Chapter 8
Nonlinear Beams and Rods

In this chapter, nonlinear theories for rods and beams will be discussed in the Car-
tesian coordinate frame and the curvilinear frame of the initial configuration.
Without torsion, the theory for in-plane beams will be presented. The traditional
treatises of nonlinear rods were based on the Cosserat’s theory (e.g., E. and F.
Cosserat, 1896) or the Kirchhoff assumptions (e.g., Kirchhoff, 1859; Love, 1944).
This chapter will extend the ideas of Galerkin (1915), and the nonlinear theory of
rods and beams will be developed from the general theory of the 3-dimensional
deformable body. The definitions for beams and rods are given as follows.

Definition 8.1. If a 1-D deformable body on the three directions of fibers resists
internal forces, bending and twisting moments, the 1-D deformable body is called
a deformable rod.

Definition 8.2. If a 1-D deformable body on the three directions of fibers resists
internal forces and bending moments, the 1-D deformable body is called a de-
formable beam.

8.1. Differential geometry of curves

Consider an initial configuration of a nonlinear rod as shown in Fig.8.1. The unit
vectors 1, (1 =1,2,3) are the base vectors for the Cartesian coordinates and the

based vectors G, (=1, 2,3) for the curvilinear coordinates are defined later.
To present the nonlinear rod theory, it is assumed that the base vector G, is nor-
mal to the surface formed by the other base vectors G, and G, . The surface
formed by the vectors G, and G, is called the cross section of the rod. The mate-

rial particle on the central curves of the intersections of two neutral surfaces in the
initial configuration is
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318 8 Nonlinear Beams and Rods

Fig. 8.1 A material particle P on an initial configuration of a nonlinear rod.

R=X'(91,, 8.1

where S' =8 and S* =S° =0. From Eq.(8.1), the base vectors for the rod can be
obtained. The base vector in the tangential direction of the rod is defined by
T
1 =%=aa); I, :X,{SI[ =G/1,. (8.2)
Note that () ¢ =(-), and the metric measure is given by

_ax’ ax!

T8 os X1X|=G/G/ (summation on /). (8.3)

and

XI
1, (8.4)

G
N =—L =

while an arc length variable s is defined by

ds = /G, dS, (8.5)

N, =X'I, and G,=/G,, X'I, =G/ (8.6)
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with X' X\ =1. The direction of G, is the tangential direction of the initial

configuration of the rod curve. From differential geometry in Kreyszig (1968), the
curvature vector can be determined by
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G, =61, =Py,
ds
dN, dS 1
=S = - X ®7)
11

and

1
6! = X} (XX - xixtxg )

u (8.8)
1
G =G0 === (X[ XD TXD = (XX )* |
11
The curvature of the rod in the initial configuration is
K= | GZ | = \/GZZ = \'X,[:SX,[:S
JLX DX (XX )2
= = . (8.9)
Gll
The unit principal normal vector is given by
T
N2: Gz :&:il[’ ﬁ: G2:K‘N2. (810)
G, Kk K ds
The unit bi-normal vector is defined by
N, =N, xN, (8.11)
and let
. G/ Gf
N, =G/1, with G} =, ———=—2 (8.12)

JG, x(S)’

where e, is the Ricci symbol in Eq.(2.105). Therefore, G, =G, G, =1 (summa-
tion on I)

Consider the change rate of the unit bi-normal direction with respect to the arc
length (s), which gives

N, =—N, = T:—N2~dN3. (8.13)
ds ds

The torsional curvature of the rod (or torsion of the curve called in mathematics)
is

1
K

T= [R,:R,:SR,S:S]
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_ [R,lR,llR,lll]
(R,n 'R,n)(R,l 'R,l)_(R,l 'R,n)z
€k XI] X,{] X,[]<l 1

(XX XX ) —(X X))

Based on the definition of unit based vector, the vector product gives
N, =N,xN,, N, =-N, xN,, N, =-N, xN,.

With Eqgs.(8.10) and (8.13),

dN, dN dN
2=—2xN +N,x—
ds ds ds
=—7N, XN, + kN, XN,
=-kN, +7N;.

Thus, from the formulae of Frenet (1847),

AN,

ddl\j 0 x O]N,

dz =|-k 0 7| N,|,

A)

dN, 0 -7 O||N,

L ds |
T
ds 0 G,x 0 |IN,
dN
dSz =| -G, x 0 G,T||N, |
dN, 0 -G,z 0 |[N;
L dS |

Consider a rotation vector ( or the vector of Darboux)
o =7N, + kN,

Equations (8.17) and (8.18) become

dN dN

—L=0xN,, —2=0xN,,—>=oxN,,

ds ds ds
dN dN dN
d—Sl=ﬂG“(DXN1, d—S2= G“(DXNZ, —S3= G“(DXN3.

Consider a material point R on the cross section of the rod

(8.14)

(8.15)

(8.16)

(8.17)

(8.18)

(8.19)

(8.20)

(8.21)
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R=X'(8",8%,8M1,. (8.22)

Without loss of generality, S', S*and S° are collinear to the directions of N,, N,
and N, respectively. On the cross section of N, any variable can be converted
on the two directions of N, and N,.

Consider a displacement vector field at the pointR to be
u=u'(",5,8HI, or u=u"(8",5,5%G,. (8.23)

From the previous definitions,

N, = = I, (8.24)

The particle in the deformed configuration is expressed by the location and dis-
placement vectors, i.e.,

r=R+u=(X"+u4'(5',8%,8°)I,, or
r=R+u=(S"+u"(5',5*,5)G,

(8.25)

and the corresponding infinitesimal line element of the deformed rod is
dr =dR+du= (X, +u,)dS],
= (0, +u,)dS’G,. (8.26)
The base vector for the deformed rod becomes
g, = (X, +u )l = (8] +uy)G, (8.27)
and the corresponding unit vector is
X [a + u[a

n,= I,
JOXE +uf )X +u)

A A
o, +u,

= G,.
JGr @+l )& +uly

(8.28)

8.2. A nonlinear theory of straight beams

Consider a beam in the initial configuration to be straight. This requires that the
curvature and torsion should be zero (x(S)=0 and 7(S)=0). Thus, S’ = X',

G, =0and G, =1(e, f=1,2,3).
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dR =dX'I,, dr = dR +du= (5, +u’,)dX‘T,. (8.29)

The strain based on the change in length of dR per unit length gives

| dr |~ | dR |
g, =— e = 142E, -1
|dR |
=\/(5é+u;)(5,§+u,;)—1. (8.30)

The Lagrangian strain tensor E,; referred to the initial configuration is

1
E= 5( ;u’ﬁ + 5}”[(1 +u’0u[/,) (8.31)

In the similar fashion, the angles between n, and n, before and after deforma-

tion are expressed by © «,=7/2 and §, , ,.ie.,

€086,y =COS(Oy x,) = Vop)

_ drdr (G rul )G +uy)
[dr | dr | Ja+2E,,)(1+2E,,)

_ (5; +”,[a)(5p[' +u‘[ﬁ)

(8.32)
(I+¢,)1+&5)
and the corresponding shear strain is defined by
Yop = On,xp) ~ g
o Gl )
J+2E,,)(1+2E)
S +u’ YO, +u
= sin~ et 1a)Op * ) (8.33)
(I+e,)d+&5)
From Eq.(8.28), the direction cosine of the rotation is
dR-dr 0% +u° 5% +u”
COSOx, u)) =0 L =_F _F P 5 (8.34)
o ‘dBHdﬂr‘ \/1+2Eﬁ/; l+ég,
In addition, the area changes before and after deformation are given by
%
== Are)reysing, . (8.39)

aff
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where da =|drxdr| and d4 =|dRxdR|.
7 o B ap o B

Consider the coordinate X' to be along the longitudinal direction of the beam
and the other two coordinates X” and X’ on the cross section of beam on the di-
rection of X'. The coordinates for the deformed straight beam are (s', s°, s°) .
Because the initial configuration of the beam is a straight beam, under external
force, the deformed configuration of the beam does not experience any torsion
(7(s")=0). Thus, the deformed configuration of the beam is a plane curve.
Without loss of generality, the curvature direction of the deformed configuration
can be assumed to be collinear to X . Because the widths of beam in two direc-
tions of X*and X are very small compared to the length of the beam in direc-
tion of X', the elongation in the two directions of X*and X° should be very

small, which can be neglected. From the aforementioned discussions, the follow-
ing assumptions are adopted:

(i) The deformed configuration of the beam does not experience any torsion
(7(s)=0).

(ii) The curvature direction of the deformed configuration is collinear to s° .

(iii) The elongations in the two directions of X*and X are very small (i.e.,
g =0and g =0).

(iv) Under bending only, the neutral surface is not deformed (i.e., %, =0 and
% =0).

Consider an arbitrary coordinates as (X', Y, Z) at the centroid on the cross
section of the beam. Under the resultant forces, the bending of beam is in the cur-
vature direction of s> . The deformed curve of the beam is on the plane of
(X', X*), as shown in Fig.8.2. In other words, the neutral surface of the deformed

beam is on the plane of (X', X”). When the transversal forces act at a point on

the cross section of the beam and if the beam will not be twisted, such a point on
the cross section of the beam is called the shear center (or flexural center). From
Assumption (i), no torsion exists. In addition, the transversal forces should be
placed to the shear center. Because the transversal forces are applied to the beam
off the shear center, the beam will be twisted and bent. To explain this case, con-
sider external distributed forces and moments at the shear center on the initial
configuration to be

q=¢'I, and m=m'l, (1 =1,2,3) (8.36)
and concentrated forces on the initial configuration at a point X' =S,
“F=*F'I, and "M ="M'1, (I =1,2,3). (8.37)

The displacement vectors on the initial configuration are
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—
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Initial configuration

Y
e

Deformed configuration

Fig. 8.2 A straight beam with initial and deformed configuration.

R=X'T,, SR=SI, and ‘R = X,I,. (8.38)

The internal forces and moments for S > X, are
S
Flo =, F+ [ qax',
S
M|, =>, ‘M+ [ max',

+Y CR=*R)x'F+ LS(SR—R)quXl;

(8.39)

orfor 1=1,2,3,
F =3+ [ glax,
M| =Y, M+ [ mlax,
=y M+ j:mdel
=YL - XD - [ xgax
=y M+ J':nde‘

+3 S - XD+ [ (S-XDgPax'

2
M |X‘ =S

(8.40)
M|

xt=s

From assumptions (i) and (ii), the following conditions exist:
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F3 ‘X1:5= zkzl kF} + LS q3dX1 = 07

1 _ kgl S 1 _
M| =Y, M [mlax! =0, s.41)

M, =Y Mt j:mzd)(l
- PRS- XD - [(S-XDglax =0,
For all points on the beam to satisty Eq.(8.41),
FFP=0 and ¢’ =0,
*M'=0 and m' =0, (8.42)
M? =0 and m’ =0.
If the external forcing exerts on the three directions of (X 'Y, Z), the resultant

forces and moments on three directions of (X', X*, X*) should satisfy Eq.(8.42).

Such projection of the forces can be done through the rotation angle between the
two coordinates (X', Y, Z) and (X', X*, X°).

From assumption (ii),

u' =uy (S, 1)+, (X*) (S, 1) forI=1,2, (8.43)

where X? =/(Y)*+(Z) is a distance to the neutral surface along the direction
of curvature. From assumption (ii), no displacements exist in the direction of
X*(i.e., u® =0). From Kirchhoff’s assumptions, under bending only, if the cross
section is normal to the neutral surface before deformation, then after deformation,
the deformed cross section is still normal to the deformed neutral surface. Thus,
equation (8.43) becomes

u =ul (S,0)+ X9V (S,0) (I=1,2). (8.44)

From assumptions (iii) and (iv),
(&) +uy)(6; +uy) =1,
(6 +uy)(8) +u')=0.

(8.45)

With #° =0 and Eq.(8.43), the Taylor series expansion of Eq.(8.45) give for the
zero-order of X?,
(& +e")& +¢") =1,

(8.46)
(8] +uy () +¢")=0.

