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Preface

Deformable-body dynamics is a subject to investigate the states of strains and in
ternal relative motions in deformable solids subject to the action of external
forces. This is an old and interesting topic, and many problems still are unsolved
or solved incompletely. Rethinking such problems in this topic may bring new vi
tality to the modem science and technology. The first consideration of the nature
of the resistance of deformable-bodies to rupture was given by Galileo in 1638.
The theory of deformable-bodies, started from Galileo's problem, is based on the
discovery of Hooke 's Law in 1660 and the general differential equations of elas
ticity by Navier in 1821. The Hooke 's law is an experimental discovery about the
stress and strain relation. This law provides the basis to develop the mathematical
theory of deformable bodies. In 1821, Navier was the first to investigate the gen
eral equations of equilibrium and vibration of elastic solids. In 1850, Kirchhoff
proposed two assumptions: (i) that linear filaments of the plate initially normal to
the middle-surface remain straight and normal to the middle-surface after de
formed, and (ii) that all fibers in middle surface remain unstretched. Based on the
Kirchhoff assumptions , the approximate theories for beams, rods, plates and shells
have been developed for recent 150 years. From the theory of 3-dimensional de
formable body, with certain assumptions, this book will present a mathematical
treatise of such approximate theories for thin deformable-bodies including cables,
beams, rods, webs, membranes , plates and shells. The nonlinear theory for de
formable body based on the Kirchhoff assumptions is a special case to be dis
cussed. This book consists of eight chapters. Chapter 1 discusses the history of the
deformable body dynamics. Chapter 2 presents the mathematical tool for the de
formation and kinematics of deformable-bodies . Chapter 3 addresses the deforma
tion geometry, kinematics and dynamics of deformable body. Chapter 4 discusses
constitutive laws and damage theory for deformable-bodies . In Chapter 5, nonlin
ear dynamics of cables is addressed. Chapter 6 discusses nonlinear plates and
waves, and the nonlinear theories for webs, membranes and shells are presented in
Chapter 7. Finally, Chapter 8 presents the nonlinear theory for thin beams and
rods.

The purpose to write this book is to answer a question from Professor Huancun
Sun (my thesis advisor) during my master thesis defense in 1990. In my master
thesis, 1 considered the higher order terms to correct the strains in the von Karman
plate theory. However, such a correction did not consider curvature effects on the
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balance equations. Professor Sun asked me what is the error compared to the exact
theory of the 3-dimensional deformable bodies. After about 20 years, I believe that
I can give an appropriate answer to his question. In fact, after my thesis defense, I
almost place such a question away. However, in 1996, I worked with Professor
C.D. Mote, Jr. at UC Berkeley on nonlinear dynamical behaviors of high speed ro
tating disks in disk drives. Such a problem drove me to rethink about the accurate
plate theory. To express my indebtedness to both of them for their guidance and
advice, this book is my gift for the so" birthday of Professor Sun and the 70th

birthday of Professor Mote, Jr.. This book is also dedicated to my friend and col
league, Professor Zhongheng Guo. His book on Nonlinear Elasticity stimulated
my research interest in nonlinear deformable solids 25 years ago. His book was an
excellent book for graduate students. Some inspirations of this book originated
from the book of Nonlinear Elasticity . In addition, I would like to thank Professor
Youjin Che for lending his books "Tensor Analysis" and "Variational Principles"
to me during my sophomore year in 1981. After almost 30 years, I cannot find
both of books to return to him. I sincerely hope this book can bring my apology
and appreciation to him.

Herein, I would like to thank my wife (Sherry X. Huang) and my children
(Yanyi Luo, Robin Ruo-Bing Luo, and Robert Zong-Yuan Luo) for their toler
ance, patience, understanding and support.

Albert C.J. Luo
Edwardsville, Illinois
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Chapter 1
Introduction

To investigate deformable-body dynamics, it is very important to learn a devel
opment history of the mathematical theory of deformable solids. From such a de
velopment history, one can find how the deformable-body dynamics to stimulate
the development of modem physical science , which will give people a kind of in
dication for new discoveries. In this chapter, a brief history for establishing the
approximate theories of deformable solids will be given. Especially, the cable dy
namics will be discussed first, and a mathematical treatise of nonlinear beams and
rods will be presented. In addition , the past and current status of plates and shell
theory will be discussed, and the current status of soft web theory and applications
will be presented . Finally, the book layout will be presented, and a brief summari
zation for each chapter will be given.

1.1. Deformable-body dynamics

Deformable-body dynamics is a subject to investigate the states of strain and in
ternal relative motions in deformable solids subject to the action of the external
forces. The first consideration of the nature of the resistance of solids to rupture
was given by Galileo (1638). He treated the deformable body as inelastic without
any laws and hypotheses between the displacement and forces. Galileo studied the
resistance of a beam clamped at one end into the wall under its own weight or ap
plied weight. He concluded that the beam rotates about the axis perpendicular to
its length and in the plane of the wall. The determination of this axis is known as
the Galileo's problem . The theory of deformable-bodies started from the Galileo's
problem is based on the discovery of Hooke's Law in 1660 and the general differ
ential equations of elasticity by Navier in 1821. The Hooke's law (Hooke, 1678) is
an experimental discovery about the stress and strain relation. This law provides
the basis to develop the mathematical theory of deformable-bodies. In 1821, Na
vier was the first to investigate the general equations of equilibrium and vibration
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of elastic solids, as presented in Love (1944). Although equilibrium and vibrations
of plates and shells were treated before the general theory of elasticity was devel
oped, one was interested in reduction of the general theory of elasticity to the the
ory of plates and shells by the power series of the distance from the middle sur
face. The problem is that the resultant forces and moments at the edge must be
equal to the internal forces and moments generated by the strain. However, too
many unknowns cannot be solved. Kirchhoff (1850a,b) proposed two assump
tions: (i) that linear filaments of the plate initially normal to the middle-surface
remain straight and normal to the middle-surface after deformed, and (ii) that all
fibers in middle surface remain unstretched. Independent of the general equation
of elasticity , the theory of the bending and twisting of thin rods and wires was de
veloped by methods akin to those employed by Euler. One thought how to connect
the general theory of elasticity to the theory ofthin rods. Kirchhoff (1859) pointed
out that the general equations of elasticity are strictly applicable to any small por
tion of a thin rod if all the linear dimensions of the portion are of the same order of
magnitude as the diameters of the cross section. The equation of motion for such a
portion of the rod could be simplified from the first approximation of deformation
and kinematics. Based on the Kirchhoff assumptions, the approximate theories for
beams, rods, plates and shells have been developed for recent 150 years. From 3
dimensional deformable body theory, with certain assumptions, this book will pre
sent a mathematic frame to develop such approximate theories for thin deform
able-bodies including cables, beams, rods, webs, membranes , plates and shells.
The theory for deformable body based on the Kirchhoff assumptions is a special
case to be discussed. In this chapter, the development history for the theory of
nonlinear cable dynamics will be discussed first.

1.1.1. Cable dynamics

Cables are used as one of the simplest structures for human being at least thou
sands of years. The cable configuration attracted scientists to investigate since it
was used for the suspension bridge in the early human-being history. Based on the
historical record, the sophisticated suspension bridges in China appeared before
the start of the Christian era. The iron chain suspension bridge was built in Yun
nan, China in A.D. 65 in Needham (1954). In 1586, Stevin established the triangle
forces experimentally with loaded string to understand the catenary and the col
lapse mechanism in a voussoir arch, as reported in Hopkins (1970). From Trues
dell (1960), Beeckman, in 1615, for the first time solved the suspension bridge
problem that the configuration of hanged cables with the in-plane, uniformly dis
tributed loading is a parabolic arc. Galileo mused on the shape of a hanging chain
and concluded that it is parabolic primarily by analogy to the flight of a projectile,
which was published in Discourse on Two New Sciences in 1638. However, it was
proved that this view was incorrect as Bernoullis (James and John), Leibnitz and
Huygens jointly discovered the catenary in Truesdell (1960). To solve the cate-
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nary, Huygens relied on the geometrical principle, and Leibnitz and Bernoullis
used the calculus and Hooke's law to develop the general differential equations of
equilibrium of a chain element under various loading. In addition , Bernoullis pro
vided the basic fundamental of the calculus of variations to keep the center of
gravity of the chain as low as possible . Furthermore, the principle of virtual work
was developed . In the early 18th century , the vibration of taut string was exten
sively investigated to get the nature of the solution of partial differential equations .
In 1738, Daniel Bernoulli (son of John Bernoulli) published a solution for natural
frequencies of a chain that hangs from one end, and the solution was in the form
of an infinite series (Watson , 1966). In 1764, Euler obtained the equation of mo
tion for the vibrating taut membrane and obtained the infinite series solution
through the variable separation . The partial solution was given by Poisson in 1829
and Clebsch in 1862. In addition, Lagrange in 1760 used the discretized string of
beads model of the taut string as an illustration of the application of his equations
of motion in Whittacker (1970) . This work was done for the first time on the solu
tion of vibration problems by the difference equations .

The equilibrium configuration, tension and displacement of elastic cables under
arbitrary loading are needed in the design of cable structures . Rohrs (1851) first
modeled the vibration of a uniform, inextensible suspended chain hanging freely
under its own weight and obtained the approximate natural frequencies and re
sponses of the cable. Routh (1884) considered the symmetric transverse vibration
of a heterogeneous chain hanging in the form of a cycloid, and application of this
chain model to the uniform chain yielded the Rohrs' model when the sag ratio is
small. The chain was still modeled as inextensible . Pugsley (1949) developed a
semi-empirical theory for the in-plane natural frequencies of the first three modes
of a uniform, inextensible suspended chain. Saxon and Cahn (1953) developed an
asymptotic method for the natural frequencies of the chain for large sag to span ra
tios. Simpson (1966) investigated the in-plane vibration of a stretched cable
through its equilibrium and also determined the natural frequencies of multispan ,
sagged transmission lines using the transfer matrix method. Irvine and Caughey
(1974) used a similar approach to investigate the free vibrations of a sagged,
stretched cable hanging under its own weight. Hagedorn and Schafer (1980)
showed that geometrical nonlinearity is significant in the computation of natural
frequencies of in-plane vibration of an elastic cable. Luongo et al. (1984) analyzed
the planar, non-linear, free vibrations of sagged cables through a perturbation
method. Perkins (1992) considered the nonlinear vibrations of 3-dimensional,
elastic , sagged cables analytically and experimentally, and gave a brief review of
recent developments in cable dynamics. For translating cables, Simpson (1972)
investigated planar oscillations by the linearized equations of motion around the
equilibrium . Triantafyllou (1985) used an alternative approach to derive the lin
earized equations of motion at the equilibrium. Perkins and Mote (1987, 1989) de
veloped a 3-dimens ional cable theory for traveling elastic cables. The natural
modes for the vibration and stability of translating cable at equilibria were ob
tained from the eigensolutions of discretized continuum models, and also some
experimental results were reported . Luo et al (1996) presented the analytical solu-
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tion and resonant motion for a stretched, spinning, nonlinear tether.
The non-straight equilibria of the cable have been determined by approximate

means. For the stationary cables or strings, Dickey (1969) investigated the nonlin
ear string under a vertical force and gave tensile and compressive equilibrium so
lutions. Antman (1979) extended the Dickey investigation and investigated com
prehensively the existence, multiplicity and qualitative behaviors of equilibrium
for nonlinear elastic strings under different loads. The translating, sagged string
possesses two non-trivial equilibrium states because of centrifugal loading.
O'Reilly and Varadi (1995) investigated the equilibria of translating elastic cables.
O'Reilly (1996) showed that if one used an observation due to Routh (1884) for
inextensible strings, then the work of Antman (1979) and Dickey (1969) on static
equilibria for strings can be extended to examine the steady motions of these
strings. Healey and Papadopoulos (1990) extended the inextensible cable results to
all the elastic strings. O'Reilly (1996) obtained the steady motion and stability of
elastic and inextensible strings, and it was also shown that multiple steady motions
were possible . In the quantitative investigation of elastic cables, Irvine (1981)
used the method of Dickey (1969) to determine the exact equilibrium configura
tion and the approximate displacements of 2-dimensional cables under positive
tension. For a single concentrated vertical load, the predicted displacement is con
strained by the assumption that the equilibrium configuration is parabolic and that
the ends of the cable are fixed. For multiple concentrated masses, the solutions
given by Irvine (1981) require specificity of the initial configuration . To overcome
these limitations, Yu et al. (1995) fol1owed Irvine's procedure and computed the
tension and equilibrium configuration of a 3-dimensional cable under uniform and
concentrated transverse loading. The aforementioned exact solutions describe the
equilibrium but not the deformation displacement because the initial configuration
is not known. Luo and Mote (2000a) developed a nonlinear theory for traveling,
arbitrarily sagged, elastic cables, and the closed-form equilibrium solution and ex
istence were developed analytical1y. To investigate dynamics of nonlinear sagged,
elastic cable, the dynamics of the inextensible cables should be investigated. Luo
and Wang (2002) gave a series solution for the oscil1ation of the traveling, inex
tensible cable. Wang and Luo (2004) presented an alternative analytic solution for
the motion of the in-plane, traveling inextensible cable. This analytical solution is
also valid for the traveling speed over the critical speed. Based on dynamics of the
inextensible cables, the dynamics of the sagged cables can be determined.

1.1.2. Beams and rods

Galileo (1638) studied the resistance of a beam clamped at one end into the wall
under its own weight or applied weight, which caused modem science to develop.
Through waves and vibrations in deformable-bodies, one understood the light and
sound propagations . Before the theory of elasticity based on the Hooke's law and
Navier's general differential equations for deformable-bodies, one investigated the
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theory of the bending and twisting of thin rods and wires. To obtain the solutions
and extension of the Galileo's problems, the related, approximate theories for the
vibration of bars and plates and the stability of columns were developed between
1638 and 1821. The I-dimensional rod theory from 3-dimensional models by av
eraging the stress on the cross section was introduced by Leibniz in 1684. Since
then, the first investigation of the elastic line or elastica was presented by James
Bernoulli in 1705. In that research , the resistance of the bent rod is assumed to
arise from the extension and contraction of its longitudinal fibers in the elastica,
and the equation of the curve assumed by the axis is given, in which the resistance
to bending is a bending moment proportional to curvature of the rod as bent. Once
the concept about the bending moment perpendicular to curvature was established,
the work done in bending a rod is proportional to the square of its curvature.
Danial Bernoulli suggested to Euler that the differential equation of the bent rod
can be obtained by minimizing the integral of the square of the curvature along the
rod. From that suggestion, in 1744, Euler obtained the differential equation of the
bent rod and classified the various form for such a problem. From this problem,
Euler worked on what is the least length of elastica to bend under its own weight
or applied weight (distributed force). Following the Euler theory, Lagrange deter
mined the strongest form of column. Such an idea is a base for the variational
principle , and such research is the earliest research on elastic stability. In the
Euler's investigation, the rod was assumed as a line of particles to resist bending.
In 1776, Coulomb considered the cross section of rod to present the flexure theory
of beams and investigated the torsion of the thin rods. The theory improved the
rod theory presented by Daniel Bernoulli and Euler. The concept of shear was
proposed for the first time. From variation of energy function, the differential
equations for the transverse vibration of bars were obtained by Euler and Daniel
Bernoulli, and the vibration of rods with different boundary conditions was dis
cussed. In 1802, Chldni presented an investigation of those modes of vibrations ,
and discussed the longitudinal and torsional vibrations of the bar. Based on the
Hooke's law, in 1821, Navier developed the general differential equation for the
theory of elasticity. Since the theory of rods was independently developed , one
thought how to connect the general theory of elasticity to the theory of thin rods.
Kirchhoff (1859) pointed out that the general equations of elasticity are strictly
applicable to any small portion of a thin rod if all the linear dimensions of the por
tion are of the same order of magnitude as the diameters of the cross section. The
equation of motions for such a portion of the rod could be simplified from the first
approximation of deformation and kinematics . The earlier beam theories were de
veloped by Kirchhoff (1859) and Clebsch (1862), as also presented in Love
(1944). The comprehensive history of elasticity can be found in Todhunter and
Pearson (1960) and Truesdell (1960).

Since 1940's, one has been interested in the systematic development of rod
theories from 3-dimensional continuum mechanics . Hay (1942) obtained the strain
from the power series in a thickness parameter. Novozhilov (1948) developed
nonlinear theory for a rod with a large deformation . The other approximate theo
ries for l-dimensional rods or bars were presented by Midlin and Herrmann
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(1952), Volterra (1955, 1956, 1961), Midlin and McNiven (1960) and Medick
(1966). The theories were used to investigate the wave propagation and vibrations.
On the other hand, to develop a theory of rod based on a I-dimensional continuum
model, E. and F. Cosserat (1909) introduced a concept of four vector fields to de
scribe deformable vectors (directors) at a point of the directed and oriented curve.
Ericksen and Truesdell (1958) used the Cosserat approach to develop a nonlinear
theory of stress and strain in rods and shells through the oriented bodies. Cohn
(1966) developed a static, isothermal theory of elastic curves. Whitman and De
Silva (1969) followed the Cohn's work to obtain the dynamical case and gave an
explicit expression for the director inertia terms, and DeSilva and Whitman (1971)
presented a thermo-dynamical theory for the directed curves with constitutive
equations of materials . Such a theory can reduce to classic elastica and the linear
theory of the Timoshenko beam when the assumptions were introduced to the cor
responding theories, and an exact solution for such a nonlinear theory rods was
presented (e.g., Whitman and DeSilva, 1970, 1972, 1974). On the other hand,
Green (1959) presented the exact equilibrium equations for resultant force and
moments by integration of the 3-dimensional equations over the cross section.
Green and Laws (1966) extended this concept and developed a general theory of
rods through two directors at each point in rods which requires specification of
three vector fields. Antman and Wamer (1966) used the polynomials in transverse
coordinates to express the location of particle in rods and obtained the equation of
motion with powers of the transverse coordinates for hyperelastic rods. Green,
Laws and Naghdi (1967) used the idea of Green and Laws (1966) to present a lin
ear theory of straight elastic rods, and Green, Knops and Laws (1968) used the
same treatment for small deformation superimposed on finite deformation of elas
tic rods. A more detailed discussion of rod theories with directors can be referred
to Antman (1972). Reissner (1972, 1973) developed a l-dimensional finite-strain,
static beam theory but how to treat the moment was not given. Wempner (1973)
presented mechanics of curved rods, but the strain is the Almansi-Hamel strain.
The strain energy of nonlinear rods was presented in Berdichevsky (1982). Mae
wal (1983) gave strain-displacement relations in nonlinear rods and shells. Daniel
son and Hodges (1987) discussed nonlinear beam kinematics through the deposi
tion of the rotation tensor, and a mixed variational formulation for dynamics of
moving beams was presented in Hodges (1990). Simo and Vu-Quoc (1987, 1991)
used the exact strain to develop a theory for geometrically-nonlinear, planar rods,
and several higher-order approximate theories were also given. Recently , this ap
proach was used for development of the 3-D composite beam theory and numeri
cal approaches were developed for prediction of dynamic responses in Vu-Quoc
and Ebcioglu (1995, 1996) and Vu-Quoc and Deng (1995, 1997). The other deri
vation of equations of motion for geometrically-nonlinear rods can be referred to
Crespo da Silva and Glynn (1978a), Crespo da Silva (1991), Pai and Nayfeh
(1990, 1992, 1994).

The vibration of nonlinear, planar rods based on an accurate beam theory was
investigated through a perturbation approach in Verma (1972). The free, nonlinear
transverse vibration of beams was investigated in Nayfeh (1973) when the beam
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properties varied along with length. Ho et al. (1975, 1976) discussed the nonlinear
vibration of rods through a single mode model and a perturbation approach. The
forced vibration of nonlinear , torsional, inextensional beams was investigated in
Crespo da Silva and Glynn (1978b). The planar, forced oscillations of shear in de
formable beams were investigated through a specific, single-mode response and
perturbation method in Luongo et al. (1986) and the planar motion of an elastic
rod under a compressive force was analyzed in Atanackovic and Cveticanin
(1996). Holmes and Marsden (1981) used the Melnikov method to investigate the
chaotic oscillation of a forced beam. Maewal (1986) investigated chaotic motion
in a harmonically excited elastic beam through the perturbation approach and
Lyapunov exponent method. The dynamical potential for the nonlinear vibration
of cantilevered beams was discussed in Berdichevsky et al. (1995), and the nu
merical simulations of chaotic motions in non-dampened nonlinear rods were also
presented . Luo and Han (1999) presented the nonlinear equations of an in-plane
rod to investigate its chaos. In practical applications, one often used the approxi
mate theories to discuss the deformations and vibration of nonlinear rods and
beams. In recent decades, in order to more accurately describe DNA structures and
micro-electromechanical-systems (MEMS), one tried to revisit the theory of rods.
The nonlinear theory of rods in Kirchhoff (1859) was revisited. Tsuru (1987) dis
cussed equilibrium shape and vibrations of thin elastic rods. Coleman and Dill
(1992) discussed the flexure waves in elastic rods (also see, Coleman et aI., 1993).
Tobias and Olson (1993) used a homogeneous inextensible elastic rod with a uni
form cross section to describe a segment of DNA (also see, Coleman et aI., 1995,
1996; Swigon et aI., 1998). Lembo (200 I) discussed the free shapes of elastic
rods, and Colemen and Swigon (2004) presented the theory of self-contact in
Kirchhoff rods with applications in supercoiling of knotted and unknotted DNA
plasmids. Recently, the Cosserat theory of elastic rods was used to model MEMS
(e.g., Cao et aI., 2005; 2006), and the systematic description of elastic rod based
on the Cosserat theory was presented in Cao and Tucker (2008). From the afore
mentioned survey, it is very important to develop an accurate theory for beams
and rods. This book will present a theoretic frame for one to develop accurate
theories for beams and rods.

1.1.3. Plates and shells

In the 17th century, based on special hypotheses , the theories of thin rods were de
veloped. In the same fashion, the theory for plates and shells could be developed.
Euler was the first to consider the plate consisting of annuli bars. In fact, the linear
bending theory of plates was really developed by Kirchhoff (1850a,b) from his as
sumptions for the theory of thin rods. Love (1888) developed the linear theory of
shells from the 3-dimensional equation of linear elasticity , as also presented in
Love (1944). The nonlinear strains were determined by the first-order approxima
tion of the extension. Such a theory originated from the small free vibration of a
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thin elastic shell in Love (1888). Such a work drew the criticism from Rayleigh
(1888) because such an extensional deformation theory of shells is against the in
extensional deformation theory. Lamb (1890) used the alternative way to derive
the same equations as in Love (1888) and Basset (1890) considered the higher
order terms of the extension for thin cylindrical and spherical shells. To solve this
argument, around 1940, with the framework of the Kirchhoff-Love assumption,
Chien (1944 a,b) presented an intrinsic theory of plates and shells. Gol'denveizer
(1944) discussed the applicability of the general theorems of the theory of elastic
ity to the thin shells. Reissner (1944) introduced the deformation caused by shear
strain into the bending of elastic plates through an assumed displacement field.
Discussion on the developments of the linear theory can be referred to Naghdi
(1972), and other books .

The 3-dimensional thin continuous medium can be described by a 2
dimensional surface with a director. Such a concept of the continuous and oriented
media was initialed by Duhem (1906). E. and F. Cosserat (1909) extended such
concepts to develop the theory for shells and rods. Such a concept provides a base
for development of the field theory for plates and shells. In addition, the existing
approximate nonlinear theories for plates and shells have been derived from the 3
dimensional equations. In the early stage, it was assumed that the strain is very
small but the rotation is large or moderately large, and the linear constitutive equa
tions are assumed to be valid. von Karman (1910) extended the Love's strain
based on the first order approximation of extension and developed an approximate
theory for plates, and von Karman and Tsien (1939, 1941) used such approximate
theory to investigate the buckling of thin spherical and cylindrical shells by exter
nal pressure. However, Galerkin (1915) discussed series solutions of some prob
lems of elastic equilibrium of rods and plates. Novozhilov (1941) presented a gen
eral theory for stability of thin shells, and followed Galerkin's idea systematically
presented the nonlinear theory for elasticity in Nolvozhilov (1948) or Nolvozhilov
(1953) (English version). Following the von Karman theory, Reissner (1957) pre
sented his nonlinear plate theory including shear deformation. Herrmann (1955)
derived a plate theory governing dynamic motion with small elongation and shear
deformation but moderately large rotation. Wang (1990) developed the 2
dimensional theory reduced from the 3-dimensional theory for transversely iso
tropic plates. Hodges et al. (1993) developed the geometrically nonlinear plate
theory through the warping displacement. Since von Karman (1910) developed a
nonlinear theory for thin plates with large deflection, ones used that nonlinear the
ory to investigate the buckling stability (e.g., Levy, 1942) and the nonlinear vibra
tion of a spinning disk (e.g., Nowinski, 1964, 1981).

Based on the concept of continuous and oriented media, Ericksen and Truesdell
(1958) presented a general development of the kinematics of the oriented media
through n-stretchable directors in the n-dimensional space. The concept of direc
tors was introduced. Truesdell and Toupin (1960) gave an exposition of the kine
matics of the theory of oriented bodies. The 3-dimensional theory of an oriented
medium with a single deformable director at all points of the body was developed
in Green, Naghdi and Rivlin (1965). Cohen and DeSilva (1966) used the kinemat-
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ics of Ericksen and Truesdell (1958) to introduce a triad of deformable directors to
every point on the Cosserat surface. Toupin (1964) remarked only one single di
rector should be enough to develop the nonlinear theory for plates and shells.
Based on such development of the kinematics, the linearized kinematical measures
were obtained by Green, Naghdi and Wainwright (1965). In fact, such kinematics
of the plates and shells were completed by computation of the Lagrangian strains
based on the Cosserat surface with directors. The general formulas presented in
Naghdi (1972) are the first order approximation of extensions and shear defonna
tion angles from the 3-dimensional deformable bodies. The equation of motions
for plates and shells are based on the Cosserat surface. In fact, the deformation of
the cross section of the deformed plates and shells may not be in the director. Luo
(2000) developed a general frame for the approximate theories of plates. From the
Kichhoff-assumptions, an approximate nonlinear theory of plates was presented ,
which can easily reduce to the existing theories. Luo and Mote (2000b) used the
more accurate approximate plate theory in Luo (2000) to investigate the nonlinear
vibration of rotating disks and presented an analytical solution for the nonlinear
vibration of thin rotating disks. Luo and Tan (2001) investigated the resonant and
stationary waves in rotating disks. Luo and Hamidzadeh (2004) used such an ap
proximate theory to investigate the steady-state motion and buckling stability of
the axially moving plates, and Luo (2003, 2005) investigated the resonant and sta
tionary waves and chaos in axially traveling plates. In this book, the author will
present a mathematical treatise for the approximate theories of plates and shells
from a different aspect.

1.1.4. Soft webs

Generally speaking, the deformable soft web structures are extensible thin sur
faces which can resist the tension only. Such deformable webs exist extensively in
civil, textile and space engineering and bio-tissues, such as textile and paper mate
rials (e.g., flag, clothes, balloons and papers) and bio-membranes (e.g., cell mem
branes) . So far, one did not find an appropriate way to exactly describe the de
formable webs in textile materials and bio-membranes . The problem on the
inextensible soft webs rather than the elastic soft webs was investigated in the 19th

century, which was induced by the inextensible chains and nets. The difficulty for
elastic webs is where the initial configurations of the elastic webs are. Even for the
inextensible cables and nets, one has a difficulty to find the exact equilibrium con
figuration . To obtain exact equilibrium configuration , the knowledge of differen
tial geometry is required and the wrinkling instability of the web structure blocks
one to further think about such a problem. For simplicity, a pre-tensioned state for
cables and nets was considered to obtain the corresponding equilibrium. To avoid
such a difficulty, one adopted the membrane or plate and shell theory to apply
such problems because the membrane or plate and shell theory assumed the corre
sponding initial configuration exists. In this book, from the differential geometry
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of deformable body, the theory for the deformable webs will be presented, which
include non-continuous, deformable network webs, non-continuous fabric, de
formable webs and continuous deformable webs.

In practical engineering, one is used to adopt the existing membrane or plate
and shell theory to investigate the web dynamics. Lin and Mote (1995) investi
gated the axially moving rectangular webs to determine equilibrium solutions
through the von Karman theory. The eigenvalue solutions predicting the wrinkling
of rectangular webs under nonlinearly distributed edge loading were presented in
Lin and Mote (1996). The elastic wrinkling of a tensioned circular plate was in
vestigated using von Karman plate theory in Adams (1993). For an further exten
sion of such an investigation, Luo and Hamidzadeh (2004) used the new plate the
ory of Luo (2000) to investigate the stability of traveling webs (exactly speaking,
traveling thin plates), and Luo (2003, 2005) investigated resonant and chaotic
waves motion in the traveling plates. In addition, Marynowksi (2004) investigated
bifurcations and chaos of the axially moving viscoelastic webs through the beam
model (also see, Marynowski and Kapitaniak , 2007). Recently , Marynowski
(2009) summarized the recent results of the axially moving orthotropic webs in a
lecture note. However, such results based on the traditional plate and beam theory
cannot be applied to the nonlinear dynamics of deformable soft webs. The de
formable soft webs cannot support any negative forces and bending moments.

The early work is about the net webs presented by Tchebychew (1878), and
such a net web consists of inextensible fibers. The further development for the in
extensible cable-net webs was presented by Pipkin (1981,1984). To avoid non
tension in the nets, Pipkin (1986) considered the relaxed energy density rather
than the tension-field theory for isotropic elastic membranes. Steigmann and Pip
kin (1989) discussed the wrinkling of pressurized membranes through the relaxed
energy density. Steigemann and Pipkin (1991) presented the theory for equilib
rium of elastic nets through the theory of relaxed energy density and discussed the
wrinkling problem of the elastic nets. Based on such relaxed energy density, the
shear on the webs or surfaces of elastic networks can be discussed. In 1996, the
small oscillations of discrete elastic networks near the equilibrium were discussed
in Wang and Steigmann (1996). The necessary and sufficient conditions for mini
mum-energy configuration were developed for numerical computation of the soft
elastic networks in Atai and Steigman (1997). Recently, Nadler et al. (2006) dis
cussed the convexity of the strain energy-function in the two-scale model of ideal
fabrics. Nadler (2008) considered the relative stiffness of elastic nets with Carte
sian and polar underlying structure. The aforementioned developments of the the
ory of the elastic network (or webs) were based on the finite deformation and re
laxed strain-energy. All the discussion are about the initial pre-stressed nets. In
this book, the direct derivation will be presented to obtain the equation of motion
rather than the relaxed-strain energy with the deformed configuration of webs.
This idea originated from the traveling cable dynamics in Luo and Mote (2000). In
that paper, the exact equations of motion for traveling cables were developed and
the closed-form solution for steady-state equilibrium was obtained. Based on such
equilibrium, the vibration of the traveling inextensible cables were presented (e.g.,
Luo and Wang, 2001;Wang and Luo, 2004). For the cable structure, the wrinkling
and swaying phenomena were observed. The author believes that the soft web
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structures will possess the similar phenomena. Soft deformable webs do not have
any "snap-through" phenomena, but both the wrinkling behavior and swaying
phenomenon exist. However , membrane structures can resist the negative mem
brane forces, thus the "snap-through" can be observed.

1.2. Book layout

This book consists of eight chapters. Chapter I discusses the history of the de
formable body dynamics. In Chapter 2, the mathematical tool for the deformation
and kinematics of the deformable bodies will be presented . Chapter 3 will address
the deformation geometry, kinematics and dynamics of deformable bodies. Chap
ter 4 will present constitutive laws and damage theory for deformable bodies. In
Chapter 5, nonlinear cable dynamics will be presented . Chapter 6 will discuss the
nonlinear theory and vibration waves of plates. In Chapter 7, the nonlinear theory
for webs, membranes and shells will be presented . Finally, Chapter 8 will present
the nonlinear theory for beams and rods. The main contents in this book are sum
marized as follows.

Chapter 2 will review the basic vector algebra first. The base vectors and met
ric tensors will be introduced, and the local base vectors in curvilinear coordinates
and tensor algebra will be presented . The second-order tensors will be discussed in
detail. The differentiation and derivatives of tensor fields will be presented , and
the gradient , invariant differential operators and integral theorems for tensors are
presented . The Riemann-Christoffel curvature tensor will also be discussed . Fi
nally, two-point tensor fields will be presented.

Chapter 3 will present the deformation geometry, kinematics and dynamics of
continuous media. To discuss deformation geometry , the deformation gradients
will be introduced in the local curvilinear coordinate systems, and the Green and
Cauchy strain tensors will be presented. The stretch and angle changes for line
elements will be discussed through Green and Cauchy strain tensors. The velocity
gradient will be introduced for kinematics , and the material derivatives of defor
mation gradient , infinitesimal line element, area and volume in the deformed con
figuration will be presented . The Cauchy stress and couple stress tensors will be
defined to discuss the dynamics of continuous media, and the local balances for
the Cauchy momentum and angular momentum will be discussed . The Piola
Kirchhoff stress tensors will be introduced and the Boussinesq and Kirchhoff local
balance of momentum will be discussed. The local principles of the energy con
servation will be discussed by the virtual work principle .

Chapter 4 will discuss the constitutive laws and basic invariant requirements in
continuous media. To develop a continuum damage theory, the concepts of dam
age variables will be introduced. The equivalent principles in continuum damage
mechanics will be presented to obtain effective material properties , which include
the strain equivalence principle, the complementary energy equivalence principle
and the incremental complementary energy equivalence principle. A large damage
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theory for anisotropic damaged materials will be discussed from the incremental
complementary energy equivalence principle, and three examples will be illus
trated for application.

Chapter 5 will discuss the nonlinear dynamics of traveling and rotating cables.
A general nonlinear theory of cables will be presented. The basic equations of mo
tion for rotating and longitudinally traveling cables will be derived. The closed
form solutions for equilibriums of elastic cables will be developed. To investigate
the cable dynamics, the rigid body dynamics of cables will be discussed. The
equation of motion for the deformation displacements of deformable cables will
be addressed .

Chapter 6 will present a nonlinear plate theory from the 3-dimensional theory
of deformable-bodies, and the approximate theories of thin plates will be dis
cussed. From such a theory, approximate solutions for nonlinear waves in axially
traveling plates and rotating disks will be presented . Stationary and resonant
waves in the traveling plates and rotating disks will be discussed. Finally, chaotic
waves in axially traveling plates under a periodic excitation will be presented .

Chapter 7 will present the nonlinear theories for webs, membranes and shells.
The theory for network, fabric non-continuum and continuum webs will be pre
sented first from the nonlinear theory of cables, and the theory for the continuous
web will be discussed as well. Further, the nonlinear theory of membranes will be
developed in an analogy way. The nonlinear theory of shells will be developed
from the general theory of the 3-dimensional deformable body, and such a theory
of shells can easily reduce to the existing linear and nonlinear theories .

Chapter 8 will present the nonlinear theories for rods and beams in the Carte
sian coordinate frame and the curvilinear frame of the initial configuration . With
out torsion, the nonlinear theory for in-plane beams will be developed first under
certain assumptions, and the nonlinear theory of rods will be presented systemati
cally from the general theory of the 3-dimensional deformable body.
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Chapter 2
Tensor Analysis

This chapter will prepare basic knowledge about the tensor analysis in ]~? The
base vectors and metric tensors will be introduced, and the local base vectors in
curvilinear coordinates and tensor algebra will be presented. The second-order
tensors will be discussed in detail. The differentiation and derivatives of tensor
fields will be presented, and the gradient, invariant differential operators and inte
gral theorems for tensors will be presented. The Riemann-Christoffel curvature
tensor will also be discussed. Finally, two-point tensor fields will be presented.
This chapter will provide mathematical tools for nonlinear continuous media . In
this chapter, the notations will be adopted from Guo (1980) and Marsden and
Hughes (1983) .

2.1. Vectors and tensors

In this section , vectors and vector analysis will be introduced first. From vector
analysis , the base vectors in curvilinear coordinate systems will be presented, and
the metr ic tensors will be introduced. The transformation between the base vectors
of two curvilinear coordinate systems will be presented. The concept of tensors is
introduced. The tensor algebra will be discussed through the dyadic expression.

2.1.1. Vector algebra

In a vector space 3; there are three vectors (i.e., u , v and w) . These vectors sat

isfy the following rules :
(i) Vector addition

U+v= v+u,

u+(v+w)=(v+u)+w,
(2.1)
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u+O =u,

u+(-u)=O.

(ii) Vector scalar multiplication

k(u) = ku,

a(bu) = (ab)u ,

(a+b)u = au +bu,

a(u + v) = au +av.

2 Tensor Analysis

(2.2)

(2.3)

Definition 2.1. A set ofn-vectors v" v2"' " V N is linearly dependent if

" Nk.v =0L....J i=l I 1

(2.4)

with at least one of k, *-0 for i = I, 2, . . . , N . Otherwise, such a set of N-vectors is

linearly independent, i.e.,

(2.5)

Definition 2.2. A vector space iJ'N is N-dimensional if a set of N-vectors v" v2'

.. . , VN is linearly independent, an (N + l) th -vector vN+l with kN + I *-0 satisfies

L:
N +1

k.v =0.
i= 1 I I

(2.6)

For Eq.(2.6), consider kN + I = -I and vN + I = V , one obtains a new vector as

V=" N k v .
L.J i= l 1 1

(2.7)

There fore , a new vector v can be expressed by the a set of N-linearly independent

vectors (i.e., V I' v2"'" VN)' In other words, such a set of N-linearly independent

vectors is said a basis of the N-dimensional vector space.
If the angle between vectors u and v is B , the vector dot product (or vector

scalar product) of the vectors u and v are computed by

u· v = lullvl cos B (2.8)

where 1·1 is the magnitude of the vector. If u = v, B= 0 , then we have v · v

= I V 1
2

• Therefore , the magnitude ofa vector v is computed as

Ivl=~·

The vector v is a unit vector if

(2.9)
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Ivl = 1.
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(2.10)

Definition 2.3. In a Euclidean vector space , the vectors u and v are perpendi
cular if

u ·v =0. (2.11)

Definition 2.4. A set of N-lineariy independent vectors Vi ( i = I, 2, . .. , N ) is or

thogonal if

vi ,v j =0 if i::tj,

Vi . Vj ::t 0 ifi = j.
(2.12)

Furthermore, such a set of N-linear independent vectors is termed an orthogonal
base .

If the angle between vectors u and V is B , the vector cross product (or vector
product) of the vectors u and V defines a new vector w , computed by

w=uxv and 1wI=lullvl sinB. (2.13)

Such a new vector is perpendicular to both vectors u and v ; and the corresponding
unit vector is defined as

(2.14)

The direction of the vector w is based on the right-handed system of u, v and

w . In other words ,

UXv=-VXu.

2.1.2. Base vectors and metric tensors

(2.15)

Definition 2.5. Consider three Cartesian coordinates Zi ( i = 1, 2, 3) of a point

P(z) with z = L;=l Z\ in lR? Three functions in a neighborhood of z

(2.16)

are called curvilinear coordinates of point P(z) if there is a unique one-to-one in

verse
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(2.17)

From differential geometry, the condition for the unique one-to-one inverse
maps of Xi = Xi(Z' , Z2, Z3) (i = 1, 2, 3 ) requires that the first-order derivatives of

z' are continuous and the determinant of the corresponding Jacobian matrix is
non-zero, i.e.,

. dz'/dx'

J = I~I = dz
2ldx'

dX' dz3ldx'

dz'/dx2

dz21dx2

dz31dx2

dz'/dx3

dz
21dx3 *" o.

dz31dx3

(2.18)

From the above definition, the curvilinear coordinates are shown in Fig.2 .I . The

Cartesian coordinate system is defined by {z'} (i = 1,2,3) and the corresponding

unit vectors are {l.} ( i = I, 2, 3 ). The point P is described by

I 3 . I 3 . , 2 3
P = z' ] . = z' (X X x)i

j= ! J j= ! " ) (2.19)

The Einstein summation convention is adopted. The summation convention states
that summation (i = I, 2, 3) is only implied by repeated indices when one of the

repeated indices appears as a superscript and one as a subscript. Such repeated in
dices are termed the blind index, which can be replaced arbitrarily. For instance,

P = Z ii . = z' i . .
I }

The base vectors gi(X',X 2 ,X3
) tangential to the curves Xi (i=I,2,3) are de

fined as

(2.20)

On the other hand , the point P can be expressed by

(2.21)

The corresponding base vector i i (j = I, 2, 3) is determined by

(2.22)

From any three linearly independent vectors g, (i = 1,2,3) in 3-dimensional

vector space , any vector can be expressed by a combination of the three vectors
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Fig.2.1 Curvilinear coordinates.

where Vi is the component of vector v in the direction of gi .
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(2.23)

Definition 2.6. The base vectors gi ( i =1,2,3) of a vector v =vig i are called the

covariant base vectors of the vector v ; and the corresponding components Vi
( i = I, 2, 3 ) are the contravariant components of the vector v .

Since the base vectors g, (i = I, 2, 3 ) are not necessary to be orthogonal and

unit vectors, a quantity to measure the dot product of two non-orthogonal gi and

g j is introduced as

(2.24)

from which one obtains g ij = g j i ' Once the vector v and three base vectors g,

( i = 1, 2, 3 ) are given, the component V i of the vector v in the direction of gi is de

termined by

g i; vj = v· gi (i = 1, 2, 3 ) (2.25)

because of v .gi = v j g j • gi = g ij v j
• The foregoing equation gives a unique solu

tion of Vi ( i = 1, 2, 3 ) because the determinant of coefficients of linear algebraic

equations is non-zero :

(2.26)

where 1·1 is matrix determinant. To prove the foregoing equation, three base vee-
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tors gi ( i =1, 2, 3 ) expressed by three orthogonal unit vectors ( i r , r =1, 2,3 ) on

three axes in JR.3are considered for an example, i.e.,

(2.27)

where g; =dzr
/ dxi and 1g; 1=1dzr

/ dxi
I. The cross product of the two base vec

tors gi and g j are

(2.28)

and

, 2 3 , , ,
g, g, g , g, g 2 g3

[g,g2gJ = g, -(g2XgJ =
, 2

g~ = 2 2 2
= Ig; I·g2 g 2 g, g 2 g3, 2 3 3 3 3

g3 g3 g3 g, g 2 g3

(2.28)

On the other hand,

(2.29)

(2.30)

Therefore , equation (2.26) can be obtained.
For simplicity, another set of base vectors is also introduced to measure the

vector v .

Definiti on 2.7. A set of three base vectors gi (i = 1, 2, 3 ) is contravariant if the

following equation holds for the covariant base vectors of gj (j = I, 2, 3 ),

i s: ig - g j = U j ,

where the Kronecker del ta 8;j is defined as

oj ={I for i = j ,
I 0 for i::t j.

(2.31)

(2.32)

From the foregoing definition, the contravariant base vector gi is perpendicu

lar to the covariant base vector gj ( i» i ). The two sets of base vectors gi

( i = I, 2, 3 ) and gj (j = I, 2, 3) are of dual basis (or reciprocal basis) in a Euclid

ean vector space. As in Eq.(2.24), a new quantity of the base vector g' (i = 1,2,3 )

is introduced as
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(2.33)

With Eq.(2.31) , equation (2.33) gives the base vector g' as

(2.34)

If the matrix (g ij ) 3X3 is uniquely given , then the base vector gi is determined

uniquely . Multiplying g, at both sides ofEq.(2.34) and using Eq.(2.31) gives

(2.35)

The determinant of the foregoing equation gives 1= 1g ijg 'k I. With Eq.(2.26), one
}

obtains

.. I
Ig U 1= - :;t: 0.

g
(2.36)

Thus the three base vectors g' (i = I, 2, 3 ) are not in the same plane . For k = i ,

(g ij) is the inverse matrix of (g jJ , i.e.,

due to g = det(g;i) :;t: 0 . Thus, the contravariant base vector is given by

i _ I 1
g = (g j) g . = - cofactorrg , )g ..} } g } }

(2.37)

(2.38)

On the other hand, because g' is normal to the basic vectors g j and gk (i:;t:

j :;t: k). If i ~ j ~ k ~ i rotates clockwise, then the two vectors gi and g j x gk

are collinear, but their magnitudes are different. So we have

(2.39)

Left multiplication of gj in Eq.(2.39) and using Eq.(2.31) gives

(2.40)

Thus,

(2.4 I)

Similarly , the covar iant base vectors g, can be determined by the contravariant

base vectors , i.e.,
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(2.42)

Once the covariant base vectors are given, the contravariant component of V i in

the vector v = Vigi in Eq.(2.23) is determined by

(2.43)

because of v ·gj = Vig i . gj = v'J/ = v j
• In addition, the vector v can be ex

pressed by the contravariant base vector gj , i.e.,

(2.44)

Definition 2.8. The base vector g' (i = 1, 2, 3) of a vector v = vig i is called the

contravariant base vector of the vector v ; and the corresponding component
Vi = v g, (i = 1, 2, 3 ) is the covariant component of the vector v .

Definition 2.9. Two quantities g ij = gi . gj and g ij = gi 0 gj are termed the cova

riant and contravariant metric tensors, respectively.

From the previous discussion, once the covariant base vectors g, are given, the

two metric tensors g ij and s", contravariant base vector gi and vector v can be

determined . Once the vector can be expressed through two covariant and con
travariant base vectors, the dot and cross products of two vectors can be discussed.
For instance, from Eq.(2.34), the dot product of the base vectors is

(2.45)

but from Eq.(2.35),

From Eqs.(2.43) and (2.44),

Vi = gi . V = gi . g, vk
= g ik vk

,

Vi =gi oV=gi ogk Vk <s'v:

(2.46)

(2.47)

Consider any two vectors u = U igi = u ig
i and v = vig i = vig i . The corresponding

dot product is given by



2.1 . Vcctors and tensors

Ifu = v , then

u -v e g' ·gju.v. <s"v»,
I J I J
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(2.48)

(2.49)

In conclusion, gij and g ij are key quantities to determine the magnitude of the

vector v , which are often called the metric tensors.

Definition 2.10. Eddington tensor is defined as

cijk =[gig jg k] and c ijk = [g ig jg k]. (2.50)

The covariant and contravariant components of the cross product of two vec
tors ( w = u x v ) are computed by

. k
Wi =W 'gi =(UXV) 'gi =(u'g jXV gk) 'g i

. k . k . k
=U'v (g jXgk) ·g i =U'V [g ig jg k] = CijkU' V ,

Wi =w .g i =(UXV) .g i =(u .gjXvkgk) .g i,
_ j k i _ i j k _ ijk
-uj vk(g xg ) .g -ujvk[gg g ]- C U i Vk.

(2.51)

(2.52)

From the foregoing equat ions, the Eddington tensor is a kind of the metric tensor

as the metric tensors g ij and g ij in the dot product of vectors.

The cosine of the angle between two vectors u and v is computed by

u ·v
cosB(uv)=---

, 1 u ]] v 1

(2.53)

and the volume of three vectors u, vand w is determined by

2.1.3. Local base vector transformation

(2.54)

As in the previous section, in a coordinate system of {Xi} ( i = 1,2, 3 ), any vector

to a point p can be expressed by p = x'g.. However, in pract ical computation, a

convenient coordinate system is needed . For example, there is a coordinate system
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of xi' (i =1, 2, 3) with the corresponding base vector gi' =(azi / axi')ii . Such a

system is sketched through the dashed curves in Fig.2.2. Under a certain condi
tion , the two coordinate systems can be transformed.

If the three functions { xi' } (i = I, 2, 3 ) in Q c ]~? ,

(2.55)

are unique, continuous and differentiable with respect to {X i} (i = 1,2, 3), then,

in the domain Q of {xi' } , there are three corresponding unique , cont inuous and
differentiable, inverse funct ions , i.e.,

(2.56)

Therefore, the two coordinate systems { xi'} and { Xi} can be transformed each
other.

From the aforementioned cond itions , the Jacobian matrices of the two trans
formations are non-zero, and the cont inuity requires that the determinants of the
two Jacobian matrices do not change sign . Because

1= I0.:' I= Iaxi' . ax': I= Iaxi' 1.1 ax" I
t ax" ax' ax" ax"

and if

l
axi' I laxi'l- . > 0 (or - . < 0 ),
ax' ax'

equation (2.57) gives

I
axi I Iax

i
Iax i' > 0 (or ax i' < 0 )

(2.57)

(2.58)

(2.59)

and vice versa. Therefore, the vector p for a point P in Fig. 2.2 can be expressed

through two coordinate systems { xi'} and { Xi} . The corresponding geometry
properties can be discussed as follows .

To determine the tangential vector of { xi'} ( i = 1, 2, 3), consider the vector

p = Xi (x', x2, x3)gi' The definition of the base vector gives

ap a i ax
i

(2 60)
gi' == axi' = axi' (x gJ = axi' gi ' .

The base vectors for { xi' } are local, and at the different point, they are differ

ent. From the properties of {Xi }, the base vector gi' is continuous and differenti

able. Due to the linear independence of gi { i = 1,2, 3 }, [g lg2g3] > 0 for the right

handed coordinate system. So
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Fig. 2.2 Curvilinear coordinates.

(2.61)

which implies that three base vectors of g, (i = I, 2, 3 ) are linearly independent.

Similarly, if there is another curvilinear coordinate system of {Xi'} (i = 1,2,3 )

which is transformed from the curvilinear coordinate system of { x;' } (i = 1,

2, 3 ) , the corresponding local base vector is defined by

(2.62)

At any point in JR.3, the matrices (ax i
/ ax;') is the inverse of (ax;' / axi

) , vice versa.

The elements of the two transformation matrices are defined as

(2.63)

For any vector v , one can use different points to describe the vector. For a point p ,
suppose the vector v is expressed by

(2.64)

Similarly , at another point q, the vector v is expressed as

(2.65)

If two points p and q are different, then Vi (p) '* Vi (q) and gi (p) '* gi (q) . But both

of them describe the same vector. Similarly , such a concept will be used in tensor
analysis. Consider the two vectors to describe by the local base vectors of different
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points. The two vector addition is

u + V = u' (P)gi (p) +v' (q)g i(q)·

2 Tensor Analysis

(2.66)

From Eqs.(2.60) and (2.63), a new set of covariant base vectors g, is expressed

by

(2.67)

The new contravariant base vector is defined by

(2.68)

Similarly,

(2.69)

From Eqs.(2 .67) and (2.69) ,

Thus the matrix (A;\X3 is full , which is an inverse of the matrix (A ;') 3x3 '

g;,/ = g;, ' g/ = A;'gi ' Aj,gj = A;'Aj,gij,

gO' = g;' .g/ = A;'g' . A{ gj = A;'A{ g ij ;
. . k . . k

c;';'k' = [g ;,g/gk'] = A;'Aj,Ak'[gig jg k] = A;'Aj,Ak'cijk'

c;';'k' = [g ;'g/ gk'] = A;'A{ A~' ls'gj gk] = A; A{ A~'c ijk,

(2.70)

(2.7 1)

Although the components of a vector v vary with different coordinates, the vec 
tor v is independent of such coordinates. For different coordinate systems, the vec
tor v is expressed by

v = v;'g;, = V;'A;'gi = Vigi = /A ;'g ;,

= v;,g;' = v;,A;'g' = vigi = viA ;,g;'.

The foregoing equation yie lds

v;' = viA ;' , Vi =v;'A;',

V;, =viA;', Vi =v;,A;' .

(2.72)

(2.73)

For a given coordinate system { Xi}, the corresponding covariant vector bases can

be determined (i.e., g, = ap / axi
) . Such a coordinate system is called a complete

coordinate frame . Consider any three linearly-independent base vectors g (i ) =

A~i)g i (A ~i) is differentiable) . If one can find a coordinate system {x'? } to make
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g(i) = dp / dx (i) exist, then this coordinate system is complete. Otherwise, this co

ordinate system is incomplete . From g(i) = A ~i)g i ' tensor components in a com

plete coordinate system can be converted in the incomplete coordinate system.

2.1.4. Tensor algebra

As in vectors, any mixed tensor can be expressed in a dyadic form of

(2.74)

where If/k imk" j" is the component of the tensor. The number of total indices is

the order of tensor. W is the weight of the tensor. If W = 0 , the tensor /If is

called the absolute tensor. Otherwise, the tensor /If is called the relative tensor or

the tensor density. If W = I , the tensor possesses the zero-order density . If

/lfiJ....;k" j" = 0, the tensor is called the zero tensor. If two tensors have the same

weight and the same order, the two tensors are of the same type. Any vector is a
tensor of the first-order. Any scalar is a tensor of the zero-order. Because a tensor
is the same as a vector in different coordinate systems, any tensor is independent
of coordinate systems. Any tensor can be expressed through the base vectors of
different coordinate systems. Thus, the tensor in Eq.(2.74) is expressed as

(2.75)

The dyadic expressions of the metric tensors and Eddington tensors are given as

(2.76)

From the foregoing equation, the metric tensor and Kronecker-delta are the same
geometric characteristic quantities.

Definition 2.11. For a transformation of two coordinates Xi = Xi (x", x 2
' , • • • , x N

' )

(i = I, 2, .. ., N ),
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(i) a funct ion ¢(x ', X
2

, •• • , x N
) is termed an absolu te scalar if it does not change

its original values, i.e.,

(2.77)

(ii) quantities Vi and Vi (i = 1, 2, .. . , N ) are called the abso lute contravariant, and

covariant components of a vector (or simply called, contravariant and co
var iant vec tors), respec tive ly if

Vi' = Ai.'v .i
J

vi' = A{,vj

(contravariant vector),

(covarian t vector).
(2.78)

are respectively called the absolute contravariant, covariant and mixed com
ponents of a tensor (or simply called, contravariant, covariant, and mixed
tensors), respectively if

V i; ··I'mj; -t; =Ai{ ·· · Ai;" A j{· · · AJ;vil "'m.il "j" (contravarian t tensor),
' I 1m 11 J"

v. ··I'mj; -t;
- Ail . . . AimA il . . .Aj~ v. (covarian t tensor) , (2.79)

'I - i{ I'm j{ In 11 ··jm.i1 "j"
Vi; -r; =Ai{ Ai;" A il · · · Aj~ vil

..1m (mixed tensor).j{ -t; ' I
.. . i; j{

J" jl ··.in

Definition 2.12. For a transformation of two coordinates X i = Xi (x", x 2
' , ••• , x N

' )

( i = 1, 2, .. . , N ),

(i) a function ¢(xl
, x 2

, • •• , x N
) is termed a relat ive sca lar of weight W if it does

not change its original values, i.e.,

(2.80)

(ii) quantities Vi and Vi (i = 1, 2, . .. , N) are called the relative contravariant and

covariant components ofa vector ofweight W (or simp ly called, relative con
travar iant and covariant vec tors ofweigh t W) , respec tive ly if

( relative contravarian t vector),

(relative covariant vector).
(2.81)

are respective ly called the relative contravariant, covariant and mixed com
ponents of a tensor of weight W (or simply called, contravariant, covariant
and mixed tensors ofweight W) , respectively if
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Vi; ··i'mj{ 'i;
= I A::, I

W Ai; , . .Ai~ Ai; .. . Ai;V ii ·· i mj j "i" (contravariant tensor),
/1 ' m 1I t;

V., ··i'mj{ -i: = I A::, I
W A\ "' Ai

;:> Ai) · · · Ai~ v -i .J. "i"
(covariant tensor) ,

' I II i ; 1I t; 11

Vi; "i'm
= I A::, I

W Ai; . . .Ai~ Ai) . . .Ai~ Vil im (mixed tensor) .j{ -t; /1 1m 1I t; il -),
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(2.82)

In a tensor space g; there are three tensors of the same type (i.e., rp ,If/ and 1] ) .

These tensors satisfy the following rules.
(i) Tensor addition

rp+lf/= If/+rp,

rp+(If/+1]) = (If/+rp)+1] ,

rp+O=rp ,

rp+(-rp) = O.

(ii) Tensor scalar multiplication

k(rp) = ktp,

a(brp) = (ab)rp,

(a+ b)rp = arp +brp,

a(rp +If/) = aip+alf/.

(2.83)

(2.84)

(A) Tensor addition Two tensors of the same order and type can be added to
form a new tensor.

= 1], (2.85)

(2.86)

When the components of two tensors of the same type are different expressions,
before addition , the component expressions should be changed to be same via the
coordinate transformation tensor and the metric tensor. For a tensor, a new tensor
obtained by lowering and/or raising indices is called the associated tensor of the
given tensor.

(B) Tensor multiplication The outer product of two tensors is carried out by
simply multiplying their components. This operation gives a new tensor and the
tensor order is the sum of those of multipliers . The base vectors will follow the
dyadic rules to express a new tensor.
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= 'I, (2.87)

(2.88)

(C) Tensor contraction Contraction is the dot product of any two base vectors in
the tensor. In a mixed tensor the operation of equating a superscript index to a
subscript index. A contraction operation decreases the order a tensor by two.

= qJ. (2.89)

After contraction, a new quantity still is a tensor, and the tensor character can be
verified by the quotient rule. That is,

. g... .g. 'g . g... .gO. gjl .. .g jm-lg jmg jm+1 .. . g j"
11 lk_l Ik lk+! 1{

. g. .. .g. g. ... g.gjl .. .g jm-Ig jm+1 .. . g j" •
'I ' k-l ' k+! I{

(2.90)

The contraction can be operated continuously. For instance , two continuous con
tractions are given as follows.
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. g. "' g. g. g. "' g. g.h ... g im-lg im+2 ... g i"
' I ' k- 2 ' " ' k+2 ' I

Note that the contraction symbols represent the following meaning.

.---.----,

r---.~.----,
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(2.91)

(2.92)

(D) Tensor dot product The tensor dot product is a simple multiplication of ten
sors with the prescribed base vector contraction.

(2.93)

If the tensor dot product is based on the two adjacent base vector contraction, then
the above expression becomes

(2.94)

If the tensor dot product is based on the contraction of two pairs of the adjacent
base vectors , then
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(2.95)

(2.96)

(2.97)

(E) Tensor cross product The cross product is based on the cross product of the
adjacent base vectors of the same type.

