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Preface

Metaheuristics continue to demonstrate their effectiveness for an ever-broadening
range of difficult combinatorial optimization problems appearing in a wide va-
riety of industrial, economic, and scientific domains. Prominent examples of
metaheuristics are evolutionary algorithms, tabu search, simulated annealing,
scatter search, memetic algorithms, variable neighborhood search, iterated local
search, greedy randomized adaptive search procedures, ant colony optimization
and estimation of distribution algorithms. Problems solved successfully include
scheduling, timetabling, network design, transportation and distribution, vehicle
routing, the travelling salesman problem, packing and cutting, satisfiability and
general mixed integer programming.

EvoCOP began in 2001 and has been held annually since then. It is the first
event specifically dedicated to the application of evolutionary computation and
related methods to combinatorial optimization problems. Originally held as a
workshop, EvoCOP became a conference in 2004. The events gave researchers an
excellent opportunity to present their latest research and to discuss current de-
velopments and applications. Following the general trend of hybrid metaheuris-
tics and diminishing boundaries between the different classes of metaheuristics,
EvoCOP has broadened its scope in recent years and invited submissions on any
kind of metaheuristic for combinatorial optimization.

This volume contains the proceedings of EvoCOP 2010, the 10th European
Conference on Evolutionary Computation in Combinatorial Optimization. It was
held in Istanbul, Turkey, the 2010 European city of culture, during April 7–9,
2010, jointly with EuroGP 2010, the 13th European Conference on Genetic Pro-
gramming, EvoBIO 2010, the 8th European Conference on Evolutionary Com-
putation, Machine Learning and Data Mining in Bioinformatics, EvoPHD 2010,
the 5th European Graduate Student Workshop on Evolutionary Computation,
and EvoApplications 2010 (formerly EvoWorkshops), which consisted of the fol-
lowing 12 individual events: 7th European event on the Application of Nature-
Inspired Techniques for Telecommunication Networks and other Parallel and
Distributed Systems (EvoCOMNET), First European event on Evolutionary Al-
gorithms and Complex Systems (EvoCOMPLEX), Second European Event on
Nature-Inspired Methods for Environmental Issues (EvoENVIRONMENT), 4th
European Event on Evolutionary and Natural Computation in Finance and Eco-
nomics (EvoFIN), Second European Event on Bio-inspired Algorithms in Games
(EvoGAMES), 12th European Event on Evolutionary Computation in Image
Analysis and Signal Processing (EvoIASP), First European Event on Nature-
Inspired Methods for Intelligent Systems (EvoINTELLIGENCE), 8th European
Event on Evolutionary and Biologically Inspired Music, Sound, Art and Design
(EvoMUSART), Third European Event on Bio-inspired algorithms for contin-
uous parameter optimisation (EvoNUM), 7th European Event on Evolutionary
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Algorithms in Stochastic and Dynamic Environments (EvoSTOC), and 4th Eu-
ropean Event on Evolutionary Computation in Transportation and Logistics
(EvoTRANSLOG). Since 2007, all these events have been grouped under the
collective name EvoStar, and constitute Europe’s premier co-located meetings
on evolutionary computation.

Accepted papers of previous EvoCOP editions were published by Springer
in the series Lecture Notes in Computer Science (LNCS – Volumes 2037, 2279,
2611, 3004, 3448, 3906, 4446, 4972, 5482). Below we report statistics for each
conference:

EvoCOP Submitted Accepted Acceptance ratio
2001 31 23 74.2%
2002 32 18 56.3%
2003 39 19 48.7%
2004 86 23 26.7%
2005 66 24 36.4%
2006 77 24 31.2%
2007 81 21 25.9%
2008 69 24 34.8%
2009 53 21 39.6%
2010 69 24 34.8%

The rigorous, double-blind reviewing process of EvoCOP 2010 resulted in a
strong selection among the submitted papers; the acceptance rate was 34.8%.
Each paper was reviewed by at least three members of the international Program
Committee. All accepted papers were presented orally at the conference and are
included in this proceedings volume. We would like to acknowledge the mem-
bers of our Program Committee: we are very grateful for their thorough work.
EvoCOP 2010 contributions consist of new algorithms together with important
new insights into how well these algorithms can solve prominent test problems
from the literature or real-world problems.

To celebrate the tenth anniversary of EvoCOP, we were very pleased to wel-
come, as plenary speakers, the founders of the EvoCOP series, Günther Raidl
from the Vienna University of Technology, Austria and Jens Gottlieb from SAP,
Walldorf, Germany. We would also like to express our sincere gratitude to two
further internationally renowned invited speakers, who gave keynote talks at
the conference: Kevin Warwick from the University of Reading, UK and Luca
Cavalli-Sforza from the Stanford School of Medicine, USA.

The success of the conference resulted from the input of many people to
whom we would like to express our appreciation. A. Şima (Etaner) Uyar was
Local Chair, assisted by Sanem Sarıel-Talay, Şule Gündüz-Öğüdücü, Ayşegül
Yayımlı, Gülşen Cebiroğlu-Eryiğit, H. Turgut Uyar and others from the Com-
puter Engineering Department of Istanbul Technical University. The local orga-
nizers did an extraordinary job for which we are very grateful. We thank Marc
Schoenauer from INRIA in France for his support with the MyReview conference



Preface VII

management system. We thank Stephen Dignum of the University of Essex, UK,
assisted by Cecilia Di Chio of the University of Strathclyde, UK for an excellent
website and publicity material. Thanks are also due to Jennifer Willies and the
Centre for Emergent Computing at Napier University in Edinburgh, Scotland
for administrative support and event coordination. We gratefully acknowledge
sponsorship from Istanbul Technical University, Microsoft, and the Scientific and
Technological Research Council of Turkey. Last, but not least, we would like to
thank Carlos Cotta, Jens Gottlieb, Jano van Hemert, and Günther Raidl for
their hard work and dedication in past editions of EvoCOP, which contributed
to making this conference one of the reference events in evolutionary computa-
tion and metaheuristics.

April 2010 Peter Cowling
Peter Merz
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Thomas Stützle Université Libre de Bruxelles, Belgium
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Dual Sequence Simulated Annealing with Round-Robin 
Approach for University Course Timetabling 

Salwani Abdullah1, Khalid Shaker1, Barry McCollum2, and Paul McMullan2 

1 Center for Artificial Intelligence Technology, 
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia 

{salwani,khalid}@ftsm.ukm.my 
2 Department of Computer Science, Queen’s University Belfast,  

Belfast BT7 1NN United Kingdom 
{b.mccollum,p.p.mcmullan}@qub.ac.uk 

Abstract. The university course timetabling problem involves assigning a given 
number of events into a limited number of timeslots and rooms under a given 
set of constraints; the objective is to satisfy the hard constraints (essential re-
quirements) and minimize the violation of soft constraints (desirable require-
ments). In this study we employed a Dual-sequence Simulated Annealing 
(DSA) algorithm as an improvement algorithm. The Round Robin (RR) algo-
rithm is used to control the selection of neighbourhood structures within DSA. 
The performance of our approach is tested over eleven benchmark datasets. Ex-
perimental results show that our approach is able to generate competitive results 
when compared with other state-of-the-art techniques. 

Keywords: Course timetabling, Dual Sequence Simulated Annealing, Round 
Robin algorithm. 

1   Introduction 

Timetabling problems can be defined as the assignment of resources for tasks under 
predefined constraints so that it minimises the violation of constraints. Typical time-
tabling areas are educational timetabling, sports timetabling, employee timetabling, 
and so on. Educational timetabling can be divided into school timetabling, exam time-
tabling, and course timetabling. In the university course timetabling problem, events 
(subjects, courses) have to be assigned into a number of periods and rooms while 
satisfying various constraints.  

Over the past forty years, researchers have proposed various timetabling approach-
es that fall under Operational Research and Artificial Intelligence. Some of the  
approaches used are constraint-based methods, population-based approaches (e.g., 
genetic algorithms, ant colony optimization and memetic algorithms), meta-heuristic 
methods (e.g. tabu search and simulated annealing), variable neighbourhood search, 
hyper-heuristic and hybridization approaches, etc. Socha et al. [8] applied an ant 
based approach to the eleven datasets which are investigated here. Rossi-Doria et al. 
[17] presented a comparison of a number of metaheuristic methods on the same  
datasets. Burke et al. [1] introduced a tabu-based hyperheuristic and applied it to 
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university course timetabling in addition to nurse rostering. A tabu search within a 
graph based hyper-heuristic (aiming to raise the level of generality) has been em-
ployed by Burke et al. [16] and tested on different problem domains, i.e. examination 
and course timetabling benchmark datasets. Abdullah et al. [4] developed a variable 
neighbourhood search approach which used a fixed tabu list to penalise particular 
neighbourhood structures. The authors continue their work by implementing a rando-
mized iterative improvement approach using a composite of eleven neighbourhood 
structures (Abdullah et al. [5]). Abdullah et al. [6] presented a hybrid approach com-
bining a mutation operator with their previous randomized iterative improvement 
algorithm [5]. The extended great deluge has been applied by McMullan [7] and 
tested to the same datasets which were originally introduced by Socha et al. [8]. A 
different version of the great deluge algorithm, called non-linear great deluge which 
generates non-linear decay rates for three different categories of datasets has been 
tested by Landa-Silva and Obit [9]. The combination of genetic algorithm and local 
search has been employed by Abdullah and Turabieh [11] and is able to produce 
promising results on the same test instances. Turabieh et al. [18] employed a hybridi-
zation of an electromagnetic-like mechanism with forced decay rate great deluge on 
the same problem instances and have obtained promising results. A comprehensive 
review on timetabling can be found in [12, 13, 14, 15]. 

This paper is organized as follows: the next section introduces the university 
course timetable problem with a set of hard and soft constraints. In section 3 we 
represent the proposed algorithm. The simulation results are represented in section 4, 
and finally conclusion and future work are represented in section 5. 

2   Problem Descriptions 

In university course timetabling, a set of courses are scheduled into a given number of 
rooms and timeslots. This usually takes place within a week and the resultant timeta-
ble replicated for as many weeks as the courses run. Also, students and teachers are 
assigned to courses so that the teaching delivery activities can take place. The course 
timetabling problem is subject to a variety of hard and soft constraints. Hard con-
straints need to be satisfied in order to produce a feasible solution. In this paper, we 
test our approach on the problem instances introduced by Socha et al. [8] who present 
the following hard constraints: 
 

• No student can be assigned to more than one course at the same time. 
• The room should satisfy the features required by the course. 
• The number of students attending the course should be less than or equal to 

the capacity of the room. 
• Not more than one course is allowed to be assigned to a timeslot in each 

room. 
 

Socha et al. [8] also present the following soft constraints that are equally penalized: 
 

• A student has a course scheduled in the last timeslot of the day. 
• A student has more than 2 consecutive courses. 
• A student has a single course on a day. 
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The problem has 
 

• A set of N courses, e = {e1,…,eN}. 
• 45 timeslots. 
• A set of R rooms. 
• A set of F room features. 
• A set of M students. 

 

The objective of this problem is concerned with satisfying the hard constraints while 
minimizing as much as possible the violation of the soft constraints. 

3   The Algorithm 

The algorithm consists of two processes; the first process is concerned with producing 
an initial solution. The second process is to optimize the soft constraint cost of the 
initial solution generated in the first process, with three neighbourhood structures 
employed for this purpose. 

3.1   Neighbourhood Structures 

The different neighbourhood structures are outlined as follows: 
 

N1: Choose a single course at random and move to a feasible timeslot that can gen-
erate the lowest penalty cost. 

N2: Select two courses at random from the same room (the room is randomly se-
lected) and swap timeslots. 

N3: Move the highest penalty course to a random feasible timeslot. 

3.2   Constructive Heuristic 

DSA starts with generating an initial solution for a new sequence. Least saturation 
degree is used to generate initial solutions which start with an empty timetable [7]. 
Those events with less rooms available and more likely as difficult to be scheduled 
will be attempted first, without taking into consideration the violation of any soft 
constraints, until the hard constraints are met. This process is carried out in the first 
phase. If a feasible solution is found, the algorithm stops. Otherwise, phase 2 is  
executed. In the second phase, neighbourhood moves (N1 and/or N2) are applied to 
attempt to move from an infeasible to feasible solution. N1 is applied for a certain 
number of iterations. If a feasible solution is met, then the algorithm stops. Otherwise 
the algorithm continues by applying a N2 neighbourhood structure for a certain num-
ber of iterations. In this work, across all instances tested, the solutions were made 
feasible before the improvement algorithm is applied. 

3.3   Improvement Algorithm: DSA 

During the optimization process a set of the neighbourhood structures outlined in 
subsection 3.1 are applied. The hard constraints are never violated during the time-
tabling process. The pseudo code for the algorithm implemented in this paper is 
given in Fig. 1.   
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Initialization Phase 
Set iterations counter, Iter; 
Set maximum number of itera
Set number of local consecut
Set maximum number of loca
Set number of global consecu
Set maximum number of glob
Set initial solution, Sol 
Set best solution, BestSol← S
Set initial temperature T0 
Set final temperature Tf; 
Set decreasing rate α = (log 
 
Improvement Phase   
Generate feasible initial solu
Iter ← 0; 
Gq ← 0; 
Lq← 0; 
temp ← T0; 
Do while (Iter <Iter_max or 
// First scheme 
        if (Gq > Gq_max){ 
              Save the best solutio
              Generate a feasible 
              Reset Gq← 0; 

 Lq← 0; 
Re-anneal (temp←T0); 

          } 
        Define a neighbourhood

    if (f(Sol*) < f(BestSol)  
BestSol← Sol*; 
Sol← Sol*; 

                  Reset  Gq← 0, 
else 

//Second scheme 
Increase counter non-im
if (Lq > Lq_max) 

Lq← 0; 
Generate a random n
Calculate the accepta

       if (RandNum < Paccep

Sol← Sol*
temp ←  temp/(1+ α); 

    if (temp <Tf)   
Re-anneal (set temp←

Iter ++; 
end do; 
 

ation, Iter_max; 
tive non-improving solution, Lq;  
al consecutive non-improving solution, Lq_max; 
utive non-improving solution, Gq;  
bal consecutive non-improving solution, Gq_max; 

Sol 

(T0) - log (Tf)/Iter_max);  

ution (Sol); 

the penalty cost is zero)  

on, BestSol obtained so far; 
initial solution, Sol, for a new sequence; 

d of Sol based on RR algorithm to generate Sol*;  
  

mprovement solution by 1; Lq++;Gq++; 

number, RandNum in [0, 1]; 
ance propability of Sol*, Paccept(Sol*) 

ept(Sol*)) // Paccept(Sol*) is a function to calculate the acceptan
// probability of Sol* 

*; 

←T0);     

Fig. 1. The pseudo code of DSA 

nce 
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At the initialization phase, the algorithm sets initial values for all parameters used, 
such as initial temperature, final temperature, decreasing rate, maximum number of 
iterations, maximum number of local and global consecutive non-improving solu-
tions, the quality of initial and best solutions, etc. In this work, the initial temperature 
T0 is equal to 1000, the final temperature Tf is equal to 0.5 (i.e. the same parameters as 
those employed in [2]) and the number of iterations, Iter_max is set to be 200,000 (as 
in [Turabieh’s paper, Abdullah’s paper]). Based on our preliminary experiments, the 
counter for the local and global consecutive non-improving solutions (denoted as 
Lq_max and Gq_max) is set to 20 and 50 respectively. 

The algorithm starts with a feasible initial solution generated by a constructive heu-
ristic as discussed in section 3.2. At the improvement phase, the algorithm identifies 
two schemes. During improvement, within the first scheme the search is controlled by 
a counter denoted as Gq where it records the number of consecutive non-improving 
solutions. When Gq exceeds the limit of Gq_max (Gq > Gq_max) the approach will 
generate a new initial solution, Sol ensuring it is not a neighbour to the previous solu-
tion, and the best solution (BestSol) found so far is saved. All parameters are re-
initialized. The temperature temp is re-annealed (set to T0) and Gq is set to 0. Note 
that the algorithm saves the last best solution obtained so far before generating a new 
initial solution. A neighbour is defined using a round-robin algorithm to generate a 
new solution Sol*. The quality of the new solution f(Sol*) is calculated and compared 
with the quality of the best solution, f(BestSol). If there is an improvement, where 
f(Sol*) < f(BestSol), the new solution Sol* is accepted and BestSol is set to the new 
solution Sol*.  

Within the second scheme, where the new solution Sol* is worse than the best so-
lution BestSol, we introduce a counter Lq (that represents the number of consecutive 
non-improvement solutions) as a controller to escape from local optima. When Lq > 
Lq_max, a worse solution is accepted based on a certain probability. In this work, the 
new solution, Sol* is accepted if the generated random number RandNum is less than 

the probability, which is computed as exp (-
 
).         

Much worse solutions are likely to be accepted if the value of f(Sol*) is too large. 
This then can make it difficult for the search to converge. At every iteration, temp is 
decreased by α, defined as α = (log (T0) – log (Tf)/Iter_max). If the temperature temp 
falls below the final temperature Tf, the re-annealing process will take place i.e. temp 
is set to the initial temperature value, T0. The algorithm stops when the maximum 
number of iterations Iter_max is reached or the penalty cost is zero. 

3.4   Round Robin Algorithm, RR  

The RR algorithm is employed to control the selection of the neighbourhood struc-
tures, which are ordered in sequence. In this work the neighbourhood structures are 
ordered as N1, N2 and N3 (see subsection 3.1). A time slice or quantum is assigned for 
each neighbourhood structure in equal portions, in a circular order. The neighbour-
hood structure is dispatched in a FIFO manner at a given quantum denoted as qtime 
(which is set to 5 seconds). Note that in this paper, all parameters used are based on a 
number of preliminary experiments. The pseudo code for the RR algorithm is pre-
sented in Fig. 2.  
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After the completion of the time slice of a current neighbourhood structure, the 
preemption is given to the next neighbourhood waiting in a queue. The pre-empted 
neighbourhood is then placed at the back of the queue. When the neighbourhood 
structure Ni is unable to generate a better solution during the given quantum time, the 
neighbourhood structure will be added into the queue. In the next iteration (in Fig. 3), 
the first neighbourhood structure in the queue will be used to generate a new solution. 

4   Experimental Results 

The algorithm was implemented on a Pentium 4 Intel 2.33 GHz PC Machine using 
Matlab on a Windows XP Operating System. The algorithm was run for 200,000 
evaluations with 10 test-runs on each dataset. 

We have evaluated our results on the instances taken from Socha et al. [8] which 
are available at http://iridia.ulb.ac.be/~msampels/tt.data/. They are divided into three 
categories: small, medium and large. We deal with 11 instances: 5 small, 5 medium 
and 1 large. The parameter values defining the categories are given in Table 1. 

Table 1. The parameter values for the course timetabling problem categories 

Category Small Medium large 

Number of courses 100 400 400 

Number of rooms 5 10 10 

Number of features 5 5 10 
Number of students 80 200 400 

 
Fig. 3 shows the frequency charts of the neighbourhood structures that have  

been controlled by the RR algorithm for all datasets. The x-axis represents the data-
sets while the number on the top of each column represents the frequency of the 

Set quantum time, qtime; 
Set a sequence of neighbourhood structures in a queue which is ordered as Ni where  
i ∈ {1,…,K} and K = 3; 
Set initial value to counter_qtime; 
do while (qtime not met ) 
      Select a neighbourhood structure Ni in the queue where i ∈ {1,…,K} where K = 3; 
A:  Apply Ni on current solution,Sol to generate new solution Sol*; 
     if there is an improvement on the quality of the solution then 
 repeat label A 
     else 
 insert Ni into the queue; 
 counter_qtime = q_time; 
end do 
 

Fig. 2. The pseudo code for RR algorithm 
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neighbourhood structures being employed throughout the search that are able to gen-
erate better solutions. It can be seen from Figure 3 that the neighbourhood structure 
“N2” is the most popular neighbourhood structure used in the algorithm, able to gen-
erate better solutions for all datasets, followed by the neighbourhood structure “N3” 
for small datasets and “N1” for medium and large datasets. We can see that the algo-
rithm might require more than one particular neighbourhood structure for different 
datasets when exploring the search space. For some of the data sets, the frequencies 
reported in figure 3 between differing neighbourhood structures are close in value. 
This shows that problems with different size or complexity might require a combina-
tion of the different neighbourhood structures, allowing the search algorithm to ex-
plore the search space using varied strategies from one region to another region. The 
RR algorithm is shown as a useful mechanism in controlling and utilizing the em-
ployment of these neighbourhood structures. 

 

 

Fig. 3. Frequency of the neighbourhood structures used for all datasets 

The best results out of 10 runs obtained are presented. Table 2 shows the compari-
son of the approach in this paper with other available approaches in the literature. 
These include genetic algorithm and local search by Abdullah and Turabieh [11], 
randomised iterative improvement algorithm by Abdullah et al. [5], graph hyper heu-
ristic by Burke et al. [16], variable neighbourhood search with tabu by Abdullah et al. 
[4], hybrid evolutionary approach by Abdullah et al. [6], extended great deluge by 
McMullan [7], non linear great deluge by Landa-Silva and Obit [9], and electromag-
netism-like mechanism approach by Turabieh et al. [18]. Note that the best results are 
presented in bold. It can be seen that our approach is able to produce competitive 
results and the best known result on Medium2.  

Fig. 4 (a), (b) and (c) show the box plots of the penalty cost when solving small, 
medium and large instances, respectively. The results for the large dataset are less 
dispersed compared to medium and small (worse dispersed case in these experiments). 
We can see that the median is closer to the best than to the worst (max) in small and 
medium datasets; however the worst is closer to the median in large datasets. From 
analyzing these results, we believe that the size of the search space may not be depen-
dent on the problem size due to the fact that the dispersion of solution points are 
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Table 2. Results comparison 
 

Dataset Our method M1 M2 M3 M4 M5    M6 M7 M8 

 Min Ave.      Min Ave.   
Small1 0 0.8 0 0 6 0 0 0 0.8 3 0 
Small2 0 2 0 0 7 0 0 0 2 4 0 
Small3 0 1.4 0 0 3 0 0 0 1.3 6 0 
Small4 0 1 0 0 3 0 0 0 1 6 0 
Small5 0 0.6 0 0 4 0 0 0 0.2 0 0 

Medium1 93 132.2 175 242 372 317 221 80 101.4 140 175 
Medium2 98 114.6 197 161 419 313 147 105 116.9 130 197 
Medium3 149 162.0 216 265 359 357 246 139 162.1 189 216 
Medium4 103 111.2 149 181 348 247 165 88 108.8 112 149 
Medium5 98 113.1 190 151 171 292 130 88 119.7 141 190 

Large 680 738.6 912 - 1068 - 529 730 834.1 876 912 
Note:  
M1: Genetic algorithm and local search by Abdullah and Turabieh [11]. 
M2: Randomised iterative improvement algorithm by Abdullah et al. [5]. 
M3: Graph hyper heuristic by Burke et al. [16]. 
M4: Variable neighbourhood search with tabu by Abdullah et al. [4]. 
M5: Hybrid evolutionary approach by Abdullah et al. [6]. 
M6: Extended great deluge by McMullan [7]. 
M7: Non linear great deluge by Linda-Silva and Obit [9]. 
M8: Electormagnetic-like mechanism approach by Turabieh et al. [18] 

It can be seen that in general, our approach is better than other approaches reported 
in Table 2 (apart from M6) and is able to generate one best-published solution for 
Medium2.  
      

 
 

 

 

 

 

 
 

 

 

 

 

 

Fig. 4. (a), (b) and (c). Box plots of the penalty costs for small, medium and large datasets. 

 (a) (b) 

(c) 
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significantly different from one to another, even though the problems are from the 
same group of datasets with the same parameter values. This shows that the algorithm 
behaves differently on different datasets, possibly due to the different complexities of 
the datasets and the nature of the solution space. We believe that the algorithm might 
be able to obtain better results on all the datasets by introducing a mechanism that can 
adaptively and intelligently employ different neighbourhood structures for different 
situations, based on the quality of the solution in hand. This is subject to future work. 

5   Conclusion and Future Work  

This paper presents a dual sequence simulated annealing applied to the course time-
tabling problem. The round robin algorithm is employed within the dual sequence 
simulated annealing to control the selection of the neighbourhood structures given a 
slice time or quantum. In order to test the performance of our approach, experiments 
are carried out based on course timetabling problems and compared with state-of-the-
art methods from the literature. Preliminary comparisons indicate that the dual se-
quence simulated algorithm is competitive with other approaches in the literature and 
able to produce one best known solution on Medium2 dataset. In future work, efforts 
will be made to establish, compare and report on timings in relation to previously 
reported literature. We believe that the proposed approach can be adapted with new 
problems, thus the ITC2007 datasets will be the subject of future work. 
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Abstract. In the discrete (r | p)-centroid problem two decision mak-
ers, a leader and a follower, compete to attract clients from a given
market. The leader opens p facilities, anticipating that the follower will
react to the decision by opening his own r facilities. The decision makers
try to maximize their own profits. This Stackelberg game is ΣP

2 -hard.
So, we develop a hybrid memetic algorithm for it. A probabilistic tabu
search heuristic is applied for improving the offspring. To obtain an up-
per bound, we reformulate the problem as a mixed integer program with
an exponential number of constraints and variables. Selecting some of
them, we get the desired upper bound. To find optimal solutions, we
iteratively modify the subset of the constraints and variables. This ap-
proach is tested on the benchmarks from the library Discrete Location
Problems. The optimal solutions are found for r = p = 5, 100 clients,
and 100 facilities.

1 Introduction

In this paper we study a competitive facility location model with two noncoop-
erative decision makers: the leader and the follower. They compete to attract
clients from a given market and wish to maximize their own profits. First, the
leader opens p facilities. Later on, the follower opens r facilities. In fact, we have
a noncooperative Stackelberg game. Following Hakimi [7], we call it the discrete
(r | p)-centroid problem.

It is known that the problem is ΣP
2 -hard [9]. So, we deal with the more

hard problem than any problem in the class NP. Polynomially solvable cases
and complexity results can be found in [7], [9]. In order to find near optimal
solutions, we present the game as a 0–1 linear bi-level problem and develop a
hybrid memetic algorithm (HMA). The probabilistic tabu search heuristic (PTS)
is used to improve each element of the population. To compute the leader profit,
we solve the follower problem by commercial software.

To get an upper bound for this maximization problem, we rewrite the bi-
level problem as a single level mixed integer linear program with an exponential
� This work was partly supported by the RFBR grant 08-07-00037, ADTP grant

2.1.1/3235.
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number of constraints and variables. A similar approach is suggested in [10]
for partial enumeration. If we extract a small family of constraints and vari-
ables, we get an upper bound. The PTS heuristic is used for generating the
family. For exact approach we apply the idea of column generation. Compu-
tational experiments for Euclidean test instances from the benchmark library
Discrete Location Problems (http://math.nsc.ru/AP/benchmarks/Competitive/
p−med−comp−eng.html) indicate that the new HMA lower bound dominates
the previous ones and the exact method allows to find the global optimum for
p = r = 5, 100 facilities, and 100 clients.

The paper is organized as follows. In Section 2, we present the mathemati-
cal model. In Section 3, the lower bounds are discussed. We describe four lower
bounds; three of them are quite simple, while the last one is based on the meta-
heuristic approach for the bi-level mathematical formulation. In Section 4, the
upper bound based on the new reformulation of the problem as a mixed inte-
ger linear program with an exponential number of constraints and variables is
presented. An exact column generation method is studied in Section 5. Compu-
tational results and conclusions are discussed in Sections 6 and 7.

2 Problem Formulation

We are given a set I = {1, . . . , m} of facilities and a set J = {1, . . . , n} of clients.
A matrix (gij) defines the distances between clients and facilities. If client j is
serviced from a facility, he gives a profit wj > 0. The leader and the follower
open facilities. First, the leader opens p facilities. Later on, the follower opens r
facilities. Each client chooses the closest open facility. We need to find p facilities
for the leader to maximize his profit. Let us present this game as a linear 0–1
bi-level programming problem. We define the decision variables [2]:

xi =
{

1 if facility i is opened by the leader,
0, otherwise,

yi =
{

1 if facility i is opened by the follower,
0, otherwise,

zj =
{

1 if client j is serviced by the leader,
0 if client j is serviced by the follower.

For a given solution x, we can define the set of facilities which allow to capture
client j by the follower: Ij(x) = {i ∈ I| gij < minl∈I(glj | xl = 1)}, j ∈ J. Note
that we consider conservative clients. If a client has the same distances to the
closest leader and the closest follower facilities, he prefers the leader facility. So,
the follower never opens a facility at a site where the leader has a facility [7].
Now the model can be written as a linear 0–1 bi-level programming problem [8]:

max
x

∑
j∈J

wjz
∗
j (x) (1)
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s.t. ∑
i∈I

xi = p, (2)

xi ∈ {0, 1}, i ∈ I, (3)

where z∗j (x) is a component of the optimal solution of the follower problem:

max
y,z

∑
j∈J

wj(1 − zj) (4)

s.t. ∑
i∈I

yi = r, (5)

1 − zj ≤
∑

i∈Ij(x)

yi, j ∈ J, (6)

xi + yi ≤ 1, i ∈ I, (7)

yi, zj ∈ {0, 1}, i ∈ I, j ∈ J. (8)

The objective function (1) defines the total profit of the leader. Equation (2)
guarantees that the leader opens exactly p facilities. The objective function (4)
defines the total profit of the follower. Equation (5) guarantees that the follower
opens exactly r facilities. Constraints (6) determine the values of z by the deci-
sion variables y of the follower. Constraints (7) allow to open a facility by at most
one decision maker. As we have mentioned, the constraints (7) are redundant.
Nevertheless, we use them to reduce the feasible domain of the follower problem.
Note that the optimal value for the problem does not change if we replace 0–1
variables zj by continuous variables 0 ≤ zj ≤ 1. So, we deal with the mixed
integer linear programming problem for the follower.

Matrix (gij) is used to define the set Ij(x). In fact, we can use not only the
distances, but any kind of preferences for the clients. For example, a client may
prefer a facility with the minimal traveling and waiting time rather than with
the minimal distance. In [12] the facility location models with general client
preferences are studied. With almost no change, we can use the preferences in
the definition of set Ij(x). However, we preserve the distances for simplicity.

3 Lower Bounds

An arbitrary feasible solution of the problem (1)–(8) produces a lower bound.
For a given solution x, we have to solve the problem (4)–(8) to get a feasible
solution. It is an NP–hard problem [7]. We use the commercial CPLEX software
for it. So, the rest of this section is devoted to describe various strategies for the
selection of solution x.

The first and the simplest strategy is to ignore the follower [1]. The leader
opens facilities to minimize the total distance between clients and his facili-
ties. He wishes to service all clients and solves the classical p-median problem.
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We use an optimal solution of this problem as solution x for the lower bound.
This strategy is not so bad despite ignoring the follower. As we can see in our
computational experiments, the leader loses more than half of the market, but
we can improve the lower bound by a few percents only.

The second strategy is more sophisticated. The leader anticipates that the
follower will react to his decision. So, (p+ r) facilities will be opened. According
to the second strategy [1], the leader solves the (p + r)-median problem and
opens the p most profitable facilities. As we will see below, this strategy is not
perfect.

The third strategy is alternate. It is suggested for continuous locations in [5].
This heuristic is iterative. For a given solution of one decision maker, we find
the optimal solution for another one. In discrete case this strategy produces a
cycle. The best solution in the cycle is the result of the approach. If we use the
previous strategies to create a starting solution, we can improve the profit of the
leader. Surely, it is a more time consuming procedure.

The most powerful strategy is to solve the problem (1)–(8). We develop a
hybrid memetic algorithm where a tabu search approach is used to improve the
elements of the population [2]. Now we present the general framework of the
method.

Hybrid memetic algorithm
1 Generate an initial population of the leader solutions.
2 Repeat until the stopping condition is met:

2.1 Select two solutions x1, x2 from the population.
2.2 Create a solution x by a recombination of x1, x2.
2.3 Apply the random modification to x.
2.4 Improve the solution by PTS heuristic.
2.5 Update the population.

3 Return the best found solution.

We use the total number of iterations 2.1–2.5 as the stopping condition.

3.1 Initial Population

To create a high quality initial population at Step 1 of the framework, we ap-
ply the standard local improvement algorithm with random starting points. The
well–known Swap neighborhood for the p-median problem is used for the im-
provements. Remember that we have to solve the problem (4)–(8) in order to
compute the objective function value for each element of the neighborhood. The
Swap neighborhood contains p(m − p) elements. It is a time–consuming proce-
dure. To reduce the running time, we use the first improvement pivoting rule, the
randomization of neighborhood, and solve the linear programming relaxations
to estimate the neighboring solutions.

The efficiency and robustness of the memetic algorithm depend on the pop-
ulation. We need different local optima. So, a new local optimum obtained is
included into the population if the Hamming distance from this solution to each
solution in the population is at least a given threshold. In our computational
experiments, we use the threshold �0, 6p�.



Heuristic and Exact Methods for the Discrete (r | p)-Centroid Problem 15

3.2 Main Operators and Parameters

The selection, recombination, random modification (mutation), and replacement
operators are used in the framework. The well–known tournament selection pro-
cedure [11] is applied to pick two solutions x1, x2. We select k solutions from the
population at random and choose the best one as a parent. In our experiments,
we put k = 5.

The recombination or crossover operator is a variant of the well-known uni-
form crossover [11]. The new solution x will contain all open facilities which are
common for the parents. The rest of the open facilities are chosen at random
with probability 0,5 from solutions x1, x2.

To involve a certain diversification, we use random modification of the off-
spring. The common bit–flip mutations are not appropriate for the problem. We
may get an unfeasible solution. Instead, we produce some random modification
according to the Swap neighborhood.

To update the population at Step 2.5, we use the steady–state–no–duplicates
techniques. We check that no duplicate solutions are added to the population.
Moreover, we calculate the Hamming distance between the new solution and the
population and update the population if the distance is at least the threshold
�0, 6p�.

3.3 Tabu Search

In the well–known memetic algorithms, the standard local improvement pro-
cedure is applied to each element of the population. The algorithm finds local
optima, and this feature promotes for finding global optimum or near optimal so-
lutions. In our computational experiments for the case wj = 1, j ∈ J , we discover
a lot of local optima and plateaus. The standard local improvement procedure
is not efficient for this case [1]. Therefore, we develop the PTS heuristic [6] and
apply it instead of the local improvement. In [4] a tabu search algorithm is stud-
ied for the problem but a greedy procedure is applied for the follower problem.
In this case we have no optimal solutions. The tabu search may produce solu-
tions for the leader where the greedy approach has significant deviations from
the optimum in the problem (4)–(8). Hence, this idea can be useful only for the
instances with small p and r or particular cases of the problem. In the general
case we have to apply the branch and bound method for finding optimal solution
of the follower problem.

To reduce the running time at each step, we use a randomized neighborhood
Nq(x), q > 0. It is the random part of the Swap neighborhood, where each
element is included into the set Nq(x) with probability q independently from
other elements.

In order to evaluate elements of the neighborhood, we need to solve the fol-
lower problem. As mentioned above, it is an NP-hard problem. To reduce the
running time, we replace the problem by its linear programming relaxation.
Hence, we have a polynomial time procedure for finding the best element in the
neighborhood. Below, we present the general framework of the PTS algorithm.
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Probabilistic Tabu Search

1 Get offspring x from HMA and put Tabu = Ø.
2 Repeat until the stopping condition is met:

2.1 Generate the neighborhood Nq(x).
2.2 If Nq(x)\Tabu �= Ø, then find the best element x′ in the set Nq(x)\Tabu;

else x′ := x.
2.3 Put x := x′, update Tabu.

3 Return the best found solution.

The set Tabu for the current solution contains some solutions from the Swap
neighborhood. The pairs of swapping facilities are stored during a certain number
of iterations, and the corresponding solutions are included into the set Tabu. We
use the PTS algorithm for finding the high quality offspring at Step 2.4 of the
HMA framework. Moreover, we collect the high quality solutions for the follower.
As we will see in Section 4, any family of follower solutions allows us to compute
an upper bound for the maximal profit (1) of the leader.

4 Upper Bounds

Let F be a family of the follower solutions. For y ∈ F , j ∈ J , we introduce a set

Ij(y) =
{
i ∈ I | gij ≤ min

l∈I
(glj |yl = 1)

}
.

The set Ij(y) shows the facilities for the leader which allow him to keep the
client j if the follower uses solution y. Now we rewrite the bi-level problem as
a single level problem with an exponential number of constraints and variables.
Let us introduce new variables:

zjy =

⎧⎪⎪⎨⎪⎪⎩
1 if client j is serviced by the leader and

the follower uses a solution y,
0 if client j is serviced by the follower and

the follower uses a solution y,

j ∈ J, y ∈ F ,

W ≥ 0 is the total profit of the leader.

If the family F contains all possible solutions for the follower, then the problem
(1)–(8) is equivalent to the following linear 0–1 program:

maxW (9)

s.t. ∑
j∈J

wjzjy ≥ W, y ∈ F , (10)

zjy ≤
∑

i∈Ij(y)

xi, j ∈ J, y ∈ F , (11)
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∑
i∈I

xi = p, (12)

xi, zjy ∈ {0, 1}, i ∈ I, j ∈ J, y ∈ F . (13)

The objective function indicates the goal of the leader. The constraints (10)
guarantee the best answer of the follower. The constraints (11) determine the
market share for each follower solution. If the leader has no facilities in the set
Ij(y), then client j is serviced by a follower facility.

Note that the optimal value of the problem does not increase if we replace
0–1 variables zjy by continuous variables 0 ≤ zjy ≤ 1. So, we get the mixed
integer linear programming problem with m Boolean variables xi, an exponential
number of continuous variables zjy, and constraints (10), (11).

In order to get an upper bound, we select a small subset of the strong solutions
for the follower. Denote by W (F) the optimal value of the problem (9)–(13)
for the family F . The most difficult task is finding an appropriate family. We
produce it by the PTS algorithm at Step 2.4 of the HMA framework. So, we use
metaheuristics to get lower and upper bounds.

5 An Exact Method

Let x(F) be the optimal solution of the problem (9)–(13). The corresponding
optimal solution of the follower problem (4)–(8) denoted by y(F) = y∗(x(F)),
z(F) = z∗(x(F)). This solution defines a lower bound LB(F) =

∑
j∈J wjz

∗
j (F).

If LB(F) = W (F), we have the optimal solution for the bi-level problem (1)–(8).
Otherwise, we enlarge the family by adding y(F) and repeat the calculations.
This iterative method can be described as follows.

Iterative exact method

1 Choose an initial family F .
2 Find the solution x(F) and upper bound W (F).
3 Solve the follower problem and find y(F), LB(F).
4 If W (F) = LB(F) then return the best found solution and STOP.
5 Include the solution y(F) into the family F and go to Step 2.

Let us verify that the method is exact and finite indeed. Assume that we solve
the follower problem at Step 3 and find y(F), but y(F) ∈ F . From (10) we
have LB(F) =

∑
j∈J wjz

∗
j (F) =

∑
j∈J wjzjy(F) ≥ W (F). So, LB(F) = W (F)

and x(F) is the optimal solution of the bi-level problem. The method is finite

because |F| ≤
(

m
r

)
.

Step 2 is the most time consuming. We have to solve a large scale optimization
problem. If we use the branch and bound method, we get W (F) and x(F).
But the method spends a lot of time proving optimality. Actually, we need the
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solution only. Therefore, we may reduce the running time if replace the problem
(9)–(13) by the following feasibility problem. By W ∗ denote the optimum for
the bi-level problem (1)–(8) and consider the following system:∑

j∈J

wjzjy > W ∗, y ∈ F , (14)

zjy ≤
∑

i∈Ij(y)

xi, y ∈ F , j ∈ J, (15)

∑
i∈I

xi = p, (16)

xi ∈ {0, 1}, 0 ≤ zjy ≤ 1, i ∈ I, j ∈ J, y ∈ F . (17)

If we have a feasible solution x(F) for it, we include y(F) into family F and
repeat the calculations. Otherwise, we can stop the search with the appropriate
family. The feasibility problem is easier. We do not need to prove optimality.
We may apply the feasibility pump [3], the branch and bound method with
convenient objective function, or metaheuristics again.

Of course, we do not know the optimal value W ∗. So, we use the best found
value W ′ ≤ W ∗ by the HMA and update it during the search. Now the frame-
work of the modified exact method is the following.

Modified exact method

1 Apply HMA to create an initial family F and W ′.
2 Find feasible solution x(F) for the system (14)–(17).

If it is infeasible then return the best found solution and STOP.
3 Solve the follower problem and find y(F), LB(F).
4 If W ′ < LB(F) then W ′ := LB(F).
5 Include y(F) into family F and go to Step 2.

Further improvements of the method can deal with decreasing the family from
time to time or generating several feasible solutions at Step 2.

6 Computational Results

The developed memetic algorithm and the exact method were coded in GAMS
(General Algebraic Modeling System) and tested on the instances from the
benchmark library Discrete Location Problems. For all instances, clients and
facilities are in the same sites, I = J . The elements of matrix (gij) are Euclidean
distances between points i, j in the two dimensional Euclidean plane. The points
are chosen at random uniformly in the square 7000 × 7000. All experiments are
carried out at the PC Pentium Intel Core 2, 1.87 GHz, RAM 2 Gb, running
under the Windows XP Professional operating system.
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In the first series of experiments we compare the lower and upper bounds.
Table 1 shows computational results for the instances with n = m = 100,
p = r = 10, wj = 1, j ∈ J . The first column indicates the names of the in-
stances. Columns LB(p), LB(p + r), AH , HMA present the lower bounds for
the strategies based on the classical p-median problem, the (p+ r)-median prob-
lem [1], the alternating heuristic [5], and the hybrid memetic algorithm, respec-
tively. Note that the HMA lower bound dominates the other ones. Nevertheless,
the difference between HMA and LB(p) bounds is small. For the instance 511,
these bounds coincide. We may conclude that LB(p) is a good approximation
for the leader behavior. Moreover, the running time for the LB(p) is a few sec-
onds only. For the HMA bound, we need about 7 hours of running time if we
terminate calculations after 100 iterations with the population of size 25 and 100
iterations of the PTS algorithm for the local improvement to each individual.
The alternating heuristic produces good approximations as well. It is more time
consuming than LB(p) strategy but can get a better lower bound. In brackets,
we show the length of the cycle for the heuristic. Columns UB0 and W show

Table 1. Lower and upper bounds

Instance LB(p) LB(p + r) AH HMA UB0 W

111 41 31 49 (2974) 50 74 54
211 41 36 45 (287) 49 70 57
311 46 41 44 (444) 48 73 55
411 41 39 45 (813) 49 72 58
511 48 40 47 (138) 48 70 55
611 42 39 46 (3607) 47 67 57
711 49 37 48 (675) 51 73 55
811 42 37 44 (255) 48 74 55
911 47 35 46 (2486) 49 68 54
1011 46 33 47 (4963) 49 70 54

two upper bounds. To compute UB0, we need to rank the facilities for the fol-
lower [8]. We suppose that the follower uses this ranking instead of the optimal
strategy. In this case the bi-level problem can be presented as a mixed integer
linear program. An optimal value of the program is the upper bound UB0. In our
experiments, we use the ranking obtained by the Lagrangian relaxations [1]. In
order to compute W , we need family F . As mentioned above, we collect optimal
solutions of the follower by the PTS algorithm at Step 2.4 of the HMA frame-
work. The cardinality of the family is 400. Table 1 shows that the upper bound
W dominates UB0 substantially. Nevertheless, we cannot prove the optimality
of the HMA solutions by substantially increasing the families. We believe that
the HMA solutions are optimal. So, we need more intelligent search strategies
for creating the families.

The second series of experiments is devoted to the modified exact method. Our
goal is to investigate the influence of parameters p and r on the optimal families
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Table 2. Optimal solutions

wj = 1 wj ∈ (0, 200)
Instance Opt Iter Time Opt Iter Time

111 47 123 120 4139 (47%) 98 65
211 48 69 60 4822 (45%) 127 37
311 45 231 3600 4215 (45%) 262 5460
411 47 111 150 4678 (47%) 128 900
511 47 106 120 4594 (44%) 190 720
611 47 102 90 4483 (47%) 121 660
711 47 115 180 5153 (46%) 167 2550
811 48 67 42 4404 (46%) 190 720
911 47 108 160 4700 (45%) 247 2520
1011 47 124 165 4923 (48%) 83 30

Fig. 1. The segment of the leader in percents, p = r

or the number of iterations, and study the market share. Table 2 presents compu-
tational results for Euclidean instances from the same library. For all instances,
we have n = m = 100, p = r = 5 and two classes of weights: wj = 1 and
wj ∈ (0, 200), j ∈ J . Note that up to now there are no reported results for
m > 70. Columns Opt show optimal values for the instances and the leader
profits in percents (market share). Columns Iter present the total number of it-
erations of the modified exact method. Columns Time indicate the running time,
in minutes, for the method excluding the time for the HMA heuristic. We can
see that the follower gets more than 50% of the market. He has some advantages
for small p and r. For large values of p and r the leader has some advantages.
Figure 1 indicates the segment of the leader, in percents, for p = r, n = m = 50,
wj ∈ (0, 200), j ∈ J .

The segment increases when p and r grow. The decision makers obtain a half
of the market for p = r = 7. So, the leader should open many facilities to control
the most of the market. Of course, his segment decreases when r grows and vice
versa.
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Fig. 2. The number of iterations for the modified exact method, p = r

In the third series of experiments we study the families of the follower so-
lutions. Figure 2 shows the cardinalities of the families (the total number of
iterations) for n = m = 50, p = r, wj ∈ (0, 200), j ∈ J . The problem is easy
when p and r are small or large. The total number of iterations is about one
hundred. The problem becomes hard when 11 ≤ p ≤ 17. We need more than a
thousand follower solutions in the family. We guess that the case p = r = [m/3]
is the most difficult for the method even if we have the optimal value W ∗. Huge
family is a reason why we cannot prove optimality of the HMA solutions for
p = r = 10.

7 Conclusions

We consider the well-known discrete (r | p)-centroid problem and develop a hy-
brid memetic algorithm for finding near optimal solutions and the exact column
generation method. The problem is ΣP

2 –hard. We use commercial software to
compute the objective function values for the feasible solutions of the leader.
These solutions are used in the evolutionary algorithm as population members.
A probabilistic tabu search heuristic is applied for improving the offspring at
each step of the evolution. In order to get an upper bound, we reformulate the
bi-level problem as a single level mixed integer programming problem with an
exponential number of constraints and variables. Metaheuristics are used to col-
lect an appropriate subset of the constraints and variables. To find the global
optimum, we develop the modified iterative method. The feasibility subproblem
is solved at each iteration. It seems interesting to study metaheuristics for the
subproblem later on.
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Abstract. Divide-and-Evolve (DaE) is an original “memeticization” of
Evolutionary Computation and Artificial Intelligence Planning. DaE op-
timizes either the number of actions, or the total cost of actions, or the
total makespan, by generating ordered sequences of intermediate goals
via artificial evolution, and calling an external planner to solve each
subproblem in turn. DaE can theoretically use any embedded planner.
However, since the introduction of this approach only one embedded
planner had been used: the temporal optimal planner CPT. In this pa-
per, we propose a new version of DaE, using time-based Atom Choice
and embarking the sub-optimal planner YAHSP in order to test the
robustness of the approach and to evaluate the impact of using a sub-
optimal planner rather than an optimal one, depending on the type of
planning problem.

1 Introduction

An Artificial Intelligence (AI) planning problem is specified by the description
of an initial state, a goal state, and a set of possible actions. An action modifies
the current state, and can be applied only if certain conditions in the current
state are met. A solution to a planning problem is an ordered set of actions,
whose execution from the initial state transforms it into a state that includes
the goal state. The quality criterion of a plan depends on the type of available
actions: number of actions in the simplest case; total cost for actions with cost;
total makespan for durative actions which, in addition, may temporally overlap.

Domain independent planning is a fundamental and dynamic field of AI. Plan-
ning problems have been tackled with a large number of methods and algorithms:
heuristic search (LAMA [15], FF [11], Fast Downward [10], YAHSP [19]),
local search (LPG [7,8]), and constraint programming (CPT [20,21]). Among all
these directions of planning research, and following some considerable successes
of evolutionary algorithms in other areas of AI, Genetic Planning was introduced
with the purpose to translate those success to planning problems. Introduced in

P. Cowling and P. Merz (Eds.): EvoCOP 2010, LNCS 6022, pp. 23–34, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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[12], several approaches to Genetic Planning have been proposed [18,14,22,23,4].
However, due to the limited performance of the resulting planning systems, the
relevance of the possibility of application of EAs to planning was not deemed
significant in comparison to the traditional methods.

Recently, the authors introduced Divide-and-Evolve (DaE) [16,17], an origi-
nal hybridization of Evolutionary Algorithms (EAs) with Artificial Intelligence
Planning. The baseline of DaE is to generate a sequence of partial states, thus
replacing the initial problem by a sequence of hopefully simpler subproblems,
and calling an external traditional planner to solve each subproblem in turn.
The final solution is then built by concatenation of from all subproblem solu-
tions. DaE has entered the last International Planning Competition (IPC) [2]:
whereas hindered by the tight time limit (30mn), the quality of the solution
plans it obtained on all the instances that it could solve in the temporal track
was generally better than that of its competitors.

Until today, although DaE can theoretically use any embedded planner, all
experiments based on DaE have been performed using the optimal planner CPT

as the embedded planner. The goal of this paper is to compare the performances
of the DaE approach when using either CPT or a sub-optimal planner, such as
YAHSP. The robustness of the hybrid algorithms and the quality of the solution
plans they can find will be experimentally compared on all kinds of AI planning
problems. Furthermore, it has been empirically demonstrated [1] that the results
of DaE can be improved by a careful choice of the atoms that are used to build
the partial states: the new version of DaE that is proposed here makes use of
such time-based atom choice.

The paper is organized as follows: Section 2 briefly introduces planning prob-
lems; Section 3 recalls the Divide-and-Evolve approach, representation, fitness
function and variation operators; Section 4 presents the results. The last section
discusses results of DaE using either CPT or YAHSP as embedded planner,
and sketches some directions for future work.

2 Planning Problems

Domain-independent planners rely on the Planning Domain Definition Language
(PDDL) [13], inherited from the STRIPS model [5], to standardise and represent
a planning problem. The language has been extended for representing temporal-
ity and action concurrency in PDDL2.1 [6].

The description of a planning problem splits into two separate parts: the
generic domain theory on one hand and a specific instance scenario on the other
hand. The domain definition specifies object types, predicates and actions which
capture the possible state changes, whereas the instance scenario declares the
objects of interest, the initial state and the goal description. A state is described
by a set of atomic formulae, or atoms. An atom is defined by a predicate symbol
from the domain followed by a list of object identifiers: (PREDICATE NAME
OBJ1 ... OBJN ). The initial state is complete, i.e. it gives a unique status of
the world, whereas the goal might be a partial state, i.e., it can be true in many
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different (complete) states. An action is composed of a set of preconditions and
a set of effects, and applies to a list of variables given as arguments, and possibly
a duration or a cost. Preconditions are logical constraints which apply domain
predicates to the arguments and trigger the effects when they are satisfied. Ef-
fects enable state transitions by adding or removing atoms.

A solution to a planning problem is a consistent schedule of grounded actions
whose execution in the initial state leads to a state that contains one goal state,
i.e., where all atoms of the problem goal are true.

A planning problem defined on domain D with initial state I and goal G will
be denoted PD(I, G) in the following.

3 Divide-and-Evolve

In order to solve a planning problem PD(I, G), the basic idea of DaE is to find
a sequence of states S1, . . . , Sn, and to use some embedded planner to solve the
series of planning problems PD(Sk, Sk+1), for k ∈ [0, n] (with the convention that
S0 = I and Sn+1 = G). The generation and optimization of the sequence of states
(Si) is driven by an evolutionary algorithm, and this Section will describe its
main components: the problem-specific representation, the fitness computation,
and the variation operators.

3.1 Representation

As described in Section 2, a state is a list of atoms built over the set of predicates
and the set of object instances. However, searching the space of complete states
would result in a rapid explosion of the size of the search space. Moreover,
goals of planning problem might be defined as partial states. It thus seems more
practical to search only sequences of partial states, and to limit the choice of
possible atoms used within such partial states. However, this raises the issue of
the choice of the atoms to be used to represent individuals, among all possible
atoms.

Previous experiments on different domains of temporal planning problems
from the IPC benchmark series [1] demonstrated the need for a very careful
choice of the atoms that are used to build the partial states. This lead the
authors to propose a new method to build the partial states, based on the earliest
time from which an atom can become true. Such time can be estimated by some
admissible heuristic function (e.g h1, h2...) [9]. These start times are then used in
order to restrict the candidate atoms for each partial state: A partial state is built
at a given time by randomly choosing among several atoms that are possibly true
at this time. The sequence of states is hence built by preserving the estimated
chronology between atoms (time consistency). Heuristic function h1 has been
used for all experiments presented here.

Nevertheless, even when restricted to specific choices of atoms, the random
sampling can lead to inconsistent partial states, because some sets of atoms can
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be mutually exclusive1 (mutex in short). Whereas it could be possible to allow
mutex atoms in the partial states generated by DaE, and to let evolution discard
them, it seems more efficient to a priori forbid them as much as possible. In
practice, it is difficult to decide if several atoms are mutex. Nevertheless, binary
mutexes can be approximated (i.e. not all pairs of mutually exclusive atoms can
be discovered) with a variation of the h2 heuristic function [9] in order to build
quasi pairwise-mutex-free states (i.e., states where no pair of atoms are mutex).

An individual in the new version of DaE is hence represented as a variable
length ordered h1-time-consistent list of partial states, and each state is a variable
length list of atoms that are not pairwise h2-mutex.

3.2 Fitness, and Embedded Planners

The fitness of a list of partial states S1, . . . , Sn is computed by repeatedly calling
an external ’embedded’ planner to solve the sequence of problems PD(Sk, Sk+1),
{k = 0, . . . , n}. Any existing planner could be used, and up to now, only CPT has
been used within the DaE approach. CPT [20,21] is an exact planning system
which combines a branching scheme based on Partial Order Causal Link (POCL)
Planning with powerful and sound pruning rules implemented as constraints.
But is optimality mandatory in order for DaE to obtain good quality results? In
order to address this issue, a sub-optimal planner, YAHSP will be used here too.
YAHSP [19] is a lookahead strategy planning system for sub-optimal STRIPS
planning which uses the actions in the relaxed plan to compute reachable states
in order to speed up the search process.

For any given k, if the chosen embedded planner succeeds in solving PD(Sk,
Sk+1), the final complete state is computed by executing the solution plan
from Sk, and becomes the initial state of the next problem. If all problems,
PD(Sk, Sk+1) are solved by the chosen embedded planner, the individual is called
feasible, and the concatenation of all solution plans for all PD(Sk, Sk+1) is a
global solution plan for PD(S0 = I, Sn+1 = G). However, this plan can in gen-
eral be further optimised by rescheduling some of its actions, in a step called
compression (see [17] for detailed discussion). The quality of the compressed plan
defines the fitness of a feasible individual.

However, as soon as the chosen embedded planner fails to solve one PD(Sk,
Sk+1) problem, the following problem PD(Sk+1, Sk+2) cannot be even tackled
by the chosen embedded planner, as its initial state is in fact partially unknown.
Hence no quality in term of number of action, cost or makespan can be given
to this individual. All such individuals receive a fitness that is higher than that
of any feasible individual. Furthermore, in order to nevertheless give some se-
lection pressure toward feasible individuals, such fitness takes into account the
proportion of subproblems solved.

Finally, because the initial population contains randomly generated individu-
als, some of them might contain some subproblems that are in fact more difficult

1 Several atoms are mutually exclusive when there exists no plan that, when applied
to the initial state, yields a state containing them all.
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than the original global problems. It was thus necessary to limit the embedded
planner by imposing some complexity bound in order to discard too difficult
subproblems. However, though it is hoped that all subproblems will ultimately
be easy to solve, such limitation should not be too strong in order to nevertheless
leave some degree of freedom to the search for solutions.

Here, CPT (resp. YAHSP) has been limited by a maximal number of
backtracks (resp. a maximal number of nodes) that it is allowed to use to
solve any of the subproblems. Those bounds are determined anew for each run
by a two-step process: first, the initial population is evaluated using a very high
bound (e.g. 100000 backtracks or nodes); the bounds for the rest of the run are
then chosen as the median of the actual number of backtracks (resp. nodes) that
have been used to find the solutions during these initial evaluations.

3.3 Initialization and Variation Operators

The initialization phase and the variation operators of the DaE algorithm respec-
tively build the initial sequences of states and randomly modify some sequences
during its evolutionary run.

The initialization of an individual is the following: first, the number of states
is uniformly drawn between 1 and the number of estimated start times (see
Section 3.1); For every chosen time, the number of atoms per state is uniformly
chosen between 1 and the number of atoms of the corresponding restriction.
Atoms are then chosen one by one, uniformly in the allowed set of atoms, and
added to the individual if not mutex with any other atom that is already there.

One-point crossover is used, adapted to variable-length representation in
that both crossover points are independently chosen, uniformly in both parents.

Four different mutation operators have been designed, and once an individual
has been chosen for mutation (according to a population-level mutation rate),
the choice of which mutation to apply is made according to user-defined relative
weights (see Section 3.4).

Because an individual is a variable length list of states, and a state is a variable
length list of atoms, the mutation operator can act at both levels: at the individ-
ual level by adding (addState) or removing (delState) a state; or at the state
level by adding (addAtom) or removing (delAtom) some atoms in the given
state.

Note that the initialization process and these variation operators maintain
the chronology between atoms in a sequence of states and the local consistency
of a state, i.e. avoiding pairwise mutexes.

3.4 Evolution Engine and Parameter Settings

A general issue in Evolutionary Computation (EC) lies in the number of param-
eters that the programmer has to tune (from population size to selection oper-
ators to rates of applications of variation operators), and the lack of theoretical
guidance to help him. Experimental statistical procedures have been proposed
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(e.g [24],[25]), that build on standard Design of Experiments methods and use
the specificities of the EC domain to reduce the amount of computations.

In order to tune DaE, [3] proposed a two steps learning approach which
involves choosing the probability and weights of each of the variation operators
being used with racing [24], and then choosing which predicates will be used to
describe the intermediate goals with statistical analysis. In this paper we use
the first step of [3] approach in several domains of IPC benchmarks and chose
to keep the best common parameters configuration for all experiments of this
paper.

The evolution engine has been chosen [1] to be a (10+70)-ES: 10 parents
generate 70 offspring using variation operators, and the best of those 80 individ-
uals are the parents of the next generation. The same stopping criterion has also
been used for all experiments: after a minimum number of 10 generations, evo-
lution is stopped if no improvement of the best fitness in the population is seen
during 50 generations, with a maximum of 1000 generations altogether. The
probabilities of individual-level application of crossover and mutation (pcross

and pmut) are (0.2, 0.8) and the relative weights of the 4 mutation operators
(waddState, wdelState, waddAtom, wdelAtom) are (3,1,1,1).

4 Experimental Results

Divide-and-Evolve has been implemented within the Evolving Objects frame-
work2, an open source, ANSI C++ STL-based evolutionary computation library.
In order to illustrate the behaviour of DaE with each embedded planner, and
to compare those implementations of DaE in all kind of planning problems, the
following IPC benchmark domains have been used: airport, satellite and
logistics domains for simple planning problem, openstacks, scanalyser and
woodworking domains of the sixth IPC sequential satisficing track involving ac-
tions with costs, and crewplanning, elevator and satellite time windows
compiled domains for temporal planning problem (actions with duration). Each
domain has several instances of increasing complexity, resulting in a total of 470
problems.

Performance Measures:
All algorithms are given at most 2 hours of CPU time for each run on each
problem instance. Their efficiency is then measured by the number of instances
solved on each domain.

The quality of the plans are evaluated using IPC rules. For a given instance
i, let Q∗

i be the best plan quality found among the competitor planners. The
quality ratio for each planner is defined by Q∗

i /Qi (in [0, 1]). The quality score
of a planner for domain D is the sum over all instances of D of the quality ratios
of this planner. The planner with the highest quality score is designated as the
best performer on the domain. Note that if a planner cannot find a plan for a
given instance after 2 hours, its quality ratio is set to 0 for this instance.
2 http://eodev.sourceforge.net/
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Fig. 1. Standard boxplots (see caption of Fig. 3 for boxplot interpretation) for the run-
time distributions of DaECPT (blue, always on top) and DaEYAHSP (black, at bottom)
on crewplanning-Time domain. The total runtime was bounded by 2 hours, hence the
upper-limit of almost all boxplots for CPT.

However, because DaEYAHSP and DaECPT are stochastic algorithms, 11 runs
are performed on each instance in order to assess their robustness. Their effi-
ciency per domain is defined as the total number of instances that have been
solved at least once. The average efficiency for a given domain D is defined as∑

i;ni>0 ni∑
i;ni>0 1 , where ni is the number of successful runs (i.e., that found a plan) for

instance i of D. It lies in [0, 11]. The average quality for domain D is defined
as the sum over all solved instances i of D of 1

ni

∑
{j solved i}

Q∗
i

qj
where qj is the

quality of the plan found by run j – the closer from the efficiency, the better.

Results:
First column (resp. second column) of Table 1 shows for all algorithms the best
efficiency Splanner (resp. quality Qplanner) together with, in parentheses, the
average efficiency (resp. average quality) for both DaE variants. Last column is
the ratio Qplanner/Splanner . The mean values of those figures across test domains
are also provided, by domain category, and over all domains.

Figure 3 shows, for all algorithms, the plan quality of all instances across 3
different domains (one of each category). Each column corresponds to an in-
stance (number on the X axis). For the original planners YAHSP and CPT,
symbols (’�’ and ’�’ respectively) indicate the plan quality found. For both
DAE variants, standard boxplots sketch the distribution of the qualities of the
11 plans. Figure 1 displays, for both DAE variants, the standard boxplots for
the distribution of the 11 running times, and figure 2 shows one typical example
of the fitness behaviour along evolution on elevator-Time problem 2.
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Fig. 2. Fitness behaviour of DaECPT (#) and DaEYAHSP (@) on the easy
elevator-Time problem number 2

Discussion:
First, DaEYAHSP solves significantly more problems (79.36% of all problems)
than YAHSP alone (71.49% of all problems), and much more than DaECPT

(21.70%) and CPT alone (10% only). Then, DaEYAHSP has the best quality
score (see last line of Table 1) for all kinds of planning problem. Furthermore,
DaEYAHSP consistently finds (see Table 1) either the optimal value, or a value
more than 94% of the optimal value (as found by CPT) (Figure 3), and always
finds a better plan quality than YAHSP alone (Figure 3 and Table 1). The
running times of DaEYAHSP, for instance on the crewplanning domain (Figure
1), are always smaller than those of DaECPT (in fact, 2 hours was not enough
for DaECPT). Thus, the variance of plan quality of DaEYAHSP (Figure 3) is
generally smaller than that of DaECPT.

However, although the DaEYAHSP planner has the best sub-optimal ratio over
all tested domains (last line of Table 1), DaECPT has the best ratio on temporal
domains (line 13 of Table 1). This is due to the quality of the compression
step with the CPT constraint representation, where causal links and partial
orders are inferred and exploited – which is not the case when YAHSP solved
the subproblems. Nevertheless, there is no absolute best method here: Even in
the case where one DaE variant obtains the best ratio value on a given type of
problems, there is always at least one domain of this type where the other variant
performs better on all instances it could solve (see table 1). See for instance,
the crewplanning domain for temporal planning problems, and airport and
woodworking domains for the other types of planning problem.

In all tested domains, DaECPT (respectively DaEYAHSP) could solve more
problems than CPT (respectively YAHSP) alone. Furthermore, the average ef-
ficiency of both variants is very high (close to the maximum value 11), DaEYAHSP

being slightly more robust than DaECPT: when an instance is solvable, almost
all runs succeed. Regarding the quality robustness, the average quality of both
variants is generally more than 90% of the quality score.
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Fig. 3. Best plan quality found by CPT (�), YAHSP value (�) and the corresponding
DaE variant (for each instance, one standard boxplot sketches the distribution of the
11 runs) on aiport-STRIPS, openstacks-Costs and crewplanning-Time domains. The
boxplots follow standard usage: the central box is the 25% – 75% quartile with median
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5 Conclusion

Divide-and-Evolve is an original “memeticization” of Evolutionary Computation
and AI Planning. However, since the introduction of this approach, only one
embedded planner (the optimal CPT [20,21]) had been used within DaE. The
results presented in this paper, relying on the implementation of the time-based
Atom Choice introduced in [1], demonstrate that

– it is indeed possible to embed in DaE another planner (here, the sub-optimal
YAHSP [19]);

– when using the suboptimal YAHSP, DaE can greatly improve the plan
quality over that reached by YAHSP alone in all kind of planning problems;

– when embedding YAHSP, DaE is able to solve more problems within a 2
hours limit than when using the optimal planner CPT;

– the quality of the plans found by the DaEYAHSP version is very high, higher
than that of DaECPT in simple and cost domains, and almost as good even
in the case of temporal domains, where the compression step is much more
efficient with the constraint-based CPT solver.

But there is still room for large improvements for DaE. First, it should be
possible to define constraints in order to discard subproblems that are more
difficult than the original global problem. This open issue could be addressed
using for instance the empirical formulae of [1] that were designed to reduce the
running time of DaECPT on temporal planning problems. Second, building on
those results, it should be possible to combine several planners, taking advantage
of the specificities of each of them by letting the Evolutionary Algorithm choose,
for each subproblem, which planner to use. Such directions are the subject of
on-going research.
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Abstract. The successful application of differential evolution (DE) al-
gorithms to various real-valued problems encourages to develop some
integer-coded versions of DE for working directly with integer and dis-
crete variables of a problem. However, in most of those works, actually
a real-valued solution is just converted into a desired integer-valued so-
lution by applying some decoding mechanisms. Only a limited number
of works are found, in which attempts are made for developing an actual
integer-coded DE. In this article, a novel version of DE is proposed which
can work directly with real, integer and discrete variables of a problem
without any conversion. Applying to two non-linear real-integer-discrete-
valued engineering design problems, the proposed DE is found successful
in obtaining the known best solutions of the problems.

1 Introduction

The well-known genetic algorithm (GA) was proposed by Holland in 1975 [11] for
functional optimization, which was made popular for engineering optimization
by Goldberg in 1989 [8]. The classical GA is binary-coded, in which a real-valued
design variable is to be encoded into 0-1 form, and then to be decoded back to its
original form after the GA operations. In contrast, the differential evolution (DE)
algorithm was proposed by Storn and Price [19] in 1995, which works directly
with real-valued variables of a problem. However, after its successful application
to a wide range of problems, it is now realized that DE is lacking to work with
integer and discrete variables. To do so, such variables are to be encoded to real-
form and then to be decoded back to their original form after the optimization
process, which are analogous to encoding and decoding jobs of the classical GA
for working with real variables. Therefore, researchers are now trying to develop
some integer-coded versions DE, which would be able to work directly with
integer and discrete variables, a similar job already done in GA for working
directly with real variables. However, it is observed that, instead of an integer-
coded DE, most of those works actually concentrate on developing some efficient

P. Cowling and P. Merz (Eds.): EvoCOP 2010, LNCS 6022, pp. 35–46, 2010.
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encoding and decoding mechanisms for dealing with integer-valued variables in
the real-coded DE. Only a limited number of works are found [9], in which
attempts are made for developing an actual integer-coded DE.

In this article, a new binary-coded DE is proposed for directly dealing with
integer and discrete variables of a problem without any conversion. It is then
combined with a real-coded DE for forming a real-integer-discrete-coded DE,
which can work with any type of variables. In order to improve the performance
of the proposed DE, some changes are also made to the acceptance operator
of the traditional DE. Moreover, a new diversity generating mechanism is also
proposed for taking away the search from any local optimum. Applying to two
non-linear real-integer-discrete-valued mechanical design problems, the proposed
DE is found successful in obtaining the known best solutions of the problems.

2 Related Works

Pampará et al. [17] apply a trigonometric function to map a real-valued solution
of DE into a 0-1 valued solution, which is already tested by Kanlikilicer et al. [12]
as insufficient to work with many problems. Engelbrecht and Pampará [7] pro-
pose two approaches for solving 0-1 variable problems by real-coded DE, where
the first approach uses a sigmoid function to convert a real-valued solution into
a 0-1 valued solution, while the second approach maps a normalized real-valued
solution into a 0-1 valued solution with 50% probability for each variable to
become either 0 or 1. In the integer-coded versions of DE, proposed by Balamu-
rugan and Subramanian [1], and Lampinen and Zelinka [13,14], a real value of
DE is simply rounded to the nearest integer value.

Although the above versions of DE are called binary/integer-coded DE, these
are actually real-coded DE only, whose solutions are just converted into
binary/integer-valued solutions, which are similar with the work of Datta and
Figueira [4], in which a decoding mechanism is used to convert a real-valued
solution into a desired integer-valued solution. An attempt for developing an ac-
tual binary-coded DE is found in the work of Gong and Tuson [9], in which only
0-1 parent variables are considered for generating 0-1 child variables. However,
they could not escape from the affect of the real-valued perturbance factor of
DE, and hence, the value of a child variable equals either 0 or the real-valued
perturbance factor, which is then randomly transformed to either 0 or 1.

3 The Real-Coded Differential Evolution Algorithm

Storn and Price [19,20] proposed a number of variants of DE, which are denoted
as DE/x/y/z, where x denotes the mutated vector (also called the base vector),
y is the number of difference vectors, and z is the crossover scheme. In this work,
only the variant “DE/rand/1/bin” is considered, the meaning of which is that
a random vector and one difference vectors will be applied for generating a mu-
tant, and a trial will be obtained through a binary crossover scheme. In this DE,
a population of N vectors (solutions), each of dimension D, is evolved through
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the repeated actions of three major operators, namely mutation, crossover, and
acceptance operators. In the mutation operation, four distinct vectors are con-
sidered at a time, out of which one is called the target vector, one is the base
vector, and the other two are random vectors. Then, a mutant x̄j against the
variable xj of the target vector is generated as follows:

x̄
(i,t)
j = x

(α,t)
j + F

(
x

(β,t)
j − x

(γ,t)
j

)
; i = 1, . . . , N ; j = 1, . . . , D ; (1)

where t is the generation counter, and i, α, β and γ denote the target vector,
base vector, and two random vectors, respectively. F is a scaling factor in (0,1),
which controls the amount of perturbance to α by the difference of β and γ. In
the crossover phase, a trial ¯̄xj against xj of the target vector is obtained as:

¯̄x(i,t)
j =

{
x̄

(i,t)
j if r

(t)
j � pc , or j = a random integer in {1, . . . , D} ;

x
(i,t)
j otherwise ;

(2)

where r
(t)
j is a random number in (0,1), and pc is the predefined crossover proba-

bility. Finally, for a minimization problem, the target vector is updated through
the following elite preserving based acceptance operator:

x(i,t+1) =

{
¯̄x(i,t) , if f

(
¯̄x(i,t)

)
< f

(
x(i,t)

)
;

x(i,t) , otherwise ;
(3)

where f
(
¯̄x(i,t)

)
and f

(
x(i,t)

)
are the objective values for the trial vector ¯̄x(i,t)

and the current target vector x(i,t), respectively.

4 The Proposed Real-Integer-Discrete-Coded Differential
Evolution Algorithm

The only difference between a real-coded DE and an integer-coded DE is the type
of the generated mutant, the expression of which is given by Eq. (1). In most of
the integer-coded versions of DE, different random schemes are implemented for
converting the real value of the mutant into an integer value. However, in the
actual sense of an “integer-coded algorithm”, only some integer values should
be employed to generate a new integer value without any conversion, as done
in the well-known binary-coded genetic algorithm [8]. Such a binary-coded DE
is proposed here, in which, based on some logic, only 0 or 1 is assigned to
the mutant using some other binary values. Although the DE deals with binary
variables only, it can be applied to work directly with integer (other than 0-1) and
discrete variables also. This binary-coded DE is combined with the real-coded
DE, addressed in Sect. 3, for forming a real-integer-discrete-coded DE, which
can work with any type of variables (real, integer and/or discrete). In order to
improve the performance of this real-integer-discrete-coded DE by preserving all
efficient vectors of a generation, some changes are also proposed to the original
acceptance operator of DE. Moreover, a new mechanism is also proposed for
generating diversity among the vectors.
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4.1 Vector Representation and Initialization

The total dimension of a vector is determined from the number and types of
variables. Each real variable is represented by a single dimension. The number
of dimensions required for an integer variable is determined from the upper limit
of the variable, which is obtained as the maximum number of binary bits required
to represent its upper limit. It is to be noted that a discrete-valued variable is
also dealt with as an integer variable, an integer value of which represents the
index of its actual discrete value, so that the lower limit of such a variable is 1
and the upper limit is the number of its allowable discrete values.