From Eq.(8.46),
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2
a Uy,

Y _ —
Tt 1 N2 252
\l(l"‘”o,]) +(u0‘])

1
1+ Uy,

(2) _
@7 = + —1.
L Jasad el

(8.47)

From the sign convention, the positive “+” in the second equation of Eq.(8.47)

will be adopted. Following the similar fashion, one can obtain ¢\” (n=1,2,...

and 7/ =1,2). Further, using the Taylor series expansion, the approximations of

three strains on the cross section of the deformed beam are

de 1 d’e
R MR NG
X?=0

o, @ra? 1 {[2«5{ )0 1+ 0l gl

' 1+£© 2 1+£©

X?=0

(S +ug )T | o
_W (X) e,
d’e,
d(XZ)Z

dg
0) 2
82 ~€2 +_2

X2+% (X7) +---

x%=0

X2=0

_ 0 20+ o 12076 436 + 9]
2 1+ 1+£"

2 57+ (1) (1) 72
— [( 2(1+(2(0)))202 ] }(XZ)Z_i_’
2

2
ro=rd v Ly Ll (g
dx 24XV,

oy ! {2(51’ +up gy +(5, + "))

X?=0

+
2 cosp A+eM)1+£")

o | O] 28+ e” ||
—Ssiny, (02 + 0)y2 e
a+g") (+&")

where for 1 =1,2,

e = (& +ul )& +up,)~1

= Ut ) +(p,)" —1,

(8.48)

(8.49)

(8.50)

(8.51)
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£ = (0 +9 )3 +9") -1
=@ +1+@}) -1, (8.52)

ol (8 +uy )5, +¢")
1+ €M1+ £™)
-1 (1+u01) = +u§l(l+¢1(2))

=sin . . (8.53)
1+ M)A+ £™)

0) _
2

The constitutive laws give the stresses on the deformed configuration as
o, = f(g,1) and 6, = g(¥,,,1). (8.54)
The internal forces and moments in the deformed beam are defined as

N =0 (1+8)(1+€)c057/23]dA
J. e pe |:(1+83)(1+82)2 cos 723]6114, (8.55)

0= qu (1+&)(1+&,)cos 7, | dA

For convenience, the subscripts of the internal forces can be dropped. The internal
force vectors can be defined as

M= M’L, = Mn,,
N=N'I, =Nn, +0n,, (8.56)
"M="M'1, =g xN,

where

ar
=—= (&' +u. DI, and M——erJV (8.57)
g g =@ rm)l o ds

The components of the internal forces in the I, -direction are
1 _
N'=Nmn, -1, +0On, -I,=Ncosg, , ,+Qcosq, |,

_ NS +ugy) QS+
= +
1+ 1+&”

(8.58)

M(é‘; +ty ;)
0 (8.59)
M= (g xN) Iy = (1+u(l),1)N2 _ué,lNl-

M'=Mn, 1, =Mcosf, ;)=
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Because of u,; =0 and e!” =0, one obtains
MY =00+"), "M =" M* =0, (8.60)
M'=M*=0and M’ = M.
Equations of motion on the deformed beam are given by

‘/v,l +q = puo,rt +13¢1,n7

: (8.61)
M,] + M+m= Isuo,n +J3¢1,n;
and the corresponding scalar expressions are for/ =1,2,
I (1)
N +q _pu(())tt IS(D]tt’ (862)
M+ NMP +m’ = Ly, +J,00);
or
N(+u,,)  Quy, 1 1 .
— - i q :pu0),t+13¢1m
{ 1+&”  1+&2 , (O '
Nug, | QU+uy) I ol (8.63)
1+€1(0) 1+€1(0) \ - pu(o) it (pl >
M, +00+&")+m’ = Luy, , +J,0,,
where p = [ pydd, I, = [ p,X’dA and J, = [ py(X) dA.
The force condition at a point.# with X' = X} is
“N(X,)+ "N(X;)+F, =0, (8.64)
N(X)='N'(X)+F (I=12).
The force boundary condition at the boundary point & 1is
N(XD)+F=0 or N(XH)+F'=0 (=12). (8.65)
If there is a concentrated moment at a point & with X' = X, the corresponding
moment boundary condition is
- 1 + 1 _
M(X)+ "MX,)+M, =0, (8.66)

TMA(X,) ="M (X)+ M, .
The moment boundary condition at the boundary point & is

M(XH)+M =0 or M*(X))+ M’ =0. (8.67)
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The displacement continuity and boundary conditions are
u,_=u,, andu' =B’ (8.68)

The afore-developed beam theory can be reduced to the beam theory given by Re-
issner (1972). The nonlinear vibration and chaos of a beam were extensively in-
vestigated (e.g., Verma, 1972; Luo and Han, 1999).

8.3. Nonlinear curved beams

Consider an arbitrary coordinate system as (X', Y, Z) at the centroid on the cross
section of the beam. The central curve of the deformed beam is on the plane of
(X', X?), as shown in Fig.8.3. In other words, the neutral surface of the deformed
beam is on the plane of (X', X*). Let the coordinate S' be along the longitudinal
direction of beam and the other two coordinates S* and S° be on the cross sec-
tion of beam with the direction of S*. The coordinates for the deformed, curved
beam are (s',s”,s’). Because the initial configuration of the beam is a curved
beam, under external force, the deformed configuration of the beam to the initial
configuration does not experience any torsion (7(s') =0 ). In other words, under
the resultant forces, the bending of beam is in the plane of (S', S*). Thus, the
configuration of the deformed beam is still a plane curve. Without loss of general-
ity, the curvature direction of the deformed configuration can be assumed to be
collinear to S”. Because the widths of beam in two directions of S* and S° are
very small compared to the length of the beam in direction of S', the elongation
in the two directions of S* and S° should be very small, which can be neglected.
Thus, as in the straight beam, the following assumptions are enforced.

(i) The configuration of the deformed beam to the initial curved beam does not
experience any torsion (7(s')=0).

(ii) The curvature direction of the deformed beam is collinear to s*.

(iii) The elongations in the two directions of S*and S° are very small (i.e.,
g,=0and g =0).

(iv) For bending only, the neutral surface is not deformed (i.e., %, =0 and
7% =0).

From Assumption (i), no torque exists, and the transversal external forces
should be added at the shear center. Similar to Eqgs.(8.36) and (8.37), the external
distributed forces and moments on the initial configuration are for (/, A=1,2,3)

q=q'1,=¢"N, and m=m'l, =m"N, (8.69)
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Deformed configuration \‘\\

Fig. 8.3 A curved beam with initial and deformed configuration.

and concentrated forces on the initial configuration at a point S' =S,
F, = F/'1,=F*N, and M, = M1, = MN,. (8.70)
Thus,

2 ‘SI:S:FIII ‘N, = F! 0059(1,,1\3\)9 (8.71)
M* ‘sl:s:MllI N, = M COS&(L»N,\)'

The displacement vectors on the initial configuration are
R(S")=X"(SH1,,R(S) = X/I, and R, = X]I,. (8.72)
The internal forces and moments for (S' > S} ) are
S el
F ‘S'=S= Zk:le + .[) qds’,
M|, = M + [ mds’ (8.73)
S
+Zk:l (R(S)-R)x“F+ L (R(S)-R(8"))xqdS";

orfor I=1,2,3,
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S
Flly =2, F + [ d'ds,
M, =3 M+ f m'ds' (8.74)
S
+ZI¢:16UK(X; _XkJ)ErK + J; eIJK(X; _ij)quSl-
Assumptions (i) and (ii) requires the following conditions:

F*|, =0 for A=3 and M™* [, =0 for A=1,2. (8.75)

§'= s'

Since the vectors I, and N, (G, ) are collinear and all points on the beam satisfy
Eq.(8.75), one obtains

F'=0 and ¢' =0 forl =3,

] , (8.76)
M cosf, x ,+ M cos6, \,=0forA=12.
Because
cos@ cosé, .
(4,Np) (1,,N) # 0’ (877)
cosfy n,) €OsGy x )
the second equation of Eq.(8.76) gives
M =M =0 (8.78)

Thus, the external force conditions for the curved beam without twisting are given
by the first equation of Egs.(8.76) and (8.78). In other words, no external distrib-
uted and concentrated forces are in the direction of X’ and the resultant external
moments in the directions of X' and X~ are zero.

8.3.1. A nonlinear theory based on the Cartesian coordinates

The strain based on the change in length of dR per unit length for a curved beam
in the Cartesian coordinates gives

|dr|—|dR]|

1
= = JG,, +2E,, —1
&y ‘ dl} ‘ ,_G(m ac + ac

+ul, )X, +ul,) —1 (8.79)

1 7
=F\/(X,a

in which no summation on & can be completed. The Lagrangian strain tensor
E,; referred to the initial configuration is
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1
E,= E(Xlgulﬁ + X,Iﬁu”a + ufaufﬂ )- (8.80)

In the similar fashion, the angles between n, and n, before and after deforma-

tion are expressed by © =x/2 and

(N,.Np) (ngunp) > 1€

dr-dr

086y, ., | =_« B
7 |dr | dr|
a B

B (X'H +u”a)(Xfﬂ +u7[ﬂ)
V(G +2E,, NGy +2E)
(X'H +u”a)(Xfﬂ +u7[ﬂ)
GGy (14,14 5)

(8.81)

and the corresponding shear strain is defined as

Yap = O, np ~ G, my
L (X ru )X tuly)
= Ssin
V(G +2E,, NGy +2Ep)
L (X ru )X +uly)
=sin - - - - .
VGuaOps 1+ €,)1+))

(8.82)

From Eqgs.(8.24) and (8.28), the direction cosine of the rotation without summa-
tionon ¢ and g is

dR-dr x! (X +uly)

a

[dR|[dr | G,y \Gys +2E

cos 9(1\-,,,“,;) =

Xy (X5 +uy)

- JGuGys (14 65) (8.83)

Finally, the change ratio of areas before and after deformation is

da
ﬁ:(uga)(ngﬂ)smq

o
where da =| drxdr | and d4d =|dRxXdR |.
off o B off o B

(8.84)

n,.ng)°

From assumption (i),
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u' =uy (S, 0+ (S*)' @ (S, 1) forI=1,2. (8.85)

From Assumption (ii), no displacements exist in the direction of S° (i.e., u’ =0).
From the Kirchhoff’s assumptions, under bending only, if the cross section is
normal to the neutral surface before deformation, then after deformation, the de-
formed cross section is still normal to the deformed neutral surface. Thus, equa-
tion (8.85) can be assumed as

u' =ul(S, )+ (S, 1) (a=1,2). (8.86)

From assumptions (iii) and (iv),

1
— (X +u )X +u') =1,
GD( 2 Fu) (X, +uy) (8.87)

(X +u) (X5 +uh) =0.

With #” =0 and Eq.(8.85), the Taylor series expansion of Eq.(8.87) give for the
zero-order of S?,

1 7 () 7 (/)
— X+ X+ =1,
Gzz( R A CERL N (8.88)

(X[ +u WX +97) =0,
where Xf2 =G, . From Bq.(8.88),
(p(l) =7 (X? +u§,1)\/ Gzz _x
= L,
L ) A (X )

PP =+ (X, + )y Gy _y?
1 - 20
JX+ub )+ (X +ud,)

(8.89)

Similarly, one can obtain ¢\” (n=1,2,... and I =1,2). Using the Taylor series

expansion gives the approximate strains, i.e.,

de,
ds?

2 +l dzgl
§2=0 2 d(SZ )2
e R
G, (1+&”)

120X +ug @i 1+ ¢l gl

2 G, (1+£")

1 +u, )@l 'T
2 Gl(1+e0Y

(52)2_,_...

