefore, we favour clusters with a low DBI value.

DBI can be expressed as follows. Let Ci be the centroid of the ith cluster and dn
i the

nth data member of the ith cluster. In addition, let the Euclidean distance between dn
i

and Ci be expressed by the function dis(dn
i , Ci). Furthermore, let again k be the total

number of clusters. Finally, let the standard deviation be denoted as std(). Then,

DBI =
∑k

i=0 std[dis(d0
i ,Ci), ...,dis(dn

i ,Ci)]
dis(C0,C1, ...,Ck)

The representativeness of clusters is simply evaluated by verifying whether the formed
clusters are representative enough to classify unseen data. In certain conditions, the
projection trees may project the data in such a way that it is unlikely to be suitable
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to classify unseen data. For example, clusters that have few members are unlikely to
be representative of unseen data. To avoid pathologies of this kind, the system verifies
whether the formed clusters have a sufficiently large number of members. In particular,
it penalises the values of k that lead K-mean to form clusters where less than a minimum
number of members is present. In this work, the minimum allowed number of members
for each cluster was simply set to 10 samples. However, we have not thoroughly in-
vestigated whether this was optimal in all conditions. For example, it is likely that the
optimum minimum size of the clusters is modulated by the total number of training
examples available.

More formally, the quality, Qk, of the clusters obtained when K-means is required to
produce k clusters can be expressed as the follows. Let θk be the penalty value applied
to the quality if there is a problem with the representativeness of the clusters produced.
If any particular cluster has less than a minimum number of members we set θk = 1000,
while θk = 0 if no problem is found. Furthermore, let DBIk represent the corresponding
cluster separation. Then,

Qk = DBIk + θk

After running K-means for all values of k in the range 2 to Kmax, we choose the optimal
k as follows:

kbest = arg min
2<k<Kmax

Qk

The main factor that affects the optimal number of clusters is the density of the projected
samples. The method described above effectively analyses the density of the data from
this point of view. Algorithm 1, describes the clustering process in details.

A disadvantage of this approach is that the K-means algorithm has to be executed
several times per fitness evaluation, which slows down the evolution a little. However,
this only needs to be done during evolution. During normal operation we simply apply
the previously formed clusters (represented by their centroids) to the unseen data.

As mentioned previously, once the system has identified the optimal k value and
the corresponding clusters, it invokes an independent GP search for each cluster. The
purpose is to evolve a program that satisfies the fitness cases in the cluster. In the testing
phase, unseen data go through the two projector components of the evolved solution
and are projected onto a two-dimensional Euclidean space. Then, they are classified
based on the closest centroid. Finally, the input data are passed to the evolved program
associated to the corresponding cluster.

The advantage of this approach is that it greatly simplifies classification. This is
because evolution pushes projection trees to represent the data in such a way as to
optimise the performance of the classification algorithm. Here, we used K-means for its
simplicity of implementation and its execution speed, but other techniques might work
equally well.

3.2 Search Operators

We used tournament selection and the standard genetic operators: sub-tree crossover,
sub-tree mutation and reproduction. Naturally, in the top-level GP runs, the genetic
operators have to take the multi-tree representation of individuals into account.
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Project(n, treeX, treeY);
List Qk;
for int k=2; k ≤ KMAX; k++ do

//call the K-means algorithm
K-means(k, n);
int separation = calculate DBI();
if check clusters representativeness() == true then

theta = 0
else

theta = 1000
end
Qk.append(separation + theta, k)

end
//find the best number of clusters
int number of clusters = Qk.get min k();

Algorithm 1. Finding the optimal number of clusters in the projected space

There are several options for applying genetic operators to a multi-tree representation:
apply an operator to all trees within an individual, use different operators for different
trees, constrain crossover to happen only between trees at the same position in the par-
ents, allow crossover between different trees within the representation, and so on.

It is unclear what technique is best (e.g., see [15] and [16]). So, in preliminary exper-
iments we tried a variety of approaches and found that a good way to guide evolution in
our system is to allow crossover to freely pick feature-extractions trees. In other words,
the projector X tree of one parent can be crossed over with either the projector X tree
or projector Y of the other parent and vice versa.

3.3 Fitness Evaluation

We evaluate the top-level GP system’s individuals (represented by two projection trees)
by measuring how well the whole problem is solved. The clusters formed by K-means
represent subsets of training examples. Each cluster invokes a GP search to solve its
member’s cases. We call this inner GP search. For simplicity, each inner GP runs for
a small fixed number of generations with a fixed population size. In future research we
will study the benefits and drawbacks of letting the system decide the settings of each
inner GP run (e.g., based on the size of the associated cluster).

In our system all inner GP systems evolve simultaneously. The fitness of a top-level
GP individual depends on the fitness of the best evolved individual in each of the inner
GP runs. If kbest is the number of clusters found on the projected space using Algo-
rithm 1 and fi is the fitness of the best evolved program in the ith inner GP run, then the
fitness of top-level individuals is:

f =
1

kbest

kbest

∑
i=1

fi.
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This fitness function encourages the individuals to project the fitness cases in such a
way that a solution for the fitness cases in each group can easily be found by the inner
GP runs.

4 Experimental Setup

Experiments have been conducted to evaluate the proposed framework. To do this we
chose a variety of symbolic regression problems, which we felt were difficult enough
to demonstrate the characteristics and benefits of the method.

We used discontinuous functions as symbolic regression target functions. These al-
low us to study the ability of the system to decompose a complex problem into simpler
tasks. Table 2 list the functions as well as the ranges from which we drew samples to
create symbolic regression test problems. Function 1 was used in Rosca’s experiments
in [9] to evaluate his proposed system. Here, we used the same function to ease the
comparison against Rosca’s system.

In order to evaluate our results, a comparison has been conducted against both canon-
ical GP and GP(IF), where we added an IF-THEN-ELSE primitive to the function set.
This primitive has four types of conditions, namely, <, >, >= and <=. The function

Table 2. Test functions
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receives four arguments: the first two are passed to the condition, while the other two
represent code to be executed if the condition is true or false, respectively. GP(IF) was
selected because, as seen in Rosca’s work, it may implicitly split the problem space
into different pieces of code and it is, therefore, likely to be competitive for symbolic
regression with discontinuous functions.

Our experiments were conducted using the parameter settings in Table 3. The prim-
itive set for both Standard GP and GP(IF) was the same as for our GP system (see
Table 1).

Performance has been measured through 100 independent runs for each system (20
runs for each test function). For the training, 100 samples were uniformly selected from
the training interval (see Table 2). Evolved solutions were then evaluated using 400 dif-
ferent samples. Each evolved solution has been evaluated with two different test sets.
Firstly, we tested performance of the solutions within the training interval (interpo-
lation). Secondly, we evaluated performance on a bigger interval (extrapolation). The
extrapolation interval for all test functions was the interval [−5,5], except for function
5 where we used the interval [−7,7].

The fitness measurement for GP, GP(IF) and the inner GP runs in our system is
the mean absolute error over all training samples. For the top-level GP runs in our
system, however, the fitness evaluation described in Section 3.3 has been applied, which
averages over the contribution of each cluster in solving the overall problem.

Table 3. Parameters setting

Method GP Cluster GP Cluster (inner GP) GP(IF) Standard GP

Generations 10 30 30 30
Population 10 100 1000 1000
Crossover 90% 90% 90% 90%
Mutation 5% 5% 5% 5%

Reproduction 5% 5% 5% 5%
Tournament size 2 10 10 10

5 Experimental Results

Table 4 reports the results of the experiments for all five test functions and for stan-
dard GP, GP(IF) and our system (GP Cluster). In addition, the average error obtained
across 20 independent runs is reported in Table 2, in order to provide information on
the stability of each system. Test functions report the best and worst interpolation and
extrapolation achieved by each system in all runs and the standard deviation for all runs.

It is clear that our approach has outperformed standard GP by a significant margin in
all test functions. It also outperformed GP(IF) in four out of five problems. Furthermore,
in all cases standard deviations for Cluster GP were very small, indicating the reliability
of the approach. This is the result of the system splitting the relatively complex shape
of these discontinuous functions into simpler fragments (i.e., sub-problems). Looking
at the number subsets used throughout the test runs, we see that in functions 1, 2 and
5, the system decided to split the training samples into 4 to 10 clusters. In function 3,
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Table 4. Experimental results. Statistics are based on 20 independent runs for each function.

*Numbers in bold represent the best achieved result.

the system identified 6 to 10 clusters in the problem space and in function 4, the most
complex in our test set, it identified 8 to 10 clusters.

As we mentioned before, function 1 has been used in Rosca’s experiments in [9].
The best achieved accuracy reported on the interval [-2,2] was 1.5, while in our system
we have a best interpolation error of 0.15.

We summarise the results from Table 4 in Table 5. As one can see our approach
comes on the top of the comparison. Moreover, our results also show that GP(IF) is a
marginal second, while standard GP comes last.
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Table 5. Experimental results summary

Method GP(IF) Standard GP GP Cluster

Worst interpolation Avg. 75.14 54.01 17.53
Best interpolation Avg. 0.26 1.15 0.08

Worst extrapolation Avg. 1.1912E+289 1.465E+299 9921.70
Best extrapolation Avg. 5.20 5.37 3.48

Average of Averages 8.32 6.57 1.55
Std Avg. 19.78 11.57 3.87

Table 6. A Kolmogorov-Smirnov test

Function Method Standard GP GP Cluster

1 GP(IF) 0.001 / 0 0 / 0.275
Standard GP N/A 0 / 0

2 GP(IF) 0 / 0.023 0 / 0.771
Standard GP N/A 0 / 0.001

3 GP(IF) 0.135 / 0.008 0 / 0.003
Standard GP N/A 0 / 0.003

4 GP(IF) 0.135/ 0.008 0 / 0.275
Standard GP N/A 0/ 0.135

5 GP(IF) 0 / 0965 0.059 / 0.275
Standard GP N/A 0.023 / 0.135

*The results in the table is the P value for Interpolation / Extrapolation

In order to evaluate the statistical significance of our results, a Kolmogorov-Smirnov
two-sample test [17] has been performed on the test-case results produced by the best
evolved system in each run for all pairs of systems under test and for all five test func-
tions. The test has been repeated for both interpolation and extrapolation. Table 6 reports
the P value for the tests. As one can see in 9 out of 10 interpolation cases our system
is statistically significantly superior to both standard GP and GP(IF) at the standard 5%
significance level. The superior performance of GP(IF) on function 5 observed in Ta-
ble 4 is not statistically significant (albeit by a very small margin). In the extrapolation
results (which are, rather obviously, affected by a much larger variance) our system is
statistically significantly superior to the others in 4 out of 10 cases, although as one
can infer from Table 5, one might expect that performing more runs would eventually
statistically confirm the superiority of our system in more cases.

6 Conclusions

In this paper we presented a new framework to automatically decompose difficult sym-
bolic regression tasks into smaller and simpler tasks. The proposed approach is based
on the idea of first projecting the training cases onto a two-dimensional Euclidian space
via two evolved projection programs, and then clustering them via the K-means algo-
rithm to better see their similarities and differences. The clustering is guaranteed to be
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optimal thanks to the use of an iterative process. This process uses a quality measure
based on the density of the projected samples. Once the data are clustered, they are
passed to separate GP runs which evolve specialised solutions for them. Note that while
the projection and clustering steps may seem excessive for scalar domains, they make
our problem decomposition technique applicable to much more complex domains.

Experiments have been conducted with symbolic regression problems using five dif-
ferent discontinuous functions as target functions. The proposed approach has outper-
formed conventional GP systems significantly. Also, experiments showed a remarkable
stability for our system across runs.

The main motivation behind this research was to produce an intelligent system that is
able to solve complex problems by automatically decomposing the problem space into
different classes and thereafter solve each class separately in order to solve the whole
problem in cooperation. We feel that we have achieved our aim within the specific
domain of input space decomposition, as shown by our experimentation. Of course,
there are many other ways of performing problem decomposition and modularisation
as mentioned in Section 2. We hope to be able to extend our clustering idea to other
forms of decomposition.

This research can be extended in many different ways. In the future we will
extend the experimentation by testing the technique on multi-varied problems and non-
symbolic-regression problems. In addition, we will investigate the benefits and draw-
backs of alternative fitness functions (particularly for the top-level GP system). For
example, the fitness function might take the size of the identified clusters into consid-
eration. Moreover, the system should be able to change the settings of each inner GP
run according to the difficulty of the given sub-problem. Further, we intend to investi-
gate the relationship between the identified number of clusters and how this affects the
solutions’ accuracy.

References

1. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT
Press, Cambridge (May 1994)

2. Angeline, P.J., Pollack, J.B.: The evolutionary induction of subroutines. In: Proceedings of
the Fourteenth Annual Conference of the Cognitive Science Society, Bloomington, Indiana,
USA, pp. 236–241. Lawrence Erlbaum, Mahwah (1992)

3. Spector, L.: Evolving control structures with automatically defined macros. In: Siegel, E.V.,
Koza, J.R. (eds.) Working Notes for the AAAI Symposium on Genetic Programming,
November 10–12, pp. 99–105. MIT/AAAI, Cambridge (1995)

4. Rosca, J.P., Ballard, D.H.: Discovery of subroutines in genetic programming. In: Angeline,
P.J., Kinnear Jr., K.E. (eds.) Advances in Genetic Programming 2, ch. 9, pp. 177–202. MIT
Press, Cambridge (1996)

5. Seront, G.: External concepts reuse in genetic programming. In: Siegel, E.V., Koza, J.R.
(eds.) Working Notes for the AAAI Symposium on Genetic Programming, November 10–
12, pp. 94–98. MIT/AAAI, Cambridge (1995)

6. Jonyer, I., Himes, A.: Improving modularity in genetic programming using graph-based
data mining. In: Sutcliffe, G.C.J., Goebel, R.G. (eds.) Proceedings of the Nineteenth In-
ternational Florida Artificial Intelligence Research Society Conference, Melbourne Beach,
Florida, USA, May 11-13, pp. 556–561. American Association for Artificial Intelligence
(2006)



Unsupervised Problem Decomposition Using Genetic Programming 133

7. Hemberg, E., Gilligan, C., O’Neill, M., Brabazon, A.: A grammatical genetic program-
ming approach to modularity in genetic algorithms. In: Ebner, M., O’Neill, M., Ekárt, A.,
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Abstract. We propose a novel application of Genetic Programming (GP): the
identification of file types via the analysis of raw binary streams (i.e., without the
use of meta data). GP evolves programs with multiple components. One compo-
nent analyses statistical features extracted from the raw byte-series to divide the
data into blocks. These blocks are then analysed via another component to obtain
a signature for each file in a training set. These signatures are then projected onto
a two-dimensional Euclidean space via two further (evolved) program compo-
nents. K-means clustering is applied to group similar signatures. Each cluster is
then labelled according to the dominant label for its members. Once a program
that achieves good classification is evolved it can be used on unseen data with-
out requiring any further evolution. Experimental results show that GP compares
very well with established file classification algorithms (i.e., Neural Networks,
Bayes Networks and J48 Decision Trees).

1 Introduction

From the point of view of an operating system or standard high-level programming
languages, a file is normally treated as a sequence of elementary data units, typically
bytes. File format is a particular way to encode information for storage in a computer
so that the file can be correctly interpreted by the operating system. Unfortunately,
there are no universal standards for file types and there are hundreds of file types. This
makes file type identification a difficult but increasingly significant problem. Different
operating systems have traditionally used different approaches to solve this problem
(i.e., file extensions and magic numbers). This, however, is very unreliable given that
any user or application can easily change the extension of a file or change the file’s meta
data. A method is required to identify file’s contents. This is useful for applications such
as email spam filter, virus detection, forensic analysis and network security.

This paper proposes an application based on the use of Genetic Programming (GP)
[7,12] to identify the file contents by analysing the raw binary streams. The question
that we investigate is whether it is possible for GP to extract certain regularities from
the raw byte-series of files and correlate them with particular data types without the
need of any other meta data. The paper is organised as follows. In Section 2 we review
previous work related to this research. Section 3 presents the details of the proposed
method for file type detection. In Section 4, the experimental setup used to conduct our
experiments is presented and in Section 5 we present and discuss our results. Finally,
Section 6 draws some conclusions.

A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 134–145, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 Previous Work

In [9], McDaniel and Heydari proposed an approach for automatically generating “fin-
gerprints” for files. These fingerprints were then used to recognise the true type of un-
known files based on their content instead of using the metadata associated with them.
The authors used three algorithms to build these fingerprints: Byte Frequency Analysis
(BFA), Byte Frequency Cross-Correlation (BFC) and the File Header/Trailer (FHT) al-
gorithm. The BFA algorithm works by drawing a frequency distribution of the number
of occurrences with which each byte value occurs in a file. This frequency distribution is
useful in determining the type of a file because many file types have consistent patterns
in their frequency distribution. The BFA algorithm presents some limitations related to
the fact that it compares overall byte-frequency distributions. This issue is addressed by
the BFC algorithm by taking the relationship between byte value frequencies into ac-
count. In BFC, two values are calculated: the average difference in frequency between
all byte pairs and a correlation strength. Finally, the FHT algorithm works by using
file headers and file trailers. These are pattern of bytes that appear in a fixed location
of the file: at the beginning and the end of the file. The authors tested the described
algorithms and constructed thirty file-type fingerprints using four test files for each file
type (i.e., a total library of 120 files). They reported that BFA and BFC showed poor
performance (i.e., an accuracy in the range of 27.5% and 45.83%) compared to FHT
algorithm (which had an accuracy of 95.83%).

Later, this work has been criticised in [8], by Li et al., who claimed that a single fin-
gerprint is insufficient to represent whole classes of files. Li et al. proposed to analyse
the data using n-grams to identify multiple centroids – fingerprints – for each file type.
They applied three different techniques: i) Truncation, where part of the file header
is analysed and compared with single representative fingerprints; ii) Multi-centroids,
where a group of fingerprints is used to form clusters with K-means, each cluster rep-
resenting a particular file type, then unseen data is classified according to minimal dis-
tance; iii) Exemplar files, where unseen data is compared to all fingerprints from all
trained data types and classified based on the closest. The authors reported some prob-
lems when classifying similar data types such as GIF and JPG. Also, some difficulties
appeared when classifying PDF and MS office file types, as some embedded images
and figures mislead the algorithms.

Karresand and Shahmehri [6] proposed a method called Oscar that allows classifica-
tion of data fragments based on their structures without the need of any other meta data
(e.g., header information). For this purpose, they used the Byte Frequency Distribution
(BFD) of data fragments and calculated the mean and the standard deviation for each
byte value. When these measures are put together, they form a model which is used to
identify unknown data fragments. In [5], the same authors extended this approach by
calculating the rate of change (RoC) (i.e., the absolute value of the difference between
two consecutive byte values in a data fragment). RoC allows incorporating the ordering
of the bytes into the identification process. The authors reported that their approach,
tested using only JPEG files, gave a 99.2% detection rate. The slowest implementation
of the algorithm scans a 72.2MB in approximately 2.5 seconds and this scales linearly.

Hall and Wilbon [3] used a sliding window of fixed size and measured the entropy
and the data compressibility with LZW compression to identify file types. For each
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file type, these measurements were averaged from training examples and the standard
deviation calculated for each corresponding point. Later, unseen data was compared
with these models to predict their contents. The authors reported that entropy was not
successful at associating the correct file type with unseen data. Also, this work reported
that some file types such as BMP can vary greatly and it is very difficult to correctly
classify them based on the proposed method.

Erbacher and Mullholland [1] focused their attention on the location and identifica-
tion of data types embedded within a file, to offer analysts a technique to more effi-
ciently locate relevant data on a hard drive. For this purpose, the authors used a range
of statistical analyses with a variety of file types and were able to identify the types
of data embedded within a file. The authors were able to identify five statistics that
gave sufficient information to differentiate the different types of data: average, standard
deviation, kurtosis, distribution of averages and distribution of standard deviations.

None of the previous methods used evolutionary algorithms, including GP, to solve
the problem of identifying file types from their raw binary streams.

3 Approach

An ideal security system would be one that non-invasively reads data from files and
detects their contents without the need for human intervention. In this paper we propose
a system based on the use of the GP that takes one further step towards the ideal security
system. The use of GP to identify file types from their raw binary streams has not been
explored thus far. Here, we investigate how to evolve programs that detect the contents
of files and inform the user of any suspicious contents according to predefined settings.

Our approach, broadly outlined in Fig. 1, works as follows. We try to spot regularities
within the raw byte series and to associate them to different file types (e.g., TXT, PDF,
JPG). Each class indicates the contents of the data. The system works in two main stages:
i) Training, where the system learns to match different byte-series characteristics with
different classes, and ii) Testing, where the system classifies unseen data. The system
processes raw byte-series signals and performs three major functions: a) Segmentation
of the byte-series based on their statistical features, b) Fileprint creation, and c) Classifi-
cation of the identified fileprints into their types (e.g., TXT, PDF, JPG). For these tasks,
GP has been supplied with a language that allows it to extract statistical features from
byte-series. The selection of the primitives of the language was carefully made to avoid
unnecessary growth in the search space, while at the same time ensuring that it is rich
enough to express the solution. Table 1 reports the primitive set of the system.

The system starts by randomly initialising a population of individuals using ramped
half-and-half [7]. As exemplified in Fig. 2, each individual has a multi-tree represen-
tation comprising one splitter tree, one fileprint tree and two feature-extraction trees.
Multi-tree representations of this kind are common in GP, and have been used, for ex-
ample, for data classification in [2] and [10].

We used a representation similar to the one proposed by Haynes in [4]. The pop-
ulation is stored into a 2D vector (vector of trees). Each individual is assigned to a
fixed position. Thus, individuals components are co-evolved as they are always selected
simultaneously.

In the next sections we describe the role of each of the trees in an individual in detail.
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Fig. 1. Outline of our file-type detection process

Table 1. Primitive set used in our experiments

Function Input

Median, Mean, Average deviation Vector of Integers
Standard deviation, Variance, Skew, (0-255)
Kurtosis, Entropy, Geometric Mean
+,−,/,∗,Sin,Cos,Sqrt, log Real number

Table 2. Parameters used to
conduct our experiments

Parameter Value

Population Size 100
Generations 30
Crossover Rate 50%
Mutation Rate 50%
Elitism 20%
Tournament Size 5

3.1 Splitter Tree

It is very difficult to extract statistical features from the raw byte-series and directly
correlate them with a particular data type. Furthermore, over time there has been an
increase in the use of files with complex structures that store data of different types
simultaneously. For example, a single game file might contain executable code, text,
pictures and background music. Also, many file types, e.g., OpenOffice’s ODT, Mi-
crosoft’s DOCX or a ZIP file, are in fact archives containing inhomogeneous data. This
makes the task of recognising file types is today even more difficult and traditional
methods unreliable. It is, therefore, necessary to properly handle the fact files may con-
tain multiple data types. The main job of the splitter trees is to split the given raw
byte-series into smaller segments based on their statistical features in such a way that
each segment is composed of statistically uniform data.

The system moves a sliding window of size L over the given byte-series with steps
of S bytes, where, naturally, S < L.
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Splitter Feature-extractor XFileprint Feature-extractor Y

Fig. 2. A typical individual representation

At each step the splitter tree is evaluated. This corresponds to applying a function,
fsplitter, to the data in the window. The output of the program tree is a single number, λ,
which is an abstract representation of the homogeneity of the data in the window. The
system then splits the byte-series at a particular position if the difference between the
λ’s in two consecutive windows is greater than a predefined threshold, θ. The threshold
θ has been set arbitrarily (θ = 10 in our implementation). In preliminary experiments
we found that small changes in θ did not affect the performance of splitter trees. This
is because evolution is free to change the magnitude of the outputs produced by splitter
trees to adapt to the threshold. Also, after trying different settings we found that the size
of the sliding window L should be large enough to allow the splitter tree to capture use-
ful information regarding the homogeneity of the data and small enough to not conceal
statistical differences in the fragments of the data. In our implementation L = 100 and
S = 50.

An effective splitter tree would be able to detect the statistical differences within the
data and divide the file into different segments based on the contents of each segment.
For example, if the given data was a document file that contains text and graphical
charts, a good splitter tree would notice the change in the byte-series values from the
text to the pictures and vice versa. Moreover, an ideal splitter tree might even detect
different fragments within the same data type (e.g., a page full of blank lines within the
text or white area in a picture).

3.2 Fileprint Tree

Unlike other techniques where files are processed as single units, our approach attempts
to divide the file into smaller segments via the splitter tree and understand the type of
each segment separately via the fileprint tree before making a final determination about
the file type. The main job of the fileprint tree is to identify a unique signature for each
file. These signatures are meant to be similar for files of the same type and different for
files of different types. Hence, the outputs of the fileprint tree are easier to classify into
different classes.

As illustrated in Fig. 3, the fileprint tree receives the segments identified by the
splitter tree for each file and processes each segment individually. This corresponds
to applying a function, ffileprint(Si), to the data within each segment, Si. The output
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Fig. 3. The fileprint tree processes the segments identified by splitter tree (top). Its output pro-
duces a GP-fingerprint for the file (bottom).

of the program is a single number, α, which is an abstract representation of the fea-
tures of the data within the segments. Thus, the fileprint tree will produce a vector
v = (α1,α2, · · · ,αi). Each v contains a series of abstracted numbers that describe the
contents of a particular file. Each vector v is referred to as a GP-fingerprint. A collec-
tion of vectors, V = (v1,v2, · · · ,vn), is obtained after execution of the fileprint tree with
all the files in the training set.

3.3 Feature-Extraction Trees

The main job of the feature-extraction trees in our GP representation is to extract fea-
tures (using the primitives in Table 1) from the GP-fingerprints identified by the fileprint
tree and to project them onto a two-dimensional Euclidian space. Here we used two
feature extraction trees. In future research we will study the benefits and drawbacks of
using a different number.

Each feature-extraction tree represents a transformation formula which maps the
original feature set (or more precisely the subset of the features used as terminals in
the tree) into a single value output, which can be considered as a composite, higher-
level feature. We use an unsupervised pattern classification approach on the outputs
produced by the two feature-extraction trees to discover regularities in the training data
files. In particular, we used K-means clustering to organise blocks (as represented by
their two composite features) into groups. With this algorithm objects within a cluster
are similar to each other but dissimilar from objects in other clusters. The advantage
here is that the approach does not impose any constrain on the shape of the clusters.

Once the training set is clustered, we can then use the clusters found by K-means to
perform classification of unseen data. Naturally, while we can tell K-means to group items
in exactly k clusters, being unsupervised, K-means has no way of knowing what each
cluster is meant to represent. So, it might produce results that are not useful to classify
the files in the training set. For example, at least in principle, K-means might find that text
files naturally form two separate groups (judging from their two composite features).

So, how do we convince K-means to group things differently? Simple: we do not act
on the K-means algorithm; we act on the composite features. That is, by using evolution,
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we ask GP to come up with two feature-extraction trees that lead K-means to cluster the
file fingerprints in the training set in such a way that all fingerprints in a cluster belong
to the same file types and that different file types are associated to different clusters. At
the end of evolution, K-means is able to distinguish file types based on their contents.
The advantage of this approach is that it greatly simplifies classification. This is because
evolution pushes feature-extraction trees to represent the data in such a way to optimise
the performance of the classification algorithm. Here, we used K-means for its simplicity
of implementation and its execution speed, but other techniques might work equally well.

3.4 Fitness Function

The performance of each individual is evaluated by measuring the classification accuracy
of the training examples. Although the system uses a multi-tree representation where
each tree has a particular function, this form of performance evaluation is sufficient to
encourage each component of a program to perform the particular sub-task assigned to
it to its best to achieve good performance in the difficult task of recognising file types.

Fitness is evaluated after performing the clustering of the outputs of the feature-
detection trees using K-means. Our fitness evaluation is based on the quality of the
clustering in terms of cluster homogeneity and cluster separation.

The homogeneity of the clusters is calculated as follows. As exemplified in Fig. 4,
we count the members of each cluster, each data point in the cluster representing the
GP-fingerprint of one file in the training set. Since we already know the content type for
each fingerprint, we label the clusters according to the dominant data type. The fitness
function rates the homogeneity of clusters in terms of the proportion of data points –
GP-fingerprints – that are labelled as the file type that labels the cluster.

The system prevents the labelling of different clusters with the same file type even in
the cases where the proportions in two or more clusters are equal. Using the information
about the GP-fingerprints and their labels we can easily find the total number of data
points that belong to the same data type. Any deviations from this optimal value due to
clusters containing extra members should be discouraged. Thus, we use a penalty term
in the fitness function to penalise extra members in the clusters.

More formally, the clusters homogeneity can be expressed as follows. Let H be a
function that calculates the homogeneity of a cluster and CLi be the ith cluster. Further-
more, let k be the total number of clusters and λ the penalty term. Then,

fhomogeneity =
∑k

i=1 H(CLi)−λ
k

The homogeneity of the clusters is not the only measurement of the quality of the clas-
sification performed by K-means. Homogenous clusters with objects far apart within a
cluster will extend the clusters boundary and may lead to inaccurate classification of
unseen objects. Also, clusters that overlap are not suitable. Ideal clusters are separated
from each other and densely grouped near their centroids. Therefore, we also measure
and reward the separation of the clusters.

The formulation of the Davis Bouldin Index (DBI) proposed in [13] was used to mea-
sure cluster quality. DBI is a measure of the nearness of the clusters members to their
centroids and the distance between clusters centroids. DBI can be expressed as follows.



GP-Fileprints: File Types Detection Using Genetic Programming 141

EXE

Text

60% EXE
40% Text

80% Text
20% EXE

Fig. 4. Homogeneity measure of the clusters

Let Ci be the centroid of the ith cluster and d the nth data member that belongs to the
ith cluster. In addition, let the Euclidian distance between dn and Ci expressed by the
function be dis(dn,Ci). Furthermore, let k be the total number of clusters. Finally, let
the standard deviation be denoted as std().Then,

DBI = ∑k
i=1 std[dis(Ci,d0), · · · ,dis(Ci,dn)]

dis(C0,C1, · · · ,Ck)

A small DBI index indicates well separated and grouped clusters. Therefore, we add
the negation of the DBI index to the total fitness in order to push evolution to separate
clusters (i.e., minimise the DBI). So, the DBI is treated as a penalty value, the lower the
DBI the lower penalty applied to the fitness. Thus, the fitness function is as follows:

f itness = fhomogeneity −DBI (1)

A significant advantage with our method is that the approach does not impose any
constraint on the shape of the clusters. Once the training set is clustered, we can then
use the clusters found by K-means to perform classification of unseen data.

In the testing phase, unseen data goes through the three components of the evolved
solution: blocks are produced by the splitter tree, the GP-fingerprint is obtained by the
fileprint tree, and, finally, GP-fingerprints are projected onto a two-dimensional Eu-
clidean space by the two feature-extraction trees. Then, these are classified based on the
majority class labels of their K-nearest neighbours. We use a weighted majority voting,
where each nearest neighbour is weighted based on its distance from the newly pro-
jected data point. More specifically the weight is w = 1/distance(xi,zi,), where xi is
the nearest neighbour and zi is the newly projected data point.

3.5 Search Operators

There are several options for applying genetic operators to a multi-tree representation.
For example, we could apply a particular operator that has been selected (based on a
predefined probability of application) to all trees within an individual. Alternatively, we
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could iterate over the trees in an individual and, for each, select a potentially different
operator. Another possibility would be to constrain crossover to happen only between
trees at the same position in the two parents or we could let evolution freely crossover
different trees within the representation.

It is unclear what technique is best. In [10] the authors argued that crossing over
trees at different positions might result in swapping useless genetic material resulting in
weaker offspring. On the contrary, in [2] suggested that restricting the crossover posi-
tions is misleading for evolution as the clusters are indistinguishable during evolution.

In preliminary experiments we tried all of these approaches and we learnt that a
good way to guide evolution in our system is as follows. Let the ith individual of
the population be denoted as Ii and let T i

c be the cth tree of individual i, where c ∈
{splitter, f ileprint, f eature− extractionx, f eature− extractiony}. The system selects
an operator with a predefined probability for each T i

c . In the crossover, a restriction is
applied so that splitter and fileprint trees can only be crossed over with their equivalent
tree type. However, the system is able to freely crossover feature-extractions trees at
any position.

4 Experimental Setup

Experiments were performed on various file types. The main aim of the experiments
was to evaluate the performance of the algorithm and to assess the algorithms behaviour
under a variety of circumstances.

The results presented in the following section were obtained by using the parameter
settings illustrated in Table 2. Evolution halts when 30 generations have elapsed.

Experiments have been divided into four sets. Each set involved 10 independent runs
(40 runs in total). In the first set we trained the system to distinguish between two dif-
ferent file types. We increased the number of file types to three in the second set of
experiments, to four in the third set, while the last set included five file types. The files
types that have been included in the experiments were selected because they are among
the most commonly used files types. During the experiments, the algorithm has been
trained to distinguish between similar files types (JPG and GIF or TXT and PDF). This
allowed us to study the algorithm’s ability in distinguishing the files based on their
types rather than their contents. The corresponding training sets included 10 different
files of each type. Several considerations were taken into account when designing the
training set. The training set is processed many times by each individual in each gen-
eration. Thus, it has to be small enough to avoid over-fitting and yet big enough to
contain enough examples to aid the learning process. Table 3 presents the contents of
the training sets for each set of experiments.

To assess the system learning and generalisation we evaluated the accuracy of the
evolved programs with a test set. The test set is composed of 30 different files for each
type. Table 3 presents the contents of the testing cases for each set of experiments. The
test sets are completely independent of the training sets. It should be noticed that the
size of test set is bigger than the training set. Also, the test set included complex files
such as EXE games, and large PDFs that contain figures and charts. This is to allow us
to probe the generalisation capabilities of the evolved solutions.
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Table 3. Training and test sets for the experiments

Training set Test set
Function File types Total size Number of files Total size Number of files

2 file types JPG, GIF 618 KB 20 5.44MB 60
3 file types JPG, GIF, TXT 987 KB 30 7.9MB 90
4 file types JPG, GIF, TXT, PDF 1.55 MB 40 16 MB 120
5 file types JPG, GIF, TXT, EXE, PDF 2 MB 50 17.7MB 150

Table 4. Test-set performance results. Numbers in boldface represent the best performance
achieved.

Method 2 file 3 file 4 file 5 file
types types types types

Neural Networks 58.33% 66.67% 74.17% 39.33%
Bayes Nettworks 50.00% 66.67% 83.33% 48.67%
J48 51.67% 51.67% 74.17% 48.67%
GP-fingerprint 85.00% 88.90% 85.00% 70.77%

In order to evaluate our approach against other state of the art classification tech-
niques we compared our results with standard Neural Networks [14], Bayes Network
[14], and J48 decision trees [14] (a variant of C4.5). For these classification algorithms
we used the implementation provided by WEKA [11]. We provided to these algorithms
the same training sets and the same primitive sets as our GP system in order to obtain
fair comparisons.1 For each of the Neural Networks and Bayes Network systems we
performed 10 different runs for each data set, as we did for our GP system. J48, being
a deterministic algorithm, was only executed once for each data set.

5 Results and Analysis

Table 4 summarises the results of our experiments comparing GP with other techniques.
For each non-deterministic algorithm we report the best results obtained within inde-
pendent 10 runs. GP appears to outperform the other classification methods considered
by a considerable margin. We believe that the good classification accuracy of our ap-
proach is largely attributable to the segmenting the data into smaller parts and obtaining
fingerprints.

For all algorithms in we see that performance increases as the number of file types
increases from 2 to 4. One might wonder why this happens: recognising two file types
would appear to be an easier task than recognising three or four. To understand this,
we need to consider that the data in Table 4 represent test-set performance. The reason
why performance is lower in the two-file case than in the three- or four-file cases is
over-fitting. As one can see in Table 3, the fewer the file types in a data set, the smaller

1 Neural Networks and Bayes Network use deterministic learning models but initial networks
are random.
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Fig. 5. Summary of results of 40 runs. Ordinates represent percentages.

the data set. Thus, it is easier for a learning algorithm to over fit training sets with 2
and 3 file types than the set with 4. As a result, the fewer the file types the worse the
generalisation performance of the corresponding learning systems.

It should be noticed that the lowest performance for all classification algorithms
shown in Table 4 occurred when classifying 5 file types. This is due to the fact that the
complexity of the problem increases with the number of classes. However, GP perfor-
mance degraded less than for other approaches indicating that our system may be more
robust. The disadvantage of our approach, however, is training time: our GP system
entails a learning process of several hours, while other classification techniques only
consume a few seconds for the whole learning process. On the other hand, it has to be
pointed out that the solution evolved by our system take only a few seconds to predict
the files contents. So, they are not only accurate, but also entirely practical.

Although in Table 4 we reported best performance for all systems, including our GP
one, in fact our system is remarkably reliable across runs. Fig. 5 summarises the results
obtained in our 40 runs. We measured the quality of each experiment set (four sets, each
set included 10 runs) by calculating the following statistics: the average classification
accuracy across the test files, the corresponding standard deviation, and the best and
worst classification accuracies in all runs. The first bar in Fig. 5 shows the average
of the resulting four averages. The second bar in the figure is the average of the best
evolved program in each set. The third bar represents the quality of the worst evolved
program in each set. Finally, the last bar shows the average standard deviation. Note
that the average worst performance of our GP system is better than the average best
performance of the other systems in Table 4.

The low standard deviation and reasonably high average performance of our system
suggests that one is likely to obtain accurate file-type prediction models within very few
GP runs.

6 Conclusions

In this paper we have proposed a system based on genetic programming to evolve pro-
grams that can identify file contents without making use of any meta data. This is a
novel application of GP.
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The classification accuracies obtained by GP were far superior to those obtained by
a number of classical algorithms from WEKA [11], namely artificial neural networks,
Bayesian networks and J48 decision trees. While evolution is relatively slow with the
large training sets required by this application, the resulting programs are entirely prac-
tical, being able to process tens of megabytes of data in seconds.

In the future we intend to extend the work to larger and more varied data sets and,
hopefully, to turn the best solutions evolved by GP in public-domain stand-alone pro-
grams, which could perhaps be integrated in spam filters and anti-virus software.
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A Many Threaded CUDA Interpreter for
Genetic Programming

W.B. Langdon
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Abstract. A Single Instruction Multiple Thread CUDA interpreter pro-
vides SIMD like parallel evaluation of the whole GP population of 1

4
mil-

lion reverse polish notation (RPN) expressions on graphics cards and
nVidia Tesla. Using sub-machine code tree GP a sustain peak perfor-
mance of 665 billion GP operations per second (10,000 speed up) and an
average of 22 peta GP ops per day is reported for a single GPU card on a
Boolean induction benchmark never attempted before, let alone solved.

1 Introduction

There are two main approaches to running genetic programming [10,1,17,20] on
highly parallel hardware such as GPUs: 1) compiling evolved programs and run-
ning multiple fitness cases in parallel [7,3] 2) interpreting multiple programs in
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Fig. 1. Left: nVidia G80 GPU multi processor. Right: A GeForce 295 GTX contains
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instruction at the same time. However each has its own registers and its own access to
shared and constant memory. For efficiency multi-processors try to coalesce multiple
separate access to off chip memory into a single access.
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parallel [15,21,16,23,18,4]. The compiled approach suffers from the overhead of
running the compiler on the host computer. However Harding [8] has recently
demonstrated parallel compilation of the GP population onmultiple workstations.
Interpreters can run programs immediately but interpreted code is slower than op-
timised compiler generated machine code. GPU interpreters typically gain their
speed by evaluating the whole population in parallel but, as we shall see, GPUs
can also run fitness cases in parallel, or mixtures of the two approaches [11].

The essential feature of parallelism in current generation graphic processing
units is that they are intended to run programs on multiple data. Graphical ap-
plications often require the rapid real time transformation of many data items.
This can be performed efficiently in parallel because essentially the same trans-
formation is applied to each datum and the data do not interact. E.g. the two
dimensional appearance of a complex three dimensional scene is calculated by
using one program to calculate the appearance of the many thousands of three
dimensional elements independently. Separate programs are used to deal with
cases where elements overlap or obscure each other.

High end GPUs typically contain a few multi-processors, each of which operate
in parallel. Each multi-processor is a tightly integrated unit and in some ways
resembles the earlier single instruction multiple data (SIMD) parallel computers.
Both provide a limited form of parallelism which is convenient to implement
in hardware. The hardware gains its speed by having many stream processing
units doing the same operation at the same time on different data. See Figure 1.
However unlike MasPar SIMD supercomputers of twenty years ago, GPUs are
mass market consumer electronics devices for computer games and priced for
the hobbyist not the corporation. Hundreds of millions of GPU have been sold
rather than approximately 250 MasPar MP-2.

In GPU terminology each stream processor is running a thread. At any instant,
all the threads do the same thing. But this raises a problem. What if the program
contains branches? E.g. if(data==0){} else {}. If the contents of data are
different in different threads, the hardware will decide either to do the if or
the else. It executes all the threads whose instance of data puts them down
the same route. The hardware stalls all the other threads. This is known as
divergence.1 At some point the hardware will stop the active threads and restart
those it stalled. Eventually the whole program will be run. However divergence
is a major source of inefficiency.

nVidia’s CUDA has a fairly complicated memory hierarchy. However the
most important distinction for performance is the small amount of memory
(≈1 megabyte) on the GPU chip and the very much bigger memory on the
GPU card (≈1 gigabyte). (Currently the GPU has no direct access to the host
computer’s RAM. Instead data must be explicitly copied to and from the GPU
by the PC. See Figure 1) The delay in reading from off-chip memory is hundreds
of times more than access to on-chip memory. This is so big that it makes sense

1 Divergence can be avoided by a data flow approach in which the ifs are replaced
by evaluating all possibilities and using array indexes to chose from them. However
interpreting a single GP individual across multiple test cases can be faster.
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Fig. 2. Reading from onboard GPU memory causes active threads to stall possibly
allowing other threads to be active. In contrast access to small areas of read only and
shared memory are very much faster. The interpreter stack is placed in shared memory.
To reduce bank conflicts stacks can be interleaved to use every 16th memory word.

for the hardware to pause threads which are waiting for off-chip data and start
others which are ready to go. See Figure 2. The hardware can seamlessly handle
many thousands of threads. (In the case of the 37-Mux we use 262 144 threads.)
This all happens transparently for the CUDA programmer.

A single instruction multiple data (SIMD) interpreter for GP was originally
proposed by Hugues Juille [9] for the MasPar MP-2 computer. It has recently
been used for nVidia GeForce 8800 graphics hardware by ourselves [15] and
Robilliard [21]. These SIMD GPU interpreters evaluate each GP tree by treating
it as a reverse polish (RPN) expression which is evaluated via a stack in single
pass. I.e. without the recursive back tracking normally associated with trees.
The stack required careful implementation in RapidMind 2 [15] but is straight
forward with nVidia CUDA. For every instruction, SIMD interpreters use cond
or if branches to skip through the whole instruction set and only evaluate the
current instruction.

The SIMD approach is suitable for use with many types of GP however we
demonstrate it on two Boolean benchmark problems (20-multiplexor and 37-
multiplexor) where CUDA allows access to another level of parallelism. Sub-
machine code GP uses parallel bit or byte level operations, to execute up to 32 (or
64) fitness cases simultaneously [19]. Using pseudo random sampling of test cases
with a population of a quarter of a million programs a single GPU is able to solve
the 20-multiplexor problem. Peak sustained performance of just over 445 billion
GP operations/second was achieved when testing all 237 = 137 billion fitness
cases for solutions to the 37-multiplexor. Probably compiled code would be still
faster. When including all activity on the CPU as well as the GPU across the
whole run, the single 295 GTX averaged 254 billion GPop/s. In contrast Harding
[8] measured, for a compiled approach using a cluster of 14+ workstations each
equipped with a low end GPU, a best peak rate of 12.74 billion GP OP/sec for
Cartesian GP on a data intensive graphics task.

http://www.nvidia.com/cuda
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Table 1. Genetic Programming Parameters for Solving 20 and 37 Multiplexors

Terminals: 20 or 37 Boolean inputs D0–D36
Functions: AND, OR, NAND, NOR
Fitness: Pseudo random sample of 2048 of 1 048 576 or 8192 of 137 438 953 472

fitness cases.
Tournament: 4 members run on same random sample. New samples for each tourna-

ment and each generation.
Population: 262 144
Initial pop: Ramped half-and-half 4:5 (20-Mux) or 5:7 (37-Mux)
Parameters: 50% subtree crossover, 5% subtree 45% point mutation. Max depth 15,

max size 511 (20-Mux) or 1023 (37-Mux).
Termination: 5 000 generations

2 Genetic Programming Benchmarks

The original intentions was simply to use the 20 Boolean Multiplexor [10] as
an impressive demonstration of the GPU. After all it has never been solved by
a tree GP before. ([24] used a totally different representation.) The details of
our GP are given in Table 1. The choice of population size was motivated by
the capacity of the GPU. While the terminal and function sets are those often
used for the even parity benchmark [10]. The resulting evolutions are plotted in
Figure 3. Solutions are found in generation 423 (20-Mux) and 2866 (37-Mux).

3 RPN GPU Sub-machine-code Genetic Programming

This is the first genetic programming implementation to exploit sub-machine
code level parallelism inherent in every GPU. Indeed it is the first time sub-
machine-code GP has been used with reverse polish expressions. However it
can obviously be used in any Boolean problem. Indeed many non-evolutionary
algorithms with a large logic based component could benefit from this approach
to exploiting bit-level parallelism. The sub-machine code approach has also been
used in the continuous domain (by using 8-bit precision) and in graphics (e.g.
5×5 OCR) [19]. It is straight forward to implement in CUDA compared to other
high-level GPGPU languages like RapidMind 2.

4 Genetic Programming on the Host Computer

The GPU is only used for fitness evaluation. When a generation has been in-
terpreted the fitness values of the current individuals are returned to the host.
All other operations (crossover, mutation, selection, gathering statistics etc.) are
performed by the Linux host computer.

The genetic programming trees are created and manipulated by crossover
and mutation as Reverse Polish Notation (RPN) expressions. This is exactly the

http://gpgpu.org/
http://www.rapidmind.com/
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Fig. 3. Evolution of fraction of test cases passed when solving the 20-multiplexor and
37-multiplexor. Dotted lines show three quaters of the population evolves to have fitness
near that of the best. (The worst in population, not shown, also starts near 50% but
falls towards zero, almost mirroring the best. This may be due to tiny programs being
generated by subtree crossover [13, Figure 6] which have poor fitness.) The log-linear
rise in fitness over most of the evolution is reminiscent of the coupon collector suggesting
major building blocks are equally difficult. This 295 run found a 37-Mux solution in
gen 1325 v. 2865 for the Tesla.

same format as is used by the GPU. I.e. the data is not converted between the
host CPU and the GPU.

It is common in efficient C++ genetic programming implementations for run
time to be totally dominated by the time taken for fitness evaluation and so
crossover etc. can be discounted. However for the 37-Mux, due to the speed of
the interpreter on the 295 GTX these normally inexpensive operations amount
to 43% of the total run time. As fitness evaluation in the 20-Mux is less com-
putationally demanding, this rises to 73%. Since the interpreter has been our
focus, no effort has been spent on optimising the host side C++ code. Doubtless
some efficiencies could be made to reduce the host side overhead.

Lewis proposed [18] a nice scheme with two GPUs which uses overlapping
threads on a quad core computer to ensure both GPUs and CPUs are kept busy
and says overlapping execution gave almost a threefold speed increase. He says
his twin 112 core super clocked and overclocked GPUs gave up to 4 billion GP
operations per second for his cyclic Cartesian GP system.

5 Randomised Test Suite Sub-sampling

The final research area was to use the 20-Mux to demonstrate statistically sound
sampling [12,22]. We devised CUDA code which randomly generated samples [14]
and tested all members of the same tournament on them. It continued to do this
until statistical tests could demonstrate one of the four candidates was better
than the other three. While successful, this was eventually abandoned for three
reasons. 1) As the population converged, more and more tests would be required
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to reliably differentiate between the best and second best candidates. Indeed it
was even considered adding a statistical test to stop evaluation if it was probably
that there was no difference between the best two candidates. 2) The number of
random samples needed is highly variable. Since we were using a single thread
per program at the time, this lead to many cases where all but the last four
programs on a multi-processor had finished. Thus most of the multi-processor
was idle. Yet it could not be reassigned to other tasks untill the last four had
finished. (Multiple threads will be discussed in Section 7.) 3) However the most
compelling reason was we realised that sophisticated eradication of 99% of chance
was not needed.