,//X tp = (lj/Ii kl /i -WIgigjgkg/) X (rpp/ /i -W
2 gPgqgsg,)

.. C -(WI+W, ) k I
= (lj/Uk1rpp/ vg - gigjg (g xgp)gqgsg,)

= lj/Ii kl ((Jp/'e 1pm/i-Wgigjgkgmgqgsgt

== 1]i;. m.s'g.g .gkg gqg g
k- q I ) m s t'

II? _( Ii C - WI ~)(XrsXC-W, 1 1'1 q )
'f'xrp - lj/ klVg gigjg g (jJpq Vg g g grg,

=(lj/ Iikl(jJp/sJg- (W
I
+W

2
) gig/gk X gP)(gl X gq)grgs

(2.98)

(F) Tensor index permutation Permutation of superscript indices i , ... , j , . .. , k

(or subscript indices r, . .., s, ... , t ) of a tensor gives a new tensor with the same

type . For instance,

.. .s:lj/= lj/k../... j g g.... g . . ..g g" . .. gs... g'
r···s···! 1 ) k

;·· ·j···k r:" r 5 t=((J . r...s...tv g gi ···g j ·· ·gkg . ..g . ..g = rp. (2.99)

From the foregoing equation, the locations of subscript (or superscript) indices are



2.1 . Vcctors and tensors 37

very important.

(0) Tensor symmetry If two-index permutation of superscript indices i , ... , j ,

. . ., k (or subscript indices r , . . ., s , . .. , t ) of a tensor generates a new tensor that is

the same as the old tensor, such a tensor is symmetric for two indices.

(2.100)

(H) Tensor asymmetry If two-index permutation of superscript indices i , . .. , j ,

.. ., k (or subscript indices r, ... , s, ... , t) of a tensor gives a new tensor, its sign

with the old tensor is opposite . Such a tensor is asymmetric for such two indices .

(2.101)

For a given tensor with M-indices on the same level (subscript or superscript),
M! times index exchange form M! new tensors, and the average of M! tensors
is to form a symmetric tensor. Such a symmetric tensor of the original tensor is
expressed by the subscript or subscript with parenthesis (-). For instance,

1
CfJ(ijl = 2! (CfJ ij + CfJjJ ,

I
CfJ(ijkl = 3! (CfJ iik + CfJjki + CfJkij + CfJkji + CfJ ik; + CfJjik ) .

(2.102)

For a given tensor with N-indices on the same level (subscript or superscript) , N !
times index-permutation forms N ! new tensors. Among the N ! tensors, after the
N !/2 new tensors with odd permutation of index multiply negative one (-I), with

the other new tensors, the average of the new tensors is to form an asymmetric
tensor. Such an asymmetric tensor is expressed by the subscript or subscript with
bracket [.J . For instance,

1
tAij] = 2! (CfJ ij - CfJji) '

1
tAijk] = 3! (CfJ ijk + CfJjki + CfJkij - CfJkji - CfJ ikj - CfJjik) '

(1) Tensor quotient rule

(2.103)

Theorem 2.1. If A i is an arbitrary covariant vector and A iX
i is invariant, i.e.,

(2.104)
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then X i is a contravariant vector.

Proof: Because of

one obtains

Because Ai' is selected arbitrarily, the foregoing equation gives

It implies that X i is a contravariant vector. This theorem is proved.

2 Tensor Analysis

•
Theorem 2.2. If A il···imh ..-t, is an arbitrary n-order covariant and m-order con

travariant tensor and s '<» . . = X iI" )"i"' I ' ) p . . . A il· .. '« , . is an (q - m)-
'm +1"' /q 11"' /m'm+1"" 1/ 1I " '}n

order covariant and (p - n) -contravariant tensor, then X iI" 'i "i"' 1 .'\ 1...imim,1..iq is a

q-order covariant and p-order contravariant tensor.

Proof: Because B i"' I "\ I . .. i is a tensor,
11I+ q

= Ai ; ... Ai ; A i ;"1.. .Ai~ A \ ... A i,~ Ai7'1.. .A~~ X ili"i"'l i p A 'I''''m
tv I n I n+J' Jp If 1m 'm+l lq il " ' ;m'm+l .. iq j{ "j~

For a new coordinate ,

two equations yield

B i;'1 " j~ = X i ; -: "j~ Ai; " lm

'm +1 .. i~ i{ " /m .. i~ j{ .)~
The foregoing

(A l ; .. .A i ;Ai~'1 .. .Ai~ A i) .. . A i;"A i7'1.. .A~~Xil i"i"' l ip
Jr .In I n+l' Jp If 1m 'in+! l q iJ"'imi m+l"'iq

- X i; " i;i~ )A i{"' i;' - 0
i;... i~ ... i~ j{"'j; - •

Because is selected arbitrari ly, the following equation is obtained .



2.1 . Vcctors and tensors

tensor. This theorem is proved.
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•
(1) Ricci symbol For simplicity, the Ricci symbol (or permutation symbol)

i"I"k are introduced ase or ei .. I ..k

o when any two indices are equal,

+I when (i" i2, ... , iN) are (I, 2, , N ) or

eiJiZ"·iN (or e . ) = an even permutation of (1, 2, , N) ,
III Z O" IN

-1 when(i" i2 , ... ,iN ) are an odd

permutation of (1, 2, .. . , N).

Generalized Kronecker-delta :

(2.105)

where

o

-I

when any two or more upper

(or lower) indices are equal,

for even permutation between

the upper index and lower index ,

for odd permutation between

the upper index and lower index,

(2.106)

(2.107)

(2.108)

From the Ricci symbol , the determinant ofa matrix (a;)QXq can be expressed by

(2.109)

Theorem 2.3. For a matrix (a ;)3X3' thefollowing relations hold

(2.110)

ir js kt _ ri sj tk _I mn 1eijka a a - eijka a a - a erst'

Proof : The asymmetry of Ricci symbol gives

For index (i , j , k ), eiik d/,a~a~ are asymmetric. In addition, if (r , s, t) IS (1 ,2,3) ,

th i jk -lml Then eijka,/,a.sa.t - a.n • us,
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Similarly, the following formula can be proved.

ir js kt _ ri sj tk _I mn 1
eijka a a - eijka a a - a erst '

Therefore, this theorem is proved.

Theo re m 2.4. Two Ricci symbols (eijk and eijk ) are two tensors.

Proof : Because

2 Tensor Analysis

-

It implies that two Ricci symbols (eijk and eijk ) are two tensors . This theorem is

proved . _

Beca use eijkl r «:s" ;t. erst , eijk and eijk are two different tensors . However,

Eddington tensors (Cijk and e " ) are asymmetric because

C il · ·i
q

= e il .. i
q
[gl gq] = e il .. i

q
Ji,

cil .. iq =e il .. iq [gl gq] = e il .. iq / Ji;
Cijk =eijk [glg2g3]=eijkJi,
c ijk = eijk [glg2g3] = eijk/ Ji;

(2.111)

s' ' gr
= gi ' gr

gk -g,

gi -g,

gi . gs

gk -g,

gi -s.
gi -g,

gk ' gt (2.112)

8,.;: = 8,.i0: - O/8,i ,
8,~~: = 8,.i0; - 0si8,~ = 38,.i- 8,.i = 28,.i,

OW = 20 r = 2x3= 3!.rst r

The generalized Kronecker-delta can be determined by
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gil ' gh gil
. g j q

Oil s:
.II ./q

giq ·gjl giq
. g j q

O lq O lq
.II Jq

Oh i q = q' :
Ji . .Jq

From Eq.(2. l l0) , the determinant ofa matrix (a:) or (amJ is given by

4 1

(2.113)

(2.114)

equation. Similarly, the second equat ion can be obtained. From the foregoing

equation, the cofactors of element a ~ in determinant I a : I and element a pq III

determinant I«; I are determined by

= ~ ( s: qSI j k + s: sqt j k + s: k,q k j )3! u pjka.sa.t u jpka.sa.t u ljp «,«;

Similarly ,

_ 1 s: qst j k
- -up;k a sat•2! .

d I«; I _ 1 pjk qst-----e e a .ak,.da 2! JS
pq

(2.115)

(2.116)

The generalized discussion on the property of generalized Kronecker-delta can be
found in Schouten (1951) and Eringen (1971) .

2.2. Second-order tensors

In this section, the second-order tensor will be discussed . The second-order tensor
algebra will be presented, and the basic properties and princ ipal direction of ten-
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sors will be discussed, and the tensor decompositions and funct ions will be pre
sented .

2.2.1. Second-order tensor algebra

The second-order tensor is extensively used, which is also called an affine tensor.
The second-order tensor is expressed by

(2.117)

A dot product of a second-order tensor with a vector is a vector, i.e.,

(2.118)

where v = vk gk is adopted in the foregoing equation.

For two second-order tensors B =B~gigi and D =D~gigi . Their summation

and dot products are the second-order tensors .

B .D=B ig .gi .D rg gS= Bi.Drg .gi .g gS
oj 1 ·s r °J 'S 1 r

If D = B , the following relations exist.

B 2 =B .B=Bi Brg .gi
-r oj 1 ,

(2.119)

(2.120)

. . T
Definition 2.13. For a second-order tensor of B = B~gigJ , a tensor B is termed

the transpose ofthe second-order tensor B if

(2.121)

Theorem 2.5. Consider two second-order tensors Band D . If B T is the trans
pose of B , then the following relation holds

(2.122)

Proof: For any two vectors a =aigi and b =big i , we have

a .B .b = b .BT . a,
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If b = D ·c is selected, the foregoing equation becomes

a ·B· D·c = D ·c·BT-a = c ·DT·BT-a.

On the other hand , the following equation should hold :

a ·(B ·D) ·c=c ·(B ·D)T-a.

Because a and c are selected arbitrarily, the two equations give

This theorem is proved.

(A) Non-degenerate and degenerate tensors
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•

Definition 2.14. A second-order tensor B is non-degenerate if three quantities of
B .a , B .band B .c are linearly independent for any three independent vectors
a , b and c . Otherwise, the second-order tensor B is degenerate.

Theorem 2.6. For any three linearly-independent vectors of a , b and e , there is
an invariant quantity ofa second-order tensor B , defined by

(B ·a) x (B ·b) · (B ·c)
III = .

[abc]
(2.123)

Proof : Consid er three transformed vectors a' . s: and c' of the vectors a , b
and c . Thus we have

I a ' I h' I c"a = A. a, b = Ab b, c = Ac c

where

Sowe have

(B ·a') x (B · b') . (B .c')

[a'b'c']
(B ·a)x (B· b) · (B ·c)

[abc]
III.

So the quantity III is invariant. This theorem is proved. •
Definition 2.15. A second-order tensor B is degenerate if there is a vector v to
make the following relation hold:

B ·v=O,

and the direction of v is called the zero-direction ofthe tensor B .

(2.124)
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Definition 2.I6. A second-order tensor B is called a zero tensor if the directions of
any three independent vectors a, band c are the zero-directions of B ·a, B· band

B ·c , i.e.,

B ·a = 0, B ·b = 0, B ·c = 0. (2.125)

Consider any three independent vectors to be three base vectors gi (i = 1, 2, 3 )

of the second-order tensor B. The invariant quantity III is independent of the
base vectors, so this invariant quantity is called the third invariant quantity of the
second-order tensor B. Such an invariant is determined by

III = (B ·gI)x(B·gJ·(B·g3)
[glg2g3]

(B ;lg ilg jl ·gl)X(B ~~gi2gh . gJ . (BX gi)gh . gJ

Ji
(B il . ) x (B i, . ): (B i) . )

= ·1 g'l ·2 g'2 ·3g,) = e... B ile:s: = IBi.l.Ji '1'2' ) ·1 ·2·3 ../
(2.126)

For a second-order non-degenerate tensor B , the third invariant quantity is non

zero (i.e., III = IB;1*-0). Thus , the inverse of the tensor B (i.e., B-1
) will exist.

Further, the following relations hold

B-1
• B = I and B · B-1 = I. (2.127)

where I is the identity tensor or metric tensor . Similarly, the transpose of the ten
sor B is non-degenerate because the third invariant quantity of the transpose of

B (i.e., BT) is non- zero .

Ill(B)) = IB; I= Ig jrB';g Si I= Is, 1·1 B: 1·1 z" I= IB~ 1*- 0. (2.128)

So the third invariant quantity of the tensor B is its determinant, written by

detB= IB ~ I= IB; I . Ifg*-l ,detB*- IBij l*- IBij l . Further, (B-I)T=(BTrl be-

cause (B-I)T·BT=(B ·B -I)T=IT=I and I=(BTrl ·BT.

Exercise: Prove (B ·a)x(B ·b) = IIl(B -I)T ·(axb).

(B) Characteristic direction and invariance oftensor

Definition 2. I7. For a second-order tensor B , if the direction of a vector v is the

direction of (B· v) , i.e.,

B ·v=Bv or (B-BI) ·v=O, (2.129)

then the direction is called the characteristic (or eigenvector) direction ofthe ten-
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sor B.
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From the foregoing equation, the direction ofv is the zero direction of B - BI ,
which indicates that the third invariant quantity of B - BI is zero, i.e.,

[(B - BI) ·a]x[(B - BI) ·b] · [(B - BI) ·c]
Ill(B - BI) = =0,

[abc]

or det(B - BI) = O.

The expanded characteristic equation is

B3
- IBz+IIB- III = 0

where

I = _a_x_b_· (.:....B_·_c'-)+_b_x_c-.:' (.:....B_· -.:a).:....+_c_x_a_·....:.(B_· b--,-)
[abc] ,

II = (B.a)x(B .b) .c+(B .b)X(B.c) .a+(B .c)x(B .a).b .

[abc]

(2.130)

(2.131)

(2.132)

The quantities I and II of the tensor B are independent of three independent vec
tors a , band c. Therefore, both of them are called the first and second invariant
quantities of the tensor B . Consider three independent vectors to be three base
vectors gi ( i = 1,2,3 ) of the second-order tensor B. Such an invariance is deter-

mined by

1= g, xgz .(B~gigi .g3)+ gzxg3.(B~gig i .gl) + g3xgl .(B~gigi .gz)

[g,gZg3]

B ig.xBig .. g +BPg xB qg -g +B rg xB Sg -gII = ·1 1 ·z 1 3 ·Z P ·3 q 1 ·3 r ., s Z

[g,gZg3]

-B iBi BPBq s:« =~BiBi rSk = ~ Bi Bi Ors
- · 1 .Ze ij3 + -z .3 e pq l + ·3 . l e rs Z 2 ·r .s e ijk e 2! ·r .s ij •

If the direction of v is the characteristic direct ion of the tensor B , then

because of BZ
• v =B · B · v =B · B · v =BB · v = BZv . Similarly ,

(2.133)

(2.134)

(2.135)

(2.136)

Exercise: Prove the first and second invariant quantity of the tensor B is independ
ent of three independent vectors a , b and c.
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2.2.2. Basic properties

(A) Symmetric and asymmetric tensors

Definition 2.18. The tensor S is symmetric if

S ST ' s' s: S S= I. e " .j = j or ij = ji'

Definition 2.19. The tensor A is asymmetric if

A A T . Ai A·i A A= - I.e " .j = - j or ij = - j i '

Definition 2.20. For two unit vectors t and n , the scalar quantity

t ·B ·n=B.dt j
lj

2 Tensor Analysis

(2.137)

(2.138)

(2.139)

is called the shear component of the tensor B in the direction of t on the normal
surface of vector n . If B = S , the following quantity exists,

(2.140)

If t -n = 0 , such a component is called the orthogonal shear component of B
in the direction of t on the normal surface of vector n. For t = n, the above quan

tity becomes

(2.141)

which is called the normal component of tensor B on the surface with its normal
vector n.

(B) Orthogonal affine tensors

Definition 2.21. A tensor R is called an orthogonal affine tensor if the magni
tudes of both R · v and v are same , i.e.,

(R · V) 2 = v2 or v -RT
• R · v = v · v.

From the definition,

(2.142)

(2.143)

The orthogonal tensor does not change the dot product of two vectors and volume
of three vectors. In other words ,

(R ·u) ·(R ·v)=u·v,

[(R ·u)(R · v)(R ·w)] = [uvw].
(2.144)
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(C) Characteristic directions ofsymmetric tensors

If a unit vectori is a vector for the characteristic direction of symmetric tensor S
(i.e ., S · i = Si ), the corresponding characteristic equation is

(2.145)

If the tensor S is degenerate, one of the characteristic root is zero (i.e., SI = 0 ).

The characteristic vector is a zero vector in the direction of the unit vector i . For
any non- zero vector v normal to the vector i ,

(2.146)

from which the vector S· v is normal to the unit vector i . In physics, the tensor S
has a zero component in the direction of the unit vector i on the normal surface of
the vector v. The symmetric tensor S has three characteristic directions of
(i, j and k) with the corresponding values S, ( i = I, 2, 3 ). The three characteris

tic directions are perpendicular each other.

(D) Principal directions oftensors

Theorem 2.7. For a second-order tensor B , there are three principal directions
(i , j and k) to be perpendicular each other, and three vectors B· i, B · j and B ·k

are perpendicular each other.

Proof : Because (BT. B)T = BT. B , it means that BT. B are symmetric. Thus,

there are three orthogonal unit vectors. Suppose (i, j and k) are a set of three or
thogonal unit vectors for BT. B .

BT.B· i = b1i, BT.B· j = b2j and BT.B· k = b3k.

Furthermore,

(B · i) · (B · j) = I -(BT. B · j) = b2i · j = O.

Similarly,(B ·k) ·(B ·i)=(B ·j) ·(B ·k)=O . Three vectors B ·i, B ·j and B ·k are

perpendicular each other. Therefore, (i, j and k) are the principal directions of a
second-order tensor B . This theorem is proved. _

The symmetric tensor is expressed by

S = Sllii + SI2ij + Sl3ik + S21ji + S22jj + S23jk

+ S31ki + S32kj + S33kk.

The projections on the three principal directions are

(2.147)
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Sli = S · i = S"i +S2,j+S3,k,

S2j = S · j = S'2i +S22j+S32k ,

S3k =S .k =Sl3i + S23j + S33k.

So Sij = 0 (i * j) and Sij = S; (i = j) . Finally,

2 Tensor Analysis

(2.148)

(2.149)

Definition 2.22. For any symmetric tensor S , the tensor functions are defined as

(2.150)

Defi nitio n 2.23. For any symmetric and positive-definite tensor S , the tensor
functions are defined as

S; = S;jj +S;J'J' +S;kk
1 2 3'

log S = log S,jj+ log S2jj+ log S3kk.

2.2.3. Tensor decompositions

(2.151)

(A) Addition decomposition The addition decomposition of a tensor B is summa
tion of its symmetric and asymmetric tensors , i.e.,

I T I T
B = -(B +B )+-(B - B ) =S+A,

2 2

(B) Polar decomposi tion

(2.152)

Theorem 2.8. For a non-degenerate tensor B , there is a symmetric positive de
finite tensor (Y or U) and an orthogonal (or rotation) tensor R . The left and
right polar decompositions of B ,

B =Y ·R=R ·U

is unique with Y = (B ·BT )+ and U = (B T
• B)+.

(2.153)

Proof Because a tensor B is non-degenerate, its transpose BT is non-degenerate.
For any vector v ,

B · v *0 and B
T

• v *0,

(BT
. V) 2 = v · (B · BT

) . v > 0 and
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(B -V)2 =v ·(BT· B)· v > O.
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In addition , (B · BT)T = B · BT and (BT. B)T = BT. B. Thus B ·BT and BT. Bare

symmetric and positive-definite. Define two symmetric , positive-definite tensors
as

If R = y -I -B, then,

R . RT = (y-I . B) . BT. (y-I)T = y -I . (Y .Y) .y -I = I.

Consider another left decomposition as

Y ·R=B=Y ·R,

from which

However, R ·RT =1 gives R-I =RT =iF _yT -(y-If =iF . y _y-I with sym

metry of Y (i.e., Y = yT and (y-I)T = y -I ). Taking inverse of tensor R-Igives

Comparison of two expressions of R gives

(y-I .Y- y .y -I) . R= O.

Further,

(V-I -Y- V ·V-I) .R-RT = 0 => V-I .V = V .V-I.

So V -V = V .V => V = V . From R = V-I -V .R , one obtains R = R . There
fore, the left decomposition is unique. Similarly, the uniqueness for the right de
composition can be proved . If the orthogonal tensor R in the left and right de-

compositions are different (i .e., R *" R),

B = R·U = Y ·R =(R ·R-I)- Y -R = R ·(R-I -Y -R) .

From the uniqueness of the right decompos ition,

U = (R-I -y . R) and R= R ,

also because (R-I -V -R) T = RT-VT-(R -I)T = R-I .V -R is symmetric. This theo

rem is proved. _
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2.2.4. Tensor functions

2 Tensor Analysis

(A) Tensor fun ction For a tensor B , the tensor fun ction is defined as

cp = cp(B) and C = f'(B). (2.154)

For instance , if a tensor B is the second-order tensor, the tensor functions can be
expressed by 9-components as

(2.155)

(B) Tensor fun ction gradient

where dB = dBig .gi .
. ) I

dip df
dcp=- :dB and df=-:dB.

dB dB

The foregoing equat ion is obtained from

For B = s"> . .g . . . .g . gil . . .gi" the tensor function gradient is
lJ " ' } n 11 1m '

(2.156)

(2.157)

(2.158)

dcp

dB

dB

dcp

(2.159)

It is observed that the tensor function gradient is an associated tensor of the ten
sor B . The tensor characters of the gradient can be proved by

(2.160)
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In this section , the Christoffel symbol will be introduced to discuss the differentia
tion of tensors . Further , the invariant different ial operators and the integral theo
rems will be presented. The Riemann- Christoffel curvature tensors will be dis
cussed .

2.3.1. Differentiation

Consider a tensor field as

(2.161)

The components and bases of the tensor 'If are functions of curvilinear coordi

nates x k and X I • For the different iation and integration of a tensor , the base vec

tors cannot be treated as constants. Without loss of general ity, consider a vector
P , and its differentiation is

dp . . dp .
dp = - . dx' = dx'g and dp = -dx = dxg' .

dx' , dX, "
(2.162)

Note that dx' (ordxJ with Xi (or x") does not have any direct differentiation, but

the local bases g' (or g,) are relative to coordinates xk (or xk
) .

(2.163)

If P = Z k (x', x2
, x3 )ik , gi = (dzk

/ dx')i k and i k = (dxi
/ dzk )g" the foregoing

equation becomes

Introduce the Christoffel symbols ofthe fi rst and second kinds as

r .=~ dx
m

I d
2z k

dx
l

ljl -. i -. i -. k g ml and f ij =~-:;-kox:ox oz ox J ox ' oz

or

(2.164)

(2.165)

(2.166)
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Equation (2.164) becomes

ag j _ / ag j _ /
ax l - f ijg/ and ax l - f ij/g .

Thus,

ag j / / ag j-aI . g =f/; and -aI ' g/ =f/;/.x . x .

Because

a0/ a ( k) ag ; k ag k0--·--- . -_. . +_.- a I - a I gj g - a I g a I g ;x x x x ·

k ag
k

=r/.+--. ' g .,
v ax ' /

the follo wing relations are obtained.

ag
k

• =_r k and ag
k

=_rkg j •
ax l gj ij ax l lj

2 Tensor Analysis

(2.167)

(2.168)

(2.169)

(2.170)

Using Eq.(2. I 64) , the derivative of the fundamental metric tensor g ij with respect

to coordinate xk (k = I, 2, 3 ) gives

(2.171 )

Similarly,

(2.172)

Because of I'ijk = r j ik ' from Eq.(2.165), equation (2.172) becomes

Adding both of equations in Eq.(2.173) and subtracting Eq.(2.171) yields

I
L k =-(g·k + s« , - g k)'

lj 2 / .' ',/ u.

(2.173)

(2.174)

The deri vative of volume Ji = [g,g2g3] = g, . (g2X g3) with respect to coordinate

X l ( i = I, 2, 3 ) is
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= r~ [grg2g3]+ r :;[g,grg3]+ r ;[glg2gr]

= r :r[glg2g3]= r:rJi.
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(2.1 75)

Notice that [gigigk] *" 0 for i *" j *" k *" i and [gigigk] = 0 for the other are

adopted.
Introduce the Hamilton operator as

. a av = g' - . = gi- for i = I, 2, . . . , n.
ax ' aXi

(2.1 76)

(A) Scalar function gradient For a zero-orde r ten sor (or scalar) rp(x 1
, x 2

, • •• ,

x N
) , the grad ient of such a quant ity is given by

vrp= g' ~: for i = I, 2, . .. , N ;

from which the differentiation of rp(x' , x 2
, • • • , x N

) is expressed by

arp . . . arp
drp=-. dx' =dxJg . .g'-. =dp ·Vrp.

ax ' 1 ax '

(8) Vector gradient For a first-order tensor (or vector) v =v'g, = vigi ,

av . ·av . a~agi
dv=-. dx' = dx' g , ' g' - . =dp ·g'(-g .+v1

_ )
ax' J ax' ax' J ax '

. a~ . .. .
= dp .g 'g .(- + T"v") = dp ·g 'g .(Vi -t-T" v") = dp· Vv} dxi tr J,I tr •

Therefore,

\7 = i ( i r i r) . d \7 i = i = i r i rv V g gi V ,i + ir V an v i V - V ;i V ,i + irV .

aV . . . . .
-= VJ .g . =g(V1 . + P v r) and Vv= v 1g 'g .dxi ;1 J ) ,I lr ;1 )

(2.177)

(2.178)

(2.179)

(2.180)

(2.181)

Thus the covariant part ial derivat ive of a contravariant vector with respect to Xi is

Vi . = v i . +r-v "
; 1 ,1 Ir '

Simi larly, for v = Vigi , the following equations are achieved.

Vv = gigi (Vi,i - r ; vr) and V Y i == Vi;i = vi ,i - r ; v,

av _ i _ i ( r r) d \7 _ i i- - v .g - g v . . - v an vv - vg g .dxi j ;l } , l I) r j ;1

The covariant part ial derivat ive of a covariant vector wi th respect to Xi is

(2.182)

(2.183)
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As in Eq.(2.179),

av av , [avi , ag ,] ,
dv =- ,dx' =- ,g' .g .dx ' = - , g ,+v' - ' g' .dp

ax' ax' } ax' } ax'

[
avi , ] , " ,

= ax
i

+[' {/ ' gig '· dp = (v,{ +['{/)gi g' .dp

== Vi;igigi ·dp = vV ·dp.

Thus,

In a similar fashion, for a contravariant vector,

vV =v ,gig i and v ' =v ,+ [' i v".
1;) 1;) 1, ) Ir

Therefore ,

Vv'# vV and Vv = (vVf

2 Tensor Analysis

(2.184)

(2.185)

(2.186)

(2.187)

(2.188)

(C) Tensor gradient

To extend the concept of the vector gradient to the tensor, the gradient of a tensor
rp can be discussed via its total differentiation, i.e.,

Thus,

d dx' dx' I a d t7If/ =If/ , = gs .g -::;-;If/ == P' v If/., ox

, a , 11K!
dlf/ = If/ rdx' =If/-, g' .dx' gs == 'I'T . dp., ax'

(2.189)

(2.190)
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(2.191 )

Introduce the component of V'If (i.e., the covariant partial derivative of a ten

sor component)

(2.192)

Thus

VIIF= V uc'"> , . Cg-Wgrg . . . .g . gjl . . .g j"
r , T h " 'h ~ ~ ~ ~

Similarly,

Ji- W . .
= IIF il·..'« , ' " g g"g . . . .g . glJ . . .g.l".

't' 1I' ' 'I n ,1 11'm
(2.193)

(2.194)

Note that V'r ;t. d / dX' and V'r cannot apply to the base vector and g . In the con

travariant coordinate system, the Hamilton operator can be defined in a similar
fashion .

Theorem 2.9. (Ricci 's theorem). The covariant partial differentiation of metric
tensors is a zero tensor , i.e.,

(2.195)

. k . k 'k
Proof : Because 1= g jkgJg = tSig jg = s' gjgk is a constant tensor, dJ = °and

VI = °.So all components should be zero , i.e.,

'k 'k s i e tV'ig jk = g jk;i = 0, V'ig J = g J ;i = 0, V'iui = u/ i = 0.

On the other hand ,
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Vig;k = g jk;i = a~i g ;k - r ;grk - r~gjr

= r ijk + r ilg - r ijk - r ilij

=0,

Vg jk = g jk . =~gjk +P g rk+ r kg jr
1 ; 1 aXi tr II'

= _r/,g rk _ ri~gjr + r /,g rk+ri~gjr

=0,

V s:j = s:j =~ s:j r: s r _r r s:j
jU k U k <i . U k + ir U k Ik V ,., aX'

= 0+ r ;k -r{k

=0,

This theorem is proved,

From the foregoing theorem,

j _ ( jr ) _ jr d _ ( r ) _ rV ;i - g Vr ;i - g Vr;i an Vj ;i - g jrV ;i - g jrV ;i'

2 Tensor Analysis

•

(2,196)

Theorem 2.10. The covariant partial differentiation of the Eddington tensor is a
zero tensor, i.e.

V ijk = ijk = ° nd V = = °.e e r, a rCijk cijk;r '

Vt = V c ijkgrg.g .g = e '" grg.g .g = s'~(c ijkg .g .g )
r 1 } k ;r I } k ax" / } k

= g' {([a~r (g' )gjgk]+ [gi a~r (g j )gk]+ [gigj a~r (gk)])gig.s.

. . k a a a
+[g'g lg ][-ar (gJg ;gk+gi-ar (g j)gk +gigj-ar (gk)]}

x . x x

= gr{(-r;JgSgjgk]_ r :s[gigSgk]_ r; [gigjgSDgigjgk

+[gigjgk]r:gsgjg k+r~gigsgk +r:kgigjgJ

=0,

Therefore,

In an alike fashion , the following formulas hold :

(2,197)
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This theorem is proved .

(D) Derivative distribution
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•

(E) Leibniz rule

(2.198)

(2.199)

From the gradient operator in the covar iant coordinate bases, the gradient operator
in the contravariant bases is defined as

(2.200)

The relation dx,. = dxsg ,.s is used because of dp = dx'g , = dx,.gr .

2.3.2. Invariant differential operators and integral theorems

After discussed the gradient of a tensor, as in the vector analys is, there are four
types of differential operators . Such a concept can be extended to the tensor. For a
tensor '1/ , the following differentiations are

• '[7 '[7 r i, ··· i Ji-w j jdIV'1F:; v · I/F = v I/F - m . . g g. .. .g. g I • • • g "
'r T -r Jj " ')n 121m

r i ... j Ji-W . J.='1/ 2 " .. . g g "'gglI ... g " .
1I In ,r '2 1m

(2.201)

(2.202)

(2.203)
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'V2If' == diV grad If' = 'V .'V If'

='Vr'V ur il···im. . Cg -
W

g. " ' g. gil .. .gi".
, "t' Ji ···In "g '11m

2 Tensor Analysis

(2.204)

From Schouten (1951), the integration on a manifold can be expressed by

1 d'1J ril im~ 0 If' iii" = ef d'1J il ..im 0 If' iI ' i "
!2Jm+! dxr

23m

(2.205)

where d'1J ril im and d'1J il·..im are (m +1)and m -dimensional Grassmann volume

elements. The volume '1Jm is the boundary of the volume '1Jm+] . The operator " 0 "

represents any operation between the tensor w and the volume elements d>J1 .

where

d'lJ(m+] ) = d'1J ril ..-;g g. ... g.
r /1 'm '

d'lJ (m) = d'1J il..-i; g ... g ,
' I '''I

(2.206)

(2.207)

(2.208)

In the 3-D Euclidean space, mE {1,2} . The volume integration changes to the area

integration by the Green transformation. The area integration is converted into the
linear integration by the Kel vin transformation.

d'1J ili,i] = 3!dxil dx? dx'' , d'lJ(3)=d'1J ili,i]g g g ,
1 2 3 11 '2 '3

d'1J i2i] = 2!dxi2dx'' , d'lJ(2)=d'1J i2i]g. g
4 5 '2 ,} ,

(2.209)

Note that

d'1J i] = 1!dx'' ,
6

1 (3) 1 ...dv =- t :d'lJ =- e .. d'1J '1121]
3! 3! '1'2 ' ]

= e dx'' dx': dx" = [dpdpdp] ,
11':2.'3 1 2 3 I 2 3

1 (2 ) 1 . . k ..
da =-t : d'lJ =-e . g 'g''g : d'1J '21]g. g .2! 3! Ilk ' 2 I]

= e . dx ': dx ': g ' = dpxdp ,
11213 4 5 4 5

(2.210)
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1dSU(2)= - E . da.
I!

(2.211)

For m=2,

The left double dot product of ~E to both sides ofEq.(2.212) gives
2!

r ~E : dSU(3) .V 0 If/ =,..( ~E : dSU(2) 0 If/
J:u, 2! '1'l.J,2! '

r~E :Edv.VOIf/=,..( daOIf/,
.Iv 2! '1a

1dvl .V 0 If/ = ciada 0 If/.

Finally,

1dvV 0 If/ = ciada 0 If/.

(2.212)

(2.213)

(2.214)

(2.215)

(2.216)

The above equation can be applied to any curvilinear coordinate systems. Setting
" 0 " be contraction, dot product and cross product , the foregoing equation be
comes

1dv grad If/ = ciadaIf/,

1dv div If/ = ciada . If/,

1dv rot If/ = ciadaX If/.

For m =1 ,

- I:tJ, dSU(2) .V 0 If/ = ci\t\ dSU(I) 0 If/,

-i (E·da) .V 0 If/ = cicdp 0 If/,

i dax V 0 If/ = cicdp 0 If/.

Setting" 0 " to be a dot product ,

If If/ is a vector, the foregoing equation is the Stokes formula .

(2.217)

(2.218)

(2.219)

(2.220)

(2.221)
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2.3.3. Riemann-Christoffel curvature tensors

2 Tensor Analysis

In calculus, the order of mixed partial derivative of a scalar is not important, i.e.,

(2.222)

For a vector u = uig i , one would like to know whether the second-order covariant

derivatives of components of a vector can commute or not. Thus, consider

Ui;jk = (Ui;j) ,k - r~iUr ; j - r;~Ui ; r

= Ui,jk - r~i ,kUr - r~iU s,k - r~i (u r, j - r~rUs) - r~j (Ui,r - r :.iuS )

=Ui,jk - r ;;Ui,r-r~iU r ,j - r~iU r ,k -US(r~i ,k - r~kr~r - r~r:'J .

Similarly ,

So Eq.(2.223) minus Eq.(2.224) yields

(2.223)

(2.224)

(2.225)

Since Us is an arbitrary vector, and the left-hand side of Eq.(2.225) is a covariant

tensor of third order. From the quotient law, the coefficient of Us on the right

hand side should be a fourth-order tensor, and this tensor possesses once con
travariant and three times covariant. Such a tensor is called the Riemann
Christoffel tensor. Therefore, the Riemann-Christoffel tensor is defined as

(2.226)

Further, equation (2.224) becomes

with

(Ui;jk -Ui;kj)g gjgk = usR";ikgigjgk = usgs .R~ikgrgigjgk

=u ·R.

(2.227)

(2.228)

Theorem 2.11. Cross-covariant derivatives ofany vector are equal (Ui;jk = Ui;kj) if

and only ifthe Riemann-Christoffel tensor vanishes (R~k = 0 ).

Proof: Since
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if ui;jk = Ui;kj , because of any selection of us' R~k = 0 ; vice versa. This theorem

is proved . _

Definition 2.24. The curvature tensor is defined by

Theorem 2.12. The curvature tenso r is expressed by

Proof : Since

The deformation of the foregoing equation gives

Similarly,

Using the foregoing equations , the definition of the curvature gives

Rijkl =gi/.R~kl =gi/( l ;;,k - 1~; ,1 +l";ll~ - l ";kl;J

= I j/i ,k - (l ikr +lrkJl~1 - I jki,l+ (lib + l r/i )1~k + l ";/likr - l ";klilr

= I j/i ,k - l rkil";, - I jki,l+ l r/il";k'

Because

I I
I j/i ,k = "2is., +gij,l - s., ),k = "2 (g /i ,jk +gij,lk - g ;l,ik)'

I I
I jki,l = "2is.; +g ij ,k - g jk,i) ,I = "2 ts«, +g ij ,kl - g jk,i1)'

with l ijk = g k/r ;; , the curvature tensor is given by

Rijkl = I j/i ,k - l rkil";, - I jki,l+ l r/il";k

= ±(g/i ,jk +g jk,il - g ij,lk - g ki,jl) +s" (l r/i l jks - l rkiljlJ .

This theorem is proved.

The following symmetry of the curvature tensor is very easi ly proved as

(2.229)

(2.230)

-
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(2.231)

Consider a second-order tensor A = Aijg ig j = A ijgig j • The cross-covariant der iva

tive of the second-order tensor is

Bianchi 's identities:

A ij ;kl - A ij ;kl = A,jR~kl + AirR~kl '

A ij - A" = -A'j R i - A irR j
;kJ ;kl -rkl ·rkl ·

R~ij ; k +R~k ; i +R~ki ; j = 0,

R pqij ;k +R pqjk;i + R pqki;j = O.

(2.232)

(2.233)

Consider a tensor vr = lj/ il ··im jl ' .j" gil ' " gimgjl .. .g j" . The cross-covariant deri vative

of the second-order tensor is

(2.234)

Since the Riemann-Christoffel tensor is a measure of the curvature of the space , a
space of vanishing such a tensor is called a flat space. In the Euclidean space , the
Riemann-Christoffel tensor vanishes , thus Euclidean space is a flat space .

In the curvilinear coordinate , the covariant partial derivatives of the tensor

components in the incomplete coordinate system can be carried out via d / dx <i) ==

A;i)d / dx <i) . Because of (d / dx k)A jk) oF (d / dx j)A? ) , the covariant mixed deri va-

tive orde r cannot be exchanged. So the Christoffel symbol is not symmetric. The
other operations of tensors in the incomplete coordinate system are similar in the

complete coordinate system. In orthogonal curvilinear coordinates ( g ij = g ij = 0 ,

i oF j , g ii =1/ g ii ) f ijk =0 (i oF j oF k oF i). The components of a tenso r do not

have the same units in general. Consider a vector u = u ig i and introduce a unit

vector e. =g / ~g.. . So u =u'g, =u(i)e from which u(i) =u i ~g.. or u' =
1 1 '\j b ii I 1 '\Ib ii

u(i) / Ji: .The component u(i) is called the physi cal component. Such orthogonal

coord inates system with the unit vector is called the physical coordinates.

2.4. Two-point tensor fields

In this section, the two-point tensor fields will be discussed. The two point tensors
and differentiations for two independent and correlated reference frames are dis
cussed. Finally the properties of shifter tensors will be presented.
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2.4.1. Two-point tensors
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Consider two curvilinear coordinates in two domains 23 and b to be {X I} and

{ Xi }. In the domain 23, the base vectors and metric tensors can be expressed by

G I and G /, GlJ and GlJ with G =1GlJ I. In this book, the Guo's representation

of two-point tensor fields will be adopted in Guo (1980). That is, the symbol" < "
over a tensor indicates the tensor described in domain 23. The symbol " >" over
the tensor indicates the tensor described in domain b . The number of" < " or" >"
should be the same as the tensor order. For any order tensor, one can simply ex
press by "< . <." and" > .> " .

Definition 2.25. A two-point tensor field is defined in the two coordinates {XI}
and {Xi} by

(2.235)

For a simple first-order tensor, the above expression is given by

(2.236)
> >

P=Xig i =Xig i and V=/gi =Vigi.

It is found that the vector can be expressed by only one coordinate. Thus, the hat
of the vector can be dropped.

Any second-order one-point tensor is described by only one coordinate, i.e.,

(2.237)

The above two tensors are expressed by the coordinates {XI} and {Xi} , respec
tively. However, two second-order two-point tensors are

<>

A=AliG /g i =AJiG /gi =AJiG /gi = A/G Ig i'
><

B=Bi/giG I =B/g iG I =Bi/giG I =BiJgiG / .

In Eq.(2.235), the tensor components have the following transformation as

(2.238)
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(2.239)

I' I' I J J J'where A l = ax /ax and A J' = ax /ax .Other tensor algebraic operations of

two-point tensors are the same as one-point tensors . The base vectors at points P
and p can be either independent or relevant. Thus, two-point tensors can be dis
cussed herein.

2.4.2. Independent coordinates

Consider the coordinate systems of the two points P and p to be independent. The
covariant differentiations of two points P and pare

(2.240)

Definition 2.26. The total covariant differentiation of a two-point tensor field
-c»

vr(P ,p) for the independent coordinates of two points P and p is defined as

-c» < -o> > -o>

dvr = dP·V vr+dp ' V vr

with

where

-o> < -o> >

= vrV·dP+vrV·dp, (2.241)

(2.242)
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The above definition is given because of

<c- <.> <c-

d //f= //f.RdX R+ //f.r dx'
a <> a <>

= dX SG s .G
R
(ax R //f)+dx'g , . g ' (axr //f)

< <c- > <c-

= dP ·V //f+dp ·V //f;

d;; = ;;,RdX
R+ ;;,r dx '

a <.> a -o>

=(ax R //f)G
R

·G sdX
s + (axr //f)g r · gsdx

S

<.> < -o> >

= //fV, dP + //fV.dp.

For a zero-order tensor (scalar) qJ(P,p) ,

< > < >

dip =dP ·V qJ+dp ' V tp =qJV,dP+ qJV·dp,

where
> aqJ >

and V qJ =- . g i =qJ V,
ax '

2.4.3. Correlated coordinates
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(2.243)

(2.244)

(2.245)

(2.246)

Consider the coordinates of the two points P and p to be dependent, and the two
coordinates have one-to-one relation as
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P = pep) => x ' = X l (x' ,x 2 .x") for 1 = 1,2,3;

P = pcP) => X i = X i (Xl ,X2 ,X3
) for i = 1,2,3 .

The covariant differentiations of two points P and pare

Furthermore,

2 Tensor Analysis

(2.247)

(2.248)

(2.249)

> > < <
From the above expressions, V P , P V , V p and p V are two-point tensor fields

because

(2.250)

Definition 2.27. The total covariant differentiations of the two-point tensor fields

;;( P,p(P)) and;; (P(p j.p} , respectively, are defined by

-o> <c- <.> < -o> -o> <

d VF(P,P(P)) = VF ,l dX I + VF ,ix:ldX I
= dP'o VF = (VFo) ·dP;

-o> <c- -o> > <.> <.> >

d VF (P(p),p) = VF ,lX;~dxi + VF .i dx' = dp ·o VF = (VFo) ' dp,

<.>

where the total covariant derivatives of the two-point tensors VF are

(2.251)
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< -o> < -o> < > -o> -o> <c-

o V' == V V'+(Vp)' (V V') = G
I

V',l+ (G
I
x;lgJ ' (g j V',) ,

V~ == VV+ (VV) .(p V)= V,l G I +(V,igj) .(g iX;IG I) ;

> <c- > -o> > < -o> <.> <.>

o V' == V V'+ (V P)· (V V') = gi V' i+ (giX~G I ) ' (G J V'J)'
" ,

<.> < <.> > <c- < > <.> -o>

V'0 == V'V + (V'V) · (PV) = V',ig' + (V',JGJ) '(GIX;~gi) ;

and the corresponding components are

Because the following relations exist, i.e. ,

the tota l derivatives of the components of the two-point tensors are

V'I, ··I p il"' ;p ...,»;J, ..J
Q .iI

= V'I, ··11' il ''';p

'j ' I X~ +V'I, .. /1' 11···;1'

J, ..J
Q j, o » , J, ..J

Q Jj"'}q ;i

= V'I, .. [ 1' ij ' .. ip
J, ..JQ Jl'''jq :i'

V'I, ..11' il,·· ip i

J, ..J
Q .h ..jq:i X;1

=V'I, .. /1' fl · · ·;1' i +V'I, ··11' il ''';1'

J, ..JQ j, "}q;i X; I J, ..JQ Jl'''jq ;/

= V'I, .. /1' il , · ·ip
J, ..JQ iJ"'jq:! •

For a zero -order tensor (scalar) Ip(P, p( P)) and Ip(P( p) , p) ,
< < > < > <

dip =dP , (V Ip + V p ' V Ip) =(lpV+ IpV·V p) 'dP

where
< dl'll < > dl'll >

V ip=dll G I = Ip V and V Ip =d; g' = Ip V;

dip _ , dip dip dxr

dX! = qJI = CfJ;1 +X;ICfJ;r = dX! + dx' dX! '

dip _ , dip dip dX '
dxi = qJi = Ip;i + X;iCfJ; , = dxi + dX ' dxi .
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(2,252)

(2,253)

(2,254)

(2.255)

(2.256)

(2.257)

(2,258)
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< < > < > <

dB =dP ·( VB+ V p ·VB) =(B V+B V·Vp) ·dP

where

dB
i
l -=B i . .= B T

I ' J +x:J' B T

I ·r ,dJ{J I:J , , ,

2 Tensor Analysis

(2.259)

(2.260)

(2.261)

The total covariant derivatives of components to the two-point tensors are

i dB
i

l r - i I' (dB
i
l r i I )

B I:J=dXJ- JjB L+ x;J dx" + rI B I '

i dB
i
I L I R dB

i
I L i

B Ij = - -. + r jlB I +Xj(- -R- r lRB L)'
. dX' ' dX

2.4.4. Shifter tensor fields

Defin ition 2.28. The shifter tensor fields are defined by

><
I =gilg iG I =g;giG I =g:g iG I = g ilgiG p

<>
I = guG Igi = g/GIg i = g;giG I = g ilg iG I .

(2.262)

(2.263)

To explain the shifter tensor, two vectors ~ =VI G land ~ =Vigi in two coordi

nates at points P and p are sketched in Fig.2.3. Using the shifter tensor , the two
vectors can be translated each other. For instance,

>« > <> <

I -v =v and I, v =v.
(2.264)

From the previous relation, the two vectors are of the same. They just are observed
in the different reference frames.

I, I = I and I · I = I ,
>< <> » <> >< « (2.265)
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Fig. 2.3 Two parallel vectors in two coordinates.

i I 5:i I i 5: 1
g Ig j = " ! and g ig J = V J '
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(2.266)

« »
where I and I are the two second-order unit tensors in two domains 23 and b ,
respectively. The components of the shifter tensor is given by

><
I ·G I =gilgiG I ·G I =gilg i =gil gi,
><
I .G I =g/g iG I.G I =g/gi =gilgi ;

<>

I -g, =gliG Ig i ' gi =gilG I =gliG p

I .g i =g/GIg i ' gi =g/G I =gliG I ·

The foregoing equations can be rewritten as

><
I .G I = (gi .G I )gi = (g' .G I )gi '
><
I .G I = (gi .G I )gi = (gi .G I )gi ;

<>

I'gi =(GI·gJGI =(G I · gJ G p

f,gi =(GI·gi)G I =(G I . gi )G I·

In addition ,

g il =gi ·G I =GI 'gi <s;
z" =G I .g i =gi .G I <s":
g/ = gi ·G

I
=G

I
' gi <s', =g{ ,

(2.267)

(2.268)

(2.269a)
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Theorem 2.13. Thefollowing relation holds:

JG = Ig~ I fi and Jg = Is' IJG.

Proof: From the definition of JG ,

JG =[G,G 2G3 ] =[g;gig~gjg;gk] =g;g~g;[gigjgk]

=Ig~ I[g,g2g3]=Ig~ I fi·

Thus,

JG = Ig~ Ifi or fi = Ig : IJG.
This theorem is proved.

2 Tensor Analysis

(2.269b)

(2.270)

•
< >

Theorem 2.14. For two vectors v = VIG land v = vigi , the following relations

hold:

VI = g:vi and VI = g~vi ;

/ = g~vl and Vi = g:vl .

Proof: The vector translation can be given by

> >< <

v =v;gi = 1 -v =(g~g;G I) . (vRGR) =g~vRg;,
< <> >

V=VIGI = l ·v=(g:G Igi) ·(vrgr)=g,lvrGI·

So Eq.(2.271) is obtained.

(2.271)

•

(2.272)

Similarly , the tensor can be translated partially and completely translated .

« >< <> »
Theorem 2.15. Consider a tensor B, B , Band B, the following relations exist:

B - JB B - JB B- 1 JB .n -gi JI ' u -gi U' ij -gigj U'

Proof: Because

>< >< «
B =Bi/giGI = I · B =(g ;RgiGR)·(B uGIGJ ) =giRBRIgiG I,
<> « <>

B=BliGlgi =B·I =(B UGIGJ) '(g;RGRgi)=BIRg;RG Igi,
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one obtains

7 1

>< >«<
B= I ·B
<> «<>

B=B· I

Similarly,

This theorem is proved.

<> <> »
B= I·B => Bli = g~Bri ;

>< » ><

B = B· I => e, = g;Sir ;
« <> » ><

B = I·B· I => BlJ - i j B- gIg} ii'

•
Such an idea can be extended to higher-order tensors. For instance, the follow

ing theorem can be stated as an example.

Theorem 2.16. For thefo llowing two-point tensors,

(2.273)

the fo llowing relations hold

(2.274)

(2.275)

Proof: Consider
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So,

2 Tensor Analysis

>.> >< >< >< >< >< >< >< J

IIf=I"II···II'JI [I·G I ·G I·G r" I ·G ·· · I· G I ·GJI · ··I ·G Q
't' 't' ..JQ 1 2 3 II Ip

Similarly ,

This theorem is proved.

Theorem 2.17. Thef ollowing relations exist f or the shifter tensor

<» <>< ><> c-c

I V = I V = I V = I V = 0,
i i I I

g l ;j = g l ;J = g i;j = g i;J = 0;

and

<» <>< >< > >«

I 0 = I 0 = I 0 = I 0 = 0,
ii I I

g l :j = g l :J = g i:j = g i:J = 0.

Proof: From the derivative of the tensor,

i G r i r r i rG r i ro= g .i ' I + jrg l = - jrg' I + jr g l = ,
i i R i i R i

g l ;J = g l ,J - r JI g R = (g .G I ),J - r J/g R

= g' .G IJ -r~lg~ = r~lg i ·G R -r~lg~ = 0.

Simi larly, g~ . =°and g ~J =°.SO1,J I,

-c- <><

I V = g ;;j = 0, I V = s'; = 0,

)i v = g(j =0, >t V = g{J =0.

<> >

I = i = i + i X R =°o g l:j g l ;j g l ;R ;j ,

<> <

I 0 = g ; J = g ; J +g; rx:~ = 0,
. , "

•

(2.276)

(2.277)
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This theorem is proved .

>< >

I I I I X R 0o = g i :j = g i ;j + g i ;R ;j = ,

73

•
If one is interested in more materials on tensor analysis in space JR." , the further

reading materials can be found in Schouten (1951) , Eringen (1962, 1971) and
Marsden and Hudges (1983).
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Chapter 3
Deformation, Kinematics and Dynamics

This chapter will systematically discuss the differential geometry, kinematics and
dynamics of deformation in continuous media. To discuss deformation geometry,
the deformation gradients will be introduced in the local curvilinear coordinate
system, and the Green and Cauchy strain tensors will be presented . The length and
angle changes will be discussed through Green and Cauchy strain tensors. The ve
locity gradient will be introduced for discussion of the kinematics, and the mate
rial derivatives of deformation gradient , infinitesimal line element, area and vol
ume in the deformed configuration will be presented . The Cauchy stress and
couple stress tensors will be defined to discuss the dynamics of continuous media,
and the local balances for the Cauchy momentum and angular momentum will be
discussed. Piola-Kirchhoff stress tensors will be presented and the Boussinesq and
Kirchhoff local balance of momentum will be discussed. The local principles of
the energy conservation will be discussed by the virtual work principle . This chap
ter will present an important foundation of continuum mechanics . From such a
foundation , one can further understand other approximate existing theories in de
formable body and fluids.

3.1. Deformation geometry

In this section, the deformation gradients on the curvilinear coordinates will be de
fined. Based on the deformation gradient , the Green and Cauchy strain tensors will
be discussed. The stretches and angle changes of two line elements before and af
ter deformation will be presented through Green and Cauchy strain tensors. The
principal values and directions of the strain tensors will be discussed. The funda
mental deformation theorem in continuous media will be presented .
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3.1.1. Curvilinear coordinates

3 Deformation, Kinematic s and Dynamics

Consider a domain B occupied by all material points of a continuous medium at

time to' which possesses a material volume V and its surface S . Any material

point P in such a domain is described by a curvilinear coordinate system

x ' (I = 1,2,3 ). A vector from the origin of the coordinate system to point P is

expressed by P. Such a material domain is called an initial configuration of the
continuous body . For time t , after the material domain is deformed, the material
domain moves a new domain b with a material volume v and its surface s. In
the deformed domain, the material point p is described by a curv ilinear coordinate
system Xi (i = 1, 2, 3 ), and the pos ition vector from the origin of the new coordi

nate system is given by p. The deformed domain of the continuous material body

is called a deformed configuration. Such a motion of material domain is sketched
in Fig.3.1. The curvilinear coordinates { X l} and { Xi} in the initial and deformed

configurations are depicted, and the corresponding base vectors {G I } and {gi}

are presented. The displacement between two points P and p is expressed by a
vecto r u , and such a vecto r is called a displacement vector. This motion of the de
formed cont inuous body is described by

p = P+u. (3.1)

From a time t, a pos ition vector p of the material point in an instantaneous con
figuration b can be expressed by the position vector P of materi al points in the
initial configuration B , i.e.,

p = pep, t) or X i = X i (X l , t) . (3.2)

If the motion is single-valued, continuous and differentiable, in the neighborhood
of point P, there is a one-to-one inverse transformation which is single-valued,
continuous and differenti able , i.e.,

p =pcp , t) or X l =X l (Xi, t) . (3.3)

In other words , any particle described by the coordinate system {Xl} for time t

can be desc ribed through the coordinate system { X i} . For Eq.(3.2), its inverse in
Eq.(3.3) exists if and only if the Jacob ian matrix is not singular, vice versa . That
is,

(3.4)

The above cont inuity condition expresses the indestructibility of cont inuous me
dia. From Eq.(3.4), it implies that the positive and finite volume of a material con
figurat ion cannot become zero and infinite. The matter in the cont inuou s body
cannot be impenetrable .
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z·
Fig.3.1 Two configurations in two local coordinates.

time t, b
/---- .............

/' gJ "-
/ ) "I ~ \

I ,
I

I
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Definition 3.1. The coordinates x ' (1 = 1,2,3) for time to are called the La

grange coordinates (or material coordinates) if the coordinate X I does not vary
with time t. The corresponding reference frame { X l } is called the Lagrangian
(material) coordinate system.

Definition 3.2. The coordinates X i (i = 1, 2, 3 ) for time t are called the Eulerian

coordinates (or spatial coordinates) if the coordinate X i varies with time t. The
corresponding frame is called the Eulerian (spatial) coordinate system.

To further explain the movement of a continuous body , two independent, cur
vilinear systems are sketch ed in Fig .3.2. In the initial configuration !B, the curvi-

linear coord inate system is {Xl}, and the curvilinear system after movement and

deformed is given by {X i ,to }' For any time t , the continuous body are deformed

and moved with displacement u to the instantaneous configuration b . In this con

figuration, the new curvilinear coordinate system is { X i } . However, the coordi

nate system in the initial configurat ion becomes {X l ,t} . Such a relation can be

described through Eqs.(3.2) and (3.3) . Further, the position vectors P and p with

the displacement vector u can be expressed through two coordinates . Based on
< < <

the coord inates in !B , three vectors P, p and u are denoted by P, P and u , and
> >

from the coordinates in b , three vectors P , P and u are denot ed by P, P and
> < > < <

u . Notice that P == P and p == p . In other words , we have p == pep) , u = u(P)
> >

and P == pep), u = u(p) .
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{XI ,/ } time I , b--

Fig. 3.2 Two local curvilinear coordinates and movements .

Fig.3.3 Infinitesimal position vectors dP and dp in two configurations.

time I , b

As in Chapter 2, the infinitesimal vectors dP in 23 and dp in b can be de

fined as in Fig.3.3. For simplicity, the pos ition vector can be through the Cartes ian

coordinates Z l (J = 1,2,3) and z' (i = 1,2,3 ). The defin ition is given as follows .

Definition 3.3. For two positions P in 23 and p in b ,

p=ZI(X1,X2 ,X3 )I
1

and p=zi(xl , x2 ,x3 )ip (3.5)
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the infinitesimal vectors dP and dp are defined as

ap 1 1 ap . .
dP=-dX =G dX anddp=-. dx =gdx'

axi 1 ax" ,

where the base vectors for the initial and deformed configurations are

G = ap = az
J

I and . =~ = az
j

L :
1 ax1 ax1 J g , ax i ax i J '

and the squares of the lengths of the two infinites imal vectors are defined as

dS 2 = dP· dP = GIJdX IdX J and ds' = dp· dp = g ij dx idx",

where the metric tensors for the initial and deformed configuration s are

azM azN az m az n

GIJ =G /·G J =OMN axi axJ andgij =g i -s, =omn ax i ax j

> <

Definition 3.4. For two pos itions P == P(p) in 23 and p == pep) in b ,

p=Z/(X1,X2 ,X3)I I and p= Zi(XI , X2 , x3)ii'

X K =X K(X1, X2 , X3
) and x k = Xk(X1,X2 ,X3

) .

The infin itesimal vectors dP and dp are defined as

ap · · ap 1 1
dP=-. dx' =cdx' anddp=-dX =C dX

ax" axi l '

where the covariant base vectors are

ap azJ axM axM M
ci = ax i = axM ax i IJ=G M axi = G MX ;i and

C =~ = az
j

ax
m

i . = ax
m

= x m.
1 ax l ax m axl J s, axl gm ;1

The squares of the lengths are defined as

dS 2 = dP ·dP = cij dxidx' and ds' = dp ·dp = CIJdX1dX J ,

where the covariant tensors are
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(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

which are also called Cauchy 's deformation tensor and Green 's deformation ten
sor, respectively.

From the defin itions of Cauchy's and Green 's deformation tensors, both of the
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two tensors are symmetric (i.e., cij =e ii and ClJ =CJI ) and both are positive

definite.

Definition 3.5. For two position vectors P in 23 and p in b , the contravariant

base vectors are defined as

where the contravariant base vectors with covariant base vectors satisfy

c, .e' = o( and C I . C J = oj .

(3.15)

(3.16)

(3.17)

Definition 3.6. For two position vectors P in 23 and p in b , the contravariant

metric tensors are defined as

- I ij _ t • ; = G M • G N~ ax; = G MN i ;
C -c C ' f N X. MX. N 'ax" ax . ,

- IC lJ = C l . C J = g" -g" ax
l
ax

J
= mnx! x ' ,

aXm aXn g ,m,n

Remarks:
ClJ =CM N GMI G

NJ *' - IClJ and cij =< s"g ni *' - ICij . (3.18)

Definition 3.7. For two position vectors P in 23 and p in b , the displacement

vectors are defined as
< -c- > >«
U=UIG I = l ·u=g{u iG I and U=Uig i = l ·u=g;Ulgi .

where

3.1.2. Deformation gradient and tensors

(3.19)

(3.20)

Before the deformation gradient is discussed, the Hamilton operators will be in
troduced first, and the corresponding metric tensors will be presented. Further, the
deformation gradient will be presented.