Once the total dimensions of a vector is determined, the population is initial-
ized randomly before starting the DE operations. A real dimension is initialized
by a random real value in the given range of the real variable which is represented
by that dimension, while all the binary dimensions are initialized randomly by 0
or 1 with 50% probability.

4.2 Mutation Operator

In the mutation operation, Eq. (1) is employed for generating a real-valued mu-
tant against a real dimension of a vector. The procedure for generating a binary-
valued mutant against a binary dimension, which is the main contribution of the
present work, is explained below in detail:

As given by Eq. (1), the mutation operator generates a mutant by employ-
ing three variables, one from each of the base vector and two random vec-
tors (x(α,t)

j , x
(β,t)
j , x

(γ,t)
j ). Since all these three variables have binary values (0

or 1) only, there are 8 distinct combinations of their values, which are given
through columns (1)–(3) in Table 1. The corresponding expressions for the mu-
tant x̄

(i,t)
j are given in column (4), in which rows (1)–(4) can be said as the

“don’t caring rows”, meaning of which is that, whatever may be the value of F ,
x̄

(i,t)
j =x

(α,t)
j as long as x

(β,t)
j =x

(γ,t)
j . Now, in order to have a balanced situation,

the mutant x̄
(i,t)
j is expected to be 0 or 1 with 50% probability. Since two 0’s and

two 1’s are already obtained in rows (1)–(4), the other four rows (5)–(8), which
are functions of F , are also expected to give two 0’s and two 1’s. With the pre-
sumption that F lies in the range of (0,1), it is observed that the values of x̄

(i,t)
j

in rows (5) and (8) are in the range of (0,1), and its values in rows (6) and (7)
are outside the range of (0,1). Since the value of x̄

(i,t)
j should be either 0 or 1, a

simple assumption is made at this juncture that “the binary value of x̄
(i,t)
j is 1 if

its real value is in the range of (0,1), and 0 otherwise”. The corresponding binary
values of x̄

(i,t)
j against all the eight combinations of x

(α,t)
j , x

(β,t)
j and x

(γ,t)
j are

given in column (6), which contain four 0’s and four 1’s, thus fulfill the expected
50% probability for obtaining 0’s or 1’s. However, this simple transformation
may sometime suffer from the following two major drawbacks:

1. Due to the fixed transformation, the vectors may lose diversity among them,
resulting the population to converge at a sub-optimal point, and
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Table 1. Different cases under the mutation operation to binary variables

Column → x
(α,t)
j x

(β,t)
j x

(γ,t)
j x̄

(i,t)
j

Row ↓ (1) (2) (3) (4) (5) (6) (7) (8)

(1) 0 0 0 0 0 0
0 if r

(t)
1 � pm

1 if r
(t)
1 < pm

(2) 0 1 1 0 0 0 0 if r
(t)
2 � pm

1 if r
(t)
2 < pm

(3) 1 0 0 1 1 1 1 if r
(t)
3 � pm

0 if r
(t)
3 < pm

(4) 1 1 1 1 1 1
1 if r

(t)
4 � pm

0 if r
(t)
4 < pm

(5) 0 1 0 F (0,1) 1
1 if r

(t)
5 � pm

0 if r
(t)
5 < pm

(6) 0 0 1 −F < 0 0
0 if r

(t)
6 � pm

1 if r
(t)
6 < pm

(7) 1 1 0 1 + F > 1 0 0 if r
(t)
7 � pm

1 if r
(t)
7 < pm

(8) 1 0 1 1 − F (0,1) 1 1 if r
(t)
8 � pm

0 if r
(t)
8 < pm

2. The proposed assumption may not always be true, i.e., the binary values of
x̄

(i,t)
j along some dimensions of a vector may be 0 if its real values lie in the

range of (0,1), and 1 otherwise.

Therefore, in order to avoid such situations, some randomness is imposed to
x̄

(i,t)
j in obtaining its binary values. Under this consideration, a binary value

of x̄
(i,t)
j in column (6) of Table 1 is true if its random probability r

(t)
k (k ∈

{1, . . . , 8}) is greater than or equal to a predefined probability pm (named as the
mutation probability), otherwise x̄

(i,t)
j will take the alternative binary value. The

final binary values of the mutant x̄
(i,t)
j are given in column (7) along with the

corresponding randomness conditions in column (8).
It is to be noted that, in this binary-coded mutation operation, the pertur-

bance factor F is not required explicitly, but it is only based on the presumption
that F lies in the range of (0,1). However, the place of F has been taken by
the new user-defined mutation probability pm. Extensive empirical studies have
shown that better results are obtained for pm � 15%.

4.3 Crossover Operator

A crossover operator is applied for forming a trial vector against a target vector,
in which either a dimension of the target vector or its mutant is adopted, with
some predefined crossover probability, as the corresponding dimension of the
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trial vector. The entire crossover operation is independent of the data-type of
the dimensions (real or integer) of the target vector or their mutants. Therefore,
the crossover operator, given by Eq. (2), is applied here without any modification.

4.4 Acceptance Operator

The role of the traditional acceptance operator, given by Eq. (3), is just to decide
whether or not a target vector would be replaced by its trial vector. Thus, like
the crossover operator, the acceptance operator is also independent of the data-
type of the dimensions (real or integer) of a vector. Therefore, this acceptance
operator also can be applied here without any modification.

However, Datta and Figueira [4] observe two drawbacks with this acceptance
operator, given by Eq. (3). Firstly, a target vector, which is superior to many
other vectors of the population, may get lost due to the generation of a better
trial vector against it. Secondly, a trial vector, which is better than many vectors
of the population, may be missed due to its inferior quality than that of the target
vector against which it is generated. In order to overcome these drawbacks by
preserving all the efficient vectors, this acceptance operator is replaced here by
the “elite-preserving mechanism” proposed by Deb et al. [6]. This mechanism
is applied to the proposed DE as follows: without taking any decision based
on a pair of a target vector and its trial vector only, all the target and trial
vectors are first combined, and then the combined vectors are sorted according
to their qualities (objective values). Finally, the first 50% of the best vectors of
the combined population are extracted as the population for the next generation.

4.5 Diversity Generating Mechanism

In spite of introducing some randomness in Table 1 for preserving diversity
among binary-valued vectors, it is observed in experimental trials that sometime
the search still gets stuck at some local optimum. This might have happened due
to the fact that the proposed randomness is not sufficient to preserve diversity
among the vectors. Therefore, a new mechanism is proposed here for generat-
ing additional diversity among the vectors. In this mechanism, if all the vectors
converge to a single point during the execution, the value of a binary variable is
altered from 0 to 1 or from 1 to 0 with a small probability (say 5%).

5 Numerical Experiments and Discussions

The proposed DE is implemented in C programming language. In order to demon-
strate its effectiveness, two numerical examples, one is the design of a gear train
and other is the design of a coil spring, are considered here, which are non-linear
engineering design problems involving real, integer and discrete variables (for
detail of the problems, Sandgren [18] may be referred). These problems are sim-
ilar with many other mechanical design problems. As the problems are clearly
defined and fairly easy to understand, they form a suitable basis for comparing
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alternative optimization methods. In the following two subsections, the applica-
tions of the proposed DE to the considered two examples are presented, where
it is found successful in obtaining the known best solutions of the problems.

5.1 The Integer-Valued Gear Train Design Problem

The gear train problem involves the optimization of the gear ratio of a compound
gear train. As shown below, the gear train arrangement consists of two pairs of
gearwheels, d-a and b-f , whose overall gear ratio can be expressed as:

Gear ratio =
Angular velocity of the output shaft (w0)
Angular velocity of the input shaft (wi)

=
zdzb

zazf
,

where zd, zb, za and zf denote the numbers of teeth on the gears.
It is required to find the numbers of teeth on the wheels so that a gear ra-

tio, as close as possible to 1/6.931, can be obtained. The only constraint in the
problem is that the number of teeth in each gear should be in range of [12,60].
Accordingly, the optimization problem can be expressed as below:

Determine x = (zd, zb, za, zf )

to minimize ϕ(x) =
(

1
6.931 − zdzb

zazf

)2

subject to: g(x) ≡ 12 � zd, zb, za, zf � 60

fd

a

b

For solving the problem by using the proposed DE, the mutation probability
for binary variables and the crossover probability are initially assigned the values
of 0.15 and 0.80, respectively. Instead of working with a single fixed value, the
value of each of these parameters is made generation-wise self-adaptive in a range
from zero to its maximum assigned value. Such self-adaptation of a parameter
reduces the dependency of an algorithm on that parameter, if any [3]. A value
is made self-adaptive through the polynomial mutation of a real number [5], in
which, for a random number r in (0,1) and a given polynomial distribution index
η > 0, a real number x is evolved in the range of (x(l), x(u)) as given below:

x ← x +
(
x(u) − x(l)

)
dq (4)

where dq =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[
(2r + (1 − 2r)

(
1 − x−x(l)

x(u)−x(l)

)η+1
] 1

η+1

− 1 , if r < 0.5

1 −
[
2(1 − r) + 2(r − 0.5)

(
1 − x(u)−x

x(u)−x(l)

)η+1
] 1

η+1

, otherwise .

Moreover, the penalty-parameter-less constraint handling approach, proposed
by Deb [5], is applied here for working with infeasible solutions. In this approach,
all the infeasible solutions are first made inferior to any feasible solution through
a fitness function, and then all the solutions are treated as feasible solutions only.
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Then the problem is solved 30 times by randomly fixing the size of the DE
population in a run in the range of [60,100]. A comparison of the results ob-
tained by different optimization techniques is presented in Table 2, where it is

Table 2. Optimal solutions for the gear train design problem

Variables/ Sandgren Loh and Zhang and Lin et al. Guo et al. Proposed
Functions [18] Papa. [16] Wang [22] [15] [10] DE
zd 18 19 30 19 16 16
zb 22 16 15 16 19 19
za 45 42 52 43 43 43
zf 60 50 60 49 49 49
ϕ(x) 5.7×10−6 0.23×10−6 2.4×10−9 2.7×10−12 2.7×10−12 2.7×10−12

Gear ratio 0.146666 0.144762 0.144231 0.144281 0.144281 0.144281
Error (%) 1.65 0.334 0.033 0.0011 0.0011 0.0011

observed that the proposed DE also produces the known best solution of the
problem. It is to be noted that, for solving the problem, Sandgren [18] applied
the branch-and-bound method through sequential quadratic programming, Loh
and Papalambros [16] applied a sequential linearization algorithm, Zhang and
Wang [22] applied a simulated annealing algorithm, Lin et al. [15] applied a ge-
netic algorithm, and Guo et al. [10] applied a hybrid swarm intelligence approach.

It is also to be noted that the proposed DE provides the same objective
value (the best one) in each of its 30 runs. Moreover, against that best objective
value, four distinct sets of variable values are obtained in different runs, or even
in different solutions of a single run, depicting that the problem has multiple
optimum solutions. The obtained variable sets are (zd, zb, za, zf ) = (16,19,43,49),
(19,16,43,49), (16,19,49,43) and (19,16,49,43).

In the case of computational cost, the numbers of function evaluation are
found varying in the range of [1800,5900] over the 30 runs of the proposed DE,
with the mean, median and standard deviation of 3994.67, 4180 and 36.72, re-
spectively. When executed in the Fedora 8 Linux environment in a HCL Desktop
with 2.67GHz processor, 2.0GB RAM and 160GB HDD, the maximum com-
putational time is found to be less than one second. It is to be noted that no
computational issue is discussed in other publications given in Table 2.

5.2 The Real-Integer-Discrete-Valued Coil Spring Design Problem

This problem involves the design of a helical compression spring, where an axial
and constant load is to be applied. It is required to minimize the wire volume
of the spring (minimum weight), subject to some given constraints. The design
variables are the integer-valued number of spring coils (N), the real-valued out-
side diameter of the spring (D), and the discrete-valued spring wire diameter (d).
Accordingly, the problem can be formulated as below:
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Determine x = (N, D, d)

to minimize ϕ(x) = π2Dd3(N+2)
4

subject to: g1(x) ≡ 8Cf FmaxD
πd3 − S � 0

g2(x) ≡ lf − lmax � 0
g3(x) ≡ dmin − d � 0
g4(x) ≡ D − Dmax � 0
g5(x) ≡ 3.0 − D

d � 0
g6(x) ≡ σp − σpm � 0
g7(x) ≡ σp + Fmax−Fp

K + 1.05(N + 2)d − lf � 0
g8(x) ≡ σw − Fmax−Fp

K � 0

where Cf = 4(D/d)−1
4(D/d)−4 + 0.615d

D

K = Gd4

8ND3

σp = Fp

K

lf = Fmax
K + 1.05(N + 2)d

d

D
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The supplied numerical data for the problem are given below along with the
allowable discrete values of the spring wire diameter (d) in Table 3.

Fmax = Maximum working load = 1000.0 lb
S = Maximum allowable shear stress = 189000.0psi
lmax = Maximum free length = 14.0 inch
dmin = Minimum wire diameter = 0.2 inch
Dmax = Maximum outside spring diameter = 3.0 inch
Fp = Preload compression force = 300.0 lb
σpm = Maximum allowable deflection under preload = 6.0 inch
σw = Deflection from preload position to maximum

load position = 1.25 inch
G = Shear modulus of the material = 11.5×106 psi.

Table 3. Allowable wire diameters (discrete values of d)

Allowable wire diameters (inch)
0.0090 0.0095 0.0104 0.0118 0.0128 0.0132 0.0140
0.0150 0.0162 0.0173 0.0180 0.0200 0.0230 0.0250
0.0280 0.0320 0.0350 0.0410 0.0470 0.0540 0.0630
0.0720 0.0800 0.0920 0.1050 0.1200 0.1350 0.1480
0.1620 0.1770 0.1920 0.2070 0.2250 0.2440 0.2630
0.2830 0.3070 0.3310 0.3620 0.3940 0.4375 0.5000

For solving the problem by using the proposed DE, the perturbance factor for
real variables, mutation probability for binary variables and crossover probability
are assigned the initial values of 0.70, 0.15 and 0.80, respectively. As in the case
of the problem of Sect. 5.1, the value of each of these parameters is also made
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generation-wise self-adaptive in a range from zero to its maximum assigned value.
Moreover, combining the constraints g3(x)–g5(x), the limits of N and D are fixed
as [1,70] and [0.6,3.0] inch, respectively. Since d is a discrete variable with 42
allowable values given in Table 3, its integer limits are set automatically as [1,42].
On the other hand, the penalty-parameter-less constraint handling approach [5]
is applied, in this problem also, for working with infeasible solutions.

Then the problem is solved 30 times by randomly fixing the size of the DE pop-
ulation in a run in the range of [40,60]. In all the performed 30 runs, fixed values
of 9 and 0.283 inch are obtained for N and d, respectively. The only variation is
obtained in the values of D, which vary in the range of (1.223044,1.223147)inch.
The corresponding objective values vary in the range of (2.658565,2.658790)inch3.
A comparison of the results obtained by different optimization techniques is pre-
sented in Table 4. It is to be noted that, for solving this problem, Sandgren [18]

Table 4. Optimal solutions for the mechanical coil spring design problem

Variables/ Sandgren Chen and Wu and Lampinen- Guo et al. Proposed
Functions [18] Tsao [2] Chow [21] Zelinka [14] [10] DE
N 10 9 9 9 9 9
D [in] 1.180701 1.2287 1.227411 1.223041 1.223 1.223044
d [in] 0.283 0.283 0.283 0.283 0.283 0.283
−g1(x) 543.09 415.969 550.993 1008.8114 1008.81 1008.6195
−g2(x) 8.8187 8.9207 8.9264 8.94564 8.946 8.945628
−g3(x) 0.08298 0.0830 0.0830 0.08300 0.083 0.083000
−g4(x) 1.8193 1.7713 1.7726 1.77696 1.77696 1.776957
−g5(x) 1.1723 1.3417 1.3371 1.32170 1.32170 1.321706
−g6(x) 5.4643 5.4568 5.4585 5.46429 5.4643 5.464283
−g7(x) 0.0 0.0 0.0 0.0 0.0 0.0
−g8(x) 0.0 0.0174 0.0134 0.0 0.0 0.0
ϕ(x) [in3] 2.7995 2.6709 2.6681 2.65856 2.659 2.658565

applied the branch-and-bound method through sequential quadratic program-
ming, Chen and Tsao [2] and Wu and Chow [21] applied two different versions
of genetic algorithms, and Guo et al. [10] applied a hybrid swarm intelligence
approach. On the other hand, Lampinen and Zelinka [14] solved the problem
by using a real-integer-discrete DE, in which an integer value is obtained just
by truncating a real value. It is observed in Table 4 that the solution produced
by the proposed DE is equally as good as the best solution reported in the lit-
erature. Although a little difference is observed between the obtained value of
D and that of the best solution reported by Lampinen and Zelinka [14], such a
small difference in the sixth decimal place of an inch is insignificant from the
practical point of view (the difference in the value of ϕ(x) is caused because of
the difference in the value of D).

In the case of computational cost, the numbers of function evaluation are
found varying in the range of [539960,3711560] over the 30 runs of the proposed
DE, with the mean, median and standard deviation of 2270994, 2489380 and
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931.9, respectively. Such a huge number of function evaluation is required be-
cause of the highly non-linear constraints of the problem. When executed in the
Fedora 8 Linux environment in a HCL Desktop with 2.67GHz processor, 2.0GB
RAM and 160GB HDD, the computational time is found varying in the range
of [2,10] seconds. It is to be noted that no computational issue is discussed in
other publications given in Table 4.

6 Conclusions

The success of differential evolution (DE) algorithms to different real-valued
problem domains has encouraged to develop some integer-coded versions of DE
for dealing with integer/discrete-valued problems. However, most of those ver-
sions actually convert a real-valued solution of a real-coded DE into an integer-
valued solution by applying some forms of decoding mechanisms. Only a limited
number of works are found attempting to develop an actual integer-coded DE. A
new binary-coded DE is proposed here, which is then combined with a real-coded
DE for directly working with real, integer and discrete variables of a problem
without any conversion. In order to improve the performance of the proposed
DE, some changes are also proposed to the acceptance operator of the tradi-
tional DE. Moreover, the proposed DE is found suffering from diversity among
its solutions, which has been overcome by incorporating a diversity generating
mechanism. The effectiveness of the DE is demonstrated through its application
to two non-linear real-integer-discrete-valued engineering design problems, where
it is found successful in obtaining the known best solutions of the problems. Fur-
ther research will be carried out to exploit the potentialities of the proposed DE
by applying it to other design problems. Moreover, attempts will also be made
for further improvement of its performance.
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Abstract. The fitness distance correlation (FDC) as a measure for prob-
lem difficulty was first introduced by Forrest and Jones. It was applied
to many binary coded problems. This method is now applied to permu-
tation based problems. As demanded by Schiavinotto and Stützle, the
distance in a search space is calculated by regarding the steps of the
(neighborhood) operator. In this paper the five most common operators
for permutations are analyzed on symmetric and asymmetric TSP in-
stances. In addition a local quality measure, the point quality (PQ) is
proposed as a supplement to the global FDC. With this local measure
more characteristics and differences can be investigated. Some experi-
mental results are illustrating these concepts.

1 Introduction

Permutation based problems like TSP are well analyzed and successfully opti-
mized by evolutionary algorithms (EA) and other optimization heuristics. The
common way is to find well adapted operators and heuristic specific parameters
by extensive experiments. Another way is to predict good operators by ana-
lyzing positive characteristics of the operator specific search space. The fitness
distance correlation [6] was successfully applied to this task [3]. By classification
of Thierens the FDC is more an analysis tool than a predictive tool [14]. Usu-
ally it is not straightforward to calculate the correct operator specific distances
between solutions, therefore approximations are used ([8] and [10]). But Schi-
avinotto and Stützle pointed out the importance of correct distance algorithms
in [12], but didn’t applied them. One goal of our study is to apply the FDC
analysis to permutation based problems with precisely calculated distances for
five common operators. An example for such an analysis can be found in [5],
but there only symmetric TSP instances for two operators are analyzed. One
problem of the FDC is its oversimplifying nature, one scalar value is sufficient
to compare operators, but not for analyzing the search space.

After the preliminary definitions in section two, the point quality (PQ) is
defined. As a local quality measure, the PQ helps to analyze and visualize a
search space. Section three specifies the implemented distance algorithms. Data
generation and the inspected test problems are described in section four. Results
of the FDC analysis and examples of PQ diagrams are finally presented in section
five.

P. Cowling and P. Merz (Eds.): EvoCOP 2010, LNCS 6022, pp. 47–58, 2010.
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2 Definitions and Operators

Important for analysis of search space (synonymously used for landscape or
search graph) is the concept of distance. This pairwise distance depends on the
used operator and defines a neighborhood for each point in the search space.

Definition 1. A (neighborhood) operator OP is defined over a set Sn (in this
paper the set of all permutations of length n) by

OP : Sn → 2Sn

The (k-th) neighborhood of a subset s ⊆ Sn we denote by

N 0
OP(s) = s, N k

OP(s) = NOP(N k−1
OP (s)) and NOP(s) =

⋃
π∈s

OP(π) = N 1
OP(s)

The operator specific size of the neighborhood is denoted as |OP (π)| or |OP | (if
it has the same size for all π ∈ Sn).

Definition 2. The distance dOP(π, ϕ) between two points (solutions) π, ϕ ∈ Sn

in search space is

dOP(π, ϕ) = min
{
k | ϕ ∈ N k

OP({π})
}

Definition 3. The operator specific diameter of the search space is

ΦOP = max {dOP(π, ϕ)|π, ϕ ∈ Sn}

2.1 Operators

For the formal definition of the operators for permutations (from now Sn is the
set of all permutations of length n) we denote permutations in common notation.
For example π = (3, 4, 1, 2) is a permutation of length n = 4 and is identical to
the permutation π = (1, 3)(2, 4) in cycle notation. The composition is calculated
from right to left, for example (4, 3, 2, 1) ◦ (4, 3, 1, 2) = (1, 2, 4, 3).

Definition 4 (Neighbor Swap (NbrSwap)). For a permutation π ∈ Sn the
NbrSwap operator is defined as

NbrSwap(π) = {(π1, π2, . . . , πk−1, πk+1, πk, πk+2, . . . , πn) | 1 ≤ k < n}

This operator swaps two adjacent elements in a permutation.

Definition 5 (Element Swap (Swap)). For a permutation π ∈ Sn the Swap
operator is defined as

Swap(π)= {(π1, π2, . . . , πi−1, πj , πi+1, . . . , πj−1, πi, πj+1, . . . , πn) | 1≤ i< j≤ n}

This is one of the most used operators, it interchanges two elements in a
permutation.
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Definition 6 (Element Shift (Shift)). For a permutation π ∈ Sn the Shift
operator is defined as

Shift(π) = {(π1, . . . , πi−1, πi+1, . . . , πi+k, πi, πi+k+1, . . . , πn) | k > 0} ∪
{(π1, . . . , πi+k−1, πi, πi+k, . . . , πi−1, πi+1, . . . , πn) | k < 0}

This operator moves an element to another position in the permutation.

Definition 7 (Substring Reversal (SStrRev)). For a permutation π ∈ Sn

the SStrRev operator is defined as

SStrRev(π)= {(π1, . . . , πi−1, πj , πj−1, . . . , πi+1, πi, πj+1, . . . , πn) | 1 ≤ i<j≤ n}

This operator reverses a substring of the permutation.

Definition 8 (Substring Shift (SStrShift)). For a permutation π ∈ Sn the
SStrShift operator is defined as

SStrShift(π) = {(π1, . . . , πi−1, πj+1, . . . , πj+k, πi, . . . , πj , πj+k+1, . . . , πn)
| 1 ≤ i + k < j + k ≤ n}

This operator moves a substring of the permutation to another position. For
some features of these five operators see table 1.

2.2 Fitness Distance Correlation and Point Quality

The FDC measures the correlation of fitness and distance to the nearest global
optimum opt. Originally [6] it was applied to bit string coded optimization prob-
lems and in many cases ([3], [15]) this measure successfully predicts the perfor-
mance of a genetic algorithm. The correlation coefficient for a sample M of size
m is calculated as

FDC =
CFD

sfsd
where CFD =

1
m

∑
i∈M

(fi − f̄)(d(i, opti) − d̄)

is the covariance of f and d and sf , sd, f̄ and d̄ are the standard deviations and
means of f and d.

The FDC is a global measure as it calculates only one scalar value for a search
space defined by problem instance and neighborhood operator. For analyzing and
understanding the characteristics of a search space too many informations are
lost. A possibility to remedy this shortage can be a local quality measure. Such
a measure will provide more opportunities to study characteristics of a search
space. Using the idea of FDC, with the two attributes fitness and distance, the
neighborhood of any element in the search space is divided into four subsets. This
can be illustrated with a 2-dimensional coordinate system and its four quadrants
(figure 1).
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Fig. 1. All neighbors of a solution can be pictured as elements in quadrants q1, . . . , q4

(left). In minimization problems (like TSP) neighbors in q1 and q3 are supporting
optimization (middle), but elements in q2 and q4 are deceptive. As walking through
search space of a minimization problem, heuristics are favoring elements in q3 and q4

(right).

Definition 9. For each element π ∈ Sn with known fitness value fπ and distance
d(π, ϕ) to a nearest optimal solution the point quality is defined as

PQ(π)=

⎧⎪⎨⎪⎩
∣∣{π′|(d(π′,ϕ)≤d(π,ϕ)∧fπ′≤fπ)∨(d(π′,ϕ)≥d(π,ϕ)∧fπ′≥fπ)}

∣∣
|OP(π)| if min. problem∣∣{π′|(d(π′,ϕ)≤d(π,ϕ)∧fπ′≥fπ)∨(d(π′,ϕ)≥d(π,ϕ)∧fπ′≤fπ)}

∣∣
|OP(π)| if max. problem

An element with a high PQ value will support the optimizing process. If all
elements has a perfect PQ, then the FDC is pefect, too.

3 Distance Algorithms

If a problem is binary coded, the Hamming-Distance is used for calculating
the pairwise distance. It can be calculated in Θ(n). In genetic algorithms (GA)
One-Bit-Flipping is used as (mutation) operator, therefore Hamming-Distance
represents the correct distance in search space.

In permutation based optimization algorithms many different operators are
used. The calculation of the distance needs to reflect the neighborhood of the
operator used – otherwise the results are incorrect for most combinations of
operator and approximation algorithms. This was shown in [12] by Schiavinotto
and Stützle and they also listed correct distance algorithms for five operators.
A distance algorithm for permutations (only) has to calculate the distance to
identity ı. Because for calculating the pairwise distance the property dOP(π, ϕ) =
dOP(π−1 · ϕ, ı) can be used (also shown in [12]).

Neighbor Swap (NbrSwap): The minimal number of neighbor swaps to sort a
permutation is the inversion number of the permutation. In [12] an O(n2) algo-
rithm is presented. Here a faster O(n log n) and easy to implement algorithm is
used. The idea is a balanced tree which is implemented as an array like a heap.
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Element Swap (Swap): With a swap operation the length |ci| of a cycle ci can
be maximally reduced to a cycle c′i of length |c′i| = |ci| − 1 and a second cycle
of length |c′′i | = 1. The identity ı has n cycles of length 1. Therefore the element
swap distance is dSwap(π, ı) =

∑
ci

(|ci|−1). This can be calculated in linear time
O(n).

Element Shift (Shift): To calculate the element shift distance all elements that
stay on their place have to be detected. These elements form the longest com-
mon subsequence (LCS) or, in the case of permutations, the longest increasing
subsequence. Here the algorithm of [13] is used and optimized for permutations.
This algorithm needs O(n log n) time for calculating dShift(π, ı) = n − LCS(π, ı).
With van Emde Boas’ data structure [16] a complexity of O(n log log n) can be
achieved.

Substring Reversal (SStrRev): This problem is known as sorting by reversals
(SBR) and it is NP-hard as proved by Caprara [2]. Therefore an easy to im-
plement 2-approximation algorithm was used to calculate the distance [7] with
O(n2) time complexity. The currently best known approximation guarantee is
of 1.375 [1].

Substring Shift (SStrShift): This problem is known as sorting by transpositions
(SBT) and it is presumed to be NP-hard as well. For calculating dSStrShift an
easy to implement O(n2) greedy algorithm was implemented. This algorithm
reduces the breakpoints between increasing strips in the permutation. The cur-
rently best known approximation guarantee is of 1.375 [4].

Table 1. Operator overview

Operator |OP| ΦOP other operator names dist.-alg.
complexity

NbrSwap n − 1 n(n−1)
2

APEX, Swap O(n log n)
Swap n(n−1)

2
n − 1 2-cycle, element change, EX O(n)

Shift (n − 1)2 n − 1 transposition, DSH O(n log n)
SStrRev n(n−1)

2
n − 1 2-opt, 2-change, reversal, INV O(n2)

SStrShift n3−n
6

�n+1
2

� (conjecture) transposition O(n2)

4 Data Generation and Test Problems

To simulate the behavior of optimization heuristics the data is generated by
(stochastic) hillclimb walks through the search space, because an important
problem of random walk or random selection of elements is the small variance
in distance to the optimum. The term hillclimb is here used in the sense of go
to a better solution in every step.

For calculating the FDC value a random element of the search space was
selected to start a new hillclimb walk and then a random neighbor was calculated.
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If this neighbor had a better fitness value this element was selected for the
next step. If no better neighbor was found after calculating n2 elements of the
neighborhood, the hillclimb walk was stopped and a new walk was started. After
each walk the FDC value was calculated from all elements of all walks. If the
difference between old and new calculated FDC value was less than 0.01 for three
times the analysis was finished (figure 2).

In order to calculate the data source for PQ analysis the same procedure as
for FDC is used. With the only difference, that in each step all n2 neighbors are
calculated. For these n2 neighbors fitness and distance values are calculated and
then the number of elements in quadrants q1, . . . , q4 are counted.

For asymmetric TSP instances the distances for identity was set to zero,
therefore identity ı is optimal and has length zero. All other weights in the
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Fig. 2. Two examples for the convergence of FDC value by calculating it through
hillclimb walks

Fig. 3. The 2-dimensional euclidian TSP test instances are imported from well known
TSPLIB [11]. To have more nontrivial test instances with known optimum, we devel-
oped the @-type euclidian TSP. All points are arranged on an equidistant grid with
distance 1. The inner and outer side length are calculated in dependence of the length
n. The distance to next city is 1 and the distance between inner and outer path is 2.
Therefore the identity ı is the optimum with minimal length n.
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distance matrix were randomly chosen from {1, 2, . . . , nexp}. The parameter exp
for asymmetric benchmark generation is used to analyze the impact of the ratio
of weights and n to the FDC value.

5 Results

Extensive experiments for the five operators and applicable permutation based
codings are performed. The FDC value for symmetric TSP was calculated for
nine instances over three orders of magnitude. For asymmetric TSP ten instances
are analyzed.

For symmetric TSP the SStrRev operator produces the highest FDC values
(less tour length, less distance to optimum). The SStrRev operator performs
the minimal change of two edges. The second best operators are the Shift or
SStrShift operator (table 2). For this two operators the PQ diagrams reveals,
that the Shift operator outclasses the SStrShift operator. This operator leads to
better fitness elements with less distance to optimum. For greater n the Shift or
SStrShift operators are inducing better FDC values. At instance pr1002 their
FDC values reach the FDC value of the SStrRev operator. This effect should be
analyzed in further work.

For asymmetric TSP the SStrRev operator isn’t a good choice, this arises from
the asymmetric nature of the problem class. Here the SStrShift operator produces
best FDC values (table 3). An explanation is that moving good optimized stages
(substrings) of a tour to a better position leads to a search space which is better
to optimize. The exponent for randomly generated weights in distance matrix
does not influence the FDC value. The FDC values of SStrRev and Shift operator
are comparable, but as shown in figure 5, the PQ diagrams reveals that the Shift
operator leads to better fitness values (top and middle diagram on the left side).

Table 2. As expected, best choice for symmetric TSP instances is the SStrRev op-
erator. Data from hillclimb walks induce highest FDC value in all experiments. This
operator performs minimal change (two edges) on TSP tour. The Shift and SStrShift
operators are changing three edges whereas the Shift operators specific neighborhood
is a subset of the SStrShifts neighborhood.

problem size n Nbr Swap Shift SStr SStr
instance Swap Rev Shift

@ 26 0.01 0.16 0.26 0.86 0.11
@ 50 0.01 0.05 0.43 0.87 0.37

eil51 51 0.0 0.07 0.39 0.89 0.37
berlin52 52 0.05 0.06 0.47 0.88 0.24

@ 100 0.02 0.08 0.52 0.87 0.65
ch130 130 −0.01 0.06 0.52 0.88 0.64

tsp225 225 0.04 0.07 0.61 0.85 0.75
@ 250 0.12 0.11 0.60 0.84 0.8

pr1002 1002 0.0 0.06 0.74 0.75 0.76
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Table 3. For all tested asymmetric TSP instances the SStrShift operator leads to
highest FDC values. The SStrRev and Shift operators have comparable FDC values,
but PQ analysis shows that the SStrRev operator is inferior.

problem size n Nbr Swap Shift SStr SStr
instance Swap Rev Shift

ATSP exp=1 26 0.03 0.06 0.36 0.30 0.73

ATSP exp=1 52 −0.02 0.01 0.27 0.22 0.75

exp=2 52 0.0 0.0 0.25 0.30 0.74

exp=3 52 0.02 0.02 0.32 0.27 0.71

exp=5 52 0.0 −0.01 0.24 0.27 0.74

ATSP exp=1 100 0.0 0.03 0.25 0.23 0.71
exp=5 100 0.01 0.02 0.21 0.19 0.72

ATSP exp=1 200 0.0 −0.01 0.14 0.18 0.72

ATSP exp=1 500 0.0 −0.02 −0.04 0.19 0.67

ATSP exp=1 1000 −0.03 0.0 −0.05 0.20 0.60

As a PQ diagram example the symmetric TSP (berlin52) instance is shown in
figure 4. All five operators are plotted. Three operators, Swap, Shift and SStrRev,
result in good fitness values. But only the SStrRev operator does reach the best
fitness value and small distance. The Swap and Shift operator reach good fitness
values, but these points are mostly far away from optimum.

The PQ diagrams for asymmetric TSP are shown in figure 5. The operators
SStrShift and Shift lead to fitness values near to the optimum. The elements
generated by SStrShift operator are closest to optimum but doesn’t reach the
optimum. This can be a symptom why asymmetric TSP are harder to opti-
mize than symmetric TSP. FDC value gives a good hint for the selection of a
convenient operator. But in some cases its oversimplifying nature is obscuring
differences of the operator specific search space. In table 3 FDC values for Shift
and SStrRev operator are comparable. But the PQ diagram in figure 5 (left side)
shows, that SStrRev is clearly inferior, because worse fitness values are reached
by hillclimb walks.

To analyze the distribution of local optima in search space and examine the
difference between good and bad performing operators, the proportion of neigh-
bors with worse fitness values (elements in q1 and q2) are plotted over distance.
As can be seen in figure 6, the local optima with best performing operator SStr-
Rev are heaping near the global optima. Local optima for operator Shift and
SStrShift are uniformly distributed in search space. Local optima for operator
NbrSwap are heaping at ΦOP/2, but not in the direction of global optima.

6 Conclusion

To extensively analyze fitness distance correlation, we implemented algorithms
for measuring the real (minimal) distance between permutations for five opera-
tors, as demanded by [12]. Instances for symmetric and asymmetric TSP were
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Fig. 4. An example for PQ analysis for all five operators (TSP berlin52). The diagrams
are sorted from worst (top) to best (bottom) FDC value. On the left side the PQ is
plotted over fitness (x-axis starting at optimum value) and on the right side over
distance (x-axis ending at ΦOP). The optimum located in the upper left corner of each
diagram.
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Fig. 5. Example PQ diagrams for AsymTSP with n = 52 and exp = 1. For asymmetric
TSP instances the SStrShift operator produces the best FDC values. The SStrRev and
Shift operators have approximately the same FDC values. But the fitness-PQ diagrams
on the left side showing, that the Shift operator is outclassing the SStrRev operator.

analyzed. The best operator for symmetric TSP is the well known SStrRev op-
erator. For asymmetric TSP the SStrShift operator leads to highest FDC values.
We proposed PQ as an extension of FDC to measure local quality in search
space. PQ diagrams can visualize additional characteristics of search space. The
PQ diagrams can help to identify good operators even if the FDC values are
approximately the same (examples shown in figure 4 and 5).

In future work we will use our framework to analyze further permutation based
optimization problems, like bin packing or quadratic assignment problem (QAP).
Additionally, more problem specific operators and their distance algorithms will
be implemented to understand, what makes a search space easy to optimize
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Fig. 6. Here the grade of local optimality is plotted (TSP berlin52). The y-axis indicates
the proportion of neighbors which appear in quadrant q1 or q2. If all neighbors are in
these quadrants a local optima is reached (the end of a hillclimb walk). It’s visible how
the local optima are distributed in search space.

and to identify characteristics of such operators. Possibly another way to gain
knowledge of search spaces is to analyze PQ diagrams of artificial and misleading
functions, like the so called ridge functions [9].
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12. Schiavinotto, T., Stützle, T.: A Review of Metrics on Permutations for Search
Landscape Analysis. Comput. Oper. Res. 34(10), 3143–3153 (2007)

13. Szymanski, T., Hunt, J.: A fast Algorithm for Computing Longest Common Sub-
sequences. Commun. ACM 20(5), 350–353 (1977)

14. Thierens, D.: Predictive Measures for Problem Representation and Genetic Oper-
ator Design (2002)

15. Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A Study of Fitness Dis-
tance Correlation as a Difficulty Measure in Genetic Programming. Journal Evol.
Comput. 13(2), 213–239 (2005)

16. van Emde Boas, P.: Preserving Order in a Forest in Less Than Logarithmic Time
and Linear Space. Inf. Process. Lett. 6(3), 80–82 (1977)



A Genetic Algorithm to Minimize Chromatic
Entropy

Greg Durrett1, Muriel Médard2, and Una-May O’Reilly1

1 Computer Science and Artificial Intelligence Laboratory
2 Research Laboratory for Electronics
Massachusetts Institute of Technology
{gdurrett,medard,unamay}@mit.edu

Abstract. We present an algorithmic approach to solving the problem
of chromatic entropy, a combinatorial optimization problem related to
graph coloring. This problem is a component in algorithms for optimizing
data compression when computing a function of two correlated sources at
a receiver. Our genetic algorithm for minimizing chromatic entropy uses
an order-based genome inspired by graph coloring genetic algorithms, as
well as some problem-specific heuristics. It performs consistently well on
synthetic instances, and for an expositional set of functional compression
problems, the GA routinely finds a compression scheme that is 20-30%
more efficient than that given by a reference compression algorithm.

Keywords: chromatic entropy, functional compression, graph coloring.

1 Introduction

Chromatic entropy is a combinatorial optimization problem closely related to
graph coloring, though it is much less well known because of its relative lack
of applications. However, it has recently appeared in information theory as the
bottleneck in a particular method of encoding data from two correlated sources.
Specifically, a solution to chromatic entropy would allow the implementation of
an improved scheme for data compression of correlated sources used as inputs
to a function [1].

Chromatic entropy is known to be NP-hard, as shown by Cardinal et al. [2].
Given that this problem cannot be solved efficiently in theory, it is natural to
consider finding solutions using genetic algorithms. In this paper, our goal is
to introduce the problem and describe a genetic algorithm (GA) tailored to
its specifics. In Section 2 we present the background on functional compression
necessary to understand the application, then discuss the problem of chromatic
entropy. Because our GA borrows heavily from previous algorithms for solving
graph coloring, we proceed to briefly survey some of the relevant GA graph color-
ing literature. In Section 3, we describe the design choices for our GA. Section 4
analyzes the performance of the algorithm on synthetic probabilistic graphs and
on graphs derived from certain instances of the functional compression problem,
showing that the algorithm performs favorably on both. Section 5 concludes and
discusses future work.
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2 Background

2.1 Definitions

We use the standard definition of entropy throughout this paper.

Definition 1. Let X be a discrete random variable with probability density func-
tion p that can take values xi for 1 ≤ i ≤ n. The entropy of X is given by

H(X) = −
n∑

i=1

(p(xi) log2 p(xi)) (1)

Conditional entropy will also be used frequently and is not quite a trivial exten-
sion of basic entropy.

Definition 2. Let X and Y be discrete random variables, with a joint distribu-
tion p(x, y), conditional distributions p(x|y) and p(y|x), and marginal distribu-
tions p(x) and p(y). If X can take values xi for 1 ≤ i ≤ n and Y can take values
yj for 1 ≤ j ≤ m, we define the conditional entropy H(X |Y ) as follows:

H(X|Y ) =
m∑

j=1

(p(yj)H(X|Y = yj)) =
m∑

j=1

(
p(yj)

(
−

n∑
i=1

(p(xi|yj) log2 p(xi|yj))

))
(2)

This can be thought of as an average of the conditional entropies H(X |Y = yj)
weighted according to the probability that Y = yj .

In addition to entropy, we require the notion of a coloring in a discrete, edge-
node graph.

Definition 3. Let G = (V, E) be an undirected graph over the vertex set V with
edge set E. A k-coloring of G is an assignment of “colors” to vertices of G using
k colors such that no two adjacent vertices have the same color. More formally,
we partition the vertices into k disjoint sets Ci such that if x1, x2 ∈ Ci, then
(x1, x2) /∈ E.

Note that throughout this work, the graphs we are using are simple, undirected
graphs. Henceforth, any graph not otherwise specified is simple and undirected.

2.2 Functional Compression Basics

Doshi et al. provide in [1] the main information-theoretic results relevant to
the efforts of this paper. We provide a brief summary here of the key concepts
presented in their paper.

Consider two correlated sources of data, X and Y , separated from each other
and X separated from a decoder. Figure 1 shows the basic setup: we wish to
encode the data from X in order to compute a function f(X, Y ) without loss at
the decoder, and we want this encoding to be as efficient as possible. In the case
where f(X, Y ) = (X, Y ) (i.e. when we want to be able to recover both X and
Y directly), the well-established rate result is the Slepian-Wolf bound described
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in [3]. The theorem of [3] treats the more general problem when both X and Y
are separate from the decoder, and states that X and Y can be sent at rates R1
and R2 satisfying R1 > H(X |Y ), R2 > H(Y |X), and R1 + R2 > H(X, Y ). In
our specific problem, when Y is available at the decoder, the optimal rate for the
transmission of X is the conditional entropy of X given Y , H(X |Y ). Achieving
this rate entails sending X using a more efficient encoding by taking advantage
of its correlation with Y , knowing that the decoder can use its knowledge of Y
to disambiguate the transmitted data. In the literature, this problem is known
as the problem of functional compression with side information.

Fig. 1. The functional compression problem when Y is available as side information at
the decoder

This analysis so far has ignored the fact that we are computing f(X, Y ) at
the decoder, rather than reporting the two values directly. If f is a many-to-
one function, we can do significantly better than the Slepian-Wolf bound. As
an example taken from [1], consider when X and Y are integers and f is the
function X + Y (mod 4). Regardless of how large X and Y might be, it is
sufficient to encode only the last two bits of each, rather than the entire integer.
The Slepian-Wolf bound only optimizes the rate by taking advantage of the
correlation between the two random variables; it does not take advantage of the
properties of the function to further increase the efficiency of the encoding.

In general, it is not this simple to use our knowledge of f to improve our
encoding. To analyze a given f , we construct something called the confusability
graph.

Definition 4. The confusability graph for X given Y , f , and p(X, Y ) is a graph
G = (V, E) where V contains a vertex vx for each value x that X can take
and E contains an edge between vx1 and vx2 if x1 and x2 are confusable. Two
values of X are confusable if for some y ∈ Y , p(x1, y) > 0, p(x2, y) > 0, and
f(x1, y) �= f(x2, y).

This definition is slightly easier to grasp if one considers the complement of the
graph. If two nodes are not confusable (i.e. there is no edge between them in
the confusability graph), then for all possible values y of the random variable
Y , either p(x1, y) = 0 or p(x2, y) = 0 (we can disambiguate the two values
based on the fact that one of them can never appear with the given y), or
f(x1, y) = f(x2, y) (they yield the same value under the function, so there is no
need to disambiguate them). See Section 4.1 for an example of using these rules
to construct a confusability graph.
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By this definition, two nodes that are disconnected on the confusability graph
can safely be given the same encoding, since knowing Y and knowing that X
takes one of these two values is all that we require to compute the value of f .
This extends beyond pairs of nodes to independent sets of nodes. By coloring
the confusability graph, we partition it into color classes, each of which is an
independent set. To transmit a particular value, we can simply transmit the
name of the color class that contains that value, without ambiguity as to what
the value of f(X, Y ) will be. Using a Slepian-Wolf encoding on the distribution
over the color classes yields a valid encoding scheme for the problem. This rate is
precisely the conditional chromatic entropy of the confusability graph of X given
Y , which we define mathematically in the next section. However, intuitively, this
is appropriately analogous to the case when f(X, Y ) = (X, Y ), for which the
rate bound is the conditional entropy H(X |Y ). By coloring we have augmented
the Slepian-Wolf method to compress data based not only on the correlation
between X and Y , but on the properties of the function f , as captured by the
confusability graph.

2.3 Chromatic Entropy

Armed with this intuition about the method, we can rigorously define chromatic
entropy. Chromatic entropy is defined for simple graphs that have an associated
probability distribution p over the set of nodes (i.e.

∑
vi∈V p(vi) = 1). We use

the following definition from [2]:

Definition 5. Let G = (V, E) be a graph with a probability distribution p of a
random variable X over the vertices and k color classes Ci. Set pCi=

∑
v∈Ci

p(v);
this represents the probability that a vertex of G chosen according to p falls in
the ith color class. The chromatic entropy of G given p and C is

Hχ
G(C, X) = −

k∑
i=1

pCi log2(pCi) (3)

Essentially, this is the entropy associated with the probability distribution φ over
the color classes Ci, where φ(Ci) =

∑
v∈Ci

p(v).
Körner showed in [4] that by minimizing this quantity for a high enough

“power” of a confusability graph, we can achieve an arbitrarily close approxima-
tion to the optimal rate for the case when we are transmitting a single value X
to the decoder and the function f(X) depends only on X , which is a simplified
version of our compression problem with Y removed. Doshi et al. [1] extended
this result to the side information case, where we have a conditional distribution
p(X |Y ) rather than a univariate distribution. They define a quantity called con-
ditional chromatic entropy, which by analogy with the definition of conditional
entropy in Section 2.1, is given to be

Hχ
G(C, X |Y ) =

∑
y∈Y

p(y)Hχ
G(C, X |Y = y) (4)
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This conditional chromatic entropy is the optimal rate for encoding of X . It
represents a rate optimized by taking advantage of both the correlation between
the signals X and Y and the properties of the function.

For a discussion of the relationship between chromatic entropy and standard
entropy, we refer the reader to Alon and Orlitsky’s work in [5].

Heuristics. Given that the sum can be decomposed this way, it is helpful to
consider heuristics for minimizing chromatic entropy motivated by the univariate
chromatic entropy problem, as this is much easier to analyze than the conditional
chromatic entropy problem.

Intuition suggests that reducing the number of colors also reduces chromatic
entropy, but while this is a good heuristic, it is not necessary true that the
coloring yielding the minimum chromatic entropy is a minimum coloring. This
is proven in full depth by Cardinal et al. in [2], but we present here a simple
example inspired by their proof. Consider the graph shown on the left in Figure 2.
The graph is 3-colorable, and is clearly not 2-colorable by the existence of a 3-
clique. Up to symmetries of vertices and color classes, there are only two three-
colorings: {1, 6}, {2, 5}, {3, 4} (shown in Figure 2, middle) and {1, 5, 6}, {2, 4},
{3} (not shown). The first 3-coloring contains three color classes all with equal
probability mass, and Hχ

G = 1.5849. For the second 3-coloring, we can compute
the chromatic entropy as follows:

Hχ
G = −0.616 log2 0.616 − 0.333 log2 0.333 − 0.05 log2 0.05 = 1.1745 (5)

Fig. 2. Example graph to demonstrate that minimum colorings do not always yield
minimum chromatic entropy values. One of the possible three-colorings and the optimal
four-coloring are also shown.

However, the four-coloring with color classes {1}, {2}, {3}, and {4, 5, 6} (Fig-
ure 2, right) has Hχ

G = 0.8476. This example demonstrates that, as with the
general entropy function, chromatic entropy is minimized when the terms in
the entropy sum are as “uneven” as possible. The fourth color class provided
“flexibility” to make the distribution φ over the color classes more uneven
([0.85, 0.05, 0.05, 0.05] as opposed to [0.6166, 0.3333, 0.05]) thereby reducing the
entropy.
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One heuristic inspired by this example is to attempt to find independent sets
with high probability mass and establish these as color classes, the idea being to
unbalance the distribution as much as possible. There is another sense in which
concentrating probability mass is beneficial: Lemma 2 of [2] tells us that, given
a choice of color classes to assign a node to, chromatic entropy is increased the
least by adding the node to the color class with the highest probability. This
follows from the concavity of f(x) = −x log(x) in the entropy function. These
two principles should inform our GA design in order to take full advantage of
the problem structure.

Although we now know generally how to best distribute mass within color
classes, we still do not know how many color classes to use. Theorem 6 in [2]
states that the number of colors in a coloring that minimizes chromatic entropy
for a particular graph cannot be bounded by any function of the number of colors
in a minimum coloring for that graph, even for very specific, well-behaved types
of graphs. Fortunately, there is a sense in which minimizing the number of color
classes minimizes the chromatic entropy, as captured by the following lemma.

Lemma 1. Given a graph G with distribution p and coloring C, if color classes
C1 and C2 can be merged without violating the rules of coloring, then the coloring
C′ = {C1 ∪C2, C3, ..., Ck} has strictly lower chromatic entropy than the original
coloring C.

The proof follows directly from the definition of chromatic entropy, so we omit it.
Because there are only constrained situations under which increasing the number
of color classes decreases the chromatic entropy, minimizing the number of color
classes is a powerful heuristic for minimizing chromatic entropy.

2.4 Genetic Algorithms for Graph Coloring

The connections between graph coloring and chromatic entropy indicate that a
GA for one might be effectively adapted to the other, if the fitness function were
to be changed appropriately. We can draw inspiration from the genomes used
to solve graph coloring problems. Each individual in the population encodes a
coloring, and in this sense chromatic entropy poses an interesting challenge be-
cause, for some representations, only a small fraction of the potential individuals
encode legal colorings. The most naive representation might be to have a genome
of length n for an n-node graph, and have each position store the color for the
corresponding node. However, a mutation or crossover operation applied to an
individual that represents a legal coloring will frequently produce an individual
that represents an illegal coloring. In [6], Dorne and Hao successfully use this
genome to solve graph coloring by taking their fitness function to be the number
of edges that violate the coloring constraints. Their approach, though interest-
ing, only works for a fixed number of colors, so it is unsuitable for chromatic
entropy.

Eiben et al. [7] use a GA to minimize the number of violated coloring con-
straints, in order to find a valid k-coloring for a fixed k. They use a so-called
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“order-based” representation. Each individual in the population is a permutation
of the vertices of the graph in question. An individual is “decoded” into a coloring
using a greedy algorithm as follows: the nodes are iteratively colored in the order
specified by the permutation, and at each iteration, the current node is colored
using the lowest-numbered color possible given the partial coloring of the graph.
This genome admits a number of sensible mutation and crossover operators and
every potential individual corresponds to a valid coloring. The reverse is not
true: certain non-minimal colorings cannot be created by this greedy method.
However, via a proof we omit for brevity, the optimal solution is assured to be
attainable.

Sivanandam et al. [8] also use an order-based representation but their GA
uses a different greedy algorithm for decoding. Their decoding introduces many
more color classes than the decoding from [7]. For our problem this correlates
with chromatic entropy values that are relatively high. We have elected to use
the PX crossover of [8].

3 Algorithm Design

3.1 Genome and Objective

We use the order-based representation from [7] and [8] for our genome, as this
sidesteps the issue of what to do when an invalid coloring is produced. For
decoding, we use the greedy color assignment algorithm of [7] per Section 2.4.

Our objective is to minimize conditional chromatic entropy as defined in Sec-
tion 2.3, given by

Hχ
G(C, X |Y ) =

∑
y∈Y

p(y)Hχ
G(C, X |Y = y) (6)

Given a coloring (or a permutation that we decode into a coloring), we can
evaluate this function directly given that we know the topology of the graph and
the joint distribution.

Because we cannot derive a minimum objective value to use as a stopping
condition, we run the GA for a fixed number of generations and report the best
observed individual after these runs.

3.2 Mutation

For our mutation operator, we use the swap operator as described in Eiben et
al. [7], which randomly swaps two adjacent vertices. We fix a mutation rate
inversely proportional to the number of the vertices in the graph so as to swap
a constant number of pairs of vertices in expectation. This parameter was tuned
experimentally for each class of graphs that we considered. We also investigated
varying the distance of the swap: rather than swapping two adjacent nodes, which
may hardly change the overall coloring, we considered all pairs of nodes that are
separated by a distance d, for fixed d. Experiments confirmed our intuition that



66 G. Durrett, M. Médard, and U.-M. O’Reilly

increasing d increased the amount of change the mutation operator induced.
Higher swap distances were more likely to cause shakeups in the color classes,
and they generally increase the number of color classes. However, this difference
did not propagate to a difference in the performance of the GA. The performance
difference between mutation operators with different swap distances is dwarfed
by the variation among GA trials. Therefore, we fixed the swap distance at one
and proceeded to examine crossover operators.

3.3 Crossover

We considered one crossover operator, the PX operator described in [8]. This
operator produces a child by reordering a subset of the nodes in the first parent
according to their order in the second parent. In our experiments, we observed
that using PX appears to improve performance slightly, though again, the vari-
ance between individual samples is much more significant than this effect. How-
ever, the added computational cost of this operator is fairly small, so in light of
the potential performance improvement, we incorporated the PX operator into
our GA.

4 Results

4.1 Performance on Sample Problem Instances

In order to study the effectiveness of the overall functional compression scheme,
we must start with a joint distribution and function of two variables, create the
confusability graph, and compare the encoding from functional compression with
the basic Slepian-Wolf encoding of the two correlated sources. Figure 3 shows
a simple example of constructing a confusability graph from a table of function
and probability values.

(a) (b)

Fig. 3. Example function f and joint distribution p over two random variables X and
Y , each of which takes values in the set {1, 2, 3}. The figure shows the confusability
graph of X given Y . There is an edge between X = 1 and X = 3 because they are
confusable when Y = 1, but no other pair of X values is confusable.

Intuitively, the algorithm will be much more effective when there are relatively
few edges in the graph and many nodes can be given the same coloring. We
generated joint distributions and functions that would yield confusability graphs
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with varying edge densities. The density of a confusability graph becomes quite
high if the function takes a wide range of values and most combinations of X
and Y occur with positive probability. This fact follows from the definition of
the confusability graph. Therefore, we used {0, 1}-valued functions and joint
distributions with many “holes” (i.e. (x, y) pairs that occur with probability 0).

We randomly generate each joint distribution as follows: first, we set a param-
eter δ ∈ [0, 1] to indicate the probability that a given entry in the table should
be nonzero, then we choose each entry to be zero or nonzero according to this
probability, and finally we normalize the table such that all nonzero entries are
equiprobable and sum to one. If δ is set to a higher value, the graph will be
denser, since the joint distribution is less helpful in allowing us to disambiguate
values. The function table was generated in a similar fashion, with a parameter
ε ∈ [0, 1] chosen to be the probability that a given f(x, y) would be 1. The most
dense graph possible is achieved by ε = 0.5, since a biased choice of function
values will cause more of the (X, Y ) pairs to be equal. By adjusting these pa-
rameters, we were able to create graphs of essentially any density for which we
know f(x, y) and p(x, y).

Fig. 4. Graph of the performance of the GA relative to the Slepian-Wolf bound for fifty
15-node and fifty 100-node graphs of varying edge densities, with 5 trials run on each
graph. The y-axis shows the averaged values of H

χ
G

(C,X|Y )

H(X|Y )
for each graph, the fractional

improvement over the Slepian-Wolf bound given by the best coloring C discovered by
the GA. Error bars representing the standard deviation are shown for the 100-node
graphs; in the 15-node case, the GA discovered identical (presumably optimal) values
in all trials for all but two of the graphs.

In Figure 4, we display our results on graphs of varying densities created
using this scheme, using for each graph a GA of 200 individuals iterated for 50
generations. We compare the encoding rate achieved by the GA (i.e. the lowest
chromatic entropy value we could find) to the Slepian-Wolf bound, which can
be thought of as the chromatic entropy of the graph where every node is colored
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differently. For high densities, it is difficult to garner much improvement, as we
need to use many relatively small color classes when coloring the graph. However,
for low densities, we can improve on the Slepian-Wolf bound by 30% or more,
which translates to a 30% reduction in the amount of data that needs to be
transmitted in the original problem.

4.2 Performance on Random Graphs

Though these graphs do represent a simple class of problem instances that are
theoretically appropriate, our particular method of constructing functions and
joint distributions might be somehow restricting the range of instances we are
considering. We would like to be able to demonstrate our algorithm’s perfor-
mance in a general setting and argue that it will do well at minimizing chro-
matic entropy for any given graph. To do this, we will construct graphs of all
densities with completely random structures (i.e. all edges are have an equal,
fixed probability of being included), and then experiment with a range of prob-
ability distributions on the nodes. Although these graphs will generally have no
particular interpretation in the context of functional compression in which edge
structure is linked to the joint distribution, it does allow us to convince ourselves
of our algorithm’s viability for applications other than confusability graphs.

We generated random 100-node graphs of various densities using Culberson’s
graph generator, described in [9]. In the generation of these graphs, edges are
included or not included independently and with a fixed probability, so graphs
produced in this manner will have no special structure. We then attached sensible
joint distributions to these graphs. We induce an ordering on the n vertices and
define a random variable X that takes values over the vertices v1, ..., vn. We also
define a random variables Y that takes values y1, ..., yn not associated with the
vertices. Our joint distribution over these is as follows:

P (xi, yj) ∝ exp
{

−1
2

[
i − n

2
, j − n

2

] [ s −cs
−cs s

] [
i − n

2
, j − n

2

]T}
(7)

s > 0 and c ∈ (0, 1) in the inverse covariance matrix term are constants so that we
can tune the degree of variance and covariance in the parameters, respectively.
The motivation behind this was to create distributions with varying degrees
of correlation between Xi and Yj in order to evaluate the GA on a variety of
instances.

We will compare the GA performance to a heuristic and random search. The
heuristic is a deterministic method that is independent of the any ordering of
the nodes in the graph. Its goal is to maximize probability mass on high-entropy
color classes as much as possible because this frequently minimizes chromatic
entropy. It greedily colors the nodes in the graph in descending order of marginal
probability mass P (X). To each node, it assigns the color whose color class has
the highest current weight in terms of P (X) and that admits a legal coloring.
The random search examines as many random individuals in the search space
as the GA evaluated for fitness over an entire run, and returns the best among
these.
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Experiments showed that the performance of the GA relative to the heuristic
and random search was independent of the covariance matrix, so we fix s = 4
and c = 0.5. We know from Section 4.1 that density is an important factor for
the performance of the algorithm.

We fixed the number of individuals in the population at 200 and the number
of generations at 50, to maintain consistency with the experiment in Section 4.1.
The results are shown in Figure 5. Both the GA and random search consistently
outperform the heuristic. In addition, we see that the GA consistently does
modestly better than random search, with Wilcoxon sign-rank tests yielding p-
values of less than 2 × 10−6 for every graph under investigaton. Given the small
marginal computational cost to implement the machinery of the GA, we prefer
the GA to the random search.

(a) Averaged GA vs averaged RAND
on graphs of varying density

(b) Thirty trials of GA vs RAND on
each of five graphs of density 0.5

Fig. 5. (a) shows the performance of the GA and RAND relative to the heuristic for
100-node random graphs of varying edge densities. Each point represents the average
performance of the given method on the graph averaged over 30 trials, with error bars
showing the standard deviation. The y-axis shows H

χ
G

(CResult,X|Y )

H
χ
G

(CHeuristic,X|Y )
for each graph, the

fractional improvement in chromatic entropy for the coloring found by the method over
the chromatic entropy of the heuristic coloring. Wilcoxon sign-rank tests established the
statistical significance with a p-value of less than 2×10−6 for each point. (b) compares
GA and RAND more closely to show that GA almost always performs better than
RAND across multiple trials and multiple graphs of the same density, and therefore
we are justified in using averages on one graph to contrast the two.

5 Conclusion

In this paper, we implemented a GA to minimize conditional chromatic entropy
for a given graph with a joint probability distribution over its vertices. The GA
employs an order-based representation combined with a greedy coloring heuris-
tic. We applied this algorithm to the problem of functional compression with
side information, wherein the minimization of the conditional chromatic entropy
of a confusability graph supports approximation of the optimal encoding rate.
This scheme allowed us to improve Slepian-Wolf encodings by around 30% for
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relatively sparse confusability graphs, and furthermore, the algorithm routinely
outperformed random search and a very inexpensive heuristic.

Future work along a theoretical avenue to pursue is fitness landscape analy-
sis. Chromatic entropy is an interesting problem in that there is something of a
continuous nature to it as a result of having a probability distribution over the
vertices. Changes in the color class assignments of very low probability vertices
have correspondingly small effects in the overall chromatic entropy calculation.
This could yield a fitness landscape that is atypical of combinatorial optimiza-
tion problems, which could in turn suggest even better algorithms to solve it
efficiently.
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Abstract. In this study, three Genetic Algorithms (GAs) are applied
to the Three-dimensional Multi-pipe Routing problem. A Standard GA,
an Incremental GA, and a Coevolutionary GA are compared. Variable
length pipelines are built by letting a virtual robot move in space accord-
ing to evolved, fixed length command lines and allocate pipe segments
along its route. A relative and an absolute encoding of the command lines
are compared. Experiments on three proposed benchmark problems show
that the GAs taking advantage of the natural problem decomposition;
Coevolutionary GA, and Incremental GA outperform Standard GA, and
that the relative encoding works better than the absolute encoding. The
methods, the results, and the relevant parameter settings are discussed.

1 Introduction

Inspired by Darwinian evolution in natural systems, Genetic Algorithms (GAs)
[1] have been successfully applied as global optimizers to several large and com-
plex industrial problems [2]. GAs are population based, stochastic algorithms
which are especially suitable for locating near-optimal solutions to problems
involving high dimensionality, multi modality, and discontinuous search spaces.

In Standard GA , a single population of candidate solutions, called individuals,
is implemented, and each individual codes for an entire solution to the problem.
Many real world problems, however, consist of more or less interdependent sub
problems. Such problems may be solved more efficiently by taking advantage
of the natural problem decomposition. One approach to such problems is in-
spired by coevolution in natural systems, where species interact and adapt to
each other. Cooperative Coevolutionary GAs operate in a cyclical manner, with
several separate populations, each population working on a particular part of a
larger problem. CCGAs have been found to be able to solve complex problems
involving interacting sub problems [3] [4] [5] by taking advantage of the natural
problem decomposition. Another approach to interacting subproblems is incre-
mental evolution, where each sub-problem is solved sequentially. The approach

P. Cowling and P. Merz (Eds.): EvoCOP 2010, LNCS 6022, pp. 71–82, 2010.
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is similar to the waterfall model, commonly encountered in engineering systems
development [6]. Incremental GAs have been suggested in literature [7] [8] [9] as
an approach enabling the generation of complex hierarchical solutions by taking
advantage of the natural problem decomposition and hence limiting the search
space.

The Three-dimensional Multi-pipe Routing (3DMPR) problem is concerned
with automating and optimizing pipe routing design involving several pipelines
in three dimensions. In this paper, we compare the performance of a Standard
GA (SGA), a Cooperative Coevolutionary GA (CCGA), and an Incremental GA
(IGA) applied to the 3DMPR problem. Additionally; a random search (RS), and
two different encodings; a relative and an absolute encoding, are implemented
and compared. Our main interest in this study is to compare the different ap-
proaches, using direct encodings and a minimum amount of domain knowledge
(uninformed). Future research will focus on learning, and taking advantage of
heuristic knowledge (informed), by implementing a machine learning approach,
and finally to compare the results. To the author’s best knowledge, no benchmark
problems have been proposed for the 3DMPR problem. We therefore propose
three benchmarks for experimentation and future comparisons.

1.1 Pipe Routing Design

Pipe routing can be understood as to be a subset of assembly design and is
important for several industrial applications such as process plant layout, circuit
layout, aircraft and ship design. In ship design, pipe routing takes over 50% of the
total detail-design man-hours [10] and can run as high as 80% of the purchased
equipment cost or 20% or the fixed-capital investment in fluid-process plants
[11]. Pipe routing is normally done by human experts following a piping and
instrumentation diagram (P&ID), where the location of various equipment is
predetermined. However, the design process is complex and time consuming,
making it practically impossible for the designer to test several scenarios.

Pipelines may be subjected to several constraints and objectives to be op-
timized. E.g. pipelines must connect terminals at given locations and avoid
obstacles, while the number of bends and the overall material cost should be
minimized. Additionally, several other objectives may be specified such as to
minimize the amount of pipe support, provide access for ease of maintenance,
minimize stress and design for thermal expansion.

Theoretically, pipe routing can be seen as a special case of general path plan-
ning in robotics, in which there are two major families of approaches known as
cell decomposition and skeletonization [12]. Each approach reduces the continu-
ous path-planning problem to a discrete graph search problem by identifying some
canonical states and paths within the free space. Cell decomposition involves gen-
erating a uniform grid and is often used in conjunction with a potential field func-
tion. A potential field function is defined over state space that is to be minimized;
e.g. the function has minimum value at the goal cell and maximum values at cells
occupied by obstacles. Skeletonization involves generating a nonuniform graph ac-
cording to some heuristic, and is based on the idea of reducing the robot’s free
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space to a lower dimensional representation, for which the planning problem is
easier. In order to find paths satisfying the constraints, and optimizing the ob-
jectives, the generated graphs are commonly searched by some search algorithm.
Deterministic shortest path algorithms such as A* [13] and Dijkstra [14] guarantee
an optimal solution given sufficient time (other methods are Lee’s maze algorithm
[15] and the continuous Line-search algorithm [16]).

Pipe routing belongs to a class of optimization problems with very large,
multimodal search spaces, where one is more interested in finding feasible solu-
tions in practical time than trying to find the absolute optimal solution. Since
straight pipes are preferred, deterministic shortest path algorithms would re-
quire a skeleton to be provided. However, the skeletonization approach may
prove problematic for multi-pipe routing due to the fact that once a pipeline
is changed, it would require a new calculation of the skeleton, which may be a
computationally demanding process. A cell decomposition approach is therefore
implemented. Cell decomposition has the advantage that it is simple to imple-
ment, but it also suffers from the curse of dimensionality, suggesting the 3DMPR
problem to be a good candidate for optimization by stochastic search algorithms,
such as GAs.

1.2 Previous Approaches

Most of the pipe routing literature limits the problem to single pipelines or to two
dimensions and evaluation mostly focuses on the accommodation of the physical
constraints [17] such as avoiding collisions and reaching the goal cell.

Ito optimized in [18] single pipelines in two dimensions by introducing a GA
approach to support interactive pipe planning. The method was based on cell-
decomposition and a potential energy function. Pipelines were represented as
variable length genomes based on a character set representing absolute direction
actions. Local heuristics were implemented in order to reduce the search space,
and repair functions were used in order to handle non-feasible solutions.

Kim et al. optimized multiple two dimensional pipelines by minimizing pipe
lengths in [19] by first generating a skeleton consisting of “Steiner points” and
“escape graphs”, and then to let search algorithms operate on chromosomes
representing all connections. The authors found that GA outperformed both
stochastic hill-climbing and simulated annealing in larger test cases. However,
collision handling between pipelines was not addressed.

Sandurkar and Chen optimized single pipelines in three dimensions in [20]
where the shape of obstacles were more realistically implemented by use of tes-
sellated objects. A GA operated on a composite set of variables representing
length of pipes, the direction cosines of each pipe, the angles of bends between
successive pipes, and the number of bends along the pipeline.

Wang et al. optimized in [21] three pipelines in three dimensions by manually
setting the number of bends, and letting a GA optimize the coordinates of the
pipe segments by a floating number representation.

Park and Storch optimized multiple pipelines in three dimensions in [10] for
a case study of a ship engine room. A cell generation method was introduced in
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Fig. 1. Turtle building pipelines by interpreting evolved command lines

order to develop candidate pipeline solutions, and an algorithm was developed
to select appropriate pipelines from a tree of combinations.

The next section explains the method, the experimental setup and the results
are presented in section 3 and discussed in section 4 while section 5 concludes.

2 Method

This section explains the problem representation, the fitness evaluation, the var-
ious algorithms, and finally, the benchmark problems.

2.1 Problem Representation

A two dimensional representation of a multi-pipe routing problem with three
modules, two pipelines, and several examples of valid genotypes, is illustrated
in figure 1. Linear, fixed length genomes are composed out of symbols coding
for specific commands. A pipeline is constructed by letting an imaginary robot,
called a turtle (as in turtle graphics), move about in space from the start position
S, by interpreting the commands in the genome and allocating pipe segments to
visited grid cells. The diameter of the pipe segment PD, as well as the required
safety distance SD, is represented by the turtle.

A command is either a move command, which moves the turtle in a specified
direction, or a turn command, which changes the orientation of the turtle. In or-
der to enable the construction of pipelines of different lengths, a special command
# tells the turtle to “do nothing”. Two different encodings were implemented
and compared; in a relative encoding, the commands Cr = [F, R, L, U, D, #]
codes for move one step forward, turn right/left/up/down and “do nothing”; in
an absolute encoding, the commands Ca = [N, S, E, W, U, D, #] codes for (turn
and) move north/south/east/west/up/down and “do nothing”.

The size of the search space as defined by the representation of the genotype Sg

can be determined by Sg = Cα×N where C is the number of commands, α is the
number of alleles coding for a single pipeline and N is the number of pipelines.
However, the solution space as defined by the number of possible phenotypes Sp

is drastically reduced because a large number of different genotypes codes for
the same phenotype, and because several different phenotypes are equally fit.
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2.2 Fitness Evaluation

A pipeline should connect its terminal to the goal position G and stay clear from
obstacles, as well as minimize the number of bends and the overall length. By
inspection of figure 1, it is e.g. evident that pipeline AC is not optimal due to an
excessive number of bends. Notice also the added complexity introduced by the
multi-pipe scenario; a pipeline must not collide with the obstacles, with itself,
or with any other pipeline in the problem. A single pipe segment is checked for
collision by determining if the corresponding turtle at that position collides with
the “physical” part of any other object in the environment.

A set of N pipelines are evaluated by the following aggregate scalar error
function to be minimized;

E =
N∑

i=1

(w1di + w2ci + w3bi + w4si), (1)

where di is the Manhattan distance between the terminal of the last pipe segment
of the i’th pipeline and the goal position. The variable ci is the total number
of collisions between pipeline i and the environment, while bi is the number of
bends and si is the number of segments of pipeline i. The different components
are weighted by the values w1 = 150, w2 = 100, w3 = 10 and w4 = 1 which were
set manually by trial and error.

2.3 Genetic Algorithms

This section explains the implementations of the Standard GA, the Coopera-
tive Coevolutionary GA and the Incremental GA which were compared. The
algorithms are illustrated in figure 2.

Standard GA (SGA) is by far the most frequently used EC algorithm, where
each individual in a single population p codes for an entire set of N pipes, as
illustrated in figure 2 a). This is done by letting the genome of each individual be
composed out of β(= N) genes, where each gene codes for a single pipeline. The
fitness from an evaluated individual is fed back into the evolutionary process.

The Cooperative Coevolutionary GA (CCGA) approach takes advantage of
the natural problem decomposition by implementing P (= N) populations, as
illustrated by figure 2 b). The genome of each individual consists of a single gene
(β = 1) coding for a single pipeline. A cyclical process consisting of S(= P ) steps,
involving selected members from all populations, is executed for each generation.
For each step, all members of a specific population (colored white) are evaluated,
while the other populations (colored gray) are frozen - representing only the best
individual found so far (the elite). The approach is similar to the cooperative
coevolutionary system proposed by Potter and De Jong in [4].

The Incremental GA (IGA) approach takes advantage of the natural problem
decomposition by letting P (= N) populations code for N pipelines respectively,
as illustrated in figure 2 c). As compared to the CCGA, the complexity is in-
creased in S(= P ) sequent steps which evolve for a fixed number of generations.
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Fig. 2. a) Standard GA; b) Coevolutionary GA; and c) Incremental GA

For each step; a new pipeline is added to the problem (colored white), the pre-
vious pipes are fixed (colored gray) and will never be revisited.

2.4 Benchmark Problems

To the author’s best knowledge, no benchmark problems exist for the 3DMPR
problem; we therefore propose three benchmark problems, as illustrated in table 1,
each problem consisting of four pipelines to be connected.