If a fixed number of samples are used, some tournaments are settled by chance.
This means sometimes individuals are selected to be parents who would not have
won (and so would have died childless) if all test cases had been run. Nevertheless
the addition of limited noise in the selection scheme did not prevent solutions
from evolving. The size of the sample was set by starting with a power of two
and doubling it until a solution was found. For 20-Mux only 2048 samples of
1 048 576 were enough. Whereas for the 37-Mux, 8192 were sufficient.

6 CUDA Code

A fragment showing the main interpreter loop C++ code is given in Figure 4.
This CUDA kernel runs in parallel simultaneously in thousands of different
threads. Figure 4. shows the main data structures used by sub-machine code
GP. Reverse polish expressions are evaluated sequentially from the start to the
end (indicated by OPNOP). Terminals are pushed onto the stack (which is in
__shared__ memory). In sub-machine code GP the first five inputs correspond
to different 32-bit patterns (read from __constant__ train). The other inputs
cause either 32 0s or 32 1s to be pushed onto the stack. The binary Boolean
functions pop both their 32-bit arguments from the stack and push their 32-bit
result back onto the stack. runprog leaves its answer on the top of each thread’s
stack.

Where there are not enough threads to permit all fitness cases to be run in
parallel (i.e. runprog is used serially) it might be advantageous to copy Pop
onto the chip itself. E.g. when proving the evolved solution on all 2n fitness
cases, it is copied to constant memory. (All the solutions have also been verified
by extracting them and running them in a conventional computer.) Lewis reports
[18] success with loading the population into shared memory. However shared
memory is very limited and so we use all of it to hold the stacks rather than
read-only cache copies of the programs. It appears to be more important to put
the stacks close to the stream processors since they are both read and written to
and used repeatedly. Indeed, given sufficient threads, the programs are only read
once (so a cache is pointless). In cases where the programs are very small (so the
stacks are also small) and each is run many times, it might be advantageous to
use some of the on chip (i.e. constant or shared) memory to cache the population.

While Koza initially used a tree depth of 17 [10], in order to interpret 256
programs (i.e. 256 stacks) per multi-processor simultaneously, the stack size was
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__constant__ const unsigned int train[8] =
{0xAAAAAAAA,0xCCCCCCCC,0xF0F0F0F0,0xFF00FF00,0xffff0000,0,0,0};

extern __shared__ unsigned int shared_array[];
#define stack(sp) Stack[(sp)*blockDim.x+threadIdx.x]
__device__ inline void runprog(unsigned char* const Pop, const unsigned int prog,

const unsigned int test32, const int LEN) {
#define AND(A,B) ((A) & (B))
#define OR(A,B) ((A) | (B))
#define push(x) {stack(SP) = x; SP++;}

unsigned int* Stack = shared_array;
int SP = 0;
for(unsigned int PC = 0;; PC++){
const optype opcode = Pop[PC+(prog*LEN)]; //SETOPCODE;
if(opcode==OPNOP) break;

const int r = opcode - firstinput;
if((r & (~7))==0) {push(train[r]);} //OP1
else {
const int r5 = opcode-inputd5; //ninputs <= 37bits
if((r5 & (~31))==0) {
if(test32 & (1<<r5)) {push(0xffffffff);}
else {push(0x00000000);}
} else {
const unsigned int sp1 = stack(SP-1);
const unsigned int sp2 = stack(SP-2);
SP -= 2;
switch(opcode) {

case OPAND: push( AND(sp1,sp2)); break;
case OPOR: push( OR(sp1,sp2)); break;
case OPNAND: push(~AND(sp1,sp2)); break;
case OPNOR: push( ~OR(sp1,sp2)); break;

}}}}}

Fig. 4. C++ CUDA code fragment for the sub-machine code GP SIMD reverse polish
expression tree interpreter

dropped to 15. (Occupying 15 × 256 = 3840 of the 4032 available int.) For-
tunately there are solutions to both benchmarks which can be evaluated with
stacks of only 15 and GP is able to find them.

The interpreter has been used with multiple arity experiments. For GP prim-
itives which take more than two inputs (e.g. if) the maximum stack depth can
be more than the maximum tree depth. Either crossover etc. can be modified to
enforce a stack limit rather than the conventional tree depth limit. Alternatively
the existing tree depth limit can be retained and the corresponding maximum
stack depth calculated. The kernel must then be configured to allow this stack
size. Typically this means each block can have fewer threads, which will tend to
reduce performance.

7 Speed

Performance depends both on the number of fitness cases run in parallel by the
interpreter (nparallel) and the the number of copies of the interpreter run in par-
allel per multiprocessor (block size). See Figure 5. Each 20-Mux tree is evaluated
64 times on randomly selected inputs. (Remember using sub-machine code GP
means each evaluation covers 32 fitness cases, making a total of 32 × 64 = 2048.)
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The interpreter allows nparallel=1, 2, 4, 8, 16, 32 or 64 threads to be used per
20-Mux individual. Since all 64 evaluation must be run, each RPN expression in
each thread is evaluated by a for loop 64, 32, 16, 8, 4, 2 or 1 times.

We are limited, by shared memory, to at most block size=256 threads per
multiprocessor. This means that if we test each individual with one thread (i.e.
run it sequentially in a for loop 64 times) we can test up to 256 programs in
parallel in each multi-processor. If we use two threads per program, we can
simultaneously test 128 programs in each multi-processor. And so on until with
maximum parallelism per 20-Mux program (i.e. nparallel=64) 1, 2 or 4 programs
can be run in a single multi-processor block.

With 64, 128 or 256 threads per block, CUDA is approximately twice as fast
when interpreting all 64 fitness cases in parallel compared to running them in
sequence but interpreting multiple programs in the same block (see Figure 5).
Evaluating the same expression in multiple threads should mean they do not di-
verge, so we expect better performance. However it is gratifying that the original
single program-single thread SIMD approach [15] (which was designed for prob-
lems with a small number of fitness cases) gets within 50% of the speed where
all the fitness cases are run in parallel. The fact that block sizes 64, 128 and 256
give much the same performance suggests we are not getting any benefit (such
as coalesce reads) by running multiple adjacent programs in the same block.

The interpreter tends to speed up in later generations as the trees get big-
ger (see Figure 7). Nevertheless the initial random population, i.e. Figure 5, is
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indicative of the general tradeoff between evaluating trees in parallel and the
number of threads per multi-processor (Figure 6).

The slight difference between the two fastest configurations shown in Figure 5
remains small throughout the run. Figure 6 (right) shows maximum parallelism,
whereby each program is run only once, is slightly faster (except in generation 0).
Hence we use 64 threads per 20-Mux tree. This is consistent with Robilliard
et al. [21] recommendation to run the interpreter so that each program’s fitness
cases are run in parallel.

8 Theoretical Performance: Infinite Parallelism Model

For any configuration of the interpreter there is a certain amount of work that
must be done. The programs must be transfered to the GPU and their fitness
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values returned to the host computer and they must be interpreted. The nVidia
bandwidthTest program measures the data transfer speeds to and from the GPU.
This allows us to estimate the time to copy a 20-Mux population to the GPU:
time = 512 × 262 144/2170Mbytes per sec = 62ms. Time to return the (4 byte)
fitness values to the host PC: time = 4 × 262 144/1433Mbytes per sec = 0.7ms.
(Total 63ms.)

The time taken to transfer data internally within the GPU is very difficult
to estimate. It will not only depend upon the number of times each program
is executed but also on the degree of coalescing of reads from global memory.
This is difficult to estimate. However taking the raw figures from bandwidthTest
suggests it can be too short (> 0.2ms) to contribute and global memory latency
is much more important.

We estimate the minimum calculation time from when the interpreter gets
its best speed. This is when confirming the generality of the evolved 20-Mux
solution (507 instructions). Here the whole GPU is devoted to a single program
in constant memory, thus removing latency and divergence. Allowing for the
time to transfer the answer back to the host gives a minimum calculation time
of 53 milliseconds, corresponding to a maximum interpretation rate for the 20-
Mux of 573 billion GP operations per second. This gives an estimated minimum
time for the initial 20-Mux generation of 115 milliseconds on the 295 GTX.

Figure 8 plots the actual time for all the ways of interpreting the initial popula-
tion in parallel. We see the wall clock time falls linearly with degree of parallelism.
By fitting a least squared error linear regression lines to each we can estimate the
infinite parallelism execution time for the initial generation. These seven times
are plotted in the right of Figure 8. The vertical intercept of a final regression
line says the infinite parallelism execution time would be 223 milliseconds. This
is somewhat above our estimate of 115 milliseconds. This suggests that it is not
possible to obtain 573 109 GP OP/s for the initial population (whose trees have
on average only 55 instructions). Using our earlier estimate of transfer time but
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replacing using the solution (with 507 opcodes) with the new estimate of total
time (223 ms) gives a new estimate of 188 billion GP operations per second for
the infinite parallelism speed in the initial 20-Mux generation. The best con-
figuration (see Figure 5) is 75% of this. I.e., on the 20-Mux initial population,
the 295 GTX is within 25% of the best performance predicted if the interpreter
worked with infinite parallelism.

9 Discussion

Modern high performance graphics hardware has a complex parallel hierarchy
of memory and processing elements. CUDA exposes this to the programmer in
a controlled and somewhat portable way. (I.e. between CUDA capable nVidia
hardware.) In contrast other tools try to conceal this and provide a high level
obscure view of the hardware. Programming GPUs using either is not easy. For
the Mackey-Glass benchmark [15], CUDA is up to 92% faster than RapidMind 2
[21] on similar hardware.

Although we tried to get the best from the T10P Tesla’s 192 cores, the CUDA
code should run on any modern G80 GPU. In fact no changes to the kernel were
needed to run on the GeForce 295 GTX.

For the largest of these problems, our results suggest the interpreter is already
within 33% of the best that the current hardware (665 billion GP OP/sec) might
deliver in practice.

The interpreter can be used in various models of parallelism. Naturally it is
fastest when fitness testing is split across many threads. However when this is
not possible individual GP trees can be tested by running fitness cases one after
another but the hardware still permits many programs to be run in parallel. The
interpreter also allows various intermediate combinations.

10 Conclusions

Ten years ago Koza et al. [2] said their Beowulf cluster delivered about a half
peta-flop per day on genetic programming runs. We have presented a single
office personal computer fitted with a top end graphics card which delivers not
floating point but real GP operations at a sustained rate of 22 peta GP operations
per day (254 billion GP operations per second). This is twenty times the best
reported speed of the fastest previously published GP (obtained by running 14
workstations in parallel [8]) and more than sixty times that of the best reported
performance of the next fastest single GPU genetic programming system [21].

The combination of powerful parallel processing in the form of a GPU card,
sub-machine code GP, a reverse polish (RPN) interpreter and randomised sub-
selection from a test suite has allowed us to solve using tree GP the Boolean
20-multiplexor problem. It has been estimated [24] that it would take more than
4 years. The GPU has consistently done it in less than an hour.

The 37-multiplexor benchmark has 137 billion fitness cases. It has never been
attempted before. GP solves it in under a day.
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Currently Tesla are available with up to 960 cores, running at up to 1.5 GHz,
suggesting a further doubling of performance is possible immediately.

The single GPU code is available via FTP cs.ucl.ac.uk directory genetic/
gp-code/gp32cuda.tar.gz
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Abstract. Artificial biochemical networks (ABNs) are computational
models inspired by the biochemical networks which underlie the cellular
activities of biological organisms. This paper shows how evolved ABNs
may be used to control chaotic dynamics in both discrete and continu-
ous dynamical systems, illustrating that ABNs can be used to represent
complex computational behaviours within evolutionary algorithms. Our
results also show that performance is sensitive to model choice, and sug-
gest that conservation laws play an important role in guiding search.

1 Introduction

Biochemical networks are the complex dynamical systems which underlie the
functional and structural complexity seen within biological organisms. From an
evolutionary computation perspective, biochemical networks are interesting be-
cause they describe complex behaviours in a way that is both concise and evolv-
able. This has led to growing interest in the use of computational models of
biochemical networks, particularly within genetic programming. These include
artificial genetic regulatory networks [2,12,17,18], computational models of cel-
lular metabolism [1,8,10,19], and those derived from signalling networks [6]. We
refer to them collectively as artificial biochemical networks (ABNs).

Traditionally, robotic control has been a popular application area for ABNs
[7,17,19]. In principle, it reflects one of the main biological roles of biochemical
networks: maintaining correct behaviour when exposed to a complex, dynamic,
environment. However, high overheads mean that it is generally not feasible to
use large populations or to carry out statistically significant numbers of trials,
limiting the use of robotic control as a testbed for studying ABNs. In this pa-
per, we take a different approach: we use ABNs to control numerical dynamical
systems. As a testing environment, this has a number of advantages: numerical
simulation is relatively fast, the dynamical properties are highly configurable,
and test conditions can be replicated between experiments. Control of dynamical
systems is also an important problem in its own right, having many applications
in science and engineering [15], including those in robotics [3].

A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 159–170, 2010.
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The paper is organised as follows: Section 2 introduces the dynamical systems
addressed in this paper, Section 3 introduces ABNs, Section 4 describes our
models and methodology, Section 5 presents results, and Section 6 concludes.

2 Dynamical Systems

A dynamical system [16] is any system whose subsequent state is determined by a
function, or evolution rule, of the system’s current state. Dynamical systems can
be discrete or continuous time: the evolution rule can be described by a difference
equation in the former, and a differential equation in the latter. Starting at a
particular point within the system’s state space, its initial conditions, the path
that the system follows through its state space, its trajectory, is determined by
iterating the evolution rule over a period of time. The set of possible trajectories
within the state space are known as the orbits of the system. Following initial
periods of wandering, transients, orbits may converge to limited parts of the
state space known as attractors. Dynamical systems in which all orbits converge
to one or more attractors are dissipative. Those which do not converge in this
fashion are conservative.

Perhaps the most interesting class of dynamical systems are those which dis-
play the complex, unpredictable dynamics known as chaos. Two of the main
hallmarks of a chaotic system are exponential sensitivity to initial conditions
and strange attractors. The former entails that small changes in initial condi-
tions can lead to wildly different trajectories through state space (a phenomenon
popularly known as the butterfly effect), whereas the latter are the complex, typ-
ically fractal, regions of state space to which these chaotic orbits converge.

In the following sections, we introduce two dynamical systems, the Lorenz
system and Chirikov’s standard map. Both of these display chaotic behaviour,
but otherwise lie at different ends of the classification spectrum: the former is a
continuous dissipative system, the latter is a discrete conservative system.

2.1 The Lorenz System

The Lorenz system [13] is a continuous-time dynamical system whose behaviour
is defined by the following set of differential equations:

ẋ = σ (y − x) ẏ = x(ρ − z) − y ż = xy − βz (1)

For ρ � 24.74, the Lorenz system displays chaotic behaviour, with all initial
points attracted to a single two-lobed strange attractor (see Fig. 1) which orbits
two unstable equilibrium points, which we term ε+ and ε−, located at:

ε+ = (
√

β(ρ − 1),
√

β(ρ − 1), ρ − 1) ε− = (−
√

β(ρ − 1),−
√

β(ρ − 1), ρ − 1) (2)

The attractor consists of an infinite number of unstable periodic orbits. These
are periodic in the sense that they orbit one or both of the fixed points a certain
number of times before returning to roughly the same location. The orbits are
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Fig. 1. A trajectory within the Lorenz attractor (σ = 10, ρ = 28, β = 8
3
), showing the

location of the unstable equilibrium points ε− and ε+. The heavy line shows one of the
unstable periodic orbits followed by the trajectory.

unstable in the sense that trajectories will follow them for only a limited period
of time before moving to another orbit. The dynamics of the system lead to
trajectories which appear to flip unpredictably between the two lobes of the
attractor.

2.2 Chirikov’s Standard Map

Chirikov’s standard map [5] describes a conservative discrete-time dynamical
system which iteratively maps points within the unit square1:

xn+1 = (xn + yn+1) mod 1 yn+1 = yn − k

2π
sin (2πxn) (3)

The map’s name follows from its ability to locally capture the behaviour of all
systems with co-existing chaotic and ordered dynamics. For low values of k,
the dynamics of the system are ordered, with initial points converging to cyclic
orbits which remain bounded on the y axis (see Fig. 2a). As k increases, islands
of chaotic dynamics begin to appear (see Fig. 2a–d). The map has a critical point
at kc ≈ 0.972. For k > kc, the chaotic islands are fully connected along the y
axis; meaning that, in principle, it is possible to follow a chaotic orbit from y = 0
to y = 1. However, the permeability of the central region increases only slowly
as k moves past kc [4] (see Fig. 2b–c). As an example of this, when k = 1.1,
using 1000 randomly chosen initial points and an upper limit of 106 iterations,
we measured a median transit time of 64000 iterations of equation 3 to move
from the bottom to the top of the map, with 27% of trajectories not reaching
the target within the upper limit.
1 Following [15], we do not take the modulus of the y co-ordinate, so y=0 and y=1

are not close, and the unit square as drawn recurs periodically along the y-axis.
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(a) k = 0.5 (b) k = 1.0

(c) k = 1.1 (d) k = 1.25

Fig. 2. Sampled orbits of the standard map for various values of k, showing the transi-
tion from ordered to chaotic behaviour as k increases. Each plot shows 200 trajectories
of length 500, with the same set of initial conditions used for each plot.

2.3 State Space Targeting

Chaos is found in many physical systems. The Lorenz system, for example, is
a model of dynamical phenomenon seen in atmospheric, laser, and electronic
systems [13]. Chaos leads to complex, unpredictable, behaviour; yet because of
its sensitivity to small perturbations, it is also inherently controllable. This has
led to considerable interest in methods for controlling trajectories within chaotic
dynamical systems, a process which is termed chaos control, or chaos targeting.
This is achieved by adjusting one or more of the system’s accessible parameters,
with the goal of perturbing the trajectory towards a desired orbit or location
within the state space. For dissipative systems such as the Lorenz system, chaos
control can be achieved using methods such as OGY [14], which use small per-
turbations to prevent the trajectory from leaving a particular unstable periodic
orbit. For conservative systems, such as Chirikov’s standard map, control strate-
gies are somewhat more complicated due to the heterogeneity of the state space.
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However, optimal targeting can be achieved by mapping the orbit structure and
using perturbations to cross between different regions of the state space [4,15].
For example, in [15], the authors calculate orbits which traverse the standard
map in ∼ 125 iterations when k = 1.25 and ∼ 600 iterations when k = 1.01.

3 Artificial Biochemical Networks

The structure and function of biological organisms emerges from the orches-
trated activities of the biochemical networks operating within individual cells.
Broadly speaking, there are three types of biochemical network within a cell: (i)
the metabolic network, which comprises the protein-mediated chemical reactions
that take place within the cell; (ii) the signalling network, which represents the
protein-mediated responses to chemical messengers received by the cell; and (iii)
the genetic regulatory network, which determines the proteins that are present in
a cell at any given time, and hence the structure of the metabolic and signalling
networks. These three types of biochemical network are reflected by three classes
of computational model:

Artificial Genetic Networks (AGNs): These model the regulatory interac-
tions which occur between genes in biological cells. The canonical AGN model is
the Boolean network (often referred to as a random Boolean network, or RBN).
In Kauffman’s [11] original model, an RBN consists of a set of genes, each of
which is either fully on or fully off and whose state is determined by a Boolean
function of other genes’ states. In effect, they are a generalisation of binary
cellular automata in which update rules can reference non-neighbouring cells
and functions are heterogenous. In practice, computation can be achieved in the
same way as cellular automata: by providing input via the initial activity state
of the genes, running an appropriate network for a certain number of time steps,
and then reading the output from the final activity states of the genes [7]. AGN
models can also be constructed using continuous values for gene expression and
continuous-valued regulatory functions [2,12,17].

Artificial Metabolic Networks (AMNs): The best known examples of
metabolic-level models are artificial chemistries [1]. An artificial chemistry con-
sists of a set of chemicals, a set of rules — which model the transformative agents
(such as enzymes) found in natural systems — and an algorithm that determines
when these rules are applied. Chemicals may be symbols to which some compu-
tational meaning can be associated [19], they may directly encode data struc-
tures, they may be overtly computational in nature, e.g. lambda-expressions [10],
or they may even be other ABNs [8]. Likewise, rules vary from simple symbolic
transformations to functional composition and complex structural modifications.
By encoding inputs and outputs in the concentration, internal structure or po-
sitioning of chemicals, these artificial chemistries have been applied to a number
of computational tasks, including robotics [19].
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Artificial Signalling Networks (ASNs): In biology, signalling networks have
the role of transducing environmental information to the metabolic and genetic
networks. In addition to delivering the information to the correct spatial loca-
tion(s), they are also responsible for integrating and pre-processing diverse in-
coming signals; a process which requires a host of cognitive activities [9]. Whilst
signalling networks have not yet received the same level of interest as the other
classes of biochemical network, artificial signalling networks do show potential
as a computational model [6].

4 State Space Targeting with ABNs

In this section, we report our work on using artificial biochemical networks to
carry out state space targeting in the Lorenz system and Chirikov’s standard
map. We use two ABN models: an artificial genetic regulatory network and an
artificial metabolic network. The AGN is a continuous-valued version of the
Boolean network model. The AMN is an artificial chemistry with continuous-
valued chemicals and transition rules. To allow meaningful comparison, both are
deterministic and use synchronous updates.

The artificial genetic network (AGN) consists of an indexed set of genes,
each of which has an expression level, regulatory inputs, and a regulatory func-
tion which maps the expression levels of its regulatory inputs to its own expres-
sion level. Formally: AGN =< G, LG, IG, OG >, where:

G is the indexed set of genes {g0, ..., gn : gi =< λi, Ri, fi >}, where:
λi : R is the expression level of a gene.
Ri ⊆ G is the set of regulatory inputs used by a gene.
fi : Ri → λi is a gene’s regulatory function.

LG is an indexed set of initial expression levels, where |LG| = |G|.
IG ⊂ G is the set of genes used as external inputs.
OG ⊂ G is the set of genes used as external outputs.

The AGN is executed as follows:

G1. λ0...λn are initialised from LG (if AGN not previously executed).
G2. Expression levels of enzymes in IG are set by the external inputs.
G3. At each time step, each gene gi applies its regulatory function fi to the

current expression levels of its regulating genes Ri in order to calculate its
expression at the next time step, λ′

i.
G4. After a certain number of time steps, execution is halted and the expression

levels of enzymes in OG are copied to the external outputs.

The artificial metabolic network (AMN) comprises an indexed set of enzyme-
analogous elements which transform the concentrations of an indexed set of real-
valued chemicals. Each enzyme has a set of substrates, a set of products, and a
mapping which calculates the concentrations of its products based upon the con-
centrations of its substrates. Formally: AMN =< C, E, LC , IC , OC >, where:
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C is the indexed set of chemical concentrations {c0, ..., cn : R}.
E is the indexed set of enzymes {e0, ..., en : ei =< Si, Pi, mi >}, where:

Si ⊆ C is the set of chemicals used by the enzyme (substrates).
Pi ⊆ C is the set of chemicals produced by the enzyme (products).
mi : R

n → R
n is the enzyme’s substrate-product mapping.

LC is an indexed set of initial chemical concentrations, where |LC | = |C|.
IC ⊂ C is the set of chemicals used as external inputs.
OC ⊂ C is the set of chemicals used as external outputs.

Execution of the AMN is similar to that of the AGN:

M1. C is initialised from LC (if AMN not previously executed).
M2. The concentrations of chemicals in IC are set by the external inputs.
M3. At each time step, each enzyme ei applies its mapping mi to the current

concentrations of its substrates Si in order to determine the new concentra-
tions of its products Pi. Where the same chemical is produced by multiple
enzymes, i.e. when ∃j, k : j �= k ∧ ci ∈ Pj ∩Pk, the new concentration is the
mean output value of all contributing enzymes.

M4. After a certain number of time steps, execution is halted and the concen-
trations of chemicals in OC are copied to the external outputs.

We also look at the effect of applying a mass conservation law, such that the
sum of chemical concentrations remains constant over time. This more closely
reflects biological systems, where mass balance results in indirect regulatory
interactions between chemical reactions. It is implemented by uniformly scaling
concentrations at the beginning of step M3 so that

∑
ci∈C ci = 0.5|C|.

4.1 Mappings

Regulatory (fi) and enzyme (mi) mappings are chosen from three parameteris-
able functions: a Sigmoid, the Michaelis-Menten equation, and the logistic map.

Sigmoids are often used to model the switching behaviour of non-linear biolog-
ical systems, and are therefore a natural choice for ABNs. For this, we use the
logistic function f(x) = (1 + e−sx−b)−1, where s ∈ [0, 20] determines the slope
and b ∈ [−1, 1] the slope offset (or bias). For multiple inputs, x =

∑n
j=0 ijwj ,

where i0...in are inputs and w0...wn ∈ [−1, 1] are corresponding input weights
(negative values indicating repression).

The Michaelis-Menten equation defines the kinetics of enzyme-mediated
reactions, making it particularly interesting from the perspective of AMNs. It
is a hyperbolic function, f(x) = vx(k + x)−1, where v ∈ [0, 1] is the asymptotic
value of the output and k ∈ [0, 1] determines the slope. For multiple inputs,
x =

∑n
j=0

ijwj

n , truncating negative values.

The logistic map is a discrete dynamical system with both ordered and chaotic
regimes, defined f(x) = rx(1−x), where r ∈ [0, 4] determines whether the system
exhibits a periodic or chaotic orbit. In effect, we are interested in whether evolved
ABNs can make use of ‘pre-packaged’ dynamics.
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4.2 Methods

ABNs are evolved using a standard generational evolutionary algorithm with
tournament selection (size 4), uniform crossover (p=0.15), and point mutation
(p=0.06). An ABN is represented as an array of genes (G) or enzymes (E), an
array of initial values (LG or LC), and an integer in the range [1, 100] specify-
ing the number of time steps for execution. To simplify analysis, the number
of genes, enzymes and chemicals are fixed at 10. Crossover points always fall
between gene or enzyme boundaries. Inputs and outputs (Ri, Si and Pi) are
represented by absolute references to array positions. Function parameters (e.g.
slopes, input weights) and initial values are represented as floating-point values
and are mutated using a Gaussian distribution centred around the current value.

For both problems, the ABN is provided with the current state space loca-
tion at the start of execution and outputs the new value for a specified control
parameter at the end of execution. Inputs are copied into the lowest-numbered
genes or chemicals and the output is taken from the highest numbered. All runs
are terminated after 50 generations.

Lorenz system: The goal is to find an ABN-based controller which can (i)
stabilise the system at its equilibrium points and (ii) move between the two
points as required. This is tested by requiring it to move from ε− to ε+ and
remain there for 5000 time steps, then return to ε−, remaining for another 5000
time steps. In order to do this, the ABN is allowed to modulate the Rayleigh
parameter, ρ (see Equ. 1), within the range [0,100]. For inputs, the ABN is given
the current location, < x, y, z > (values scaled from [−50, 50] to [0, 1]), and the
distance to the target, d. To make the problem more challenging, exact distance
is given only when the Euclidean distance to the target E < 2.0. Above this, it is
set to the maximum input value, i.e. d = min{1, E

2 }. The ABN generates a single
output, the new value of ρ. The Lorenz equations are numerically integrated
using the fourth-order Runge-Kutta method with a step size of Δt = 0.01. The
ABN is executed every 10 steps to get a new value of ρ. For s time steps,
fitness is

∑
s 1−d

s , rewarding stability at equilibrium points and short transients.
A population size of 500 is used (found to be suitable through trial-and-error).

Standard map: Following the examples of [4] and [15], the goal is to find a
controller which can navigate from the bottom to the top of the standard map in
the shortest number of steps. In order to do this, the ABN is allowed to modulate
parameter k in Equ. 3 within the range [1.0, 1.1]. We use the same initial and
target regions (shown in Fig. 5) as used in [15]. Inputs to the RBN are the current
position < x, y > and the Euclidean distance from the top-centre of the map,
and the single output is the new value of k. The evolved ABNs are evaluated on
20 random points within the initial region. Fitness is the mean number of steps
required for these trajectories to reach the target region. Trajectories which do
not reach the target region within 1000 steps are assigned an arbitrary figure of
2000 steps, biasing search towards controllers effective over all initial conditions.
A population size of 200 is used.
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5 Results

Results for the Lorenz system and the standard map are shown in Fig. 3. Effec-
tive controllers were found for both problems (see Figs. 4 and 5 for examples).
However, the two problems appear to need quite different ABN models: for the
Lorenz system, best performance comes from AMNs with conserved mass and
logistic maps; whereas best performance on the standard map comes from AGNs
with Sigmoid functions. Notably, the best solution for one problem is the worst
solution for the other; although this is perhaps unsurprising, given that the two
problems lie at opposite ends of the dynamical systems spectrum.

(a) Lorenz system. High numbers are better.

(b) Standard map. Low numbers are better.

Fig. 3. State space targeting using evolved ABNs with (C)onserved mass, (S)igmoids,
(M)ichaelis-Menten equations and (L)ogistic maps. Summary statistics of 50 runs are
shown as notched box plots. Overlapping notches indicate when median values (thick
horizontal bars) are not significantly different at the 95% confidence level. Kernel den-
sity estimates of underlying distributions are also given (in grey), showing that some
of the fitness distributions are multimodal.
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(a) Michaelis-Menten.
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(b) Logistic map.

Fig. 4. Example behaviours of evolved controllers moving between unstable points in
the Lorenz system via control of the Rayleigh parameter. Both controllers use AMNs
with conserved mass. (a) The Michaelis-Menten AMN (fitness 0.821) moves from ε−
to a distance within 1.0 of ε+ in 447 steps (broken line), returning to ε− in 454 steps
(unbroken line). (b) The logistic map AMN (fitness 0.872) does it in 182 and 170 steps,
respectively.
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Fig. 5. Example behaviour of an evolved controller guiding a trajectory from a re-
gion at the bottom of the standard map, (0.45,0)→(0.55,0.05), to a region at the top,
(0.45,0.95)→(0.55,1), in 83 steps. The standard map is plotted for k = 1.1.
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Perhaps the most interesting result is the positive effect of conserving mass
in the AMN model. In the Lorenz system, this effect is particularly significant
and appears critical for good performance. The effect of mass conservation is to
force covariance between the chemical concentrations. For example, if the con-
centration of one chemical increases, the concentrations of all other chemicals
are (stoichometrically) decreased. We can hypothesise that this causes a reduc-
tion in the number of effective variables of the system, reducing the search effort
required to find viable solutions. It also suggests the potentially important role
that conservation laws may play in reducing the effective complexity of more
biologically-realistic models.

Function choice also has interesting consequences: Michaelis-Menten equations
work relatively well on both problems, Sigmoids work well on the standard map,
but not so well on the Lorenz system, and logistic maps work well on the Lorenz
system but generally perform poorly on the standard map. Whilst the continuous
functions offer more consistent performance across the problems, the logistic map
did lead to the best overall solutions for the Lorenz system. As demonstrated by
Fig. 4, these achieve short paths using eccentric orbits, whereas Michaelis-Menten
solutions tend to follow smoother paths. It seems likely that the multimodal,
wide distributions of the AMNs using logistic maps reflect a trade-off between
expressiveness and evolvability.

6 Conclusions

In this paper, we have demonstrated how evolved artificial biochemical networks
(ABNs) can be used to control complex dynamical systems. Our results are
promising, showing that relatively simple ABNs are capable of state space tar-
geting within both the Lorenz system and Chirikov’s standard map — numerical
systems located at opposite ends of the dynamical systems spectrum. Notably,
our results on Chirikov’s standard map are broadly similar to the analytical
methods described in [4] and [15], but without requiring prior knowledge of the
system’s orbital structure. This supports the notion that ABNs can be used to
represent complex computational behaviours in evolutionary algorithms, such as
genetic programming, which evolve executable structures.

More generally, we have introduced the notion that dynamical systems are a
useful domain for studying ABNs. Our results support their use in comparing
the properties of different ABN models, illustrating that different models are
suited to different problems. In particular, we have shown the benefit of using a
conservation rule in the perturbation of ABN variables to introduce covariance
(e.g. masses in the AMN), highlighting the important role constraints may play
in guiding search towards viable solutions. Our results also show the sensitivity
of ABNs to function choice, and that iterative maps can provide a useful source
of pre-packaged dynamics in certain situations.

In future work, we plan to investigate a broader collection of ABN models
and dynamical systems, to analyse how the ABNs solve these problems, and to
look at how issues of evolvability and representation affect their ability to do so.
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Abstract. Geometric Differential Evolution (GDE) is a very recently in-
troduced formal generalization of traditional Differential Evolution (DE)
that can be used to derive specific GDE for both continuous and com-
binatorial spaces retaining the same geometric interpretation of the dy-
namics of the DE search across representations. In this paper, we derive
formally a specific GDE for the space of genetic programs. The result is a
Differential Evolution algorithm searching the space of genetic programs
by acting directly on their tree representation. We present experimental
results for the new algorithm.

1 Introduction

Differential Evolution (DE) is a population-based stochastic global optimization
algorithm [16] that has a number of similarities with Particle Swarm Optimiza-
tion (PSO) and Evolutionary Algorithms (EAs), and has proven to have robust
performance over a variety of difficult continuous optimization problems [16].
The search done by DE has a natural geometric interpretation and can be un-
derstood as the motion of points in space obtained by linear combinations of
their current positions to determine their new positions.

The original formulation of DE requires the search space to be continuous and
the points in space to be represented as vectors of real numbers. There are only
few extensions of DE to combinatorial spaces [16] [15] [2] [14] and to the space of
genetic programs [13]. Some of these works recast the search in discrete spaces as
continuous search via encoding the candidate solutions as vectors of real numbers
and then applying the traditional DE algorithm to solve these continuous prob-
lems. Other works present DE algorithms defined on combinatorial spaces acting
directly on the original solution representation that, however, are only loosely
related to the traditional DE in that the original geometric interpretation is lost
in the transition from continuous to combinatorial spaces. Furthermore, in the
latter approaches every time a new solution representation is considered, the DE
algorithm needs to be rethought and adapted to the new representation.

GDE [12] is a very recently devised formal generalization of DE that, in prin-
ciple, can be specified to any solution representation while retaining the original

A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 171–183, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



172 A. Moraglio and S. Silva

geometric interpretation of the dynamics of the points in space of DE across
representations. In particular, GDE can be applied to any search space endowed
with a distance and associated with any solution representation to derive for-
mally a specific GDE for the target space and for the target representation.
GDE is related to Geometric Particle Swarm Optimization (GPSO) [7], which is
a formal generalization of the Particle Swarm Optimization algorithm [3]. Spe-
cific GPSOs were derived for different types of continuous spaces and for the
Hamming space associated with binary strings [8], for spaces associated with
permutations [11] and for spaces associated with genetic programs [17].

In previous work [12], GDE was specialized to the space of binary strings
endowed with the Hamming distance and produced good experimental results. In
this paper, we extend the study of the GDE algorithm and apply it to searching
the space of computer programs represented as parse trees. The main purpose
of this paper is to show that this is at all possible, and in particular to show
that differential mutation, the core search operator of DE that casts it apart
from PSO and EAs, can be readily derived for this non-trivial representation.
We also present an initial experimental analysis of this new algorithm, which we
call GDE-GP.

The remaining part of the paper is organized as follows. Section 2 describes the
general GDE algorithm. Section 3 presents specific GDE search operators for parse
trees. Section 4 reports an initial experimental analysis for GDE-GP on standard
GP benchmark problems. Section 5 presents the conclusions and future work.

2 Geometric Differential Evolution

In this section, we summarize how the general GDE algorithm was derived (Al-
gorithm 2) [12] from the classic DE algorithm (Algorithm 1). The generalization
was obtained using a methodology to generalize search algorithms for continuous
spaces to combinatorial spaces [12] based on the geometric framework introduced
by Moraglio [6]. The methodology is sketched in the following. Given a search
algorithm defined on continuous spaces, one has to recast the definition of the
search operators expressing them explicitly in terms of Euclidean distance be-
tween parents and offspring. Then one has to substitute the Euclidean distance
with a generic metric, obtaining a formal search algorithm generalizing the origi-
nal algorithm based on the continuous space. Next, one can consider a (discrete)
representation and a distance associated with it (a combinatorial space) and use
it in the definition of the formal search algorithm to obtain a specific instance
of the algorithm for this space. Finally, one can use this geometric and declar-
ative description of the search operator to derive its operational definition in
terms of manipulation of the specific underlying representation. This methodol-
ogy was used to generalize PSO and DE to any metric space, obtaining GPSO
and GDE, and then to derive their search operators for specific representations
and distances. In particular for DE, the specific GDE for the Hamming space
associated with binary strings was derived. In Section 3, we derive the specific
GDE for the space of parse trees with Structural Hamming Distance (SHD) [9]
by plugging this distance in the abstract definition of the search operators.
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2.1 Classic Differential Evolution

In the following, we describe the traditional DE [16] (see Algorithm 1). The char-
acteristic that sets DE apart from other Evolutionary Algorithms is the presence
of the differential mutation operator (see line 5 of Algorithm 1). This operator
creates a mutant vector U by perturbing a vector X3 picked at random from
the current population with the scaled difference of other two randomly selected
population vectors F ·(X1−X2). This operation is considered important because
it adapts the mutation direction and its step size to the level of convergence and
spatial distribution of the current population. The mutant vector is then recom-
bined with the currently considered vector X(i) using discrete recombination
and the resulting vector V replaces the current vector in the next population if
it has better or equal fitness (in line 7 of Algorithm 1, higher is better).

Algorithm 1. DE with differential mutation and discrete recombination
1: initialize population of Np real vectors at random
2: while stop criterion not met do
3: for all vector X(i) in the population do
4: pick at random 3 distinct vectors from the current population X1, X2, X3
5: create mutant vector U = X3 + F · (X1 − X2) where F is the scale factor parameter
6: set V as the result of the discrete recombination of U and X(i) with probability Cr
7: if f(V ) ≥ f(X(i)) then
8: set the ith vector in the next population Y (i) = V
9: else
10: set Y (i) = X(i)
11: end if
12: end for
13: for all vector X(i) in the population do
14: set X(i) = Y (i)
15: end for
16: end while

2.2 Generalization of Differential Mutation

Let X1, X2, X3 be real vectors and F ≥ 0 a scalar. The differential mutation
operator produces a new vector U as follows:

U = X3 + F · (X1 − X2) (1)

The algebraic operations on real vectors in Equation 1 can be represented graph-
ically [16] as in Figure 1(a).

Unfortunately, this graphical interpretation of Equation 1 in terms of oper-
ations on vectors cannot be used to generalize Equation 1 to general metric
spaces because algebraic operations on vectors are not well-defined at this level
of generality. However, Equation 1 can be rewritten in terms of only convex
combinations of vectors. This allows us to interpret graphically this equation in
terms of segments and extension rays, which are geometric elements well-defined
on any metric space. Figure 1(b) illustrates the construction of U using convex
combination and extension ray. The point E is the intersection point of the seg-
ments [U, X2] and [X1, X3]. All the distances from E to the endpoints of these
segments can be determined from the coefficients of Equation 1 [12]. The point
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(a) (b)

Fig. 1. Construction of U using vectors (a) and construction of U using convex com-
bination and extension ray (b)

U can therefore be determined geometrically in two steps: (i) determining E as
convex combination of X1 and X3; (ii) projecting X2 beyond E (extension ray)
obtaining a point U at the known required distance from E. In the Euclidean
space, the constructions of U using vectors (Figure 1(a)) and convex combina-
tions (Figure 1(b)) are equivalent. For a detailed description of the relationship
between the two interpretations see [12].

Segments and extension rays in the Euclidean space can be expressed in
terms of distances, hence, these geometric objects can be naturally generalized
to generic metric spaces by replacing the Euclidean distance with a generic met-
ric [12]. The differential mutation operator U = DM(X1, X2, X3) with scale
factor F can now be defined for any metric space following the construction of
U presented in Figure 1(b) as follows:

1. Compute W = 1
1+F

2. Get E as the convex combination CX(X1, X3) with weights (1 − W, W )
3. Get U as the extension ray ER(X2, E) with weights (W, 1 − W )

The weight pair of CX can be thought of indicating the intensity of “linear
attraction” of E to X1 and X3 respectively. So, the larger the weight of X1 the
closer E will be to it. The weight pair of ER has an analogous meaning where
the weights refer to attraction of E to X2 and U respectively. However, notice
that the unknown in the ER case is a point of attraction (U), rather than the
point on which the attraction is exerted (E) as it was the case in CX .

After applying differential mutation, the DE algorithm applies discrete re-
combination to U and X(i) with probability parameter Cr generating V . This
operator can be thought as a weighted geometric crossover and readily general-
ized as follows: V = CX(U, X(i)) with weights (Cr, 1 − Cr) [12].

2.3 Definition of Convex Combination and Extension Ray

The notion of convex combination in metric spaces was introduced in the GPSO
framework [7]. The convex combination C = CX((A, WA), (B, WB)) of two
points A and B with weights WA and WB (positive and summing up to one)



Geometric Differential Evolution on the Space of Genetic Programs 175

Algorithm 2. Formal Geometric Differential Evolution
1: initialize population of Np configurations at random
2: while stop criterion not met do
3: for all configuration X(i) in the population do
4: pick at random 3 distinct configurations from the current population X1, X2, X3
5: set W = 1

1+F where F is the scale factor parameter
6: create intermediate configuration E as the convex combination CX(X1, X3) with weights

(1 − W, W )
7: create mutant configuration U as the extension ray ER(X2, E) with weights (W, 1 − W )
8: create candidate configuration V as the convex combination CX(U, X(i)) with weights

(Cr, 1 − Cr) where Cr is the recombination parameter
9: if f(V ) ≥ f(X(i)) then
10: set the ith configuration in the next population Y (i) = V
11: else
12: set Y (i) = X(i)
13: end if
14: end for
15: for all configuration X(i) in the population do
16: set X(i) = Y (i)
17: end for
18: end while

in a metric space endowed with distance function d returns the set of points C
such that d(A, C)/d(A, B) = WB and d(B, C)/d(A, B) = WA (the weights of
the points A and B are inversely proportional to their distances to C). When
specified to Euclidean spaces, this notion of convex combination coincides with
the traditional notion of convex combination of real vectors.

The notion of extension ray in metric spaces was introduced in the GDE
framework [12]. The weighted extension ray ER is defined as the inverse opera-
tion of the weighted convex combination CX , as follows. The weighted extension
ray ER((A, wab), (B, wbc)) of the points A (origin) and B (through) and weights
wab and wbc returns those points C such that their convex combination with A
with weights wbc and wab, CX((A, wab), (C, wbc)), returns the point B.

The set of points returned by the weighted extension ray ER can be charac-
terized in terms of distances to the input points of ER, as follows [12]. This char-
acterization may be useful to construct procedures to implement the weighted
extension ray for specific spaces.

Lemma 1. The points C returned by the weighted extension ray ER((A, wab),
(B, wbc)) are exactly those points which are at a distance d(A, B) ·wab/wbc from
B and at a distance d(A, B)/wbc from A (see [12] for the proof).

3 GP-Specific Search Operators for GDE

In order to specify the GDE algorithm to the specific space of genetic programs,
we need to choose a distance between genetic programs. A natural choice of
distance would be a distance (metric) associated to the Koza-style crossover
[4]. This would allow us to derive the specific GDE that searches the same
fitness landscape seen by this crossover operator. Unfortunately, the Koza-style
crossover is provably non-geometric under any metric [10], so there is no distance
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associated with it1 we can use as basis for the GDE. Another crossover operator,
the homologous crossover [5] is provably geometric under Structural Hamming
Distance (SHD) [9] which is a variant of the well-known structural distance
for genetic programming trees [1]. We use this distance as basis for the GDE
because we will be able to use the homologous crossover as a term of reference.
Notice, however, that in principle, we could choose any distance between genetic
programming trees as a basis of the GDE.

3.1 Homologous Crossover and Structural Hamming Distance

The common region is the largest rooted region where two parent trees have
the same topology. In homologous crossover [5] parent trees are aligned at the
root and recombined using a crossover mask over the common region. If a node
belongs to the boundary of the common region and is a function then the entire
subtree rooted in that node is swapped with it.

The structural distance [1] is an edit distance specific to genetic programming
trees. In this distance, two trees are brought to the same tree structure by
adding null nodes to each tree. The cost of changing one node into another can
be specified for each pair of nodes or for classes of nodes. Differences near the
root have more weight. The Structural Hamming Distance [9] is a variant of the
structural distance in which, when two matched subtrees have roots of different
arities, they are considered to be at a maximal distance (set to 1). Otherwise,
their distance is computed as in the original structural distance.

Definition 1. (Structural Hamming Distance (SHD)). Let T1 and T2 be trees,
and p and q their roots. Let hd(p, q) be the Hamming distance between p and q
(0 if p = q, 1 otherwise). Let si and ti be the ith of the m subtrees of p and q.

dist(T1, T2) = hd(p, q) if arity(p) = arity(q) = 0
dist(T1, T2) = 1 if arity(p) �= arity(q)
dist(T1, T2) = 1

m+1 (hd(p, q) +
∑

i=1..m dist(si, ti)) if arity(p) = arity(q) = m

Theorem 1. Homologous crossover is a geometric crossover under SHD [9].

3.2 Convex Combination

In the following, we first define a weighted version of the homologous crossover.
Then we show that this operator is a convex combination in the space of genetic
programming trees endowed with SHD. In other words, the weighted homologous
crossover implements a convex combination CX in this space.

Definition 2. (Weighted homologous crossover). Let P1 and P2 be two parent
trees, and W1 and W2 their weights, respectively. Their offspring O is generated
using a crossover mask on the common region of P1 and P2 such that for each
position of the common region, P1 nodes appear in the crossover mask with
probability W1, and P2 nodes appear with probability W2.
1 In the sense that there is no distance such that the offspring trees are always within

the metric segment between parent trees.
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Theorem 2. The weighted homologous crossover is (in expectation) a convex
combination in the space of genetic programming trees endowed with SHD.

Proof. The weighted homologous crossover is a special case of homologous
crossover so it is also geometric under SHD. Therefore, the offspring of the
weighted homologous crossover are in the segment between parents as required
to be a convex combination. To complete the proof we need to show that the
weights W1 and W2 of the weighted homologous crossover are inversely pro-
portional to the expected distances E[SHD(P1, O)], E[SHD(P2, O)] from the
parents P1 and P2 to their offspring O, as follows.

Given two trees P1 and P2, the SHD can be seen as a weighted Hamming dis-
tance on the common region of P1 and P2 where the weight wi on the distance of
the contribution of a position i in the common region depends on the arities of
the nodes on the path from i to the root node. For each position i of the common
region, the expected contribution SHDi(P1, O) to the distance SHD(P1, O) of
that specific position is directly proportional to wi and inversely proportional
to the weight W1 (so, E[SHDi(P1, O)] = wi/W1). This is because, from the
definition of weighted homologous crossover, W1 is the probability that at that
position the offspring O equals the parent P1. So, the higher this probability,
the smaller the expected contribution to the distance at that position. Further-
more the contribution to the distance is proportional to the weight wi of the
position i by definition of weighted Hamming distance. From the linearity of the
expectation operator, we have that E[SHD(P1, O)] = E[

∑
i SHDi(P1, O)] =∑

i E[SHDi(P1, O)] =
∑

i wi/W1 = 1/W1. The last passage holds true because
by definition of SHD the sum of the weights on the common region equals 1 (this
corresponds to the case of having two trees maximally different on the common
region and their distance is 1). Analogously, for the other parent one obtains
E[SHD(P2, O)] = 1/W2. This completes the proof.

3.3 Extension Ray

In the following, we first define two weighted homologous recombinations. Then
we show that these operators are extension ray recombinations in the space of
genetic programming trees endowed with SHD. The first recombination produces
offspring with the same tree structure as the second parent. The second recom-
bination is more general and can produce offspring with tree structure different
from both parents. From a geometric viewpoint, these weighted homologous re-
combinations implement two different versions of extension ray recombination
ER in the space of genetic programming trees endowed with SHD, where the
first operator produces a subset of the points produced by the second operator.

To determine a recombination that implements an extension ray operator,
it is useful to think of an extension ray operator, algebraically, as the inverse
operation of a convex combination operator. In the convex combination, the
unknown is the offspring C that can be determined by combining the known
parents P1 and P2. In the extension ray, the distance relationship between P1,
P2 and C is the same as in the convex combination, but P1 (the origin of the
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extension ray) and C (the point the extension ray passes through) are known,
and P2 (the point on the extension ray) is unknown, i.e., C = CX(P1, P2) can
be equivalently rewritten as P2 = ER(P1, C) depending whether C or P2 is the
unknown.