§2=0

~ £
g =&+

P

(SZ)Z

(S?) +--, (8.90)
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de, 2 1 d’s, |
a5 24Ty )
2(X +¢1(1)) (/)
m¢”“+xﬁ+@%@%
G,(1+£2)
AX, +o")p" T
G+e")

(SZ)Z+...

g =& +—=

=&+

s’y

(S2) 4o (8.91)

a%
dSz

0) 1 2(X1 +u et +(X,12 +o el
cos 7

=7
VG, Gy 1+ D)1+ D)

S

a0t

7/12 12

i (X1+u(1>)¢(1> 2(X,12+¢11))(pm +... (8 92)
G, (1+e")  G,(+el) ’
where for 7 =1,2
1
¥ = J(X vl )X +ul ) -1
) \/G_H\/ B 0,1)( )1 0,1
\/_\/(Xl Ly, ) (X Fug,) - (8.93)
£® = X5+ X+ -1
R LT
1
= VA (Gl - (859
22

(XK e

12 [
G]]G22 (1 + 81(0) )(1 + 650))

— Sin_l (X,ll + u,l] )(X,l2 + ¢](1) ) + (Xj + u)zl )(X,zl + ¢](2)) ) (895)

GG, 1+ )1+£")

0) L |

The constitutive laws give the stresses on the deformed configuration, i.e.,
0, = f(&, 1,,1) and 0,, = g(&,,7,,, 1) (8.96)

The internal forces and moments in the deformed beam are defined as
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N, = j (1+g )1+ £,)cos 7, | dA,

M, = [\/j (1+&)(1+¢,) cos ;/23] (8.97)

Al+ (2)

o= .[40-12 (1+52)(1+53)COS}/23]61 )

For convenience, the subscripts of the internal forces can be dropped. The internal
force vectors are defined as

M=M'l, = Mn,,
N=N'l1,=Nn, +0On,, (8.98)
"M="M'T, =g xN;

gls;{r_()( +u0])l and M=d—erJV (8.99)

The components of the internal forces in the I, -direction are
N'=Nn,-1,+0n, 1, =Ncos@, ,,t0cos, ,,
N(X["'um) Q(X[+¢l) (8.100)

JT(1+3<°>) J_(1+g<°>)

1 1
M(X5+ug,,)
(0)
I+¢;

M' = Mn, 1,=Mcos 6, ,, =
“M' = (g1 X‘/V)'Il = (XT +u§,1)N3 _(Xi +u3,1)N2> (8.101)
M = (g, x V)L, = (X +1 )N = (X +uy )V,

M = (g xN) L = (X, +uy )N = (X +uy )N

Dueto u;, =0, X, =0, X;=X3=0, ' =0 and &” =0, the following equa-

tions are achieved, i.e.,

JT(1+5<°>)

N 1 _ N 2 _
\/:(Hg«») and "M ="M"=0. (8.102)
M'=M?>=0and M’ =M.

Based on the deformed middle surface in the Lagrangian coordinates, the equa-
tions of motion for the deformed beam are

./V +q= +1 >
) ta=pu,, +4L0, (8.103)
M‘] + M+m:13u0,n+']3¢l,tt;
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and the scalar expressions are for/ =1, 2

7 I _ T (1)
N,l +q —,07407,, +13¢1,tt’

3, Nag3 3 _ 1 (1)
M,1+ M +m _I3u0,tr+‘]3(pl,rt

(8.104)

where p= | pydd, I, = [ p,X*dd and J, = [ p,(X*)*dA . With Eqs.(8.89) and
(8.100)—(8.102), the foregoing equation gives

N X] +ul X2+u2
/—( . ?’33 - Q/—( , °($>) +q' = puy, + Lo,
G]](1+gl ) G]](1+g] ) 1

(8.105)
NX+ul) O +u,)
L/_ | 4 =P L
G]](1+8l ) G]](1+8l ) 1
G. (1+&9
M+ oNUEED s g, (8.106)

G

As in Eqs.(8.61)—(8.65), the force and displacement continuity and boundary con-
ditions can be given as follows.
The force condition at a point % with ' =S, is

“N(S)+ 'N(S,)+F, =0,

(8.107)
TNI(S)=NI(SH+FE (I=1,2).
The force boundary condition at the boundary point & is
N(SH+F.=0 or N'(SH+F'=0 (I=1,2). (8.108)

If there is a concentrated moment at a point.#2 with S' =S, , the corresponding

moment boundary condition is

“TM(S))+ TM(S})+M, =0,

(8.109)
“M(S) = "MI(SH+M] (I =3).
The moment boundary condition at the boundary point .7 is
M(SH)+M,=0or M'(SH+M'=0 (I=3). (8.110)

The displacement continuity and boundary conditions are the same as in Eq.(8.68).
From the sign convention, the positive “+” in the second equation of Eq.(8.89)
was adopted.
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8.3.2. A nonlinear theory based on the curvilinear coordinates

The strain based on the change in length of dR per unit length gives

dr|-|dR| 2E 1
e =2 ¢ = +— 1= JG  +2E -1
o |dR‘ Ga,a, JG_W aa aa
JG
=YL (& +ul )3 +ul) -, (8.111)

V GZZD!

where the Lagrangian strain tensor £, to the initial configuration is

1
E,= E(Lla;ﬁ +t,, +u;flu},;ﬁ)

1
= 5[(55 +ul, N85 +1uy)G s =Gy . (8.112)
Similarly, the angles between n, and n, before and after deformation are ex-
pressed by O v, =7/2 and 6, , . 1e.,
dfr- dr G, +2E,
cos 6 @ b o i

) — =
o ldr]ldr] (G +2E,, (G +2E )

(8 +ul )8 +ul)G s

= , (8.113)
\/GWGM (1+&,)(1+&,)
and the shear strain is
Yep = O, Ny =, my
G ,+2F
=sin™ B ,
V(G +2E,, (G +2E )
4 4 0 3
— gin e (0 +15)G (8.114)

JGouG s (14 £5) (14 E,)

The direction cosine of the rotation without summation on & and f is

cos 6 _ dz}{ Cil' _ Gﬂtﬂ +uut;ﬁ
(Ngomg) — -
@R [dr| G, G, +2E,
Ga/, gy p

JGoa Gy (8] +uly)(S) +uly)
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_ Gty _ (5[’§+u;’;)Gm
1/GMGM(1+€ﬂ) 1/GmGﬂﬁ(lhg‘ﬂ)

In addition, the change ratio of areas before and affer deformation are given by

(8.115)

da
ﬁ:(1+£a)(1+8ﬂ)sin9(nwnﬁ) (8.116)
7
where da =|drxdr| and dA =|dRXdR|.
aff [} off a B
From assumption (ii),
ut =ug (S,0+) " (S @gV(S, 1) for A=1, 2. (8.117)

No displacements exist in the direction of S° (i.e., #* =0). From the Kirchhoff’s
assumptions, under bending only, if the cross section is normal to the neutral sur-
face before deformation, then after deformation, the deformed cross section is still
normal to the deformed neutral surface. Thus, equation (8.117) becomes

u =ul(S, 0+ 2PN (S, 1) (a=1,2). (8.118)
From Assumptions (iii) and (iv),
(6 +ub (8, +u’)Gyy =Gy,
(6" +u} )&, +ul)Gyp =0.

(8.119)

With #’ =0 and Eq.(8.117), the Taylor series expansion of Eq.(8.119) gives for
the zero-order of S”:

Gy (52(/\) + (01(/\))(52(/\) + (pl(M) =Gy,

(8.120)
(51A +”£1)(52F + (Dl(r))GAr =0.
Form the foregoing equations,
u. G
(1’1(]) - : 0,12 22 — ’
\/Gll\/(1+”0;1) Gy +(uy,) Gy (8.121)

(p(Z) -+ (1+”(]>;1)\/ G, -1
=% .
\/(1 + u(]>;1)2 G, + (”3;1 )Gy,

From the sign convention, the positive “+” in the second equation of Eq.(8.121)
will be adopted. Similarly, one obtains ¢* (n=1,2,... and a=1,2). The ap-

proximate strains for the curved beam in the curvilinear coordinates are:
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dg| o 1 d’e,
2 22
ds*e_,” 245,
A (A)

(51 +“o;1)¢1;1 Gya

g ="+

(S*) +---

=© 2
! G, (1+£")
120" tug aO 1+ ol ol G
2 G, (1+&™) A
A (A)
[(5 +21/l01)¢ ] G/\/\ (S ) +- (8122)
G (1+&"y
2
£ ~e(°)+d‘g2 s+l dfzz (S*) +--
ds?|e_, 2d(S°) |,
_ 0 2(XA +o"pMG,, 2
2 Gy (1+£)
{[2(/)“) AN +30) +g)pM1G,,
G22(1+£(°))
A+ TG
— ALSHY 4, (8.123)
G,(+¢, )
dxz . 1 dy, 2
= S +——= S) +--
Ve =1 dS2 2d(S*) |, :0( )

o, | {(5A +up, ) + (0 + el

= G
12 AA
S| VGG, 1+ )1+ )

€Os ¥},

5/\ + NN G A (A M)
sin )| ( Uy, )(D;.l T +2(52 +07)P Gy, S 4., (8.124)
G, (1+&") Gy(1+&")

1
51(0) \/(51/\ + u(;\:l )(51/\ + “(?:1 )GAA -1

VG,
:ﬁ\/(uu;ﬂ)

0y _

1
& = F\/(@A + (p](A) )(52A + (pl(A) )G/\/\ -1

22

Gy +(Ug)) Gy — 1, (8.125)

G, +(1+¢?) G, -1, (8.1206)

—J@")G,
J_
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L (8 +ug )8, +97)G

. /Gl Gy, 1+ )1 +£")

—gin”! I+ u();l )(Dll)Gu +u, 1(1 + (p12) )Gy,
VGG, (1+ 81(0) 1+ 850))

As in Eq.(8.96), the stresses on the deformed configuration can be defined by the
constitutive laws, i.e.,

0, = f(&, %, 1) and 0y, = (&, %y, 1). (8.128)

The internal forces and moments in the deformed beam are defined as

0),

(8.127)

N = (1+s )1+ €,)cos 7, | dA,
.[ 51 pe [(1+€ Y(1+¢&,)° cos 723}1’/1 (8.129)

Q= L 0y, (1+82)(1+€3)COS 723]

For convenience, the subscripts of the internal forces can be dropped again. The
internal force vectors are defined as

M = M°N, = Mn,,
N=N"N, =Nn, +0n,, (8.130)
"M ="M N, =g xN,

where
1
g E%z(é‘l’\ +up WGy, N, and "M E%drx‘/\/. (8.131)

The components of the internal forces in the G, -direction are

N*=Nn,-N, +0n, -N,=Ncosb, \ ,+0cosf,

_ NGO+, 0@ +¢")Gr, (8.132)
\/ GG (1+ 81(0)) VGG, I+ 8(0))
MG
M =Mn;-N,=Mcos@, =—F—==,
) v G/\/\ G33
“M' = (g, xN) N, =12 \JG, N* —ul, \JG N2, (8.133)

“Mm? =(g, xHN)'N, :ug;] G33N1 _(l"'u(l);l)\/GnN}a

M = (g, xN) N, =(+uy G, N> —u;,{JG,, N'.
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If uly ,=u’ =0, &” =0,G,; =0(A#3)and Gy, =1, then

M =M!=0, M] =M,

M ="M =0, (8.134)
s =—2 NG 1+
(1+&") /G,

Based on the deformed middle surface in the Lagrangian coordinates, the equa-
tions of motion for the deformed beam are

‘/V:l +q = puo,rt +13¢1,n7

| (8.135)
M‘] + M+m= I3uo,n +J3¢1,n;

and for(A =1,2),

N2+ = pul, + Lo, (8.136)

3 N 3 3 _ 1 ()]
M;]+ M +m _ISuO)n+J3(pL,,,

or

NQ+uy,)  0"\[G
(0(;.1 + 1 l(10) + ql = pu(l),tt + 13(01(}’2 ’
1+€] \}Gzz (1+82 ) -1

NMS;I\/Gzz Q(1+(01(2)) 2 _ 2 L.o® (8.137)
/ oy T O] Tq = puy, LG
G,1+g") I+¢,

VG, (Q+&?”
M”+Q7H(G : )+

JG.,

where p = L podd , I, = L p,S%dA and J, = L P (S*)dA.