Definition 3.8. The Hamilton operators to the coordinates {XI} and {Xi} are
defined as

;., a_
G I

> a .
v axl and V = axi g' . (3.21)
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(3.22)

From the previous definition, the gradient of position vectors can be expressed
by the two-point tensors in Chapter 2. The definition is given as follows.

Definition 3.9. For two position vectors P in 23 and p in b , the gradients of the

two position vectors are defined as

> _ ax
l

i _I i > _ ax
l

i _ I t •
VP--. gG/-X igG p PV--. G Ig -XiG /g ,

ax' . ax' .

< axi I i I < axi I i I
V P = axl G gi = X ;/ G gi ' PV = axl giG = x;/giG ,

which are also called the deformation gradient tensors.

- I - I
« »
c= -ICIJ G G = - 'C/ G GJand c = - 'c ijg .g . = -ICi .g.gj

I J .J I , J .J t

(3.23)

are the covariant and contravariant metric tensors, which are also called the co
variant and contravariant Cauchy's deformation tensors and Green 's deformation
tensors, respectively.

Theorem 3.1. For two position vectors P in 23 and P in b, the covariant metric

tensors are determined by
« < < < < » > > > >
C=(Vp) ·(pV) and c =(VP) ·(PV);
- I - I

« > > > > »< < < <

C = (P V) · (V P) and c = (p V) · (V p) .

Proof : The two metric tensors are

< < « «
= (V p) .(p V) = (V p) .(p V);

»
- i j _ G X M X N i j - (X M iG ) (XNG j )c - cij g g - MN ;i ;j g g - ;i g M ' ; j Ng

> > » »
= (V P) ·(PV) = (V P) · (PV);

- I

C = -' CIJG G = g mnxlxJGG =(XIGgm)·(xJgnG)
I J ;m ;n I J ;m I ;n J

> > » »
= (PV)· (V P) = (PV)· (V P);

< < < < < <

= (p V) .(V p) = (p V) .(V p) .

This theorem is proved.

(3.24)

•
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Theorem 3.2. For two position vectors P in Il:) and p in b, the invariants ofco

variant metric tensors are determ ined by
«

d t(C) - Ic' I-I GIR i j 1- «2e - .J - gij X;RX;J - 0/ ,

where

- I

«
det(C) = I"c', I= IgmnGlRX:X~ 1= .',

(3.25)

Proof : Because

« -~ I i I/ - - x. l 'G ' = (Q IX~ I·fi '
(3.26)

and

then ,

Similarly,

«

det(C) = IC~ I= IGlRCRJ I= IGIRgijX:Rxj I

I I
IGIR1= - IR- = G and Is, 1= Ig ij I = gIG I

«

det(C) = IC~ I= IG
IR

gij x:Rx(J 1= / 2.

»
det(c) = Ic i I= Is'<. I= Ig irG x 'x: 1= 2

oj n JJ ;r ;j /" '

- I

det(C) = I"c', I= IGlR -'CRJ I= IGlR g mnX:X~ 1= . ' .
- I

det(;)= I -'c:j 1=l g ir-'c,j 1=1 s,GlJ X:;x;j 1= / 2.

This theorem is proved. •
If Xi and x ' are independent, X~ == X,~ and x:l == x:l • Because of the move

ment and deformation of the continuous body , the displacement between the initial
configuration Il:) and instantaneous configuration b is u. For the infinitesimal

position vectors dP and dp in the two configurations, the infinitesimal displace

ment vector is expressed by du , as shown in Fig.3.4. The infin itesimal line ele

ments dP and dp are defined as follows .
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Definition 3.10. For two position vectors P in 23 and p in b , the gradients of

two vectors are defined as
< ><

dp = dx ig; = (X:lg iGI). (dX JG J) = (p V) · dP = F·dP,
- 1

> <>

dP = dX IG I = (x;~G Igi) . (dx jg j) = (PV)·dp = F· dp,

where
- 1

~ < ~ >

F=pV =X;ilg ;GI and F=PV=X/ iG Igi,

which are called the deformation gradient tensors.

From the foregoing defin ition,
- 1

~~ »
F·F =(X:IgiGI).(X;~GJgj)=g;gigj = I,

(3.27)

(3.28)

(3.29)

><
- 1

<>

From Eq.(3.29), the two-po int second-order tensors of F and F are inverse each
other. The deformation gradient with "-1" is on the deformed configuration.

Theorem 3.3. For two position vectors P in 23 and p in b , the transposes of

deformation gradient tensors are det ermined by
- 1

<> < >< >
(F)T =Vp=X;iIG Igi and (F)T =VP=XligiG I. (3.30)

> <

Proof : Consider two vectors u =uigi and v =VIG I' From Eqs.(3.22) and (3.28),

\
I
I u

I
Gz /

/
X 2 ,../--

u +du
/

/
I x3

I
I
I
\
" gl

...... -
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Fig. 3.4 Infinitesimal displacement vector du between two configurations.

> >< <

u-F· V= (u .gj ) · (X [g .G [)· (vJG J) = uXi[/ = v' X .i[u
} , 1 1 , , I

Similarly , consider two vectors u = u[G [ and ~ = Vigi , and the following equa

tion holds :

- I

> > < > >< <

=(vjgj) ·(X;~giG [)·(UJGJ)=v.(VP) ·u.=V·(F)T ·u .

This theorem is proved. •
Definition 3.11. For two position vectors P in 11) and p in b , from the shifter

tensors , the other deformation gradients are defined as

« <> >< » >< <>

F - I F - [ r G G J F - F 1 - i R j- . - grx J [ , - ' - XRgjgig ·

(F)T = >t(F)T = X:Rg~gjgi' (F)T = (F)T .7=x:;g :'G [G j"
- 1 -1-1

<> > >< >«>><
F = PV = X;~G[gi , F = I · F· 1 = g~X;~g; g iG [ ,

- 1 - 1 - 1 - 1

» >< <> « <> ><

F = I · F = g~X;~ gigj, F = F· 1 = X;~.g~G [G J.
- 1 -1-1

>< > <> <>>< <>

(F)T=VP=X;g iG p (F)T = I ·(F)T·I = g;X~g~G[gi'. .
- I - I -I-I
» >< <> «<> ><

(F)T =(F)T .I =X;~g~gigj ' (F)T = I ·(F)T = g~X;;.GJG [ .

(3.31)

(3.32)

(3.33)

(3.34)

From the deformation gradient, the covariant and contravariant metric tensors (or
Cauchy 's deformation tensor and Green 's deformation tensor) are expressed by

« <> >< « «
C = (F)T. (F) = (F) T. (F),

- 1 - 1 - 1 - 1

';; = (F)T . (F) = (F)T . (1<\

- I - I - I -I-I
« <> >< ««
C=F·(F)T =(F)·(F)T,

- 1 - 1

(';;) = F.(F)T = F.(F)T .

(3.35)

Definition 3.12. For two position vectors P in 11) and p in b, the infinitesimal

areas and volum es are defined as
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> < < <

da = dpxdp and da = dpxdp,
4 5 4 5

< > > >

d A = dPx dP and d A = d Px d P .
4 5 4 5

dv=[dpdpdp] and dV=[dPdPdP] .
I 2 3 1 2 3
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(3.36)

(3.37)

(3.38)

Theorem 3.4. For two position vectors P in 123 and p in b , the infinitesimal

volumes and areas are

< < < ~dv = [dpdpdp] = - IXiI IdV = / dV,
1 2 3 G '

> > > ~dV=[dPdPdP]= - IXI ldv = /dv,
1 2 3 g ,1

- I

> >< <

da=dpxdp= /(Ff ·dA,
4 5

Proof: From the definition of infinitesimal volume,

(3.39)

< < < <> <> <>

dv = [dpdpdp] = (I ·dp)x(l ·dp) ·(I ·dp)
1 2 3 1 2 3

« « «
[(F· dP)x(F· dP)] ·(F·dP) «

1 2 3 dV = lIl(F)dV
(dPxdP) ·dP

1 2 3

= I g:x:~ IdV =l g: Il x~J IdV = {g IXiI ldV= /dV., , VO '
Similarly, the infinitesimal volume for the initial configuration is

» > >< >< ><

dV = [dPdPdP] = (I ,dP )x ( 1·dP)· (I ,dP)
I 2 3 1 2 3

- I

»
- I

»
- I
»

[(F·dp)x(F·dp)] ·(F·dp) ;;
I 2 3 dv = IIl(F)dv

(dpxdp) ,dp
I 2 3

From the definition of infinitesimal area,
> >< < >< < < >«< < « <

da=dpxdp= l ·da= l·(dpxdp)= 1·[(F·dP)x(F·dP)].
4 5 4 5 4 5

Because
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«

thus

Ill(F) dp· (dPxdP) = (F ·dP)· [(F·dP)x(F· dP)]
3 4 5 3 4 5

= [(F.dP)x(F. dP)]· (F .dP) = dP· (F) T.[(F.dP)x (F .dP)],
4 5 3 3 4 5

- I
« « « « « «

(F· dP)x(F·dP) = Ill(F)[(Ff']T.(dPxdP) = Ill(F)(F)T.(dPxdP) ,
4 5 4 5 4 5

- 1 - 1

d; = III(F»{(F)T .(dPxdP) = / (F)T .d A.
4 5

Similarly,
- I - I - I - I - I

c1~.dp)x(F.dp) = III(F)[(Fflf .(dpxdp) = III(F)(F)T.(dpxdp),
4 5 4 5 4 5

and the infinitesimal area in the initial configuration is determined by
- I - I

< <> > <> > > <» > > » >

dA= l ·dA= 1·(dPxdP)= 1·[(F·dp)x(F·dp)]
4 5 4 5

- I

» <»> > <> >

=Ill(F)·J·(F)T·d a = A F)T·d a .

This theorem is proved.

The component expressions of the area are

da, = / X~dA/ and dA/ = / x:/da;.

•

(3.40)

Theorem 3.5. For two position vectors P in IB and p in b, the following equa

tions holds
- I

< <> > ><

D' ( / F) =0 and D' ( / F) =0

with the component expression as

(/ X ;;) / = 0 and (/x:/); = O.

»

Proof: Because div I = 0 , from Eq.(2.217),

0= 1dv di/; = ~a d;.>; = ~a d;.

<>

With Eq.(3.39), the integration domain is converted from a to ,sif' VIa J

(3.41)

(3.42)

- I - I - I - I

0= rf / I.(F)T-d A= rf / (F)T .d A= .r d A.(/ F) = cf "dv~,(/ F)'j¥ '-$.w' '-f w- '1
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- I - I
«< «

where n ( j ' F) == div(/ F) with the total differentiation to point P. Because of

any arbitrarily selection of the volume, the foregoing equation gives
- I

< «

o·( /F) = O.

Also the foregoing equation gives
- I - I - I - I

< « < <> >< < <> >< <> < ><

0-( / F) =0'(/ F· I) =0'(/ F) ·I+ / F·(o·l) =0.

< ><

Because of o- I = 0,
- I

< <> ><

o (/ F) . 1 = O.

><

Also because 1 is non-zero, the following equation is achieved,
- I

< <>

O' CfF)=O

from which the component expression is
( 'eX I ) =0J ;i :1 •

Similarly,

0= LdV divY=qudl.Y=qud l ,
><

With Eq.(3.39), the integration domain is converted from sY to a vra
- I

0=qa/ I .(F)T.d; = q/(F)T·dA= qadA'C,F)= qvdv~.(/ F) .

any arbitrarily selection of the volume S

Further, the following relation holds,
> » > >< <> > >< <> >< > <>

o-(/ F) = o (/ F· I) = o C' F)· 1+ F· (0·1) = 0

> <>

with n I = 0 , the foregoing equation gives
> >< <>

0- (/ F)· 1 = O.

<>

Also because 1 IS non-zero,

Therefore , the component expression is given by
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This theorem is proved .
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•

3.1.3. Green-Cauchy strain tensors and engineering strain

From Definition 3.10, for the two vectors P in IJ3 and p in b ,

dp =F ·dP and dP = F·dp
><

- I

<> (3.43)

and from Definition 3.7, the displacement vectors are
< >

u = U IG 1 = g: UiG 1 and u = u'g , = g;U l gi .

If the positions are described by
< < < > > >

p=P+u=(XI + U I)G1 and P=p-u=(Xi_Ui)gi '

then the covariant Green and Cauchy base vectors are
< >ap M ap m

C1=--1 =G1+ U 1G M and ci =-. =gi - u ·igm·aX ' ax' ,
CIJ =C1 ' CJ =GIJ+GMJU;~ +GINU;'~ +GMNU;~U;~

= GIJ + UJ;I + U I;J + UM ; IU~ ,

Cij = Ci ' Cj = g ij - g m;u;7 - g inU;n; + g mnu;7u;:

= g ij -Uj ;i - Ui;j +Um;iU;~ ,

From Eqs.(3.8) and (3.13), the squares of the infinitesimal lengths are
2 1 J i ·

dS = GIJdX dX = cijdx dx",
2 1 J i·

ds =CIJdX dX =g ijdx dx' .

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

Definition 3.13. For two position vectors P in IJ3 and p in b , the difference be

tween the square of the initial and deformed infinitesimal lengths is

ds' - dS 2 = 2EIJdX1dXJ = 2eijdx idx' , (3 .50)

where two new quantities
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1 1
EIJ ="2(CIJ -GIJ) and eij ="2(g ij -cij)'

« 1 « « » 1 » »

E ="2(C- I) and e="2( I - c),

are called the Lagrangian and Eulerian strain tensors accordingly.
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(3.5 1)

T heo re m 3.6. For two position vectors P in 23 and p in b, there is a displace

men t u. The Lagrangian and Eulerian strain tensors are computed by

E1'J =~ (Uj ' / +U/.j +U.!./U M
j) and e = ~(u +u -u .u~) . (3 .52)2 ' , " " " 2 ./ ,1 I ,J m,I ,J

Proof: With Eq.(3.47), definitions in Eq.(3.51) gives
11 MEIJ =-(CIJ - GIJ ) =-(Uj./ +UIJ +UM/U j),
2 2 ' " ,

e = ~(g -c) =~(u +u -u . u~ ) ." 2 " " 2 ./; 1 I ;J m;I ;./

This theorem is proved. •
From the defin itions of the Lagrangian and Eulerian strain tensors, both strain

tensors are not strain tensors in the physical sense . Both of the two strain tensors
are two geometric quan tities similar to the Cauchy and Green deformation tensors.
In the phys ical sense , the strain is measured based on the changes of the length
and ang le. The normal strain is relative to the elongation and stretch or extension
of an element length. The shear strain is based on the angle change between the
two line elements . Therefore, such concepts should be discussed.

Definition 3.14. For two pos ition vectors P in 23 and p in b , the unit vectors of

the infini tesimal vectors dP and dp are defined as

dP I dp .
N = IdP I=N G / and n = IdpI= n'g i , (3 .53)

where

N/ = dX / dX / dX /
--

IdPl dS ~G dX MdX N
,

MN
(3.54)

dx i dx' dx i

ni -- -
~gmndxmdxnIdpl ds

In the Cartesian coordinate system , both of the two quantities in the foregoing
defini tion are the directional cosines. For the curvilinear coordinate systems , the
direc tional cosine will be disc ussed later.
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Definition 3.15. For two position vectors P in Il:) and p in b , the elongation

along the direction N is defined as

Idp Icos8(I',n)- 1dP I dp ' dP
cl' = IdPI =1dPf- 1, (3,55)

with

Definition 3.16. For two position vectors P in Il:) and p in b , the elongation

along the direction n is defined as

C = Idp I-I dP Icos 8(I',n) = 1- dp ,dP
n Idp I Idp 12 ' (3,57)

with

(3,58)

(3,59)

Definition 3.17. For two position vecto rs P in Il:) and p in b , the ratio of the

lengths of vectors dP and dp is called the stretch (AI' = An ), defined by

A ,= ldP I= dP ,c, dP =~N 'C'N
N IdPl IdPl IdPl

=~elJN INJ ,

dp » dp
--, c,--
Idpl Idpl

A = Idp I =--;=====
n IdP I trz::

Vn· e-n

(3,60)

Definition 3.18. For two position vectors P in Il:) and p

( £ 1' = en) between two vectors dP and dp is defined as

t: )dp l- ldP l=A ,_l= Ie N INJ - 1
l\ IdPl N '\I IJ '

e = ldP I- ldP l=A -1=~ 1.
n IdPI n i jcijn n

Definition 3.19. For two unit vectors in Il:) of

dP dP
N =_1_ and N =_2_
I IdPl 2 IdPl '

1 2

III b , the extension

(3,61)

(3,62)

(3,63)
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the angle between the two vectors (E>(N,N») is de fined as
1 2

For two unit vectors in b of

dp dp
n=-'- and n=_2_
I ldp l 2 1dP I'

, 2

the angle between the two vectors ((J(n ,n) ) is de fined as
1 2

dp·dp
cosO = ' 2 ,

(~ , ~) Idp 1·1 dp I
1 2

The shear strain in the plane of Nand N is defined as
1 2

f (]\' , ]\') == }(n,n) = E>(]\' , ]\') -(J(n,n)'
1 2 1:2 1 2 12
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(3,64)

(3,65)

(3,66)

(3,67)

Theorem 3.7. For two unit vectors in Il:) , the angle between the two vectors
(E>(]\' ,]\')) is determined by

1 2

(3,68)

For two unit vectors in b, the angle between the two vectors ((J(n ,n) ) is determined
1 2

by
I « I I J

cos(J(n n) =--N,GN=--CIJ N N ,
1 '2 A]\'A]\" 2 AI\A I\ ' 2

1 1 2

(3,69)

Proof : From definition, the angle between the two vectors (E>(]\' , ]\')) is computed
1 2

by
dP,dP

cosE> = 1 2
( ~,~) IdP 1·1 dP I

, 2

G dXI dX J

IJ , 2

IdPl ·l dPI
, 2

I J
= GIJ N N ,

1 2

The angle between the two vectors ( (J(n,n) ) is computed by
1 1
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dp·dp
cosO = 1 2

( ~ .~ ) Idp 1·1 dp I
1 2

3 Deformation, Kinematic s and Dynamics

« «
(F ·dP)· (F ·dP)

1 2

This theorem is proved.

1 « T« I «
=--N·(F) ·F·N =--N·CN
A~A~ 1 2 A~A~ 1 2

I 2 I 2

=_I_c N I N J

A A IJ 1 2
l\" l\"
1 2

•
Notice that the afore-defined extension and shear are called the engineering

strain.

<

Definition 3.20. For the infinitesimal area d A in IB, the unit normal vector is
< < > >

AN = d A / Id A I. For the infinitesimal area d a in b , the ratio ofareas d a and
<

d A is defin ed by
>

Idal
(JAl': =--<-.

IdAI
(3.70)

< >

Theorem 3.8. For two infi nitesimal areas d A in IB and d a in b with the unit
< < > <

normal vector A N = d A/ Id AI' the ratio of two areas d a and d A is

(JA ~ =/~ AN.2.AN = j '~ -lCIJ ANI ANJ'

Proof: From defin ition, the ratio of two areas is

Id;1 ~
(JA~ = --<- = <

IdAI IdAI
- I - I

(/(F)T.d A) .( /(F)T.d A)
<

IdAI

This theorem is proved.

(3.71)

•
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>

Definition 3.21. For the infinitesimal area d a in b , the unit normal vector is
> > < >

an = d a/l d al. For the infinitesimal area dA in 23 , the ratio of areas da and
<

d A is defined by
>

Id al
O"aR =--<-.

Id AI
(3.72)

< >

Theorem 3.9. For two infi nitesimal areas d A in 23 and d a in b with the unit
> > > <

normal vector a n = d a / Id a I, the ratio ofareas d a and d A is

I

(3.73)

Proof : From definition , the ratio of two areas is
> > >

(J - _Id_a_1 _ ----,=1=d=a=1= Id a I

n - Id AI - ~d A·d A ~(J(F)T .d ; ) .(J (F )T .d ; )

= [J ((F)T. an) · ((F)T. an)r= [J~ an ·F . (F)T. anr
+Y~"n ~ "nr=(f t'c".c»»:

This theorem is pro ved . •
Definition 3.22. For the infin itesimal volume dV in 23 and dv in b , the ratio of
volume is defined by

dv [dpdpdp]
(J =_= 1 2 3

V dV [dPdPdP]
1 2 3

(3.74)

(3.75)

Theorem 3.10. For the infinitesimal volume dV in 23 and dv in b . the ratio of
volume is determined by

dv « rg .
a; = dV = III(F) = VG Ix:1 1= J .

Proof : From definit ion , the ratio of the volume is
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« « «

«d [dpdpdp] (F·dP)x(F·dP) ·(F·dP)
(Y =~ = I 2 3 = I 2 3 =III(F)

v dV [dPdPdP] dPxdp.dP
1 2 3 I 2 3

= l g:' X~J 1 =l g:'ll x~J 1= {g lx:/ I=/ .. . ~G '

This theorem is proved. •

3.1.4. Principal strains and directions

At any point in 23 , the strain tensors can be determined by the Green-Cauchy
strain tensors. In different directions, the strain of line element is different. To de
termine the extremum values of the strain, consider the minimization of the exten
sion £;0; by the follow ing equat ion:

A~ = CJjN 1N J (3.76)

with the initial exten sion cond ition of £ (N ) = 0 (or A (N ) = I), i.e.,

GJjN1N J -1 = O. (3.77)

It is found that the extremum exten sion is to determine the extremum stretch. Such
a problem is a cond itional extremum problem. Langrange's method of multipliers
can be adopted. That is, one has a function

:J=A~N)-A(GJjN I NJ -1)= CJjN 1N J -A(GJjN 1N J -I). (3.78)

Thus,

(3.79)

where A is an unknown Lagrange mult iplier.

(CJj - A GJj )N J = 0, (3.80)

which can be expressed by

(C~ -Ao5) N J =0 (3.81)

or
« «

(C-AI)·N=O. (3.82)

The non-trivial solut ion requires
« «

1 C~ - Ao5 1 =0 or det(C- A I) =O. (3.83)

The foregoing equation gives
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« « «
_A 3 +I( C)A 2 + ll(C)A +m(C) = 0,

where

I(C)=~ojCI =Cl ll(C)=~OjLCICK
I! l ·j ·1' 2! IK .j ·L '

« 1 JLN I K M I
m(C) =3iOIKMCjCLC N = 1 c; I·
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(3.84)

(3.85)

From Eq.(3.84), three principal values A, (T = 1, 2, 3 ) with A, ~ A 2 ~ A3 are ob-
«

tained. Because C is positive-definite, A, > 0 ( I' = 1,2, 3), and the correspond-

ing principal directions N are orthogonal, which are the principal directions of the
r

Green-strain tensor. Such orthogonality of the principal directions can be proved
as follows .

C 'N=A,N and C ·N=A2N., , 2 2

« «
(3.86)

Left multiplication of N in the first equation of Eq.(3 .86) gives
2

«

Because C is symmetric,
« «

N·C·N=AN·N but N·CN=A N·N .
, 2 " 2 ' 2 2 '2

The difference between the two equations gives
0=(A,-A2)N·N .

, 2

IfA, ;t. A2 , the foregoing equation gives

O=N·N.
, 2

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

The two principal directional vectors are perpendicular. The principal directions
are also called the spatial strain directions . Based on the three principal direc
tions , the three principal stretches are computed by

~
<

AN= N'GN=~ArN'N=.jA;.r r r r r

From Chapter 2,

where

V' V2
« « «
GN=ANN or (C-I)·N=ENN,

r r r r r r
(3.92)

(3.93)
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In a similar fashion, consider the minimization of the extension en by the follow

ing equation.

with the initial extension condition of en =0 (or An =1), i.e.,

i j 1- 0g ij n n - - .

(3.94)

(3.95)

The three principal values of the Cauchy strain tensor are A, (T = 1, 2, 3) with

~ ~ ~ ~ ~ , and the corresponding, orthogonal principal directions are n . The
r

principal directions are called the material strain directions. The principal stre tch
is computed by

Further,

A = 1
n ~>r n.c .n

r r

1

~Ar~'~ p;' (3.96)

where

-1/2 -1/2
» » »

c -n =An n or (c - I) · n =e n,
r rr r ~ r

1
en = An -1 = r1-1.

r r 'JAr

(3.97)

(3.98)

Definition 3.23 . For the infin itesimal vector dp in b , the following relat ion at

point p holds:

(3.99)

wh ich is called the material strain ellipsoid if for the infin itesimal vector dP in
IB,

For the infinitesimal vector dP , there is a relation at point P as

CJj dX I dX J = k",

(3.100)

(3.101)

which is call ed the spatial strain ellips oid if for the infinitesimal vector dp in b

gijdx i dx' =e at point p. (3.102)

Theorem 3.11. If two infinitesimal vectors d P and d P in IB are perp endicular
1 2

at po int P , i.e.,

d p.d P = 0 or GJj dX I dX J = 0,
I 2 1 2

(3.103)
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then after deformation at point p in b, the following equations exist:

dp·(c·dp)=O or dxi(ci;dxJ)=O ;
I 2 l ' 2

Proof: This theorem can be easily proved by the definition, i.e.,
2 _ _ I J _ I J i J _ i JdS - d p .d P - GIJ dX dX - GIJX iXJ dx dx - C ij dx dx .

I 2 1 2 ' , I 2 1 2

If d p.d P = 0 or GIJ dX I dX J = 0 ,
1 2 I 2

(c .. dxi)dxJ = dxi (c .. dxJ) = O.
" 1 2 I " 2

In other words,

97

(3.104)

» »

This theorem is proved.

( c -dp) ·dp = (dp) ' (c dp) = O.
1 2 1 2

•
Theorem 3.12. Jf the deform ed infi nitesimal vector of dP in !B is an infinitesi
mal vector dp in b , then the two infinitesimal vectors can be decomposed by

three motions ofthe translation, rotation and defo rmations:
1/2 1/2 1/2

>< « « » >< « » » ><

dp = I ·RCdP = R I·CdP = RC l ·dP

= I · c ,RdP= c ·I ,RdP= c ,R l ·dP;

and

-V2

>< « «

- if 2 - 1
« « <>

-V2
» >< «

- if 2 - 1
« <> »

-1/2
» » ><

- if 2 - 1
<> » »

(3.105)

dP=CR·I ·dp=C I ,Rdp= I ,CRdp
- 1 1/2
« « <>

- 1 1/2
« <> »

- 1 1/2
<> » »

= R c 1.dp = R 1' c -dp = I · R c dp. (3.106)

where I, Rand C (or c) are the translation, rigid rotation and deformation, re

spec tively.

Proof: From definition, the deformed infinitesimal vector is
>< >< « » ><

«

dp = F·dP = I·F·dP = F·I·dP.

«

Because of det(F) *' 0 , the deformation gradient F is a non-degenerte , second

order tensor, decomposed by the left and right polar decompositions :
~ ~

« «« . I « «« «««« 1 ««
F=(F·(F)T), · R = c·R and F=R((Ff · F)' =RC.
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Similarly,
- ij2

» »»

3 Deformation , Kinematics and Dynamics

1/2
» »»

F= cR and F=RC.

Substitution of the polar decompositions of the deformation gradient tensors into
the definition of dp gives Eq.(3.l 05).

In a similar fashion,
- 1

<>
- 1

<> »
- 1

« <>

dP = F·dP = I·F·dP = F·I ·dp.

The tensor is decomposed by the left and right polar decompositions:
- I - I - I - 1/2 - I - I 1/2

» »» I» »» «» » .» I » »
F = (F · (F)T)2 . (Rf = C(R)Tand F = (Rf . ((F)T . F)' = (Rf . c

and
-1 -1/2 1/2

F = C.(R )T and F = (R)T.;.

Because
- 1 1/2 - 1/ 2

Y= F.F = (R)T .;. ; . R = (R)T . R,

one obtains

Finally,
- 1 - 1/2 - 1 - 1 1/2
» »» »»

- 1 - 1/2 - 1
« «»

- 1 1/2
« «

F = C· R = R c and F = C R = R c .

Substitution of the foregoing equations into the definition of dP gives Eq.(3.106).
This theorem is proved. _

- ij2
« ««

ij2
« ««

From F = c Rand F = R·C , the rotation tensor can be determined by

R =F·C and R=c ·F .

- ij2
« ««

ij2
» » » (3.107)

Theorem 3.13. For the infinitesimal vectors dP in IB and dp in b, if the Green

and Cauchy tensors CIJ and cij are nonsingula r, positive-defin ite tensors, then

their Riemann-Christoffel tensors are zero:

RIJKL =0 and R iikl =0. (3.108)

Proof: From the definition of the Riemann-Chr istoffel tensor,



3.2. Kinematics

where

Similarly ,

where

1
f UK = -(CJK 1 + CKI J - c; K )'2 ' , ,

I
R ijkl = "2 (Cil;jk + c jk;i1 - Cik,j1-CjI;ik)

+ - ICrs(filrf jk' - f ikrf;/J = 0

1
L k =-(c.k + c k· · - c ·· k)lj 2 J,I I ,J tj,
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This theorem is proved , •
The conditions in Eq,(3.l 08) is called the compatibility condition, and also is

called the integrability condition of the following equations
i . I I

g ijX;lx ;j =Cu andguX;iX;j =cij' (3 ,109)

3.2. Kinematics

In this section, the vectors and tensors varying with time will be discussed in the
deformed configuration, The velocity and acceleration of such position vectors
and deformation tensors in the deformed configuration will be discussed,

3.2.1. Material derivatives

Before discussion on material derivatives, the velocity of particles in the deformed
configuration should be defined, The material description is a material particle
moving to all possible spatial points, as shown in Fig,3,5, The special material
point with (Xl, J = 1, 2,3 ) is invariant. With varying time, the spatial locations

of the material point changes ,

Definition 3.24. For two position vectors P in !:B and p in b for time t , there is

a relation
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(3.110)

The time rate of change of the position of a given material particle P going
through the spatial points p is called the velocity of the particle P at the location

point p , defined by

v == lim pep, t+~t)-p(P , t) = apl
"'HO ~t at p

axil axil=P,iat p =at p gi '

The covariant component of the vector yep , t) = V ig, at point p(P, t) is

i i axil
V =v 'g =at., '

(3.111)

(3.112)

p(P,t)

Fig. 3.5 Material description

b', t +6i

However, the spatial description is all possible material points going through

the fixed spatial point. The spatial point with (X i , i = 1, 2, 3 ) is invariant. The ma

terial points at the fixed spatial point are switched. Such a spatial description is
shown in Fig .3.6.

Definition 3.25. For two position vectors P in 23 and p in b for time t ,

P =Ptp, t) or x ' =x ' (Xi, r), (3.113)

the time rate of material points P switching at the fixed location point p is called
the switching velocity ofthe material point P at the location point p , defined by
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v =lim pep, t+~t)- pcp , t) = api
,',1-->0 ~t at p

= P aXil =aXil G =VIG .
,I at at I I

p p
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(3.144)

(3.115)

Notice that aO / at Ip and aO / at Ir are the partial derivatives relative to point

P(X I
) and p(x'} . Based on the two fixed variables (p,t)and (P ,t)at time t, the

total derivatives of a vector and tensor are from the Leibniz rule, i.e.,

aOI = aOI + axil ao = aOI +vi ao ;
at), at p at), ax' at p ax'

aOI = aOI + aXil ao = aOI +vl ao.
at p at r at p ax' at r ax l

P(p ,t + 61)

b', t +61

Fig. 3.6 Spatial description.

If the variables (P, t) and (p ,t) at time t are used as the fixed material points, the

foregoing total derivatives are cal1ed the material derivatives. In many textbooks ,
the point (P , t) at time t is as a fixed material point P to the spatial place (p, t) at

time t.

Consider the fixed base vectors of the coordinates {XI} and {X i}. The fol
lowing relations hold:
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(3.116)

(3.117)

(3.118)

(3.119)
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(3.120)

If the velocity v at point p is based on material and spatial coordinates P and p, the
corresponding descriptions are called the material and spatial descriptions, respec
tively .

Definition 3.26. For two position vectors P in !B and p in b for time t, the ve

locity of the material point P at the location point p is

v = v(P , t) = Vi(P , t)g i or Vi = Vi(P , t). (3.121)

The time rate of change of the velocity v(P,t) of the material point at the point

p is called the acceleration of the material po int P at the location point p in the

deformed configuration b , defined by

a(P, t) == lim v(P , t + ~t) - v(P, t) = dvl = d(VigJI. (3.122)
l1HO ~t dt dt

P I'

Theorem 3.14. For two position vectors P in !B and p in b for time t, under

Eq.(3.121), the acceleration of the material point P at the location point p is de

termined by

dv
iI . k . dv

i I . .a(P,t)=(- +vJv r '.k)g =(- +vJv:)g .
dt J' dt .J '

P P

(3.123)

Proof : From definition of the acceleration of the material point P at the location
point p , under Eqs. (3.118) and (3.121),
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(P ) = d(/ gJ I =dVi I i dgi l = (dv
i
I j kr i )a,t g + v +vv kg

dt p dt ' p dt p dt p l '

d/ I .d/ . k r-i d/ I .d/ . k .=(- + vl-.)g .+vJv r "kg. =(- + vl_. + vl v r '·k)g ·
dt dxl ' J' dt dxl J'

P p

dVil . .=(- +vV .)g .
dt ,J '

P

This theorem is proved. •
Definition 3.27. For two position vectors P in IB and p in b for time t , the ve

locity of the material point P passing through the local point p is

v = yep, t) = Vi(p, t)g j or Vi = Vi(p, t) . (3.124)

(3.125)

(3.126)

The time rate of change of the passing velocity v(p ,t) of the material point Pis

called the switching acceleration of the material po ints P at the fixed location
point p , defined by

( ) = 1' V(P,t+~t)-V(P't)_dVIa p,t - Hl'l - .
,',HO ~t dt p

Theorem 3.15. For two position vectors P in IB and p in b for time t , under

Eq.(3.l24), the passing acceleration of the material po int P at the location po int
p in the defo rmed configuration b is determined by

dvl dvl > dVil ...a(p,t)=- =- +v ·Vv=(- +vJV v')g =a'g .
dt dt dt J' ,

P P P

Proof: From the definition of acceleration , with Eq.(3.l 24),

dvl dvl j dv dvl >a(p ,t)=- =- +v - . =- +v ·Vv
dt p dt p dxl dt p

_(dvil j n i ) _ i- at p + V v j V gi - a g..

This theorem is proved. •
No matter how the material or spatial description is used, the same acceleration

at the same point in the deformed configuration is described. Therefore, the two
descriptions should give the same acceleration. The acceleration based on the de
formed configuration can be translated into the initial configuration by the shifter
tensor, which can be done through the velocity expression in the initial configura
tion in lB .
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Theorem 3.16. For two position vectors P in 23 and p in b for time t, the ve

locity ofthe material point P at the location point p is

v=v(P,t)=vl(P ,t)G I or Vi =vi(P ,t). (3.127)

The acceleration of the material po int P at the location po int p , based on the

coordinates in the initial configuration 23, is
< <>

a(P, t) = l ·a(P, t).

Proof: From the definition of acceleration, with Eq.(3.l27),

;(P,t)= av(p,t)1 = a(v l(p,t)G /)1 = a/(p,t)1 G
I

at p at p at p

=a(vi(p,t)g:)1 G =(avi(p,t)1 g l+/(p,t)ag:I)G
at I at I at I

p P P

avi(p t)1 <>=( , + vi V k I" I )g lG = I· a(P t) .at jk p I I ,
P

This theorem is proved .

(3.128)

•
Theorem 3.17. For two position vectors P in 23 and p in b for time t , the

passing velocity ofthe material point P at the locat ion point p is

v = yep, t) = Vi (p, t)G I or Vi = Vi (p, t) . (3.129)

The passing acceleration of the material point P at the location point p, based

on the coordinates in the initial configuration 23, is
< <>

a(p , t) = I · a(p , t) .

Proof: From the definition of acceleration, with Eq.(3.l 29),

;(p, t) = av(p , t)1 = av
l
(p, " G I = a(v

i
(p , t)g:)1 G I

at p at p at),

=(avi(p ,t)1 +vivkri »:« =(avi(p ,t)1 + viVVi)g/G
at j k I I at ] I I

P P

<>

= I ·a(p, t) .

This theorem is proved .

(3.130)

•
Definition 3.28. For two position vectors P in 23 and p in b for time t, there is

a two-point tensor
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(3.131)

The time rate ofchange ofthe tensor If!(P, t) for the material point P at the loca

tion points p is defined by the material description, i.e.,

(3.132)

The time rate ofchange of the tensor If!(p , t) for the material point P at the loca

tion point p is defined by the spatial description, i.e.,

dt
p

~-WJi-W J --o"G g G ··· G G JI .. .G Q g_... g_gli ... gJ" .
~ I p ~ ~

The foregoing operation is expressed by
D <c- D_ (P t) =_ II ---1p il- --im
Dt If!, Dt lj/ J I--JQ k --j"

~-wJi-w J J - -·" G g G ··· G G I . . .G Q g_... g_gli . . .gJ"
~ ~ ~ ~

whe re for the mate rial der ivat ive

DO=dOI
Dt dt p

for components

DO = dOl - vv, = dOl - vrv, _-;')(0) .
m ~ p ~ p ~

»,»

For a tensor If! , the corresponding material deri vative is

(3.133)

(3.134)

(3.135)

(3.136)
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c ->

D IfI __ a IfI r a IfI a IfI > »
+ v --=-- +V ,VIfI .

Dt at axr at

107

(3.137)

p p

As in Chapter 2, the material derivatives of the identity tensors, Eddington's ten
sors and shifter tensors are zero.

Definition 3.29. For two position vectors P in 11) and p in b for time t , the gra

dient ofthe velocity vectorfi eld v(p , t) is defined by
» >

D == vV = v:jg jgj (3.138)

and the relative velocity of the point P + dP to point P is given by the differen
tiation of the velocity vector field v(p ,t) at point p, i.e.,

(3.139)

Definition 3.30. For two position vectors P in 11) and pin b for time t , the ma

terial derivative ofdeformation gradient tensor is defined by

~F==lim~[aP(P,t+i1t) ap(p,t)]=v C !. (3.140)
Dt ,,/-->o i1t ax! ax! ,I

Theorem 3.18. For two position vectors P in 11) and p in b for time t , the ma-
- I

>< <>

terial derivatives ofdeformation gradient tensors F and F are determined by
- I - I

D >< »>< D <> <>>>

-F =D·F and -F=-F·D.
Dt Dt

»

Because of D I / Dt = 0 ,
- 1 - 1 - 1

D » D >«> D >< <> >< D <>
0=- I =-(F· F) = (-F) ·F+ F·(-F).

Dt Dt Dt Dt

Thus,

(3.141)
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- I - I - I - I - I - I - I

D <> <> D >< <> <> » >< <> <> » » <> »
-F=-F·(-F) ·F=-F·D·F·F=-F·D· I =-F·D .
Dt Dt

This theorem is proved. •
Theorem 3.19. For two position vectors P in IB and p in b for time t , the ma

terial derivatives of the infinitesimal line, area and volume elements in IB are
zero, i.e.,

D D < D
-dP=-dA=-dV=O'
Dt Dt Dt '

(3.142)

the material derivatives of the infinitesimal line, area and volume elements in b
are

D » » ><

Dt dp =D·dp =D· F·dP,

- 1

D > » »» > » » » >< >

-da = [I(D) I _(D)T]·da = [I(D) I _(D)T]. )" F ·d A,
Dt C

D » »« D »
-dv = l(D)dv = l(D)lll(F)· dV and - / = l(D) / .
Dt Dt

Proof: Because dP is independent of time,

.!!...-dP =.!!...-d A=.!!...-dV = O.
Dt Dt Dt

However,
D D >< D >< » ><» Dp
-dp = -(F· dP) = -(F)· dP = D· F·dP = D·dp = dv = d(-) .
Dt Dt Dt Dt
D D
-dv=-[dpdpdp]
Dt Dt I 2 3

(3.143)

» » »

(D·dp)xdp' dp+ dpx(D·dp) ·dp+ dpx dp' (D·dp)
I 2 3 1 2 3 I 2 3 dv

[dpdpdp]
1 2 3

» »«
= l(D)dv = l(D)lll(F)· dV .

Because
D D D »
-dv=-(/dV) =-(/)dV = I(D)dv,
Dt Dt Dt

then,
D » dv»

- / = l(D)- = I(D)/ .
Dt dV
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Thus,
- 1 - 1 - 1

D > D >< < D >< < D >< <

-da=-[/(F)T·d A ]= - ( 7 )[(F)T ·d A ]+ 7 - (F)T ·d A
Dt Dt ~ Dt C C Dt

- 1 - 1

= / I(D)(F )T.d A- / (D)T.(F) T.d A
- I

»»» >< >

= [I(D) I-(Df] · / F·d A

= [I(D) 1-(D)T] .d;.

This theorem is proved.
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•
Theorem 3.20. For two position vectors P in 23 and p in b for time t , for

> >

n = dp/ 1 dp 1 and an = d a / ]d a ], the time rates ofchanges of the length, volume

and area elements are
I D »

d ==-(- Idp l)=n ·d·n
" 1 dp 1 Dt '

1 D »
--(dv)=J(d),
dv Dt

1 D > »
--lda l=J(d)-d
1 d; 1 Dt ""

where the deformation rate is
» 1 » » »
d =-[D+(D)T] and d == n d - n.2 an a a

Proof: Because the time rate of change of the arc length is

_D Idpl = _D ~dp.dp= I (_D dp .dp+dp._Ddp)
Dt Dt 2~dp 'dp Dt Dt

1 D D
------,-(-dp ·dp+dp ·-dp) 1 dp I,
2 1dp 12 Dt Dt

(3.144)

(3.145)

»

from Theorem 3.19, D(dp)/ Dt = D·dp , the time rate of change of the arc length is
» »

~ Id I = ~ D·dp·dp+dp ·D·dp Id 1

Dt P 2 1 dp 1
2 P

I » »
=(n·-[(Df +D]·n) ldp l

2
»

=(n·d·n) ldp l ·

Thus, the time rate of change of the volume is
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I D »
d =--(Idpl)=n ·d·n.

n Idp I Dt

For the rate of the volume, one obtains
ID » I » » I » »
--(dv) =It D) =Tr[-(D+(D)T)+-(D-(D)T)]
dv Dt 2 2

= Tr[~(D+ (D)T)]+ Tr[~cI)-(D)T)]= Tr(d) = I(d).
2 2

The time rate of change of the area is
D > D~ I D » > D>

- Ida l=-Vda·da = (-da·da+da·-da)
Dt Dt ~d> d > Dt Dt

2Vda·da
I D > > > D > >

--> -(-da·da+da·-da) Ida I·
2 1da 12 Dt Dt

From Theorem 3.19, the following relation holds:
D > »»» >

-da = (I(D) I-(D)T)·da .
Dt

Substitution of the foregoing equation into the time rate of change of the area
gives

»»» > > > »»» >

D > [leD) I-(D)T]·da·da+da·[I(D) I-(D)T]·da >
- Ida l= > Id al
Dt 2 1da 12

= I d;.[I(D»;-D].d;+~;.[I(D»;-(D)T] .d; Id; I

2 Id a 1
2

» 1 » » >

= {1(D)- an ."2 [(D)T+D]· an} Ida I

» » >

=[I(D)- an · d · an] Ida I·

So the time rate of change of the deformed area is
ID > >> »

- >--1da 1= I(D)- an · d · an.
Id al Dt

This theorem is proved. •
Theorem 3.21. For two position vectors P in 123 and pin b for time t , for n =

dp/Idp I, the following relations exist:

Do » » » »

Dt =D·n-(n ·d ·n)n=(D-dn I) ·n , (3.146)
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D I » »
-Y(n n) = . ([n-cosB(n n) n] -d ·n+[n-cosB(n n) n] -dn} .
Dt 1" smB(n ,n) 1 1" 2 2 2 1 '2 1 1

12

Proof: The material derivative of the unit vector is
DnDdp I D D- =-(-) =-[-(dp) 1 dp I - dp-(Idp I)].
Dt Dt 1 dp 1 1 dp 1

2 Dt Dt

Because
D »> D »>
-(dp) = 0 ,dp and -(Idp I) = (n -d -n) 1 dp I,
Dt Dt

then ,
Dn » » »»
- = D·n-(n· dnjn = (D-d Lj -n.
Dt n

D D D D
-(cosB(n n)) =-(n,n) =-(n) ' n+ n·- (n)
Dt 1 " Dt 1 2 Dt 1 2 1 Dt 2

» » »»
= D·n·n-(n· d -nj nn-! n·[D·n-(n· d ·n)]n

1 2111 21 2 2 2 2

III

(3.147)

»> »> »>

= 2n· d -n-[(n· d -n) + (n -d -n)]n ,n
1 2 1 1 2 2 1 2

» »

= [n-(n· n)n] · d -n+[n-(n·n)n] · d· n
11 2 2 2 2 211 1

» »

= [n-cos B(n n) n] -d- n+[n-cos B(n n) n]. d -n,
I 1 ' 2 2 2 2 1' 2 1 1

and
D D

--(cosB(n,n))=-[cos(8(1\' ,1\') -I(n,n))]
Dt 12 Dt 12 12

. (J D (8 ) . (J D= -sm - - - = sm -(n,n) Dt (1\',1\') I(n,n) (n ,n) Dt I(n,n)'
1 2 12 12 12 1 2

From the foregoing equations,
D I » »>
-I(n n) = . {[n-cosB(nn)n]·d ·n+[n-cosB(nn)n] ·d·n} ,
Dt 1', smB(n ,n) 1 1 '2 2 2 2 1 '2 1 1

1 2

This theorem is proved.

3.2.2. Strain rates

•

From the previous discussion of the rate of arc length, area and volume , the strain
rate with respect to time is very important in nonlinear continuum mechanics,
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Therefore, the strain rates will be discussed as follows .

Theorem 3.22. For two position vectors P in IB and pin b for time t , the ma

terial derivatives ofstrain tensors (or strain rates) are given by
- I - I - I

D « <> T »>< D « <»> >< T

Dt C=2(F) od·F , Dt C=-2F·do(F) ;

- I -1-1

D » »» »» D » »»» »
Dt c = Doc+ c-(D)T, Dt c = -( c 0 D+ (D)T 0 c );

D « <> T »>< D « » »» » T»

-E=(F) -dE , -e=d-[eoD+(D) · e].
Dt Dt

Proof: From the definitions of the deformation gradients,
D « D <> T >< D <> T >< <> T D ><
-C =-[(F) 0 F] =-(F) 0 F+(F) o-F
Dt Dt Dt Dt

<> » >< <> »><
=(F)T . (D)T· F+ (F)ToD. F

= 2(F)T 0 d .F,
- I - I - I - I - I - I - I

D « D <> >< T D <> >< T <> D >< T
-C =-[F·(F) ] =-F·(F) + Fo-(F)
Dt Dt Dt Dt

- 1 - 1 - 1 - 1 - 1 - 1

=-F oD.(F)T - F .(D)T .(F )T =-2 F.do(F)T ,
- I

D » D >< <>T D >< <>T >< D<> T
-c =-[Fo(F) ]=-F·(F) +F·-(F)
Dt Dt Dt Dt

- I - I

»>< <> >< <> » »»»»
=DoF·(F)T+Fo(F)T·(D)T =Doc+ Co(D)T,

- 1 - 1 - 1 - 1 - 1 - 1

D » D >< T <> D >< T <> >< T D <>
-c =-[(F) · F] = - (F) · F+ (F) ·- F
Dt Dt Dt Dt

- 1 - 1 - 1 - 1

= _(D)T 0(F)T 0F - (F)T0F oD = _(D)T 0; _; .D,

D « D 1 «« 1 D « <> » ><
-E =-[-(C-I)] =--C = (F)T . doF,
Dt Dt 2 2 Dt
D » D 1 » » 1 D » 1 » T» »»
-e =-[-(l-c)]=---c =-[(D) -c-s cD]
Dt Dt 2 2 Dt 2

1 » T » » » »»
=-[(D) · ( 1- 2 e)+(1-2 e jD]

2
» » »»»

= d-[(D)T 0 e+ e·D].

This theorem is proved.

(3.148)

•
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Theorem 3.23. For two position vectors P in IB and p in b f or time t , the ma

terial derivatives of stretch and area ratios are given by
D D »
-A .=-A =Ad =An ·d·n,Dt I" Dt 0 0 0 0

D D » (3.149)-eJ I" =-eJ 0 =eJ o[l(d)-d 0]
Dt A Dt " " a

» »

=eJ"o[l(d)- an · d · an ].

Proof: Because AI" = ~N .C.N ,

DID » 1 »»»
-Aro.; =-(N·-GN)=-N·(F)T ·d·F· N
Dt ' 2AI" Dt AI"

=( ldP lr' F.N .d.F.N=( ldp lrIF. dP .d .F. dP
IdPl IdPl IdPl IdPl
» » » »

(F·dP) ·d·(F·dP)

Idpll dPl

dp·d ·dp

Idpl ·l dPl
»

= Idpl dp ·d ·dp =Al"n .d.n ,
IdPll dpl ·l dpl

and also because AI" = Ao,

~~ .!. »

For eJAI" = J C N ·G ANF = eJ"o and DJ / Dt = J I (d) in Eq.(3.l 43),
- 1

D 1 DJ 2 I D «
-eJ . =---eJ + 7 --( N ·- G N)
Dt AI" V Dt AI" c> 2eJ . A Dt A

c/ Ai'l

- I - I

» 1 <> »><
= l(d)eJ I"--{[J(F)T. AN ]· d ·[J(F)T. AN ]}

A (} A lS

»> >

» d e d ·da
=1(d)eJAI"- > <

Id al ·l d AI
»> > >

=1(d)eJ . _ da·d ·da Id al
At'\ > > <

Id al ·l d all d AI
» »

= l(d)eJAI" - an · d· an eJAI" ,
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D D » » »
-0" N =-0" n = (I(d)- o · d· 0)0" n = (I(d)-d n)O" n'Dt A Dt a a a a a a

This theorem is proved .

3.3. Dynamics

•

In this section, forces and stresses in the continuous body will be presented . Fur
ther the relation between the force and acceleration in the continuous media will
be addressed .

3.3.1. Forces and stresses

Dynamics is to determine the response of continuous media under external forces.
The external forces include body force and surface force. For two configurations
23 and b for time t , the body force in b per unit volume is denoted by f(P ,t) ,

and the body moment in b per unit volume is represented by W1(P, t) . The total

force and moment to the origin are given by

F = 1f(P,t)dv and M= HpXf(P,t)+W1(P,t)]dv. (3.150)

The surface force includes the distributed and concentrated forces on the surface
with an exterior unit normal n. The concentrated forces and moments act on the
location of point Pa , are expressed by Fa and M a . The distributed force and

moment on the surface are denoted by t(n l and m(n) ' respectively. The total ex

ternal force on the continuous body b is

F = ~a t(nlda +1f(P ,t)dv+ I aFa (3.151)

and the total external moment on the continuous body b to point 0 is

M=~Jm(n) +pxt(nl]da+ HW1+pXf]dv

+ IJMa+PaxFa] . (3.152)

In addition to the external forces, the internal force is an important concept in con
tinuous body, which is used to describe the interaction between two adjacent ma
terial points. Such the internal force is a contact force.

Consider a deformed continuous body b under the external force (F) and the
external moment (M ). To investigate the internal force between two adjacent ma
terial points , the cross-section method is adopted . The deformed continuous body
b is cut into two parts through a cross-section L, as shown in Fig.3.7. A normal
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vector of the cross-section at point p(P,t) is a positive direction n for one of two

parts but as a negative direction ( -n ) for the other part . The corresponding cross
sections are represented by Ln and L_n. Suppose that the external force and mo-

ment on the part with the positive normal vector are F 1 and M, , respectively.

The external force and moment on the rest part are F 2 and M 2 accordingly. The

cross-section is a new surface. Thus , the distributed force and moment on the new
surface are the contact force and moment, which can be expressed by t(n) and

m(n)' Such distributed force and moments can be defined by the density of the

force and moment on the new surface. On the cross section with the exterior unit
normal n, consider an area !J.a of the cross section at point p(P,t), on which the

total force and moment are !J.t and Am. Further, the stress vectors and couple

stress vectors can be defined.

Definition 3.31. At point pin b for time t, the stress vector and coup le stress

vector on the exterior unit normal direction (n) of the cross section L are defined
by

I· !J.t d 1·!J.mt(n) == im - an m (n ) == Im--
M--'0!J.a M--.OSa

(3.153)

Note that t (n) and m (n) are the densiti es offorce and moment on the exterior

normal direction of the cross-section, respectively . For the cross section, the total
force and moments to the point 0 are computed by

F(n) = i .t(n )da and M o= i .(pxt(n )+m(n ))da . (3.154)
a a

On the cross sections Ln and L_n, the stress vectors and couple stress vectors are

t., =-tn and m, =-mn· (3.155)

3.3.2. Transport theorem

-o>

Under the condition in Eq.(3.4) , the integral of a two-point tensor v/(p ,t) based

on the volume r of the configuration IB is expressed by a time-related quantity

J(t) = LV(p,t)dv. (3.156)
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Fig.3.7 Stress and couple stress vectors on the cross section Ln and L_n •

Theorem 3.24. For two position vectors P in !:B and pin b for time t , there is
-o>

a two-point tensor V/(p,t) . The time rate of change of the integral of the two

point tensor is
D -o> D <.> <.>

Dt LV/(p,t)dv = IJDt V/(p,t) + V/(p ,t)div(v)]dv, (3.157)

where div(v) = V i .
, 1

Proof : By changes of variable, the material differentiation under the integral sign
gives

D -o> D -o>- r V/(p,t)dv=- r V/(P,t)J(P ,t)dV
Dt Jr Dt Jr

D c» c» D
= r [-V/(P,t)J(P ,t)+ V/(P,t)-J(P ,t)]dV

Jr Dt Dt
D <c- <c-

= r [-V/(P ,t)+ V/(P,t)div(v)]J(P ,t)dV
Jr Dt

D <c- <c-

= r [-V/(p,t)+ V/(p ,t)div(v)]dv.
Jr Dt

This theorem is proved. •
-o>

If the two-point tensor V/(p,t) based on the configuration B is translated into
» ->

one-point tensor V/(p,t) , the time change ratio of the integral is
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D »-> D »-> »->

- r yrdv= r [-yr+yrdiv(v)]dv
Dt Jr j, Dt

>->ayr »->
= r [(-)p +div(v yr)]dv

Jr at
c ->ayr > »

= r(-)pdv+ rl da.vyr,
Jv at '1s

11 7

(3.158)

where v is the volume of material volume V for time t , and s is the correspond
ing boundary surface of volume v.

Consider a mass density of the continuous body 23 to be pCP,t) as a one-point

tensor. Suppose that the mass distribution in 23 is continuous (i.e., 0:::; p < 00 ) .

From the conservation law of mass, the mass cannot increase and decrease during
deformation . From the transport theorem,

O=~ r pdv= r [Dp +pdiv(v)]dv. (3.159)
Dt Jr Jr Dt

Because the mass volume is arbitrarily selected, the Euler continuous equation is
given by

Similarly,

Thus,

0= Dp + pdiv(v) or 0 = Dp +v· vp+(v ·V)p,
Dt Dt
Dp .

O=-+(pv') .
Dt "

o=~ r pdv=~ r p j'd V = r ~(P 7 )d V.
Dt Jr Dt Jr -s: Jr Dt c>

(3.160)

(3.161)

(3.162)

where p(P,to) = Po' Equation (3.162) gives Lagrange's continuous equation. Fur

ther,

(3.163)

In the transport theorem, the time rate of change of the integral of the two-point
tensor can be determined by
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(3.164)

3.3.3. Cauchy stress and couple-stress tensors

The strain state is detennined by all the stretches (Ar; ) or extensions (Er;) ' The
«

Green strain tensor C can be used to determine the strain state because of
« «

Ar; =(N .G N) t (or Er; =(N .G N)t -I). However , the stress state is formed by

the stress tensor {t "" } and the couple stress tensor {m "" }. Consider a mass body

b' with volume v' and boundary area a' , which is corresponding to the material
configura tion 1)3' with volume r:' and boundary area . From the principle of
momentum,

.Q.l vpdv = 1fdv+ rl t "da.Dt r ' T ' \'J ,,;, a

The principle of angular momentum gives

~t L ,pxvpdv= L,(9)1+ p xf)dv + 9 .w-' (m "" +pxt"")da .

Because
D(p f ) Dv
---'''--'''C---' =0 and - =a

Dt Dt '

D Dp Dv
-(pxv) =-xv+px-= vxv+pxa =pxa
Dt Dt Dt

(3.165)

(3.166)

(3.167)

(3.168)

(3.169)

and also because the external forces are invariant on the initial and deformed vol
ume, equations (3.165) and (3.166) become

1.apdv = l.fdv+9}""da,

l.pxapdv= 1.(9)1 +PXf)dv+9)m"" +pxt"" )da.

Definition 3.32. At point p in configuration b for time t , the stress tensor and

couple stress tensor are, respectively, defined as
» »

t == t .g' =( ;g jgJ and m == mg' =mj;g jgJ
. .

(3.170)

which are also called the Cauchy stress tensor and Cauchy couple stress tensor ac
cordingly.
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Theorem 3.25. For two position vectors P in IB and p in b for time t , the

stress vector t on and couple stress vector m "n at point p(P,t) can be determined

» »

by the stress tensor ( t ) and couple stress tensor (m ) on the other surfaces ofthe
infi nitesimal volume, i.e.,

» »

tn = t a" and mn = m-a"· (3.171)

Proof : For the stress tetrahedron in Fig.3.8, using the mean-value theorem , the
principles for the momentum and angular momentum give

(ap)~v = f~v+ ti~d + t " n ~a ,

(pxa)p~v = (9)1+pxf)~v+(m "n +pxt " n )~a

-(mi+pxtJ~d,

Since ~ai = ~agi . a" and lim ~v / Sa ~ 0 , one obtains
&1--. 0

t =tgi . II and m =mgi . IIan I a an I a

Because gJ Xgk / [glg2g3]= g, (i, j, k E {I, 2, 3} ), g, will be normal to the surface

of gJ x gk. The normal vector a"i is also normal to the surface of gJ x gk. So the

two vectors a"i and giare on the same direct ion and let a"i = gi. So the Cauchy

stress tensor and couple stress tensors can be determined by

So
» »

tn = t a" and mn =m· a"·
This theorem is proved .