The “Square” problem consists of four equal sized modules to be intercon-
nected, as illustrated in the P&ID in figure 3. The IO (in/out) points are evenly
distributed in the horizontal plane; however, several fit solutions are in three
dimensions due to the required interconnections and the upper bound on pipe
length set by the maximum gene length, as illustrated in the evolved solution in
figure 5 a). The “Twist” problem consists of two modules to be interconnected

A

BD

C

Fig. 3. The P&ID for the 3DMPR-P1 benchmark problem
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Table 1. 3DMPR Benchmark Problems

Square Twist Hub

Modules Pipelines Modules Pipelines Modules Pipelines

ID Dim Pos ID Start Goal ID Dim Pos ID Start Goal ID Dim Pos ID Start Goal

A 4,4,4 -5,-5,0 AB -3,-5,0 3,5,0 A 4,8,8 -5,0,0 AB1 -3,2,-2 3,-2,2 A 6,12,6 0,0,1 BA -14,0,0 -3,-3,1
B 4,4,4 5,5,0 BC 7,5,0 3,-5,0 B 4,8,8 5,0,0 AB2 -3,-2,-2 3,2,2 B 4,4,4 -16,0,0 CA -3,15,0 -3,3,1
C 4,4,4 5,-5,0 CD 7,-5,0 -7,5,0 AB3 -3,2,2 3,-2,-2 C 4,4,4 -5,15,0 DA 12.5,8,0 3,3,1
D 4,4,4 -5,5,0 DA -3,5,0 -7,-5,0 AB4 -3,-2,2 3,2,-2 D 4,4,4 14.5,0,0 EA 16.5,0,0 3,-3,1

E 4,4,4 10.5,8,0

by four pipes. Each pipe must connect to the opposite side but at different lo-
cations, as illustrated by the evolved solution in 5 b). The “Hub” problem is a
common scenario found in several industrial applications where several modules
must connect to a central unit, as illustrated by the evolved solution in 5 c).

3 Experiments and Results

This section describes the experimental setup and the results from comparing
the presented algorithms on the benchmark problems.

The experimental settings are reviewed in table 2, and the following explains
the details. For each approach, P populations were randomly initiated with
population size μ. The GA’s used a generational model with λ(= μ) offspring
and elitism enabled (one elite per population). The termination criteria was set
to a fixed number of generations G per population. The number of genes β
corresponds to the number of pipelines coded by a single individual, and the
gene length α sets the maximum length/complexity of a pipeline. Selection was
implemented using stochastic universal sampling [22]. Two-point crossover with
crossover probability pc, and bit-flip mutation with mutation probability pm,
was implemented. The mutation and crossover probabilities for each algorithm
were set by trial and error.

In order to make a fair comparison between the evolutionary approaches, the
evolutionary parameters were set so that an equal number of individual fitness
evaluations Nf = 400.000 were executed for all approaches. However, for each
approach, an unequal number of pipeline evaluations, and a corresponding num-
ber of (time consuming) collision detections, must be executed. E.g. in SGA, all
pipes must be evaluated per generation, since we do not know in advance which
pipe has changed since the last generation, as opposed to CCGA and IGA.

For each problem, 10 independent runs of the SGA, CCGA, and IGA were
executed. The average performance of each algorithm, tracking the best individ-
ual called the elite, is plotted in figure 4. For the “Square” problem, a random
search (RS), and a CCGA with absolute encoding (CCGA*) was also tested (10
runs) and compared. The random search (RS) was implemented by tracking the
elite from generating μ × G random solutions.

The experimental results, for each algorithm, applied to each problem, are listed
in table 3. The table shows the error (according to error function 1) of the best
found solution, the average error, and the standard deviation after G generations.
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Table 2. Evolutionary parameter settings

GA P G μ β α pm pc

SGA 1 1000 400 4 100 0.0025 0.3
CCGA 4 1000 100 1 100 0.01 0.3
CCGA* 4 1000 100 1 100 0.01 0.3
IGA 4 250 400 1 100 0.01 0.3
RS 1 1000 400 4 100 - -
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Fig. 4. Errorplots of the various GAs averaged over 10 runs for a) the “Square” prob-
lem, b) the “Twist” problem and c) the “Hub” problem

Table 3. Experimental results (error)

Square Twist Hub

GA Best Avg Dev Best Avg Dev Best Avg Dev

SGA 1799 2065 177 562 773 168 878 1214 374
IGA 574 1007 215 428 521 87 578 784 136
CCGA 752 1195 229 436 526 78 410 600 139
CCGA* 2414 2669 197 - - - - - -
RS 7616 8583 386 - - - - - -

The results shows that the average performances of both IGA and CCGA are
signifacantly better than SGA after a fixed number of generations. IGA found the
best solution to the “Square” and the “Twist” problem, while CCGA found the
best solution to the “Hub” problem. The phenotypes of the best found solutions
are illustrated in figure 5.
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Fig. 5. The best found solutions to the 3DMPR benchmarks problems A) the “Square”
problem (IGA) , B) the “Twist” problem (IGA) and C) the “Hub” problem (CCGA)

Fig. 6. The “Square” problem optimized by A) CCGA B) SGA C) RS

The CCGA implementing an absolute encoding (CCGA*) performs worse
than CCGA with relative encoding, and all GA’s performs significantly better
than the random search. The best solutions obtained by CCGA, SGA, and RS,
when applied to the “Square” problem, are illustrated in figure 6.

4 Discussion

The experiments showed that the evolutionary methods taking advantage of the
natural problem decomposition (IGA and CCGA) obtained the best solutions. A
common explanation to this is that the search space is reduced. We hypothesize,
however, that the main reason for the better performance is that by decompos-
ing the problem, a-priori knowledge is introduced which guides the search more
strictly to specific regions of the search space. This lets each population spe-
cialize to a smaller part of the problem. E.g. in the case of CCGA; N smaller,
incremental steps/decisions are taken during a single generation, introducing
more knowledge to the global search algorithm, compared to SGA.

Potter et al. concluded in [4] that CCGAs could improve search when applied
to independent parameters, but that it would be less suitable for interdependent
parameters. This is confirmed in table 3, which shows that CCGA was 51% bet-
ter than SGA on the “Hub” problem, consisting of rather independent pipelines,
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and 32% better than SGA on the “Twist” problem, consisting of highly inter-
dependent pipelines. However, CCGA was able to effectively converge to higher
fit solutions as compared to SGA on all problems.

The IGA approach demonstrated the best performance for the “Square” and
the “Twist” problem. We expected this approach to easier get stuck in local
minima since once a pipe is optimized it can never be revisited. However, several
parameter settings may influence the results, such as the sequence of pipes to
optimize as well as properties of the specific benchmark problems. We believe
further research is needed in order to determine the better approach.

It was found that the performance of the different approaches was largely
influenced by the mutation probabilities. The best results were achieved setting
pm = 0.025 per allele for the SGA, and pm = 0.01 for the CCGA and IGA.
In both cases, the settings actually correspond to statistically letting one allele
per individual per generation mutate so that a smallest possible change in each
individual from one generation to the next is provided.

The relative encoding performed better than the absolute encoding. In the rel-
ative encoding, a mutation early in the genome is likely to have dramatic change
on the phenotype, a feature similar to that of binary coding vs. gray coding [23].
On the other hand, as discussed in section 2.2, a relative encoding introduces a
smaller search space. Further research is needed in order to understand why the
relative encoding worked better, but we hypothesize that the reason is a better
exploration of the search space.

The use of non-coding alleles enables different pipe lengths to evolve from fixed
length genotypes. However, a maximum pipe length/complexity is set in advance,
determining the size of the genotypic search space, as well as the required time
for fitness evaluations. In problems where there is a large variation in the required
lengths of pipelines, the suggested approach may be less suitable, as the largest
distance defines the overall search space required by also the shorter pipes.

5 Conclusions and Further Work

Three different GAs; Standard GA, Cooperative Coevolutionary GA and Incre-
mental GA were applied to the Three-dimensional Multi-pipe Routing problem,
and their performances were compared. Variable length pipelines were built by
letting a virtual robot move in space according to evolved, fixed length command
lines and allocate pipe segments along its route. Two encodings; a relative and
an absolute encoding, were compared. It was found that the approaches taking
advantage of the natural problem decomposition, the Cooperative Coevolution-
ary GA and the Incremental GA, significantly outperformed the Standard GA,
and that the relative encoding gave the better results.

This work has mainly focused on evaluating and comparing evolutionary ap-
proaches, as well as establishing benchmark problems for future reference. The
representation and the operators were totally uninformed, in the sense that a
minimum amount of domain knowledge was implemented in the search. In fu-
ture work we will use an indirect approach, as suggested by Furuholmen et al.
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in [24], and [25], in order to learn heuristics from which to build pipelines, and
to compare the results using the suggested benchmark problems.

Further work should focus on increasing the realism of the application by de-
veloping more complex benchmark problems, by e.g. implementing different pipe
diameters, minimize pipe support cost by collocating similar pipelines, minimize
maintenance cost by providing accessibility, and addressing strain and thermal
expansion during operation. We also suggest implementing a multi objective
optimization approach, including the tradeoffs between the different objectives.
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Abstract. The point coverage, sink location, and data routing problems
are considered in an integrated way and two new mixed-integer program-
ming formulations are proposed. As these models are difficult to solve,
a nested solution procedure is proposed. The best sensor locations are
sought by tabu search in the upper level. For the fixed sensor locations,
the remaining problem of determining sink locations and data routes are
solved efficiently in the lower level. According to the experimental re-
sults performed on a number of test instances, the performance of the
nested solution approach is quite satisfactory, and the proposed heuris-
tic method brings considerable improvements over a two-stage solution
approach.

Keywords: Wireless sensor networks, mixed-integer linear program-
ming, data routing, point coverage, sink location.

1 Introduction

The increasing interest in Wireless Sensor Networks (WSN) is due to their us-
ability in a wide range of real life applications such as surveillance and border
protection, environmental and agricultural monitoring, factory automation, and
smart home design [1]. A typical sensor in a WSN has the ability to observe its
surroundings to collect data, and also contains an onboard radio to be used for
sending the collected data to a base-station either directly or over a multi-hop
path [2]. The energy source of a sensor is the limited battery power, and in
most of the cases the batteries are not replaceable after the deployment. Thus
it is desirable to design a WSN in such a way that its lifetime is as long as
possible.

WSN can be homogeneous consisting of identical sensors, or heterogenous
consisting of sensors with different technical characteristics and costs. A WSN
is deployed over an area of interest which is called the sensor field. The main
purpose of a WSN is to cover the sensor field considering certain objectives such
as maximizing network lifetime or maximizing coverage quality. This is called
the Coverage Problem (CP). As the number of sensors in a WSN increases, de-
ploying the sensors effectively becomes a significant problem. Various strategies
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84 E. Güney et al.

and techniques are surveyed in [2]. Also an interesting line of research emerged,
where the point coverage problem is formulated as a mixed-integer linear pro-
gram (MILP) [3–5].

In a WSN, each sensor collects and processes data and tries to send this infor-
mation to a central unit called sink or base station. Since communication ranges
of sensors are limited, the data packets usually have to follow multihop paths.
The Routing Problem (RP), which is concerned with determining the most en-
ergy efficient sensor-to-sink routes for a given set of sensor and sink locations,
is one of the fundamental problems in WSNs, because data transmission is an
energy consuming task. Although sink locations are either fixed or assumed to
be known a priori in some studies [6–8], the determination of optimal sink lo-
cations is also an important WSN design issue since the total amount of energy
necessary to send the data to a sink is a crucial factor that is affected by sink
locations. Hence determining optimum sink locations plays an important role
for maximizing the network lifetime by decreasing the consumption of the com-
munication energy [9]. Joint optimization of sink locations and routing has also
received considerable attention. Gandam et al. [10] mentions that using multiple
sinks and periodically changing their locations increases the network lifetime.
Efrat et al. [11] study joint sink location and routing for a WSN with a single
moving sink.

In this work we jointly solve the point coverage, sink location, and data routing
problems in heterogeneous sensor networks. We refer to this integrated problem
as the Coverage, Location and Routing Problem (CLRP). We propose two new
mathematical programming formulations which consider the three design issues
together under a single model. However, these formulations can be solved by
commercial solvers only for small-sized problems. Therefore, for medium and
large-sized problems we propose a nested heuristic solution procedure. In the
upper level of this approach, we try to find good sensor locations that satisfy
coverage and budget restrictions using Tabu Search. In the lower level, we solve
the remaining sink location and routing problem using efficient methods. To the
best of our knowledge, this approach is new in this research area.

The rest of the paper is organized as follows. In the next section, we introduce
the new formulations. Solution techniques for CLRP are explained in Section 3,
while experimental results are reported in Section 4. We conclude the paper in
Section 5.

2 Point Coverage, Sink Location and Data Routing
Problem

We propose two different mathematical programming formulations to solve the
CLRP. The first formulation represents a network design model where routing
energy is arc-based. That is, the energy spent on each arc is proportional to the
amount of data flow on that arc. The second formulation is a median model,
where the consumed energy is path-based where the sensor-to-sink assignment
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cost is equal to the least energy path connecting them. Before getting into the
details of the formulations, we mention the underlying scenario in which the
WSN operates.

CLRP is defined on a field N with |N | = N points. Theoretically, this field
may be in any dimension, but for the sake of simplicity, we consider a two di-
mensional field with N = m × n points. Any point of N is a candidate location
for a sensor or sink. There exist K different types of sensors, i.e., |K| = K.
Sensors of different types have a different cost, sensing and transmission range.
The amount of coverage at every point in the sensor field has to be above a
certain threshold value. The coverage amount at a point is determined by a
probability function of the distances between this point and sensor locations.
A common approach is setting the probability of detecting a target at distance
d from a sensor to e−αd, where parameter α determines the rate at which the
detection probability of a sensor decreases with the distance. Sensors belong-
ing to different types have different α values and the ones with higher α are of
lower quality. An important assumption is that each sensor’s coverage is inde-
pendent from the others, which helps to easily compute the cumulative coverage
amount [5].

The minimum required coverage at any point i is bi, and parameter ajik

denotes the contribution of a type-k sensor at point j to the coverage of point i.
Each sensor has a cost of hk and the available budget for sensor deployment is
equal to B. A sink can be installed at any point in the sensor field, and the total
number of sinks is fixed at p. We note that a sensor and a sink can be placed at
the same point. We define the following decision variables. Binary variables sjk

represent the locations of sensors, where sjk = 1 if a type-k sensor is located at
point j ∈ N , sjk = 0 otherwise. Binary zj variables denote the sink locations
where zj = 1 if a sink is installed at point j, it is zero otherwise.

Both models that will be developed use the parameters and decision variables
defined above. The difference arises with respect to variables used for data rout-
ing. In the first model, called the Single Commodity Flow Formulation of CLRP
(CLRP-1), sensor-to-sensor and sensor-to-sink arcs are defined to represent data
routes. The second formulation, referred to as the p-Median Formulation of CLRP
(CLRP-2), makes use of binary variables for the assignment of sensors to sinks and
another set of variables to represent the arcs used for each assignment.

2.1 Single Commodity Flow Formulation of CLRP

In CLRP-1 two sets of variables are defined to represent the flows. The flow
variables, xijkl , represent the amount of sensor-to-sensor flows between a type-k
sensor at point i and a type-l sensor at point j yijk denote sensor-to-sink flows
from a type-k sensor at point i to sink at point j. The flow costs cijk are computed
as γkdθ

ij , where dij is the distance between points i and j in the sensor field, γk

is the amount of energy spent for one unit of data flow by a type-k sensor, and
θ is the path loss factor which is usually assumed to be between 2 and 4 [12].
An MILP formulation for this model is given below.



86 E. Güney et al.

CLRP-1:

min
∑
i∈N

∑
k∈K

∑
j∈N
j 
=i

∑
l∈K

cijkxijkl +
∑
i∈N

∑
k∈K

∑
j∈N

cijkyijk (1)

s.t.
∑

j∈N

∑
k∈K

ajiksjk ≥ bi i ∈ N (2)∑
j∈N

∑
k∈K

hksjk ≤ B (3)∑
j∈N
j 
=i

∑
l∈K

xjilk +
∑
j∈N
j 
=i

yjil + sik

=
∑
j∈N

yijk +
∑
j∈I
j 
=i

∑
k∈K

xijkl i ∈ N , l ∈ K
(4)

∑
i∈I

∑
k∈K

yijk ≤ KNzj j ∈ N (5)∑
j∈N

zj = p (6)

xijkl , yijk ≥ 0 i, j ∈ N ; j �= i, k ∈ K, l ∈ K (7)

zj , sik ∈ {0, 1} i ∈ N , j ∈ N , k ∈ K (8)

The objective function (1) minimizes the sum of sensor-to-sensor and sensor-to-
sink routing costs. Coverage constraints (2) ensure the placement of a sufficient
number of sensors to satisfy the desired coverage quality for all points in the sen-
sor field. The budget constraint (3) limits the number of sensors to be installed.
Constraints (4) are the flow balance constraints, where the left-hand side of the
equation is the sum of three quantities to point i: total inflow from other sensors
to a type-k sensor at point i, the total inflow to the sink at point i, and the data
generated by a type-k sensor at point i. The right-hand side of the equation
is the sum of the total outflow to the sinks or to other sensors from point i.
Feasibility constraints (5) ensure that there cannot be a sensor-to-sink flow to
point j if there is no sink there. p-median constraint (6) determines the number
of sinks to be installed in the sensor field. Finally, constraints (7) and (8) are
the non-negativity and binary restrictions on the variables. Observe that there
are O(N2K2) variables O(NK) constraints in the formulation.

2.2 P -Median Formulation of CLRP (CLRP-2)

The formulation of CLRP-2 is in such a way that each type-k sensor at point i
is assigned to a sink at point j. We use binary variables xijk for this purpose.
To determine the routing cost of each assignment we need to know the arcs are
used in that assignment. Therefore, we introduce binary variable uijk

lm which is
one if arc (l, m) is used in the assignment of a type-k sensor at point i to a
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sink at point j. Similar to the previous formulation, clmk represents the flow
cost between points l and m when there is a type-k sensor at point l. The
mathematical model is given below.

CLRP-2:

min
∑
i∈N

∑
j∈N

∑
l∈N

∑
m∈N

∑
k∈K

clmkuijk
lm (9)

s.t.
∑
j∈N

∑
k∈K

ajiksjk ≥ bi i ∈ N (10)∑
k∈K

∑
j∈N

hksjk ≤ B (11)

∑
j∈N

xijk = sik i ∈ N , k ∈ K (12)

xijk ≤ zj i, j ∈ N , k ∈ K (13)∑
j∈N

zj = p i, j ∈ N , k ∈ K (14)

∑
m∈N

uijk
lm −

∑
m∈N

uijk
ml =

⎧⎨⎩
xijk , l = i
0, l ∈ N\{i, j}
−xijk, l = j

⎫⎬⎭
i, j, l ∈ N , i �= j, k ∈ K (15)∑

m∈N
uijk

lm ≤ slk i, j, l ∈ N , i �= j, k ∈ K (16)

uijk
lm , xijk ≥ 0 i, j, l, m ∈ N , k ∈ K (17)

sik, zi ∈ {0, 1} i ∈ N , k ∈ K (18)

The objective function (9) minimizes the sum of routing costs over all arcs.
Coverage constraints (10) and budget constraint (11) are the same as in the
previous formulation. Assignment constraints (12) ensure that each sensor is
assigned to only one sink. Feasibility constraints (13) prohibit any assignment if
there is no sink at point j. This is the stronger version of this constraint set. The
weaker version,

∑
i∈N

∑
k∈K xijk ≤ NKzj, has fewer constraints, but it yields

a lower linear programming (LP) relaxation. p-median constraint (14) sets the
number of sinks to be installed in the sensor field to p. Constraint set (15) are
the flow balance constraints. If there is a type-k sensor at point i and a sink
at point j, and there is an assignment xijk , then there must be a unit outflow
from the sensor and a unit inflow to the sink. For all other intermediate points,
the sum of the total inflow and outflow should be zero. Constraints (16) ensure
that an arc beginning at point l cannot be used if there is no sensor at that
point. Constraints (17) and (18) are non-negativity and binary restrictions on
the variables.

Although we define xijk and uijk
lm as binary variables, they can be relaxed

to be continuous nonnegative variables since they will be equal to either zero
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or one at optimality. Given fixed sensor locations, this formulation is reduced
to the classical p-median problem, which is known to be NP-hard. In CLRP-2
formulation, the number of variables is O(N4K) and the number of constraints
is O(N3K).

3 Solving CLRP-1 and CLRP-2

Available commercial solvers for MILP problems can find optimal solutions to
CLRP-1 and CLRP-2 for only small-sized instances. Since CLRP-1 has much
less variables and constraints than CLRP-2, we can obtain optimal solutions for
relatively larger problems in less time compared to CLRP-2 using commercial
solvers. Nevertheless, as the problem size increases, it becomes very hard to
obtain even good solutions in reasonable time for both models. As a result,
alternative techniques should be developed.

3.1 A Nested Solution Approach

We propose a nested solution approach to solve CLRP based on the formulation
of CLRP-2. In the upper level we place sensors in such a way that coverage and
budget restrictions are satisfied. In the lower level, for the fixed sensor locations
we solve the remaining sink location and routing problem (LRP-2).

Given a feasible sensor location set I ⊆ N with |I| = I sensors satisfying
coverage and budget requirements (i.e., sik are fixed), CLRP-2 can be re-written
in a less complicated fashion since we can drop variables sik as well as constraints
(10) and (11). The resulting formulation LRP-2 is given below:

LRP-2:

min
∑
i∈I

∑
k∈Si

∑
j∈N

gijkxijk (19)

s.t.
∑

j∈N
xijk = 1 i ∈ I, k ∈ Si (20)

xijk ≤ zj i ∈ I, k ∈ Si, j ∈ N (21)∑
j∈N

zj = p (22)

xijk , zj ∈ {0, 1} i ∈ I, k ∈ Si, j ∈ N (23)

When the sensor locations are known, we can execute a preprocessing step to
determine the shortest paths from each sensor to every candidate sink location.
The minimum costs obtained for these paths are designated as gijk. They are
simply the sum of the arc costs cijk on the shortest path between a type-k sensor
at point i and a sink at point j. They can be determined by solving a shortest
path problem for every i, k and j, which can effectively be carried out using a
many-to-many shortest path algorithm such as Floyd-Warshall’s algorithm [13].
In other words, in the preprocessing step we consider a complete graph with N
nodes over the sensor field N , and determine one-to-one shortest paths between
the I nodes of I and the N nodes of N before we solve LRP-2.
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3.2 Tabu Search to Determine Sensor Locations

Tabu Search (TS) is a metaheuristic algorithm that guides the local search to
prevent it from being trapped in premature local optima or cycling [14]. This
is achieved by prohibiting the moves that cause to return to previously visited
solutions throughout a certain number of iterations. We use TS to make a search
in the solution space of feasible sets of sensor locations and try to find one such
that when LRP-2 is solved with this set, a near-optimal solution is found for the
CLRP-2.

The TS heuristic begins with a feasible sensor set. The basic steps of the
algorithm is carried out as long as the termination criterion is not satisfied.
At each iteration of TS, r neighbors (feasible sensor sets) are generated from
the current solution by using various neighborhood structures (moves). While
generating these neighbors, those moves that are in the tabu list are not allowed
for certain number of iterations unless the corresponding objective value is better
than the objective value of the best solution obtained so far, i.e., the incumbent.

Initial Sensor Locations. We apply an easy and quick strategy to find the
initial sensor set. It is based on a greedy heuristic [5], at each step of which a
sensor is deployed at the minimum cost without violating the budget constraint
so as to reduce the maximum undercoverage level.

Moves of Tabu Search. At each step of TS we create candidate neighborhood
sets by using the following Add, Drop, and Swap moves: 1-Add, 2-Add, 1-Drop,
2-Drop, 1-Swap, and 2-Swap. We randomly add (drop) one and two sensors in
the 1-Add (1-Drop) and 2-Add (Drop) moves, respectively. In the 1-Swap (2-
Swap) move, on the other hand, we randomly drop one sensor (two sensors),
and then add one new sensor (two new sensors) so that the total number of
sensors is unchanged. If the new sensor set obtained by any move is feasible,
the objective value associated with it is computed by solving the corresponding
LRP-2 model. In a heterogeneous sensor network, where there exist sensors with
different sensing ranges and costs, the above-mentioned moves may cause an
infeasibility by violating the coverage and/or budget constraints. When such an
infeasibility is encountered, LRP-2 is not solved.

The total number of neighbors generated by all the moves is equal to r. In our
experiments we use different r values to work with different neighborhood size
that may effect the quality of the solutions obtained by the proposed heuristic.

Determining a Local Minimum. When we are given a feasible set of sensor
locations, we can easily reduce CLRP-2 to LRP-2, and evaluate the correspond-
ing objective value by solving it. TS starts with a feasible initial sensor set and
at each step a local search around this set is performed. We generate r neigh-
bors (sensor sets) by using the moves described above, and the objective value
of each of these r neighbors is computed by solving the corresponding LRP-2
which helps to determine the sink locations and data routes. If we find a bet-
ter solution than the incumbent, we update our best feasible sensor set. This
process continues until one of the two termination criteria is satisfied. These are
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the maximum number of total iterations and the maximum number of iterations
without any improvement in the best objective value.

While solving LRP-2 we employ two methods: Lagrangean Heuristic (LH) and
Nested-Dual Heuristic (NDH). Notice that these are two well-known efficient
methods to solve LRP-2 [15]. Since NDH is a faster algorithm compared to
LH, it can solve more instances of LRP-2 within the same time interval. As a
consequence, we increase the neighborhood size parameter r to 2r for NDH. Our
experimental analysis shows that increasing the neighborhood size considerably
improves the quality of the heuristic solution.

4 Experimental Results

In this section, we report the solution quality and CPU time requirement of our
heuristic method. We compare our heuristic results with the solutions generated
by a two-stage solution approach. In the first stage of this approach, we solve the
point coverage problem to find the optimal sensor locations. Given the sensor
locations, in the second stage we optimally solve the data routing and sink
location problem. The objective value provided by the two-stage approach is
denoted by z2S . It is noteworthy to mention that in both stages a commercial
solver is used. We measure the accuracy of the solutions by the percent deviations
from z2S according to the formula:

100 × |z2S − X |
z2S

, (24)

where X ∈ {zIP , zLH , zNDH . zIP is the objective value obtained by solving
CLRP-1 using a commercial solver. zLH and zNDH are the best objective values
of our nested approach, which use Lagrangean Heuristic (LH) and Nested Dual
Heuristic (NDH) to solve LRP-2, respectively. We also compare the average CPU
times of these three solution methods and that of the two-stage approach. We
use CPLEX 11.2 [16] integrated with GAMS 2.50 [17] algebraic modeling system
as our commercial solver.

Our test bed consists of 24 test problems which are generated for sensor fields
consisting of n × n square grids with n ∈ {5–15, 20}. This means that there
is a total of N = n2 points in the grid. We consider an open area without
many obstacles and choose a path loss factor of θ = 2. In addition, we use the
Euclidean distance as the distance measure. All experiments are carried out on
a Dell PowerEdge 2400 computer with two 64-bit, 2.66-GHz Xeon 5355 Quad
Core processors and 28GB memory.

We only have routing costs in the objective function and they are directly re-
lated to the energy spent per unit data flow. A sensor typically spends energy for
sensing, processing and transmission. We consider only the transmission energy
because it is on several magnitudes higher than the others. A typical AA type of
battery contains 2200 mAh of energy and to transmit one packet of data 10 nAh
energy is spent for unit distance [18]. Therefore, we assume connection weights
are simply equal to the energy spent per unit data flow, and take γ = 10 nAh. We
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consider two different types of sensors with different costs: h1 = 10andh2 = 20.
The coverage parameters are α1 = 0.5 and α2 = 0.4, and energy consumption
parameters are γ1 = 10 nAh and γ2 = 20 nAh for the two types of sensors. The
minimum coverage requirement threshold parameter bi = 0.99 and is equal for
all i.

There is no fixed cost associated with sink installation and the number of sinks
is an input parameter. First, we consider the case with one sink (p = 1). We solve
each test problem three times and report the best results in Table 1. The first
column includes the number of points in the sensor field N for each test problem.
The second column shows the amount of energy spent in the network that is
computed by the two-stage approach. The third column displays the objective
value obtained by solving the CLRP-2 formulation using CPLEX. We set a time
limit of four hours and CPLEX cannot find the optimal solutions within this
period for the problems that have N ≥ 100 points, which is represented by an
“*”. The fourth and fifth columns contain the results obtained by our nested
solution method when CLRP-2′ is solved by Lagrangean Heuristic and Nested
Dual Heuristic, respectively. The last three columns give the percent energy
improvements provided by our solution methods with respect to the two-stage
solution approach. On the average, 74.3%, 71.2% and 72.1% less energy is spent
for data routing when the WSN is operated using the deployment strategies
obtained by our methods. This implies that the lifetime of the WSN can be
increased considerably.

The results for p = 2 are displayed in Table 2. It can be observed that 69.9%,
65.5% and 68.8% less energy is spent on the average when the WSN is con-
structed by each of our solution methods, respectively. As is the case with p = 1,
CPLEX cannot find the optimal solutions within the allowed time of four hours
when solving CLRP-2 for problem instances with N ≥ 100 points. We compare
the CPU performances of the two versions of our TS heuristic (i.e., LH and

Table 1. Comparison of the Solution Methods when p = 1

Routing Energy (nAh) % Improvement
N z2S zIP zLH zNDH zIP zLH zNDH

25 480 200 200 200 58.3 58.3 58.3
36 1520 370 370 370 75.7 75.7 75.7
49 2230 500 610 570 77.6 72.6 74.4
64 3120 760 890 810 75.6 71.5 74.0
81 4680 1020 1110 1110 78.2 76.3 76.3

100* 6550 1440 1660 1590 78.0 74.7 75.7
121* 9350 1910 2050 2070 79.6 78.1 77.9
144* 9780 2510 2920 2640 74.3 70.1 73.0
169* 12680 3240 3520 3340 74.4 72.2 73.7
196* 16580 3960 4580 4640 76.1 72.4 72.0
225* 19000 47900 5720 5640 74.8 69.9 70.3
400* 38440 12110 14240 13990 68.5 63.0 63.6
Avg. 10367.5 2734.2 3154.2 3080.8 74.3 71.2 72.1
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Table 2. Comparison of the Solution Methods when p = 2

Routing Energy (nAh) % Improvement
N z2S zIP zLH zNDH zIP zLH zNDH

25 330 130 130 130 60.6 60.6 60.6
36 700 230 240 230 67.1 65.7 67.1
49 1160 330 380 330 71.6 67.2 71.6
64 1610 500 560 500 68.9 65.2 68.9
81 2420 670 870 760 72.3 64.0 68.6

100* 3560 960 1120 1050 73.0 68.5 70.5
121* 5010 1300 1520 1450 74.1 69.7 71.1
144* 6260 1670 2090 1880 73.3 66.6 70.0
169* 8040 2140 2580 2250 73.4 67.9 72.0
196* 9280 2610 3320 2810 71.9 64.2 69.7
225* 11500 3310 4120 3650 71.2 64.2 68.3
400* 27260 10660 10250 8850 60.9 62.4 67.5
Avg. 6427.5 2042.5 2265.0 1990.8 69.9 65.5 68.8

Table 3. Comparison of CPU Times

p = 1 p = 2
N 2S IP LH NDH 2S IP LH NDH
25 1.3 2.2 54.0 21.0 1.8 13.2 44.7 11.1
36 142 7.8 91.9 46.5 243.0 168.8 82.7 25.3
49 4372 31.5 119.3 88.9 6118.0 407.8 188.2 52.6
64 18000 341.2 182.1 161.1 14400.0 1443.5 339.6 131.0
81 18000 344.4 391.0 323.2 14400.0 3694.7 450.1 262.5
100 18000 14400.0 979.2 874.0 14400.0 14400.0 673.4 547.6
121 18000 14400.0 1330.6 1736.7 14400.0 14400.0 1252.5 741.5
144 18000 14400.0 1783.4 3667.5 14400.0 14400.0 1326.6 1263.6
169 18000 14400.0 3994.9 8556.2 14400.0 14400.0 2369.7 2463.0
196 18000 14400.0 5520.2 14400.0 14400.0 14400.0 3730.0 3653.7
225 18000 14400.0 7756.8 14400.0 14400.0 14400.0 4503.8 4546.0
400 18000 14400.0 14400.0 14400.0 14400.0 14400.0 14400.0 14400.0
Avg. 11176.3 8460.6 3050.3 4889.6 11330.2 8877.3 2446.8 2341.5

NDH) with that of the two-stage solution approach. The results are displayed
in Table 3. For both p = 1 and p = 2, LH and NDH are faster than the other
two methods for most of the instances. The exceptions are the smallest three
problems with N = 25, 36, 49 for p = 1 and the smallest two problems with
N = 25, 36 for p = 2. Solving CLRP-2 as an MILP by CPLEX requires on the
average three to four times as much time as needed by NDH and LH.

When we compare NDH and LH, NDH performs better especially when p = 2.
This behavior is expected because of two reasons. First, NDH is a specially tai-
lored method to solve the p-median type of problems. Second, the neighborhood
size of NDH is twice as large as that of LH.
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Table 4. Effect of bi on the Performance of the Methods

bi = 0.99 bi = 0.90
N 2S IP LH NDH 2S IP LH NDH
25 480 58.3 58.3 58.3 340 82.4 82.4 82.4
36 1520 75.7 75.7 75.7 790 82.3 82.3 82.3
49 2230 77.6 72.6 74.4 980 83.7 83.7 83.7
64 3120 75.6 71.5 74.0 1320 83.3 81.8 82.6
81 4680 78.2 76.3 76.3 1860 81.2 79.6 80.6
100 6550 78.0 74.7 75.7 3520 82.7 81.3 82.1
Avg. 73.9 71.5 72.4 82.6 81.8 82.3

Finally, we examine the effect of the deployment density of the sensors on
the total energy spent. This is achieved by changing the minimum coverage
requirement bi. In the new set of experiments, we reduce bi from 0.99 to 0.90,
and compare the results with those obtained with bi = 0.99 when p = 1. As can
be observed in Table 4, the total energy spent decreases when bi = 0.90 since the
number of deployed sensors is reduced. According to the preliminary results, the
performance of our solution method has increased, which implies that solving
CLRP in an integrated way in WSNs with a smaller density has more potential
for increasing the network lifetime.

5 Conclusions

In this work, we study the joint optimization of point coverage, sink location,
and data routing problems in wireless sensor networks. Two new mixed-integer
linear programming formulations are proposed. The first one (CLRP-1) involves
data routing variables defined on arcs, while the second one (CLRP-2) uses data
routing variables based on sensor-to-sink assignments. As the solution of these
formulations using commercial solvers is inefficient for even small-sized problems,
we develop a nested solution procedure based on Tabu search metaheuristic using
the CLRP-2 formulation. The best sensor locations are sought by tabu search,
and for the fixed locations, a reduced model of CLRP-2 is solved by Lagrangean
Heuristic or Nested Dual Heuristic to give the sink locations and data routes.
Experimental results show that the nested heuristic can produce better solutions
than a two-stage solution approach within the same amount of computation time.
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Abstract. Instances of constraint satisfaction problems can be solved
efficiently if they are representable as a tree decomposition of small
width. Unfortunately, the task of finding a decomposition of minimum
width is NP-complete itself. Therefore, several heuristic and metaheuris-
tic methods have been developed for this problem. In this paper we
investigate the application of different variants of Ant Colony Optimiza-
tion algorithms for the generation of tree decompositions. Furthermore,
we extend these implementations with two local search methods and we
compare two heuristics that guide the ACO algorithms. Our computa-
tional results for selected instances of the DIMACS graph coloring library
show that the ACO metaheuristic gives results comparable to those of
other decomposition methods such as branch and bound and tabu search
for many problem instances. One of the proposed algorithms was even
able to improve the best known upper bound for one problem instance.
Nonetheless, for some larger problems the best existing methods outper-
form our algorithms.

1 Introduction

Many constraint satisfaction problems (CSPs) can be solved efficiently if they
have a tree decomposition of small width. Each tree decomposition has a charac-
teristic called width and each CSP problem can be transformed to many different
valid decompositions. The smaller a decomposition’s width the faster the solu-
tion to the problem can be computed.

To illustrate the application of tree decomposition for solving CSP problems
suppose that we have to find solutions for the the graph coloring problem (GCP),
which is a well known CSP in the literature. For this problem we have to find a
coloring of vertices of a given graph in such a way that no two vertices connected
by an edge share the same color. An instance of the GCP is shown on the left
side of Figure 1. The task is now to find a valid coloring just using the colors
red, green, and blue.

One naive approach to solve this problem might be to try out all possible
combinations of variable assignments and see which ones are valid. There are dn

possible combinations in general where d is the number of available colors and
n is the number of vertices.

P. Cowling and P. Merz (Eds.): EvoCOP 2010, LNCS 6022, pp. 95–106, 2010.
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Fig. 1. Instance of the graph coloring problem and one possible tree decomposition

To solve this problem by tree decomposition, we should first generate the
tree decompositon of the corrosponding problem graph. The concept of tree
decomposition has been introduced first by Robertson and Seymour [14]:

Definition 1. (see [14], [10]) Let G = (V, E) be a graph. A tree decomposition
of G is a pair (T, χ), where T = (I, F ) is a tree with node set I and edge set F ,
and χ = {χi : i ∈ I} is a family of subsets of V , one for each node of T , such
that

1.
⋃

i∈I χi = V ,
2. for every edge (v, w) ∈ E, there is an i ∈ I with v ∈ χi and w ∈ χi, and
3. for all i, j, k ∈ I, if j is on the path from i to k in T , then χi ∩ χk ⊆ χj.

The width of a tree decomposition is maxi∈I |χi| − 1. The treewidth of a graph
G, denoted by tw(G), is the minimum width over all possible tree decompositions
of G.

One possible tree decomposition for our graph coloring problem is shown on the
right side of Figure 1. This tree decomposition fulfills all conditions of the previ-
ous definition. If we want to solve the graph coloring problem based on this tree
decomposition, we can start out by solving the subproblems given by each vertex
in the tree decomposition. Using our naive approach of trying out all possible
combinations of variable assignments we generate 33 (27) different solution can-
didates for the vertex containing A, B, and C. Because of the constraints A �= B,
A �= C, and B �= C only six of them are valid. For the subproblem containing
the vertices C and D we generate 32 (9) solution candidates and rule out three
of them because of the constraint C �= D. We can now get all solutions to the
whole problem by joining the subproblem solutions. Therefore, we will take a
look at the variables both subproblems have in common. In this case, that is the
variable C. Each solution for the subproblem A, B, C is joined with the solutions
for the subproblem C, D sharing the same color for the vertex C. By using the
tree decomposition we had to generate 36 combinations of variable assignments
in order to determine all solutions compared to the 81 combinations we had to
generate without the tree decomposition. This difference increases very quickly
with the size of the graph coloring problem and constraint satisfaction problems
in general. The smaller the subproblems in the tree decomposition the more effi-
cient we can solve a particular problem. This is why we are interested in finding
tree decompositions of small width.
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Tree decompositions can be generated from a given graph by successive elim-
ination of graph vertices. Each time a vertex is eliminated a new tree node is
created that contains the eliminated vertex and its neighbors. Additionally, the
neighbors of the eliminated node are connected in the remaining graph. It is
guaranteed that there is a so-called optimal elimination ordering that yields the
tree decomposition with the minimum width of all valid tree decompositions for
the given constraint graph. Therefore, one way to generate a tree decomposi-
tion of small width is to search for a good ordering of the vertices of the graph.
Unfortunately, there are n! different elimination orderings. For that reason not
only exact methods but also many approximation algorithms have been applied
to the problem of finding tree decompositions of small width.

A complete algorithm for tree decompositions is proposed by Gogate and
Dechter [7]. This algorithm applies different pruning techniques, and provides
anytime solutions, which are good upper bounds for tree decompositions. Heuris-
tic techniques for the generation of tree decompositions with small width are
mainly based on searching for a good elimination ordering of graph nodes. Sev-
eral heuristics that run in polynomial time have been proposed for finding a
good elimination ordering of nodes. These heuristics select the ordering of nodes
based on different criteria, such as the degree of the nodes (min degree heuristic),
the number of edges to be added to make the node simplicial (min-fill heuristic),
connectivity with the vertices previously selected in the elimination ordering
(Maximum Cardinality Search (MCS) [17]) etc. For other types of heuristics
based on the elimination ordering of nodes see [10].

Metaheuristic approaches have also been used for tree decompositions. Simu-
lated annealing was applied by Kjaerulff [9]. Applications of genetic algorithms
for tree decompositions are presented in [11] and [13]. A tabu search approach
for generation of the tree decompositions has been proposed by Clautiaux et al
[2]. The authors reported good results for DIMACS vertex coloring instances.
Their approach improved the previous results in literature for 53% of instances.
Some of the results in [2] have been further improved by Gogate and Dechter [7].
Upper bounds for several other problems have been improved by iterated local
search algorithm [12].

Ant Colony Optimization (ACO) has not been applied yet for tree decompo-
sitions. In this paper we investigate the following variants of ACO algorithms for
finding tree decompositions of small width: Simple Ant System ([3], [6]), Elitist
Ant System ([3], [6]), Rank-Based Ant System [1], Max-Min Ant System ([15],
[16]), and Ant Colony System [4]. We propose two different pheromone update
strategies and implement two stagnation measures that indicate the degree of
diversity of the solutions constructed by the ants. Furthermore, we implement
two constructive heuristics (Min-Degree, Min-Fill) that can be incorporated al-
ternatively into every ACO variant as a guiding function and investigated the
combination of ACO with two existing local search methods: Hill Climbing and
Iterated Local Search [12]. Finally we compare the results achieved by Ant
Colony System for 62 DIMACS graph coloring instances with the results of
other state of the art heuristic and exact algorithms.
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2 Generation of Tree Decompositions by Ant Colony
Optimization

Ant Colony Optimization (ACO) is a population-based metaheuristic introduced
by Marco Dorigo [3] in 1992. As the name suggests the technique was inspired by
the behaviour of “real” ants. Ant colonies are able to find the shortest path be-
tween their nest and a food source just by depositing and reacting to pheromones
while they are exploring their environment. The basic principles driving this
system can also be applied to many combinatorial optimization problems. For
a detailed description of different ACO algorithms and their applications the
reader is referred to the book “Ant Colony Optimization” [5] written by Dorigo
and Stützle.

In this section we propose the application of ACO to the problem of finding
tree decompositions of small width. We have implemented different ACO vari-
ants and combined these variants with different guiding heuristics, local search
methods and pheromone update strategies that we will discuss after giving an
explanation of the basic structure of the algorithm.

A simple constraint graph and the corresponding ACO construction tree are
shown in Figure 2. The construction tree can be obtained from the constraint
graph as follows: (1) Create a root node s that will be the starting point of every
ant in the colony; (2) For every vertex of the constraint graph append a child
node to the root node s; (3) To every leaf node append a child node for every
vertex of the constraint graph that is neither represented by the leaf node itself
nor by an ancestor of this node; (4) Repeat step 3 until there are no nodes left
to append.

Fig. 2. Constraint graph G and the ACO construction tree

All possible elimination orderings for the constraint graph can now be repre-
sented as a path from the root node s to one of the leaf nodes in the construction
tree. Therefore each of the ants finds such a path and at each node on its way
the ant decides where to move next probabilistically based on the pheromone
trails and a heuristic value both associated with the outgoing edges.
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2.1 Pheromone Trails

A pheromone trail constitutes the desirability to eliminate a certain vertex x
after another vertex y. The more pheromone is located on a trail the more likely
the corresponding vertex will be chosen by the ant. A way to represent the
pheromone trails of our construction tree is the matrix as shown below:

T =

⎛⎜⎜⎝
τx1x1 τx1x2 τx1x3

τx2x1 τx2x2 τx2x3

τx3x1 τx3x2 τx3x3

τsx1 τsx2 τsx3

⎞⎟⎟⎠ (1)

Each row contains the amounts of pheromone located on the trails connecting
a certain node with all the other nodes. For example, the first row contains the
pheromone levels related to the node x1 describing the desirability of eliminating
x2 (τx1x2) respectively x3 (τx1x3) immediately after x1. The last row is dedicated
to the root node s that is the starting point for every ant.

All pheromone trails are initialized to the same value in the beginning of the
algorithm that is computed according to the following equation:

τij =
m

Wη
∀τij ∈ T (2)

Wη is the width of the decomposition obtained using the guiding heuristic (min-
degree or min-fill) while m is the size of the ant colony.

2.2 Heuristic Information

The ants make their decision which vertex to eliminate next not solely based
on the pheromone matrix but also consider a guiding heuristic. We have im-
plemented two different heuristics. In order to compute both of these heuristic
values we need to maintain a separate graph in addition to the construction tree.
We will call this graph the elimination graph because this graph is obtained from
the original constraint graph by successively eliminating the vertices traversed
by the ant in the construction tree. Further, we will denote this graph as E(G, σ)
where G is the original constraint graph and σ is a partial elimination ordering.

Min-Degree. The value for the min-degree heuristic is computed according to
this equation:

ηij =
1

d(j, E(G, σ)) + 1
(3)

The expression d(j, E(G, σ) represents the degree of vertex j in the elimination
graph E(G, σ).

Min-Fill. The value for the min-fill heuristic is computed according to this
equation:

ηij =
1

f(j, E(G, σ)) + 1
(4)

The expression f(j, E(G, σ) represents the number of edges that would be added
to the elimination graph due to the elimination of vertex j.
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2.3 Probabilistic Vertex Elimination

We will now take a more detailed look on how exactly the ants move from node
to node on the construction tree. All of the ACO variants with the exception
of Ant Colony System use Equation 5 alone to compute the probability pij of
moving from a node i to another node j where α and β are parameters that
can be passed to the algorithm in order to weight the pheromone trails and the
heuristic values.

pij =
[τij ]

α [ηij ]
β∑

l∈E(G,σ)

[τil]
α [ηil]

β
, if j ∈ E(G, σ) (5)

This probability is computed for each vertex left in the elimination graph. Ac-
cording to these probabilities the ant decides which vertex to eliminate next.

Ant Colony System introduces an additional parameter q0 that constitutes
the probability that the ant moves to the “best” node instead of making a
probabilistic decision:

j =
{

arg maxl∈E(G,σ){[τil]α[ηil]β}, if q ≤ q0;
Equation 5, otherwise; (6)

If a randomly generated number q in the interval of [0, 1] is less or equal q0 then
the ant moves to the node that otherwise would have the highest probability to
be chosen. Ties are broken randomly.

Ant Colony System also introduces a so-called local pheromone update. Af-
ter an ant has constructed its solution it removes pheromone from the trails
belonging to its solution according to the following equation whereas ξ is a
variant-specific parameter and τ0 is initial amount of pheromone:

τij ← (1 − ξ)τij + ξτ0 (7)

The motivation for this is to diversify the search so that subsequent ants will
more likely choose other branches of the construction tree.

2.4 Pheromone Update

After each of the ants has constructed an elimination ordering (that optionally
has been improved by a local search thereafter) the values in the pheromone
matrix are updated reflecting the quality of the constructed solutions which will
enable the subsequent ants in the following iteration to make decisions in a more
informed manner. Moreover, pheromone is removed from the pheromone trails so
poor solutions can be forgotten that might have been the best known solutions
in earlier iterations of the algorithm.

Pheromone Deposition. Given an elimination ordering σk that was con-
structed by an ant k we need to determine for each subsequent elimination (i, j)
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in σk the amount of pheromone that will be deposited on the corresponding
pheromone trail τij . We implemented an edge-independent and an edge-specific
pheromone update strategy. The first adds the same amount of pheromone to all
trails belonging to σk while the latter adds more or less pheromone to individual
trails depending on the quality of a certain elimination.

The edge-independent pheromone update strategy adds the reciprocal value
of the tree decomposition’s width to all pheromone trails that are part of σk:

Δτk
ij =

{ 1
W (σk) , if (i, j) belongs to σk;

0, otherwise;
(8)

In contrast to the edge-independent update strategy the edge-specific update
strategy deposits different amounts of pheromone onto the trails belonging to
the same elimination ordering:

Δτk
ij =

{ 1
d(j,E(G,σkj))/|E(G,σkj)| · 1

W (σk) , if (i, j) belongs to σk;
0, otherwise;

(9)

This amount depends on the ratio between the degree of the vertex j when it
was eliminated d(j, E(G, σkj)) and the number of vertices left in the elimination
graph |E(G, σkj)| at that time.1

Which ants are allowed to deposit pheromone and how this pheromone is
weighted varies between the different ACO variants. The reader is referred to [5]
for description of these variants.

Pheromone Evaporation. After the pheromone has been added to the trails
a certain amount of pheromone is removed. This amount is determined based
on the pheromone evaporation rate ρ:

τij = (1 − ρ)τij ∀τij ∈ T (10)

While all the other ACO variants remove pheromone from every pheromone
trail Ant Colony System only removes pheromone from the trails belonging to
the best known elimination ordering σbs:

τij = (1 − ρ)τij ∀(i, j) ∈ σbs (11)

2.5 Local Search

All ACO variants can optionally be extended with one of two local search meth-
ods we implemented for tree decompositions. Both of these algorithms try to
improve the quality of the solutions that were constructed by the ant colony
by changing the positions of certain vertices in the elimination orderings. We
used two local search techniques in this paper: an hill climbing algorithm and
an iterated local search similar to the algorithm proposed by Musliu [12]. Both
of these algorithms are discussed in detail in Section 5.4 of the master’s thesis
[8] this paper is based on.
1 σkj is the partial elimination ordering that is obtained from σk by omitting j and

all vertices that are eliminated after j.
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2.6 Stagnation Measures

If the distribution of the pheromone on the trails becomes too unbalanced due to
the pheromone depositions, the ants will generate very similar solutions causing
the search to stagnate. In order to enable the algorithm to detect such situa-
tions we have implemented two stagnation measures (Variation Coefficient and
λ Branching Factor) proposed by Dorigo and Stützle [5] that indicate how explo-
rative the search behaviour of the ants is. A detailed description of stagnation
measures is given in [8] (page 67).

3 Computational Results

In order to evaluate and compare the performance of the different ACO algo-
rithms, a series of experiments were performed. All of these experiments were
performed for the ten representative instances of the DIMACS Graph Coloring
Challenge.

We experimented with variant-independent parameters and parameters of
each ACO variant. After setting of all parameters to values that were obtained
through trial and error the following experiments were performed (time-limit of
200 seconds was set for each run):

– [(α, β), . . .] = [(1, 10), (2, 20), (3, 30), (5, 40), (2, 50)]: the combination of α =
2 and β = 50 outperformed the other combinations (considering best average
width over five runs) in 27 of 50 experiments.

– Guiding Heuristics: we compared min-fill and min-degree heuristics. The re-
sults clearly indicated that the min-fill heuristic gives better results. Nonethe-
less, the min-degree heuristic is much more time-efficient. For instance, the
ACO algorithms were only able to complete one iteration within 200 seconds
for the problem instance le450 5a using the min-fill heuristic while 144 itera-
tions could be performed using the min-degree heuristic. This is why we de-
cided to use the min-degree heuristic for all remaining experiments since we
would otherwise be unable to investigate the impact of the pheromone trails
on the search behaviour of the ants due to the small number of iterations.

– Number of ants: 5, 10, 20, 50, 100. Best results were obtained by using ant
colonies consisting of 100 ants for Simple and Elitist Ant System (SES, EAS),
50 ants for Rank-Based Ant System(RAS), 20 ants for Max-Min Ant System
(MAS) and five ants for Ant Colony System (ACS).

– Weight e for Elitist Ant System: 2, 4, 6 and 10. Elitist weight of 10 gave best
results.

– Number of ants w to deposit pheromone in every iteration in Rank-Based
Ant System: 3, 5, 7 and 10. Best results were obtained with w = 10.

– Max-Min Ant System: [(a, f), . . .] = [(10, 2), (3, 5), (10, 5), (3, 2)]. (3, 5) pa-
rameter combination gave best results.

– Ant Colony System: [(q0, ξ), . . .]=[(0.1, 0.3), (0.5, 0.05), (0.1, 0.05), (0.5, 0.3)].
(0.5, 0.3) gives the best results among all of these combinations.
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Note that we initialize τ0 the pheromone trails to m/Wη because according to [5]
it is a good heuristic to initialize the pheromone trails to a value that is slightly
higher than the expected amount of pheromone deposited by the ants in one
iteration. Additionally we set the pheromone evaporation rate ρ to 0.1 for our
experiments because that also worked well for the travelling salesman problem
according to [5].

After we had found good parameter settings for each ACO variant we were
now ready to compare them. Therefore, five runs were performed by each variant
for every instance of the experimental set with α = 2, β = 50, ρ = 0.1 and a time-
limit of 500 seconds. Min-degree was used as the guiding heuristic. Additionally,
the parameter settings for each variant were applied based on the results of the
prior experiments.

Table 1. Comparison of minimum and average widths achieved by all ACO variants
over 5 runs. Given in bold are those values that represent single-best solutions among
all variants.

Instance Minimum Width Average Width
SAS EAS RAS MAS ACS SAS EAS RAS MAS ACS

DSJC125.1 65 65 65 64 63 65.6 65.4 65.4 64 63.8
games120 37 38 38 37 37 38.8 38.8 38.6 37.4 37
le450 5a 311 312 303 308 309 313.6 314 310.2 312.8 311.4
le450 5b 313 314 311 307 312 313.6 315.8 314.8 313.2 313.4
miles500 25 25 25 25 25 25.4 25.2 25.8 25 25.2
myciel6 35 35 35 35 35 35 35 35 35 35
myciel7 68 68 69 68 69 68.8 68.8 69 68.8 69

queen12 12 114 113 112 112 111 114.6 114 114.4 113.2 112
queen8 8 48 48 48 47 47 48 48 48.2 47 47
school1 237 231 232 228 232 238 235.2 235.4 233.4 233.2

Table 1 lists the minimum and the average width achieved by each ACO vari-
ant for each problem instance. According to these results Max-Min Ant System
and Ant Colony System performed slightly better than the other variants. Only
once, for the problem instance le450 5a, Rank-Based Ant System was able to
achieve better results than Max-Min Ant System and Ant Colony System. For
all other problem instances one of these two variants delivered the best minimum
and average width. Since Ant Colony System more often gave the single best
solution among all variants, we decided to focus our remaining investigations on
this ACO variant.

In Section 2.4 we presented two different pheromone update strategies. In
order to compare them we have applied Ant Colony System with each of them.
The edge-specific pheromone update strategy gave slightly better results than
the edge-independent strategy.

Our final experiments dealt with the combination of Ant Colony System with
the iterated local search and the hill climbing algorithm. Ant Colony System
in combination with the iterated local search clearly outperformed the hybrid
algorithm consisting of Ant Colony System and the hill climbing local search.
ACS+HC was only able to give better results than ACS+ILS for two out of the
ten problem instances (see page 91 in [8]).
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4 Comparison with the Results in the Literature

Based on the results of our experiments we compared our Ant Colony System
(ACS) variants with the results from the literature for 62 well known DIMACS
graph coloring instances. All results reported in this paper have been obtained
on a machine equipped with 48GB of memory and two Intel(R) Xeon(R) CPUs
(E5345) having a clock rate of 2.33GHz. We performed 10 runs for each exam-
ple with our ACS and ACS+ILS algorithms. Each run was performed with a
time-limit of 1000 seconds. The best results from a set of algorithms proposed
by Koster, Bodlaender and Hoesel in [10] (KBH) were obtained with a Pentium
3 800MHz processor. Results of Tabu Search (TabuS) algorithm proposed in [2]
were obtained with a Pentium 3 1 GHz processor. Experiments for the branch
and bound (BB) algorithm presented by Gogate and Dechter in [7] were per-
formed on a Pentium 4 2.4 GHz processor using 2 GB of memory. The results
with the genetic algorithm (GA) in [13] were obtained in a Intel(R) Xeon(TM)
3.2 GHz processor and 4 GB of memory. Results of iterative heuristic algorithm
(IHA) [12] were obtained with a Pentium 4 processor 3 GHz and 1 GB of RAM.

Figure 3 visualizes for how many problem instances ACS respectively ACS+ILS
gave a better, equal or worse minimum width compared (regarding the best
found solution) with each of the other decomposition methods . As can be seen,
both algorithms outperformed KBH on more instances than vice versa but only
ACS+ILS also managed to outperform BB.

Fig. 3. Comparison of ACO algorithms with other decomposition methods

Algorithms GA, IHA and TabuS outperform our algorithms considering the
number of found better upper bounds. However, the time limit of our algorithm
was set to 1000 seconds, whereas other algorithms were executed for much longer
time. Unfortunately, due to the space limitation of this paper we can not present
these results here, but the reader is referred to [12] (this paper presents the
execution times of KBH, BB, TabuS, GA and IHA). Based on these results
it is clear that for large examples the execution time of these algorithms was
much longer compare to our algorithms. Note that our ACS+ILS was able to
find an improved upper bound of 30 for the problem instance homer.col. By
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applying the ACS+ILS algorithm with the min-fill heuristic we could further
improve the upper bound for this instance to 29. Considering comparison of
ACS and ACS+ILS, for 25 problem instances ACS+ILS gave a better minimum
width than ACS on its own. ACS was never able to outperform ACS+ILS with
the exception of the problem instances inithx.i.2 and inithx.i.3 for which ACS
achieved a better average width than ACS+ILS.

5 Conclusions

In this paper we have applied the ant colony optimization metaheuristic to the
problem of finding tree decomposition of small width. Our experiments suggested
that the ACO variants Max-Min Ant System and Ant Colony System give the
best results for tree decompositions. We have applied Ant Colony System with
and without the iterated local search to 62 benchmark graphs. The hybrid algo-
rithm turned out to give better results than Ant Colony System on its own. It
could improve the best known upper bound of the problem instance homer.col
from 31 to 29. For 28 instances the algorithm was able to return a width equal to
the best known upper bound. Nevertheless, especially for more complex problem
instances both algorithms gave worse results than the best methods in literature.
However, the time limit of our algorithm was set to 1000 seconds, whereas other
algorithms were executed for longer time.

Subject of future research is the investigation of self-adaptive parameter set-
tings. The algorithm could make use of the stagnation measures in order to
adjust parameters such as the evaporation rate ρ autonomously. Another viable
extension worth of further investigation is the application of ant colonies consist-
ing of a number of ants proportional to the number of vertices in the constraint
graph. That possibly could help to improve the quality of the pheromone updates
and therefore could also improve the convergence behaviour of the algorithm.

Acknowledgments. The research herein is partially conducted within the com-
petence network Softnet Austria (http://www.soft-net.at/) and funded by
the Austrian Federal Ministry of Economics (bm:wa), the province of Styria,
the Steirische Wirtschaftsförderungsgesellschaft mbH. (SFG), and the city of
Vienna in terms of the center for innovation and technology (ZIT). Additionally,
this work was partially supported by the Austrian Science Fund (FWF), project
P20704-N18.

References

1. Bullnheimer, B., Hartl, R.F., Strauss, C.: A New Rank Based Version of the Ant
System: A Computational Study. Central European Journal for Operations Re-
search and Economics 7(1), 25–38 (1999)

2. Clautiaux, F., Moukrim, A., Négre, S., Carlier, J.: Heuristic and meta-heurisistic
methods for computing graph treewidth. RAIRO Oper. Res. 38, 13–26 (2004)

3. Dorigo, M.: Optimization, Learning and Natural Algorithms [in Italian]. PhD the-
sis, Dipartimento die Elettronica, Politecnico di Milano, Milan (1992)

http://www.soft-net.at/


106 T. Hammerl and N. Musliu

4. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation 1(1), 53–66 (1997)
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Abstract. This paper addresses the unrelated parallel machine problem with 
machine and job sequence dependent setup. In this problem, the amount of the 
setup time does not only depend on the machine and job sequence, but also on a 
number of resources assigned, which can vary between a minimum and a 
maximum. The goal is to find a schedule that minimizes the linear combination 
of the total resources assigned and the total completion time. The problem is 
NP-hard in the strong sense. The NP-hardness of the problem motivates us to 
develop a new Iterated Local Search (ILS) heuristic to obtain near-optimal solu-
tions. The heuristic uses an intensification strategy based on the Path Relinking 
technique which generates new solutions by exploring trajectories that connect 
high-quality solutions. Computational tests are carried out on a set of bench-
mark instances and the results obtained by the proposed ILS improve the best 
known results from the literature by a significant margin. 

Keywords: Metaheuristics, Parallel Machine Scheduling, Setup Time, ILS, 
Path Relinking. 

1   Introduction 

In today's complex manufacturing setting, with multiple lines of products, each re-
quiring many different steps and machines for completion, the decision maker for the 
manufacturing plant must find a way to successfully manage resources in order to 
produce products in the most efficient way possible. The decision maker needs to 
design a production schedule that promotes on-time delivery, and minimizes objec-
tives such as the flow time of a product. Unrelated parallel machines can be character-
ized as machines that perform the same function but have different capabilities or 
capacities. A company may invest in similar machines that have different capabilities, 
taking into consideration the capital cost, operation cost and variability in demand. A 
bank of machines in parallel is a situation that is important from both a theoretical and 
a practical point of view [9]. From a theoretical point of view, it is a generalization of 
the single machine and a special case of the flexible flow shop. From a practical point 
of view, it is important because the occurrence of resources in parallel is common in 
the real world. Also, techniques for studying machines in parallel are often used in 
decomposition procedures for multistage systems. 
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This paper addresses the problem of scheduling jobs in unrelated parallel machines 
with sequence dependent setup times. In this problem (denoted by PMSDST), the 
processing time of each job depends on the machine to which it is assigned and setup 
times are incurred on the machines after having processed a job i and before process-
ing other job j. A setup is a non-productive period of time which usually models op-
erations to be carried out on machines after processing a job to leave them ready for 
processing the next job in the sequence. Setup times frequently represent cleaning 
production lines and/or adding/removing elements from a line when changing from 
one type of job another. The goal of the problem is to find a schedule that minimizes 
some criteria, such as makespan, total flow time and total tardiness relative to job due 
dates. 

The literature on unrelated parallel machine scheduling with sequence dependent 
setup times is quite limited. In [5], a list scheduling heuristic to construct an initial 
solution is developed, followed by a local search involving pair wise exchange of jobs 
to minimize the total tardiness. [14] proposes a mixed integer programming (MIP) 
model for earliness/tardiness objective. The minimization of total weighted flowtime 
is studied in [13]. In [6] is proposed a simulated annealing heuristic to minimize total 
tardiness. Kim and Shin [7] propose an extension of the ATCS (apparent tardiness 
cost with setups) dispatching rule in order to minimize the maximum lateness. [3] 
applies a genetic algorithm for minimizing the makespan, total weighted completion 
time and total weighted tardiness. More recently, [2] studied a problem of optimal 
scheduling and lot-sizing a number of products on unrelated parallel machines to 
satisfy given demands, and [10] proposed several GRASP-like heuristics for the 
makespan criterion. 

In this work we study the PMSDST problem considering machine setup times that 
depend on available resources. The new characteristic of this problem is that the setup 
time does not only depend on the machine and job sequence, but also on the number 
of resources assigned, which can vary between a minimum and a maximum. The 
setup times can be reduced or extended according to the number of resources assigned 
to carry out the setup operations. The scheduling problem that results from the addi-
tion of resource-assignable setups was formulated by Ruiz and Andrés [11] and it is 
denoted by PMRASDST. In [11] are presented a MIP model and 14 fast heuristics 
based on three dispatching rules. Ruiz and Andrés carry out careful and comprehen-
sive statistical analyses to study what characteristics of the problem affect the MIP 
model performance and they also study the effectiveness of the different heuristics. 
The best results obtained by the 14 heuristics are available. 

To solve the PMRASDST problem, we propose an Iterated Local Search (ILS) 
heuristic with path relinking technique as an intensification strategy. ILS iteratively 
applies local search to perturbations of the current search point, leading to a random-
ized walk in the space of local optima. Path relinking technique explores trajectories 
that connect high-quality solutions. The proposed ILS heuristic is tested on 720 prob-
lems generated by Ruiz and Andrés and the results are compared with the best results 
obtained by the 14 heuristics presented in [11]. 
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2   The Unrelated Parallel Machine Resource-Assignable Sequence 
Dependent Setup Times Problem (PMRASDST) 

This problem can be described as follows [11]. Consider n jobs to be processed on a 
set of m continuously available parallel machines. Each machine can process only one 
job at a time, and each job can be processed on any machine. Each job i has a deter-
ministic processing time pik on the machine k,  i = 1,. . .,n, k = 1,. . .,m.  Skij is the setup 
time to be carried out on machine k after having processed job i and before processing 
job j, and assume that Skij ≠ Skji, i.e. setup times are machine and sequence dependent.  

Rkij is the the amount of resources devoted to carrying out setup Skij between job i 
and job j on machine k. Rkij varies between two values, the minimum and maximum 
resource (Rkij

- and Rkij
+). For example, some setups might require removing certain 

heavy tooling from the machine and therefore a minimum amount of workers (re-
sources) are needed. Similarly, at a give moment it might not be possible to assign 
more resources due to physical or operational constraints. The relation between the 
actual setup time and the number of resources assigned is assumed to be linear. There-
fore, if the minimum resources Rkij

- are assigned, the resulting setup time will be the 
largest possible (Skij

+). Conversely, if the maximum resources Rkij
+ are assigned, the 

minimum setup (Skij
-) is assigned. This relation is shown in Figure 1. 
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Fig. 1. Relation between setup time Skij and number of assigned resources Rkij 

Therefore, from the linear relation, the expression that results the amount of the 
setup time Skij as a function of the assigned resources Rkij is the following: 
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Using K1 for the first term and K2 for the Rkij multiples, respectively we have as a 
result the slope-intercept form of the line relating Skij and Rkij: 

kijkij RKKS 21 −=  

Therefore, K2 is the slope of the line that relates Rkij with Skij as shown in Figure 1. In 
other words, K2 indicates how much the setup time Skij is reduced by each additional 
resource. 
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The objective of the problem is to minimize the linear combination of the total 
number of resources assigned and the total completion time (flow time) [11]: 
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where, Rkij is the resources assigned to the setup between job i and job j on machine k. 
Cik is the completion time of job i at machine k, λ and δ represent the weight or impor-
tance of each unit of resource and flow time, respectively. Rkij = 0 if job i is not proc-
essed before job j in the machine k. Similarly, if job i is not processed on machine k, 
then Cik = 0. 

Figure 2 illustrates an example of a schedule with n = 4 jobs and m = 2 machines. 
The jobs 4 and 2 are processed, in this order, on machine 1, finishing at times 43 and 
155, respectively. The setup time between these jobs is 61, and 3 resources were used. 
Similarly, the jobs 3 and 1 are processed in machine 2, and they are completed at 
times 27 and 100, respectively. The setup time between these jobs is 28, and 4 re-
sources were used. Assuming λ = 50 and δ = 1, then Z = 50×(3+4) + 
1×(100+155+27+43) = 675. 

  

4 Setup Time 2

3 Setup Time 1

Machine 1

Machine 2

S231 = 28   R231 = 4

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

27 43 100 155

S142 = 61   R142 = 3

 

Fig. 2. Example of Solution 

In this paper, a solution of the problem is represented by an array of size n+m-1, 
containing n jobs and m-1 separators (-1) between sequences for each machine. The 
schedule shown in Figure 2 is represented by the array [4, 2,    -1, 3, 1]. Note that the 
sequences of jobs [4, 2] and [3, 1] correspond to the machines 1 and 2, respectively. 

3   Proposed Algorithm 

The Iterated Local Search (ILS) [8] is a simple and generally applicable heuristic that 
iteratively applies local search to modifications of a current solution s. Four basic 
procedures or operators are needed to derive an ILS algorithm: a procedure “Gener-
ate-Initial-Solution”, which returns an initial solution s, a procedure “Perturbation” 
that perturbs the current solution s leading to some intermediate solutions s1, a proce-
dure “LocalSearch” that takes s1 to a local optima s2, and an acceptance criterion that 
decides from which solution the next perturbation step is applied. The Perturbation, 
LocalSearch and acceptance criterion are executed until the stop condition is satisfied. 
The best solution s* generated over all iterations is returned at the end of the algo-
rithm. In Figure 3 shows the pseudocode for a basic ILS algorithm.  
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In this paper we add an intensification procedure based on the Path Relinking tech-
nique which generates new solutions by exploring trajectories that connect the solu-
tion returned by the local search, with an elite solution. In the next subsections, we 
described each procedure of the ILS heuristics applied for the PMRASDST problem. 

 
Procedure ILS 
1 s ← Generate-Initial-Solution;  s* ← s; 
2 while StopCondition do 
3     s1 ← Perturbation(s); 
4     s2 ← LocalSearch(s1); 
5     if Z(s2) < Z(s*) then 
6          s* ← s2; 
7      end-if; 
8     AcceptanceCriterion(s, s2); 
9 end-while; 
10 return s*; 
end; 

Fig. 3. Pseudocode of the iterated local search procedure (ILS), proposed in [8] 

3.1   Initial Solution Construction 

To construct an initial solution, we use the best dispatching heuristics proposed by 
Ruiz and Andrés [11]. This heuristic is called Dynamic Job Assignment with Setups 
Resource Assignment (DJASA) and runs as shown in Figure 4.  

 
Procedure DJASA 
1 L ← {j1,…,jn}; 
2 sequence ← {}; 
3 while |sequence| < n do 
4    for each job of L, calculate the value of Z by adding ji in sequence; 
5    take the job ji that provided the smallest increment of Z; 
6    sequence ← sequence ∪ { ji}; 
7    L ← L – { ji}; 
8 end-while; 
9 s ← LocalSearch(sequence); 
10 return s; 
end; 

Fig. 4. Pseudocode of the DJASA heuristic used in the procedure of the initial solution  
construction 

In [11] was also tested the assignment of the minimum and the average resources. 
The maximum resources assignment produced the best results. 

The solution built by the DJASA heuristic is improved using a local search proce-
dure described in 3.3. 
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3.2   Perturbation 

The perturbation procedure should be chosen strong enough to allow to leave the 
current local minimum and to enable the local search to find new, possibly better local 
minima. At the same time, the perturbation should be weak enough to keep enough 
characteristics of the current local minimum. 

In this work, we use a greedy perturbation procedure similar to the presented in 
[12]. This procedure is composed of two phases: destruction and reconstruction. In 
the destruction phase, d different jobs are chosen randomly to be removed from the 
current sequence s. These jobs are stored on a set SR. In the reconstruction phase, all 
jobs in SR are reinserted in s. The first job j1 of SR is inserted in all possible positions 
of s generating a set of partial sequences that include job j1. The sequence with the 
best objective value is kept for the following iteration. The process ends when SR is 
empty and therefore s contains all the n jobs. 

3.3   Local Search 

The goal of the local search is to improve the solutions s obtained in the perturbation 
procedure. Local search methods begin with a solution, and generate a neighborhood 
of this solution. The neighborhood contains all the solutions reached through single 
moves made in the current solution. In this neighborhood a solution that is better than 
the current solution is picked up. The chosen solution becomes a new solution (or 
current) and the process continues until a local optima is reached. Remember that, a 
solution (or schedule) is represented by a sequence of N = n+m-1 elements (n jobs and 
m-1 elements -1). 

In this study we use two neighborhood structures. The first neighborhood is de-
fined by the insertion move, which consists of removing an element from its original 
position and inserting it in the on the N−1 remaining positions. This move generates  
a neighborhood of size (N−1)2. If an improvement is obtained, then the process is 
repeated. 

The second neighborhood is defined by the swap move, which consists of inter-
changing all pairs of elements. The second neighborhood has size N(N−1)/2. 

The best results were obtained using the insertion neighborhood. Therefore, the 
numerical experiments were performed using this neighborhood. 

3.4   Acceptance Criterion 

The acceptance criterion is used to decide to which solution the next perturbation 
should be applied. One important aspect of the acceptance criterion is to introduce a 
bias between intensification and diversification of the search. One solution is accepted 
if it improves the best current solution. In the ILS algorithm, the solutions that are 
worse than the best current solution can also be accepted with a small probability. 
Thus, we avoid the constant use of the best current solution and a fast stagnation of 
the solutions evaluated. This work employs an acceptance criterion similar to that 
used in the metaheuristic Simulated Annealing [6]. However, in this case, the value of 
the temperature is constant: 
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The temperature value depends on the processing times (pik) of the jobs, the num-
ber of jobs n and the number of machines m, in the same way as used in [12]. If the 
solution s2 returned by the local search is worse than the current solution s, it can be 
accepted with a probability defined by exp{-(Z(s2) - Z(s))/Temperature},where, exp is 
the exponential function. 

3.5   Path Relinking 

Path relinking was first introduced in the context of Tabu Search [4], as an approach 
to integrate intensification and diversification strategies. It consists of exploring tra-
jectories that connect high-quality solutions, by starting from an initial solution and 
generating a path in the neighborhood of this solution towards another solution, called 
the guiding solution. This path is generated by selecting movements that introduce in 
the initial solution attributes of the guiding solution. At each step, all movements that 
incorporate attributes of the guiding solution are analyzed and the movement that best 
improves (or least deteriorates) the initial solution is chosen. 