3 _ 1 (1)
m = [3u0,tt + Js(pl,w

As in Eqs.(8.106)—(8.109), the force and displacement continuity and bound-
ary conditions can be given. The force condition at a point £ with S' =S, is

“N(S)+ N(S,)+F, =0,

(8.138)
NS = TNMSH+HEY (A=1,2).
The force boundary condition at the boundary point & 1is
N(SH+F.=0 or N*(SH+F*=0 (A=1,2). (8.139)

If there is a concentrated moment at & with S' =S, , the corresponding mo-

ment boundary condition is
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“TM(S)+ "M(S)+M, =0,

(8.140)
MANSD = "MAS)+M) (A=3),
The moment boundary condition at the boundary point 7 is
M(SH+M =0 or M (SH)+M*=0 (A=3). (8.141)

The displacement continuity and boundary conditions are similar to Eq. (8.68).
ie, up =u), andu’ =B (A=1,2).

8.4. A nonlinear theory of straight rods

Consider a nonlinear rod in the initial configuration to be straight, which requires
that the initial curvature and torsion should be zero ( x(S)=0 and 7(S)=0).
Thus, let $' = X', G, =0 and G, =1(1,J =1,2,3). The three dimensional dis-
placements, strains, the directional cosine of rotation and the change rate of the
area are given in Eqs.(8.29)~(8.35). It is assumed that the coordinate X' is along
the longitudinal direction of rod and the other two coordinates X* and X* are on
the cross section of the rod with the direction of X' . The coordinates for the de-
formed straight rod are (s', s*, s°). As in the thin beam theory, the widths of rod
in two directions of X* and X" are very small compared to the length of the rod in
direction of X', the elongation in the two directions of X*and X” should be very

small, which can be neglected. Based on the aforementioned reasons, the assump-
tions for thin rods are adopted.

(i) The elongations in the two directions of X’ and X are very small (i.e.,
g, =0and g =0).
(i1) Under bending only, the neutral surface is not deformed (ie., %, =0 and

Vs =0).

Choose an arbitrary coordinate frame as (X', X*, X*) and the coordinate of
X' goes through the centroid on the cross section of the rod. The centroid curve
of the deformed rod is along the coordinate of s'in the coordinates of (s', s>, s°),
as shown in Fig.8.4. The external forces on the rod can be given as in Eqs.(8.36)~
(8.40). Under the torque, the rod possesses torsion 7(s') = 7(s) in the direction of
s'. The transverse forces off the shear center produces the torques included in '
and “M'. Compared to the longitudinal length S, X* and X* on the cross sec-
tion are very small. From assumption (i), three displacements z' =u' (S, X*, X°)
can be expressed by the Taylor series as
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Xy

Initial configuration

Deformed configuration

Fig. 8.4 A straight rod with initial and deformed configuration.

u' =u(S.0+Y, (X' (S, 0+ (X)'6(S.0)
YT (XX (S, 1), (8.142)
where

o =i anul

n n! a(X2 )n (X2,Xx%)=(0,0)°
n, I

w_ L du (8.143)
n n! 8()(3 )n (X%,X%)=(0,0)

o 1 am+nu1

™ minl 9(X )" (X} 1 AD=00)

From Eqgs.(8.30) and (8.33), the approximate six strains are
d
g ~e? +—a‘€12 Xt + 81; X’
X (X2,X%)=(0,0) 0X~ (X%.X*)=(0,0)
1 d% 1 9%
+_' 2l 5 (XZ)Z +_' 3] 5 (X3)2
219(X7) K =(0.0) 219(X7) A )=(0.0)
2

% X X3 4.

0X*aX"

(x%,x%)=(0,0)
| 1 (1) ] 1 (7)
+ (51 +uy, )(01,1 2 (51 +uy, )911 3
(0) (0)
1+¢& 1+¢

— 0
= 81



344 8 Nonlinear Beams and Rods

oL {[2(6{ ST R (T } )

2 1+€” O 1+€)

L1 {[2(6{ +u O 1+ 0000 (O +u,)00 T } Xy

2 1+ (1+£9
) ) (1)
+ (51[ +1/l(§,(10))191(1[,1 ﬂ(i 9{5) x2x3 Foen (8144)
1+¢ 1+¢
de e
g, zgé()) + z2 X2+ z3 x?
aX (XZ,X%)Z(O,O) aX (XZ,X3)=(0,O)
1 d%¢ 1 %
"0y R T Tr o I
' ( ) (X2, x%)=(0,0) ' ( ) (X2,X%)=(0,0)
d’e ) s
Frerra XX
(X*,X%)=(0,0)
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1+& (1+ey
R i N (OB  pe
2| 1+ 2(1+£0)
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# HOLAEL 20 ey (8.145)
1+82 1+€;
d€ De
e~ =% P X’
aX (){2 ,Xz):((),()) aX (XZ,X3 ):(0’0)
1 828 en 1 828 .
IE X;)2 x5 +53(sz (X"
o (F,X)=(0,0) : )| xym00)
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+z—€33 XX 4.
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’ 1+£” 1+€0
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25 +68" 1
1+

+6601

}()(3)2

26767 +3(5) +
1+&”

(1) 9()
26,0
1+£”

4{«%+ﬂﬁﬁﬂ

XX+
1+£” }

97,
ax®

97|
oX?

X3

(x%,x*)=(0,0)

(0)

=N, + X+

I

(X%, x%)=(0,0)

L1 o,

219(X?)

9%,

(X2)2+ 1 827/]2

(X*,X*)=(0.0)

XX+

219(X°Y

@’y

(X7,X%)=(0.0)

(X*,X%)=(0,0)

0) 1
+
7 cos 7 {

o] O rui)He
—siny,, 170
1

1 {(5{ +")0 + (8] +uy )T

&S
%)

28] +ug @ +(8, + o]
1+ )1+
:|}X2

}}X

X3

2(57 +¢1(1)) ()
(1+£”)

1+ M1+ £™)

& +¢")s)
(1+&")

7 (1) (1)

. 0) (51 tu )911
—Sin iy (0)
(1+¢ )?

97,
oXx?

e

+
7/13 13 aX

(x%,x%)=(0,0)
1 9y
210(X7)

(X2,x%)=(0,0)

L1 9n

209(X2) S

(X*,x)=(0.0)

(X%,X%)=(0,0)

XX+
(X%, X%)=(0,0)

o 1 (51 9(1))¢(1)+(51+u(7))191(17)
=7t 0)
COS

1+£)1+€")
51 (DN (D)
—sin {( Tt )(D }} X?

(6, +6")s)
1+ 51(0))

(1+£")
! {xf+w%@“w%+¢%ﬁ?

+
cos 7y 1+ M)A+

345

(8.146)

(xX*)?

(8.147)
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1 Iy ,9(D) 1 (DD
_siny| O DAL 26 067 ] o (8.148)
la+g") (1+&")
9 d
V3 = 2(3))+ 7/2; Xz T X3
X (X?.X%)=(0,0) ox’ (X%, X%)=(0,0)
1 9°7y, (X?) +l 97 (X
2 332
2'8()() X )=(0.0) 219(X7) (X% x")=(0,0)
82}/23 XX+
29y3
0X 0X (X2,X%)=(0,0)

o, 1 {2(6’ +0)p" + (8 + ")
cos Y

B (1+M)(1+€)
—sin 79 28+t + (6 +6"H) ¥
2 1+ 1+
1 28, + )8 + (55 + 6w
cos Y (1+£M)(1+£)
7 (YN ,q(D 7 (DD
—sin 7y {(5(1—'_ ﬂ(o)))ﬂ + 2(6('31 hi 620)))202 }})ﬁ Foee, (8.149)
+é& +é!
where
£ = (& +ul YS! +ul,) -1,
el =&+ o) + ) -1,
£ = (8! +67)BI +67) -1,
0) _ -1 (5[ + u() 1)(§I + (01([)) 8.150
o = (0) (0) @®. )
A+&7))1+&7)
0 i (8 +ug (6, +6")
his = A+ +£")
O _ gip! (5[ + (01(” )(5{ + 91(”)
s = (1+eM1+€P)

From Assumptions (i) and (ii), consider the zero order of the Taylor series of the
six strains to give

£ =0, =0 19 =074 =0, 12 =0 @151
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The deformed rod for X* = X° =0 satisfies the following relation:
(1+&") = (3 +ug, )8 +uy)). (8.152)

Note that one assumed £ =0, which is not adequate (e.g., Novozhilov, 1953).

Equation (8.152) implies that only 1-dimenisonal membrane force in the rod is
considered. From Eqgs.(8.151) and (8.152),

1
m(@l +uy W6 +uy ) =1,
1
(6 +@" )3, +o") =1,
(&5 +6) 8 +6")=1; (8.153)

(6] +uy ), +9") =0,
(511 + ug,l )(5; + 91([)) =0,
(6, +¢")(0; +67) =0.

Using the zero order terms of X and X° in Eq.(8.34), the direction cosine ma-
trix ((/;)s; ) 1s given by

o +u!
cosﬁ(nl,m =1, =l—((?)’l,
1+¢
o+l
— _ 2 1
o8O, 1y =l =——45> (8.154)
1+ &
7 %)
P _ = o, +6
COSOm 1y =hr = ) -
1+¢&

From the geometrical relations, the nine directional cosines must satisfy the trigo-
nometric relations without summationon ex=1,2,3 as

1.1, =1 forlI=1,2,3 (8.155)

ol ol

and for o, $=1,2,3 and o # 3,

1.1, =0. (8.156)

ol®pl

As aforesaid, only the three rotations of rod are considered. Thus, the unknowns
o and 6'” (I1=1,2,3) can be determined by the three Euler angles (® , ¥ and
©). The Euler angles ® and ¥ rotates around the axes of X* and X, respec-
tively, and the Euler angle © rotates around the axis of X', as sketched in
Fig.8.5. Due to bending, the first rotation around the axis of X* is to form
(X', X?, X*) in Fig.8.5(a). The second rotation around the axis of X’ gives
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(X', X2, X*), as shown in Fig.8.5(b). The last rotation around the axis of X' is

because of the torsion, and the final state of the rod in the frame of (X', X, X°)

in Fig.8.5(c) gives the coordinates (s',s”,s’) for the deformed rod. The rotation

deformation is the same as the rotation given by Eq.(8.153). The rotation matrices

are

From the above rotations, the directional cosine matrix (I =(/,),,;) is

where

Compared with Eq.(8.153), equations (8.156) and (8.161) give

[cos® 0
R'=| 0 1
_sinCI) 0

0

1 0
R*=|0 cos®

I=R’R°R' =1,

[, =cos®cosV,

l,, =—cos®sin'¥ cos®+sinPsin B,
L,, =cos®PsinWsin®+sin P cos O,

[, =sin'V,
l,, =cos'¥ cos©,
L, =—cos¥sin O,

[, =—sin®cos't,

L, =sin®sin'¥ cos O+ cosPsin O,
l,; =—sin®sin¥sin @+ cos P cos O.

uy, = (1+£”)cosD@cos ¥ -1,

@ = —cos @sin ¥ cos O +sin @sin O,

—sin®

0

cos®

[ cos¥ sin¥ 0]
R*=|-sin¥ cos¥ 0

0 1

0

sin® |.
0 —sin® cos@_

121 13 1
122 132 ’
123 133

(8.157)

(8.158)

(8.159)

(8.160)

(8.161)
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(e)

Fig. 8.5 Euler angles of rod rotation caused by bending and torsion: (a) the initial (red) to first
rotation (green), (b) the first to second rotation (brown), (c) from the second to the last rotation
(blue). (color plot in the book end )
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6" = cos @sin ‘P sin © +sin @ cos O,

uy, =(1+£")sin'P,

@ =cosWcosO—1,

0" =—cos¥sin O,

Uy, =—(1+€")sin@cos ¥,

@ = sin @sin ¥ cos © + cos D sin O,

6" = —sin®sin ¥ sin © + cos D cos O —1.

(8.162)

The first, fourth and seventh equations of the foregoing equation give

and

(1

(1)
o

(2)
D

(2)
o
(3)

?