From Eq.(3.l70),

•

t da = t uda = t da and m da = m- nda = m-da.
a n a a n a

» » » »
(3.172)
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Fig. 3.8 Stress tetrahedron.

t . n

The normal stress on the direction of n can be determ ined by
»

t . n • n = an · t . n = an · t - an
» 1 » »

= n·(t)T. n= n·-[t+(t)T]. n.
a a a 2 a

(3.173)

In Fig.3.9, the stress tensors in the Cartesian coordinate system are depicted
through two directions of Xl and x 2 in order to make view clear . In a similar fash
ion, the stress tensor components and stress vectors can be sketched in the direc

tion ofx 3
• The components of the stress tensor are expressed by tij (i, j = I, 2, 3 )

which "i " and" j " are the surface direction along the axis of X i and the stress

component direction in the axis of Xi, respectively. t , is the stress vector on the

direction of the surface along the axis of X i . In Fig.3.9, the relation between the
stress vector and stress tensor component is clearly shown . Similarly, the couple
stress tensor and couple stress vectors can be expressed.

Theorem 3.26. For two position vectors P in IB and pin b for time t , the nec

essary and sufficient conditions for the local balance ofmomentum are
» >

t .V +f =pa and t;j+P =pa' ; (3.174)

and the necessary and sufficient conditions for the local balance of angular mo
mentum are

» > »o> »

m·V+W1 = E : t (3.175)
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~I

x2 t

~I
X

-t2

~2
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~I

121

Fig. 3.9 Stress tensor in two directions of the rectangular coordinates.

»

Proof : Consider the Cauchy stress tensor t . From the divergence theorem,

~a >;'d;=~ad;.(t)T = ldvV.(t)T = ld/;'V,

~aPx >;' d; = ~a d;.(px >t )T= 1dv(px >t ). V,

Because

»> > » > » > » > » » >
with t · V = 0, t : ( t )T = - t : t and (p V) = I , then,

~aPx >;' d; =1dV(>; :p>t) .V =1dV( ; :[pc>;' V)+(p V).( t) T])

= 1dv[(px >;. V)- >; :>h

Thus,

From Eq.(3.l 68),
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Further,
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1 apdv= 1 fdv+ c;L(t "n)da= 1fdv+4at' Cnda)

= r fdv+,..( >t. da.
Jv 'i'a

Since the volume is selected arbitrarily, the local balance of momentum is ob
tained, i.e.,

» >

t ·V+f = pa,

or
tii +f i =p i
;j a .

From Eq.(3.168),

1pxapdv = 1(9J1+pXf)dv+4a(m, +pxtn)da

= 1(9J1+pxf)dv+4a(;+px >t).nda

= 1(9J1+pXf)dv+4a(;+px >t) .da

= 1(9J1+pXf)dv+4a;' da+4a(px t ) · da

= 1(9J1+pXf)dv+4a;' da+ 1dV[px(t. V)- >; : >h

The re-arrangement of the foregoing equation gives

1[;'V+9J1 - >; : >t + p X(p a - f - t .V)]dv

=1(;.';.V+9J1 - >;: >t )dv =O.

Because the volume is chosen arbitrarily,
» > »o> »

rn·V +9J1 - E : t =0,

or

m.U + 9n
i

= e" t 'k ',J J

The local balance of angular momentum is obtained. This theorem is proved . _

.>»>

Left multiplication of E in Eq.(3.175) gives
»> » > .>»> co> cc-> »
E . m-V + E .9J1 = E' E : t.

Because

(3.176)
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= o:st gig} =(I - t )gig) =>t_(>t)T.
ljrs U j1

Equation (3.176) gives
» > > >> 1 » »
m ·V +9J1 ="2[t-(t)T],

where
» 1 .>»> cc-> 1 co> »
9J1 == - E : 9J1 and m = - E : m .

2 2

» »>
If 9J1 =0 and m =0 , equation (3.178) gives

>t = (t)T.

123

(3.177)

(3.178)

(3.179)

(3.180)

The Cauchy stress tensor belongs to the Euler description. Sometimes, Lagrange 's
description will be very convenient in appl ication. The Piola stress tensor is de
fined as follows .

Definition 3.33. A two-point stress tensor in 23 and b ,

(3.181)

is called the Piola stress tensor.

><
The Piola stress tensor T is the stress tensor on the initial configurat ion 23 in

»

the direction of N to express the Cauchy stress tensor t in the deformed con
figuration b , which can be presented through the following theorem.

Theorem 3.27. For two position vectors P in 23 and p in b fo r time t , the

stress vectors on the corresponding surface at point P and p satisfy

where

>< »

TAr; = t "n(Jan '

>< »

TAr;=T·AN and t "n=t · an.

(3.182)

(3.183)

Proof : The force in the initial configuration 23 and in the deformed configuration
b are equal , i.e.,

>< < » >

x -d A = t ·da.

< >

Because of d A = ANdA and da =anda,
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>< » da» ><»

T· AN=t · n-=t · nrr => T .,1\= t an ·lYn.
a dA a n

This theorem is proved. •
From the definition of the Piola stress tensor, the corresponding local balance

of momentum can be given as follows .

Theorem 3.28. For two position vectors P in 23 and pin b f or time t , the local

balance ofmomentum (Boussinesq equation) are given by
< ><

O'(T)T + J f = p oa

.( ; +J r = poai or

>< <

or T'O+ J f = p oa,

Crtil X,~I )M +JF = poai
•

(3.184)

Proof : The momentum integral equat ion is

1apdv = 1fdv +4a>;.da.

Because
Po = JP anddv= JdV,

with the force invariance before and after deformation, i.e.,
» > >< <

t ·da = T·d A,

the momentum integral equat ion is

LapodV = LJ fdV +4~ ':;.d A,
- I

r! ':;.d A = r! dA. ':; = r dV~.(:;)T = r dV~'(JF. >;)
':15Y' ':15Y' Jr Jr

- I

= IdV :;. ~ = IdV(J >;'(F)T).~

Further,

LaPodV = L JfdV + Idv~.(:;/

= L JfdV + I d V :; . ~.

With an arbitrary selection of volume, the foregoing equation gives
< >< >< <

0 ' ( T)T + J f =p oa or T ' 0+ J f =p oa .

This theorem is proved. •
To define the stress on the initial configuration 23, the Kirchhoff stress tensor

will be introduced.



3.3. Dynamics

Definition 3.34. A one-point stress tensor in 23,
- I -1-1

T=T UG [G
j

== F.::; =J F.>t(F)T
~XM srx NG G= J ,r t ,s M N '

is called the Kirchhoffstress tensor.
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(3.185)

The expression in Eq.(3.l85) is a stress transformation from the final configu
ration b to the initial configuration 23.

Theorem 3.29. For two position vectors P in 23 and pin b for time t , the fol

lowing relation exists:

with
»

><

O"ant an = I ·T
A

1\'

>< >< «

(3.186)

(3.187)

Proof : The forces in the initial configuration 23 and in the deformed configura
tion b are equal, i.e.,

- 1 -1-1

» > >< < »>< < >< <»> >< <

t ·da= x-d A = J t ·(Ff ·d A = F·J F· t ·(Ff·d A .

Using the definition of the Kirchhoff stress tensor, the foregoing equation be
comes

» > >« < <

t ·da=F·TdA .

The above equation is deformed as
» >«< < >« <

t anda = F·(Td A) = F·(T· A NdA).

With Eq.(3.187),

This theorem is proved.

da Tt -=
an dA A1\'

><

=:>O"ant an = I ·T
A

1\' ·

•
<

The Piola and Kirchhoff stress tensors act on the surface d A on the initial
» ceo-

configuration of 23 in the direction ofN. If 9J1 = 0 and m = 0 , the Cauchy
» »

stress tensor is symmetric (i.e., t = ( t )T) . SO the corresponding Kirchhoff stress

tensor is symmetric because of
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- I - I - I - I

« <»> >< ><» <>
(T)T=(/F. t .(F)T)T = /((F)T)T. ( t )T.(F)T

- 1 - 1

= / F ' >;'(F)T =T . (3.188)

From the stress vector defin ition, the principal stress and direction can be deter
mined by the extremum of the stress vector. Consider the principal stress ta in the

principal stress a"a ' The corresponding equation is
» » »

t - ana =ta a" a and (t-ta I) · ana =0.

From the definition of the Kirchhoff stress tensor,
-1/2 1/2 -1

» >«< <> >< « « « <>

t= F·T-(Ff= /RCT·CR.

Deformat ion of the foregoing equation gives
- I - 1/2 1/2 - I - 1/2 1/2 - I - I
<»> ««« <> « « « <> <> »

/ R t =CT·CR =>CT-CR a" a= /Rt ' a" a '

Thus,

(3.189)

(3.190)

(3.191)

-1/2 1f2 -1
« «« <>

- I

<> (3.192)

(3.193)

- I/2 I/2
« « «

From which it is observed that ta / is the principal value for CT·C on the di-
- I

<>
rection of N a = (R ana ) .

Theorem 3.30. For two position vectors P in IB and p in b f or time t , the local

balance of momentum (Kirchhoffequation) is given by the Kirchhoffstress

~ . (T'(F)T)+ / f = poa or (F .T) ' ~+ / f = p oa ,

(T IJ
X :/}J +/ F = pod .

Proof : From the defin ition of the Kirchhoff stress tensor,

'; = F .T and ( ';)T = T.(F) T,

and
t " = x:/T /J and r lj =T/Jx.j .

, .
Equation (3.184) gives

< « <> >«< <

o·(T·(Ff)+ / f = p oa or (F·T) ·o+ / f = p oa.

The component expression is given as
IJ ii i

(T X ;/) J -t7 f = poa .
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This theorem is proved.
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•
>< >«<

Using F = I · F and the total differentiation operator for two-point tensor ,
(-)·0 will become (-).V , the Kirchhoff equation becomes

«« < < <

(F· T) .V+ J f = Po a .

« ««

Using T = F· T , the foregoing equation gives
« < < <

T·V+ j rf=poa .

Consider
« < < < < « < <

F=pV=(P+u)V= l+uV .

Equation (3.194) gives
« < < « < < <

[( I + u V)-T] .V+J f = Po a ,

[(or +u~)TIJL + J f K = poaK.

3.4. Energy conservation

The energy principle of the conservation of energy requires

~(.7{+U) =U'+ L D'l4 ,
Dt a Dt

where the kinetic energy , internal energy , external work are

.Jl = r!....v .vpdv= i !....v .vPodV,
Jv2 r: 2

U = rudv=i UdV,Jv r

U'= rv ·fdv+ rt v -t nda= i v ·CrdV+ef vr r;dA ,Jv '-fa a »: $' A

(3.194)

(3.195)

(3.196)

(3.197)

(3.198)

(3.199)

(3.200)

and DUa / Dt (a = 1, 2, . .. ) is the rate of energies entering or leaving the body

per unit time. In other words , the time rate of change of the kinetic plus internal
energy is equal to the summation of the rate of work of the external forces and all
other energies entering or leaving the body per unit time. Equation (3.199) gives
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!!..-(r .!..vovPodV+ r Ud V)
Dt Jr 2 Jr

= r v oVdV +ef vr r-;dA+" D'l4 ,
Jr »: A LJa Dt

!!..-( r.!.. v 0 vpdv+ rudv)
Dt .lv2 .Iv

= rv 0fdv+ rt v 0t nda+" D'l4 0
.Iv '1a " LJ a Dt

(3020 1)

Theorem 3.31. For two position vectors P in 23 and p in b fo r time t, under

D'l4 / Dt = 0 (a = I, 2, 00 0), the local energy conservation is

>< «
DU »» >< D F « D E
Dt = / t : d = T: Dt = T : Dt in 23,

>< «
Du »»
-= t : d =
Dt

Proof: Consider

>< DF
T O __ =

o Dt
« DE
T :-- in b.

Dt

(30202)

1v ofdv+ Cla v otnda= 1v ofdv+ Cla v 0 70d ;

= 1Vofdv+ IV o( ;' v)d v

1v ofdv+ Cla votnda = 1Vofdv+ IV >;' vdv+ ft:(Vv)dv

= 1v -tf +V >t)dv+ ft :(V v)dvo

Using
» > » » > >
t : (V V) = ( t )T : (v V ) = t : (v V ) and

> >>

f +V t = pa,

the proceed ing integration equation becomes
» I > >rv ofdv+rt votnda= rv v pedv « r t : - (V v + v V )dvJv '--!a Jv Jv 2

Dv » »
= r v 0 -pdv+1t : d dv

Jv Dt
Dv » »

= rv o-pdv+ r t : d /dVo
Jv Dt Jy

Further,
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rv .fdv+ rf v .tnda- r >t: d / dVJv i'a Jr

D II=-( -v ·vpdv).
Dt v 2

From the energy conservation in Eq.(3.20 I) and D'l4 / Dt = 0 ,

DU » »
-= 7 t : d .
Dt c>

Because
» > » <

pdv = PodV and t ·d a = x -d A,

then

1v.fdv+ ct v ·tnda= 1v.fdv+ ct v· >t.d;

= Lv ·VdV +t.(v '~)'dA
= LV '(7dV + L(v .~).~dV;

and also because

129

>< < < >< >«

(v - T) 'O= (vo) : T+ v ·(T '0 ),

1v 'fdv+qav ·tnda = Lv ·( /f +~ .~)dV + LJv~) : ~dV

= Lv ·poadV+ L~ :(v~)dV.

< »>< >< >« <

Using vo = D· F and T = F·T , one obtains
>< < >«< »>< « <»> ><

T : (vo) = (F ·T) : (D · F) = tr(T (F) T.D· F)

=tr((F)T . (i))T.((F )T)T. (T )T) = tr(T .(F )T . i) .F )
«

«<> 1 » » >< «<»> >< « D E
= tr(T (F)T ' "2(0 + D) · F) = tr(T (F)T . d · F) = tr(T : Dt ),

where
«

DE <>r »>< D I Dv Dv

Dt
=(F) -d -F, -(-v ·v)=v·- and a=- .

Dt 2 Dt Dt

So
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><

i 1 D iii >< DFY·fdv+ y·tnda=-( -y·ydV)+ . T :- dV
v a Dt T 2 r- Dt

><

D I « DE
=-( r -y .ydV)+ r T :-dV.

Dt Jr 2 Jr Dt

Again, from the energy conservation in Eq.(3.201) and D'l4 / Dt = 0 ,
>< «

DU » D F « D E
--=T '--=T'--
Dt . Dt . Dt .

The proof of this theorem is completed. •
This foregoing theorem gives the rate of the internal energy density in the ini

tial and deformed configurations. In the previous proof,

ry .(f_pDY)dv+ A vt nda
Jv Dt '1a a

= f;: ddv = L/ >;: ddV . (3.203)

The left-hand side of the foregoing equation gives the rate of energy under exter
nal force and inertial force. If the internal energy is zero, equation (3.203) gives
the D 'Alembert principle for rigid body. With op = yot , equation (3.203) gives

i Dv 1 1»»op ·(f-p-)dv+ Op·t nda=Jt t : d dv
v Dt a a

= ot L/ >; :ddV. (3.204)

The foregoing equation gives the virtual work principle. In other words , the effec
tive force work on the virtual displacement is equal to the internal force work. If
the internal force work is zero, the virtual work principle for the rigid body is ob
tained .

In the previous proof of theorem,

i 1 i Dv i» »Y·fdv+ y ·tnda= y ·-pdv+ t : d dv
v a ' Dt v

1 Dv i » »
= y ·-pdv+ t :d /dV, (3.205)

Dt r

><

D I >< DFrY.fdv+ A vt nda=-( r -y ·ydV)+ r T :- dV
Jv '1a " Dt Jr 2 Jr Dt

><
D I « DE

=-( r -y .ydV)+ r T :-dV.
Dt Jr 2 Jr Dt

(3.206)

The foregoing two equations give the kinetic energy theorem. Namely, the time
rate of change of kinetic energy and internal energy is equal to the time rate of
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change of the work done by external forces. The other discussion on thermo
dynamical laws can be found in Eringen (1962, 1971). The generalized variational
principle for nonlinear elasticity can be referred to Guo (1980).
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Chapter 4

Constitutive Laws and Damage Theory

This chapter will discuss constitutive laws and basic invariant requirements in
continuous media. To develop a continuous damage theory, the concepts of dam
age variables will be briefly introduced. The equivalent principles on continuum
damage mechanics will be presented to obtain effective material properties . A
large damage theory for anisotropic damaged materials will be discussed from the
incremental complementary energy equivalence principle, and a few simple appli
cations will be presented.

4.1. Constitutive equations

Constitutive laws of materials are developed from invariance requirements . The
four basic invariance requirements are:

(i) The principle ofdeterminism states "the behavior of materials at time t is de
termined by all the past history of the motion of all material points in the body
until time t".

(ii) The principle of neighborhood states "the behavior of a material point P at
time t is determined by the behavior of an arbitrary small neighborhood".

(iii) The principle ofcoordinate invariance states "the constitutive laws of materi
als are independent of coordinates".

(iv) The principle of material objectivity states "the constitutive laws of materials
are independent of the rigid motion of the spatial coordinates".

The detailed discussion of the objectivity of stress and strain tensors can be ref
ered to Eringen (1962), Guo (1980) and Marsden and Hughes (1983).

To develop the constitutive laws, the following two assumptions are exten
sively adopted.

(AI) The natural states lie in the zero stress in the initial configuration IB.
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(A2) The behaviors of materials are dependent on the current deformation state b

to the natural state .

From the foregoing hypothesis, there is a relation of the stress and strain, i.e.,

- 1
» »

t =f(c ,P).

- 1

Because ';;' = F o(F)T = F.(F)T , the fundamental deformation theorem gives

(4.1)

F = cR and F = R C;

F = c-R and F = R C,

and also

then ,

-V2
» » »

-V2
» » »

V2
« ««

V2
« ««

(4.2)

(4.3)

Ill(F) = Ill(R C) = Ill(R) · Ill(C).

Thus ,

«

«

1/2
« «

«

«
1/2
«

«

Ill(F)

(4.4)

(4.5)

«

The orthogonal tensor R represents the rotation only, which will be independent
of deformation from the initial configuration Il) to the deformed configuration b.

- 1/ 2
>< «« ><

V2
>< >««<

From F = c -R 1 and F = I · R C ,

1/2 -1/2
>«< «><

RC= cn.
1/2
«

With G N = Ar N , left mult iplication of N of the forego ing equation yields
r r r

(4.6)

coRN=RGN=A RN .
r r r r

- 1/ 2
« ><

V2
>< « ><

(4.7)

-1/2
«

Using c n = Ar nand Ar = Ap
r r

><

n=RN
r r

(4.8)
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From Eq.(3.107),

137

R=F·C and R=c ·F => R=F·C and R=c ·F .

- 1/ 2
« « « v'« » «

-1/2
>< >«<

1/2
>< »>< (4.9)

From the previous discussion, the stress tensor in Eq.(4.1) is expressed by

- I -1/2
»» » «

t = f(c,P) = f( c, F, P) = g(An, I(n,n)'P),
I /1/2

where i , iI ' i2 = 1,2,3 .

Introduce a new variable

£u = en = Ann -1 = An -1 and £ ij = I(n,n) '
I I I I I}

»

E =E=£ .oo .
lJ i j

Further, the material coefficients are defined as

and

» » » »
t =g(E,P)=I/i~En or E= y(t,t).

For linear elasticity, the foregoing equation is expressed by

» »

t =£ :E ,

where

»

£ = E i;kl n n n nand E =Ekl n n .
" i j k I k I

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

From energy points of view , the internal energy function for a spec ific material
point P in IB is determined by the movement history of the all material points
p' E IB , i.e.,

u = u (p(P', t') ; P, t) for t' ::; t.

From the material objectivity ,

U (p(P', 1'), P, 1)=U (p(P', t') ; P, t) .

For the two coordinates, consider

p(P',1') = Q(t')p + bet'),

l' = t' +a.

(4.16)

(4.17)

(4.18)
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»
The material objectivity requires Q(t') = canst and bet') = canst. Let Q(t') = I

and bet') =-pcp, t') with a =O. Cons ider the translation of coordinate from any

material point P' E Sl3 to the specific material point , i.e.,

pcp', 1')= p(P', t') -pcp, t') .

Further,

u = u (p(P', t') - p(P, t') ; P, t') .

»

Setting Q(t') = 1 and bet') = 0 with a = -t, l' = t' - t and 1= 0 .

pcp', 1')= p(P', l'+ t) .

The internal energy function is expressed by

u = u (p(P', l' + t) -pcp, l' + t) ; p) .

For a new time variable of t' = t - t' ;:::: 0 ,

u = u (p(P', t - r') - pcp , t - r'); p) .

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

The Taylor series expansion of displacement in the deformed configuration gives

pcp', t') - p(P, t') = [p(P, t')V] · (P' - P) +....

From the principle of neighborhood,

< ><

u =U([p(P , t')V]; P) =V(F(P, t') ; P).

(4.24)

(4.25)

- 1/ 2
>< »» ><

V2
>< >««<

From F = c -R 1 and F = I · R C ,

1/2 -1/2
« »

V = V (C; P) = V ( c ; P) = V (Ao ' 00,0 ); P) = V eE; P) .
I II /2

(4.26)

The internal energy function (or internal energy density) at the specific material
point P is determined by the strain state. Such an internal energy funct ion is also
called the strain energy.

Theorem 4.1. For two position vectors P in Sl3 and pin b for time t, under

D'l4 / Dt =0 (a =I, 2, . .. ), based on the strain energy U, the following relations

hold:
(i)

(4.27)
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which is called the Cosserat stress and strain relation.
(ii)

>< dU / eu
T=-T=--/ F' i dx;/ '

which is called the Kirchho ff fonn of stress and strain
(iii)

» I dU 1 au
t =-_. t

n n
=--(e

n
+l ),

.r dE.' ;; .r den i

which gives the stress and strain relation in b .

Proof: For different strains, the time-change rate of strain energy gives
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(4.28)

(4.29)

« « « »

DU _ dU . DE _ 2 dU . 1 DC _ dU . D F _ dU . DE . 23
Dt - ~. Dt - ~ . "2 Dt - ----x . Dt - ----;; . Dt In .

dE dC dF se
From Eq.(3.200),

« « «

Thus,

and

« dU dU su ou
T=-=2- T /J - -2dE de' - dEIJ - dCIJ '

Therefore, Equations (4.27) and (4.28) are obtained .
Consider

From Eq.(4.l 1),
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Because
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»
dU » 1 DE dU »»
(--/t) :---=(-- 7 t ) : d = O.

» a: Dt » v«e ~ «e

eu DAn eo » dU» »
- .--' =-Ann-d -n =-Annn : d = / tnnnn : d ,
den Dt den ; I den ; I I ; ; I I

the stress component in n is given by
i

1 ao 1 dU
t =---A =---(e +1)
nn rr ".:\ n , , ".) n ,; , ~ uen ; / uen ;

and also because

with cos B(nn) = n-n = n-n and n-n = n-n = 1 , one obtains
ili2 '1'2 ' 2 11 II II ' 2 /2

1 eo 1 [ ]= ----:::- . (n- cosB(nn)n)· n+ (n-cosB(nn) n)· ncos B(nn )
C/' dJ(nn ) stnB(nn ) II il'l /2 ' 1 ' 2 'I'l II /1 il'l

'1 /2 11' 2

Therefore, Equation (4.29) is obtained, i.e.,

» 1 dU
t=--»'

dE

1 dU 1 dU
tnn =--An=--(en+1),
; ; den ; den ;
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This theorem is proved.

»

On the other hand, the stress t is obtained by

» 1 >< << <> 1 >< dU <> 2 >< dU <>
t =-F·T(F)T=-F·_·(F)T=-F·_·(F)T;

J J dE J ic
ii _ 1 dU i j _ 2 dU i j

t ----xlx J ----xlx J •
J dEIJ . , J dCIJ ' .

Consider

Using the Kirchhoff stress gives the Cauchy stress , i.e.,

» 1 >< <> 1 dU <>
t =-T·(F)T = ·(F)T;

J J / F
tii _ 1 dU ri j
----g X l '

J dx:l '

Rewriting Eq.(4.26) gives
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•

(4.30)

(4.31)

(4.32)

U = U(E; P) = U(F; P) = U(E ; P) .
« >< »

(4.33)

Further,

« « >< >< » »
oU = T : 0 E = T : 0 F = J t : 0 E. (4.34)

Definition 4.1. For two posit ion vectors P in s.B and pin b for time t , based on

the strain energy density U or u , the quantity U C or U
C is termed a complemen

tary energy density if

or

UC(T)+U(E) = T:E;
UC(':;)+U(F) = ':;: F;

» » » »

UC(t)+U(E) = J t : E

in s.B (4.35)
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« « ««

U
C(T)+u(E) = / T : E;

4 Constitutive Laws and Damage Theory

uC(T)+u(F)= T :F;
>< >< >< ><

in b. (4.36)
» »»»

uC(t)+u(E) = t : E

In FigA.l , the strain energy density U and complementary energy density U C

«« >< ><

are presented based on three pair of stress and strain, i.e., (T , E) , (T , F) and
» »

V t , E) in the initial configuration 23. For a given state of stress and strain, the

total energy density is determined by the dot product of the stress and strain ten-
«« >< >< » »

sors (i.e., T :E , T : F and j ' t : E ). The hatched area is the strain energy density

U and the rest part is the complementary energy U C
• From Eq.(4.35),

« « ««««
so:(T)+OU(E) = oT :E+T : oE;

>< >< >< >< >< ><

oU c(T)+oU(F) = OT: F+ T: of;
» » »»»»

OU c(t)+oU(E)= j'ot :E+ j't :oE

With Eq.(4.36), the foregoing equations give

in 23. (4.37)

In other words,

Further, the time-rate of change of the total energy density is

~UC(T)+~UcE~)=~T :E+T :~E; 1
Dt Dt Dt Dt in 23;
D >< D >< D >< >< ><D ><
-Uc(T)+-U(F) =-T : F+ T : - F;
Dt Dt Dt Dt

(4.38)

(4.39)
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«>< »
T ( 't ,./" t )

« x »
E ( F , E)
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Fig. 4.1 The strain energy density and compl ementary energy density based on three pairs of
stress and strain.

D » D » D » » » D»
-Uc(t)+-U(E)= j 7_t : E+ j , t : - E in lJ3 .
Dt Dt Dt Dt

For the Cauchy stress tensor in Eq.(4.l 4), equation (4.34) gives

su = c/ ;:o E = f g(E, P) : o E = fLn6~ (Er : s i,

so = ft ij&ij = f gij(ckPP)&ij = fL n 6~(Cij r&ij '

From Eq.(4.34), the strain energy density is computed by

» »

U = f r>;:o E = f rg(E,P) :oE

and the strain energy is computed by

u = LUdV = LJ f Lf>; :OE)dV = 1(S:f>; :OE)dv

= L ( r :T: OE)dV = LeiF ~ :OF)dV.

From Eq.(4.38), the complementary energy density is computed by

and the complementary energy is computed by

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)
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uc =LUcdV= LC7{E:J>t)dV= l({E:J>t)dV

=L(tE:JT)dV= L({F:J':;)dV. (4.45)

4.2. Material damage and effective stress

Cons ider a deformed body to be a damaged material at time t , and the corre
sponding stress on the cross section L n for the undamaged and damaged bodies

are shown in Fig.4 .2. The undamaged and damage bodies are on the left and right
sides , respectively . The effective area for the damaged body is b.a to the area of
b.a for the undamaged body . The effective stress vector and the effective couple

stress vector on the cross section Ln are sketched by t (n ) and m (n ) ' From the

idea of Kachanov (1958) , a damage variable is introduced for development of con
tinuum damage mechanics. The detailed description of continuum damage me
chanics can be found in Kachanov (1986) and Krajcinovic and Lemaitre (1987) .

Definition 4.2. At point p in b for time t in a damaged material , suppose the ef

fective cross section of the damaged material is b.a to the cross section Sa of the
undamaged material with the external normal direction ( n). The damage variable
in the external normal direction ( n ) is defined as

D - I' b.a-b.a _ I' b.a-b.a
(n)n = tm - im n .

IlHO Ib.aI &1--.0 Sa
(4.46)

The effective stress vector and effective couple stress vector on the exterior unit
normal direction of the cross section L are defined as

- , b.t d - I' Am
t (n ) == lim -_ an m (n ) == 1m -_-

Ila--. O b.a &1--.0 b.a
(4.47)

For the damage variable, D, = 0 is for the undamaged state ; D; = 1 is for a

breaking state of the damaged body along a surface with an external normal direc
tion n; 0 < D; < I is for the damaged state . From the previous definition, the ef-

f ective and conventional stress vectors and coupl e stress vectors are

- I _ 1
t (n ) ==---t(n ) and m (n ) ==---m(n ) '

l-D(n) l-D(n)
(4.48)
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Fig.4.2 Stress vectors on a cross section Ln of undamaged (left) and damaged (right) materials.

Definition 4.3. The damage of a deformable body to its undamaged state is called
an isotropic damage if the micro-crack and cavities in all directions of the dam
aged body are uniformly distributed.

Definition 4.4. The damage of a deformable body to its undamaged state is called
an anisotropic damage if the micro-cracks and cavities of the damaged body in all
directions are non-uniformly distributed.

For the isotropic damaged body, the damage variable is independent of the di
rection. That is, D; = D for all directions. The damage characteristics of the ma

terial can be described through a damage variable. However, for the anisotropic
damaged body, the damage variables are different in the different directions. The
damage variable vector is introduced by

(4.49)

From the effective and conventional stress vector definitions, the effective and
conventional stress tensors satisfy

t=M(D) :t,

where the fourth-order tensor for the conversion is

M(D) = Miikl(D)nnnk nl = Miik/((l-D(n)r')"""k "I '
- 1 } - 1 }

(4.50)

(4.51)

The concept of the damage variable can be extended to strengthened materials. If
the damage variable becomes negative (i.e.,D, < 0), the effective stress will be-

come small to the undamaged state in the direction of n . The damage variable
should become the strengthening variable. Without loss of generality, the damage
variables can represent both damaged and strengthened states of the deformable
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body for D n E (-00,1] as a generalized concept. For an anisotropic damaged body,

the deformable body can be damaged in some directions and can be strengthened
in some other directions . Therefore, the damage variable is a new variable to de
scribe the material properties in the entire deformation rather than the linear rela
tion. Because such a concept is introduced, one can easily describe the material
properties from the elastic state to fracture state. To describe the anisotropic dam
age for materials , the second-order damage tensor is defined as

D= D .nn .
I) i j

4.3. Equivalence principles

(4.52)

As aforementioned in the previous section , the damage variable is used to measure
the material characteristics from the elastic state to fracture. To investigate the
damaged deformable body, it is assumed that the material properties of the dam
aged deformable body are in the undamaged state, and the effective stress will be
adopted to measure the change caused by the damage of materials . However, it is
assumed that the damaged deformable body is in the conventional stress (or real
stress) state, and the material characteristics of the damaged deformable body is
determined by the effective material properties . Lemaitre and Chaboche (1978)
used the strain equivalence to determine an effective stress in the constitutive laws
rather than the conventional stress (also see, Chaboche, 1978). The principle of
strain equivalence can be stated as follows .

(A) The principle ofstrain equivalence For a damaged body, the effective stress
with the conventional material characteristics possesses the same strain as the real
stress with the effective material properties , i.e.,

c = yet, E - I
, t) = yet, i: ', t) .

For the uniaxial linear elastic law of a damaged material ,

e if (Yc =- -
E ft '

(4.53)

(4.54)

where til =rr and t;; =0 for i =2, 3 , in addition , tij =0 for i , j =I, 2, 3 but i *- j .

With Eq.(4.47), the foregoing equation gives

Therefore,

E (l-D)E i ' (4.55)
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£
£=(l-D)E ~ D=l-

E
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(4.56)

From the foregoing equation, the damage variable is used to measure the proper
ties of the damaged materials, which is independent of stress and strain. The dam
age variable can be measured experimentally. This hypothesis works well for iso
tropic damage materials but yields asymmetric stiffness matrix for anisotropic
materials. Gordebois and Sidoroff (1979, 1982) suggested a damage model based
on the hypothesis of the total complementary elastic strain energy equivalence.

(B) The principle of complementary strain energy equivalence For a damaged
deformable body, the total complementary elastic energy of a damage state with
the conventional stress is equivalent to the total complementary elastic energy of
the conventional state with the effective stress.

For undamaged, linear elastic materials, the stress tensor is given in Eq .(4.14) .
For anisotropic damaged, linear elastic materials, the corresponding effective
stress tensor is expressed by

(4.57)

»

where t and E are effective stress tensor and effective elasticity tensor, respec-
tively. From Eqs .(4.14) and (4.57) , the complementary strain energy hypothesis
can be expressed by

» »

U C (t , ir', D) = U C (t , £ -1 ,0). (4.58)

If the volume for the conventional and damage states of damaged materials is in
variant, the foregoing equation can be expressed by the density of the complemen
tary energy, i.e.,

(4.59)

» »»
For damaged materials with linear elasticity, U C (t , £ -1 , D) = +t : i -I : t is ob-

tained. For undamaged materials, D = O. For damaged materials with nonlinear
elasticity,

so

UC
([, e:', D) = .rrE([, e:', D) : 0 >[;

so
» t » » »

UC 0, 8"-1,0) = .r1to ,8"-1, 0): 0 t .
(4.60)

Note that ;f-I and 8"-1 are nonlinear coefficients from which the strain can be ex

pressed by the stress. For linear case, the coe fficient tensors ;f-I and 8" -1 become
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the tensors ii -I and E -' . The corresponding complementary energy is computed
by

u C (i,if- - I , D) = LU
C (i,if-- I , D)dV

»

= 1J/ rE(i,if- - I, D) : ot] dV
»

= 1[f E(t , if--' , D) : o t ] dV,

» »
U C (i , if- I, 0) = LU

C

(i , if- I , O)dV

»
t » » »

= 1J/ LE(t, if -',O) :ot]dV

Y» » »

= 1[L E(i,if-',O) :ot]dv.

(4.61)

(4.62)

The complementary energy equivalence hypothesis can be illustrated through the
density of complementary energy with the volume invariance between the dam
aged and conventional states, as shown in FigA .3. The dashed-line hatched area is
the complementary energy density for the effective stress with undamaged materi
als . The solid-line hatched area is the complementary energy density for the con
ventional stress with damaged materials. Under the same volume, the integrations
of the densities should be same to make such equivalence of the complementary
energy for the damage and conventional states .

Similarly, such a complementary strain energy hypothesis can be expressed by
the Cosserat and Kirchhoffstresses:

U C
(,;, «". D) = U C (i,if-I, 0);

U C(T,if- I, D) = U C(t,if- I, 0),

and the corresponding complementary energies are

»<

= L(L' F(';, if- - I , D): O';)dV,

U C (T, if- - I , D) = LU C (T, if- - I , D)dV

««

= 1JrE(T, if- I, D) : OT)dV.

and

(4.63)

(4.64)
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» »
t,t
~

t

»
tD

»
UC(t ,t"-I)

I ~-r-.,....
17?- 1 1

1 1 1
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-+-----------~» »
t,t

»

Fig. 4.3 Compl ementary energy equivalence at a convention al stress state of (t , D) with dam-
»

aged material and at the effective stress state of(1: ,0) with undamag ed material.

U C (i, 8'-1, 0) = LU C ci, 8'-1, O)dV

= r (rT ~(i, 8' -I ,O) :oi)dV,Jr ! )

U C (T,8'-1 , 0) = Lu C(t,8'-1,O)dV

«t « « «

= L(J)Eer,8'-1, 0) : oT)dV.

(4.65)

Again, if the volume for the conventional and damage states of damaged materials
is invariant, the complementary energies can be compared by

where

» »
uC (T, 8'- -1, D) = U C (1', 8'-1,0),

»<

UC(;, 8'--1 , D) = rF(;,if- I, D) : 0;,
x

U C (i, 8'-1,0) = r~(i, 8'-1,0) : oi;

«

U C (T, 8'- -1, D) = rE(T, 8'- -1, D) :oT,
« ;~ « « «

UC (1', 8'-1, 0) = LE(T, 8'-1, 0) : 01'.

(4.66)

(4.67)

(4.68)
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The forego ing hypothesis asserts that the complementary strain energies for the
conventional and damage states are equivalent. Herein, such an idea was extended
(Luo, 1991) , i.e., the complementary stra in energy for the conventional stress with
0+ dO is equivalent to the complementary strain energy for the effective stress
with D . The detailed description was given in Luo et al. (1995). Further, the in
cremental complementary energy hypothesis was proposed.

(C) The principle of incremental complementary strain energy equivalence For a
damaged body with 0 + dO, the incremental complementary strain energy of a
damage state with the instantaneous conventional stress relative to 0 +dO is
equivalent to the incremental complementary strain energy of the damage state of
D with the instantaneous effective stress.

The foregoing hypothesis is expressed mathematically by

» »

su:(t O+dO, WO-; dD' 0 +d D) = su:(i 0 , WO-
I
, D),

where

~ ~ ~

su:(t O+dO,~~ldD' D+dD) = U C
(t O+dO+O t O+dO, ~~ldO ' D+dD)

»

_Uc
(t O+dD ,~~ldD ' D+dD),

» »» »

ouc(i n,~-I, D) = U C(i ()+o i n,~-I , D)-Uc(i n,~-I, D).

(4.69)

(4.70)

(4.71)

If the volume for the conventional and damage states of damaged materials is in
variant, the foregoing hypothesis can be expressed by the density of the comple
mentary energy, i.e.,

» »

OUc(t O+dD , ~1~ldll ' D+dD) = oUc(i 0 , ~l-I , D),

where

» »»

su:(t IHdll , 8"~~ldD ' 0 + dO) = UC
(t IHdll+ 0 t IHdll, 8"~~ldD ' 0 + dO)

»

-UC(tO+dD '~I~~I ' D+dO),

» »» »

su:(i 0,~-l , D) = UC(i 0+0 i 0,~-I , D)-Uc(i 0,~-l , D) .

(4.72)

(4.73)

(4.74)

The hypothesis of incremental complementary strain energy equivalence can be
presented through the incremental density of complementary energy because of
the invariance of volumes for conventional and damage states, as sketched in
Fig.4.4.
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--I
~+dD

l{;-I

»
oUC (t D+dD,l{;:~,D+dD)

»
t O+dD

»

to

» »
t,t

» »

to+dto
» »
t O+dD +d t D+dD~h+~~~--:::l"r

-+------------.. » »
E,t

»

Fig. 4.4 Incremental complementary energy equivalence at a damage state of (t , D) with m-
»

cremental stress and damage (d t , dO) .

Based on the damage state ofD , the incremental complementary energy can be
» » »

computed from the effective stress state t D to t D+ d t D, which is presented by
»

the dashed-line hatched area (oUc (t D , S;;-I, D)). However, based on the damage

state ofD+ dD , the incremental complementary energy can be computed from the
» » »

conventional stress state t I> to t 1>+ d t 1>, which is presented by the solid-line

hatched area (oU c (tD+dD , S;;~~ , D + dD)). The incremental complementary en

ergy equivalence requires both of the incremental complementary energy be equal.
From the complementary energy, the constitutive equation for incremental con

tinuous damage is

ED+dD =_I_d[OUC(tIHdllE~~dD' D+dD)] .
c »

/ d(o t 1>+d1I)
(4.75)

For linear elastic, damaged materials, equation (4.72) gives

» »
C - - 1 C - - - 1so (t D+dD , ED+dD ' D + dD) = so (t D, ED ' D) (4.76)

where

C » ,... - I » -- - 1 »
oU (t IHdll, E D+dD , D + dD) = 0 t 1>+d11 : E D+dD : t IHdD (4.77)

» »»
C - - - 1 - - - I -so (tD ,E11 ,D)=OtD :EI> : t D. (4.78)

From the incremental density of complementary energy, the hypothesis for the in-
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cremental complementary energy is expressed for the linear anisotropic damaged
materials via

» »
C - - I C - - - IoU (t IHdD E ,H dD , D+dD) = oU (t D , ED ,D),

where

» »

su:(t IH dll , E~~dD' D +dD) = r so' (t IH dll , E~~dD' D + dD)dVJr

= r ( f o>t D+dD : E~~d11 :7D+dD )dVJr

= 1(o>t D+dD : E~~dD :7D+dD )dv,

oUC (7D , E~ ' , D) = 1OU
c(YD , E~l , D)dV

= l (f oYD: E~' : t )dV

» »

= 1(0 t D : E~l : t D )dv.

(4.79)

(4.80)

(4.81)

»
For an anisotropic damage , the relation between the conventional stress t and ef-

»

fective stress t D is determined by Eq.(4.50). For a small, incremental damage,
such a relation holds, i.e.,

» »

t D = M(dD) : t D+d1I ,

» »

ot D = M(dD): 0 t IH dll .

Substitution of Eq.(4.82) into Eq.(4.8l ) yields

» »

su:(t II , E~l , D) = IvoUc(t D , E~l , D)dV

= Iv(f O >tlH dll : M(dD) : E~' :M(dD) : >t lH dl l )d V

= 1(O >tIH dll : M(dD) : E~' :M(dD) : >t lH dD )dv.

(4.82)

(4.83)

With Eqs.(4.80) and (4.83) , the incremental complementary energy for linear ani
sotropic materials gives

E~~d11 = M(dD) : E~l :M(dD). (4.84)

Such a relation can be developed in the deformed configuration of b under the in
variance of volumes for conventional and damage states.

For linear elastic damaged materials, equation (4.75) gives
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» -- - I» » - - 1 »
E()+d\) =E,>+d\) : t I>+d\) or E() =E() : t I)

4.4. An anisotropic damage theory
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(4.85)

To demonstrate how to use the equivalence principle of the incremental comple
mentary energy to determine effective stiffness matrix, the notations are

The corresponding damage effective tensor is

M(D) = diag(Ml l' M 22, M33, M 12, M 13, M2J 6x6 '

with M ij (D) = (1- Di r l
/
2 (1- Dj r l/2 for i, j = 1,2,3,

(4.86)

(4.87)

where D, (i = 1,2,3) are the damage variables in their principal axes. The incre

mental damage effective tensor is

M(dD) = diag(M l l' M 22, M33, M 12, M 13, M 23)6X6 '

with Mij(dD) =(1-dDy I/2(1-dD)-1/2 for i , j =1,2, 3.
(4.88)

Consider a total damage of D to be discretized n-piecewise linear damage
quantity, as shown in FigA.5. Between two piecewise linear damages, the incre
mental quantity of damage variable in the ith-direction is given by dD?) (k =

1, 2, " ' , n). Therefore,

D = " ndD(k) for i = 1 2 3
1 L.J k=! I , ,

From Eq.(4.83),

i: : = M(dD(ll) . E - I • M(dD(ll)
D (I ) •• ,

E~:k ) = M(dD(k1): E~~k_l ) :M(dD(k1) for k = 2, ... , n,

(4.89)

(4.90)

where E~:k ) and i -I are the second order tensor of 6x6 owing to definitions in

Eqs.(4.86)-(4.88). With iteration, Equation (4.90) yields

E~I = !'1(dD(n)) :.. . :M(dD(k1) : ... :M(dD(l l~ : E - I

(4.91)
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D(lll 1 I
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I 1 1 1
1 1 1 1

(a)
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(b)

Fig. 4.5 Pieecwise linear damage of materials: (a) piecewise damage and (b) stress and strain rc
lation for each incremental damage.

E~I = diag(n ;=IMij(dD(k)) ) 6X6 : E - I : diag (n ;=IMij(dD(k)) ) 6X6

= diag (rrk
n

- I (1 - dD(k)r l/2 (1- dD(k)r l/2
) : E - I

- I ) 6x6

: diag (rr n_ (1_dD(k))- 1/2(1_dD(k))- 1/2) .
k-I I J 6x6 (4.92)

Suppose that the incremental damage variable is equal (i.e., dDj(k) = dl), = D, / n ).

Equation (4.92) becomes, for i , j = 1, 2,3,

E~I = diag ((1- so,rn
/
2 (1- dDj rn

/
2

) 6X6 : E -I

: diag ((1- dD r n
/
2 (1- dl) ,r n

/
2

)
I } 6x6

= diag ((1- D j r" (1 - D;r n
/
2

) : E - I

n n 6x6

: diag ((1- D j r n
/
2 (1 - Dj r n

/
2

)

n n 6x6

For n ~ 00 , the foregoing equation gives

(4.93)



4.4 . An anisotrop ic damage theory

E- - I - d ' ( D;+Dj )/2) 'E -I 'd' (D;+D) /2)
D - lag e .. lag e .

6x6 6x6

In addition , a new damage effect tensor is obtained , i.e.,

M(D) = diag(Ml l' M 22, M 33 , M 12 , M 13, M 23 ) 6x6 '

M (D) = (D;+Dj )/ 2 '" . • = I 2 3'u e lor I , ] '"

Finally,

E~I = M(D) : £ -1 : M(D) .

Consider an isotropic material with the elastic tensor as

- I I
E =-(a)66'E lj x

where

au =I, au =-v for i , ) =1,2 ,3;

a;; =2(1 +v) for i =4, 5, 6;

au =0; for i =I, 2, . . ., 6 and} =4, 5, 6;

au =0; for i =4, 5, 6 and} = I, 2, . . ., 6;

(i * i)·

The damage elastic tensor is given by

where

D _ 2D; D _ (D;+Dj ) c. . ' - 1 2 3'au - e ,au - -ve lor I , ] - , , ,

a~ =2(1+v)e(Dl +D2) ,a~ =2(1+v)e(D1+D3 ) ,

-: =2(1+v)e(D2+D3 ) ;

a~ =0; for i =I, 2, ... , 6 and} =4, 5, 6;

a~ =0; for i =4, 5, 6 and} =I, 2, . .., 6;

(i * i) .
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(4.94)

(4.95)

(4.96)

(4.97)

(4.98)

(4.99)

(4.100)

If the damage variable is very small (i.e., D; « I ), each component in M(D) can

be expanded by the Taylor series. Keeping the first order and neglecting the higher

order terms of such Taylor series yields e-D
; '" 1- D;. The components in

Eq.(4.99) becomes



4.5 . Applications

1 -v
ai~ = (1- Dy , a~ = (1- D,)(1- D,) for i , j = 1, 2, 3

D 2(1+v) D 2(1+v)
a = a = -----'----'---'--

44 (1- D, )(1- Dz) ' 55 (1- D,)(1- D
3

) ,

D 2(1+v)a = .
66 (1- Dz)(l- D

3
) '

a~ = 0; for i = 1, 2, . . ., 6 andj = 4, 5, 6} . . .
with zse j .

a~ =0; fori=4,5,6andj=I,2, . . .,6
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(4.101)

With Eq.(4.101), equation (4.99) gives the effective elastic tensor, identical to that
in Chow and Wang (1987) .

4.5. Applications

This section will demonstrate applications of the large damage theory and the uni
axial tension , pure torsion and perfect-plastic materials will be presented.

4.5.1. Uniaxial tensional models

From the large damage theory with anisotropic damage, the strains under a tension
stress are

where the effective Young's modulus and Poisson's ratios are

From the foregoing equation, the damage variables are

I E
D =--In-

1 2 E '

(4.102)

(4.103)
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v V JIED =D -In---.!l.=-ln(-1-2 -)
2 I - - E 'VI2 VI2

V V JI-:-D = D -In-I-3 = -In(---!l. -).
3 I - - EVI3 V 13
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(4.104)

From the small damage theory with anisotropic damage , the strains under a ten
sion stress are given by

(4.105)

where the effective Young 's modulus and Poisson's ratios are

From the foregoing equation, the damage variables are computed by

D
1
=1- fE ,VE

D =l-~(l-D )=l-~JI-:-
2 - I - E 'Vl2 VI2 '

D =l-~(l-D )=l-~JI' .
3 - I - E

~3 ~3 '

(4.106)

(4.107)

It is observed that Eq.(4.107) can be recovered from Eq.(4.104) through the Taylor
series expansion and neglecting the higher order terms when the damage is very
small.

4.5.2. Pure torsion

Consider an anisotropic damage of a shaft under a pure torsion. Suppose that the
maximum shear stress is t , the corresponding principal stresses are 0"1 = t ,

0"1 = -r and 0"3 = O. From the large damage theory,
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_ v e(DI+D, )

e
ZDz

o
(4.108)

Solving the foregoing equation gives

I y ZX I X
D 1 = -In-z- and D, =-In-z- '

2 y -I 2 Y - I

where

(4.109)

r
X= -(c1 + cz),

E

I [ c1Y=- - v (l +-)+
2 e.

(4.110)

The effect ive Young's moduli and Poison 's ratios are

E - Ee- 2D I = E y ZX and E = Ee- 2D, = E y
Z

-1
1 - y Z-1 z X '

- D , -DI V d - DI-D, YV - Ve - - - an v - Ve - - VIZ - - Y ZI - - .

(4.111)

(4.112)

The effec tive shear mod ulus G can be evaluated by the transformation of the
damage tensor D and damage effective tensor M(D) from the principal stress

axes to the maximum shear stress axes . For this case , the maximum shear stress
state is a pure shear state given by the pure torsion. The direction cosines between
the two coordinate systems are

:~ ] = I_~ -I ~1
». l 0 0 1J

(4.113)

Thus , the effective shear modulus G for the anisotropic damage is

G= 2(1+v)G
e ZDI + eZDz + 2veD I+D, .

(4.1 14)

With Taylor series expans ion, the foregoing equation gives an expression for
small damage as in Chow and Wang (1987). That is,

G= 2(l +v)G
(l-D1rz +(l-Dzrz +2v(l - D1r l (1 - Dzr l

.
(4.115)
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Fig. 4.6 An elastic perfectly-plastic material.

4.5.3. Elastic perfectly-plastic materials

159

In this section, the large damage theory will be applied to a large damage model of
a material with an elastic perfectly-plastic behavior, as shown in FigA.6. The un
damage constitutive equation for uniaxial tension is

if C :::; CO'

if C ;::: CO'
(4.116)

(4.117)

where Co is the strain at yield. For isotropic materials with anisotropic damage,

the effective elastic modulus is computed from Eq.(4.99), i.e.,

- - 2D I jj;
E =e E or D =--In - .

2 E

In terms of strains, the damage variable is evaluated by

{

I Co--In- for C;::: C
D = 2 C 0 '

o for C:::; Co'

If the damage is very small, equation (4.118) becomes

(4.118)

{

I - re:
D= V~

o

for C;::: co'
(4.119)
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Chapter 5

Nonlinear Cables

This chapter will discuss nonlinear cables as the simplest soft deformable element.
A general nonlinear theory of cables will be presented . Equations of motion for
traveling and rotating cables will be discussed. The closed-formed solution for
equilibrium of elastic cables will be developed . To investigate the cable dynamics ,
the rigid body dynamics of cables will be discussed . Further, the elastic cable dy
namics can be investigated.

5.1. A nonlinear theory of cables

In this section, the theory for nonlinear cables will be discussed. Before the nonli
near cable theory is discussed, the following concepts of deformable and inexten
sible cables are introduced first.

Definition 5.1. If a l-dimensional deformable body only resists the tensile forces,
the deformable body is called a deformable cable .

Definition 5.2. If a l-dimensional, non-deformable body only resists the tensile
forces, the I-dimensional, non-deformable body is called an inextensible cable.

From the two definitions, if the internal tensile force of a cable becomes com
pressive, the current configurations of the deformable and inextensible cables can
not exist. In other words, the compressive forces cannot exist in the entire deform
able and inextensible cables. If all the internal tensile forces on the cable become
zero, the cable configuration will keep the configuration of the inextensible cable.
If the internal tensile force on the cable becomes zero in a local segment, the local
configuration of the local segment of the cable will keep the inextensible cable
configuration. On such a local segment, the corresponding inextensible configura
tion may be changed with any small perturbation force to form a new configura-
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tion with tensile forces or to be in any knotted state without any configuration.
Such a local new configuration is discontinuous to the non-knotted, global con
figuration. Such a phenomenon of the cable is called the local knotting of cable.
After the cable is locally knotted, the knotted segment cannot form any configura
tion. In other words, only if the tensile force on the cable exists, the cable configu
ration can be formed.

Consider a nonl inear cable with an initial configuration in coordinates (Xl ,
J =I, 2, 3 ) with unit vectors (I I ' J =I, 2, 3 ), as shown in FigSI . A point P on

the initial configuration is given by (Xl , 1 = I, 2, 3 ) which is the function of a

curvilinear coordinate (Sl == S ) with the base vector (G, ). On the cable cross sec

tion with the normal direction collinear to G 1 , two coordinates (SA, A = 2, 3 )

with the corresponding directional vectors (GA ' A = 2, 3 ) can be selected arbi

trarily . Therefore, one assumes that x ' = x ' (S) and the point P on the initial

configuration is

(5.1)

Under external forces , the nonlinear cable will form a new configuration in a co

ordinate ( x" , 1 = I, 2, 3 ) with unit vectors (1 1,1 = I, 2, 3), as shown in Fig .5.2 . A

point p on the new configuration is given by (x" , 1 = I, 2, 3). For the new con

figuration, the corresponding curvilinear coordinate ( s' == s ) with the base vector

(gl) exists. Such a configuration is also called a final configuration under such ex-

ternal forces . Thus, a point p (x" , J = I, 2, 3 ) can also be described through a cur

vilinear coordinate (S) with the base vector (G,). With x' = x ' (S) , the vector

r IS

and the displacement between point P and point p is

u=uI(S)I I '

Thus,

The base vectors and the corresponding unit vectors are

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)
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s

Initial Configuration

Fig . 5.1 A nonlinear cabl e with an initial configuration.

Final Configuration

Initial Configuration

s

Fig. 5.2 Displac ement on the cables with the initial and fina l configurations.

where 0 .1 = dO / dS and summation on I sho uld be completed , and

G - X IXI, d E - X l I X l I I I
II - ,I ,I an II - ,I U,I+ ,I U,I+U,I U,I'

The strain on the direction of G I is

6 (5 ) = Idr I-I dR I=_I_~(XI +UI)(XI +u l)-1.
IdR I .JG:: , I , I , I ,1
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(5.7)

(5.8)
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From the material law, the tension is expressed by

T = Lf(~)dA,

5 Nonlinear Cables

(5.9)

where f(~) = 0 forg~ = O. With E = df / d ~ 18"=0' the tension for a linear elastic

material is

T= I E~dA= I E[ ~~(X;+u;)(X; +u;)-I]dA,
A A \I Gil ' , , ,

(5.10)

where Young's modulus and cross-section area in the NI -direction are E and A ,

respectively. If the initial configuration is in the deformed state with initial tension
TO in the SI -direction, the corresponding strain is

(5.11)

where the initial tension TO (S) = Lf(~o)dA , and the tension on the deformed

configuration of the cable is determined by

(5.12)

For the linear elasticity (E = const),

If the displacement u' = 0 (1 = 1, 2, 3 ), then, equation (5.11) becomes

C= ~O(S)+(_I_~XIX I -1).fG ,1,1
\lvi l

The geometric relation gives

(5.13)

(5.14)

(5.15)

The initial strain and tension can be recovered (i.e.,e = ~o (S) ). However, the ini

tial tension is very difficult to obtain . On the other hand, the inextens ible cable
possesses the fact of EA ~ 00 • Equation (5.9) gives

.!...-=_1 t f(~)dA=_1 t [E~+o(E~)JdA.
EA EA EA

As EA ~ 00 , the foregoing equation leads to~=O, i.e.,

(5.16)
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~~(X.~ +u.~ )(x.~ +u.~) = 1 (summation on I).
"VII

However, with Eq.(5.15), equation (5.17) yields

u / = 0 (I = 1, 2, 3 ).
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(5.17)

(5.18)

It means that the inextensible cable can support any tension without stretch.
Therefore, the inextensible cable configuration should be considered as an initial
configuration . To apply the external forces on the cable and to investigate the cor
responding nonlinear dynamics, the point and segment sets on the initial configu
ration of the deformable cable are defined by

The point and segment sets on the deformed configuration are defined as

p==U7=OPk and Pk =={sls=ak} ,

(5.19)

(5.20)

(5.21)

(5.22)

Consider the force distributed force on the segment J; and the concentrated force

on a point .'l!c for (k = 1,2, ... , m), i.e.,

qk ==q~(S)I / on Sk'

Fk==F;/(S)I / at~ .

(5.23)

The corresponding forces on the segment "k and concentrated forces on point Pk

are

Pk ==p~(s)I / on"k'

f k == ;;/ (s)I/ at P k'

From Eqs.(5.23) and (5.24),

Fk = fk, or F/ (Sk) = f/ (Sk);

I / 1 /
Pk == JG::O+ /?) q., or Pk(S) = JG::O+ /?)qk(S) ,

where

(5.24)

(5.25)

(5.26)
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Therefore, equation of motion for segments S E J; IS

PoA(X ,/I+u ,/I)=q+~" or

I I I [T(X,~ +U,~) ]
PoA(X /I+u /I)=q + rr .. '

" "\jGll (1 + &")
,1

5 Nonlinear Cables

(5.27)

where PoA is based on the initial configuration. In Eq. (5.27), the tension ofcable

is computed by

for any materials,

for linear elasticity,
(5.28)

where TO(S) = LEg odA and t: = + &" .

The tension vector is defined as

where ", is the unit normal direction of the cable .

and

(5.29)

(5.30)

JG::(I +8 ") .
(5.31)

Consider the sign convention of internal forces . On the positive (or negative) cross
section , the internal forces in the positive (or negative) direction are positive, oth
erwise negat ive. The force condition at the node .y; with S = Ak is

-Tk(S)IS~A, + +Tk(S)IS~A , + Fk = 0, or

-~ (S) COS B(nl' I / ) l s=A , = + Tk(S)cosB(n 1,1 /)ls=A, +F/,

where the tension vector on such a normal direction of ", is

and

The displacement boundary condition at a node point :J: is

(5.32)

(5.33)

(5.34)
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u: =b: and X ,I =B,
I for r = 0,m.
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(5.35)

For the force boundary , the corresponding conditions are given as in Eq.(5.31),
i.e.,

Definition 5.3. A deformable cable is called a locally knotted cable if

Tk(S) <O forSE[Ak_I ,Ak] ·

(5.36)

(5.37)

A deformable cable is called a globally knotted cable if all segments J; c S

( k = 1,2, . .. , m) in such a cable satisfy Eq.(5.37). The two knotted boundaries on

the segment J; are determined by

(5.38)

Definition 5.4. If a l-dimensional straight deformable body only resists the tensile
forces, the deformable body is called a deformable string.

For the deformable string, there is an initial configuration. To investigate the
dynamics of the string, it is not necessary to determine the initial configuration be
cause the inextensible state is the same as the initial straight state of the string.
However, for the deformable cable, the initial configuration is very difficult to be
determined, which should be from the inextensible cable . For the deformable
string, one can simply use Xl (S) = S and x ' (S) = 0 (J = 2, 3). The afore

developed theory can be directly applied to the string. From the definition of ca
bles, the cable cannot support any compressive forces. In addition, one is inter
ested in the l-dimensional deformable body that supports the tensile and compres
sive forces. Thus, the corresponding definitions are given as follows.