In this paper, as in [1], the path relinking maintains a set of ESize elite solutions 
(high-quality solutions). The procedure begins with a random selection of the guiding 
solution sg ∈ E. The initial solution si is the solution returned by the local search pro-
cedure (si ≠ sg). The solutions in E are local optima and the path relinking tries to find 
better solutions that are not in the insertion neighborhood of si and sg, analyzed by 
local search procedure. In the path relinking we use swap moves, i.e., the procedure 
performs the role of crossover. The crossover is widely used in evolutionary algo-
rithms frameworks. 

In each step, swap moves is made in si, incorporating attributes of sg. The new so-
lutions are analyzed and, if applicable, the best solution is updated. The procedure 
ends when si and sg become equal. Figure 5 shows an example in which the guide 
solution is obtained in two steps from the initial solution. 

 

Fig. 5. Example of path relinking technique 

3.6   ILS with Path Relinking for PMRASDST Problem 

In the proposed algorithm, path relinking is embedded in the ILS mechanism, being 
used as an intensification procedure. 

In the implementation of the ILS with path relinking algorithm, denoted by ILSPR, 
the size of the elite solutions set was calibrated and defined by ESize = 10. The parame-
ter d used in the perturbation procedure was calibrated and the best results were ob-
tained for d = 4 (for 6≤n≤ 10) and d = 10 (for n>10). A pseudocode description of the 
proposed ILSPR algorithm is presented in Figure 5. 
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Procedure ILSPR (ESize, StopCondition, d) 
1 E  = ∅;               
2 s ← GetLocalOptimaSolution; 
3 s* ← s; 
4 while not StopCondition do 
5      s1 ← Perturbation(s, d); 
6      s2 ← LocalSearch(s1); 
7      if |E| = ESize then 
8           s3 ← Choose randomly a elite solution of E;            
9           s4 ← Path_Relinking(s2, s3); 
10           s5 ← Path_Relinking(s3, s2); 
11           s6 ← Best_Solution (s4, s5); 
12           if s6 ∉ E and s6 ≠ s2  then  
13                s2 ← LocalSearch(s6); 
14           else 
15                s2 ← s6; 
16           end-if 
17           UpdateEliteSet(s2); 
18      else 
19           E ← E ∪ {s2};     
20      end-if 
21      AcceptanceCriterion(s, s2); 
22 end-while; 
23 s* ← Best_Solution (E); 
24 return s*; 
end; 

Fig. 6. Pseudocode of the proposed ILSPR Algorithm 

4   Numerical Experiments 

This paper tests the performance of the ILSPR heuristic algorithm. For that purpose, 
the same problems generated by Ruiz and Andrés [11] were used. They generated all 
the data: processing times pik and the minimum and maximum resources and setups 
(Rkij

-, Rkij
+, Skij

- and Skij
+). A total of 720 problems were generated, divided into two 

groups: small and large (each one with 360 problems). The small group contains 
problems with n ∈ {6, 8, 10} jobs and m ∈ {3, 4, 5} machines. In the large group of 
problems, the number of jobs (n) and machines (m) belong respectively to the sets: 
{50, 75, 100} and {10, 15, 20}. For all problems, the parameters λ and δ (that repre-
sent the importance or cost of each unit of resource and flow time, respectively), were 
the same used by Ruiz and Andrés [11]: λ=50 and δ=1. 

The ILSPR algorithm was implemented in Java (version 1.6) and executed using 
the JDK 6.0 compiler. The tests were conducted on an Intel® Core™ Quad with a 2.4 
GHz processor and 3GB of RAM. 
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4.1   Results  

The results obtained by the algorithm are compared with the best results available in 
literature [11]. The ILSPR efficiency is evaluated by the relative percentage im-
provement relative to the MIP model [11] solved by CPLEX (for small problems) and 
to the constructive heuristics proposed in [11] (for large problems). This improvement 
is calculated using the following formula: 

%
)(100

C

ILSPRC

Z

ZZ
tImprovemen Percentage

−×=
 

where ZC is the best objective value  obtained in [11] and ZILSPR is the objective value 
obtained by the ILSPR heurístic. 

The solutions available for the small problems were obtained by the software 
CPLEX 9.1, solving a MIP model [11]. In [11], the execution of CPLEX was limited 
to 300 seconds for problems with n = 6 jobs and 3600 seconds for problems with n = 
8 and n = 10 jobs. For all problems with n = 6 and n = 8 jobs, MIP model solved by 
CPLEX found the optimal solution. For the problems with n = 10 jobs, CPLEX found 
only approximated solutions, because of the limited execution time. 

Table 1.  Improvement percentage of ILSPR relative to software CPLEX 

Small problems 

Average of Z 
n×m 

CPLEX ILSPR 

Improvement 
Percentage 

(%) 

Time (s) 
ILSPR 

Time (s) 
CPLEX 

6 × 3 7383 7383 0.00 9 300 
6 × 4 4742 4742 0.00 12 300 
6 × 5 2872 2872 0.00 15 300 
8 × 3 13.531 13.537 -0.04 12 3600 
8 × 4 9433 9469 -0.38 16 3600 
8 × 5 6829 6830 -0.01 20 3600 

10 × 3 21.165 20.790 1.77 15 3600 
10 × 4 15.029 14.812 1.44 20 3600 
10 × 5 11.168 10.783 3.45 25 3600 

Average - - 0.69 16 2500 

 
Table 1 presents, for each set of problems of n×m size, the averages of the relative 

percentage improvement of ILSPR relative to the MIP model solved by CPLEX. Each 
value in the fourth column of the Table 1 represents the average improvement on a 
total of 40 problems. We observed that the ILSPR found the optimal solution for all 
problems with n = 6. For problems with n = 8 it did not find the optimal solution for 
all problems. In problems with n×m = 10×5, the ILSPR method on average yielded a 
3.45% over the MIP model results. The less values of improvement of the algorithm 
(for problems with n = 10) were for the problems with n×m = 10×4 where the average 
improvement was 1.44%. For the total of 360 problems tested of the “small group”, 
the ILSPR algorithm obtained a total improvement of 0.69% (on the average). 
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The fifth and sixth columns of Table 1 show the computational times spent by the 
ILSPR and MIP Model. Note that the time spent by ILSPR increases according to the 
number n×m. 

The solutions available for the large problems were obtained by the constructive 
heuristics, proposed by Ruiz and Andrés [11]. Table 2 presents, like Table 1, the av-
erages of the relative percentage improvement of ILS (without path relinking) and 
ILSPR relative to results obtained by the constructive heuristics. The improvement is 
calculated using the same formula of Table 1. 

Table 2. Improvement percentage of ILSPR relative to constructive heuristics in the literature 

Large problems 

Average of Z 
n×m 

Constructive 
Heuristics 

ILS ILSPR 

Improvement 
Percentage 

ILS (%) 

Improvement 
Percentage 
ILSPR (%) 

Time (s) 
ILSPR 

50 × 10 128.276 116.739 116.628 9.34 9.43 250 
50 × 15 86.561 79.008 79.175 9.14 8.95 375 
50 × 20 61.953 56.886 56.884 8.42 8.44 500 
75 × 10 260.992 232.361 232.778 11.37 11.23 375 
75 × 15 182.903 168.263 168.026 8.54 8.62 562 
75 × 20 140.067 128.547 128.554 8.78 8.77 750 

100 × 10 415.174 374.882 374.482 10.13 10.22 500 
100 × 15 303.162 277.066 277.328 9.06 8.99 750 
100 × 20 237.082 220.627 220.021 7.51 7.79 1000 
Average - - - 9.14 9.16 562.44 

 
According to the results presented in the fifth and sixth column of Table 2, it may 

be seen that for the set of n×m = 75×10 problems, the ILS algorithm improved the 
constructive heuristics in 11.37%. The lower values of improvement of the ILSPR 
algorithm were for the problems with n×m = 100×20 where the on average improve-
ment was 7.79%. For a total of 360 problems, the total average improvement of the 
ILSPR algorithm with respect to the constructive heuristics was 9.16%. The ILSPR 
obtained better results than the ILS in 188 problems, while the ILS obtained better 
results in 169 problems. In only 3 problems, the results obtained by the algorithms 
ILS and ILSPR were identical. 

The seventh column of Table 2 shows the computational time spent by the ILSPR 
algorithm for each set of problems of n×m size. The computational times spent by the 
constructive heuristics are not available. 

For the stop condition we use a computational time, based on the number of jobs 
(n) and the number of machines (m) of each problem. The computational time used is 
(n × m)/2 seconds. For example, the problem with n = 100 jobs and m = 20 machines 
have a runtime of 1000 seconds. 

From the large problems, a small sample of 30 problems were chosen randomly, 10 
from each of the following three sets of problems of n×m size: 50×10; 75×15 and 
100×20. The problems were solved by the ILSPR algorithm with a stop condition 
defined as n×m seconds. At each (n×m)/10 seconds, the best solution found until  
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that time was printed. At the end of the execution of each problem, the 10 printed 
solutions show the decline in output solutions along the execution. Figure 7 shows the 
graph of the averages of the solutions obtained by the average of time spent (in 
seconds) for the solved problems. 

In the analysis of the chart in Figure 7, we note that the average of the solutions 
has a steep decline in the first half of the graph. In the second half, we note a lower 
decline with a stabilization trend. In fact, analysing the results used to build the 
graphic we can note that among the 30 problems selected, 23 failed to improve the 
solution in the second half of the graph. This analysis was important to determine the 
stop condition of the algorithm in (n × m)/2 seconds. 
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Fig. 7. Graphic showing the average of the solutions by the average of time spent 

5   Conclusion 

This paper proposes an Iterated Local Search with Path Relinking (ILSPR) algo-
rithm for a parallel machines scheduling problem. The performance of the pro-
posed heuristics was tested on 720 problems, including large size instances. The 
solutions obtained by these heuristics were compared to the best solutions found in 
literature [11]. For the large size problems, the ILSPR algorithm had an average 
improvement of 8.72% compared to the best solutions available in from other heu-
ristics in literature [11]. For some instances the improvement was more than 10%. 
In the small group, in several instances, was obtained the optimal solution, also 
found by MIP model solved by CPLEX and in instances where MIP model did not 
found the optimal solution, the proposed algorithm found better solutions in a short 
time. 
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Graph Matching by Using Similarity Measures
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Abstract. In this paper, we investigate heuristics in order to solve the
Approximated Matching Problem (AGM). We propose a tabu search
algorithm which exploits a simple neighborhood but is initialized by a
greedy procedure which uses a measure of similarity between the vertices
of the two graphs. The algorithm is tested on a large collection of graphs
of various sizes (from 300 vertices and up to 3000 vertices) and densities.
Computing times range from less than 1 second up to a few minutes. The
algorithm obtains consistently very good results, especially on labeled
graphs. The results obtained by the tabu algorithm alone (without the
greedy procedure) were very poor, illustrating the importance of using
vertex similarity during the early steps of the search process.

Keywords: Approximate Graph Matching, similarity measure, tabu
search.

1 Introduction

Graph representations are well suited to all kinds of real life objects. In many ap-
plications, a frequent task is to find a matching between the vertices of two given
objects represented as graphs while optimizing a particular criterion. Depending
on the application domain, the graphs to be matched can represent images [13],
molecules [14] or software artifacts [1,10], etc.

In graph theory, the Graph isomorphism [11] problem is a well-known graph
matching problem. However, this exact matching is generally not appropriate
because it imposes a strict correspondence between nodes and edges of the two
graphs. Graphs to be matched in many applications are not isomorphic: as a
result, matchings of interest are not necessarily complete (somes vertices may
remain unmatched) and should tolerate errors of correspondances. Other more
flexible graph matching problems include Maximum Common Edge Subraph
(MCES) [12] problem and Error-Tolerant Graph Matching (ETGM) [4]. The
MCES1 consists in finding a common partial subgraph with a maximum num-
ber of edges. In ETGM, one defines a set of graph edit operations, each with
assigned cost, and the goal of the problem is to find a series of edit operations
(transforming the first graph into the second one) with a minimum cost.
1 Different from the Maximum Common Induced Subgraph (MCIS) problem where

one aims at finding a common induced subgraph with a maximum number of vertices.

P. Cowling and P. Merz (Eds.): EvoCOP 2010, LNCS 6022, pp. 119–130, 2010.
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Various kinds of techniques have been proposed in order to solve graph match-
ing problems such as MCES and ETGM. There are exact algorithms such as the
RASCAL algorithm for MCES [12]. But given that most graph matching prob-
lems are NP-hard [5], there are also heuristics, including metaheuristics such as
simulated annealing [6], deterministic annealing [9], genetic algorithms [2], tabu
search [15] etc. Notice that, while benchmarks were proposed for exact match-
ing (graph isomorphism and MCIS) [7], there are no standard benchmarks for
approximate graph matching. In this paper, our goal is to investigate heuris-
tics for Approximate Graph Matching (AGM). Preliminary tests showed that a
tabu algorithm exploiting a simple neighborhood can not efficiently treat most
of problem instances even with graphs containing as few as 20 vertices. In order
to improve the efficiency of a tabu algorithm, we propose to guide it at the early
stage of the search by using similarity measures between the vertices of the two
graphs. This measure is calculated by taking into account the adjacent edges of
the two vertices. A greedy procedure which exploits such similarity measures is
used in order to initialize the tabu algorithm.

The remaining of the paper is organized as follows. In Section 2, we present
the definition of the AGM problem. In Section 3, we describe our algorithm.
In particular, we introduce the proposed measure of similarity, and describe
both the greedy and the tabu procedures. Results obtained by our algorithm
are presented in Section 4. Finally, we conclude in Section 5 with some general
remarks and perspectives.

2 Problem Definition

In many applications, there is the need to find a good matching between two
objects represented as graphs. In the following, we first give preliminary defi-
nitions and notations about graphs and matchings. Then, we analyze what a
”good” matching may mean. Finally, we propose the formal definition of the
AGM problem we use in this paper.

2.1 Preliminary Definitions

The graphs we consider are directed, and they have labels on their vertices
and/or edges. Note that undirected graphs can be treated as symetric directed
graphs.

Let Σ represent a finite set of symbols. A graph (labeled on alphabet Σ) is
defined as a quadruple (V, E, lV , lE) where: V is the finite set of vertices (or
nodes); E ⊆ V ×V is the set of edges; lV : V → Σ is the node labeling function;
and lE : E → Σ is the edge labeling function.

For practical reasons, we also define another function LE : V × V → Σ+ =
Σ ∪ {#} as follows: LE(x, y) = lE(x, y) if (x, y) ∈ E, otherwise LE(x, y) = #.
In other words, LE coincides with lE on E, and the symbol # is used in order
to represent the absence of edge between two vertices.

Let us consider two graphs G1=(V1, E1, LV 1, LE1) and G2=(V2, E2, LV 2, LE2)
labeled on the alphabet Σ. A matching between the two graphs is any relation
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μ ⊆ V1 × V2 such that each vertex is matched to at most one vertex in the other
graph (the one-to-one constraint): ∀x, y ∈ V1, ∀z, t ∈ V2, (x, z), (x, t) ∈ μ ⇒ z = t
and (x, z), (y, z) ∈ μ ⇒ x = y. In the following, an element of μ (a couple) will
be named a node match.

2.2 What Is a Good Matching?

Let us consider two graphs G1 and G2 and a matching μ between them. A node
match (x1, x2) in μ matches a vertex x1 ∈ V1 to a vertex x2 ∈ V2. Therefore,
there are two possible cases depending on the labels of these two vertices:

– An exact vertex label correspondance occurs if lV (x1) = lV (x2).
– A vertex label error occurs if lV (x1) �= lV (x2).

A couple of node matches ((x1, x2), (y1, y2)) ∈ μ × μ matches a pair (x1, y1) of
vertices of V1 to a pair (x2, y2) of vertices of V2. Therefore, there are four possible
cases depending on (i)the presence of edges (x1, y1) ∈ E1 and (x2, y2) ∈ E2 (ii)
the labels assigned to these (potential) edges:

– An exact edge label correspondance occurs if (x1, y1) ∈ E1, (x2, y2) ∈ E2,
and lE(x1, y1) = lE(x2, y2).

– An edge label error occurs if (x1, y1) ∈ E1, (x2, y2) ∈ E2, but lE(x1, y1) �=
lE(x2, y2).

– A structural error occurs if (x1, y1) ∈ E1 and (x2, y2) /∈ E2, or if (x1, y1) /∈ E1
and (x2, y2) ∈ E2.

– Finally, the last possibility is that (x1, y1) /∈ E1 and (x2, y2) /∈ E2.

Fig. 1. Example of graph matching

Figure 1 represents two graphs with labels on their edges and a matching
{(a, α), (b, β), (d, δ), (e, ε)} between them. In this matching, there are: 2 exact
edge label correspondences (between (b, d) and (β, δ) and between (e, b) and
(ε, β)); one edge label error (between (a, b) and (α, β)); two structural errors
(edges (e, a) in the first graph and (ε, δ) in the second graph).

Although the notion of ”good matching” may vary from one context to the
other, it seems to be generally admitted that a good matching is characterized
by the presence of exact correspondences (exact vertex and edge label correspon-
dences), and the absence (or a small number) of errors (inexact vertex and edge
label correspondences and structural errors).
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We propose to define the score of a matching as the algebric sum of bonuses
credited for exact correspondences and penalties assigned for errors. This defi-
nition is that of a graph matching which tolerates errors, is simple and generic
enough to model, given appropriate weights for bonuses and maluses, problems
such as graph isomorphism, MCES, MCIS, etc. We use two matrices MV and
ME of real numbers. For any (a, b) ∈ Σ × Σ, MV [a][b] represents the score as-
signed for matching a vertex which label is a to a vertex with label b. Similarly,
for any (a, b) ∈ Σ+ × Σ+, ME [a][b] represents the score assigned for matching a
pair of vertices which label is a to a pair of vertices which label is b.

2.3 Definition of the AGM Problem

An AGM problem instance is defined by a quintuplet (Σ, G1, G2, MV , ME) with
two graphs G1 = (V1, E1, LV 1, LE1) and G2 = (V2, E2, LV 2, LE2) labeled on Σ
and two functions MV : Σ × Σ → R and ME : Σ+ × Σ+ → R used in order to
represent the score function. The score of a matching μ between G1 and G2 is
defined by:

- f(μ) = fV (μ) + fE(μ), where
- fV (μ) = Σ(x1,x2)∈μMV (lV (x1), lV (x2)) and
- fE(μ) = Σ(x1,x2),(y1,y2)∈μME(LE(x1, y1), LE(x2, y2)).
The goal of the problem is to find a matching with a maximum score.

3 Algorithm

The AGM problem is NP-hard since there is a simple reduction of the subgraph
isomorphism problem to the AGM problem. Therefore, the only algorithms that
are able to provide optimal solutions have an exponential worst-case complexity
(if P �= NP ). For this reason, large problem instances are likely to be intractable
for exact algorithms and to necessitate the use of meta-heuristics.

In this Section, we present a tabu search algorithm named Tabu Search for
Approximated Graph Matching (TS-AGM) to treat the AGM problem. This
algorithm is enhanced by the use of an initialization procedure named GreedySim
which is based on structural similarity measures between the vertices of the two
graphs. Both procedures are described in the following.

3.1 The Tabu Procedure

Starting from an initial configuration in the search space, a tabu algorithm moves
iteratively from the current configuration to a neighboring one. On each iteration,
the algorithm chooses the best neighbor of the current configuration (the one
with the smallest cost), while avoiding returning toward configurations recently
visited, by using a short-term diversification technique named tabu list [8].

Neighborhood definition. The search space of the TS-AGM algorithm is the
set of matchings. The evaluation function is simply the objective function. A
move applied to the current configuration S consists in (1) inserting a new node
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match into S, while respecting the 1-to-1 constraint, or (2) removing a node
match from S. An insertion move is denoted by < +, (x1, x2) >, where (x1, x2)
represents the node match inserted into the configuration. Similarily, a removal
move is denoted by < −, (x1, x2) >. Each move mv is evaluated by its impact
δ(mv) on the evaluation function: δ(mv) = f(S ⊕ mv) − f(S), where S ⊕ mv
represents the configuration obtained by applying move mv to configuration S.

The tabu algorithm. The tabu mechanism is two-fold: just inserted node
matches are forbidden to leave the current configuration for a given number
of iterations (they are inserted into the so-called tabu-out list). Similarily, just
removed node matches are forbidden to re-enter the configuration for a given
number of iterations (they are inserted in the tabu-in list).

The TS-AGM procedure has four parameters: S0 is the initial configuration
transmitted to the procedure; parameter max fail iter specifies the stopping cri-
terion; parameters lgtl in and lgtl out are used in order to set the tabu tenure.

The pseudo-code of the TS-AGM procedure is as follows.

Algorithm TS-AGM(S0)

Set S := S0;
do
mv := find the non-tabu move with a maximum value of δ(.);

If mv =< +, x1, x2 > (mv is an insertion move);
Insert (x1, x2) into S;
Insert (x1, x2) for lgtl out iterations into the tabu out list;

Else mv =< −, x1, x2 > is a removal move);
Remove (x1, x2) from S;
Insert (x1, x2) for lgtl in iterations into the tabu in list;

Until the stop criterion is met;
Return the best matching found during the search.

The current configuration is denoted by S. The procedure is initialized by
using configuration S0. Then, on each iteration, all potential moves (both in-
sertion and removal moves) are evaluated and the best non tabu move (the one
with a maximum value of δ) is selected (ties are broken randomly). After that,
the selected move is applied to S and the tabu list is updated. The algorithm
stops when it has performed max fail iter iterations without improvement over
the best configuration found so far. It returns the best configuration generated
during the search.

Difficulties encountered by the tabu algorithm. The most straightforward
way to build the initial configuration is to use an empty set of node matches. In
our experiments, we have observed that the Tabu algorithm does not perform
well when it is initialized by using an empty configuration. It may wander in
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the search space for a very large number of iterations without finding anything
else but (very) poor configurations. The same problem occurs if the algorithm
is initialized by using a random configuration (a configuration made of node
matches randomly chosen, while respecting the 1-to-1 constraint).

In order to improve the efficiency of our TS procedure, we initialize it by
using a configuration produced by the greedy constructive procedure, named
GreedySim, described in the next Section.

3.2 The Initialization Procedure

The GreedySim procedure builds step by step a matching by inserting iteratively
a new node match into the configuration. The choice of the node match to
be inserted into the configuration (the greedy criterion) is based on similarity
measures.

The similarity measure. Considering a graph G = (V, E, ...), for any vertex
x ∈ V and any label l ∈ Σ, we denote by f+(x, l) and f−(x, l) the number of
ingoing and outgoing edges adjacent to x and whose label is l: f+(x, l) = |{y ∈
V : LE(x, y) = l}| and f−(x, l) = |{y ∈ V : LE(y, x) = l}|.

Consider two graphs G1 and G2 and a matching μ between them. Given
(x1, x2) ∈ V1 ×V2, we denote by potential(x1, x2) the maximum number of edges
adjacent to x1 and x2 that can be correctly matched (assuming that x1 would
be matched to x2). Clearly we have: potential(x1, x2) = Σl∈Σ(min(f+(x1, l),
f+(x2, l)) + min(f−(x1, l), f−(x2, l))).

The similarity simil(x1, x2) between two nodes x1 and x2 is normalised as a
real number between 0 and 1 and computed as:

simil(x1, x2) =
2 × potential(x1, x2)
deg(x1) + deg(x2)

× potential(x1, x2)
maxPotential

where maxPotential = max(x1,x2)∈V1×V2potential(x1, x2).
The first factor of the formula represents a raw similarity between the nodes.

The second factor of the formula is meant to discriminate against vertices x1
and x2 with high similarity but low degrees. Indeed, if two vertices have low
degrees, their high similarity can be simply due to mere chance. This is why we
decrease their similarity score.

The GreedySim() procedure. The GreedySim procedure builds greedily a
matching by using similarity scores between the vertices of the two graphs.

The procedure first computes the similarity for all pairs of vertices in V1 ×V2.
Then, it performs a series of iterations. On each iteration, the greedy score
gr(x1, x2) of each legal move (x1, x2) is computed and the pair with the best
greedy score is inserted into the configuration (ties are broken randomly). The
procedure stops when all the nodes of the smallest graph are matched.
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The greedy score is computed as follows:

gr(x1, x2) = δ0(x1, x2) + B × simil(x1, x2)

where δ0(x1, x2) is the number of new perfect edge correspondances; and B
(B ≥ 1) is a parameter used to weight the similarity of x1 and x2. At the
beginning, the similarity is the more reliable information about the number of
perfect edge correspondances a node match might ultimately bring. Thus B is
maximal but as the solution is being built, B should decrease to the point that
δ0 becomes the main contributor to the score.

Our tests determine that setting B to maxPotential then decreasing it lin-
earily up to 1 (where the similarity is only used to untie ex-aequo moves) was
an efficient way to apply the principles above.

4 Experimental Results

In this section, we present experiments performed in order to evaluate the pro-
posed tabu algorithm. In these experiments, we have generated pairs of graphs
with various features and we considered two different score functions. We have
tested our tabu algorithm initialized with the greedy procedure; for comparison
purposes, experiments performed with the tabu algorithm initialized with an
empty solution have also been conducted.

4.1 A Generator of Random Instances

A graph database is proposed for exact matching (graph isomorphism and MCIS)
in [7]. However, datasets used in the litterature for approximate graph matching
are often not available and, when they are, the graphs are usually very small.
Thus, to perform our experiments, we have developed our own generator. For
the sake of simplicity, the graphs used in our experiments have labels on their
edges but not on their nodes. Notice that having information (labels) on the
nodes tends to make easier the matching process. Our generator is controlled by
the following parameters:

– Parameter n represents the number of vertices of the two graphs.
– Parameter d is function of the expected density of the graphs.
– Parameter nl indicates the number of labels. A uniform distribution is

assumed.
– Parameter q(0 ≤ q ≤ 1) is used in order to control the similarity between

the two graphs. The larger the value of q, the most similar the two graphs.
In particular: if q = 0, the two graphs will be built independantly; and if
q = 1, the two graphs will be isomorphic.

Given a quadruplet (n, d, nl, q) of parameters, the generators builds the two
graphs G1 and G2 as follows:
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Procedure Generate-Graphs(n, d, nl, q)

Let v1
i and v2

i (i = 1..n) represent the nodes of the first
and the second graph, respectively;

p = d
n is the probability of having an arrow between any couple of vertices

For i = 1..n, and j = 1..n do
If i �= j

Choose lb1 and lb2 such that Prob(lb = #) = 1 − p
and Prob(lb = k) = p

nl for k = 1..nl
Let l(v1

i , v1
j ) := lb1;

Choose idem in {true, false} such that Prob(idem = true) = q;
If idem then l(v2

i , v2
j ) := lb1; else l(v2

i , v2
j ) := lb2;

Build a random permutation μ on [1..n];
Apply μ to the vertices of G2;
Return (G1, G2, μ).

For each couple of vertices in G1, a label is assigned with respect to the
values of parameters d and nl. The correspondent couple in G2 is assigned, with
probability q, the same label. Otherwise, its label is also assigned with respect
to the values of parameters d and nl. We notice that the procedure returns, in
addition to the two graphs, the permutation μ used to reorder the vertices of
G2. This permutation can be seen as a matching between G1 and G2. Notice
that μ is an isomorphism when q = 1, and is generally a good matching when
the value of q is high. It will be used in the following in order to obtain a good
lower bound of the optimal score of a matching.

4.2 Datasets Used in the Experiments

Our graphs are large to ensure that our approach is scalable as this is a major
concern for most of available algorithms. They are relatively sparse since graphs
from most real-life applications are not very dense; plus preliminary experiments
showed that the more dense the graphs, the easier it was to match them with
our approach. Both unlabeled and labeled graphs were considered to assess the
efficiency of our approach with respect to the number of labels on edges. Finally
the graphs to be matched are highly similar to ensure a high confidence in our
computed lower bound.

For our experiments, we use the following values for the parameters:

– Number of vertices: n = 300, 1000 or 3000;
– Expected mean of in and out degree of a vertex: d = 2 or 5;
– Number of labels: nl = 1 or 4;
– Similarity parameter: q = 0.8, 0.9 or 1;

We have generated 36 pairs of graphs, one for each possible combination of
parameters n, d, nl and q. The graphs are available online [3]. In addition, we
consider two different evaluation functions denoted by f0 or f1. Function f0 is
suited for the MCES problem and corresponds to the number of edges correctly
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matched in a configuration, while f1 penalizes errors and represents the number
of edges correctly matched, minus the number of incorrect edge correspondences
(label and structural errors).

4.3 Results Obtained by the Enhanced Tabu Algorithm

With each pair of graphs and each evaluation function, we have performed a se-
ries of 20 runs by using the tabu procedure initialized with the solution returned
by the greedy procedure (GS+TS). The parameters of the TS algorithm were set
as follows: max iter fail=n/2, lgtl in=10, and lgtl out=5. The algorithms coded
in C++ was compiled with g++ and run on a Linux Dual Processor Opteron
64-bit with 16 Gb RAM running Redhat Advanced Server version 4. Results
obtained during these experiments are presented in Tables 1 and 2.

Table 1. Results obtained with labeled graphs (nl = 4)

name
GS(f0) GS + TS(f0) GS(f1) GS + TS(f1)

favg fstd cpu iter favg fstd succ cpu favg fstd cpu iter favg fstd succ cpu
300 2 0.8 4 99 0 0 0 99 0 0 1 99 0 0 73 124 0 20 1
300 2 0.9 4 100 0 0 0 100 0 20 1 100 0 0 7 103 0 20 1
300 2 1 4 100 0 0 0 100 0 20 1 100 0 0 0 100 0 20 1
300 5 0.8 4 100 0 1 0 100 0 20 1 100 0 1 49 116 0 20 2
300 5 0.9 4 100 0 1 0 100 0 20 1 100 0 1 4 100 0 20 1
300 5 1 4 100 0 1 0 100 0 20 1 100 0 1 0 100 0 20 1
1000 2 0.8 4 99 0 4 0 100 0 0 5 100 1 4 322 124 0 20 10
1000 2 0.9 4 100 0 4 0 100 0 7 6 100 0 4 84 104 0 20 7
1000 2 1 4 100 0 4 0 100 0 14 6 100 0 4 4 100 0 18 6
1000 5 0.8 4 99 0 10 0 99 0 0 11 96 0 10 167 110 0 20 17
1000 5 0.9 4 100 0 9 0 100 0 20 11 100 0 9 6 100 0 20 12
1000 5 1 4 100 0 9 0 100 0 20 11 100 0 9 0 100 0 20 11
3000 2 0.8 4 100 0 45 87 100 0 0 52 98 1 45 1757 133 0 20 106
3000 2 0.9 4 100 0 43 12 100 0 0 50 100 0 43 346 105 0 20 63
3000 2 1 4 100 0 44 0 100 0 20 52 100 0 44 6 100 0 20 65
3000 5 0.8 4 99 0 87 0 99 0 0 93 97 0 87 471 112 0 20 157
3000 5 0.9 4 100 0 89 0 100 0 20 95 100 0 89 26 100 0 20 113
3000 5 1 4 100 0 89 0 100 0 20 96 100 0 90 0 100 0 20 102

Table 1 presents the results obtained with labeled graphs (nl = 4). Each line
in the table corresponds to an instance. The left part of the table corresponds to
f = f0 and the right part to f = f1. In each part, we display information about
the greedy procedure (GS), and then about the whole algorithm (GS+TS).

Results are evaluated relatively to the lower bound and are expressed in per-
centages of the lower bound. A score f such that f < 100 means that the lower
bound has not been reached. We consider a run to be a ”success” if the score
of the solution returned by the algorithm is not worse than the lower bound
(f ≥ 100). succ indicates the number of successes within 20 runs of the algo-
rithm. favg and fstd are respectively the mean and standard deviation of the
scores on the 20 runs. cpu indicates the mean of the cpu time spent on the algo-
rithm. In the case of GS+TS, we present an additional information iter which
is the number of iterations of the tabu before it finds the best solution returned.
When iter is 0, it means the tabu could not improve on the solution returned
by the greedy procedure.
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Let us first consider the left part of the table (f = f0). For all 36 pairs of
graphs, the displayed value of favg varies between 99 and 100. Notice that, for
simplicity, the values are rounded. As a result, a value of 100 in column ”favg”
means in fact that 99.5 ≤ favg < 100.5. It explains why, in several cases, the
displayed value of favg is 100 but succ = 0. When we observe the favg reached
by the greedy procedure, we can see that these values are very close to the final
value of favg. In addition, the value of iter equals 0 in most cases: this indicates
that the tabu algorithm could not improve on the quality of the solution obtained
by the greedy procedure.

In summary, the results (normalized average value of the score) obtained by
the GS+TS algorithm are generally very close to 100, but it was already true
for the solution found by the greedy procedure.

Let us turn to the right part of the table (f = f1). In this case, the lower bound
is often far from the optimum, which explains that the average score sometimes
takes values that are much higher than 100 (up to 133). We can notice that the
number of successes equals 20 in most cases. We notice that the tabu algorithm
was in many cases able to improve significantly over the solution produced by
the greedy procedure. This is because although the solution returned by the
greedy procedure contains most exact edge correspondences, it also contains
many errors which are penalised by the f1 score function.

When q = 1 (isomorphic graphs), we know that the lower bound is in fact
the optimum. In this case, we can observe that our algorihm obtained consis-
tently optimal solutions. When q < 1, the lower bound may not be equal to the
optimum. However, we notice that the standard deviation of the score function
is always smaller than 0.5. This may suggest that the scores of the solutions
produced by our algorithm are very close to the optimum.

Table 2 presents the results obtained with unlabeled graphs (nl = 1). These
results are far from being as good as the ones obtained with labeled graphs

Table 2. Results obtained with unlabeled graphs (nl = 1)

name
GS(f0) GS + TS(f0) GS(f1) GS + TS(f1)

favg fstd cpu iter favg fstd succ cpu favg fstd cpu iter favg fstd succ cpu
300 2 0.8 1 59 6 1 52 60 6 0 1 -181 40 1 640 95 34 8 6
300 2 0.9 1 85 10 0 3 85 10 0 1 44 37 0 73 104 0 20 1
300 2 1 1 100 0 0 0 100 0 20 1 100 0 0 0 100 0 20 1
300 5 0.8 1 96 0 1 0 96 0 0 1 77 0 1 51 109 0 20 2
300 5 0.9 1 100 0 1 0 100 0 20 1 100 0 1 3 101 0 20 1
300 5 1 1 100 0 1 0 100 0 20 1 100 0 1 0 100 0 20 1
1000 2 0.8 1 60 13 33 203 60 13 0 35 -130 74 34 2178 73 40 7 144
1000 2 0.9 1 91 11 5 21 91 11 0 6 66 43 5 315 99 17 19 18
1000 2 1 1 99 1 4 4 99 1 5 5 97 3 4 11 100 0 14 6
1000 5 0.8 1 50 24 10 23 50 24 0 11 -202 146 10 1779 57 50 9 171
1000 5 0.9 1 42 23 10 114 42 23 0 12 -124 89 10 1576 58 47 5 145
1000 5 1 1 100 0 7 0 100 0 20 8 100 0 7 0 100 0 20 8
3000 2 0.8 1 54 5 83 243 54 5 0 390 -108 17 83 1817 64 31 4 385
3000 2 0.9 1 90 3 43 144 91 3 0 50 62 14 43 1283 106 0 20 75
3000 2 1 1 99 0 39 4 99 0 0 45 98 1 40 17 100 0 17 292
3000 5 0.8 1 36 21 127 100 36 21 0 135 -305 102 127 2231 27 46 4 432
3000 5 0.9 1 88 3 72 212 88 3 0 79 55 13 72 286 100 0 20 103
3000 5 1 1 100 0 65 0 100 0 7 72 99 1 66 4 100 0 20 78
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when using score function f0. Notice however that the result obtained with
isomorphic graphs are still very good. Results with q = 0.9 are also generally
good while q = 0.8 gave bad results. When using the score function f1, the
algorithm obtained much better results than with f0 but these results were less
consistent than those obtained with labeled graphs.

4.4 Results Obtained without Using the Greedy Procedure

In addition to the results presented above, we have also tested the tabu procedure
when it is initialized by using an empty solution. All the results obtained by
using the same problem instances were very poor. Therefore, we have tested
the procedure by using the same parameters except the number n of vertices in
the two graphs. The tested values were 20, 50 and 100. While there were a few
successes for q = 1 and d = 5, the results were overwhelmingly very poor with
averages mostly under 50%.

5 Conclusion

In this paper, we propose a new technique aimed at enhancing a local search
heuristic for the approximated graph matching (AGM) problem. The principle
of this technique is to guide the search by using a similarity measure computed
between the nodes of two graphs. We observe that a tabu search heuristic using
the objective function obtains very poor results even on small graphs. We thus
propose a new similarity measure which is used intensively in the early stages of
the matching process in order to get the search in a good area. We use a greedy
procedure based on that principle to initialize the tabu search. We tested our
algorithm on a large number of random graphs of various sizes, densities (up to
3000 vertices and 15000 edges). Results appear consistently good, especially on
labeled graphs and the computing times are relatively low (from less than 1s to
200s).

Future work will be devoted to (i) investigating other similarity measures and
ways of using them (iii) applying the algorithm on real-life graphs taken from
different research fields (iii) extending our graph generator in order to produce
a database for approximate graph matching.
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Abstract. This paper presents a study of the fault-tolerant nature of
Genetic Algorithms (GAs) on a real-world Desktop Grid System, with-
out implementing any kind of fault-tolerance mechanism. The aim is
to extend to parallel GAs previous works tackling fault-tolerance char-
acterization in Genetic Programming. The results show that GAs are
able to achieve a similar quality in results in comparison with a failure-
free system in three of the six scenarios under study despite the system
degradation. Additionally, we show that a small increase on the initial
population size is a successful method to provide resilience to system
failures in five of the scenarios. Such results suggest that Paralle GAs
are inherently and naturally fault-tolerant.

1 Introduction

Genetic Algorithms (GAs) are a sub-class of Evolutionary Algorithms mainly
used to solve optimization problems. As the complexity of the problems increases,
GAs require a larger amount of computing resources. The more complex the in-
stance, the larger the computing requirements. This fact leads to a sometimes
prohibitively long time to solution that happens, for example, when tackling
many real-world problems. In order to reduce the execution time of GAs, many
research efforts have been focused during the last decades in approaching GAs in
a parallel fashion. There are two main adventages of exploiting the inherent par-
allelism of GAs: (i) the computing load is balanced among different processors
speeding-up the execution time, and (ii) the structural changes that the algo-
rithm suffers when deployed in parallel are able to outperform the sequential
counterpart (see for instance [1]).

Parallel algorithms, and thus parallel GAs, must be executed on platforms
that consists of multiple computing elements or processors. In that sense, one
of the most popular distributed systems are the Desktop Grid Systems (DGSs).
The term “desktop grid” is used to refer to distributed networks of heterogeneous
single systems that contribute spare processor cycles for computing. Perhaps the
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most well known desktop grid system is the Berkeley Open Infrastructure for
Network Computing (BOINC) [2], which has among other projects the suc-
cessful one: SETI@Home1 . These systems are also known as volunteer grids
because they aggregate the computing resources (desktop computers from of-
fices or homes) that volunteers worldwide willingly donate to different research
projects like SETI. One of the most important features of DGS is that they
provide large-scale parallel computing capabilities, only for specific types of ap-
plications, at a very low cost.

Therefore DGSs can provide parallel computing capabilities for running de-
manding parallel Genetic Algorithms (PGAs), as in the case of e.g. Milky-
Way@Home project [3]. But with large scale comes a higher likelihood that
processors suffer a failure, interrupting the execution of the algorithm or crash-
ing the whole system (in this paper we use the term “failure” and do not make
the subtle distinction between “failure” and “fault”, which is not necessary for
our purpose).

Failures usually occur on large-scale distributed or parallel systems [4]. In
DGSs, computers join the system, contribute some resources and leave it af-
terwards causing a collective effect known as churn [5]. Churn is an inherent
property of DGSs and has to be taken into account in the design of applications.
From the point of view of the application in a DGS, a failure occurs each time
the CPU becomes busy (DGSs only use the idle cycles of CPU) or the computer
is powered off or restarted.

To cope with failures, researchers have studied and developed different mech-
anisms to circumvent the failures or restore the system once a failure occurs.
These techniques are known as Fault-Tolerance mechanisms and enforce that an
application behave in a well-defined manner when a failure occurs [6]. Neverthe-
less, to the best of our knowledge, not many efforts have been applied to study
the fault tolerance features of PEAs in general, and of PGAs in particular.

In previous works [7,8] we firstly analyzed the fault-tolerance nature of Par-
allel Genetic Programming (PGP) under several simplified assumptions. These
initial results suggested that PGP exhibit a fault-tolerant behavior by default,
encouraging to go a step further and run PGP on large-scale computing infras-
tructures that are subject to failures without requiring the employment of any
fault-tolerance mechanism. This work was lately improved [9] by studying the
fault-tolerance nature of PGP using real data from one of the most high churn
distributed systems: the Desktop Grids. The results again showed that PGP can
cope with failures without using any fault-tolerance mechanism, concluding that
PGP is fault tolerant by nature since it implements by default the fault-tolerance
mechanism called graceful degradation [10].

This paper builds on top of the previous work, and extends the study of
fault-tolerance in EA to the PGAs in order to know if PGAs can be run in
parallel or distributed systems without having to implement any fault-tolerance
mechanism. To this aim, we have chosen a fine-grained master-worker model of
parallelization [1]. A server, “the master”, runs the main algorithm and hosts

1 http://setiathome.berkeley.edu

http://setiathome.berkeley.edu
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the whole population. The server is in charge of sending non-evaluated individ-
uals to workers in order to obtain the fitness value of them. This approach is
effective because one of the most time-consuming steps of GAs is the evaluation
–fitness computation– phase. The master waits until all individuals in generation
n are evaluated before going to the next generation n + 1 and run the genetic
operations. We assume that the system only suffers from omission failures [10]:
(i) the master sends N individuals with N > 0 to a worker, and the worker
never receives them, e.g., due to network transmission problems; or (ii) the mas-
ter sends N individuals with N > 0 to a worker, the worker receives them but
never returns them. This can occur because the worker crashes or the returned
individuals are lost during the transmission.

In order to study the behavior of PGAs under the previous assumptions,
we are going to simulate the failures using real-world traces of host availability
from three DGSs. We have chosen Desktop Grid availability data because these
systems exhibit large amounts of failures, and thus if it is possible to run inside
them PGAs without using any fault-tolerance mechanism, PGAs will be able to
exploit any parallel or distributed systems to its maximums.

The rest of the paper is organized as follows. Section 2 reviews related work;
section 3 presents the setup of the different scenarios and experiments; section 4
shows the obtained results and their analysis; and, finally, Section 5 concludes
the paper with a discussion of the results and future directions.

2 Related Work

Parallel Evolutionary Algorithms (PEAs) have been used by researchers as a
common approach to reduce the large time to solutions requirements of hard
problems. For instance, Trujillo et al. propose a computer vision problem ad-
dressed using GP in [11] that needs more than twenty four hours in order to ob-
tain a solution in a single computer. Times to solution can be even worst, lasting
days, weeks or even months. For this reason, researchers have studied the ap-
plication of parallel computing techniques and distributed computing platforms
in conjunction with Spatially Structured EAs to reduce the time to solution
[1,12,13].

A distributed system can be defined based on its logical or functional distri-
bution of processing capabilities [10]. The logical distribution is typically based
on the following set of criteria:

– Multiple processes. The system consists of one or more sequential processes,
each with an independent thread of control.

– Interprocess communication. Processes can communicate via messages.
– Disjoint address spaces. Processes have disjoint address spaces.
– Collective goal. Processes interact among each other in order to meet a com-

mon goal.

PEAs structured like the previous criteria have been developed and used for
decades (i.e. [1]).
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So far, EA researchers have not employed massively DGSs. Nevertheless, there
are several projects using DGSs like the MilkyWay@Home project [3] which
uses GAs to create an accurate 3D model of the Milky way, a ported version of
LilGP [14](a framework for GP [15]) to one of the most employed DGSs, BOINC
[2], or the custom execution environment facility proposed and implemented by
Lombraña et. al. [16,17] for BOINC.

Other EA researchers have focused their attention on P2P systems [18], which
are very similar to DGSs because the computing elements are also desktop com-
puters in its majority. However these systems are different because there is not
a central server as in DGSs.

In all the described proposals –to the best of our knowledge– none of them
have specifically addressed the problem of failures within PGAs. Nevertheless,
some of those solutions internally employ some fault-tolerance mechanisms. In
this sense, only Laredo et al. have analyze the resilience to failures of a parallel
Genetic Algorithm in [19], following the Weibull degradation of a P2P system
(failures are the host-churn behavior of these systems as well as DGSs) proposed
by Stutzbach and Rejaie in [5]. Therefore, PGAs have not been analyzed before
under real host availability traces (a.k.a. host-churn). Hence, this paper assesses
fault tolerance in PGAs using host-churn data collected in three real-world DGSs
[20]. The key contribution of this paper is the fully characterization of PGAs from
the point of view of fault-tolerance with the aim of studying if PGAs can be run
in parallel or distributed systems without using any fault-tolerance mechanism.

3 Experimental Setup

In order to study the fault-tolerance nature of PGAs, we are going to simulate the
failures on a distributed system using three different traces from three real-world
DGSs. The use of simulations allows tractability of the results making possible
the statistical analysis. Furthermore, the experiments are repeatable thanks to
the employment of host availability traces [20], allowing a fair comparison among
experiments.

To this aim, we conduct experiments in a 3-trap instance [21]. According
to [22], 3-trap lies on the region between the deceptive 4-trap and the non-
deceptive 2-trap having, therefore, intermediate population size requirements
that Thierens estimates in 3000 for the instance under study in [23]. A trap
function is a piecewise-linear function defined on unitation (the number of ones
in a binary string). There are two distinct regions in the search space, one leading
to a global optimum and the other one to the local optimum (see Eq. 1). In
general, a trap function is defined by the following equation:

trap(u(−→x )) =
{ a

z (z − u(−→x )), if u(−→x ) ≤ z
b

l−z (u(−→x ) − z), otherwise (1)

where u(−→x ) is the unitation function, a is the local optimum, b is the global
optimum, l is the problem size and z is a slope-change location separating the
attraction basin of the two optima.
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For the following experiments, 3-trap was designed with the following param-
eter values: a = l − 1, b = l, and z = l − 1. Tests were performed by juxtaposing
m = 10 trap functions in binary strings of length L = 30 and summing the fit-
ness of each sub-function to obtain the total fitness. All settings are summarized
in Table 1.

Table 1. Parameters of the experiments

Trap instance

Size of sub-function (k) 3
Number of sub-functions (m) 10

Individual length (L) 30

GA settings

GA GGA
Population size 3000

Selection of Parents Binary Tournament
Recombination Uniform crossover, pc = 1.0

Mutation Bit-Flip mutation, pm = 1
L

In order to achieve our goal of characterizing the fault-tolerant nature of PGAs
two type of experiments were performed: (i) using an error-free assumption which
implies that the system does not suffer failures during the execution of the PGA
and (ii) an error-prone environment simulated by means of real-world traces from
three different real DG systems. In this last scenario, the PGA does not employ
any fault-tolerance mechanism to cope with failures and uses the parallelism
at individual level. If the quality of solutions in the error-prone environment
is similar to the error-free case, it will be a strong indication that PGAs are
fault-tolerant by nature.

Simulations use three different traces: [20]: ucb, entrfin, and xwtr. The traces
are time-stamped observations of the host availability. The ucb trace was ob-
tained in a graduate student lab in the EE/CS Department at UC Berkeley
for about 1.5 months with 85 hosts. The entrfin trace was collected at the San
Diego Supercomputer Center for about 1 month with 275 hosts, and finally the
xwtr trace was obtained at the Universitè Paris-Sud for about 1 month with 100
computers (check [20] for a full description of the measurement methods and
traces).

Fig. 1 shows an example of the availability data from the ucb trace: the number
of available computers in the system versus time over 24 hours. The figure shows
the host-churn phenomena of these systems: hosts becoming available after being
unavailable for a period of time. The experiments were carried out over such
24-hour periods of the availability traces. We fixed the maximum number of
generations to 30 (which corresponds to 3 hours of execution in a failure-free
system).

We have considered two scenarios for the error-prone case: (i) firstly we run
the experiments under a stringent assumption (lost resources never become
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Fig. 1. Host availability for 1 day of the ucb trace

available again); (ii) and secondly we consider the full host-churn phenomena
(host availability) allowing to re-acquire the lost hosts.

For both cases, we use two different 24-hour periods from each trace. For
the first case, the worst-case scenario, we arbitrarily select the time within each
24-hour trace segment where there are the maximum number of available hosts,
starting at that point the execution of the algorithm (see Fig. 1 labeled with
“trace without return”). For the second case, we simply chose a random point
in each of the 24-hour periods for starting the execution of the algorithm.

The server divides its population into the number of available hosts at the
first generation, and sends I individuals to each worker. When a worker fails,
I individuals are lost and will not take part in the next generations due to our
worst-case assumption.

For all the experiments the server does not detect failures and no fault toler-
ance mechanisms are employed (e.g., no replication of individuals over multiple
workers). The server waits a time T per generation based on the time required for
a generation in the failure-free scenario, and proceeds to the next generation with
the available individuals at that time. Bear in mind that the execution, which
may obtain worse results in comparison with the error-free environment because
of the lost individuals, becomes progressively less computation-demanding as
population size gets smaller progressively (see Fig. 2).

The execution times per generation in both experiments, failure-free and
failure-prone, are identical: with P individuals to be evaluated at a given gener-
ation and W workers, we send P

W = I individuals to each worker; when a worker
fails P

W individuals are lost; given that those individuals will not participate in
the next generation, the remaining workers will continue evaluating I individuals
each, regardless of the number of failures.
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4 Analysis of Results

In order to analyze the results with confidence, data has been statistically an-
alyzed (each experiment has been run 100 times). Firstly, we analyzed the nor-
mality of the data using the Kolgomorov-Smirnov and Shapiro-Wilk tests [24],
obtaining as a result that all data are non-normal. Thus, to compare two sam-
ples, the error-free case with each trace, we used the Wilcoxon test (Tab. 2 shows
the Wilcoxon analysis of the data).

Fig. 2 shows, for the worst-case scenario, how the population decreases as
failures occur in the system. As explained before, two different 24-hours periods
randomly selected are shown, denoted by Day 1 and Day 2, for the three em-
ployed traces of the experiments. Thus, a total of 6 different experiments, one
per trace and day period, were run with the 3-Trap function problem.

Tab. 2 shows a summary of the obtained results for the experiments. From all
the traces, the ucb has obtained the worst fitness 23.22 and 23.09 (respectively
for both periods Day 1 and Day 2). The reason is that this trace in the first day
loses a 64% of the population and in the second day it loses more or less the
whole population 95.83% (see Fig. 2). Consequently it is very difficult for the
algorithm to obtain a solution with a similar quality to the error-free scenario.

The second worst case of all the experiments is the entrfin trace for the
first period (Day 1). This trace loses more or less half of the population in the
first 5 generations (see Fig. 2), making really difficult to obtain a good solution
even though the population size is steady the rest of the generations. Thus, the
obtained fitness for this period is not comparable to the error-free case.
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Table 2. 3-Trap fitness comparison between error-prone and error-free cases using
Wilcoxon test (Day 1 and 2 ) – “not significantly different” means fitness quality com-
parable to the error-free case

Error Free fitness = 23.56

Trace Fitness Wilcoxon Significantly Fitness Wilcoxon Significantly
Test different? Test different?

D
a
y

1

Entrfin 23.3 W = 6093, p-value = 0.002688 yes

D
a
y

2

23.57 W = 4979.5, p-value = 0.9546 no
Entrfin 10% 23.47 W = 5408.5, p-value = 0.2535 no 23.69 W = 4397.5, p-value = 0.07682 no
Entrfin 20% 23.48 W = 5360, p-value = 0.3137 no 23.67 W = 4522.5, p-value = 0.1645 no
Entrfin 30% 23.49 W = 5283.5, p-value = 0.4271 no 23.70 W = 4405, p-value = 0.08086 no
Entrfin 40% 23.57 W = 4923.5, p-value = 0.8286 no 23.69 W = 4453.5, p-value = 0.11 no
Entrfin 50% 23.59 W = 4910.5, p-value = 0.7994 no 23.75 W = 4162.5, p-value = 0.01234 yes

Ucb 23.22 W = 6453, p-value = 6.877e-05 yes 23.09 W = 6672.5, p-value = 7.486e-06 yes
Ucb 10% 23.27 W = 6098.5, p-value = 0.002753 yes 23.12 W = 6826, p-value = 6.647e-07 yes
Ucb 20% 23.37 W = 5837.5, p-value = 0.02051 yes 23.14 W = 6654, p-value = 7.223e-06 yes
Ucb 30% 23.40 W = 5664, p-value = 0.06588 no 23.26 W = 6371, p-value = 0.0001507 yes
Ucb 40% 23.51 W = 5186.5, p-value = 0.6004 no 23.37 W = 5893.5, p-value = 0.01316 yes
Ucb 50% 23.42 W = 5623, p-value = 0.08335 no 23.32 W = 6108, p-value = 0.002166 yes

Xwtr 23.56 W = 5056, p-value = 0.8748 no 23.60 W = 4806, p-value = 0.5791 no
Xwtr 10% 23.57 W = 4923.5, p-value = 0.8286 no 23.62 W = 4765, p-value = 0.5002 no
Xwtr 20% 23.68 W = 4474, p-value = 0.1245 no 23.69 W = 4453.5, p-value = 0.11 no
Xwtr 30% 23.73 W = 4259.5, p-value = 0.02812 yes 23.60 W = 4806, p-value = 0.5791 no
Xwtr 40% 23.68 W = 4502, p-value = 0.1466 no 23.63 W = 4688.5, p-value = 0.3695 no
Xwtr 50% 23.71 W = 4356.5, p-value = 0.05817 no 23.77 W = 4065.5, p-value = 0.004877 yes

Results with Host Churn

Entrfin 23.52 W = W = 5222, p-value = 0.5322 no 23.58 W = 4931, p-value = 0.8452 no
Ucb 21.31 W = 9708.5, p-value < 2.2e-16 yes 23.03 W = 7038.5, p-value = 4.588e-08 yes
Xwtr 23.64 W = 4640, p-value = 0.2982 no 23.7 W = 4405, p-value = 0.08086 no

Finally, the xwtr trace in both periods obtains solutions with similar quality
to the error-free environment (23.56 and 23.6 respectively for each day). In both
periods, the xwtr trace does not lose more than a 20% for Day 1 and 12% for the
second day. Consequently, we conclude that for the 3-Trap function problem, it
is possible to tolerate a gradual loss of up to 20% of the individuals without sac-
rificing solution quality and more importantly without using any fault-tolerance
mechanism. Nevertheless, if the loss of individuals is too high, above the 45%,
the solution quality is significantly diminished. Since real-world DGSs experience
such large amount of failures, we attempt to address this problem. Our simple
idea is to increase the initial population size (a 10%, 20%, 30%, 40% and 50%)
and run the same simulations using the same traces. The aim is to compensate
the loss of the system by providing more individuals at the first generation.

Tab. 2 shows the obtained results for Day 1 and Day 2 periods of the three
traces with the increased population. For the entrfin trace, the first period (Day
1) with a loss rate of 45.3%, a 10% extra individuals is enough to obtain solutions
of similar quality to the error-free case. In the second period, Day 2, the trace
obtains similar solutions to the error-free case and when adding an extra 50%
the obtained solution is even better than in the error-free case.

For the ucb trace, the first period (Day 1) increasing a 30% the size of the
population is sufficient to obtain solutions with similar quality to the error-free
case. The second period, Day 2, even though an extra 50% of individuals is added
at the first generation it is not enough to cope with the high loss rate of this
period: 95.83%.

Finally, the xwtr trace for both periods obtains solutions with similar quality
to the error-free case and in some cases it improves it. For this trace, the increased
population would have not been necessary because the PGA tolerates, without
any extra individual, the rate loss of both periods.
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It is important to remark that by adding more individuals to the initial pop-
ulation, we are increasing the computation time since more individuals have to
be evaluated per generation. Nevertheless, this extra time is similar to the extra
time that would be required by standard fault tolerance mechanisms (e.g. failure
detection and re-send lost individuals for fitness evaluation). Thus, we conclude
that increasing the population size, accordingly to the failure rate, is enough to
improve the PGA quality of solutions when the failure rate is known.

Up to now, we have only considered the worst-case scenario: lost resources
never become available again. Nevertheless, real-world DG systems does not
behave like this assumption, and thus we are going to use the traces with the
possibility of re-acquiring the lost resources (see Fig. 1).

When using the full churn traces of the three DGSs (entrfin, ucb and xwtr)
an important question arises: what work is assigned to the new available work-
ers? We have assumed that when workers become available again the master
node creates I new random individuals and increases the size of the population
accordingly. Thus, the size of the population can be changed dynamically as
individuals are added and removed along generations. In this scenario it could
happen that new workers nodes appear during the execution of the algorithm
increasing the population over its optimum size. Hence the master node is not
allowed to create more individuals than the optimum population size leaving
several workers idle. In order to avoid idle workers, it would be interesting to
adjust the number of I individuals to evaluate accordingly to the number of
available hosts. Nevertheless, we leave such load-balancing study for a future
work.

On the other hand, due to the loss of resources, the population can be emptied
because all the workers have disappeared. If this situation occurs, the server node
proceeds to the next generation by waiting the specified time T (based on the
required time per generation in the failure-free environment) for new workers.

Tab. 2 shows the obtained results for the three traces with the host-churn
phenomena (entrfin, ucb and xwtr) and the previous corresponding two periods:
Day 1 and Day 2. We used the same periods as in the worst-case scenario, but
now choosing a random point in the 24-hours period as the starting point for
the algorithm. Tab. 3 shows the obtained fitness of the 3-Trap function problem
and the host churn of each trace represented by the minimum, median, mean,
maximum, and variance of the number of available worker nodes.

If the variance of the number of available hosts is zero, then the execution
is obviously the same as in the error-free case because the number of hosts is
steady along generations. In this case, the obtained fitness should be similar to
the error-free case. This situation is present within the second period (Day 2)
of the xwtr trace (variance equal to zero) and thus the obtained fitness is sim-
ilar to the error-free case (see Tab. 2). The other period of the xwtr trace has
also a very small variance, 0.11, resulting in a similar solution quality in com-
parison with the error-free scenario. The entrfin trace for both periods obtains
solutions of similar quality to the error-free environment, even though the large
variance observed in the Day 1 period (s2 = 305.59). Despite the large variance,



140 D. Lombraña González et al.

Table 3. Obtained fitness for 3-Trap function with host churn

Trace Hosts Fitness
Min. Median Mean Max. Var. (s2) 3-Trap

Error free - - - - - 23.56
entrfin (Day 1 ) 92 161.5 156.8 177 305.59 23.52
entrfin (Day 2 ) 180 181 180.9 182 0.6 23.58
ucb (Day 1 ) 0 2 1.9 9 3.12 21.31
ucb (Day 2 ) 0 4 3.7 7 2.7 23.03
xwtr (Day 1 ) 28 29 28.87 29 0.11 23.64
xwtr (Day 2 ) 86 86 86 86 0 23.70

the number of available hosts is high in comparison with the other traces, so
the PGA tolerates better the failures and provides solutions of similar quality
to the error-free case. Finally, the ucb trace obtains the worst results due to in
both periods the minimum number of available hosts is zero. Consequently, the
population is emptied, making very difficult to obtain solutions of similar quality
to the error-free environment.

4.1 Summary of Results

We have studied the fault-tolerance nature of PGA for the 3-Trap function prob-
lem with parallelism at individual level using real-world traces from Desktop
Grid Systems. We have simulated the failures using real data from three dif-
ferent traces under two different 24-hour periods and compared the obtained
solutions with the error-free case. For all the experiments the PGA has not used
any fault-tolerance mechanism.

Firstly, we studied the fault-tolerance nature of PGAs under a stringent as-
sumption: resources cannot be re-acquired after a failure. In this scenario the
obtained results suggest that PGAs for the 3-Trap function problem tolerates
a loss rate up to 20% of individuals. As DGSs can exhibit larger amounts of
failures, we introduce a simple solution to cope with failures when the failure
rate is known. The method consists in increasing the population size in the first
generation in order to compensate the individuals that are going to be lost along
generations. The method showed that thanks to this approach it is possible to
cope with failures, obtaining solutions of similar quality to the error-free envi-
ronment. For this first scenario we realized that there is an approximately linear
degradation of solution quality as host losses increases.

Secondly, we analyzed the behavior of PGAs for the 3-Trap function under the
same traces but using the host-churn phenomena: resources can become available
after being unavailable. In this case results exhibit a dynamic degradation due
to the number of available hosts variates along generations. In both cases PGA
shows to be fault-tolerant by exhibiting a graceful degradation [10].
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5 Conclusions

In this work we have analyzed the behavior of Parallel Genetic Algorithms
(PGAs) running in Desktop Grid Systems with high failure rates in order to fully
characterize the fault tolerant features of PGAs. We have employed a well-known
problem, 3-trap function, and real world traces from three different desktop grid
systems. Our main conclusion is that PGAs inherently provides graceful degra-
dation without the requirement of implementing any fault-tolerance mechanism.
Additionally, we have also presented a simple method for coping with errors that
consist in increasing the initial population size (accordingly to the errror rate
of the system) to compensate the gradual loss of individuals along generations
when the error rate is known. To the best of our knowledge this is the first time
that PGAs are fully characterized from the point of view of fault-tolerance.
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The Office-Space-Allocation Problem in Strongly
Hierarchized Organizations

Rui Lopes and Daniela Girimonte
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European Space Research and Technology Center

Abstract. The office-space-allocation (OSA) problem will be introduced
for strongly hierarchized organizations. In several organizations the re-
lation between the entities1 is strongly hierarchized, affecting the design
and handling of constraints and algorithms used to solve the problem.
Moreover there is also an increase in the constraint number when com-
pared to the common test instances. Several well known meta-heuristics
were used, new constraints developed, and some variations to the local
search algorithms were studied. This article describes the work done and
its application to a particular case study, the European Space Research
and Technology Center (ESTEC).

1 Introduction

Very dynamic organizations such as the European Space Agency (ESA) are
faced with continuous restructuring of their human resources: new employees
arrive, others leave or change their work appointment, and possibly also their
position in the hierarchy. The facility managers are asked to have these changes
reflected on the allocation of the office space. Moreover in many organizations
the increase in workforce is not always accompanied by an enhancement and/or
adaptation of the infrastructures. The scope of the activity of this organization is
quite broad and it is extremely important to keep the diverse teams working on
different matters/subjects coherently grouped. ESTEC is the biggest site of ESA,
presenting a problem with very high dimensions (around 2000 employees and
1500 offices). These characteristics make the problem of office space allocation a
hard and long process for a human being. State of the art optimization techniques
can be used to save resources and optimize the space usage. The problem is
common in several organizations and consists of allocating office space amongst
the entities, satisfying a given set of constraints. The goal is to optimize the
space usage, satisfying a set of hard constraints and as many soft constraints as
possible[1,2].

1 The term “entities” is used to designate every kind of entity (employees, printers,
laboratories,etc); In the test instance in the scope of this article all the entities are
employees and so this term will also be used throughout the text; the reader should
understand “entities” when such happens.

P. Cowling and P. Merz (Eds.): EvoCOP 2010, LNCS 6022, pp. 143–153, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The approach taken was to implement four well known meta-heuristics sim-
ilarly to [2]. To improve the performance of the algorithms, based on the qual-
itative and quantitative analysis of the obtained solutions, variations to local
search, and new constraints handling procedures were developed. Experiments
were carried out to compare the performance of the original algorithms with the
new versions.

The remaining of the article is organized as follows. In Sect. 2 the general
formulation of the problem is given and the problem domain and test instance are
described. Section 3 discusses the implementation of the algorithms, followed by
the modifications that were implemented, presenting and comparing the results
of the different approaches. Finally, a summary and some remarks are given in
Sect. 4.

2 The OSA Problem

The OSA problem is a highly constrained combinatorial optimization problem.
It consists in allocating a set of resources (rooms) to a number of entities (em-
ployees, printers, laboratories and/or others) [3], and it may arise in any in-
stitution/organization, whenever the resources are scarce and there is a need to
optimize the space usage, having into account a, usually heavy, set of constraints.
The goal is then to find an allocation that optimizes the space usage satisfying
a set of hard constraints and as many soft constraints as possible. These con-
straints restrict the positioning and grouping of the entities and are detailed
in Sect.2.2. In this domain, constraints of proximity/adjacency, grouping, and
sharing are common. The first type is set when one entity should be adjacent to
a determined room or entity; the second type refers to a group of entities that
should be allocated close to each other; finally, the sharing constraints indicate
whether an entity should or not share an office with another entity.

The following subsections present the problem formulation and the case study
description.

2.1 General Formulation

This problem is common in the literature and its formulation is similar to other
combinatorial optimization problems like the bin packing, the general assign-
ment problem and others [4]. This is a multi-objective optimization problem,
commonly formulated as a bi-objective problem. Following the work of [2], the
problem is formulated as follows.

There are n entities, with sizes s1, s2, ..., sn, and m rooms with capacities
c1, c2, ...,cm. A matrix X of [xi,j] values is defined to represent the solution,
where xi,j= 1 if the entity j (ej) is assigned to room i (ri). The constraints are
distinguished between hard and soft, having h hard constraints that must be
satisfied, and g soft constraints, which should be satisfied.

The problem’s goal is to minimize, over x, the function

F (x) = f1(x) + f2(x) (1)
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given that for each entity there is only one assigned resource and all the hard
constraints are satisfied. The functions f1(x) and f2(x) are, respectively, the
space-misuse, and the violation-of-soft-constraints functions, as described in [2]:

f1(x) =
m∑

i=1

WPi +
m∑

i=1

OPi (2)

f2(x) =
g∑

r=1

SCPr (3)

where WPi and OPi represent, respectively, the amount of space wasted or
overused for each room i; SCPr the penalty for violating the rthsoft constraint.
For each room only one of WPi or OPi has a value greater than zero, and the
overusing of a room is considered worse than the waste of its space:

WPi = max( 0, ci −
n∑

j=1

xijsj ) (4)

OPi = max( 0, 2(
n∑

j=1

xijsj − ci ) ) (5)

A candidate solution to this problem can be modeled as a n-dimensional vector
Y = [y1, y2, ..., yn] where the jthposition in the vector corresponds to ej and the
value yj = i allocates ej to the ri room. This structure reduces the amount of
memory needed to represent the allocation solutions and also assures that each
entity is assigned only one room.

2.2 ESTEC Case Study

In ESA, as mentioned before, there is a well defined and strong hierarchization
amongst the entities. These have two properties related to hierarchy: standard
and address code. The standard refers to the category of the entity, based on
which size and sharing properties are defined. For instance, an employee may
have the category “Head of Section”, which makes him entitled to a single office
(non sharing property) of 18 m2. The address code reflects the hierarchy of the
business units of the agency , and defines the grouping logic for the entities.
As an example, if an employee has address code “TIA-ABC” he/she belongs
to section ABC of TIA directorate. The remaining of this section explains in
detail how these properties relate and affect the office space allocation problem.
The problem instance used in this article is a subset of the ESTEC instance,
correspondent to the TIA directorate of ESA. The following paragraphs describe
the test instance.

Entities and Resources Data
The data set of this instance offers 109 resource units (m = 109), with different
characteristics, to be allocated to 105 entities (n = 105).
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The address code property is a character sequence, from five to seven charac-
ters size, of the form “TIA-ABC”. “TIA” defines the directorate the entity belongs
to2, “TIA-A” the department, “TIA-AB” the division and, finally, “TIA-ABC”
the section. Every entity is associated to one and only one address code, at any of
the described levels, and shall be grouped with all the other entities of the same
address code. To obtain a coherent allocation the grouping must work also when
one goes up the abstraction. That is, the sections of some division, the divisions
of the same department, and the departments belonging to a directorate should
be close to each other.

The existent standards, which define the entities size and sharing attributes,
are summarized in Table 1.

Table 1. ESA standards and corresponding office space and share attributes

Standard Space (m2) Share
Head of Directorate 39 No
Head of Department 29 No

Head of Division 24 No
Head of Section 18 No
Staff A Senior 16 No

Staff A, B and B Sr. 12 No
Others 8 Yes

The resources are identified by a character sequence with fixed length of five
characters, in the form “BA301". The first character identifies the building, the
second the region of the building (usually from A to F), the third the floor of
the building, and, at last, the remaining two characters give the room number.
Each room in the data set has two lists of adjacent rooms; one is a regular
adjacency list comprising all the offices in the close surroundings of the office;
the other, which will be called “strict adjacency list” has only the rooms that are
literally adjacent, that is, which share a wall with the current room. The latter
was introduced because there is a constraint imposed by the stakeholders that
the secretaries must stay immediately adjacent to their chiefs.

Constraints
In this section the constraints present in the test instance will be described3.
There is a clear distinction between "global constraints" and "particular con-
straints", where a global constraint applies to every entity and a particular
constraint applies to a specific subject and/or target. Table 2 summarizes the
particular constraints that can be found in the data set and Table 3 the global

2 The entities employed at the directorate level are exceptions and have address code
“D/TIA”.

3 all the types described in [2] can be used, but this instance does not have a constraint
of each type.
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Table 2. Particular constraints applied to the test instance

Constraints Hard Penalty (SCP) Description
be located in 1 10 entity allocated in the designated room
be adjacent to 0 50 entity adjacent to other entity

Table 3. Global constraints applied to the test instance

Constraints Hard Penalty (SCP) Description
Grouping (5) 0 1 Group entities at department level
Grouping (6) 0 3 Group entities at division level

AvoidSpreading (5) 0 50 Avoid splitting of the department over
several buildings/floors

AvoidShareAcross (5) 0 3 Avoid sharing of office between entities of
different departments

Sharing 1 1 All the entities whose standard states not to
share, must be allocated alone

constraints. The penalty values were determined by trial end error. The para-
graphs that follow detail the implementation.

The description of the particular constraints is self-explanatory but few re-
marks must be added about the adjacency constraint. This constraint uses the
strict adjacency list, because this is what corresponds to the decision makers
expectations. As explained before, this constraint is mostly used to place the
secretaries immediately adjacent to their administrators. Moreover, the adja-
cency constraints defined in the data are soft, when ideally they would be hard
constraints. This was decided because, given the usual local search algorithms,
the entities involved in such constraints would have the same allocation from
the initial solution until the final, making it too rigid for in-field usage of the
algorithms4.

The global constraints were developed for the domain here described and
need some more detail. As mentioned before, the standard property of the en-
tities defines whether or not an entity should share an office. In order to have
a feasible solution, according to ESTEC rules, all entities which are entitled to
a single office must not share and the remaining must share. That is why the
"Sharing"constraint is hard. However, because we could have an odd number of
sharing entities, or to prevent worse grouping, the latter are not forced to share.
If the constraint is used as soft (Hard = 0) then a penalty is applied for any
entity whose share condition does not correspond to its standard.

All the other global constraints applied have a number characterizing it. These
constraints compute based on the address code of the entities and can operate
at different levels of the character string, corresponding to the different levels of
4 The analysis of the generated solutions suggests that the best algorithms comply with

the soft adjacency constraints almost all the times, and results in better grouping
when compared to the usage of such constraints as hard.
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the agency hierarchy (see the previous section). To have a coherent grouping,
by the agency standards, all the entities in one division should be close to each
other (Grouping(6), i.e.at division level). The Grouping(5), i.e. at department
level, is used to enforce grouping between divisions, trying to avoid the mixing
of divisions from different departments. In some tests that were made, although
the total grouping penalty was smaller when compared to a manual allocation, it
would always split the departments through a bigger number of floors/buildings,
which pleases less the decision makers. In order to improve this aspect the con-
straint AvoidSpreading(5), i.e. at department level, is used, applying a penalty
proportional to the number of different floors/buildings used by a department.
Finally, the optimization of the space usage would make the algorithm pair enti-
ties from different departments. However, for the allocation to be coherent it is
preferable to have some space wastage (free space) than to allocate two entities
from different departments. For this reason, the constraint AvoidShareAcross(5),
i.e. at department level, applies a penalty to these situations.

Some new constraints, specific to the present problem domain, have been
implemented to generate solutions closer to the stakeholders expectations and
demands. Some common constraints to OSA domains were also applied. The
global constraints apply to all entities, so one could say that a global constraint
corresponds to n particular constraints, where n is the number of entities. The
next section reveals the algorithms that were used and the improvement attempts
over these, providing a comparison of the results.