(3)
b

JaA+ub )+ (3, )

cosW ==+
(0) >
I+¢
2
. u
sinW = 0’1(0),
1+¢
1+u(])1
cosd == = 2’ —,
1/(1"'”0,1) +(u(’)¢1)
3
. u
sin® =7 o1

JaFul Y+ )

1 w? 1+ .
=7 oa ((])("])c0s®+uj1 sin ©
JO+u, )+, [ 1+a |
1 w? (+ut )
== — 3 2|: 0,1( (0)0’1)sm®—u3¢10089:|
\/(1"'“0,1) +(“o,1) I+g

T+ut )V +0d )
IR NI
1+¢
_$,l(l+u(‘“)2 +(“3,1)2 “nG
1+£0 ’

3.2
o 1 |:uo,1”o,1
B 1 N2 332 (0)
(L+ay, )" +(uy,) I+ég

cos©—(1+uy,)sin®

3
Uy U
— 4 0,1%0,1

1
g, ) 144"

sin©+(1+uy,)cos©

(8.163)

>

>

(8.164)

>

-1
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If ® =0, the rotation about the longitudinal axis disappears. So only the bending
rotation exists. This case reduces to the pure bending of the rod as discussed in
Section 8.2.

From Eq.(8.154), the directional cosine vectors are defined as

1,=1,1, fora=1,2,3. (8.165)
Thus, the change ratio of the directional cosines along the deformed rod is

ﬂ:dlﬂl L[ fora=1,2,3 (8.166)

ds ds ' (1+£)ds !

The three vectors form a instantaneous, rotational coordinate frame, and the rota-
tion ratio vector about three axes are defined as

o=0l, (8.167)

From rigid-body dynamics (e.g., Goldstein et al., 2002), the change ratio of the di-
rectional cosines along the deformed rod can be computed in an analogy way, i.e.,

a, d, dl,,
— = ;= —(0) =woxl,
ds ds (1+&™)dS
L I, I
=0 o, o|=eyuwl,l, (8.168)
/ ) )

al a2 a3

for «=1,2,3 and I,J,Ke{l,2,3} with I#J#K#1. From the foregoing

equation, the rotation ratio components are given by

dly dly, _ (8.169)

ok, lax” €k m lyx = ;.

In other words, the foregoing equation is expressed by

_ dl,, _dl, _ dl,,
W =e lo.rK - ds a3 __(1+€l(0))dS la3>
di,, di dl
= 2 =——a ] - Ta ] (8.170)
W) =€y ds ak ds al (1+€1(0) )dS al
di di dl
a)3 — e[s]( al Z — ol _ ol

=
akK dS o2 (1+€1(0))dS a2

From Eq.(8.161), the foregoing equations gives

w = ——(si nCIJd\P+cos‘I’cosCD@),
1+ ds das
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X =—1+‘1€(0) (ij—\;+sin‘l’j—?),
! (8.171)
w, =;O)(cos(l>d—\y—sincbcos‘l’d—®);
1+¢&! ds ds
or
w =sinCI)d—lP+cos‘I’cosCI)d—®,
ds ds

0, = L inw @ 8.172)

ds s

w, = coscl)ﬁ—sin@cos‘l‘@.
s ds
Notice that one often assumes dS =ds in Love (1944), which is not adequate for
large deformation.
On the other hand, using Eq.(8.25), the particle location on the deformed rod is
expressed by

r=(X"+u")l,. (8.173)

Because X' =S, X* and X° are independent of S. From Eq.(8.3), the base vec-
tor along the longitudinal direction of the deformed rod is given by

g =&/1,=( +uDl,, (8.174)

and the corresponding unit vector is
~ 51 + T 5[ + T
i, =S LT =8y (8.175)
181 J(OF +ul )(SF +ub) l+¢

For X*=X°=0,

51+ T §I+ I
i = ! [ =0 Ty (8.176)

JEF +uly@ uky T 1+

Note that n, =n, . The base vector in the principal normal direction of the de-
formed rod is

g, =%= a8 (8.177)
A)

where
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g = %[u,ﬁ(éf +uf )6 +uf) = (8 +ul)(SF +ul ] (8.178)

11

The unit principal normal vector is

~ ~ ~ ~1
=22 =5 - 5 _ & j (8.179)
8.1 &, K(©S) &)

and from Eq.(8.9), the curvature of the deformed rod becomes

K.(S) = | gZ | = ngz = \/(X£: +u,’s: )(X[:s +u,[ss)
@ )SF +uf)SE ) - (8] + Xl T

P (8.180)
For X*=X"=0,
- 1
gzl = T[”é,u(é‘f +u§,1)(5f +u£1)
11
= (& +up )OF +uf g, . (8.181)
I (T HU6)OT +u) [+, T (8.182)
1
From Eq.(8.11), the unit bi-normal vector is obtained by
i, =n,xn, =g.1,, (8.183)
with
~J ~ K
g1 = ey S8 and g, =1 (8.184)
11 K(S)

Because of the axial rotation, the rotation vector along the longitudinal arc
length s' = s of the deformed rod is

o =8N, +7(S)n, =wl,, (8.185)
where the torsion of the deformed rod is computed from Eq.(8.13), i.e.,

7N T K
€k (51 +“,1)“,11“,111

. (8.186)
(@i IS +u) (S +uD)]=[(S] +uiu'y P

#S) =

For X* = X* =0, the foregoing equation is rewritten as
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I, I\ K
ey (O +uy g, Uy,

T 7 X . K~ ok, K Y EWEEE

(uo,uuo,u)[(é‘l +”o,1)(51 +u071)]—[(51 +uo,1)”0,11]

#5S) =

From Eq.(8.185),
RS)=wl, i, =0g,
HS)=ol, b =0g,,
or
@, = K(S)n, -1, +7(S)n, -1, = K(S)g1 +7(5)g, .
However, from Eq.(8.163), d¥/dS and d®/dS are determined by

a¥ :+M§,u[(l+ué,1)2 + (g, ) 1= 1, (L v Juag , + g 1]

ds A+ U +uy,)* +(uy,) ’
A uy, () —uy,
ds (+uy,) + ()’

or

av 4 “g,u [(1+ “(l),l )2 + (“31 )2 1- ué,l[(l + u<l),1 )“(l),u + (MSI)ugll]

ds A+ JA+ub Y+, ) ’
d_CI) - _ ug,n(l"'u(l),])_u(l),nu(}),l
ds A+ eN[A+uy, ) +(ug,)’T

(8.187)

(8.188)

(8.189)

(8.190)

(8.191)

Substitution of Eqs.(8.163) and (8.190) into Egs.(8.171) and (8.188) gives ® and
d®/dS when the initial twisting about the longitudinal direction of s is zero

(©,=0).

As before, the constitutive laws for deformed rods give the corresponding re-

sultant stresses for (¢ =1,2,3) as
O, = 1o (&1 Vo Viso D).
The internal forces and moments in the deformed rod are defined as
N, = [ 0, [(+&)(1+8)cos 7, ]dA,
0, = [ 0. [(+&,)(1+&)cos ;] da,
0, = [ 0, [(+&)(1+8)c0s 7, ]dA,
XZ

M, = .Lo-” 1+¢1(2) |:(1+83)(1+82)2 Cos }/23:|dA9

(8.192)
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3

%
M, :_LO-UW[(H%)(HQY C0s ¥y, |dA,

X'(1+&) X*(1+&)
71=J.4 12 = .

1+¢91(3) i’ 1+(p1(2) }[(1+€3)(1+82)cos }/23]dA. (8.193)

For convenience, the notations (Q, = N,, O, =N, and 7, = M| ) are used.

M=M'l,=M,n,_,

N=N'l,=N_,n,, (8.194)
"M="MI, =g xWN,
where
g E£=(5’ +u! DI, and "M =L exw (8.195)
1 ds 1 0,1 /41 ds .

With Eq.(8.154), the components of the internal forces in the 1, -direction are

N'=Nm,-1,=N,cos6

(n,.I7)
I
_ Nl(é‘l +0u0,1)+Nz(§2I ":)(01[)+N3(531 ":)611), (8.196)
1+e” 1+£9 1+£?

M'=Mm,-1,=M, cos6

(",1 Jd7)

_ MO Huy) M8 +el) M8 +6)) (8.197)
1+ 1+&” 1+
"M = (g XML, = e (6] +ug )N

Using the external forces as in Eqs.(8.34)—(8.38), equations of motion on the de-
formed rod are given by

‘/v,l +q= PUg, + 13¢1,rt + 1201,tt’

(8.198)
M,+"M+m=_,0,,
where
f,/®,n = [([3143,;: - [zug,zz )+ (S (01(3;) - J23(p1(5r)
+(Jy 91(:: - ‘]3391(;) L+ (Isu(lm + st(ﬂf,lt? + Jzzel(,l;?)lz
- (lzu(]m + J22¢l(,lt; + J236l(,]t? )13 ’ (8'199)

p= L podA, 1, = L pX3dA, I, = L P X 1dA,
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Iy = J.Apo(Xs)sz7
Ty = [ p(X7Y A, (8.200)
T = [ (X)X A,

and the scalar expressions are for / =1,2, 3,

N,i +q, = pu(irt +13(01(,§t) +1201(fr)’ (8201)

M+ "M +m' = 70 1,

or

NS +uy) NS +g) NS 6
(0)‘ + 0) + 0)
I+¢ I+¢, I+¢& 1

I _ 7 (7) (7).
+q = puy, + Lo, +1,6

i b (8.202)
M (8] +ug,) M) +¢) M5 +6])
0) + (0) + 0)
1+¢ I+¢&, 1+&;

+e, (6] +uy )N +m' = 70 ,-1,.
The force condition at a point.2 with X' = X, is

N+ N +F, =0,

(8.203)
N(X)="'N(X)+F (I=1,2,3).
The force boundary condition at the boundary point & 1is
1 -
N(X,)+F, =0, (8.204)

NY(XH+FE' =0 (1=1,223).

If there is a concentrated moment at a point.# with X' = X, the corresponding

moment boundary condition is

TM(X,)+ "M(X,)+M, =0,

(8.205)
MI(X)="M'(X)+M] (1=1,273).
The moment boundary condition at the boundary point & 1is
1 _
M(X,)+M, =0, (8.206)

M'(XH)+M =0 (I1=1,2,3).

The displacement continuity and boundary conditions are
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u,_=uj, andu' =B’ (I=1,2,3). (8.207)

The rod theory can be reduced to the Cosserat theory of rods (e.g., E. and F.
Cosserat,1909; Ericksen and Truesdell, 1958; Whitman and DeSilva,1969).

8.5. Nonlinear curved rods

Consider an arbitrary coordinates as (S', S?, S*) on the cross section of the rod.
The deformed curve of the rod is shown in Fig.8.6. The coordinate S' is along the
longitudinal direction of rod and the other two coordinates S*and S are on the
cross section of the rod. Without loss of generality, S* and S° are collinear to N,
and N, for the curvature and torsion directions of the curve, respectively. The co-
ordinates for the deformed rod are (s', s*, s*). Since the widths of rod in two di-

rections of S”and S° are very small compared to the length of the rod, the elon-
gations in the two directions of S*and S° should be very small, which are
ignorable. Thus, the following assumptions will be adopted.

(i) The elongations in the two directions of S*and S° are very small (i.e., &, =0
and & =0).

(i1) Under bending only, the neutral surface is not deformed (i.e., %, =0 and
i =0).

As in Eqs.(8.69) and (8.74), consider external distributed forces and moments
on the initial configuration for (/, A=1,2,3) as

q=9'1,=¢"N, and m=m'l, =m*N, (8.208)
and concentrated forces on the initial configuration at a point S' =S,
F, =F1,=F'N, andM, = M,T, = M'N,. (8.209)
Thus, one obtains the relations, i.e.,
FM o =F1,-N, =F'cosf; « (8.210)
M|, =M1, N, =M"cos, .
The displacement vectors on the initial configuration are

R(S") = X"(SHI,,R(S)= X" (51, and R, = X/1,. (8.211)

The internal forces and moments for (S' > S} ) are
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Deformed configuration

Fig. 8.6 A curved rod with initial and deformed configuration.