The first weighted extension ray homologous recombination is described in
Algorithm 3. The second recombination is the same operator as the first with
the following addition before line 6 in Algorithm 3. In the common region, if
two subtrees SA(i) and SB(i) coincide in structure and contents (not only if
their root nodes TA(i) and TB(i) coincide), put in the corresponding position
i in the offspring TC a random subtree SC (with in general different structure
and contents from SA and SB). Skip the remaining nodes in the common region
covered by SA(i) and SB(i).

Notice that, in the definition of the second recombination above, any arbi-
trarily large subtree SC could be generated to be included in TC . However, in
the implementation, its size should be limited. In the experiment, we generate
SC with the same number of nodes as SA and SB.

Algorithm 3. Weighted extension ray homologous recombination 1
Inputs: parent trees TA (origin point of the ray) and TB (passing through point of the ray), with
corresponding weights wAB and wBC (both weights are between 0 and 1 and sum up to 1)
Output: a single offspring tree TC (a point on the extension ray beyond TB on the ray originating
in TA and passing through TB)

1: compute the Structural Hamming Distance SHD(TA, TB) between TA and TB

2: set SHD(TB , TC) = SHD(TA, TB)·wAB/wBC (compute the distance between TB and TC using
the weights)

3: set p = SHD(TB , TC)/(1 − SHD(TA, TB)) (the probability p of flipping nodes in the common
region away from TA and TB beyond TB)

4: set TC = TB

5: for all position i in the common region between TA and TB do
6: consider the paired nodes TB(i) and TA(i) in the common region
7: if TB(i) = TA(i) and p > random number between 0 and 1 then
8: set TC(i) to a random node with the same arity of TA(i) and TB(i)
9: end if
10: end for
11: return tree TC as offspring

Theorem 3. The weighted extension homologous ray recombinations 1 and 2
are (in expectation) extension ray operators in the space of genetic programming
trees endowed with SHD.

Proof. First we prove that TC = ER(TA, TB) by showing that TB =
CX(TA, TC). Then we prove that the expected distances E[SHD(TA, TB)] and
E[SHD(TB, TC)] are inversely proportional to the weights wAB and wBC , re-
spectively.

Let us consider recombination 1. The offspring TC has the same structure
of TB. This is because TC was constructed starting from TB and then for each
node of the common region between TA and TB, TC was not changed or it was
randomly chosen but preserving the arity of that node in TB.

The structures of the common regions CR(TA, TB) and CR(TA, TC) coin-
cide. This is because the structure of the common region between two trees is
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only function of their structures. So, since TB and TC have the same structure,
CR(TA, TB) and CR(TA, TC) have the same structure.

The tree TB can be obtained by homologous crossover applied to TA and TC

(hence, TC = ER(TA, TB)). This can be shown considering two separate cases,
(i) nodes of TB inherited from the common region CR(TA, TC) and (ii) subtrees
of TB inherited from subtrees of TA and TC at the bottom of the common region.
Let us consider nodes on the common region. For each node with index i in the
common region, the node TB(i) matches TA(i) or TC(i). This is true from the
way TC(i) was chosen on the basis of the values of TA(i) and TB(i). We have two
cases. First, TC(i) was chosen at random, when TA(i) = TB(i). In this case TB(i)
can be inherited from TA(i), since it may be TB(i) �= TC(i) but TB(i) = TA(i).
Second, TC(i) was chosen to equal TB(i), when TA(i) �= TB(i). In this case TB(i)
can be inherited from TC(i). In either cases, for nodes on the common region
the corresponding nodes of TB can be inherited from TA or TC . The subtrees
of TB at the bottom of the common region can be inherited all from TC (both
structures and contents). Since by construction TC inherited those subtrees from
TB without modifying them.

To show that recombination 1 is a weighted extension homologous ray recom-
bination, we are left to show that the expected distances E[SHD(TA, TB)] and
E[SHD(TB, TC)] are inversely proportional to the weights wAB and wBC . The
probability p of flipping nodes in the common region away from TA and TB

beyond TB was chosen as an appropriate function of wAB and wBC and of
SHD(TA, TB) to obtain SHD(TB, TC) such that the above requirement holds
true. It is possible to prove that the chosen p is the correct one using the same
argument used in the proof of theorem 2.

Let us consider now recombination 2. In this case, the offspring TC by con-
struction may have structure different from TA and TB. Also, the structures of
the common regions CR(TA, TB) and CR(TA, TC) do not coincide. The struc-
ture of CR(TA, TC) is covered by the structure of CR(TA, TB) (CR(TA, TC) is
a substructure of CR(TA, TB)). The part of CR(TA, TB) that does not cover
CR(TA, TC) comprises subtrees that are identical in structures and contents in
TA and TB.

The tree TB can be obtained by homologous crossover applied to TA and TC

(hence, TC = ER(TA, TB)). This can be shown similarly as for recombination 1
but with an extra case to consider. Nodes of TB corresponding to nodes in the
common region CR(TA, TC) can be inherited from TA or TB. The subtrees of
TB at the bottom of the common region CR(TA, TC) can be inherited all from
TC (both structures and contents). The extra case is for the subtrees of TB that
are in the part of CR(TA, TB) that does not cover CR(TA, TC). These subtrees
cannot be inherited from TC , which differs form TB by construction, but they
can always be inherited from TA.

As for the requirement on the expected distances being inversely proportional
to the weights, the probability p can be chosen as the case for recombination 1
due to the recursive definition of SHD that treats nodes and subtrees uniformly.
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Now we have operational definitions of convex combination and extension ray
for the space of genetic programming trees under SHD. These space-specific
operators can be plugged in the formal GDE (Algorithm 2) to obtain a specific
GDE for the genetic programming trees space, the GDE-GP.

4 Experiments

This section reports an initial experimental analysis of the GDE-GP behavior
on four standard GP benchmark problems: Symbolic Regression of the quartic
polynomial, Artificial Ant on the Santa Fe trail, 5-Bit Even Parity, and 11-Bit
Multiplexer. In all these problems fitness is calculated so that lower values are
better. All the experiments used F = 0.8 and Cr = 0.9, according to [16]. Both
extension ray recombinations 1 and 2 were tested, giving rise to distinct tech-
niques we designate as GDE1 and GDE2. As a baseline for comparison we used
standard GP with homologous crossover (70%) and reproduction (30%), always
applying point mutation with probability 1/L, where L is the number of nodes of
the individual. We call this baseline HGP. All the experiments were performed
using populations of two different sizes (500 and 1000 individuals) initialized
with the Ramped Half-and-Half procedure [4] with an initial maximum depth of
8, allowed to evolve for 50 generations. Each experiment was repeated 20 times.
Statistical significance of the null hypothesis of no difference was determined
with pairwise Kruskal-Wallis non-parametric ANOVAs at p = 0.05.

Figure 2 shows the boxplots of the best fitness achieved along the run, using
populations of 500 individuals (top row) and 1000 individuals (bottom row).
With a population size of 500, in all four problems there is a statistically sig-
nificant difference between HGP and each of the GDE-GP techniques, and no
significant difference between GDE1 and GDE2. GDE-GP is consistently better
than HGP, regardless of the extension ray recombination used.

It may be argued that HGP is being crippled by such a small population size,
which may reduce diversity along the run. This could be true, because when
doubling the population size HGP significantly improves its best fitness of run
in all except the Parity problem. However, the GDE-GP techniques also show
significant improvements in most cases, and remain consistently better than
HGP, regardless of the extension ray recombination used, exactly as before.

However, the observation of diversity, measured as the percentage of geno-
typically distinct individuals in the population, revealed somewhat unexpected
results. Figure 3 (top row) shows the evolution of the median values of diversity
along the run, for both population sizes. Not only HGP shows no clear signs of
diversity loss, regardless of population size, but GDE-GP exhibits an extraordi-
narily varied behavior, approaching both extreme values in different problems (in
Regression and Artificial Ant it practically reaches 0% while in Parity it reaches
100%), in some cases undergoing large fluctuations along the run (Multiplexer).

Finally, in Figure 3 (bottom row) we look at the evolution of the median values
of average program length along the run, for both population sizes. Once again
GDE-GP behaves radically differently from HGP, with both GDE1 and GDE2
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Fig. 2. Boxplots of the best fitness achieved in each problem (× marks the mean).
Population sizes of 500 individuals (top row) and 1000 individuals (bottom row).
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Fig. 3. Evolution of the median values of diversity (top row) and average program
length (bottom row) in each problem

presenting large but smooth fluctuations in most problems, when compared to the
more constrained but somewhat erratic behavior of HGP. The most interesting
case is probably the Artificial Ant, where GDE-GP quickly and steadily increases
the average program length until a plateau is reached, followed by a steep decrease
to very low values. Curiously, there is no correspondingly interesting behavior in
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terms of the evolution of fitness (not shown), at least when observed in median
terms. Only in the Parity problem GDE-GP exhibits a behavior that would be
expected in standard (with subtree crossover) GP runs.

5 Conclusions

Geometric DE is a generalization of the classical DE to general metric spaces. In
particular, it applies to combinatorial spaces. In this paper we have demonstrated
how to specify the general Geometric Differential Evolution algorithm to the
space of genetic programs. We have reported interesting experimental results
where the new algorithm performs better than regular GP with homologous
crossover in four typical GP benchmarks using different population sizes. In
terms of diversity and average program length, neither technique seems to be
largely influenced by the population size, most differences being the product
of large individual variations. In the future we will deepen our study of the
interesting dynamics revealed by the new algorithm.
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Abstract. This paper examines the impact of semantic control on the ability of
Genetic Programming (GP) to generalise via a semantic based crossover operator
(Semantic Similarity based Crossover - SSC). The use of validation sets is also
investigated for both standard crossover and SSC. All GP systems are tested on
a number of real-valued symbolic regression problems. The experimental results
show that while using validation sets barely improve generalisation ability of GP,
by using semantics, the performance of Genetic Programming is enhanced both
on training and testing data. Further recorded statistics shows that the size of the
evolved solutions by using SSC are often smaller than ones obtained from GP
systems that do not use semantics. This can be seen as one of the reasons for the
success of SSC in improving the generalisation ability of GP.

Keywords: Genetic Programming, Semantics, Generalisation, Crossover.

1 Introduction

Genetic Programming (GP) [23,17] researchers are in recent times paying increasing at-
tention to semantic information, with a dramatic increase in the number of publications
(e.g., [11,12,13,15,14,2,21,24,25,3]). Previously, research has focused on syntactic as-
pects of GP representation. From a programmer’s perspective, however, maintaining syn-
tactic correctness is only one part of program construction: not only must programs be
syntactically correct but also semantically correct. Thus incorporating semantic aware-
ness in the GP evolutionary process could improve its performance, extending the appli-
cability of GP to problems that are difficult with purely syntactic GP.

In the field of Machine Learning (ML), generalisation has been seen as one of the
most desirable properties for learning machines [22]. As GP could be seen as a (evo-
lutionary) machine learning methodology, it is very important to guarantee that the
solutions GP finds, not only work well on training data but also on the unseen data [5].
Surprisingly, a lot of GP researchers only report results on training data. While over-
fitting the training data to get the exact solutions is suitable in some cases, for most of
learning problems in reality it would be not enough without considering their generali-
sation over unseen data. Some recent works (e.g. [5,26,9]) have showed that the ability
of GP to generalise could be poor. The awareness of the ability of GP to generalise
is also important in the context of performance comparison between different GP sys-
tems. It has been recently shown in [5] that an enhanced GP system performance might
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be remarkably better than standard GP on training data, but not significantly better on
unseen data.

The previous research on improving the ability of GP to generalise is mostly focused
on reducing the solution size [26,9,20]. The motivation for such an approach is that GP
usually bloats, with solution complexity (size) increasing rapidly during the evolution-
ary process. The high complexity solutions are often poor in their ability to generalise as
they contradict Ockham’s razor principles in Machine Learning [22] (simple solutions
are prefered). To the best of our knowledge, there has not been any work on the effect
of semantic control on the ability of GP to generalise. In this paper, we demonstrate a
new and semantic based approach to improve GP in finding solutions that have better
properties of generalisation. In particular, we test if a recently proposed semantics based
crossover, namely Semantic Similarity based Crossover (SSC) [25], could improve the
ability of GP to generalise. The experimental results show the effectiveness of the SSC
approach in comparison with both standard GP and the validation set based method.
The remainder of the paper is organised as follows. In the next section we review the
literature on GP with semantics and GP generalisation. The semantics based crossover
(SSC) is described in Section 3 followed by the experimental settings. The experimental
results are shown and discussed in Section 5. The last section concludes the paper and
highlights some future work.

2 Related Work

Although generalisation of learned solutions is the primary interest of any learning ma-
chine [22], it was not seriously considered in the field of GP for a long time. Before
Kushchu published his work on the generalisation ability of GP [19], there were rather
few research dealing with the GP generalisation aspect. Francone et al. [8] proposed a
new GP system called Compiling GP (CGP) and the authors compared its generalisa-
tion ability with that of other ML techniques. The results show that the ability of CGP
to generalise compares favourably with a number of more traditional ML methods. Fur-
thermore, the influence of using extensive mutation on the ablity of CGP to generalise
was investigated and the experimental results show positive effects [1].

Recently, the issue of generalisation in GP is deservedly receiving increased atten-
tion. Mahler et al. [20] experimented with Tarpeian Control on some symbolic regres-
sion problems and tested the side effects of this method on the generalisation ability of
GP. The results were inconsistent and problem dependent, i.e., it can either increase or
reduce the generalisation power of solutions found by GP. Gagne et al. [9] investigated
two methods to improve generalisation in GP-based learning: the selection of the best
of run individuals using a three datasets method (training, validation, and test sets), and
the application of parsimony pressure in order to reduce the complexity of the solutions.
Their experimental results indicate that using a validation set could slightly improve the
stability of the best of run solutions on the test sets. Costa et al. [4] proposed a new GP
system called relaxed Genetic Programming (RGP) with generalisation ability better
than standard GP.

More recently, Costelloe and Ryan [5] showed the important role of generalisation
on GP. They experimentally showed that a technique like Linear Scaling [16] may only
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be significantly better than standard GP on training data but not superior on testing data.
They proposed an approach to improve GP generalisation by combining Linear Scaling
and the No Same Mate strategy [10]. Vanneschi and Gustafson [26] improved GP gen-
eralisation using a crossover based similarity measure. Their method is to keep a list of
over-fitting individuals and to prevent any individual entering the next generation if it
is similar (based on structural distance or a subtree crossover based similarity measure)
to one individual in the list. The method was then tested on a real-life drug discovery
regression problem and the experimental results showed improvements on the ability to
generalise. Most research on improving the ability of GP to generalise has been purely
focused on reducing the complexity of the solution and semantic control has never been
considered as an approach to enhance ability of GP to generalise.

The use of semantics in GP has recently attracted increasing attention by re-
searchers in the field. There are three main approaches to representing, extracting,
and using semantics to guide the evolutionary process: (a) using grammar-based ap-
proaches [27,3,6], (b) using formal methods [11,13,15], and (c) based on GP s-tree rep-
resentations [2,21,24]. In [25], a more detailed review of semantics usage and control
in GP is given.

Most of previous research on semantics in GP were focused on combinatorial and
boolean problems such as the Knapsack problem [3], Boolean problems [2,21], and
Mutual Exclusion problems [15]. Recently, researchers have investigated the effect of
semantic control in GP for problems in real-valued domains [24,25,18]. Krawiec [18]
proposed a way to measure the semantics of an individual that is based on fitness cases.
This semantics is then used to guide crossover (Approximating Geometric Crossover -
AGC). The experiments conducted on both real-valued and boolean regression prob-
lems show that AGC is not better than standard subtree crossover (SC) on the tested
real-valued problems and only slightly better than SC on the boolean ones. Uy et al. [24]
proposed a new crossover operator, namely Semantics Aware Crossover (SAC), based
on checking the semantic equivalence of subtrees. SAC was tested on a family of real-
valued symbolic regression problems, and was empirically shown to improve GP per-
formance. SAC was then extended to Semantic Similarity based Crossover (SSC) [25].
The experimental results show that the performance of SSC is superior than both of SC
and SAC on the tested problems. However, the performance measure was more focused
on finding exact solutions (overfitting). It is interesting to see if this semantic based
operator could also help to improve the ability of GP to generalise.

3 Semantic Similarity based Crossover

Semantic Similarity based Crossover (SSC) [25] is inspired and extended from earlier
research on Semantics Aware Crossover (SAC) [24]. SSC described in this paper is
almost identical to that described by Uy et al. [25] with a slightly modified semantic
distance measure. Since SSC operates on the semantics of subtrees, first a defintion
of subtree semantics is needed. Formally, the Sampling Semantics of any (sub)tree is
defined as follows:

Let F be a function expressed by a (sub)tree T on a domain D. Let P be a set of
points sampled from domain D, P = {p1, p2, ..., pN}. Then the Sampling Semantics of
T on P on domain D is the set S = {s1,s2, ...,sN} where si = F(pi), i = 1,2, ...,N.
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The value of N depends on the problems. If it is too small, the approximate semantics
might be too coarse-grained and not sufficiently accurate. If N is too big, the approx-
imate semantics might be more accurate, but more time consuming to measure. The
choice of P is also important. If the members of P are too closely related to the GP
function set (for example, π for trigonometric functions, or e for logarithmic functions),
then the semantics might be misleading. For this reason, choosing them randomly may
be the best solution. In this paper, the number of points for evaluating Sampling Seman-
tics is set as the number of fitness cases of problems (30 points for F1,F3 and F5, 60
points for F2,F4 and F6, see Section 4), and we choose the set of points P uniformly
randomly from the problem domain.

Based on Sampling Semantics (SS), we define a Sampling Semantics Distance be-
tween two subtrees. In the previous work [25], Sampling Semantics Distance (SSD)
was defined as the sum of absolute difference of all values of SS. While the experiments
show that this kind of SSD is acceptable, it has undoubted weakness that the value of
SSD strongly depends of the number of SS points (N) [25]. To soften this drawback, in
this paper we use the mean of absolute distance as the SSD between subtrees. In other
words, let U = {u1,u2, ...,uN} and V = {v1,v2, ...,vN} be the SS of Subtree1(St1) and
Subtree2(St2) on the same set of evaluating values, then the SSD between St1 and St2 is
defined as follows:

SSD(St1,St2) =
|u1 − v1|+ |u2− v2|+ ....+ |uN − vN |

N
(1)

Thanks to SSD, a relationship known as Semantic Similarity is defined. The intuition
behind semantic similarity is that exchange of subtrees is most likely to be beneficial if
the two subtrees are not semantically identical, but also they are not too semantically
dissimilar. Two subtrees are semantically similar on a domain if their SSD on the same
set of points in that domain lies within a positive interval. The formal definition of
semantic similarity (SSi) between subtrees St1 and St2 is as follows:

SSi(St1,St2) = if α < SSD(St1,St2) < β
then true

else false

here α and β are two predefined constants, known as the lower and upper bounds for se-
mantic sensitivity, respectively. Conceivably, the best values for lower and upper bound
semantic sensitivity might be problem dependent. However we strongly suspect that
for almost any symbolic regression problem, there is a range of values that is appro-
priate [25]. The investigation of the effect of different semantic sensitivities on SSC
performance is beyond the scope of this paper. In this paper, we set α = 10−4 and
β = 0.4 which are good values found in the literature [25].

Inspired from the difficulty in designing an operator with the property of high locality
in GP, SSC was proposed with the main objective being to improve the locality of
crossover. SSC is in fact an extension of SAC in two ways. Firstly, when two subtrees
are selected for crossover, their semantic similarity, rather than semantic equivalence
as in SAC, is checked. Secondly, semantic similarity is more difficult to satisfy than
semantic equivalence, so repeated failures may occur. Thus SSC uses multiple trials
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Algorithm 1. Semantic Similarity based Crossover

select Parent 1 P1;
select Parent 2 P2;
Count=0;
while Count<Max Trial do

choose a random crossover point Subtree1 in P1;
choose a random crossover point Subtree2 in P2;
generate a number of random points (P) on the problem domain;
calculate the SSD between Subtree1 and Subtree2 on P
if Subtree1 is similar to Subtree2 then

execute crossover;
add the children to the new population;
return true;

else
Count=Count+1;

if Count=Max Trial then
choose a random crossover point Subtree1 in P1;
choose a random crossover point Subtree2 in P2;
execute crossover;
return true;

to find a semantically similar pair, only reverting to random selection after passing a
bound on the number of trials. Algorithm 1 shows how SSC operates in detail. In our
experiments, the value of Max Trial was set to 12, with this value having been calibrated
by earlier experimental results.

4 Experimental Setup

To investigate the impact of SSC on the ability of GP to generalise, we used six real-
valued symbolic regression problems. The tested problems, training and testing data are
shown in Table 1. These functions were taken from some other work on GP learning
generalisation [5,7,16]. It is noted that the testing sets are often much larger than the

Table 1. Symbolic Regression Functions

Functions Training Data Testing Data

F1 = x4 + x3 + x2 + x 30 random points ⊆ [-1,1] 100 ⊆[-1:0.02:1]
F2 = x3 − x2 − x−1 60 random points ⊆ [-1,1] 100 ⊆[-1:0.02:1]
F3 = arcsin(x) 30 random points ⊆ [-1,1] 200 ⊆[-1:0.01:1]
F4 =

√
x 60 random points ⊆ [0,4] 200 ⊆[0:0.02:4]

F5 = 0.3sin(2πx) 30 random points ⊆ [-1,1] 100 ⊆[-0.5:0.02:1.5]
F6 = cos(3x) 60 random points ⊆ [-1,1] 200 ⊆[0:0.01:2]
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Table 2. Run and Evolutionary Parameter Values

Parameter Value

Population size 500
Generations 50
Selection Tournament
Tournament size 3
Crossover probability 0.9
Mutation probability 0.05
Initial Max depth 6
Max depth 15
Max depth of mutation tree 5
Non-terminals +, -, *, / (protected version),

sin, cos, exp, log (protected version)
Terminals X, 1
Raw fitness mean absolute error on all fitness cases
Trials per treatment 100 independent runs for each value

training sets and in some cases they contain values that are not in the training intervals
(F5,F6). This makes the experimental setting more general.

The GP parameters used for our experiments are shown in Table 2. Despite this
being an experiment purely concerned with generalisation ability of crossover, we have
retained mutation with a small rate in the system because the aim of the experiment is
to study crossover in the context of a normal GP run. Our experiments were conducted
on four configurations as follows:

1. Standard Crossover (SC): The fitness is measured as the error rate on the whole
training set. The best-of-run individual is the individual with the lowest error rate
on the training set in entire evolutionary time. This individual was then tested on
the testing data set to give the result for solution generalisation capacity of the run.

2. Standard Crossover with Validation (SCV): The training set is randomly divided
into 2 (for each run): 67% is used for training (training set) and the remaining 33%
is used for validating (validation set). At each generation the fitness of individuals
is measured on the training set and this fitness is used for tournament selection. At
the same time, a two-objective trial (fitness and size of an individual) is conducted
in order to extract a set of non-dominated individuals (the Pareto front). The indi-
viduals in the Pareto front are then evaluated on the validation set, with the best
of run individual selected as the one of these with the smallest error rate on the
validation set. This configuration is similar to the validation configuration in [9].

3. Semantic Similarity based Crossover (SSC): This configuration is similar to Con-
figuration 1 with only one difference is that SSC is used stead of SC.

4. Semantic Similarity based Crossover with Validation (SSCV): This configuration
is similar to Configuration 2 but with SSC rather than SC.
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Table 3. Number of solutions of four schemas

Fs Ms
Training Validating Testing

GS MS BS US GS MS BS US GS MS BS US

F1

SC 22 76 2 0 - - - - 16 72 11 1
SSC 49 50 1 0 - - - - 39 59 3 1
SCV 28 71 1 0 29 65 6 0 14 71 14 1

SSCV 52 48 0 0 56 44 0 0 32 58 9 1

F2

SC 4 81 15 0 - - - - 5 69 26 0
SSC 15 85 0 0 - - - - 12 86 2 0
SCV 7 82 11 0 6 76 18 0 3 66 31 0

SSCV 18 79 3 0 18 79 3 0 13 74 13 0

F3

SC 62 38 0 0 - - - - 37 62 1 0
SSC 88 12 0 0 - - - - 71 29 0 0
SCV 65 35 0 0 68 32 0 0 24 74 20 0

SSCV 90 10 0 0 90 10 0 0 54 46 0 0

F4

SC 22 77 1 0 - - - - 4 88 7 1
SSC 34 64 0 0 - - - - 9 91 1 0
SCV 21 78 1 0 24 74 2 0 2 94 4 0

SSCV 29 70 1 0 38 60 2 0 2 95 3 0

F5

SC 0 99 1 0 - - - - 0 4 94 2
SSC 5 95 0 0 - - - - 1 5 91 3
SCV 1 99 0 0 0 94 6 0 0 2 92 6

SSCV 4 96 0 0 5 91 4 0 0 2 93 5

F6

SC 49 45 6 0 - - - - 40 8 41 11
SSC 61 38 1 0 - - - - 54 7 34 5
SCV 47 46 7 0 48 45 7 0 38 7 45 10

SSCV 59 38 3 0 58 37 5 0 51 4 40 5

5 Results and Discussion

To examine and compare the generalisation performance of these methods, we use a
new performance metric to measure the quality of solution of a run. For each run, we
select the best individual (based on its fitness on the training data sets or the validating
sets) as the final solution of the run. This solution is then tested on the testing sets. We
define ε = 5.10−3 as a constant to determine the quality of a solution. For a solution
with fitness f t on the training sets (or validating sets or testing sets respectively), we
classify it into four categories

1. A good solution (GS) if f t < ε
2. A moderate solution (MS) if ε ≤ f t <10ε
3. A bad solution (BS) if 10ε ≤ f t <100ε
4. An Unacceptable solution (US) if 100ε ≤ f t

The number of each category of solutions found on three data sets are shown in Table 3.
It can be seen from this table that SSC is consistently better than SC on the training sets.
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Table 4. Mean and Standard Deviation of the average of best fitness on three data sets. Note that
the values are scaled by 102.

Functions Methods
Training Validating Testing

Mean Std Mean Std Mean Std

F1

SC 1.54 1.23 - - 6.13 34.1
SSC 0.75 0.99 - - 2.17 9.10
SCV 1.30 1.09 1.57 1.79 3.86 10.2

SSCV 0.67 0.76 0.80 1.01 3.19 9.61

F2

SC 3.07 1.81 - - 3.88 2.42
SSC 1.38 0.84 - - 1.82 1.27
SCV 2.92 1.83 3.16 2.27 4.14 2.58

SSCV 1.62 1.32 1.64 1.42 2.53 2.45

F3

SC 0.61 0.70 - - 1.00 1.10
SSC 0.25 0.23 - - 0.49 0.44
SCV 0.55 0.54 0.54 0.79 1.06 1.01

SSCV 0.23 0.21 0.28 0.60 0.62 0.55

F4

SC 1.29 0.99 - - 1.84 1.50
SSC 0.85 0.75 - - 1.37 1.11
SCV 1.19 0.94 1.29 1.12 1.86 1.52

SSCV 0.99 1.07 1.17 1.76 1.56 1.29

F5

SC 2.40 0.87 - - 16.2 12.7
SSC 1.98 0.83 - - 14.1 12.6
SCV 2.35 0.78 3.01 1.19 18.4 19.6

SSCV 1.79 0.84 2.57 1.37 16.1 13.6

F6

SC 1.37 1.77 - - 20.0 28.5
SSC 0.66 0.98 - - 16.2 22.2
SCV 1.46 1.83 1.48 2.09 23.3 40.0

SSCV 0.84 1.37 1.19 2.32 17.8 25.6

These results are consistent with those in [25] where SSC was shown to be significantly
better than both SC and SAC. The results also show that SSC found good solutions
more often than SC on all problems. The number of moderate and bad solutions of SSC
are also significantly less than ones of SC. It is noted that none of the methods scored
unacceptable solutions on the training sets. This means that on the tested problems, it is
rather easy for all GP systems to overfit the training data. The table also shows that by
using validation sets, the solutions selected at the end of the runs have validation errors
almost similar to training errors and the solution quality of SSCV is also consistently
better than one of SCV.

The results on test sets show some deterioration in the quality of the solutions for all
methods. The table, however, also shows that the performance of SSC on the test sets is
still better than SC. SSC generate more good solutions and less bad and unacceptable
solution on the test sets regardless of how the test sets are designed. It confirms that
the generalisation power of GP is increased when equiped with SSC. In other words,
by adding semantic control via SSC, the performance of GP is improved not only on
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Table 5. The average size of population and the good solutions on training and testing sets

Fs
ASP ASGSTr ASGSTs

SC SSC SCV SSCV SC SSC SCV SSCV SC SSC SCV SSCV
F1 52.9 43.2 50.1 43.4 64.6 59.8 62.1 60.2 30.8 30.4 20.7 23.1
F2 58.0 55.6 57.6 55.4 83.1 43.1 59.2 77.8 38.5 29.6 38.0 58.0
F3 43.2 40.3 41.8 42.2 58.7 63.5 64.2 62.5 61.5 55.6 48.1 53.0
F4 51.5 48.0 51.7 48.9 65.3 52.3 54.7 49.2 73.8 80.7 53.2 57.0
F5 65.5 63.7 65.7 63.8 NA 50.4 87.5 51.2 NA 90 NA NA
F6 55.6 42.0 55.8 42.0 64.6 51.5 63.3 41.8 25.9 23.3 31.2 23.3

training data but also on unseen data. On the testing sets, solution quality of SCV and
SSCV are slightly worse than SC and SSC respectively. It seems that the generalisation
ability of both SC and SSC are not enhanced when the validation sets are used. It is not
entirely surprising as it was also shown that the use of a validation set only improves
the stability of the best-of-run solutions on the test sets and the improvement was not
significant [9].

The second performance metric used here is the mean and standard deviation of the
best fitness on three data sets. These results are presented in Table 4 (after the values are
scaled by 102 ). A Ranked Wilcoxon Test was also conducted to analyse if the use of
SSC results in significantly better solution quality over SC. The confidence interval is
95% and the results are printed bold face if they are statistically significant. The results
in this table are consistent with those in Table 3, i.e., SSC is significantly better than SC
on all tested functions both on the training and test sets. Unlike some other techniques
for improving GP generalisation [5], at least on similar testing problems, SSC does not
only improve the solution performance on the traning sets (overfitting) but also on the
test sets (generalisation). The table also shows that using validation sets does not help
to increase the power of SC or SSC. The superiority of SSCV over SC is mostly related
to its semantic control mechanism (with an exception on function F5).

Since there is a strong correlation between the complexity of solutions and their
ability to generalise (Ockham’s razor or Minimum Description Length - MDL princi-
ple [22], statistics on solution size were also recorded and analysed. This includes the
average size of a solution in the population (ASP), the average size of the good solu-
tions on the training sets (ASGSTr) and the average size of the good solutions on the
test sets (ASGSTs). These results are depicted in Table 5. In this table, when a method
could not find any good solution, NA is printed instead. It can be seen that the average
size of a solution in the population for SSC is constantly smaller than SC. It means
that SSC not only helps to improve GP solution quality but also to reduce code bloat.
This is important as the primary motivation of SSC is to design a crossover operator
based on semantic control but not to reduce size or code bloat (i.e., the control exerted
on the semantic level seems to have a positive consequence for the syntactic aspects of
the evolving programs). While the reason for reducing code bloat of SSC is not inves-
tigated in this paper, it seems that the better individuals in SSC tend to be smaller than
ones of SC. The results of the average size of the good solutions on the training sets
give more evidence for this conclusion. These results show that the ASGSTr of SSC
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is often smaller than one of SC (with one exception on function F3). These results can
be considered as one of the underlining reasons for the improvement in generalisation
power that SSC brings to a GP system.

The results in Table 5, contrary to those in Tables 3 and 4, also show the remarkable
effect of the use of validation sets. It shows that the good solutions found by using
validation sets (either with SC or SSC), are often smaller in size than without validation.
It is understandable as the methods with validation sets tend to select smaller solutions
to measure error on the test sets. The results are consistent with Gagne [9], where it was
also shown that the use of a validation set helps to reduce the size of the best individuals
of runs.

6 Conclusions and Future Work

In this paper, we investigated the impact of semantic control on the ability of GP to
generalise by using a recently proposed semantic based crossover, Semantic Similarity
based Crossover (SSC). The traditional approach for improving generalisation in the
field of GP in particular and Machine Learning in general by using validation sets was
also examined. Four GP systems were tested on a number of real-valued symbolic re-
gression problems. The empirical results shows a significant positive impact of semantic
control in GP on its generalisation ability, and limited effects of using validation sets
were observed (except in terms of the average size of good solutions). Further analysis
on the average size of individuals in the population and the solutions shows that using
semantics (via SSC) also helps to reduce GP code bloat. This leads to both significant
GP performance improvement and its ability to find simpler solutions.

Although the experiments provide strong evidence for the important role of semantic
control in reducing GP code bloat which leads to the improvement of GP generalisation,
it offers no explanation. We are aiming to investigate such causal relationship in the
future. It might be very important as it creates a bridge between semantic and syntactic
aspects of the GP evolutionary process. Furthermore, and perhap equally important,
we are planning to find the answer for the limited impact of validation sets in the GP
learning process as found on the problems examined here. Last but not least, we are also
intending to do a more comprehensive comparison between SSC generalisation ability
with some other generalisation methods in the GP literature (e.g. Tarpeian Control,
Relaxed GP, Linear Scaling and No same mate etc).
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Abstract. We discuss how to use a Genetic Regulatory Network as an
evolutionary representation to solve a typical GP reinforcement problem,
the pole balancing. The network is a modified version of an Artificial
Regulatory Network proposed a few years ago, and the task could be
solved only by finding a proper way of connecting inputs and outputs
to the network. We show that the representation is able to generalize
well over the problem domain, and discuss the performance of different
models of this kind.

1 Introduction

Knowledge of biological systems has come a long way since the inception of the
evolutionary computation field [1]. Their remarkable flexibility and adaptivity
seems to suggest that more biologically based representations could be applied
as representations for program evolution, i.e., Genetic Programming (GP). The
objective of this paper is exactly that - to apply a recent biological model as a
basis for some GP representations.

We are interested here in a complexification of the genotype-phenotype map-
ping, a process that seems to contribute to a higher evolvability of genomes [2].
A central piece of this mechanism is the regulation of genes by genes, what has
become known as Genetic Regulatory Networks (GRNs).

GRNs are biological interaction networks among the genes in a chromosome
and the proteins they produce: each gene encodes specific types of protein, and
some of those, termed Transcription Factors, regulate (either enhance or in-
hibit) the expression of other genes, and hence the generation of the protein
those genes encode. The study of such networks of interactions provides many
interdisciplinary research opportunities, and as a result, GRNs have become an
exciting and quickly developing field of research [3].

The question of how to use a GRN approach for GP is a challenge that is
being recognized only slowly by GP researchers. While some progress has been
made [4,5], there is yet to be proposed a proper unification of the counteracting
tendencies of networks to produce dynamics and continuous signals versus the
boolean logic and operator-operand-based methodology of traditional GP.
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In this contribution, we shall study whether and how the Artificial Gene Reg-
ulatory Model proposed in [6] can be used to achieve the function traditionally
implemented by control algorithms, by applying it to a classical benchmark
problem of control engineering, pole balancing.

Along the way, we hope to learn how to use this type of representation for
problems usually solved with less evolvable representations. Our goal is to arrive
at a flexible and at the same time very general representation useful in GP in
general. While we are not there yet, we have made progress notably by find-
ing ways to couple input and output to artificial GRNs, a feature of utmost
importance in Genetic Programming.

This paper is organised as follows. Section 2 describes the GRN model used,
along with an analysis of its behaviour and modifications done in order to adapt
it to the evolution of solutions for typical GP problems. Section 3 then describes
the problem and the evolutionary algorithm we shall use to solve it. Section
4 describes some of the experiments conducted, and finally Section 5 draws
conclusions and discusses future work directions.

2 Artificial Gene Regulatory Model

2.1 Representation and Dynamics

The model used in this work [6] is composed of a genome, represented as a
binary string, and mobile proteins, which interact with the genome through
their binary signatures: they do so at regulatory sites, located upstream from
genes. The resulting interaction regulates the expression of the associated gene.

Genes are identified within the genome by Promoter sites. These consist of
an arbitrarily selected 32 bit bit pattern: the sequence XYZ01010101 identifies a
gene, with X, Y and Z representing each an arbitrary sequence of 8 bits.

If a promoter site is found, the 160 bits (5×32) following it represent the gene
sequence, which encodes a protein. This protein (like all others in the model) is
a 32 bit sequence, resulting from a many-to-one mapping of the gene sequence:
each bit results from a majority rule for each of the five sets of 32 bits.

Upstream from the promoter site exist two additional 32 bit segments, repre-
senting the enhancer and inhibitor sites: these regulate the protein production
of the associated gene. The attachment of proteins to these regulatory sites is
what regulates this production. Fig. 1 illustrates the encoding of a gene.

The binding of proteins to the regulatory sites is calculated through the use of
the XOR operation, which returns the degree of match as the number of bits set
to one (that is, the number of complementary bits between both binary strings).

The enhancing and inhibiting signals regulating the production of protein pi

are calculated by the following equation:

ei, hi =
1
N

N∑
j=1

cj exp(β(uj − umax)) (1)

where N is the total number of proteins, cj is the concentration of protein j,
uj is the number of complementary bits between the (enhancing or inhibitory)
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XYZ010 0 01 1 1

32 bits32 bits

Enhancer
site

Inhibitor
site

Promoter
site

Gene
information

160 bits32 bits

Protein

32 bits

Fig. 1. Bit string encoding of a gene. If a promoter site is found, the gene information
is used to create a protein, whose quantity is regulated by the attachment of proteins
to the enhancer and inhibitor sites.

regulating site and protein j, umax is the maximum match observed in the cur-
rent genome, and β is a positive scaling factor. Because of the exponential, only
proteins whose match is close to umax will have an influence here.

The production of pi is calculated via the following differential equation:

dci

dt
= δ(ei − hi)ci − Φ(1.0) (2)

where δ is a positive scaling factor (representing a time unit), and Φ(1.0) is a
term that proportionally scales protein production, ensuring that

∑
i ci = 1.0,

which results in competition between binding sites for proteins.

2.2 Initialisation

Genomes can be initialised either randomly, or by using a duplication and mu-
tation technique [6]: it consists in creating a random 32 bit sequence, followed
by a series of length duplications with a typical low mutation rate associated. It
has been shown [7,8] that evolution through genome duplication and subsequent
divergence (mostly deletion) and specialisation occurs in nature.

In the following, genomes that have been initialized using a sequence of Dupli-
cations and Mutations will be termed “DM-genomes” by contrast to the “random
genomes”.

2.3 Input/Output

Most GP-like problems associate a given set of input values with a set of re-
sponses (or outputs), and then measure the fitness of an individual as the differ-
ence between the responses obtained and the known correct outputs. However,
the model as presented in [6] is a closed world. This Section will now extend it
with I/O capabilities, so that it can be applied to typical GP problems.

Model Input. In order to introduce the notation of an input signal, the current
model was extended through the insertion of extra proteins : regulatory proteins
not produced by genes, which are inserted into the model at a given time.
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Like the proteins which are produced by the genes in the model, these are
also 32-bit binary strings, and like the other regulatory proteins, they cooperate
in the regulation of the expression of all genes, through the application of Eq. 1.
However, since they are not produced by specific genes, their concentration is
always the same across time (unless intentionally modified, see below).

As these are regulatory proteins, their concentration is considered to take up
part of the regulatory process. This means that the differential equation used
(Eq. 2) to calculate the expression level of TR-genes is changed as follows:

dci

dt
= δ(ei − hi)ci − Φ(1.0 −

Nep∑
j=N+1

cj) (3)

where N + 1, . . . , Nep are the indices of the extra proteins in the model, and
Φ(1.0−∑Nep

j=N+1 cj) is a term that proportionally scales protein concentrations,
such that the sum of all protein concentrations (gene expression and extra pro-
teins) adds up to 1.0.

These extra proteins can be associated with problem inputs in two ways:

– The binary signatures of the proteins represent the input values;
– The concentrations of the proteins represent the input values.

Each has its advantages and disadvantages. Setting binary signatures allows
evolution to exploit binary mutation to find useful matches between binary sig-
natures, but has a low resolution for continuous domains. Setting quantities is
more adequate to represent continuous domains, but can be hard to tune - a low
extra protein concentration will hardly influence the regulatory process, whereas
a high concentration might crush the role of TF-genes.

Model Output. As mentioned before, each gene in the model encodes a tran-
scription factor, which is used in the regulatory process. In nature, however, these
are only a subset of the proteins expressed by genes. One could have proteins
with different roles in the model, and use some as outputs of the model.

Keeping this idea in mind, the model has been adapted, so that different kinds
of promoters can be detected, to identify different types of gene. This allows one
to give specific roles to the proteins produced by each type of gene.

In this work, two types of genes were identified in the model: genes encoding
transcription factors (TF-genes) and genes encoding a product protein (P-genes).
The first ones act just like in the original model [6]: their proteins regulate
the production of all genes, regardless of their type. The second ones are only
regulated: their actual output signal is left for interpretation to the objective
function. In order to identify different types of genes, the genome is scanned for
different promoter sites. Dropping the ambiguous sequence used in the original
model (see Section 2.1), the following binary sequences were used: XYZ00000000
to identify TF-genes, and XYZ11111111 to identify P-genes, as they have both
the same probability of appearing (and no overlapping of their signatures).

Note that a previous approach for extracting an output signal from this model
exists [9], where a random site of the genome is used as a regulation site, but
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despite the results achieved, it does not offer the same degree of flexibility as the
technique now presented.

Dynamic Analysis. Several possibilities exist, when choosing the dynamic
equation to use when calculating the concentration of P-proteins. In order to keep
with the nature of the model, equations based on the calculation of concentration
of TF-proteins were tested; the following equation was used:

ct
i = ct−1

i + δ(ei − hi) − Φ(1.0) (4)

where ct
i is the concentration of the P-protein at time t, ct−1

i its concentration
at time t − 1, ei and hi are calculated as before at time t − 1, and Φ(1.0) is a
scaling factor, ensuring the sum of all P-proteins concentrations1 is 1.0.

This equation was chosen as it seems to give P-genes similar dynamics to
TF-genes, for both random genomes and DM-genomes.

3 The Problem: Single-Pole Balancing

The potential of using gene regulatory networks as a representation for an Evo-
lutionary Algorithm lies in their possibly rich, non-linear dynamics [9]. A famous
dynamic control benchmark is the pole-balancing problem [10,11], also known
as the inverted pendulum problem. It consists in controlling, along a finite one
dimensional track, a cart on which a rigid pole is attached. The command is a
bang-bang command: the user can apply a constant force to either side of the
cart. The objective is to keep the pole balanced on top of the cart, while keeping
the cart within the (limited) boundaries of the track.

There are four input variables associated with this problem:

x ∈ [−2.4, 2.4] m is the position of the cart, relative to the centre;
θ ∈ [−12, 12] ◦ is the angle of the pole with the vertical;
ẋ ∈ [−1, 1] m/s is the velocity of the cart on the track;
θ̇ ∈ [−1.5, 1.5] ◦/s is the angular velocity of the pole.

The physical simulation of the cart and pole movements is modelled by the
following equations of motion:

θ̈(t) =
g sin θ(t) − cos θ(t)

(
F (t)+mlθ̇(t)2 sin θ(t)

mc+m

)
l
(

4
3 − m cos2 θ(t)

mc+m

)

ẍ(t) =
F (t)+mlθ̇(t)2 sin θ(t)

mc+m − ml ¨θ(t) cos θ(t)
mc + m

where g = 9.8 m/s2 is the gravity, l = 0.5 m the half-pole length, F (t) = ±10 N
is the bang-bang command allowed, m = 0.1 kg and mc = 1.0 kg are the masses
of the pole and the cart respectively.
1 Concentrations of TF-proteins and P-proteins are normalised independently.
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A time step of 0.02s is used throughout the simulations. A failure signal is
associated when either the cart reaches the track boundaries (x = ±2.4m), or
the pole falls (i.e., |θ| > 12◦).

The resulting controller accepts the four inputs, and outputs one of two an-
swers: push the cart left or right (with constant force F (t) = ±10N).

3.1 Encoding the Problem

The four inputs were encoded using extra proteins, as explained in Section 2.3.
These had the following signatures:

x: 00000000000000000000000000000000 θ: 00000000000000001111111111111111
ẋ: 11111111111111110000000000000000 θ̇: 11111111111111111111111111111111

They were chosen such that their signatures are as different as possible. Their
concentration dictates their value: each of them had the corresponding value of
the input variable, scaled to the range [0.0, 0.1]. This means that the cumulated
regulatory influence of these extra proteins ranged from 0% up to 40%.

The GRN was allowed to stabilize first, and then tested against a random
cart state, as seen in the literature. This is thus a very noisy fitness function,
as several combinations of the four input variables result in unsolvable states
(i.e. the pole cannot be balanced). Success is dictated by a successful series of
120000 time steps without the cart exiting the ±2.4m track, or the pole falling
beyond the ±12◦ range. The (minimising) fitness is thus:

F (x) =
120000

sucessful time steps

The output action extracted from the genome is the concentration of a single
P-protein: a concentration above 0.5 pushes the cart right, and vice-versa. In
the current work, all P-genes that are present in the genome are tested, and the
most successful one is used.

As relevant concentration must be close to 0.5, small genomes were used (the
higher the number of P-genes, the lower the probability of having a 0.5 P-protein
concentration). The genomes were hence initialised with only 7 DM events, with
2% mutation rate, generally leading to very small genomes.

As an alternative to this approach, another technique was used, which consists
in extracting the derivative of the chosen P-gene expression: if the derivative
is positive between measuring times (i.e. if the concentration of the P-protein
increased), then the cart is pushed right; otherwise, it is pushed left. If there was
no change in its concentration, then the previous action is repeated.

Another choice lies with the synchronisation between the cart model and
the regulatory model, that is, when to extract the current concentration of the
elected P-protein and feed it to the cart model. As the interval of update for
the cart model is 0.02s, the interval of measurement of the P-gene was set to
2000 time steps. This is however arbitrary, and could become a parameter to
optimise, as it could be set differently for different genomes (some genomes have
slower reactions, others have faster ones).
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3.2 The Evolutionary Algorithm

The evolutionary algorithm used to evolve the binary genomes was an evolution-
ary strategy (250+250)−ES: 250 parents give birth to 250 offspring, and the best
250 of all 500 are used as the new parent population; a maximum of 50 iterations
were allowed. The only variation operator used was a simple bit-flip mutation,
set to 1% and adapted by the well-known 1/5 rule of Evolution Strategies [12]:
when the rate of successful mutations is higher than 1/5 (i.e. when more than
20% mutation events result in a reduction of the error measure), the mutation
rate is doubled; it is halved in the opposite case. However, to avoid stagnation
of evolution, if the number of mutation events (i.e. the number of bits flipped
per generation) drops below 250, the mutation rate is doubled.

4 Results and Analysis

Fig. 2 shows the average fitness evolution for 50 independent runs, for both
expression measurement approaches. Both approaches solve the problem quite
fast, but it is obvious that using product tendency gives faster convergence to
an optimal solution. This is an expected result: when using P-protein absolute
values, the concentration of a P-protein has to be fairly close to 50%, in order
to provide a solution. However, when using P-protein tendency, the starting
concentration of the P-protein has no influence on the behaviour of the cart.
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Fig. 2. Mean best individual per generation for the pole-balancing problem, when using
P-protein concentration (left) or tendency (right). All results are averaged across 50
runs; error bars plot variance between runs.

4.1 Generalisation Performance

Whitley et al. [11] proposed a generalisation test to assert whether the discovered
solution is robust. Once a controller is evolved that can balance the pole for
120000 time steps with a random setup, the evolution cycle is stopped, and
this controller is applied to a series of generalisation tests. These consist of
combinations of the four input variables, with their normalised values set to the
following: 0.05, 0.275, 0.50, 0.725, and 0.95. This results in 54 = 625 initial cases.
The generalisation score of the best individual found is thus the number of test
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Table 1. Generalisation results. Number of successful attempts to balance the pole for
1000 time steps, out of 625 test cases.

Approach Best Worst Median Mean Std. Dev.
Product random genomes 422 3 194 202.18 110.01

Percentage DM-genomes 416 23 237 235.68 107.85
Product random genomes 359 0 63 85.82 66.99
Tendency DM-genomes 187 7 77 81.40 48.33

cases out of these 625, for which the controller manages to balance the pole for
1000 time steps.