3 Algorithms and Results

Four known meta-heuristics were implemented: Hill-Climbing or Iterative Im-
provement (II) [5], Simulated Annealing (SA) [6], Tabu Search (TS) [7], and the
Hybrid Meta-heuristic (HMH) [1]. These meta-heuristics perform the optimiza-
tion using local search operators, namely swap, relocate, and interchange5. This
approach is based on the work developed in [2], and its test instances were used
to verify the base library used to implement the solvers. The results obtained
with these algorithms, as they are described in the literature, are presented in
Table 4, for different run lengths. The values presented were obtained by aver-
aging 10 runs. It is not a goal to describe here the algorithms that can be found
in several published articles.

Similarly to results found on the literature, the Hybrid Meta-heuristic outper-
forms the other algorithms if the run length is large enough. For the shortest run
length it is outperformed by the Tabu Search, which has a faster convergence.
The Simulated Annealing performance is comparable to the Iterative Improve-
ment, up to 5000 iterations. When the run is larger the SA will continue improv-
ing, opposite to the II which will get stuck (expected due to the SA algorithm).

5 The swap operator, swaps the allocated room between two entities; the relocate
operator relocates an entity to a different room; the interchange changes all the
entities in one room to another room and vice-verse.
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Table 4. Average results obtained with the four algorithms, without variations, for
different run lengths. The best results are emphasized.

Length 10000 iterations
Algorithms II SA TS HMH

Space misuse (f1) 449.37 440.26 430.08 416.81
Soft constraints (f2) 203.57 201.87 206.22 209.52

Total (f) 652.93 642.13 636.30 626.33
Length 5000 iterations

Algorithms II SA TS HMH
Space misuse (f1) 436.08 440.11 450.11 424.42

Soft constraints (f2) 209.42 213.17 209.82 207.88
Total (f) 645.50 653.28 659.93 632.30
Length 1050 iterations (10*n)

Algorithms II SA TS HMH
Space misuse (f1) 442.36 451.93 438.87 432.68

Soft constraints (f2) 242.51 231.40 219.54 244.19
Total (f) 684.87 683.32 658.40 676.87
Best of all 597.15 589.74 585.49 604.30

The next sections detail the variations developed, their purpose, and the re-
sults achieved.

3.1 Variations to Local Search (LS) Operators

When analyzing the obtained solutions to evaluate the grouping quality, several
divisions could be found to be split because of two or three sequential entities
(see Sect. 2.2) that were allocated in a different zone, although also grouped
with each other. This suggests that a variation to the Local Search operators,
which are used by all the mentioned meta-heuristics, allowing the recombination
of sequences of entities/resources, could be beneficial. In order to verify this,
two variations of the swap and relocate operators were implemented to allow
recombination of sequences. A property, length, was added to the local search
and experiments were run in two modalities: fixed length and variable length.
In the former all the operations will involve a sequence of length entities and
resources, and in the latter the length of the involved sequences is randomly
generated every iteration between 1 and length.

The following experiments were carried on: modified relocate operator with
fixed and variable length (see Table 5 on the following page); modified swap
operator with fixed and variable length (see Table 6 on page 151); both vari-
ations to local search at the same time, with variable and fixed length (see
Table 7 on page 151). Finally, a local search with five operators - the standard
three plus both variations to relocate and swap with variable length 2 - was
attempted (see Table 8 on page 152). The next paragraphs comment on the ob-
tained results.
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Both the TS and HMH algorithms with the fixed length relocate (Table 5) op-
erator perform worse than the original. The Simulated Annealing performance
on the other hand has increased mainly because of better space use. The re-
sults show that the most robust algorithms perform worse with the fixed length
extended operator but the SA algorithm outperforms the original results.

With the variable length operator the results are very similar to those obtained
with the original versions.

Table 5. Average results obtained with the four algorithms for the variation relocate
operator with fixed and variable length 2. The best results are emphasized.

Operator Relocate Fixed Length 2 Relocate Variable Length 2
Run Length 10000
Algorithms II SA TS HMH II SA TS HMH

Space misuse (f1) 438.52 420.6 441 423.75 449.09 438.78 426.59 404.94
Soft constraints (f2) 206.67 206.89 212.12 256.4 225.04 206.05 212.48 218.37

Total (f) 645.2 627.48 653.12 680.15 674.13 644.83 639.07 623.30
Run Length 5000
Algorithms II SA TS HMH II SA TS HMH

Space misuse (f1) 443.56 425.56 425.68 418.17 440.77 436.47 431.74 425.78
Soft constraints (f2) 203.99 215.02 233.46 288.9 223.78 208.56 216.57 219.15

Total (f) 647.55 640.58 659.14 707.07 664.55 645.03 648.31 644.93
Run Length 1050 (10*n)
Algorithms II SA TS HMH II SA TS HMH

Space misuse (f1) 438.64 441.2 449.68 430.9 439.80 443.86 444.83 435.51
Soft constraints (f2) 221.77 251.07 219.11 304.03 238.28 246.07 213.84 266.53

Total (f) 660.42 692.27 668.78 734.93 678.08 689.93 658.67 702.03
Best of all 602.81 597.06 604.29 643.33 584.67 590.77 601.66 597.74

The fixed length swap operator (Table 6) worsened the performance of every
meta-heuristic. Despite this, the SCP(f2) achieved is worse than the original,
but the space misuse is better. The HMH outperforms every algorithm with this
variation.

The variable length swap operator achieves better results that the fixed. In
comparison to the original algorithms, HMH modified version is slightly better
and TS kept its original performance. Again the SA algorithm is the one that
deals better with the modified operator since it had the biggest quality increase.
HMH outperforms all other algorithms for the largest run, even the original
versions and the modified variable relocate operator (see Table 5).

When both fixed length relocate and swap operators (Table 7 on page 151)
are used, the algorithms perform worse (as expected, since by them selves it was
not better). Apparently, none of the advantages of the operators alone (better
soft penalty for relocate and better space usage for swap) is maintained when
put to work at the same time - because they complement each other. The most
affected with decreasing performance were TS and, surprisingly, also HMH.
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Table 6. Average results obtained with the four algorithms for the variation operator
Swap with fixed and variable length 2. The best results are emphasized.

Operator Swap Fixed Length 2 Swap Variable Length 2
Run Length 10000
Algorithms II SA TS HMH II SA TS HMH

Space misuse (f1) 428.79 429.74 429.41 408.67 435.79 419.02 423.46 403.71
Soft constraints (f2) 220.2 216.77 224.07 229.69 213.14 195.81 214.89 207.92

Total (f) 648.99 646.52 653.48 638.36 648.93 614.83 638.35 611.63
Run Length 5000
Algorithms II SA TS 633.67 II SA TS HMH

Space misuse (f1) 428.66 433.43 434.62 412.64 441.83 423.31 436.85 409.24
Soft constraints (f2) 225.64 227 219.12 234.83 214.17 225.74 210.95 209.30

Total (f) 654.3 660.42 653.74 647.47 655.99 649.05 647.80 618.54
Run Length 1050 (10*n)
Algorithms II SA TS HMH II SA TS HMH

Space misuse (f1) 436.4 447.73 430.32 434.16 436.90 425.92 435.05 431.07
Soft constraints (f2) 250.34 245.41 234.05 270.72 235.90 227.50 223.32 272.29

Total (f) 686.74 693.13 664.36 704.88 672.80 653.43 658.37 703.36
Best of all 599.29 600.33 609.18 611.78 602.16 572.06 595.11 589.04

Table 7. Average results obtained with the four algorithms for the variation operator
Relocate with fixed length 2. The best results are emphasized.

Operator S&R Fixed Length 2 S&R Variable Length 2
Run Length 10000
Algorithms II SA TS HMH II SA TS HMH

Space misuse (f1) 427.27 421.07 447.05 425.94 424.13 432.65 413.22 411.76
Soft constraints (f2) 225.53 233.34 230.42 286.16 223.82 201.86 226.42 221.10

Total (f) 652.80 654.41 677.47 712.11 647.95 634.51 639.64 632.86
Run Length 5000
Algorithms II SA TS HMH II SA TS HMH

Space misuse (f1) 436.43 438.96 440.33 441.52 428.05 433.19 435.05 417.91
Soft constraints (f2) 221.50 231.12 216.12 316.97 213.31 208.67 218.41 232.06

Total (f) 657.94 670.08 656.44 758.49 641.36 641.86 653.46 649.97
Run Length 1050 (10*n)
Algorithms II SA TS HMH II SA TS HMH

Space misuse (f1) 435.28 440.76 435.87 428.97 440.03 441.31 424.72 430.61
Soft constraints (f2) 248.14 263.51 250.61 356.10 229.46 248.67 243.43 282.91

Total (f) 683.42 704.27 686.48 785.07 669.50 689.98 668.15 713.52
Best of all 610.42 629.15 591.33 681.16 585.11 593.75 597.24 604.30

The results for the variable length operators suggest that TS and II reach
a local optimum before 5000 iterations, and its performance is comparable to
the original. The SA and HMH perform better than the original, combining



152 R. Lopes and D. Girimonte

Table 8. Average results obtained with the four algorithms for the local search with
five operators: the three typical relocate, swap, and interchange, and both variations
to operator relocate and swap with variable length 2. The best results are emphasized.

Algorithms II SA TS HMH
Run Length 10000

Space misuse (f1) 438.31 418.66 442.76 417.06
Soft constraints (f2) 210.10 205.85 217.95 215.42

Total (f) 648.40 624.51 660.71 632.48
Run Length 5000

Space misuse (f1) 424.19 427.34 427.03 425.41
Soft constraints (f2) 217.17 221.42 213.95 209.36

Total (f) 641.36 648.76 640.98 634.77
Run Length 1050 (10*n)
Algorithms II SA TS HMH

Space misuse (f1) 440.16 435.64 422.38 448.85
Soft constraints (f2) 230.82 258.67 260.41 254.27

Total (f) 670.98 694.31 682.79 703.12
Best of all 609.15 587.00 608.36 631.74

benefits of both modified operators by improving the grouping (specially the
HMH) and the space usage. The HMH outperforms every algorithm and the
original versions.

Joining the best performing operators variations (Table 8 on page 152) with
the standard local search, an improvement relative to the original results is ob-
tained. This improvement is significant in the SA case. However, it does not
outperform the results with the variations as replacement for the standard oper-
ators. The benefits from the swap variation (better space usage) can be seen on
the results, but a better grouping should be expected when using the variable
length relocate. Also the best solution found is slightly better than the original
version, but its quality decreased when compared to the experiments with the
variation operators as replacement for the standard ones.

As can be seen with such results, the local search can be improved, based on
the recombination of solutions. As in the genetic algorithms concept, parts of the
chromosomes (solutions) can be recombined, based on an extended local search,
improving the quality of the obtained results. The next section summarizes the
work described so far and provides guidelines for further investigation.

4 Summary and Final Remarks

Organizations such as the European Space Agency (ESA) are extremely dynamic
and are faced with continuous restructuring of their human resources. The facility
managers are asked to have these changes reflected on the allocation of the office
space. State of the art optimization techniques can be used to save resources and
optimize the space usage. Following an approach similar to [2], despite of known
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results in this domain when using genetic algorithms with recombination being
weaker than local search [8], it is shown here that it is possible to extend the
local search operators towards recombination operators, improving the obtained
results, and outperforming the original local search.

However, the application of such changes is not straightforward. Several ap-
proaches were tried and the different results compared. First of all, fixed length
operators yielded bad quality results . When testing the swap and relocate vari-
able length operators individually, one can see an improvement at different levels,
and the final quality of the solution is better than the original one.Individually,
both variable length operators improve on the original results specially by reduc-
ing, respectively, the soft constraints penalty and the space usage. When both
modifications are applied together (Table 7 on page 151) there is no further im-
provement in comparison with the individual trials for most of the algorithms. If
the original local search operators are used in conjunction with both variations
the obtained results are similar. One can notice that there is a better space us-
age in SA and HMH, which is compensated with a not so good soft constraints
penalty. This suggests that other combinations of operators should be tried.

To conclude, the extension of the local search operators used in meta-heuristic
search has the potential to outperform the original local search, by recombining
bigger, variable length, parts of solutions during the process. Future work should
also include an extension to the interchange operator, combinations of this with
the remaining operators, and different combinations of the original local search
operators with the extended operators.
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Abstract. We present a multi-parent hybrid genetic–tabu algorithm
(denoted by GTA) for the Unconstrained Binary Quadratic Program-
ming (UBQP) problem, by incorporating tabu search into the frame-
work of genetic algorithm. In this paper, we propose a new multi-parent
combination operator for generating offspring solutions. A pool updat-
ing strategy based on a quality-and-distance criterion is used to manage
the population. Experimental comparisons with leading methods for the
UBQP problem on 25 large public instances demonstrate the efficacy of
our proposed algorithm in terms of both solution quality and computa-
tional efficiency.

Keywords: UBQP, Memetic Algorithm, Tabu Search, Genetic Algo-
rithm, multi-parent combination.

1 Introduction

The unconstrained binary quadratic programming problem may be written

UBQP: Maximize f(x) = x′Qx
x binary

where Q is an n by n matrix of constants and x is an n-vector of binary (zero-one)
variables.

The formulation of UBQP is notable for its ability to represent a wide range of
important problems, including those from financial analysis [1], computer aided
design [2], traffic management [3], machine scheduling [4]), cellular radio channel
allocation [5] and molecular conformation [6]. Moreover, many combinatorial op-
timization problems pertaining to graphs such as determining maximum cliques,
maximum cuts, maximum vertex packing, minimum coverings, maximum inde-
pendent sets, maximum independent weighted sets are known to be capable
of being formulated by the UBQP problem as documented in [7]. A review of
additional applications and formulations can be found in [8].

Given the interest in the UBQP and its NP-hard nature [9], a large number
of solution procedures have been reported in the literature. Some representative
examples include exact algorithms (such as [7,10]), local search based approaches
(such as direct local search [11], Simulated Annealing [12,13,14] and Tabu Search
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[13,15,16,17,18]) and population-based approaches (such as Evolutionary Algo-
rithms [19,20,21,22], Scatter Search [23] and Memetic Algorithms [24]).

In the current paper, we study a memetic algorithm for the UBQP, which
integrates a tabu search procedure with a genetic search approach. The proposed
algorithm is characterized by several original features. First, we introduce a
“logic” combination operator using multiple parents called MSX to produce a
combination scheme that more fully exploits the problem structure within the
present context. Second, the proposed MSX operator is jointly employed with the
conventional uniform crossover to generate diversified new solutions. Finally, our
algorithm relies on a quality-and-distance replacement strategy for population
updates to maintain the population diversity.

To assess the performance and the competitiveness of our memetic algorithm
in terms of both solution quality and efficiency, we provide computational results
on the 10 largest benchmark instances with 2 500 variables from ORLIB as well
as 15 larger instances with up to 5 000 variables, comparing our outcomes with
the best results of the literature.

The remaining part of the paper is organized as follows. In Section 2, our
memetic algorithm is described, including the tabu search procedure, the multi-
parent combination operator and the pool updating rule. Sections 3 is dedicated
to the computational results and concluding remarks are given in Section 4.

2 Hybrid Genetic–Tabu Algorithm

2.1 Main Scheme and Initial Population

Memetic algorithms such as hybrid evolutionary algorithms are known to be
highly effective for solving a large number of constraint satisfaction and opti-
mization problems [25]. By combining the more global recombinant search and
the more intensive local search, the memetic framework is expected to offer a
better balance between the exploration and exploitation of the search space.

In principle, our genetic-tabu algorithm (GTA) repeatedly alternates between
a combination operator that is used to generate new offspring solutions and a
tabu search procedure that optimizes the newly generated offspring solutions.
As soon as an offspring solution is improved by tabu search, the population is
accordingly updated based on two criteria: the solution quality and the diversity
of the population.

The general framework of our GTA algorithm is described in Algorithm 1.
GTA contains four main components: population initialization, a tabu search
procedure, a multi-parent combination operator and population updating. Start-
ing from an initial random population, GTA uses the tabu search procedure to
optimize each individual to reach a local optimum (see Sect. 2.2, lines 4-6 in Al-
gorithm 1). Then, a combination operator is employed to generate new offspring
solutions (see Sect. 2.3, line 10 in Algorithm 1), whereupon a new round of tabu
search is launched to improve the new solutions. Subsequently, the population
updating rule will decide whether an improved solution should be inserted into
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Algorithm 1. Pseudo-code of the GTA algorithm for the UBQP problem
1: Input: matrix Q
2: Output: the best solution x∗ found so far
3: P = {x1, . . . , xp} ← Population Initialization( )
4: for i = {1, . . . , p} do
5: xi ← Tabu Search(xi)
6: end for
7: x∗ = arg max{f(xi)|i = 1, . . . , p}
8: repeat
9: randomly choose a subset of individuals E from P

10: x0 ← Combination Operator(E)
11: x0 ← Tabu Search(x0)
12: if f(x0) > f(x∗) then
13: x∗ = x0

14: end if
15: {x1, . . . , xp} ← Pool Updating(x0, x1, . . . , xp)
16: until a stop criterion is met

the population and which existing individual should be replaced (line 15 in Al-
gorithm 1). Throughout the search process, x∗ records the best solution found
(lines 7, 12-14 in Algorithm 1).

The individuals of the initial population are generated randomly (i.e., each
variable xi of the n-vector x receives a value of 0 or 1 with equal probability). To
build a diversified initial population, a new individual is added to the population
only if it is not too close to any of the existing solutions of the population. The
distance threshold for executing this rule is discussed in Section 2.3.

2.2 Tabu Search Procedure

As demonstrated in [15] and more recently in [16,17,18], TS is one of the more
successful approaches for the UBQP. Our tabu search procedure uses a neigh-
borhood defined by the simple one-flip move, which is widely used in local search
algorithms for binary problems such as the UBQP problem and the satisfiability
problem [26]. The one-flip move consists of changing (flipping) the value of a
single variable xi to its complementary value 1−xi. The implementation of this
neighborhood uses a fast incremental evaluation technique [15,27] to calculate
the cost (move value) of transitioning to each neighboring solution.

More formally, let N = {1, . . . , n} denote the index set for components of
the x vector. We preprocess the matrix Q to put it in lower triangular form by
redefining (if necessary) qij = qij + qji for i > j, which is implicitly accompanied
by setting qji = 0 (though these 0 entries above the main diagonal are not stored
or accessed). Let Δi be the move value of flipping the variable xi, and let q(i,j)
be a shorthand for denoting qij if i > j and qji if j > i. Then each move value
can be calculated in linear time using the formula:



A Study of Memetic Search with Multi-parent Combination for UBQP 157

Δi = (1 − 2xi)(qii +
∑

j∈N,j 
=i,xj=1

q(i,j)) (1)

In addition, once a move is performed, one needs just to update a subset of move
values affected by the move. Specifically, it is possible to update the move values
upon flipping a variable xi by performing the following abbreviated calculation:

1. Δi = −Δi

2. For each j ∈ N − {i},
Δj = Δj + σij q(i,j)
where σij = 1 if xj = xi, σij = −1 otherwise.

We employ the convention that xi represents xi’s value before being flipped.
TS typically incorporates a tabu list as a “recency-based” memory structure

to assure that solutions visited within a certain span of iterations, called the tabu
tenure, will not be revisited [28]. In our implementation, each time a variable xi is
flipped, a value is assigned to an associated record TabuTenure(i) (identifying
the “tabu tenure” of xi) to prevent xi from being flipped again for the next
TabuTenure(i) iterations. For the current study, we elected to set

TabuTenure(i) = tt + rand(10) (2)

where tt is a given constant and rand(10) takes a random value from 1 to 10.
Our TS algorithm then restricts consideration to variables not currently tabu

(by the criterion established by (2)), and selects a variable to flip that produces
the best (largest) Δi value. In the case that two or more moves have the same
best move value, a random best move is selected. Meanwhile, a simple aspiration
criterion is applied that permits a move to be selected in spite of being tabu if
it leads to a solution better than the current best solution.

Our TS method stops when the best solution cannot be improved within a
given number α of moves and we call this number the improvement cutoff.

2.3 Combination Operator

In our GTA algorithm, we jointly use two kinds of combination operators to
generate suitable offspring: one is the uniform crossover widely used in the liter-
ature; the other is a “logic” multi-parent combination operator proposed in this
paper. At each iteration, we randomly choose one of these two operators with
equal probability to generate new offspring solutions.

The main idea of uniform crossover is to assign values to the variables of
offspring that represent assignments made in common by both parents, and to
randomly assign values to remaining variables of the offspring solution [29]. In
our case, the application of uniform crossover is controlled by the Hamming
distance dij between two parent solutions xi and xj (i.e., dij equals the number
of variables that receive different values in the parents. We require that two
solutions chosen as parents must satisfy dij > d, where d denotes the average
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distance between pairs of solutions in the population. Therefore, we have d =
2

p(p−1)

∑p
i=1
∑p

j=i+1 dij , where p denotes the population size.
Our “logic” multi-parent combination operator, called MSX, relies on infor-

mation extracted from diversified and elite solutions. Let E = {x(1), . . . , x(s)},
where x(i) = (x(i)

1 , . . . , x
(i)
n ) and the solutions in E are ordered in terms of their

quality, i.e., x(1) is the best solution in E and x(s) is the worst. The value s giving
the number of solutions in E is allowed to vary randomly between 4 and 8. E
itself is generated by randomly selecting elements from the pool one at a time,
subject to the restriction that each new element added to E must be separated
by a distance of at least d from all elements of E previously added, as a basis
for assuring the diversity of E. (In some cases, this requirement may compel E
to have fewer than s elements.)

Associated with each x(i) in E, we identify the value

sum(i) =
n∑

j=1

x
(i)
j (3)

and define a weight w(i) for the solution x(i) as the inverse of sum(i):

w(i) = 1/sum(i) (4)

The weighted quantity w(i)x(i)
j , which equals w(i) if x

(i)
j = 1 and equals 0

otherwise, may be interpreted as the “relative contribution” of setting xj = 1 in
the solution x(i). In other words, if x

(i)
j = 1 for all j ∈ N then each assignment

xj = 1 contributes only 1/n to the weighted quantity, whereas if x
(i)
j = 1 for

only two j ∈ N then each xj = 1 assignment contributes 1/2, disclosing that
the relative contribution of any given assignment xj = 1 in the latter solution is
significantly greater than in the former.

For the elite set E (|E| = s), define the value Strength(j) to be the weighted
sum of the values x

(i)
j (hence of the values x

(i)
j = 1) over the solutions x(i) in E:

Strength(j) =
s∑

i=1

w(i)x(i)
j (5)

The value Strength(j) gives a relative indication of the tendency of the solutions
in E to favor xj = 1 or xj = 0. That is, we may say that the larger the value
of Strength(j), the greater is the degree that “E favors xj = 1”. We allow
the use of different weights for different solutions to reflect the fact that some
solutions may deserve greater influence in determining the strength assigned a
given variable than other solutions. The use of different weights also permits
the use of strategies that amend the emphasis placed on various solutions as
a function of search history, though we have not exploited this feature in the
present study.

For the goal of generating a solution x from the set of solutions E, the
value Strength(j) by itself is not enough to determine that xj should be 1
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or 0. To make this determination, we need to order the vector Strength (=
(Strength(1), . . . , Strength(n))) from its largest to smallest component:

Strength(j1) ≥ Strength(j2) ≥ . . . ≥ Strength(jn) (6)

To complete the determination of a suitable vector x to be derived from the set
E, we select for the number of components xj of x that should receive a value
xj = 1. We take an average of the sum(i) values over E to get a value for the
number of xj components that should be 1 in an “average” solution. Specifically,
let

Avg =
s∑

i=1

sum(i)/s (7)

Making use of these elements, we can now compute the vector x created from
combining the solutions of E as follows:

1. For each j = jk, k ≤ Avg − r1, set xj = 1;
2. For each j = jk, k ≥ Avg + r2, set xj = 0;
3. For each j = jk, Avg − r1 < k < Avg + r2, randomly set xj = 1 or xj = 0.

where r1 or r2 denotes a randomly generated number from 3 to 10.
This idea is inspired from the intuition that it is preferable to shift Avg slightly

in one direction or another to make the generation of offspring solutions more
varied. In such a way, an offspring solution x is generated based on the elite set
E, to which the tabu search procedure can be applied to further optimize the
solution.

2.4 Pool Updating

In our algorithm, when an offspring x0 is obtained by the combination operator,
we improve x0 by the tabu search algorithm and then decide whether the off-
spring should be inserted into the population, replacing the worst solution in the
population. For this purpose, we define a quality-and-distance goodness score of
the offspring x0 with respect to the population.

The main idea is to favor the inclusion of x0 in the population if x0 is “good
enough” (in terms of its objective function evaluation) and is not too similar
to any solution currently in the population. In order to make things clearer, we
make use of the following definitions:

Definition 1. Distance Between a solution and a Population: Given a
population P = {x1, . . . , xp} and the distance dij between any two solutions xi

and xj (i, j = 1, . . . , p, i �= j), the distance between a solution xi (i = 1, . . . , p)
and the population P is defined as the minimum distance between xi and any
other solution in P , denoted by Di,P :

Di,P = min{dij|xj ∈ P, j �= i} (8)
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Definition 2. Goodness Score of a solution for a Population: Given a
population P = {x1, . . . , xp} and the distance Di,P for any solution xi (i =
1, . . . , p), the goodness score of solution xi for population P is defined as:

g(i, P ) = βÃ(f(xi)) + (1 − β)Ã(Di,P ) (9)

where f(xi) is the objective function value of solution xi and Ã(·) represents the
normalized function:

Ã(y) =
y − ymin

ymax − ymin + 1
(10)

where ymax and ymin are respectively the maximum and minimum values of y
in the population P . The number “1” is used to avoid the possibility of a 0
denominator. β is a constant parameter and we empirically set β = 0.6 in this
paper.

It is reasonable that the greater the goodness score g(i, P ), the better solution
xi, since we should not only maintain a pool of good quality solutions but also
emphasize the importance of the diversity of the solutions to avoid a premature
convergence of the population. Therefore, if the goodness score of the offspring
solution is good enough, it will have high probability to replace the worst solution
in the population. Interested readers are referred to [30] for more details about
this quality-and-distance based pool updating strategy.

3 Experimental Results

3.1 Instances and Experimental Protocol

To assess the efficiency of our proposed GTA algorithm, we carry out exper-
iments on two sets of benchmarks. The first set of benchmarks is composed
of the 10 largest instances of size n = 2 500 introduced in [13] and available
in the ORLIB [31]. These instances are used in the literature by many au-
thors (e.g., [13,14,16,17,18,24]). Note that the small test instances from the
ORLIB whose sizes range from n=50 to 1 000 present no challenge for our
GTA algorithm, since all their best known results can be obtained within 2
seconds by our algorithm. The second set of benchmarks consists of a set of
15 randomly generated large problem instances named p3000.1,. . .,p5000.5 with
sizes ranging from n=3 000 to 5 000 [16,17]. These instances are available at:
http://www.soften.ktu.lt/∼gintaras/ubqop its.html.

Our algorithm is programmed in C and compiled using GNU GCC on a PC
running Windows XP with Pentium 2.66GHz CPU and 512M RAM. Given the
stochastic nature of our GTA procedure, each problem instance is independently
solved 20 times. For the instances with 2 500, 3 000, 4 000 and 5 000 variables,
the CPU time limit is set to be 40, 500, 800 and 1 500 seconds, respectively.
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3.2 Computational Results and Comparisons

Based on preliminary testing, we observed that the following parameter settings
give satisfying results: population size p = 20, tabu tenure constant tt = n/150,
tabu search improvement cutoff α = 2n and goodness score constant parameter
β = 0.6. The calibrated parameter values are kept constant for all the exper-
iments. It is possible that better solutions would be found by using a set of
instance-dependent parameters.

Our first experiment aims to evaluate the overall performance of our GTA
algorithm on the tested instances. The results of this experiment are summarized
in Table 1, showing the computational statistics of our GTA algorithm. Columns
2 and 3 respectively give the density (dens) of the Q matrix and the previous
best known objective values (fprev). Columns 4 to 10 give our results: the best
objective value (fbest), the best solution gap to the previous best known values
gbest (= fbest −fprev), the average solution gap to the previous best known value
gavr (= favr − fprev) (where favr represents the average objective value over 20
runs), the standard deviations of the solution gaps over 20 runs (σ), the number
of success runs (suc) for reaching the best known results fprev, the best and the
average CPU time (seconds) for reaching the best results fbest (tbest and tavr)
over 20 independent runs. Furthermore, for each set of benchmarks, the summary
of our algorithm’s average performance is indicated in the row “Average”. Note
that the previous best known objective values fprev are extracted from [17] and
[18], which are obtained by allowing a time limit of up to several hours. These
reference algorithms are among the best performing algorithms for the tested
instances.

The results shown in Table 1 disclose that our GTA algorithm can stably reach
the previous best known results within a very short CPU time, demonstrating
the high efficiency of our method. For the 10 medium size ORLIB instances
with 2 500 variables, our algorithm can easily reach all the previous best known
objective values within 4 seconds on our computer. For the 15 remaining large
and difficult instances, our algorithm can also easily reach the previous best
known objective values within the given time limit. The average CPU time to
obtain the best known objective values is only 352 seconds and the average
number of success runs is about 15 out of 20 runs for this set of benchmarks.

As indicated in Section 2, one of the original features of our approach is the
multi-parent “logic” combination operator and its joint use with the uniform
crossover. In order to check the effect of this strategy, we conducted our second
experiment to compare GTA with a variant of GTA, where the multi-parent
combination operator is disabled and the remaining components are kept un-
changed. We denote this algorithm by GTAa, where we disable our multi-parent
combination operator MSX and keep only the uniform crossover.

We run this second experiment using GTAa under exactly the same conditions
as before and the results are reported in Table 2 together with those of GTA
extracted from Table 1. Once again, the following information is provided for
each instance: the best solution gap to the previous best known objective values
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gbest, the average solution gap to the previous best known objective values gavr,
the standard deviations of the solution gaps over 20 runs (σ), and the number
of success runs (suc) for reaching the best known objective values fprev over 20
runs.

One observes that GTA performs better than GTAa in terms of all the per-
formance criteria. In particular, for the large instance p5000.4, GTAa failed to
reach the best known objective value fprev = 12252318 within the given time
limit, while GTA reaches this best solution 3 times out of 20 runs. The average
gap to the previous best known objective value is 214.3 for GTA against 301.1 for
GTAa. Moreover, GTA obtains the previous best known objective values more
often than GTAa does (15.3 versus 13.7 over 20 independent runs). For the best
objective values obtained over 20 runs, we performed a 95% confidence t-test
to assess the difference between these two algorithms and found that GTA is
statistically superior to GTAa in 6 instances while it is inferior to GTAa only in
1 instance. For all the 18 remaining cases, there is no clear difference between
these two algorithms.

Table 1. Overall performance of our GTA algorithm over 20 runs

GTA
instance dens fprev fbest gbest gavr σ suc tbest tavr

b2500.1 0.1 1515944 1515944 0 0.0 0.0 20 0.45 2.52
b2500.2 0.1 1471392 1471392 0 9.9 43.2 19 3.87 26.7
b2500.3 0.1 1414192 1414192 0 0.0 0.0 20 0.60 6.70
b2500.4 0.1 1507701 1507701 0 0.0 0.0 20 0.33 1.32
b2500.5 0.1 1491816 1491816 0 0.0 0.0 20 0.41 3.50
b2500.6 0.1 1469162 1469162 0 0.0 0.0 20 0.71 4.14
b2500.7 0.1 1479040 1479040 0 0.0 0.0 20 1.06 12.3
b2500.8 0.1 1484199 1484199 0 0.0 0.0 20 0.55 5.83
b2500.9 0.1 1482413 1482413 0 0.0 0.0 20 0.57 11.0
b2500.10 0.1 1483355 1483355 0 0.0 0.0 20 1.44 13.2
Average 0 0.99 4.32 19.9 0.999 8.72
p3000.1 0.5 3931583 3931583 0 0.0 0.0 20 8.83 42.8
p3000.2 0.8 5193073 5193073 0 0.0 0.0 20 5.39 38.6
p3000.3 0.8 5111533 5111533 0 7.7 33.6 19 13.0 82.2
p3000.4 1.0 5761822 5761822 0 0.0 0.0 20 36.1 79.8
p3000.5 1.0 5675625 5675625 0 298.2 373.9 14 16.3 85.6
p4000.1 0.5 6181830 6181830 0 0.0 0.0 20 4.92 52.0
p4000.2 0.8 7801355 7801355 0 194.1 471.5 17 186.3 276.7
p4000.3 0.8 7741685 7741685 0 0.0 0.0 20 42.9 208.4
p4000.4 1.0 8711822 8711822 0 3.0 13.1 19 43.7 168.5
p4000.5 1.0 8908979 8908979 0 260.2 455.1 15 171.3 420.6
p5000.1 0.5 8559680 8559680 0 507.4 313.4 4 137.7 636.3
p5000.2 0.8 10836019 10836019 0 425.6 250.1 11 81.6 562.8
p5000.3 0.8 10489137 10489137 0 356.4 164.3 9 264.7 726.0
p5000.4 1.0 12252318 12252318 0 1035.6 456.6 3 826.7 1326.1
p5000.5 1.0 12731803 12731803 0 126.3 401.6 18 423.9 568.3
Average 0 214.3 195.5 15.4 150.9 351.6
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Table 2. Performance comparison of GTA algorithm with GTAa

GTA GTAainstance fprev gbest gavr σ suc gbest gavr σ suc

b2500.1 1515944 0 0.0 0.0 20 0 0.0 0.0 20
b2500.2 1471392 0 9.9 43.2 19 0 35.7 87.0 17
b2500.3 1414192 0 0.0 0.0 20 0 0.0 0.0 20
b2500.4 1507701 0 0.0 0.0 20 0 0.0 0.0 20
b2500.5 1491816 0 0.0 0.0 20 0 0.0 0.0 20
b2500.6 1469162 0 0.0 0.0 20 0 0.0 0.0 20
b2500.7 1479040 0 0.0 0.0 20 0 0.0 0.0 20
b2500.8 1484199 0 0.0 0.0 20 0 0.0 0.0 20
b2500.9 1482413 0 0.0 0.0 20 0 0.0 0.0 20
b2500.10 1483355 0 0.0 0.0 20 0 0.0 0.0 20
Average 0 0.99 4.32 19.9 0 3.57 8.70 19.7
p3000.1 3931583 0 0.0 0.0 20 0 0.0 0.0 20
p3000.2 5193073 0 0.0 0.0 20 0 0.0 0.0 20
p3000.3 5111533 0 7.7 33.6 19 0 0.0 0.0 20
p3000.4 5761822 0 0.0 0.0 20 0 0.0 0.0 20
p3000.5 5675625 0 298.2 373.9 14 0 387.3 311.3 6
p4000.1 6181830 0 0.0 0.0 20 0 0.0 0.0 20
p4000.2 7801355 0 194.1 471.5 17 0 286.5 649.9 14
p4000.3 7741685 0 0.0 0.0 20 0 0.0 0.0 20
p4000.4 8711822 0 3.0 13.1 19 0 6.0 26.2 19
p4000.5 8908979 0 260.2 455.1 15 0 865.2 1174.9 12
p5000.1 8559680 0 507.4 313.4 4 0 415.8 132.1 3
p5000.2 10836019 0 425.6 250.1 11 0 673.8 313.8 8
p5000.3 10489137 0 356.4 164.3 9 0 552.1 872.1 6
p5000.4 12252318 0 1035.6 456.6 3 608 1205.3 280.6 0
p5000.5 12731803 0 126.3 401.6 18 0 124.5 652.7 18
Average 0 214.3 195.5 15.4 40.5 301.1 294.2 13.7

Let us finally comment that we also carried out a similar experiment on an-
other important feature of our GTA algorithm — the quality-and-distance based
pool updating strategy. We compare GTA with another variant of GTA, where
the pool updating strategy is disabled and is replaced by one that randomly
takes the place of one of the parent individuals in the population. The remain-
ing components are kept unchanged. Once again we observe that GTA performs
better than this variant of GTA relative to all the four criteria shown in Table
2, implying the importance of our population updating strategy.

These results provide evidence of the benefit of our multi-parent combination
operator and quality-and-distance based pool updating strategy.

4 Conclusions and Discussion

In this paper, we have presented the GTA algorithm, a hybrid genetic–tabu
algorithm for solving the UBQP problem. The proposed algorithm integrates



164 Z. Lü, J.-K. Hao, and F. Glover

a “logic” multi-parent combination operator for generating offspring solutions
and an effective Tabu Search procedure. GTA uses also a pool updating strategy
considering both solution quality and diversity. Tested on two sets of 25 well-
known benchmark instances with 2 500 to 5 000 variables, we have shown that
this hybrid algorithm obtains highly competitive outcomes in comparison with
the previous best known results from the literature.

There are several directions to extend this work. One immediate possibility
is to examine other dedicated combination operators by considering more de-
tailed semantic information of the UBQP problem. Furthermore, more advanced
adaptive memory strategies from tabu search afford opportunities for creating
improvements of the local search part. Finally, given that the multi-parent com-
bination introduced in this paper is independent of the UBQP problem, it is
worthwhile to verify its effectiveness on other problems and to compare it with
other conventional recombinant operators.
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Abstract. Real life scheduling problems require the decision maker to consider 
a number of criteria before arriving at any decision. The trade-offs involved in 
considering several different criteria provide useful insights for the decision 
maker. Surprisingly, research in the field of multi-objective scheduling has been 
quite limited when compared to research in single criterion scheduling. The 
subject of this paper is the bicriteria scheduling problem in a two-machine 
flowshop. The objective is to find a job sequence that minimizes sum of 
weighted total flowtime and total tardiness. Based on the problem characteris-
tics, a Simulated Annealing algorithm is developed. The proposed meta-
heuristic is compared with the branch and bound enumeration algorithm of the 
integer programming model as well as a modified version of the well-known 
NEH algorithm. During these evaluations, the experimental design approach 
and careful statistical analysis have been used to validate the effectiveness of 
the simulated annealing approach. 

Keywords: Bicriteria Scheduling, Flowshop Scheduling, Simulated Annealing. 

1   Introduction 

In the early 1950s, the first scheduling publications containing the results by Johnson 
[15], Smith [29], and Jackson [13] have appeared in the production research literature. 
Lewis and El-Rewini [19] have mentioned that the scheduling problem in its general 
form is known to be NP-complete, as it is the creation of the optimal execution sche-
dule under a number of conditions. This is due to the presence of numerous tasks. 
Consequently, many heuristics and meta-heuristics have been developed to find ade-
quate (but sub-optimal) schedules. Until the late 1980s, the majority of the scheduling 
research has been concentrated on single criterion problems. In the recent years,  
multicriteria scheduling problems have received more attention [23]. 

The flowshop scheduling problem is considered as one of the production schedul-
ing problems in which n different jobs must be processed by m machines sequentially 
[2]. Since the publication of the Johnson’s paper [15], there has been a tremendous 
accumulation of research papers on flow shop scheduling problem (more than 1,300 
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[17]). Rajendran and Ziegler [28] have specified that most flowshop scheduling prob-
lems are NP-complete and hence the study of heuristics and enumerative approaches 
for solving the problem is quite often undertaken. 

The two-machine problem with the objective of minimizing mean flowtime or total 
flow time is known to be NP-hard [9]. Therefore, researchers have developed either 
implicit enumeration techniques such as branch-and-bound algorithms or dynamic 
programming to find the optimal solution for a limited number of jobs or local search 
algorithms for larger number of jobs. The two-machine problem with the objective of 
minimizing total tardiness is NP-complete [18] and has been solved by using different 
techniques such as branch-and-bound procedure based on elimination criterion and a 
lower bound to find a sequence that minimizes the tardiness value. A detailed review 
of the literature is provided in [10] and [17]. 

It is well-known that the minimization of sum of the flowtime and tardiness of jobs 
is a significant bicriteria objective for many real-life situations, especially with re-
spect to minimization of inventory holding costs, contractual penalty costs for the 
belated supply and loss of customer goodwill ([1] and [8]). It involves maintaining 
work-in-process inventory at low levels along with minimal average throughput time 
spent by each job in the shop. Minimizing tardiness involves reducing penalty cost 
incurred for late jobs. The former represents internal efficiency while the latter 
represents external efficiency.  

For many real-life situations jobs may have unproportional holding and tardiness 
costs, hence they cannot be treated equivalently. Therefore, the objective of minimiz-
ing the weighted sum of flowtime and tardiness of jobs is a significant and relevant 
objective for real-life problems [28]. Panwalker and Iskander [26] have pointed out 
that flowtime and tardiness are the most prominent measures among the scheduling 
objectives in industrial applications. Two-machine flowshop problems have rarely 
been discussed on the literature. Additional complexity is the primary reason for the 
lack of research on flowshop scheduling with two or more machines.  

In this research, we study the problem of minimizing weighted total flowtime and total 
tardiness for the two-machine flowshop (F2 | | Fw (∑ Cj 

n
j=1 ,  ∑ Tj 

n
j=1 )). Since, for the two-

machine flowshop scheduling problem, minimizing total completion time is strongly NP-
hard and minimizing total tardiness is NP-complete, our problem is either NP-hard or 
NP-complete. Therefore, a metaheuristic approach has been used to solve this problem.  

The rest of the paper is organized as follows. In the next Section, the problem defi-
nition and the integer programming (IP) formulation are given. Simulated Annealing 
(SA) is briefly explained in Section 3. The algorithms which are used to solve the 
problem are discussed in Section 4. The experimental results are given in Section 5. 
Finally, the last Section summarizes our conclusions. 

2   Problem Definition 

To succinctly define the F2 | | Fw (∑ Cj 
n
j=1 ,  ∑ Tj 

n
j=1 ) problem, let n= {J1, J2, …, Jn} be 

the set of jobs to be scheduled and m= {M1, M2} be the two machines which are used 
in the flowshop. The processing times for job j on M1 and M2 are denoted by pj1 and 
pj2, respectively, and the corresponding due date for job j is dj. The objective is to find 
the schedule to minimize the weighted sum of total completion time and total tardi-
ness for a two-machine flowshop. 
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The following assumptions are considered in the problem: 
 

• Each job is to be processed first on machine-1 and then on machine-2.  
• Each machine can process at most one job at a time and each job is 

processed at most by only one machine at a time. 
• Both machines are available at time zero. 
• It is also assumed that all jobs are available at time zero. So, with this as-

sumption, the flowtime and the completion time of job j are equivalent for a 
given schedule (both terms are used interchangeably in the forthcoming dis-
cussions). 

• Pre-emption is not allowed. This means that when an operation is started, it 
must be completed before another operation may be started on the same 
machine. 

• There are no sequence-dependent set-up times. 
• Machines are stable and available throughout the scheduling period. 
 

In order to solve the two-machine flowshop scheduling problem considered in this 
paper, an IP model is given. This model is based on the IP models of Chou and Lee 
[4] and Eren and Guner [6]. Chou and Lee [4] have presented an IP model to minim-
ize a weighted sum of total flowtime and makespan for the two-machine flowshop 
scheduling problem with n2+3n variables and 5n constraints. Eren and Guner [6] have 
proposed an IP model to minimize total tardiness for the two-machine flowshop sche-
duling problems with n2+5n variables and 6n constraints. 

In this proposed model, there are n2+3n+2 variables and 6n+2 problem con-
straints, where n denotes the number of jobs. Here, the constant term, 2, has been 
referred to as the availability of two machines at the beginning of the scheduling pe-
riod that can be reduced by incorporating the values into the corresponding con-
straints. So the total number of constraints and variables are less than those proposed 
by the IP model of Eren and Guner [6], respectively. The definition of parameters and 
variables are given afterwards. 

Parameters: 

n: number of jobs,     j=1, 2, …, n, 
m: number of machines,    i=1, 2, 
pji: processing time of job j on machine i,   j=1, 2, …, n, i=1, 2, 
dj: due date of job j,     j=1, 2, …, n, 
w1: weight for the total completion time, 
w2: weight for the total tardiness (equal to 1-w1). 

Decision Variables: 

Zj,r: 
1  If job j is scheduled to be processes at the rth position,

0  Otherwise,                                                                         j =1,2,…, n, r =1,2,…,n, 

Wr,i: Completion time of the rth positioned job at machine i,        i =1,2,          r =1,2, …,n, 
W0,1: The starting time of the scheduling period for the first machine (Assume W0,1=0), 
W0,2: The starting time of the scheduling period for the second machine (Assume W0,2=0), 
Tr: Tardiness for the rth positioned job,                                 r =1, 2, …, n. 
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So, the proposed IP model is as follows. 
 

Minimize        w1 ∑ Wr,2 n
r=1 + w2 ∑ Tr

n
r=1 ,          (1) 

Subject to ∑ Zj,r = 1,                                           r =1, 2,..., nn
j=1 ,       (2) ∑ Zj,r = 1,                                           j =1, 2,..., nn
r=1 ,       (3) 

Wr,1 ≥ Wr-1,1 + ∑ Zj,rpj,1,                    r =1, 2,..., nn
j=1 ,       (4) 

Wr,2 ≥ Wr-1,2 + ∑ Zj,rpj,2,                   r =1, 2,..., nn
j=1 ,       (5) 

Wr,2 ≥ Wr,1 + ∑ Zj,rpj,2,                      r =1, 2,..., nn
j=1 ,       (6) 

Tr ≥ ∑ Zj,rdj - Wr,2,r
j=1                             r =1, 2,..., n.       (7) 

 

Wr,i and Tr are non-negative decision variables and Zj,r are binary decision variables. 
The objective function (1) minimizes the sum of weighted total flowtime and total 
tardiness for a complete permutation schedule. Equation (2) specifies that only one 
job should be scheduled at the rth position. Each job should be scheduled only once 
which is defined in equation (3). The starting time of the rth positioned job should be 
greater than or equal to the previous job completion time at the first machine and 
second machine which are indicated by constraint (4) and constraint (5), respectively. 
Also, the start time of the first positioned job at the second machine should be greater 
than or equal to its completion time at the first machine which is specified by con-
straint (6). Constraint (7) defines that the tardiness of the rth positioned job should be 
greater than or equal to the difference between the due date and the completion time 
of the job at the second machine.  

By considering (Tr
+ + Tr

-) instead of Tr, and replacing inequality with equality in (7), 
we can also obtain the earliness and tardiness (just-in-time) measure. However, the size 
of the problem increases in terms of number of variables and number of constraints by n 
in the standard form. One can also include the makespan criterion (as the third objec-
tive) by adding Wn,2 to the objective function with an appropriate weight. Achieving a 
global optimal solution for medium and large sized problems (based on our experi-
ments) in a reasonable amount of time is not possible. This study aims at devising a 
Simulated Annealing (SA) model to minimize the weighted sum of total flowtime and 
total tardiness to compare with a well-known optimal seeking software package called 
LINGO ([20]) in a limited number of branch-and-bound algorithm iterations. 

Hoogeveen [12] and Chen and Bulfin [3] studied the complexity of the single ma-
chine bicriteria and multicriteria problems. They have proved that the only problem 
which can be solved in polynomial time is the hierarchical objective model of mini-
mizing flowtime and maximum tardiness with flowtime being the primary objective. 
All the other problems are either NP-hard or remain open as far as computational 
complexity is concerned. Obviously, the problems including more than one machine 
and two criteria are more difficult to solve. 

3   Simulated Annealing 

Since the SA model is a randomized search procedure, it is started with an initial  
seed sequence to improve upon it. The rationale of starting with a good seed sequence 
is observed by Johnson et al. [14], especially to reduce the computational time.  
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The modified NEH (Nawaz, Enscore and Ham) algorithm is used as an initial seed 
sequence in SA. 

For many years the NEH algorithm, a well-known heuristic for m-machine, n-job 
flowshop proposed by Nawaz et al. [24], has been widely accepted to be the best 
heuristics for solving the classical permutation flowshop problem ([16]). It is a con-
structive flowshop scheduling technique based on the assumption that a job with a 
high total processing time on all the machines should be given a higher priority than a 
job with a low total processing time. Then, the jobs are sorted in decreasing order of 
their total processing time requirements. The final sequence is built in a constructive 
way, adding a new job at each step and finding the best partial solution.  

The NEH algorithm is developed for minimizing the makespan in flowshop sche-
duling (Fm | | Cmax) in three steps: (i) initial construction, (ii) sorting jobs, and (iii) final 
construction. Since the sum of weighted total flowtime and weighted total tardiness are 
the objectives of this study, step (iii) of NEH algorithm is modified by replacing the 
weighted sum of total flowtime and total tardiness instead of the makespan. 

The way of generating a neighbor sequence s for a specific candidate sequence has 
significant effects on the performance of the simulated annealing algorithm. Tian  
et al. [30] introduced the six perturbation schemes which can be summarized as: 

 

1. Two adjacent jobs are interchanged, 
2. Two random jobs are interchanged, 
3. A single job is moved, 
4. A sub-sequence of jobs is moved, 
5. A sub-sequence of jobs is reversed,  
6. A sub-sequence of jobs is reversed and/or moved. 

 

Based on the experiments that have been done by Nearchou [25] for flowshop sche-
duling problems, the random exchange scheme (two jobs in a candidate sequence are 
randomly selected and interchanged) performs better results than the other schemes, 
so it is chosen as the first move of the SA model. According to Loukil et al. [21] for 
multi-objective production scheduling problems, shifting a single job is selected as 
the second move in the SA model. Finally, by performing some experiments for small 
and large sized problems, we have observed that exchanging the place of the latest job 
and the earliest job can be a good scheme in flowshop scheduling problem to minim-
ize the sum of weighted total flowtime and weighted total tardiness. Therefore, it is 
considered as the third move in the SA algorithm.  

The first two moves are the general and basic moves used widely in metaheuristic 
approaches for scheduling problems. By including the third move which is specific 
for the objective function, the efficiency of the model has been increased. 

4   Proposed Simulated Annealing Model 

The body of the proposed SA algorithm to minimize the objective function for n jobs 
is given as below: 

 
1. GET an initial solution s ; 
2. SET T_stop = EXP(0.4),  r = 0.985,  temp_step = 500,  no_improvement = 5000 ; 
3. SET T = 40, counter = 1; 
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4. FOR iteration  = 1 TO 100,000  DO: 
4.1.  SET random = RAND[0,1] ; 
4.2.  IF random  ≤ 0.4  THEN   GOTO Move 1; 

ELSE  IF   random  ≤  0.8   THEN   GOTO Move 2; 
ELSE    GOTO Move 3; 

4.3.  SET Δ = objective(s′) - objective(s) ; 
4.4.  IF Δ ≤ 0   THEN   SET s = s′, counter = 1; 

 ELSE  IF   RAND[0,1] ≤ EXP(-Δ/T)   THEN   SET s = s′, counter = 1; 
 ELSE   SET counter = counter + 1; 

4.5.  IF (iteration  MOD  temp_step) = 0   THEN   SET T = r × T; 
4.6.  IF (counter = no_improvement) AND (T < T_stop)   THEN   GOTO 5; 

5. END 
 

The acceptance probability is the basic element of the search mechanism in SA. If the 
temperature is reduced sufficiently slowly, then the system can reach equilibrium 
(steady state) at each iteration [11]. The Metropolis acceptance criterion ([22]) is 
applied in our SA algorithm which is given as below: 

 

P[Accepting s′]= e- 
objective s′ -objective s

T

1                             
     if objective s′ -objective s  > 0,

if objective s′ -objective s  ≤ 0.              (8) 
 

where “objective (s)” and “objective (s′)” denote the energies (objective function 
values) associated with solution s and s′, respectively. 

To set the initial temperature, the cooling parameter, and the number of steps in the 
cooling schedule some experiments are implemented and the parameter setting is 
tuned to obtain their best performance. Consequently, 40, 0.985 and 500 are chosen as 
the initial temperature (T), the cooling parameter (r), and the length of the temperature 
step in the cooling schedule (temp_step), respectively. Also, a counter 
(no_improvement) is set to 5,000 at the beginning of the SA algorithm to count the 
number of iterations without improvement. 

As the algorithm parameters have been specified for all the instances of the prob-
lems and because of the stochastic nature of the problem, the SA algorithm is totally 
replicated h times (which is equal to the number of jobs, h= 10, 20, 30, and 50) to 
increase the chance of converging to the global optimal solution [27]. So that, the 
algorithm selects the best result among all replications as the SA result. 

5   Computational Design and Experimentation 

All the experimental work have been implemented on 20 PCs with the same hardware 
and software configurations (Pentium D, 3GHz, 960MB RAM). For the experimental 
design, problem size can be categorized into three classes of (i) small size (10 and 20 
jobs), (ii) medium size (30 jobs), and (iii) large size (50 jobs). The test problems have 
been generated using a model that allows control to be exercised over various factors 
generally believed to affect the problem difficulty. The test problem generation is 
mainly based on the methods presented in Daniels and Chambers [5] and Fisher [7]. 
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The processing time of the jobs on the first machine (M1) and the second ma-
chine (M2) in the flowshop are chosen as uniformly distributed integers, within the 
ranges of [10c1, 30c1] and [10c2, 30c2], respectively. The constants c1 and c2 control 
the degree of machine dominance. When c1>c2, processing times are on average 
larger on the first machine, representing the dominant or bottleneck processor in  
the system. The bottleneck machine is usually the machine in which operation times 
are proportionally larger than any other machine. Three pairs of (c1, c2) values  
are considered as {(1.00, 0.50), (0.75, 0.75) and (0.50, 1.00)}, roughly correspond-
ing to flowshops with machine-1 dominance, no dominance, and machine-2  
dominance.  

After having obtained the processing time distribution, due dates of jobs are as-
signed using a uniform distribution within the range of [ABP(1-τ - R/2), ABP(1-τ + 
R/2)], where 

 

ABP (Average Busy Period) = 
np1+p2      if c1≥c2, 
p1+np2     if c1<c2.                      (9) 

 

and pj denotes the average processing time on machine j (j=1, 2). The average busy 

period serves as an approximation of the completion time for the last job in any sche-
dule. This value is adjusted by two parameters which are given as below: 

 

• Tardiness factor (τ): It is the fraction of jobs which are late in an optimal so-
lution (which affects the average number of tardy jobs).  

• Due date range factor (R): It controls the variances of the due dates. 
 

Three values of τ (0.25, 0.50, and 0.75) and three values of R (0.25, 0.50, and 0.75) 
have been included in the experimental design. If the values of τ and R, and their 
combinations are not selected properly, negative values can be generated as lower 
bounds for the due dates. Most researchers disregard this fact simply by ignoring the 
negative values and proceeding with the problem solution. However, this procedure 
affects the uniformity and variance of the due date distribution. We have overcome 
this problem by choosing the appropriate generation scheme (Table 1). 

Five samples are randomly generated for each combination of machine domin-
ance,τ, and r, resulting in a total of 90 instances of the problem for each of the four 
problem sizes. Weights of the objective function criteria are varied from 0 to 1 in step 
of 0.25. By considering zero as the weight of total flowtime or total tardiness, the 
problem is converted to a single criterion problem. Therefore, two single criterion 
problems and three bicriteria problems have been used in the experimental design. 
Totally, 5400 experiment runs have been performed.  

Experimental results are divided into three parts. The first part gives the optimal 
solution or the upper bound value (if the allowable iteration branch limit is reached) 
as the basis to test the effectiveness of the heuristic scheduling algorithm. The second 
part shows the result of the modified NEH algorithm as a benchmark. The third part 
provides the solution obtained by using the proposed SA model. 
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Table 1. Different combinations of the processing time and due date factors 

#* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

τ 0.75 0.75 0.75 0.75 0.75 0.75 0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.25 0.25 0.25 

R 0.5 0.5 0.5 0.25 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0.25 

c1 1 0.75 0.5 1 0.75 0.5 1 0.75 0.5 1 0.75 0.5 1 0.75 0.5 1 0.75 0.5 

c2 0.5 0.75 1 0.5 0.75 1 0.5 0.75 1 0.5 0.75 1 0.5 0.75 1 0.5 0.75 1 
 

* Each combination of parameters can be referred to by its corresponding column number 
 

The IP model is used to find the optimal solution of the considered problem us-
ing Extended LINGO 9.0 ([20]). LINGO can find the global optimal solution up to 
20 jobs for all the test problems. Since the computational time increases exponen-
tially as the number of jobs become higher, LINGO cannot find the global optimal 
solution for problems with 30 and 50 jobs. By performing some experiments on 
larger sample problems, 50 million branches in the branch-and-bound tree have 
been defined as an upper limit for the number of iterations of LINGO. Executing 
LINGO to run more than 50 million iterations has no significant effect on improv-
ing the objective values. 

Table 2. LINGO runtime (in second) for each set of 90 instances 

Weights 10 Jobs 20 Jobs 30 Jobs 50 Jobs Average 

w1=1.00 , w2=0.00 1.5 105.9 1947.9 7660.6 2429.0 

w1=0.75 , w2=0.25 1.4 298.4 4108.8 19807.3 6054.0 

w1=0.50 , w2=0.50 1.5 187.8 4634.0 19213.8 6009.3 

w1=0.25 , w2=0.75 1.7 199.2 3452.7 17305.4 5239.8 

w1=0.00 , w2=1.00 1.3 91.1 1960.2 12119.7 3543.1 

Average 1.5 176.5 3220.7 15221.4  

 
The average runtime of the LINGO model for the each set of 90 instances by con-

sidering 50 million iterations as an upper limit for different sample size and criteria is 
provided in Table 2 (w1 and w2 are the weights of total flowtime and total tardines, 
respectively). Also, it should be mentioned that the runtime of the modified NEH 
algorithm and SA model are less than a second for all cases.  

The performance of the SA model, modified NEH and LINGO model are com-
pared by calculating the average error percentage. The error percentage of optimally 
solved problem is defined as below. 

 

Error Percentage (optimal) = 
(SA result – LINGO Global optimal)

LINGO Global optimal
×100.                  (10) 

 

Similarly, for a large sized problem in which the optimality is not reached by LINGO, 
the relative error percentage is defined as the following: 
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Error Percentage (non-optimal) = 
(SA result – LINGO Best solution)

LINGO Best solution
×100.             (11) 

 

Whenever the LINGO model can find the global optimal solution, the error percen-
tage is always greater than or equal to zero (non-negative). The zero value means that 
the SA model finds the global optimal solution if the LINGO solution is global  
optimum. If the LINGO model cannot find the global optimal solution, the reported 
solution is the best objective obtained from the branch-and-bound algorithm after 50 
million iterations and the percentage error can be any real number. The zero value of 
error percentage cannot guarantee that the SA model finds the global optimal solu-
tion; it only means that the LINGO solution and SA model solution are equivalent. 
The negative value shows that the SA model solution is better than the LINGO solu-
tion after 50 million iterations.  

Summary of the average error percentage of five randomly generated samples for 
each combination of machine dominance for the SA model has been shown in Table 
3. It has to be mentioned that the average error percentages of the SA model decreases 
as the number of jobs increases to 50 for all different weight objectives. This might be 
due to the complexity of the problem. 

Table 3. Average error in percentage of SA algorithm with respect to LINGO model  

 

#
(w1=1.00 , w2=0.00) (w1=0.75 , w2=0.25) (w1=0.50 , w2=0.50) (w1=0.25 , w2=0.75) (w1=0.00 , w2=1.00)
n=20 n=30 n=50 n=20 n=30 n=50 n=20 n=30 n=50 n=20 n=30 n=50 n=20 n=30 n=50

1 0.000 0.000 -0.006 0.000 0.000 -0.084 0.000 0.010 -0.433 0.334 0.483 -1.168 0.013 0.331 -1.923
2 0.463 0.403 0.682 0.297 0.377 0.057 0.405 0.164 -0.159 0.005 0.033 -0.994 0.267 0.251 -2.087

3 0.117 0.044 0.000 0.048 0.000 0.184 0.011 0.050 -0.454 0.006 0.000 0.005 0.148 0.123 -0.724

4 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 -0.002 0.361 0.243 0.117 0.000 0.000 0.014

5 0.305 0.293 0.460 0.511 0.268 0.351 0.417 0.477 0.093 0.000 0.003 0.000 0.357 0.388 0.387

6 0.069 0.000 0.000 0.000 0.001 -0.001 0.004 0.023 0.000 0.000 0.010 -1.744 0.000 0.060 0.020

7 0.000 0.000 0.000 0.000 0.000 -0.118 0.005 0.006 -0.534 0.000 -0.083 -1.944 0.000 -0.049 -0.693

8 0.251 0.549 0.375 0.109 0.159 -1.197 0.083 -0.093 -0.707 0.000 0.000 -1.845 0.075 -0.050 -1.368

9 0.012 0.033 0.002 0.060 0.006 0.003 0.000 -0.002 -0.548 0.000 0.000 0.001 0.028 -0.041 -0.218

10 0.006 0.003 0.002 0.005 0.002 0.001 0.000 0.000 0.001 0.295 0.406 0.368 0.000 0.054 0.000

11 0.198 0.308 0.488 0.237 0.360 0.180 0.207 0.404 0.031 0.000 0.000 0.036 0.174 0.147 0.111

12 0.000 0.000 0.033 0.000 0.000 0.034 0.000 0.000 0.005 0.096 0.000 -0.051 0.000 0.000 0.000

13 0.044 0.000 0.001 0.167 0.000 -0.001 0.094 0.000 -0.004 0.279 0.202 -1.014 0.000 0.000 0.000

14 0.307 0.387 0.528 0.248 0.312 0.250 0.236 0.258 -0.414 0.020 0.043 -0.036 0.000 0.078 -10.321

15 0.000 0.463 0.108 0.000 0.018 0.050 0.000 0.609 -0.118 0.000 0.000 0.001 0.000 0.000 -0.952

16 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.172 0.275 0.252 0.000 0.000 0.000

17 0.153 0.283 0.474 0.293 0.541 0.423 0.111 0.302 0.178 0.315 0.141 0.139 0.164 0.000 -0.602

18 0.363 0.121 0.002 0.354 0.113 0.017 0.347 0.114 0.070 0.347 0.114 0.070 0.000 0.000 0.000

Max. 0.463 0.549 0.682 0.511 0.541 0.423 0.417 0.609 0.178 0.361 0.483 0.368 0.357 0.388 0.387
Ave. 0.127 0.161 0.175 0.129 0.120 0.008 0.107 0.129 -0.166 0.124 0.104 -0.434 0.068 0.072 -1.020

Min. 0.000 0.000 -0.006 0.000 0.000 -1.197 0.000 -0.093 -0.707 0.000 -0.083 -1.944 0.000 -0.050 -10.321

STD 0.151 0.194 0.245 0.158 0.174 0.333 0.149 0.199 0.270 0.151 0.157 0.785 0.109 0.130 2.428
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The LINGO average runtime usually increases as the number of jobs increases and 
for some test problems (after 7 or 8 hours of computation time) LINGO model cannot 
find the global optimal solution, whereas, for the SA model runtime does not exceed 
one second for all test problems and the average error percentage of the SA model 
solutions are better than the LINGO model solutions for large test problems. Moreo-
ver, the average error percentage of the SA model solutions does not exceed 0.7% for 
all test problems. It means that the proposed SA model is a good metaheuristic model 
for the large sized problems in terms of runtime and quality of the results.  

By increasing the number of jobs, the average error percentage of the modified 
NEH algorithm has increased for all the five different weighted criteria. The average 
error percentage of the SA model has increased for the first weighted criteria by in-
creasing the number of jobs and by increasing the weight of the total flowtime. The 
average error percentage of the SA model has increased in most of the 18 combina-
tions if the total flowtime has been considered as an objective. When two machines 
are balanced and the number of jobs is not equal to 50, the average error percentage 
increases. This indicates how the complexity of the problems increases for balanced 
machines. For other cases there is no specific observation. 

Table 4. Number of best solutions obtained by each model out of 90 problems 
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w1=1.00 , w2=0.00 90 30 78 90 25 61 90 16 53 89 9 53 

w1=0.75 , w2=0.25 90 9 75 90 3 60 89 0 55 66 1 58 

w1=0.50 , w2=0.50 90 1 80 90 0 62 83 0 55 47 0 71 

w1=0.25 , w2=0.75 90 1 83 90 0 69 85 0 52 46 0 67 

w1=0.00 , w2=1.00 90 1 87 90 0 75 84 0 68 59 0 78 

Total 450 42 403 450 28 327 431 16 283 307 10 327 

 
In Table 4, number of the best solutions obtained by the LINGO model, the mod-

ified NEH and the SA model have been tabulated. The modified NEH algorithm has a 
good efficiency to solve the minimizing total flowtime in two-machine flowshop 
scheduling problems and small-sized problems relative to other objective criteria. The 
LINGO software package is not strong enough to optimally solve the mixed integer 
programming formation of the large-sized scheduling problems by branch-and-bound 
algorithm. Furthermore, total number of optimal and the number of equal solutions 
which have been found by LINGO and SA are near to each other for small sized and 
large sized problems. Moreover, the practical limitation of 50 million iterations seems 
to be sufficient to solve optimally for problems with up to 30 jobs. When insufficien-
cy of this limitation becomes significant, SA results become relatively better. 

The investigation for evaluating the difference between effects of SA model and the 
LINGO model has been done. Paired t-test shows that the difference in the objective 
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values for 10, 20, 30 and 50 jobs generated between the LINGO model and the SA 
model are meaningful at a significance level of 0.99. 

6   Conclusions 

This research has addressed the scheduling problem in a two-machine flowshop with 
the bicriteria of minimizing the sum of weighted total flowtime and total tardiness. 
The problem is NP-hard (or NP-complete) and this means that a good heuristic or a 
metaheuristics algorithm is essential to solve the discussed problem. 

A branch-and-bound enumeration algorithm which tries to solve the integer  
programming model is proposed to be used for testing the efficiency of the SA model. 
Also the NEH algorithm is modified to serve as an initial solution of the SA model 
which is developed in this study. The SA model has been coded, evaluated and com-
pared by computational analysis of experimental results. The analysis shows that the 
SA model is quite efficient. It also shows that for most of the test problems, the SA 
model has the desirable property in terms of the average error percentage as an appro-
priate technique. Moreover, for practical application purpose the SA model is prefera-
ble to the LINGO model considering runtime. 
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Abstract. In this paper, we describe a novel approach for workforce 
distribution in dynamic multi-skill call centres. Dynamic multi-skill call centres 
require quick adaptations to a changing environment that only fast greedy 
heuristics can handle. The use of memetic algorithms, which are more complex 
than ad-hoc heuristics, can guide us to more accurate solutions. In order to 
apply memetic algorithms to such a dynamic environment, we propose a 
reformulation of the traditional problem, which combines predictions of future 
situations with a precise search mechanism, by enlarging the time-frame 
considered. Concretely, we propose a neural network for predicting call arrivals 
and the number of available agents, and a memetic algorithm to carry out the 
assignment of incoming calls to agents, which outperforms classical approaches 
to this dynamic environment. We also test our method on a real-world 
environment within a large multinational telephone operator. 

Keywords: Memetic Algorithms, Dynamic Multi-Skill Call Centre. 

1   Introduction 

Over the last years, we perceive a tendency to tackle increasingly complex problems 
and application domains which frequently involve the processing of continuous, 
dynamic data flows. These arduous environments are usually hard to be efficiently 
maintained by conventional techniques. A classical, well-suited problem for studying 
dynamic systems is the workload distribution in multi-skill call centres.  

The basic variant of a workforce distribution problem requires the assignment of 
tasks to agents who have the required skills to handle them over the time, satisfying a 
given set of additional constraints and respecting the dependencies among individual 
tasks and differences in the execution skills of the agents. This problem has multiple 
variants but, depending on the dynamism of the system, we can principally 
distinguish two main scenarios:  

- On the one hand, we can find short-term planning environments in which a continuous 
planning is needed due to the high dynamism of the system. These solutions attempt 
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to distribute the workload among agents by applying “basic” ad-hoc heuristics, 
looking at the current situation. This feature can be easily seen in workload 
distribution within a dynamic multi-skill call centre [1]. 

- On the other hand, we can find long-term planning systems in which the list of 
tasks is predefined and known by all agents like in the classic scheduling problem 
[2]; or environments in which a single task is assigned to each agent for a long 
period of time, similarly to the job assignment problem [3]. In other cases, agents 
are assigned to patterns of tasks, instead of specific tasks (such as in pattern-
based scheduling [2]). Analogously, stable multi-skill call centres [1] can be also 
included in this group. These solutions consider stable behaviour over the time 
and apply more complex algorithms to match agents and tasks. When having a 
dynamic system, these approaches cannot be efficiently applied, since an 
adaptive method is required. 

In this way, we put forward an alternative approach to traditional solutions which 
relies on a middle-term time-frame, instead of a short-term or long-term one. In other 
words, we reformulate the initial problem by enlarging the time-frame considered and 
provide the required mechanisms to implement this more efficient solution.  

Table 1 summarises some fundamental characteristics of the previously described 
environments in relation to the time-frame considered.  

Table 1. Comparison of the time-frame considered for the workforce distribution problem 

Time-frame Complexity Response time Adaptability Performance 
Short-term planning low low medium medium 

Middle-term planning high medium high high 
Long-term planning medium high low low 

 
In this work, we focus on the application of this model to a multifarious, dynamic 

real-world problem, the workforce distribution within a dynamic multi-skill call 
centre, considering real-time data flows during one-day campaign. Our main 
contribution is the presentation of a novel approach which coalesces forecasting with 
optimisation. Besides, our approach enhances workforce distribution by additionally 
injecting real-time knowledge of the task, individual skill sets, and availability and 
utilisation of the workforce, allowing for dynamic and active distribution of tasks to 
match load peaks over the time. Our method also provides additional clearness on 
customer service level agreements, and endows with insights into optimisation and 
the ability to offer outstanding customer service. In addition, our approach enables us 
to work at a lower level of granularity than short-term algorithms do, because the 
search algorithm has more time to find a solution. We can then work at agent’s profile 
level instead of predefined sets of agents as other methods impose. We also propose a 
partial fitness function in order to speed-up the evaluations of candidate solutions. 

The rest of this document is organised as follows: Section 2 describes the problem 
definition both intuitively and formally, highlighting the complexity of this 
application domain. Section 3 discusses the state-of-the-art. Section 4 proposes a 
novel approach to the workforce distribution problem in a dynamic multi-skill call 
centre. Section 5 provides an evaluation of the model and conducts an analysis of the 
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results. Finally, Section 6 concludes our work with a summary of major contributions 
and points out prospects for future work. 

2   Problem Description 

A Call Centre (CC) is a centralised place used for receiving and transmitting large 
volumes of requests by telephone [4]. In a CC, the flow of calls is often divided 
into outgoing and incoming traffic. Incoming calls are those that go from the client 
to the CC to contract a service, ask for information or report a problem. These calls 
are modelled and then classified into several Call Groups (CGs) in relation to the 
nature of each call. Once these CGs have been modelled (call types), each call is 
only assigned to a CG. Conversely, outgoing calls are significantly different to 
incoming calls. These calls are those the agents make to clients with commercial 
pretensions. 

In a Multi-Skill CC (MSCC) there are k types of calls, n customer calls and m 
agents that may have up to l skills (l ≤ k). This implies that each agent can attend 
different types of calls and, given a type of call, it can be answered by several agents 
that have that skill. Obviously, this scenario can be simpler in some special CCs in 
which agents have a single skill. These CCs can be modelled with q single queues 
working in parallel. In other cases, every agent has all possible skills; hence all 
customers are queued in a single queue that can be handled by any agent. The system 
is noticeably easier to analyse in these two extreme cases. With all agents having all 
skills, the system is also more efficient (shorter waiting times, fewer abandonment 
rates) when the service time distribution for a given call type does not depend on the 
agent’s skill set. However, this assumption turns out to be wrong in practice: agents 
are usually faster when they handle a smaller set of call types (even if their training 
gives them more skills). Agents with more skills are also more expensive as their 
salaries depend on their skill sets. Thus, for large volumes of call types, it makes 
sense to dedicate a number of single-skill agents (specialists) to handle most of the 
load. A small number of agents, proportional to the calls of each type, with two or 
more skills can cover potential fluctuations in the arriving load. To address this point, 
the skills are grouped in profiles. Figure 1 illustrates the relationship among clients’ 
calls, queues and agents. 

 

Fig. 1. Inbound scheme in MSCCs 
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More formally speaking, the following parameters can be found in an MSCC: 

- a finite set of n customer calls },...,,{ 21 ncccC = . 
- a finite set of k CGs (call groups/types) }...,,,{ 21 kcgcgcgCG = , where 

nk ≤  when every CG has, at least, one call queuing. 
- a finite set of m agents }...,,,{ 21 maaaA = . 
- a finite set of k agent-skills }...,,,{ 21 ksssS =  in which each agent-skill, 

is , represents the ability to handle the associated CG, 
icg , with the 

corresponding sub-index in CG: kk cgcgcgscgs ~,...,~,~ 2211 . 
- a finite set of d agent-skill profiles }...,,,{ 21 dPPPP =  in which each agent-

skill profile Pi can be any subset of }...,,,{ 21 ksssS = . 
- a finite set of n operations (execution or processing of each customer call, 

ic ) }...,,,{ 21 noooO =  in which each operation, io , has associated a 

processing time which depends on its CG: },...,,{ 21 kτττ . 