F |5‘=5= Zk:le + fqul,
M = Zklek + fmdSl (8.212)

+3(R(S)-R)x'F+ LS(R(S) _R(S"))xqdS";
orfor I,J,K=1,2,3 ({#J#K=#]I),
F'lay =2, F fqldSl,
g = M+ [ mas’ (8:213)

s
+ZkzleUK (ij _X/Z)F;cK + .[, e[JK(Xb{ _ij)quSl~

MI

8.5.1. A curved rod theory based on the Cartesian coordinates

As in Eqgs.(8.79)—(8.84) for the strains of the 3-D deformed beam, the exact strain
for the 3-D deformed rods can be obtained. Similar to Eq. (8.142), the displace-
ment field for any fiber of the deformed rod at a position R is assumed by
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u =ug(S.0+ Y (S @S0+ Y (56 (S.0)
DA 2 (S (SN B (S.0),

359

(8.214)

where §'=S, and u/ is displacements of the centroid curve of the rod for
§*=5"=0, and X' =X'(S"). The coefficients of the higher order terms ¢'",

6" and 3(S) (m,n=1,2,) are from the Taylor series expansion, i.c.,

o :i anul
" oSy ’

(52,5%)=(0,0)

o 1 o"u’

n | 3\7m ’
n: a(S ) (52,5%)=(0,0)

o 1 am+nu1 |

" mn! 9(8*)" (S

(5%.5%)=(0=0)

Substitution of Eq.(8.214) into Eqs.(8.79)—(8.82) gives

o€ de
g =" +— S +— s?
aS (SZ,SJ ):(0’0) aS (SZ’ Sl):(()’ 0)
1 d’¢ o 1 0% 12
+Ea(521)2 &9 +58(S31)2 &)
' (82, 5%)=(0,0) ' (52, 58%)=(0,0)
d’e 5o
NFreer S5
(87,5%)=(0,0)

2

+
G, (1+€&") G, (1+&™)
WL {[2(){1 +u )+ APl (X s )el) T } 5y

1 1 () 1 1 ()
— O (X,l +”0,1)¢1,1 (X,l +”0,1)91,1 3
1

2 G, (1+&") G la+&7T
BN [EE RN o L SRR
2 G, (1+&") Gl +&™)T

X’+u1 19(1) (1)9(1)
+ ( 1 0,130)11,1_'_ ¢1,1 1,1(0) SZSS+---,
G11(1+81 ) G11(1+€1 )

Jde
g~ +—
as

s d’e,
219(8%)?

Sz +ai
3
(87, 5%)=(0,0) a8

(87, 5%)=(0,0)
2
1 de,

&) Ay

(s’

(8%, 8%)=(0., 0)

(8%.5M)=(0,0)

(8.215)

(8.216)
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d’e,

05°95>

0, 25+ o (area)
: G, (1+€) G,,(1+£")

R e A NS N C T T s
Gy (1+€) G (1+£)

S28° 4+

(87.5%)=(0.0)

IR C T L e
G, (1+ 8;0) ) G222 1+ 82(0) )3

. 4X5+gMB) 29087 255 4o (8.217)
Gu(+€")  Gy(l+£)
d 0
£, =~ +iz s +i33 ’
98" |52 510,00 95|52 51-00
+1 0% (s + L 96 (5°)
352
Z'B(S) 52 5)=0.0) 219(5°) | 52, 5000
d’e 2 @3
+8S28;3 S
(82, 5%)=(0,0)
Lo a0 20 +6)8
3 33(14‘5(0)) Gﬂ(l"'g}(m)

R O N (C. 0 U0 e
G,(1+£?)  2GL1+€"Y
N [2676," +3(X} +6)6,"] A L+ T (5°Y
Gy, (1+£") Gh(1+£"y

4 XI+9(1) 19(7) (1) ,9(7)
+ (X5+6 312 26, 75}10 S28% .- (8.218)
G,(1+€”)  Gy(1+&")
o =0+ T2 5+ 2z 3
as (8%,5%)=(0,0) A (5%, 5%)=(0,0)
1 9° 1 9
e, S e,
1a(§7) (52, §%)=(0, 0) Ha(s) (5%, 5%)=(0,0)
2
(52, 5H)=(0,0)
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oy L[l O+ el)
cos 7y JGGy, 1+ D)1+ )

{(X’ el 2+l }}
—sin S

+
G] 1 (1 + 81(0) ) G22 (1 + 6;0) )

1 XL+ + (X +u)s)
cos7y | |GG, (1+EM)(1+e™)
i O (X1 +ug o) . XL+ || s e (8.219)
G, (1+ 81(0)) Gy (1+ 850) )’ ,

0
7o = 70+ 2L 5+ 200 5
N (52, 8%)=(0, 0) as (8%.5M)=(0,0)
+i a27/13 2 2+L 827/‘3 5%y
219(5%) ERSTETRIE <
ta( (52, §9)=(0, 0) 1a(s) (52, 5M)=(0,0)
%y,
35S 9
(57, 58%)=(0,0)

1 {(X L)+ (X )

= 7’1(3 ) (0) () (0)
,/G”G33 (1+£7)(1+&)

COS 75
i {(quww“’ (X,€,+ef”)12(()}}sz

+
G, (+¢ ) G33(1+8;0))2
1 [ 2] +ul)Hed +(X+ 67y
cos 7.y

JG, Gy 1+ ™M) (1+£")

I (DN ,q() 1 [€ARY=0h]
(O{(X +ug ) 22X +67)6, }S3+---; (8.220)

T TG ey T (e el)
0) 8}/23 2 87/23 }

Y= Tn ¥ g (Sgss):(o’o)s as’ (sz,sﬂz(o,ms
L1, sy + L 97 (5%
ZB(S ) (52, 51)=(0.0) 29(8°)* (52,5%)=(0,0)

A $257 +
ENRC N FP
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oL {Z(X,;+6n<”)¢§”+()<’z+¢>f”)z%ﬂ”
— /23

5| JORG, (e 1+ ")

COS 754

. 0{2()(,’#@“)@” (Xéﬂ%‘”)l%ﬂ”}} :
—Sin 7,

G, (1+£") G, (1+&")

1 {Mﬁ +968" + (5 +6)d)

+
cos ;/;;’) 1+ 8;0) A+ 83(0))
o] Xog)E) 22X 676" $° (8.221)
_81117/23 G (1+g(0))2 G (1+g(0))2 + s .
22 2 33 3
where
1
£ = (X +ul YX L +uy,) 1,
11
£©® = 1 \/(XI +o )X+ -1
2 \/_ 2 1 2 1 >
G22
1
€;o> - T\/(XI’ +91<I) )(Xf; +91<f>) -1,
33
(8.222)
0y _ si -1 (Xi 'H/lgl)(X[z +¢1(I))
12 =

! JG, Gy, 1+ ™)1+ )
(X1 +uy Y X5 +61)
JGL.G, (1+0)1+£™)
o gt X S+ X+6") _
2 JG,G,, 1+ M) 1+£9)

From Assumptions (i) and (ii), consider the zero order terms of the Taylor series
of the five strains to give

e =00 =0, 7V =0,70 =0, =0. (8.223)

0) _ il

The stretch of the deformed rod for S* = S° =0 satisfies

1
(1+€”y = = (X1 +ug WX +ug). (8.224)

11

Equation (8.224) implies that only 1-dimenisonal stretch is considered as in the
cable. Similarly, from the higher order terms of the Taylor series of the six strains,
the relations for the unknowns in displacement field can be obtained. From
Egs.(8.222) and (8.223),
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1

——— (X! +ul X! +ul ) =1,
Gll(1+€l(o))2( N 0,1)( N 0,1)

1
(X)X 4" =1,

22

1 22
i+ +6 ) =1 (8223

33
(X +u, )X+ =0,
(X[ +u WX +67) =0,
X5 +a" )X +6™) =0.

Using the zero order terms of S* and S° in Eq.(8.83), the directional cosine ma-
trix ((/,)s. ) Is

9 / Xj +u0’1
cos@,, =/, =—,
(1) 7 \/G_H(1+8](0))
1 )
o =] = ate (8.226)
COS O, 1) = tas o~
] VG, (1+£7)
X +6"
cos, 1, =b, = ’

JG,(1+e”)

From the geometrical relations, the nine directional cosines must satisfy trigono-
metric relations in Egs.(8.155) and (8.156). As in Fig.8.5, consider the initial Euler
angles (®,,¥, and ©,) rotating about the axes of X', X and X, respectively.
The Euler angles of the deformed rod are ( @,W and ® ). As same as in
Eq.(8.157)-(8.159) gives the direction cosine matrix (/=(/;),,;) in Eqgs.(8.160)

and (8.161) for the deformed rod. Compared with Eq.(8.235), with Eq.(8.156),
equation (8.161) for the deformed rod gives

X' +ug,
JG, (1+£)
XL +q"
JG.,
)(L + 91(1)
JG

Xf+ugl .
: ——— =sin 'V,

JG, 1+

=cos®cos VY,

=—cosDsin¥ cosO+sinDsin O,

=cosPsinVsin®@+sinPcosO,
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(2)
+ 24

\/G_zz

24 91(2)

3
VG

3 3
X¢1 +y,

VGll(lJrgl(O))

3™
Xt

JG.,

X+
\Y G33

The first, fourth and seventh equations of Eq.(8.227) give

=cos¥cosO,

=—cosWsin©,

=—sin®cosV,

=sin®sin ¥ cos O+ cos P sin O,

=—sinPsin ¥ sin O+ cos P cos O.

gy VX )+ ) A
cos \/_1 (0) \/_1 (0)
ll( +81 ) ll( +81 )
sin‘l"=7X’T+u§’l ;
JG, a+£")
cosd = Xl—i-u(l)l =+X)ll+u(l))l
\/(X] +u )+ (X i) A
- Xj+um1 :$Xi+”3,1
JOO g,V + (X +a, ) A
and
XL+ 1
— =3 cos®+(X +u,,)sin ©),
JG. A ,/ (1+g<°> o
Xt L B el (X 441} )cos©),
7,—_ y— 0,1
G33 A ll (1 + 61(0))
X2 +0?
210 =+ cos O,
JG,, ‘/G“(l+gf°))
Xi+or . A sin©®
JGs, JG, (+e”)
X‘32+¢]<3> 1

LT/ DU S
VGZZ A VG11(1+81(0))

cos@— (X +u,,)sin ©),

(8.227)

(8.228)
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1+67
: l = sin©@+ (X, +u,, ) cos ©), (8.229)

3
G33 A \/ (1 (0)

where

A= O]+, + (X )
Ay = (X7 +ug )X +u,), (8.230)
Ay = (X} +ug (X +utg,).

If ©=0,, the rotation about the longitudinal axis disappears. So only the bending

rotation exists, which is the pure bending of the rod as in Section 8.3.1.
From Eq.(8.165), the change ratio of the directional cosines along the deformed
rod in Eq.(8.166) becomes

a, _ dlw] Yy fora=1,2,3. (8.231)

ds  ds ' JG, (1+e™)ds 11(1+g<°>)ds

As in Eq.(8.168), the change ratio of the directional cosines along the deformed
rod can be computed by

L el (8.232)

UK™J oK™ 12

where the rotation ratio components in Eq.(8.232) are

dl,, -
"G, (1re)ds "

From Eq.(8.161), the foregoing equations give

O = e — L= (8.233)

— ;(Sind)d—lp+ cos‘l‘cosq)d—@),
e " s a5

! +sin'¥ d@) (8.234)

BN ENIED) “(1+g<°>) ds ds
= ;(cosd)ﬂ—sind)cos‘l’@);
ds ds

w}
VG (1+&")

similar to Eq.(8.171).
In an alike fashion, using Eq.(8.25), the particle location on the deformed,
curved rod can be expressed by

r=(X"+u"l,. (8.235)

The corresponding base vector of the deformed, curved rod is
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g =g/l = =(X} r +u1)I
and the unit vector for the deformed, curved rod is
. gl X +u X+

\/(X[+ul)(X[+ul) \/T(He)

For §°=5°=0,
- g _ X’+ué] X1+”01

n =-—
Lol \/(X’+u01)(X[+u01) N ”(1+g<°>)

The base vector in the principal normal direction is as in Eq.(8.177), i.e.,

. dn,
g = ds‘ =g,
where
&l =[x+l XS+ )

]]

— (X)X +uOX +ul) ).