Definition 5.5. If a l-dimensional deformable body only resists the tensile and
compressive forces, the deformable body is called a deformable arch.

Definition 5.6. If a l-dimensional straight deformable body only resists the tensile
and compressive forces, the deformable body is called a deformable truss .

Compared to the deformed cable, the deformable arch must possess a specific ,
initial configuration to support such compressive internal forces. The deformed
arch can be described as a deformed cable. Herein, such a description will not be
repeated . The normal force on the arch is determined by letting N == T for all equa-

tions presented in this section. In addition, Xl = Xl = 0 is admitted because the
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initial configuration is fixed. However, the continuum cable possesses a dynami
cal initial conf iguration. In other words, the non-deformable configuration of an
arch is invariant with time , but the non-deformable configuration of a cable will be
changed with time . The truss is a stra ight arch . The initial configuration is a

straight line . Thus, one can use Xl (S) = S and x ' (S) = 0 (1 = 2, 3 ) to describe

like a string. In addition, the theory for the I-dimensional deformable beams and
rods will be discussed in Chapter 8.

5.2. Traveling and rotating cables

Consider a travel ing and rotating, sagged, elastic cable passing through two eye
lets , as sketched in Fig.5 .3. The horizontal and vertical separations of the eyelets
are Land H, respectively, and the length of cable is 2 ' . This cable travels at a
translation speed c along the longitudinal direction and rotates with a rotation

speed Q at origin o. X, y and z are Cartesian coordinates rotating with cable to

gether; y is co-l inear with the grav itational acceleration. The fixed end points B)

and B2 are positioned arbitrarily. The initial and final configurations with dis
placement are

-R X-II - - II d - - -R - II= I ' r = x I an u = r - = u I' (5.39)

where ~X.~X.~ = 1 (I I = i, I z = j , 13 = k) and S is the arc length of the cabl e.

For a straight cable, S= Xl (S) and XZ = X3 = O. The initial configuration R
can be or cannot be independent of time . The cable is subject to the distributed

forces as q = ct I I . The rotation speed to the origin 0 is

For the constant rotation speed, the velocity and acceleration are

Dr dr (n -) (- I t=\J-K )1-=-+ ~.,;xr = X I+~~ x eIJK I'
Dt dt '

D Zr dZr - dr - 
--Z =-z +2Qx-+Qx(Qxr)
Dt dt dt

(5.40)

(5.41)

where eIJK is the Ricci function, and 0 ,1=dO/dt and 0 ,11 =dZO/dtz . If the ro

tation speed changes with time, the velocity and acceleration are expressed by

Dr dr (n -) (-I t=\ J -K )1-=-+ ~.,;xr = X I +~~ X eIJK t »
Dt dt '
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~----- L -------1

(a)

(b)

Fig. 5.3 Equilibrium and deform ation of a traveling , sagged cable under a distributed loads
(a) loading and (b) displacement.
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The strain of equilibrium under the initial tension f O is

e = gcO(05) +[~(X,~ + u,~ )(X,~ + u,~) -1] (summation on !)

(5.42)

(5.43)
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where 0 s = ao /as. The tension in the deformable cable at equilibrium is

f(s) = Ll(c)dA for any materials,

f(S) = f OeS) + EA[~(X,~ +~~)(X,~ +~~) -IJ
for elast ic material,

(5.44)

(5.45)

where if'0 = f O/ EA , and E, A and S are Young 's modulus, the cross-sectional

area and the arc length of the cable in the initial configuration. For the inextensible

cable of (EA ~ 00) , e = if'0 because of ~X,~X,~ = I and u' = 0 , {X I} depends

on the external loading except for the initial tens ion . The non-dimensional var i
ables

S -_!..- Xl __ Xl X l X l I 'ii I I ct, =- u =- q =--
2' 2' 2' ' 2' ' p. Ag ,

t= cl , cp=~ fI' CO(S)=~~fo ,c = c ,
g ~ ~~ ~ A A ~

f f O gYg
c =Jgg ,T= , To = ,n/ =- - ,

q PoAg2 ' PoAg2 ' Cq

R=~,r= r , q =~, Q = Qg
g 2' p.Ag cq

are introduced, where g is the total length of the cable, g is the gravitational ac

celeration , and Po is the dens ity. Suppose the dens ity is invariant. The equation of

mot ion for the rotating cable is

(5.46)

where

and

T(S)(X I + u l
)

T I (S') = T(S) cos B. = ,s ,s
(" 1,1/ ) (1 + 8 ')

if' = ~(X,~ +U ,IS )(X,~ +U ,IS) -I .

As in Luo et al. (1996),

(5.47)

(5.48)
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For a traveling cable with speed c(t) , transformation of s to 1] :

1] =5+ rcd~,
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(5.49)

(5.50)

results in equations of motion for the segment [1]8
1

,1]8
2

] mapped from [S8
1
,S8,],

(5.51)

The boundary conditions for the equilibrium displacement and initial configura
tion are

(5.52)

From Eq.(5.52), the ratio of the chord to the arc length of the cable at the initial

configuration is a non-dimensionalized variable xB = ~(A I - Sl )(AI - Sl) .

For non-eyel et supports, the boundary conditions can be given by forces or dis
placements . The displacement conditions are the same as in Eq.(5.52). However,
the force boundary conditions are

(5.53)

Consider a cable rotating around the x-axis with the two supports A and B in
the same height. The rotation speed vector becomes Q = nIl ' Equation (5.51) re-

duces to

(X.:t +u.~t) + 2c(X.~t +U./~t) +c.t(X.~ +u.~) +c
2
(X.~~ + u.~~)

+n/x
K +UK)eIl K + 2n[(X.; +u.;) + c(X.~ +u.~ )]eIlK

- n 2 (X l +u l )(1- 0.1) = 1+ [T(1])(X,:1+U'~l)]
I q (1 +8")

,~

(5.54)

For a traveling and rotating , non-sagged cable with constant rotation and travel
ing speeds (i.e., C,t =0 and n ,t =0), we have X 2 =X 3 =0 and XI =5 with

1] = Xl +ct . Equation (5.54) reduces to
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Without rotation, the foregoing equation becomes

I I 2 I I [T('1)(X,~ +U'~I)]
u It + 2eu 111 + e u 11'1 = q + .
' " O+ &"')

,11

For elastic materials , the tension is given by

5 Nonlinear Cables

(5.55)

(5.56)

(5.57)

With Eq.(5.57), equation (5.56) is identical to the equation in Thurman and Mote
(1969). Without the translation in Eq.(5.55), equations of motion for rotating
strings are for J = 1,2 ,3

I K 2 I I I [T('1)(O/ +u,~)]u II + 20u I ell K - 0 u (1- ~ ) = q +, , (I+ &"')
,11

(5.58)

(5.59)

With Eq.(5.57), equation (5.58) is identical to the model in Luo et al. (1996).
Without rotation in Eq.(5.53), equations of motion for a traveling, sagged, elas

tic cable with constant traveling speed are

(X l +u l) ,1t +2e(X I +u l) 'TJI+ e2(X,~TJ +u,~TJ)

= ql +[T('1)(X,~ +U'~I)]
O+ &"')

,'I

With Eq.(5.57), equation (5.59) is identical to Luo and Mote (2000).
As in Luo and Mote (2000), the generalized loading on the cable is considered

in Fig.5,4. qk= Zj:ll (k=I,2, ...,m) and Fk =F:I I for the kth-segmentare dis

tributed and concentrated forces on the cable. Similarly, the corresponding dis

placement U k =u:ll is from the initial configuration Xk =X:I I to the equilib-

rium configuration x, =x:l / . For the kth-segment, u; =x: -X: and ~X:'sX:,s
- -1 - - 2-3

= I . For straight cables, S = X k (S) and X k = X; = 0 . For the kth-segment, as in

Eq.(5,43), the strain of equilibrium under initial tension f O with summation on J
IS

(5.60)

and the corresponding tension in the cable at equilibrium is
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1- - - - - [, -----I

(a)

(b)

Fig. 5.4 Equilibrium and deform ation of a traveling, sagged cable under arbit rary loading.
(a) loading and (b) displacement.
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i, (s) = L1(Ck ) dA for any materials,

~(s) = ~O(s)+EA (~(X:,s +u:,s)(X: ,s+u:'s) -I)

for elastic materials

(5.61)

where &;0=~o / EA. For inextensible cables (EA~ 00), ck =0 because of

~X/sX/s =1 and ui =o.{X/} depends on the external loading except the ini

tial tension. As in Eq.(5.45), the non-dimensional variables are
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- I - I

x ' = X k U
l =!:!J....

k se ' k Y
- 0

.i. T: 0=~
, k

pAgy pAg2 '

5 Nonlinear Cables

(5.62)

Further, the equations of motion for a cable segment [Sk_I ' Sk] between concen

trated forces Fk_ 1 and Fk (k = 1, 2, ... , m +1) are obtained via force balances of

the deformed cable. T, (1]) = Tk"l and "I is the normal direction of cross section

of cable, i.e.,

(5.63)

(5.64)

The corresponding components of tension is computed by

I 0 (S)(X : s + u: s )
T: = T: cos () = "

k k ( R I , I/) (1 + &;;)

Using the geometrical relations , equations of motion without traveling become

(5.65)

The reactions at ends B, (so = SSI = 0) and B1 ( sm+! = ss, = I) are Fo and Fm+l .

For traveling cables , the variable 1] is used as a fixed coordinate system and S as a

traveling coordinate system. Consider a constant traveling speed, and transforma
tion of S to 1]:

1] = s +ct, (5.66)

results in equations of motion for segment [1]k-l' 1]k] mapped from [Sk_I ' Sk] :

(5.67)

The corresponding boundary conditions for the equilibrium displacement and ini
tial configuration become
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Continuity for two segments requires

U
l I = U

l I and X l I = x ' I ....or J I 2 3k T/~T/k k+! T/~T/k k T/~T/k k+! T/ ~T/k 11 = " .

The force balance conditions at the discontinuous point 1] = 1]k are

r; (1]k) + Fk +Tk+!(1]k) = 0,

or t; IT/ ~T/k = Fk
l +~l+l IT/ ~T/k •

Without rotation, equation (5.67) becomes

5.3. Equilibrium of traveling elastic cables
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(5.68)

(5.69)

(5.70)

(5.71)

In this section, equilibrium solutions for a traveling cable will be discussed. The
closed-form solution for such equilibrium will be presented, and the existing solu
tion with be discussed.

5.3.1. Existence conditions

For the elastic material, the tension is given by

(5.72)

With vanishing of the time variations in Eq .(5.71) , integration over [1]k- P 1]k]

gives

(5.73)

where C; (1=1 ,2,3) are integration constants. With the tension in Eq.(5.72), eq-
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uation (5.73) reduces to the model of Yu et al (1995) when q~ =c =0 and q:

(I = 2, 3) are uniformly distr ibuted . The 2-D model in Irvine (1981) is a special

case of Eq.(5.73) obtained by q~ = q~ = c = O.

The squaring of both sides ofEq.(5.73) for each I and summing of them for all
1 leads to

~(X:,,, +u:.")(x:,,, +u:,,,)

=~[(c~ -[cZ(1])]2) ±~( fq:d1] - c :)( fq:d1] - c;)J.
cp c

(5.74)

The translating cable in Eq.(5.74) possesses two equilibria. When the translation

speed equals the wave speed (i.e ., c = JE / P ), the resonance occurs and the

stretch ratio ~(x:, ,, +u~ , ,,)(X: , ,, +u ~ , ,,) becomes infinite. In Eq.(5.74) , the

stretch ratio increases with increas ing c for c < cp •

Substitution of Eq.(5.74) into Eq.(5.71) leads to

t; (1]) = - 2-
1
- 2 [c 2 (c~ - [cZ(1])]2)

"»-c

±c~~cfq:d1]-C:)(fq:d1]-C:)J (5.75)

showing that the tension increases monotonically with c for c < cp • For stationary

cables, setting c = 0 in Eq. (5.75) and choosing T: > 0 for all the segments gives

(5.76)

In the inextensible cable , ~(x:, ,, +u:,,,)(X:.,, +u:.,, )= 1(or u: = 0 ), the stiffness

in Eq.(5.73) becomes (Ta - pAc"; identical to the results in Routh (1884), and the

tension is

(5.77)

(5.78)

Cable/string models require positive tension, i.e., T: > O. Therefore, a condition

of existence of steady motion is from Eq.(5 .75), i.e.,

[CZ(1])]2< c~ [1 ± c\ ~(fq:d1]-C:)(fq:d1]-C:)1
A critical condition for the existence of steady motion is obtained at T: (1]) = 0 or

equality in Eq.(5.78).
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5.3.2. Displacements
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Substitution of Eq.(5.74) into Eq.(5.73) and integration gives three components of
displacement

(5.79)

where D: (1=1,2,3) are constants. The boundary conditions in Eq. (5.68), dis

placement continuity in Eq.(5.69) and force balances at each Fk are used to de

termine all coefficients in Eqs.(5.73) and (5.79). The force balances are

(- fq :d1]+c:)I l/='7k -F/=(- fq :+ld1]+C:+1)1 l/='7k ' (5.80)

The inextensible cable requires cp ~ 00, and Eq. (5.74) gives ~X:' l/X:' l/ = 1 in

dicating uia ) = O. Substitution of the cp and u: into Eq.(5.79) gives the equilib

rium configuration X::

(5.81)

Similarly, C: andb: can be determined . Equations (5.80) and (5.81) show

that X: is independent of the initial tension. For the inextensible and deformable

cables under the same loading, it is assumed that the two cables possess the same
initial configuration . For the inextensible cable, its displacement is zero
(i.e.,u:= 0 ), which implies that the equilibrium of the inextensible cable is an ini-

tial configuration (i.e., X:(1]) = X:(1])). Therefore, from Eqs.(5.79) and (5.81),

the displacement of the elastic cable is

(5.82)
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5.3.3. Applications

5 Nonlinear Cables

In this subsection, several examples will be presented, which can be reduced to the
classic approximate solutions of sagged cables.

5.3.3a Uniformly distributed loading

Consider a sagged cable traveling at constant speed c. The cable is subject to a un
iformly distributed load q = II I . The chord ratio of the cable is xB and a con-

stant, initial tension is T O. The subscripts denoting the particular segment have
been dropped . The boundary conditions are

(5.83)

The displacement is given by Eq.(5.82):

I I 1 I 2 I
U =-2--2 (--q 17 +c 17)

c -c 2
p

(5.84)

where

The boundary conditions in Eqs.(5.83) with (5.84) give

C2_(CO)2{ I (C l J CJ I ) J }
D I ==t p 2 2 -SLe(o)+ q - 3 q q 10g[=:(0)+e(0)] ,

"»- c q q

c' ± [c~ - (C
O)

2](C
l
qJ - cJl )qJ 10 J =:(1) + e(1)

q3 g =:(0)+ e(o)

= BI (c~ _c2)+.!..q l ± [c~ _(CO)2]ql [e(1) -e(o)].
2 q

(5.85)

(5.86)

(5.87)

The constants c' and D I in Eq.(5.84) are determined through solution of the
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nonlinear algebraic equations in Eqs.(5.86) and (5.87), and the el and [) l for the
inextensible cable are determined from

(5.88)

+ (ell - e Jql )qJ I S(l) +e(l)
q3 og S(O)+ e(O)

(5.89)

The exact displacement solution is obtained. The tension and the equilibrium con
figuration are:

(5.90)

(5.91)

For the inextensible cable, the equilibrium configuration is

(5.92)

5.3.3b Special cases

Consider a 2-D traveling cable with (Ix =0, qy=-pAg =w]y , B, =LIy and

By = H12 ' . Substitution of Eqs.(5.62), (5.86) and (5.87) into Eq.(5.91) and use of

inverse hyperbolic functions gives an equilibrium of the 2-D defonned cable,

(5.93)

The bar indicates the dimensionalized variables and parameters. For the stationary
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cable (c = 0), let fa = 0 and neglect the solution with f:s; 0 , and Eq. (5.93) be-

comes

(5.94)

which is the solution of Irvine (1981).
The inextensible, axially moving cable is obtained from Eq.(5.93) by setting

EA ~oo .

(5.95)

where el and e2 are determined through the boundary condition at fj = 2' . The

equilibrium under the non-positive tension in Eq.(5.95) is unstable. Setting Xo =

el
/ qysinh" (e2

/ el
) , equation (5.95) becomes

-"- -"- el
{ pAg s: -"- pAg -"- }Y(X) =±- - cosh[- _I-(X -Xo)]-cosh(- -I-Xo) .

p Ag C C
(5.96)

Letting ~ (0) = ±Cl = ±[~ (0) - pAc2
] cos 0(0) where dX /dfj = cos O(fj) , equa

tion (5.96) is given by O'Reilly (1996). Xo is determined by the boundary condi

tion at fj = 2' . If the inextensible cable is sufficiently straight that cos 0 ", 1 and

el » e2
, then Xo '" 0 and Eq. (5.96) becomes

X-"- ( - ) = +el
. h- I qyfj17 - _ SIll -I '

qy C
(5.97)

This stable solution is given by Simpson (1972). However, Equation (5.97) does
not provide the equilibrium solutions of the inextensible cable because the bound
ary conditions are not satisfied. The linear model of the straight cable gives
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u= (5.98)

In all the plots, the solid and dash lines represent the upper (+) and lower (-)
branches of the equilibrium configurations, respectively, and the dotted line de
notes the unstable equilibrium of the cable as T s;O. The longitudinal and trans-

verse wave speeds are cp =740.87 and CO =0 .

Consider a 2-D horizontal straight cable (B, =xB =I, By =B, =0) hanging

under its own weight (qx =0, qy =-I). Two components of displacement

u=x(17)-17 and v=Y(17) computed from Eq.(5.84) at c=1O are shown in

Fig.5.5. The chain curves denote the linear prediction of displacement from
Eq.(5.98). The maximum longitudinal displacement is 3.998xl 0-5 (lower branch)

and 2.923xIO-5 (upper branch) at 17 = 0.21 and 0.79. The longitudinal linear dis

placement is zero due to qx = O . The maximum transverse displacement is

8.828x 10-3 (lower branch) and 7.547x 10-3 (upper branch) but 1.25x 10-3 for the
linear prediction. For the inextensible cable, two components of displacement are
zero. The maximum transverse displacement and minimum tension in the 2-D
sagged elast ic cable (Bx =X B' B; =B, =0) for qx =-I is plotted in Fig.5.6 when

the chord ratio is xB = 0.8 . The lower branch of the equilibrium configuration for

any travel ing speed always exists , and the displacement and tension increase with
the transverse load and transport speed . The upper branch of equilibrium configu
ration is stable only when the transport creates positive tension . The equilibrium
configuration and tension of a cable under its own weight ( qy = -1 ) and the longi-

tudinal loads i.«. =0, -1) are illustrated in Fig.5.7 at xB =0.8 and c =1 . The

equilibrium configurations and tension distributions are symmetric qx = O. The

longitudinal and transverse displacements from the initial configuration to equilib
rium of the sagged elastic cable are shown in Fig.5.8. Unlike the straight cable in
Fig.5.5, the longitudinal displacement of the sagged cable is the same order of
magnitude as the transverse displacement. For this problem, when the tension of
the partial cable is zero, the configuration of cables will be changed, and a new
configuration should be determined. How to determine the zero-tension boundary
and such a new configuration is unsolved, and a further investigation should be
conducted. The maximum transverse displacement and the related tension versus
the chord ratio are shown in Fig.5.9 at c = 10 . The maxima occur at xB = I . The

results indicates that slightly sagged cables (xB = 0.9 - 1) must be modeled as ex

tensible to achieve the accuracy for most applications. The sagged cable model re
duces to the straight cable model at xB = 1.
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Fig. 5.5 (a) Longitudinal and (b) transverse equilibr ium displacements of straight, elastic cable

under q, = 0 and qy = -I for c = 10 , cp = 740.87 and CO = O.
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Fig. 5.7 (a) Multiple equilibrium configurations and (b) tension distributions of sagged, elastic

cable at equilibrium ( xB = 0.8) under q" = - I and q, for c = I : cp = 740.87, and C O = o.



5.3. Equilibrium oftravcling clastic cables 185

1.6 ,-------------------,

0.80.60.4

X

0.2

--!--\ /// -;-;,~
,,_/ ~

-0 .25
0.1 0.2 0.3- 1.6 "----__"-----__L--__'-----_-----U

0.0

0.8

,-....,.
0

x 0.0
---;::

-0.8

(a)

2.0 ,-------------------,

0.80.60.4

X

0.2
-2.0 "-----_-----"-__---'---__-'-----_-----lJ

0.0

1.0

,-..
-e-

0

~
0.0

;.

-1.0

(b)

Fig. 5.8 (a) Longitudinal and (b) transv erse disp lacements of sagged , elastic cable (xB =

0.8 )under its own weight (qy = - 1 ) and longitudinal loading for c = 10 : cp = 740.87 and

CO = O.



186 5 Nonlinear Cables

6.0 ,--------------------n

Upper equilibrium
~ 3.0
'0

E 0.0
~

. ~

~ -3.0
--L\-l'b ' -- <, -,

ower equr I num \

\

1.00.90.80.7
-6.0 '-----_-----'__-----"-__-----'--__--lJ

0.6

(a)

110

105 - Lowerequilibrium

95 -

~ __ J
h 100 r - - - - - --

\ \
Upper equilibrium

90
0.6

I

0.7

I

0.8

I

0.9 1.0

XB

(b)

Fig. 5.9 (a) Displacement and (b) tension versus chord ratio of sagged, elas tic cable with qy

=-1 , c = lO , c
p

= 740.87 and co = O.



5.3. Equilibrium oftravcling clastic cable s

5.3.3c Concentrated loading
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Consider a 3-D sagged traveling cable carrying m -I concentrated loads F:
(k =1,2, . . ., m -I and 1 =1,2,3 for x, y, z) which divide the cable into m seg

ments. q~ (k = I, 2, . . ., m) are uniformly distributed loads and c~ is a constant

initial tension. The boundary conditions satisfy Eq.(5.68). Three components of
displacement from Eq.(5 .83) are computed through Eqs.(5 .84) and (5.85) when

{ul ,ql ,C ,D I ,2,8,q} and {CI,1Y,~,e} are replaced by {u~ ,q~ ,C~ ,D~ ,

2 k,8k, qk} and {C:,b:'~ k ,ek} ' The corresponding boundary condition in

Eq.(5.83) at 17 = 0 becomes

(5.99)

The displacement continuity between the kth and (k + I)th segments IS for

(k = I, 2, . . . , m -I and 1 = I, 2, 3 ):

(5.100)

and force balances in Eq.(5.80) give:

(5.101)

The boundary condition in Eq.(5.83) at 17 = I produces

(5.102)

The

[C2 (CO)2](CI J CJ I ) J
CI ± p - mqm - mqm qm10 r[2 (1)+8 (I)]

m (qm)3 g m m

d'. = s': 2_ 2) .!. 1 + [C~ _(CO)2]q~ 8 (I)+ m cp C + qm- m .
2 s;

C: and D~ are determined by solving 6xn nonlinear algebraic equations
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(5.99)-(5.1 02). Similarly, the constants c, and b, for the inextensible cable are

determined by the following 6x n nonlinear equations.

I

- q k +1 e' ( ) DI+-- - k+ 1 1]k + k+ 1'

s.:

(5.103)

(5.104)

(5.105)

(5.106)

The coefficients can be obtained from Eqs.(5.99)-(5 .106). The exact closed form
displacement for the equilibrium configuration of traveling, sagged cables under
the uniformly distributed and concentrated loading is completed . The computation
of tension, equilibrium configuration for each segment of elastic and inextensible
cables can be carried out. To illustrate the equilibrium configuration and tension
distribution under concentrated loading, consider a 2-D sagged cable (B; = xB '

By =Bz =0) under its own weight and a concentrated load F, =0, Fy =-0.4

when c =10 and xB =0.8. The equilibrium configurations and the tension seg

ment I (S I) to segment 2 (S2) for the concentrated loading at 1]1 = 0.2 and 0.5 are

plotted in Fig.5.1O. If the concentrated force is at the middle of cable (1]1 = 0.5 ),

the jump in tension vanishes . The slopes of the configuration and tension are dis
continuous at the location of the concentrated force.

5.4. Nonlinear dynamics of cables

In this section, the dynamics of extensible cables will be discussed. The corre
sponding equations of motion for the traveling and rotating cable will be dis
cussed. The analytical solutions for the motion of the traveling inextensible cables
will be presented, and numerical illustrations for the motion of inextensible cables
will be given. Equations for pure deformable motions of the deformable cables
will be presented .
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sagged, elastic cab le ( xB = 0.8) under its own weight t:«. = -I ) and a concentrated force

( Fy = - 0.4 ) for c = 10 : c
p

= 740.87 and CO = 0 .
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5.4.1. Equations ofmotion

5 Nonlinear Cables

To describe the motion of the cable , as in Section 5.2, an initial equilibrium is re
quired . Cons ider the initial configuration of the cable expressed through
(0) X

k
=(0)X i I I (summation on 1 =1,2,3). I I is the unit vector in the three direc 

tions of the fixed coordinates. For the rigid body configuration, there is a relation

~ (0) X :'l/ ( 0) X :'l/ = 1 (summation for index 1). The superscript "0" denotes the static

configuration related to the static rigid-body equilibrium. Since the rigid body mo
tion exists in sagged cables, for some time t, a cable configuration relative to the

rigid-body motion is defined by X(t) = X i (t) I I ' The corresponding rigid-body

displacement Dk =vi I I is defined by Dk = Xk - (0 ) Xk • The dynamical rigid -

body configuration still requires ~X:':sXi,:s = 1 . From the rigid-body configura

tion, the total configuration of the elastic cable is xk (t)=xi I I and the correspond

ing deformation displacement is defined as 'iii = xi - X i with Uk = 'iii I I , as

shown in Fig .5.1!. For inextensible cables, equations of motion are given from
Eq.(5.49), i.e., for (l ,J,K = 1,2 ,3),

x i,1t +Q:'X ; elJK +2Q
J

X ;',eIJK +QJQKX ; eUMeMKL

= q:+ (co)2X i ss' (5.107)

With Eq.(5.50), the equations of motion for traveling and rotating inextensible ca
bles are as in Eq.(5.51).

Without rotation, the equations of motion for traveling cables are

X I 2 X l 2X I i ( 0)2XI
k, 1t + C k,l/' + c k,l/l/ = qk + C ,l/l/ '

(5.108)

(5.109)

The corresponding boundary and initial conditions for the inextensible cables are

X~ (O ,t) = Al ,X~(1,t) = B I
,

X i (17,0) = ¢>~ (17), X :', (17, 0) = 'Pi (17) ·
(5.110)

Continuity for displacement and velocity for two adjacent segments requires

x ! (n t) - x ! (n t) }k '/k' - k+1 '/k' , for 1 = 1 2 3.
I I / I ' ,

¢>k (17k) =«; (17k)' 'Pk(17k) = 'Pk+1 (17k)
(5.111)
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Fig. 5.11 Decomposition of rigid and clastic displacements of sagged cables,
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Consider the inextensible cable as an initial configuration and its rigid-body mo
tion (i.e., X~ = (0)X~ +V~ ) . Thus, equation (5.107) becomes

(5.112)

(5.113)

The equation of motion in Eq.(5.108) for traveling and rotating cables becomes

V I 2 V i 2( OlX I V I ) n J( O)xK VK )
k,tt + C k ,~, +C k .nt; + k .nt; + ~" " k + k eIJK

+ 2QJ[V ;', + CC OlX ;"1+ V;'~)]eIJK +QJQK(X; + V ;)eIJMeMKL

_ q l +(cO)2( OlX I + V I )
- k k ,~~ krpt ."

Without any motion of the inextensible cable V~ = o., = V r tt = 0 , the initial

configuration for rotating cables can be determined by

2 n J »x: n JnKxL _ I ( 0)2 (O )X I
C~" k ,~ eIJK +~"~,, k eIJMeMKL - qk + C krpt '

The initial configuration for traveling and rotating cables is given by

2 (O) XI 2 n J (O )X K n J (O)X K n Jn KX L
C k,~~ + C~" k,~ eIJK + ~ "" keIJK + ~" ~" k eIJM eMKL

_ I ( 0)2(0)X1
- qk + C k,~11'

Without rotation, the initial configuration for traveling cables is

2 (O) X I _ I ( 0)2(O)XI
C k,~~ - qk + C knn :

(5.114)

(5.115)

(5.116)
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The corresponding boundary and continuity conditions are

(Olx i (0) =AI , (OlX~ (1) =BI,

(OlX;(Th) = (Ol X ;+I(Th ).

5 Nonlinear Cables

(5.117)

The analytical solution of such an initial configuration of the inextensible cable
can be given by Eqs.(5.114)-(5 .116) with the boundary condition in Eq.(5.117).
For traveling cables, the initial configuration can be referred to Section 5.3 (also
see, Luo and Mote, 2000).

Substitution of Eq.(5.114) into Eq.(5.112) yields

Substitution of Eq.(5.115) into Eq.(5.113) yields

v ; +2eVr~, +e2Vr~~ +2Q
J
[V: , +eV:~ ]eIJK +Q JQKV~elJM eMKL

= (e
O)2V r,W

Without rotation, one obtains

o: + 2eVr~t + (e
2

- (eO) 2)Vr~tl = o.

(5.119)

(5.120)

The corresponding boundary and initial conditions for the rigid body motion are

vi (O,t) = V~ (1, t) = 0;

o; (17,0) = <I> ~ (17), V;,(17,0) =r~ (17) .
(5.121)

The continuity of displacement and velocity for two adjacent segments requires

(5.122)

From the above equations, the motion of inextensible cables can be determined .

5.4.2. Motions ofinextensible cables

Before determining the motion of the inextensible cable, its initial (static) configu
ration is determined by formulas in Section 5.2 (also see, Luo and Mote, 2000).
The traveling cable will be considered as an example. The solution presented in
this section is based on Luo and Wang (2002). The rigid-body motion of cable (or
the motion of inextensible cable) is solved by Eqs.(5.120) and (5.121). One seg
ment of cable with distributed loading is considered. So the subscript "k" will be
dropped. Therefore , the rigid body motion is assumed as
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where i =H .Substitution of Eq.(5.123) into Eq.(5.12 1) leads to

(c2_ (CO)2)(<I> :, ~~ + <I> ~ ,~~) _ (a/)2(<I>: + <I> ~) + 2ica/ (<I>: - <I> ~) = 0,

2ica/ (<1>1+ <1>1)+ (c2_ (CO)2)(<1>1 _ <1>1 ) _ (a/)2(<1>1- <1>1) = 0
I 2 I , ~~ 2,~~ I 2 •

To solve Eq.(5.124), consider the following functions :

<1>1+ <1>1 = B I eAI!1 and <1> 1- <1>1 = BI eAI!1
I 2 I I 2 2 ,

where AI is constant. From Eq.(5.125), equation (5.124) becomes
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(5.123)

(5.124)

(5.125)

[
A} (C2_(cO)2)_(a/)2

2ica/AI
(5.126)

For a non-trivial solut ion,

I
A

I
2(C2_(cO)2)_(a/)2

2ica/ AI
(5.127)

The four eigen values (AI ) are

I I
A -+.~=+. I A _+.~=+. I

1(1,2) - _I 0 - _I a l , 1(34) - _I 0 - _la2 ·
c +c ' c -c

Using Euler ' s formul a and eigenvectors, the rigid-body displac ement is

V i = sin a/ t[Di cos(ai1])- D~ sin(ai1])

+ D; cos(a~1]) + D~ sin(a~1])]

+cosa/t[Di sin(ai1])+D~ cos(ai1])

- D; sin(a~1]) + D~ cos(a~1])J.

(5.128)

(5.129)

Satisfying the first equation of Eq.(5.12 1) gives D;=-Di, D~ =D~ . Applica

tion of the second equat ion of Eq.(5.121) to Eq.(5. 129) generates

[

COSai - cos a~

sin ai + sin a~

-(sin ai +sin a~ )]{Di}= o.
cos ai - cos a~ D~

(5.130)

Therefore, for any non-trivial solution, the frequency equation is obtained through

I
cosai - cosa~

sin ai + sin a~

-(sin ai + sin a~)1 =0
cos ai -cosa~ ,

(5.131)
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which leads to the natural frequencies of the inextensible cables , i.e.,

I I I Jr[(CO)2 _ c2]
OJp = pOJ , P = 1, 2, ...; and OJ = 0 •

C

(5.132)

(5.133)

The rigid -body displacement of the inextensible cab le is thus written in a form of

V i (1], t) = L:~l { sin(p OJIt) [C~l . p)tp (l , p ) (1]) +C~2 , p)tp ( 2 , p ) (1])]

+cos(pOJ
I
t) [C~2 , p)tp(l ,p ) (1])- C~I , p)tp( 2 , p) (1])] },

where

. (PJrc ) . () (PJrc ) . ( )tp(i J) =SIn --1] SIn pJr1] , tp(2 ) =cos --1] SIn pJr1] .
,1 c

1
,1' c

1

(5.134)

Substitution of V i (1], t) into the second equation of Eq.(5.l2l) and truncation of

the displacement yields

(5.135)

where M is a positive integer. For convenience , equation (5.135) is rewritten in a
matrix form of

where

and

tp(l ,p ) • • •

I
pOJ tp(2 ,p ) .. .

(5.136)

(5.137)

c l
= (C(l,l), C(2,1), . .. , C(I,2), C(2,2), . . ., C~ ,M ) ' C (2,M »)T , }

U~(1]) = (<1>1, r /) T.
(5.138)

To make a square matrix for determining all the coefficients, a function base is in
troduced by

e = (sin (Jr1]) , sin (2Jr1]) , ..., sin (MJr1])) T

The 2M-linear algebraic equations of <: and C (2.p ) are obtained by

(5.139)
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where
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(5.140)

for I::; p ::; M and I ::; q ::;2M ,

(5.141)

(5.142)

for M + I ::; p ::;2M , I ::; q ::;2M .

The other elements of cD l are zero. The unknowns c ' can be obtained by solv

ing Eq.(5.140). Substitution of c' into Eq.(5.133) and neglecting terms with order
higher than M gives an approximate expression of the rigid-body displacement of
the cable at any time. The dynamic configuration at time t is expressed by

(5.143)

From the above analysis, the initial rigid body configuration is very important to
determine the rigid-body motion and the deformation motion. A two-dimensional
traveling, sagged cable is illustrated as an example. The material properties of the
cable are: p = 6000 kg/rrr' , S = 1m, fa = lOON, A = 2.5xlO-5m2

, C = 3.16m/s .

Thus, the non-dimensional parameters are c = I and CO "" 8.17 . The boundary lo
cations are Ax = Ay = 0, B, = 0.8, and B y = O. Consider the vibration of the uni-

form cable near its rigid-body equilibrium under the self-weight , i.e., the loading
is (qx' qy) = (0, - I) . The initial configuration is given through the equilibrium

configuration determined with loading is. .qy) = (I, -I) at t = O. For such an ini

tial configuration, the traveling cable under (qx' qy) = (0, -I) will be vibrated in

the vicinity of its rigid-body equilibrium configuration . The free vibration re
sponses of the rigid-displacement are computed and presented in Fig.5.12. From
the given parameters , the oscillation period is T = 0.2485. The rigid-body con
figuration and displacements versus coordinate X are illustrated for time t =

OT, 0.25T, . . " IT in Fig.5.12(a)-(c), respectively. In Fig.5.12(a), the instant con

figuration of the traveling inextensible cable is presented . The configuration mo
tion is like a pendulum swing motion. The rigid-body displacements of the inex
tensible cable in the vicinity of the equilibrium of(qx' qy) =(0, -I) with c =I are

presented in Fig.5.12(b) and (c). To demonstrate the time-histories of displace
ments, the rigid-body displacements at the midpoint of the cable are illustrated for
the X and Y-directions in Fig.5.12 (d) and (e), respectively. The displacement re
sponses are not simply harmonic. In addition, a plane of two rigid-body displace
ments at the middle point is illustrated in Fig.5.12(t). The acronyms " I.C" denotes
initial displacement of the inextensible cable. The natural frequency versus the ra-
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tio of the translational speed to the constant wave speed is illustrated in Fig.5.l3 .
It is observed that 0/ = °at C= co' For C> Co' the solution presented herein is

not applicable. However, the solutions for the motion of the in-plane inextensible
cable for CE [0,+00) can be referred to Wang and Luo (2004) .

5.4.3. Motions ofdeformable cables

After discussion of equation of motion for the inextensible cable , the motion of
deformable cables can be discussed . With Eq.(5. 107), Equation (5.65) can be ex
pressed through the deformation displacement, i.e.,

[

T. (S)(X I +u l
)]= k k,S k, s _(CO)2x ! .

l+ &: k. SS
k .s

(5.144)

(5.145)

The deformation motion for traveling and rotating cables in Eq.(5.67) is written as

I 2 I 2 I n J K 2nJ( K K )uk,1t + CUk,,,, + C Uk,,,,,+ :,~"Uk eUK+ :.~ , ' Uk" + CUk,,, eUK

+n Jn K L = [~(1])(X:'" +u:.,,)] _( O)2XI
:.~ :.~ UkeUMeMKL C knn :

1+ '
,11

Without rotation ,

I I 2 I [ ~(1])(X:'" +ui ,,,)] ° 2 I
Uk,1t +2cuk,,,, + C Uk,,,,, = 1+ -(C) X k,,,,,·

,,,

The boundary and initial conditions for the elastic deformation are:

ui (O ,t) =0, ui (1 ,t) =0;

ui (1],0) = ifJ: (1]), ui ,t (1],0) = ri (1]).

The continuity conditions are

(5.146)

(5.147)

(5.148)U
I(11 t)-u l (11 t) }k 'I k' - k+l 'I k' , for 1 = 1,2 ,3 .

«(1]k) = ifJ:+l (1]k)' r i (1]k) = ri+l (1]k)

With q =Oand Tk(S)=To(S)=(co)2,Equations(5.144)-(8.146)become

(5.149)
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Fig, 5.12 The rigid-body configuration and displacements varying with coordinate X for
(qx' qv) = (0, -I) : (a) configuration, (b) X-component, and (c) Y-component. The rigid-body re-

sponses of the middle point of the cable: (d) X-compon ent, (e) Y-component, and (I) displace

ment plane. ( c = 1, CO = 8,17 and T =0.2485 ). Initial configuration is given by the equilibrium

for (qx' qy) = (I, - I) .
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Fig. 5.13 Natural frequency varying with the transport speed. ( c = I , e" =8.17).

(5.150)

(5.151)

identical to Eqs.(5.109)- (5.111). The equation of deformation motion becomes the
equation of motion for the inextensible cable. Based on the dynamical configura
tion of the inextensible cable, the pure deformation motion of the cable can be de
tennined by Eq.(5.l44) (or Eq.(5.145) or Eq.(5. l46)) and Eqs.(5.147) and (5.148).
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Chapter 6
Nonlinear Plates and Waves

This chapter will present a nonlinear plate theory from three-dimensional elastic
theory, and the approximate theories of thin plates will be discussed . From such a
theory, approximate solutions for nonlinear waves in traveling plates and rotating
disks will be presented. In addition, stationary and resonant waves in the traveling
plates and rotating disks will be discussed . Finally , chaotic waves in traveling
plates under periodic excitation will be presented .

6.1. A nonlinear theory of plates

In this section, a nonlinear plate theory of thin plate will be proposed from the
theory of3-0 deformable body. In this theory, the exact geometry of the deformed
middle surface is used to derive the strains and equilibrium of the plate. This the
ory reduces to existing nonlinear theories through imposition of constraints . Ap
plication of this theory does not depend on the constitutive law because the physi
cal deformation measure is used. The comprehensive discussion can be referred to
Luo (2000).

Definition 6.1. If a flat deformable body on the two principal directions of fibers
resists the internal forces and bending moments , the deformable body is called a
deformable plate.

6.1.1. Deformation ofa 3-D body

Consider a particle p(yl , y 2, y 3) in a deformable body Il) at the initial configura

tion in Fig.6.1. The particle position R is described by y I :
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Fig. 6.1 A material particle P .

(6.1)

where I I (I = 1,2,3) are unit vectors in the fixed coordinates. In the local curvi

linear refe-rence frame, R is represented by

(6.2)

where the component x ' =R·G I in Eringen (1962) (also see , Chapter 3) and

the initial base vectors G A == G A (X l , X 2
, X 3

, 10 ) are

(6.3)

with magnitudes

IGA (X)I = ~GAA = ~r.~ r.~ (6.4)

without summation on A and GAr = G A ' G r are metr ic coefficients in !:B .

On deformation of !:B , the particle at point P moves through displacement u to

position p , and the particle Q, infin ites imally close to P(X' , X 2
, X 3

, 10 ) , moves

by u +du to q in the neighborhood of p(XI ,X2 ,X3,I) , as illustrated in Fig .6.2.

The position of point p is

r = R+u =(XA +UA)G A,

wh ere the displacement is u = uAGA' Thus, PQ = dR and pq = dr are

(6 .5)

(6.6)
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Fig. 6.2 Deformation of a differential linear element.

and the infinitesimal displacement becomes

du = u~adXaG A = uA;adXaGA,

q
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(6.7)

where z<;x = duA / dX a + r~puP and r~p is the Christoffel symbol defined in

Chapter 2 (e.g., Eringen, 1967). The semicolon represents covariant partial differ
entiation. From Eqs .(6.6) and (6.7) ,

dr = (u~ +o;)GAdXa. (6.8)

The Lagrangian strain tensor E Ar referred to the initial configuration is from Er

ingen (1962), i.e.,

(6.9)

As in Malvern (1969), the change in length of dR per unit length gives

(6.10)

where ca is the relative elongation along Ga ' The unit vectors along dR and dr

in Chapter 3 (also see , Eringen, 1967) are

dR
N =_a_=_I_G

a IdRl fG a'
a "Vaa

(6.11)

The unit vectors of the deformed configuration in the directions gl and gzare
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dr dr
n =_1_ and n =_2_

I Idr I 2 Idr I
I 2

6 Nonlinear Plates and Waves

(6 .12)

Let 8 12 and ~2 be the angles between n l and n 2 before and after deformation,

cos (}12 == cos (812 - ri 2 )

drdr G 2
I 2 12 + EI 2

I~r II ~r I ~(GIl + 2EI I ) ( G22 + 2E22 ) ,

dR·dR G
cos 8

12
= I 2 = 12 ;

I ~II ~I JGI IG22

and the shear strain is

ri 2 == 8 12 - (}12

- I GI 2 - I GI 2 +2EI 2=cos -cos .
JGI IG22 J(GI I +2EII)(G22 +2E22 )

(6.13)

(6.14)

The other shear stains are obtained in a similar manner.
From Eq .(6.11), the direction cosine of the rotation without summation on a

and f3 is

dR ·dr
cos(} . = (X fJ

(Na,npl IdR II dr I
a fJ

(6 .15)

In addition, the area and volume changes from Chapter 3 are given by

~~ = (1 +ea )(1 +eli) sin (}(na,np)

dA sin8(N N )0:/3 1 ((' P

dv s:A A-=1v: +u." I,
dV '

(6.16)

where dv and dV are the infin itesimal material volumes after and before defor

mation, respectively; I,I represents the determinant. The areas after and before

deformation are da =Idrx dr I and dA =IdRx dR I, where a *- f3 '
ali ali ali a Ii

6.1.2. Strains in thin plates

Consider the Lagrangian coordinates to be a Cartesian system:

yl =Xl =X, y 2=X 2 =y, y 3=X 3=z; (6.17)
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and

u = ui+vj+wk,

where I I = i, 12 = j and 13 = k . Therefore , from Eqs.(6.17) and (6.18),

Gaa=l , GaP =0, r~p=o, eap=~ (a*fJ) ·

Then the physical strains in Eqs.(6.10) and (6.14) become

ca = ~(J~ +u:a)(J~ +u./a) -I,

205

(6.18)

(6.19)

(6.20)

(6.21)

where a,fJ,AE {1, 2,3} , {I= x , 2= y , 3= z} and {u) =u, u2 =v, u3 =w} with

summation on 1.
For reduction of a three dimensional deformable body theory to a two

dimensional plate theory, displacements can be expressed in a Taylor series ex
panded about the displacement of the middle surface. Thus, As similar to the basic
kinematics hypothesis in Wempner (1973) , the displacement field is assumed as

/ _ / ( )"= n (I ) ( )u -uo x, y , t + L.... n~ ) z <fJn x ,y, t, (6.22)

where u~ (1 = I, 2, 3 ) denotes displacements of the middle surface, and the <fJ~I)

( n = I, 2, . .. ) are rotations. Due to

dr/J = d sin r /J
dz cos r /J dz

d2r/J _ d2 sin r /J dr /J 2----z - 2 +(--) tan r /J ' ...,
dz cos r /J dz dz

(6.23)

substitution of Eq.(6.22) into Eqs.(6.20) and (6.21) and collection of like powers
ofz gives

(6.24)
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d I 1 d
2

Iv "" ,,(0) + ---.2J.L z + _-----.2:Q. Z2+ . ..
11 2 (1 2 dZ 2! dz2

a e O z=o

{(
-"I (0) ) (I ) (-"2 (0» ) (I )

= riO)+__1_ Vf +Uf ,1 qJf ,2 + Vf +Uf ,2 qJf ,1

12 COS ri~) (1 +CI(O»)(1 +CiO»)

[(
-"I (0) ) (I) ( -"2 (0» ) (I) ] }

. , ,( 0 ) Vf +Uf ,1 qJf ,1 Vf +Uf ,2 qJf ,2
- Slll (I + Z +...

12 (1+CI(0))2 (1+ciO»)2 '

(6.25)

(6.26)

(6.27)

where a = 1,2 . The strains of the middle surface following Eqs.(6.20)- (6.22) at

z=O are

c~O) = ~(o~ +u~,a)(O~ +u~,a) -1 ,

cjO) =~(O; +qJI(I ))(O; +qJI(I»)_l;

riO) = sin - I [(~f +U~, I )(0; +U~'2)]
12 (1+ c

l(O)
)(1+ ciO» ) ,

y;0) = sin - I [(O~ + U~, a )(0; + qJ? ))] .

a 3 (1 + c~O» ) (1 +cjO»)

(6.28)

In Eqs.(6.24)-(6.27) prediction of strain requires specification of three constraints

for determinat ion of the three sets qJ~l) (I =1, 2, 3; n =1, 2, . . . ) like the assump

tions ( ra 3 = c3 = 0) as in Kirchhoff (1850a,b).



6.1. A nonlinear theory of plates

6.1.3. Equations ofmotion
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Consider a thin plate subjected to the inertia force pUI .
tt

and Po is the density of
h+

plate with p = L-Podz ; body force f =I III (I =I, 2, 3 ); surface loading

{p ; , p7} where the superscripts + and - denote the upper and lower surfaces;

external moment m~ (a = I, 2 ) before deformation. The sign convention is

adopted herein. That is, on the positive (or negative) surface, the forces in the
positive (or negative) direction are positive and vice versa. The components for
the distributed forces and moments q = q l I I and m =m' I I =(-Ii' mal fl are

I + rh+ I
q = PI - p7 + Lh- I dz (I = 1, 2, 3),

ma=m~+h+p;+h-pp+ ( _Iflzdz (a,!3E{I,2},a*!3);
(6.29)

where m3= 0 and h = h++ h- . The distributed loading after deformation be
comes

(6.30)

Since the physical deformation measure is based on the Lagrangian coordinates ,
the constitutive laws for such deformation measure is

(6.31)

for determination of the physical stresses directly (or sometimes, termed the
Cauchy stress), where AaflMN are material properties (e.g., Young's modulus,

Poisson ratio). Equation (6.31) can be the Hooke's law for linear elastic materials
or the other similar laws for the plasticity and the others. Based on such physical
stresses, the internal, resultant forces and moments can be determined in the La
grangian coordinates . As in Wempner (1973), the stress resultant forces and cou
ples in the deformed plate are defined as follows:

~ Z 2
M afl = L-O"afl 1+ tpil ) [(1 +ca,)(1+c3) cos Ya'3] dz,

Qa = (_O"a3[(l+Ca,)(1+cJCOSYa'3]dz;

with a' = mod(a, 2) +1,

(6.32)

where Nafl are membrane forces and M afl are bending and twisting moments per
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(6.33)

unit length and a ,j3E {1,2} . If the Kirchhoff assumption ( £ 3 = 0) is used, equa

tion (6.32) reduces to the form as in the textbook. Before the equation of motion
for the deformed plate is developed, the internal force vectors are introduced , i.e.,

Ma == M~I I = (-1)PManp +(-lr Mapna,

.Na == N~I/=Nana+Napnp +Qan 3 '

l'OM a == l'OM~I I =gax.Na,

where

The components of the internal forces in the X I -direction are

N~ = Nana .1/+ Napnp .11 + Qan3 .11

= n, c oS B(na,I
1

) + NaPc oS B(np,1
1

) + Qa cos B(n"I
1

)

= Na (O~ +u~,a) + NaP (0; +u~,p) + Qa(O; + Iff ))
1+ £ (0) 1+ £ (0) 1+ £ (0) ,

a p 3

M~ = (-I i Manp .1/+ (-Ir Mapna .11

= (-1)Pu , c oS B(np,1
1

) + (-lr MaPcoSB(na,1
1

)

M (01 +u'. ) M (0 1 +u'. )= (-1i a p O,p + (-1r ap a O,a
1+ £ (0) 1+ £ (0 ) ,

P a

(6.34)

(6.35)

(6.36)

(6.37)

for (J , J , K E {I, 2, 3}, I '* J '* K '* I) and the indices (I , J , K) rotate clockwise.

Based on the deformed middle surface in the Lagrangian coordinates , the equa
tions of motion for the deformed plates are

.Na,a + q = PUO,II +1lPI,tt '
l'O

M a,a + M , +m = 13uO,1I +J 3(fJI ,II ,

or for 1 = 1, 2, 3 and with summation on a = 1, 2 ,

(6.38)
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N 1 I - I / (I )
a ,a +q - pUO,1t + 3qJI. It'

M
1 ]\'M I I / I J I
a,a + a + m = 3UO,1t + 3qJ(l ),It '
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(6.39)

h+

where summation on a =I, 2 should be completed, and / 3 = L-Pozdz , J 3 =

h+L-Poz 2dz . If h" =h- =h / 2 , then /3 =0 and J 3 =POh
3 /1 2 . The equation of

motion in Eq.(6.38) can be written in a form of

[
Nll(Oi +U~, I) + N12(O; +u~,J + Q,(oi +qJ? ))]

1+e(O) 1+ e(O) 1+ e(O)
1 2 3 ,1

+ [N21(Oi +U~) + N22 (O; +U~, 2) +Q2(O; +qJl(l))] ««
l+ e (O) l+ e (O) l+ e (O)

1 2 3 , 2

(6.40)

(6.41)

The equations of motion for thin plates are given in Eq.(6.38) or Eq.(6.39). They
together with Eqs.(6.25)- (6.28) constitute an approximate nonlinear theory for
thin plates. The equations of motion are based on the deformed middle surface in
the Lagrangian coordinates. The alternative approach presented in Wempner
(1973) can derive the similar equilibrium equations, and also equations (6.33)
(6.41) can be derived through Eq.(6.32) and Boussinesq-Kirchhoff equations in
Eq.(3.201) (e.g., Guo, 1980). The other theories of plates and shells can be refer
enced as in Chien (l944a,b).
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6.1.4. Reduction to established theories

6 Nonlinear Plates and Waves

In this section , several existing plate theories will be presented from the aforesaid
nonlinear plate theory under certain assumptions.

6.1.4a Kirchhoff plate theory

Kirchhoff's assumptions specify 6'3 = ra 3 =O. From Eqs.(6.20) and (6.21), these

constraints for (a = 1,2) become

(0; +u~)(o; +u ~) = 1,, ,

(0; +U,Ia)(O; +u,~) = O.
(6.42)

(6.43)

Substitution of Eq.(6.22) into Eq.(6.42) , expansion of them in Taylor series in z
and the vanishing of the zero-order terms in z gives

(0; +qfl)(O; +qfl) = 1,

(0; +uba)(o; +qfl) = O.

Further, qfl can be obtained from Eqs.(6.43) first. From the Taylor series, vanish

ing of the first order terms in z gives three equations in rpf l similar to Eqs.(6.43) .

The three equations plus rp?l give rpfl ; rp~l) for n = 3,4 , ... can be determined in

a like manner. With the zero-order approximation in Eqs.(6.42) , the solution to

Eqs.(6.43) for {I == x, 2 == y , 3 == z} and {u1 == U, u2 == V , u3 == w} with {u~ == uo,

u~ == vo, u~ == wo} is

where

t.0;+ rp?l = ±_I (J = 1,2, 3),
t.

t.) = v,~w,~ - (1 +v,~ )w,~ ,

t. =uowo-(I+uo)wO,
2 ,y,x ,x ,y

t. 3 = (1 +u,o,)(1+ v,~) - v>,~,

t. = ~t.~ + t. ; + t.~ .

(6.44)

(6.45)

In application, only the positive (+) in Eq.(6.44) is used. With ignoring rpfl , sub

stitution of Eqs.(6.43) -(6.45) into Eqs.(6.25) and (6.27) gives
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d I I d
2

Iv "" ,)0) + ---.2J.L z +_---...2Jl. Z 2 +...
fI2 [1 2 dZ 2! dz2

z=o z=o

{

(
s: / / ) (I) (s:/ / ) (I)

= riO) +__1_ VI +UO•I qJI. 2 + V 2 +UO•2 qJI. I

12 CO S r1~) (1 +C
I
(O))(1 +CiO))

[

( s:/ / ) (I) (S:/ / ) (I) ]}
. , )0) VI + U O•I qJI. I V 2 + U O•2 qJI. 2

- Slll [I + Z +...
12 (1+CI(0))2 (1+CiO) ) 2 '
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(6.46)

(6.47)

Substitution of Eq.(6.42) into Eqs.(6.33)- (6.41) yields the equil ibrium balance for
Kirchhoff' s plates.

6.1.4b Thin plates with moderately large deflections

For moderately large transverse deflection, assumpt ions for the middle surface are
for a = 1,2,

Therefore, the strains of the middle surface become

(0) _ a I ( 0 )2 c. -I 2'ca - uoa +- wa lora- ". 2 .

,,0 2 2 ° °
[ 12 "" UO.I+UO,2+ W,IW,2'

Substitution of Eqs.(6.48) and (6.49) into Eqs.(6.44) and (6.45) generates

(6.48)

(6.49)

(6.50)

Substitution of Eqs.(6.48)- (6.50) into Eqs.(6.30), (6.46) and (6.47), and retention
of terms that are the first order in z, leads to

Ca "" u~a +±(W,~) 2 - w,~az for a = I, 2;

Yi2 "" U~, I + U~ , 2 + w,~w,~ - 2W,~2Z.

(6.51)
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From Eqs.(6.40), (6.49) and (6.51), the equilibrium balance in Eq.(6.39) gives for
a=1,2,

[NafJ -QfJw,~lfJ +qa = PU~II -J3w,~II '

[ N afJw,~ +Qat +q3 "" PW,~t ;

M afJ ,fJ + N I2W,~+I -Qa -v m" "" J3U~1I -J3W,~II'

(6.52)

with summation on f3 =1,2. The density p =Poh is constant. For h' =h: =h / 2 ,

one obtains / 3 =0 and J 3 =Poh
3 / 12 . When the rotary inertia is neglected, the

third equation ofEq.(6.52) becomes

(6.53)

When rna = qa = 0, the shear Qa in the first equation of Eq.(6.52) and N I2 III

Eq.(6.53) vanish, and the first of two equations of Eq.(6.49) plus (6.53) at
h' = h: = h / 2 reduce to the nonlinear plate theory of Herrmann (1955).

The von Karman plate theory (von Karman, 1910) is recovered by letting
rna = qa = 0 and neglecting the terms w~ «I in Eqs.(6.52) and (6.53), i.e., with

summation on f3 = 1,2 , one obtains

N afJ ,fJ "" 0 and M afJ ,fJ -Qa "" 0 (a=1,2).

Substitution of Eqs.(6.53) and (6.54) into the third equation Eq.(6.52) gives

(6.54)

(6.55)

The von Karman theory is applicable to plates of the moderately large deflection
and small rotation, while, the theory in Eqs.(6.49)-(6.52) is applicable to plates of
moderately large deflection and rotation because of Eq.(6.48).

6.1.4c Linear plate theory

The linear theory for thin plates is recovered from Eqs.(6.25)-(6.28) and (6.39),
when the Kirchhoff constraints are imposed: the elongation and shear in the plate
are small compared to unity; the rotations are negligible compared to the elonga
tion and shear, i.e.,

From the foregoing, the strains of the middle surface become

(0) _ a d ,)0) _ 2 Ica - uO ,a an (1 2 - UO,I +UO,2 '

(6.56)

(6.57)

Substitution of Eqs.(6.56) and (6.57) into Eqs.(6.43)-(6.45) generates the rotation
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angles given by Eq.(6.50). With Eqs.(6.50), (6.56) and (6.57), equat ions (6.39) or
(6.40) and (6.41) reduce to the linear plate theory (e.g., Reissener, 1944, 1957)

(6.58)

The shear forces are given by Eq.(6.54).

6.2. Waves in traveling plates

In this section, the nonlinear waves in travel ing plates will be presented . The static
waves in the traveling plates will be discussed first. The resonant waves and sta
tionary waves will be investigated. Finally, chaotic waves in the forced traveling
plates will be discussed.