Moreover, the solution must fulfil the following descriptions: 

- on O define A, a binary relation which represents the precedence among 
operations. If  Aoo ∈),( 21

 then o1 has to be performed before o2. 
- each agent, 

ia , has associated a finite non-null subset of P, containing his 
skills to handle different customer CGs. 

- the same profile iP  can be assigned to several agents. In other words, several 
agents may have some skills in common (or even all of them). 

- each agent, 
ia , may have several profiles assigned but only one can be 

performed at a given instant t, 
tji Pa , . In other words, an agent cannot 

process two (or more) operations at the same instant. 
- each solution must respect diverse (hard and soft) constraints given by 

business rules defined by business units or agents’ regulations.  

The purpose is to obtain the right assignment 
tji Pa , every instant over a long period 

of time in a dynamic system, handling hard and soft constraints.  
There are very significant metrics to measure the quality of a CC such as the 

abandonment and service rates. These metrics somehow hinge on the (customer) 
service level [5] which is defined as the percentage of customer calls that have to 
queue shorter than a specified amount of time. Our work is led by this metric. 

The complexity of this problem is huge because we are not only dealing with an 
NP-hard problem like in the job assignment problem [3], but also considering high 
dynamism, massive incoming customer calls and large number of agents having 
multiple skills. Besides, since customer calls are not planned, this makes the call 
assignment a very laborious task. 

3   Related Work 

Reviewing the state-of-the-art, one can realise that many algorithms for workload 
distribution in Single-Skill CCs are available (e.g. [6]) because, in the past, agents 
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were commonly allocated to a single customer call group. Nevertheless, not much 
work has been conducted to workload distribution in MSCCs which is the typical 
situation in nowadays CCs. In the rest of this section, we discuss the main 
contributions to workforce distribution in MSCCs. 

Workload distribution in MSCCs has been broadly faced by a Skill-Based Routing 
algorithm (SBR [7]). SBR is a call-assignment strategy used in CCs to assign 
incoming customer calls to the most suitable agent, instead of simply choosing the 
next existing agent. The need for SBR has arisen, as CCs have become larger and 
deals with a wider variety of call types. The major handicap of this approach is that 
online (ad-hoc) routing heuristics cannot be very complex in view of the fact that a 
very short response time is required. These fast, unplanned decisions may imply 
suboptimal task assignments to existing agents. 

Conversely, Thompson [8] proposes an integer programming model which 
differentiates minimum acceptable service levels per time-frame from a constraint on 
the mean service level over the planning horizon. Although this approach considers 
prospective situations, it is less dynamic to changes than SBR. 

Other approaches consider dependent planning intervals (see [9]). Most methods 
perform well enough within separate intervals but their performance decreases when 
moving to the next one, giving much trouble in prospective time-frames. 

Other authors take into consideration overflow routing in multi-skill blocking 
systems with randomisation parameters by applying a branch-and-bound algorithm 
(see [10]) or cutting planes (see [11]). These techniques are only appropriate for 
stable environments because they need long response times and their performance 
highly decreases in large instances. 

Finally, we can find one of the most representative algorithms of the state-of-the-
art (Koole et al., 2008 [12]). It presents a heuristic, which considers the costs of 
agents and a service-level condition, to optimise the separation of agents among 
different CGs. This algorithm is faster than most of the previous approaches but deals 
with specific types of MSCCs in which customer calls arrive according to a Poisson 
process with deterministic rate. However, note that inbound flow in MSCCs is usually 
not a stationary Poisson process [13] and, the service times do not increase 
exponentially. Since calls arrive randomly according to a stochastic process, agents 
must be well-distributed to handle the calls as soon as possible. Besides, the previous 
techniques often consider a high granularity and need to work at agent groups’ level 
instead of an agent’s profile level. This setback does not enable us to offer more 
accurate configurations. 

To conclude, we have seen in this section that some approaches employ “basic” 
heuristics to dynamically distribute incoming customer calls to agents while others 
cope with stable inbound flows and longer stability over the time. In this context, a 
large-time-frame planning cannot be carried out because of the continuous 
changeability of all variables involved. Moreover, “basic” heuristics based on the 
current situation (online routing strategies) may work under certain cases, e.g. 
stable workload, but daily use of these techniques will guide us to appalling 
solutions. 
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4   A Novel Approach 

In this section, we propose a novel approach for workforce distribution in MSCCs by 
reformulating the original problem definition. We have illustrated in Section 3 how 
“basic” techniques distribute incoming customer calls as these come by employing 
greedy heuristics while others contend with a stable incoming customer call flow and 
a longer stability over the time which is not the archetypal situation in nowadays 
MSCCs. However, if we could forecast the real situation of an upcoming time-frame 
with a very high-confidence, then we would be able to apply more complex 
techniques which can outperform both short-term and long-term planning strategies. 
There, a need of an exact prediction of a middle-term situation comes out. 
Afterwards, we need to obtain a fair balance between diversity (exploration) and 
intensity (exploitation) to meet with success, making the most of the forecasting 
provided in the previous step. 

The main purpose of the rest of this section is to provide a solution for this new 
problem definition which combines predictions for middle-term time-frames in 
changing systems and a powerful search mechanism founded on a memetic algorithm. 

4.1   Forecast Module 

Forecasting refers to the estimation of unknown variables in prospective situations. 
An exact prediction allows us to accurately balance workload among agents, 
giving enhanced service levels and optimising resources. Conventionally, customer 
call arrivals have been approximated according to a Poisson process. Assuming 
pure-chance arrivals and terminations leads to the following probability 
distribution (1): 
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Much literature (e.g. [12,14]) considers that the number of customer call arrivals at 
a given time follows a Poisson distribution, where n is the number of call arrivals 
in an interval T, and μ is the mean of call arrivals in that interval. However, the 
prediction of customer call arrivals in an MSCC does not often adjust to a Poisson 
distribution with deterministic rate. In all studies, the arrival process agrees with a 
Poisson process only if the arrival rate of the Poisson process is a stochastic 
process itself. Typically, the variance of the incoming calls in a given interval is 
much larger than the mean. However, it should be equal to the mean for Poisson 
distributions.  

In [15], it is explained how to model an Improved Backpropagation Neural 
Network, step-by-step, to forecast unknown variables, bearing in mind the nature 
of a real MSCC rather than following a Poisson distribution when predicting. In 
this paper, we consider the Neural Network described in [15] to predict incoming 
customer calls in our experiments. The number of agents is also forecasted in line 
with the same mechanism, considering their timetables (break, start and leave 
times). 
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4.2   Search Module 

To perform the search module, a Memetic Algorithm (MA) is proposed. 
Fundamentally, this combines GAs’ operators with a Local Search (LS) heuristic to 
refine candidate solutions. 

4.2.1   Methodology 
Given the predictions from the forecast module; the search module, implemented as a 
steady-state MA, optimises the assignment among tasks and agents. Our MA 
maintains a set (population) of abstract representations (chromosomes) of candidate 
solutions (phenotypes) to the problem described in Section 2. The population is 
partially randomly initialised (Section 4.2.4). Then, its individuals are evaluated by 
applying a fitness function over them. From this population, some individuals are 
selected and, then, recombined (crossover). Subsequently, the offspring may suffer 
mutations in some genes. Afterwards, some of these individuals replace others from 
the population according to the replacement scheme. Every generation includes all 
previous actions. Finally, an LS mechanism is applied over a percentage of the 
population each n generations. All these steps are carried out until a predefined time 
has been elapsed.  

4.2.2   Encoding 
The first stage when designing an MA is to define a problem representation 
(chromosome or genotype) to encode candidate solutions (phenotype) to the problem 
in a form that every computer can interpret. The “physical” expression of the 
genotype is called the phenotype. This means that a mapping between genotype and 
phenotype must be defined. There are multiple forms to encode candidate solutions 
which range from binary strings, arrays of integers or arrays of decimal numbers to 
strings of letters. Concretely, our solution consists of an integer representation. We 
just need an array of integers whose indexes represent the available agents, AAa ⊆ , 
at a given instant, t, and the array contents refer to the profile, Pj, assigned to each 
agent ai. Then, call types are routed to the agents, according to the profiles assigned. 

Figure 2 shows a fictitious example of encoding for 10 customer calls (c0-c9) 
queued in 3 different CGs (cg0-cg2) depending on the nature of the calls, 5 agents (a0-
a4) and 4 profiles (P0-P3), where P0={s0, s1}, P1={s1}, P2={s2} and P3={s1, s2}. Now, 
suppose that a0~{P0,P1}, a1~{P0, P2}, a2~{P1,P3}, a3~{P2,P3} and a4~{P0,P1}. We have 
seen the potential profiles for every agent but only one profile can be assigned to each 
agent at a given instant t; therefore, a feasible solution would be Figure 2. 

Index (agents)      0 1 2 3 4 

Content (profiles) P0 P2 P1 P2 P0

Fig. 2. Example of encoding 

4.2.3   Population 
The population of our MA is a compilation of chromosomes encoded as hinted in 
Section 4.2.2. The population is the minimum unit of evolution since individuals are 
static elements by themselves. This evolution can be observed in the changes 
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produced in the genetic configuration over the time in each successive generation. 
The changes between two generations are usually small but these differences mount 
up with each generation, causing significant changes in the “original” population.  

The size of the population often depends on the nature of the problem and typically 
contains tens or hundreds of possible candidate solutions. After an empirical study, 
we have considered a single population of 20 individuals. 

4.2.4   Initialisation 
Typically, the initial population is fed with randomly generated individuals who 
should potentially cover different possible configurations. In some cases, we can use 
other algorithms to initialise the population (e.g. LS) but, in most cases, this is not 
possible since computing times increase too much and real applications require short 
computing times. In our case, we propose to start from a random initial population, 
including the best solution found in the previous time-frame because the configuration 
of agents’ profiles should not change too much over two successive time-frames. 

4.2.5   Fitness Function 
The fitness function is an evaluating mechanism which is defined over the 
chromosome to measure the quality of a given solution. This function often guides the 
search and decides which individuals must be selected for the next generation (in fact, 
it also depends on the replacement policy). The fitness function is intrinsically linked 
to the problem. Frequently, the hardest action when defining an EA is to identify the 
right fitness function since results strongly depend on it. Occasionally, it is hard 
(sometimes impossible) to characterise the fitness expression; in these cases, 
interactive genetic algorithms are used. In other cases, long evaluating times imply 
that an approximate function is needed. Our fitness function is inspired in the 
estimation of the total service level provided in [5] although we also consider the 
priority of each CG weighted as follows: 
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Additionally, we handle some hard and soft constraints derived from the business 
rules given by our business units. In our case, these constraints are associated to tasks, 
agents, timing, actions or desired/undesired scenarios. Thus, the algorithm cannot 
violate hard constraints (e.g. we cannot change agents’ profiles continuously due to 
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certain laws and regulations); although we allow certain movements which may imply 
the violation of some soft constraints (e.g. we should not take agents from CGs in 
which the service level is below a given threshold). Undoubtedly, this type of 
movements is penalised according to the degree of non-accomplishment of these 
constraints and their relevance. Relevance values (weights) can be assigned by 
defining levels of constraints. For each level of constraints, we can define a range of 
values for the weights and the gap between two levels follows a logarithmic function 
to soften differences among levels. The values for each level should be assigned 
proportionally. These premises lead us to maximise the following fitness function: 

]1,1[]1,0[]1,0[:  aints)ons_constrpenalisati - vice_level(total_ser = f −→×f  (3) 

where penalisation_constraints is the value obtained after applying our business rules 
(e.g. agents from CG-i should not move to CG-j). 

Finally, we can speed-up the evaluations by introducing a partial fitness function. 
The first time, we need to employ (3) but the rest of the time; we just need to evaluate 
those groups affected by a mutation or, in the case of the LS, when generating a new 
neighbour. Hence, we only process the affected CGs in (2) and update their original 
values. With this information, we then recalculate (3). 

4.2.6   Genetic Operators 
In this section, we briefly comment the final configuration of the genetic operators as 
the reasoning of this selection is a very important matter and deserves to be presented 
in a separate study.  The configuration of our operators is the following one: 

Selection: Since the population needs to be bred each successive generation, we have 
chosen a binary tournament selection as described in [16]. 

Crossover: The following step is to produce a new generation from selected 
individuals. We consider that children will inherit the common points in their parents 
(potentially, the best genes) and randomly receive the rest of genes from them [17]. 

Mutation: This operator causes tiny changes in the genes of the chromosome to 
explicitly maintain diversity (actually there are much more mechanisms). We apply a 
perturbation over each gene of the chromosome with a probability of 0.03. This 
perturbation corresponds to changes of profiles in some agents (e.g. agent a2 who had 
assigned the profile P1 has now associated the profile P3 due to a mutation). 

Replacement policy: Finally, we decide which individuals are incorporated (or maybe 
reinserted) into the population of our steady-state algorithm. We consider elitism [18] 
to replace the worst individuals of the population by the best ones. 

4.2.7   Local Search 
LS is a metaheuristic for solving optimisation problems. An LS algorithm starts out 
from a candidate solution and, thus, iteratively moves to a neighbour solution, 
generating the neighbourhood. To carry out this action, a neighbourhood relation must 
be defined on the search space. In our case, we state that two candidate solutions are 
neighbours if only one gene differs in both chromosomes. Note that we propose a 
simple LS due to the lack of time of our production environment (300 seconds).  
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The following pseudo-code illustrates the LS algorithm which is applied each 50 
generations over the 5-best individuals: 

void Local_Search (Chromosome & candidate_solution)
   Chromosome best_solution = candidate_solution; 
   Chromosome neighbour = candidate_solution; 
   For (i=0; i<candidate_solution.size(); i++) 
        Agent a = neighbour.getAgent(i); 
        For (j=0; j<a.get_number_profiles(); j++) 

neighbour.change_profile(i,j); //profile j for agent i 
                  If (neighbour.fitness() > best_solution.fitness())  best_solution = neighbour; 
        neighbour = best_solution; 
   candidate_solution = neighbour;  

5   Evaluation of Results 

In this section, we analyse the results obtained by our algorithm (forecast module + 
search module), during a demanding working day (there was a commercial campaign 
during the day which has been measured). In this way, we have run the algorithm over 
a whole day with approximately 315.000 calls (up to 28.800 calls/hour and 2.450 
simultaneous calls) under three double-core processors of a Sun Fire E4900 server 
(one processor for the forecast module, another one for the interfaces and data pre-
processing, and the last one for the search module) with 96GB RAM. The mean 
number of agents in each time-frame is 2.100, having 16 different skills for each 
agent on average (minimum=1 and maximum=108). The total number of CGs is 820. 
The mean processing times differ a lot, depending on the CG (from seconds to 
minutes). All data were taken from the MSCC of a real-world environment within a 
large multinational telephone operator.  

Once the magnitude of our MSCC has been presented, we compare our approach 
with classical SBR [7], ED-SBR (an improvement of classic SBR [7]) and Koole’s 
algorithm [12]. Figure 3 illustrates the real service level given by these techniques 
during a demanding working day. The graphs compile the real service levels for each 
CG, considering the relevance (weight) of each one. Since incoming traffic mainly 
arrives from 9 a.m. till 8 p.m.; therefore, we need more accurate results for this time-
interval and, particularly, for the peaks which occur around 13 p.m. (see point 32 in 
Figure 3), 15 p.m. (see point 66 in Figure 3) and 19 p.m. (see point 100 in Figure 3) 
because, in these points, the load is much higher. Our approach clearly improves the 
results reached by other algorithms in these critical points (peaks). For the rest of 
points, we see that our algorithm usually better behaves than the rest of techniques. 
Classic SBR and ED-SBR sometimes offer a similar configuration of agents than our 
approach for some points and, consequently, the same service levels; but, on average, 
the service levels are clearly worse than ours. Only in few points, the service level of 
ED-SBR and SBR is higher than ours (e.g. around 11:45, point 17). This happens 
because in these points, our predictions had a greater error. However, we can see that 
differences are tiny in these critical points and we present more stable results over the 
time. This corroborates that a middle-term time-frame is recommended as algorithms 
can reach nearly optimal solutions while short-term algorithms often collapse in  
local optimums. But, short-term algorithms present a high adaptability to changes that 
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long-term time-frame techniques cannot cope with. These long-term based techniques 
generally extract patterns from the historical and are only appropriate for stable 
environments. For this reason, our algorithm and SBR outperform Koole’s approach 
which is designed for more stable MSCCs. Koole’s algorithm finds very accurate 
solutions when the dynamism is more reduced such as classical staffing. Nevertheless, 
this is not the case of our environment and this kind of techniques cannot be 
efficiently applied to our MSCC.  

 

Fig. 3. Service level given by different techniques for a whole day 

Table 2 compares the results obtained by all techniques presented in Figure 3. 
Table 2 presents the mean service level for 120 intervals, its standard deviation and 
the effectiveness, considering that our method represents the highest performance. 

Table 2. Comparison of our approach and other relevant algorithms for 120 intervals 

Algorithm Mean Service Level Standard Deviation Effectiveness 
Our Approach 0.941 0.020 100 
ED-SBR 0.901 0.043 95.757 
SBR 0.860 0.056 91.405 
KOOLE 0.733 0.029 77.896 

6   Conclusions and Future Work 

In this paper, we have described a novel approach for workforce distribution in 
dynamic MSCCs which combines predictions and optimisations. We have seen that 
the traditional formulation of the problem cannot be satisfied by complex 
metaheuristics such as memetic algorithms, since these methods take a longer time to 
reach an optimal solution. However, we have illustrated that a reformulation of the 
problem enables us to enlarge the time-frame considered when planning in order to 
give more time to the algorithms. To handle this reformulation of the problem, we 
have proposed a neural network for predicting call arrivals and agents, and a memetic 
algorithm to carry out the assignment of incoming calls to agents. Afterwards, we 
have seen that our algorithm outperforms classical approaches to this problem in a 
demanding real-world environment. To conclude, we propose some guidelines for 
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future work. The following step will be to parallelise our algorithm and deeply study 
those factors which enable us to balance diversity (exploration) and intensity 
(exploitation). Additionally, we propose to do an analogous study, considering other 
metaheuristics (namely, SA and TS) and other multi-objective evolutionary 
approximations (such as SPEA-II and NSGA-II) given our problem reformulation. 
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Abstract. The Nelder-Mead Algorithm (NMA) is an almost half-
century old method for numerical optimization, and it is a close relative
of Particle Swarm Optimization (PSO) and Differential Evolution (DE).
Geometric Particle Swarm Optimization (GPSO) and Geometric Dif-
ferential Evolution (GDE) are recently introduced formal generalization
of traditional PSO and DE that apply naturally to both continuous and
combinatorial spaces. In this paper, we generalize NMA to combinatorial
search spaces by naturally extending its geometric interpretation to these
spaces, analogously as what was done for the traditional PSO and DE
algorithms, obtaining the Geometric Nelder-Mead Algorithm (GNMA).

1 Introduction

The Nelder-Mead Algorithm published by Nelder and Mead in 1965 [9] is a
numerical optimization method: despite its age, it is the method of choice for
many practitioners. Contrasted with the majority of classic methods for numer-
ical optimization, it only uses the values of the objective function without any
derivative information. The search done by NMA is based on geometric opera-
tions (reflection, expansion, contraction and shrinking) on a current set of points,
seen as the corners of a n-dimensional polygon (a simplex), to determine what
points in space to evaluate next. The overall behaviour of the NMA expands
or focuses the search adaptively on the basis of the topography of the fitness
landscape.

Interestingly, the NMA can be seen as a form of (population-based) evolution-
ary algorithm with special selection and reproduction operators [13]. Also, there
are similarities between the search operators employed by the NMA and those
of DE [12] and PSO [2] that have led a number of authors to propose hybrid
approaches (see for example [15] and [3]). As the original versions of DE and
PSO, NMA requires the search space to be continuous and the points in space
to be represented as vectors of real numbers. To the authors’s best knowledge,
there are no generalizations of the NMA to combinatorial spaces.

Both of the searches done by PSO and DE have natural geometric interpreta-
tions and both can be understood as the motion of points in space obtained by
(different but related) linear combinations of their current and past positions to
determine their new positions. Geometric Particle Swarm Optimization [5] and
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Geometric Differential Evolution [8] are recently devised formal generalizations
of PSO and DE that, in principle, can be specified to any solution represen-
tation while retaining the original geometric interpretation of the dynamics of
the points in space across representations. In particular, these formal algorithms
can be applied to any search space endowed with a distance and associated
with any solution representation to derive formally specific PSO and DE algo-
rithms for the target space and for the target representation. Specific GPSOs
were derived for different types of continuous spaces and for the Hamming space
associated with binary strings [6], for spaces associated with permutations [7]
and for spaces associated with genetic programs [14]. GDE was specialized to
the space of binary strings endowed with the Hamming distance [8]. The derived
algorithms performed satisfactorily in experimental results. This suggests that
the generalization methodology employed is a promising one.

In the present paper we generalize the Nelder-Mead Algorithm to combina-
torial spaces extending its geometric interpretation to these spaces, analogously
to what was done for the traditional PSO and DE algorithms, derive the spe-
cific GNMA for the Hamming space associated with binary strings and present
experimental results on standard benchmark problems.

2 Classic Nelder-Mead Algorithm

In this section, we describe the traditional NMA [9] (see Algorithm 1). The NMA
uses n + 1 points in Rn. These points form a type of n-dimensional polygon,
a simplex, which has n + 1 points as vertices in Rn. For example, the sim-
plex is a triangle in R2 and a tetrahedron in R3. The initial simplex has to
be non-degenerate, i.e., the points must not lie in the same hyperplane. This
allows the NMA to search in all n dimensions. The method then performs a se-
quence of transformations of the simplex, which preserve non-degeneracy, aimed
at decreasing the function values at its vertices. At each step, the transforma-
tion is determined by computing one or more test points and comparing their
function values. In Figure 1, we illustrate the NMA transformations for the two-
dimensional case, where the simplex S consists of three points.

The optimization process described by Algorithm 1 starts with creating a
sample of n + 1 random points in the search space. Notice that apart from the
creation of the initial simplex, all further steps are deterministic and do not
involve random choices. In each loop iteration, the points in the simplex S are
arranged in ascending order according to their corresponding objective values.
Hence, the best solution candidate is S[0] and the worst is S[n]. We then compute
the center m of the n best points and then reflect the worst candidate solution
S[n] through this point, obtaining the new point r as also illustrated in Fig.
1(a). The reflection parameter α is usually set to 1. In the case that r is neither
better than S[0] nor as worse as S[n], we directly replace S[n] with it. If r is
better than the best solution candidate S[0], we expand the simplex further into
this promising direction. As sketched in Fig. 1(b), we obtain the point e with
the expansion parameter γ set to 1. We now take the best of these two points to
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Algorithm 1. Nelder-Mead Algorithm
1: Input: f : the objective function to minimize
2: Input: n + 1: number of points in the simplex
3: Input: α, ρ, γ, σ: reflection, expansion, contraction and shrink coefficients
4: Output: x∗: the best solution found
5:
6: S ← createPop(n + 1)
7: while stop criterion not met do
8: S ← sortPop(S, f)
9: // Center of mass: determine the center of mass of the n best points
10: m ← 1

n

∑
i=0,n−1 S[i]

11: // Reflection: reflect the worst point over m
12: r ← m + α(m − S[n])
13: if f(S[0]) < f(r) < f(S[n]) then
14: S[n] ← r
15: else
16: if f(r) ≤ f(S[0]) then
17: // Expansion: try to search farther in this direction
18: e ← r + γ(r − m)
19: if f(e) < f(r) then
20: S[n] ← e
21: else
22: S[n] ← r
23: end if
24: else
25: b ← true
26: if f(r) ≥ f(S[n − 1]) then
27: // Contraction: a test point between r and m
28: c ← ρr + (1 − ρ)m
29: if f(c) < f(r) then
30: S[n] ← c
31: b ← false
32: end if
33: end if
34: if b = true then
35: // Shrink towards the best solution candidate S[0]
36: for i from n down to 1 do
37: S[i] ← S[0] + σ(S[i] − S[0])
38: end for
39: end if
40: end if
41: end if
42: end while
43: return S[0]

Fig. 1. One step of the NMA in R2 (figure modified from [16])
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replace S[n]. If r is no better than S[n], the simplex is contracted by creating a
point c somewhere in between r and m. In Fig. 1(c), the contraction parameter
ρ was set to 1/2. We substitute S[n] with c only if c is better than r. When
everything else fails, we shrink the whole simplex by moving all points (except
S[0]) into the direction of the current optimum S[0]. The shrinking parameter σ
normally has the value 1/2, as is the case in the example outlined in Fig. 1(d).

3 Geometric Nelder-Mead Algorithm

In this section, we derive the general Geometric Nelder-Mead Algorithm
(Algorithm 2) from the classic Nelder-Mead Algorithm (Algorithm 1). The gen-
eralization is obtained using a methodology to generalize search algorithms for
continuous spaces to combinatorial spaces [8] based on the geometric framework
introduced by Moraglio [4], sketched in the following.

1. Given a search algorithm defined on continuous spaces, one has to recast
the definition of the search operators expressing them explicitly in terms of
Euclidean distance between parents and offspring.

2. Then one has to substitute the Euclidean distance with a generic metric,
obtaining a formal search algorithm generalizing the original algorithm based
on the continuous space.

3. Next, one can consider a (discrete) representation and a distance associated
with it (a combinatorial space) and use it in the definition of the formal
search algorithm to obtain a specific instance of the algorithm for this space.

4. Finally, one can use this geometric and declarative description of the search
operator to derive its operational definition in terms of manipulation of the
specific underlying representation.

As mentioned in the introduction, this methodology was used to generalize PSO
and DE to any metric space obtaining GPSO and GDE and then to derive the
specific search operators for a number of specific representations and distances.

Following the methodology outlined above, in the following we generalize the
classic Nelder-Mead Algorithm to general metric spaces. To do this, we recast
the search operations described in the previous section (reflection, expansion,
contraction and shrinking) as functions of the distance of the underlying search
space, thereby obtaining their abstract geometric definitions. Then, in Section
4, we derive the specific GNMA for the Hamming space associated with binary
strings by plugging this distance in the abstract definition of the search operators.

3.1 Geometric Generalization of the Nelder-Mead Algorithm

Using the notion of convex combination CX , extension ray ER and center of
mass CM we can generalize all search operators of the classical Nelder-Mead
Algorithm from the Euclidean case to generic metric spaces because, as we will
see in the following sections, these are geometric elements well-defined on any
metric space.
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Algorithm 2. Formal Nelder-Mead Algorithm
1: Input: f : the objective function to minimize
2: Input: n + 1: number of points in the simplex
3: Input: α, ρ, γ, σ: reflection, expansion, contraction and shrink coefficients
4: Output: x∗: the best solution candidate found
5:
6: S ← createPop(n + 1)
7: while stop criterion not met do
8: S ← sortPop(S, f)
9: // Center of mass: determine the center of mass of the n best points
10: m ← CM(S[0], S[1], ..., S[n − 1])
11: // Reflection: reflect the worst point over m
12: r ← ER(S[n], m) with weights ( α

1+α , 1
1+α )

13: if f(S[0]) < f(r) < f(S[n]) then
14: S[n] ← r
15: else
16: if f(r) ≤ f(S[0]) then
17: // Expansion: try to search farther in this direction
18: e ← ER(m, r) with weights ( 1

γ , γ−1
γ )

19: if f(e) < f(r) then
20: S[n] ← e
21: else
22: S[n] ← r
23: end if
24: else
25: b ← true
26: if f(r) ≥ f(S[n − 1]) then
27: // Contraction: a test point between r and m
28: c ← CX(r, m) with weights (ρ, 1 − ρ)
29: if f(c) < f(r) then
30: S[n] ← c
31: b ← false
32: end if
33: end if
34: if b = true then
35: // Shrink towards the best solution candidate S[0]
36: for i from n down to 1 do
37: S[i] ← CX(S[0], S[i]) with weights (1 − σ, σ)
38: end for
39: end if
40: end if
41: end if
42: end while
43: return S[0]

The graphical description of the search operations of NMA (Fig. 1) leads
directly to their geometric interpretation in terms of convex combination and
extension ray, as follows. The reflection of the worst point S[n] over M can be
seen as picking a point beyond M on the extension ray originating in S[n] and
passing through M . The expansion operation can be seen as picking a point
beyond R on the extension ray originating in M and passing through R. The
contraction operation can be seen as picking a point in the segment between R
and M . The shrink of all points S[i] towards the best in the population S[0] can
be seen as replacing each point S[i] with a point in the segment between S[i]
and S[0].

In the following, we rewrite the algebraic definitions of the search operations
of NMA to determine the weights of the corresponding convex combination or
extension ray combination.
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The definition of the reflection operation is r = m + α(m − S[n]) (see
Algorithm 1, line 12) and it can be rewritten as m = α

1+αS[n] + 1
1+αr. Since the

coefficients of S[n] and r are positive and sum up to 1 (for α ∈ [0, 1]), this equa-
tion says that m is the convex combination of S[n] and r with those coefficients.
However, since r is the unknown and S[n] and m are given, we can determine r
as the inverse operation of the convex combination above, which is the extension
ray combination with origin in S[n] passing through m and keeping the same
weights ( α

1+α , 1
1+α ) of the convex combination.

The definition of the expansion operation is e = r + γ(r − m) (see
Algorithm 1, line 18) and it can be rewritten as r = 1

γ m + γ−1
γ e, which for

γ > 1 is a convex combination of m and e returning r. Analogously as the reflec-
tion operation, since e is unknown and m and r are given, we can determine e by
the extension ray combination with origin in m passing through r with weights
( 1

γ , γ−1
γ ).

The definition of the contraction operation is c = ρr + (1 − ρ)m (see
Algorithm 1, line 28), which for ρ ∈ [0, 1] is a convex combination of r and
m with weights (ρ, 1 − ρ) returning c.

The definition of the shrink operation for a point S[i] is S[i]′ = S[0]+σ(S[i]−
S[0]) (where S[i]′ denotes S[i] at the next time step) (see Algorithm 1, line 37).
This can be rewritten as S[i]′ = (1 − σ)S[0] + σS[i], which for σ ∈ [0, 1] is a
convex combination of S[0] and S[i] with weights (1 − σ, σ) returning S[i]′.

By replacing in Algorithm 1 the original operations defined on the Euclidean
space with their generalized definitions we obtain the definition of a Formal
Nelder-Mead Algorithm valid for any metric space (see Algorithm 2).

3.2 Convex Combination, Extension Ray and Center of Mass

Center of mass, segments and extension rays in the Euclidean space and their
weighted extensions can be expressed in terms of distances, hence, these geomet-
ric objects can be naturally generalized to generic metric spaces by replacing the
Euclidean distance with a generic metric.

Let (S, d) be a metric space. A (metric) segment is a set of the form
[x; y] = {z ∈ S|d(x, z) + d(z, y) = d(x, y)} where x, y ∈ S. The notion of convex
combination in metric spaces was introduced in the GPSO framework [5]. The
convex combination C = CX((A, WA), (B, WB)) of two points A and B with
weights WA and WB (positive and summing up to one) in a metric space en-
dowed with distance function d returns the set of points C in the segment [A; B]
such that d(A, C)/d(A, B) = WB and d(B, C)/d(A, B) = WA (the weights of
the points A and B are inversely proportional to their distances to C). When
specified to Euclidean spaces, this notion of convex combination coincides with
the traditional notion of convex combination of real vectors.

The extension ray ER(A, B) in the Euclidean plane is a semi-line origi-
nating in A and passing through B (note that ER(A, B) �= ER(B, A)). The
notion of extension ray in metric spaces was introduced in the GDE frame-
work [8]. The weighted extension ray ER is defined as the inverse operation of
the weighted convex combination CX , as follows. The weighted extension ray
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Algorithm 3. Binary Convex Combination Operator
1: inputs: binary strings A and B and weights WA and WB (weights must be positive and sum up

to 1)
2: for all position i in the strings do
3: if random(0,1) ≤ WA then
4: set C(i) to A(i)
5: else
6: set C(i) to B(i)
7: end if
8: end for
9: return string C as offspring

ER((A, wab), (B, wbc)) of the points A (origin) and B (through) and weights wab

and wbc returns those points C such that their convex combination with A with
weights wbc and wab, CX((A, wab), (C, wbc)), returns the point B.

The notion of center of mass can be generalized to generic metric spaces, as
follows. The center of mass CM of a set of points p1, ..., pn in a metric space
(S, d) is the point p ∈ S that minimizes its average distance to that set of points,
i.e. CM(p1, ..., pn) = argminp∈S

∑
i=1...n d(pi,p)

n .

4 Binary NMA

In this section, we present convex combination, extension ray and center of mass
operators for the Hamming space on binary strings, and show formally that
they meet their geometric specifications presented in the previous section. These
specific operators can be plugged in the formal NMA (Algorithm 2) to obtain a
specific GNMA for the Hamming space, the Binary GNMA.

4.1 Convex Combination and Extension Ray

The convex combination operator in metric spaces was introduced in the GPSO
framework [5]. When specified to Euclidean spaces, this notion of convex com-
bination coincides with the traditional notion of convex combination of real
vectors. In the Euclidean space, the output point C of a convex combination
CX((A, WA), (B, WB)) is uniquely determined, however this is not the case for
all metric spaces. In particular, it does not hold for Hamming spaces. When
CX is formally specified to Hamming spaces on binary strings, we obtain the
recombination operator outlined in Algorithm 3 [5], which is a weighted form of
uniform crossover. This algorithm returns offspring C in the Hamming segment
between A and B such that hd(A, C)/hd(B, C) = WB/WA in expectation. This
differs from the Euclidean case where this ratio is guaranteed.

The notion of extension ray in metric spaces was introduced in the GDE frame-
work [8]. When specified to Euclidean spaces, this notion of extension ray co-
incides with the traditional notion. Analogously as for the convex combination
case, in the Euclidean space, the output point C of an extension ray combination
ER((A, wab), (B, wbc)) is uniquely determined, however this is not the case for all
metric spaces. In particular, it does not hold for Hamming spaces. When ER is
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Algorithm 4. Binary Extension Ray Recombination
1: inputs: binary strings A (origin) and B (through) of length n and weights WAB and WBC

(weights must be positive and sum up to 1)
2: set HD(A, B) as Hamming distance between A and B
3: set HD(B, C) as HD(A, B) · wAB/wBC (compute the distance between B and C using the

weights)
4: set p as HD(B, C)/(n − HD(A, B)) (this is the probability of flipping bits away from A and B

beyond B)
5: for all position i in the strings do
6: set C(i) = B(i)
7: if B(i) = A(i) and random(0,1) ≤ p then
8: set C(i) to the complement of B(i)
9: end if
10: end for
11: return string C as offspring

Algorithm 5. Binary Center of Mass Operator
1: inputs: binary strings A[1], ..., A[n]
2: for all position i in the strings do
3: C(i) = 1/n ·∑ j=1,n A[j](i)
4: if C(i) = 0.5 then
5: C(i) = RandomInteger(0, 1)
6: else
7: C(i) = Round(C(i))
8: end if
9: end for
10: return string C as offspring

formally specified to Hamming spaces on binary strings, we obtain the recombina-
tion operator outlined in Algorithm 4 [8]. This algorithm implements the inverse
operation of the convex combination CX reported above in that it returns off-
spring C such that the parent B is in the Hamming segment between A and C
and that hd(A, C)/hd(B, C) = wbc/wab in expectation. This differs from the Eu-
clidean case where this ratio is guaranteed.

4.2 Center of Mass

When specified to the Hamming space on binary strings the center of mass CM
coincides with the multi-parental recombination that returns the offspring by
taking position-wise the majority vote of the parents and breaking ties randomly
(see Algorithm 5). We prove this in the following.

Theorem 1. The binary string p returned by the binary center of mass operator
CM (Algorithm 5) applied to parents p1, ..., pn minimizes the average Hamming
distance to its parents.

Proof. From the definition of center of mass operator, we have to prove that p

minimizes
∑

i=1...n hd(pi,p)
n . Since n is constant in p, this is equivalent to prove

that p minimizes
∑

i=1...n hd(pi, p). By expanding the definition of Hamming
distance and exchanging the summations, we have

∑
k=1..m

∑
i=1...n hd(pk

i , pk)
where k is the position in the string and m the number of bits in the string. The
last expression is a linear combination of the (boolean) variables pk. Minimizing
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the linear combination is equivalent to minimizing each term
∑

i=1...n hd(pk
i , pk)

in pk separately. Minimizing a term corresponds to finding the center of mass
pk of the strings pk

i of a single bit size. Since pk can take only two values we
have only two cases: (i) when pk = 0 the term

∑
i=1...n hd(pk

i , pk) is the number
of bits in {pk

i } set to 1; (ii) when pk = 1 the term
∑

i=1...n hd(pk
i , pk) is the

number of bits in {pk
i } set to 0. So,

∑
i=1...n hd(pk

i , pk) is minimized by pk = 0
when the number of bits in {pk

i } set to 1 is less than the number of bits set to
0; it is minimized by pk = 1 when the number of bits in {pk

i } set to 0 is less
than the number of bits set to 1. This is a way of describing majority voting
for strings of a single bit size. This reasoning applies to any position k in the
string independently, so we conclude that the majority voting returns the p that
minimizes

∑
i=1...n hd(pi,p)

n .

Unlike for the Euclidean case in which the simplex is maintained non-degenerate
throughout the search process, so guaranteeing that any dimension is actually
being searched, this does not hold true for the case of the Hamming space.
To counteract the degeneracy of the simplex, in the experiments we will use a
randomized version of the CM operator which uses the frequency of the ones
and zeros at each position in the parents as the probability of generating a one or
a zero in the offspring at that position. The expected offspring of the randomized
operator is the one obtained with majority voting but the variance gives a greater
chance to the search of staying open in all dimensions.

5 Experiments: Results and Discussion

Experiments have been carried out using the well-known NK-Landscape prob-
lem [1], which provides a tunable set of rugged, epistatic landscapes over a space
of binary strings. In our experiments we use landscapes of size n = 20, . . . , 52
for k = 2, . . . , 6 (higher values of n have not been provided for the higher val-
ues of k due to the difficulty of calculating the optimum using exact methods).
These examples are due to Pelikan [11], and can be downloaded from Pelikan’s
website [10].

Two algorithms have been used. The GNMA above (referred to in the dia-
grams as NM) with populations 10 and 100, and a genetic algorithm (referred
to in the diagrams as GA) with population sizes 100, 500 and 1000. Note that
it is not fair to compare algorithms directly on identical population sizes as the
meaning of population size in the two algorithms is very different. The GA uses
uniform crossover with probability 0.8, bitflip mutation with a probability of
1/n, elitism and roulette-wheel selection (i.e. we have chosen standard values
from the literature). Both algorithms are run until they converge to a value; in
the case of the GA this is taken to mean that the best value has the same value
as in the previous 4 generations.

For each tuple of algorithm, population size n and k, the algorithm has been exe-
cuted 10 times on each of 999 examples of NK-landscapes—therefore each point in
the results graphs represents 9990 runs of that particular NK pair. Three features
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Error: k = 2 Error: k = 6

Function evaluations: k = 2 Function evaluations: k = 6

Exact optimum found: k = 2 Exact optimum found: k = 6

Fig. 2. Results for the five algorithms
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have been measured: error on the objective function (measured against exactly-
calculated optima computed using branch-and-bound [11]), number of function
evaluations, and number of times the global optimum was found exactly.

Results are presented in Figure 2. The first set of results shows error measures.
The error is presented as absolute error in arbitary units (i.e., not as a percentage
or proportion of the optimum). The next pair of figures shows the number of
function evaluations taken to convergence (of the population, not necessarily
to convergence to optimum). The final set of results shows the number of runs
(out of 9990) in which the exact optimum was found. Results for k = 3, 4, 5
are intermediate between k = 2 and k = 6, and are not reported due to space
limitations.

For all problems, the NM-100 algorithm is the best (or equal-best) algorithm,
in particular performing considerably better than the other algorithms on the
problems with larger values for n, indicating good scaling performance. Clearly
the NM-100 algorithm is using the most function evaluations of any of the al-
gorithms; however, the current version of the GNMA continues until the whole
population has converged on a single individual, so a better stopping condi-
tion might provide a better measure for this. Interestingly, the NM-100 algo-
rithm achieves a considerably larger number of exact hits precisely on the global
optimal value.

The experiments above, that have compared GNMA with a simple GA, are
intended to show that the GNMA is a promising proof-of-concept rather than
showing its competitiveness to state-of-the-art algorithms. As an important piece
of future work, we will examine the performance of GNMA more thoroughly and
compare it more broadly with a number of competitive algorithms including
GPSO and GDE on a larger set of benchmark problems.

6 Conclusions

In this paper, we have generalized the Nelder-Mead Algorithm from continuous
to generic combinatorial spaces by extending the geometric interpretation of the
classic NMA to general metric spaces. The algorithm obtained (GNMA) can
then be formally specified for specific spaces and specific representations. We
have illustrated this by deriving the specific GNMA for the Hamming space
associated with binary strings. We have tested the binary GNMA on a standard
benchmark and compare it with a simple genetic algorithm.

In future work, we will specify the formal GNMA for search spaces associated
with permutations and test it on hard combinatorial optimization problems. The
Nelder-Mead Algorithm is similar to other classical derivation-free methods for
continuous optimization that make use of geometric constructions of points to
determine the next candidate solution (e.g., Controlled Random Search). We
will use the same technique to generalize these algorithms to general metric
spaces.



Geometric Generalization of the NMA 201

References

1. Kauffman, S.: Origins of order: self-organization and selection in evolution. Oxford
University Press, Oxford (1993)

2. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco
(2001)

3. Luo, C., Yu, B.: Low dimensional simplex evolution: a hybrid heuristic for global
optimization. In: Eighth International Conference on Software Engineering, Ar-
tificial Intelligence, Networking, and Parallel/Distributed Computing, vol. 2, pp.
470–474 (2007)

4. Moraglio, A.: Towards a geometric unification of evolutionary algorithms. PhD
thesis, University of Essex (2007)

5. Moraglio, A., Chio, C.D., Poli, R.: Geometric particle swarm optimization. In:
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Abstract. This paper presents an efficient route minimization heuris-
tic for the pickup and delivery problem with time windows (PDPTW)
based on guided ejection search (GES). GES is a recently proposed meta-
heuristc framework and was first applied to the vehicle routing problem
with time windows. The existence of the pickup and delivery constraint
makes the feasible solution space tightly constrained and then makes the
design of effective metaheuristics more difficult. We demonstrate that
GES can be successfully applied to such an complicated problem. Exper-
imental results on the Li and Lim’s benchmarks demonstrate that the
proposed GES algorithm outperforms existing algorithms and is able to
improve 105 best-known solutions out of 298 instances.

Keywords: vehicle routing, pickup and delivery problem, ejection chain,
guided local search, metaheuristics.

1 Introduction

The pickup and delivery problem with time windows (PDPTW) can be described
as the problem of designing least cost routing plan to satisfy a set of transporta-
tion requests by a given identical vehicle fleet. Each request consists of delivering
goods from a predefined location (pickup customer) to another one (delivery cus-
tomer). The routing plan must be designed in such a way that all vehicles start
and end at the depot, the amount of goods must not exceed the capacity of
the vehicle (capacity constraint), each customer must be serviced within a given
time interval (time window constraint), and for each request the corresponding
pickup customer must be visited before the corresponding delivery customer by
the same vehicle (pickup and delivery constraint). In standard benchmarks, a
hierarchical objective of minimizing the number of routes (primary objective)
and the total travel distance (secondary objective) is frequently used.

Given the hierarchical objective, recent metaheuristics for the PDPTW use a
two-stage approach where the number of routes is minimized in the first stage
and the total travel distance is then minimized in the second stage [3][1][11].
The two-stage approach allows us to independently develop algorithms for the
route minimization and for the distance minimization. In this paper, we focus
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c© Springer-Verlag Berlin Heidelberg 2010
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on the route minimization for the PDPTW because efficient algorithms for the
route minimization and for the distance minimization would be different from
each other.

In early work on the metaheuristics for the PDPTW, tabu search and simu-
lated annealing algorithms were proposed for minimizing the number of routes
[9][1] where new neighborhood structures suited for the PDPTW were proposed.
The current state-of-the-art algorithm by Ropke and Pisinger [11] is based on
large neighborhood search (LNS) and it has shown good results for both the
route and distance minimization. In the LNS algorithm [11], a move is defined
by a fairly large change in a solution where up to 30–40 % of all requests are
removed and re-inserted in a single move. For an extensive review of the meta-
heuristics as well as exact methods for the PDPTW, the reader is referred to
Parragh et al. [10].

Recently, we proposed a powerful route minimization heuristic for the vehicle
routing problem with time windows (VRPTW) [7]. This heuristic has domi-
nated all of the previous route minimization heuristics applied to the VRPTW.
Then we proposed a generalized metaheuristc framework based on this heuristic,
which is called guided ejection search (GES), for solving a wide variety of combi-
national optimization problems and GES was successfully applied to the job shop
scheduling problem [8]. In this paper we develop a route minimization heuristic
for the PDPTW based on GES. The existence of the pickup and delivery con-
straint makes the feasible solution space tightly constrained and the design of an
effective algorithm more difficult compared with the VRPTW case. Therefore,
it is worthwhile to develop an effective GES algorithm for the PDPTW in order
to investigate the effectiveness and robustness of GES to such an complicated
problem.

The GES algorithm was tested on the standard benchmark problems of Li
and Lim [4]. Computational results showed that the proposed algorithm is ro-
bust and highly competitive. It improved 105 best-known solutions out of 298
benchmark instances. The remainder of this paper is arranged as follows. First,
the problem definition and notation are described in Section 2. The problem
solving methodology based on GES is described in Section 3. The computa-
tional analysis of GES and its comparison with other algorithms are presented
in Section 4. Conclusions are presented in Section 5.

2 Problem Definition and Notation

The PDPTW is defined on a complete directed graph G = (V, E) with a set of
vertices V = {0, 1, . . . , N} and a set of edges E = {(v, w)|v, w ∈ V (v �= w)}.
Node 0 represents the depot and the set of nodes {1, . . . , N} represents the
customers. Let H = {0, 1, . . . , N/2} be a set of the requests, and for each request
h ∈ H , let ph and dh be the corresponding pickup and delivery customers,
respectively. Let P = {ph|h = 1, . . . , N/2} be a set of the pickup customers and
D = {dh|h = 1, . . . , N/2} a set of the delivery customers. Here, we assume that
P ∩ D = ∅ and P ∪ D = V \{0}. With each node v (∈ V ) are associated a
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demand qv (with q0 = 0), a non-negative service time sv (with s0 = 0), and a
time window [ev, lv]. For each request h, the demand of the pickup customer,
qph

, must be positive and the demand of the delivery customer is defined by
qdh

= −qph
. Each edge (v, w) has the non-negative travel distance dvw and

travel time cvw. The capacity of the identical vehicles is given by Q.
Given a route r, let < v0, v1, . . . , vn, vn+1 > be a sequence of the customers

in this route where v0 and vn+1 represent the depot and n refers to the num-
ber of customers in this route. The travel distance of the route is defined by∑n

i=0 dvivi+1 . A route is called feasible if the time window, capacity, and pickup
and delivery constraints are all satisfied. These constraints are defined as follows.
The earliest departure time at the depot, av0 , the earliest start time of service
at a customer vi, avi (i = 1, . . . , n), and the earliest arrival time to the depot,
avn+1 , are defined recursively as follows:

av0 = e0,
avi = max{avi−1 + svi−1 + cvi−1vi , evi} (i = 1, . . . , n + 1). (1)

The route satisfies the time window constraint if

avi ≤ lvi (i = 0, . . . , n + 1). (2)

Let Qvi(=
∑i

s=1 qvs) (i = 0, . . . , n + 1) denote the amount of goods in a vehicle
at a location vi. The route satisfies the capacity constraint if

Qvi ≤ Q (i = 0, . . . , n + 1). (3)

The route satisfies the pickup and delivery constraint if each pickup (delivery)
customer in the route is visited before (after) the corresponding delivery (pickup)
customer (the two customers must belong to the same route).

A feasible solution σ is defined as a set of feasible routes such that all customer
are visited exactly once. In addition, we define a partial solution as a set of routes
that pass through a subset of all customers exactly once. A partial solution is
called feasible if it consists of feasible routes, and infeasible otherwise.

In standard benchmarks, the objective of the PDPTW consists of finding a
feasible solution σ that minimizes the number of routes m (primary objective)
and, in case of ties, minimizes the total distance traveled (secondary objective).

3 Problem Solving Methodology

This section first presents the GES algorithm for the PDPTW followed by the
description of the difference from the previous work. Core parts of the GES
algorithm are then described in more detail.

3.1 The GES Framework for the PDPTW

The GES algorithm (Procedure Delete-Route(σ)) is shown in Algorithm 1.
The route minimization procedure starts with an initial solution where each
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request (a pair of pickup and delivery customers) is served individually by
a separate route. Procedure Delete-Route(σ) is then repeatedly applied to
an incumbent solution σ to reduce the number of routes one by one until the
termination condition is met.

Procedure Delete-Route(σ) is started by selecting and removing a route
randomly from the current solution σ (line 1). Thus, σ is a feasible partial solu-
tion. An ejection pool (EP) [5] is then initialized with the set of the requests in
the removed route (line 2). Here, the EP is a list that stores a set of temporarily
unserved requests, currently missing from σ.

In each iteration (lines 5-14), a request hin is selected from the EP with the
last-in first-out (LIFO) strategy and is removed from the EP (line 5). The se-
lected request hin is then inserted into σ without violating the capacity, time
window, and pickup and delivery constraints, if possible. More formally, the in-
sertion of hin is determined as follows. Let N fe

insert(hin, σ) be the set of feasible
partial solutions that are obtained by inserting phin and dhin into σ in all pos-
sible ways. If there is a possible feasible insertion (i.e., N fe

insert(hin, σ) �= ∅), the
insertion is executed by randomly selecting a solution from N fe

insert(hin, σ) and
update the incumbent solution (lines 6-7).

If the request hin cannot be inserted into σ, we remove (eject) requests from a
route in σ in order to make room to insert hin without violating the constraints.
Let N fe

EJ(hin, σ) be the set of feasible partial solutions that are obtained by
inserting hin into σ in all possible ways, and for each insertion, ejecting at
most kmax requests from the resulting infeasible route in all possible ways. Note
that we allow ejection of hin itself and N fe

EJ(hin, σ) always includes σ itself.
The insertion positions for phin and dhin and the ejecting requests, denoted
by {h

(1)
out, . . . , h

(k)
out} (k ≤ kmax), are determined by selecting a solution from

N fe
EJ(hin, σ) so that the sum of penalty counters of the ejecting requests, Psum =

p[h(1)
out]+ . . .+p[h(k)

out], is minimized (line 11). Here, the penalty counter p[h] (h ∈
{1, . . . , N/2}) refers to how many times an attempt to insert request h has failed
during the current Delete-Route procedure (lines 3 and 10). This criterion is
motivated to usually eject fewer requests at a time (e.g., k = 1). In addition, this
criterion is also motivated to avoid cycling. If a few requests conflict with each
other due to the constraints, cycling will occur (i.e., insertions and ejections of
requests are repeated within a few conflicting requests) and the penalty counter
of the conflicting requests will increase. Therefore, GES can escape from a cycling
by ejecting a relatively large number of requests at a time that would not be so
hard for the subsequent re-insertion when cycling occurs.

Each time after one or more requests are ejected from σ, the resulting feasible
partial solution σ is perturbed by procedure Perturb(σ) to diversify the search
(line 13). Here, random local search moves are iterated inside the partial solu-
tion subject to the constraint that σ is a feasible partial solution. The detailed
procedure is presented in Section 3.2.

The basic GES framework for the PDPTW is almost the same as that for the
VRPTW. The main difference is that we employ the request as the fundamental
component for the insertion and ejection whereas the customer was employed in
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Algorithm 1. Procedure Delete-Route(σ)
1: Select and remove a route randomly from σ;
2: Initialize EP with the requests in the removed route;
3: Initialize all penalty counters p[h] := 1 (h = 1, . . . , N/2);
4: while EP �= ∅ or termination condition is not met do
5: Select and remove request hin from EP with the LIFO strategy;
6: if N fe

insert(hin, σ) �= ∅ then
7: Select σ′ ∈ N fe

insert(hin, σ) randomly; Update σ := σ′;
8: end if
9: if hin cannot be inserted in σ then

10: Set p[hin] := p[hin] + 1;
11: Select σ′ ∈ N fe

EJ (hin, σ) such that Psum = p[h(1)
out]+ . . .+ p[h(k)

out] is minimized;
Update σ := σ′;

12: Add the ejected requests {h(1)
out, . . . , h

(k)
out} to EP ;

13: σ := Perturb(σ);
14: end if
15: end while
16: if EP �= ∅ then Restore σ to the input state;
17: return σ;

the previous work for the VRPTW. This choice is natural because the pickup
and delivery constraint is imposed in the PDPTW. In the GES algorithm, the
procedure for finding the best insertion-ejection combination that minimize Psum

(line 11) requires an efficient algorithm. As for the VRPTW, all possible inser-
tion positions for a customer to be inserted, and for each insertion all possible
ejections consisting of at most kmax customers were considered for finding the
best inserting-ejection combination. Here, the parameter kmax was introduced in
order to reduce the number of all possible insertion-ejection combinations. How-
ever, the number of all possible insertion-ejection combinations is usually very
large (even if kmax is two) and it is therefore impractical to test all of them. So,
we developed an efficient algorithm for finding the best insertion-ejection com-
bination in the VRPTW case [7]. As described above, we employ the request as
the fundamental component in the GES algorithm for the PDPTW. However,
it makes more difficult to find the best insertion-ejection combination because
the number of all possible insertion positions (for phin and dhin) is much greater
than that in the VRPTW case. In Section 3.3, we present an efficient algorithm
for finding the best insertion-ejection combination in the PDPTW case.

Another important feature of GES is the perturbation procedure (procedure
Perturb(σ)). As we will show in the experiments, this procedure significantly
affects the performance. Ropke and Pisinger [11] suggested that very large moves
(e.g., up to 30–40 % of all requests are rearranged in a single iteration) are
required to move a solution from one promising area of solution space to another,
when faced with tightly constrained problems such as the PDPTW, even when
embedded in metaheuristics. We believe that the perturbation procedure can
efficiently move an incumbent solution σ to other promising area by a certain
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ph dh ph dh

ph' dh'

(a) (b)

Fig. 1. The neighborhoods. (a) The pair relocation neighborhood is defined as a set of
feasible solutions (feasible partial solutions in GES) that are obtained from the current
solution by ejecting a request and re-inserting it in other possible ways (the request
can be inserted into the same route). (b) The extended pair exchange neighborhood
is defined as a set of feasible (partial) solutions that are obtained from the current
solution by ejecting two requests from two different routes and inserting them into the
two routes in all possible ways (each request must be inserted into another route).

number of iterations of small moves because an incumbent solution σ would
not be so tightly constrained when requests are temporarily ejected. In this
paper, we first employ the simple pair relocation neighborhood (See Fig. 1),
which has been frequently used in previous metaheuristic algorithms for the
PDPTW [9][1]. However, we have confirmed that possible feasible moves by
the pair relocation neighborhood is still limited and the incumbent solution σ
cannot be fully moved even though some requests are temporarily ejected. So,
we introduce an extended pair exchange neighborhood (See Fig. 1) to enhance
the perturbation procedure. To the best of our knowledge, this neighborhood
has not been used in the previous works.

3.2 The Perturbation Procedure

Let N fe
relocate(h, σ) be the set of feasible partial solutions defined by the relocation

moves of request h. Let N fe
exchange(h, σ) be the set of feasible partial solutions

defined by the extended exchange moves of request h (request h and other one
are exchanged). In the perturbation procedure, the input solution σ is perturbed
by the iteration of random moves for a given number of times, Irand. At each
iteration, a request h currently served in σ is randomly selected and a move is
executed by randomly selecting a solution from N fe

relocate(h, σ) or N fe
exchange(h, σ),

which are selected with a given probability. Here, the probability of selecting the
extended pair exchange neighborhood is given by pex. Note that for a selected h
if no feasible move is found in the selected neighborhood, no move is executed.

3.3 Algorithm for Finding the Best Insertion-Ejection Combination

Given a request hin to be inserted, the procedure for finding the best insertion-
ejection combination (insertion positions for phin and dhin and ejecting requests)
that minimizes Psum proceeds as follows. All insertion positions in σ are consid-
ered for phin . For each insertion of phin , a sub procedure is performed where all
possible insertion positions for dhin (inserting dhin between phin and the end of
the route (depot)) and ejections of at most kmax requests from the resulting in-
feasible routes are tested; check the feasibility of the resulting routes and record
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the insertion positions for phin and dhin and the ejected requests if a resulting
route is feasible and Psum is less than Pbest (the minimum value of Psum found
so far).

We propose an efficient algorithm for the sub procedure. For each insertion
of phin , let < 0, 1, . . . , n, n + 1 > be a sequence of the customers in the resulting
infeasible route (we call it original route) where the customers are labeled ac-
cording to the order in which they appear in the original route to simplify the
notations (0 and n + 1 refer to the depot). Although for any insertion-ejection
combination, the feasibility of the resulting route can be checked in O(n) time
by a naive calculation, the feasibility check can be possible in constant time by
testing insertion-ejection combinations in a particular order. Let us represent
the possible ejections of requests as the corresponding customers. The combina-
tions of all possible insertion positions for dhin and ejections of at most kmax

requests (2kmax customers) can be denoted as {i(1), . . . , i(jd), . . . , i(j)} (1 ≤
i(1) < . . . < i(jd) < . . . < i(j) ≤ n), 1 ≤ jd ≤ j ≤ 2kmax + 1, 1 ≤ jd ≤
2kmax + 1) (See Fig. 2). Here, the insertion position for dhin is denoted as
i(jd), meaning that dhin is inserted just after i(jd) in the original route. The
requests to be ejected are denoted as a set of the corresponding customers
{i(1), . . . , i(jd−1), i(jd+1) . . . , i(j)} where j refers to the number of temporarily
ejected customers plus one. The basic idea is to search the possible insertion-
ejection combinations denoted as {i(1), . . . , i(jd), . . . , i(j)} in the lexicographic
order (we call it lexicographic search) (See Fig. 2), making it possible to check
the feasibility of the resulting routes in O(1) time for each route. Note that the
lexicographic search is performed for each jd (1 ≤ jd ≤ 2kmax + 1).

For each jd (1 ≤ jd ≤ 2kmax + 1), the lexicographic search is performed as
follows. Before starting the lexicographic search, we calculate the latest possible
arrival times [6], zi (i = 1, . . . , n + 1), for the original route (i.e., if the vehicle
arrives at customer i no later than time zi, the time window constraints of i
and the subsequent customers in the route are satisfied). Let anew

i and Qnew
i

denote, respectively, ai and Qi at location i in a route obtained through the
lexicographic search. These values are dynamically updated. For example, when
i(j) is ejected (See Fig. 3 (a)), anew

i(j)+1 can be updated in O(1) time according
to Eq. (1) because anew

p (p is the predecessor of i(j) in the current route) has
already been updated. In the same way, when i(j) is incremented (See Fig. 3
(b)), anew

i(j)−1 can be updated in O(1) time. In the same way, anew
i(jd)+1 (or anew

i(jd))
can be updated in O(1) time when dhin is inserted just after i(jd) (or i(jd) is
incremented) (See Fig. 3). Qnew

i can also be updated in the same manner. When
customer i(j) is ejected, the resulting route is feasible in terms of the time window
and capacity constraints if both anew

i(j)+1 ≤ zi(j)+1 and Qnew
i(j)+1 ≤ Q hold, and the

pickup and delivery constraint can be easily checked. Therefore, the feasibility of
the resulting route can be checked in O(1) time. Similarly, when phin is inserted
just after i(jd), the feasibility of the resulting route can be checked in O(1) time.

In fact, most of the lexicographic search can be pruned if one of the following
conditions (i)–(v) is met and the efficiency is greatly improved.
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i(1) phin i(2) i(4)i(3) i(5)

dhin

Fig. 2. An example of an insertion-ejection combination: {i(1), i(2), i(3), i(4), i(5)} =
{2, 6, 7, 9, 11} (jd = 4, j = 5). If kmax = 2, the lexicographic search proceeds in
the following order: {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 6} . . . ,
{1, 2, 3, 4, n}, {1, 3}, {1, 3, 4}, {1, 3, 4, 5}, {1, 3, 4, 5, 6}, {1, 3, 4, 5, 7}, . . . , {1, n − 3, n −
2, n − 1, n}, {2}, {2, 3}, . . ..

i(j-1) i( j )p i(j-1) i( j )pi( j )+1
(a) (b)

i(jd)i(jd-1 ) i( jd )+1
(c)

dhin

i(jd)i(jd-1 )
(d)

dhin

i( j )

i(jd)

i( j )-1

i(jd)-1

Fig. 3. Examples for the lexicographic search: (a) i(j) is ejected (i(j − 1) is already
ejected), (b) i(j) is incremented (i(j) is not yet ejected), (c) dhin is inserted just after
i(jd), (d) i(jd) is incremented (dhin is not yet inserted).

• After i(j) (j �= jd) is ejected,
(i) Psum (it is updated each time a pickup customer is ejected) ≥ Pbest

(ii) i(j) ∈ P and the number of temporarily ejected pickup customers is
greater than kmax

(iii) i(j) ∈ D and the paired pickup customer is not temporarily ejected
• After i(j) (j �= jd) is incremented,
(iv) li(j)−1 < anew

i(j)−1 or Q < Qnew
i(j)−1

(v) i(j) − 1 ∈ D and the paired pickup customer is temporarily ejected

In the cases (i)-(iii), the lower-level lexicographic search ({i(1), . . . , i(j), ∗, ∗, . . .})
can be pruned because (i) these insertion-ejection combinations never improve
Pbest, or (ii)(iii) the pickup and delivery constraint is never satisfied. In the cases
(iv) and (v), the lower-level lexicographic search ( {i(1), . . . , i(j − 1), v, ∗, ∗, . . .}
(v > i(j)−1)) can be pruned because (iv) the time window or capacity constraint
is violated already at customer i(j)−1, or (v) the pickup and delivery constrained
is never satisfied. In addition, the lexicographic search can be further pruned in
the similar manner when dhin is inserted just after i(jd) or i(jd) is incremented
(conditions are easily derived).

4 Experimental Results

The proposed GES algorithm was implemented in C++ and was executed on
an AMD Opteron 2.6GHz (4GB memory) computer. Several computational



210 Y. Nagata and S. Kobayashi

experiments have been conducted to analyze the behavior of the proposed GES
algorithm. We also present results along with a comparison to the state-of-the-art
metaheuristics for the PDPTW.

4.1 Benchmark Set

The GES algorithm was tested on the benchmark set constructed by Li and Lim
[4]. The data set and the best-known solutions are available at http://www.
sintef.no/projectweb/top. We used this benchmark set because recent state-
of-the-art metaheuristics for the PDPTW are compared on this benchmark set.
The benchmark set consists of five sets of 200, 400, 600, 800 and 1000 customers,
with 60 instances in each set 1, resulting in 298 instances. For each size, the 60
instances are divided into six groups: R1, R2, RC1, RC2, C1, and C2, each
consisting of 10 instances. The C1 and C2 classes have customers located in
clusters and in the R1 and R2 classes the customers are at random positions.
The RC1 and RC2 classes contain a mix of both random and clustered customers.
The C2, R2 and RC2 classes (Class 2) have longer scheduling horizons and larger
capacities than the C1, R1 and RC1 classes (Class 1), meaning that each vehicle
can service a larger number of customers in the Class 2 instances.

4.2 Analysis of GES

First, we focus on the perturbation procedure in order to analyze the impor-
tance of this procedure where several parameter values of Irand and pex are
tested. Next, we investigate the effect of parameter kmax because this parameter
would have a great impact on the behavior of GES. We test 12 different GES
configurations, which are depicted in Table 1, where the following parameter
values are combined: kmax = 0, 1, 2, 3, Irand = 0, 10, 100, 1000, and pex = 0, 0.5.
The GES algorithm with each configuration was applied to the benchmarks five
times with the time limit of 600 seconds for each run.

Due to space limitation, Table 1 reports the results for only the 200 and
600-customer instances where the results are averaged over Class 1 and Class 2
instances (each consisting of 30 instances), respectively. For each problem class,
the number of vehicles (m), the number of iterations to reach the best solution in
each run (iter), and the computation time in seconds to reach the best solution
in each run (time) are reported. Here, an iteration is defined as the sequence of
procedures to insert a request hin (lines 5-14) in Algorithm 1.

First, let us focus on the first setting (kmax = 2, pex = 0, Irand = 0, 10, 100,
1000). We can see that m tends to improve (decrease) with increasing the value
of Irand from 0 to 100, but the improvement may be saturated around Irand = 10
on 200-customer instances. Moreover, iter also tends to decrease with increasing
the value of Irand from 0 to 100 even though iter, in general, tends to increase
to reach higher quality solutions. However, the computational effort for the per-
turbation procedure is not negligible when Irand is large. Therefore, the solution

1 Two instances in the 1000-customer benchmark set are not available.
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Table 1. The results of GES with the different configurations on 200 and 600-customer
instances. The values of m calculated from the best-known solution are listed in the
first column.

200- kmax = 2, pex = 0 kmax = 2, pex = 0.5 Irand = 100, pex = 0.5
customer Irand m iter time Irand m iter time kmax m iter time

0 15.81 52418 20.0 0 15.77 34279 12.6 0 15.68 16763 58.3
Class1 10 15.49 14610 6.3 10 15.47 5190 3.6 1 15.49 3357 12.7
(15.60) 100 15.49 7721 7.1 100 15.47 1418 4.7 2 15.47 1418 4.7

1000 15.50 1956 10.5 1000 15.47 840 22.6 3 15.46 1480 5.0
0 4.99 4954 9.0 0 4.97 8160 9.3 0 4.70 6449 45.6

Class2 10 4.58 5865 12.9 10 4.57 5135 18.4 1 4.59 2029 17.2
(4.60) 100 4.58 4142 14.7 100 4.57 2262 21.7 2 4.57 2262 21.7

1000 4.57 1913 14.8 1000 4.61 751 36.5 3 4.58 2474 24.9

600- kmax = 2, pex = 0 kmax = 2, pex = 0.5 Irand = 100, pex = 0.5
customer Irand m iter time Irand m iter time kmax m iter time

0 44.39 63750 86.0 0 44.36 61457 83.0 0 43.66 20530 200.8
Class1 10 42.77 61603 106.7 10 42.52 38748 102.0 1 42.54 12463 121.1
(43.1) 100 42.69 32858 118.7 100 42.45 12950 124.6 2 42.45 12950 124.6

1000 42.90 8697 161.6 1000 42.76 3555 249.0 3 42.50 12251 110.8
0 14.43 16461 69.6 0 14.43 15928 62.5 0 12.42 6344 144.9

Class2 10 12.45 13896 131.5 10 12.40 10741 115.1 1 12.33 5383 131.2
(12.36) 100 12.38 7883 82.8 100 12.27 5026 122.2 2 12.27 5026 122.2

1000 12.33 3826 101.1 1000 12.46 1898 230.0 3 12.29 4974 133.8

quality with Irand = 1000 sometimes inferior to those with Irand = 10 and 100
because of the termination condition given by the fixed time limit (600 seconds).

Next, we focus on the second setting (kmax = 2, pex = 0.5, Irand = 0, 10, 100,
1000). Here, the extended pair exchange neighborhood and pair relocation neigh-
borhood are randomly selected in the perturbation procedure while only the pair
relocation neighborhood is used in the first setting. The results show the same
tendency as those in the first setting. But it should be noted that both of m and
iter tend to be better than those in the first setting, indicating that the intro-
duction of the extended pair exchange neighborhood enhances the ability of the
perturbation procedure. However, time was not improved (compared with the
first setting) even though iter was decreased because the computational effort
for applying the extended pair exchange neighborhood is fairly greater than that
for the pair relocation neighborhood. We can conclude from the results of the
two settings that the more the incumbent solution is perturbed in the perturba-
tion procedure, the better the solution quality is. If the extended pair exchange
neighborhood can be applied in a more deliberate way, the performance of the
proposed GES algorithm will be improved.

Finally, let us focus on the third setting (Irand = 100, pex = 0.5, and kmax =
0, 1, 2, 3). The solution quality (m) tends to improve with increasing the value of
kmax, but the improvement is saturated at kmax = 2 whereas kmax = 5 seemed
to be a good value in the VRPTW case.

4.3 Comparisons with Other Algorithms

We compare the GES algorithm with state-of-the-art route minimization heuris-
tics for the PDPTW. According to the analysis conducted in the previous section,
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Table 2. Comparisons with state-of-the art algorithms

Best BH (5 runs) RP (10 runs) GES (5 runs)
N known Best Time Best Time Best Average Time #new
200 606 614 300 606 (264) 601 601.2 600 5
400 1157 1188 600 1158 (881) 1139 1140.0 600 18
600 1664 1718 600 1679 (2221) 1636 1641.8 600 27
800 2175 2245 900 2208 (3918) 2135 2147.4 600 30
1000 2644 2759 900 2652 (5370) 2613 2624.8 600 25
total 8266 8524 8303 8124 8155.2 105

Computer Athlon 1.2GHz Penti.IV 1.5GHz Opteron 2.6GHz

the parameters of the GES algorithm were set as follows: kmax = 2, pex = 0.5,
and Irand = 100. The GES algorithm was applied five times to all of the bench-
mark instances where the time limit was set to 600 seconds for each run. We
selected two algorithms for comparisons that have shown the best results from
the literature: BH (Bent and Hentenryck [1][2]) and RP (Ropke and Pisinger
[11]). BH and RP heuristics are both based on the two-stage approach where
BH and RP heuristics, respectively, use simulated annealing and adaptive large
neighborhood search for the route minimization phase. BH and RP heuristics
were executed five and ten times, respectively, on the Li and Lim’s benchmarks.
We compare the results in terms of the number of routes.

Table 2 shows the results for each problem size. The solution quality is evalu-
ated by the cumulative number of vehicles where the columns “Best” and “Av-
erage” show the best and average results over the number of runs. The column
“Best known” shows the cumulative number of vehicles calculated from the best-
known solutions. The column “Time” shows the average computation time in
seconds for a run spent on each instance. Here, the computation time for the RP
heuristic presented in the table includes both route- and distance- minimization
phases. The column “#new” shows the number of new -best solutions obtained
by the five runs of the GES algorithm. At the bottom of the table, specifications
on the computers used in the experiments are shown.

As can be seen from the table, the GES algorithm outperforms the compared
heuristics in terms of the cumulative number of vehicles in all problem sizes
although the GES algorithm may be assigned longer computation time than the
compared heuristics. However, these results are very good because our result are
clearly better than the best-known solutions and 105 new best-known solutions
were found by the five runs of the GES algorithm.

5 Conclusions

In the paper we extended a GES algorithm, which was first developed for the
VRPTW, to the PDPTW. We showed that the perturbation procedure has a
great impact on both the solution quality and computation time, and developed
an effective GES algorithm for the PDPTW by giving a careful attention to
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the perturbation procedure. We believe that this feature comes from the tightly
constrained solution space of the PDPTW because the GES algorithm applied to
the VRPTW was not so sensitive to the structure of the perturbation procedure.
In addition, we presented an efficient algorithm for finding the best insertion-
ejection combination from numerous candidates in terms of the given criterion.
In the future work, a more innovative criterion for selecting a insertion-ejection
move would also be possible and the proposed efficient algorithm will also be
available.
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Abstract. The resolution of a multi-objective optimization problem involves 
not just a search and computation phase, capable of providing a representative 
sample of the Pareto-optimal front, but also a decision support process to aid 
the Decision Maker (DM) to progress in the learning of the trade-offs at stake in 
different regions of the search space. This is accomplished by integrating in the 
search process the DM’s preferences to guide the search and limit both the 
cognitive effort, in assessing Pareto-optimal solutions with distinct 
characteristics, and the computational effort, by reducing the scope of the 
search according to the preferences expressed by the DM. The introduction of 
meaningful preference expression parameters used in the ELECTRE TRI 
method for sorting problems in the framework of an evolutionary algorithm is 
proposed. Illustrative results in an operational planning problem in electricity 
networks are reported.  

Keywords: Evolutionary algorithm, ELECTRE TRI, handling preferences, 
adaptive algorithms. 

1   Introduction 

Most real-world optimization problems need to cope with multiple aspects of 
evaluation of the merit of alternative solutions. Even though models generally 
recognize the multiple concerns at stake, these are sometimes “amalgamated” in a 
single aggregate objective function or even considered as constraints by specifying 
some lower/upper bounds. However, mathematical models become more adequate 
vis-à-vis the real-world problem to be tackled if multiple, generally conflicting and 
incommensurate, objective functions are explicitly considered. Therefore, a single 
optimal solution no longer exists but a set of Pareto-optimal (non-dominated) 
solutions must be computed. These solutions are characterized by the fact that an 
improvement in any objective function can only be obtained with the degradation of 
at least another objective, therefore representing a compromise between the different 
axes of evaluation made operational through the objective functions.  
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In the last years, multi-objective Evolutionary Algorithms (EAs) became a 
prevalent tool to characterize the Pareto-optimal front to multi-objective optimization 
problems, especially those non-linear and/or of combinatorial nature. EAs’ ability to 
deal with a set (a population) of possible solutions in a single simulation run makes 
them quite suited to multi-objective optimization problems [1], [2]. Additionally, EAs 
are less susceptible to the shape or continuity of the Pareto-optimal front than 
classical (mathematical programming) optimization methods. 