Thus, the unit principal normal vector in Eq.(8.179) can be rewritten, i.e.,

ok B B &

~ I ~ I 3
18, &, K©S) &S

where the curvature of the deformed rod is

R(S) =18, |=/8n = (XL +ul )X +u! )—gm NEW

11

g (X“+u“)(X“+u“)(XK+u )(XK+u )
_[(XI"'X[)(X]]"'”H)] .
For $*=5°=0,
o1
8y =—[ (], +ug DX+l X +ul))
11

= (X +uy X + s X +ug ) ),

E, = (Xl Xl DX+l X +ul)
- [(Xll + u(l),l )(Xln + ué‘] 1 )]2 .

(8.236)

(8.237)

(8.238)

(8.239)

(8.240)

(8.241)

(8.242)

(8.243)

(8.244)
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The rotation vector of the deformed, curved rod can be expressed as in Eq.(8.185),

ie.,
o =Kk(Sn, +7(Sn, = w1,
where the torsion of the deformed rod is

€k (Xi +”[1)(X +”11)(X111 +u111)

=
—_

#S) =

1
The foregoing equation for S* = §* = 0 becomes

I, 7 J K K
€k (X,l +uy, )(X,u +uy ), )(X,ul + ”0,111)

=

#S) =

From Eq.(8.245), equations similar to Egs.(8.188) and (8.189) are:

kS)=wl, n, =0g;,
#S)=wl, n =g,
or
w, =Kk, -1, +Z(S)n, -1,
= R(8)g; +7(8)g,.

From Eq.(8.238), d¥ /dS and d®/dS are determined by

d\{1:+(X“+u0“)A2 [Au(X +”011)+A23(X11+”011)]

ds G, (1+£Y) A
d(I) (Xil + “3,11 )()(,]1 + u(]),l ) - (X,lu + u(])u)(Xi + “31) .
ds A’ ’

or
ﬂ:+()(“+uou)A2 [AL (X3, 1y, )+ Ay (X3, +uy )]
s (VG a+e™)] A
d® (X +ug, VX +y,) = (X, + 5, (X + )

ds NCRETRIS

>

(8.245)

(8.246)

(8.247)

(8.248)

(8.249)

(8.250)

(8.251)

Substitution of Eqs.(8.228) and (8.250) into Eqs.(8.234) and (8.248) gives © and

de/ds .

As in Eq.(8.192), the constitutive laws for deformed rods give the correspond-
ing resultant stresses, and the internal forces and moments in the deformed rod are

in the form of Eq.(8.193), i.e.,
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N, = Lan [(1"'82)(1"'83)005 723]dA
0, = [ 0, [(1+&)(1+¢)cos 3, ]dd

= [ osl0+e, )(1+83)cosy23]dA

M, = j (2) [(+£)(1+&,) cos y,, |dA,

(8.252)
M, =- J.A \/:

Tegd S (14 6,) (1+£,) cos 1y | dA,

. S 1+ €)G,, S*(1+&,)4G 2

1 .[A[ 12 1+6” O 1+
X[(1+&)(1+&,)cos p,, | dA.

The notations O, =N,, O, =N,, and T, = M, are used again. The internal forces
are expressed as in Eq.(8.194), i.e

M=M1,=Mpn
N=N1,=N,n,,

(8.253)
NM =

l\'MII, =g XN,
where
dr
g ="

s (X\+u, ), and M=d—drxN (8.254)

With Eq.(8.225), the components of the internal forces in the I, -direction are

=N, 1,=N,cos6, ;,

N(X1+u01) N, (X, +(ol) N, (X5+6))

JG, 1+€”) \/Z(He;‘”) G (1+€0)’ (8:253)

M’ =Mnmn, I,=M, cos6

(n.17)
M(X1+u1) M(X1+(01) M,(X5+6)) (8.256)
JG, (1+") \/:(Hg“’)) G, (1+&”)

:(g] xAN)-1, :eUK(X,l +“0,1)NK~

Using the external forces as in Egs.(8.208)—(8.212), equations of motion on the
deformed rod are given as in Eq.(8.198), i.e
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‘/v,l +q=pu,, +13¢1,n +1201

" (8.257)
M,+"M+m= /0,
where
S ®,tt = [(1 u(3) it -1 ug tt)+(']22¢l(3tt) - 23(01(?
+(J239](?t) - 91(5;) ] + (1 “0 ot + J23¢](,lt: + J2201(it))12
(1 uo rr 22¢1(]r3 +J 91(1”) )I3 > (8258)
and the scalar expressions are for/ =1,2,3,
Ni +q1 pu(o) I +1 ¢l(:t) +1 61(;‘)’ (8259)
M+ "M +m' =(/0,)-1,.
or
N(X’+u0]) N, (X} +¢)l) N, (X +0’)
VG, a+e”) Jonave”) Joau+el) |
+q = p”(()) i +13¢1I) +1 91(;)’
M(X1+u01) M, (X +(01) M, (X +¢9’)
,/ (l+8(0)) NGy (l+8(0)) VG, (1+&, 0))_‘]
+e (X +uy NS +m' =(70,)-1,. (8.260)

o = (0) =0. In addition, the force and moment

From Assumption (i), one has &,
balance conditions at any point % and the force boundary conditions are given in

Eqs.(8.203)—(8.206), and the displacement continuity and boundary conditions are
the same as in Eq.(8.207).

8.5.2. A curved rod theory based on the curvilinear coordinates

In this section, the curved rod theory on the curvilinear coordinates is discussed in
an analogy way as in the Cartesian coordinates. The strains for 3-D deformed
beam in Eqgs.(8.110)-(8.116) can be used for the 3-D deformed rod. Similar to
Eq.(8.214), the displacement field for any fiber of the deformed rod at a position
R is assumed by

M=u (S 0+ Y (S NS 0+ (S NS, 0
D L (SY(S (S,

(8.261)
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where S'=S andu (A =1,2,3) are displacements of centroid curve of the rod
for §* =8°=0. The coefficients of the Taylor series expansion ¢, 6 and
19,:7/,:) (m,n=1,2,---)are

¢(1) 1 an 7
'8(5 ) (5%, 5%)=(0,0)
1 0™’
g = TG , (8.262)
: (8%, 5%)=(0,0)
o 1 am+nu1 |

™ min! 9(S?)" (S

(8%, 8%)=(0,0)

Because G, =0 (A,T'e {l,2,3} and A #T"), the Taylor series expansion of six
strains are given as follows:
2
08’
s d’¢,
2' B(Sz)
d’g,
EARCAN

288

©)
g =&+
1 1

aS3

(5%, 5%=(0,0)
1 dg
219(8°)?

(57, 5%)=(0,0)

(S2)2+ (S3)2

(8%, 8%)=(0.0)

(8%, 5%)=(0,0)

S28° +

(87.5%)=(0,0)

A A N A(A) A A \p(A)
R ()] (é‘l +u0;])(0],l G/\/\ 2 (5] +u0;l)el;l G/\/\ 3

! G, (1+€™) G, (1+&")
+ [2(5A+u01)¢21 +(01(1A)¢1(1A)] AA _[(§1A+u01)¢1(11\)] (S2)2
2 Gll(l—"_gl())) Glzl(l—"_gl(()))

+1{[2<61A +up)0 +6701Gw (6 +u3 )0 T G, } 5y
2

G (1+€™) GL(1+€"y

A A N ,q(A) (A) g(A)
4| G )R O B O O (2o, (8.263)
G, (1+£") Gu(1+€f )
98,
0s?
1 d’g,
2'a(s )
d’e,
05795’

2, o€,
aS’

g =&+

(5%, 5%)=(0, 0)
1 d’%,
219(X°)

(57, 8%)=(0,0)

s’y

(52, 5%)=(0,0)

(57" +

(5%, 8%)=(0,0)

S28% 4+

(5%, 8%)=(0,0)
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&0 4 2(§A +¢1(A))¢£A)GAA S? 4+ (5A + §0](A))19](]A)GAA 5§

’ Gy (146 Gy, (1+£")
N [ (p(/\) (/\)+3(§/\+¢1(/\)) (/\)] N [(5/\+¢1(/\)) (/\)] (S )
G, (1+£") Gh(1+€y

n {195?%%&”6 8+ INT G } (')
G22 (1 + 8;0)) 2G222 (1 + 8;0) )

4G +dVGy | 200G (g, (8.264)
G,,(1+&” G, (1+&" '
22 2 22 2
& =~ 83(0) +a_832 S?2+ aé'i 3
987 |52 5'1=0,0) 9S™ |52, $)=0,0)
1 9% 1 d’e
235 (5%’ NETETRRE s
1a(S7) (5%,8%)=(0,0) 1a(s") (5%, 8%)=(0,0)
d’e 3
t sy S8
(8%.5)=(0,0)
(5/\ + a(A))zyl(l/\)G S2 N 2(5;\ + al(A))ez(/\)GAA
3 Gy (1+£”) Gy (1+£)

L[AMa0G,, [0+ TG | o,
G,(1+£9) 2GL(1+£")
{[29“9“’ £33 460016, 2A(S +OMON PG, } ')’

G (1+£) (1+&”)
A (A)y ,q(A) (A) ,q(A)
{4(5 +gNANG,, | 2600, gﬂsz e (8.265)
G33(1+8 ) G33(1+83 )
87/ 87/ 3
¥, ~ 0, %N 12 S
s oS (87,5%)=(0,0) 8S3 (87.57)=(0.0)
2
Ly (5 + 22T (5"’
219(8%) (5. 5=(0.0) 219(5%) (5%, 5°)=(0,0)
2
4 0 }/123 S28% +
EARCN (5%, 5)=00.0)

S0y 128" +ugHel” +(6) + o)l G
cos JG .G, 1+ (1+£) A
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. 0) (5]A + u(();A]>)¢](;1]\) 2(52A + gD](A) )¢EA) 2
—Smy, (0)y2 GAA + (0)\2 GAA S
G,(1+¢g”) G,(1+¢&")

1 {(5? + @™ + (8 +ul) s

cos 7 GG, (+eM) 1+ ™
5/\ (A) H(A)G A (A) (A)
—sin 7 (0 +uyy') 10;1 k m (6 +9 )0?}; NI (8.266)
G11(1+8]( )) G22(1+8£ )
0 d
Fo =10+ §*+2l2 s’
N (8%, 8)=(0,0) eN (87, 8%)=(0,0)
1 9’7 52 z+i 9’7 %)
2'8(52)2 59 2'8(5’3)2 R
: (52, 5%)=(0, 0) : (52, 8%)=(0,0)
82
5o 9
(5,58%)=(0,0)
VO O+ O+ (G Tup A
B cos 7/1(;)) GGy (1+€1(°))(1+€3(0)) M
_siny® (" +u )y R 52
13 G“(l_"_gl(()))Z G33 (1+8§0))2 AA
(28 e + (3 + o)
cos 72 G, Gy, (1+ )1+ £2) M
§A+ (A) 19(1\) A (A)y p(A)
~sin (O ()0) l; A0 19 (0))92 G 874005 (8.267)
G11(1+€l ) G33(1+€3 )
V., ~ 22)_'_87/23 S2+a7/23 $?
23 3 2 3
as (52, 81)=(0, 0) as (8%, 8%)=(0, 0)
+L 827/23 (SZ)Z _,’_i 827/23 (S3)2
252 3\2
219(57) (5%, 5%)=(0,0) 219(57) (5%,8%)=(0,0)
+ 97 S*S* 4o
EARCAN

(87,8%)=(0,0)
1 20 + 0™ + (5 + g
COS 73 JGn Gy, (1+£0)(1+ %) AA
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—siny 206 + o) +(53A+6’#“)1%‘1A’ o l¢
S TG (1+£")? Gy, (1+&"y | ™™
22 2 33 3

1 {2@“ L M CAR/ L A

cos 7;2) \/Gzz Gy (1+ 850) A+ 83(0)) M
A (A)y,9(A) A (AY f(A)
—s1n 7/;0)|:(5 +(P1 ()0191 +2(53 +01 (0))92 :|GAA S3+"', (8268)
GZZ (1 + 82 ) G33 (1 + 83 )

where

—VGAAJ<@A )@ ) -1,
\/ A
@

VJ_

eV =

& = + o)+ -1,

JG
gl =N+ gV +6M) -1,
VG (8.269)

L (B +ug )6 +9™)G,y
JGLG, 1+ )1 +)

S C AR/ T O
’ VGG 1+ 1+£7)
0 _ gin”! (8, + 9" )3} +67)G,,
» JGoG, (1) 1+67)

0)
12

From Assumptions (i) and (ii), the zero order term of the Taylor series of the five
strains gives

e =00 =0, 0 =0,y9 =0, = (8.270)

The stretch of the deformed rod for $? =S§° =0 satisfies

G
(1+&7) = ﬁ(éﬁ +ul ) +ud), (8.271)

11
From Egs.(8.269)-(8.271),

G,

m(5A +1up (S +uy,) =1,

G—M(df +)E eV =1,

22
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L@ 6+ =

33

(51/\ +u(l)\;1)(52/\ + (pl(A))GAA =0, (8.272)
(o + u(;\l)(é;/\ +6")G,, =0,
(521\ + (Dl(A))(é;A + HI(A))G/\/\ =0.