6.2.1. An approximate theory

As shown in Fig.6.3, a thin rectangular plate simply supported along the four edge
moves axially with a constant speed c and are subject to a distributed surface load
ing Q(x, y) and a longitudinal force P(y) applied at the edges . The length, width

and thickness of the moving plate are I, b and h, respecti vely. Transformation of
the coordinate system (x , y ,t) traveling with the plate to a fixed coordinate sys-

tem (~, y,t) needs

~= ct+ x, (6.59)

where t denotes time. The geometric constraints for moderately large deflect ion
plates in Eq.(6.45) become

u.~ "' O(v.~ )"' O[(w.~ )2 ]« 1, l+ c~O ) "' 1;

(6.60)

where 0 .,; and O.y are derivatives with respect to ~ and y. u",VO and WO are dis

placements of the middle surface in the ~ -, y- and z-directions , respectively; and

c~ , c~ denote the corresponding strains in the middle surface . Owing to Eq.(6.60),

the strains in Eq.(6.46) and (6.47) are

(6.61)
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z

y

x,q

Fig. 6.3 A simply supported plate trave ling with speed c in the x-direction.

where the strains of the middle surface are

(6.62)

From Eqs.(6.52) and (6.60), equations of motion for axially moving plates are:

[N,w.~ + N ,yw.: +Q,l, +[N,yw.~ + N yw.: +Qyly

+ Q(;-,Y ,t) '" Poh(w
o+ 2cw.~ + C2W.~,) ;

(6.63)

(6.64)

(6.65)

(6.66)

(6.67)

where superscript "dot" (e.g., W== dw / dt) denotes the derivative with respect
time t, and Po is the density. The membrane forces {N" N y, N,y} , bending mo-

ments and twisting moment {M" M y, M , J are

(6.68)
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M x = - D(w.~, +flW,~y),

M y = -D(w,~y +flw,~,),

M,y = My, =-D(I-fl)w,~y,
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(6.69)

(6.70)

where E and fl are Young's modulus and Poisson ratio , respectively. The flex

ural rigidity is D = Eh3 /1 2(1 - fl 2) . Substitut ion of Q, and Qy with Eqs.(6.68)

and (6.69) into Eqs.(6.63)- (6.65) gives

1 1
u,~, +'2(1- fl)u,~y +'2(1 + fl)v,~y

1 1
+w~[ w~r +-(1- fl)wo ]+-(1 + fl)w~ ,wo," ,,, 2 ,}y 2 ,,} ,}

+ I~ h
2
{[(\72WO)" w,~l, +[(\72WO) ,yW,~ ly}

Po(1- fl 2) (il + Zcu". +c2UO )
E ",,, ,

1 1
VO +-(1- fl)v~r +-(1 + fl)u~

,}y 2 ." 2 "y

1 1
+w,~[w,~y +'2(1- fl)w'~']+'2(1-fl)w,~yw,~

+ l~ h
2
{[(\7

2
WO ),yW,~ly + [(\72WO)" w,~l,}

Po(1- fl 2) ( ,, 0 2 '° 2 ° )
E v + cv" +c v,,, , (6.71)

(6.72)

where \72 and \74 are the two-dimensional Laplace and biharmonic operators, re
spectively.

The displacement boundary conditions are

uO(O,y ,t) =u°(l , y ,t) = wO (O,y, t ) =w°(l, y ,t) =0,

w,~,(O, y,t) = w,~,(l , y,t) = 0;

vO(s,O,t) =vO(s,b ,t) = wO (s, O,t ) = wO (s, b, t ) =0,

w,~/s,O,t) = w,~/s,b,t) = 0.

The force boundary conditions are

(6.73)
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rN,dy = rP( y ,t)dy at S-=O, I;

l N yds-=o at y =O,b .

The specified initial conditions are

6 Nonlinear Plates and Waves

(6.74)

uO(s-, y , z) 1,=0= lp,o(S-, y), ti°(S-, y , z) 1,=0=¥/,o(S-, y),

VO (S-, y, r) 1,=0= lp~ (S-, y) , lio (S-, y ,r) 1,=0= ¥/~ (S-, y) ,

WO(S-, y, r) 1,=0= lp~ (S-, y ), J-i,o (S-,y ,r) 1,=0= ¥/~ (S-,y ).

Following Chu and Herrmann (1956), non-dimensional variables are

S- y UO VO WO h
x=- y=- u=- v=- W=- '&=-

b ' b ' i:' b ' b' b '

where b:S; 1 . Other new notations are

(6.75)

(6.76)

(6.77)

With transformation to these variables, the equations of motion in Eqs.(6.70)
(6.72) become

I I I
u xx +-(1- p)u yy +-(1 + p)v xy + W A w xy +-(1- p)w yy J
' 2 ' 2 ' " 2 '

I & 2 2 2
+-(1+p)w xyW y+- {[(\7 w) x w x Jx + [(\7 w) yW x Jr}2 " 12 ' " , , ,

&2 .. . 2
'" -(u+ 2c1u X + c, Uxx ), (6 .78)12 ' ,

I I I
v yy +-(1- p)v xx +-(1 + p)u xy + W y[Wyy +-(1- p)w xy J
' 2 ' 2 ' " 2 '

I &2 2 2
+-(1 + p)w rrw xy +-{[(\7 w) yy w yJr+[(\7 w) x w yJx }

2 " 12 " , " ,

& 2 .. . 2
"' - (v + 2c,v x +c, v xx )' (6 .79)

12 ' ,

[N x W,x +2N xyW,yL +[ N yw,y + 2N xyW,x I,
3 * &2 4 &2 .. • 2

+& q '" - \7 w+-(w+ 2c,W X + c, W xx ), (6 .80)
12 12 ' ,
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Accordingly, the membrane forces are

_ N, _ e' , 1 Z 1 Z
Nx =-z----p +[u x+-(wx) ]+,u[v y+-(w y) ],

cpPo h 12 ' 2 ' , 2 '

s , 1 z 1 z
N y =-z-=[v y+-(w y) ]+,u[u x+-(wx) ], (6.81)

cpPo h ' 2 ' , 2 '

_ N,y _ 1
Nxy =-z----(1- ,u)(v x +u y+ W XWy).

cpPoh 2 " "

The boundary conditions in Eqs.(6.73) and (6.74) are

u(O,Y,t) = u(1/r ,Y,t) = 0;

w(O,Y,t) = w(1/r ,Y, t ) = w,n (O,Y,t) = w,n(1/r ,Y, t) =0;

v(X,O,t) =veX, l,t) =0;

w(X,O,t) = w(X,l,t) =W,yy(X,O,t) = w,yy(X,l,t) =0; (6.82)

I e' I1Nxd Y =121P'(Y,t)dY atX=O,1/r ;

rifr.10 N ydX = ° at Y=O, I.

The initial conditions from Eqs.(6.75)-(6.77) are

u(X,Y,t) 1,=0= IJ'I(X ,Y) , zi(X,Y,t) 1,=0= '1/1(X ,Y) ;

v(X,Y,t) 1,=0= IJ'z(X,Y), v(X ,Y,t ) 1,=0= 'l/z(X,Y);

w(X,Y,t) 1,=0=1J'3(X ,Y) , w(X, Y,t) 1,=0= '1/3(X,Y) .

(6.83)

From the above non-dimensionalized equations , the waves in traveling plates can
be obtained. However , it is very difficult to get closed-form solutions. The pertur
bation analysis will be adopted herein which may not be proper for chaot ic waves ,
but it can be as an approximate estimate .

6.2.2. Perturbation analysis

To balance the e « 1 in Eqs.(6.78)- (6.80), the perturbation expansions of the dis
placement from Eq.(6.60) are

W = cWI +c3
w3 +" ',

u = e'u , +C
4U

4 +" ',
v = c Zv z + C

4
V4 +...

(6.84)
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Without loss of generality, set W3 = Ws = . .. = °to avoid the tedious work of deri

vation. The membrane forces are represented by

2 1 * 4N x = e (-P + N2X)+ e N4y + " ' ,
12

N; = e' N2y + e
4
N4y +" ',

N xy = e' N2xy +e
4
N4xy + " ' ,

where

1 2 1 2
N 2X = [U2X +-(WIx ) ]+ ,u[v2Y +-(WI y) ],

, 2 ' , 2 '

1 2 I 2
N2y = [V2Y+-(WI y) ]+ ,u[U2x +-(W, x ) ],

, 2 ' , 2 '

1
N2xy = -(1- ,u)(v2x + u2Y+ WIXW, y);

2 " "

N(26) X = U(26),X+ ,uV(26),Y'

N(26)Y = V(26),Y+ ,uU(26),X'

where (J' = 2, 3, 4, ....

Substitution of Eqs.(6.84)-(6.87) into Eqs.(6.79)-(6.81) gives :

for order e":

1 1
u2XY +-(1- ,u)u2IT +-(1 + ,u)v2xy

, 2 ' 2 '

1 I
+WIAWl XY +-(1- ,u)w, IT ]+-(1 + ,u)wIxyW, Y = 0,, , 2 ' 2 "

1 1
v2IT +-(1- ,u)v2xx +-(1 + ,u)u2XY, 2 ' 2 '

I 1
+wIy[w, YY +-(1- ,u)wIxx ]+-(1 + ,u)wIYXW, xx = 0;, , 2 ' 2 "

for orde r e3
:

for orde r e' :

(6.85)

(6.86)

(6.87)

(6.88)

(6.89)
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for order e" :

1 1
U( 2c;).XX +"2(1- /l)U(2C; ).YY +"2(1 + /l)V(2C; ).XY

1 ( .. 2 ' 2 )
= 12 U( 2c;_I) + CIU(2c;_I).X +c l U( 2c;-I).XX '

1 1
V(2c;),YY +"20- /l)V(2C; ),XX +"20 +/l)U(2C; ),xy

1 ( oo 2 ' 2 )= 12 V(2c;-I)+ cj V(2c;-I),X +cl V(2c;-I),XX ;

where (J = 3, 4, .... The boundary conditions in Eq.(6.83) become

U2(0,Y) = u2(1/r , y) = 0;

WI(0,Y) = WI0/r ,Y) = wI,xx (0,Y) = wl ,xx (ljr ,Y) = 0;

v2 (X ,0) =v2 (X ,1) =0;

WI(X ,O) = WI(X ,l) = WI,YY(X,O) = W
"
yy(X ,l) = 0;

£N 2X dY = ° atX=O, ljr ;

rtfr
.10 N ,ydY = ° at Y=O,l;

and

U(2 c; )(0, y) = U(2c; )(1/r , y) = 0; V(2c;)(X ,O) = V(2c;)(X ,l) = 0;

rl rtfr

.10 N(2C;)X dY = ° atX=O,ljr ;.Io N(2C;)Y dX = ° at Y=O, 1;
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(6.90)

(6.91)

(6.92)

(6.93)

where (J = 2, 3, .. ..

Through this perturbation analysis, the initial conditions in the in-plane direc
tions will be dropped. This analysis just provides an effect of inertia on the defle c-
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tion of plate in the transverse direction. For accurate analysis, the perturbation
analysis may not be adequate. As in Levy (1942), a solution for the transverse dis
placement in Eqs.(6.88)-(6.91) that enforces the displacement boundary condi
tions is

(6.94)

(6.95)

Only the single mode (m, n) motion of plate is investigated herein. For the multi

ple mode solution, the mode-interaction should be investigated owing to the plate
nonlinearity . The mode-interaction for the static waves can be referred to Luo and
Hamidzadeh (2004). Substitution of Eq.(6.94) into Eq.(6.88)-(6.91) yields

u2~ +~(1- ,u)u2yy +~(1 + ,u)v2XY = ~(m;r3r)};12 sin(2m;rrX)
, A A 2 . 2 ' 4 mn

x {(mr) 2- un' -[(mr)2+n2]cos(2n;ry)} ,

1 1 1 3 2 .
V2,YY +'2(1- ,u)v2,xx +'2(1 + ,u)uz.xy = '4(n;r )};mnsm(2n;rY)

x {nz - ,u(mr) 2_[n2+ (mr) z]cos(2m;rrX)} . (6.96)

The solutions to Eqs.(6.95) and (6.96) with the boundary conditions in Eq.(6.92)
are given by

Substitution of Eqs.(6.94), (6.97) and (6.98) into Eqs.(6.90) leads to

1 1
u4 xx +-(1- ,u)u4 yy +-(1 + ,u)v4 XY

, 2 ' 2 '

;r ' 2 .. 2 2 2

= 96(mr) [(};mn+ };mn};mJ - 2CI (m;rr) };mnl

x {(mr) 2[cos(2n;ry) -1] + ,un2}sin(2m;rrX)

CI (mr);r2 . 2 2
+ };mn};mn{(mr) [cos(2n;rY)-1]+,un }cos(2m;rrX)

48

(mr );r5 2 2 2 2 .
+ 24 [(mr) +n ]};mn{(mr) sm(2m;rrX)[1-cos(2n;rY)]

+n' sin(2m;rrX) sin(2n;rY)},

1 1
v4 xx +-(1- ,u)v4 YY +-(1 + ,u)v4 XY, 2 ' 2 '

(6.97)

(6.98)

(6.99)
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Jr ' 2 .. 2 2 2
= 96n[C!;mn+ J;mnJ;mn)-2c1(mJrr) J;mn]

X {n2 [cos(2mrJrX) -1] + fl(mr) 2}sin(2nJrY)

(mnr )Jr
2

c1J;mnj;mnsin(2mrJrX) sin(2nJrY)
48

5

+ nJr [(mr)2 +n' ]J;~n {n2sin(2nJrY)[1- cos(2mJrrX)]
24

+ (mr)2 sin(2mJrrX) sin(2nJrY)} .
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(6.100)

From the boundary conditions in Eq.(6.93), the in-plane displacements u4 , v4 are

I ·· ' 2 22 [(mr)2- fln2
u, = 384Jr[J;mnJ;mn+ J;mn-2(c1mJrr) J;mJ (mr) 3

xsin(2mJrrX)- ~r 2 Sin(2mJrrX)COS(2nJrY)]
(mr) +n

1 · {2 2 2 [ ]+ 192J;mnJ;mn (mr) 2[(mr) -fln ] cos(2mJrrX)-1

c,m
2r[(1-fl)(mr)

2+(3+fl)n
2]

[ (2 .V) 1] (2 Y)}+ cos mJrr11 - cos nJr
(1- fl)[(mr)4 + 3n4+ (3 - fl)n 2(mr) 2]

3

+ m;; [(mr)2+n2]J;~J1-cos(2nJrY)]sin(2mJrrX) , (6.101)

n .. . 2 2 2

384Jr[(mr)2 +n2][J;mnJ;mn+ J;mn-2(c,mJrr) J;mn]

xsin(2nJrY)cos(2mJrrX)

c,mnr[(3+fl)(mr)2+(1-fl)n2] .
192(1- fl)[(mr)4 +3n4+ (3 - fl)n 2(mr) 2] J;mnJ;mn

x sin(2nJrY) sin(2mJrrX)

nJr3[n2 +(mr)2]
+ 96 J;~n[1-cos(2mJrrX)]sin(2nJrY). (6.102)

Substitution of the displacement solutions into Eqs.(6.86) and (6.87) generates the
membrane forces (e.g., Luo and Hamidzadeh, 2004) . Furthermore, substitution of
both of them into Eq.(6.80) and use of the Galerk in method gives

(6.103)

where the coefficients are determined by
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a
mn

= JZ.4[(mr)2+n2]2+Jr2(p* - c~ )(mr)2,

fJ = a(l ) + a (2) +£ 2 a (3 )
mn f'mn f'mn f'mn'

3Jr4
f3~~ = 4[(mr)4 + n4](3 - ,u2)+ 3,uJr2(mr) 2,

4

f3~~ = - ~6 (~)2 {[(mr)4 -(,un2)2]
Cp

(mr)2
+ 2 2 [(mr)4 +n4+2,u(mr)2n2]} ,

2[(mr) +n ]
6

f3~~ = -1~2 [(mr)2+n2]{3[(mr)4 +n4]-2,un2(mr)2},

Jr2 { 2 2 2 n4 (mr)4
r: = 192 (mr) +n -,u ((mr)2 +~)

+ Jr: 2 [(mr)4+ n4+ 2,u(mr) 2n2]},
2[(mr) +n ]

q: n = 192q*.

(6.104)

The subscript "1" has been dropped from now on without loss of generality. Note

that the terms f3~I~ , f3~~ , f3~; and Ymn are related to the nonlinear transverse deflec

tion, the in-plane Coriolis acceleration, the shear forces at the in-plane equilibrium
and the in-plane inertia, respectively. The vibration solutions are determined by
solving Eq.(6.103). From Eq.(6.103), the in-plane inertia tenn is of £ 2-tenn . For
thin plates , such terms can be ignored. Such a discussion can be referred to Pasic
and Hermann (1983).

6.2.3. Static waves

Let time-relative terms vanish, the static waves can be discussed from the above
solutions :

/ +fJ / 3 - *
a mnJ mn mn J mn - q mn ° (6.105)

The buckling stability for the mode (m,n) of the axially moving plate is by

amn = 0 . In other words, a critical speed is determined by

e el' = (6.106)

For c < cer , the traveling plate will not be buckled. For C > c.; , the traveling plate
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(6.107)

will be buckled. If the plate is stationary, i.e., C = 0 , the buckling stability for
compressed plates is recovered,

Ehn ' h2

P = _ [(mr)2+ n2]2< 0
cr 12(1- ,u2)(mr)2 b2

being identical to that of Timoshenko (1940) . If axially moving plates are very
thin, they can be considered to be axially moving flat membranes. Hence, a critical
tension of axially moving membranes is

(6.108)

For P <~r = Poc
2h, the axially moving membrane wrinkles.

Compared with the existing results , equat ion (6.105) reduces directly to several
specific cases :

(i) linear theory

(6.109)

If c, = 0 , equation (6.109) is recovered to the linear result in Timoshenko

(1940) .

(ii) von Karman theory

{;r4[(mr)2+n2]2+;r2(p*- c
I
2)(mr)2}l mn

+{3:4

[(mr)4 +n4](3-,u2)+3,u;r2(mr)2} r: = 192q'. (6.110)

At c1 = 0 and m = n = 1, equat ion (6.110) is identical to the result of Chu and

Herrmann (1956) .

(iii) nonlinear membrane theory

( 3;r4
;r2(p*_ c,2)(mr)2L; +I~n l4[(mr)4 +n4](3- ,u2)

2;r4
+3,u;r\mr)2-,/ _C1_ {[(mr)4-(,un2)2]

192

+ (m:) 2 2 [(mr)4+ n4+2,u(mr)2n2]})=192q' .
2[(mr) + n ]

(6.111)

Consider material properties (E = 2xlO" N / m", Po = 7.8x103kg/m3
, ,u = 0.3 )

with geometrical properties (I = 2.0m, b = 1.0m ,h = 2mm). If Q= 39.11N / m2

and c = l m/s, we obtain h mn=2 from Eqs.(6.76) and (6.103) at m=n=l,

P = 200N. The displacements of static waves in the three-directions from
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Eqs.(6.76), (6.77), (6.94), (6.97) and (6.98) are plotted in Fig.6.4(a)-(c). The in
plane displacements are much smaller than the deflection in the transverse direc
tion satisfying Eq.(6.60).

6.2.4. Nonlinear waves

For the free vibration of thin plates, let q* = 0 and ignore the very small in-plane

inertia compared to the transverse inertia for e = h/b « 1, but the in-plane Corio

lis acceleration increasing with increasing translation speed is retained in the
nonlinear term. Equation (6.104) becomes

The Hamiltonian of the periodic orbit of Eq.(6.112) is

H =~i'2 +~ / 2 +~R /4
0- 2 J mn 2 a mnJ mn 4 P mnJ mn '

(6.112)

(6.113)

Evaluation of Eq.(6.113) with appropriate initial conditions in Eq.(6.83) leads to
Ho = Eo and Eo = constant. The comprehensive discussion was presented in Luo

(2003). From the energy H o' the wave solutions of the pre-buckled and post

buckled plates are discussed as follows.

6.2.4a Pre-buckled plates

For the pre-buckled plate (amn ~ 0 ), the solutions to Eq.(6.112) are

(6.114)

where en, sn and dn are Jacobi-elliptic functions, K (kmn ) is the complete elliptic

integral of the first kind, and Amn and kmn are the amplitude of t: (t) and the mod

ulus of the elliptic function for the (m,n) -mode wave:

(6.115)

The natural frequency is
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Fig. 6.4 Static waves in traveling plates : (a) transverse displacement w, (b) longitudinal displac

ement u, and (c) longitudinal displacement v. E = 2 X io''N/m' , Po = 7.8x Io' kg I m' , /l = 0.3 ,

1=2.0m, b =I.Om, P =200 N/m , c= l rnls , Q =39. II N /m' , h =2mmand m =n =l.
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(6.116)

For 13mn = 0 (or Eo = 0) . s.: = 0 in Eq.(6.115) results in K(kmn) = lC / 2 . Further

more, the linear natural frequency is recovered from (6.116), i.e.,

(6.117)

OJ = 0 gives the critical speed of buckling plates determined. Substitution of

Eq.(6.114) into Eq.(6.84) with Eqs.(6.60), (6.76) and (6.77) generates the trans
verse displacement of the nonlinear wave :

0_ hA [hCpK(kmJOJmnr k ] . mlC(x+cr) . nlCy
W - mncn h ' mn Sill Sill

~kb2 I b

" { . [mlCX mite hCpOJmn ]= L.... U(2P-l)mn Sill --+(--+(2p-l) r;;; 2 )r
p~ l I I ~12b

. [ hCpOJmn mite mlCX]}. nny
-Sill ((2p-I)-----)r--- Slll--,

JUb 2 I I b

where the (2p _I),h order subharmonic wave amplitude is

u = lChAmn
(2p-l)mn [KI(k )] .

2k K(k ) cosh lC(2p-I) mn
mn mn 2K(kmn)

6.2.4b Post-buckled plates

(6.118)

(6.119)

For the post-buckled plate (amn < 0 ), either Eo ;::: 0 or Eo s 0 exists . For the case

of Eo ;::: 0 , the free vibration wave solution , natural frequency and subharmonic

wave conditions are the same forms as in Eqs.(6.114) and (6.116) for the pre
buckled plate , but the magnitude Amnand r: are

A =J2k Iamn I k =_1 1+ Iamn I
mn mn 13mn»: -I) ' mn J2 I 2

'lJ 413mnEo-«;
The linear model gives OJmn = 0 at either 13mn = 0 or Eo = O.

In the case of Eo ::; 0 , the solution of Eq.(6.112) is

(6.120)
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where Amn and kmnare determined by
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(6.121)

A =mn (6.122)

The corresponding nonlinear frequency is

(6.123)

As «; ~ 0 , K(kmn)~ Ir / 2, and then the nonlinear frequency wmnin Eq.(6.123)

converges to the linear natural frequency . That is,

(6.124)

Note that kmn = I in Eq.(6.123) at 13mn = 0 (or Eo = 0) gives K(kmn)~ 00 , so that

wmn = 0 in Eq.(6.123) and Eq. (6.121) becomes

(6.125)

However, for linear analysis, the system will become unstable. Similarly, substitu
tion of Eq.(6.121) into Eq.(6.84) with Eqs.(6.60), (6.76) and (6.77) results in an
expression for the transverse displacement,

o hA d [hCpK(kmn)Wmnr k ] . mlr(x+cr) . nxyw = n , sm Sln--
mn lrJ12b2 mn I b

_LV {. [mlrx (mlrc PhCpWmn)]
- SIn --+ --+ r

1'= 1 pmn I I J12b 2

. [(PhCpWmn mlrc) mlrx]}. nny-sm -- r--- sm--
J12b 2 I I b '

where the p th -order subharmonic wave amplitude is determined by

(6.126)
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Upmn

2K(k )COSh[PJrK'(kmn ) ] '
mn }((k

mn
)
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(6.127)

The following parameters (E=2x101IN/m2
, Po =7.8x10 3kg/m3

, /1=0 .3,

I = 2.0 m, b =1.0 m, h = 2 mm and P = 200 N/m ) are used in Fig. 6.5 for illus

tration of natural frequency. The (1,1) -mode wave natural frequency versus the

plate translation speed is shown in Fig.6.5(a) for specific conservative energies
given by the initial conditions . The natural frequencies for the pre-buckled and
post-buckled plates are plotted on the left and right sides of the dot-line . For the
post-buckled plates, two natural frequencies are generated by the positive and
negative conservative energy. The two frequencies merge essentially at critical
point with zero natural frequency which can be obtained from Eqs.(6.116) and
(6.117), (6.123) and (6.124) directly. The computational accuracy of the complete
elliptic integral of the first kind at k ~ 1 cannot provide an accurate solution in
Fig.6.5(a). The results for Eo = 0 give the natural frequency determined by the li

near model. The critical translation speed at the pre-buckled plate OJ= 0 is noted.
In the linear model, the instability occurs. The critical translation speeds for the
nonlinear frequency of mode (m,n) at Eo = 0.0 are plotted in Fig.6.5(b). For the

plate parameters specified above, the minimum critical translation speed occurs in
the (2,1)-mode. The buckling instability first occurs in the (2,1)-mode as the trans
lation speed increases from zero. To illustrate the nonlinear natural frequency va
rying with the translation speed, the (m,n) -mode wave frequency versus the

translation speed for specified conservative energy are presented in Fig.6.6.

6.2.4c Resonant and stationary waves

Resonant wave: From the time-dependent terms In Eq.(6.118), there are two
mode-frequencies for a specified (m , n) :

(2P -l)hc/JJmn mnc
Q == =+=-- ~ 0, for subcritical wave;

1.2 .J12b2 I

mite (2P -l)hc OJ
Q ==--=+= p mn ~ 0, for supercritical wave.

' .2 I .J12b 2

(6.128)

The resonant condition for a two-frequency system is mlQ, = m2Q 2 • With

Eq.(6.128), the resonant condition gives the translation speed:

m
j
-m

2
(2p-1)hlcp OJmn

c = r,;:;' for subcritical motion;
m, +m2 mJr,,12b2
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Fig. 6.5 (a) Natural frequency ~ 1 versus translation speed for specified initial energy Eo , (b)

critical translation speed for (m,n) -mode waves predicted by the linear model at Eo = 0.0. The

linear critical speed is denoted ca ' (E = 2x 1011N /m 2
, Po = 7.8x 103 k g/m 3
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b = 1.0 m, h = 2 mm, P = 200 N/m ).
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(6.129)

where integers m" m2 are positive and irreducible and m, > m2 • Equation (6.129)

gives the (m, : m2 ) resonance of harmonics at p=l and of the (2p-1)th sub

harmonics for p > 1. The strength of resonance in Eq.(6.119) is the strongest since

the hyperbolic function "cosh" increases exponentially as the order of subharmon
ics (i.e., 2p -1 ) increases.

For the linear model, the natural frequency in Eq.(6.117) with the resonant
condition give

m1 -m2 I
c = ---'---=-

m, +m2 mb2

for subcritical motion;

m, +m2 I n 2

c = (r2+-2)2c~ h 2 + (p*C~ h2 _12c2b2)r2,
m1 - m2 mb2 m

for supercritical motion.

(6.130)

Note that the resonant translation speed in Eqs.(6.129) and (6.130) are applicable
to the post-buckl ed plates for Eo > O. For the traveling, post-buckled plate, the

resonant translation speed for Eo < 0 is

m, -m2 phlcpOJmnc = for subcritical motion;
m1 +m2 mJrmb2

'

m
1
+m2 phlcpOJmnc = for supercritical motion.

m, -m2 mJrmb2
'

Stationary waves: The stationary wave requires Q, = 0 which gives

(6.131)

(6.132)

for the (2p -T) " order, subhannonic stationary transverse wave of the transverse

displacement of the pre-buckled plate. Likewise, substitution of Eq.(6.114) into
Eqs.(6.97), (6.98), (6.10 I) and (6.102) yields the longitudinal free vibration wave
solutions and the corresponding stationary wave conditions for the in-plane mo
tions. The condition for the (2p _I) th order subhannonic stationary wave of the

longitudinal displacement is one-half c in Eq.(6.132).
For the post-buckled plate, the translation speed for the stationary wave of

Eo > 0 is the same expression as in Eq.(6.132) only except for the Amn and kmn

given in Eq.(6.120). However, for Eo < 0, the translation speed for the pth order
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subhannonic transverse stationary wave is
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(6.133)

The longitudinal stationary wave translation speed is one-half in Eq.(6.133). For
the linear vibration of traveling plates, the translation speed for the stationary
wave IS

(6.134)

Such a detailed analysis can be referred to Luo (2003).

6.2.5 Chaotic waves

As in Luo (2005), consider q:n(t) =Qocos Or in Eq.(6.103). For a thin plate in

forced vibration, the in-plane inertia is ignored because it is very small compared
to the transverse inertia as e = hjb « 1, but the in-plane Coriolis acceleration is

retained in the nonlinear term due to the transport speed. Equation (6.103) be
comes

A Hamiltonian of Eq. (6.135) is

H-~ f2+~ r2+~j3 r4_r Q Q- 2 J mn 2 a mnJ mn 4 mnJ mn J mn 0 cos t.

(6.135)

(6.136)

where the Hamiltonian can be divided into the time-independent and time
dependent parts, i.e., H = Ho+HI ' where Ho and HI are the conservative energy

and the work done by the excitation:

H -~ f2 +~ r2 +~j3 r 4 d H r Q "0 - 2 J mn 2amnJ mn 4 mnJ mn an I=-J mn o COS ~d. (6.137)

Evaluation of the conservative energy with appropriate initial conditions
o · 0

U mn,lmn ) reduced from Eq.(6.83) leads to H o = Eo = constant. From H o' the

periodic solution and the nonlinear natural frequency of the conservative system
of the axially traveling plate are estimated in Section 6.2.4, and using the solution
and frequency of the conservative system, the analytical condition for chaotic
wave motion in the axially traveling plate can be achieved.
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6.2.5a Pre-buckled plates
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If the axially traveling speed of the plate is less than the critical traveling speed,
the axially traveling plate is not buckled, i.e., amn ~ O. Substitution of Eq.(6.l 14)

into H, in Eq.(6.137) yields the subhannonic resonant condition, i.e.,

Q = (2p-1)wmn , (6.138)

where p is a positive integer. From H" a separatrix generated by the (2p -l)th

subhannonic resonance has the similar property as the heteroclinic orbit, thus, the
chaotic wave motion might appear in vicinity of the separatrix. From the theory of
Luo (1995) (also see, Han and Luo, 1998; Luo, 2002, 2008), the energy increment
of an orbit of Eq.(6.135) in the neighborhood of the (2p-1)th resonant separatrix

during one period T(Eo) = 2Jr/ wmn can be approximated by the work done by the

excitation traveling along one cycle of a conservative orbit related to the
(2p -l)th resonant condition, namely,

where

/lJi '" rO+
T(EO)[a1!oaH, _all, aHoJd!= U sinQ!

t ar ar ar ar mn 0 '
o 'J mn 'J mn 'J mn 'J mn

(6.139)

(6.140)

where k~n = ~1- k;n . The minimum condition for the chaotic motion related to

the (2p -l)th resonance in Luo (1995, 2002, 2008) is

where

G ir-:» '" 0.9716354mn mn ' (6.141)

(6.142)

Once any other primary resonance of the system is involved in the chaotic wave
motion near the assigned resonant separatrix, the chaotic wave motion relative to
the (2p -l)th resonance is destroyed. Thus, the maximum condition for chaotic

motion related to the (2p -I )th resonance is

(6.143)
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6.2.5b Post-buckled plates
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If the axially traveling speed of the plate is over the critical traveling speed, the
axially traveling plate is buckled (i.e., amn < 0). For the axially traveling, post-

buckled plate, the chaotic conditions for cases of Eo > 0 , Eo < 0 and Eo = 0 are

discussed.
For the case of Eo > 0 , the solution and natural frequency of the conservative

system of Eq.(6.135), subharmonic resonant and chaotic conditions for Eq. (6.135)
are of the same as Eqs.(6.114), (6.116), (6.138), (6.141), (6.143), but the magni
tude Amn and kmn are given as in Eq.(6.120).

For the case of Eo < 0, the solution and natural frequency of the conservative

system of Eq.(6.135) for the axially traveling, post-buckled plate are given by Eq.
(6.121). Substitution of Eq.(6.121) into HI gives the sub-harmonic resonant con-

dition:

(6.144)

As in the axially traveling, pre-buckled plate, the minimum and maximum condi
tions for the chaotic motion relative to Eq.(6.144) are

and

where

G ( p )U ( p ) "" 0.9716354
mn mn '

J2J[nQ pJ[K(k' )
_--==-_0 h mn - E p+1 E P

fa sec K(k) - 0 - 0 '
"f3mn mn

(6.145)

(6.146)

(6.147)

For the case of Eo = 0 , the solution of the conservative system of Eq.(6.135) is

given by Eq.(6.125). The solution describes the homoclinic separatrix . The chaotic
wave motion in vicinity of the homoclinic separatrix is associated with the motion
of both Eo > 0 and Eo < O. The chaotic wave motion near the homoclinic separa-

trix involves many resonant motions of both Eo > 0 and Eo < O. Therefore, the

analytical conditions for the (2p -l)th resonance of Eo > 0 and the pth reso

nance of Eo < 0 embedded in chaotic motion near the homoclinic separatrix are
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2Q nIt h Jrn-E 2 p - 1
oJr --sec ~ - 0 ,e: u«.

and

6.2.5c Prediction comparisons
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(6.148)

(6.149)

Using the energy spectrum methods in Luo (2002 , 2008) , the numerical prediction
of the appearance and disappearance of the resonant separatrix can be carried out.
The analytical and numerical conditions for chaotic wave motions will be illus

trated from the parameters (i.e., E = 2xl011N/m 2
, Po = 7.8x103kg/m3

, 11 = 0.3,

1= 2.0 m, h = 2 mm, P = 200 N, m = n = I ). For the axially traveling, pre

buckled plate at the transport speed c = 15m!s < ccr ' the analytical and numerical

conditions for chaotic motions near the primary resonant separatrix are shown in
Fig.6.7, where the solid and dash curves represent the maximum and minimum
analytical conditions, and the triangle and circle lines denote the corresponding
numerical prediction. Only the maximum condition for chaotic wave motion in the
primary resonant separatrix zone of the first order is found in Fig .6.7 because the
sub-resonance of the primary resonance of the first order is very strong. Once the
chaotic motion in the resonant separatrix zone of the first order appears, the cha
otic wave motion includes other primary resonance. For the axially traveling, post
buckled plate at the transport speed c = 35m!s > ccr ' the conditions for chaotic

wave motions in the primary resonant separatrix for Eo > 0 and Eo < 0 are

shown in Fig.6.8(a) and (b). The numerical and analytical conditions for the pri
mary resonance of both Eo > 0 and Eo < 0 embedded in the chaotic wave motion

in the zone of the homo clinic separatrix are plotted in Fig .6.8(c)-(d). Note that the
solid and circular symbol curves depict the analytical and numerical conditions.

From Fig.6.7 and Fig .6.8(a)-(b), the analytical and numerical conditions for the
chaotic waves in the resonant separatrix zone are not in very good agreement be
cause the energy increment is approximated (i.e., Eq.(6.139)) . For this reason , if
the excitation is very strong , then the agreement of the analytical prediction with
the numerical prediction becomes worst. In additions, the sub-resonance in chaotic
motions near the primary resonant separatrix zone should be modeled to improve
the analytical prediction of chaos . However, the analytical and numerical predic
tions for the primary resonances embedded in chaotic motion near the homoclinic
orbit are in very good agreement. The comprehensive discussion can be found in
Luo (2008) .
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6.2.5d Chaotic waves in resonant zones

The Poincare mapping sections of chaotic wave motions near the resonant separa
trix and the homoclinic orbit in the axially traveling plate are plotted in Figs.6.9

6.11 for the running time 3x 105 T where T = 2J[ / Q . The large circular symbols
are equilibrium points for conservative system in Eq.(6.135). The small circular
symbols are equilibrium points for the resonant separatrix , which is determined by
the resonant layer dynamics in Luo (2008). The red and green circular symbols
represent stable and unstable equilibriums, respectively. The initial condition

(.: =0.5398 , i:n=18.7908), the excitation frequency and amplitude (Q =
57.1181, Qo =610 > Qomin

"" 600), the transport speed ( c =15m!s) and other pa

rameters given as before are used, and the corresponding Poincare mapping sec
tion of the chaotic wave motion in the resonant separatrix zone of the third order
for the axially traveling , pre-buckled plate is produced , as shown in Fig.6.9. The
maximum non-dimensional displacement t: = w / h is about 1.5. This implies

that the chaotic motion might occur in the small amplitude oscillation of plates
when the corresponding geometrical nonlinearity is invoked in the governing
equations of motion .
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Fig. 6.8 (continued).

In Fig.6.l O(a), the chaotic wave motion near the primary resonant separatrix
zone of the third order for the axially traveling , post-buckled plate is illustrated

through the Poincare mapping section for ( r: =0.7376 , i:n=28.6717 ,

Q = 60.6762, Qo = 270 > Qomin
"" 265 , c = 35mJs ) and other parameters are given

as before. To stimulate the same type of resonant separatr ix, the excitat ion ampli
tude for the post-buckled plate is much smaller than for the pre-buckled plate.
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Two Poincare mapping sections of chaotic motions near the primary resonant
separatrix zone of the second order in the left and right potential wells of the axi
ally traveling, post-buckled plate are plotted in Fig.6.1O(b). Two illustrations use

the same excitation (Q =25.4274 , Qo =4.5> Qomin
"" 3.5 ) and the same conserva

tive energy Eo = -5.7963 , but they are totally different because of signs of dis

placement in the two wells. The hyperbolic points selected as initial conditions for

numerical simulations are o: =-0.5617 and j~n =-0.3099 ) in the left well and

u: =0.3615 and j~n =0 ) in the right well. From Fig.6.1O(b), chaotic wave mo

tions near the primary resonant separatrix in two wells are not symmetric even if
phase portraits for the non-excited case of Eq. (6.135) are symmetric. The Poin
care mapping sections of chaotic wave motions near the homoclinic separatrix are
shown in Fig.6.l1(a) and (b) for (Qo =1.2 >Q~r "" \. 05, Qo=3 .5 >Q~r "" 3.2 ) at

Q = 20.0 and (f~n = r: = 0) . In Fig.6.II(a) the primary resonance of the second

order for Eo < 0 is embedded in chaotic wave motion near the homoclinic separa

trix. With the excitation amplitude increase, the primary resonance of the third or
der for Eo > 0 are implanted in the chaotic wave motion near the homoclinic sepa-

ratrix, as clearly shown in Fig.6.11(b).

6.3. Waves in rotating disks

In this section, waves in rotating disks will be presented. As in traveling plates, the
perturbation analysis for rotating disks will be carried. Through the energy analy
sis, an approximate solution for waves in rotating disks will be presented (also see,
Luo and Mote, 2000). Finally, the resonant and stationary waves in the rotating
disks will be discussed.

6.3.1. Equations ofmotions

Consider a flexible, circular disk rotating with constant angular speed Q , as
sketched in Fig.6.l2. The disk is clamped at the hub r = a, free at the outer
edge r = b , and is of uniform thickness h. Both the rotating and stationary coordi
nate systems (r , tJ, r) and (r , B, r) satisfy

B=tJ+Qr. (6.150)

For large deflection plates, the accurate plate theory in Section 6.2.1 (also see,
Luo, 2000) requires:
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Ur,r ""O(U'9,r) ""O[(Uz,J ], - Ur,o ""O( -uo,o) ""O[(-Uz,o) ] ;

r r r
1 2 1 1 11 2U + -(u ) « 1 - u + -U + -(-U ) « I '

r.r 2 z,r 'r r, O r 0 ,0 2 r z, o '

1+e, "" 1, 1+ Co "" 1,

(6.151)

where a comma in the subscript denotes partial differentiation, and three dis
placement componen ts of a material point on the disk are represen ted by u , ' Uo

and Uz •

Under Eq.(6.151), three componen ts of strain in the middle surface are ap
proximated by

(6.152)
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From Eqs.(6.151) and (6.152) , the accurate plate theory in Section 6.1 (e.g., Luo,
2000) gives force and moment balances :

1 1
[N -(Q U )] +-[N -(Q U )] +-(N - N )r r Z ,r ,r r r8 e Z ,r ,8 r r e

+PohQ2r = POh(ur + 2Qur IJ +Q2ur IJIJ)'. .
1 1 1 2

[NrlJ --;(Qruz.lJ)Jr +-;[N IJ --;(QlJuz.lJ)llJ +-; NrlJ

= Poh(ulJ +2QulJ,1J +Q2UIJ,IJIJ) '

I 1 I
-[r(Nruz,J + N rlJuz,1J + rQrJ,.+-[-(N lJuz,lJ) + NrlJuz,r +QIJ] IJ
r r r '

= Poh(uz+ 2QuzIJ +Q2uzIJIJ) ', ,

1 2
M rlJ r+-MIJIJ+-MrlJ+ NrlJuzr-QIJ =0,, r ' r '

(6.153)

(6.154)

(6.155)

(6.156)

(6.157)

where the superscript dot denotes derivative with respect to time t . Qr and QIJ

denote shear forces in radial and hoop cross sections . In the von Karman theory ,
shear force contributions in Eqs.(6.153) and (6.154) and membrane force contribu
tion in Eqs.(6. 156) and (6.157) were not considered. The membrane forces
( Nr , N IJ , N rlJ ) are

Eh I 2 1 I I 2
N =--{u +-(u ) + I/[-U +-U +-(u )]}r 1 2 r,r 2 z,r r- r IJ,IJ 2 2 z,1J '-Il r r r
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Eh 1 I 1 2 1 2
Ne =--2 {-Ur +-Uee +- 2 (Uze) +,u[U, r+- (UzJ ]},

1- ,u r r ' 2r ' , 2 '

Eh 1 1 1
N = [u +-U --u +-U U ]',e 2(1 +,u) e,1 r I,e r e r Z,I z,e '

and the bending and twisting moments ( M , ' Me ' M ,e ) are

I I
M, = -D[uz rr + ,u(-uz ' + - 2Uz eo )]'

, r ' r '

1 1
Me = -D(-uz,1+2Uz,ee + ,uUZ,II)'

r r
1 1u, = - (1 - ,u)D(-;,uz"e - --;Z Uz,e),

(6,158)

(6,159)

(6,160)

where E and zz are Young's mod ulus and Poisson ratio , and the stiffness for disks

is D = Eh3/12(1- ,u2) ,

For convenience, the following dimensionless variables are introduced,

r U U U a h
R = - U =-!.... U =--!!... U = -!.... K= - e=-

b ' R s ' e s ' z s ' b' b'

eCp ' * m bo. 2 Et = -- 0. = --- C = -------,-
mb' ec

p
' I' Po(1_,u2) ,

With Eq,(6 ,160), substitution of Eqs ,(6.156)-(6,159) into Eqs ,(6,153) -(6.165)
yields

(6,161)
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Where

2 az 1 az 1 az
V' =-+---+--

aR z R aRae RZ aez '

4 az 1 az 1 az az 1 az 1 az

V' = (aRz +/i. aRae +Ji.2 aez )(aRz +/i. aRae +Ji.2 aez) '
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(6.162)

(6.163)

(6.164)

(6.165)

Note that the £2 tenns in Eqs .(6.161) and (6.162) represent the shear force contri
butions computed by the bending and twisting moments and in-plane membrane
forces , centrifugal forces and the rotation-induced Coriolis inertia and the other
nonlinear terms are directly contributed by the in-plane nonlinear membrane
forces . The (1- f.1) terms in Eq.(6.163) are the contribution of the shear membrane

forces and shear forces in the transverse direction. In the von Karman theory of ro
tating disk (Tobias and Arnold, 1957; Nowinski,1964; Advani, 1967), the shear
force contribution to the in-plane force balances and the contributions of in-plane
membrane forces to the moment balances were not considered. The detailed dis
cussion on the aforementioned effects can be referred to Luo (2000) .

Similarly, the membrane forces in (6.158) become

- I z 11 I 2
N R = URR+-(UZR) + f.1[-UR+-Uoo+--z (U 0) ],

. 2 ' R R ' 2R z,

- 11 1 z 1 2NO=-UR+-UOO+--z(Uzo) +f.1[URR+-(UZR)],R R ' 2R ' . 2 .

- 1-f.1 1 1 I
N Rn =--(UnR +-URn-s-u.+-Uz RUZn).

u 2 o , R ,u R U R ' ,u

The corresponding boundary conditions become



246 6 Nonlinear Plates and Waves

(6.166)

In addition , the radial and shear membrane forces at R = I require NR = NRe = 0 ,

i.e.,

1 211 1 2 tURR+-(UZR) +,u[-UR+-Uee+-2 (Uz e) ]=0,
, 2 ' R R ' 2R '

at R = 1.
I 1 I

Ue R+-URe --Ue +-Uz RUze=O,
, R ' R R ' ,

(6.167)

If the waviness of the disk exists only in the transverse direction, the initial condi
tions are

UR= UR=Ue =Ue =0,

Uz =<I>(R,B), v, ='P(R,B), att=O.
(6.168)

(6.169)

To proceed with analysis of Eqs.(6.161)-(6.163) in the small parameter of
0 < e = hl b « I , series solutions satisfying Eq,(6.151) are proposed as

U =eU(1)+e3U (3 )+ .. ·
Z Z Z '

U = e 2U(2 )+e4U(4 )+...
R R R ,

U; =e2U~2)+e4U~4)+ ... .

When the series solutions in Eq.(6.169) are substituted into Eqs.(6.161)-(6.163), it
is found that the inertial forces in the radial and circumferential directions are of
order e' but the one in the transverse direction is of order e3

• Therefore , in the
following analysis, the inertial forces in the radial and hoop directions are ignored .
In other words, without loss of generality , we only retain terms through e' to
avoid higher order calculation in radial and hoop direction . Substitution of
Eq.(6.169) into Eqs.(6.l6l) and (6.162) gives for order e":

U (2) +~U (2) __l_U(2) + l-,u U (2) + 1+,u U (2)
R,RR R R,R R2 R 2R 2 s.oe 2R e.se

_ 3-,u U (2) +U(l) (U (l) + l-,u U(l) ) + 1+,u U (l) U(l)
2R 2 e,e Z,R Z, RR 2R 2 Z, IJIJ 2R 2 Z,Re z.e

+ l-,u[(U(l ))2__I_(U (l ) )2]+~Q*2R =0
2R Z,R R2 z,e 12 ' (6.170)
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_1_ U (2) + I-fl (U (2) +~U(2) __I_ U (2))
R2 e.ee 2 e,RR R e,« R2 e

1+ fl U (2) 3- fl U (2) 1+ fl U (l) U (l)+-- +-- +--2R R,Re 2R2 R,e 2R Z,R Z,Re

+~U(l ) [_I_U (l) + 1- fl (U (l) +~U(l ) )] = 0
R z» R2 z .ee 2 Z,RR R Z,R '
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(6.171)

By Eqs.(6.166)-(6.168), the boundary and initial conditions for U~2), U~2) and

U~I) are

(6.172)

(6.173)

(6.174)

6.3.2. Nonlinear waves

A solution for the transverse displacement satisfying the boundary condition in
Eq.(6.172) is

~ 4

U~I) = L L cs:: Lise(I) cos(sB) + Iss(I) sin(sB)],
s=O m=O

(6.175)

where J; (I) andIss(I) are generalized coordinates , s denotes the number of nodal

diameters , and Cm are obtained from Eq.(6.172), i.e.,

(6.176)
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2 1
aID =- (ao--;;.al + II! a2), all = a.s:' -2a2K+a3 ,

2 1
a l2 = 2alK -3a211! +a4 ; a20 = - (bo--;;.bl + II! bJ,

a 21 =blll!-2b2K+b3 , a22 =2bIK-3b211!+b4 ;

am= (m+s)(m+s-l)+ Ji(m+s-s 2);

bm= (m +s - 2)[(m+ S)2 _ S2]_ (1- Ji)(m + s -1)s2.

(6.177)

Without loss of generality, in the analysis , that follows single-mode solutions for a
specified s will be sought. Substitution of Eqs.(6.175) into (6.170) and (6.171) for
specified s leads to

U~2 ) = rr~2 )v: + fs~) + rr~2 ) [ v: - fs~) cos(2sB) + 2(fscfss) sin(2sB)]

_ Q *2 {R3 + [(1 + Ji)K
4

- (3+ Ji)1I! ]R-
I

+ [(1- Ji)K
4

+ 3+ Ji]R} (6.178)
96 (1- Ji)1I! + (1 + Ji) (1- Ji)1I! + (1 + Ji) ,

U~2) = n ~2) [(fs; - fs~) sin(2sB) - 2( fscfsJ cos(2sB)J, (6.179)

and the functions rr ~2 ) , rr~2 ) and rr ~2 ) are given by

4

rr~2 ) = Al
oR+ A~KI + L (AIOO~1 +m2 +2sR+ A~0~1 +m2 +2sKI)logR

ml,m2=O

rr (2) = - A R2s+1 - A R2s-1 + b A R-2s+1 + A R-2s-1
I a l I 2 I 3 4

~ [ ,I - O~ +m, , 1- O~ +m,+ ~ -a
l
Al I. ~ 1.

ml,m2 ~0 ml +m2-2 ml +m2

1-0
2

1-0
0]

+b
1
A

3
mj+m 2+4s +A

4
mj+m 2+4 s Rmj +m2+2s - 1

ml +m2+4s-2 ml +m2+4 s

4

+ " [-a A 0 2 R2s+1
- A 00 R2s-1

L..J I 1 mj +m 2 2 m\ +m 2
m!,m2=O

b A' ;;-2 R-2s+1 A';;-o R-2s-1 ] I R+ 1 3Um j+m2+4s + 4Uml +m2+4s og ,

(6.180)

(6.181)
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4

+ '" [.402 R2s
+

1 +.4 00 R2s
-

1
L...J I m j +m2 2 mj +m2

mj ,m2= O

A' ~2 R-2s+1 A' co R-2s - 1] I R+ 3U mj+m2+4s + . 4 U mj+m2+4s og ,
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(6.182)

o 0 ' 0 '0 '
where all the coefficients Al ' A2 ' • • • , A4 , AI , A2 , ••• , A4 , b, and b2 are determined

by Eqs.(6.170)- (6.173) with Eqs.(6. 178) and (6.179),0/ is the Kronecker delta.

Substitut ion of Eq.(6. 169) into Eq.(6.165), retention of the term s £2 and use of

U~2) and U~2) gives the membrane forces:

- 1 *2 L !- 2!-2
N R = 96 0 NR + NRO ( sc + sJ

+NRI [(is; - is;)cos(2sB) - 2(isciss) sin(2sB)] ,

- I 0 *2 L (/2 / 2)
No = 96 No + Noo i sc+ i ss

+No, [( is; - is; )cos(2s B) - 2(iscisJsin(2 sB)] ,

NRO = NROi [(!-; - is;)sin(2sB) +2(isciss) cos(2sB)],

(6.183)

where N RO' Roo, . .. , N ROI are computed through n~2 ) , n ~2 ) and ni2) • The linear

membrane forces are

N L = (1-,u)[(3+,u)r -(1+,u)K
4

] R-2

R (l-,u) r+(1+,u)

+ (l + ,u)[(l- ,u)K
4

+ 3 + ,u] (3 + ,u)R2,
(1-,u)r +(1+,u)

NL = (1-,u)[(1+,u)K
4

-(3+,u)r] K 2
o (l-,u)r+(1+,u)

+ (1 + ,u)[(1- ,u)K
4

+ 3 + ,u] _ (3,u + I)R 2.
(1- ,u) r +(1+,u)

(6.184)

For specifi ed s, substitut ion of Eqs.(6.175), (6.178) and (6.179) into Eq.(6.163)
and use of the Galerkin method yields :

*2
"j +20" i' +(as+O Yo 0 ' 2 2)/ + Ysc+ Ys O(/2+/2)/_0

J se SJ ss f3s - S J se fJs J sc J ss J sc - ,

"j -20' s i' +(a,+o'2yo 0 *2S2) / +Y,c+ Y,0( / 2+ / 2) / =0'
J ss 'Lsc fls i ss f3s J sc J ss J ss ,

(6.185)
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I 1- K"+n+2s+1
f3s = CmCn,12 m+n+2s+1

Yo = tt~{(I-,u)[(I+;)K4-3~][(m+s)(m+s-2)+s2]
m=On=O 96 (1- ,u)K +(1 +,u)

1- K"+n+2s-3 (1 +,u)[(l- ,u)K4+3] [( )2 2]
X m+s -s

m+n+2s-3 (1-,u)~+(1+,u)

1- K"+n+2s-1
X +[(m+s)(m+s+ 2)(3+ ,u)-s2(3,u+ I)]

m+n+2s-1
1- K"+n+2s+1 }

X C C ,
m+n+2s+1 m n

4 4 [ 1r: =~~ (m+ s)(n+ s-l) INRoRm+n+2s-2dR

+S 2fNooRm+n+2s-2dR-(m+s)(NRORm+n+2s-l(JCmCn,

4 4 [ 1r: =~~ (m+s)(n+s-I) I N RI Rm+n+2s-2dR

+S2fNOlRm+n+2s-2dR- (m+ S)(N RIRm+n+2s-1(

-(2s)(m+ n+ 2s -1) fN ROlRm+n+2s-2dR

+(2s)(NROlRm+n+2s-1(Jc.c;

(6.186)

(6.187)

(6.188)

(6.189)

(6.190)

Notice that the coefficients as' YO' /3" Y,o' Ysc are related to the plate stiffness,

centrifugal forces, inertia forces and the membrane forces. The second term in
Eq.(6.183) is caused by the Coriolis force. When s = 0, two equations in

Eq.(6.183) are identical. The problem reduces to the symmetrical one. For the
symmetrical response, no Coriolis force contributes on the symmetrical response.
Only the centrifugal force caused by rotation affects the symmetrical response .
Therefore, the analyses given by Lamb and Southwell (1921) and Southwell
(1922) are only for the symmetrical response of rotating disks.

The normalization of the initial conditions in Eq.(6.174) gives:

o 1 ~ r2
Jl" rl m+sJ; = ---=- L. CmJo JK <P(R,B)R cos(sB)dRdB,

n:::.. m=O
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1 4 2Jr !

is~ =-=ICm £ L\Il(R ,B)Rm
+
s cos(sB)dRdB,

TC:::. m=O

1 4 2,, !

fs~ = -= I c. £ L<P(R,B)Rm
+
s sin(sB)dRdB ,

TC:::. m=O

I 4 2,, !

is~ =-=ICm £ LqJ(R,B)R m
+
s sin(sB)dRdB,

TC:::. m=O

where

4 4 1- K"'+n+2s+!

?:=II CC .
m=On=O m + n + 2s + I m n

Integration of Eq.(6.185) leads to a constant energy function :

H =J...( r2 + r2 )+ J... [a S +Q*yo (Q*S)2]( 1"2 + 1"2)
2 J sc J ss 2 f3s J sc J 5S

+ 1 Ysc+ Yso ( 1"2 + 1"2)2 = E .
4 f3s -l sc i ss 0
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(6.191)

(6.192)

(6.193)

For the hardening disk (r,c+ Yso) > 0 and for the softening disk (Ysc+ Yso ) < O.

The integration constant Eo can be determined by Eqs.(6.192) and (6.193) .

(A) For (Ysc + Yso) > 0 , the solution to Eq.(6.192) with Eq.(6.191) is

irA = [ IrK(k')]= S sech 21 + 1 s
J; 2k

sK(kJ
~ ( ) 2K(kJ

x(cos{[(21+ 1)(Os + Q*s ]1+ (21 + 1)lpo+ ¢lo}

+cos {[(21 + 1)(Os - Q *s]1 + (21 + 1)lpo - ¢lo})'

I" IrAs ~ h [(21 I) IrK(k;)]
J

ss = 2ksK(kJ trt sec
+ 2K(kJ

x(sin {[(21 + 1)to, + Q*S]I + (21 + l)lpo+ ¢lo}

-sin {[(21 + 1)(Os - Q *s]1+ (21 + l)lpo- ¢lo} ) ,

(6.194)

where K(kJ is the complete elliptic integral of the first kind, k; = ~l-k: ' As tS

the amplitude, to, is the natural frequency without Coriolis forces and lpo is the

initial phase

A =~ k =~J..._ C (0 = JBIr .
s ~( + ) ' s 2 2B ' s 2 73K(k ) ,r: r: "fJs s
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B = ~C2 +4(rse+ rso )f3sEo'

C =a +Q'2r· tana = is~ .
s ''1''0 1'0 '

J sc

tn[2Kc;Jq>o ,ks ]dn[2Kc;Jq>o ' ks ]

Jr~[is~ -(Q's)is~]2 +[is~ +(Q's)is~] 2

20Js K (k,)~t: +t:

(6.195)

where dn and tn are elliptic functions. Substitution of Eq.(6.194) into Eq.(6.175)
gives transverse displacemen t:

U~') = f;I. JrAsCmR
m

+
s

sech[(21 + 1)JrK (k; ) ]
I~O m~O 2ksK(kJ 2K(kJ

x( cos {[(21 + l)OJs + Q ' s ]t + (21 + I)q>o+ ¢o - sO}

+cos {[(21+ 1)m, - Q ' s ]t + (21 + l)q>o- ¢o+ sO} ) .

(B) For ( rse + rso) < 0 , the solution to Eq.(6.190) with Eq.(6.192) is

JrA oo [ JrK(k')]= s csch 21 + 1 s
i; 2ksK(kJ ~ ( ) 2K(kJ

x(sin {(2/+1)OJs +Q' s]t+(2/+1)q>o+ ¢o}

+ sin {(21+ l)OJs - Q ' s]t+ (21 + l)q>o- ¢o} )'

I' = Jr As ~CSCh[(2/+1)JrK(k;)]
J

ss 2ksK(kJ '6: 2K(kJ

x(- cos{(21+ l)OJ, + Q ' s]t + (21 + I)q>o+ ¢o }

+cos {(2/+1)0J, -Q' s]t+(2/+1)q>o- ¢o})'

where

Cj -B1 k _ Cj -B, _.JC:+B: Jr .
As = Ir,e+ /',01' s - C, + B, , OJs - 2.fi K(ky

B1 = ~C,2 -4lrse+ r: If3sEo,

C =a +Q'2r · tan ,n = is~ .
I s ' '1'0 1'0 '

J sc

(6.196)

(6.197)
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cs [ 2K (;JqJo , ks] dn [ 2K ~JqJo ,ks]

lC [is~ -(Q* s)fs~J +[is~ +(Q*s)fs~J

2OJsK(kJ~fs~ + fs~

Substitution of Eq.(6.197) into Eq.(6.175) gives

uil) = ft lCA,CmR
m

+
s

CSCh[(2/+ 1)lCK(k;)]
,~O m~O 2ksK(kJ 2K(kJ

x(sin {[(21 + l)OJs+ Q*s]t + (21 + l)qJo+ ¢io- s8}

+ sin {[(21 + I)OJs - Q' s]t + (21 + l)qJo - ¢io + s8}).
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(6.198)

(6.199)

U~2) and U~2) can be detennined from Eqs.(6.178) and (6.179) in a similar man

ner. From time-dependent sine and cosine terms in Eq.(6.189) or Eq.(6.199), they
indicate two dimensionless, modal frequencies:

m; ={(2/+1)OJ,.±Q*s, if (2/+1)OJ,. ~ Q's ,

1.2 Q*s±(2/+1)OJs' if (2/+1)OJs ~ Q*s.
(6.200)

From the nonline ar waves, linear waves can be obtained from reduction of nonlin
ear waves. If the nonlinear terms in Eq.(6.190) vanish, the linear solution is ob
tained as

where

+ cos [(OJs - Q' s)t + qJo- ¢io + s8 ]} , (6.201)

(6.202)

Because (Ysc+Yso)=O in Eqs.(6.195) and (6.198), ks = O, K( kJ=lC/2 and

Eq.(6.20 1) is recovered. tn[2K(kJqJo/n ,kJ = tan qJo ' sc[2K(kJqJo/ lC ,ks]=cot qJo

and dn[2K( kJqJo/lC, kJ =1 as ks =O. The Jacobi's nome in Byrd and Friedman

(1954) gives for k; < 1,
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and

lim ~sech[(21+1) tcK(k;)]
~ ~O ~ K(~)

~[l + 2(ks) 2+ 15(kS)4 + . . .]4(1+1/2) {I
. 16(1+11 2) 4 4 - , for 1= 0,

= hm 2(2/+1 ) = 2
k,~O 1+~[l + 2(ks) 2+ 15(ks)4 +...]4(2 /+1 } 0 for 1*O·

16(21+1 ) 4 4 "

lim~csch [(21+1) tcK(k;)]
~~o ~ 2K(~)

~[ 1 + 2( ks )2 + 15(ks)4 +. . .t (l+1/2) {I
. 16(1 +1 /2) 4 4 - , for 1= 0,

= ll~ 2(2/+1) = 2
' 1_ _ks__[1+2(ks) 2+15(kS)4+ ... ]4(2/+1 ) 0, for 1*0.