In most EAs, the design of genetic operators (selection, crossover and mutation) 
and the associate parameters (e.g., crossover and mutation probability) used in the 
evolutionary process are predefined. However, the efficiency of an operator may 
change during the search process (that is, an operator may offer better results in the 
beginning of the process and others in the final) or a given operator can be more 
useful for a solution than for another depending on the evaluation in each objective 
function. Thus the performance of EAs can be improved using an adaptive approach 
to the actual performance of operators, possibly changing the values of some 
parameters and using different operators during the evolutionary process. 

Beyond the search and computation process, the resolution of a multi-objective 
optimization problem involves also a decision aiding process. In fact presenting the 
DM with a (generally huge) set of Pareto-optimal solutions after the end of a whole 
run does not provide great assistance in improving his/her decision making 
capabilities having in mind the choice of a final solution for practical implementation 
or even the selection of a reduced sub-set of solutions for further screening. That is, in 
most cases a significant computational effort is incurred, which in turns imposes also 
a considerable cognitive effort on the DM to discriminate among Pareto-optimal 
solutions (which cannot be distinguished based on the non-dominance relation only) 
due to the conflicting nature of the objective functions. Therefore, it is necessary for 
actual decision support purposes to empower EAs with techniques aimed at capturing 
and incorporating the DM’s preferences into the evolutionary process. 

The incorporation of the DM’s preferences may be done before (a priori), during 
(progressive) or after (a posteriori) the optimization process [3], [4]. A priori 
approaches usually transform the multi-objective optimization problem into a single 
objective problem by aggregating the multiple objective functions into a scalar 
function, which includes some information about the DM’s preferences (e.g., 
utility/value function based approaches). In the second case, the search is guided 
using the DM’s preferences, which can be changed during the computation process 
according to the learning (about the own preferences and the problem characteristics) 
taking place by analyzing the solutions computed. In the a posteriori approach the 
Pareto-optimal front is initially determined and then some method is applied to deal 
with the solutions (in a choice, ranking or sorting problem perspective). Some 
research dealing with preference handling in evolutionary multi-objective 
optimization is reported in [5]. 

The main idea underlying our proposal is to combine the advantages of the 
adaptive EAs and the incorporation of the DM’s preferences in the search process. 
The introduction of meaningful preference expression parameters used in the 
ELECTRE TRI method for sorting problems is proposed to be included in the 
operational framework of an EA. These preferences are represented through technical 
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devices such as weights, as well as indifference, preference and veto thresholds. The 
ELECTRE TRI principles were embedded into an EA to guide the search to more 
convenient directions according to the preference information expressed. At the end 
of the process that method is used to classify the solutions obtained by the EA into 
ordered categories of merit. Illustrative results in an operational planning problem in 
electricity networks are presented.  

The paper is organized as follows. The next section gives a brief presentation of 
the ELECTRE TRI method and in section 3 it is described how the ELECTRE TRI 
principles are embedded into the operational framework of the EA. Section 4 presents 
an actual problem of reactive power compensation in electrical distribution networks. 
The application of the methodological approach herein proposed to provide decision 
support in that problem is presented in section 5. Some illustrative results are briefly 
analyzed in section 6. Finally, some conclusions are drawn and some ideas to future 
work are outlined.  

2   The ELECTRE TRI Method 

The ELECTRE (“ELimination Et Choix Traduisant la REalité”) family of multi-
criteria methods developed by Roy and his co-workers [6] is based on the 
construction and the exploitation of an outranking relation in face of the problem to 
be tackled (choice, ranking or sorting). The term outranking in this context means “is 
at least as good as” as a synonym for “not worse than” [7]. The choice problem refers 
to identify the best alternative or a limited set of the best alternatives (since 
incomparability is allowed). The ranking problem deals with constructing a rank 
ordering of the alternatives from the best to the worst ones. The sorting problem 
consists in partitioning the alternatives being evaluated into a pre-defined set of 
ordered categories. The major difference between these formulations concerns the 
judgment of the alternatives [8], [9]. The choice and ranking approaches are based on 
relative judgments and consequently the evaluation depends entirely on the set of 
alternatives considered. The sorting approach considers an absolute judgment, in the 
sense that the pair-wise comparisons are made between the alternative to sort and a 
set of reference profiles. 

The ELECTRE TRI method is devoted to the sorting problem, i.e., each alternative 
in A={a1,a2,…,am} must be assigned into pre-defined categories (classes) according 
to its evaluation by a set of k quantitative and/or qualitative criteria g1,g2,…,gk. Each 
category, C1, C2, …, Cn, n ≥ 2, is defined using two reference alternatives (profiles), bi 
and bi+1, i = 0,…,n-1, which limit the categories (Fig. 1). We assume, without any loss 
of generality, that Cn is the best category and C1 the worst category. The assignment 
of each alternative aj, j=1,…,m, to a category is done by comparing its performances 
in each criterion with the reference profiles. The outranking relation between an 
alternative and the reference profiles is decided by comparing a credibility index, 
involving the differences in performances and the criterion weights, with a cutting-
level λ (λ∈[0.5,1]) which defines the “majority requirement”. 



 An EA Guided by ELECTRE TRI Method Principles  217 

 

 

Fig. 1. Definition of categories through reference profiles 

The ELECTRE TRI method requires some parameters that bear the DM’s 
preferences, such as preference (pl), indifference (ql) and veto (vl) thresholds, 
l=1,…,k, a set of weights (assigned to the criteria) and the cutting-level λ. 
Indifference and preference thresholds characterize the acceptance of imprecision in 
the judgment. When the difference between the individual performances of two 
alternatives in a given criterion gl is less than a specified amount ql, the alternatives 
are deemed indifferent concerning this criterion gl. Moreover, the transition from 
indifference to preference is gradual, changing linearly from ql to pl. The veto 
thresholds prevent an alternative having a good performance in one or more criteria 
but having a very bad performance in another criterion to be assigned to the best 
category, or they force this alternative to be assigned to a low preference category 
independently of having very good performance in all other criteria, thus allowing for 
the introduction of some non-compensatory aspects in the decision. The weights in 
ELECTRE TRI are scale-independent; that is, they are not linked to the scales in 
which each criterion is measured. In this framework the weights are not technical 
devices for translating the performances in the criteria into a common value measure 
(as in weighted-sum approaches) but weights play the role of true importance 
coefficients (the voting power) of each criterion. The cutting-level λ is a real value in 
the interval [0.5,1] that indicates the level of exigency (the majority requirement of 
criterion “coalitions”) to enforce the assignment of a given alternative to a category. 

The outranking relation (aSb) between an alternative a and a reference profile b is 
established in the following stages: 

1. Criterion concordance indexes cj(a,b) evaluation; 
2. Global concordance indexes C(a,b) evaluation; 
3. Discordance indexes dj(a,b) evaluation; 
4. Credibility degree σ (a,b) evaluation;  
5. Establishing the outranking relation. 

The last step in ELECTRE TRI consists in the assignment of each alternative into one 
of the pre-defined ordered categories. This can be done using a pessimistic or an 
optimistic procedure. In the pessimistic procedure (the procedure used in our work) 
each action aj, j=1,…,m, is assigned to the highest category for which aj outranks the 
category’s lower bound.  

For further details about ELECTRE TRI see [8]. 
These characteristics led us to use the principles of ELECTRE TRI to be combined 

with an EA in order to enrich the non-dominance relation through meaningful 
preference information. Therefore, the evolutionary process is guided using this 
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preference information and solutions (alternatives) are sorted into ordered categories. 
This is a more realistic process than attempting to elicit at the outset a disputable 
“true” analytical form of the DM’s preferences to be then optimized in a rigid way. 
However, the use of ELECTRE TRI principles within an evolutionary approach 
imposes the specification of the additional parameters required. This can be indeed an 
extra burden, but this process can be easily automated in a meaningful manner. For 
example, the thresholds can be predetermined as percentages of the values ranges in 
each category (e.g., 2% and 10% for the indifference and preference thresholds, 
respectively). 

3   ELECTRE TRI within an Evolutionary Algorithm 

The approach presented in this section has been designed to combine the advantages 
of adaptive EAs with the incorporation of the DM’s preferences in the evolutionary 
process. With this aim ELECTRE TRI principles are embedded in an EA to provide 
information about the performance of each individual (alternative solution) according 
to the multiple objective functions (the criteria). Using this information the EA can 
perform a more adequate choice of the mutation operator from a portfolio of different 
mutation strategies specifically designed for the problem at hand. Consequently the 
search can be guided to more convenient directions, favoring the best categories. 

The sequence of the operators (selection, crossover and mutation) is as usual but 
the use of the mutation operator is guided. The criterion discordance indexes of 
ELECTRE TRI are evaluated (according to expressions (1)) before applying one of 
the mutation operators to an individual. 

 

 dj(ai,bk) = 1 ⇔ vl < gl(bk) − gl(ai)  
 

0 < dj(ai,bk) < 1 ⇔ pl < gl(bk) − gl(ai) ≤ vl (1) 

 dj(ai,bk) = 0 ⇔ gl(bk) − gl(ai) ≤ pl  
 

These values provide information about how far an objective function (criterion) is 
from the respective reference profile, and consequently it is possible to select a more 
adequate mutation operator attempting to improve the objective function with the 
worst performance. That is, mutation operators that are likely to improve this 
objective function have a greater probability of being chosen (although the process 
remains essentially a random one). 

It is important to mention that the criterion discordance indexes are based on a 
comparison with the pre-defined reference profiles and use the preference and the 
veto thresholds defined by the DM. Therefore, the search in the evolutionary process 
is indeed guided by the preference information established by the DM and made 
operational by means of the ELECTRE TRI parameters. 

At the end of the evolutionary process, the whole ELECTRE TRI method is 
applied to assign the Pareto-optimal solutions to one of the pre-defined categories. If 
the DM would like a different or a more detailed sorting of the solutions, it is possible 
to re-apply the procedure using new parameters of the ELECTRE TRI method (or 
even using another member of the ELECTRE family devoted to the ranking or the 
choice problems). 
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A concern with this approach is the need to balance favorable moves that, in 
principle, generate solutions to be assigned to the best categories without losing the 
diversity of the Pareto-optimal front, i.e. solutions are assigned to all or the wider 
range possible of categories. 

One advantage of using just the criterion discordance indexes (and not the whole 
ELECTRE TRI method) in each iteration (generation) to guide the evolutionary 
search process is to reduce the running time. Other important aspect is that with this 
approach some of the parameters of the ELECTRE TRI method (such as the objective 
function weights, the indifference threshold and the cutting-level λ) can be defined at 
the end of the evolutionary process when more knowledge has been gathered by the 
DM about the achievable range of the objective functions as well as the trade-offs 
involved. 

A possible drawback of this approach is that it is necessary to evaluate the 
performance of each offspring before determining the criterion discordance indexes. 
However, this aspect is in part overcome by the fact that the convergence to the 
Pareto-optimal front is faster when using the guided search as described above.  

4   A Reactive Power Compensation Problem 

The compensation of reactive power is an important issue in electric power systems. 
This is generally achieved by the allocation of shunt capacitors (sources of reactive 
power) in adequate nodes of the electrical distribution network. The compensation of 
reactive power ensures a more efficient delivery of active power (which is converted 
into “useful” energy, such as light or heat, …) to loads, thus releasing system 
capacity, reducing system losses, and improving system power factor and bus voltage 
profile. The merit of solutions (determining the size of the capacitors and the network 
nodes in which they are located) must be assessed using operational, economical and 
quality of service aspects. Therefore, multiple objective programming models have 
been used to provide decision support in this problem considering different sets of, 
generally incommensurate and conflicting, objective functions to be optimized [10]. 
In our model we consider the minimization of resistive losses, capacitor installation 
cost and maximum deviation to the nominal voltage at each network node. A similar 
mathematical model with two objective functions can be seen in [11]. 

In this work a Portuguese radial electrical distribution network with 94 nodes is 
considered. This network has some challenging features due to its extension in a rural  
region and a poor voltage profile. The voltage profile without compensation does not 
respect the quality requirements (the node’s voltage magnitude must be within ±10% 
of the nominal value). 

The study is done for peak load conditions, in which the active power losses are 
320.44 kW and the number of nodes not respecting the voltage lower bounds is 66 (in 
94 nodes). That is, the network is not working according to regulations in peak load 
conditions and therefore capacitors must be installed for reactive power compensation 
and voltage profile improving purposes. This means that the zero cost solution is not 
feasible. 

The capacitors to be installed are characterized by their capacity and the 
acquisition cost (Table 1). 
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Table 1. Capacitor dimension and acquisition cost 

 Maximum Capacity (KVAr) Cost (Euro) 
C1 50 2035 
C2 100 2903 
C3 140 4545 
C4 200 4875 
C5 240 5716 
C6 300 6578 
C7 360 7337 
C8 400 9395 

5   Resolution of the Reactive Power Compensation Problem 

The methodology described in section 3 has been applied to the network presented in 
the previous section to find a set of non-dominated solutions to this problem of 
reactive power compensation and to assign these solutions to predefined categories 
according to the DM’s preference information. 

A solution is encoded as an array with 94 positions, each of them corresponding to 
a network node (Fig. 2). A “0” means that no capacitor is installed in the 
corresponding node and a non-zero value (belonging to the interval [1, 8], see table 1) 
refers to the type of the capacitors therein installed. 

 

Fig. 2. Solution encoding 

Initially a random population is generated retaining just the feasible individuals; 
that is, the solutions that satisfy the voltage requirements at the nodes. 

At each iteration parents are selected using a tournament technique. Other selection 
techniques, such as roulette wheel, were tested, but with worse overall results. A 2-
point crossover operator is applied and the offspring generated are evaluated. This 
evaluation leads to the criterion discordance indexes, using the preference information 
on reference profiles as well as the preference and veto thresholds. The objective 
function with the worst performance, when compared with the reference profiles, 
determines then the choice of the mutation operator to be applied from within a 
portfolio tailored for the actual characteristics of the problem at hand. Mutation 
operators that are likely improve the objective function with worst performance have 
larger probability to be chosen than others. 

Six types of mutation operator have been implemented specifically for this 
problem (in the sense that a physical meaning in the electrical network can be 
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associated with each of them, thus also conveying information about the actual 
problem): 

1. Reducing the capacity of a capacitor previously installed in a given node to the 
immediately lower size (Fig. 3 (a)); 

2. Increasing the capacity of capacitor previously installed in a given node to the 
immediately upper size (Fig. 3 (b)); 

3. Removing the capacitor previously installed in a given node (Fig. 3 (c)); 
4. Installing a new capacitor in an uncompensated node (Fig. 3 (d)); 
5. Relocating the capacitor previously installed in a given node to an adjacent node 

(Fig. 3 (e) and (f)). 

Some of these moves clearly determine the sense of variation of some objective 
functions; for instance, by removing a capacitor the cost objective function improves. 
However, it is important to emphasize that when the size of a capacitor is increased or 
the number of capacitors in the network is increased the cost objective function will 
be degraded, but it is not possible to guarantee that the losses objective function 
improve (because this depends on several characteristics of the network and on the 
capacitors already installed). 

After the mutation process takes place only the feasible solutions compete with 
their progenitors to pass to the next generation. All these solutions (parents and 
feasible offspring population) are sorted into non-dominance ranking levels. The n 
solutions belonging to the highest level ranks pass to the next generation, where n is 
the dimension of the population. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 3. Examples of the mutation operators 
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This process is repeated until the stop condition (for instance, a maximum number 
of iterations) is satisfied. The whole ELECTRE TRI method is then applied to the 
Pareto-optimal front obtained to assign each solution to a category. 

6   Analysis of the Results 

The growth of the number of the objective functions implies that the number of 
solutions in Pareto-optimal front also increases, leading a more difficult task to 
identify a solution that may be recommended for practical implementation. The use of 
ELECTRE TRI principles guiding the search and sorting the Pareto-optimal solutions 
(at the end of the search process) is aimed at easing the DM’s tasks since his/her 
preferences have been taken into account throughout the evolutionary process. The 
classification of the solutions into ordered classes offer the DM the possibility of 
analyzing just a (desirably) small sub-set of “most preferred” solutions, in particular, 
the ones within the best performance category. 

Fig. 4 presents an example of a Pareto-optimal front obtained using this approach.  500 
iterations were performed and the front has 400 individuals, 10 of them belonging to 
class 5 (the class with best performance according to the profiles defined by the DM). 

The ELECTRE TRI parameters considered are presented in Tables 2 and 3. 

Table 2. Reference profiles 

Resistive losses Cost Maximum deviation 

250 40 000 0.02 
280 60 000 0.04 
300 100 000 0.06 
350 130 000 0.08 

Table 3. Preference, indifference and veto thresholds 

 Resistive losses Cost 
Maximum 
deviation 

Indifference 
threshold 

10 10 000 0.01 

Preference 
threshold 

30 30 000 0.03 

Veto threshold 85 85 000 0.07 

In this example, all the objective functions had the same “importance” (equal 
weights) and the level of exigency was the minimum possible - a simple majority of 
λ=0.5.  

As emphasized above the weights in ELECTRE TRI are true importance 
coefficients associated with the objective functions. This is an important issue for the 
classification of the solutions. If maximum voltage deviation had been considered the 
most important objective function, the weights should reflect this and the solutions in 
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(a) 

 

(b) 

Fig. 4. Pareto-optimal front after the final sorting using ELECTRE TRI. (a) A 3D perspective. 
(b) A 2D projection. 

 
(a) 

 

(b) 

Fig. 5. Pareto-optimal front after the classification with ELECTRE TRI: (a) Equal weights for 
all objective functions. (b) Resistive losses and cost objective function weights = 25% and 
maximum deviation objective function weight = 50%. 

the Pareto-optimal front would have been classified in a different manner. In Fig.5 it 
is possible to observe that solutions classified into the best category have a smaller 
maximum voltage deviation when the weight of this function is increased. 

The sorting can also reflect the level of exigency. If the cutting-level λ is increased 
from 0.5 to 0.7, it is expected that fewer solutions belong to the best performance 
class due to the increase of the exigency level (see Fig. 4 and 6). 

Another aspect of the ELECTRE TRI method that could modify the evolutionary 
process it is the veto threshold. The use of this parameter influences the selection of 
the mutation operator as well as the final sorting of the solutions. In this last stage, the 
veto threshold prevents that solutions with a good performance in one or more 
objective functions but with a very bad evaluation in other objectives do not be 
assigned to the best class. Fig. 7 presents an example of two simulations, in which the 
parameters are the same with the exception of the veto threshold associated with the 
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(a) 

 

(b) 

Fig. 6. Pareto-optimal front after the sorting with ELECTRE TRI with cutting-level λ=0.7. (a) 
A 3D perspective. (b) A 2D projection. 

 

(a) 

 

(b) 

Fig. 7. Pareto-optimal front after the sorting with ELECTRE TRI. (a) Veto threshold equal to 
0.07. (b) Veto threshold equal to 0.04. 

minimization of maximum voltage deviation. The introduction of the veto threshold 
prevents solutions being assigned to the best category, Fig. 7(b), because solutions 
classified in category 5 in Fig. 7(a) have bad performance in the maximum voltage 
deviation objective with respect to the veto threshold value defined in Fig. 7(b). 

7   Conclusions and Future Work 

In this work an adaptive EA has been proposed and its implementation has been 
described, in which the principles of the ELECTRE TRI method are embedded into 
the evolutionary process to guide the search to more convenient regions of the space 
according to the preferences expressed by the DM. 
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At the end of the evolutionary process, the Pareto-optimal front obtained is 
classified into ordered categories of merit, which allow the DM to restrict the choice 
of practical solutions to the problem to a smaller set of solutions. 

Illustrative examples have been presented using a real-world reactive power 
compensation problem, which is a relevant issue in electrical distribution networks. 

Work is underway to include other information about DM’s preferences into the 
adaptive process: making the probability of each mutation operator to be influenced 
by the objective function (criterion) weights, establishing a dependence between the 
solution classification and the selection of the individuals that pass to the next 
generation, reinforcing the role of the veto threshold to influence the evolutionary 
process. 
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Abstract. In this work we present the extension of a variable neighbor-
hood search (VNS) with the multilevel refinement strategy for periodic
routing problems. The underlying VNS was recently proposed and per-
forms already well on these problems. We apply a path based coarsening
scheme by building fixed (route) segments of customers accounting for
the periodicity. Starting at the coarsest level the problem is iteratively
refined until the original problem is reached again. This refinement is
smoothly integrated into the VNS. Further a suitable solution-based re-
coarsening is proposed. Results on available benchmark test data as well
as on newly generated larger instances show the advantage of the mul-
tilevel VNS compared to the standard VNS, yielding better results in
usually less CPU time. This new approach is especially appealing for
large instances.

1 Introduction

Periodic routing problems are a generalized variant of the classical routing prob-
lem where customers must be served several times in a given planning period
instead of only once on a single day. Applications exist in many real-world sce-
narios as in courier services, grocery distribution, waste collection, or for various
sorts of suppliers. The Periodic Vehicle Routing Problem (PVRP) is defined on
a directed graph G = (V, A), where V = {v0, v1, . . . vn} is the vertex set and
A = {(vi, vj) : vi, vj ∈ V, i �= j} is the arc set. A planning horizon of t days, re-
ferred to by T = {1, . . . , t}, is considered. Vertex v0 represents the depot at which
are based m vehicles with positive capacities Qk and maximum route durations
Dk, k = 1, . . . , m. Each vertex of V \ {v0} corresponds to a city or a customer
and has a nonnegative demand qi, a nonnegative service duration di, a service
frequency fi, and a non-empty set Ci ⊆ {T ′ | T ′ ⊆ T, |T ′| = fi} of allowed
combinations of visit days. Each arc (i, j) ∈ A has associated a nonnegative
travel time (costs) cij . The PVRP consists of selecting one visit combination per
customer and designing (at most) m vehicle routes on each day on G such that
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1. each route starts and ends at the depot,
2. each customer i belongs to fi routes over the planning horizon corresponding

to a feasible visit combination in Ci,
3. the total demand of the customers on a route followed by vehicle k does not

exceed Qk, and its total duration does not exceed Dk, and
4. the total travel times (costs) over all routes is minimized.

We further consider a special case of the PVRP, the Periodic Traveling Sales-
man Problem (PTSP), where m = 1 and the vehicle capacity as well as the route
duration are unconstrained.

As all available benchmark instances for both problems assume a homogeneous
vehicle fleet, and vehicle capacities and maximum route durations are supposed
to be independent of the day, we also restrict ourselves to this situation.

Multilevel refinement strategies [1,2] successively coarsen an initial problem
instance, yielding a sequence of instances of decreasing size, representing the
problem on different abstraction levels. The smallest instance is then solved by
some auxiliary technique (e.g. a metaheuristic), and the obtained solution is ex-
tended to a solution of the previous level. This solution is eventually improved
(e.g. again by some metaheuristic) and the solution extension continued until a
solution for the original problem is obtained. Optionally, the whole process is it-
erated; hereby, a recoarsening is performed exploiting the last obtained solution
in order to derive an eventually better hierarchy of abstraction levels. Multilevel
refinement strategies have been successfully applied to several combinatorial op-
timization problems, including graph partitioning, the traveling salesman prob-
lem, and also the classical capacitated vehicle routing problem. When applied
sensible, they seem to be able to often improve the scalability of metaheuristics,
either improving running times or final solution qualities.

The subject of this work therefore is to study the extension of a variable
neighborhood search (VNS) metaheuristic that was already successfully applied
to periodic routing problems by a multilevel refinement strategy in order to
improve the performance of the VNS especially on larger instances.

In the following section we review related work. The underlying VNS and the
multilevel extension are presented in Sections 3 and 4, respectively. Experimental
results, in which also new larger benchmark instances are used, are discussed in
Section 5. Finally, conclusions and an outlook on future work is given in Section 6.

2 Related Work

From a problem oriented view recent successful approaches for one or both of the
described problems are [3], [4], [5], and [6]. Cordeau et al. [3] describe a Tabu
search for periodic and multi-depot routing problems, achieving for all previ-
ously known benchmark instances new best results at that time. The algorithm
is based on rather simple standard neighborhoods that move single customers to
different routes or change single visit combinations. New random test instances
have further been introduced in this work. A well performing construction type
algorithm with an embedded improvement procedure for the PTSP is presented
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by Bertazzi et al. [4]. Alegre et al. [5] apply a Scatter search heuristic tailored
especially to solve PVRP instances having a long planning horizon. Nevertheless
they also obtained improved results for many standard benchmark instances.
Most recently Hemmelmayr et al. [6] tackled the PVRP and PTSP with a so-
phisticated VNS that again yielded many new best results. As neighborhoods
for diversification they utilized moving or exchanging route segments of different
maximal size as well as changing several visit combinations. As improvement
procedure they applied the well-known 2-opt and a restricted 3-opt. Similar to
[3] they also allow infeasible solutions during the search but additionally apply
an acceptance criterion similar to Simulated Annealing [7]. Francis et al. [8] gave
a recent survey on periodic routing problems considering several variants of it.

A VNS based on the one from [6] has further been described for the PVRP
with time windows in [9]. The concept of multilevel refinement including an
overview on applications is covered in [1,2]. We point out the work by Rodney
et al. [10] which introduces a multilevel refinement strategy for the capacitated
vehicle routing problem. They coarsen the problem by building paths (segments)
of customers through fixing the corresponding edges and consider such a path
as an atomic unit in the following. Due to the capacity restrictions they propose
to balance these paths according to the accumulated demand and systemati-
cally allow a gradually decreasing violation of the limiting constraint. Further
the multilevel strategy has been previously applied to the traveling salesman
problem [11,12] in a similar way. Yet we are not aware of an approach that was
designed to handle the periodicity as well as to accomplishing such a smooth
integration into a metaheuristic. Further, to our knowledge VNS has not been
combined with multilevel refinement so far.

3 Underlying Variable Neighborhood Search

Variable neighborhood search (VNS) [13] in general utilizes random moves in a
series of neighborhoods of growing size for diversification, referred to as shaking,
and usually an embedded local search component for intensification. The core of
the VNS is parameter free (after deciding about the neighborhoods), making it
relatively easy to use. In the last decade this metaheuristic has been successfully
applied to a wide range of combinatorial optimization problems. In the following,
we give a rather short overview on our underlying VNS as most parts of it have
already been described in more detail in [6,9].

To smooth the search space and help escaping local optima, the VNS relaxes
the restrictions on vehicle load and route duration and adds penalties corre-
sponding to the excess of these constraints to the cost function; similar to [9]
a constant penalty factor of 1000 turned out to work reasonably well for the
benchmark instances from literature and is therefore used, whereas an adaptive
penalty was applied in [6]. Initially a possible visit combination is selected for
each customer at random. Afterwards we apply the Clarke and Wright savings
algorithm [14] in case of multiple routes. If we end up with too many routes, the
customers of those routes holding the least customers are relocated in a greedy
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way (for details we refer to [6]). By doing so the constructed routes might ex-
ceed maximal vehicle load or allowed tour duration. For instances with a single
vehicle, i.e. especially for all PTSP instances, we make use of best insertion.

In the shaking phase we utilize three different neighborhood structures with
increasing perturbation size per type: (i) randomly changing up to six visit com-
binations with greedy insertion for the new visit days, whereas for the PVRP
we also allow reassigning the same visit combination, (ii) moving a random seg-
ment of up to three customers of a route to another one on the same day, and
(iii) exchanging two random segments of up to three customers between two
routes on the same day. We thus have a total of 12 shaking neighborhoods (i.e.
kmax = 12) which are always considered in a fixed order. These settings reflect
previous experience and showed a good performance in preliminary tests. Con-
trary to [6] only segments of up to three instead of six customers are exchanged,
we recognized no performance gain when doing so.

For intensification we apply the well-known 3-opt intra-route exchange proce-
dure in a first improvement fashion for the PVRP and 2-opt for PTSP (restricting
the latter to segments of length 10 in case of n > 300), only considering routes
changed during shaking. Both are applied as long as an improvement is achieved,
i.e. until a local optimum is reached. Additionally each new PVRP incumbent
solution is subject to a 2-opt∗ inter-route exchange heuristic [15]. Hereby for
each pair of routes of the same day all possible exchanges of the routes’ end
segments are considered. In case of the PTSP we additionally apply 3-opt on all
routes. This is an addition to the work of [6].

To enhance the overall VNS performance Hemmelmayr et al. [6] propose to
not only accept better solutions, but sometimes also solutions having a worse
objective value. This is done in a systematic way using the Metropolis criterion
like in simulated annealing [7]. A linear cooling scheme is used in a way such
that the acceptance rate of worse solutions is nearly zero in the last iterations.

4 Multilevel Variable Neighborhood Search

In this section we extend the described VNS with ideas from the multilevel
refinement strategy, hence we call it the Multilevel VNS (MLVNS). The basic
idea of multilevel refinement [1,2] is to suitably coarsen the problem which has
two effects: (i) to concentrate more on the costly parts of the problem during
optimization, and (ii) at the same time to (temporarily) reduce its size, making
it more tractable at the coarser levels. The problem is then (approximately)
solved at the highest level and the obtained solution refined in an iterative way
until a solution to the original problem is reached.

Contrary to most existing multilevel refinement approaches, our method

– does not automatically obtain one specific feasible solution at the coarsest
level to start with, which is due to the periodicity in our case, and

– does not have several subsequent (and even independent) applications of the
same method on different levels, but smoothly integrates the transitions from
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the most abstract level to the original problem in the VNS; i.e. many levels
with small changes (in fact always only one) are used.

In the following we propose an initial coarsening process operating at a given
problem instance, as well as a recoarsening based on an incumbent solution.

4.1 Initial Problem Coarsening

Two common coarsening schemes on graphs are based on either merging nodes
(into “super-nodes”) or building segments (paths). Since we have to determine
sequences of customer visits it is rather natural to follow the latter scheme here,
keeping in line with previous work [11,10]. We opt for an exact coarsening, i.e. the
objective value of a coarsened solution always equals the one of the corresponding
fully refined solution. Basically during coarsening the nodes of the graph (i.e.
single customers) are merged to segments via fixing a specific edge between them.
One such coarsening step of merging two segments into a longer segment and the
corresponding reversed refinement step are shown in Figure 1. Note that a single
customer can be regarded a segment with equal start and end point, too. The
accumulated cost, demand, and service duration of the newly created segment
must be set accordingly.

Due to the periodicity, building customer sequences on a daily basis as for
the single day of the classical vehicle routing problem would not make much
sense. On the one hand this would require to choose a visit day combination per
customer in advance (a bad choice would potentially result in a bad coarsening)
and on the other hand such segments would most likely not allow to change its
visit day combination without the need of breaking it apart, thus creating only
short-lived segments being inconsistent with the general idea of the multilevel
refinement strategy. Therefore it is necessary to apply a coarsening process re-
specting the periodicity and building segments spanning the whole planning hori-
zon. This is achieved by incorporating the customers’ sets of available visit day
combinations—the service frequencies alone might not be sufficient—and allow
customers and subsequently segments to be merged only if their sets are equal.

S1start

S3start = S1start S3end = S2end

Cost(S1) + cS1end, S2start + Cost(S2)

Segment S1 Segment S2

Segment S3

Demand(S1) + Demand(S2)

coarsening
step

refinement
step

S1end S2start S2end

Serv.Dur.(S3) =

Cost(S3) =

Demand(S3) =

Serv.Dur.(S1) + Serv.Dur.(S2)

Fig. 1. Coarsen: merge two segments into one, refine: split a segment into two
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At this point several initial problem coarsenings could be obtained by using
different cost criteria as well as processing sequences. For example, in [10] per
level they randomly choose an unmatched segment and fix an edge between it and
the nearest unmatched segment according to the savings measure, whereas the
actual costs of connecting the segments’ free end nodes only considering segments
in a defined surrounding for matching are used in [11]. We investigated several
possibilities and after preliminary tests came up with these findings/settings:
– In general we observed the tendency that the greedier the selection for match-

ing is, the better are the results on average; hence we always select the
cheapest matching among all possible ones.

– Regarding the size (length) of the segments, i.e. how many customers are
contained in the segment, we used two options:

• Setting I : Enforce no limit at all, thus coarsen in a pure greedy fashion.
• Setting II : Start with an allowed maximal length of two and gradually

increase this limit by one whenever no more matching could be found.
The maximum number of occurrences of one set of visit day combinations
is used as an upper bound for this maximal length.

– We settled on using the actual costs of connecting the segments’ free end
nodes, thereby trying all four possible ways.

– Optionally we set a limit for the connection costs by multiplying the average
inter-customer travel costs by a given factor δc, hence having an instance
independent measure

– Optionally we respect given limits on vehicle capacity and route duration
when building the segments.

A small schematic coarsening example for both settings I and II without limiting
the connection costs is shown in Figure 2. The common practice of coarsening
with a random factor yielded (so far) clearly worse results.

Having the coarsest problem, we generate the initial solution as described in
Section 3 (there is no need to change this procedures). Then we interweave the
iterative refinement with the VNS’ execution. First, we select a fraction of the to-
tal VNS iterations in which this initial coarsening/refinement phase takes place.
Then these iterations are divided by the number of present refinements (plus
one to also execute some iterations on the fully refined problem) to determine
the iterations per (mini-)level.

Refinement is exactly the reversed process as coarsening (in a “last in–first
out” fashion), thus splitting the usually most costly matchings first and keeping
the good ones accordingly longer. Hence in a refinement step (refer to Figure 1)
we have to locate the segment in a route at all days of the actual visit day
combination and split it in two segments again, thereby preserving the direction.

At the end of this phase we may either continue with the fully refined problem
or apply a recoarsening which will be the subject of the next section.

4.2 Solution-Based Recoarsening

Solution-based recoarsening is a very common practice to extend the concept of
multilevel refinement beyond the initial coarsening/refinement phase. For this,
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Fig. 2. Exemplary (deterministic) initial problem coarsenings for customers having the
same visit day combinations, iteratively building longer (route) segments

the problem is recoarsened on the basis of a current incumbent solution in such
a way as to preserve its structure, hence neglecting/destroying no obtained in-
formation. Despite this the coarsening principle stays the same. This obviously
leads to considerably less degrees of freedom during the coarsening and in our
case automatically to rather short segments.

This time we restrict our attention to adjacent segments in the currents solu-
tion’s routes, whereas again, they must have equal sets of visit day combinations.
Further, such a segment pair must be adjacent on all visit days, only a whole
reversed occurrence (s.t. the same end points are connected) is acceptable. As a
cost criterion we directly use the present connection costs.

Regarding the recoarsening procedure we basically adhere again to the greedy
approach as used in the initial problem based coarsening, but try to prevent
obtaining the same recoarsening in case we use the same solution multiple times:
Using a parameter x, we always select one of the x cheapest possible matchings
per step (or level) at random. Initially, x is set to one, but when we encounter
the same solution to be used for recoarsening again, x is incremented. Contrary,
if a different solution than in the previous iteration is used we reset x to one and
turn the procedure into a pure greedy selection again. This extension further
reduces the risk of getting stuck in local optima.

For recoarsening we have so far fixed the connection cost limit to δc/2 of
the average inter-customer travel costs (in case the factor δc is used at all).
Since we utilize a feasible solution for guiding the recoarsening a violation of
the vehicle capacity or route duration is impossible and must not be checked.
Finally, the subsequent refinement phase is handled in the same way as the initial
refinement in the preceding section. Therefore we also choose a fraction of the
VNS’ iterations to be allotted to a recoarsening/refinement phase.
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4.3 Handling Segments in the VNS

Due to incorporating the multilevel refinement strategy into the VNS there are
a few more things to consider when dealing with segments of merged customer:

– As already mentioned the solution construction heuristics need not to be
changed, the same applies to moving or exchanging route segments and all
local search procedures.

– After each refinement step we immediately apply the intra-route local search
in use on the routes that contain refined segments.

– Although the segments have different start and end points, i.e. are asym-
metric, when changing visit combinations during shaking we always reinsert
them in the direction at the time of creation instead of the one in the previous
route. We observed no gain doing otherwise nor when trying both directions.

5 Experimental Results

Currently our experiments are aimed at investigating the different performance
of the standard VNS and the multilevel VNS, hence we are not yet hunting for
new best solutions. Nevertheless, we already did find a few ones but we will not
elaborate on this. The algorithms have been implemented in C++, compiled
with GCC 4.3 and executed on a single core of a 2.83GHz Intel Core2 Quad
Q9550 with 8 GB RAM.

For each chosen setting we performed 20 runs per instance with a limit of 106

iterations, i.e. solution evaluations. Preliminary tests on all considered instances
suggested to ignore the given limits on vehicle capacity and tour duration dur-
ing coarsening (which would only affect PVRP instances), probably because the
VNS was built to cope with infeasibility. If not stated otherwise 20% of all itera-
tions are devoted to the initial coarsening/refinement phase and recoarsening is
applied four times also devoting 20% of the iterations each. The two remaining
options we varied are the type of problem coarsening (setting I or II) and the
cost limit factor δc; these will be denoted by [I,II]δc . We experienced that usually
it is better to enforce a merging cost limit.

Due to space limitations results on available “old” and “new” benchmark
test data1 both for the PVRP and the PTSP are presented in concise form in
Table 1 (see [3] for further details and origins of these instances). Here we state
the percentage gap to the so far best known solutions (%-gap BKS) as well as to
the average results of the VNS described by Hemmelmayr et al. [6] using the same
iteration limit of 106 (%-gap HDH), whereas all these values are given in [6]. The
corresponding standard deviations are written in parentheses. For the MLVNS
we further state the amount of CPU time spent given in percentage of the VNS’
CPU time (%-time VNS). We chose following settings for the initial temperature

1 Available on http://neumann.hec.ca/chairedistributique/data/
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Table 1. Summarized average results on available benchmark test data

test data instances
VNS MLVNS

%-gap %-gap
setting

%-gap %-gap %-time
BKS HDH BKS HDH VNS

PVRP old 32 2.67 (3.63) -0.30 (1.01) II0.33 2.27 (3.18) -0.67 (1.43) 105.0
new 10 2.47 (1.58) -0.80 (0.86) II0.5 2.45 (1.52) -0.82 (0.88) 87.4

PTSP
old 23 0.80 (1.03) 0.01 (0.32) II0.5 0.32 (0.41) -0.47 (0.74) 90.0
new 10 0.28 (0.16) -0.01 (0.03) II0.5 0.22 (0.14) -0.08 (0.07) 79.0

Table 2. New larger PVRP and PTSP (setting m = 1 and ignoring D and Q) instances
using the generation method introduced in [3], and our best found solutions’ values

Id n m t D Q
service frequencies best found solutions

f1 f2 f3 f4 f6 PVRP PTSP

pr11 336 14 4 480 185 112 112 112 11611.19 6618.53
pr12 384 16 4 475 195 128 128 128 11428.81 7062.96
pr13 432 18 4 450 185 144 144 144 10686.30 6757.86
pr14 480 20 4 475 185 160 160 160 13733.77 7740.23
pr15 528 22 4 470 190 176 176 176 15430.77 8377.39
pr16 576 24 4 455 185 192 192 192 13465.62 7640.57
pr17 360 15 6 445 165 90 90 90 90 16166.45 9459.08
pr18 432 18 6 450 170 108 108 108 108 19891.65 11329.53
pr19 504 21 6 440 160 126 126 126 126 23825.45 11344.27
pr20 576 24 6 450 165 144 144 144 144 24285.09 11660.07

utilized in the Metropolis criterion: 10 for PVRP new, 7 for PVRP old (except
70 for instances p27–p32 having large average travel costs), as well as also 7 for
PTSP old and PTSP new. 1000 iterations are applied on each temperature level.
As can be seen the MLVNS generally performs better than the standard VNS,
achieving especially on the old data sets a significant improvement. Contrary,
on the new data sets no clear improvement can be noticed. Yet for all but
PVRP old there is a CPU time reduction of 15% on average. For these data sets
the coarsening setting II gave consistently better results, whereas especially for
PVRP/PTSP new differences are negligible.

Since the multilevel refinement strategy is in general especially appealing for
large(r) instances, but the available test data lack them, we created some on our
own by applying the generation method described in [3]2. They can be regarded
a continuation of the instances introduced in this latter work, except that we
evenly distributed the visit frequencies among the customers for all instances;
more details, including our best found solutions’ values, are given in Table 2.

When doing preliminary tests we recognized that the VNS’ acceptance de-
cision using the Metropolis criterion in some way weakens the potential gain
of the multilevel extension. Hence we also performed tests with only accepting
improved solutions, whose results are given in Table 3 and 5 for the PVRP and
the PTSP, respectively. The corresponding results using the default acceptance

2 These instances are available on http://www.ads.tuwien.ac.at/sandro/routing/
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Table 3. Average results of standard and multilevel VNS on new larger PVRP in-
stances only accepting improved solutions

Id VNS MLVNS I0.5

avg. sdv. t[s] avg. sdv. t[s] %-gap %-time

pr11 12182.87 162.55 43.9 12091.85 161.61 34.2 -0.75 77.9
pr12 12115.62 94.96 48.6 11957.43 100.46 37.5 -1.31 77.2
pr13 11490.63 97.32 57.1 11286.32 157.02 44.2 -1.78 77.4
pr14 14553.84 90.33 69.6 14351.15 126.11 52.0 -1.39 74.7
pr15 16542.60 124.83 87.1 16028.83 59.82 61.2 -3.11 70.3
pr16 14764.22 119.59 107.9 14109.85 173.60 73.2 -4.43 67.8
pr17 17127.64 109.75 47.1 16794.86 105.07 38.3 -1.94 81.3
pr18 20978.79 104.37 60.8 20582.41 115.18 48.3 -1.89 79.4
pr19 25191.24 257.97 85.3 24811.23 324.06 62.8 -1.51 73.6
pr20 25803.80 140.15 116.1 25310.04 153.18 83.4 -1.91 71.8

avg. -2.00 75.2

Table 4. Average results of standard and multilevel VNS variants on new larger PVRP
instances using the acceptance decision with the Metropolis criterion

Id
VNS MLVNS I0.5

avg. sdv. t[s] avg. sdv. t[s] %-gap %-time

pr11 12018.84 205.47 42.1 11815.43 127.86 33.9 -1.69 80.5
pr12 11627.45 69.89 46.0 11639.32 87.91 37.1 0.10 80.7
pr13 10859.17 48.62 54.7 10808.92 86.46 43.7 -0.46 79.9
pr14 13895.99 47.52 67.3 13884.29 77.81 52.7 -0.08 78.3
pr15 15661.02 67.56 84.2 15595.55 58.51 62.5 -0.42 74.2
pr16 13808.28 73.71 103.7 13714.56 118.58 75.2 -0.68 72.5
pr17 16378.20 106.68 47.5 16340.21 86.95 40.1 -0.23 84.4
pr18 20107.76 107.32 62.3 20043.43 102.61 51.6 -0.32 82.8
pr19 24411.55 121.89 90.3 24207.79 291.51 67.1 -0.83 74.3
pr20 24686.82 87.57 117.7 24540.46 107.78 87.9 -0.59 74.7

avg. -0.52 78.2

decision are given in Table 4 and 6, using an initial temperature of 7 for the
PVRP and 10 for the PTSP instances again with a temperature decrease every
1000 iterations. For both variants and problems we tested coarsening setting I
and II with a cost limit factor δc of 0.5 and 0.33, as well as devoting all it-
erations to the initial coarsening/refinement phase and doing no recoarsening
at all, whereas we always state the results of the setting yielding the best so-
lutions on average. The tables show average travel costs (avg.), corresponding
standard deviations (sdv.), CPU times in seconds (t[s]), as well as the percent-
age gaps to the VNS (%-gap) and the times in percent of the VNS (%-time)
for the MLVNS. In Tables 3–6 average values of the MLVNS are printed bold
whenever a statistically significant improvement compared to the VNS has been
achieved, according to a Wilcoxon rank sum test with an error level of 5%. For
these new larger instances the greedy coarsening setting I turned out to achieve
consistently better results than setting II. Comparing Table 3 and 4, as well
as Table 5 and 6 it can be clearly seen that the MLVNS yields a higher rel-
ative improvement when only accepting improved solutions, nevertheless also
when using the default acceptance decision the improvement is notable, espe-
cially in case of the PTSP. Interestingly, for the PTSP using no recoarsening and
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Table 5. Average results of standard and multilevel VNS variants on new larger PTSP
instances only accepting improved solutions

Id
VNS MLVNS I0.5 (no recoarsening)

avg. sdv. t[s] avg. sdv. t[s] %-gap %-time

pr11 6856.76 28.09 188.6 6775.87 25.99 87.7 -1.18 46.5
pr12 7314.39 32.13 241.0 7178.50 29.23 109.1 -1.86 45.3
pr13 6969.09 30.63 320.7 6861.12 28.31 140.5 -1.55 43.8
pr14 8055.41 38.49 397.9 7860.15 33.72 175.9 -2.42 44.2
pr15 8678.21 33.31 503.1 8525.48 20.00 193.9 -1.76 38.5
pr16 7974.06 40.39 631.3 7741.01 25.78 246.8 -2.92 39.1
pr17 9854.09 36.76 205.9 9639.06 49.01 100.6 -2.18 48.9
pr18 11705.94 57.41 295.6 11536.59 41.65 141.6 -1.45 47.9
pr19 11795.08 61.93 424.5 11591.77 39.54 180.5 -1.72 42.5
pr20 12101.01 61.23 578.1 11878.36 31.65 244.1 -1.84 42.2

avg. -1.89 43.9

Table 6. Average results of standard and multilevel VNS variants on new larger PTSP
instances using the acceptance decision with the Metropolis criterion

Id VNS MLVNS I0.5 (no recoarsening)

avg. sdv. t[s] avg. sdv. t[s] %-gap %-time

pr11 6736.19 32.29 182.1 6670.51 21.08 87.1 -0.98 47.8
pr12 7177.48 24.15 232.3 7110.25 25.11 106.5 -0.94 45.8
pr13 6881.71 30.23 295.1 6789.76 17.15 137.6 -1.34 46.6
pr14 7883.37 38.56 370.7 7792.40 25.88 171.2 -1.15 46.2
pr15 8518.06 35.33 471.4 8424.37 31.92 190.2 -1.10 40.3
pr16 7827.16 27.17 575.9 7672.95 22.59 238.4 -1.97 41.4
pr17 9596.32 30.20 215.9 9534.96 24.31 103.0 -0.64 47.7
pr18 11443.24 38.55 305.2 11370.88 29.46 143.1 -0.63 46.9
pr19 11551.89 39.00 421.8 11435.78 35.91 184.7 -1.01 43.8
pr20 11806.66 38.64 569.5 11706.07 28.03 257.8 -0.85 45.3

avg. -1.06 45.2

extending the initial problem coarsening/refinement phase to all iterations
turned out to be usually better (which only holds for the new larger instances,
we checked it for the available test data, too). This has the additional positive
effect that the required runtime is more than halved. Contrary, for the PVRP
the decrease in runtime is again about 25%. In summary, for almost all instances
and both acceptance decisions the MLVNS yields on average significantly better
results than the VNS.

6 Conclusions

We extended a recently proposed leading variable neighborhood search (VNS)
with the multilevel refinement strategy to a multilevel VNS (MLVNS) for better
solving periodic routing problems. A path based coarsening scheme is used that
builds fixed (route) segments of customers accounting for the periodicity. The
refinement process, i.e. starting at the coarsest level and iteratively refining until
the original problem is reached again, is smoothly integrated into the VNS.
Furthermore a suitable solution-based recoarsening is proposed that respects
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the structure of a given solution during coarsening. We presented results on
available benchmark test data as well as on newly generated larger instances
that show the advantage of the multilevel VNS compared to the standard VNS,
often yielding significantly better results in usually less CPU time. In general
the performance gain on the PTSP instances is higher. This new approach is
especially appealing for large instances.

In the future we want to test with longer runs, also for the available test data,
to further analyze the performance of the MLVNS and hopefully to find some
(more) new best solutions. It might further be interesting to create even larger
instances having different characteristics. We also think about alternative ways
of interweaving the refinement with the VNS, such as refining whenever the VNS
gets stuck for a while; similar thoughts apply to the recoarsening. Also the in-
terrelation of the multilevel extension and the Metropolis criterion is worth to
investigate further. Finally, this promising multilevel refinement strategy for pe-
riodic routing problems could be applied to other underlying algorithms as well.
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Abstract. Genetic algorithms (GAs) share a common weakness with
most other metaheuristics: Candidate solutions are in general revisited
multiple times, lowering diversity and wasting precious CPU time.
We propose a complete solution archive based on a special binary trie
structure for GAs with binary representations that efficiently stores all
evaluated solutions during the heuristic search. Solutions that would
later be revisited are detected and effectively transformed into similar
yet unconsidered candidate solutions. The archive’s relevant insert, find,
and transform operations all run in time O(l) where l is the length
of the solution representation. From a theoretical point of view, the
archive turns the GA into a complete algorithm with a clear termination
condition and bounded run time. Computational results are presented
for Royal Road functions and NK landscapes, indicating the practical
advantages.

Keywords: genetic algorithms, solution archive, revisits, tries.

1 Introduction

Genetic algorithms (GAs) [7] are population-based metaheuristics for solving
difficult optimization problems. This popular class of evolutionary algorithms
often is able to find good approximate solutions within a huge search space in
relatively short computation times. However, a drawback of GAs is that they
usually do not keep track of the search history, and already evaluated solutions
are often revisited. This in particular holds when the used selection pressure is
rather high, the population size only moderate, or the variation operators do not
introduce much innovation. In the extreme case, the population’s diversity drops
strongly and the GA gets stuck by creating almost only duplicates of a small
set of leading candidate solutions, called super-individuals. In such a situation of
premature convergence, it becomes very obvious that the heuristic search is not
performing well anymore, and something must be changed in the GA’s setup.
However, also in scenarios which are believed to be rather well-configured, so-
lutions are sometimes revisited and evaluated multiple times. Especially when
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transform the solution into
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Fig. 1. Cooperation between GA and trie

the evaluation function is costly in terms of running time, such reconsidera-
tions of the same candidate solutions may degrade performance substantially;
re-evaluation in a general sense is a clear waste of precious computation time1.

Various kinds of population management strategies have been suggested in
literature to counteract premature convergence and to ensure a reasonable di-
versity in the population. They also reduce the number of revisits but are in
general not able to completely avoid them. Rejecting new candidate solutions
that are already contained in the current population of a steady-state GA of-
ten improves the situation and increases performance; it is therefore considered
a good default strategy by many researchers. See e.g. [15] for a study in this
respect. Nevertheless, revisits are obviously not entirely avoided in this way.

We consider a complete solution archive based on a memory-efficient trie data
structure for GAs with binary solution representations in order to (a) efficiently
detect already evaluated candidate solutions and to (b) efficiently transform
them by typically small adaptations into yet unconsidered candidate solutions.
Figure 1 illustrates how this archive is attached to the GA. In principle, this
archive turns the GA into a complete optimization approach, which from a the-
oretical point of view is guaranteed to find an optimal solution in bounded time.

The computational overhead introduced by the archive is relatively low: The
essential operations of inserting a new candidate solution, checking whether or
not a new candidate solution is already contained in the archive, and transform-
ing an already contained solution can all be performed in time O(l), where l is
the number of bits the binary solution representation has. Thus, the asymptotic
time complexity of each iteration of the GA is not increased.

2 Related Work

Roland [17], for example, has shown that diversity loss through duplicates is a
serious weakness in the steady-state GA model. He also proposed a simple way
of removing duplicates by using a hash table to store all solutions currently in
the population [16]. Going even further, Mauldin [12] compares newly generated
1 With the exception of dynamic or stochastic scenarios where multiple evaluations

might be intended to acquire updated or more reliable objective values.
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solutions to all members of the population by their Hamming distance in order
to select solutions for removal, hereby maintaining even higher diversity. Many
similar approaches can be found in literature, however, they only take into ac-
count solutions of the current population and do not maintain a memory for the
search history.

Looking more generally onto the field of heuristic search techniques, the pop-
ular tabu search (TS) [5] metaheuristic actually is based on the concept of main-
taining a memory, usually called tabu list, that keeps track of the search progress
in order to avoid cycling. Different kinds of memories are used, but typically only
attributes of recently performed moves are recorded and used to forbid moves
into parts of the search space. Usually, these tabu lists also have restricted length,
and an appropriate choice of this length parameter often is a non-trivial task.
Too long tabu lists may restrict the search too strongly, while too short lists will
not effectively avoid cycles. The trend goes towards adaptive parameter control
mechanisms, as e.g. in reactive tabu search [2]. Of course all these attribute-based
TS approaches are not guaranteed to entirely avoid revisits.

Only very few TS approaches exist where entire solutions are directly or indi-
rectly recorded in a memory and precisely those moves that would yield revisits
are forbidden during the remaining search. The reverse elimination method [5] is
one such example to realize what may be called strict tabu search. It is, however,
relatively slow as at iteration n it requires a computation of order O(n) to check
whether or not a move is allowed. Therefore, Battiti and Tecchiolli [2] suggest to
use classical hashing methods, see e.g. [1], or a digital tree [9] instead, by which
the essential insertion and find operations can be performed in (expected) time
O(l), thus only depending on the size of the binary representation.

Battiti and Tecchiolli [2], however, further argue that such strict TS ap-
proaches might not work well in general as they often converge very slowly for
problems where the local optima are surrounded by large basins of attractions,
i.e., by large sets of candidate solutions that converge to the local optimum when
performing local search. This slow convergence is related to a slow “basin fill-
ing” effect. Well-tuned attribute-based approaches in which larger parts of the
search space are temporarily disallowed are therefore typically more effective. In
addition, global optima might even become unreachable because of the creation
of barriers consisting of already visited solutions. We believe that these negative
aspects also require careful attention in the context of an archive-enhanced GA.
However, the possible implications are obviously substantially less critical, as in
contrast to TS a GA also includes other mechanisms for diverting the search and
jumping over barriers (i.e., recombination and mutation).

Focusing again on evolutionary algorithms, solution archives have been used
in general for several different purposes. Sometimes, elite solutions are explicitly
stored in order to re-use them later in some way for improving search perfor-
mance, see e.g. [4]. In particular in evolutionaryalgorithms for multiobjective opti-
mization, explicit solution archives are frequently used for storing non-dominated
pareto-optimal solutions [3]. The idea of caching objective values of visited solu-
tions in order to avoid re-evaluations when they are revisited is quite natural in
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particular when the evaluation function is costly. For example Louis and Li [11]
suggest to store solutions in a binary tree in such cases. Among others, Kratica [10]
and Ronald [16] described similar caching approaches using hash tables. Depend-
ing on the time effort of the objective function and the frequency of revisits, the
total computation time can be lowered substantially. However, revisits are not
prevented (or rejected) in these methods.

Aiming at completely avoiding revisits in a GA targeted towards continuous
optimization problems, Yuen and Chow [19] proposed to use an archive based
on a k-d tree data structure for storing all visited solution. When encountering a
revisit, the corresponding solution is mutated in a special way in order to always
derive a new, yet unvisited solution. This approach actually comes closest to
the concept we pursue in the current work. Differences are, however, that we
concentrate on a discrete binary search space and our trie-based approach is
extended by certain features (e.g., randomization) in order to avoid a strong
biasing when modifying already visited solutions.

More detailed, preliminary results of the current work can be found in the
master thesis of Sramko [18], which has been supervised by the first author of
the current work. In a follow-up master thesis by Zaubzer [20], the trie-based
archive has been applied to a memetic algorithm for the multidimensional knap-
sack problem. Here, the knapsack constraints make the situation more compli-
cated. Substantial problem-specific extensions have thus been considered for the
archive in order to only produce candidate solutions on the boundary of the fea-
sible region. Depending on the test instances and configuration, some benefits
could be observed when using this archive. However, due to the strong repair
and local improvement procedures embedded in this memetic algorithm, general
advantages turned out to be rather small. Nevertheless, also this work gives a
clear indication that the basic idea of enhancing a GA by a trie-based complete
solution archive might be promising for many kinds of problems.

3 Trie-Based Solution Archive

We propose a solution archive for GAs based on a binary trie. This archive is,
in principle, more generally applicable to metaheuristics for problems in which
solutions are encoded as binary strings.

Tries are a class of data structures that are typically used to efficiently store a
possibly very large set of strings [6]. Applications lie e.g. in language dictionaries
for spell checking and translation or the indexing of documents for allowing
a fast search. Different variants of tries exist, but they all have in common
that the computational complexity of the essential insert and find operations
only depends linearly on the string-length of the respective key, i.e., it is in
O(l). In comparison, balanced binary search trees would require O(l log n) time
for these operations and typically also require significantly more memory. Hash
tables are w.r.t. insert and find in the expected case similarly efficient as binary
tries, i.e., they also only require O(l) time, but they do not allow an efficient
implementation of a transform operation that modifies an already stored solution
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into a similar new one. It shall also be remarked that digital trees [9] exhibit
strong similarities to binary tries.

3.1 Basic Trie Structure

The basic version of our binary trie is simple. It is a binary tree T of maximum
height l. Each trie node ti at level i = 1, . . . , l has identical structure: It consists
of two entries ti.next[0] and ti.next[1] which are either pointers referring to
successor nodes at the next level or are set to the flags complete or empty. The
root node t1 refers to the whole binary space {0, 1}l and each other trie node
ti, i > 1, to a well-defined part of it: Considering binary vectors (i.e., candidate
solutions) x = (x1, x2, . . . , xl) ∈ {0, 1}l, entries ti.next[0] and ti.next[1] of a node
ti always partition the corresponding space into the two subspaces containing
those vectors with xi = 0 and xi = 1, respectively. Thus, the i-th bit of a vector
x decides whether to go “left” or “right” at level i. An entry of empty means
that none of the vectors lying in the corresponding subspace is yet contained
in the trie, while an entry complete indicates the case that all corresponding
vectors are contained (i.e., these solutions have already been visited by the GA).
Figure 2 shows an exemplary trie containing the solution 010 and all solutions
with x1 = 1 (‘x’ denotes the complete-flag and ‘/’ the empty-flag).

To check whether or not a solution x is stored in T , the search algorithm steps
down the trie beginning at the root and follows ti.next[xi] in each level i. If a
complete-flag is encountered during this process, x is contained in T ; if empty is
encountered, x has not yet been inserted.

Adding new, not yet contained solutions works similarly, but new trie nodes
must eventually be created when encountering an empty flag, and after consid-
ering the last bit a corresponding complete-flag is stored.

An important principle to keep the trie small is to prune a subtrie when all
solutions corresponding to it have been added, i.e., if ti.next[0] = ti.next[1] =
complete, the respective pointer to ti in the previous level is replaced by a com-
plete-flag; see Fig. 3, where 011 has additionally been inserted. The special sit-
uation that the root pointer becomes complete thus indicates that all solutions
of the whole search space have been added, and the GA can be terminated
returning its best found solution as (proven) optimum.

x

level 1

level 2

level 3

x

/

/

0

1

root

Fig. 2. Trie T containing
solutions 010 and all with
x1 = 1

root

x

level 1

level 2

level 3

x

/

x

x

/ x

0

1

0

root

Fig. 3. Pruning the subtrie containing
solutions 010 and 011
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3.2 Avoiding Revisits by Transforming Solutions

One of the most important features of our solution archive is the ability to
transform an already contained solution x, which would lead to a revisit in the
GA, into a typically similar but yet unconsidered solution x′. By “similar” we
mean that the Hamming distance between x and x′ is low. Considering the
example of Fig. 2, if the GA’s variation operators yield x = 010 again, this
solution can be modified to x′ = 011, which is then inserted in T leading to the
situation shown in Fig. 3.

More generally, the basic idea of the transformation is to go back to some
previous node at the search path of x whose alternate branch p.next[1 − xi] �=
complete, i.e., contains at least one yet unconsidered solution. Here, at this de-
viation position, we set xi = 1 − xi and go down this alternate subtrie following
the remaining bits of x whenever possible, i.e., unless we encounter a complete-
flag in which case we choose again the alternate branch that must contain at
least one unconsidered solution. We distinguish two algorithm variants w.r.t. the
selection of the deviation position:

Deepest Position Transformation (DPT): In this basic variant the last
(deepest possible) deviation position is always chosen. While this method
probably is the most straight-forward one, it has the disadvantage of a strong
biasing towards modifying bits at higher positions while keeping bits at lower
positions unchanged. In fact, only when large portions of the search space
have already been covered, bits at lower positions will be considered.

Random Position Transformation (RPT): To substantially reduce the
above mentioned biasing, a random choice from all feasible deviation posi-
tions is made in the RPT algorithm variant. Otherwise, this method behaves
in the same way as DPT.

A more detailed pseudo-code covering both transformation variants is given in
Algorithm 1. We first search for x, then go back to the deviation point and go
down once more in order to insert the transformed solution. The algorithm can
be implemented in time O(l).

3.3 Randomized Trie Structure

Using the basic trie structure where trie nodes on level i are always bounded to
the bits on the i-th position has a significant weakness. Especially when using
DPT for handling duplicates, we already observed that there is a strong bias
towards some genes being changed much more frequently than others. In par-
ticular, bits at higher positions are always tried to be modified first. This bias
typically results in repeated, rigid patterns when visualizing visited solutions in
the search space. In general, when an intensive search around an incumbent solu-
tion has been performed and the trie is already moderately filled, the transform
operation might need to flip not just the single bit at the deviation point but
more bits in the course of finding a yet unconsidered solution, resulting in larger
Hamming distances. As DPT considers the positions always in the strictly same
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Algorithm 1. Transform Solution
Input: solution x = (x1, . . . , xl); algorithm variant var ∈ {DPT, RPT}
p = root ; devpoints = ()
// search for x storing possible deviation positions in devpoints
i = 1
while i ≤ l and p �= complete do

if p.next[1 − xi] �= complete then
devpoints = devpoints ∪ (i, p)

p = p.next[xi]
i = i + 1

if var = DPT then
(i, p) = last entry of devpoints // go back to last feasible deviation position

else
(i, p) = random entry from devpoints // go back to a random dev. position

xi = 1 − xi // actually deviate by flipping bit i
while i ≤ l do

if p.next[xi] == complete then
xi = 1 − xi

if p.next[xi] == empty then
p.next[xi]=new trie node (empty , empty)

q = p
p = p.next[xi]
i = i + 1

q.next[xi] = complete // insert transformed x in T
prune trie nodes of type (complete , complete) bottom up
return x

order, this effect is significantly amplified, and transformed solutions with larger
distances, i.e., less similar solutions, are created earlier and/or more frequently.
This behavior can be compared with the well-known effect of primary clustering
in hash tables when using linear probing as collision handling strategy.

The described RPT variant reduces these weaknesses substantially, but it is
still not able to avoid a biasing entirely. As an alternative or additional improve-
ment, we consider the randomization of the trie structure itself. The idea is to
use individual, in general different bit orders on different search paths of the trie.
Trie nodes at depth i are no longer related to the bit at position i, i.e., xi, but a
deterministic pseudo random (or hash) function is used to calculate the specific
bit position j related to a given trie node ti in dependence of the whole path
from the root to ti. Fig. 4 illustrates this randomized trie variant. One must be
careful in the choice of the underlying pseudo random function. For example,
classical Park-Miller random number generators are unsuitable as there are cor-
relations between input and output data. We used the “pseudo data-encryption
standard” algorithm ran4 [14].
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Fig. 4. Solutions 01100, 10011, 01111 in a trie with randomized structure. Nodes are
labeled by their related bits of the solution vector.

4 Computational Results

We present test results on two classes of standard benchmark problems from the
binary domain: The Royal Road functions and NK fitness landscapes.

A more-or-less standard steady-state GA was used, which derives in each
iteration one new solution by performing tournament selection with replacement,
always applying single point crossover, and mutating each bit with probability
1/l. This new solution always replaces the population’s worst solution. When the
archive is attached, classical mutation is turned off and replaced by the transform
operation of the archive in the case already visited solutions are obtained from
crossover. Initial solutions were randomly created, the population size was 100,
and the tournament selection group size 10. We compare the GA-variants and
trie configurations summarized in Table 1.

In case the solution archive is not used (variant std), a classical duplicate
elimination strategy as described in [16] is applied in the GA, i.e., a newly derived
solution is only accepted in the population if it is different to all other solutions
therein and discarded otherwise. The necessary duplicate-checks are efficiently
performed by means of a hash table. Tests without any duplicate elimination
and without the suggested archive yielded consistently clearly worse results, and
we therefore do not include them here. All experiments were performed on a
Pentium 4, 2.8 GHz PC with 1GB RAM.

Table 1. Considered GA variants

algorithm trie transformation trie structure
std not used – –
tdb used deepest position basic
trb used random position basic
tdr used deepest position randomized
trr used random position randomized
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4.1 Results on Royal Road Functions

Royal Road functions were specifically designed for evaluating GAs with their
crossover operators by Mitchell et al. [13]. They are defined for binary strings
x ∈ {0, 1}l on a set of hierarchically created schemas S = {s1, s2, . . . , sn}, and
the objective is to maximize

∑
s∈S o(s)σs(x), where o(s) is the order of schema

s (i.e., the number of defined bits) and σs(x) is the binary indicator-function
yielding 1 if x matches s and 0 otherwise. For details on S we refer to [13]; let
b be the order of the smallest basic building blocks in S and r = l/b be the
number of them.

Table 2 lists results on differently parameterized Royal Road functions. All
runs are terminated after 1000 iterations. Average final solution values (avg) and
corresponding standard deviations (sd) of 100 independent runs are printed for
each test case. Best values are marked bold.

Table 3 additionally lists the following total results over all considered Royal
Road functions: Average objective values, average elapsed CPU-times when
the best solutions were identified, the number of solution transformations (i.e.,
avoided revisits), and for each pair of GA variants the error probability of a one-
sided Wilcoxon rank sum test for the assumption that one GA-variant performs
better than the other.

We can observe that the GA without the trie archive performs worst in general.
Among the different trie-variants, performance differences are rather small, but
using the random deviation transformation and the randomized trie structure
leads to noticeable improvements.

Table 2. Results on Royal Road functions

instance std tdb trb tdr trr
b r avg sd avg sd avg sd avg sd avg sd

3 4 36.00 0.00 36.00 0.00 36.00 0.00 36.00 0.00 36.00 0.00
4 4 48.00 0.00 48.00 0.00 48.00 0.00 48.00 0.00 48.00 0.00
5 4 60.00 0.00 60.00 0.00 60.00 0.00 59.30 4.95 60.00 0.00
6 4 62.88 18.71 64.32 16.58 68.52 11.94 68.28 12.94 68.64 11.51
3 8 96.00 0.00 96.00 0.00 96.00 0.00 96.00 0.00 96.00 0.00
4 8 124.40 14.39 126.80 8.49 124.40 14.39 125.60 11.88 128.00 0.00
5 8 103.50 45.41 115.40 43.22 115.20 42.89 110.60 42.64 125.30 44.01
6 8 73.80 35.16 92.64 36.95 81.72 51.38 77.76 38.06 81.84 44.88
3 16 206.28 45.43 215.76 41.31 217.68 40.12 226.98 32.60 219.54 38.92
4 16 148.08 43.99 160.08 55.48 166.16 63.70 168.00 66.07 153.44 55.26
5 16 106.50 37.95 100.00 38.69 104.50 38.61 93.00 32.09 102.30 41.46
6 16 70.44 30.52 79.44 41.81 74.16 29.34 74.52 29.50 82.68 35.01

Table 3. Royal Road functions: Averages over all instances and Wilcoxon rank sum
tests for each pair of GA-variants

alg avg time transforms .vs std .vs tdb .vs trb .vs tdr .vs trr
std 92.96 0.02s – – 0.9953 0.9942 0.9677 0.9996
tdb 99.54 0.03s 312 0.0047 – 0.3854 0.2901 0.6849
trb 99.36 0.05s 297 0.0058 0.6150 – 0.3609 0.7099
tdr 98.67 0.03s 307 0.0323 0.7102 0.6394 – 0.9122
trr 100.15 0.05s 301 0.0004 0.3154 0.2904 0.0879 –
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4.2 Results on NK Landscapes

Introduced by Kauffman [8], NK landscapes serve as another popular benchmark
suit for GAs with binary representations. The goal is to maximize the function

F (x) =
1
N

N∑
i=1

fi(xi1 , xi2 , . . . , xiK )

with x ∈ {0, 1}N . Each subfunction fi takes gene xi and K neighboring genes
xi1 , xi2 , . . . , xiK into account and returns a value in [0, 1] according to a random
value table. Hence there are N tables of size 2K+1 from which the values are
read out. With increasing K, the coupling between particular genes rises and the
problem becomes more complex. Two variants exist for choosing the neighboring
genes xi1 , xi2 , . . . , xiK : the adjacent neighbors version, where these genes are the
closest ones to xi, and the random neighbors version, where they are selected
randomly distributed among all x1, . . . , xN . We examine the NP-hard latter one.

Parameter N was set to 20, 50, 100 and 300 and K to 1, 2, 5, 6, 7, 8, 9 and
10. For each combination, we performed 50 independent runs and each run was
terminated after 10s. Since the final solution values for different N but the same
K are relatively similar, we decided to present here only accumulated results
grouped by K due to space reasons. Table 4 shows these average final solution
values and corresponding standard deviations for the standard GA and the four
trie-enhanced variants. Though the average objective values here are close, the
advantage of the trie is very obvious. In particular, the GA variant using the ran-
dom deviation transformation together with the randomized trie structure was
able to generate best average results most of the time. This becomes even more

Table 4. Results on NK landscapes (random neighbors) over N ∈ {20, 50, 100, 300},
10s CPU-time limit

std tdb trb tdr trr
K avg sd avg sd avg sd avg sd avg sd

1 0.7090 0.0285 0.7089 0.0288 0.7086 0.0288 0.7092 0.0286 0.7089 0.0288
2 0.7351 0.0220 0.7354 0.0217 0.7364 0.0219 0.7361 0.0217 0.7365 0.0216
5 0.7603 0.0222 0.7623 0.0222 0.7611 0.0219 0.7609 0.0219 0.7633 0.0211
6 0.7628 0.0232 0.7631 0.0239 0.7641 0.0227 0.7645 0.0226 0.7649 0.0225
7 0.7595 0.0223 0.7583 0.0217 0.7592 0.0211 0.7607 0.0216 0.7600 0.0219
8 0.7567 0.0241 0.7583 0.0249 0.7582 0.0244 0.7597 0.0232 0.7608 0.0245
9 0.7545 0.0219 0.7526 0.0239 0.7557 0.0212 0.7560 0.0244 0.7571 0.0228

10 0.7505 0.0231 0.7522 0.0247 0.7507 0.0269 0.7543 0.0248 0.7528 0.0267

Table 5. NK landscapes (random neighbors): Averages over all instances and Wilcoxon
rank sum tests for each pair of GA-variants, 10s absolute time limit

alg avg sd time transforms .vs std .vs tdb .vs trb .vs tdr .vs trr
std 0.7485 0.0290 3.47s – – 0.6851 0.9420 1.0000 1.0000
tdb 0.7489 0.0295 3.53s 52215 0.3149 – 0.8358 0.9999 1.0000
trb 0.7492 0.0294 3.69s 49602 0.0580 0.1643 – 0.9994 1.0000
tdr 0.7502 0.0294 3.48s 54003 0.0000 0.0001 0.0006 – 0.8472
trr 0.7506 0.0298 3.79s 50718 0.0000 0.0000 0.0000 0.1529 –
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evident in Table 5 where average values over all K together with pairwise error
probabilities of Wilcoxon rank sum tests are presented analogously to Table 3.

5 Conclusions and Future Work

In this paper we suggested the use of a complete solution archive based on a
binary trie data structure for genetic algorithms using classical binary string
representations. The archive stores all solutions visited during the optimization
process in a relatively compact way and provides the essential insert and find
operations in time O(l), i.e., independently of the number of already visited so-
lutions. In contrast to classical objective value caching strategies, the archive
further provides a new transform operation, which changes already visited can-
didate solutions effectively into in general similar but yet unvisited solutions.
This procedure also runs in time O(l). Randomized variants of this transforma-
tion procedure and the trie structure itself were proposed in order to minimize
a biasing towards genes in certain positions being changed more frequently than
others. From a theoretical point-of-view, a nice property is that the solution
archive turns the GA into a complete optimization approach with a well-defined
termination condition and bounded runtime.

Tests were performed on Royal Road functions and NK fitness landscapes.
Although differences are not too large, we could observe that the use of the
archive in general led to significantly better results and only moderate runtime
increases. Especially the randomization of the transform operation and the trie
structure also proved to be advantageous. More generally, we consider the pro-
posed solution archive particularly promising for problems with expensive objec-
tive functions and relatively small search spaces, where solutions would otherwise
be frequently revisited. There, the additional computational effort introduced by
the archive becomes neglectable and the advantages can be expected to increase.