Using the first order terms of S* and S° in Eq.(8.115), the direction cosine ma-
trix (())oa ) is

CREINEM
cos 0(111,]\'1\) = Zl/\ = ) 0) ’
V G]] (1 + 81 )
_ G+ NG (8.273)
VG, A+£")
L (65 +6" )Gy
AT T o o~
JG, (1+&")
As in Fig.8.5, the unknowns ¢ and 6" (7=1,2,3) can be determined by the

three Euler angles (@ ,¥ and ©). Similarly, the Euler angles @ and¥ rotates
around the axes of S* and S°, respectively, and the Euler angle © rotates around

cos 49“12?1\.1\) =/,

cosb, x,) =

the axis of S'. Due to bending, the first rotation around the axis of S* is to form

(El, S?, §3). The second rotation around the axis of S* gives (El, Ez, §3). The

last rotation around the axis of S' gives a frame of (S', S?, S*) for the final state

of the rod, which is the coordinates (s', s, s’ ) . The direction-cosines give

1+u(1,;]
1+

oG, _

=—cosDsin¥ cos O +sindsin O,
V GZZ

9(]),/G
SN = cos@sinWsin® +sin @ cos O

VG, (8.247a)
u>. |G
—WN B 22(0) =sin'P,
V G]] (1 + 8] )
o =cos¥ cos®—1,
6> .G
2 N2 - cosWsinO;

JGs

=cosPcos'V,
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Uy Gy .

\/_:1(;/;0)) —sin®cos VY,
%)\/_
o,

6" =—sin®sin ¥sin@+cos P cosO—1.

=sin®sin ¥ cos @+ cos P sin O,

The first, fourth and seventh equations in Eq.(8.274) yield

COS\IJ —+ \/(1+u(]);1)2G11 +(u3:l )2 G33 -+ A

JG, 1+ INERET

sinW = 7%;1 G :
V G]] (1 + 81(0))
I+ ”(]) BNLET

Il
H

cos®d =

\/(1"'”01) Gu"'(“m) Gy, A
sin® =7 u(};l Gy, =7 uS;l G,
\/(1 + “(l);l )2 G, + (ug;] )2 Gy, A

and
NV G, ¢1(1) i|: A,
V G22 A V G]] (1 + 81(0))
VG, 1
NI g — sin®—u’ \JG;; c0sO |,
Gy {J Ha+s”) "

¢)f2) 0s@—1;

,/ “(1+£(°))
G 6’(2) =+$sin o,
V VG11(1+61(0))
\/Gss (3) 1 Ay,
—(o] =F—| ===
V G22 A V G]] (1 + 8](0))

(3) _
91 =+

A
CALJG 1+

3 .
€08 O+, 4/ G;; sin @} ,

&‘

where

I+ ”(]);1 )\/ G,

cos O —(1+uy, )4/G,, sin® |,

sin @+ (1+uy,)y/G,, cos© |-

375

(8.274b)

(8.275)

(8.276)



376 8 Nonlinear Beams and Rods

A= \/(1 + u(l];l )2 Gll + (ug;l )2 G33 ’
A, =) A+up WG, G,,, (8.277)
Ay = ”3;1”5;1\/@-

If ® =0, the rotation about the longitudinal axis disappears. So only the bending
rotation exists, which is the pure bending of the rod as in Section 8.3.2.

From Eq.(8.165), the change ratio of the directional cosines along the deformed
rod in Eq.(8.166) becomes

&_ d(lofAGA) — ZaA:l
s ds G (1+&")

Similar to Eq.(8.168), the change ratio of the directional cosines along the de-
formed rod can be computed by

G, fora=1,2,3. (8.278)

dl,
e Eqx Wl Gy, (8.279)

where the rotation ratio components in Eq.(8.169) are computed by

dla/\ ;1

O = Eypg ————l . (8.280)
ATK ,Gll(l""gl(())) aK
From Eq.(8.161), the foregoing equations give
o) :;{(ﬁsin¢+£cos‘l‘cos¢)—1"123},
JG, (1+9) | dS ds
o, = 1 {(ﬂ+@sin‘l’)—rfl}, (8.281)
JG,, (A+eN L dS  dS

w, = ;[(d_lpc
3 VG (1+81(0)) ds

similar to Eq.(8.171). Note that for the orthogonal curvilinear coordinates, one has
[N, =0 (A#T=2K=A), T}, ==Gur/2G (A#T)and Ty = ar/2Ga

(no summation on A).
In an alike fashion, using Eq.(8.25), the particle location on the deformed,
curved rod can be expressed by

r=(S"+u")G,. (8.282)

osCID—d—@sind)cos‘P)—F}z}
ds

The corresponding base vector of the deformed, curved rod is

g =8'G, =(8"+u})G,, (8.283)
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and the unit vector for the deformed, curved rod is

i g] ot +u] St +u] ‘ (8.284)
: \/(5r+u )(5r+u ) \/ (1+€)
For §*=5°=0
fll_ g] St +u0] St +u01 (8.285)

J<6F+um)<6r+um) RN

The base vector in the principal normal direction of the deformed, curved rod is as
in Eq.(8.177), i.e.,

g, =M _sg (8.286)
ds
where
o +uy
g = (8.287)
JG, <1+8)L/ mm}
Thus, the unit principal normal vector in Eq.(8.179) can be rewritten, i.e.,
~ ~ ~ ~A
G-B _ 8 _ 8 _ & (8.288)

o - G/\?
g, | 8»n K(S) &(S)
where the curvature of the deformed rod is

K(S)=1g,|=8&xn :\lgzl\gé\»

i 1 S +ul S +uf (8.289)
g = .

YOG +e) | G, (+8) | | G, (+&) ],

For §°=8"=0,

S +uy,
5 (8.290)
g = J “(1+g<°)){./ G, (1+€) ],
A A A A
gn= 1 5 o+ O+t . (8.291)
G (1+£") | G, (1+6%) | | G, (1467 ],

The rotation vector of the deformed curved rod can be expressed as in Eq.(8.186),
1.e.,

o= &S)n, +#S)n, =N, (8.292)
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where the torsion of the deformed rod is

~ (é‘lA +u/l\) gr gK 1 ~J ~K
(S)=e = | 2| ) (8.293)
LK {_G“(1+81) &(S)| &(S) ) AT YK
ForS* = S° =0, the foregoing equation becomes
~ (é‘lA +u(/)\l) gr gK 1 ~J ~K
(S)=e e | 22 | GIGIGE. (8.294)
G e RS RS |, T
From Eq.(8.292),
’%(S) = wANA ~I~13 = w/\g;\, (8295)
7(S)=o,N, n, = Ag??
or
w, =Kk(S)n, -N, +7(S)n,-N,
=R(S)g! +7(8)g. (8.296)
From Eq.(8.275), d¥/dS and d®/dS are determined by
d¥ 1 ,d
— =t A — (/G
ds G“(l+gf°>)2A{ dS( mVG)
d d
—Ap, %[(1"'”(]);1)\/G11:|_A23 %(US;NG% )}a
(8.297)

dd 1 - d G
% = _P{(l +Z/l(l);l) GH g(”g;l G33 )

(3G )di’S[m%)\/G_u ]}-

Substitution of Eqs.(8.275) and (8.297) into Eqgs.(8.281) and (8.295) gives © and
de/ds .

As in Eq.(8.193), the constitutive laws for deformed rods give the correspond-
ing resultant stresses. Similar to Eq.(8.194), the internal forces and moments in the
deformed rod are defined by

N, = LO'” [(1+&,)(1+&,)cos ,, |dA,
0, = L O, [(1+€2)(1+83)COS 723]dA’

Q= L 0, [(1+&)(1+ &) cos 7y, |dA, (8.298a)

2

S
M, = .[10“W|:(1+€3)(1+€2)2 COS 7y, |dA,
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S3
M, =-[ o, m[(l+83)2(1+€2)00s Vs |dA,
1

(| % 1+6” s 1+ ¢
X[(1+€3)(1+82)cosy23]dA.

3 2 8.298b
h= | S(+e) Sa+sq (8.298b)

The notations Q, =N,, O, =N,, and 7, =M, are used again. The internal
forces are expressed as in Eq.(8.195), i.e.,

M=M"N, =Mn,,
N=N*N, =N_n,, (8.299)
"M="M"N, =g xN,

where

dr 1
g E%=(@A+u$l)GMNA and "M Egdrx./v. (8.300)

With Eq.(8.273), the components of the internal forces in the G, -direction are
N*=N,n, -N,=N,cos6, .,

{N(é’“rum) AR A, 9(”)1 Gor, (8.301)

JG (1+®) G, 1+£) \/:(Hg“’))

Mm,-N,=M, cos@

(n.Ny)

_{M(éA +u01) M, (5} +(/,]<A>) M, (5} +9<A))}/G—’ (8.302)

M/\

JG (e JGpre)  JG, 1+
YM" = (g xN) N, =eyy (6] +”0;1) G N
Using the external forces as in Egs.(8.209)-(8.213), equations of motion on the
deformed rod are given as in Eq.(8.267), i.e.,
Ns+q=pu,, +Lp,+1,0,,,
M;+"M+m=_-0,,

(8.303)

where

e - 3 2 (3) (2)
o ®,tt - [(131/[0 it -1 KUy n)+(']22¢1 o 23(01 it

+(J2;9(3) 9(2))]N +(, uo,n+J23¢f],3+J 9(]))N2

Lt Lt L
—(Lyuy, +J @ +J 50 )N, (8.304)

0,1t Lt
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and the scalar expressions are forA =1, 2,3,

N;ll\ +qt = p“(?)),rt +13¢1 rt) +1 61(1;)’ (8.305)

MY+ M +m* =(_70,)-N,,

ACAERTS) L@ ) N Y o
\/_(1+g<°>) \/Z(Hg(‘”) JGs (1+£9)

+q :puo,n"']s(o]n)"'] o
+

lft’
M (S ud) M M) M8 +0™)
1Y (ooi + 72 \% (01(0) + 030 1(0) \/a
_JG”(1+£l ) 1/G22(1+g2 ) G 1+

e,y (O +u0r;l),/GrrNK +m* =(/0,)N,. (8.306)

B

The force condition at a point £ with S' =S, is

_N(S/]r)+ +N(S/]r)+F/r = O)

(8.307)
TNMNS)=NMSH+ES (A=1,2,3).
The force boundary condition at the boundary point & 1is
N(SH+F. =0 or N*(SH+E =0 (A=1,2,3). (8.308)

If there is a concentrated moment at a point# with S' =5, the corresponding

moment boundary condition is given by

“M(SH)+ TM(S)+M, =0,

(8.309)
TMA(S) = TMANSH+ MY (A=1,2,3).
The moment boundary condition at the boundary point 2 is
M(SH+M, =0 or M*(SH+M"* =0 (A=1,2,3). (8.310)

The displacement continuity and boundary conditions are similar to Eq. (8.207),
ie, u) =u) andu® =B (A=1,2,3).
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