16(2/+1 ) 4 4

(6.203)

(6.204)

(6.205)

Therefore, as r,c + Yso = 0 , the subharmonic terms in Eqs.(6.196) and (6.199) for

1*0 vanish. The linear solution in Eq.(6.201) is recovered.
Natural frequencies predicted through the linear analysis for specific 5 are

shown in Fig.6.13. The frequency is independent of modal amplitude As . From

Eqs.(6.188) and (6.191), the natural frequency in the nonlinear analysis depends
on As and nodal-diameter number 5 because Eo and ks depend on As and 5. The

natural frequency in the symmetric mode ( 5 = 0 , 1= 0) is plotted in Fig.6.14
for As' Vanishing amplitude As = 0.0 returns the linear prediction . For As ::; 1.0,

the nonlinear prediction of the natural frequencies differs from the linear predic
tion by less than 6.5%. The natural frequencies predicted by use of Eqs.(6.160)
(6.163) and the von Karman theory are identical for5=0. The natural frequency
(5 = 3 , 1= 0) for an asymmetric response of the hardening disk is depicted by the
solid line through Eqs.(6.160)- (6.163) and the dash line through the von Karman
theory in Fig.6.15. The natural frequencies for such disk increase with As ' The

natural frequency predicted by two nonlinear theories differs by less than 10%
as As < 0.4 . The critical speeds, predicted by the linear theory, the von Karman

theory and the new theory, are n erL '" 35,000 rpm, n erK '" 39,600 rpm and

n erN '" 43,600 rpm at As = 0.4 , respectively .
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Fig. 6.13 Natural frequency of the computer disk predicted through the linear analys is.

(a =15.5 rnrn, b= 43 mm, h =0.775 mm, Po =364Ikg/m3
, E = 69 GPa, u =0.33 .)
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Fig. 6.14 Natural frequency (s = 0, 1=0 )of the disk. A, = ~.f,; +/,; is modal amplitude . Two

nonlinear theories give the identical predictions. Two nonlinear models at A. = 0 reduce to the

linear model. (a = 15.5 mm, b =43 mm, h =0.775 mm, Po =3641kg/m3
, E = 69 GPa, fl =

0.33.)
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Fig. 6.15 Natural frequency (s = 3 , I = 0 ) of the hardening disk. A, = ~f,~ + f, ; is modal am

plitude. The solid and dash lines denote this theory and the von Karman theory. Two nonlinear
models at A, = 0 reduce to the linear model. Q " UQ" K and Q " N are the critical speeds predicted

through the linear theory, the von Karman theory and the new theory, respectively .

(a =15.5 mm, b = 43 mm, h =0.775 mm, Po=364Ikg/m3
, E = 69 GPa, u =0.33 .)

6.3.3. Resonant and stationary waves

Herein, from nonlinear and nonlinear wave solutions of the rotating disks, the re
sonant and stationary waves will be discussed. In this section, such materials can
be referred to Luo and Tan (2001).

6.3.3a Resonant waves

Applying the resonant conditions for multiple degrees-of-freedom systems in
Lichtenberg and Lieberman (1992), the two natural frequencies in Eq.(6.200) sat
isfying m/iJl = n/iJ2 , require

n's = ml +n1 (2/ +1)OJ
5

, for (2/ + l)OJ
s

< n os,
m.r n,

n's = m1
- n1 (2/ +1)OJ

5
, for (2/ + l)OJ\ > n's;

ml +n1

(6.206)
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(6.207)

where integers m, and nl are positive and irreducible and ml > nl. Equation(6.206)

gives the im. : nl ) resonance of hannon ics at l = 0 and of the (2l + I)th sub

harmonics at l;j:. O. The amplitude of resonance in Eq.(6.195) or Eq.(6.198) at
l = 0 is the largest because the hyperbolic function "sech" or "csch" decreases
exponentially as l increases. The rotational speed at which the specific sub
harmonic (ml : nl ) resonance occurs can be solved through Eq.(6.195) (or

Eq.(6.199)) and Eq.(6.198).
For the linear vibration, the natural frequencies in Eq.(6.202) are

{

OJs =+= Q*s, if OJs ~ Q*s,
(jJ =

1,2 11* if < n *
~.., s=+=OJs' 1 OJs-~" s .

The resonant condition ml(jJ1 = nl(jJ 2 gives:

for OJ
s

< Q*s;

(6.208)

for OJ
s

> Q*s.

Consider a 3.5 inch diameter disk similar to a digital memory disk with inner
and outer radii of a = 15.5 mm, b = 43 mm; thickness h = 0.775 mm , density

Po= 3641kg/m3
, Young' s modulus £ =690Pa and Poisson's ratio v = 0.33 . For

an initial condition ( Is~ = 0.1, Is~ = 0.05 and r: = t: = 0.0 ), the wave amplitude

is A = As = 0.1118 and rAI = 26.565° . Using the resonant conditions and the given

wave amplitude of generalized coordinates, the resonant spectrum based on the
nonlinear plate theory is illustrated in Fig.6.16(a). The fractional numbers repre
sent the (m, : n,) -resonance defined by (jJ I / (jJ2 = n I / m 1 • From the second condi-

tion of Eq.(6.206) or (6.208), two limiting cases exist: Q = 0 at nl / ml = I and

Q = Q cr at nl / m, = 0 , where Q cr is determined by the stationary wave condition

discussed later. However, from the first condition of Eq.(6.206) or (6.208),
Q = Q cr at nl / ml = 0 and Q = 00 at nl / ml = 1. In Fig.6.16(b), the resonant rota-

tional speed varying with the wave amplitude is illustrated for a (2:1)-resonant
condition. When the initial wave amplitude vanishes, the resonant condition re
duces to the one predicted by linear model. For hardening (softening) modes ofro
tating disks, the resonant rotational speed increases (decreases) with increasing
wave amplitude. For a linear (2:1)-resonant wave response with s = 4 , the rota
tional speed is Q = 10,7695 rpm from Eq.(6.208). At this rotation speed, Isc,lss
as predicted by the linear theory are shown in Fig.6.17(a). A triangular locus of
the J; versus Iss diagram results from m I +n, = 3 . In the nonlinear (2:1)-primary

resonant response, the rotational speed for wave amplitude A = 0.1118 is
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Q = 10,941 rpm computed from (6.206) with l = 0 and s = 4 . As in Fig.6.17(b),

as time increases, the locus of heversus t; generates a rotating triangular form

because of the sub-harmonic terms in the wave solution (e.g., Eq.(6.194)).

6.3.3b Stationary waves

For stationary waves, the natural frequency OJ] =(2/ + I)ws - Q*s =0 is required,

i.e.,

Q* = (2/ + I) [
2.J2s

(6.209)

If the non-dimensional, rotation speed Q* satisfies Eq.(6.209), one of traveling
waves becomes stationary . From Eq.(6.209) a stationary wave is possible for each
integer l and a specified s. Note that the l = 0 terms give the primary harmonic
waves and the /;j:. 0 terms give the subharmonic waves. The rotation speeds for
the stationary waves at l = 0 are referred to as the critical speed in the linear anal
ysis. For linear vibration of the rotating disk, the stationary wave satisfies
OJ] = Q's - to, = 0 that leads to

(6.210)

Moreover, with the condition to, - Q' s = 0 and the initial velocities is~ =

is~ = 0.0, equation (6.183) gives he= r: and I; = h~ . Thus one obtains

4

UZ = L CmRm
+
s
[h~ cos(sB) +h~ sin(sB)].

m=O

(6.211)

The rotational speed for a stationary wave in the linear model is
Q =38,546 rpm, computed from Eq.(6.21O) for s =4 as an example . At this

speed, he=0.1 and I: =0.05 are independent of time. The rotation speed for

the stationary wave of the first order (i.e., (2/ + I) =I) is Q =38,700 rpm com

puted from Eq.(6.209) with A = 0.1118 .
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Fig.6.16 (a) Resonant spectrum (s = 4, I = 0) based on the nonlinear theory for the primary wave

with amplitude A z 0.1118 . (b) (2 : I) -resonant conditions represented as a function of wave

amplitude and rotational speed for primary waves. The resonant condition for the linear model is
at A = 0 . The fractional numbers indicate the (m l : n l ) -resonance defined by {jJ 1 I {jJ 2 = ni l mi'

( a =15 .5mm, b = 43mm, h =0.775 mm, p o =364 Ikglm3
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Because the backward waves in the nonlinear model include infinite numbers
of terms in Eq.(6.189) or Eq.(6.199), the stationary wave condition (i.e.,
(2/ +1)0)5- Q ' S = 0) is affected by the other non-zero terms of backward sub

harmonic waves. In Fig.6.18, the stationary conditions are illustrated as a function
of the wave amplitude and rotational speed. The critical speed at A = 0 is denoted
by Q cr ' The rotation speed for stationary waves in the hardening (or softening) ,

rotating disk modes increases (or decreases) with increasing wave amplitude .
These hardening and softening characteristics are similar to those observed in re
sonant waves.

6.4. Conclusions

This chapter presented a frame work for approximate nonlinear plate theories from
the theory of 3-dimensional deformed body. An approximate nonlinear plate the
ory was developed under the Kirchoff's assumptions . Such a theory can easily re
duce to the traditional linear and nonlinear (von Karman) plate theories. This the
ory provides a possibility for one to further consider higher-order terms of
nonlinearity in plates, and such a theory was applied for traveling plates and rotat
ing disks. From the traditional perturbation and Galerkin analysis , the approximate
solutions of nonlinear waves in the traveling plates and rotating disk were devel-
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oped. Based on such nonlinear and linear solutions of waves, the resonant and sta
tionary waves were discussed. In addition, under periodic excitation, the chaotic
wave motions of traveling plates were discussed. For the other boundary condi
tions and loading, one can follow the similar procedure to investigate nonlinear
and chaotic waves in traveling plates (or panels) and rotating disks. Nonlinear
waves in thermal rotating disks, can be found in (e.g., Nowinski ,1981; Saniei and
Luo, 2001, 2007).

Even if the plate theory is still approximate, the wave solutions of the traveling
and rotating disk are adequate in certain conditions. However, the exact solutions
of nonlinear waves need to be further developed. One can adopt the Lie group
analysis to find the exact solutions for such nonlinear plates. Of course, the best
way is to solve such nonlinear waves in plates directly from the 3-dimensional
theory, and the exact solution for nonlinear waves in plates can be achieved.
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Chapter 7
Nonlinear Webs, Membranes and Shells

This chapter will discuss the nonlinear theories of webs, membranes and shells.
The webs and membranes are extensively used to model bio-tissues and mem
branes experiencing arbitrary initial configurations . Since any webs cannot resist
any compressive forces, it is very difficult to determine the corresponding defor
mations and stresses in the webs. Traditionally , one used the membrane theory
with certain constraints to detennine the final configuration of webs. However, the
webs can be of non-continuum and continuum. Thus, the network non-continuum
web will be presented first from the cable theory, and the continuum web will be
developed. Further, the nonlinear theory of membranes will be developed in an
analogy way. The nonlinear theory of shells will be developed from the general
theory of the 3-dimensional deformable body, and such a theory of shells can be
easily reduced to the established theories.

7.1. Nonlinear webs

In this section, the theory for nonlinear webs will be discussed. Before the nonlin
ear web theory is discussed, the following concepts are introduced first.

Definition 7.1. If a deformable body on the two principal directions of fibers only
resists the tensile forces, the deformable body is called a deformable web.

Definition 7.2. If a non-deformable body on the two principal directions of fibers
only resists the tensile forces, the non-deformable body is called an inextensible
web.

From the above two definitions, if the internal tensile forces of the web are
compressive globally, the current configurations of the deformable and inexten
sible webs cannot exist. In other words, the deformable and inextensible webs
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cannot resist the compressive forces . If the internal tensile forces on the web be
come zero globally, the web configuration will keep the configuration of the inex
tensible web . If the internal tensile forces on the web become zero in a local zone,
the configuration of the local zone of the web will keep the inextensible web con
figuration . On such a local region, the corresponding inextensible configuration
may be changed with any small perturbation force to form a new configuration
with tensile forces or to be in any wrinkling state without any configuration. Such
a local new configuration is discontinuous to the non-wrinkled, global configura
tion. Such a phenomenon of the web is called the local wrinkling of web . After the
web is locally wrinkled, the wrinkled zone cannot form any configuration. In other
words, only when the tensile force exists, the web configuration can be formed.

Consider a nonlinear web with an initial configuration in coordinates (X l ,
J =I, 2,3) with unit vectors (I I ' J =I, 2, 3 ), as shown in Fig.7. I . A point P on

the initial configuration is given by (Xl , 1 = 1, 2, 3) which is the function of a

curvilinear coordinate (SA , A = 1, 2, 3) with base vectors G A ' Therefore, as

sumes x ' = x ' (st ,S2) and the point P on the initial configuration is

(7.1)

Under external forces, the nonlinear web will form a new configuration in a coor

dinate (X l , 1 = 1,2, 3) with unit vectors (II' 1 = 1, 2, 3 ), as shown in Fig .7.2. A

point p on the new configuration is given by (x" , 1 = 1, 2, 3). For the new con

figuration , the corresponding curvilinear coordinates ( SA, A = I, 2, 3) with base

vectors (gA ' A = I, 2, 3) exist. Such a configuration is also called a final configu

ration under such external forces . To describe the deformation of the web , a point

p ( x" , 1 = I, 2, 3 ) can also be described through the curvilinear coordinates (Sa ,

a = I, 2 ) with base vectors G a ' Therefore, let x' =x' (Sl , S2) and the vector r

IS

The displacement between the point P and point p is given by

u = u' (Sl , S2)I / '

Thus,

(7.2)

(7.3)

(7.4)
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o

Initial Configuration

Fig. 7.1. A nonlinear web with an initial configura tio n.

Fig. 7.2 Displacement on the webs with the initia l and final configurat ions.
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where O,a= dO / dS a and summation on 1 should be completed, and

G X I x: d E x: I x ' I I Iaa = ,a ,a an •afJ = ,au,fJ + ,fJu,a +u,au,fJ '

The strain on the direction of Sa ( a = 1, 2 ) is

Idrl -l dRl
& 1 2 a a 1~ 1 I I Iba(S ,S)= = ~ (X a+U a)(X a+U a) - 1.

IdR I VGaa ' , , ,
a

From material laws , the tension is

(7,5)

(7,6)

(7 ,7)

If =0 then f( ff;) =0 , For linear elastic materials, the tension is determined by

i. = LaEaff;dAa = LaEa(~~ ~(X,~+u,la)(X,~+u,la)-I)dAa ' (7,8)
aa

where Young's modulus and cross section in the S a -direction are Ea and Aa , re

spectively, If the initial configuration is in the deformed state with the initial ten

sion T: in the S a -direction, the corresponding strain is expressed by

(7,9)

where the initial tension T:(SI ,S2)= i f( ff;°)dAa and the tension in the de-
Aa

formed configuration is

(7 ,10)

For the linear elasticity,

(7.11 )

If the new displacement u' =0 (1 =1,2,3 ), then the strain in Eq. (7 ,9) becomes

From the geometric relation, the following relation exists

1 F::x::1
JG::

X aX a =1,
G "

aa

(7 ,12)

(7,13)
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The initial strain and tension can be recovered (i.e., ca = ~o (S' , S2) ). In fact, the

initial tension is very difficult to obtain. On the other hand, the inextensibl e web
possesses the fact of EaAa ~ 00. Deformation ofEq.(7.II) gives

(7.14)

As EaAa ~ 00 , the foregoing equation gives for a = 1,2 ,

However, compared with Eq.(7.l3), equation (7.15) yields

u' = 0 (I = I, 2, 3 ).

(7.15)

(7.16)

It means that the inextensible web can support any tension without stretch. There
fore, one can consider the inextensible web configuration as the initial configura
tion. There are two non-continuum webs: (i) network non-continuum webs and (ii)
fabric non-continuum web.

Definition 7.3. A deformable web is called a cable-network web if the deformable
web is formed through cable or strings networks.

Definition 7.4. A deformable web is called a cable-fabric web if the deformable
web is weaved by cables or strings.

Definition 7.5. A deformable web is called a continuum web if the deformable
web is made by continuum media.

Definition 7.6. A deformable web is called a cable-reinforced, continuum web if
the deformable web is formed by cable-network web and continuum skin webs .

The cable-network and cable-fabric webs are of non-cont inuum. If a web con
sists of network non-continuum webs and continuum skin webs , the continuum
skin webs can be investigated by the web theory and the reinforced cables can be
investigated by the cable theories. The concept of finite elements should be
adopted and the corresponding boundary conditions should be considered. The
theory for cable-network webs will be first presented through the cable theory .

7.1.1. Cable-network webs

The network non-continuum web is composed of many separated cables in many
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directions with nodes. A network non-continuum web with cables in two direc
tions is sketched in Fig.7.3. The filled symbols represent the nodes for physical
connection and concentrated forces . The connection between two nodes is a cable
segment. For generality, at a node of the non-continuum web , there can be many
cables with different direct ions rather than two directions. In addition, the nodes
include the physical nodes and force nodes . The physical nodes are the connection
joints of the cable segments to form a web , and force nodes are where the concen
trated forces are exerted. Of course, on the physical nodes , the concentrated forces
can be exerted as well. Suppose that a node point is connected with finite I-cables
(I E N). There is a cable segment between this node and one of its adjacent nodes
in one of I-direct ions , and the distributed forces can be exerted on such a cable
segment. Thus , to apply the external forces on a non-continuum web and to inves
tigate the corresponding nonlinear dynamics, the point and segment sets on the
initial configuration of the non-continuum webs are introduced first.

The point and segment sets on the deformed configuration are defined as

== Urnj urn, ...urn,
P kj~ ' k2~ ' k,~ ' P (kj,k2 "" ,k, l'

P (kj,k2" "k, ) == {(s' , S2 , ... , s / ) lsa = a~j ,k" ...,k, ) for a = 1, 2, ... , I}.

(7.17)

(7.18)

(7.19)

(7.20)

Consider distributed forces on segment q~,k2 , ...,k, ) and conc entrated forces on a

point .'l(k/ok" ...,k, ) for ka E and = {I, 2, ... , rn a} with ( a = 1, 2, .. . , I ), i.e.,

F(kj,k" ..,k, ) == 0~j , k2 , .. .,k, ) ( S ', S 2 , , S /)I I at .'l(kj,k2,.. .,k, ) ,

a q(kj,k" ..,k, ) == a q!kj,k2,... ,k, ) ( S ', S2, , SI)I I on q~,k" .. .,k, ) .

(7.2 1)

The corresponding forces on the segment "(~j , k" ..,k, ) and concentrated forces on

point P (kj,k, "k, ) are expressed by

(7.22)
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Fig. 7.3 Separated cables and nodes in a cable-network non-continuum web. The filled symbols
represent the nodes for concentrated forces. The connection between two nodes is a cable seg
ment.

From Eqs.(7.2I) and (7.22), one obtains

F(k1 ,k, , ,k, ) = f (k1 ,k" . .,k, ) '

F;~l , k" . , k, ) (SI, S2, , S/) = J;~I , k2 , ... ,kJl (SI, S2 , .. . , S/) ;

a _ I a

P(k1,k" .. .,k, ) = JGaa(l+ ~) q(k1,k" ...,h ) ,

a I ( 1 2 I ) I a I (SI S2 S/)
P (k k k ) S , S , ... , S = ~ . . q (k k k ) , , ... , ,

10 2 ,"" VGaa(l+ ~) 10 2 ,""

where

Therefore, equation of motion for segments Sa E ~~,k2 , .. ,k, ) is given by

(7.23)

(7.24)

(7.25)

where p~Aa is based on the initial configuration and no summation on a exists.

In Eq. (7.25), the tension is computed by
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for any materials ,
(7.26)

for linear elasticity,

where a T o (S a) = i Ea &;;0dAa and ea = &;;0+&;; .
Aa

The tension vector is defined as

(7.27)

where "ais the unit normal direction of the cable cross section and

and

(7.28)

X~ a+U~ a

~Gaa (1+ &;;) .
(7.29)

Suppose that there are I-cables connected at a node point .Y(kl ,k" ,k/) • The force

condition at the node .Y(kl .k2•...,k/ ) with S a = A(~I , k2 ' . .,k/ ) is given by

L~~, a T( kl ,k2, ..,k/ ) ( s a ) lsa =Ar'II.k2 ,.kil +F(klo k2, ..,k/ ) =0, or

L~~, a J;kl ,kl , ..,k/ ) ( sa ) COS B(na, II ) lsa_Aa +F;~I , k2 , . , k/) =0,
- (k:! .k2,· ·· ,kO

where the tension vector on such a normal direction of na can be given, i.e.,

and

and the displacement conditions are

u~ = u~ and X~ = X~ for a , j3E {I, 2, .. . , I} and a*, 13.

The displacement boundary condition at a node point .Y(V 2, ..,r,b ) is

(7.30)

(7.31)

(7.32)

(7.33)

(7.34)
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For the force boundary, the boundary conditions can be given as in Eq.(7.25). That
is,

(7.35)

The static and dynamic solutions for each cable segment of the non-continuum
web can be obtained as in Chapter 5 (also see, Luo and Mote, 2000; Luo and
Wang, 2002; Wang and Luo, 2004). From definition, the wrinkling conditions for
the non-continuum web can be determined by each segment between the two adja
cent nodes. In other words, one has the wrinkling conditions through the following
definitions .

Definition 7.7. A network non-continuum web is called a locally wrinkled net

work web in J;~ .k2 . .k,) if the tension at any point Sa E J;~ .k, .....k,) satisfies

(7.36)

A network non-continuum web is called a globally wrinkled network web if all

segments J;~ .k, .....k,) cS ( kaE {1 ,2, . .. , ma}, a = I, 2, . .., I ) in such a non-

continuum web satisfy Eq.(7.36). The two wrinkling boundaries on the segment

J;~ .k, .....k,) are determined by

(7.37)

7.1.2. Cable-fabric webs

The cable-fabric web is a kind of non-continuum webs, and such a web is called
the continuously weaved web as well. A fabric web consists of continuous nodes
of fibers in two or more directions. The fibers going through nodes are continuous.
Such a web can support the tension only. Consider a cable-fabric web with two

main fiber directions Ga of Sa (a = I, 2 ) and their angle 8 (51 .5' ) E (0, Jr / 2] , as

shown in Fig.7.4.
To exert the external force on the web, the point and domain sets on the initial

configuration are defined as

.'J> = u;:~O U~I~O .'l(kl.k, ) and

.'l(kl.k2) ={(S',S2)ISi =A;kl.k2
),i=I,2}

(7.38)
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Fig. 7.4 Cable-fabric non-continuum web with fibers two directions.

(7.39)

The point and domain sets on the defonned configuration are defined as

(7.40)

(7.41)

On the initial configuration, the external concentrated force on point .Y(v ,) and

distributed force on domain~kl ,k, ) are defined as

and on the deformed configuration, the forces are expressed by

f (k1,k, ) = J;~I ,k2 )(SI , s 2)I [ , (Sl , S2 ) E P (k1,k, l'

P (kl,k
2

) = P (k
1

,k
2

) ( S I , s 2)I [ , (Sl, S2 ) E ~kl , k2 )'

(7.42)

(7.43)
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Because no shear force exists on the fabric webs , the angle between the two fibers
will not be changed. The corresponding relations between the two forces are

As in Eq.(7.24),

~Gaa (l+ 8,~) == ~(X;'a +u: .a)(X;'a +u: .a) (a= 1, 2).

(7.44)

(7.45)

The tension is defined by Ta , and the tension per unit length can be defined as

Ta = dr~ = rh2
f a(&;)dz for a , 13 E {I, 2} and a"# 13.

dS Jhl

(7.46)

If =0 then f a(&;) =O. Consider linear elastic materials as an example . From

Eq.(7.8), the tension on dAa in the a -direction is

(7.47)

(7.48)

where dAa = hxdS fJ and h is the thickness of the web. Thus , equations (7.46)

anf (7.47) yields

t; = f,'" Ea&;dz =Eah( ~~(X~ + u ~ )(X ~ + u ~) -1) .
hi "Gaa · · · ·

The tension per unit length will be simply called the tension on the a -cross sec
tion. Similarly , if the initial configuration is in the deformed state with an initial
tension r: per unit length in the S a -direction, the corresponding strain is ex

pressed by

(7.49)

(7.50)

where the initial tension per unit length T:(Sl ,S2) = rh2
f a(&;O)dz , and the tenJhl

sion per unit length on the configuration is

I 2 { rh, f a(ca)dz . for any materials,
Ta(S ,S ) = Jhl

Eah&;O +Eaha:; for linear elasticity.

Therefore, equation of motion for a domain (S I, S2) E ~kl ,k, ) is
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(7.51)

where Po is based on the initial configuration and summation on a = 1,2 should

be done . As in the network non-continuum web, the tension vector on the S a_
surface (a= 1,2) is

(7.52)

where the vector " a is the normal direction of the S a -surface, and the component

of the tension vector on such S a -surface can be given by

and the direction cosine is given by

X I I
I I a,a +Ua,a

" a = (X a +Ua)II and cos(J(n I)=~ . .
" « -»t "Gaa(l+ ~)

At a point .'l!(k k ) with s = A (ik k ) , the force condit ion is given by
1'2 1'2

or

(7.53)

(7.54)

(7.55)

(7.56)

where superscript " ±" represent tensions on the direct ion of the negative and
positive cross sections.

The displacement continuity condit ions are

(7.57)

The displacement boundary condition at a boundary point ~V2 ) is

(7.58)

The force boundary condit ion at the boundary point ~V2 ) is
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or

The displacement boundary condition on the web edge is

U/(SI,S2)l s' ~s; =U /(Sl) andX/(SI,S2)l s2 ~s; =B /(Sl),

/ (S l S2)1 =U /(S 2) andX/(SI S 2)1 =B/ (S2 )
U 'SI=S! ., SI=S! .

The force boundary condition on the web edge is

rr, + a~f3 fTf3dS
a)

1sa =s~ +F(Sf3) = 0, or

~f3 fTf3(SI ,S2)CosB(n I )dS
a

1 "- aas p . I S -s,

+Ta(SI , S2 ) cos B( na. ITl lsa =s~ +F/ (Sf3) = o.
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(7.59)

(7.60)

(7.61)

(7.62)

From the definition, the wrinkling for a fabric web can exist in one of two direc
tions, and the corresponding definitions can be given as follows .

Definition 7.8. A fabric non-continuum web is called a locally wrinkled fabric
web in the Sa -direction (a E {I, 2} ) in domain ~kbk2) if the tension at a point

(SI, S2)E ~kl , k2 ) on the Sa -direction satisfies

Ta(SI , S2) < 0 for (SI, S2)E ~V2 ) and aE {I, 2}. (7.63)

A fabric non-continuum web is called a globally wrinkled fabric web in the Sa_

direction (aE {I, 2} ) if Eq.(7.63) holds for all domains ~V2 ) c!ZJ in such a fab-

ric web . The wrinkl ing boundary on the domain ~V2 ) is determined by

(7.64)

Definition 7.9. A fabr ic non-continuum web is called a locally free, fabri c web in

domain~kl ,k,) if two tensions at any point (S I, S2)E ~kl ,k, ) satisfy

(7.65)

A fabric non-continuum web is called a globally fre e, fabric web if all domains
~kl ,k2 ) c!ZJ in such a fabric web satisfy Eq.(7.65). The boundary for the free web

in the domain ~V, ) is determined by
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(7.66)

In the above discussion, the two main fibers for fabr ic webs possess an angle

8 (SI,S2)' If 8 (SI,S' ) =lC /2, the two main fibers in the fabric web are orthogonal.

Equation of motion in Eq.(7.5 1) becomes

(7.67)

and summation on a = 1,2 should be completed. If8(SI,S' ) = °,this case is singu

lar, and the two main fiber directions are in one direction. The corresponding
equation of motions becomes

(7.68)

(7.69)

without summation on a =I, 2 . For a flat web , Gaa =I (a =1,2 ) and X~ =o~ .

Definition 7.10. A fabr ic non-continuum web is called

(i) a skew weaving web if 8 (SI,S') E (0, ~) ,

(ii) an orthogonal weaving web if 8 1 2 = lC ,(S ,S) 2

(iii) a uniaxial weaving web if 8 (SI,S' ) = 0 .

7.1.3. Continuum webs

A continuum web consists of continuous media. The continuum web does not
have any spec ified fiber directions as in the fabr ic webs. It is assumed that such a
web can support the principal tens ion only. Because no specified fiber direct ions
exist in the continuum web, the two directions of the principal tens ions are de
pendent on the external load ing rather than the two specific direct ions . Thus for
any coordinates, shear membrane forces in such a web may exist as in the tradi
tional membrane theory. Thus, there is a sort of twisting in such a web. Such a
twisting is caused by the two principal tens ions . Therefore, consider a curvilinear

coordinates (SA , A = I, 2, 3) for the initial web configuration , and the two curv i-



7.1. Nonlinear webs 279

linear coordinates (Sa , a = 1,2) with 8(S'.S2) E (O ,Jr / 2] are on the initial con

figuration , as shown in Fig.7.5. As in fabric non-continuous webs , the normal
strains and tensions can be discussed in Eqs.(7.45)-(7.50). However, because the
tensional twisting exists in such a continuum web, the shear strain should be intro
duced . Let 8 (S'.S2) and B (S' .s o) be the induced angles between G 1 and G 2 before

and after deformation. The shear strain is defined as

and the two angles are computed by

COSB(DI .DO) =cos(8(1""l"o) -ri2)

~r.~r (x,~ +u,~)dS'I K ·(x,~ +u,IJdS 21
1

I~r II ~r I JG::(1+ q)dS' JG::(1+ i{)dS2

(x~ +u~)(x~ +u~) .
, " , (summation on K),

~GIIG22 (1 +q)(1 + Ii{)

dRdR XKdSl1 . X 1 dS 2 1
cos 8 = 1 2 = ,1 K ,2 I

(1"1'1",) IdR II dR I fG fGdS 1ds2
1 2 '\IvII '\Iv22

X KX K
, I ,2 (summation on K).

JG::JG::

Finally , the shear strain is computed by

Note that ri2 = r21 • In addition, the area change from Chapter 3 is given by

(7.70)

(7.71)

(7.72)

(7.73)

(7.74)

where da =Idrx dr I and dA =IdRx dR I are the areas for after and before defor-
afl a fl afl a fl

mation, respectively. On the initial configuration, the external concentrated force
on point .Y(v o) and distributed force on domain ~V2 ) are defined as in Eqs.(7.42)

and (7.43) . However, the relations between the two forces on initial and the de
formed configurations are
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Fig. 7.5 A continuum web with an initial configuration.

The web shear force caused by the twisting is computed by

~p=f l ap(3;p)dAa fora,j3E {1 ,2} anda*-j3,
Aa

(7.75)

(7.76)

(7.77)

where 3;13 == rap · ~p represents a tensional shear force on the deformed a

surface with the normal direction D a and its direction is the same as the direction

of gp' Ifa = 13 , 3;13 == "'''h ' and the foregoing equation reduces to Eq.(7.7) for the

tension only. The shear force per unit length is defined by

«: Ih2
,.TaP = - 13- = l aP(i f:p)dz for a , 13 E {I, 2} and a *- 13·

dS hi

If 3;13 =0 then l aP(3;13) =O. Consider linear elastic materials as an example . The

tensional shear force on dAa in the a -direction is

(7.78)

where dAa = hxdSp and h is the thickness of the web, gaPis the shear modulus .

Thus, using Eq. (7.77), one obtains

(7.79)

The shear forces per unit length will be simply called the shear on the a -cross
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section. The web force vector on the S a - surface is

where

281

(7.80)

(7.81)

(7.82)

The component of the web force of the S a -surface in the direction of I I IS com

puted by

T1 = Ta(X.~ +u:a) + Tap(X,~ +U,lp).

a ~Gaa(1+ g;) ~Gpp(1+ a;)
(7.83)

From the tension and the tensional shear forces, equation of motion for a do

main(S' ,S2)E ~V, ) is

Poh(X u +u rJsin8 Sl S') =q(k k ) +Ta a ,
" ( , I ' 2 '

or Poh(X~t +U ~t) sin 8 Sl ' ) = q (lk k ) +T; a
" ( ,S 1'2 '

with summation on a = 1, 2 , and the foregoing equation is rewritten as

(7.84)

(7.85)

where Po is based on the initial configuration and summation on a , f3 = 1,2 and

a,* f3 should be done. For a flat web, one has Gaa = 1(a = 1, 2). The above

equation can be reduced. As in Eq.(7.55), the corresponding force condition at a

point .'l(kl ,k, ) with s = A/kl ,k2 ) is

(7.86)

or

(7.87)
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The force boundary condition at the boundary point ~Vi ) is

or

I : =,[Ta(S I,S2)+ TfJa(S I,S2)]COS O(n",I/) I(sl,S2)=(8IOo'2 ),81Oo'2 )

+ F 1
. =0.

( rl " 2 )

The force boundary condition on the web edge is

or

[d~fJ cfTfJ cos O(np,I/)dS
a)

+ d~fJ (fTfJa cos O(na ,( / )dS
a

)]I s"=s:,

+ (Ta cos O(na,I/) +TafJ cos O(np,I/) Isa=s:, +F
f
(SfJ)= O.

(7 .88)

(7.89)

(7 .90)

(7.91)

The displacement continuity and boundary conditions are given as in Eqs.(7 .58)
and (7.61) .

For a continuum web, bec ause the tensional shear exists, the principal tensions

(T~n,max) should be computed . For instanc e, if 8 (SI,S2) = 1r / 2 , one obt ains

TP =Ta+TfJ+ (Ta-TfJ)2+T2
min,max 2 - 2 afJ

(7 .92)

and the principal direction SP with the minimum principal tension Tn~n is deter

mined by

2TafJtan 20 =--
(S' ,S") T - T

a fJ
(7 .93)

Definition 7.11. A continuum web is called a locally wrinkled continuum web on

the SP-direction (aE {l, 2} ) in domain 2?V l ) if the minimum principal tension at

a po int (S' , S 2)E 2?k
l
,k

o
) on the SP-d irect ion sat isfies

(7.94)

A continuum web is called a globally wrinkled continuum web on the SP

direction (aE {l, 2} ) if Eq.(7 .94) holds for all domains 2?k
l
,k

o
) c 2J in such a

continuum web. The wrinkl ing boundary on the domain 2?V 2) is determined by
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(7.95)

Definition 7.12. A continuum web is called a locally free , continuum web in do

main ~kl , k2 ) if the maximum principal tension at any point (Sl, S2) E ~kbk2) satis-

fies

(7.96)

A continuum web is called a globally free continuum web if all domains
~kl , k2) c!ZJ in such a continuum web satisfy Eq.(7.96). The boundary for the free

web in the domain ~kl ,k, ) is determined by

(7.97)

7.2. Nonlinear membranes

In the previous section, the web theory was presented . In this section, a theory for
nonlinear membranes will be discussed.

Definition 7.13. Ifa deformable body on the two principal directions of fibers re
sists the tensile and compressive forces only, the deformable body is called a de
formable membrane.

Generally speaking, there are three deformable membranes : (i) arch-network
membranes , (ii) arch-fabric membranes, and (iii) continuum membranes . The
arch-network membranes and arch-fabric membranes are of non-continuum. The
continuum membrane is called usually the membrane in mechanics . To clarify the
concepts, the corresponding definitions are given as follows.

Definition 7.14. A deformable membrane is called an arch-network membrane if
the deformable membrane is formed by the deformable arch or truss network.

Definition 7.15. A deformable membrane is called an arch-fabric membrane if
the deformable membrane is continuously formed by the deformable arches or
trusses.

Definition 7.16. A deformable membrane is called a continuum membrane if the
deformable membrane is made by continuous media.

Definition 7.17. A deformable body is called an arch-reinforced web if the de
formable body is formed by the arch-network membranes and the continuum skin
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webs.

7 Non linear Webs, Memb ranes and Shells

The arch-network reinforced web possesses the function of the membranes , so
such a reinforced web can be called the membrane-web . For instance, the kite
structure is a membrane-web structure or the arch-reinforced web. For the struc
ture, the arch-network can be investigated by the arch theory and the continuum
skin web can be investigated by the theory of the continuum webs.

To discuss the soft structure combined with continuous webs and non
continuum membrane, the concept for one-dimens ional deformable membrane
will be introduced. Such a membrane is a kind of arch-reinforced web, which is
also called the soft membrane. The definition of the one-dimensional deformable
membrane is given as follows.

Definition 7.18. If a deformable body resists the tensile and compressive forces in
one principal direction of fibers and the tensile force in the other principal direc
tion, the deformable body is called a one-dim ensional, deformable membran e.

Definition 7.19. A one-dimensional, deformable membrane is called a cable-arch
network membran e if the one-dimensional, deformable membrane is formed by
the deformable cables (or strings) in a principal direction and the deformable
arches (or trusses) in the other principal direction.

Definition 7.20. A one-dimensional, deformable membrane is called a cable-arch
f abric membrane if the one-dimensional, deformable membrane is continuously
formed by deformable cables (or strings) in a principal direction and deformable
arches (or trusses) in the other principal direction.

Definition 7.21. A one-dimensional, deformable membrane is called a one
dimensional, continuum membrane if the one-dimensional, deformable membrane
is made by continuous media.

Definition 7.22. A deformable body is called a cable-arch reinforced web if the
deformable body is formed by the cable-arch network membranes and the con
tinuous skin webs.

The cables and arches in cable-arch network membranes can be arranged either
in order or randomly . Such membranes with the random arrangement will possess
more web characteristics. Similarly, the cable-arch reinforced web possesses the
more functions as the web with less membrane characteristics.

The cable-arch network and cable-arch fabric membranes are of non
continuum. For non-continuum membranes, the theory can be described as similar
to the non-continuum webs. In Sections 7.1.1- 7.1.2, N; == Ta for deformable

trusses and arches, and for cables and strings, the expression will be of the same.
If the membrane consists of network non-continuum membranes and continuum
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skin webs , the continuum skin webs can be investigated by the web theory and the
reinforced cables and arches can be investigated by the cable and arch theories.
The concept of finite elements should be adopted and the corresponding boundary
conditions should be considered.

Compared to the deformed webs, a deformable membrane is required to resist
compressive internal forces. Thus, the membrane must possess a specific, initial
configuration to support such compressive internal forces. This is a main differ
ence between the membrane and continuum web. The continuum membrane can
be described as a nonlinear continuous web in Section 7.1.3. Herein, such a de
scription will not be repeated. One can use N; == Ta and NaP == TaP for all equa-

tions in Section 7.1.3. In addition , Xl = Xl = 0 is admitted because the initial
configuration is fixed. However , the continuum web poss esses a dynamical initial
dynamical configuration. In other words , the non-deformable configuration of
membrane is invariant with time, but the non-deformable configuration of the web
will be changed with time, which is another difference between the continuum
webs and membranes .

7.2.1. A membrane theory based on the Cartesian coordinates

As in nonlinear webs , from Eqs.(7.1)-(7.6), the normal membrane force for the
nonlinear membrane can be expressed by

The normal membrane force per unit length is defined as

dN lh2

N; =-pa = l a(8;)dz for a,fJ E {I, 2} and a* fJ.
dS "

If =0 then l a(8;) =O. For linear elastic materials ,

The shear membrane force caused by the twisting is defined as

NaP = r l ap(8;p)dAa fora,fJE {1,2} and a*fJ,JAa

(7.98)

(7.99)

(7.100)

(7.101)

where 8;13 == Yap . NaP represents a shear membrane force on the a -surface with a

normal direction (" a) and its direction is the same as the direction of " 13 ' If

a = fJ , 8;13 == 8; and the foregoing equation reduces to Eq.(7.98) for the normal

membrane force only. The shear membrane force per unit length can be defined by
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_ dNaj3 _ r r: ,Naj3 - - 13- - f aj3( ff;j3)dz for a , 13 E {I, 2} and a*" 13·
dS '"

(7.102)

For linear elastic materials,

(7.103)

The shear membrane forces per unit length will be simply called the membrane
shear on the a -cross section .

As in Eqs.(7.80)-(7.83), the membrane force vector on the S a -surface is

N~ =Nana .11 + Naj3nj3 .11 =n, coSB(na.,/) + Naj3 coSB(n~ ., / )

= Na (X,~ +U.~) + Naj3 (X.~ +u.~)

~Gaa (1 +8;) ~Gj3j3 (1 + 3p)

Equation of motion in a domain (Sl, S2)E ~kl . k2 ) for (I = I, 2, 3) is

The foregoing equation is rewritten as

where summation on a, 13 = I, 2 and a*"13 should be done .

The corresponding force condition at a point .'l(k 1.k
o

) with s' = A ;k
1
.k

2
) IS

or

(7.104)

(7.105)

(7.106)

(7.107)

(7.108)

The force boundary condition at the boundary point ~i " i ) is
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or

L a
2

~ 1 [Na (S I , S 2)+ N /la(SI, S2)]cosB(n .I I ) l(sl S2) ~( B1 B' )
a . , (11,'2)' (11,'2)

+pl =0.
( 'i "":2 )

The force boundary conditions on the membrane edge is given by

or
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(7.110)

(7.111)

(7.112)

(7.113)

The displacement continuity and boundary conditions are given as in Eqs.(7.57)
and (7.58) .

If the coordinates (Sa , a = 1, 2 ) are orthogonal, equation of motion is

(7.114)

or

(7.115)

with summation on a , f3 = I, 2 and a*, f3 . For a flat membrane , Gaa = 1. Thus,

equation (7.114) becomes

(7.116)

7.2.2. A membrane theory based on the curvilinear coordinates

Consider a material particle P(X1
, X 2

, X 3
) in an initial configuration of a mem

brane at the initial state shown in Fig.7.6. The position R of the material particle is
described by x ':
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F ig.7.6 A materia l particle P on an initial configuration of a non linear membrane.

(7.117)

where I K are unit vectors in the fixed coordinates. In the local curvilinear refer

ence frame, the position R is represented by

(7.118)

where the component Sa = R ·G" (also see, Chapter 3) and the initial base vec

tors G a=Ga(S!,S2) (a=1,2)are

G = aR = axM
(S', S2) I = X MI

a aS a aS a M .a M '

with magnitudes

and

without summation on a and

GaP-«.«, = X.~X.~

ax! ax! ax2 ax2 ax3 ax3

=----+----+----
asa asP asa asP asa asP

(7.119)

(7.120)

(7.121)

(7.122)
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are metric tensors in the initial configuration. If the two base vectors are orthogo
nal, GaP = O.

On the defonned configuration of the membrane , a particle at point P moves
through displacement u to position p, and the particle Q, infinitesimally close
to peS' , S 2) , moves through u +du to q in the neighborhood of p(Sl , S 2) , as il

lustrated in Fig.7.7. The position of point p is for a = 1,2

where u = U AG A (A = 1,2 ,3). Thus, PQ = dR and pq = dr are

dR = G adSa, dr = G adSa +du;

and the infinitesimal displacement is

du =uPdS aG =(u p +r P uY)dS aG;a P ,a ay P

= up;adsaG P = (uP.a - r~puy)dsaGP ,

where

P P cofactor (GaP)
G a =G" G G" =------'--

p, G'

G=det(GaP)' ua = Gapzl

and

(7.123)

(7.124)

(7.125)

(7.126)

(7.127)

is the Christoffel symbol defined in Chapter 2 (also see,
semicolon represents covariant partial differentiat ion.

From Eqs.(7.124) and (7.125),

dr =(u~GP+Ga)dSa =dS aga;

g, =~=u~Gp+Ga =(u~+ot)Gp .aS a , .

Eringen, 1967). The

(7.128)

The Lagrangian strain tensor Eap referred to the initial configuration is

(7.129)

As in Eringen (1962) , the change in length ofdR per unit length gives
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q

a

Fig. 7.7 Deformation of a differential linear element.

Idrl -l dRl
a

IdRl
a

(7.130)

where is the relative elongation changing with dS a
. The unit vectors along

dR and dr in Chapter 3 are

G dR IN ==_a_=_a_= __G
a Ic , I Id~ I ~Gaa a'

dr
n ==~ =_a_

a Ig, I Idr I
a

(7.131)

Let E>(l"a'l"p) and (J(na ,np ) be the induced ang les between "a and u p before and

after deformation,

cos B (n n ) == cos( E>(l" ;'0; ) - YaP)
(0 p (", 1 P

drdr
a p

Idr II dr I
a p

dR·dR
cosE> = a f3

(;'o;" ,l" p) IdR II dR I
a f3

(7.132)



7.2. Nonlinear membranes

and the shear strain is

291

(7.133)

From Eq.(7.131), the direction cosine of the rotation without summation on a
and f3 is

dR ·dr
cos(} . = a fJ

(1'a, Rp ) IdR II dr I
a fJ

(7.134)

In addition, the change ratio of areas before and after deformation is

~ff (1 + 8;;)(1 +~) sin (}(Ra ,Rp )
-=------'--------'--'---!:..'-..
dA sin0(:-o; l\' )afJ , " . p

(7.135)

where da =Idrxdr I and dA =IdRxdR I.
afJ a fJ afJ a fJ

Similarly, the membrane forces per unit length are given by Eq.(7.99) and
(7.102) . Only the strains are replaced by those in the curvilinear frame . The mem
brane force vector on the SA-direction surface (A = 1,2 ,3 and a, f3 E {I, 2} ) can

be expressed by

and

N~ = Na"a ·NA+ N afJ"fJ ·NA

= N a cos (}(Ra ,l\'A) + N afJ cos (}(Rp ,l\'A)

= Na (GAa +uA;a) + NafJ (GAfJ +uA;fJ) .

~GAA ~Gaa (1 + 8;;) ~GAA ~GfJfJ (1+ ~)

(7.136)

(7.137)

On the initial configuration, the external concentrated force on point .Y(kj ,kz ) and

distributed force on domain~klok2 ) are defined as

for(S ' ,S2)E ~klok2 ) '

for (S' , S2)E .Y(kjs.v
(7.138)

and on the deformed configuration, the forces are defined as

for (s' , S2)E P (kj ,k, ) ,

for (s' , S2 ) E qk
j
,k, )'

(7.139)
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The corresponding relations between the two forces are

sin8(l'i l'i )
F = f and p = j, 2 qo.,k, ) o.,k, ) (kl ,k2 ) (1 + 8"1(1+ !?'Isin () o. ,k2 ) '

"'i ) "'2 ) ("I '" ' )

(7,\40)

From the normal and shear membrane forces , equation of motion for a doma in

(SI,S2)E~V2 ) for(A=I,2,3 and a=I,2)is

PohU,tt sin 8(l'i
I
,l'i, ) = q (kl ,k, ) + .Na;a,

or POhUA,tt sin 8 (l'i
1
,l'i

2
) = q~l , k, ) + N:;a'

The foregoing equation is rewritten as

POhUA,tt sin 8 (l'i
I
,l'i, )

= A +[ Na(GAa +UA;a) +N aP (GAP+UA;p) ]

q (V 2) ~GAA ~Gaa (1+ 8;) ~GAA ~Gpp (I+ 8p) a

(7,\41 )

(7'\42)

where summation on a, f3 = 1, 2 and a"* f3 should be done , The foregoing equa

tion is expanded for a = 1,2 as

(7,\43)

(7'\44)

Similarly , the corresponding force condition at a point .'l(v ,) with Si = A;k
l
,k

2
) is

(7'\45)

or



7.3. Nonlinear shells 293

The force boundary condition at the boundary point ~Vi) is

or

I:~I[Na(SI , S2)+ NPa (SI, S2)]COS B(na ']\'A ) I(si, S2 )~(BiM),B1M) )

+FA = 0.
('i "2 )

The force boundary condition on the membrane edge is

(.Na+ a~p f.NpdSa)1 sa ~s~ + F(SP) = 0,

or

The displacement continuity and boundary conditions are

The displacement boundary condition at a boundary point .Yr,j ,li) is

7.3. Nonlinear shells

(7.147)

(7.148)

(7.149)

(7.150)

(7.151)

(7.152)

The theories for webs and membranes were presented in the previous two sec
tions. In this section, a theory for nonlinear shells will be presented. As in the
membrane theory, based on the Cartesian coordinates and a curvilinear frame on
the initial configuration, the theory of nonlinear shells will be presented . The gen
eral theory will reduce to the existing theories.

Definition 7.23. If a deformable body on the two principal directions of fibers re
sists the internal forces and bending moments , the deformable body is called a de
formable shell .
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For the similar discussion of membranes , the shell-like structures can be classi
fied. The five shell-like structures are: (i) rod-network shell, (ii) rod-fabric shell,
(iii) continuum shell, (iv) rod-reinforced membranes and (v) rod-reinforced web.

Definition 7.24. A deformable shell is called a rod-network shell if the deform
able shell is formed by the deformable rod or beam network.

Definition 7.25. A deformable shell is called a rod-fabric shell if the deformable
shell is continuously formed by the deformable rods or beams.

Definition 7.26. A deformable shell is called a continuum shell if the deformable
shell is made by continuous media.

Definition 7.27. A deformable body is called a rod-reinforced membrane if the
deformable body is formed by rod-network shells and continuum membranes.

Definition 7.28. A deformable body is called a rod-reinforced web if the deform
able body is formed by rod-network membranes and continuum skin webs.

The rod-network reinforced membrane possesses the functions of shells. Thus,
such a reinforced membrane can be called the shell-membrane. Such a shell
membrane structure is often used in aircrafts and chemical containers . In such a
structure, the rod-network can be investigated by the rod (or beam) theory, and the
continuum membranes can be investigated by the theory of continuum mem
branes. The rod and beam theories will be presented in next chapter. The rod
network reinforced web possesses the functions of shells, but such a reinforced
web is framed by the rod-network, which can be called the shell-web . For in
stance, the balloon structures or umbrella-type structures are of the shell-web
structure or the rod-reinforced webs. In that structure, the rod-network can be in
vestigated by the rod (or beam) theory, and the continuum skin web can be also
investigated by the theory of the continuum webs.

To discuss the soft structure combined with continuum webs and shells, the
concept for one-dimensional deformable shells will be introduced. Such a shell is
a kind of rod-reinforced webs, as called the soft shell. The one-dimensional de
formable shell is defined as follows.

Definition 7.29. If a deformable body resists the tensile, compressive forces,
bending and torsion moments in one principal direction of fibers and the tensile
force in the other principal direction, the deformable body is called a one
dimensional, deformable shell.

Definition 7.30. A one-dimensional, deformable shell is called a cable-rod net
work shell if the one-dimensional , deformable shell is formed by the deformable
cables (or strings) in a principal direction and the deformable beams in the other
principal direction.
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Definition 7.31. A one-dimensional, deformable shell is called a cable-rod fabric
shell if the one-dimensional, deformable shell is continuously formed by deform
able cables (or strings) in a principal direction and deformable beams in the other
principal direction.

Definition 7.32. A one-dimensional, deformable shell is called a one-dimensional,
continuum shell if the one-dimensional, deformable cable-shell is made by con
tinuous media.

Definition 7.33. A deformable body is called a cable-rod reinforced web if the de
formable body is fonned by cable-rod network shells and continuum skin webs.

Definition 7.34. A deformable body is called a cable-arch-rod reinforced web if
the deformable body is formed by a cable-arch-rod network deformable body and
continuum skin webs.

The cables and arches in cable-rod or cable-arch-rod network deformable body
can be arranged either in order or randomly . Such a deformable body with the
random arrangement has more web characteristics. Similarly , the reinforced de
formable structures, formed by cables, arches, rods, continuous membranes and
shells can be discussed. The reinforced deformable webs, membranes and shells
can be investigated through finite elements. Herein, the theory for continuous
shells will be developed only.

7.3.1. A shell theory based on the Cartesian coordinates

Since a deformable shell can support internal forces and bending moments, the
shell like a membrane must possesses a specific, initial configuration to resist such
internal forces and moments . But the membrane cannot resist any moments .
Again , X = X = 0 because the initial configuration of the shell is fixed. Consider

a material particle P(X', X 2
, X 3

) in an initial configuration of a shell at the ini

tial state shown in Fig.7.8. As in Eqs.(7.117)- (7.121) for the membranes , the posi
tion R of the material particle in the initial configuration of the shell is described
by X K

:

(7.153)

where I I are unit vectors in the fixed coordinates . In the membrane theory, only

two curvilinear coordinates are considered . However, for shells, three curvilinear
should be considered for resisting the transverse shear forces and moments . Thus,
in the local curvilinear reference frame, the position vector R is represented by

(7.154)
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(7.155)

Fig. 7.8 A material particle P on an initia l configuration of a nonlinear shell.

where the componen t Sa = R .Ga and the corresponding initial base vectors

G
A

= G
A

(S ' , S2, S3) (A =I,2,3)are

G = aR = aX
f
(SI, S2)I =Xf I

a aSa aSa f ,a t »

N =~=-I-Xf I
a lGa l ~Gaa ,a f

with magnitude

and the metric tensors in the initial configura tion for a, f3 E {I, 2, 3} are

GaP =c , ·G p =X,~x,~

ax' ax' ax2 ax2 ax3 ax3
= - --- + - - - - + - - - -ss: as P as a asP as a asP '

The equations in Eqs.(7.153)-(7.157) are similar to Eqs.(7.117)- (7.121).

7.3.1a Shell strains

(7.156)

(7.157)

On the deformed configuration, the particle at point P moves through displace
ment u to position p, and the particle Q, infinitesimally close to p(SI, S2, S3) ,
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moves through u + du to q in the neighborhood of p(Sl , S2, S3) , as illustrated in

Fig.7.7. The corresponding position of point p is expressed from the rectangular
coordinates instead of the curvilinear coordinates, i.e.,

(7.158)

The corresponding infinitesimal line elements PQ = dR and pq = dr are ex

pressed ( a = 1, 2, 3 ) by

Thus,

I I a dr I I
dr=(X a+u a)dS I I' g, ==--=(Xa+u a)I / '. , dSa . .

(7.159)

(7.160)

As in Eqs.(7.5) and (7.6), the strains based on the change in length of dR per unit
length give

(7.161)

(7.162)

The Lagrangian strain tensor EafJ referred to the initial configuration is

E I (X l I x' . I I I )' afJ = - aUfJ + fJUa +UaUfJ .2 .. .. ..

Because of the shear forces, the shear deformation of the shell should be devel
oped. As similar to Eqs.(7.131)-(7.134), the shear strains can be expressed except
for the expression of EafJ. Thus, the corresponding expressions are given as fol-

lows. The unit vectors along dR and dr in Chapter 3 are expressed by

G dR x:N == __a_ = _a_ = __.a_ I
a IGa I I ~I ~Gaa I'

dr
D ==~=_a_

a Ig, I Idr I
a

(7.163)

In the similar fashion, the angles between Da and DfJ before and after deforma-

tion are expressed by 8 (,. x ) and B( ), i.e.,
n a , l p D cpOp

cosB(n n ) == cos(8(l'i x ) - YaP)
co fJ (p 1 P
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J(c; +2Eaa)( Gj3j3 +2E j3j3) ,

dR ·dR
cosE> = a 13

( l\"a .l\"p) IdR II dR I
a 13

and the corresponding shear strain is defined by

(7.164)

- I Gaj3 +2Eaj3
cos

~(Gaa + 2Eaa)(Gj3j3 + 2Ej3j3 )

- I (X~ +Ul
a)(X

l
j3 +u l

j3)cos ""
~(Gaa +2Eaa)(G j3j3 + 2E j3j3)

(7.165)

Consider the base vector G 3 to be normal to the plane of Gland G 2 in the

curvilinear coordinates, which is defined by

G = G l x G 2 dG 0 '" 1 23 - G an a 3 = lor a=, .

From the forego ing definition ,

G = x I I =~(xmod(I , 3 )+ 1 X mod(I +1,3)+1 _ X mod(I ,3)+1X mod(I +1,3)+I ) 1
3 ,3 I G ,I ,2 ,2 ,I I

and

(7.166)

(7.167)

(7.168)

If G 1 and G 2are orthogonal, one obtains Gl2 = 0 and G = J G11G22 .

From Eq.(7.163) , the direction cosine of the rotation without summation on a
and j3 is

dR,dr x ' x ' +X I u l

cos B = a fJ = ,a ,j3 ,a ,13
("' a ' · P) IdR II dr I fG~G + 2E

fJ " V aa 1313 1313

In addition, the change ratio of areas before and after deformation is

(7.169)
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~ff = (1 +ca)(1 + cli) sin B(na.np)

dA sin8(l'; x )ali ' a ' p
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(7.170)

where da =Idrxdr I and dA =IdRxdR I.
ali a li ali a Ii

For reduction of a three dimensional deformable body theory to a shell theory,
the displac ements can be expressed in a Taylor series expanded about the dis
placement of the middle surface ( S3 = 0). The variable z is a variable in the G 3

direction. Thus , the displacement field for the surface layer for a posit ion R with
S3 = z is assumed by

with

U I = ul(S' S Z t)+" ~ "m(l)(S ' S Z t)o , , L.J n= 1 Z 't' n , , ,

R = SIG , + S ZG z + zG
3

= x ' (S ' , S Z, z)l p

r =R +u =x ' (Sl, SZ, z )11+ u' (S' , S Z, z)l p

(7.171)

(7.172)

(7.173)

where u~ denotes displacements of the middle surface (or membrane surface), and

qJ~1) (n = 1, 2, .. . ) are rotations. With Eq.(7.157), substitution of Eq.(7.171) into

Eqs.(7.l 61)-(7.165) and collection oflike powers ofz gives

(0 ) dcal 1 dzcal Z

ca "'ca + dz z= O z + 2' dz z z= O z + .. .