All 50 runs found solutions for this problem, using either P-protein concen-
trations or P-protein tendencies (for both random and DM-genomes). At the
end of each run, the generalisation test was applied to the best individual in the
population; Table 1 shows the results obtained.

The results obtained show little difference between random and DM-genomes.
However, there is a big difference between using P-proteins concentrations or
tendencies, with the former achieving much better results. When using product
tendency, the concentration of P-proteins can easily become 0%: the previous
move is then repeated, and keeps moving the cart leftwards. This creates a disas-
sociation between the product expression and the cart behaviour, which becomes
a handicap when applying the model to some of the harder generalisation tests.

Note that many of the generalisation tests are unsolvable. After an exhaustive
search of all possible bang-bang solutions up to 60 steps of simulation, 168 tests
were found unsolvable (execution time constrains prevented a deeper search). This
means that an ideal controller can only solve 457 (or less) cases. It also shows that
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the best result found (422 tests solved), although not as high as one of the best in
the literature (446 solved cases [11]), is still quite close to the optimum.

Fig. 3 shows a plot of all the generalisation tests that are not solvable at depth
60, and those that are additionally not solved by the best random and DM-
genome. It shows that cases where θ and θ̇ both take large or small values (i.e. a
large angle in absolute value, together with a large angular velocity increasing
this angle) are unsolvable, and that both genomes additionally fail on cases
that are close to these unsolvable cases. It is interesting to see however how the
unsolved cases of the DM-genome are mostly symmetric in terms of the matrix
of test cases, whereas the random genome is far more unbalanced. This has to
do with the sinusoidal nature of the controllers generated by random genomes,
as can be seen in the next section.

4.2 Pole Balancing Behaviour of Typical Networks

Fig. 4 shows example behaviours of the 2 best evolved regulatory models (random
and DM, using P-protein concentrations), applied to 3 different generalisation
cases.

It is interesting to observe the different approaches to solve the same gen-
eralisation test. In particular, one can see how the random genome is quite

x = 0 m θ = −5.4 ◦ ẋ = 0 m/s θ̇ = −1.35 ◦/s
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sinusoidal in its approach, whereas the DM-genome generates a much more lin-
ear behaviour.

4.3 Resulting Networks: A Typical Example

Fig. 5 shows the regulatory networks extracted from the best performing ran-
dom and DM-genomes, at a threshold of 19 (i.e. only connections with a match
larger than 19 are represented, the other ones having a negligible impact on the
regulation – see Eq. 1). Even with such a low number of genes, one can see that
the regulatory interactions are quite complex. Gene G6 seems to act as a central
regulatory node on the random genome, whereas that role is taken up by G1
in the DM-genome. Note also how few connections exist to the chosen P-genes
(G1 and G3, respectively); however, the extra protein P4 (representing the rate of
change of the pole, θ̇) is directly connected to these on both genomes. This could
very well be a mechanism for stronger reaction to changes of θ̇, which has been
shown to greatly influence the success rate of a balancing attempt (see Fig. 3).

Fig. 5. Regulatory networks extracted from best performing random (left) and DM-
genome (right). Hexagon nodes represent TF-genes, double hexagon nodes represent
P-genes, the triple hexagon represents the chosen P-gene, and triangles represent the
4 extra proteins. The networks were drawn using a threshold value of 19.

5 Conclusions

One of the main objectives of this paper was to investigate the possibility of
using GRNs as a new representation for program synthesis through Genetic
Programming. Our motivation was that today’s mainstream Evolutionary Com-
putation (EC) approaches are by and large crude simplifications of the biological
paradigm of natural evolution, not taking into account many advances of biolog-
ical knowledge in the recent past [1]. The artificial GRN model used [6] presents
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an interesting balance between biological accuracy and computational potential,
and was proposed as a good basis to introduce more accurate biological basis
for EC.

The results obtained show that there is a clear computational potential within
the model; it should therefore be possible to use other similar models as basis
for EC techniques.

The adaptation of such models to EC is not straightforward. As these are
mostly complex systems, a thorough comprehension of their exact dynamics is
often not possible. The choice of how to encode inputs and outputs is also not a
simple issue, and can greatly influence their computational potential.

Another key issue is the execution speed. While their biological equivalent sys-
tems are extremely fast, at the moment these computer models are somewhat
slow, and the model used here is no exception. In order to accelerate the regu-
latory reactions, several tricks were used, such as adapting the sampling time of
the differential equation (the δ parameter), and parallelization by distributing
the evaluation of genomes across a cluster – the resulting average execution time
of a single run was around 25 minutes, when executing the code on 8 recent
machines running in parallel. Of course, a fascinating possibility to overcome
this issue would be to synthesize the resulting GRN into biological medium.

Regarding this problem, some parameters could be optimized (e.g. by evo-
lution). First, the signature and concentration of the extra proteins: a deeper
understanding of their influence on the regulatory process is necessary; it could
very well be that their influence is far too strong for the moment.

Second, the synchronisation between the biological and physical models. As
mentioned before, different models have different reaction times (for example,
stabilization times for genomes of this size may go from a few thousand iterations
up to hundreds of thousands); each genome would therefore need to tune its
synchronisation period individually.

Future work will now focus on extensive testing of the new extended GRN
model on various problem domains. The most promising ones seem to be dynamic
control problems, as these might profit the most from the remarkable dynamic
properties of the model. But the flexibility of this representation allows one to
imagine more GP-like approaches. For example, even though only 2 types of
proteins were used, a lot more could be introduced - and potentially represent
the equivalent of GP functions or terminals. The change of their concentrations
over time could then represent priorities of execution, or even probabilities. Work
is under way to explore these new avenues of investigation.
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Abstract. Averaging data collected in multiple independent runs across genera-
tions is the standard method to study the behaviour of GP. We show that while
averaging may represent with good resolution GP’s behaviour in the early stages
of a run, it blurs later components of the dynamics. We propose two techniques
to improve the situation: solution-locked averaging and solution-time binning.
Results indicate that there are significant benefits in adopting these techniques.

1 Introduction

In recent work on averaging event-related potentials (ERPs) [5], we highlighted the
fact that while averaging temporal sequences of data points has the beneficial effect
of reducing noise, it also presents a serious drawback. When some of the components
(or waves) of a signal occur at different times in different trials, a blurring effect takes
place as a result of averaging, i.e., averaging may introduce systematic errors while it
reduces stochastic ones. This limits how much we can learn from standard temporal
averages. While the problem has been known for a long time in electrophysiology (e.g.,
see [4,2,7]), no easy solution is available. [5] suggested the use of a simple technique
to reduce this blurring effect: subdividing the data into bins based on the time at which
subjects gave their response. Bin optimisation via GP further improved results [1].

The similarity between the averaging of ERPs and standard analysis practise in GP
is striking. Statistics such as mean and best fitness, fitness standard deviation, diversity,
solution size, etc. are routinely recorded during GP runs. Because GP is stochastic, mul-
tiple independent runs of the system are performed and the statistics recorded in each
run are then combined, typically by averaging the data corresponding to each genera-
tion. So, if averaging of ERPs presents problems of blurring and mis-representation of
statistics, then we may expect averaging to produce similar effects also in GP.

To understand this let us consider the typical dynamics of GP runs. For many prob-
lems runs are not homogeneous marches towards a solution. Runs may have different
phases, e.g., an initial period of rapid evolution, followed by one or more periods of
quasi stagnation separated by short transients of rapid evolution when improved solu-
tions are found. While events of this kind will be present in most runs, not all runs will
have the same events. For example, unsuccessful runs will lack the final rush to the so-
lution. Also, even when qualitatively the same events occur in some runs, it is unlikely
that these will always occur at exactly the same time in different runs.

Why is this a problem? Let us imagine the statistics gathered over three indepen-
dent runs presented a rapid initial increase in the measurements followed by a static
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c© Springer-Verlag Berlin Heidelberg 2010



Solution-Locked Averages and Solution-Time Binning in Genetic Programming 209
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Fig. 1. Example of distortions produced by averaging: standard (generation-1-locked) averaging
(left) and solution-locked averaging (right)

period which eventually led to discovering a solution and a final rapid convergence of
the population towards it. This is shown in Fig. 1(left). The initial rapid growth is phase
locked with the start of the run while the final rapid growth occurs at different genera-
tions in different runs. Averaging the data in the traditional way (bottom left) correctly
represents the initial rapid growth present in the three runs starting from generation 1.
Averaging, however, turns the second phase of rapid increase which occurs at different
times in different runs into an inconspicuous slope which is not present in any of the
runs and which may be misinterpreted as a slow-down of the initial rapid growth.

This phenomenon is present whenever the temporal data being averaged contain
components with different latencies (delays). To understand the nature of the deforma-
tions produced by averaging in these conditions, let us consider the simplest possible
case: let us imagine that there are only two components in the data recorded in an exper-
iment: a component, s(t), which always starts at generation 1 and continues throughout
a run, and a variable-latency component, r(t), which is associated with the final phases
of a successful run. For simplicity, let us imagine that the component r(t) starts at ran-
dom times during a run. However, once it starts, within exactly n generations a solution
is found. So, this component is phase-locked with the final generation of a run. Because
the conditions which determine the start of r(t) is stochastic, the latency of r(t) is a
stochastic variable. Let ρ(t) be the latency distribution of r(t). Let us also assume that
r(t) and s(t) are additive, i.e., the statistics of interest is simply the sum of these two
components. Under these assumptions it is easy to show [2,7] that the ordinary aver-
age of multiple run data is as(t) = s(t)+ r(t) � ρ(t), where � is the convolution opera-
tion. Given that latency distribution ρ(t) is non-negative (and typically unimodal), this
means that the ordinary average can only show a smoothed (low-pass filtered) version of
the variable-latency component r(t). So, averaging introduces systematic errors in the
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analysis of events that precede (and are related to) the solution of a problem. This blur-
ring is likely to prevent the detection of important phenomena, e.g., related to factors
that determine whether a run is successful.

Extending the work in [5] and the response-locked averaging technique used in the
ERP literature [4], in this paper we propose and analyse two simple countermeasures
one can use to improve the analysis of GP statistics: solution locking and solution-
time binning. Both techniques pre-process the data before any generation-by-generation
averaging (or other aggregation) is performed.

2 Solution-Locked Averages and Solution-Time Binning

Solution locking involves time-shifting the statistics collected in different runs in such
a way that the data corresponding to the generation in which a solution was found are
aligned, instead of aligning stats at the first generation.1 The situation is illustrated in
Fig. 1(right). Let us see what averaging these shifted data produces.

For the simple model described above, the solution-locked average is given by
ar(t) = r(t)+s(t)�ρ(−t) [2,7]. In other words, the solution-locked average will smooth
out the component s(t) which is phased locked with the start of the run, but it will not
alter r(t). So, this form of averaging can provide very useful information on the late
stages in a run, which, as indicated in the previous section, are never well represented
in ordinary averages. So, this simple trick can reveal important events which immedi-
ately precede (and contribute to) the discovery of solutions. The price to pay is that the
early phases of runs will be represented with a low effective resolution.

While this technique is very useful, a researcher will still be presented with two
alternative and potentially conflicting representations of the same data: one based on
standard averaging and one based on solution-locked averaging. Both for as(t) and for
ar(t), the severity of the smoothing effectively depends on how narrow the distribution
ρ(t) is. A key problem is that running more experiments and averaging more data does
not help increase the fidelity of the reconstructed statistics because the convolution with
ρ(t) or ρ(−t) introduces a systematic error in the averaging process.

Fortunately, as suggested in [5] for ERPs, a very simple technique can improve the
situation: binning runs based on their recorded solution time and then computing bin
averages. This has the potential of radically reducing the blurring problems of ordinary
and solution-locked averages. In particular, solution-time binning can significantly im-
prove the resolution with which variable-latency components of run statistics can be
recovered via averaging. The qualitative reason for this is simple to understand.

The idea is that if one selects out of a dataset all those runs which were successful
within approximately the same amount of time, it is more likely that similar GP dynam-
ics will have taken place within those runs than if one looked at the whole dataset. So,
within those runs, components of statistics that would normally have a widely variable
latency might be expected, instead, to present a much narrower latency distribution. In
other words, we can expect more homogeneity in binned data. Thus, we should find
that, for the runs within a bin, fixed- and variable-latency components are much more

1 Runs where a solution wasn’t found can be treated in whatever way they are treated in relation
to ordinary averages.
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synchronised than if one did not divide the dataset. Averaging such data should, there-
fore, allows the rejection of noise while at the same time reducing also the undesirable
distortions and blurring associated with averaging.

We look at these qualitative ideas more formally in the next section.

3 Analysis of Resolution of Bin Averages

Let us consider in what ways binning by solution time and then averaging would alter
the resolution with which fixed latency and variable-latency components of runs statis-
tics can be recovered. Here we will specifically look at the case where runs are aligned at
the first generation. However, there are symmetric properties for binned solution-locked
averages. For space limitations we omit many intermediate calculations and extensions.

Let us define a function δ(x) that returns 1 if x is true, and 0 otherwise. It is simple
to show that the (ordinary) average of the data in the bin corresponding to the solution-

time interval [r1,r2) is given by a[r1,r2)
s (t) = s(t) + r(t) � ρ[r1,r2)(t) where ρ[r1,r2)(t) =

δ(r1 ≤ t < r2)ρ(t)/
∫ r2

r1
ρ(t)dt is the convolution kernel responsible for r(t) appearing

blurred in the average. So, in order to see whether a[r1,r2)
s (t) provides a better (less

blurred) representation of r(t) than as(t), we need to analyse the differences between
the distributions ρ[r1,r2)(t) and ρ(t).

The difference between the two is that ρ[r1,r2)(t) is the product of ρ(t) and a rect-
angular windowing function, δ(r1 ≤ t < r2). In the frequency domain, therefore, the
spectrum of ρ[r1,r2)(t) is R [r1,r2)( f ) = R ( f )� Δ( f ), where Δ( f ) is a scaled and rotated
(in the complex plane) version of the sync function. Therefore, R [r1,r2)( f ) is a smoothed
and widened version of R ( f ). In other words, while ρ[r1,r2)(t) is still a low-pass filter, it
has a higher cut-off frequency than ρ(t). Thus, binning by solution time and then aver-
aging improves the resolving power on averages. Indeed, it is possible to prove that in
the limit of very small bins the bin average is an unbiased estimator of the true statistics.

It is possible to generalise these results to the case of multiple additive components
in the statistics recorded in a run. The generalisation shows that whenever there is a
non-zero correlation between the latency of such components and the solution time,
then binning by solution time produces bins where the variability in the latency of all
such components is reduced. As a result averaging the data in a bin leads to averages
that are less blurred and more representative of reality.

4 Test Problems and Algorithms

To test the ideas proposed in this paper we used a tree-based GP system [3], namely
a version of TinyGP [6, appendix B]. The system used tournament selection with a
steady state replacement strategy where individuals are replaced with negative tourna-
ments. Both for selection and replacement we used tournaments of size 2. We evolved
populations for 100 generations. Programs were initialised using the grow method (see,
for example, [6]). Offspring were generated using either sub-tree crossover (with uni-
form selection of crossover points) or point mutation. When mutation was chosen the
nodes in the selected parent program were replaced with random nodes of the same
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arity with a probability of 5% (per node). Runs were not stopped when a solution was
found, but the first time a solution was discovered was recorded.

We considered two problems. The first is the well-known Even-6 parity problem. We
used the primitive set: {X1, X2, X3, X4, X5, X6, AND, OR, NOR, NAND, XOR,
EQ}. The fitness of a program was the number of entries of the truth table of the even-6
parity function that the program could correctly predict. So, program fitnesses are in-
tegers between 0 and 64. We performed 1,000 independent runs of TinyGP with this
problem. We used populations of 2,000 individuals. Initial programs had a maximum
depth of 6 (counting one-node programs as having a depth of 0). The maximum size
programs were allowed to grow during evolution was 1,000 nodes. Crossover was ap-
plied with 80% probability, while mutation was applied with 20% probability.

The second problem is the Sine symbolic regression problem, which requires pro-
grams to fit the sine function over a full period of oscillation. We used 63 fitness cases
obtained by sampling sin(x) for x ∈ {0.0, 0.1, 0.2, . . . 6.2}. We define a success to be
a run where the best fitness was less than 3.15, or an average error of less than 0.05 over
the 63 test cases. Here we performed 500 independent runs with populations of size
10,000. The primitive set included the functions ADD, SUB, MUL, DIV (protected) plus
100 random constants uniformly distributed in the range [−5,5] and one input variable.
The max initial depth for trees was 5. Crossover and mutation rates (per individual)
were 10% and 90%, respectively. Fitness was the sum of absolute errors.

The parameters for each problem were chosen in such a way to obtain approximately
a split of one third and two thirds between successful and unsuccessful runs.

5 Results

To exemplify the benefits of our averaging techniques, we will look at best-of-
generation and mean fitnesses averaged across multiple runs for the Even-6 parity prob-
lem and best-of-generation fitnesses for the Sine symbolic regression (in many symbolic
regression problems means vary so much that they are rather uninformative). We will
compute averages both with and without solution-locking and solution-time binning.

Before we analyse the data, we would like to stress a few important details about the
averaging procedures we adopted. Firstly, when computing solution-locked averages,
one needs to shift runs relatively to one another in such a way to align their solution
time. The method, however, leaves unspecified the absolute shift of the solution time
with respect to the reference system used to collect or generate the data (which in our
case is a Cartesian reference with generations along the abscissas and fitness along the
ordinates). By convention, here we have aligned the solution time to the abscissa corre-
sponding to last generation (generation 100). Since most successful runs lasted less that
100 generations, to ensure every point in a plot was an average of the same number of
runs, we extended runs as if they started before generation 1, freezing their fitness stats
in generation 0, -1, -2, etc. to the value they had at generation 1. Secondly, we should
also note that below we will distinguish between successful and unsuccessful runs (see
Tab. 1). Finally, note that when computing solution-locked averages involving a mix
of successful and unsuccessful runs or only unsuccessful runs, we used the convention
that the solution time for unsuccessful runs was their last generation.
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Table 1. Success rate statistics for the Even-6 parity and the Sine regression problems

Problem Successful Runs Total Success Rate
Even-6 Parity 351 1,000 35.1%
Sine Symbolic Regression 144 500 28.8%

5.1 Ordinary Averages vs. Solution-Locked Averages

Let us first compare ordinary averages and solution-locked averages in the absence of
binning. These are shown at the top of Fig. 2. Note that these averages do not distinguish
between successful and unsuccessful runs, as it is typically done when reporting fitness
statistics in the GP literature.

Looking at ordinary averages and comparing them across the two problems, we see
the usual depiction of the dynamics of a GP system: there is a rapid improvement in
fitness in the early generations of a run which is followed by a period where improve-
ments are either rarer or smaller or both which eventually leads to a solution. In the
Even-6 parity problem effectively the algorithm appears to be almost stagnating in the
later phases of a run. What changes across the two problems is the relative slope of the
final phases. Other than that, everything seems to confirm the dynamics of the fitness
plots we have seen over and over again in the literature.

If we now focus on the solution-locked averages at the top of Fig. 2, however, we
get a different picture. Firstly, the plots of such averages are significantly different from
those of ordinary averages. For example, we see changes of curvature in the middle
of a run. In the case of the Even-6 parity problem we also see an apparent period of
stagnation followed by an acceleration in the late stages of runs.

The presence of flexes in the middle of runs and re-accelerations towards the end
of runs go against almost every bit of published literature in GP. How is this possible?
Which averages should we believe: ordinary or solution-locked? Neither and both.

As we emphasised above we have extended runs before their first generation for the
purpose of realigning them at generation 100 and then computing a solution-locked
average. So, while we can reasonably trust what’s happening near generation 100 (by
convention, the solution time), some of the effects we see many generations before gen-
eration 100 may be entirely due to our extending runs. This does not mean, however,
that solution-locked averages are less reliable than ordinary averages. Indeed, symmet-
rically, in order to obtain ordinary averages, we have extended runs at the other end, by
not stopping them when a solution was first found. So, we should also be very careful
in interpreting what we see in ordinary averages when we are many generations away
from the first. In some cases the effects we see in such averages in the late stages of a
run, e.g., the saturation of best and mean fitnesses, may be entirely artefactual. If we are
to believe solution-locked averages (which in principle have the best resolving power in
the late stages of a run), in our two problems fitness is still growing significantly when
solutions are first found.

To see things more clearly we really need to divide up the successful runs from the
unsuccessful ones. This is done in Fig. 2 (middle and bottom, respectively). Note that,
since for the unsuccessful runs we conventionally set their solution time to be their final
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Fig. 2. Comparison between ordinary and solution-locked averages of mean and best population
fitnesses for the Even-6 Parity problem (left) and of the mean fitness for the Sine symbolic regres-
sion problem (right) when all runs are averaged (top), when only the successful runs are averaged
(middle) and when only the unsuccessful runs are considered (bottom)
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generation, the plots of ordinary averages and solution-locked averages are on top of
each other (see bottom of Fig. 2).

From a qualitative viewpoint the plots of ordinary averages of successful and unsuc-
cessful runs are not very different, except, in the fitness values that are reached at the end
of a run. Since the plots of averages across all runs are a blend of those for successful
and unsuccessful runs, it is then not surprising to see that ordinary averages in the plots
at the top of Fig. 2 are also qualitatively identical to the corresponding plots in the mid-
dle and bottom of the figure. However, now that successful runs are averaged separately,
we can see that for them the differences between ordinary and solution-locked averages
are further emphasised (see middle plots in the figure), with both problems showing
much bigger end-of-run slopes in their solution-locked averages. In other words, to-
wards the end of successful runs best and average fitnesses either don’t saturate or
saturate a lot less than we are used to see in ordinary GP averages.

The little step characterising the rightmost points in the solution-locked best fitness
plots for the successful runs represents the time where a solution is first visited. So, such
a step is present in all plots of this kind, irrespective of problem or system. In problems
where fitness is discrete, the variation in best fitness between the last generation and the
penultimate generation is an indication of how far (on average) the best of population
was from solving the problem.

All of this is not visible in ordinary averages because of the smoothing biases of av-
eraging. As we explained above, both ordinary averages and solution-locked averages
are affected by a smoothing effect. The effect influences any component in the statistics
which is not phase-locked with the beginning of the run or the end of the run, respec-
tively. Elements which are phase-locked with the solution-time will be smoothed by the
kernel ρ(t) — the solution time distribution — in ordinary averages, while elements
which are phase-locked with the start of the run will be smoothed by the reflection of
that kernel, ρ(−t), in solution-locked averages. Whether or not this smoothing has an
effect depends on the width of the solution time distribution (narrower distributions
producing less burring than wider ones) and on whether or not the statistics contain
components outside the band of the smoothing kernel. In other words, the blurring of
statistics that are already smooth is unlikely to produce significant artifacts, while we
should expect to see major deformations when statistics present rapid changes.

Thus, to ascertain the potential degree of blur introduced by averaging (whether or-
dinary or solution-locked), we need to look at the solution time distributions for our
two problems. These are shown in Fig. 3. It is clear from these plots that both problems
have a wide distribution which can potentially lead to significant blurring effects.

5.2 Solution-Time Binned Averages

To get a clearer picture of what is happening, we need to use solution-time binning on
the successful runs. This does not only improve resolution of averages, it also clarifies
whether different mechanisms are responsible for different run times.

Figs. 4 and 5 show the results of binning runs and then averaging, for our two prob-
lems, using 10 bins of 10 generations each. Naturally, we can align the runs in each bin
at generation 1 (as in ordinary averaging) or at the generation where they solved the
problem (as in solution-locked averaging). Let us analyse these figures.
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Fig. 4. Results of binning runs with the Even-6 Parity and Sine symbolic regression problems
followed by ordinary averaging for successful runs
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Fig. 5. Results of binning runs with the Even-6 Parity and Sine symbolic regression problems
followed by solution-locked averaging for successful runs
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Let us first focus on the results of solution-time binning in combination with ordi-
nary averaging of the data in the bins shown in Fig. 4. We see here that for the Sine
problem the plots of the averages of best fitness are effectively monotonic and feature-
less, except perhaps for the quickest runs. The plots for different bins are also quite
similar, all sharing similar initial trajectories. The only significant differences between
bin averages are slight differences in slope after this initial transient: runs which solved
the problem sooner present bigger gradients than runs that took many generations to
solve the problem. This suggests that GP solves this problem by a progressive and re-
lentless march towards the solution. The difference between the runs that did it quickly
and those that took longer appears to be simply a question of the rate at which the
march proceeded, which in turn is likely to be due to the natural variability one would
expect from stochastic search algorithms. Because run statistics are relatively smooth,
the potential blurring effects of averaging (without binning) due to the convolution with
the solution-time distribution in Fig. 3 had a limited influence on the averages shown in
Fig. 2. This is the reason for their qualitative similarity with corresponding bin averages.

Let us look at the solution-locked averages for the Even-6 Parity problem. In Fig. 4
we see that actually during the generations that precede a solution evolution is still very
rapid and only barely showing signs of slowing down. Solution-time bin averages clar-
ify that essentially GP has alternative modes of solution. Firstly, all runs present a rapid
initial evolution. During this there seems to be some essential preparation taking place
for solving the problem. Indeed, no run solved the problem in less than 10 generations.
After this initial transient of 10 to 20 generations, the runs in the first three non-zero
bins essentially then continue their march towards the solution without delay (albeit at
different speeds). Runs in other bins, instead, tend to slow down significantly (although
never completely stagnating) after the transient eventually reaching a solution through
a series of rare improvements. In other words, solution-time binning reveals the partial
deceptiveness of this problem. Indeed, larger versions of the problem have been known
for years to be extremely difficult to solve for GP.

All this makes sense in the light of what we know from a variety of studies with
parity functions and continuous symbolic regression. There is, however, one surpris-
ing element in the ordinary averages of solution-binned statistics. Namely, in the bins
collecting runs that took some time to solve the Even-6 Parity problems, the best fit-
ness appears to speed up its upward motion in the very last stages of a run, which is
counter-intuitive. Indeed this is an averaging artifact, as shown by the solution-time
binned solution-locked averages shown in Fig. 5. As one can see there, all plots are
essentially flat in the generations that precede the solution (which we positioned at gen-
eration 100, by convention). It is only at the last generation that a sudden increase in
best fitness is present. This is simply associated with the discovery of a solution. The
ramps shown in Fig. 4 in the late stages of a run are simply the result of convolving this
solution-discovery peak with the kernel ρ[r1,r2)(t) associated with each solution-time
bin. Although this kernel is typically much narrower than ρ(t), it still has a non-zero
width, leading to this residual form of blurring.

Symmetrically, the 10-generation wide sigmoid-like ramps shown in the early parts
of each plot in Fig. 5 are artifacts. In fact, they are the result of blurring the initial rapid
fitness increase shown in Fig. 4 with the convolution kernel associated with each bin.
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So, even with solution-time binning, to get the most and best information (and the
least artifacts) out of experimental data, it is essential to compare and analyse both
solution-locked averages and ordinary averages. Without these tools, however, rela-
tively little can be learnt from averages.

6 Discussion and Conclusions

Averaging data collected in multiple independent runs across generations is the standard
method to study the behaviour of GP. However, as we have illustrated in this paper,
standard averaging may suffer from what we could call a key-hole or a magnifying-glass
effect. That is, while this technique is able to represent with good resolution the early
behaviour of GP, it does so at the cost of putting everything else out of focus. When
the dynamics of a GP system (as represented by a statistical descriptor that we want
to average across runs) is simple and featureless, this lack of resolution may deform
averages to a limited extent. However, when evolution is characterised by multiple rapid
transients separated by periods of slow change, then we don’t have a way of constructing
a clear picture of what happens in a GP system. This may be particular problematic for
the late and all-important phases of evolution when a solution is finally constructed.

In this paper we have suggested that solution-locked averaging, i.e., temporally shift-
ing the statistics of successful runs so as to ensure the times at which a solution is
first visited are aligned across runs and then averaging, may be a partial solution to
these problems. Solution-locked averaging, however, still suffers from a key-hole ef-
fect: while it shows the late stages of a run in full resolution, it blurs everything else.

In the paper we have also proposed a second extremely simple technique — binning
runs based on solution times and then averaging — that can alleviate the problems of
the standard form of averaging mentioned above. The technique is based on one simple
and realistic assumption: that roughly the same dynamics takes place in a GP system
which is able to solve a problem, when that problem is solved in approximately the
same time. For this reason, in such runs, the distribution of latencies of all variable-
latency components of the data (including those phase-locked with the solution) should
be narrower than if one considered an undivided dataset. As a result, averaging the runs
in a solution-time bin should provide a truer picture of the dynamics of GP.

We empirically validated the binning technique by applying a tree-based GP system
to two radically different problems. We also provided a theoretical analysis of the res-
olution of averages with and without binning, which showed that there are benefits in
applying solution-time binning even when there is still a substantial variability in the
latency of variable-latency components after solution-time binning.

Empirical results and theory points unequivocally in one direction: averaging after
solution-time binning produces clearer representations of GP dynamics. When this is
further combined with solution-locked averaging, we obtain a much less ambiguous
representation of the stages that eventually lead to a solution in successful runs. Much
can be learnt from studying such aggregate statistics.

The degree to which ordinary averages deform late-run statistics and the degree to
which solution-locked averages smooth the early-run statistics depend on the shape and
width of that solution-time distribution. When the distribution is narrow, then effec-
tively runs are already binned. So, solution-time binning cannot be expected to improve
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resolution by much. Binning is still useful, however, since it clarifies if different run
durations are associated with different modes of solution.

In the past, solution-time distributions have frequently been reported and used to
compute the computational effort [3]. So, in principle we can now look back at those
results to understand to what degree reported average statistics may have been blurred.
In new experiments, it seems appropriate to always look at the solution time distribution
to decide whether binning and solution-locking should be used. It may also be possible
for researchers to retroactively reevaluate, shift and bin results of old experiments, and
possibly discover new phenomena or further confirm existing theories.

Given the simplicity of the methods we have proposed, we would like to encourage
researchers to adopt them as part of their set of data analysis routines to ensure the best
possible use of the evidence contained in experimental results.

In relation to future work, in a sense, we can think of solution-time binning as a
spot in the middle ground between single-run analysis and ordinary averages. In the
future we would like to further explore this middle ground. For example, we would like
to see if binning using gradual membership functions, as we did in [5] for ERPs, can
provide even better reconstruction fidelity, if setting bin sizes on the basis of solution
time quantiles and/or the noise in the data is beneficial to make best use of the avail-
able runs, and if solution-locked and ordinary averages can be jointly used (e.g., in the
frequency domain as was done in [7] for ERPs) to further refine the reconstruction of
GP’s dynamics.
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José Carlos Bregieiro Ribeiro1,
Mário Alberto Zenha-Rela2, and Francisco Fernández de Vega3

1 Polytechnic Institute of Leiria
Morro do Lena, Alto do Vieiro, Leiria, Portugal

jose.ribeiro@estg.ipleiria.pt
2 University of Coimbra

CISUC, DEI, 3030-290, Coimbra, Portugal
mzrela@dei.uc.pt

3 University of Extremadura
C/ Sta Teresa de Jornet, 38, Mérida, Spain

fcofdez@unex.es

Abstract. Recent research on search-based test data generation for
Object-Oriented software has relied heavily on typed Genetic Program-
ming for representing and evolving test data. However, standard typed
Genetic Programming approaches do not allow Object Reuse; this pa-
per proposes a novel methodology to overcome this limitation. Object
Reuse means that one instance can be passed to multiple methods as
an argument, or multiple times to the same method as arguments. In
the context of Object-Oriented Evolutionary Testing, it enables the gen-
eration of test programs that exercise structures of the software under
test that would not be reachable otherwise. Additionally, the experimen-
tal studies performed show that the proposed methodology is able to
effectively increase the performance of the test data generation process.

1 Introduction

Software testing is the process of exercising an application to detect errors and to
verify that it satisfies the specified requirements. It is an expensive process, typi-
cally consuming roughly half of the total costs involved in software development;
automating test data generation is thus vital to advance the state-of-the-art in
software testing.

The application of Evolutionary Algorithms (EAs) to test data generation is
often referred to as Evolutionary Testing (ET) [1]. The goal of ET is to find
a set of test cases that satisfies a certain test criterion. If structural adequacy
criteria are employed, the basic idea is to ensure that all the control elements
in a program are executed by a given test set, providing evidence of its quality.
Object Reuse is a feature of paramount importance in this context.
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Object Reuse (OR) means that one instance can be passed to multiple meth-
ods as an argument, or multiple times to the same method as arguments [2]. In
the context of Object-Oriented Evolutionary Testing (OOET), it enables the gen-
eration of test cases that exercise specific structures of software that would not
be reachable otherwise. The equals method of Java’s Object class [3] provides
a paradigmatic example. Class Object is the root of the Java class hierarchy,
and the equals method is used to assess if two objects are equivalent; also,
several search methods rely on it to verify if an item is present in a collection
(e.g., Vector’s indexOf). However, the equals method implements the most dis-
criminating possible equivalence relation on objects: for any non-null reference
values x and y, this method returns true if and only if x and y refer to the same
reference. This means that, in order for the method equals to return true, the
same Object reference must be passed as an argument twice – in the place of
both the implicit parameter (i.e., the this parameter) and the explicit param-
eters. Also, every class has Object as a superclass; this means that every class
inherits the equals method, and uses it internally for equivalence verification.
Object subclasses may override equals in order to implement a less stringent
equivalence relation. Still, it is not mandatory; what’s more, recent studies have
concluded that implementations of the equals methods are often faulty [4].

Recent research on ET has relied heavily on typed Genetic Programming (GP)
for representing and evolving test data (e.g., [2,5,6]). However, standard GP
approaches do not allow node reuse; this paper proposes a novel methodology
to overcome this limitation, which involves the definition of novel type of GP
nodes – the At-Nodes – that “point to” other nodes, thus effectively enabling
the creation of edges to nodes that are already part of the tree, and allowing
the reuse of sub-trees. The introduction of At-Nodes is performed by means of a
custom-made evolutionary operator – the Object Reuse operator. This operator
acts on an individual by selecting two nodes – the node to be replaced by the
At-Node, and the node to be “pointed at” by the At-Node – and by inserting
the newly created At-Node into the tree. At-Nodes may be removed from a tree
by means of the Reverse Object Reuse operator which, in short, searches the tree
for At-Nodes, and replaces these nodes with copies of the sub-trees pointed at by
the At-Nodes. This particular operator removes the need for the reformulation
of other common biology-inspired mechanisms (e.g., Mutation and Crossover
[7]). In addition to allowing the search to traverse specific structures, the Object
Reuse methodology is able to enhance the performance of the test case generation
process: it yields solutions with smaller overall size and lower average structural
complexity; and the feasibility of the generated Test Programs is increased as a
result of the introduction of a specific heuristic for node selection.

This paper is organised as follows: the next Section starts by providing theo-
retical background on ET; Section 3 details the proposed Object Reuse method-
ology; in Section 4, the experimental studies developed in order to validate the
approach are described and discussed; related work is contextualised in Section
5; and Section 6 summarises the methodology and emphasises the most relevant
contributions.
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2 Background and Terminology

ET is an emerging methodology for automatically generating high quality test
data for Object-Oriented (OO) software and, in particular, for producing a set
of unit-tests that meets a predefined structural adequacy criterion [6]. A unit-
test case for OO software consists of an Method Call Sequence (MCS), which
defines the test scenario; during test case execution, all participating objects
are created and put into particular states through a series of method calls [5].
Each test case focuses on the execution of one particular public method – the
Method Under Test (MUT). MUTs may be represented internally by Control-
Flow Graphs (CFGs); the aim of the search will then be that of generating a set
of Test Programs that traverse all the MUT’s CFG nodes, thus achieving full
structural coverage. GP is usually associated with the evolution of tree structures,
and is particularly suited for representing and evolving Test Programs, which
may be represented by Method Call Trees (MCTs). Non-typed GP approaches
are, however, unsuitable for representing OO programs, because any element can
be a child node in a parse tree for any other element without having conflicting
data types; conversely, with Strongly-Typed Genetic Programming (STGP) [8],
types are defined a priori in the Function Set and define the constraints involved
in MCT construction. This feature enables the initialization process and the
various genetic operations to only construct syntactically correct MCTs, thus
restraining the search-space to the set of compilable Test Programs.

Test case quality evaluation typically involves instrumenting the MUT, and
executing it using the generated Test Programs with the intention of collecting
trace information with which to derive coverage metrics [6]. Test case execution
requires decoding an individual’s genotype (i.e., the MCT) into its phenotype
(i.e., the Test Program); Figures 1a, 1b and 1c exemplify this process; Object
Reuse has not been introduced at this point. The MUT is the indexOf method
of the Vector class – which corresponds to the root node of the MCT depicted in
Figure 1a. Each node’s parameters are provided by its children; the MCS (Figure
1b) corresponds to the linearised MCT, with tree linearisation being performed
by means of a depth-first traversal algorithm [2]. Each MCS entry contains an
Method Information Object (MIO), which encloses: the method signature data
necessary for the Test Program’s source code to be assembled (e.g., the method’s
name and class, the parameter types and the return type); and references to other
MIOs providing the parameters (if any) for that method (enumerated between
square brackets). The Test Program (Figure 1c) is computed with basis on the
MCS and corresponds to a syntactically correct translation of the latter.

Compilable Test Programs may still abort prematurely during execution if a
runtime exception is thrown [6]. Test cases can thus be separated in two classes:
feasible test cases are effectively executed, and terminate with a call to the
MUT; unfeasible test cases terminate prematurely because a runtime exception
is thrown before the call to the MUT is reached, and when this happens it is
not possible to observe the structural entities traversed in the MUT because the
final instruction is not reached. The Test Program depicted in Figure 1c, for
example, is unfeasible because a runtime exception it thrown at instruction 6.
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Fig. 1. Example Method Call Trees without and with Object Reuse (a and d), and
corresponding Method Call Sequences (b and e) and Test Programs (c and f )

3 An Object Reuse Methodology for OOET

The proposed Object Reuse methodology is based on the introduction of two
novel evolutionary operators: the Object Reuse Operator (detailed in the follow-
ing Subsection), and the Reverse Object Reuse Operator (described in Subsec-
tion 3.2). Figure 2 provides an overview of these operators.

3.1 The Object Reuse Operator

The primary goal of the Object Reuse Operator is that of inserting a custom-
made type of GP nodes – the At-Nodes – into valid locations of an MCT. The
concept of At-Node is, thus, key to the proposed Object Reuse methodology.

At-Nodes. At-Nodes are GP nodes that refer to other (standard) GP nodes,
thus enabling the reuse of portions of the tree and, specifically, the reuse of the
object references returned by the functions corresponding to the reused sub-trees.
This is accomplished by having the node pointed at by the At-Node provide the
parameter not only to its parent node, but also to the At-Node’s parent node;
parameter assignment is performed during the MCT’s linearisation by means of
the process described in Subsection 3.1.4.

Figure 1d contains an example of a possible MCT resulting from the applica-
tion of the Object Reuse operator to the tree depicted in Figure 1a. The At-Node
labeled 0.1 replaces the node with the same label existing in the original MCT,
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Fig. 2. Object Reuse (top) and Reverse Object Reuse (bottom) operators overview

whereas node 0.0.1 was selected as the node to be reused. As such, the Object
instance returned by node 0.0.1 will be used both by its parent (labeled 0.0)
and by the At-Node’s parent (labeled 0). The MCS and Test Program shown in
Figure 1e and 1f mirror this alteration: in the former, the MIO 0.0.1 provides
the argument for the explicit parameters of both the 0.0 and 0 MIOs; and in the
latter, the reference to the Object instance created at instruction 2 is passed to
both the add and indexOf methods (instructions 3 and 4).

The creation of an At-Node for posterior introduction into an MCT requires
the Object Reuse operator to select two MCT nodes in the original tree: the
Destination Node (i.e., the node to which At-Node points to) and the Replaced
Node (i.e., the root node of the subtree to be truncated and substituted by
the At-Node). The first task of the Object Reuse Operator is precisely that of
indexing all the valid Replaced-Destination node pairs in an MCT.

Valid Replaced-Destination Node Pairs. A Replaced-Destination node pair
is valid if:

– both nodes are distinct non-root standard GP nodes;
– the Replaced Node possesses a type that is swap-compatible with the Desti-

nation Node (e.g., a node of type String is swap-compatible with a node of
type Object, because String is a sub-type of Object);

– the sub-tree rooted at the Replaced Node does not contain a node that is
pointed at by an existing At-Node. When an At-Node is inserted into the
tree, the sub-tree rooted at the Replaced Node is truncated; if it contains a
node that is already being reused, this operation will render the tree invalid;

– the Replaced Node is in a position reached by the linearisation algorithm
prior to the Destination Node. This validation ensures that the MIOs only



Enabling Object Reuse on GP-Based Approaches to OO Evolutionary Testing 225

contain parameter references to elements that precede them in the MCS, and
that the corresponding Test Program’s method calls have their parameters
provided by previously created instances.

After all the valid Replaced-Destination node pairs have been indexed, the
Object-Reuse Operator proceeds to select one of those pairs.

Replaced-Destination Node Pair Selection. The node pair selection pro-
cedure is performed differently according to the individual’s feasibility:

– if the individual is feasible, a Replaced-Destination node pair is chosen at
random from the set of valid Replaced-Destination node pairs;

– if the individual is unfeasible, the Object Reuse operator attempts to select
a valid pair so that the Replaced Node belongs to the non-executed portion
of the tree, and the Destination Node belongs to the executed portion of the
tree. If such pairs exist, one is selected at random; otherwise, a node pair is
chosen at random from the set of all valid Replaced-Destination node pairs.

The heuristic described aims to promote Test Program feasibility by favouring
the reuse of feasible portions of the MCT. As was mentioned in Section 2, the
Test Program depicted in Figure 1c throws a runtime exception at instruction
6; the feasible portion of this program is thus the sequence of instructions 1 to
5, whereas instructions 6 and 7 form the unfeasible sequence. These sequences
can be mapped directly to MCS entries which, in turn, can matched to the
corresponding MCT node. The valid Replaced-Destination node pairs which fulfil
the premise of the heuristic are, thus, the following: {0.1, 0.0.1}; {0.1.0, 0.0.0};
{0.1.0, 0.0}.
Method Call Tree Linearisation. As was referred in Section 2, evaluating
the quality of an individual involves its execution which, in turn requires decod-
ing the MCT into the Test Program. However, if At-Nodes exist, a depth-first
traversal algorithm does not suffice to linearise a tree; the linearisation algorithm
must take into account the fact that certain parameters are supplied not by that
node’s children, but rather by the node pointed at by an At-Node. The algo-
rithm depicted in Figure 3 describes the polymorphic recursive function utilised
to obtain an MCS with basis on an MCT in the presence of At-Nodes.

3.2 The Reverse Object-Reuse Operator

If an MCT contains At-Nodes, some standard evolutionary operators, such as
Mutation and Crossover, require the tree to be analysed and possibly modified
prior to their application. This necessity is related with the fact that these op-
erators replace subtrees in the original individual by newly created trees (in the
case of the former) or by a copy of an another individual’s subtree (in the case
of the latter); however, if the subtrees truncated in the original individual con-
tain Destination Nodes their elimination will render the MCT inconsistent and
disable the possibility of translating it to a syntactically correct Test Program.
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Data: Method Call Tree
Result: Method Call Sequence

Global Variables:
Current Node ← Root Node;
isDestinationNode ← false;
Previous MIO ← null;
MCS ← empty sequence;

begin Function linearizeMCT(Current Node, isDestinationNode)
if Current Node 	= Root Node and isDestinationNode = false then

Previous MIO ← get MIO from from Parent Node of Current Node;
end
if Current Node is an instance of At-Node then

Destination Node ← get Destination Node from At-Node;
call linearizeMCT(Destination Node, true);

else
if Current Node is an instance of Standard Node then

Current MIO ← get MIO from Current Node;
if Previous MIO 	= null then

add Current MIO to Parameter Providers List of Previous MIO;
end
if isDestinationNode = false then

Child Nodes List ← get Child Nodes List from Current Node;
foreach Child Node in Child Nodes List do

call linearizeMCT(Child Node, false);
end
add Current MIO to MCS;

end
end

end
end

Fig. 3. Algorithm for Method Call Tree linearisation in the presence of At-Nodes

The Reverse Object Reuse operator’s task is precisely that of pre-processing
the individuals to be provided to other well-established operators, thus avoiding
their reformulation. It starts by indexing all the At-Nodes in an MCT, and
then proceeds to replace each At-Node with a clone copy of the sub-tree rooted
at its Destination node. The resulting MCT can then be provided to another
evolutionary operator. That is, the Reverse Object Reuse operator’s purpose it
that of being the first component of a breeding pipeline and acting as a source
of individuals; it selects individuals directly from the population (e.g., using
Tournament Selection [7]), and provides the (possibly) modified individual to
the operator at the end of the breeding pipeline. This process is schematised in
Figure 2.

4 Experimental Studies

The Object Reuse methodology described was embedded into eCrash, a tool
for the ET of OO Java software, with the objective of assessing its impact on
both the efficiency and the effectiveness of the evolutionary search; a thorough
description of the eCrash tool can be found in [6].
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Table 1. Sources of Individuals

With Object Reuse Without Object Reuse

Object Reuse Op. (25%) Mutation Op. (34%)
Reverse Object Reuse Op. / Mutation Op. (25%) Crossover Op. (33%)
Reverse Object Reuse Op. / Crossover Op. (25%) Reproduction Op. (33%)

Reproduction Op. (25%)

4.1 Targets and Configuration

The Java TreeMap (an implementation of Red-Black Tree) and Vector classes
of JDK 1.4.2 [3] were used as test objects. Their selection is supported by the
fact that they are container classes, which are a typical benchmark in software
testing of OO programs; Red-Black Trees, in particular, have been empirically
shown to be the most difficult to test among containers programs [9]. As MUTs,
the 5 most complex public methods (in terms of their Cyclomatic Complexity
Number (CCN) [10]) of each class were selected. For each MUT, 2 sets of 20 runs
were executed. The Object Reuse and Reverse Object Reuse operators were in-
cluded in the first, and excluded from the second; Table 1 depicts the sources of
individuals selected for each set of runs. The decision of selecting equal proba-
bilities for the Mutation, Crossover and Reproduction operators is supported by
previous experiments described in [6]. The remaining evolutionary parameters
were common to both sets, and were defined as follows: a single population of
25 individuals was used; the search stopped if an ideal individual was found or
after 200 generations; the selection method was Tournament Selection [7] with
size 2; the tree builder algorithm was PTC2 [11], with the minimum and maxi-
mum tree depths being defined as 4 and 14. The eCrash tool was configured in
accordance to the setup proposed in [6]. An additional set of 20 runs, in which all
individuals were randomly generated using the PCT2 algorithm (with minimum
and maximum tree depths of 4 and 14), was performed for comparison purposes;
because no evolutionary operators were used, Object Reuse was absent from the
process. This random search stopped if an ideal individual was found or after
the generation of 5000 individuals. The results were included in Table 2.

4.2 Results and Discussion

The results depicted in Table 2 show that, for both classes, a higher percent-
age of runs attaining full structural coverage was achieved when including the
Object Reuse operator as a source (the only exception being the putAll(Map)
method of the TreeMap class). An average success rate of 62% was achieved
with Object Reuse, whereas only 42.5% of the runs were successful without it.
What’s more, the impossibility of attaining full structural coverage for some of
the methods tested is symptomatic of the way in which the lack of the Object
Reuse functionality can hinder the evolutionary search. In fact, several search
methods – in particular, Vector’s indexOf and lastIndexOf; and TreeMap’s
put, remove and get – rely on equals to verify if an item is contained in a
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Table 2. Percentage of runs attaining full coverage (%f ) and average number of indi-
viduals evaluated per run (#i); for the With OR, Without OR and Random runs; for
the 5 public methods with the highest CCN of the TreeMap and Vector classes

With OR W/out OR Random
MUT CCN %f #i %f #i %f #i

TreeMap
put(Object,Object) 10 10% 4563 0% 5000 0% 5000
putAll(Map) 10 85% 1389 95% 1154 75% 2385
remove(Object) 3 25% 4119 0% 5000 0% 5000
containsValue(Object) 3 100% 501 100% 548 100% 628
get(Object) 2 25% 4000 0% 5000 0% 5000

Vector
lastIndexOf(Object,int) 10 60% 3203 0% 5000 0% 5000
indexOf(Object,int) 8 40% 4243 0% 5000 0% 5000
removeElementAt(int) 6 85% 1829 75% 2258 70% 2948
addAll(int,Collection) 5 100% 871 95% 1130 80% 1668
remove(int) 4 90% 1904 80% 2545 80% 2815

collection. This means that if instances are not reused, the search for non-null
arguments of type Object will fail. A commonly used workaround (e.g., [6]) is
that of including substitute classes into the test cluster, which extend Object
and override equals with a less stringent implementation; this approach, how-
ever, does not suffice for the following reasons. Firstly, certain test scenarios may
specifically involve using classes that do not override equals or the Object class
itself. Secondly, the decision on which additional classes to include into the test
cluster is problem specific and human dependant; to the best of our knowledge,
no systematic strategy has been proposed to automate this task. Thirdly, the
inclusion of redundant classes into the test cluster will enlarge the search space
and will thus have negative consequences on the efficiency of the search [6].