Further investigations and tests on more types of problems are necessary. In
future work, we intend to study the application of trie-based solution archives
in particular on hybrid GAs including e.g. local search or repair components
for more complex optimization problems. This also includes problems where so-
lutions are represented in other ways than binary strings. For them, the trie
must be adapted appropriately. Constraints of a problem might further impose
additional challenges on the trie and in particular its solution transform op-
erator. For the multidimensional knapsack problem, some positive preliminary
results have already been obtained [20]. Furthermore, we are currently working
on archive-extended approaches for generalized network design problems where
two dual representations are used at the same time. We also believe that it is
promising to consider such trie-based solution archives for other metaheuristics
besides GAs.

Last but not least, a particularly interesting aspect is the possibility to addi-
tionally calculate lower bounds (when considering a minimization problem) for
individual subtries and to prune them (i.e., mark as completed) when this lower
bound exceeds the objective value of the so far best solution. In this way, our
approach becomes related to the well-known concept of branch-and-bound.
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Abstract. This paper presents a new evolutionary computing strategy
which uses the linear programming duality information to help the search
for optimum solutions of hard optimization problems. The algorithm is
restarted several times when it is stuck into a local optima. At each
restart, the appropriate dual space is constructed. A new population of
primal individuals is generated using the information from dual solutions
and is considered for next iterations. The pursued goal was not to find the
best algorithm for solving winner determination problem, but to prove
the method’s viability using the problem as a case study. Experiments
on realistic instances were performed.

1 Introduction

Evolutionary Algorithms (EAs) are powerful heuristics for optimization, based
on the natural evolution paradigms [1]. Fitter individuals will result in future
generations by natural selection and adaptation processes. Evolutionary Algo-
rithms are used to tackle hard optimization problems for which classical meth-
ods are inappropriate. One of the major problem is that the algorithms could
converge to suboptimal solutions. Maintaining diversity to avoid premature con-
vergence toward local optima is an important goal inside EAs.

This paper describes a new scheme based on evolutionary computing strategies
and linear programming (LP) duality. The new approach is completely different
from the notion of duality in evolutionary algorithms, which is usually connected
with diploidy and dominance from nature. In this context, a primal-dual genetic
algorithm [2] operates on pairs of chromosomes which are primal-dual in a com-
binatorial way, governed by the Hamming distance.

Including techniques from operations research in metaheuristics is a popu-
lar approach leading to an efficient behavior [3]. The solutions of the relaxed
problem indicate in which areas of the search space good solutions might lie.
The LP-relaxed solutions are used to create promising initial solutions, to re-
pair infeasible solutions and to guide local improvement [3]. Dual variables of the
relaxed problem could also be exploited. This is the main goal of this paper. A re-
lated idea was considered in the paper [4], where a GA for the Multi-constrained
Knapsack problem uses the shadow prices of the LP-relaxed solution, but in-
side a repairing heuristic. Ratios based on the shadow prices give the likeliness
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of the items to be included in a solution. In [5] a primal-dual variable neigh-
borhood search for the simple plant location problem is presented. A primal
feasible solution is obtained by a variable neighborhood decomposition search.
A dual solution, resulted by exploiting the complementary slackness conditions
and improved then locally is transformed into an exact solution by the sliding
simplex algorithm. The dual solution is used to derive a good lower bound and
to strengthen next a Branch and Bound algorithm for solving the problem.

The primal-dual method [6] from the linear programming theory was initially
proposed for solving linear programs. The method has found widespread use
because it leads to a general methodology for the design of approximation algo-
rithms for NP-hard problems [7]. In the primal-dual method, a feasible primal
solution is searched that satisfies the complementary slackness conditions, given
a feasible dual solution. If one cannot be found, there is a way to modify the
dual solution to increase the dual objective value (considering the dual objective
is a maximization one). The primal-dual method for approximation algorithms
considers the dual of a linear programming relaxation of the integer program.
In this case, the method usually leads to dual-ascent algorithms in which dual
variables are never decreased (although there are some exceptions). The method
yields a solution that is within a factor of α of optimal.

Our new approach uses the duality information in order to escape from local
optima. A series of returns in primal after consulting the corresponding dual
space take place. The new primal solutions constructed at each return uses the
dual information. The construction of the dual, respectively primal solutions
for each restart obeys the complementary slackness conditions. To maintain the
progress, i.e. increasing the objective value, the best primal solution from previ-
ous iteration is kept in the next one.

The method is tested for one of the major problems raised by combinatorial
auctions, the winner determination problem (WDP). The problem is to select
a set of winning bids that maximize the auctioneer’s revenue. Exact algorithms
have been proposed to solve the problem, especially based on Branch-and-Bound
procedure [8], [9] and linear programming [10]. Optimal solutions have been
obtained using CPLEX solver [11]. Approximative methods were also developed:
a stochastic local search method [12], a hybrid simulated annealing [13] and a
memetic algorithm [14]. The winner determination problem can be modeled
as multidimensional knapsack problem (MDKP). Evolutionary algorithms have
proved their efficiency for solving the MDKP, thus many of the methods used
for MDKP can be used for WDP [4].

The paper is organized as follows. In the next section, the new general ap-
proach is presented. In section 3 the case study on the combinatorial auctions
problem is discussed. The experimental settings and results are reported next.
We conclude the work in section 5.

2 The Primal-Dual Genetic Approach

The new method is suited for hard linear programming problems. We know that
for a given linear program, a dual linear program could be easily constructed.
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Primal Integer Population  k

Integer Value k

Dual fractional Population k

Primal Integer Population k+1

Integer Value k+1

Dual fractional Population k+1

Fig. 1. The new primal-dual genetic schema

The basic idea is to help the genetic search with the dual information from the
linear relaxation of the integer linear programming formulation. The steps of the
procedure are described next. First, a primal genetic algorithm for solving the
integer programming problem is started. Since the problem presents restrictions,
the GA must use techniques from constrained optimization field for modeling
and solving. When the algorithm gets trapped into a local optimum, the search
is stopped.

From the last primal population, a set of dual relaxed solutions is constructed.
The dual objective function is a lower bound on the value of the optimum integer
solution. The dual solutions are improved using a specific algorithm.

The information gathered by the dual solutions is transmitted to the primal
algorithm. The algorithm constructs a new population of primal individuals from
dual solutions and restarts the search with a new improved initial configuration.
The best solution from the previous iteration is copied into the new population.
Starting with a better population, the chances of finding a better solution grow.

Algorithm 1. PrimalDualGA()
initialize primal population
while optima not found or stopping condition not met do

while not trapped in local optima do
selection
apply operators
local optimization (using best dual relaxed solution)

end while
construct dual relaxed solutions from primal population
improve dual relaxed solutions
initialize primal population from dual relaxed solutions

end while
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A local optimization step, which makes use of the dual information takes place
on all primal individuals at each iteration. The best dual solution could be used
to improve the primal solutions.

The algorithm repeats these steps until a good enough solution for the problem
is found. The graphical representation and the pseudocode for the scheme are
given next.

3 A Case Study: Primal-Dual GA for Winner
Determination

3.1 Combinatorial Auctions

Combinatorial auctions [15] allow bids on combinations of items. They present
difficulties in terms of preference elicitation, how the bidder describes their pref-
erences concisely, and winner determination. The problem we consider is the
WDP, i.e. how to label the bids as winning or losing in order to maximize the
auctioneer’s revenue. The constraint is that each item can be allocated to at
most one bidder. The problem is computationally difficult (NP-complete and
inapproximable) [16].

The model. The problem is usually formalized as a packing problem. Consider
there are m items for sale and a set of bidders. The identity of the bidder does not
matter for the allocation algorithm, so consider there are n bids {Bi, i = 1, n}.
Each bid Bi is given by a pair (Si, pi) where Si is the subset of items and pi

specifies the bid for that subset, i.e. the price the bidder is willing to pay for
getting this bundle of goods. The problem is to find a feasible allocation with
maximum social welfare. It can be easily formalized as an integer programming
problem.

max

n∑
i=1

xipi

s.t.
∑

i|j∈Si

xi ≤ 1, ∀j = 1..m

xi ∈ {0, 1}, ∀i = 1..n

We assume that the bids are given in OR* language (OR with phantom items,
i.e. dummy items) [8]. In an optimum solution, if xi = 1 then Bi is a winner bid.

We consider the following LP relaxation of WDP:

max

n∑
i=1

xipi

s.t.
∑

i|j∈Si

xi ≤ 1, ∀j = 1..m

xi ≥ 0, ∀i = 1..n
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In this formulation, the variables xi have real values.
The dual of the LP relaxation is:

min

m∑
j=1

yj

s.t.
∑
j∈Si

yj ≥ pi, ∀i = 1..n

yj ≥ 0, ∀j = 1..m

The problem is to find some individual item prices to minimize the total price
over all items under some restrictions (the sum of the item prices from each bid
must be greater than the bid price). The dual variables, often called shadow
prices, serve as approximations of how valuable the goods are.

LP duality. Linear Programming is worth using for finding the optimal alloca-
tion in (multi-unit) combinatorial auctions [11], [17]. Approximation algorithms
may benefit from the construction of dual information. Individual item prices,
which correspond to a dual solution of the relaxed problem could be useful to
bidders in multiple round auctions. They can be used as approximate marginal
values that enable bidders to bid more efficiently in subsequent rounds [18].

Let x∗ and y∗ be the optimal solutions of the primal, respectively dual prob-
lem. The following comes from the LP-duality theory:

– Strong-duality
x∗ and y∗ are a pair of optimal solutions if and only if they are feasible and∑n

i=1 x∗
i pi =

∑m
j=1 y∗

j .
– Complementary slackness

For each i such that x∗
i > 0, the i’th constraint of the dual problem is

saturated, i.e.
∑

j∈Si
y∗

j = pi.
For each j such that y∗

j > 0, the j’th constraint of the primal problem is
saturated, i.e.

∑
i|j∈Si

x∗
i = 1.

3.2 The Primal-Dual Genetic Approach for WDP

Next, we detail the algorithms for the primal and the dual problem, and also for
the transition steps between them.

Primal algorithm. Because the considered problem is a constrained one, we
must include into the genetic algorithm a method to handle the constraints.

We have used an order based representation: a solution is encoded by a per-
mutation of length n, the number of bids from the combinatorial auction. The
permutation is decoded using a first-fit heuristic. Initially, all xi are equal with
0, and then set to 1 in the order they appear in permutation: if the current bid
together with the previous set bids satisfies the restrictions, it is assigned as
winning (the corresponding xi is set to 1). The representation assures that any
chromosome will express a feasible solution. A disadvantage is that the same
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solution can be encoded by multiple permutations, the search space becomes
larger this way. Phenotypic duplicate elimination is beneficial here [19].

The fitness function is equal with the auctioneer’s revenue, i.e. the sum of
prices of the selected bids. A generational model was considered. Fitter solu-
tions survive by the selection mechanism; the fitness proportionate selection was
used by the algorithm. The genetic operators used are: the uniform order based
crossover and inversion. In the uniform order based crossover [20] each position
of the first parent is transferred to the child with some probability. The remain-
ing gaps are completed from the second parent in the order they appear there.
The inversion operator reverses a part of the solution string.

Next a local optimization step is applied on the chromosomes of the popula-
tion. At each step, the method selects greedily an unsatisfied bid to include in
solution. The bid with the highest value of the shadow surplus [9], [4] is taken.
The shadow surplus of a bid i is equal with pi∑

j∈Si
yj

. The dual prices of the best
dual individual from the previous step are considered. The bid is placed on the
position of the first bid in conflict with. The assignment of bids to solution is
renewed. If the value of the new chromosome is better, the algorithm continues;
otherwise the method stops.

The algorithm uses the elitism mechanism: it keeps the best solution in
population.

The next step consists in constructing the corresponding dual solutions from
local optima solutions of the primal problem.

The construction of a dual solution from a primal one. In the paper [21]
a technique to construct a dual solution for the LP relaxation of the generalized
set packing problem is specified. Each element can have multiple copies and there
is an upper bound on the number of copies in the packing. The primal solution
is obtained using a greedy algorithm. We present next the method adapted for
our model.

Let S = {Bi = (Si, pi), i = 1, . . . , n} be the set of bids and P a primal feasible
solution (Si ∈ P if and only if xi = 1). The item j is saturated w.r.t. P if
there is a set Sk ∈ S \ P with j ∈ Sk such that |S|S∈P,j∈S > 0. Denote by
SATP = {j ∈ {1, . . . , m}|j is saturated w.r.t. P} the set of saturated items.
Observe that for each Sk ∈ S \ P , there is a j ∈ SATP called a witness: when
Sk was considered to be added at the (partial) solution P , element j violates
the restriction. For each set Sk ∈ S \ P , we keep in SATP only one (arbitrary)
witness.

The feasible dual solution is represented by
√

my, where y is a convex combi-
nation of two fractional solutions, y1 and y2. The main idea is to use the second
solution as a back-up: whenever on some set Sk ∈ S, y1 is not high enough to
satisfy the primal restriction, y2 is sufficiently high.

y1
j =

σ

m
, σ =

∑
Sk∈P

pk, ∀j

y2 is defined in a sequence of steps. Initially, for every item j, y2
j = 0. For each

bid Bk which was selected in solution, y2
j = y2

j + ΔSk

j , for all j ∈ P(Sk).
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P(Sk) =
{

Sk ∩ SATP , if Sk ∩ SATP �= ∅
Sk, otherwise

ΔSk
j =

pk

|P(Sk)| , for j ∈ P(Sk).

Notice that, for j ∈ Sk \ SATP the value of y2
j is not updated and remains zero.

By weak duality,
√

m
∑m

j=1 yj is an upperbound on the value of the optimal
integral solution [21].

The dual heuristic. The next step in the approach is to improve the dual
solutions. We have used a simple local optimization procedure to improve the
dual solutions constructed from primal optima solutions. All items which did not
appear in any bids have zero prices. The price for each item is decreased with
a value such that the restrictions also stand. The value is equal with a percent
from the smallest difference of the sum of item prices and the bid price, divided
by the number of items (computed only for the bids in which the item appears).

By the weak duality theorem, the dual solution of the LP relaxation gives an
upper-bound to the WDP.

From the optimized dual set of solutions the method construct an initial set of
primal individuals. They will form the initial population of the primal problem.

The construction of a primal solution from a dual one. After returning
from the dual algorithm, we construct the initial set of primal individuals based
on the dual set of solutions. The normalized shadow surplus bid ordering heuris-
tic was used for this purpose. The differences between the sum of item prices
and the bid price (eventually divided by log of sum of item prices) are ordered.
This order represents a feasible primal solution.

The steps are repeated for a number of times (or until the primal and dual
bests have the same value). The implementation of the method is available online,
at the following address http://profs.info.uaic.ro/~mionita/pdga-ca/.

4 Experiments

To measure the performance of the algorithm, test problems were generated using
the CATS [22]. Each generator models a realistic scenario. Problems from each
of the main distributions were generated: arbitrary, matching, paths, regions and
scheduling.

Two categories of experiments were made: first, instances with a variable
number of bids and items were generated, and second, instances with a larger
number of bids were used. For the first category, the number of items ranges
from 40 to 400 and the number of bids ranges from 50 to 2000. In the second
category, only the paths distribution was considered with 10000 and 20000 bids
(and 256 items). Ten problem instances of each distribution were generated.

For small instances we used the mixed integer linear programming solver [23]
to compute the exact solution. For problems where the solver could not give a
result, we have used the approximation algorithm from literature [24] (ALPH).
The algorithms was run with the approximation error parameter ε equal with 1%.

http://profs.info.uaic.ro/~mionita/pdga-ca/


A New Primal-Dual Genetic Algorithm: Case Study 259

The new approach, the primal-dual genetic algorithm (PDGA) was com-
pared with the ALPH algorithm and with the stochastic local search algorithm,
Casanova from [12]. Two other genetic algorithms were used for comparison:

– a simple genetic algorithm (sGA) with the same settings as PDGA algorithm,
without any restarting, and

– a genetic algorithm (rrGA) similar to PDGA, except that when restarting a
new random population of individuals is generated and the local optimization
step is excluded.

All genetic algorithms were executed ten times for each problem instance. The
genetic algorithms work with a population of 50 individuals. They are restarted
if the best value does not change after 75 iterations or after the termination of
250 iterations. The crossover probability is equal with 0.6 and the gene mutation
probability is 0.2.

The experimental results are given in Table 1 and Table 2. The experiments
consider five restarts of the rrGA and PDGA algorithms. The ALPH algorithm
was run with the parameter ε equal with 20% (the same value as in the experi-
ments from [24]). For the Casanova algorithm we have considered the walk prob-
ability equal with 0.5 and the novelty probability 0.15. The maximum number
of steps from Casanova was equal with the product of the number of individuals
and the number of iterations from the genetic algorithms. To compare the results
we used first the gap from optimum (the difference between optimum value and
the value of the objective function for the solution found, divided by optimum
value) as measure.

Table 1. The average gap (in percents) for CATS instances with ’varsize’ bids and for
paths instances with bigger number of bids

Distribution ALPH Casanova sGA rrGA PDGA
arbitrary 2.3 10.5 10.2 7.3 7.9
matching 0.3 4.8 23.9 21.2 4.8

paths 0.3 11.7 9.7 8.3 7
regions -1 11.7 7 4.5 4.6

scheduling 0.2 2.2 2 1 0.7
paths (10000,256) 0.3 20.1 12.7 11.1 10.6
paths (20000,256) 0.2 21.2 11 10.2 8.8

The best solutions are provided by the ALPH algorithm (note that ALPH is an
algorithm specially constructed for WDP). The Primal-Dual Genetic Algorithm
outperforms obviously the simple sGA on all instances. The PDGA provides
better results than rrGA for almost all distributions (exception is the arbitrary
data set); the results for the regions distribution for the two algorithms are very
close to each other. For the match distribution, the differences in values between
the PDGA algorithm and the simple versions sGA and rrGA are bigger.
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The same relation is found in the experiments with greater number of bids:
ALPH remains the best algorithm and the PDGA improves the simple versions
of genetic algorithms. The CATS instances with bigger number of bids prove to
be not more difficult than the smaller instances.

The PDGA algorithm gives better results than Casanova for all distributions.
For larger instances, the solution quality of PDGA is clearly superior to the one
returned by Casanova.

The mean and the standard deviation for ten instances of the matching dis-
tribution for all genetic algorithms are listed in Table 2. The best values are
the ones of the new method. The small values of the standard deviation of the
PDGA show that the algorithm is stable. The algorithm finds good solutions
more consistently.

Table 2. The mean and the standard deviation for ten instances of the matching data
set

Instance optimal sGA rrGA PDGA
mean (stdev) mean (stdev) mean (stdev)

1 556.8 429.82 (5.42) 433.07 (2.22) 525.06 (3.08)
2 369.33 309.56 (7.58) 315.54 (2.44) 359.76 (1.7)
3 281.59 190.04 (5.82) 201.68 (3.22) 266.59 (2.74)
4 485.66 359.9 (7.21) 367.67 (5.32) 455.62 (1.67)
5 223.35 189.5 (4.11) 193.18 (1.87) 216.7 (1.71)
6 156.55 123.87 (5.33) 136.78 (3.23) 156.51 (0.06)
7 421.78 343.03 (5.29) 349.21 (4.57) 406.83 (3.41)
8 483.02 336.04 (8.59) 350.16 (7.61) 446.92 (4.61)
9 468.72 331.19 (5.9) 341.82 (4.29) 427.09 (3.29)
10 293.82 211.31 (8.7) 220.17 (3.48) 278.11 (4.24)

Another measure of efficiency was also considered; the average number of
fitness evaluations for rrGA and PDGA algorithms is represented in Figure 2.
Except for the paths distribution, the PDGA algorithm uses a smaller number
of evaluations than the simple version rrGA.

We examine next the impact of the number of restarts in the proposed al-
gorithm. As we can expect, both algorithms rrGA and PDGA give better solu-
tions when the number of restarts increases. This is a consequence of the natural
progress of the genetic algorithm. When restarting, the new population receives
the previous best individual. The best value remains the same or increases. The
Figure 3 a) shows the results for the rrGA and PDGA algorithms on the paths
data set where the number of restarts ranges from 0 to 20. The results are better
for the PDGA algorithm because the PDGA takes advantage also of the dual in-
formation provided by the dual solutions. A balance between the solution quality
and the time resources must be considered.

Next we show how many times the best solution increases on restarts, as a
percent from the total number of restarts. Figure 3 b) shows the results for
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Fig. 3. a)A comparison between the PDGA and rrGA regarding the number of restarts
b)The percent of improvements for CATS instances with ’varsize’ bids

distributions with a variable number of bids; the algorithms are restarted five
times. Less than half of the times a restart increases the best value. Only the
matching distribution surpasses the 0.5 value.

From the experimental results we can conclude that the PDGA method takes
benefits from dual solutions. The scope was not to develop the best method
for solving winner determination problem, but to prove the effectiveness of the
PDGA method.

5 Conclusion

A new hybrid approach based on evolutionary computation and LP-duality for
solving hard integer linear programming problems is proposed. The information
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transmitted by the dual solutions helps the primal genetic algorithm to get
out from local optima. The approach is applied for solving a hard real-world
problem from the combinatorial auction field, the winner determination. The
method is evaluated on several realistic instances and compared with more simple
genetic algorithms, and with algorithms among the best ones from literature.
The obtained results are encouraging and show the feasibility of the proposed
method. Future experiments on different test sets from the same problem and
for other combinatorial optimization problems are needed.
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Abstract. Optimization problems are more and more complex and their
resource requirements are ever increasing. Although metaheuristics allow
to significantly reduce the computational complexity of the search pro-
cess, the latter remains time-consuming for many problems in diverse
domains of application. As a result, the use of GPU has been recently
revealed as an efficient way to speed up the search. In this paper, we
provide a new methodology to design and implement efficiently local
search methods on GPU. The work has been experimented on the per-
muted perceptron problem and the experimental results show that the
approach is very efficient especially for large problem instances.

Keywords: GPU-based metaheuristics, local search algorithms on GPU.

1 Introduction

Nowadays, optimization problems become increasingly large and complex, forc-
ing the use of parallel computing for their efficient and effective resolution. In-
deed, although near-optimal algorithms such as local search (LS) methods allow
to reduce the temporal complexity of their resolution, they are unsatisfactory
to tackle large problems. Therefore, parallel computing has recently undergone
a significant evolution with the emergence of new high performance computing
environments including accelerators such as GPUs.

Recently, the use of graphics processors has been extended to general applica-
tion domains such as computational science [1]. Indeed, GPUs are very efficient
at manipulating computer graphics, and their parallel structure makes them
more efficient than general-purpose CPUs for a range of complex algorithms.
This is why it would be very interesting to exploit this huge capacity of comput-
ing to implement parallel metaheuristics. However, there only exists few research
works related to evolutionary algorithms on GPU [2,3,4]. Indeed, the design and
implementation of parallel optimization methods raise several issues related to
the characteristics of these methods and those of the new hardware execution
environments at the same time.
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Several scientific challenges mainly related to the hierarchical memory man-
agement on GPU have to be considered: the efficient distribution of data pro-
cessing between CPU and GPU, the optimization of data transfer between the
different memories, the capacity constraints of these memories, etc. The main
objective of this paper is to deal with such issues for the re-design of parallel
LS models to allow solving of large scale optimization problems on GPU archi-
tectures. We propose a new general methodology for building efficient parallel
LS methods on GPU. This methodology is based on a three-level decomposition
of the GPU hierarchy allowing a clear separation between generic and problem-
dependent LS features.

To be validated the work has been experimented on the permuted perceptron
problem (PPP) introduced by Pointcheval [5]. The problem is a cryptographic
identification scheme based on NP-complete problems, which seems to be well
suited for resource constrained devices such as smart cards. The proposed work
has been experimented using three GPU configurations with different perfor-
mance capabilities in terms of threads that can be created simultaneously.

The remainder of the paper is organized as follows: In Section 2, the character-
istics of the GPU architecture are described according to the three-level decom-
position. Section 3 presents generic concepts for designing parallel LS methods
on GPU (high-level). In Section 4, efficient mappings between state-of-the-art
LS structures and NVIDIA CUDA model are performed (intermediate-level).
A depth look on memory management in CUDA adapted to LS heuristics is
depicted in Section 5 (low-level). Section 6 reports the performance results ob-
tained for the PPP mentioned above. Finally, a discussion and some conclusions
of this work are drawn in Section 7.

2 Graphics Processing Units and Three-Level
Decomposition

Driven by the demand for high-definition 3D graphics, GPUs have evolved into a
highly parallel, multithreaded and manycore environment. Since more transistors
are devoted to data processing rather than data caching and flow control, GPU
is specialized for compute-intensive and highly parallel computation. A complete
review of GPU architecture can be found in [6].

The adaptation of LS algorithms on GPU requires to take into account at the
same time the characteristics and underlined issues of the GPU architecture and
the LS parallel models. In this section, we propose a three-level decomposition
of the GPU adapted to the popular parallel iteration-level model [7] (generation
and evaluation of the neighborhood in parallel) allowing a clear separation of the
GPU memory hierarchical management concepts (Fig. 1). The different aspects
of the three-level decomposition model will be discussed throughout the next
sections.

In the high-level layer, task distribution is clearly defined: the CPU manages
the whole sequential LS process and the GPU is dedicated to the parallel eval-
uation of solutions at the other levels. The intermediate-level layer focuses on
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Fig. 1. Three-level decomposition

the generation and partitioning of the LS neighborhood on GPU. Afterwards,
GPU memory management of the evaluation function computation is done at
low-level.

2.1 High-Level Layer: General GPU Model

This level describes common GPU concepts which are language-independent. In
general-purpose computing on graphics processing units, the CPU is considered
as a host and the GPU is used as a device coprocessor. This way, each GPU
has its own memory and processing elements that are separate from the host
computer. Data must be transferred between the memory space of the host and
the memory of GPU during the execution of programs. In LS algorithms, the
types of data which are manipulated are the data inputs of the tackled problem
and the solution representation.

Each processor device on GPU supports the single program multiple data
(SPMD) model, i.e. multiple autonomous processors simultaneously execute the
same program on different data. For achieving this, the concept of kernel is
defined. The kernel is a function callable from the host and executed on the
specified device simultaneously by several processors in parallel. Regarding the
iteration-level parallel model, generation and evaluation of neighboring candi-
dates are done in parallel. Therefore, a kernel on GPU can be associated with
these two steps.
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Memory transfer from the CPU to the device memory is a synchronous op-
eration which is time consuming. In the case of LS methods, memory copying
operations from CPU to GPU are essentially the solution duplication operations
which generate the neighborhood. Afterwards, the kernel representing the gener-
ation and evaluation of the neighborhood is processed at both intermediate-level
and low-level. Regarding transfers from GPU to CPU, the results of the eval-
uation function (fitnesses) of each candidate solution of the neighborhood are
stored in an array structure.

2.2 Intermediate-Level Layer: CUDA Threading Model

The intermediate-level layer focuses on the neighborhood generation on GPU.
This kernel handling is dependent of the general-purpose language. CUDA was
chosen because the toolkit introduces a model of threads which provides an
easy abstraction for SIMD architecture [8]. A thread on GPU can be seen as
an element of the data to be processed and changing the context between two
threads is not a costly operation. Therefore, GPU threads management is clearly
identified as the main task of the generation step of LS neighborhood.

Regarding their spatial organization, threads are organized within so called
thread blocks. A kernel is executed by multiple equally threaded blocks. Blocks
can be organized into a one-dimensional or two-dimensional grid of thread blocks,
and threads inside a block are grouped in a similar way. All the threads belonging
to the same thread block will be assigned as a group to a single multiprocessor.
Thus, a unique id can be deduced for each thread to perform computation on
different data. Regarding LS algorithms, a move which represents a particular
neighbor candidate solution can also be associated with a unique id. However,
according to the solution representation of the problem, finding a corresponding
id for each move is not straightforward.

2.3 Low-Level Layer: Kernel Memory Management

The low-level layer focuses on the specific part of the evaluation function. As
stated before, each GPU thread executes the same kernel i.e. each candidate
solution of the neighborhood executes the same evaluation function. From a
hardware point of view, since multiprocessors are used according to the SPMD
model, threads share the same code and have access to different memory areas.

Communication between the CPU host and its device is done through the
global memory. For LS algorithms, more exactly for the evaluation function, the
global memory stores the data input of problems and their solution representa-
tion. Since this memory is not cached and its access is slow, one needs to minimize
accesses to global memory (read/write operations). Graphics cards provide also
read-only texture memory to accelerate operations such as 2D mapping. In the
case of LS algorithms, binding texture on global memory can provide an alterna-
tive optimization. Registers among streaming processors are partitioned among
the threads running on it, they constitute fast access memory. In the evaluation
function kernel code, each declared variable is automatically put into registers.
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Local memory is a memory abstraction and is not an actual hardware compo-
nent. Complex structures such as declared array will reside in local memory.

The memory management in the low-level layer is problem-specific. A clear
understanding of the characteristics described above is required to provide an
efficient implementation of the evaluation function. According to the SPMD
model, the same code is executed by all the neighbors in parallel and the resulting
fitnesses must be stored into the fitnesses structure (global memory) previously
mentioned.

3 Design of Parallel Local Search Algorithms on GPU

In this section, the focus is on the re-design of the iteration-level parallel model.
This model fits well with the high-level layer since parallel LS concepts are
generic. Designing parallel LS model is a great challenge as nowadays there is
no generic GPU-based LS algorithms to the best of our knowledge.

3.1 A General Model for LS Algorithms

According to the SPMD model, multiple autonomous processors simultaneously
execute the same program at independent points. Therefore, the mapping at
the high-level layer between the LS iteration-level parallel model and the GPU
model becomes quiet natural.

First, the CPU sends the number of expected running threads to the GPU,
then candidate neighbors are generated and evaluated on GPU (at intermediate-
level and low-level), and finally newly evaluated solutions are returned back to
the host. This model can be seen as a cooperative model where the GPU is
used as a coprocessor in a synchronous manner. The resource-consuming part
i.e. the generation and evaluation kernel, is calculated by the GPU and the rest
is handled by the CPU.

3.2 The Proposed GPU-Based Algorithm

Adapting traditional LS methods to GPU is not a straightforward task because
hierarchical memory management on GPU has to be handled. We propose (see
algorithm 1) a methodology to adapt LS methods on GPU in a generic way.

First of all, at initialization stage, memory allocations on GPU are made: data
inputs and candidate solution of the problem must be allocated (lines 4 and 5).
Since GPUs require massive computations with predictable memory accesses,
a structure has to be allocated for storing all the neighborhood fitnesses at
different addresses (line 6). Additional solution structures which are problem-
dependent can also be allocated (line 7). Second, all the allocated structures
have to be copied on the GPU (lines 8 to 10). Since problem data inputs are a
read-only structure, their associated memory is copied only once during all the
execution. Third, comes the parallel iteration-level, in which each neighboring
solution is generated (intermediate-level), evaluated (low-level) and copied into
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Algorithm 1. Local Search Template on GPU
1: Choose an initial solution
2: Evaluate the solution
3: Specific LS initializations
4: Allocate problem data inputs on GPU device memory
5: Allocate a solution on GPU device memory
6: Allocate a neighborhood fitnesses structure on GPU device memory
7: Allocate additional solution structures on GPU device memory
8: Copy problem data inputs on GPU device memory
9: Copy the solution on GPU device memory

10: Copy additional solution structures on GPU device memory
11: repeat
12: for each generated neighbor in parallel on GPU do
13: Incremental evaluation of the candidate solution
14: Insert the resulting fitness into the neighborhood fitnesses structure
15: end for
16: Copy neighborhood fitnesses structure on CPU host memory
17: Specific LS solution selection strategy on the neighborhood fitnesses structure
18: Specific LS post-treatment
19: Copy the chosen solution on GPU device memory
20: Copy additional solution structures on GPU device memory
21: until a stopping criterion satisfied

the neighborhood fitnesses structure (from lines 12 to 15). Fourth, since the
order in which candidate neighbors are evaluated is undefined, the neighborhood
fitnesses structure has to be copied to the host CPU (line 16). Then a specific LS
solution selection strategy is applied to this structure (line 17) on CPU. Finally,
after a new candidate has been selected, this latter and its additional structures
are copied to the GPU (lines 19 and 20). The process is repeated until a stopping
criterion is satisfied.

4 Efficient Mappings of Local Search Structures on GPU

The neighborhood structures play a crucial role in the performance of LS meth-
ods and are problem-dependent. In this section, a focus is made on the neigh-
borhood generation in the intermediate-level layer.

The challenging issue of this level is to find efficient mappings between a
thread id and a particular neighbor. Indeed, on the one hand, the thread id is
represented by a single index. On the other hand, the move representation of a
neighbor varies according to the neighborhood. In the following, we provide a
methodology to deal with different structures of the literature.

4.1 Binary Representation

In binary representation, a solution is coded as a vector of bits. The neighborhood
representation for binary problems is based on the Hamming distance where a
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given solution is obtained by flipping one bit of the solution (for a Hamming
distance of one).

A mapping between LS neighborhood encoding and GPU threads is quiet
trivial. Indeed, on the one hand, for a binary vector of size n, the size of the
neighborhood is exactly n. On the other hand, threads are provided with a
unique id. That way, the kernel associated to the generation and evaluation
steps is launched with n threads (each neighbor is associated to a single thread),
and the size of the neighborhood fitnesses structure allocated on GPU is n. As
a result, a IN → IN mapping is straightforward.

4.2 Discrete Vector Representation

Discrete vector representation is an extension of binary encoding using a given
alphabet Σ. In this representation, each variable takes its value over the al-
phabet Σ. Assume that the cardinality of the alphabet Σ is k, the size of the
neighborhood is (k − 1) × n for a discrete vector of size n.

Let id be the identity of the thread corresponding to a given candidate solution
of the neighborhood. Compared to the initial solution which allowed to generate
the neighborhood, id/(k−1) represents the position which differs from the initial
solution and id%(k−1) is the available value from the ordered alphabet Σ (both
using zero-index based numbering).

As a consequence, a IN → IN mapping is possible. (k − 1)× n threads execute
the generation and evaluation kernel, and a neighborhood fitnesses structure of
size (k − 1) × n has to be provided.

4.3 Permutation Representation

Building a neighborhood by pairwise exchange operations is a standard way for
permutation problems. For a permutation of size n, the size of the neighborhood
is n×(n−1)

2 .
Unlike the previous representations, for permutation encoding a mapping be-

tween a neighbor and a GPU thread is not straightforward. Indeed, on the one
hand, a neighbor is composed by two element indexes (a swap in a permuta-
tion). On the other hand, threads are identified by a unique id. As a result, a
IN → IN×IN mapping has to be considered to transform one index into two ones.
In a similar way, a IN × IN → IN mapping is required to transform two indexes
into one.

Proposition 1. Two-to-one index transformation
Given i and j the indexes of two elements to be exchanged in the permutation
representation, the corresponding index f(i, j) in the neighborhood representation
is equal to i × (n − 1) + (j − 1) − i×(i+1)

2 , where n is the permutation size.

Proposition 2. One-to-two index transformation
Given f(i, j) the index of the element in the neighborhood representation, the

corresponding index i is equal to n − 2 − �
√

8×(m−f(i,j)−1)+1−1
2 � and j is equal
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to f(i, j) − i × (n − 1) + i×(i+1)
2 + 1 in the permutation representation, where n

is the permutation size and m the neighborhood size.

The proofs of these two index transformations can be found in [9]. The gen-
eration and evaluation kernel is executed by n×(n−1)

2 threads, and the size of
the neighborhood fitnesses structure is n×(n−1)

2 . Notice that for binary problem
encodings, the mapping of a neighborhood based on a Hamming distance of two
can be done in a similar manner.

5 Memory Management of Local Search Algorithms on
GPU

Task repartition between CPU and GPU and efficient thread mappings in par-
allel LS heuristics have been proposed on both high-level and intermediate-level
layers. In this section, the focus is on the memory management in the low-level
layer. Understanding the GPU memory organization and issues is useful to pro-
vide an efficient implementation of parallel LS heuristics.

5.1 Memory Coalescing Issues

In CUDA, each block of threads is split into SIMD groups of threads called
warps. At any clock cycle, each processor of the multiprocessor selects a half-
warp (16 threads) that is ready to execute the same instruction on different data.
Global memory is conceptually organized into a sequence of 128-byte segments.
The number of memory transactions performed for a half-warp will be the num-
ber of segments having the same addresses than those used by that half-warp.
Fig. 2 illustrates an example of the low-level layer for a simple vector addition.

For more efficiency, global memory accesses must be coalesced, which means
that a memory request performed by consecutive threads in a half-warp is asso-
ciated with precisely one segment. The requirement is that threads of the same

Fig. 2. An example of kernel execution for vector addition
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warp must read global memory in an ordered pattern. If per-thread memory ac-
cesses for a single half-warp constitute a contiguous range of addresses, accesses
will be coalesced into a single memory transaction. In the example of vector ad-
dition, memory accesses to the vectors a and b are fully coalesced, since threads
with consecutive thread indices access contiguous words.

Otherwise, accessing scattered locations results in memory divergence and
requires the processor to perform one memory transaction per thread. The per-
formance penalty for non-coalesced memory accesses varies according to the size
of the data structure. Regarding LS evaluation kernels, coalescing is difficult
when global memory access has a data-dependent unstructured pattern. As a
result, non-coalesced memory accesses imply many memory transactions and it
can lead to a significant performance decrease for LS methods.

Notice that in the latest cards (200-series), due to the relaxation of the
coalescing rules, applications developed in CUDA get better global memory
performance.

5.2 Texture Memory

Optimizing the performance of CUDA applications often involves optimizing
data accesses which includes the appropriate use of the various CUDA memory
spaces. The use of texture memory is a solution for reducing memory transactions
due to non-coalesced accesses. Texture memory provides a surprising aggregation
of capabilities including the ability to cache global memory. Indeed, each texture
unit has some internal memory that buffers data from global memory. Therefore,
texture memory can be seen as a relaxed mechanism for the thread processors
to access global memory because the coalescing requirements do not apply to
texture memory accesses. The use of texture memory is well adapted for LS
algorithms for the following reasons:

• Data accesses are frequent in the computation of LS evaluation methods.
Then, using texture memory can provide a high performance improvement
by reducing the number of memory transactions.

• Texture memory is a read-only memory i.e. no writing operations can be
performed on it. This memory is adapted to LS algorithms since the problem
data and the solution representation are also read-only values.

• Minimizing the number of times that data goes through cache can increase
the efficiency of algorithms. In most of optimization problems, problem in-
puts do not often require a large amount of allocated space memory. As
a consequence, these structures can take advantage of the 8KB cache per
multiprocessor of texture units.

• Cached texture data is laid out to give best performance for 1D/2D access
patterns. The best performance will be achieved when the threads of a warp
read locations that are close together from a spatial locality perspective.
Since optimization problem inputs are generally 2D matrices or 1D solution
vectors, LS structures can be bound to texture memory.
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6 Application to the Permuted Perceptron Problem

An ε-vector is a vector with all entries being either +1 or -1. Similarly an ε-
matrix is a matrix in which all entries are either +1 or -1. The PPP is defined
as follows according to [5]:

Definition 1. Given an ε-matrix A of size m × n and a multiset S of non-
negative integers of size m, find an ε-vector V of size n such that {{(AV )j/j =
{1, . . . , m}}} = S.

As the iteration-level parallel model does not change the semantics of the sequen-
tial algorithm, the effectiveness in terms of quality of solutions is not addressed
here. Only execution times and acceleration factors are reported. The objective
is to evaluate the impact of a GPU-based implementation in terms of efficiency.

A generic tabu search has been implemented on GPU using a binary encoding.
The adaptation to GPU of the tabu search is straightforward according to the
proposed GPU algorithm in the high-level layer (see Algorithm 1 in Section 3.2).
First, the specific LS pre-treatment on line 3 is the tabu list initialization. Second,
the replacement strategy (line 17) is performed by the best admissible neighbor
according to its availability in the tabu list. Finally, the specific post-treatment
(line 18) represents the tabu list update.

Experiments have been implemented on top of three different configurations.
The three GPU cards have a different number of multiprocessors (respectively 4,
16 and 30), which determines the number of active threads being executed. The
number of global iterations of the tabu search is 10000 and 10 runs were per-
formed for each instance. Time measurement is reported in seconds, and for both
GPU implementation and GPU version using texture memory (GPUtex), accel-
eration factors compared to a standalone CPU are designated using subindexes.
Standard deviation (not represented here) is close to zero.

Experimental results for a Hamming neighborhood of distance one are de-
picted in Table 1 (m-n instances). From m = 601 and n = 617, the standard
GPU version starts to provide better results (from ×1.1 to ×2.2). Regarding the
GPU version using texture memory, from m = 301 and n = 317, it starts to be

Table 1. Time measurements for the 1-Hamming distance neighborhood

Instance

Core 2X 2Ghz Core 4X 2.4Ghz Xeon 8X 3Ghz
8600M GT 8800 GTX GTX 280
4 multi-proc 16 multi-proc 30 multi-proc
GPU GPUTex GPU GPUTex GPU GPUTex

101-117 8.9×0.4 6.6×0.5 4.8×0.5 4.3×0.6 4.9×0.4 4.2×0.5

301-317 34×0.7 18×1.4 16×1.1 13×1.5 12×1.4 11×1.6

601-617 169×1.1 98×1.9 96×1.4 77×1.7 47×2.2 43×2.4

801-817 248×1.5 122×3.1 125×2.1 100×2.7 55×3.6 50×4.0

1001-1017 348×1.7 146×4.1 145×3.0 107×4.0 63×5.3 58×5.8

1301-1317 573×2.1 288×4.1 228×3.4 180×4.3 93×7.4 85×8.0
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faster than CPU version for both configurations (from ×1.4 to ×1.6). The speed-
up grows with the problem size increase (up to ×8 for m = 1301, n = 1317).
The acceleration factor for this implementation is significant but not impressive.
This can be explained by the fact that since the neighborhood is relatively small
(n threads), the number of threads per block is not enough to fully cover the
memory access latency.

To validate this point, a neighborhood based on a Hamming distance of two
on top of GPU has been implemented. Incremental evaluation is performed by
a larger number of threads (n×(n−1)

2 threads). The obtained results from ex-
periments are reported in Table 2. Due to misaligned accesses to global mem-
ories (ε-matrix and ε-vector) of this new neighborhood, non-coalescing memory
reduces the performance of the GPU implementation on G80 series. Binding
texture on global memory allows to overcome the problem. Indeed, for the first
instance (m = 101, n = 117), acceleration factors of the texture version are
already important (from ×4 to ×19). As long as the instance size increases, the
acceleration factor grows accordingly (from ×4 to ×8.1 for the first configura-
tion). Since a large number of multiprocessors are available on both 8800 and
GTX 280, efficient speed-ups can be obtained (from ×13 to ×42.6). As a con-
sequence, parallelization on top of GPU provides an efficient way for handling
large neighborhoods.

Table 2. Time measurements for the 2-Hamming distance neighborhood

Instance

Core 2X 2Ghz Core 4X 2.4Ghz Xeon 8X 3Ghz
8600M GT 8800 GTX GTX 280
4 multi-proc 16 multi-proc 30 multi-proc
GPU GPUTex GPU GPUTex GPU GPUTex

101-117 13×0.7 2.5×4.0 4.1×1.8 0.6×13.0 0.6×12.8 0.4×19.0

301-317 251×0.9 58×4.9 61×2.8 10×16.0 9.5×17.8 6.2×27.4

601-617 1881×1.7 512×6.3 355×7.1 88×28.5 67×30.5 51×40.2

801-817 4396×2.0 1245×6.9 815×8.5 210×32.9 152×35.4 128×42.2

1001-1017 8474×2.1 2502×7.0 1469×9.8 416×34.7 291×38.1 262×42.2

1301-1317 17910×2.2 4903×8.1 3050×10.9 912×36.4 647×38.7 587×42.6

7 Discussion and Conclusion

High-performance computing based on the use of GPUs is recently revealed to
be a good way to accelerate computational applications. However, the exploita-
tion of parallel models is not trivial and many issues related to GPU memory
hierarchical management of this architecture have to be considered. To the best
of our knowledge, GPU-based parallel LS approaches have never been deeply
investigated.

In this paper, efficient mapping of the iteration-level parallel model on the
GPU has been proposed according to a three-level decomposition of the GPU
hierarchy. In the high-level layer, the CPU manages the whole LS process and
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let the GPU be used as a coprocessor dedicated to intensive calculations. Ef-
ficient mappings between neighborhood candidate solutions and GPU threads
were made in the intermediate-level layer. Memory management is handled at
the low-level layer. Code optimization based on texture memory is applied to
the evaluation function kernel. The re-design of the parallel LS iteration-level
model on GPU fits well for deterministic LS methods such as tabu search and
iterated local search. Indeed, for problem instances with a large neighborhood
set, the reported speed-ups provide promising results on the PPP (up to ×40
with texture memory) compared to traditional CPUs. A next perspective is to
apply our approach on other problems using different representations.

The approach presented in this paper might be easily extended to the variable
neighborhood search heuristic, in which the same parallel exploration is applied
for various neighborhoods. However, few other LS algorithms only partially ex-
plore neighborhoods and take the first improving local neighbor that is detected.
Applied to LS algorithm such as simulated annealing, this model needs to be
re-thought.
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Abstract. The Minimum Routing Cost Spanning Tree problem is an
optimization problem that strongly benefits from local search. Well-
established approaches are the Ahuja-Murty local search and a weaker
subtree search used in an evolutionary framework. We present a new
and efficient cycle search that has a lower time complexity but achieves
the same results as the strong but slow Ahuja-Murty local search. More-
over, we show that an evolutionary framework using this cycle search
outperforms previous approaches regarding both quality and time. Our
approach is able to find (near-)optimal solutions in all runs for all tested
instances.

1 Introduction

In many applications, such as Peer-to-Peer Topology Construction, Desktop
Grids, or telecommunication networks, the problem arises to find a common
spanning tree that minimizes the routing cost for all pairs of nodes in the
network. This problem is called the Minimum Routing Cost Spanning Tree
(MRCST). It is a special case of the Optimum Communication Spanning Tree
(OCST), which was introduced by Hu in [1]. Both MRCST and OCST are NP-
hard graph optimization problems [2,3].

In this paper, we want to concentrate on the MRCST and present a new and
efficient local search based on a cycle search. We will show that this CycleLS,
when used in an Evolutionary Local Search (ELS) framework, takes less time and
finds better solutions than the subtree local search we presented in [4]. We will
also compare CycleLS to a well-established local search for the OCST, Ahuja-
Murty Local Search (AMLS) [5], and show that CycleLS performs slightly better
and requires much shorter time than an adaptation of AMLS for the MRCST.

1.1 Problem Formulation

The problem can be formulated as follows: Given a weighted graph G = (V, E, d)
and a demand matrix r, find a spanning tree T ⊆ E that minimizes the routing
cost:

P. Cowling and P. Merz (Eds.): EvoCOP 2010, LNCS 6022, pp. 276–287, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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C(T ) =
∑
u∈V

∑
v∈V

dT (u, v) · r(u, v) (1)

The function dT (u, v) denotes the length of the path from u to v in T , i. e. the
sum of the distances di,j of all edges of this path.

In the MRCST, the demand is a constant r ≡ 1, while in the OCST it is a full
demand matrix r : V × V → R. If we use a directed tree rooted at an arbitrary
node v∗ ∈ V , equation (1) for the MRCST can be reformulated to show the
weights on the edges [4]:

C(T ) =
∑

v∈V \{v∗}
CT (v) (2)

with CT (v) = 2 · sT (v) · (n − sT (v)) · d (v, pT (v)) (3)

Here, n = |V | denotes the size of the tree, sT (v) denotes the size of the subtree
rooted at v, pT (v) denotes the parent of v in the directed tree T , and (v, pT (v))
denotes the edge between v and its parent. The cost CT (v) of this edge is calcu-
lated by weighing the edge’s length with the number of connections that traverse
it. Since each node needs to communicate to every other node (r ≡ 1), the num-
ber of connections traversing an edge is twice the product of the number of nodes
on one side of the edge and the number of nodes on the other side of the edge.
The root node v∗ does not contribute to the cost, it has no parent.

Using formulation (2), we can calculate the routing cost of a tree T in linear
time, compared to a quadratical time for formulation (1).

1.2 Related Work

Wu and Chao showed that the Shortest Path Tree (SPT) rooted at the median
node is a 2-approximation of the MRCST [6]. The median node is the node that
has the minimal distance to all other nodes in the network when distance is
measured via shortest paths only. This node can be found in polynomial time
by constructing all SPTs, and picking the shortest one.

Based on this 2-approximation Wu et al . proposed a Polynomial Time Approx-
imation Scheme to find a (1 + ε)-approximation in O(n2� 2

ε −2) time [7]. They
also show how the general case can be reduced to the metric case by replacing all
edges that violate the triangle inequality with their corresponding shortest path.
A solution for this metric closure graph can be transformed back to a solution
for the original graph without increasing its cost.

In [4], we presented an Evolutionary Local Search (ELS) based on subtree
moves, which can find near-optimal solutions in relatively short time. We also
presented a set of test instances based on real world Internet data, which has
since been used in other research concerning a variety of network topology opti-
mization problems. It is this ELS that we want to improve upon.

In [8], Singh presented a perturbation based local search using a randomized
variant of the AMLS shown in Section 2.4. However, he failed to make use of
the reduced complexity Ahuja and Murty presented in [5], so his local search is
weaker, but has the same high time complexity as the AMLS.
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s ← Initialization()
s ← LocalSearch(s)
mut ← n set mutation rate to problem size
for iter = 1 . . . κ do

s∗ ← s
for i = 1 . . . λ do

if mut = n then
stemp ← Initialization()

else
stemp ← Mutate(s, mut)

stemp ← LocalSearch(stemp)
s∗ ← min{s∗, stemp}

if s∗ < s then
s ← s∗

else
mut ← round(mut · α) decrease mutation rate

return s

Fig. 1. The Evolutionary Local Search (ELS) Framework

2 Evolutionary Local Search

In this section we introduce our new and efficient CycleLS, and give a short
description of the Evolutionary Local Search (ELS) framework, which was al-
ready used in [4]. The ELS works by starting from a valid tree and applying
small changes, called moves, to the current tree. In order to escape from local
optima, a mutation step is applied. The ELS framework is similar to Iterated
Local Search (ILS) [9] or Memetic Algorithms (MAs) [10]. Its structure is shown
in Fig. 1. It differs from a pure ILS by using more than one offspring in each
iteration. It also differs from usual MAs, because it does not use recombination.

2.1 Initialization

The first tree in the ELS is produced by connecting all nodes in random order
to a random node that is already part of the tree. By starting from a random
tree, we give away the opportunity to use an approximation as a starting point,
and therefore cannot guarantee an approximation ratio for the ELS. However,
random trees can be generated faster than any approximation, and they give
higher diversification, allowing exploration of different parts of the solution space.

2.2 Mutation

In order to adapt the mutation rate to the current state of the search, we use
the following scheme from [4]: We use a higher mutation rate in the beginning
of a run and decrease the mutation rate for each non-improving step. The ELS
stays at the highest mutation rate as long as this gives an improvement. Thus it
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can fall back to random restart. When the search reaches better solutions, and
random restart fails to find further improvements, the ELS gradually shifts from
exploration toward exploitation using the mutation rate adaptation scheme.

The actual mutation is done by moving random subtrees to random new posi-
tions. However, in the beginning of the search, when the mutation rate demands
to move n subtrees to new positions, the ELS simply generates a new random
tree instead. The mutation rate is reduced by 20% in each non-improving it-
eration (α = 0.8 in Fig. 1), and to prevent the ELS from being stuck once the
mutation rate drops too low, the lowest mutation rate is set to 2.

2.3 Population

The ELS uses a population of only one individual. In each generation, it produces
λ offspring using mutation and local search, out of which the best individual re-
places the original if there was an improvement. Thus, when only λ = 1 offspring
is produced, the ELS behaves similarly to an ILS with κ + 1 iterations, but still
adapts the mutation rate to the current search progress. With κ = 1, the ELS
equals random restart with λ + 1 iterations. Thus by varying the parameters
κ and λ, we can observe how well a specific local search is suited for random
restart, ILS, and ELS.

The ELS can also be expanded to a full Memetic Algorithm (MA) by using a
larger population and a suitable recombination.

2.4 Local Search

Since the MRCST is a special type of an OCST, each local search for the OCST
can be used for the MRCST. The most prominent local search for the OCST is
the Ahuja-Murty Local Search (AMLS) [5]. But any local search for trees can
be used as well. In this section, we present our CycleLS, and compare it to the
AMLS and ST-2opt from [4].

Ahuja-Murty Search. Ahuja and Murty originally presented a construction
heuristic as well as a local search in [5]. Both algorithms have the same structure,
as they calculate the cost for an edge that is inserted in the tree. In the AMLS,
the tree is split in two parts by removing an edge e. Both parts, called S and S
are reconnected using the least expensive edge {i, j}, i ∈ S, j ∈ S. Two sets of
variables are calculated: wi and hi. The total demand from node i to the other
part of the tree is stored in wi, while hi gives the cost for routing the demands
of the whole tree part to node i:

wi =

{∑
j∈S r(i, j) i ∈ S∑
j∈S r(i, j) i ∈ S

hi =

{∑
j∈S wj · dT (i, j) i ∈ S∑
j∈S wj · dT (i, j) i ∈ S

(4)

Here, dT (i, j) is the length of the path from i to j in the corresponding part of
the tree. Using these values, the increase in cost can be computed as the sum of
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the routing cost to i and j in their respective parts of the tree plus the cost for
routing the demands over the new edge {i, j}:

αij = hi + hj + dij ·
∑
x∈S

wx (5)

By removing the initial edge, the cost is reduced according to the same calcula-
tions. The total gain g of exchanging edge e with {i, j} is simply:

g = C(T ) − C(T ∪ {{i, j}} \ {e}) = αe − αij (6)

Since in the MRCST we have equal demands r ≡ 1, the calculation can be
simplified. The demand only depends on the size of the two parts of the tree:

wi =

{∣∣S∣∣ i ∈ S

|S| i ∈ S
hi =

{
wi ·

∑
j∈S dT (i, j) i ∈ S

wi ·
∑

j∈S dT (i, j) i ∈ S
(7)

αij = hi + hj + dij · wi · (n − wi) (8)

The first step in this calculation lies in determining the two parts of the tree and
determining the path lengths. All path lengths in the tree can be calculated in
O(n2) time. They can be stored, as they do not change until the tree is changed.
Determining the side each node is on can be done in O(n) time. This has to
be done for every edge that is to be removed. Calculating all hi values can be
done in O(n2) time, and again they have to be recalculated for every edge to be
removed. So calculating the gain for every new edge can be done in O(n2) time,
and finding the best pair of edges to be exchanged can be done in O(n3) time.
The time complexity of the AMLS is the same for MRCST and OCST.

Cycle Search. During the AMLS, the tree is split first, before reconnecting the
parts by inserting an appropriate edge. This can be reversed: Inserting an edge
in a spanning tree creates a cycle. To repair the tree, the cycle has to be broken
by removing an edge from the cycle. The resulting graph is again a spanning
tree.

In the proposed CycleLS, each of the O(n2) edges is tried to be inserted. The
insertion creates a cycle of at most n edges. If the tree is balanced, the expected
cycle length is in O(log n). For the following explanation, we enumerate the
nodes in the cycle: (1, 2, 3, . . . , m, 1), and call the inserted edge (1, m).

Determining the gain of removing an edge from the cycle can be done in O(1)
time, using a set of auxiliary variables. First, the number of paths crossing the
cut (i, i + 1) can be determined as 2 ·

(∑i
x=1 cx

)
·
(∑m

x=i+1 cx

)
. Here, cx gives

the number of nodes that node x connects to the cycle. The factor 2 is needed
because paths exist for both directions. See Fig. 2 for an example with m = 5
nodes in the cycle. In this example, c1 = c3 = c5 = 1, c2 = 2, and c4 = 3. The
cut at edge (2,3) affects 2 · (1+ 2) · (1+3+1) paths. Calculating the gain on the
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1

2

3

4

5e

cut

Fig. 2. Calculating the gain for CycleLS. By inserting edge e = (1,5), a cycle
(1,2,3,4,5,1) is formed. Cutting an edge, e. g. (2,3), affects some of the paths between
those nodes, here: {1,2}×{3,4,5}. After the cut, these paths are routed over edge e,
taking the opposite direction in the cycle, but the remaining paths are left untouched.

ChangeRoot(m) updates all sT (i), O(n), done in outer loop

� ← dm,1

for i = 1 . . . m − 1 do
� ← � + di,i+1 calculate the length of the cycle

c1 ← sT (1)
for i = 2 . . . m do

ci ← sT (i) − sT (i − 1) calculate the number of nodes behind i

rafter ← n stores the sum of demands after the cut
�after ← 0 stores the sum of half-weighted path lengths after the cut
for i = 1 . . . m − 1 do

rafter ← rafter − ci

�after ← �after + rafter · di,i+1

rbefore ← 0 stores the sum of demands before the cut
�before ← 0 stores the sum of half-weighted path lengths before the cut
for i = 1 . . . m − 1 do

rbefore ← rbefore + ci

rafter ← n − rbefore

�before ← �before + rbefore · di,i+1

�after ← �after − rafter · di,i+1

pi,i+1 ← �before · rafter + rbefore · �after calculate the sum of weighted path lengths
gi,i+1 ← 2 · (2 · pi,i+1 − rbefore · rafter · �) calculate the gain of a cut at (i, i + 1)

Fig. 3. Calculating the gain of removing an edge from the cycle. The cycle is induced by
edge e = (1, m) and consists of the nodes 1 . . . m, in this order. The gain for removing
edge (i, i + 1) is stored in gi,i+1. All operations can be performed by iterating from
node 1 to m using the parent pointers. Changing the root to m and calculating the
sizes of the subtrees sT (i) is supposed to be done in an outer loop.
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cut edge can be done by multiplying this value with the length of the cut edge
di,i+1. Using running sums, this calculation can be done in O(1).

However, this is not the total gain of this exchange, as the paths extend before
and after the cut edge. Since these paths have different lengths and are used by
different numbers of nodes cx, the calculation seems expensive at first glance.
Nevertheless, it can still be achieved in O(1) using running sums of path lengths,
as Fig. 3 shows.

After calculating the weighted sum of path lengths pi,i+1 over the cut (i, i+1),
the gain can be obtained by replacing these paths (adds pi,i+1 to the gain) with
paths in the opposite direction of the cycle (substracts rbefore · rafter · 	 − pi,i+1
from the gain). A factor of 2 is needed to account for the fact that each path is
used in both directions.

Using this algorithm, the best exchange can be found in O(n3) time, which is
the same time complexity as the AMLS, but the expected time is in O(n2 · log n).
Since both AMLS and CycleLS pick the best pair of edges to exchange, both
lead to the same local optima. However, it remains to be seen in the experiments
which local search is faster.

Subtree Search. The subtree searches we presented in [4] are based on an at-
tempt to further reduce the complexity of the cycle search. Instead of considering
all edges from the cycle, the subtree searches only consider the edge adjacent
to the newly inserted edge. Thus, a node is disconnected from its parent and
reconnected to another part of the tree, taking its subtree along.

We will use the strongest subtree search from [4] and call it ST-2opt. It uses
two types of moves shown in Fig. 4. In move (a), a subtree is moved to a different
part of the tree. We improved upon the original formulation in [4] by allowing
node i to connect to a node q in its own subtree. To avoid creating cycles, we
have all parent pointers point in the direction of q. In move (b), two subtrees
are swapped. The gain g of these moves can be calculated easily when using
formulation (2). For both moves, only those CT (v) have to be recalculated that
do change. Affected are all nodes for which the number of children or the parent
edge changes, i. e. all nodes on the path P in the tree T from i to the new parent
q (or from i to j for move (b)):

g = C(T ) − C(T ′) =
∑
v∈P

(CT (v) − CT ′(v)) (9)

p q

i

⇒ p q

i

(a) Connecting to a different parent

p q

i

⇒ p q

i

(b) Swapping parents of two nodes

Fig. 4. Two types of subtree moves
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The number of updates is expected to be in O(log n), but in the worst case, if
the tree degenerates to a single path, it is linear in n. If we assume an expected
path length of O(log n), the time to search the complete neighbourhood becomes
O(n2 log n), which is the same as the CycleLS. Since CycleLS already covers
move (a), the subtree search seems weaker. But CycleLS does not cover move
(b), which can be seen as two moves of type (a) applied consecutively. This
difference can give ST-2opt an advantage.

3 Experiments

In order to evaluate the ELS and compare the proposed CycleLS to the es-
tablished AMLS and ST-2opt, we use the same real world problem instances
as presented in [4]. These instances are based on delay measurements in the
PlanetLab [11], a platform connecting computers around the world to form a
global research network for the development of new network services. In [12],
the interdomain connectivity of PlanetLab is analyzed, showing that triangle in-
equality violations are frequent even in such a small and controlled environment
as the PlanetLab. The Round Trip Time (RTT) measurements used in [12] are
accredited to Jeremy Stribling, who provided RTT measurements between Plan-
etLab hosts taken every 15 minutes from February 2003 to December 2005 [13].
Our instances are taken from the first measurement for each month of the year
2005 (denoted by mm-2005), using the minimal RTTs rounded to milliseconds as
communication costs for the links. The measurements are flawed, not all hosts
in PlanetLab were reachable all the time, in some cases measurements for single
edges are missing for no obvious reasons. After eliminating hosts that did not
report any measurements or that reported only a few measurements, the reduced
distance matrices consist of 70 to 419 nodes.

Table 1 gives an overview over the PlanetLab instances. The percentage of
missing links varies between 3.2% and 7.8%. Triangle inequality violations are
very frequent, between 64.2% and 86.0% of all links do not represent the shortest
path between the corresponding nodes. Column APSP (All-Pairs-Shortest-Path)
shows the total communication cost when only shortest paths are used for com-
munication. This is the best communication cost achievable by any topology and
therefore a valid lower bound for the MRCST. Column Direct gives the commu-
nication cost when only direct links are used. Because of the triangle inequality
violations this value is higher. Comparing this column to the APSP shows the
degree of triangle inequality violations in the networks. Using shortest paths in-
stead of direct links helps reducing the communication cost by at least 12.0%
(04-2005) and up to 68.9% (12-2005) in these networks.

Also shown are the costs for the SPT rooted at the median, which gives an
upper bound and a 2-approximation to the MRCST. This upper bound is already
better than the direct connection, with the exception of only three instances. The
last column in Table 1 gives the best known solution for the MRCST. In only
one of the considered instances this gives a slightly worse cost than using direct
connections (04-2005).
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Table 1. Overview of the PlanetLab instances. For each instance, the network size,
the percentage of missing links (missing), the percentage of links violating the trian-
gle inequality (TIV), and the communication costs using either shortest paths for all
connections (APSP), direct connections (Direct), the SPT rooted at the median node
(SPT), or the best known solution for the MRCST (Best) are shown.

Instance Size missing TIV APSP [ms] Direct [ms] SPT [ms] Best [ms]

01-2005 127 3.2 % 79.8 % 2 447 260 3 868 930 3 025 120 2 743 556
02-2005 321 6.0 % 83.5 % 15 868 464 18 045 792 19 607 936 17 567 152
03-2005 324 7.8 % 84.3 % 17 164 734 19 551 610 21 117 374 19 288 320
04-2005 70 3.7 % 64.2 % 663 016 725 532 787 856 751 404
05-2005 374 6.3 % 86.0 % 17 324 082 25 198 386 19 949 036 19 175 890
06-2005 365 7.1 % 85.3 % 18 262 984 24 982 820 22 217 312 20 312 884
07-2005 380 3.8 % 85.1 % 24 867 734 35 449 904 29 288 762 27 731 218
08-2005 402 3.8 % 84.0 % 27 640 136 36 000 372 32 209 226 30 540 984
09-2005 419 5.9 % 85.5 % 23 195 568 36 620 526 27 204 468 25 712 960
10-2005 414 5.8 % 83.8 % 28 348 840 40 139 262 33 639 378 31 195 732
11-2005 407 5.5 % 83.2 % 23 694 130 31 144 230 29 322 480 26 797 284
12-2005 414 6.0 % 83.4 % 20 349 436 61 751 346 25 985 050 22 723 454

3.1 Results

We performed several experiments to evaluate the effectiveness of the different
local searches as well as the evolutionary framework. All algorithms were im-
plemented in C++, CPU times reported in this section refer to a Xeon E5420
(2.5GHz, running Linux), and results are averaged over 30 runs for each instance.

In a first set of experiments, we varied the number of generations κ, the
number of offspring λ, and the local search used in the ELS. The results for
these experiments are shown in Table 2. To allow for quick comparison, we
print the same number of digits for the values in each column. In the following
paragraphs, we will discuss certain parts of this table in more detail.

Iterated Local Search (ILS). When setting the number of offspring to λ = 1,
the ELS behaves like an ILS. All local searches reached solution quality of less
than 1 % gap after the first iteration (κ = 1), and further improve this quality
during the following iterations. The subtree search ST-2opt is weaker and slightly
slower than CycleLS. Interestingly, our proposed CycleLS is not only faster than
the AMLS, but also finds better solutions with about half the gap to the best
known solutions, thus making it the best choice for finding best solutions.

During ILS mode, no local search is able to find all best known solutions in
all runs even with κ = 1000 iterations. CycleLS finds the best known solution in
about 3/4 of the runs, ST-2opt finds them in about 7/12 of the runs, and AMLS
finds them in almost 1/2 of the runs, with a slightly better gap than ST-2opt.

Random Restart. Using only κ = 1 iteration, the ELS produces the same
results as random restart with λ+1 iterations. For the considered local searches,
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Table 2. Results for the ELS. For the various local searches, numbers of iterations
κ, and numbers of offspring λ, the CPU times and gaps to the best known solutions
are shown. These values are averaged over all 12 instances and 30 runs each, totalling
360 runs for each parameter set. The columns Best give the number of runs that found
the best known solution.

ST-2opt CycleLS AMLS
κ λ Time [s] Gap [%] Best Time [s] Gap [%] Best Time [s] Gap [%] Best

1

1 0.3 0.97014 19 0.2 0.52725 55 128.5 0.51195 56
10 1.9 0.18579 60 1.4 0.04615 162 739.2 0.08945 108
100 17.8 0.00894 199 12.9 0.00050 307 6731.1 0.00325 213

10

1 1.5 0.32805 107 1.1 0.11449 187 425.6 0.16368 149
10 14.0 0.01813 312 10.3 0.00066 351 4191.5 0.00312 291
100 133.7 0.00007 358 99.2 0.00000 360 39296.8 0.00007 356

10
0

1 4.4 0.25586 159 3.6 0.08862 244 542.0 0.15439 165
10 43.1 0.01499 328 34.7 0.00063 353 5456.0 0.00215 304
100 420.4 0.00007 359 341.1 0.00000 360 50889.9 0.00004 358

10
00

1 29.3 0.17630 213 24.9 0.05947 277 1154.5 0.14654 179
10 290.4 0.01135 336 247.8 0.00062 354 11922.3 0.00196 320
100 2914.7 0.00007 359 2477.1 0.00000 360 114978.7 0.00004 358

random restart takes longer, but produces better results than the ILS (comparing
(κ, λ) = (1, 100) with (100, 1)). However, random restart still fails to find the
best known solutions in more than one third of the runs for ST-2opt and AMLS,
and about one sixth of the runs for CycleLS.

Evolutionary Local Search (ELS). When using the full ELS with κ > 1 and
λ > 1, we can see that increasing the number of offspring λ significantly increases
the average solution quality. All local searches with κ = 1000 generations and
λ = 100 offspring per generation find the best solutions very frequently. The
best local search is CycleLS, which found all best solutions in all 360 runs in at
most κ = 5 iterations, taking an average of 18 s and at most 146 s. AMLS failed
to find the best known solutions in two runs, and the weaker ST-2opt failed in
only one run but produced a higher gap.

A statistical analysis with 95% confidence shows no significant difference be-
tween the quality of these local searches with κ ≥ 10 and λ = 100, where almost
all runs found the best solutions. In all other settings, ST-2opt was significantly
worse than CycleLS and AMLS, except for κ = 1000 where the difference to
AMLS is not significant. CycleLS was also significantly better than AMLS with
κ = 1 and λ ≥ 10, or with κ ≥ 100 and λ = 1.

The disadvantage of all considered local searches is their high complexity
(O(n2 log n)). With κ = 1000 iterations and λ = 100 offspring, their running
times can already be measured in hours. When considering larger networks,
randomized variants (Nfast from [4] or a randomized CycleLS) with complexity
O(n log n) should be preferred. Although they tend to converge to lower-quality
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Table 3. Properties of the local optima. For each local search neighbourhood, the
minimal, average, and maximal Fitness Distance Correlation (FDC) coefficient for the
considered PlanetLab instances is shown.

Excess [%] FDC Distance
LS min avg max min avg max min avg max

ST-2opt 0.9 1.8 2.4 0.40 0.63 0.87 17 53 75
CycleLS 0.4 1.1 1.8 0.53 0.72 0.92 12 45 74
AMLS 0.4 1.0 1.6 0.38 0.73 0.93 13 46 69

solutions, they already provide reasonably good results when given less time
than one iteration of their full counterparts.

3.2 Fitness Distance Analysis

To evaluate the potential of the local searches, we analyzed the properties of the
local optima. For each local search, we searched for 1000 local optima, starting
from 1000 random solutions, and measured the percentage excess over the best
solution and the distance in the solution space to the best solutions (i. e. the
number of edges not found in any of the best solutions). From these values
we calculated the Fitness Distance Correlation (FDC) coefficient of the local
optima for each problem instance. The results are displayed in Table 3, giving
the minimal, maximal, and average values for all 12 PlanetLab instances.

When comparing the average excess of the local searches, the same conclusions
can be drawn as from the ELS results. Using ST-2opt leads to local optima with
higher gaps to the best known solutions. CycleLS and AMLS produce roughly
the same results with about half the gap of ST-2opt, but no local search can find
the global optimum in all runs without an ELS.

The distance to the best solutions in the solution space indicates how many
changes have to be applied to the local optima in order to reach a best solution. It
is bounded by the number of edges n − 1 in the solution tree. In the considered
PlanetLab instances, the size varies between 69 and 418, with an average of
333.75. The values for the average distance for all local searches show that the
local optima are still far from the best solutions in the solution space. On average,
between every sixth and every seventh edge has to be changed to reach the best
known solutions when starting from these local optima.

If the FDC correlation coefficient is positive, shorter distances correlates with
better solutions. For all considered local searches and problem instances, the
FDC coefficient is positive, indicating that an evolutionary algorithm can exploit
the structure of the search space.

The FDC coefficients as well as the FDC scatter plots indicate that inde-
pendent of the used local search the fitness landscapes appear to be correlated,
and a recombination might be effective. However, as the ELS already finds the
best known solutions in almost all runs using these local searches, recombination
seems unnecessary.
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4 Conclusion

We presented a new local search CycleLS for the MRCST. It has lower time
complexity than the AMLS from [5], and is stronger than ST-2opt from [4]
which has the same time complexity. In experiments conducted on real world
instances, we showed that CycleLS outperforms both competitors considering
time and solution quality. When used in an ELS with κ = 5 and λ = 100,
CycleLS found the best known solutions of all considered instances in every run.

References

1. Hu, T.C.: Optimum Communication Spanning Trees. SIAM Journal of Comput-
ing 3(3), 188–195 (1974)

2. Johnson, D.S., Lenstra, J.K., Rinnooy Kan, A.H.G.: The Complexity of the Net-
work Design Problem. Networks 8, 279–285 (1978)

3. Garey, M.R., Johnson, D.S.: Computers and Intractibility: A guide to the theory
of NP-completeness. W. H. Freeman and Co., San Francisco (1979)

4. Merz, P., Wolf, S.: Evolutionary Local Search for Designing Peer-to-Peer Overlay
Topologies based on Minimum Routing Cost Spanning Trees. In: Runarsson, T.P.,
Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.)
PPSN 2006. LNCS, vol. 4193, pp. 272–281. Springer, Heidelberg (2006)

5. Ahuja, R.K., Murty, V.V.S.: Exact and Heuristic Algorithms for the Optimum
Communication Spanning Tree Problem. Transportation Science 21(3), 163–170
(1987)

6. Wu, B.Y., Chao, K.M.: Spanning Trees and Optimization Problems. In: Discrete
Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2004)

7. Wu, B.Y., Lancia, G., Bafna, V., Chao, K.M., Ravi, R., Tang, C.Y.: A Polynomial-
Time Approximation Scheme for Minimum Routing Cost Spanning Trees. SIAM
Journal of Computing 29(3), 761–778 (1999)

8. Singh, A.: A New Heuristic for the Minimum Routing Cost Spanning Tree Problem.
In: International Conference on Information Technology (ICIT 2008), pp. 9–13.
IEEE Computer Society, Los Alamitos (2008)
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