The graphs depicted in Figure 4 provide an overview of the way in which
the runs evolved, and on how the Object Reuse methodology affects the test
case generation process in terms of coverage, Test Program size and feasibility.
The runs in which Object Reuse was employed yield solutions with shorter MCS
length (a difference of 20.3%, on average, for TreeMap, and 12% for Vector).
Also, feasibility is significantly promoted, with an average increase of 4% for
both the TreeMap and Vector classes. These observations show that the pro-
posed methodology is not only able to enhance the effectiveness of the test case
generation process, but also its efficiency. Firstly, it yields solutions with smaller
overall size and lower average structural complexity, thus contributing positively
to the area of MCS minimisation. Simpler and shorter test programs do not only
reduce the computational effort involved in compilation and execution; they also
ease the (mostly human-dependant) task of defining a mechanism for checking
that the output of a program is correct given some input (i.e., an oracle). Sec-
ondly, the application of the Replaced-Destination Node Pair Selection heuris-
tic is able to increase the average feasibility of the generated Test Programs.
Because only feasible Test Programs are concluded with a call to the MUT, a
higher level of feasibility will increase the performance of the test case generation
process [6].
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Fig. 4. Average percentage of CFG nodes left to be covered per generation (a and
d), average MCS length per generation (b and e), and average percentage of feasible
individuals per generation (c and f); for the With OR and Without OR runs; for the 5
public methods with the highest CCN of the TreeMap and Vector classes

5 Related Work

The proposed approach to Object Reuse has some similarities with Koza’s work
on Automatically Defined Functions (ADFs) [12]. ADFs enable GP to solve
problems by decomposing them into subproblems, solving the subproblems, and
assembling the partial solutions into a solution to the overall problem; an indi-
vidual’s genotype usually consists of a forest of trees (or functions), which are
then called repeatedly from the main tree. Therefore, ADFs do enable function
reuse, as the possibility of selecting and calling the same function multiple times
exists. However, functions in OO languages typically return object references,
and each individual function call – even to the same function – returns a dis-
tinct reference. As such, ADFs do not enable Object Reuse, as the possibility
of utilising the object reference returned by a single function call more than
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once is not possible. The Object Reuse methodology described also shares some
characteristics with graph-based approaches to GP, such as Parallel Distributed
GP [13] and Cartesian GP [14], as it also involves loosening the interpretation
of the edges of an MCT thus effectively transforming it into a graph. However,
to the best of the authors’ knowledge, there has been no research on applying
any of the above approaches to the generation of OO software and, in particular,
to OOET; conversely, STGP has been extended to support type inheritance and
polymorphism [15,16], and extensive work has been performed on applying it to
OOET (e.g., [2,5,6]). As such, we believe that the proposed methodology consti-
tutes a significant contribution to the OOET area. The only previous approach
to Object Reuse known to the authors does not involve a loosening of the inter-
pretation of the edges of an MCT, but rather a loosening of the parameter object
assignments during tree linearisation. In [2], Wappler proposes employing an Ob-
ject Pool that stores references to all the objects created during a Test Program
execution; this pool is consulted if a parameter object is required for a method
call, and a parameter object selector component selects the instance to be used
among all available instances of the required type. There are, however, some
drawbacks to the Object Pool approach to Object Reuse. Firstly, all the objects,
even those that are not used, must be created and stored in the Object Pool,
which will obviously increase the length and complexity of Test Programs. Also,
and perhaps most importantly, changing parameter object assignments during
tree linearisation will result in a discrepancy between the individual’s hereditary
information (i.e., its genotype) and its actual observed properties (i.e., its phe-
notype); in other words, the Test Program might not directly correspond to the
MCT. Considering that an individual’s evaluation is performed at the phenotype
level, the Test Program must be an exact translation of the MCT in order for
the fitness to be accurately assessed and reflect an individual’s quality.

6 Conclusions

The goal of OOET is to find a set of Test Programs that satisfies a predefined
test criterion. Object Reuse means that a single object instance can be passed
as an argument multiples times to one or more methods; if structural adequacy
criteria are employed it is a feature of the utmost importance, as it enables the
generation of test cases that exercise structures of software that would not be
reachable otherwise. The main contribution of this work is that of proposing
a methodology for enabling Object Reuse on typed GP-based approaches to
OOET, which involves the definition of novel type of GP nodes (the At-Nodes)
that “point to” other nodes, thus permitting the reuse of portions of the tree and,
specifically, the reuse of the object references returned by the functions corre-
sponding to the reused sub-trees. Additionally, At-Nodes may be removed from a
tree; this functionality allows avoiding the reformulation of other well-established
evolutionary operators, such as Mutation and Crossover. Besides enhancing the
effectiveness of the search, the experimental studies performed show that the pro-
posed methodology improves the performance of the test case generation process:
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it yields solutions with smaller overall size and lower structural complexity, and
it is able to increase the feasibility of Test Programs.
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Abstract. Cartesian Genetic Programming (CGP) is applied to solv-
ing differential equations (DE). We illustrate that repeated elements in
analytic solutions to DE can be exploited under GP. An analysis is car-
ried out of the search space in tree and CGP frameworks, examining
the complexity of different DE problems. Experimental results are pro-
vided against benchmark ordinary and partial differential equations. A
system of ordinary differential equations (SODE) is solved using multiple
outputs from a genome. We discuss best heuristics when generating DE
solutions through evolutionary search.

1 Introduction

Differential equations are ubiquitous throughout the natural sciences, modelling
diverse systems from the harmonics of a violin to chemical concentrations in
the blood stream. Widely applied finite difference and finite element routines
can obtain accurate numerical approximations to DE solutions over prescribed
domains [1]. However, the automatic derivation of analytic solutions to many
high order or strongly non-linear DE problems remains challenging under stan-
dard deterministic approaches. Publicly available symbolic solvers apply analytic
techniques such as separation of variables or symmetry reduction, but address
specific classes of DE and require extensive supporting libraries for comprehen-
sive support [2].

There has been some interest in the application of machine learning to DE
since the advent of genetic algorithms. In this paradigm, the analytic solution
can be considered analogous to a search objective, and the equation and any
initial or boundary conditions to training data. In 1996 Diver evolved candidate
solutions to simple ordinary differential equations (ODE), encoding solutions as
strings [3]. Koza briefly addressed learning solutions to ODEs in his seminal
work on problems for Tree Genetic Programming (GP) [4]. Cao later used an
embedded genetic algorithm to tune parameters of a tree GP based solver [5].
More recently, Tsoulos and Lagaris set out fitness functions using a framework
based on Grammar Guided GP [6] and applied them over a comprehensive col-
lection of partial differential equations (PDE) and systems of ODE (SODE). We
are also aware of a novel hybrid GP approach to solving DE implemented by
Kirstukas et. al [7] for engineering applications.
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Given the broad range of techniques historically applied, our goal is to identify
general qualities which enable GP frameworks to efficiently explore DE search
spaces. One defining characteristic of analytic solutions to differential equations
is symbolic symmetry. Where solutions exist, application of the basic rules of
differential calculus to trigonometric, polynomial or exponential functions natu-
rally leads to repeated structure. In the present work, we postulate that DE have
a higher density of analytic solutions under heuristic search in data-structures
which reuse common functional elements. To explore this concept, we carry out
an analysis using a variant on an established graph-based approach, Cartesian
Genetic Programming (CGP) [8], across a set of benchmark DE. The technique
is also examined under simple tree genetic programming, with a view to under-
standing whether representations reusing repeated structure have an advantage
over these particular classes of problem.

Section 2 of this paper outlines some preliminaries of the CGP differential
solver, including the specification of appropriate fitness functions and reproduc-
tion strategy. Section 3 analyses the corresponding search space composition and
describes a method of enumerating DE solutions within CGP data structures.
A set of experimental results are presented over benchmark DE in Section 4
and discussed in Section 5. The work concludes with general comments on using
evolutionary frameworks for solving DE and a summary of outcomes.

2 CGP Implementation

2.1 Reproduction Strategy

The original implementation of Cartesian Genetic Programming can be classed
as a strongly elitist method, since it uses a 1+λ evolutionary strategy without
crossover. The approach selected a single parent from each generation, promoting
itself and λ mutated offspring. Our choice of this representation was motivated
because the framework provides convenient reuse of previous elements through
the evolution of more general directed acyclic graphs (DAG). For this initial
analysis, we preclude techniques such as the use of modules [9] or automatically
defined functions (see comment in Section 5). The CGP policy adopted in this pa-
per employs a weak form of elitism shown in Figure 1.
1: g ← 0
2: Construct a random starting population of size P . Rank by fitness F .
3: while g < gmax and F > tol do
4: Select a new parent with the best fitness.
5: Promote the parent and λ mutated offspring.
6: Promote one offspring from each of the next P −(λ+1) fittest individuals.

7: Re-rank using the promoted population.
8: g ← g + 1
9: end while

Mutations are standard point operations on the CGP genotype and tol is some
minimum error bound on individual fitness. For λ = 1 the method is random
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Fig. 1. Strategy for λ = 5, P = 10. The next generation contains the previous parent,
five offspring of the parent and four offspring from the next best individuals.

search and λ = P −1 is equivalent to conventional CGP. Heuristically, the trade
off in selecting lower values of λ is greater diversity in the search, which reduces
the risk of stagnation. More generally, the policy is related to a conventional μ+λ
search but competes a larger proportion of offspring from the fittest parent. In
preliminary experiments, λ = P/2 was found to be an adequate compromise for
all the benchmark ODE and PDE addressed.

2.2 Fitness Functions for Differential Equations

Consider theproblemof finding aparticular closedanalytic solutionA to abounded
ODE or PDE, within a domain of interest spanned by the D-dimensional orthogo-
nal basis set x(x1...xD). A is an expression in x which

1. Satisfies the defining equality.
2. Meets all boundary or initial conditions.
3. Remains real and finite.

We adopt the approach of Tsoulos and Lagaris [6], evolving a model function
M(x), taking a weighted aggregate as the fitness F (M). In general this has the
form

F (M) = R(M) + αε(M) (1)

where R and ε are residual errors calculated for M across the equation and condi-
tions respectively. α is an integer weighting parameter. Table 1 shows F (M) for

Table 1. Fitness Functions for DE bounded on a line and a unit square

Differential Equation R(M) ε(M)
dy
dx

= g(x, y), y(x0) = c
∑N

i=1 |M(xi) − dM(xi)
dx

| |M(xi) − y(xi)|i=0

∇2Ψ = g(Ψ, x, y)
∑N

i=1(|M(0, yi) − Ψ(0, yi)|
0 ≤ x ≤ 1

∑N2

i=1 |M(xi, yi) −∇2(M(xi, yi))| +|M(1, yi) − Ψ(1, yi)|
0 ≤ y ≤ 1 +|M(xi, 0) − Ψ(xi, 0)|

+|M(xi, 1) − Ψ(xi, 1)|)
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an example 1st order ODE and 2nd order PDE. In the CGP solver, the differential
terms are calculated by carrying out O(ND) centered difference approximations
at uniformly sampled training points in the inner domain and O(N(D − 1) + 1)
along each bound. Centered difference approximations are evaluated using two
sampling points separated by distance h, contributing error O(h2).

3 Problem Complexity and Search Space Analysis

3.1 Solving Differential Equations in Evolutionary Search

Abstractly, a DE solver under Graph-based GP searches through a finite, discrete
set Ω of representable expressions for members of a subset of solutions, ω ⊂ Ω.
The solution space ω contains all expressions from Ω which are functionally
equivalent to the analytic solution. The concept is illustrated in Figure 2 below.
One method of defining the inherent difficulty of a DE problem is to consider
the probability pA of selecting an analytic solution, a member of ω, by blind
random search. For convenience we work with 1

pA
, terming this the ‘unguided

complexity’ κ.

Fig. 2. Depiction of expressions in the search space of an ODE with solution x2

Definition 1. Unguided Complexity

κ = 1
pA

= |Ω|
|ω|

such that κ is the number of candidates in the total search space per member of
the solution set. A genotype representation of a problem where κ is large induces
proportionally fewer optimal solutions and is combinatorially harder before the
fitness landscape is considered.

3.2 Search Space Ω

Taking a standard case from Koza[4], consider a full bi-arity tree genotype of
depth D. The tree is covered by 2D − 1 functions (interior vertices) and 2D ter-
minals (leaves). Hence for function and terminal sets of size f and T respectively,
the number of syntactically distinct, labelled trees is given by
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|ΩTREE| = f2D−1 T 2D

= T (fT )2
D−1 (2)

For the CGP genotype, ΩCGP is instead defined by combinations of directed
graphs. The closest comparison to the bi-arity tree in CGP is a feed-forward
bi-arity genotype of the form shown in Figure 3. Here the bounding parameter
on ΩCGP is the total genotype length, the number of genes C. When C = 1 the
search space is ΩCGP = fT 2. Generalising to permit connections to all previous
nodes, the size of the total search space is

|ΩCGP| = fC
C−1∏
i=0

(T + i)2 (3)

or more transparently the factorial

|ΩCGP| = fC
C−1∏
i=0

(T + i)2 = fC

(
(T + C − 1)!

(T − 1)!

)2

(4)

Comparing tree depth with CGP length is not straightforward, because they
may imply a different number of nodes per individual. One method is to con-
sider instead the maximum path length in each graph, such that C = D. From
Equations 2 and 4, we then have

|ΩCGP| < |ΩTREE| given that C, D > 4 (5)

using any set of functions and terminals with f > 1 or T > 1. The feed-forward
CGP applied in this experiment explores a smaller space of candidates than the
full tree structure, as the maximum path length increases.

Fig. 3. Example 5 cell bi-arity genome from a single row CGP genotype. Cells 1,3 and
5 are connected to the output. Cells 2 and 4 are redundant.

3.3 Solution Space ω

With increasing genotype length, ω also expands to include increasingly complex
symmetry. An alternative strategy to the challenge of enumerating ω directly
for DE is to make an estimate by blind random sampling. Consider a number
of independent GP runs R on a population size P . Classically the probability
of success of an independent run under random search with no evolutionary
mechanism is just the binomial product

1 − (1 − pA)Pg (6)



Analytic Solutions to Differential Equations 237

P ×g being the number of individuals created by generation g. Therefore a good
estimate for pA can be found by empirically fitting Equation 6 to a cumulative
histogram of successes over all runs. Combined with Equations 2 and 4, the
experiment gives us κ and ω for each DE problem. We apply this to a set of
benchmarks in Section 4.

3.4 Parameter Space

To solve an ODE or PDE with genetic programming, the terminal and functions
sets should be specified such that at least one group of elements can be drawn
and ordered to give an expression equivalent to the desired analytic solution.
Figure 4 illustrates how the unguided complexity can increase with additional
functions and terminals. In this simple example, κ tends to grow roughly linearly
with T and f . Interestingly, we note that the complexity when searching with
both log and exp operators is lower than with a set precluding one or the other.
In practice, the availability of the inverse operation introduces new equivalent
solutions within ω and increases the probability of finding an analytic solution
under random search. For simplicity, the following experiments use the minimum
subset of functions under which the analytic forms of all benchmark problems
addressed can be represented. Similarly, any constants required by the search
are pre-seeded, rather than evolved dynamically. Division by zero is protected,
returning one. The full function set included the operators (+ − ∗ / sin cosine
log exp).

Fig. 4. The parameter space for a one dimensional ODE problem where dy
dx

= 2y
x

, with
initial condition y(1) = 1. T = 2 and C = 4).

4 Experiment

Exploring the effectiveness of different GP representations for solving DE re-
quires a defined set of benchmark ODE and PDE. To allow ease of comparison,
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in the following sections we detail a selection of problems drawn from previous
publications [3][6][7]. These problems cover a cross-section of different classes,
order and domains. Table 2 below describes the parameters used throughout
for each algorithm. Values for boundary weighting α and sampling rate N are
optimised over the whole problem set. The maximum number of candidate trees
or graphs was held constant between each set up (P × gmax = 107). Candidates
in tree GP were selected through a binary tournament strategy, with optimal
population size P = 1000. Bloat control was introduced by constraining trees to
a maximum of 150 nodes.

Table 2. Parameters for CGP and Tree Guided Search

Parameter CGP Tree
Population P 10 1000
Max Generations gmax 2000 20
Runs 500 500
Weighting α 100 100
Offspring λ 5 -
Sample Rate N 10 10
Mutation Rate Point 2%
Crossover Rate - 90%
Reproduction Rate - 8%

4.1 Complexity and Performance against ODE

The ODE problem set chosen is summarised in Table 3. These consist of linear
and non-linear problems for which closed form polynomial, trigonometric and
exponential solutions exist. The above problems are chosen to test different as-
pects of the search algorithms. ODEs [3,9] have similar functional form in their
solutions, but treat different equations. These problems should therefore have
a comparable unguided complexity, but evaluate differently under the guided

Table 3. ODE Problem Set

No. ODE Domain Conditions Solution
1 y′ = 2x−y

x
0.1 : 1.0 y(0.1) = 20.1 y = x + 2

x

2 y′ = 1−ycos(x)
sin(x)

0.1 : 1.0 y(0.1) = 2.1
sin(0.1)

y = x+2
sin(x)

3 y′ = − 1
5
y + e−

x
5 cos(x) 0.0 : 1.0 y(0.0) = 0 y = e−

x
5 sin(x)

4 y′ + ycos(x) = 0 0.0 : 1.0 y(0.0) = 1 y = e−sin(x)

5 y′ − 2y
x

= x 0.1 : 1.0 y(1) = 10 y = x2ln(x) + 10x2

6 y′ + y2 = 0 0.0 : 1.0 y(1.0) = 0.5 y = 1
1+x

7 y′′ = −100y 0.0 : 1.0 y(0) = 0, y′(0) = 10 y = sin(10x)
8 y′′ = 6y′ − 9y 0.0 : 1.0 y(0) = 0, y′(0) = 2 y = 2xe3x

9 y′′ = − 1
5
y′ − y − 1

5
e−

x
5 cos(x) 0.0 : 2.0 y(0) = 0, y′(0) = 1 y = e−

x
5 sin(x)

10 y′′ = 4y′ − 4y + exp(x) 0.0 : 1.0 y(0) = 3, y′(0) = 6 y = ex + 2e2x + xe2x
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search. ODEs [5,8,10] are examples of problems with solutions having more com-
plex functional forms and dependency on several common sub-elements. Figure 5
contrasts the unguided complexity κ of the ODE problem set under tree GP and
CGP. Over all known complexity estimates, blind random sampling using the
CGP framework achieved a higher success rate than in the Tree framework,
by factors ranging between 2 (ODE [4,6]) and 100 (ODE [8]). The solutions to
the example ODE are more densely represented under a graph-based framework
than in a tree-based representation.

Fig. 5. Estimates of the unguided complexity, κ, on ODEs 1-9. ODES[5] and [10] did
not converge under blind random search. All other complexity estimates are lower
under CGP.

Figure 6 shows the performance under guided search. The results are presented
using a convenient integral metric, such that

AImax =
1

107

∫ Imax

0
h(I)dI (7)

(Imax = 20000) where A is the area underneath the probability of success curve
h(I), calculated as a discrete sum. h(I) is the chance of having obtained an
analytic solution after I = P × g candidate genomes, taken as an average from
100 runs of the solver. Overall performance for a given number of candidates is
greater as h → 1. The CGP solver converged on a representation of the analytic
solution for all cases and performance showed good qualitative correlation with
the complexity of each problem. Under guided search, the ODEs having a so-
lution with a simple analytic form were solved more readily by the tree-based
representation, but this did not converge for the high complexity case ODE 5.
The best guided performance of CGP relative to the bi-arity tree GP occurred
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Fig. 6. Guided solver performance on ODE over 20000 candidate solutions, for CGP
and Tree GP. Results are presented using an area metric (Equation 7).

Table 4. Elliptic PDE Problem Set

No. PDE Particular Solution
1 ∇2Ψ(x, y) = 4 Ψ(x, y) = x2 + y2 + x + y + 1
2 ∇2Ψ(x, y) = −2Ψ(x, y) Ψ(x, y) = sin(x)cos(y)
3 ∇2Ψ(x, y) = −(x2 + y2)Ψ(x, y) Ψ(x, y) = sin(xy)
4 ∇2Ψ(x, y) + eΨ = 1 + x2 + y2 + 4

1+x2+y22 Ψ(x, y) = log(1 + x2 + y2)

for problems [1,2,5,8 and 10] which include repeat functional elements in their
solutions.

4.2 Partial Differential Equations

An experiment was carried out to demonstrate proof of concept on partial
differential equations. A collection of benchmark second order elliptic PDEs
were solved using CGP across a Dirichlet bounded unit square, summarised in
Table 4.1 The full general function set was employed.

The full analytic solution was recovered in all cases. On average, the CGP
algorithm took longest to recover the more complex functional forms of PDE[1]
and PDE[4]. The convergence rate is thought to be slow for these problems
because the fitness landscape is dominated by deep local minima near the true

1 A complete specification of the PDE problems and their boundary conditions can
be found in Tsoulos et. al. (2006) [6].
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solution. Both solutions were often approximated by very fit combinations of
nested sine functions, which pre-disposed the search to stagnate.

4.3 CGP and Systems of Differential Equations

An interesting quality of the CGP representation is the intended support for mul-
tiple outputs. Solutions are read from different starting nodes on the genotype
and evolved simultaneously. We applied this aspect to a simple trigonometric
SODE with repeated solutions of the form

y′
1 = cos(x), y1(0) = 0

y′
2 = −y1, y2(0) = 1

y′
3 = y2, y3(0) = 0

y′
4 = −y3, y4(0) = 1

y′
5 = y4, y5(0) = 0

Outputs were obtained from the last n cells in the genome, expanding with one
additional node for each extra ODE, repeating for n > 5. Figure 7 then shows the
corresponding number of candidates I that must be evaluated for a 99% success
probability from repeated runs. In this instance, the computational effort is ap-
proximately the same as solving a set of equivalent independent ODE. Under the
graph-based representation, the new outputs are connected to existing partial so-
lutions. This gives the appearance that solutions with a high degree of symmetry
are grown easily, benefiting from ‘cross-polination’ along the genome.

Fig. 7. Average number of individuals required to solve the test SODE, showing the
increase with system size. Multiple outputs are read from the CGP genome.

5 Discussion

Section 4 demonstrated that GP search on standard DE problems can show
faster convergence when working with representations which support repeated
elements. In this instance, the mechanism we used to explore this was to ap-
ply a graph-based framework, but we would expect similar improvements when
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introducing techniques such as modules or ADFs. For the sample problems ex-
amined, more compact representations spanned a proportionally higher number
of analytic solutions in the search space. It is worth noting that the difficulty
of a DE under heuristic search is not strongly dependent on the form of the
equation itself, but as in symbolic regression [11], on the length and diversity of
the solution and also on boundary conditions.

Common to previous efforts, the main limitation of the approach is the require-
ment to define a sufficient function and terminal set. Applying prior knowledge
of the boundary or initial conditions can provide useful indications of which sub-
set to apply. Throughout all the problems, the boundary weighting condition α
played a critical role in the search. It was found that defining a fitness function
with strongly weighted boundaries ( α = 100) generally led to faster conver-
gence on partial solutions, but naturally became dominated by these candidates
as the weighting increased. A very low weighting (α < 1) skews the population
to include candidates which solve the general DE, but with a different functional
form to the particular solution.

Differential equations are an interesting area for heuristic search techniques,
both as an inductive tool and for engineering applications. In the latter, meth-
ods of seeding may be particularly useful, for example incorporating partial
solutions based on empirical data. Another natural idea is to apply dimensional
constraints, where the metric units of a problem are considered [10]. The ap-
proach could also be improved upon by including better techniques for evaluating
candidate terms, such as automatic or symbolic differentiation [12].

6 Conclusions

The purpose of this initial work was to explore best heuristics for the evolution
of solutions to differential equations under GP. We carried out an analysis of
the search space and empirical performance of two GP solvers, conventional
CGP and tree GP. It was illustrated that GP structures which automatically re-
use common elements, such as graph-based representations, can show improved
performance on target DE where solutions have repeated structure. Proof of
concept was provided for a CGP solver on PDE and Systems of ODE. We further
demonstrated that simple SODE were solvable using multiple outputs from a
graph-based genotype and that this approach scaled efficiently with system size.
A number of guidelines for solving DEs were inferred, including the selection of
compact representations and strongly weighted boundary conditions.
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Abstract. We describe a data mining framework that derives panelist
information from sparse flavour survey data. One component of the
framework executes genetic programming ensemble based symbolic re-
gression. Its evolved models for each panelist provide a second component
with all plausible and uncorrelated explanations of how a panelist rates
flavours. The second component bootstraps the data using an ensemble
selected from the evolved models, forms a probability density function
for each panelist and clusters the panelists into segments that are easy
to please, neutral, and hard to please.

Keywords: symbolic regression, panel segmentation, survey data, en-
semble modeling, hedonic, sensory evaluation.

1 Introduction

Givaudan Flavours, a leading fragrance and flavour corporation, is currently try-
ing to integrate evolutionary computation techniques into its design of flavours.
In one step of its design process, Givaudan conducts a hedonic survey which
presents aromas of flavours to a small panel of targeted consumers and queries
how much each flavour is liked. Each panelist is asked to sniff roughly 50 flavours.

To best exploit the restricted sample size, Givaudan flavourists first reduce
the ingredients they experimentally vary in the flavours to the most important
ones. Then they use experimental design to define a set that statistically provides
them with the most information about responses to the entire design space.

The specificity of sensory evaluation data is such, that “the panelist to pan-
elist differences are simply too great to ignore as just an inconvenience of the
scientific quest,” [1], because “taste and smell, the chemical senses, are prime
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examples of inter-panelist differences, especially in terms of the hedonic tone (lik-
ing/disliking),” [1]. Givaudan employs reliable statistical techniques that regress
a single model from the survey data. This model describes how much the panel,
as an aggregate, likes any flavour in the space. But since the differences in the
liking preferences of the panelists are significant, Givaudan is also using several
proprietary methods to deal with the variation in the panel and is interested in
alternative techniques.

A goal of our interaction with Givaudan is to generate innovative informa-
tion about the different panelists and their liking-based responses by developing
techniques that will eventually help Givaudan design even better flavours. Here
we describe how Genetic Programming (GP) can be used to model sensory eval-
uation data without suppressing the variation that comes from humans having
different flavour preferences. We also describe how GP enables a knowledge min-
ing framework, see Figure 1, that meaningfully segments (i.e. clusters) the panel.
With an exemplar Givaudan dataset, we identify the panelists who are ”easy to
please”, i.e. that frequently respond with high liking to flavours, ”hard to please”
and ”neutral”. This is, in general, challenging because the survey data is sparse.
In this particular dataset there are only 40 flavours in the seven-dimensional
sample set and 69 panelist responses per flavour.

Fig. 1. Knowledge mining framework for sparse sensory data with a focus on panel
segmentation. Read clockwise. The top portion is repeated for each panelist.

We proceed as follows: Section 2 introduces our flavour-liking data set. Section 3
discusses why GP model ensembles are well suited for this problem domain and
briefly cites related work. Section 4 outlines the 5 steps of our method. Section 5
describes Steps 1 and 2, the ensemble derivation starting from ParetoGP. Section 6
presents Steps 3-5 – how the probability density functions and clusters that ulti-
mately answer the questions are derived from this ensemble, and our experimental
results. Section 7 concludes and mentions future work.
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2 The Givaudan Flavour Liking Data Set

In this data set, flavour space consists of seven ingredients called keys, ki. A
flavour in the flavour space is a mixture by volume of these seven ingredients
and the j th flavour is denoted by k

(b)
. 69 panelists sniff 40 different flavours

and select a rating that is translated to its liking score, LS per Figure 2(a).
Figure 2(b) illustrates the variation in the liking preferences of 69 panelists for
the first ten flavours (for each flavour a histogram of 69 likling scores is depicted
using 9 bins). Table 1 gives the notation for different variables used in this paper.
Givaudan may pre-process these scores to adjust them for how different panelists
use the range of the response scale. We scale all key data to the same range in
this study.

(a) (b)

Fig. 2. (a)Category anchoring of the 9 point hedonic scale (b) Liking score frequency
for 10 different flavours over all 69 panelists shows preference variance

3 Related Work

Because our data is sparse, it is not justifiable to presume that there is solely one
model that explains a panelist’s preferences. Thus presuming any structure for a
model (which parametric regression requires) is tenuous. Model over-fitting must
also be avoided. This makes the non-parametric, symbolic regression modeling
capability of GP desirable. GP symbolic regression is also population-based and
can be run over the data multiple times with different random seeds to generate
multiple, diverse models. Complexity control and interval arithmetics can be
used to mitigate data over-fitting. Symbolic regression works without a priori
assumptions of model structure (except primitive selection).

However, with a few exceptions, GP symbolic regression has been focused on
obtaining the most accurate single model from multiple runs. In Section 5, we
will describe ParetoGP [2] as one means of explicitly refocusing GP symbolic
regression so it generates a robust set of models. The idea of using ensembles for
improved generalization of the response prediction is by far not new in regres-
sion. It has been extensively used in neural networks (e.g., [3–7]), and even more
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Table 1. Problem Specific Variable Description

Variable Notation Details
flavour Space F The design space of ingredient mixtures

Keys ki i ∈ {1...7}
flavour k A mixture of 7 keys, k = {k1, ...k7}

A specific flavour k
(b)

A specific flavour denoted by superscript b

Panelist sn n ∈ {1..69}
Set of Panelists S S = {s1, s2, ....s69}

Observed flavours Fo Fo = {k(1)
....k

(40)}
Bootstrapped flavours FB FB ={k(1)

......k
(10,000)}

Likability Function fs(k
(j)

) = LS Relationship between a k
(b)

and LS

lsd p(LS|s) Liking score density function for a panelist s

Cumulative density Px(LS ≥ x|s) Probability of Liking score ≥ x

Panelist Cluster Sc A subset of S, c ∈ {E, N, H}
Model m Model m for Panelist s

Prediction ys,b,m Model m’s prediction for a k
(b)

Model Ensemble Ωs All models in the ensemble
Prediction Set Y

s,b
Y

s,b
= ∀m ∈ Ωs {ys,b,m}

Set of Liking Scores s Y
s

Y
s
= ∀b ∈ FB {Y s,b}

extensively in boosting and machine learning in general (albeit, mostly for classi-
fication). See [8–14] for examples. [7] presented the idea of using disagreement of
ensemble models for quantifying the ambiguity of ensemble prediction for neural
networks, but the approach has not been adapted to symbolic regression.

4 Panel Data Mining Steps

Our GP ensemble-based ”knowledge mining” method has five steps:

1. Generate a diverse model set for each panelist from the sparse samples.
2. Thoughtfully select an ensemble of models meeting accuracy and complex-

ity limits to admit generalization and avoid overfitting and a correlation
threshold to avoid redundancy.

3. Use all models of the ensemble to generate multiple predictions for many
unseen inputs.

4. With minor trimming of the extremes and attention to the discrete nature
of liking scores, fit the predictions to a Weibull distribution.

5. Cluster based on the Weibull distribution’s probability mass.

It is significant to note that these steps respect the importance of avoiding pre-
mature elimination of any plausible information because the data is sparse. The
ensemble provides all valid values of the random variable when it is presented
with new inputs. This extracts maximum possible information about the random
variable, which supports more robust density estimation.
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We proceed in Section 5 to detail how we assemble a symbolic regression
ensemble, i.e. Steps 1 and 2. In Section 6, we detail Steps 3 through 5.

5 A Symbolic Regression Ensemble

Traditionally symbolic regression has been designed for generating a single
model. Researchers have focused on evolving the model that best approximates
the data and identifies hidden relationships between variables. They have de-
veloped multiple competent approaches to over-fitting. There are a number of
demonstrably effective procedures for selecting the final model from the GP
system. Machine learning techniques such as cross validation and bagging have
been integrated. Multiple ways of controlling expression complexity are effective.
See [15] for a thorough justification of the above assessment.

Modelers who must provide all and any explanations for the data are not well
served by this emphasis upon a single model. Any algorithm variation of symbolic
regression, even one that proceeds with attention to avoiding over-fitting, is as
fragile as a parametric model with respect to the accuracy of its predictions and
the confidence it places in those predictions if it outputs one model. The risks
are maximal when the best-of-the-run model is selected from the GP system
as the solution. Our opinion is supported by the evidence in [16] which shows
that symbolic regression performed with complexity control, interval arithmetic,
and linear scaling still produces over-fitted best-error-of-the-run models that
frequently have extrapolation pathologies.

Symbolic regression can handle dependent and correlated variables and au-
tomatically perform feature selection. It is capable of producing hundreds of
candidate models that explain sparse data via diverse mathematical structure
and parameters. But the combined information of these multiple models has
been conventionally ignored. In our framework, we exploit rather than ignore
them. During a typical run, GP symbolic regression explores numerous models.

Fig. 3. Ensemble based symbolic regression
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We capture the combined explanatory content of fitness-selected models, and
pool as many explanations as we can from whatever little data we have.

An explicit implementation of this strategy, such as ParetoGP, must embed
operators and evaluation methods into the GP algorithm to specifically aggre-
gate a rich model set after combining multiple runs. The set will support deriv-
ing an ensemble of high-quality but diverse models. Within an ensemble, each
model must approximate all training data samples well – high quality. As an en-
semble, the models must collectively diverge in their predictions on unobserved
data samples –diverse. If a GP symbolic regression system can yield a sufficient
quantity of “strong learners” as its solution set, all of them can and should be
used to determine both a prediction, and the ensemble disagreement (lack of
confidence) at any arbitrary point of the original variable space. In contrast to
boosting methods that are intended to improve the prediction accuracy through
a combination of weak learners into an ensemble, this ensemble derivation pro-
cess has the intent of improving prediction robustness and estimating reliability
of predictions.

5.1 Model Set Generation

All experiments of this paper use the ParetoGP algorithm which has been specif-
ically designed to meet the goals of ensemble modeling. Any other GP system
designed for the same goals would suffice. ParetoGP consists of the tree-based GP
with multi-objective model selection optimizing the trade-off between a model’s
training error and expressional complexity; an elite-preservation strategy (also
known as archiving), interval arithmetic, linear scaling and Pareto tournaments
for selecting crossover pairs. In each iteration of the algorithm, it tries to closely
approximate the (true) Pareto curve trade-offs between accuracy and complex-
ity. It supports a practical rule-of-thumb: “use as many independent GP runs as
the computational budget allows”, by providing an interface where only the bud-
get has to be stated to control the length of a run. It also has explicit diversity
preservation mechanisms and efficiently supports a sufficiently large population
size. The training error used in experiments is 1 − R2, where R is a correlation
coefficient of the scaled model prediction and the scaled observed response. The
expressional complexity of models is defined as the total sum of nodes in all
subtrees of the tree-based model genome. The following primitives are used for
gp trees of maximal arity of four: {+,−, ∗, /, inverse, square, exp, ln}. Variables
x1 − x7 corresponding to seven keys and constants from the range [−5, 5] are
used as terminals. ParetoGP is executed for 6 independent runs per panelist data
before the models from runs are aggregated and combined. The population size
equals 500, the archive size is 100. Crossover rate is 0.9, and sub-tree mutation
rate is 0.1. ParetoGP collects all models on the Pareto front of each run and
for information purposes identifies a “super” Pareto front from among them. All
models move forward to ensemble selection. We now have to make a decision
about which models will be used to form an ensemble.
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5.2 Ensemble Model Selection

In [17], the authors describe an approach to selecting the models which form an
ensemble: collect models that differ according to complexity, prediction accuracy
and specific predictions. Complexity can be measured by examining some quan-
tity associated with the GP expression tree or by considering how non-linear the
expression is. Accuracy is the conventional error measure between actual and
predicted observations. Specific predictions are considered to assess correlations
and eliminate correlated models. Generally, each ensemble combines:

– A “box” of non-dominated and dominated models in the dual objective space
of model prediction error and model complexity.

– A set of models with uncorrelated prediction errors on a designated test set
of inputs. Here a model is selected based on a metric which expresses how
its error vector correlates with other models’ error vector. The correlation
must not exceed a value of ρ. The input samples used to compute prediction
errors can belong to the training set, test set (if available), or be arbitrarily
sampled from the observed region.

The actual ρ and box thresholds for the ensemble selection depend on the prob-
lem domain’s goals. For this knowledge mining framework, where the next step
is to model a probability density function of a liking score, all plausible expla-
nations of the data are desired to acknowledge the variation we expect to see
in human preferences. The box thresholds are accuracy = 0.5 and expressional
complexity < 400. This generates models with sufficient generality (since we
allowed accuracy as low as 0.5) and restricts any models with unreasonably
high complexity with no obvious improvement in accuracy. We chose a value of
ρ = 0.92 to weed out correlated models. A set of models selected after applying
the criteria above is called the ensemble, Ωs.

6 Modeling a Panelist’s Propensity to Like

With methods that support refocusing GP based symbolic regression to derive a
rich and diverse set of models and the methods [17] that select an ensemble, our
GP system becomes a competent cornerstone in our knowledge mining frame-
work. The framework can next use the ensemble, Ωs designed for a panelist s to
answer the question: ”How likely is a panelist to answer with a liking score/rating
higher than X?”. The answer to this question allows us to categorize panelists
as: (1) Easy to Please, (2) Hard to Please, (3) Neutral. We accomplish this by
modeling the probability density function given by p(LS|s) for a panelist s. To
describe our methodology, we rely upon the notations in Table 1.

Density estimation poses a critical challenge in machine learning, especially
with sparse data. Even if we assume that we have finite support for the density
function and it is discrete, i.e. LS = {1, 2, ...8, 9}, we need sample sizes of the
order of ”supra-polynomial” in the cardinality of support [18]. In addition, if
the decision variables are inter-dependent, as they are here, estimating a condi-
tional distribution increases the computational complexity. Most of the research
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in density estimation has focused on identifying non-parametric methods to esti-
mate distribution of the data. Research on estimation of density from very small
sample sizes is limited [18, 19].

Figure 4 presents the steps taken to form this liking score probability density
model. We first generate 10,000 untested flavours We use the model ensemble
Ωs, which gives us a set of predictions Y

s,b
.For each untested flavour we get a

set of predictions (not just one), which plausibly represents all possible liking
scores the panelist would give. We use these to construct the lsd, liking score
density function, for an individual panelist.

2

Fig. 4. Bootstrapping the Data and Deriving the Liking Score Probability Density
Model

6.1 Deriving Predictions by Bootstrapping the Data

To generate the bootstrapped data of liking scores for the FB ={k(1)
......k

(10,000)}
we follow the steps described in Algorithm 1.

Algorithm 1. Bootstrapping the LS data for Panelist s

Generate 10,000 flavours randomly, i.e., Fb = {k1
....k

10,000} (we use a fixed uniform
lattice in the experiments, same for all panelists)
for (k

b ∈ Fb ∀b) do

(i)Collect all the predictions from Model Ensemble, Ωs: Y
s,b

(ii) Sort the vector Y
s,b

(iii) Remove the bottom and top 10% of Y
s,b

and call this vector R
s,j

(iv) Append R
s,j

to Y
s

end for
Fit the Y

s
to a Weibull distribution. See Section 6.2

6.2 Parametric Estimation of the Liking Score Density Function

We use a parametric Weibull distribution to estimate p(LS|s). The two parame-
ters for the Weibull distribution, λ and r are called scale and shape respectively.
A Weibull distribution is an adaptive distribution that can be made equivalent to



252 K. Vladislavleva et al.

an Exponential, Gaussian or Rayleigh distributions as its shape and scale param-
eters are varied. For our problem this is a helpful capability as a panelist’s liking
score follows any one of the three distributions. The derived Weibull distribution
is:

p(LS; λ, r|s) =

{
r
λ (LS

λ )r−1e−( LS
λ )r

if LS ≥ 0
0 if LS < 0.

(1)

In addition to steps taken in Section 6.1, we map the bootstrapped data to a
range of the support of Weibull and the hedonic rating scale i.e., [1, 9]. There are
some predictions in the Y

s
which are below 1 or are above 9. We remove 80% of

these predictions as outliers. We assign a liking score of 1 for the remaining 20%
of predictions that are less than ’1’ in the prediction set. We similarly assign
the liking score of ’9’ for the ones that are above 9. We use these 20% in Y

s
to

capture the scores corresponding to the ”extremely dislike” and ”extremely like”
condition. Each plot line of Figures 6 (b), (c) and (d) is a lsd.

6.3 Clustering Panelists by Propensity to Like

Having estimated the data generated from the models for 10,000 flavours in FB =
{k(1)

......k
(10,000)} using the methods described in Section 6.2, we can classify the

panelists into three different categories (see Figure 5). We divide the liking score
range [1..9] into three regions as shown in Figure 6. The panelists are then
classified by identifying the region in which the majority (more than 50%) of
their probability mass lies (see Algorithm 2). This is accomplished by evaluating
the cumulative distribution in each of these regions using:

P(l1,l2](LS; λ, r|s) = e−( l1
λ )r

− e−( l2
λ )r

. (2)

Fig. 5. Clustering the Panelists

6.4 Results on All Panelists

We applied our methodology to the dataset of 66 panelists who can be individ-
ually modeled with adequate accuracy. The first cluster is the ”hard to please”
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Algorithm 2. Clustering the Panelists
for ∀s ∈ {S} do

1. Calculate Pl1,l2 using estimated (λs, rs) for (l1, l2] → (1, 3.5], (3.5, 6.5] and
(6.5, 9.5]
2. Assign the panelist s, to the cluster corresponding to the region where he/she
has maximum cumulative density
s ← s + 1

end for

panelists. We have 23 panelists in this cluster which is approximately 34.8% of
the panel. These panelists have most of their liking scores concentrated between
1-3.5 range. We call these ”hard-to-please” since low liking scores might imply
that they are very choosy in their liking.

The second cluster is the cluster of ”neutral panelists”. These panelists rarely
choose the liking scores which are extremely like or extremely dislike. For most
of the sampled flavours they choose somewhere in between and hence the name
neutral. There are 31 panelists in this cluster which is 47% of the total panel.
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Fig. 6. Liking Score Density Models: (a)Decision regions for evaluating cumulative
distribution, (b) Hard to please panelists (c) Neutral Panelists (d) Easy to Please
Panelists
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The final cluster of panelists is the ”easy to please” panelists. This cluster of
panelists reports a high liking for most of the flavours presented to them or may
report moderate dislike of some. They rarely report ”extremely dislike”. There
are 12 panelists in this cluster which is close to 18% of the total panel.

7 Conclusions and Future Work

This contribution described an ensemble-based symbolic regression approach for
knowledge mining from a very small sample of survey measurements. It is only
a first small step towards GP-driven flavour optimization and also demonstrates
the effectiveness of GP for sparse data modeling. Our goal was to model behav-
ior of panelists who rate flavours. Our methodology postpones decision making
regarding a model, a prediction, and a decision boundary until the very end. In
Step 1 ParetoGP generates a rich set of models consisting of the multiple plau-
sible explanations for the data from multiple run aggregation of its best models.
In Step 2 these are filtered into an efficient and capable ensemble and no valid
ex planation is eliminated. In Step 3 all the models are consulted, and with mi-
nor trimming, their predictions are fit to a probability density function. Finally,
in Step 4, when macro-level behaviour has emerged and more is known about
the panelists, decision boundaries can be rationally imposed on this probability
space to allow their segmentation. Our approach allowed us to robustly identify
segments in the panel based on the liking preferences. We conjecture from our
results that there are similar potential benefits across any sparse, repeated mea-
sure dataset. We will focus our efforts in the future on the theory and practice
of efficient techniques for ensemble derivation in the context of GP.
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Abstract. In this paper, we present a genetic programming (GP) framework for
evolving agent’s binding function (GPAuc) in a resource allocation problem. The
framework is tested on the exam timetabling problem (ETP). There is a set of
exams, which have to be assigned to a predefined set of slots and rooms. Here,
the exam time tabling system is the seller that auctions a set of slots. The exams
are viewed as the bidding agents in need of slots. The problem is then to find
a schedule (i.e., a slot for each exam) such that the total cost of conducting the
exams as per the schedule is minimised. In order to arrive at such a schedule, we
need to find the bidders optimal bids. This is done using genetic programming.
The effectiveness of GPAuc is demonstrated experimentally by comparing it with
some existing benchmarks for exam timetabling.

1 Introduction

Decentralised scheduling is the problem of allocating resources to alternative possi-
ble uses over time, where competing uses are represented by autonomous agents. This
scheduling can be done using different methods such as such as first-come first-served,
priority-first, and combinations thereof. But, these methods do not generally possess
globally efficient solutions. Due to this limitation, considerable research is now fo-
cussing on the use of market mechanisms for distributed resource allocation problems
[16]. Market mechanisms use prices derived through distributing bidding protocols,
such as auctions, to determine schedules.

In an auction, there are two types of agents: the auctioneer and the bidders. The
auctioneer could be a seller of a resource and the bidders are buyers that are in need
of the resource. The bidders bid for the resource being auctioned and one of them is
selected as the winner. An agent’s bid, in general, indicates the price it is willing to
pay to buy the resource. On the basis of the agent’s bids, the resource is allocated to
the winning agent. The auction protocol determines the rules for bidding and also for
selecting a winner. There are several protocols such as the English auction, the Dutch
auction, and the Vickrey auction protocol [16].

Given an auction protocol, a key problem for the bidders is to find an optimal bid-
ding function for the protocol [16]. An agent’s bidding function is a mapping from its
valuation or utility or preference (for the resource being auctioned) to a bid. An agent’s
valuation is a real number and so is its bid. Since there are several agents bidding for a
single resource, an agent must decide how much to bid so that its chance of winning is
maximized and the price at which it wins is minimised. Such a bid is called the agent’s

A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 256–267, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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optimal bid. An agent’s optimal bidding function is then the function that takes the
valuation as input and returns its optimal bid.

For a single auction, finding an agent’s optimal bidding function is easy. But in the
context of the distributed scheduling problem we focus on, there are several auctions
that are held sequentially one after another [13]. Furthermore, an agent may need more
than one resource and must therefore bid in several auctions. In such cases, an agent’s
bidding function depends on several parameters such as how many auctions will be
held, how many bidders will bid in each of these auctions, and how much the agent and
the other bidders value the different resources. This complicates the problem of finding
optimal bids. In order to overcome this problem, our objective is to use GP to evolve
bidding functions.

We study the distributed scheduling problem in the context of the famous exam time
tabling problem (ETTP) [8]. The ETTP can be viewed as a decentralised scheduling
problem where the exams represent independent entities (users) in need of resources
(slots) with possibly conflicting and competing schedule requirements. The problem is
then to assign exams to slots (i.e., find a schedule) such that the total cost of conducting
the exams as per the schedule is minimised.

Genetic Programming (GP) [15,17,19] is a biologically-inspired search method within
the field of Evolutionary Algorithms. These algorithms incorporate some elements of
Darwinian evolution in order to discover solutions to difficult problems. This is achieved
by evolving a population of individuals, each representing a possible solution. What
distinguishes GP from other EA methods is that GP specialises in the discovery of exe-
cutable computer programs. As mentioned before, one of the key problems in auctions
is the design of optimal bidding functions. An agent’s bidding function depends on a
number of parameters such as the agent’s valuation for the resource, the other bidders’
valuations for it (it is not always that such information is available), and information
regarding related previous auctions. When an auction begins, the agents have little in-
formation about these parameters, but as the auction progresses, new information be-
comes available to the bidders. Thus a key problem for a bidder is to learn this new
information and adapt its bidding function accordingly. Given this, the objective of this
f is to automate the formulation of optimal bidding functions through the use of genetic
programming.

2 The Exam Timetabling Problem

The exam timetabling problem is a common combinatorial optimisation problem which
all educational institutions need to face. Although the problem’s details tend to vary
from one institution to another, the core of the problem is the same: there is a set
of exams (tasks), which have to be assigned to a predefined set of slots and rooms
(resources).

2.1 Formal Statement of the Problem

We use the following formulation for the exam timetabling problem. The problem con-
sists of a set of n exams E = {e1, . . .en}, a set of m students S = {s1, . . . sm}, a set of q
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time slots P = {p1, p2, . . . pq} and a registration function R : S → E , indicating which
student is attending which exam. Seen as a set, R = {(si,e j) : 1 ≤ i ≤ m,1 ≤ j ≤ n},
where student si is attending exam e j. A scheduling algorithm assigns each exam to a
certain slot. A solution then has the form O : E → P or, as a set, O = {(ek, pl) : 1 ≤ k ≤
n,1 ≤ l ≤ q}.

The problem is similar to the graph colouring problem but it includes extra con-
straints, as shown in [24] (more on this later).

2.2 Timetabling Constraints

Constraints are categorised into two main types:

Hard Constraints: Violating any of these constraints is not permitted since it would
lead to an unfeasible solution.

Soft Constraints: These are desirable but not crucial requirements. Violating any of
the soft constraints will only affect the solution’s quality.

All hard constraints are equally important, while the importance of soft constraints can
vary. Most constraints relate to the main entities of the problem: students, exams, rooms
and slots.

There is no clear-cut distinction between soft and hard constraints: a constraint that is
soft for one institution could be considered hard by another. For example, the constraint
that students cannot attend two exams in the same slot is hard for most institutions.
However, some other institutions may accept violations of this if only few students
are affected, because a special exam session can be set up for those students. Also, an
institution with a large number of rooms and a large number of staff relative to the
number of students may not care much about the number of exam that could take place
in parallel at the same time. On the other hand, a small institution with a limited number
of rooms or staff in relation to the student population may give this constraint a much
greater importance.

2.3 Cost Functions

Usually a cost function is used to calculate the degree of undesirability of violating each
of the soft constraints. This is particularly convenient because, in most cases, changing
soft constraint combinations and the importance (weight) of constraints does not require
modifications in the timetabling algorithm itself. Only updating the cost function that
evaluates the quality of solutions is required.

The following simple function was used in [8] to evaluate the cost of constraint
violations:

C(t) =
1
S

N−1

∑
i=1

N

∑
j=i+1

[w(|pi − p j|)ai j] (1)

where N is the total number of exams in the problem, S the total number of students, ai j

is the number of students attending both exams i and j, pi is the time slot where exam i
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is scheduled, w(|pi − p j|) returns 25−|pi−p j | if |pi − p j| ≤ 5, and 0 otherwise.1 We will
adopt this cost function in this work. Of course, solutions with a lower cost are more
desirable.

2.4 Related Work

Many different techniques have been used to tackle the timetabling problem. These
include: constraint-based methods, graph-based methods, population-based methods,
hyper-heuristics, multi-criteria optimisation and techniques based on local search. For
space limitations in this section we will focus only on evolutionary based algorithms.

Genetic algorithm (GA) is one of the most frequently used and successful evolu-
tionary algorithms in the area of timetabling. In general, there are two ways of using
GAs for timetabling. In the first approach, the GA works directly in the solution space,
i.e., each chromosome represents a timetable. One important issue in this approach is
how to represent a timetable. Different techniques have been investigated through the
years: a recent survey can be found in [22] (which an updated version of [9]). In the
second approach, the GA works as a hyper-heuristic framework, i.e., the chromosome
represents a sequence of heuristics to be applied for finding solutions rather than sim-
ply representing a solution. In most cases the length of the chromosome string is equal
to the number of events to be scheduled and each heuristic in the string indicates how
the corresponding event should be scheduled. This approach could also be seen as a
memetic algorithm. In the remainder of this section we will survey techniques based
on the first approach, while the second approach will be further discussed in the next
section, alongside other hyper-heuristic techniques.

An investigation on the use of GAs in timetabling was presented in [20], where the
differences in the performance of different algorithms around phase-transition regions
were studied. The work showed that some simple evolutionary algorithms could out-
perform hill-climbing-based algorithms in regions associated with certain phase transi-
tions, but not others. A continuation of this study was presented in [21]. This showed
that using a direct mapping in a GA for timetabling is not a very good approach. The
study highlighted the failure of a number of algorithms, including GAs, in solving some
moderately constrained instances, while GAs were able to solve all the lightly and heav-
ily constrained instances.

In [12], a GA representation based on the grouping character of the graph colour-
ing problem was presented. The fitness function used to guide this Grouping GA was
defined on the set of partitions of vertices. The algorithm was applied to a set of hard-
to-colour graph examples and some real-world timetabling problems. Results were not
very competitive with state of the art heuristics. However, the algorithm required much
less computation power than other similar methods.

A GA was used in [23]. This was based on a new encoding system, called Linear
Linkage Encoding (LLE) [11], which differs from the traditional Number Encoding

1 This means that in the most undesirable situation, i.e., when a student has two exams sched-
uled one after the other, i will increase the cost function by a large value, namely 25−1 = 16.
This factor rapidly decreases (following a negative exponential profile) as the size of the gap
between exams increases.
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system for graphs. The authors developed special operators to suit the new LLE en-
coding. Results showed that LLE is promising for grouping problems such as graph
colouring and timetabling.

A hybrid multi-objective evolutionary algorithm was presented in [10]. The frame-
work was used to tackle the uncapacitated exam proximity problem. Traditional genetic
operators were replaced by local-search ones, based on a simplified variable neighbour-
hood descent metaheuristic. A repair operator was introduced to deal with unfeasible
timetables. The framework did not require tuning across a number of test cases.

Genetic programming have been widely used in evolving strategies and heuristics.
GP been used to evolve Boolean satisfiability heuristics [14,3] and specialised one-
dimensional bin packing heuristics [4,5]. Also, in [18] a grammar-based genetic pro-
gramming system was used to evolve multi-objective induction rules, which could be
used in the classification of any data sets.

3 Auction Based Multi-agent for Timetabling

In this section we introduce an auction based multi-agent framework for the ETB prob-
lem (GPAuc). In GPAuc, the seller is the exam time tabling system (ETTS) and it auc-
tions the slots one at a time. The exams are the bidders. Every slot could be sold more
than once (because one slot could contain more than one non-conflicting exams), but in
each auction the slot could be sold only for one exam. Each auction is slightly modified
version of the Vickrey auction, which is a type of sealed-bid auction, where bidders
submit their bids in ”closed envelop” without knowing the bid of the other people in the
auction. The highest bidder wins, which is not exactly the case in GPAuc as it will be
shown shortly.

The slots are auctioned in a round robin order, in each auction, the slot is sold for no
more than one exam, the system keeps looping on all slots till all exams are allocated
slots, or until a deadlock is reached (where no more exams could be scheduled without
violating a hard constraint). For a GPAuc auction, the winning bid is determined as
follows. If the highest bid does not increase the solution’s cost2 beyond a certain limit
AcceptedCost, the highest bid becomes the winning bid. Otherwise, the same rule is
applied to the second highest bid. If the second highest bid causes the cost to increase
beyond the Accepted-Cost, the slot is left unsold and the next auction is initiated for the
following slot. If no slots have been sold in full round on all available slot, in this case
the Accepted-Cost are increased. This process is repeated till all exams are scheduled,
or reaching a deadlock. A general pseudocode of the algorithm is shown in Algorithm 1.

3.1 Optimisation via Genetic Programming

GP [15,17,19] is an evolutionary algorithm which is inspired by biological evolution.
The target of a GP system is to find computer programs that perform a user-defined task.
It is a specialisation of genetic algorithms where each individual is a computer program.
GP is a machine learning technique used to optimise a population of computer programs

2 An increase of the solution’s cost is caused, if allocating the exam to the auctioned slots will
violates a one or more of the soft constraints, as shown in the previous section.
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Algorithm 1. Algorithm overview
1: AcceptedCost ← 0 {AcceptedCost, is initially 0, this increases if there is a full round and no

slots have been sold }
2: RemainingExams ← NumberO f AllExam
3: Deadlock ← f alse
4: while (AvailableExams > 0) and (Deadlock = f alse) do
5: {keep going while there are still exams to schedule}
6: ExamSoldLastRound ← f alse
7: for i ← 1 to NumberO f Slots do
8: {start of new round}
9: Offer slot i for sale

10: collect bids from exams for slot i
11: if CostHighestBid ≤ AcceptedCost then
12:
13: Assign the Exam with the HighestBid to slot i to
14: RemainingExams−−
15: ExamSoldLastRound ← true
16: InformExams() {This function informs the exams about the new schedule so they

can know the available slots and so on, any exam with zero available slots will raise
the Deadlock flag }

17: else if CostSecondHighestBid ≤ AcceptedCost then
18: {otherwise, check the second highest bid exam}
19: Assign the Exam with the SecondHighestBid to slot i to
20: RemainingExams−−
21: ExamSoldLastRound ← true
22: else
23: Do not sell exam i now
24: end if
25: end for
26: if ExamSoldLastRound = f alse then
27: increase AcceptedCost {if one round finished without assigning any exams to any slots

increase the accepted rate}
28: end if
29: end while

depending on a fitness function that measures the program’s performance on a given
task. Tree presentation of the individuals is the most common presentation which also
we will be using here. GP applies a number of operators such as crossover, mutation
and reproduction to transform the current populations of programs into new, hopefully
better, populations of programs.

– Crossover: Given two parents (in a tree presentation), a random point is selected
in each parent tree. Then, offspring are created by replacing the sub-tree rooted at
the crossover point in one of the parents a copy of the sub-tree rooted at the second
crossover point.

– Mutation: one of the most used form of mutation in GP is the following, Given one
parents (in a tree presentation), a random point is selected in this parent, the tree
rooted by this point is then deleted and another new sub-tree is created.
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Table 1. GP function and terminal sets

Function Set Terminal Set
add(d1,d2) : returns the sum of d1 and d2 slt : total number of available slots

for the currently bidding exam e
sub(d1,d2) : subtracts d2 from d1 std : the total number of students at-

tending the bidding exam e
mul(d1,d2) : returns the multiplication of d1

by d2

con f : the total number of all exams
(scheduled and not scheduled
yes) in conflict with exam e

div(d1,d2) : protected division of d1 by d2 cSched : number of already scheduled
exams till now that are in con-
flict with e

abs(d1) : returns the absolute value of d1 cPendd : number of not scheduled exams
that are in conflict with e

neg(d1) : multiplies d1 by −1 cost : current increase in the cost if e
to current slot

f neg(d1) : abs(d1) multiplied by −1, to
force negative value

sqrt(d1) : returns the a protected square
root of d1

The GP’s function and terminal sets are shown in Table 1, the terminal set parameters
are inspired by a number of graph-coloring heuristic which have been used in exam
timetabling [8], which are the following:

– Largest Degree first (LD): Two exams are considered to be in conflict with each
other if they cannot be scheduled in the same slot. In this study we consider two
exams conflicting if they have one or more students registered in both exams. LD of
exam x is total number exams in conflict with x, in general one can say that exams
with high LD are more difficult to schedule than exams with lower LD value, so it
is preferred to schedule exams with high LD first.

– Largest Enrolment first (LE): In our case, LE depends on the number of student
registered in exam x, in general, the more students the more the exam is expecting
to bid for a slot.

– least Saturation Degree first (SD): Most important one. selects exams with least
number of available slots to schedule first. This is the only heuristic that entails
updating. That is, assigning an exam to a slot will make this slot unavailable for all
other slots in conflict with this exam and the count of their available slots will be
decreased by one.

– Largest Weighted Degree first (LWD): is the same as the LD heuristic but if there is
more than one exam with the same number of conflicts, the tie is broken in favour
of the exam with more students.
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Table 2. Characteristics of benchmark exam timetabling problems we are using. For each case we
show: total number of exams, number of students registered in at least one exam, maximum num-
ber of slots available, maximum number of students registered in one exams, maximum number
of exams registered by one student and matrix density.

Name Exams Std. Slots Max. S. Max. E. Matrix
Reg. Reg. Density

car91 682 16925 35 1385 9 0.128
car92 543 18419 32 1566 7 0.138
ear83 190 1125 24 232 10 0.267
hec92 81 2823 18 634 7 0.421
kfu93 461 5349 20 1280 8 0.055
lse91 381 2726 18 382 8 0.063
sta83 139 611 13 237 11 0.144
tre92 261 4360 23 407 6 0.181
uta93 184 21266 35 1314 7 0.126
york83 181 941 21 175 14 0.289

Fitness Function. The fitness function we used is the following:

f (invi) = [
1
S

M−1

∑
i=1

M

∑
j=i+1

w(|pi − p j|)ai j]+ (N−M)×C (2)

where: N is the total number of exams in the problem, M is the total number of exams
that have been successfully scheduled, (N −M) ≥ 0 is the number of unscheduled ex-
ams, C is constant. The objective is to minimise this equation, so the lower the fitness
value the better the individual is.

The first part of the fitness function in Equation (2) is almost the same as the cost
function (1). The second part adds extra penalty for each exam the heuristic (individual)
has not been able to schedule. Even though solutions with unscheduled exams are con-
sidered to be invalid solutions, this extra penalty for unscheduled exams is introduced
to give GP better ability to differentiate between individuals.

3.2 Experimental Results

We tested our method for timetabling by applying it to one of the most widely used
benchmarks in exam timetabling, against which many state-of-the-art algorithms have
been compared in the past. The benchmark was first presented in [8]. Its characteristics
are shown in Table 2. The size of the problems varies from 81 to 682 exams and from
611 to 18419 students. In Table 2 Max. S. Reg. is the maximum number of students
registered in one exam; Max. E. Reg. is the maximum number of exams registered by
one student; matrix density is the density of the conflict matrix, which is given by the
ratio of the number of conflicting exams over the total number of all possible pair exam
combinations.

We did run a number of experiments using different GP parameters, with population
size varying between 50 to 1000, number of generations range between 50 and 100, the
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Fig. 1. The average value of the final Accepted cost of the best evolved functions

reproduction and mutation rate is 5% or 10% of the total population, and 80% for the
crossover rate. The selection is done using tournament selection of 5.

Tables 3 shows the cost (using equation number (1)) of the GPAuc compared to
a number of other construction techniques, as it could be noticed the GPAuc is very
competitive with other methods taking in consideration that GPAuc does not use back-
tracking. Moreover, GPAuc is as distributed methods and that all bidding functions are
automatically evolved without human interaction.

Fig. 2. Percentage of individuals that have been able to schedule all exams in the best evolved
function

Figures 1, 2, 3 and 4 provide some analysis into the behaviour of the best performing
individuals throughout the generations. These graphs are drawn from evolving bidding
functions on the York83 instance, with population size 500, number of generations 100,
mutation and reproduction rate 10% and crossover rate of 90%.
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Fig. 3. Average number of remaining exams in all best behaving individuals

Fig. 4. Average number of all auction taking place in best performing heuristics through out all
the generations

Table 3. Initial Experimental Results

car91 car92 ear83 hec92 kfu93 lse91 sta83 tre92 uta93 york83

GPAuc 7.03 5.80 41.2 13,01 15.90 13.01 157.3 9.32 3.82 45.60
Asmuni et al [1] 5.20 4.52 37.02 11.78 15.81 12.09 160.42 8.67 3.57 40.66
Bader-El-Den et al [2] 5.12 4.15 37.20 11.96 14.54 11.17 158.63 8.63 3.43 40.05
Burke et al [6] 5.41 4.84 38.19 12.72 15.76 13.15 141.08 8.85 3.88 40.13
Carter et al [8] 7.10 6.20 36.40 10.80 14.00 10.50 161.50 9.60 3.50 41.70
Multi-stage [6] 5.41 4.84 38.84 13.11 15.99 13.43 142.19 9.2 4.04 44.51
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4 Conclusions

In this paper we have introduced the GPAuc a genetic programming framework for
evolving agent’s binding function in an resource allocation problem, GPAuc is the first
phase of general framework for multi-agent resource allocation system, which is de-
signed to construct initials solutions through conducting auction. The framework was
customised for the exam time tabling problem, the ETP could be seen as a resource
allocation problem where the exams are the agents and slot are the resources.

The GPAuc is a part of a general The framework consists of two main phases, con-
struction for building initial solutions, while the second phase is concerned with im-
proving the quality of the bets constructed solution (here we will only discuss the first
phase in details). Graph coloring heuristics have been used to guide the GP in evolving
the bidding function. The framework is tested on a widely used benchmarks in the field
of exam time-tabling and compared with highly-tuned state-of-the-art approaches. Re-
sults shows that the framework is very competitive with other constructive techniques,
and have been able to outperform some methods for constructing exam timetables. As it
could be seen, the results are not the best among all other frameworks, and this for two
main reason, in the GPAuc no backtracking is used, the second which is more impor-
tant that the GPAuc is considered as a more distributed approach and that the bidding
functions are automatically generated using GP.
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23. Ülker, Ö., Özcan, E., Korkmaz, E.E.: Linear linkage encoding in grouping problems: Appli-
cations on graph coloring and timetabling. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007.
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Abstract. We consider the validation of randomly generated patterns
in a Monte-Carlo Tree Search program. Our bandit-based genetic pro-
gramming (BGP) algorithm, with proved mathematical properties, out-
performed a highly optimized handcrafted module of a well-known
computer-Go program with several world records in the game of Go.

1 Introduction

Genetic Programming (GP) is the automatic building of programs for solving a
given task. In this paper, we investigate a bandit-based approach for selecting
fruitful modifications in genetic programming, and we apply the result to our
program MoGo.

When testing a large number of modifications in a stochastic algorithm with
limited ressources in an uncertain framework, there are two issues:

– which modifications are to be tested now ?
– when we have no more resources (typically no more time), we must decide

which modifications are accepted.

The second issue is often addressed through statistical tests. However, when
many modifications are tested, it is a problem of multiple simultaneous hypoth-
esis testing: this is far from being straightforward; historically, this was poorly
handled in many old applications. Cournot stated that if we consider a signif-
icance threshold of 1% for differences between two sub-populations of a popu-
lation, then, if we handcraft plenty of splittings in two sub-populations, we will
after a finite time find a significant difference, whenever the two populations are
similar. This was not for genetic programming, but the same thing holds in GP:
if we consider 100 random mutations of a program, all of them being worst than
the original program, and if we have a 1% risk threshold in the statistical valida-
tion of each of them, then with probability (1−1/100))100 � 37% we can have a
positive validation of at least one harmful mutation. Cournot concluded, in the
19th century, that this effect was beyond mathematical analysis; nonetheless this
effect is clearly understood today, with the theory of multiple hypothesis testing
- papers cited below clearly show that mathematics can address this problem.

The first issue is also non trivial, but a wide literature has been devoted to it:
so-called bandit algorithms. This is in particular efficient when no prior infor-
mation on the modifications is available, and we can only evaluate the quality
of a modification through statistical results.

A.I. Esparcia-Alcazar et al. (Eds.): EuroGP 2010, LNCS 6021, pp. 268–277, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Usually the principles of a Bernstein race are as follows:

– decide a risk threshold δ0;
– then, modify the parameters of all statistical tests so that all confidence

intervals are simultaneously true with probability ≥ 1 − δ0;
– then, as long as you have computational resources, apply a bandit algorithm

for choosing which modification to test, depending on statistics; typically, a
bandit algorithm will choose to spend computational resources on the modi-
fication which has the best statistical upper bound on its average efficiency;

– at the end, select the modifications which are significant.

A main reference, with theoretical justifications, is [22]. A main difference here is
that we will not assume that all modifications are cumulative: here, whenever two
modifications A and B are statistically good, we can’t select both modifications
- maybe, the baseline + A + B will be worse than the baseline, whenever both
baseline+A and baseline+B are better than the baseline.

In section 2, we present non-asymptotic confidence bounds. In section 3 we
present racing algorithms. Then, section 4 presents our algorithm and its theo-
retical analysis. Section 5 is devoted to experiments.

2 Non-asymptotic Confidence Bounds

In all the paper, we consider fitness values between 0 and 1 for simplifying the
writing. The most classical bound is Hoeffding’s bound. Hoeffding’s bound states
that with probability at least 1 − δ, the empirical average r̂ verifies |r̂ − Er| ≤
deviationHoeffding(δ, n) where n is the number of simulations and where

deviationHoeffding(δ, n) =
√

log(2/δ)/n. (1)

[1,22] has shown the efficiency of using Bernstein’s bound instead of Ho-
effding’s bound, in some settings. The bound is then deviationBernstein =
σ̂
√

2 log(3/δ)/n + 3 log(3/δ)/n, where σ̂ is the empirical standard deviation.
Bernstein’s version will not be used in our experiments, because the variance is
not small in our case; nonetheless, all theoretical results also hold with Bern-
stein’s variant.

3 Racing Algorithms

Racing algorithms are typically (and roughly, we’ll be more formal below) as
follows:

Let S be equal to S0, some given set of admissible modifications.
while S �= ∅ do

Select s = select() ∈ S with some algorithm
Perform one Monte-Carlo evaluation of s.
if s is statistically worse than the baseline then

S ← S \ {s} // s is discarded
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else if s is statistically better than the baseline then
Accept s; S ← S \ {s} s is accepted

end if
end while

With relevant statistical tests, we can ensure that this algorithm will select
all “good” modifications (to be formalized later), reject all bad modifications,
and stop after a finite time if all modifications have a non-zero effect. We refer
to [22] for more general informations on this, or [18,15] for the GP case; we
will here focus on the most relevant (relevant for our purpose) case. In genetic
programming, it’s very clear that even if two modifications are, independently,
good, the combination of these two modifications is not necessarily good. We will
therefore provide a different algorithm in section 4 with a proof of consistency.

4 Theoretical Analysis for Genetic Programming

We will assume here that for a modification s, we can define:

– e(s), the (of course unknown) expected value of the reward when using modi-
fication s. This expected value is termed the efficiency of s. We will assume in
the sequel that the baseline is 0.5 - an option is good if and only if it performs
better than 0.5, and the efficiency is the average result on experiments.

– n(s), the number of simulations of s already performed.
– r(s) the total reward of s, i.e. the sum of the rewards of the n(s) simulations

with modification s.
– ub(s), an upper bound on the efficiency of s, to be computed depending on

the previous trials (ub(s) will be computed thanks to Bernstein bounds or
Hoeffding bounds).

– lb(s), a lower bound on the efficiency of s (idem).

The two following properties will be proved for some specific functions lb and
ub; the results around our BGP (bandit-based genetic programming) algorithm
below hold whenever lb and ub verify these assumptions.

– Consistency: with probability at least 1− δ0, for all calls to ub and lb, the
efficiency of s is between lb(s) and ub(s):

e(s) ∈ [lb(s), ub(s)]. (2)

– Termination: when the number of simulations of s goes to infinity, then

ub(s) − lb(s) → 0. (3)

These properties are exactly what is ensured by Bernstein’s bounds or Hoeffd-
ing’s bounds. They will be proved for some variants of ub and lb defined below
(Lemma 1, using Hoeffding’s bound); they will be assumed in results about the
BGP algorithm below. Therefore, our results about BGP (Theorem 1) will hold
for our variants of lb and ub. Our algorithm and proof do not need a specific
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function ub or lb, provided that these assumptions are verified. However, we pre-
cise below a classical form of ub and lb, in order to point out that there exists
such ub and lb; moreover, they are easy to implement. lb and ub are computed
by a function with a memory (i.e. with static variables):

Function computeBounds(s) (variant 1)
Static internal variable: nbTest(s), initialized at 0.
Let n be the number of times s has been simulated.
Let r be the total reward over those s simulations.
nbTest(s) = nbTest(s) + 1
Let lb(s) = r/n − deviationHoeffding

(
δ0/(#S × 2nbTest(s)), n

)
.

Let ub(s) = r/n + deviationHoeffding
(
δ0/(#S × 2nbTest(s)), n

)
.

What is important in these formula is that the sum of the δ0/(#S ×
2nbTests(s)), for s ∈ S and nbTest(s) ∈ {1, 2, 3 . . .}, is at most δ0. By union
bound, this implies that the overall risk is at most δ0. The proof of the consis-
tency and of the termination assumptions are therefore immediate consequences
of Hoeffding’s bounds (we could use Bernstein’s bounds if we believed that small
standard deviations matter). A (better) variant, based on

∑
n≥1 1/n2 = π2/6 is

Function computeBounds(s) (variant 2)
Static internal variable: nbTest(s), initialized at 0.
Let n be the number of times s has been simulated.
Let r be the average reward over those s simulations.
nbTest(s) = nbTest(s) + 1
Let lb(s) = r/n−deviationHoeffding

(
δ0/(#S ×

(
π2nbTest(s)2

6

)
), n

)
.

Let ub(s) = r/n+deviationHoeffding
(
δ0/(#S ×

(
π2nbTest(s)2

6

)
), n

)
.

We show precisely the consistency of computeBounds below.

Lemma 1 (Consistency of computeBounds.). For all S finite, for all algo-
rithms calling computeBounds and simulating modifications in arbitrary order,
with probability at least 1−δ0, for all s and after each simulation, lb(s) ≤ e(s) ≤
ub(s).

The proof is removed due to length constraints. �

Our algorithm, BGP (Bandit-based Genetic Programming), based on the
computeBounds function above, is as follows:

BGP algorithm.
S = S0 = some initial set of modifications.
while S �= ∅ do

Select s ∈ S // the selection rule is not specified here
// (the result is independent of it)

Let n be the number of simulations of modification s.
Simulate s n more times (i.e. now s has been simulated 2n times).
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//this ensures nbTests(s) = O(log(n(s)))
computeBounds(s)
if lb(s) > 0.501 then

Accept s; exit the program.
else if ub(s) < 0.504 then

S ← S \ {s} // s is discarded.
end if

end while

We do not specify the selection rule. The result below is independent of the
particular rule.

Theorem 1 (Consistency of BGP). When using variant 1 or variant 2 of
computeBounds, or any other version ensuring consistency (Eq. 2) and termi-
nation (Eq. 3), BGP is consistent in the sense that:

1. if at least one modification s has efficiency > .504, then with probability at
least 1 − δ0 a modification with efficiency > .501 will be selected (and the
algorithm terminates).

2. if no modification has efficiency > .504, then with probability at least 1 − δ0
the algorithm will
(a) either select a modification with efficiency > .501 (and terminate);
(b) or select no modification and terminate.

Remark. The constants 0.501 and 0.504 are arbitrary provided that the
latter is greater or equal to the former. The proof is removed due to length
constraints. �
We have only considered |S| < ∞. The extension to S = {s1, s2, s3, . . . } count-
able is straightforward but removed due to length constraints.

5 Experiments

Life is a Game of Go in which rules have been made unnecessarily complex, ac-
cording to an old proverb. As a matter of fact, Go has very simple rules, is very
difficult for computers, is central in education in many Asian countries (part of
school activities in some countries) and has NP-completeness properties for some
families of situations[12], and PSPACE-hardness for others[21], and EXPTIME-
completeness for some versions [23]. It has also been chosen as a testbed for ar-
tificial intelligence by many researchers. The main tools, for the game of Go,
are currently MCTS/UCT (Monte-Carlo Tree Search, Upper Confidence Trees);
these tools are also central in many difficult games and in high-dimensional
planning. An example of nice Go game, won by MoGo as white in 2008 in the
GPW Cup, is given in Fig. 1 (left). Since these approaches have been defined
[7,10,17], several improvements have appeared like First-Play Urgency [25], Rave-
values [5,14] (see ftp://ftp.cgl.ucsf.edu/pub/pett/go/ladder/mcgo.ps for
B. Bruegman’s unpublished paper), patterns and progressive widening [11,8], bet-
ter than UCB-like (Upper Confidence Bounds) exploration terms [20], large-scale

ftp://ftp.cgl.ucsf.edu/pub/pett/go/ladder/mcgo.ps
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Fig. 1. Left: A decisive move (number 28) played by MoGo as white, in the GPW Cup
2008. Right: An example from Senseis of good large pattern in spite of a very bad small
pattern. The move 2 is a good move.

parallelization [13,9,6,16], automatic building of huge opening books [2]. Thanks
to all these improvements, our implementation MoGo already won even games
against a professional player in 9x9 (Amsterdam, 2007; Paris, 2008; Taiwan 2009),
and recently won with handicap 6 against a professional player (Tainan, 2009),
and with handicap 7 against a top professional player, Zhou Junxun, winner of
the LG-Cup 2007 (Tainan, 2009). Besides impressive results for the game of Go,
MCTS/UCT have been applied to non-linear optimization [4], optimal sailing [17],
active learning [24]. The formula used in the bandit is incredibly complicated, and
it is now very hard to improve the current best formula [20].

Here we will consider only mutations consisting in adding patterns in our
program MoGo. Therefore, accepting a mutation is equivalent to accepting a
pattern. We experiment random patterns for biasing UCT. The reader interested
in the details of this is referred to [20]. Our patterns contain jokers, black stones,
empty locations, white stones, locations out of the goban, and are used as masks
over all the board: this means that for a given location, we consider patterns like
“there is a black stone at coordinate +2,+1, a stone (of any color) at coordinate
+3,0, and the location at coordinate -1,-1 is empty”. This is a very particular
form of genetic programming. We consider here the automatic generation of
patterns for biasing the simulations in 9x9 and 19x19 Go. Please note that: (1)
When we speak of good or bad shapes here, it is in the sense of ”shapes that
should be more simulated by a UCT-like algorithm”, or ”shapes that should
be less simulated by a UCT-like algorithm”. This is not necessarily equivalent
to “good” or “bad” shapes for human players (yet, there are correlations). (2)
In 19x19 Go, MoGoCVS is based on tenths of thousands of patterns as in [8].
Therefore, we do not start from scratch. A possible goal would be to have similar
results, with less patterns, so that the algorithm is faster (the big database of
patterns provides good biases but it is very slow). (3) In 9x9 Go, there are no
big library of shapes available; yet, human expertise has been encoded in MoGo,
and we are far from starting from scratch. Engineers have spent hundreds of
hours manually optimizing patterns. The goals are both (i) finding shapes that
should be more simulated (ii) finding shapes that should be less simulated.
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Section 5.1 presents our experiments for finding good shapes in 9x9 Go. Sec-
tion 5.2 presents our experiments for finding bad shapes in 9x9 Go. Section 5.3
presents our unsuccessful experiments for finding both good and bad shapes in
19x19, from MoGoCVS and its database of patterns as in [8]. Section 5.4 presents
results on MoGoCVS with patterns removed, in order to improve the version of
MoGoCVS without the big database of pattern.

5.1 Finding Good Shapes for Simulations in 9x9 Go

Here the baseline is MoGo CVS. All programs are run on one core, with 10 000
simulations per move. All experiments are performed on Grid5000. The selection
rule, not specified in BGP, is the upper bound as in UCB[19,3]: we simulate s
such that ub(s) is maximal. We here test modifications which give a positive bias
to some patterns, i.e. we look for shapes that should be simulated more often.

For each iteration, we randomly generate some individuals, and test them
with the BGP algorithm. For the three first iterations, 10 patterns were ran-
domly generated; the two first times, one of these 10 patterns was validated; the
third time, no pattern was validated. Therefore, we have three version of MoGo:
MoGoCVS, MoGoCVS+P1, and MoGoCVS+P1+P2, where P1 is the pattern
validated at the first iteration and P2 is the pattern validated at the second
iteration. We then tested the relative efficiency of these MoGos as follows:

Tested code Opponent Success rate
MoGoCVS + P1 MoGoCVS 50.78% ± 0.10%
MoGoCVS + P1 + P2 MoGoCVS +P1 51.2% ± 0.20%
MoGoCVS + P1 + P2 MoGoCVS 51.9% ± 0.16%

We also checked that this modification is also efficient for 100 000 simula-
tions per move, with success rate 52.1 ± 0.6% for MoGoCVS+P1+P2 against
MoGoCVS. There was no pattern validated during the third iteration, which
was quite expensive (one week on a cluster). We therefore switched to another
variant; we tested the case |S0| = 1, i.e. we test one individual at a time.We
launched 153 iterations with this new version. There were therefore 153 tested
patterns, and none of them was validated.

5.2 Finding Bad Shapes for Simulations in 9x9 Go

We now switched to the research of negative shapes, i.e. patterns with a negative
influence of the probability, for a move, to be simulated. We kept |S0| = 1, i.e.
only one pattern tested at each iteration. There were 173 iterations, and two
patterns P3 and P4 were validated. We verified the quality of these negative
patterns as follows, with mogoCVS the version obtained in the section above:

Tested code Opponent Success rate
MoGoCVS + P1 + P2 + P3 MoGoCVS + P1 + P2 50.9% ± 0.2%
MoGoCVS + P1 + P2 + P3 MoGoCVS 52.6% ± 0.16%
MoGoCVS + P1 + P2 + P3 + P4 MoGoCVS + P1 + P2 + P3 50.6% ± 0.13%
MoGoCVS + P1 + P2 + P3 + P4 MoGoCVS 53.5% ± 0.16%

This leads to an overall success of 53.5% against MoGoCVS, obtained by BGP.
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5.3 Improving 19x19 Go with Database of Patterns

In 19x19 Go, all tests are performed with 3500 simulations per move. Here also,
we tested the case |S0| = 1, i.e. we test one individual at a time. We tested
only positive biases. The algorithm was launched for 62 iterations. Unfortu-
nately, none of these 62 iterations was accepted. Therefore, we concluded that
improving these highly optimized version was too difficult. We switched to an-
other goal: having the same efficiency with faster simulations and less memory
(the big database of patterns strongly slowers the simulations and takes a lot of
simulations), as discussed below.

5.4 Improving 19x19 Go without Database of Patterns

We therefore removed all the database of patterns; the simulations of MoGo
are much faster in this case, but the resulting program is nonetheless weaker
because simulations are far less efficient (see e.g. [20]). Fig. 1 (right) presents
a known (from Senseis http://senseis.xmp.net/?GoodEmptyTriangle#toc1)
difficult case for patterns: move 2 is a good move in spite of the fact that locally
(move 2 and locations at the east, north, and north east) form a known very
bad pattern (termed empty triangle), termed empty triangle, and is nonetheless
a good move due to the surroundings.

We keep |S0| = 1, 127 iterations. There were six patterns validated, vali-
dated at iterations 16, 22, 31, 57, 100 and 127. We could validate these patterns
Q1,Q2,Q3,Q4,Q5,Q6 as follows. MoGoCVS+AE means MoGoCVS equipped
with the big database of patterns extracted from games between humans.

Tested code Opponent Success rate
MoGoCVS + Q1 MoGoCVS 50.9% ± 0.13%
MoGoCVS + Q1 + Q2 MoGoCVS + Q1 51.2% ± 0.28%
MoGoCVS + Q1 + Q2 + Q3 MoGoCVS + Q1 + Q2 56.7% ± 1.50%
MoGoCVS + Q1 + ... + Q4 MoGoCVS + Q1 + Q2 + Q3 52.1% ± 0.39%
MoGoCVS + Q1 + ... + Q5 MoGoCVS + Q1 + ... + Q4 51.1% ± 0.20%
MoGoCVS + Q1 + ... + Q6 MoGoCVS + Q1 + ... + Q5 54.1% ± 0.78%

MoGoCVS + Q1 + Q2 MoGoCVS 53.4% ± 0.50%
MoGoCVS + Q1 + Q2 + Q3 MoGoCVS 57.3% ± 0.49%
MoGoCVS + Q1 + ... + Q4 MoGoCVS 59.4% ± 0.49%
MoGoCVS + Q1 + ... + Q5 MoGoCVS 58.6% ± 0.49%
MoGoCVS + Q1 + ... + Q6 MoGoCVS 61.7% ± 0.49%

MoGoCVS MoGoCVS + AE 26.6% ± 0.20%
MoGoCVS + Q1 MoGoCVS + AE 27.5% ± 0.49%
MoGoCVS + Q1 + Q2 MoGoCVS + AE 28.0% ± 0.51%
MoGoCVS + Q1 + Q2 + Q3 MoGoCVS + AE 30.9% ± 0.46%
MoGoCVS + Q1 + ... + Q4 MoGoCVS + AE 32.1% ± 0.43%
MoGoCVS + Q1 + ... + Q5 MoGoCVS + AE 30.9% ± 0.46%
MoGoCVS + Q1 + ... + Q6 MoGoCVS + AE 32.8% ± 0.47%

An important property of BGP is that all validated patterns are confirmed
by these independent experiments. We see however that in 19x19, we could
reach roughly 30% of success rate against the big database built on human games

http://senseis.xmp.net/?GoodEmptyTriangle#toc1
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(therefore our BGP version uses far less memory than the other version); we will
keep this experiment running, so that maybe we can go beyond 50 %. Nonethe-
less, we point out that we already have 60 % against the version without the
database, and the performance is still increasing (improvements were found at
iterations 16,22,57,100,122,127, with regular improvements - we have no plateau
yet) - therefore we successfully improved the version without patterns, which is
lighter (90% of the size of MoGoCVS is in the database).

6 Conclusions

We proposed an original tool for genetic programming. This tool is quite conser-
vative: it is based on a set of admissible modifications, and has strong theoreti-
cal guarantees. Interestingly, the application of this theory to GP was successful,
with in particular the nice property that all patterns selected during the GP run
could be validated in independent experiments. We point out that when humans
test modifications of MoGo, they usually test their algorithms based on simple
confidence intervals, without taking into account the fact that, as they test mul-
tiple variants, one of these variants might succeed just by chance - it happened
quite often that modifications accepted in the CVS were later removed, causing
big delays and many non-regression tests. This is in particular true for this kind of
applications, because the big noise in the results, the big computational costs of
the experiments, imply that people can’t use p-values like 10−10 - with BGP, the
confidence intervals can be computed at a reasonnable confidence level, and the al-
gorithm takes care by itself of the risk due to the multiple simultaneous hypothesis
testing. In 9x9 Go, BGP outperformed human development, and the current CVS
of MoGo is the version developped by BGP. In 19x19 Go, we have an improvement
over the default version of MoGo, but not against the version enabling the use of
big databases - we nonetheless keep running the experiments as the success rate
is still increasing and we had a big improvement for light versions.
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Abstract. When predictive modeling requires comprehensible models, most da-
ta miners will use specialized techniques producing rule sets or decision trees. 
This study, however, shows that genetically evolved decision trees may very 
well outperform the more specialized techniques. The proposed approach 
evolves a number of decision trees and then uses one of several suggested selec-
tion strategies to pick one specific tree from that pool. The inherent inconsisten-
cy of evolution makes it possible to evolve each tree using all data, and still ob-
tain somewhat different models. The main idea is to use these quite accurate 
and slightly diverse trees to form an imaginary ensemble, which is then used as 
a guide when selecting one specific tree. Simply put, the tree classifying the 
largest number of instances identically to the ensemble is chosen. In the expe-
rimentation, using 25 UCI data sets, two selection strategies obtained signifi-
cantly higher accuracy than the standard rule inducer J48.  

Keywords: Classification, Decision trees, Genetic programming, Ensembles. 

1   Introduction 

Only comprehensible predictive models make it possible to follow and understand the 
logic behind a prediction or, on another level, for decision-makers to comprehend and 
analyze the overall relationships found. When requiring comprehensible predictive 
models, most data miners will use specialized techniques producing either decision 
trees or rule sets. Specifically, a number of quite powerful and readily available deci-
sion tree algorithms exist. Most famous are probably Quinlan’s C4.5/C5.0 [1] and 
Breiman’s CART [2]. 

Although evolutionary algorithms are mainly used for optimization, Genetic Algo-
rithms (GA) and Genetic Programming (GP) have also proved to be valuable data 
mining tools. The main reason is probably their very general and quite efficient global 
search strategy. Unfortunately, for some basic data mining problems like classifica-
tion and clustering, finding a suitable GA representation tends to be awkward. Using 
GP, however, it is fairly straightforward to specify an appropriate representation for 
the task at hand, just by tailoring the function and terminal sets. 

Remarkably, GP data mining results are often comparable to, or sometimes even 
better than, results obtained by the more specialized machine learning techniques. In 
particular, several studies show that decision trees evolved using GP often are more 
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accurate than trees induced by standard techniques like C4.5/C5.0 and CART; see e.g. 
[3] and [4]. The explanation is that while decision tree algorithms typically choose 
splits greedily, working from the root node down, the GP performs a global optimiza-
tion. Informally, this means that the GP often chooses some locally sub-optimal splits, 
but the overall model will still be more accurate and generalize better to unseen data. 

The inherent inconsistency (i.e. that runs on the same data using identical settings 
can produce different results) of GP is sometimes cited as a disadvantage for data 
mining applications. Is it really possible to put faith in one specific evolved tree when 
another run might produce a different tree, even disagreeing on a fairly large number 
of instances? The answer to this question is not obvious. Intuitively, most data miners 
would probably want one accurate and comprehensible model, and having to accept 
several different models from the same data is confusing. We, however, argue that 
consistency is a highly overvalued criterion, and showed in [5] that most of the deci-
sion trees extracted (from neural networks) using GP had higher accuracy than cor-
responding CART trees. Why should using a tree inducer to get one specific model be 
considered better than obtaining several, slightly different models, each having high 
accuracy? In that study, we also used the fact that we had several, slightly different, 
trees available to produce probability estimation trees, in a similar way to Provost and 
Domingos [6]. In a later study we utilized the inconsistency to achieve implicit diver-
sity between base classifiers in ensemble models, contrasting our approach with stan-
dard bagging [8]. Bagging obtains diversity among the base classifiers in an ensemble 
by training them on different subsets of the data, thus resulting in less data being 
available to each base classifier. 

Nevertheless, there are situations where a decision-maker wants to make use of  
only one comprehensible model. Naturally, this model should then be “the best possi-
ble”. Exactly what criterion this translates to is not obvious, but, as always, test accu-
racy, i.e., the ability to generalize to novel data, must be considered very important. 
So, the overall question addressed in this study is whether access to a number of 
evolved decision tree models will make it easier to produce one, single model, likely 
to have good test accuracy. 

Given a pool of independently trained (or evolved) models, there are two basic 
strategies to produce one model; either you pick one of the available models, or you 
somehow use the trained models to create a brand new model. In this paper, we will 
investigate the first strategy, i.e., how do we pick a specific model from the pool. The 
most straightforward alternative is, of course, to compare all models and pick the one 
having the highest accuracy on either training data or on an additional (validation) 
data set. The hypothesis tested in this study is, however, that we can do better by 
somehow using the fact that we have a number of models available. 

2   Background 

An ensemble is a composite model aggregating multiple base models, making the 
ensemble prediction a function of all included base models. The most intuitive expla-
nation for why ensembles work is that combining several models using averaging will 
eliminate uncorrelated base classifier errors; see e.g., [9]. Naturally, there is nothing 
to gain by combining identical models, so the reasoning requires that base classifiers 
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commit their errors on different instances. Informally, the key term diversity therefore 
means that the base classifiers make their mistakes on different instances. The impor-
tant result that ensemble error depends not only on the average accuracy of the base 
models, but also on their diversity was, for regression problems, formally derived by 
Krogh and Vedelsby in [10]. The result was Equation (1), stating that the ensemble 
error, E, can be expressed as:  

    (1) 

where  is the average error of the base models and  is the ensemble diversity (am-
biguity), measured as the weighted average of the squared differences in the predic-
tions of the base models and the ensemble. Since diversity is always positive, this 
decomposition proves that the ensemble will always have higher accuracy than the 
average accuracy obtained by the individual classifiers.  

It must be noted, however, that with a zero-one loss function, there is no clear 
analogy to the bias-variance-covariance decomposition. Consequently, the overall 
goal of obtaining an expression where the classification error is decomposed into 
error rates of the individual classifiers and a diversity term is currently beyond the 
state of the art. Nevertheless, several studies have shown that sufficiently diverse 
classification ensembles, in practice, almost always will outperform even the strong-
est single base model. 

So, the key result that we hope to utilize is the fact that an ensemble most often 
will be a very accurate model, normally generalizing quite well to novel data. In this 
specific setting, when we are ultimately going to pick one specific model (base clas-
sifier), we will investigate whether it is better to pick a model that agrees as much as 
possible with the (imaginary) ensemble instead of having the highest possible indi-
vidual training accuracy. 

3   Method 

This section will first describe the different selection strategies evaluated in the study. 
The second part gives an overview of the GP used and the last part, finally, gives the 
details for the experimentation. 

3.1   Selection Strategies 

As described above, an ensemble is normally a very accurate model of the relation-
ship between input and target variables. In addition, an ensemble could also be used 
to generate predictions for novel instances with unknown target values, as they be-
come available. In the field of semi-supervised learning, this is referred to as coach-
ing. Specifically, ensemble predictions could be produced even for the test instances, 
as long as the problem is one where predictions are made for sets of instances, rather 
than one instance at a time. Fortunately, in most real-world data mining projects, bulk 
predictions are made, and there is no shortage of unlabeled instances. As an example, 
when a predictive model is used to determine the recipients of a marketing campaign, 
the test set; i.e., the data set actually used for the predictions, could easily contain 
thousands of instances.  
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It must be noted that it is not “cheating” to use the test instances in this way. Spe-
cifically, we do not assume that we have access to values of the target variable on test 
instances. Instead, we simply produce a number of test set predictions, and then util-
ize these for selecting one specific model. Naturally, only the selected model is then 
actually evaluated on the test data. 

In the experimentation, we will evaluate four different selection strategies. Three 
of these use imaginary ensembles and the concept ensemble fidelity, which is defined 
as the number of instances classified identically to the ensemble.  

• TrAcc:  The tree having the highest training accuracy is selected. 
• TrFid:  The tree having the highest ensemble fidelity on training data is selected. 
• TeFid:  The tree having the highest ensemble fidelity on test data is selected. 
• AllFid:  The tree having the highest ensemble fidelity on both training data and 

 test data is selected. 

In addition, we will also report the average accuracies of the base classifiers (which 
corresponds to evolving only one tree, or picking one of the trees at random) and 
results for the J48 algorithm from the Weka workbench [11]. J48, which is an imple-
mentation of the C4.5 algorithm, used default settings. 

Some may argue that most data miners would not select a model based on high 
training accuracy, but instead use a separate validation set; i.e., a data set not used for 
training the models. In our experience, however, setting aside some instances to allow 
the use of fresh data when selecting a model will normally not make up for the lower 
average classifier accuracy, caused by using fewer instances for training. Naturally, 
this is especially important for data sets with relatively few instances to start with, like 
most UCI data sets used in this study. Nevertheless, we decided to include a prelimi-
nary experiment evaluating the selection strategy ValAcc which, of course, picks the 
tree having the highest accuracy on a validation set. 

3.2   GP Settings 

When using GP for tree induction, the available functions, F, and terminals, T, consti-
tute the literals of the representation language. Functions will typically be logical or 
relational operators, while the terminals could be, for instance, input variables or 
constants. Here, the representation language is very similar to basic decision trees. 
Fig. 1 below shows a small but quite accurate (test accuracy is 0.771) sample tree 
evolved on the Diabetes data set. 

  
if (Body_mass_index > 29.132) 
 |T: if (plasma_glucose < 127.40) 
 |   |T: [Negative] {56/12} 
 |   |F: [Positive] {29/21} 
 |F: [Negative] {63/11} 

Fig. 1. Sample evolved tree from Diabetes data set 
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The exact grammar used internally is presented using Backus-Naur form in Fig. 2 
below.  

 
F = {if, ==, <, >} 
T = {i1, i2, …, in, c1, c2, …, cm, ℜ} 
 
DTree :- (if RExp Dtree Dtree) | Class 
RExp  :- (ROp ConI ConC) | (== CatI CatC) 
ROp   :- < | > 
CatI  :- Categorical input variable 
ConI  :- Continuous input variable 
Class :- c1 | c2 | … | cm 
CatC  :- Categorical attribute value 
ConC  :- ℜ 

Fig. 2. Grammar used 

The GP parameter settings used in this study are given in Table 1 below. The 
length penalty was much smaller than the cost of misclassifying an instance. Never-
theless, the resulting parsimony pressure was able to significantly reduce the average 
program size in the population.  

Table 1. GP parameters 

Parameter Value Parameter Value 
Crossover rate 0.8 Creation depth 6 
Mutation rate 0.01 Creation method Ramped half-and-half 
Population size 1000 Fitness function Training accuracy  
Generations 100 Selection Roulette wheel 
Persistence 50 Elitism Yes 

3.3   Experiments 

For the experimentation, 4-fold cross-validation was used. The reported test set accu-
racies are therefore averaged over the four folds. For each fold, 15 decision trees were 
evolved. If several trees had the best score (according to the selection strategy), the 
result for that strategy was the average test set accuracy of these trees.  

All selection strategies except ValAcc used the same pool of trees, where each tree 
was evolved using all available training instances. When using ValAcc, 75% of the 
available training instances were used for the actual training and the remaining 25% 
for validation. 

The 25 data sets used are all publicly available from the UCI Repository [12]. For a 
summary of data set characteristics, see Table 2 below. Classes is the number of 
classes, Instances is the total number of instances in the data set, Con. is the number 
of continuous input variables and Cat. is the number of categorical input variables. 
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Table 2. Data set characteristics 

Data set Instances Classes Con. Cat. 
Breast cancer (BreastC) 286 2 0 9 
CMC 1473 3 2 7 
Colic 368 2 7 15 
Credit-A 690 2 6 9 
Credit-G 1000 2 7 13 
Cylinder bands (Cylinder) 512 2 20 20 
Diabetes 768 2 8 0 
Glass 214 7 9 0 
Haberman 306 2 3 0 
Heart-C 303 2 6 7 
Heart-S 270 2 6 7 
Hepatitis 155 2 6 13 
Iono 351 2 34 0 
Iris 150 3 4 0 
Labor 57 2 8 8 
Liver 345 2 6 0 
Lung cancer (LungC) 32 3 0 56 
Lymph 148 4 3 15 
Sonar 208 2 60 0 
TAE 151 3 1 4 
Vote 435 2 0 16 
Wisconsin breast cancer (WBC) 699 2 9 0 
Wine 178 3 13 0 
Zoo 100 7 0 16 

4   Results 

Table 3 below shows the results from the preliminary experiment. The main  
result is that it is clearly better to use all data for actual training, compared to re-
serving some instances to be used as a validation set. Comparing TrAcc to ValAcc, 
TrAcc wins 15 of 25 data sets, and also obtains a higher mean accuracy over all 
data sets.  

The explanation is obvious from the fact that using all available instances (Rand 
All) results in considerably higher average classifier accuracy, compared to using only 
75% of the instances for the training (Rand 75%). As a matter of fact, Rand All (i.e. 
using a random tree trained on all instances) even outperforms the ValAcc selection 
strategy, both when comparing average accuracy over all data sets, and when consi-
dering wins and losses. 

Table 4 below shows the results from the main experiment. The overall picture 
is that all selection strategies outperform both J48 and Rand; i.e., picking a random 
tree. The best results were obtained by the selection strategy utilizing the  
imaginary ensemble only on the test instances, which of course is an interesting 
observation.  
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Table 3. Preliminary experiment: test accuracies 

Data set TrAcc ValAcc Rand All Rand 75% 
BreastC 72.7 70.6 74.2 70.3 
Cmc 55.0 53.7 51.9 51.6 
Colic 83.6 84.9 84.5 83.4 
Credit-A 84.5 85.5 84.7 85.1 
Credit-G 72.6 69.3 71.0 69.4 
Cylinder 69.4 67.6 67.3 65.5 
Diabetes 73.4 74.3 73.8 73.3 
Ecoli 81.3 80.2 79.0 78.0 
Glass 65.4 66.6 64.9 63.6 
Haberman 73.3 73.6 73.4 74.9 
Heart-C 76.7 77.4 76.3 75.7 
Heart-S 77.3 77.7 77.0 75.2 
Hepatitis 82.5 81.1 81.5 81.2 
Iono 89.0 86.7 87.3 87.1 
Iris 96.0 94.2 94.3 94.4 
Labor 85.0 84.8 86.3 83.8 
Liver 60.9 63.6 62.9 60.7 
LungC 67.0 57.3 67.7 57.9 
Lymph 75.7 73.5 76.0 76.0 
Sonar 76.0 72.1 73.2 71.7 
Tae 54.3 52.5 55.4 54.2 
Vote 93.2 94.0 94.7 94.8 
WBC 96.2 95.8 95.7 95.3 
Wine 88.4 90.9 90.4 90.0 
Zoo 93.4 90.9 91.9 88.4 
Mean 77.7 76.8 77.4 76.1 
# Wins 15 10 20 4 

 
To determine if there are any statistically significant differences, we use the statis-

tical tests recommended by Demšar [13] for comparing several classifiers over a 
number of data sets; i.e., a Friedman test [14], followed by a Nemenyi post-hoc test 
[15]. With six classifiers and 25 data sets, the critical distance (for α=0.05) is 1.51, so 
based on these tests, TeFid and AllFid obtained significantly higher accuracies than 
J48 and Rand. Furthermore, the difference between TeFid and TrAcc is very close to 
being significant at α=0.05. All in all, it is obvious that basing the selection on fidelity 
to the imaginary ensemble is beneficial, especially when also considering the ensem-
ble predictions on test instances. 

Since the most common and straightforward alternative is to simply use a decision 
tree, it is particularly interesting to compare the suggested approach to J48. As seen in 
Table 5 below, all selection strategies clearly outperform J48. A standard sign test re-
quires 18 wins for α=0.05, so the difference in performance between the selection strat-
egies TeFid and AllFid and J48 are significant, also when using pair-wise comparisons. 
In addition, both TrFid, and to a lesser degree, TrAcc clearly outperform J48. Interes-
tingly enough, this is despite the fact that J48 wins almost half of the data sets when 
compared to a random tree. So, the success of the suggested approach must be credited 
to the selection strategies, rather than having only very accurate base classifiers. 



 Using Imaginary Ensembles to Select GP Classifiers 285 

 

Table 4. Main experiment: test accuracies 

Data set J48 TrAcc TrFid TeFid AllFid Rand. 
BreastC 69.9 72.7 74.8 74.8 74.8 74.2 
Cmc 50.6 55.0 51.7 51.7 51.7 51.9 
Colic 85.6 83.6 84.3 84.2 84.2 84.5 
Credit-A 85.5 84.5 86.0 85.1 86.0 84.7 
Credit-G 73.0 72.6 71.5 72.4 71.9 71.0 
Cylinder 57.8 69.4 67.4 70.0 67.6 67.3 
Diabetes 73.3 73.4 73.4 73.4 73.4 73.8 
Ecoli 78.6 81.3 81.6 81.9 81.3 79.0 
Glass 66.8 65.4 68.7 68.2 67.8 64.9 
Haberman 73.9 73.3 74.0 74.5 74.2 73.4 
Heart-C 75.9 76.7 76.8 77.6 76.7 76.3 
Heart-S 77.0 77.3 76.7 78.1 77.8 77.0 
Hepatitis 80.6 82.5 83.0 81.7 81.6 81.5 
Iono 90.0 89.0 90.7 90.2 90.4 87.3 
Iris 95.3 96.0 94.8 94.7 94.7 94.3 
Labor 73.7 85.0 85.0 87.6 87.6 86.3 
Liver 62.0 60.9 68.1 68.1 68.1 62.9 
LungC 65.6 67.0 67.0 78.1 78.1 67.7 
Lymph 73.0 75.7 77.7 76.4 77.7 76.0 
Sonar 75.5 76.0 74.5 72.8 74.8 73.2 
Tae 55.0 54.3 55.0 55.0 55.0 55.4 
Vote 95.6 93.2 95.1 95.7 95.5 94.7 
WBC 95.6 96.2 96.6 96.4 96.5 95.7 
Wine 91.6 88.4 89.9 93.8 93.0 90.4 
Zoo 93.1 93.4 91.4 97.0 96.5 91.9 
Mean 76.6 77.7 78.2 79.2 79.1 77.4 
# Wins 2 3 8 13 6 2 
Mean rank 4.34 3.98 3.12 2.48 2.76 4.28 

Table 5. Wins, draws and losses against J48 

 TrAcc TrFid TeFid AllFid Rand. 
Wins/Draws/Losses 15/0/10 16/1/8 19/1/5 19/1/5 13/0/12 

 
Another interesting comparison is to look specifically at selection strategies not 

considering test instances. After all, not all predictions are performed in bulks. Table 
6 below therefore compares J48 to TrAcc and TrFid. Even now the picture is quite 
clear; the best choice is to select a tree based on ensemble fidelity. 

Table 6. Comparing strategies not using test instances 

Strategy  J48 
TrAcc  15/0/10 TrAcc
TrFid  16/1/8 15/3/7 TrFid 
Rand  13/0/12 12/0/13 9/0/16 
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Table 7 below, finally, presents the results in a slightly different way. Here, the ta-
bulated numbers represent the average rank (based on test accuracy) of the selected 
tree among the 15 available trees. As an example, a rank of 1.00 would indicate that 
the suggested strategy picked the best possible tree on each fold. Here, it must be 
noted that when several trees obtained identical accuracies, they all got the best rank-
ing, instead of an average rank. If, as an example, three trees obtained the best accura-
cy, a selection strategy picking either of these trees would get a rank of 1 on that fold. 
A strategy picking the second best tree would then receive a rank of 4, and so on. In 
addition, if a selection strategy picked several trees (because they had identical 
scores) the ranking on that fold, for that strategy, would be the average rank of the 
selected trees. 

Table 7. Comparing trees selected by the strategies 

Data set TrAcc TrFid TeFid AllFid Rand. 
BreastC 8.23 1.00 1.00 1.00 2.78 
Cmc 1.50 2.75 2.75 2.75 3.55 
Colic 8.42 3.33 3.50 3.50 3.80 
Credit-A 7.13 3.75 6.13 3.75 7.22 
Credit-G 4.25 7.25 4.25 5.75 7.65 
Cylinder 5.75 7.25 4.75 6.75 7.67 
Diabetes 8.75 6.50 6.50 6.50 4.82 
Ecoli 4.00 3.00 2.75 3.50 7.10 
Glass 7.75 2.50 2.50 3.00 7.02 
Haberman 6.09 4.56 3.25 4.00 5.57 
Heart-C 6.75 7.17 5.50 7.38 7.07 
Heart-S 7.33 6.50 5.28 5.50 7.00 
Hepatitis 4.25 4.54 4.83 5.38 5.95 
Iono 6.00 2.63 3.17 3.25 7.23 
Iris 3.13 1.73 1.75 1.75 3.23 
Labor 6.42 6.42 3.75 3.75 5.35 
Liver 10.75 3.75 3.75 3.75 7.32 
LungC 6.50 6.50 2.50 2.50 6.20 
Lymph 5.63 4.33 4.50 3.75 5.55 
Sonar 3.75 5.00 7.42 4.75 7.18 
Tae 5.25 5.50 5.50 5.50 4.82 
Vote 10.59 5.69 3.50 4.25 6.73 
WBC 3.83 1.50 3.00 2.38 6.78 
Wine 9.00 8.25 2.00 3.50 6.43 
Zoo 4.54 5.68 1.50 1.75 6.18 
Mean 6.22 4.68 3.81 3.99 6.01 
#Wins 5 8 13 6 2 

 
There are several interesting observations in Table 7. First of all, no strategy suc-

ceeds in always picking one of the best trees. This is a clear message that it is still 
very hard to estimate performance on unseen data based on results on available data. 
Picking the most accurate tree on training data (TrAcc), is sometimes the best option 
(5 wins) but, based on this comparison, it is still the worst choice overall. TeFid is 
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again the best selection strategy, with a mean value indicating that the tree picked by 
TeFid is, on average, ranked as one of the best four. 

5   Conclusions 

This paper shows that the predictive performance of genetically evolved decision 
trees can compete successfully with trees induced by more specialized machine learn-
ing techniques, here J48.  

The main advantage for an evolutionary approach is the inherent ability to produce 
a number of decision trees without having to sacrifice individual accuracy to obtain 
diversity. Here, each tree was evolved based on all available training data, which is in 
contrast to standard techniques, which normally have to rely on some resampling 
technique to produce diversity.  

The proposed method, consequently, evolves a collection of accurate yet diverse 
decision trees, and then uses some selection strategy to pick one specific tree from 
that pool. The key idea, suggested here, is to form an imaginary ensemble of all trees 
in the pool, and then base the selection strategy on that ensemble. Naturally, the as-
sumption is that individual trees that, to a large extent, agree with the ensemble are 
more likely to generalize well to novel data. 

In the experimentation, the use of several selection strategies produced evolved 
trees significantly more accurate than the standard rule inducer J48. The best perfor-
mance was achieved by selection strategies utilizing the imaginary ensemble on actual 
predictions, thus limiting the applicability to problems where predictions are made for 
sets of instances. Nevertheless, the results also show that even when bulk predictions 
are not possible, the suggested approach still outperformed J48.  

6   Discussion and Future Work 

First of all, it is very important to recognize the situation targeted in this paper, i.e., 
that for some reason models must be comprehensible. If comprehensibility is not an 
issue, there is no reason to use decision trees or rule sets, since these will almost al-
ways be outperformed by opaque techniques like neural networks, support vector 
machines or ensembles.  

A potential objection to the suggested approach is that using evolutionary algo-
rithms to produce decision trees is much more computationally intense, and therefore 
slower, than using standard techniques. This is certainly true, but the novel part in this 
paper, i.e., the evolution of several trees just to pick one, could easily be run in paral-
lel, making the entire process no more complex and time consuming than evolving 
just one tree.  

Regarding the use of the same instances later used for the actual prediction when 
selecting a specific model, it must be noted that it is not very complicated, and defi-
nitely not cheating. All we do is give each model the opportunity to vote, and then the 
voting results are used for the model selection. Correct test target values are, of 
course, not used at all during the model building and selection part. 
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In this study, we used GP to evolve all decision trees. The suggested approach is, 
however, also potentially applicable to standard algorithms like C4.5 and CART. The 
most natural setting would probably be quite large data sets, where each tree would 
have to be induced using a sample of all available instances, thereby introducing some 
implicit diversity. 
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Abstract. This paper investigates the effect of numerical simplification on build-
ing blocks during evolution in genetic programming. The building blocks consid-
ered are three level subtrees. We develop a method for encoding building blocks
for the analysis. Compared with the canonical genetic programming method, nu-
merical simplification can generate much smaller programs, use much shorter
evolutionary training time and achieve comparable effectiveness performance.

1 Introduction

In tree based Genetic Programming (GP) there is a tendency for the size of programs
to increase, a process known as bloat [1,2,3]. Among other problems, this leads to
increased memory usage and computation time. Overly large programs may over-fit the
training data, reducing the performance on unseen data. In standard practice all nodes
have some chance of being the crossover point. As the programs become deeper, the
average depth of the crossover point also becomes deeper, crossover is then less likely
to produce children with significantly improved fitness, and the overall efficiency of the
GP search is reduced.

Since the 1990s, a substantial effort has been made to reduce or remove the redun-
dant code in GP. The existing methods can be categorised into two approaches. The
first approach is to add a program complexity measure into the performance based fit-
ness function or into the performance based fitness selection mechanism to “control”
code bloating to some extent. Typical examples include parsimony pressure [4,5,6,7],
explicitly defined introns [8], tarpian method [9] and better genetic operators (crossover
and mutation) [10]. This approach aims to indirectly control the redundant code in the
evolved programs but does not explicitly remove the redundancy in the evolved pro-
grams, and sometimes results in a degradation of the effectiveness performance [4,11].

In the second approach, redundant code is directly removed from the evolved pro-
grams in certain ways. Typical examples include Koza’s editing operation [3], Banzhaf’s
intron removal [12], Hooper and Flann’s expression simplification [13], Ekart’s Prolog
clause simplification [14], and early work on prime number simplification [15].

Recently, two program simplification methods have been reported, which explicitly
remove the redundant program code during the evolutionary process and have been
successfully applied to regression and classification tasks. The first method [16] uses
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algebraic simplification to remove the “redundant code” during evolution, and the sec-
ond method simplifies the evolved programs during evolution using simple numerical
significance [17]. The empirical results on a number of symbolic regression and classi-
fication tasks show that both methods are more efficient in evolving programs than the
canonical GP approach without simplification and that the evolved programs are much
shorter and easier to understand. The empirical research also shows that both methods
achieved comparable or slightly better effectiveness1 performance than the canonical
GP approach. As the simplification process changes the program structure, it is natural
to think that the good building blocks in the programs might be destroyed by the simpli-
fication process and accordingly this process might deteriorate the system effectiveness
performance. However this clearly does not happen.

In an earlier paper [18] we used images to visualise two and three level deep subtrees
encoded as bit strings. These images showed that a few building blocks remained in the
population for a substantial part of the run, while a much larger number of building
blocks were created, remained for a few generations and were then dropped from the
population. We concluded that while the two online simplification methods destroyed
some existing building blocks, they generated additional, and more diverse, building
blocks during evolution, which sufficiently compensated for the negative effect from the
disruption of building blocks. The restricted size of the images meant that the encoding
scheme used was a very coarse representation of the building blocks and each image
could only illustrate a single run.

1.1 Goals

This paper aims to extend the analysis of [18] by using a more descriptive encoding
scheme for the building blocks2 and to use statistical techniques across multiple runs to
examine whether the observed behaviours in [18] are present across a much larger set
of runs with the more descriptive encoding.

We examine the numerical simplification method, and compare its behaviour with
canonical GP with no simplification. Specifically, we investigate the following
questions:

1. How are the building blocks distributed as the evolution proceeds through the gen-
erations?

2. How does numerical simplification change this distribution?
3. Does the simplification process affect the overall diversity of building blocks within

the population?

2 Brief Overview of Numerical Simplification

The idea of numerical simplification [17,18] is to consider the numerical contribution
that a node or subtree makes to the output of its parent node, removing those nodes

1 By effectiveness, we mean fitness for a symbolic regression problem and classification accu-
racy on the test set for a classification problem.

2 When we use the term building block we mean a subtree of the specified depth. It may occur
at any point in the program of which it is a part. We do not imply anything about the fitness of
the building block.
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and subtrees whose impact on the result is too small to make much difference to the
program result. The motivation here came from the fact that most data includes a noise
component. Instead of trying to fit to this noise, we treat two values whose difference
is smaller than the noise as being equal. For efficiency reasons, this implementation
addresses only the local effect of simplification at each node in the program tree. There
will be cases where it does affect the system performance of the whole program, but the
aim is to minimise this. It may be easiest to think of numerical simplification as a kind
of lossy compression, where we aim to get useful reductions in program size without
obvious loss in quality.

Node A

Min Val = −10.0
Max Val = −7.3

Node C

Min Val = −10.02

Node C

Min Val = −10.02

Node B

Min Val = 0.020

Max Val = 0.027 Max Val = −7.33

Max Val = −7.33
+

Max Val = 2.015

Min Val = 2.014

Node F

Node D

Min Val = 2.0000
Max Val = 2.0015

Node E

Min Val = 4.030

Max Val = 4.031

Node D

Constant Val = 2.00075÷

(a) (b)

Fig. 1. Example trees used to explain numerical simplification

As the fitness is evaluated across the training set, each node keeps track of minimum
and maximum values. The simplification process is performed from the bottom up, and
each operator is responsible for making those simplifications that are meaningful for it.
A significance tolerance (threshold) is chosen, which can be the result of preliminary
trials, or if we have enough knowledge of our dataset then a good starting point will be
the noise floor in the data. We used 0.001 in most of our experiments as a result of early
trials. All our features have been normalised on the range [-1.0, +1.0] (see subsection
4.2) so this would represent a noise level of about 0.1% which seems reasonable without
better information about the source data. For the addition and subtraction operators, a
child node or subtree whose range of values is less than the threshold times the parent’s
minimum absolute value is discarded. Figure 1(a) gives an example of this. The range
for Node B is 0.027−0.020 = 0.007. The minimum absolute value for its parent Node
A is 7.3. Since 0.007 < 0.001× 7.3, the subtree headed by Node B will be discarded,
and Node A will be replaced by Node C. Also, if the range of values a node takes is
less than the threshold times its own minimum absolute value, the node is replaced by
a constant terminal taking its average value. Figure 1(b) gives an example of this. The
range for Node D is 2.0015−2.0000 = 0.0015. The minimum absolute value for Node
D is 2.0000. Since 0.0015 < 0.001× 2.0000, the subtree headed by Node D will be
discarded, and Node D will be replaced by a constant terminal with the value 2.00075.
Note that the second type of simplification takes precedence over the first.

3 Encoding the Building Blocks: A New Scheme

As the number of possible building blocks in GP is usually very large, analysing the
behaviour of the building blocks in GP is almost always a difficult task. This also ap-
plies to GP with program simplification during evolution. In this paper, we examine the
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behaviour of three level deep subtrees, which is large enough to be useful while keeping
the encoding length within manageable bounds. In our earlier work [18] the encoding
scheme used was a very coarse representation of the building blocks. There were many
different building blocks that produce the same encoding. This was necessary because
of the restrictions imposed by using images as the presentation medium. This paper
aims to develop a new encoding scheme with a much more precise description of the
building blocks. This is possible because we are using statistical measures rather than
images to present the results.

Our approach is to encode each building block into a bit string in such a way that
similar building blocks result in similar encodings. The nodes are encoded one level at
a time, starting from the root, and from left to right within each level. Figure 2 shows
a three level deep subtree. In this example the order the nodes would be encoded is
× − + − F2 0.3 F3.

−

0.3 F3F2

+

x

−

Fig. 2. An example tree to illustrate the encoding order

A three level deep tree with all operators having no more than two operands has a
maximum size of seven nodes. This allows us to use eight bits to describe each node for
a total of 56 bits. A 64 bit integer can then be used to hold the encoding.

– The operators are encoded as 111 followed by five bits identifying the operator. For
these experiments this results in the following:

1. 11100000 - addition operator.
2. 11100001 - subtraction operator.
3. 11100010 - multiplication operator.
4. 11100011 - division operator.

– A feature is encoded as 10 followed by six bits identifying the feature, this allows
us to use up to 64 features, and more could be handled by using part of the encoding
space allocated to operators.

– An ephemeral constant is encoded as 0 followed by seven bits which are a signed
integer that maps [-1.0,1.0] on to the range [-64,63] (encoding = Const ×64) pro-
vided by the seven available bits. Any encoding less than −64 is set to −64 or if
greater than 63 then it is set to 63.

All of the operators and feature terminals are completely described. It is only the
ephemeral constants that lose some precision. In the example of Fig. 2, the order of en-
coding is [×] [−] [+] [−] [F2] [0.3] [F3], which is encoded as [11100010] [11100001]
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[11100000] [11100001] [10000010] [00010011] [10000011], the resulting encoding is
then:
11100010111000011110000011100001100000100001001110000011 or in hexadeci-
mal E2E1E0E1821383.

4 Experimental Setup

4.1 Datasets

We use three classification tasks in the experiments.

– The first dataset (coins) consists of a series of 64×64 pixel images of New Zealand
five cent pieces against a random noisy background [16]. There are 200 images of
each of heads, tails and background only. Fourteen frequency features are extracted
based on a discrete cosine transform of the image, as described in [19].

– The second dataset (wine) [20] gives the result of a chemical analysis of wines
grown in the same region in Italy but derived from three different cultivars. The
analysis determined the quantities of thirteen constituents found in each of the three
types of wine. The thirteen constituents are the features, and the three classes are
the cultivar from which the wine comes. This dataset was sourced from the Weka
project described in [21].

– The third dataset (faces) comes from the ORL face data set [22]. We used four indi-
viduals thus the set was four classes with ten examples of each. This is a very small
number of examples and makes evolving a good classifier difficult. The features
used were simple pixel statistics from various portions of the image. More details
about pixel statistics can be found in [23].

4.2 GP System Configuration

We consider GP with no simplification and numerical simplification. The terminal set
for each dataset consists of the features used in that dataset and random “constant” num-
bers. The function set for all the datasets consists of the four standard arithmetic func-
tions (addition, subtraction, multiplication and protected division). The fitness function
uses the error rate on the training set. Experiments are all conducted with the same set
of parameters. The population size is 200. Initial programs are five levels deep. Tour-
nament selection is used with a tournament size of four. For the coin dataset we use 40
generations, for the wine dataset we use 200 generations, and for the faces dataset 100
generations.

These parameter values were determined using heuristic guidelines and preliminary
trials via empirical experiments to obtain good results for these datasets.

For generating the next generation we use 5% reproduction, 85% crossover and 10%
mutation. We use ten-fold cross validation and where simplification is used it is per-
formed after the first generation, and every fourth generation thereafter. Note that we
intend not to set any maximum program size. The runs are done in pairs, one for each
of no simplification and numerical simplification. Because we are comparing building
blocks between the two runs in each pair, both runs in the pair use the same starting
population, the same folds, and the same starting seed. Each pair was run 50 times.
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5 Results and Discussion

To investigate the distribution of building blocks as the run proceeds, we use three
level deep building blocks encoded with the new scheme to examine (1) the lifespan of
building blocks; (2) the rate at which new building blocks are added to the population;
(3) the rate at which building blocks are removed from the population; (4) the number
of distinct building blocks; and (5) the distribution of building block counts.

5.1 Lifespan of Building Blocks

If at a given generation, a building block (encoding) is present in the population, and
at the previous generation it was not, then this is a creation. If at a given generation, a
building block (encoding) is not present in the population, and at the previous genera-
tion it was, then this is a destruction.

Each time a destruction event occurs we record the number of generations that the
building block has been in the population. This is a lifespan. At the end of the run we
add the lifespan for each of the building blocks still in the population. We then plot the
number of lifespans against each possible number of generations. The two different GP
methods have different average program sizes and therefore different numbers of build-
ing blocks in their populations. Therefore we plot the lifespan counts as a percentage of
the total number of lifespans for that run and method.
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Fig. 3. Distribution of building block lifespans for the coin dataset (left), wine dataset (middle)
and the faces dataset (right). The top row uses a logscale for the vertical axis, the bottom row is
an enlargement of only the lowest frequencies to show the small number of building blocks with
a long lifespan.
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Figure 3 shows the lifespan distributions for the three datasets over 50 runs. The
range of lifespan counts turned out to be very large and so the top row of graphs
presented here use a logarithmic scale for the percentages. We added 1 to each count to
avoid any problem with log(0). We can see a small difference between the two methods
for short lifespans but all the lifespan percentages for lifespans of greater than 10 are
very small. The bottom row of plots in Fig. 3 is an expansion of just the lowest fre-
quencies. In the coins dataset we can clearly see the small number of building blocks
with long lifespans; they are harder to see for the other datasets but they are there. We
tested the statistical significance of the differences between the two methods using the
Wilcoxon Signed-Rank non-parametric test [24,25], and there was no significance to
the differences we can see in Fig. 3.

5.2 Creation and Destruction Rates

We now examine the rate at which new building blocks are added to the population
(creation) and the rate at which building blocks are removed from the population (de-
struction). Figure 4 shows the creation and destruction rates. Note the periodic oscilla-
tions in the simplification lines due to simplification being done every four generations.
We can see that after the first one or two simplifications that the numerical simplifi-
cation method has consistently lower rates, for both creation and destruction, than the
no-simplification case. After the first few generations the creation and destruction rates
show remarkably little long-term variation.
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Fig. 4. Building block creation and destruction rates for the coin dataset (left), wine dataset (mid-
dle) and the faces dataset (right). The top row is the creation rate and the bottom row is the
destruction rate.
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5.3 Number of Distinct Building Blocks

Figure 5 shows the number of distinct building blocks, and the total number of building
blocks in the population. The lines for the total number have been scaled by a factor
of 5 to better fit the graph. We see that in all cases the total number of building blocks
tends to rise through the run as the average program size increases. There are many
small variations, but most of this growth (and occasional fall) is in a number of discrete
steps. It is not easily seen on these graphs but these steps are two or three generations
long. Note that there is no corresponding step in the number of distinct building blocks.
One possible explanation for this effect is that when a genetic operation creates a pro-
gram that is both larger than average and of high fitness, this program will often be
the tournament winner and the building blocks in this program will propagate through
the population causing both an increase in the average program size and an increase in
total number of building blocks. The creation of such programs only occurs every few
generations resulting in this stepped behaviour.
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Fig. 5. The solid lines show the number of distinct building blocks in the population. The dashed
lines show the total number of building blocks scaled to fit the graph (scale factor of 5). The left
column is the coin dataset, the middle column is the wine dataset and the right hand column is
the faces dataset. Note the periodic nature of the simplification lines, this is due to simplification
only being run every fourth generation.

The first one, or sometimes two, rounds of simplification reduces the number of
distinct building blocks. It starts to rise again and then the next round of simplification
reduces it. The long term trend remains nearly constant throughout the rest of the run.
As with the creation and destruction rates, the number of distinct building blocks is
clearly lower for numerical simplification than for no simplification.

These results are not what we might have expected. The number of crossover and
mutation operations per generation is constant at one per program in the population.
For a given number of distinct building blocks already present in the population, the
chance of a building block being created that is not already in the population is likely to
also be constant. Therefore if the population size is large enough the creation rate will
probably also be approximately constant.

What is not obvious is why the destruction rate and the number of distinct building
blocks should remain constant or nearly so. We will examine this further in Sect. 5.4.
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The consistancy of the patterns shown in Figs. 4 and 5 would suggest that they are
statistically significant. We tested the significance of the differences between numerical
simplification and no simplification using the Wilcoxon Signed-Rank non-parametric
test. Because of the periodic nature of the numbers, the significance testing was done
using averages over four successive generations, this being the number of generations
per simplification. The significance was tested at the beginning and end of the run, and
at three points in between.

The actual Z scores are not presented here because of space considerations but they
show that for all three datasets, the numerical simplification method has significantly
lower creation and destruction rates than the no simplification case. We see the same
pattern with the number of distinct building blocks. All of the tests are at least the 95%
level and most show a significance level of higher than 99%.

The number of unique building blocks is a measure of diversity in the population.
This has a significantly lower value for the numerical simplification method. Other
published results [16,17,18] have reported that there is no loss of classification accuracy
with simplification methods. Table 1 shows the means and standard deviations of the test
accuracy for the three datasets. We can see that the differences are very small and much
smaller than the standard deviations. Tests showed that there is no statistical significance
to these differences.

Table 1. Classification accuracy (as a percentage) on the test set of the two methods

No Simplification Numerical Simplification
Mean StdDev Mean StdDev

Coins Dataset 93.9 3.0 93.0 3.1
Wine Dataset 97.9 4.2 97.9 5.1
Faces Dataset 66.1 6.3 65.8 6.2

5.4 Distribution of Building Block Counts

In section 5.2 we saw that the number of distinct building blocks remains constant or
very nearly so. Intuitively we would expect that as the run proceeds and the building
blocks in the high fitness individuals start to dominate the population, that the number
of distinct building blocks in the population would drop. This is clearly not the case.
It may be that it is only the distribution amongst the building blocks that changes. To
test this we took the building blocks and sorted them in order of frequency in the final
population. We have plotted the result in 3D in Fig. 6. These graphs are the average over
the 50 runs. The rank axis is the frequency order at the end of the run: 1 at the back is
the building block (encoding) with the highest number present in the final population;
2 is the second most numerous and so on. There are 100–200 different building blocks
present in any generation but we show just the 20 most common in the final population
as most of the building blocks are present in only small numbers. In general only about
twenty have more than ten copies in the population at any generation. Each slice parallel
to the generation axis is the same building block, showing the number present in the
population at each generation.
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Fig. 6. The distribution of building blocks through the run. The top row is the coins dataset, the
middle row is the wine dataset and the bottom row is the faces dataset.

The two graphs for the coins dataset show a clear tendancy for the population to
become more concentrated in the most numerous building blocks as the run proceeds.
The other two datasets do not show this effect as clearly but there is still some indication.
What is clear in all six graphs is that those building blocks that are common at the end
of the run were in most cases among the most common at all generations in the run. We
can see some small ridges in the surface, particularly in the early part of the run. These
are caused by building blocks becoming slightly more or less common with respect to
those near them in ranking, but very few building blocks change their ranking by more
than a few places.

During the runs the genetic operators have moved building blocks between programs
and they have slowly been arranged into the most advantageous arrangement. We can
see from Fig. 6 that those building blocks that are common in the early generations
remain common throughout the run and are therefore not among those building blocks
whose destruction is shown in Fig. 4. These results suggest that the composition of the
initial population is very important, if it is dominated by building blocks that are not
useful in forming a good solution then it will be much more difficult to evolve a good
solution.
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6 Conclusions and Future Work

We have shown that there are many short lived building blocks that are created in small
numbers and within one or two generations have been deleted from the population.
There are also a much smaller number of building blocks that remain in the population
for 60% or more of the run. This confirms the results from the image based encoding
methods of [18]. We have also shown that numerical simplification does not appear to
change that distribution.

We have shown that after the first few generations the rate at which new building
blocks are added to, or building blocks removed from, the population is nearly constant.
The number of distinct building blocks present in the population at any generation in
the run is also nearly constant. The number of distinct building blocks in the popula-
tion is reduced by numerical simplification. This means that in some sense at least, the
numerical simplification process reduces the overall diversity of building blocks within
the population. We were able to show that at least for these three datasets this loss of
diversity has not adversely affected the classification accuracy.

In future work we will investigate further why the number of distinct building blocks
remains constant and how numerical simplification reduces their number without ad-
versely affecting the classification performance. We will also extend this work to re-
gression problems in addition to the current classification problems.
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LSIIT - UMR 7005 Pôle API Bd Sébastien Brant BP 10413 67412 Illkirch France
{ogier.maitre,nicolas.lachiche,pierre.collet}@unistra.fr

Abstract. This paper shows that it is possible to use General Purpose
Graphic Processing Unit cards for a fast evaluation of different Genetic
Programming trees on as few as 32 fitness cases by using the hardware
scheduling of NVIDIA cards. Depending on the function set, observed
speedup ranges between ×50 and ×250 on one half of an NVidia GTX295
GPGPU card, vs a single core of an Intel Quad core Q8200.

1 Introduction

General Purpose Graphic Processing Units (GPGPU) are about to revolutionize
evolutionary computing because they have been designed for a workflow that is
very similar to that of evolutionary algorithms. This means that our community
can directly benefit from the R&D investments in very specialised chips made
by the billion dollars gaming industry, provided that we understand how these
cards work, and how we can make full use of their power and massive parallelism.

The current GTX295 card used in this paper contains 2 × 240 cores and has
right now a computing power that is comparable to the cluster of 1000 350Mhz
Pentiums that John Koza used to obtain the ground breaking results (leading
to patentable inventions) published in [6], for less than $500.

A quick look at the design of these cards could get one to think that their
seemingly SIMD1 architecture would be a serious limiting factor, making them
unsuited to execute many different genetic programming trees. However, this is
not really the case, because the architecture of GPGPU cards is more complex,
and allows to cut down SIMD execution to much smaller clusters of “virtual”
cores, as will be shown below.

2 Description of the Problem

The workflow of image rendering algorithms is virtually the same as that of
evolutionary algorithms (EAs), as the same pixel shader algorithm (read “fit-
ness function”) must be executed in parallel on millions of different pixels (read
“genomes”) of the image (read “population”).
1 Single Instruction Multiple Data means that all cores must excute the same instruc-

tion at the same time. Standard multi-core CPUs are MIMD, for Multiple Instruction
Multiple Data (different instructions can be executed on different data).
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In terms of hardware, this very special SIMD workflow allows in theory to
mutualize all needs. For example only one Fetch&Dispatch unit (which provides
code instructions to arithmetic and logic units ALUs) can be used for all ALUs
(that execute the same instruction at the same time). Conversely on an MIMD
processor, the fact that all ALUs must be able to execute different instructions
in parallel means that independent Fetch&Dispatch units must be associated to
all MIMD ALUs.

Then, since rendering algorithms work on millions of pixels, each core must
execute the very same code for several hundreds of different pixels, meaning
that heavy pipelining can be envisaged. This allows to do without a memory
cache and use the silicon space for yet more cores: high latency memory is not
a problem if enough threads can be stacked up on one core. If a single memory
access takes as much time as the execution of 100 instructions, data will be ready
when the 100th thread will have made its memory request (pipelining). If this
workflow is totally compatible with GAs, and allows for an “easy” porting of an
EA on a GPGPU [9], things are different for GP, where conceptually speaking,
the algorithm must evaluate thousands of different programs (or functions) on
what can be a very small learning set. On a standard SIMD architecture, two
cores cannot execute different instructions simultaneously. They have to execute
the 2 instructions sequentially.

As a consequence, two basic options can be used to evaluate GP trees:

1. Run one tree per core. But this guarantees to have many cores waiting for
each other, since different trees will contain different operators and will be
of different lengths (cores will often be idle, waiting for others to execute
different instructions).

2. Run the same tree on all the cores, which necessitates enough different test
cases to load the pipelines of the card. The problem is that on a 100 cores
card, if one memory access takes the same time as executing 100 instructions,
as many as 10,000 fitness cases will be needed to avoid the bottleneck on
memory access time if all 100 cores evaluate the same GP tree.

3 Related Work

Several attempts have already been made at running interpreted or compiled
Genetic Programming algorithms on GPGPU cards [8].

In the case of compiled GP on GPGPU, the first work by Chitty in 2007 [2]
uses the relatively high-level C for Graphics (Cg) language with option 2 (one
tree on all the cores, on different fitness cases). The author obtained speedups of
×10 for the whole algorithm on an NVidia 6400GO card with 4 pixel pipelines
and 3 vertex pipelines (this is an old architecture) vs a 1.7GHz Intel processor
on a symbolic regression problem with 400 fitness cases, and speedups of ×30
on the 11 way multiplexer with between 100 000 and 150 000 fitness cases.

In 2007, Harding et al. [3] applied approximatively the same technique using
.Net and MS Accelerator framework. Option 2 was selected again, with impres-
sive speedups of ×7000 for a compiled evaluation function on an NVidia 7300
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GO card (4 pixel pipelines, 3 vertex pipelines) vs an Intel T2400 1.83GHz pro-
cessor, but in the case of GP individuals with 10,000 nodes and 65,536 fitness
cases for the sextic regression problem.

In 2008, Langdon et al. [7] used RapidMind to evaluate GP individuals with a
sequential interpreter on GPU. They used option 1, where individuals are spread
across all cores of the GPU. Each core executes all the functions in the function
set on all nodes of the tree and keeps only the desired result. They obtain a
speed up of ×12 on a 128 Shading Processors 8800GTX NVidia card compared
to a 2.2GHz AMD Athlon 64 3500+ CPU for the whole algorithm, applied to a
real world problem. They suggest that the SIMD nature of the implementation
generates a loss of ×3, which is roughly proportional to the 5 functions of their
functions set.

In 2008 and 2009, Robilliard et al. [13,12] use the NVidia CUDA environ-
nement to perform GP interpretations on NVidia cards. This approach is the
closest to the hardware among those discussed above. They used the SPMD
(Single Program Multiple Data) architecture of NVidia GPUs to execute multi-
ple individuals on multiple fitness cases at the same time. This work has been
applied to sextic regression and 11-multiplexer on which a speed up of ×80 is
obtained (for evaluation only) on the sextic regression problem with 2,500 fitness
cases, on a 8800GTX NVidia card vs an Intel 2.6GHz processor.

4 CUDA

As seen above, different environments are used to execute GP individuals on
GPU hardware. RapidMind and Accelerator are high level languages that allow
to write portable code across multi-core architecture: RapidMind allows the ex-
ecution of a C-like program through the OpenGL library while Accelerator uses
DirectX to do so. Even if this high level approach is convenient, this results in a
loss of performance, which is easy to understand in [7]. Programs are compiled
as vertex or pixel shaders and data arrays are bound to textures. Those envi-
ronments force the execution to be SIMD, even if the underlying hardware is
SPMD.

The CUDA environment used in this paper allows direct access to the NVidia
hardware without going through DirectX or OpenGL layers, and is therefore
more efficient. Unfortunately, this means that the code is more complex to write,
and portability is limited to NVidia cards.

4.1 Software Architecture

CUDA (released in 2004 by NVidia) is an abstract representation of a unified
“computing accelerator.” Its goal is to achieve a hardware abstraction of the
underlying computing device by defining portable concepts across different ar-
chitectures without any modification. The model handles threads of parallel
tasks which can be executed on the accelerator. A thread is, as per the classical
definition, an independent process, which executes instructions on data. Threads
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can be arranged in 2D arrays (called blocks), allowing them to map a 2D data
array as a 2D texture. Every thread inside a block can communicate with any
other thread in the same block, thanks to a small amount of high speed shared
memory.

The CUDA software architecture defines a complex memory hierarchy, built
separately from the main memory system of the computer. This hierarchy con-
tains a large global memory (without a cache), a small very fast shared memory
used for communication between threads inside a block, and read-only caches
for textures, constants and instructions.

4.2 Hardware Architecture

Concepts in software abstraction are more or less mapped onto a hardware in-
stantiation. The CUDA implementation uses NVidia GPUs as a “computing
accelerator.” Threads are executed by a Streaming Processor (SP). The card
used for this paper holds 2 GPUs that contain 240 SP each while the future
g300 chip of GTX395 cards will contain 2 × 512 streaming processors.

Things begin to get interesting when rather than having one Fetch and Dis-
patch (F&D) unit for all SPs as on a pure SIMD architecture, NVidia cards
implements only one unit for 8 SPs . Unfortunately, all instructions must be
executed 4 times by every SP, due to the difference in terms of speed, between
the SP clock and the F&D unit clock. This means that 8 SPs act like a 32 core
SIMD CPU, so at least 32 tasks must be present on the 8 linked SPs in order
to fill every thread slots. This makes for virtual 32 SP bundles that are called
Multi-Processors (MPs), knowing that a dual-chip 295GTX card holds 2 × 30
multi-processors.

A block of threads is executed on only one MP, but an MP can execute 4
blocks at a time, if enough resources are available (enough registers and shared
memory for executing the 4 blocks).

The memory model is implemented on the GPU by using a global memory
of several hundred MegaBytes (2 × 896MB on a 295GTX), read only caches,
and memory banks for shared memory (16kB). Even if the global memory has a
large bandwidth (2 × 111 GigaBytes per second), it suffers a very high latency,
estimated to several hundred cycles for each memory access, partially due to the
lack of cache.

4.3 Hardware Scheduling

The latency problem could be really embarrassing, but the GPU fortunately
embeds a hardware scheduling mechanism on each MP which acts like the Hyper-
Threading mechanism of Pentium IV and Core i7 Intel processors, i.e. to be able
to overcome memory stalls, as each MP can schedule between many threads.
When a thread (actually, a bundle of 32 threads) makes a memory access, it
is frozen for hundreds of cycles. The hardware swaps the bundle with another
bundle that is ready to execute, by placing it onto the processor.
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The CUDA documentation asserts that each MP can schedule between 24
bundles of 32 threads (i.e. 768 threads), coming from all the 4 thread blocks
loaded onto an MP.

NVidia released a profiler for CUDA which allows to watch the scheduling
ability and obtain an “occupancy” value. It is interesting to note that occupancy
is not directly related to performance. Maximizing occupancy is only useful
to overcome memory latencies. In some situations, increasing the occupancy
can yield no improvement in performance, for example if a code has a high
computation/memory access ratio.

5 Implementation

The proposed implementation uses Reverse Polish Notation (RPN) to represent
GP individuals, which is very parsimonious in memory. Copying the whole popu-
lation onto the GPU with a real tree representation would drastically slow down
the transfer from the CPU memory point of view. With RPN notation, the whole
population occupies only one memory buffer, which can be transferred in one go,
therefore exploiting the very high memory bandwidth of the graphic PCIEx in-
terface on which the card is plugged. Trees are evaluated on the GPU card using
a multi-thread RPN interpretor, which is able to evaluate multiple individuals on
multiple fitness cases at the same time as explained in the next section. All inter-
pretor stacks are allocated in the very fast shared memory as in [13].

There are several ways to deal with such an RPN representation. In [13],
Robilliard et al flatten GP trees just before transferring them onto the card,
which shows the feasibility of the approach. However the time spent in this
operation will increase with population size and tree depth. Other ideas are for
the GP algorithm to directly deal with flat individuals written in RPN. This
has been done in [7,12] but it can introduce biases, such as using an equal (and
maximal) sized buffer for each and every individual. Another approach would
be to use linear GP, CGP, FIFTH or PUSH algorithms [1,10,4,14] that do not
require a tree representation.

The current paper focuses only on parallel evaluation of different GP individ-
uals on a GPGPU card, not on the GP algorithm that goes behind.

6 Evaluation Step

As discussed in section 4.3, GPUs are designed to execute many tasks in par-
allel. Evaluating a GP population of size n over k fitness cases is equivalent to
evaluating n × k parallel tasks. We have seen that these tasks will be SIMD
within bundles of 32 threads but can be MIMD across the bundles. The trick
now consists in organising the tasks in order to keep all units busy while making
sure they all fit in shared memory and registers so as to maximise the efficiency
of the hardware scheduling process.

Threads within a bundle execute the same GP individual on different fitness
cases, but different bundles can evaluate different individuals. This technique
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allows to make improved use of the underlying hardware for as few as 32 fitness
cases, which is the main contribution of this work, although the presented im-
plementation still allows for good speedups down to 8 test cases as will be shown
below.

This is very important as many GP problems can only use a very limited
number of test cases (very often less than 1,000 and often less than 100). This
limits the potential of all previously published implementations of GP on GPUs
(cf. section 3).

Because 32 fitness cases produce 32 threads, and because an MP can handle 4
blocks (the hardware scheduler can automatically map 4 individuals), evaluating
4 different individuals in the same block results in using 512 threads per MP,
which improves performance. Therefore each MP will evaluate 16 individuals on
32 fitness cases. This is possible, because, as asserted by the CUDA documen-
tation [11] a divergence in the execution path will result in loss of performance
only if this divergence occurs within one SIMD bundle.

7 Experiments

7.1 Experimental Process

The experiments have been performed on a GTX295 NVidia card vs a recent
Intel Quad core Q8200 (2.33GHz) processor and 4GB RAM, under linux 2.6.27
64 bits with NVidia driver 190.18 and CUDA 2.3. The GTX295 is a dual GPU
card, but to simplify things, we use only one GPU to evaluate GP individuals, the
second card being used for the standard display. A multi-GPU implementation
has been tested by distributing the population on the two GPUs of the GTX295
card. No drawback has been observed other than the need for the population
size to be large enough to fully load the two GPUs.

CPU code has been compiled with gcc 4.3.2 using the -O2 optimisation option
and run on one core of the CPU only, so as to avoid poor multi-core implemen-
tation that would bias measurements towards an even better speedup for GPUs.
By not implementing a multi-core CPU GP, one still has the possibility to imag-
ine that in the best case, a perfect multi-core implementation would show a
linear speed up, with respect to the number of cores of the CPU.

The evaluation algorithm is applied on a regression problem, using randomly
generated trees, without any evolution (this paper is only about maximising GP
tree evaluation speedup over GPUs). Trees are grown using the grow or full
method from Koza’s book [5]. They are evaluated on CPU and flattened before
being evaluated on GPU so that the very same trees are used to compare CPU
and GPU evaluation time. Timings are performed with the gettimeofday()
POSIX function. For the CPU, timing is done on the evaluation function only,
whereas on the GPGPU timing also includes transfer of the population from the
CPU to the GPU memory and transfer of the results back to the CPU. Buffers
for population, fitness cases, results and hits are allocated for the whole run only
once. As for a real GP problem, fitness cases are constant and are sent to the
GPU board during memory allocation (cf. fig. 1).
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Fig. 1. Global scheme for GP simulation and timing process

7.2 Evaluation Time vs. Number of Fitness Cases

Four different implementations are compared in fig. 2, for depth 7 trees, with a
population of 60 000 individuals. The three implementations which evaluate 32
fitness cases with 1, 2 and 4 different individuals per MP, are named MP1×32,
MP2×32 and MP4×32. The last implementation (named MP1×128) evaluates
128 fitness cases with one individual per MP. MP1×32 is similar to the imple-
mentation presented in [13].

Curves are stair-shaped and the length of each step is equal to the number of
fitness cases computed in parallel, which is reasonable. MP1×128 is the most effi-
cient implementation on large fitness case sets, mainly because it greatly improves
the scheduling capability of the GPU without incurring overhead for handling
multiple individuals per MP. However, it is interesting to note that the curve for
MP4×32 is roughly identical to the curve for MP1×128, showing that it is possible
to get a near-optimal use of GPGPUs with as few as 32 fitness cases.
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7.3 Influence of Tree Depth on Speedup

Figure 3 shows the speedups for different numbers of fitness cases and different
tree sizes with MP4×32 using a {+,-,÷©,×,cos,sin} (where ÷© is the protected
division) function set, and a full method for tree construction. With this particu-
lar function set, trees are not full in the binary sense because of unary operators.
One can see that the depth of trees has an influence on performance, but with
less impact than the number of fitness cases. Indeed, an increase in tree depth not
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only increases the number of computations, but also the size of the population
buffer i.e. the memory transfer time.

Above 32 fitness cases, the curve is not flat because of memory transfer time.
Under 32 fitness cases, the GPGPU is not optimally loaded, but interesting
speedups can nevertheless be obtained (×60 for tree depth 10 on 8 fitness cases
only).

The surface reaches a plateau with a speedup of around ×250 when the card
is fully loaded and memory transfer overhead is minimised.

7.4 Influence of Function Set

Fig. 4 shows that the computational complexity of the function set has an influ-
ence on speedup as well. Three different sets have been tested:

F1 F2 F2SFU
+, -, ÷©, × +, -, ÷©, ×, cos, sin, log, exp +, -, ÷©, ×, cos, sin, log, exp

Function set 1 has a poor computational intensity. Execution time of the
operators is so small that speedup stagnates at around ×50. Speedup is about the
same for MP4×32 and for MP2×32 (that needs to handle twice as many threads),
meaning that the bottleneck probably comes from memory access rather than
thread management.

Function set 2 has a higher computational intensity. It keeps the hardware
busy and speedup again depends on the number of fitness cases. The curve shows
teeth because given that the execution time is flat between two multiples of 32
(cf. stairs in fig. 2), speedup decreases brutally at each new step vs CPU time
that increases linearly with the number of test cases.

Function set 2 with Special Function Units uses interesting features
that can be found on GPGPU cards, as explained in [11]: functions {sin, cos,
log, exp} can be approximated by fast Special Function Units (SFU) which are
inherited from the 3D rendering design of GPU cards. Function set 2 with SFU
shows a gain in speedup obtained at a cost of less precise results. However using
them in GP is not really problematic since GP will take the approximations into
account. (One must only make sure that the obtained function is not used on
another computer where the exact same SFU functions are not implemented.)
Robilliard et al. used SFU functions to obtain their results in [12].

7.5 Influence of Tree Shapes on Speedup

Up to now, tests concerned “full” trees in the Koza sense (i.e. created with a
full() function). Unfortunately, during a real GP run, trees are usually cre-
ated using a ramped half and half initialisation method that tries to create as
diverse a population as possible. Then as evolution goes on, the shape of the
trees becomes more homogeneous, but they are certainly not full. In order to
estimate the speedup that could be obtained during a real GP run, a population
of trees created with Koza’s grow() function [5] has been tested, that results in
a performance loss if for instance a very large tree is part of the same bundle
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as 3 other very small trees. Therefore, threads containing the small trees will
have to wait for the execution of the thread containing the large tree before the
bundle can be replaced.

Fig. 5 shows that speedup drops from around 250 with full trees down to
around 170 with trees obtained with the grow method.

7.6 Influence of Population Size

Another important parameter is the size of the population. CUDA documenta-
tion says that many tasks must be loaded on the GPU to allow for scheduling



Fast Evaluation of GP Trees on GPGPU 311

between different tasks. If x individuals evaluating 32 fitness cases will fully load
the card using an MP1×32 (or MP1×128) implementation, then, twice the num-
ber of individuals is necessary to load the card with an MP2×32 implementation,
since 2 individuals will be put in the same bundle. An MP4×32 implementation
will therefore need 4 times more individuals than an MP1×32 (or an MP1×128)
implementation to load the card.

This is clearly shown in figure 6 where the curves for MP1×32 and MP1×128
attain their top speedup much faster than MP2×32 and MP4×32. However, this
is not much of a problem since MP2×32 or MP4×32 curves show a much better
speedup than MP1×32 or MP1×128 even for small population sizes.

8 Conclusion and Future Work

Few papers have been written on how Genetic Programming could benefit from
being run on GPGPU hardware. However, this work is to our knowledge the first
to focus on hardware scheduling of GPGPU cards in order to efficiently evaluate
different individuals with as few as 32 fitness cases (interesting speedups are also
obtained with learning sets as small as 8 fitness cases, but these do not allow to
fully load the card).

Speedups ranging from ×50 up to ×250 (depending on the function set) have
been obtained on a recent NVidia card vs a single core of a recent Intel processor.
According to figures published by NVidia, the new generation of Fermi GPGPU
cards could allow speedups of ≈ ×5, 000 on a single PC with 4 GTX395 cards,
i.e. much more than the power of the 1,000 350MHz Pentium cluster that Koza
used to obtain patentable inventions in [6]. Such a speedup means that 1 day of
computation on a GPGPU would be equivalent to 5,000 days on a modern PC,
i.e. more than 13 years ! Even if this maximum speedup is not achieved on all
kinds of problems, having years of calculation on a single PC done in one day
may allow to start working on totally new kinds of problems that are simply out
of reach without GPGPU cards.

The presented speedups only concern individuals evaluation time, not the full
GP algorithm. Evaluation is usually considered to be the most time-consuming
part of a GP, but GPGPU cards make this statement obsolete, as preliminary
tests show that the standard GP evolutionary engine is now the bottleneck, since
the trees need to be flattened before they are passed over to the GPGPU. Linear
GP, CGP, FIFTH or PUSH [1,10,4,14] therefore look like good candidates to
feed the cards with enough individuals, fast enough to satisfy their greed.

Concerning future work, a dynamic load balancing system could be imple-
mented thanks to atomic functions available on GPGPUs that could yet im-
prove speedup when trees have very different shapes, but the KISS principle
says that it is now time to work on the GP engine until eventually, individuals
evaluation becomes the bottleneck again. As soon as good results are obtained
on a full GP program, our concern will be to make parallel GP programming
over CUDA available in a language such as EASEA, making GPGPU-based GP
(GPGPGPU ?) available to all researchers who would be interested in trying
them out without needing to program the cards themselves.
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Abstract. Automatic construction method for image classification al-
gorithms have been required. Genetic Image Network for Image Classifi-
cation (GIN-IC) is one of the methods that construct image classification
algorithms automatically, and its effectiveness has already been proven.
In our study, we try to improve the performance of GIN-IC with Ad-
aBoost algorithm using GIN-IC as weak classifiers to complement with
each other. We apply our proposed method to three types of image clas-
sification problems, and show the results in this paper. In our method,
discrimination rates for training images and test images improved in the
experiments compared with the previous method GIN-IC.

1 Introduction

Automatic construction method for image classification algorithms have been re-
quired. In general, image classification algorithms consist of image preprocessing,
feature extraction, and classification process. It is very difficult to construct an
algorithm suitable for all image classification problems. Therefore, a method is
required to construct an image classification algorithm that would automatically
adjust to the target problem is needed. Genetic Image Network for Image Clas-
sification (GIN-IC) [1] is one of the methods that construct image classification
algorithms automatically, and its effectiveness has already been proven. GIN-IC
automatically constructs the adequate classification algorithm (including image
transformation, feature extraction and arithmetic operation components) using
evolutionary computation. The process of GIN-IC is, first, to transform orig-
inal images to easier-to-classify images using image transformation nodes, and
next, to select adequate image features using feature extraction nodes. The great-
est advantage of GIN-IC is its image transformation (preprocessing) component,
which influences image feature selection. However, learning failure or over fitting
of the training images sometimes occurs in the constructed algorithms because
of GIN-IC’s simple output to decide the classification.

In this paper, we extend GIN-IC by adding the AdaBoost algorithm [2]. Ad-
aBoost is one of the greatest general ensemble learning methods to make a
strong classifier, which has higher performance, by combining weak classifiers,
which have lower performance. AdaBoost is applied to various image classi-
fication problems and has shown its effectiveness, such as the face detection
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Fig. 1. Example of a structure in Genetic Image Network for Image Classification

method proposed by Viola and Jones [3]. Moreover, aggregating the classifiers
constructed by genetic programming [4,5,6], particle swarm optimization [7] or
neural networks [8] has been studied to improve their classification performance.
In our method, a set of output nodes in GIN-IC is treated as a weak classifier.
The performance is expected to be improved by using GIN-IC as weak classifiers
that complement with each other.

The next section of this paper is an overview of GIN-IC. In section 3, we
describe our proposed method. In section 4, we apply the proposed method to
three kinds of image classification problems and show their results in section 5.
Finally, in section 6, we describe conclusions and future work.

2 Genetic Image Network for Image Classification
(GIN-IC)

2.1 Structure of GIN-IC

The image classifier GIN-IC consists of image transformation, feature extraction,
and arithmetic operation components based on the Genetic Image Network [9].
GIN-IC constructs an acyclic network-structured image classifier automatically.
Fig. 1 shows an example of the phenotype (feed-forward network structure) and
genotype (string representing the phenotype) of GIN-IC.

One of the benefits of this type of representation is that it allows the im-
plicit reuse of nodes in its network. The nodes of GIN-IC are categorized into
five types: input nodes, image transformation nodes, feature extraction nodes,
arithmetic operation nodes, and output nodes. Input nodes correspond to the
original images. Image transformation nodes execute image transformation using
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the corresponding well-known image processing filters. Feature extraction nodes
extract an image feature from the input images. Arithmetic operation nodes ex-
ecute arithmetic operations. Image classification is performed using the values
of the output nodes. In GIN-IC, these processes evolve simultaneously.

In GIN-IC, the feed-forward network structure of nodes is evolved, as shown in
Fig. 1. Numbers are allocated to each node, beforehand. Increasingly large num-
bers are allocated, in order, to the input nodes, image transformation nodes,
feature extraction nodes, arithmetic operation nodes, and output nodes. Con-
nections, such as the feedback structure, that cannot be executed are restricted
at the genotype level. The nodes take their input from the output of the previous
nodes in a feed-forward manner. Because GIN-IC constructs a feed-forward net-
work structured image classification procedure, it can represent multiple outputs.
Therefore, GIN-IC enables easy construction of a multiclass image classification
procedure using a single network structure.

To adopt an evolutionary method, GIN-IC uses genotype-phenotype map-
ping. This genotype-phenotype mapping method is similar to Cartesian Genetic
Programming (CGP) [10]. The feed-forward network structure is encoded in the
form of a linear string. The genotype in GIN-IC is a fixed length representation
and consists of a string that encodes the node function ID and connections of
each node in the network. However, the number of nodes in the phenotype can
vary in a restricted manner, as not all the nodes encoded in the genotype have
to be connected. This allows the existence of inactive nodes. In Fig. 1, node No.
8 and 11 are inactive nodes.

2.2 Genetic Operator and Generation Alternation Model

To obtain the optimum structure, an evolutionary method is adopted. The geno-
type of GIN-IC is a linear string. Therefore, it is able to use a standard genetic
operator. In GIN-IC, mutation is used as the genetic operator. The mutation
operator affects one individual, as follows:

– Select several genes randomly according to the mutation rate Pm for each
gene.

– Randomly change the selected genes under the structural constraints.

(1 + 4) Evolution Strategy ((1 + 4) ES) is used as the generation alternation
model. The (1 + 4) ES procedure in the experiments works as follows:

1. Set generation counter j = 0. Generate an individual randomly as a parent M .
2. Generate a set of four offspring C, by applying the mutation operation to M .
3. Select the elite individual from the set M + C (the offspring is selected if

it has the same best fitness as the parent). Then replace M with the elite
individuals.

4. Stop if a certain specified condition is satisfied; otherwise, set j = j + 1 and
go to step 2.

Since GIN-IC has inactive nodes, a neutral effect on fitness is caused by genetic
operation (called neutrality [10]). In step 3, the offspring is selected if it has
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the same best fitness as the parent, then the searching point moves even if the
fitness is not improved. Therefore, efficient search is achieved though a simple
generation alternation model. This (1 + 4) ES was adopted and showed its
effectiveness in previous works [1,10].

2.3 Advantages and Limitations of GIN-IC

GIN-IC has many advantages to automatically construct image classification
algorithms. The greatest advantage of GIN-IC is its image transformation (pre-
processing) component, which is expected to influence image feature selection.
In other words, GIN-IC generates and selects adequate image features by a com-
bination of nodes. However, learning failure or over fitting of the training images
sometimes occurs in the constructed algorithms because of GIN-IC’s simple out-
put to decide the classification. Moreover, more the size or the number of training
images is increased, more time for learning it takes.

3 Proposed Method

3.1 Overview

To solve the problems noted in previous section, we apply the AdaBoost [2]
algorithm to GIN-IC. A set of output nodes in GIN-IC is treated as a weak
classifier. Thus, the total number of output nodes is N × T , where N is the
number of classes and T is the number of weak classifiers. Weak classifiers are
evolved in sequence until each weak classifier achieves a specified error rate. In
this process, the construction of the previous weak classifiers is fixed and can
be reused in the subsequent weak classifiers. The effective process of other weak
classifiers can be reused. Moreover, reuse is expected to reduce the time required
for learning by avoiding recalculation at each operational node. In addition,
all weak classifiers have a weight of their hypothesis. The final hypothesis is a
weighted vote of the hypothesis of all weak classifiers. Fig. 2 shows an example
of a structure in our proposed method for binary classification.

3.2 Process of the Proposed Method

The process of our proposed method is described as follows:

Step 1: Initialize the weights D1(i) = 1
m , (i = 1, 2, . . . , m), and weak classifier

counter t = 1, where m is the number of training images.
Step 2: Focus the tth output set as the tth weak classifier. Here, add the new

usable nodes to save enough nodes for constructing the new weak classifier.
Add ni of image transformation nodes, nf of feature extraction nodes and
na of arithmetic operation nodes.

Step 3: Evolve the weak classifier based on GIN-IC till the error rate εt is less
than a threshold τ . εt is obtained by summing weights Dt(i) corresponding
to misclassified images as

εt =
∑

i:ht(xi) 	=yi

Dt(i), (1)
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Fig. 2. Example of a structure in proposed method for binary classification

where ht(xi) is the class label corresponding to the output node with the
largest value of the weak classifier t when the input is image xi, and yi is the
correct class label of image xi. Here, we use (1 + 4) ES as the generation
alternation model. The (1 + 4) ES procedure is the same as in section 2.2.
Do not operate the fixed nodes in step 6 by genetic operation, and allow
these nodes to be selected as the input of other nodes. When constructing
the tth classifier, the structures of the classifiers from first to (t − 1)th can
be reused.

Step 4: Calculate the weight of hypothesis α of the focused output set as

αt =
1
2

log
(

1 − εt

εt

)
. (2)

Step 5: Update the weights as

Dt+1(i) =
Dt(i)
Zt

×
{

exp (−αt) if ht(xi) = yi

exp (αt) otherwise , (3)

where Zt is the number for normalization. This operation adapts the weights
corresponding to the training images based on the AdaBoost algorithm. By
this operation, the weights corresponding to the training images classified
correctly are decreased and the weights corresponding the training images
misclassified by the previous weak classifiers are increased. Therefore, the
misclassified images are classified correctly by the next weak classifier pref-
erentially.

Step 6: Set t = t+1. If t ≤ T , fix the nodes connected with the focused output
set and go back to step 2.
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Step 7: Output the final hypothesis hfin(xi) as

hfin(xi) = arg max
yi∈Y

∑
t:ht(xi)=yi

αt. (4)

This operation calculate the final classification results by a vote of all weak
classifiers. For all weak classifiers, sum the weights of hypothesis αt for the
class output by tth weak classifier. The input image xi is classified the class
hfin(xi), which maximizes the sum of the weights of weak classifiers that
output the class.

3.3 Characteristics of the Proposed Method

We note some characteristics of our proposed method in this section. First, the
classifier constructed by our proposed method consists of a number of GIN-IC
as weak classifiers. We think that the performance is improved because weak
classifiers complement with each other compared with GIN-IC. Second, the con-
struction of the previous weak classifiers is fixed and can be reused in the sub-
sequent weak classifiers. Therefore, the effective process of other weak classifiers
can be reused since all nodes may be selected as the input of other nodes. Third,
we stop evolving GIN-IC on the way to use it as weak classifiers. This opera-
tion is expected to reduce the time required for learning and to prevent over
fitting.

4 Experiments

4.1 Settings of the Experiment

In this section, we evaluate our proposed method by applying it to three image
classification problems. The problems are as follows:

1. Texture images
2. Pedestrian images
3. Generic object images

In these experiments, we transform all color images into grayscale. We also apply
the previous method, GIN-IC, to the same problems to compare it with our
proposed method. Table 1 shows the parameters used in the proposed method
and the previous method, GIN-IC. We determined each parameter by the results
of preliminary experiments.

We prepare simple and well-known image processing filters as the image trans-
formation nodes in the experiments (26 one-input, one-output filters and 9 two-
input, one-output filters), e.g., mean filter, maximum filter, minimum filter, Sobel
filter, Laplacian filter, gamma correction filter, binarization, linear transforma-
tion, difference, logical sum, logical prod, etc. 17 simple statistical values are
used as feature extraction nodes, e.g., mean value, standard deviation, maxi-
mum value, minimum value, mode, 3 sigma in rate, 3 sigma out rate, skewness,
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Table 1. Parameters used in the experiments

Parameters GIN-IC Proposal
Generation alternation model (1+4)ES (1+4)ES
Mutation rate (Pm) 0.02 0.02
Image transformation nodes (ni) 100 Add 50
Feature extraction nodes (nf) 100 Add 50
Arithmetic operation nodes (na) 100 Add 50
Output nodes 6, 2, 5 6, 2, 5
The number of generations 112500 –
The number of weak classifiers (T ) – 100
Error rate threshold (τ ) – 0.4

kurtosis, etc. The arithmetic operation nodes are 20 well-known arithmetic op-
erations, e.g., addition, subtraction, multiplication, division, threshold function,
piecewise linear function, sigmoid function, absolute value, equalities, inequal-
ities, constant value, etc. In both the proposed method and previous method
(GIN-IC), we use the same kinds of nodes. The fitness function of GIN-IC as
weak classifiers in proposed method is described as follows:

fitness = Nc × m +
1

Na
, (5)

where Nc is sum of the weights Dt(i) of training images classified correctly, Na
is the number of active nodes, and m is the number of training images. If the
classification performance is the same, the number of active nodes should be
small in this fitness function. We describe the features of the training images
used in each experiment as follows:

Experiment 1: Texture Images. We use texture images from the publicly
available database VisTex.1 We use six classes in this experiment. We make 128
images with 64 × 64 pixels each by dividing two texture images of 512 × 512
pixels for each class. The number of training images is 60 (10 images for each
class). The main feature of these images is that the test images are comparatively
similar to the training images. The training images used in this experiment are
displayed in Fig. 3.

Experiment 2: Pedestrian Images. We use 924 pedestrian images from the
publicly available database MIT Pedestrian Database2 and 200 nonpedestrian
images. We use two classes in this experiment. The size of all images is 64× 128
pixels, and the number of the training images is 200 (100 images for each class).
The pedestrian images have various resolutions while the pedestrians are roughly
the same size. The nonpedestrian images are manually cut out from outdoor
images. An example of the training images used in this experiment is displayed
in Fig. 4.
1 http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
2 http://cbcl.mit.edu/software-datasets/PedestrianData.html
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Fig. 3. Training images used in experiment 1 (texture)

Fig. 4. Example images used in experiment 2 (pedestrian)

Fig. 5. Training images used in experiment 3 (generic object)
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Experiment 3: Generic Object Images. We use 500 generic object images
from the publicly available WANG image database.3 We use five classes in this
experiment. The size of all images is 96×64 or 64×96 pixels, and the number of
training images is 50 (10 images for each class). The main feature of these images
is that target objects have various sizes, positions, types, and so on. Therefore,
this problem is more difficult than the other two problems. The training images
used in this experiment are displayed in Fig. 5.

5 Results and Discussion

5.1 Results

We compare our proposed method with GIN-IC in discrimination rate for train-
ing and test images and time required for learning in this section. The results
are the average and the standard deviation (SD) over 10 different runs.

As the result of experiment 1, discrimination rates for the training and test
images of textures are shown in Table 2. Our proposed method achieved 100%
classification accuracy for all training runs against 98% on an average in GIN-IC.
Moreover, the proposed method is about three times faster than GIN-IC, for the
training images. For test images, the proposed method also obtained about 12%
higher classification accuracy as compared to that in GIN-IC totally.

Table 2. Discrimination rate for the training and test images (texture)

Training set Test set
Class GIN-IC Proposal GIN-IC Proposal

Average Average Average ± SD Average ± SD
Bark 99.0% 100.0% 70.7 ± 9.2% 91.7 ± 4.0%
Food 100.0% 100.0% 86.1 ± 5.8% 98.4 ± 1.8%
Grass 100.0% 100.0% 88.1 ± 3.2% 85.6 ± 6.5%
Metal 90.0% 100.0% 76.7 ± 16.2% 98.3 ± 1.9%
Stone 99.0% 100.0% 80.4 ± 10.5% 94.9 ± 5.7%
Fabric 100.0% 100.0% 94.7 ± 6.1% 99.4 ± 0.8%
Total 98.0% 100.0% 82.8 ± 8.2% 94.7 ± 1.5%

As the result of experiment 2, Table 3 shows discrimination rates for the
training and test images of pedestrians. As for the results of experiment 1, the
proposed method achieved 100% accuracy for all training runs against 90% on
an average in GIN-IC. Moreover, the proposed method is about 50 times faster
than GIN-IC, for the training images. Our proposed method also obtained higher
classification accuracy for test images as compared to GIN-IC totally.

As the result of experiment 3, discrimination rates for the training and test
images of generic objects are shown in Table 4. Similar to the results of exper-
iments 1 and 2, the proposed method achieved 100% classification accuracy for
3 http://wang.ist.psu.edu/docs/related
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Table 3. Discrimination rate for the training and test images (pedestrian)

Training set Test set
Class GIN-IC Proposal GIN-IC Proposal

Average Average Average ± SD Average ± SD
Pedestrian 89.5% 100.0% 81.4 ± 7.0% 88.6 ± 4.2%
Non-pedestrian 90.5% 100.0% 73.0 ± 10.5% 75.7 ± 4.0%
Total 90.1% 100.0% 80.5 ± 6.1% 87.2 ± 3.7%

Table 4. Discrimination rate for the training and test images (generic object)

Training set Test set
Class GIN-IC Proposal GIN-IC Proposal

Average Average Average ± SD Average ± SD
Building 76.0% 100.0% 34.3 ± 19.5% 62.7 ± 6.9%
Bus 95.0% 100.0% 67.6 ± 12.4% 74.8 ± 7.8%
Elephant 95.0% 100.0% 66.3 ± 10.7% 84.0 ± 5.9%
Flower 100.0% 100.0% 70.9 ± 9.1% 86.4 ± 7.3%
Horse 96.0% 100.0% 56.6 ± 19.5% 73.4 ± 7.9%
Total 92.4% 100.0% 59.1 ± 6.3% 76.3 ± 3.5%

all training runs against about 92% on an average in GIN-IC. Moreover, the pro-
posed method is about two times faster than GIN-IC, for the training images.
The proposed method also obtained about 20% higher classification accuracy
than GIN-IC totally, for test images.

5.2 Discussion

Our proposed method classified all training images completely in all runs and
tends to prevent over fitting as compared to single GIN-IC in these experiments.
We confirmed that GIN-IC and AdaBoost go well together. Since we use GIN-
IC as weak classifiers, our proposed method can generate and select adequate
image features by a combination of nodes. Although we only use simple image
processing filters and image features as nodes in these experiments, we think that
the performance is improved by adding more complex and effective processes
such as SIFT descriptor [11]. We should investigate how GIN-IC contributes the
performance of our proposed method compared with low level features.

Moreover, our proposed method took lesser time than single GIN-IC, for learn-
ing. We attribute this superiority to using GIN-IC as weak classifiers. An example
of discrimination rate transition in experiment 2 (pedestrian) is shown in Fig.
6. About 60% classification accuracy is achieved in dozens of generations and
higher accuracy costs hundreds and thousands generations. This graph indicates
that error rate threshold τ should be small to reduce the number of generations
to construct weak classifiers. However, too small τ brings a large number of
weak classifiers. The relationship between the number of weak classifiers and τ



Ensemble Image Classification Method Based on Genetic Image Network 323

Fig. 6. Example of discrimination rate
transition in GIN-IC

Fig. 7. Relationship between the num-
ber of weak classifiers and the error rate
threshold τ

in pedestrian datasets is shown in Fig. 7. The vertical axis indicates the number
of weak classifiers needed to completely classify the training images, and the
horizontal axis indicates τ . This graph indicates that many weak classifiers are
required if τ is small. From this preliminary experiment, we decide the parame-
ters of τ and T .

6 Conclusions and Future Work

In this paper, we propose a method for automatic construction of an image
classifier that aggregates GIN-IC as weak classifiers based on the AdaBoost al-
gorithm. We applied the proposed method to three different problems of image
classification, and confirmed that it obtained the optimum solution. In our pro-
posed method, discrimination rates for the training and test images improved in
the experiments as compared to that in the previous method GIN-IC. Also, our
proposed method reduces the time required for learning.

However, the classifier obtained by the proposed method is constructed with
2500 nodes under 100 weak classifiers while single GIN-IC is constructed with
30 nodes. We will analyze the process of obtaining classifiers and what kind
of preprocessing and features were evolved by our proposed method in future.
Moreover, this method should be compared with other classifiers to evaluate its
quality. Finally, we will apply it to other problems of image classification and
object recognition with large scale variation and so on.
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Abstract. In previous work, we have demonstrated that it is possible to
use Genetic Programming to minimise the resource consumption of soft-
ware, such as its power consumption or execution time. In this paper,
we investigate the extent to which Genetic Programming can be used
to gain fine-grained control over software timing. We introduce the ideas
behind our work, and carry out experimentation to find that Genetic Pro-
gramming is indeed able to produce software with unusual and desirable
timing properties, where it is not obvious how a manual approach could
replicate such results. In general, we discover that Genetic Programming
is most effective in controlling statistical properties of software rather
than precise control over its timing for individual inputs. This control
may find useful application in cryptography and embedded systems.

1 Introduction

In previous work, we have combined Genetic Programming (GP), Multi-objective
Optimisation (MOO) and simulation of hardware platforms to produce software
with low power consumption [1] and reduced execution time [2]. We found that
GP was indeed able to meet both functional and non-functional requirements,
and also provide trade-offs between the two. Here we propose the notion of fine-
grained resource control. For example, can we control the execution time of a
program p on input x, T (p, x), such that T can be an arbitrary function? Such
control might allow us to solve some problems more efficiently than with func-
tional computation alone, and to create software with useful security properties.

In this paper, we investigate the types of control that GP can achieve, and the
effectiveness of the search algorithm in achieving these goals. We do not attempt
to demonstrate that our solutions are the best, or that our parameter settings
are optimal: only that GP has the potential to finely control timing behaviour
in a way not previously considered. The results of single experimental runs are
presented as proof of concept. We discuss example potential applications of these
results to the domain of cryptography. Whilst we address timing properties,
alternatives include power consumption and memory usage.
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2 Evolving Code with Specific Time Complexity

In this section, we demonstrate the difficulty of trying to manually control the
low-level timing properties of software, as we attempt to create code that has
a very specific time complexity relationship. This demonstrates the potential
superiority of GP against manual design alone as a tool for such tasks.

We evolve individuals in the ECJ 19 Toolkit [3] and evaluate them by writing
them out as C code, compiling them with a test harness using a cross-compiler,
and executing them within the M5 Simulator [4]. The simulator is targeted for an
Alpha architecture, using its default parameters. A trace file is produced, which is
parsed by ECJ to measure the number of cycles used by the evolved code in each
test case. Where handwritten solutions are examined in the following sections,
the C source code has been manually written, and the rest of the evaluation
method remains unchanged to ensure a fair comparison with evolved solutions.

2.1 Designing Linear Complexity

It is second nature to think about a program in terms of complexity: quadratic is
good, linear is better, exponential is undesirable. For a moment, let us focus only
on the complexity of a program rather than its purpose. Consider a program
A that has linear complexity with respect to quantity n. Quantity n may be
problem size, in which case we assume the conventional notion of the complexity
of the program. If n an input, we have a program that has a linear relationship
between its input values and its resource consumption. This is related to the
theory of pseudo-polynomial time algorithms.

If we wish to construct code that may have this behaviour, we find that it is
actually not as straightforward as one might assume, because the complex inter-
action of hardware and software can easily lead to outliers in the relationship.
For example, if we wish to construct a solution such that T (p, k) = mk + c, we
can suggest such a program without regard to its functionality as thus:

float tmp = 0;

while (tmp < k)

tmp++;

We have used float rather that int to maintain generality in the following sec-
tions, and because floating point operations have interesting timing properties.
We now test this program with k = 0 . . . 99. A test program provides these in-
puts, then parses a trace file to measure cycle usage for each call. Rather than
implement this as a function, we have actually used a C #define macro to force
the compiler to inline this code. This improves efficiency, and allows us to ma-
nipulate code embedded within a program rather than as an external function,
interacting fully with the machine context of the surrounding code.

Figure 1(a) gives a graph of the results. Note that we do not experience
a perfect relationship, due to the interaction between the test program and
machine state. The primary cause of the outliers is data cache misses for the
input values, such that the comparison operation causes a long delay prior to
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Fig. 1. Test results for handwritten linear solution

the next instruction. If we randomise the order of the inputs, we can measure
the relationship in a more robust manner. The result is given in Figure 1(b).

Here we have even larger outliers, but they are spread throughout the input
range rather than concentrated at the beginning. We can quantify the relation-
ship by estimating Pearson’s correlation coefficient for this sample:

r(k, T ) =
∑n

i=1(ki − k̄)(Ti − T̄ )√∑n
i=1(ki − k̄)2

√∑n
i=1(Ti − T̄ )2

(1)

Where ki is the ith test case and Ti is the time taken to execute a code fragment
p on this input. A perfect positive correlation would be 1, a negative correlation
-1 and 0 for no correlation. The correlation coefficient for this manual attempt
at linearity is 0.978, and by no means a perfect correlation due to the subtle
interaction with the program’s context. An interesting question, therefore, is:
can evolution find a better solution?

2.2 Experiment A: Linear Behaviour

Experimental parameters are given in Table 1, chosen arbitrarily, and no tuning
has been attempted. The intention is to demonstrate what is possible with GP,
and not the most efficient way to achieve these results. The maximum number
of instructions is limited to a similar value to that used by the handwritten solu-
tion, preventing GP from using larger solutions to mask the “noise” of program
context. The randomised order of tests is varied at each generation, to avoid
overfitting. “Increment tmp” increases the temporary variable by 1, whereas
“update tmp” assigns a new value. FixedLoop(n) will loop for n iterations.

Genetic Programming is indeed able to locate a better solution, with a corre-
lation coefficient of 0.993. A graph of this function’s relationship and the code
of the individual evolved is given in Figure 2. The key differences between the
evolved and handwritten solutions are:
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Table 1. Experiment A: Settings to evolve linear time behaviour

Objective Find a program p∗(k) such that Θ(f) =
mk + c

Terminal set k, tmp
Function set FixedLoop, ≤, increment tmp, +, ∗, −, /,

if, sequence, skip, update tmp
Fitness cases k ∈ {i|0 ≤ i < 100}
Fitness function r(k, T )
Parameters Initial tree depth = 3, generations = 10,

population size = 20, prob(xo) = 0.9,
prob(mutation) = 0.1

if (k) {

for (c=0;c<k;c++) {

};

} else {

tmp++;

tmp++;

tmp++;

}

(a) Source code
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(b) Time against input

Fig. 2. Evolved linear solution

– When k = 0, work will still be performed in the evolved version, namely
testing for this case, and moving through further branches.

– When k > 0, an additional if statement evaluation will be performed.

If we examine the trace output for this evolved solution, we see that it includes
exactly the same instructions executed in the manual solution, and adds some
to either side of the loop. This effectively “smooths” the response (time taken)
by suitably padding the instruction pipeline, as well as increasing the time taken
for k = 0, i.e. setting a larger value for the intercept.

Note that we can now (approximately) calculate f(k) by running the program
and observing the time taken to execute, where in this case f(k) = mk + c.

2.3 Experiment B: Quadratic Behaviour

What if we wish instead to create a nonlinear relationship such as a quadratic
curve with no linear term? We may try a handwritten solution as in Figure 3.

This solution takes the general approach of calculating f(k) prior to repeat-
ing the strategy of looping to perform a multiple of a minimal unit of work
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tmp = k * k;

for (c=0;c<tmp;c++) {

}

(a) Source code
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Fig. 3. Test results for handwritten quadratic solution

(increasing c). This relationship appears to be a great improvement on the man-
ual attempt at a linear solution, but we must quantify the relationship to be
sure. We can estimate the derivative of the evolved function as:

f(k + 1) − f(k) = m(2k + 1) (2)

Thus we can measure the correlation between the differences of successive tim-
ings and k in order to evaluate the fit of the quadratic relationship. For the
handwritten solution above, we find a correlation of 0.962. Can we improve on
this using evolution? We first used the correlation measure as a fitness function,
and after some manual experimentation and analysis it became apparent that
rewarding a certain amount of first-order correlation is also desirable in order to
guide the search, and hence the fitness function was modified thus:

F (p) = w0 · r(k, T (p, k)) + w1 · r(k, T (p, k + 1) − T (p, k)) (3)

A simple selection of 0.2 and 0.8 for w0 and w1 respectively was sufficient to
guide the search to a successful solution, found using the same parameter settings
as given in in Table 1. The best individual evolved had a correlation of 0.967
between the input and derivative, a very modest improvement over the manually
written version. The individual was:

for (c=0;c<(k * k );c++)

tmp = tmp;

3 Time as a Functional Output

In the preceding section, we demonstrated that it is possible to search for pro-
grams that have simple relationships between their numerical input and total
absolute execution time, and that exhibit those relationships more accurately
than “obvious” handwritten alternatives.
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Consider now a more complex relationship such as a Boolean function. Given
two Boolean inputs a and b, can we evolve a program p with execution time
T (p, a, b) = f(a, b), where f could be a Boolean OR? For this to be literally
true, the program’s execution would have to take either 0 or 1 cycles, which is
unrealistic as even a simple if will take more than a single cycle. Hence, we
must find an interpretation of the timing output, denoted I(T (p, a, b)). This is
an idea with much generality, and is illustrated in Figure 4.

Fig. 4. Visualising the use of timing in calculation

A very simple interpretation that can be employed here is to measure the
number of cycles the machine has executed and then take modulo 2 of this
number. Thus the lowest “bit” of the execution time is used as output, and
there are two output states: an even and odd number of cycles consumed. An
interpretation such as this is arbitrary, and the idea can be generalised: perhaps
interpretations can be cooperatively coevolved? The most interesting question
here is: do such code fragments even exist, given the context of the test program
within which they will be used?

It is not obvious how to go about manually constructing a solution, but we
can imagine two ways in which it may be achieved: through something we could
describe as either implicit or explicit time variation. In the former, we hope to
rely purely on the low-level mechanics of the processor and memory subsystem
to provide variation, such as floating point operations that consume a variable
number of cycles. In the latter, we rely on some logical test to choose a path
through the code. In practice, the latter cannot succeed without the former in
order to “iron out” variation as in the handwritten solution from Section 2.2.

3.1 Experiment C: Timing OR Function

In this experiment, we give as input the four possible combinations of a pair of
Boolean-valued floats and try to evolve a program that outputs their OR on the
lowest bit of the cycle count. Initial experimentation revealed the following:
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– the test cases could be passed by code that did not even evaluate the inputs.
– degenerate behaviours taking a single cycle (“always 1”) were common.
– the ordering of test cases affected the performance of the search.

The code was therefore subsequently tested with the four possible inputs over
four repetitions, and a randomised ordering of these 16 test cases used. In order
to ensure that both inputs were evaluated at least once in any solution, the
fitness function was specified as follows:

f(p) = w1 · c(p, a)+w2 · c(p, b)+w3 · (n−
n∑
1

|(T (p, an, bn)%2)− (an ∨ bn)|) (4)

Where c(p, a) is 1 if program p reads variable a, and 0 otherwise. The weightings
w1, w2 and w3 were 0.25, 0.25 and 0.5 respectively (an arbitrary choice). The
parameters to the experiment are given in Table 2. Note that we added the
constants 1 and Float MAX (3.40282e38) to the terminal set. GP was indeed
able to provide such a solution:

if (( 3.40282e+038f - b )) {

for (c=0;c<(b + a );c++) {

tmp++;

};

} else {

tmp = 3.40282e+038f;

}

This code passed all 16 test cases; it is quite straightforward to see how this might
work. However, running the code again with a different test case order resulted
in the code failing two test cases. This is because T is a function not only of p, a
and b, but also of the machine context φ. We are trying to evolve code such that
T (p, a, b, φ) % 2 is equivalent to a ∨ b. The context is the machine state: stack

Table 2. Experiment C: Settings to evolve a Boolean OR function using time as an
output channel

Objective Find a program p∗(a, b) such that
T (p, a, b)%2 = OR(a, b)

Terminal set a, b, tmp, 1, Float MAX
Function set FixedLoop, ≤, increment tmp, +, ∗, −, /,

if, sequence, skip, update tmp
Fitness cases a, b ∈ {{0, 0}, {0, 1}, {1, 0}, {1, 1}}

(four reps, order randomised)
Fitness function f(p) = w1 · c(p, a) + w2 · c(p, b) + w3 · (n −∑n

i=1 |T (p, ai, bi) − (ai ∨ bi)|)
Parameters Initial tree depth = 3, generations = 20,

population size = 100, prob(xo) = 0.9,
prob(mutation) = 0.1
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contents, the instruction pipeline, cache etc. This reliance on context is both a
difficulty, where we wish to eliminate its effects, and also a useful resource, in
the case where we want to exploit the machine state to achieve certain timing
properties. This context caused problems for the manual solution in Section 2.1.

If we wish to implement this OR gate robustly, we must test on all 4! = 24
input sequences. Even then, however, we cannot be sure that the context of the
test program is not being exploited, such that if we wish to use the code in a new
program we would have to again evolve and exhaustively test a new solution.
Thus any such “absolute time manipulation” must be done in situ.

We did indeed attempt to evolve a program that is robust to input ordering,
but failed to successfully do so even when testing each bit of timing output as
a potential interpretation. Every run provided an individual with a few failed
test cases out of 96. To achieve such control over absolute cycle usage it may be
necessary to construct a function set exhibiting a variety of timing behaviours.

4 Timing Avalanche Criterion

In previous work [1], we have demonstrated that it is possible to evolve low-
power pseudorandom number generators (PRNGs) using GP and simulation.
As a measure of the randomness of the PRNG, we used the Strict Avalanche
Criterion (SAC) [5], a cryptographic measure that estimates the nonlinearity of
a function. SAC analyses the expected distance between outputs given a single
bit flip in the input. SAC is an efficient measure of randomness that generalises
well to other statistical qualities. Note that in this experiment we have used a
single 32-bit input rather than 8 as in previous work, for the sake of simplicity.

Each output bit should have a probability of 0.5 of being flipped when a sin-
gle input bit is changed, in order to maximise the nonlinearity of the PRNG.
Hence, the Hamming distance between the two outputs should follow the bino-
mial distribution B(n, 1

2 ). By recording the Hamming distance between p(a) and
p(a′) for each test case, a χ2 squared goodness-of-fit measure can be calculated
against the ideal binomial distribution of bit flips. The performance measure of
an individual program p is given by:

SAC(p) =
n∑

i=0

(Ci − Ei)2

Ei
(5)

Ci is the counted frequency of i bit flip events, and Ei the expected number.
In this experiment, we take the radical step of applying the avalanche criterion
to its timing behaviour, T (a, p, σ). We refer to this as the Timing Avalanche
Criterion (TAC). This is a fascinating concept, which we suggest has never been
considered due to the lack of any manual method capable of implementing it.
It may enable us to evolve programs resistant to side-channel cryptanalysis, a
major problem in designing secure algorithms. Kelsey [6] notes “It is probably
not possible to protect against side-channel attacks in the design of algorithms.”

Kocher et al. [7] were amongst the first to demonstrate that cryptographic
primitives provably secure in the mathematical domain can become exposed to
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unseen vulnerabilities when implemented in a physical system. By monitoring
the timing properties or power consumption [8] of a system, it is possible to
deduce information about the state of executing software and compromise its
security. A wide variety of attacks exist, from simple timing of operations to
statistical analysis of power traces.

Counteracting such attacks is difficult: one method is to design code to con-
sume the same number of cycles regardless of both the data input or output and
the state of the system. For example, this can be achieved through the insertion
of NOP instructions through the implementation. This defence is usually vul-
nerable to other forms of attack, such as detecting NOPs through other means,
and a more robust method of defence is desirable.

4.1 Experiment D: Simple TAC

In this section, we attempt to evolve an expression that has a good TAC measure
across the lowest 10 bits of its cycle count, which allows for up to 1023 cycles,
sufficient for the evaluation of small expressions. Does such an expression even
exist, given the context of a simple test loop that repeatedly uses the code with
inputs separated by a single bit flip? It is not clear to us how we would proceed
in designing such an expression, but can GP design one for us?

Table 3. Experiment E: Settings to evolve an expression with a good Timing Avalanche
Criterion measurement

Objective Find a program p∗(a) such that
HD(T (p, a, σ), T (p, a′, σ) ≈ B(n, 1

2
)

where HD(a, a′) = 1.
Terminal set a, Integer ERCs
Function set If, <, LogicalShiftLeft (LSL), LSR, MULT,

SUM, AND, NOT, OR, XOR
Fitness cases a, a′ where HD(a, a′) = 1, sample size

4000

Fitness function
∑n

i=0
(Ci−Ei)

2

Ei
over n = 10 bits of timing

measurement, where Ci is the resulting fre-
quency of i bits flipping and Ei is the ex-
pected frequency.

Parameters Initial tree depth = 3, generations = 25,
population size = 100, prob(xo) = 0.9,
prob(mutation) = 0.1

We use a sample size of 4000, which is generous according to our previous
work, and the same function set as we have previous employed. The experiment
is summarised in Table 3. The best individual was subsequently tested over a
sample size of 10000, which gave a good TAC measure of 0.0228. The p value
of this result, effectively giving the probability that this sample is drawn from
the ideal Binomial distribution, is 1.00 (to 3 s.f.). The distribution of bit flips is
give in Figure 5. The individual is also reasonably small:
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tmp = ( ( ( a > (3594493887u ) ) ˆ ( ( a ∗ (1408948682u) ) > ( ( a > (3594493887u
) ) ˆ ( a ∗ (609711807u) ) ) ) ) ? ( ( ( a ∗ (1408948682u) ) >
((2302909662 u) ˆ a ) ) << ( ( ( a > ( a ∗ (609711807u) ) ) ˆ ( a ∗
(609711807u) ) ) % 32u) ) : ( ( ( (2390510013 u) ∗ ( ( ( a > (3594493887u) )
ˆ ( ( ( ( a ∗ (1408948682u) ) > ( ( ( a ∗ (1408948682u) ) > ((2302909662 u )
ˆ a ) ) << ( ( ( a > ( a ∗ (609711807u) ) ) ˆ ( a ∗ (609711807u) ) ) % 32u

) ) ) ∗ (2540811676u) ) ∗ ( ( ( a ∗ (1408948682u) ) & ( ( a > (3594493887u
) ) ˆ ( a ∗ (609711807u) ) ) ) + a ) ) ) & (2490185230u) ) ) ˆ ( a ∗
(609711807u) ) ) & (1135240832u) ) )

4.2 Experiment E: TAC and SAC

We now ask: is it possible to produce programs that perform two tasks at once,
with both desirable functional and timing outputs? We attempt to produce code
that has both good functional SAC (that is, it is a good random number genera-
tor) and also good TAC (it is resistant to side-channel analysis). Such a solution
provides evidence that GP can evolve primitives resistant to side-channel analy-
sis. It also suggests the feasibility of combining timing and functional properties
of the software to improve the random number generator, or even to feedback
the timing measure as input to improve the nonlinearity of the code over a se-
ries of evaluations, assuming we have the capability to measure time from the
code.

The fitness function used was an even weighted combination of SAC and TAC,
i.e. we assumed that the two objectives were not necessarily conflicting and that
consequently Multi-objective Optimisation was not required. With a larger run
of 25 generations, one of the best individuals produced was:

tmp = ( ( ( ( a ∗ (1408948682u) ) ˆ ( ( ( ( ( ( ( ( 1106785805 u) ∗ a ) >>
( ( ( ( (1167812458 u) + (2754164240u) ) & (˜ a ) ) + ((2240102872 u ) > a ) )
% 32u) ) ∗ ( ( ( ( ( ( 1106785805u) ∗ a ) >> ( ( a ˆ a ) % 32u) ) >> ( ( a ˆ

a ) % 32u) ) ∗ ( ( ( ( ( ( 2390510013u) ∗ a ) >> ( ( (1106785805u) ∗ a ) %
32u) ) ∗ ( ( (1106785805u) ∗ a ) > (2390510013u) ) ) ˆ (˜ a ) ) ∗ a ) )
ˆ (˜ ((( (1106785805 u) ∗ a ) > (3594493887u) ) ˆ a ) ) ) ) ˆ
((1106785805 u) ∗ (˜ (( ( (1106785805 u) ∗ a ) > (3594493887u) ) ˆ a ) ) )
) >> ( a % 32u) ) ∗ (1408948682u) ) ˆ ( ( ( ( ( ( 2390510013u) ∗ a ) >> ( (

a ˆ (((1876056559u) + (3922502476u) ) < ((1106785805 u ) ∗ a ) ) ) %
32u) ) ∗ ( ( (2390510013u) ∗ a ) >> ( ( a ˆ ((1106785805 u ) ∗ a ) ) % 32u
) ) ) ˆ (˜ a ) ) ∗ a ) ) ) ∗ (1408948682u) ) ˆ (( ( ( (2390510013 u) ∗ a
) >> ( ( ( ( ( ( ( ( ( a ˆ (((2641736152u) ∗ (1408948682u) ) ˆ ((3594493887 u )
∗ a ) ) ) >> ( ( a ˆ a ) % 32u) ) ∗ ( ( ( ( ( ( 2390510013u) ∗ a ) >>

( ( (1106785805u) ∗ a ) % 32u) ) ∗ ( ( (1106785805u) ∗ a ) > (2390510013
u ) ) ) ∗ a ) >> ( ( a ˆ ((1106785805 u) ∗ a ) ) % 32u) ) ) ˆ (˜ a ) ) >>
( ( a ∗ (609711807u) ) % 32u) ) ∗ ( ( ( ( (1670273053 u) | a ) &
((3825661740 u) + (3105575741u) ) ) ∗ ( ( ( ( ( ( 2390510013u ) ∗ a ) >>
( ( (1106785805u) ∗ a ) % 32u) ) ∗ ( ( (1106785805u) ∗ a ) > (2390510013
u ) ) ) ˆ (˜ a ) ) ∗ a ) ) ˆ (˜ ((( (1106785805 u) ∗ a ) > (3594493887u) )
ˆ a ) ) ) ) ˆ ((1106785805 u) ∗ a ) ) >> ( a % 32u) ) % 32u) ) ∗

( ( (2390510013u) ∗ a ) >> ( ( a ˆ ((1106785805 u) ∗ a ) ) % 32u) ) ) ˆ
(˜ a ) ) )

Comparing this to past results, there is a wider use of constants. Constants
require memory access, introducing variation into the timing of the individual.
The TAC and SAC distributions over a sample of 10000 are given in Figure 6.
This individual had a SAC of 0.0189 and a TAC of 0.0399, equivalent to a p
value of 1.00 (to 3 s.f.). These are excellent values, achieved surprisingly easily.
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Fig. 5. Bit flip distributions for simple TAC

0 1 2 3 4 5 6 7 8 9 10

Expected
Actual

Bits

Fr
eq

ue
nc

y

0
50

0
10

00
15

00
20

00

(a) TAC

0 2 4 6 8 10 13 16 19 22 25 28 31

Expected
Actual

Bits

Fr
eq

ue
nc

y

0
20

0
40

0
60

0
80

0
10

00
12

00

(b) SAC

Fig. 6. Bit flip distributions for best individual

5 Conclusion

In this paper we have introduced several ideas regarding the application of Ge-
netic Programming for fine-grained control over resource consumption. GP was
shown to be most useful in controlling the behaviour of code over a series of
evaluations, rather than the absolute value of a single evaluation. This opens up
an avenue of further exploration in the concept of “doing two things at once”, to
liberate software from its role as an object of abstract calculation into a process
that interacts with the host hardware platform and its execution context. At
such a complex level of interaction, methods such as Genetic Programming may
be essential to achieve desired behaviour.

Example applications can be found in cryptography, both in defending against
side-channel attacks and exploiting side-channel properties. By exploiting covert
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timing channels [9], programs such as that evolved in Section 4.2 can be used
to transfer information such that a program is a key, and the timing output of
that program on a given input reveals the message. Only a party with the same
code and platform can decode it. Another scenario is using such a program as a
keystream generator, incorporating the timing properties of the software by (for
example) XORing the functional output with the time taken.
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