(X l I ) (I ) {2[(XI I ) (I ) ] (I ) (I )= c(O)+ ,a + uo,a qJI,a z +~ ,a + uo,a qJz,a +qJI,aqJI,a
a 'G(I+ c (O)) 2 G (l+ c (O))

VUaa a aa a

_ [(X,~ +u~, a)qJr~f }ZZ+...
G~A(1 +c~0) )] 3 '

(7.174)

d I 1 d
Z

I1/ '" ,,(0) + ---.2Jl. z + _ ----.2:R zZ + .. .
z rz /v: dz 2! dz z

aeO z=o
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{ (X
I I ) (I) (X l I ) (I)

= 1,0)_ I ,1 + UO ,I qJI,2 + ,2+ UO,2 qJI,1

12 sin B (O) f(;(i(1+ [;(0) )(1+ [;(0))
( OJ,0, ) VVII V 22 , 2

[ (X
I I ) (I) (X l I) (I) ]}

(0) , + Uo1 qJ" 2+ Uo2 qJ, 2- cos B ", + ' , , z +" ,
( OJ ,0 2) G (1+£(0))2 G (1+[;(0))2 '

" ' 22 2

where a = I, 2 because of

dyaP _ dsin Yap

dz cos Yap dz

d
2Y

ap d
2

sin Yap dYaP 2
--2- = 2 +(- -) tan Yap, " ',

dz COS Y/J dz dz

(7,175)

(7,176)

(7,177)

Equations (7,173)-(7,176) at z = 0 gives the strains of the middle surface, i.e.

(7,178)

(7,179)

In Eqs ,(7,173)-(7,1 76), prediction of strain requires spec ification of three con

stra ints for determination of the three sets qJ~1) ( 1 =I, 2, 3; n =I, 2, ", ),

Consider Kirchhoff' s assumptions (£3 = Ya3 = 0) as an example , From

Eqs ,(7,161) and (7,165) , these constrai nts become

(X,~ + U,13 ) (X,~ + U,~ ) = I,

(X,~ + u,la ) (X,~ + U,~ ) = 0,
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Substitution ofEq.(7.171) into Eqs.(7.179) , expansion of them in Taylor series in
z and vanishing of the zero-order terms in z gives

(X l + mU»)(X I + mU»)= 1,
.3 't'l .3 't'l

(X~ +U~ ,,)(X~ + ffJ?») = O.. . .
Form the foregoing equations,

X l + mU) = +~ (I = I 2 3)
.3 't'1 - fl. ' , ,

where

fl.1= (X~ + U~ I)(X~ +U~ z) - (X~ + U~ J(X~ +U~ I), , , , , , , ,

fl.z = (X
I
Z +U~ Z)(X~ +U~ I) - (Xii +U~ I)(X~ +U~ J, , , , , , , ,

fl. 3 = (Xii + U~ I)(X~ +U~ z) - (X~ +U~ I )(X
I
Z +U~ z), , , , , , , ,

fl. = ~fl.~ + fl. ; + fl. ; .

(7.180)

(7.181)

(7.182)

In application, only the positive (+) in Eq.(7 .181) is adopted. From the Taylor se

ries , vanishing of the first order terms in z gives three equations in ffJi l) similar to

Eqs .(7.180) . The three equations plus ffJ?) give ffJi l) ; ffJ~ 1) for n = 3, 4, ... can be

determined in a like manner. Substitution of all ffJ~1) ( n = I, 2, ... ) into Eqs .(7.173)

and (7.175) generates the normal and shear strains ca and Yiz ' The membrane
. (0) o> d M(O)strams are ca == 6 a an li z '

7.3.1 b Equations of motion for shells

Consider a non-deformed shell subject to the inertia force per unit area pUl .tt '

h"

where P = L- Podz and Po is the density of shell, body force f =r NA

( A = I, 2, 3 ), surface loading {p ~, p~ }, where the superscripts" + " and" -" de

note the upper and lower surfaces, external moment m~ (a = 1, 2) before defor

mation. From the sign convention, the external and distributed forces are ex
pressed by

m=mll l = (-li maN p fora,fJE {1,2} ,a:;t:fJ,

q=qll l =qANA for A.e {1 ,2,3} .

The components of distributed force and moment are

(7.183)
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(7.184)

A + - rh' A
q = PA - PA+ J-h- f dz (A = 1, 2, 3),

h+

m" =m~ +h+pp+h-pp+ L_fPzdz (a,!3E 1,2,a;t.!3),

where m3 =0 and h =h" + h>. From Eq.(7.183), the following relations are ob
tained:

m' = m"N A .11 =mA cos ()(l'i I ) '
A' I

q l=qANA·I /=q AcOS()(l'i I ) '
A ' I

In other words,

The distributed loading after deformation becomes

[l*] sin 8 ( :'\'1' :'\'2) [l ]
m" - (1+Cl)(1+ c2 ) sin B(n

l
.nz) m' .

The constitutive laws give the stresses on the deformed configuration as

(Yap = f ap(cMN , t ).

The internal forces and moments in the deformed shell are defined as

NaP = f~-(Yap[JGa·a·(1+ca·)(1+c3)sinB(na.,n3)]dz,

~ z [ ]MaP = L- (Yap 1+ qJ (I )X l JGa'a' (1+ ca,)(1+ c3)2sin B(n" ,n, ) dz,
I ,3

Qa = f~- (Ya3[ JGa·a· (1 +Ca·)(1 +c3 ) sin B(n
O
.,n3)]dz,

with a' = modea , 2) +1,

because of

(7.185)

(7.186)

(7.187)

(7.188)

(7.189)

I+X~u~
cos() = "

(l'i3 ,n3
) Jl+ 2£33

(7.190)

where NaP are membrane forces and MaP are bend ing and twisting moments per

unit length and a , !3E {I, 2} . Before the equation of mot ion for the shell is devel

oped, the internal force vectors are introduced, i.e.,
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M a == M~I I = (-Ii M aD f3 +(-It M af3D a,

.Na == N~II=Na Da +Naf3 Df3 +QaD3'

I\'M a == ;\'M~ II = g, x.Na,

with out summation on a ,{3 E {1 ,2} and a*, {3, where

The components of the internal forces in the X I -direction are

N~= NaDa · II+Naf3 Df3 . 11 +QaD3.11

= Na cos B(na,Ifl+Naf3 cosB(nf ,I/) + Qa coSB(n"I/)

= Na (X.~ +u b.a) + Naf3 (X,~ +ub,f3) + Qa(X,~ +qf))
fG(1 + e(O) ) fG(1 + e(O) ) 1+ e(O) ,

" I.Jaa a " v 1313 13 3

M~ = (_1) 13 M aD f3 . 11+ (-It Maf3D a .11

= (-Iiu , cosB(nf ,Ifl+ (-It Maf3 coSB(na,I/)

13 Ma(Xlf3 +Ubf3) MaP(X l
a +Uba)

=(-1) , , +(-It . "
~G1313 (I +e1°)) ~Gaa (I +e~O))
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(7.191)

(7.192)

(7.193)

(7.194)

(7.195)

for (l , J , K E {I, 2, 3}, J *' J *' K *' 1) and the indices (J, J, K ) rotate clockwise.

Based on the deformed middle surface in the Lagrangian coordinates, the equa
tions of motion for the deformed shell are

.Na,a +q = (PUO,II + JOIJ'I ,II) sin 8 ( 1\'1' l\' zl'

M a,a + ;\'Ma + m = (louO,1I + JOlJ'i,lI)sin 8 ( ;\'1,1\'2) '

or for J = I, 2, 3 with summation on a = I, 2,

(7.196)

(7.197)



304 7 Non linear Webs, Membranes and She lls

i
h+ ih+where 13 = _h_Pozdz , J 3 = _h_POZ2dz . If h' =h- =h /2 , one obtains 13 =0

and .Z, = POh
3 / 12 . The equation of motion in Eq.(7.l 93) is in a form of

[ NI I (X,~ +u~,,) + NI2 (X,~ +U~,2) + QI(X,~ +lJf ))]
fG(l + &(0)) ra(l + &(0)) 1+ &(0)

"VII , "Vn 2 3 ,1

[
N2 1 (X ~ +U~ ,) N22 (X~ +U~ 2) Q2(X~ +IJf ))] I

+ " + ' ' +' +
fG(l + &(0)) ra(l + &(0)) 1+ &(0) q

"VII 1 "V22 2 3,2

( I I (I) ) . e
= P UO,tI + 3({J"tI Sill ~ ("'1' ''' 2)'

(7.198)

(7.199)

The balance of equilibrium for shells gives (7.192) or (7.193). They together with
(7.173)- (7.178) constitute this approximate nonlinear theory for shells.

The force condition at a point~klok2) with Sa =A~I , k2 ) (a =1, 2) is

(7.200)

or
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The force boundary condition at the boundary point ~V2) is

I :=,.Na(S' , S2)I(SI S')=(SI s' ) + F(rl,r, ) = 0,
, (I},'2 )' (I},'2 ) -

or
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(7.201)

(7.202)

(7.203)

(7.204)

The force boundary conditions on the shell edge is for a , f3 E {I, 2}and a *' f3 .

(.Na(S' , S 2)+ a~p f.Np(S' , S 2)dSa)l sa=s;, + F(S P) = 0,

or

(7.205)

Without shear forces , the force conditions in Eqs.(7.200)- (7.205) are identical to
Eqs.(7.145) -(7.150) .

If there is a concentrated moment at a point~kl , k2 ) with S a =A(~I , k2) (a =1,2),

the corresponding moment boundary condition is

(7.206)

or

(7.207)

The moment boundary condition at the boundary point ~V2 ) is

(7.208)

or

(7.209)
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The moment boundary condition on the shell edge for a, j3E {l, 2}and a"* j3 is

or

(M ",(SI, S2)+ f"M ",(SI, S2)dS"')l sa ~Sf

+(fl\"M (Sl S2)dS'" +_a_ fM (Sl S2)dS"')1
fJ' asfJ fJ' s- -s:

+ M(SfJ) =0,

(M~(SI , S2) + rM~(SI , S2)dS"')l sa ~Sf

+(fl\"M 1 (Sl S2)dS '" +_a_ fM 1 (S l S2)dS"')1
fJ' asfJ fJ' sa ~sf

+ M 1 (S fJ) = O.

(7.210)

(7.211)

The displacement continuity and boundary conditions are the same as in
Eqs.(7.57) and (7.58). The theory of nonlinear shells can easily reduce to the the
ory of thin plates in Chapter 6 (e.g., Luo , 2000) . Such a nonlinear theory is very
intuitive to understand.

7.3.2. A shell theory based on the curvilinear coordinates

Consider a material particle P(X1
, X 2

, X 3
) in an initial configuration of a shell at

the initial state . The base vectors at the position R of the material particle are de
scribed by Eqs.(7.ll7)-(7.l22). On the deformed configuration of the shell, a par
ticle at point P moves through displacement u to position p , and the particle Q, in
finitesimally close to p(SI , S 2, S3), moves through u + du to q in the vicinity of

p(SI, S2, S3) , as illustrated in Fig.7.7. The strain for three-dimensional body is

similar to Eqs.(7.123)- (7.135). For clarity, the similar description is given as fol
lows . The position of point p is described by

r = R + u = (S A+u A)GA' (7.212)

where the displacement is u =uAGA (A =1,2,3). The infinitesimal elements dR

and dr are expressed by

dR = G AdSA, dr = G AdSA+du;

with the infinitesimal displa cement is for A, I' = 1, 2, 3,

Further, the deformed infinitesimal element is

(7.213)

(7.214)
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The length change ofdR per unit length gives

where the Lagrangian strain tensor EAr to the initial configuration is

The unit vectors along dR and dr are written as
A A

307

(7.215)

(7.216)

(7.217)

(7.218)

As similar to Eqs .(7.132) -(7.134), the shear strains can be defined in three

directions . Let 8 (I'\A,l'\r) and B(nA.nr) be the induced angles between nA and nr be-

fore and after deformation.

cosB(nA,nr) =cos(8(I'\A.l'\r) -YAr)

drdr G 2EA r Ar + Ar

Idr II dr I /(GM +2EM)(Grr +2Err)A r 'V

(0: +u;~)(o~ +U;~)GKL

~GMGrr(l+CA)(l+ Cr) ,
(7.219a)
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dR·dR
cosE> = A r

(]'( A.]'( r) IdR II dR I
A r

and the shear strain is

(7.219b)

(7.220)

From Eq.(7.218), the direction cosine of the rotation without summation on A
and I" is

~GAAGrr~(O; +u;~)(O; +U;~)

GAr +UA;r (0; +U;~)GKA

~GAAGrr(1+Cr) ~GAAGrr(1+Cr)

In addition, the change ratio of areas before and after deformation is

1~ = (1+cA)(l+cr ) sin B(n
A
.nr)

dA sinE>(]'( ]'( )
Af" A' r-

where da =Idrxdr IanddA =IdRxdR I·Ar A r Ar A r

7.3.2a Shell strains on curvilinear coordinates

(7.221)

(7.222)

Suppose the base vector G 3 be nonnal to the plane of G I and G 2 in the curvilin

ear coordinates. Equations (7.166) -(7.168) can be used for the following deriva

tives . Again , if G I and G 2are orthogonal, one obtains GI2 =0 and G =~GIIG22 .

For reduction of three dimensional strains to a two-dimensional form, displace
ments can be expressed in a Taylor series expansion about the displacement of the
middle surface . Thus , the displacements are assumed for (A = I, 2, 3 and a , j3E

{I, 2} ) by
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A = A(S' S2 t)+ '\' ~ nm(A)( s ' S2 t)
U Uo , , L.J n=l Z 't' n ' "

with
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(7.223)

(7.224)
R = SIG , +S2G2+zG 3 = s aG a + zG3 ,

r = R+u =(S a +ua)Ga +(Z+U3)G
3 ;

where u~ denotes displacements of the middle surface, and the qJ~A ) (n = 1, 2, ... )

are rotations. Substitution of Eq.(7.223) into Eqs.(7.217) and (7.220) and collec
tion of the same powers of z gives

(7.225)

(7.226)

(7.227)
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(7.228)

for a = 1, 2 . The strains of the middle surface following Eqs.(7.217)-(7.220) at

z =O are

where

G 2£
(0)

e(O) - I 12 + 12= cos
(n\ .n- } ~ (0) (0)

- (Gil + 2£11 )(G22+ 2£22 )

-I (ot + U~I ) (O; + U~2 )GAr
= cos ' ,

fGG(1 +& (0) )(1+ &( 0)) ,
V V ll V 22 I 2

(7.229)

(7.230)

(7.231)

(7.232)

(7.233)
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=±[(o: +U~oJ(O; +U~p)GAr -GaP]'

£ (Ol _ I ( A )a3 - - UOa'3+U03'a +UO'aUOA'32 . . . .

=±[(O: +U~a)(O; +q{l)GAr -Ga3]

_ I (S:A A )( cr (r))G-- Va +Uo'a V3 +CfJ, Ar'2 .
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(7.234)

Because G 3 is normal to the base vectors G a(a = I, 2), Ga3 = 0 and G33 = I . In

Eqs.(7.225)-(7.228), the shell strain requires specification of three constraints for

determination of three sets CfJ(~ ) (A =I, 2, 3; and n =I, 2, . . . ) like the Kirchhoff

assumptions (ra 3 = c3 = 0). From Eqs.(7.2 16) and (7.220) , Kirchhoff's assump

tions become

~GAA ~(03A + u;~ )(ot + u;~) = I,

(0: +u~)(O; +U~)GAr = O.. ,

(7.235)

(7.236)

Substitution of Eq.(7.223) into Eqs.(7.235), expansion of them in Taylor series in
z and vanishing of the zero-order tenns in z gives

~GAA ~(ot + CfJ,(Al)(ot + CfJ,(Al) = I,

(0: +u~a)(O; + CfJ,( rl)GAr = O.

Form the foregoing equations,

where only the posit ive (+) is adopted and

~, = [(b;A+u~, )GA2] [(02A+U~JGA3]

_[(b;A+U~,)GA3][(0~ +U~2)GAJ ,

~2 = [(b;A+U~,)GA3][(0~ +U~JGA']

_[(b;A+U~,)GA'][(O~ +U~JGA3] '

~3 = [(b;A+U~,)GA,][(02A +U~2)GA2]

_[(b;A+U~,)GA2][(02A +U~2)GA'] '

~ = ~Gll~~ +G22~; +G33~; '

(7.237)

(7.238)

From the Taylor series , vanishing of the first order terms in z gives three equations
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in CPt) similar to Eqs.(7.236). The three equations plus CPl( A) give CPt) ; cp~A) for

n = 3, 4, can be determined in a like manner. Substitution of all CP: (n =

1,2,3,4, ) into Eqs.(7.225) and (7.227) generates the normal and shear strains

«: and Yi z .

7.3.2b Equations of motion on curvilinear coordinates

Consider the external and distributed forces on the curvilinear coordinates in the
initial configuration as

m = (-Ii m aN p for a , j3E {I, 2} and a"# 13,
q=qANA forAE {1,2,3} .

(7.239)

(7.240)

The components of distributed force and moment are defined in Eq.(7.184), and
the corresponding internal forces and moments in the deformed shell are defined
as in Eq.(7.l89), i.e.,

NaP = f>J'ap[JGa·a· (1 + Ca' )(1 +c3)sin 0(n
a
.,n3)Jdz ,

M aP = t-O'ap I + ~rA) [ JGa·a· (I + ca· )(1 + cJzsin O(n" ,n,)Jdz,

o:= t- O'a3 [ JGa·a· (1+ ca·)(1 + c3)sinO(n" ,n,)Jdz,

with a'= mod(a,2)+I,

because of

(7.241)

where N aP are membrane forces and M aP are bending and twisting moments per

unit length and a , 13 E {I, 2}. In a similar fashion, the internal force vectors are

defined on the G A -surface , i.e.,

where

M a == M~NA = (-I)PM an p + (_1) a M apn a ,

.Na == N~NA = Na lla +Napllp + Qall3 '

(7.242)

(7.243)

(7.244)
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The components of the internal forces in the G A -direction are

N;= N",n", ' NA +N"'f3 nf3 ' NA +Q",n3 • NA

= N", cos(J(n x )+N",R cos(J(n ]\' ) + Q",cos(n x )
a » A r' fl ' A ) , A

= N",(GA", +u~",) + N"'f3 (GAf3 +U~f3) + Q",(GA3 + q:f ))
~GAA G",,,, (1+ C~O) ) ~GAA Gf3f3 (1+ C~O) ) ~GAA (1 + ciO) ) ,

M ; = (-1)13 M ",nf3 ·N A + (-I)'"M "'f3 n", ·N A

= (-Ii M ",cos (J(n p ' ]\'A ) + (-1)'"M "'f3 cos (J(na ' :" A)

_ - I 13 M ",(GAf3 +u~f3) + - I '" M "'f3(GAa +u~",)
- ( ) I (0) ( ) I (0) ,

" GAA Gf3f3 (1 + cf3 ) " GAA G",,,, (l + c,,, )

X l X 2 X 3
,A ,A ,A

~GAA ~GAA ~GAA

= (O~ + uTa );", )N;
Xl X 2 X 3

.r .r .r

~Grr ~Grr ~Grr
Xl X 2 X 3

,K ,K ,K

~Gr;r; ~Gr-r- ~Gr-r-
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(7.245)

(7.246)

(7.247)

for (1 , J , K E {I, 2, 3}, 1 ;t.J ;t.K ;t.1) and the indices (1 , J, K ) rotate clockwise;

(A, r , L E {I, 2, 3}, A ;t. r;t. L;t. A) . Based on the deformed middle surface in the

Lagrangian coordinates, the equations of motion for the deformed shell are given
by Eq. (7.196) , i.e.,

.N",;", + q = (P"O,II +13fPl,lI) sin 8 ( ]\'1,]\'2) ,

M ", ;", + :" M", +m = (13" 0,11 +J3fPl,lI) sin 8 (]\'1,]\'2) ,

and the scalar expressions are for A = 1, 2, 3 ,

(7.248)

(7.249)

with summation on a= I, 2 . The equation of motion in Eq.(7.249) is in a form of
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(7.250)

(7.251)

Notice that (1, J , K E {I, 2, 3}, 1 * J * K *1) and the indices (1, J , K ) rotate

clockwise . (A, r ,L E {I,2, 3}, A * r * L * A) . The balance of equilibrium for

shells in Eq.(7.248) or (7.249) with (7.225)-(7.230) constitu te this approximate
nonlinear theory for shells .

The force condition at a point~V2) with Sa =A(~I , k2 ) (a =I, 2) can be devel-

oped as in Eq.(7.200) but the scalar expression is

(7.252)

(7.253)

The force boundary condition at the boundary point ~i " i ) is as in Eq.(7.202) and

the scalar expression is

,,2 N~(Sl ,S2) 1 Sl 2 1 2 +F(~ r ) = 0..L..a =! ( , 5 ) =( 8 (11,12 ) ,8(11,12 )) I ' 2

The force boundary conditions on the shell edge are given in Eq.(7.204) but the
scalar expression is for a, /3 E {I, 2}and a * /3,

~p f NpA(S ' ,S 2)ds al sa_sa + N~(S' ,S 2) 1 o s: a +FA(S P) =O. (7.254)as - . s - so
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If there is a concentrated moment at a point .'l(kl>k
2

) with Sa = A(~I ,k, ) (a = 1, 2 ),

the corresponding moment boundary conditions are given in Eq.(7.206) but the
scalar expression is

(7.255)

(7.256)

The moment boundary condition at the boundary point ~i " i ) IS given in

Eq.(7.208), but the scalar expression is

", 2 M A(S',S2)1 1 2 1 2 +M(~ r ) =0.
L.., a~' a (S ,S ) =(B("'2 ) ,B( , , ~ ) I ' 2

The moment boundary conditions on the shell edge is given in Eq.(7.210), but the
scalar expression is for a , f3 E {I, 2} and a*- f3 .

(M:(S' , S 2)+ I'M:(S' , S2)dsa)l sa =s~

+(f I'iM A(S' S 2)dSa+-a-fMA(S' S2)dSa)1p , asP p , sa~s~

+MA(SP) = O. (7.257)

The displacement continuity and boundary conditions are the same as III

Eqs.(7.151) and (7.152).
Such a theory can easily reduce to the Kirshhoff theory (Kirchhoff, I850a,b).

The nonlinear theory of shells is different from the theories based on the Cosserat
surface in E. and F. Cosserat (1896, 1909). Based on the three-dimensional de
formable body, the Cosserat surface with one director was used to derive the
nonlinear theory of shells (e.g., Green, Laws and Naghdi, 1968). The detailed
presentation of such a shell theory can be referred to Naghdi (1972). In that the
ory, the general express ions of geometrical relations (or strains) were given with
infinite directors, but how to determine the infinite directors was not presented.
Only the existing theories can be included in such a generalized frame. However ,
the nonlinear theory of shells presented herein gives an intuitive and deterministic
form to use. The unknown coefficients in the approximate displacement fields can
be determined by the certain assumpt ions. Such a theory can be applied to any ma
terials.
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Chapter 8
Nonlinear Beams and Rods

In this chapter, nonlinear theories for rods and beams will be discussed in the Car
tesian coordinate frame and the curvilinear frame of the initial configuration .
Without torsion, the theory for in-plane beams will be presented . The traditional
treatises of nonlinear rods were based on the Cosserat's theory (e.g., E. and F.
Cosserat, 1896) or the Kirchhoff assumptions (e.g., Kirchhoff, 1859; Love, 1944).
This chapter will extend the ideas of Galerkin (1915), and the nonlinear theory of
rods and beams will be developed from the general theory of the 3-dimensional
deformable body. The definitions for beams and rods are given as follows.

Definition 8.1. If a 1-0 deformable body on the three directions of fibers resists
internal forces, bending and twisting moments, the 1-0 deformable body is called
a deformable rod.

Definition 8.2. If a 1-0 deformable body on the three directions of fibers resists
internal forces and bending moments, the 1-0 deformable body is called a de
formable beam.

8.1. Differential geometry of curves

Consider an initial configuration of a nonlinear rod as shown in Fig.8.1. The unit
vectors I I (J = 1, 2, 3 ) are the base vectors for the Cartesian coordinates and the

based vectors G a (a = 1, 2, 3 ) for the curvilinear coordinates are defined later.

To present the nonlinear rod theory, it is assumed that the base vector G 1 is nor

mal to the surface formed by the other base vectors G 2 and G 3 • The surface

formed by the vectors G 2 and G3 is called the cross section of the rod. The mate

rial particle on the central curves of the intersections of two neutral surfaces in the
initial configuration is
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Fig. 8.1 A mate rial particle P on an initial configuration of a nonlinear rod.

(8.1)

(8.2)

where S' = Sand S2 = S3 = 0 . From Eq.(8.1) , the base vectors for the rod can be
obtained. The base vector in the tangential direction of the rod is defined by

dR axl
1 1

G, =-=--1 1 = X s ll =G11 1 •
dS as '

Note that O,s = 0 " and the metric measure is given by

(8.3)

and

while an arc length variable s is defined by

ds =.,JG::dS,

(8.4)

(8.5)

(8.6)

with ~x,~x,~ = I . The direction of G 1 is the tangential direction of the initial

configuration of the rod curve . From differential geometry in Kreyszig (1968) , the
curvature vector can be determined by
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and

G~ == ; z[X.~ I(X.~X.~)-X.~X.~ X.~I J ,
II

Gzz== G~G~ =~3 [(X~ IX ~I )(X~X~) -(X~X~ I)Z J.
G " " "

II

The curvature ofthe rod in the initial configuration is

K= IG z i = JG:: = ~X,~sX,~s

_ ~(X,~ IX,~I )(X,~X,~)-(X,~X,~I) Z
- G312

II

The unit principal normal vector is given by

N - G z _ G z _ G~ I dN l =
Z - JG:: --;;: --;;: t » ds G z = KNz·

The unit hi-normal vector is defined by

N3=NjxNZ

and let
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(8.7)

(8.8)

(8.9)

(8.10)

(8.11)

(8.12)

(8.13)

where elJK is the Ricci symbol in Eq.(2. 105). Therefore, G33 =G; G; =I (summa

tion on f)
Consi der the change rate of the unit bi-normal direc tion with respect to the arc

length (s), which gives

dN 3 dN 3-- = - r N ~ r =-N ._ -
ds z z ds

The torsional curvature of the rod (or torsion of the curve called in mathematics)
IS

1
r= ~ [R,sR,ssR,sssl
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(8.14)

Based on the definition of unit based vector, the vector product gives

N 2 = N3 x Nl' N3 =-N2xNl' N 1 = - N3 x N 2 •

With Eqs.(8.10) and (8.13),

dN dN dN
__2 = _ _3 XN] +N

3
x - -]

ds ds ds
= -rN2 x N. + KN3 xN2

= - KN ] +rN3 •

Thus, from the formulae of Frenet (1847),

dNl

ds
dN2

ds
dN3

ds

dNl

dS

+~K
JG::K

~rjmJdN2 0
dS

-JG::rdN3

dS

Consider a rotation vector ( or the vector of Darboux)

ro=rNI +KN3

Equations (8.17) and (8.18) become

dN] dN2 dN3- - = roxNl' - - = roxN 2 , - - = roxN 3 ,

ds ds ds

Consider a material point R on the cross section of the rod

(8.15)

(8.16)

(8.17)

(8.18)

(8.19)

(8.20)

(8.21)
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(8.22)

Without loss of generality, S I, S2and S3 are collinear to the directions of N" N2
and N 3 , respectively. On the cross section of NI' any variable can be converted

on the two directions of N 2 and N 3 •

Consider a displacement vector field at the point R to be

From the previous definitions,

N - G A _ G~ I
A - ~GAA - ~GAA I'

(8.23)

(8.24)

The particle in the deformed configuration is expressed by the location and dis
placement vectors, i.e.,

r=R+u=(X I +ul(S' ,S2,S3))I p or

r =R+u =(SA+UA(SI ,S2,S3))G A

and the corresponding infinitesimal line element of the deformed rod is

dr =dR +du =(X.~ + t<a)dS al l

= (0: +u~)dSaGA '

The base vector for the deformed rod becomes

ga =(X.~ +u.~)I I =(0: +u;~)G A

and the corresponding unit vector is

8.2. A nonlinear theory of straight beams

(8.25)

(8.26)

(8.27)

(8.28)

Consider a beam in the initial configuration to be straight. This requires that the
curvature and torsion should be zero (K(S) = 0 and reS) = 0). Thus, S I = x' ,
GafJ =0 and Gaa =1(a,,8=1,2,3).
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(8.29)

The strain based on the change in length of dR per unit length gives

Idrl -l dRl
C = a a = ~I +2E -I

a IdRl aa

a

The Lagrangian strain tensor EafJ referred to the initial configuration is

E I (S: I I s:1 I I I )•afJ = - U aUfJ +ufJU a +UaUfJ .2 ' ' "

(8.30)

(8.31)

In the similar fashion , the angles between na and nfJ before and after deforma

tion are expressed by 8(1\" I\" ) = Jr / 2 and ()(n n ) ' i.e.,
a » p a » P

cos ()(n n ) == cos(8 ( ~ I\" ) - YaP)a » p I a » P

dr -dt (0 1 +U I )(01 +U I
)_ a fJ _ a ,a fJ ,fJ

- ld; I I~ I- ~(l+2Eaa)(l+2EfJfJ)

_ (o~ +u.~)(O~ +U,~)

(1+ ca)(1 + cfJ )

and the corresponding shear strain is defined by

= sin" (o~ +u,la)(O~ +U,~)

~(l +2Eaa)(1+2EfJfJ)

= sin-1 (O~ +u,~)(O~ +u,~) .

(1 +ca)(l +cfJ)

From Eq.(8.28), the direction cosine of the rotation is

dR ·dr s:+ua s:+ua
cos () = a IJ = fJ ,fJ = fJ .fJ

( I\"" ,np) 1 ~ll dJI ~1+2EfJfJ l+ cfJ

In addition, the area changes before and after deformation are given by

da
-.::L = (1+ ca)(1 +cfJ)sin ()( )'dA na ,np

afJ

(8.32)

(8.33)

(8.34)

(8.35)
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where da =Idrxdr I and dA =IdRxdR I·
afJ a fJ afJ a fJ

Consider the coordinate Xl to be along the longitudinal direction of the beam
and the other two coordinates X Z and X 3 on the cross section of beam on the di
rection of Xl . The coordinates for the deformed straight beam are (s', s': S3) .

Because the initial configuration of the beam is a straight beam, under external
force, the deformed configuration of the beam does not experience any torsion
( r(sl) == 0). Thus, the deformed configuration of the beam is a plane curve.

Without loss of generality, the curvature direction of the deformed configuration
can be assumed to be collinear to X Z

• Because the widths of beam in two direc
tions of X Z and X 3 are very small compared to the length of the beam in direc
tion of Xl , the elongation in the two directions of X Z and X 3 should be very
small, which can be neglected. From the aforementioned discussions , the follow
ing assumptions are adopted:

(i) The deformed configuration of the beam does not experience any torsion
(r(sl) == 0).

(ii) The curvature direction of the deformed configuration is collinear to SZ •

(iii) The elongations in the two directions of X Z and X 3 are very small (i.e.,
£z '" 0 and £3 = 0).

(iv) Under bending only, the neutral surface is not deformed (i.e., ;VIZ '" 0 and

1'l3= 0).

Consider an arbitrary coordinates as (Xl, Y, Z) at the centroid on the cross

section of the beam. Under the resultant forces, the bending of beam is in the cur
vature direction of S Z • The deformed curve of the beam is on the plane of

(Xl, X Z
) , as shown in Fig.8.2. In other words, the neutral surface of the deformed

beam is on the plane of (Xl, X 3
) . When the transversal forces act at a point on

the cross section of the beam and if the beam will not be twisted, such a point on
the cross section of the beam is called the shear center (or flexural center). From
Assumption (i), no torsion exists. In addition, the transversal forces should be
placed to the shear center. Because the transversal forces are applied to the beam
off the shear center, the beam will be twisted and bent. To explain this case, con
sider external distributed forces and moments at the shear center on the initial
configuration to be

(8.36)

and concentrated forces on the initial configuration at a point Xl = Sk'

(8.37)

The displacement vectors on the initial configuration are
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Initial configumtion

z

Deformed configuration

Fig. 8.2 A straight beam with initial and deformed configuration.

The internal forces and moments for S >x~ are

F IXl~S = L k=l kF+rqdX
1

,

" k rS
1M IXl=S= L.k=l M + Jo mdX ,

+Lk~I CS R - kR )x kF+rCSR-R)xqdX1
;

or for I = I, 2, 3,

F
1 I Xl~S = L k=l kF

1 +rq I dX
1,

M
1

IXl=S= L k=l kM
1+ LS

m1dX
1,

M 2 Ix1=s=Lk~l kM
2+rm

2dX1

- L k=l kF3 (S _ X~ ) _rX 1q3dX1,

M 3 Ix1=s=Lk~l kM
3+ LS

m
3dX1

+Lk~l kF 2(S -X~)+r(S _X1)q2dX1.

From assumptions (i) and (ii) , the following conditions exist :

(8.38)

(8.39)

(8.40)



8.2. A nonlinear theory of straight beams

F 3
1 =" kF 3 + fSq3dX' =0
XI~S LJ k='.Io '

M l I =" kM I + fS mldX' =0
~~ LJ~ .10 '

M
2 I XI~S = L k=l kM

2
+ LSm

2dX'

-" kF\ S _ X l ) _ fS(S_Xl)q3dXl =0.
LJ k~ 1 k .lo

For all points on the beam to satisfy Eq.(8.41),

k F 3 = 0 and q 3 = 0,

kM ' =0 and m' =0,

k M 2 = 0 and m' = O.
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(8.41)

(8.42)

If the external forcing exerts on the three directions of (X' , Y, Z) , the resultant

forces and moments on three directions of(X I ,X2
, X 3

) should satisfy Eq.(8.42).

Such projection of the forces can be done through the rotation angle between the
two coordinates (Xl , Y, Z) and (X' , X 2

, X 3
) •

From assumption (ii),

(8.43)

(8.45)

where X 2 = J(Y)2+ (Z) 2 is a distance to the neutral surface along the direction

of curvature. From assumption (ii), no displac ements exist in the direction of
X 3 (i.e., u3 = 0). From Kirchhoff's assumptions, under bend ing only, if the cross
section is normal to the neutral surface before deform ation , then after deformation,
the deformed cross section is still normal to the deformed neutral surface. Thus,
equat ion (8.43) becomes

u/ =u~(S,t)+X2qJ(I)(S,t) ([=1,2). (8.44)

From assumptions (iii) and (iv),

(0; +u./2)(0; +u./2) = 1,

(0/ +u,~)(O; +U,/2) = O.

With u3 = 0 and Eq.(8.43), the Taylor series expansion of Eq.(8.45) give for the

zero-order of X 2
,

From Eq.(8.46),

(0; + qJl(I))(0; + qJl(I)) = 1,

(0/ +u~,)(o; +qJl(I)) =0.
(8.46)
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(8.47)

From the sign convention, the positive "+" in the second equation of Eq.(8.47)
will be adopted. Following the similar fashion , one can obtain qJ~I) (n = 1,2, . . .

and J = 1, 2). Further, using the Taylor series expansion, the approximations of

three strains on the cross section of the deformed beam are

(0) d£zl X Z 1 d'e, I (X z)z£ ""' £ +-- +- + ...
Z Z dXz X'=O 2 d(Xz) z x2=0

2(151+ m(l))m(l) {[2m(l)m(l)+ 3(151+ m(l))m(l)]_ £(0) + Z 't'l 't'Z X Z+ -r: -r: Z 't'l 't'3
- Z 1+ £(0) 1+£(0)

Z Z

2[(151+ m(l))m(l)]z }_ Z 't'l 't'2 (X z)z +....
(1 + £iO) )3 '

v "", ,,(O) + d r..z l X z+ 1 d Zr.. zl (X z)z+ ...
l iZ f 12 dX z X2~0 2 d(Xz)z X2~0

1 {2(151+ u(l))m(l) + (151+ m(l) )m(l)
= r,0)+___ I 0,1 't'Z Z 't'l 't'l ,1

IZ cos rig) (1 +£;0))(1+£iO))

[

(151+u(l))m(l) 2(151+ m(l))m(l)]}
. ,jJ I 0,1 't'1 .1 Z 't'l -r : X Z

-SIn /v: (0) Z + (0) Z +" ' ,
(1 + £1 ) (1 +£z )

where for I = 1,2,

£1(0) =~(J/ +U~,I)(J/ +u~.!)-1

= ~(l +ub.!)z + (u~,!) z -1 ,

(8.48)

(8.49)

(8.50)

(8.51)
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£~O) =~(O; +qf»)(o; +qf»)-l

= ~(qf»)2 + (1 + lp]2)2 -1,

The constitutive laws give the stresses on the deformed configuration as

The internal forces and moments in the deformed beam are defined as

N ]= L0'] [(1+ £2)(1 + £3)cos Y23 ]dA,

)(2 2

M3 = LO'] l+lp? ) [(1+ £3)(1+ £2) cosY23JdA,

Q] = LO']2[(1+£2)(1+£3)cosY23]dA.
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(8.52)

(8.53)

(8.54)

(8.55)

For convenience, the subscripts of the internal forces can be dropped. The internal
force vectors can be defined as

M == M 31
3= Mn3,

.N== N II I = Nn] +Qn2,

"' M == "' MI I/ = g]x .N,

where

The components of the internal forces in the I I -direction are

N I=Nn] . II +Qn2· I/=N cos(J(n 1 )+ Qcos(J(n I )
1'1 2 ' I

= N (o/ +Ub.l) + Q(o; +lpi)
1+£(0) 1+ £(0) '

, 2

I _ M(o; +Ub.3)
M = Mn3· I/-M cos B(n I ) = (0)

3· I 1+£3

'"M 3=(g, x.N) ·13 =(1+Ub,I)N 2
-u~,I N I .

(8.56)

(8.57)

(8.58)

(8.59)
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Because of U~ , 3 = °and ci O) = °,one obtains

I\M 3 =Q(1+c
l
( O) ) , I\MI = I\M 2 =0,

M I =M 2 =OandM 3 =M.

Equations of motion on the defonned beam are given by

~I + q = PUO,II +13({JI,II '

M 1 + I\M+m =13u OII +J3({JI II ;
, "

and the corresponding scalar expressions are for 1 = 1,2 ,

N 1 I _ I 1 (/)
,1 +q - pU(O),tI + 3({J" II ,

M 3 I\M3 3 - 1 1 J (I ) .
, I + + m - 3U(0),1t + 3 ({JI,tI '

or

8 Nonlinear Beams and Rods

(8.60)

(8.61)

(8.62)

[ N(1 + U~ ' I ) QU~'I] 1_ 1 (I ) .

l+ cl(O) -1+c,(O) +q - pU (O),1t +/3qJI,It '
,1

[
Nu~" Q(l +U~,I )] 2 _ 2 (2).

1+ c? ) + 1+ c l(O) + q - pU (O),1t + 13qJI,It '

,I

M Q(I (0) ) 3 - 1 I J ( I )
,I + + c I +m - 3U(O),1I + 3qJ"II'

wherep= IPodA , 13 = IPoX
2dA and J 3 = IPo(X

2)2dA .

The force cond ition at a point.'l{ with Xl = X~ is

-N(X~ ) + + N (X~ ) + Fk = 0,

-N I (X~ ) = +N I (X~ ) + F/ (/=1 ,2).

The force boundary condition at the boundary point :J: is

N(X,I)+F, =O or N1(X ,I) + F/= 0 (1=1,2).

(8.63)

(8.64)

(8.65)

If there is a concentrated moment at a point .'l{ with Xl = X~ , the corresponding

moment boundary condition is

-M(X~ ) + +M (X D + M k =0,

-M3 (X~ ) = +M3 (X~ ) + M: .

The moment boundary condition at the boundary point .'l{ IS

(8.66)

(8.67)
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The displacement continuity and boundary conditions are
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(8.68)

The afore-developed beam theory can be reduced to the beam theory given by Re
issner (1972). The nonlinear vibration and chaos of a beam were extensively in
vestigated (e.g., Verma, 1972; Luo and Han, 1999).

8.3. Nonlinear curved beams

Consider an arbitrary coordinate system as (Xl , Y, Z) at the centroid on the cross

section of the beam. The central curve of the deformed beam is on the plane of
(X l , X 2

) , as shown in Fig.8.3. In other words, the neutral surface of the deformed

beam is on the plane of (X l, X 3
) . Let the coordinate Sl be along the longitudinal

direction of beam and the other two coordinates S2 and S3 be on the cross sec

tion of beam with the direction of Sl . The coordinates for the deformed , curved

beam are (s' , S 2, S3 ) . Because the initial configuration of the beam is a curved

beam, under external force, the deformed configuration of the beam to the initial
configuration does not experience any torsion ( '(Sl) == 0 ). In other words, under

the resultant forces, the bending of beam is in the plane of (Sl, S2). Thus, the

configuration of the deformed beam is still a plane curve. Without loss of general
ity, the curvature direction of the deformed configuration can be assumed to be
collinear to S2. Because the widths of beam in two directions of S2 and S3 are

very small compared to the length of the beam in direction of Sl , the elongation

in the two directions of S2 and S3 should be very small, which can be neglected.
Thus, as in the straight beam, the following assumptions are enforced .

(i) The configuration of the deformed beam to the initial curved beam does not
experience any torsion ( z(s') == 0 ).

(ii) The curvature direction of the deformed beam is collinear to S2 •

(iii) The elongations in the two directions of S2and S3 are very small (i.e.,

£2 "" 0 and £ 3 = 0 ).

(iv) For bending only, the neutral surface is not deformed (i.e., 1'12 "" 0 and

1'13= 0).

From Assumption (i), no torque exists , and the transversal external forces
should be added at the shear center. Similar to Eqs.(8.36) and (8.37), the external
distributed forces and moments on the initial configuration are for (1 , A = 1,2, 3 )

(8.69)
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Initial configuration
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Fig. 8.3 A curved beam with initial and deformed configuration.

and concentrated forces on the initial configuration at a point S' = Sk'

Thus,

F A II =F1I1·NA =F1
COS()(I x )'

S =5 t • A

M A II =M1I1·NA =M1
COS()(I l'i rS =5 / , 1 A

The displacement vectors on the initial configuration are

The internal forces and moments for (Sl > S~) are

F IsI=s =Lk~' Fk + i sqdS' ,

M I sI~s = L k=,Mk +rmdS'

+L k=l (R(S)- R k)x kF+r(R(S)- R(SI))xqdS1
;

or for J = I, 2, 3,

(8.70)

(8.71)

(8.72)

(8.73)
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F 1 I = '" k F 1 + r5
q l dS I

51=5 L.. k ~l .10 '

M
1

II = '" M
1 + rs m' dS'5 ~5 L.. k=l k 1,

+ L k=,eUK(X; -X:)F/ +reUK (X; _X:)qKdS
I
•

Assumptions (i) and (ii) requires the following conditions:

F A II =0 forA=3 and M A II =0 forA=I ,2.
5~ 5~
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(8.74)

(8.75)

(8.76)

Since the vectors 13 and N3 (G 3 ) are collinear and all points on the beam satisfy

Eq .(8 .75) , one obtains

kF 1 = 0 and q l = 0 for J = 3,

M' COSB(II']\'A) + M
2

COSB(I"]\'A) = 0 for A = 1, 2.

Because

I
COSB(II'I'I)

COSB(II,1'2)

cos ()(I ]\' )I
2 ' I :;t: 0

coSB(I , ,1'2) ,
(8.77)

the second equation of Eq.(8 .76) gives

M 1 =M 2 =0. (8 .78)

Thus, the external force conditions for the curved beam without twisting are given
by the first equation of Eqs .(8.76) and (8 .78) . In other words, no external distrib

uted and concentrated forces are in the direction of X 3 and the resultant external

moments in the directions of X' and X 3 are zero.

8.3.1. A nonlinear theory based on the Cartesian coordinates

The strain based on the change in length of dR per unit length for a curved beam

in the Cartesian coordinates gives

=.JG::I ~(X~+u~)(X~+u~)-1G ' , , ,
aa

(8 .79)

in which no summation on a can be completed. The Lagrangian strain tensor

Eaj3 referred to the initial configuration is
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E 1 (X l I x ' I I I )afJ = 2" ,au,fJ + ,fJ u,a +u,au,fJ '

8 Nonlinear Beams and Rods

(8,80)

In the similar fashion , the angles between ua and ufJ before and after deforma

tion are expressed by 8( 1" I" ) = Jr / 2 and (J(n n )' i.e.
a ' p (K ' P

dr,dr
cos(J = a 13

(na,np) Idr II dr I
a 13

(X l +U I )(XI +U I
),a ,a ,13 ,13

~(Gaa +2Eaa)(GfJfJ +2EfJfJ)

(X l +ul )(XI +u l )_ ,a ,a ,13 ,13

- ~GaaGfJfJ(1+ca)(l+ cfJ) '

and the corresponding shear strain is defined as

v = 8 -(Jl afJ - ("' a''''P) (na,np)

= sin" (X,~ +u,~)(X,~ +U,lfJ)

~(Gaa +2Eaa)(GfJfJ +2EfJfJ)

= sin" (X,~ +u,~)(X,~ +u,~) ,

~GaaGfJfJ (1 +ca)(1+cfJ)

(8,81)

(8,82)

From Eqs,(82 4) and (828), the direction cosine of the rotation without summa
tion on a and f3 is

X,~(X,~ +u,~)

~Gaa ~GfJfJ +2EfJfJ

dRdr
cos(J . = a fJ

( I" a ,np) IdR II dr I
a fJ

X,~(X,~ +u,~)

~GaaGfJfJ (1 + cfJ ) ,

Finally, the change ratio of areas before and after deformation is

da
~= (1 + ca )(1 + cfJ ) s in (J( n n ) 'dA a' p

afJ

where da =Idrxdr I and dA =IdRxdR I,
afJ a 13 afJ a 13

From assumption (ii),

(8,83)

(8,84)
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(8.85)

From Assumption (ii), no displace ments exist in the direction of S3(i.e., u3 = 0 ).
From the Kirchhoff's assumptions, under bending only, if the cross section is
normal to the neutral surface before deformation, then after deformation, the de
formed cross section is still normal to the deformed neutral surface . Thus, equa
tion (8.85) can be assumed as

From assumptions (iii) and (iv),

_I_ (X~ +U I2)(X ~ +U I
2

) = I,G
22

. . . .

(X.~ +u.~)(X.~ +u.IJ = O.

(8.86)

(8.87)

With u3 = 0 and Eq.(8.85), the Taylor series expans ion of Eq.(8.87) give for the

zero-order of S2,

I_ (X l +m(l))(XI + tn(ll) = 1,G .2 '1'1 .2 '1'1
22

where X.~ = G~ . From Eq.(8.88),

(8.88)

(8.89)

(I) _ (X.~ +u~.JjG;; I

(jJ1 = + I I 2 2 2 2 X 2 '
~(X. I +UO.I) + (X.I +UO.I)

(2) = + (X.
I
I + U~.I).jG;; 2

tnl _ X .2 '
'1'1 I I I 2 2 2 2

,,(X,I +UO,I) +(X,I +UO,I)

Similarly , one can obtain (jJ~1) (n =1, 2, .. . and I =1, 2). Using the Taylor series

expans ion gives the approximate strains, i.e.,

(8.90)
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(0) dC21 S 2 1 d
2
e. I (S 2)2c ""'c +-- +---- + .. .

2 2 dS 2
s ' =o 2 d(S 2)2 S2=0

2(Xl +m(l))m(l)
= C(O) + ,2 'rl n S 2

2 G (1+ C(O) )
22 2

[2m(l)m(l)+3(/jl + m(l))m(l)]+ n n 2 'r1 'r3 (S 2)2
G

22
(1 +ciO) )

2[(Xl + cp(l))cp(l)f
,2 I 2 (S 2)2+ .

- G2 (1 (0) ) 3 "' ,
22 +C2

1/ """,(0)+ d YJ 21 S 2+2.
d 2YJ 2

1 (S 2)2+ . . .
11 2 ( 12 dS 2

s ' =o 2 d(S 2)2 S2=0

1 {2(X l +u(l))m(l)+(Xl +m(l))m(I)= , ,( 0) + ,I 0,1 'r2 ,2 'rl 'r1 ,1

(1 2 ,,(0) ~ ~( (0) ) ( (0) )cos ( 12 VGII VG22 l+ c I 1+ c2

[

(X l +u (l))m(l) 2(Xl +m(l))m(l)])_ sin 11°) ,I 0,1 'r1 ,1 + ,2 'rl 'r2 S 2 + . . .
12 G (1 +c (0 ))2 G (1 +c(0))2 '

II I 22 2

where for 1 = 1, 2

The constitut ive laws give the stresses on the defonned configu ration, i.e.,

The internal forces and moments in the deformed beam are defined as

(8.91)

(8.92)

(8.93)

(8.94)

(8.95)

(8.96)
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N I = I 0"1 [(l+cJ(I +c3)cos YZ3]dA,

M3 = I I:I~I(ZZ ) [ .jCi;;(I +c3 )(1 +cz)Zcos YZ3] dA,

QI = I O"I Z[(l +cJ(I +c3)cos YZ3]dA.

335

(8.97)

For convenience, the subscripts of the internal forces can be dropped. The internal
force vectors are defined as

M == M il l = Mn3,

.N== N II I = Nn l +Qnz'

"'M==]\'MII /=glx.N;

dr I I ]\' I
gl ==-=(X I+uol)11 and M ==-drx.N.

dS . . dS

The components of the internal forces in the I I -direction are

N I
=Nnl . I I +Qnz . I /=N COSB(D!,I

I
) +Q COSB(D2 ,1

1
)

N (X; +ubl) Q(X~ +rp{)
= ' , +----;::=,-' ---JG:: (I + c?) ) .jCi;;(I +ciO) ) ,

I M(X,~ +u{O),3)
M =Mn3·I /=McosB(D I ) = (0)

3' I l+ c
3

x M I = (gl x.N) · I I = (X~ +u~ I)N3
-(X~ +u~ I)Nz,

" "

]\'M Z= (gl x.N) · I z = (X~ +u~ I)NI _(Xii +u~ I)N 3
,

" "

]\'M 3=(g, x.N) ·13 =(X,II+u~,I)NZ -(X,~ +u~,I)N I .

(8.98)

(8.99)

(8.100)

(8.101)

Due to Ub,3 = 0, X,~ = 0, X \ = X ,; = 0, u3 = 0 and ciO) = 0 , the following equa

tions are achieved, i.e.,

(8.102)

Based on the deformed middle surface in the Lagrangian coordinates, the equa
tions of motion for the deformed beam are

~I +q = P"O,11 +I3({J1,11'

x
M ,I+ M+m =13" 0,11 +J3({JI,II ;

(8.103)
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and the scalar expressions are for 1 = 1, 2

N 1 I - I I (I)
, I +q - pUO,1t + 3qJI,It '

M 3 I'M3 3 - 1 1 J (I )
,I + + m - 3UO,1t + 3qJI,1t

8 Nonlinear Beams and Rods

(8.104)

where p = LPodA , /3 = LpOX
2dA and J 3 = LpO(X2

) 2 dA . With Eqs.(8.89) and

(8.100)-(8. 102), the foregoing equation gives

(8.105)

(8.106)

As in Eqs.(8.61)-(8.65) , the force and displacement continuity and boundary con
ditions can be given as follows.

The force condition at a point :J: with Sl = S~ is

-N (S~ ) + + N (S~ ) + Fk =0,

-N 1
(S~) = +N 1

(S~)+Fkl (1 =I, 2).

The force boundary condition at the boundary point :J: IS

(8.107)

(8.108)

If there is a concentrated moment at a point:J: with SI = S, , the corresponding

moment boundary condition is

-M (S~ ) + +M (S~ ) + M k =0,

-MI (S~ ) =+MI (S~ ) + M: (1=3) .

The moment boundary condition at the boundary point :J: IS

(8.109)

(8.110)

The disp lacement continuity and boundary conditions are the same as in Eq.(8.68).
From the sign convention, the positive "+" in the second equation of Eq.(8.89)
was adopted.



8.3. Nonlinear eurved beams

8.3.2. A nonlinear theory based on the curvilinear coordinates

The strain based on the change in length of dR per unit length gives
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where the Lagrangian strain tensor Eaf3 to the initial configuration is

1
Eaf3 = "2 (ua;f3 +ua;f3 +u;~uY;f3)

= ~[(o; +u(;,)(o%+u;~ )GyJ - Gaf3 J.

(8.111)

(8.112)

Similarly, the angles between na and n f3 before and after deformation are ex

pressed by 8(1\' I\' ) = 1( / 2 and ()(" " )' i.e .,
a ' j3 a > P

drdr G 2E
cos () = a 13 af3 + af3

(" ", " p) I d;II ~1 ~(Gaa+2Eaa)(Gf3f3+2Ef3f3)

(0; +u;~)(o% +u;~)GYJ

~GaaG1313 (1 +ca)(1+cf3) ,

and the shear strain is

. - I Gaf3 +2Eaf3= SIn

~(Gaa +2Eaa)(Gf3f3 +2Ef3f3) '

= sin " (0; +u;~)(o% +u;~)G)6 .

~GaaGf3f3 (1 +cf3)(1 +cf3)

The direction cosine of the rotation without summation on a and f3 is

dR ·dr
cos() . = (X [J

(l'i a ,"p ) IdR II drI
(X [J

(8.113)

(8.114)
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GafJ + Ua;fJ _ (0; +U;~)G]<1'

~GaaGfJfJ (1+ CfJ) - ~GaaGfJfJ (1+ CfJ)

8 Nonlinear Beams and Rods

(8.115)

(8.116)

In addition, the change ratio of areas before and after deformation are given by

da
~=(1+ca)(I+cfJ)sinB(n n )
dA a' P

afJ

where da = Idrxdr I and dA = IdRxdR I·
afJ afJ afJ a fJ

From assumption (ii),

(8.117)

No displacements exist in the direction of 5 3(i.e., u3 = 0). From the Kirchhoff's
assumptions , under bending only, if the cross section is normal to the neutral sur
face before deformation , then after deformation , the deformed cross section is still
normal to the defonned neutral surface . Thus, equation (8.117) becomes

From Assumptions (iii) and (iv),

(02
A
+ U;~ )(02A +U;~)GAA = G22 ,

(ot +U;~)(O; +U;~)GAr = O.

(8.118)

(8.119)

With u3 = 0 and Eq.(8.117), the Taylor series expansion of Eq.(8.119) gives for

the zero-order of 5 2:

GAA (ot )+ qJ,(A))(ot )+ qJ,(A)) = G
22

,

(ot +U~I)(O; +qJl(r))GAr = O.

Form the foregoing equations,

(8.120)

(8.121)

From the sign convention, the positive "+" in the second equation of Eq.(8.121)
will be adopted . Similarly, one obtains qJ~a) (n = I, 2, ... and a = 1, 2). The ap

proximate strains for the curved beam in the curvilinear coordinates are:
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(0) de, I 52 I d' e, I ( 5 2)2c "" c +-- +---- + - - -

I I d5 2
S2=0 2 d( 5 2)2 S2=0

(
s:1I II ) (II)G

(0) UI +uo-, /P, -, 11/I 2
= c + - - 5

I G (I + c(O»
II I

{
[2( s:1I II ) (II) ] (II) (II)

I U I +UO-I /P2-' + /P,-, /P, -,+- - - - - G
2 G (I + c(O) 1111

II ,

[(~II + U~ I )/PI(;~)]2 G~II } 2 2

- G2 (I (0)3 (5 ) + --' ,
II +c,

v"",,(0) + d YI2 1 5 2+.!.. d 2YI 21 (5 2)2+ . ..
1'2 r.. d5 2

S2=0 2 d( 5 2)2 S2=O

I {(O.Il + U (II ) )m(lI ) + (O.Il + m (lI) )m(lI )
= , ,( 0) +___ I 0; ' 't'l 2 't'l "t' 1;1 G

r.. ,,(0) ~ ~ (0) (0) 11/I
COS l 12 VGII V G 22 (l+ c I )(l+ c 2)

[
(O.Il (II» (II)G ( S:II (II) (II) ]}

• ,,(0) I + UO;, /PI ;' 11/I 2 U 2 + /PI /P2 G 11/I 5 2
- SInl, + +...

12 G (l+ c(0» 2 G (l+ c(0) 2 '
II I 22 2

c(O) = _1_~(0.1I + m (lI ) )(0.11 + m (II ) G -I
2 fG 2 "t" 2 "t' 1 1111

V V 22

=_I_~(m(l ) 2 G +(I+m(2) 2G _I
fG"t'1 II 't'l 22'

V V 22
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(8.122)

(8.123)

(8.124)

(8.125)

(8.126)
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(8.127)

As in Eq.(8.96), the stresses on the deformed configuration can be defined by the
constitutive laws, i.e.,

The internal forces and moments in the deformed beam are defined as

N, = lCTI [(l+cJ(1+c3)COSYZ3]dA,

S? Z

M3= l CTI l+qf) [(1 +cJ(1 +cJ cosY23JdA,

Q, = lCTl z[(I+cJ(1+c3)cosYz3]dA.

(8.128)

(8.129)

For convenience, the subscripts of the internal forces can be dropped again . The
internal force vectors are defined as

M == M 3N
3 = Mn 3 ,

.N == N ANA = Nn, +Qnz'
I\M== I\ MA N A =glx.N,

where

The components of the internal forces in the G A -direct ion are

N A=Nn"NA+Qnz ·NA=NcosB(n 1\ )+QcosB(n 1\ )
I' A 2' A

= N(~r +U~,)GrA + Q(o; +qr))Gr A

~GAAGil (1 +c?)) ~GAAGzz (1+ciO)) ,

(8.130)

(8.131)

(8.132)

(8.133)
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If U~), 3 = u3 = 0, £ j O) = 0, GA3 = °(A:t 3 ) and G33 = 1 , then

Mi =M1
2 =0, M~ =M,

l\'M I = l\'M 2 =0,

l\'M 3 = Q .JG:: (1 + £(0»).
(1 +£iO») ,JG;; 1
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(8.134)

Based on the deformed middle surface in the Lagrangian coordinates, the equa
tions of motion for the defonned beam are

and for (A = 1,2) ,

or

~l + q = PUO.II +13f1J" II'

M , +]\'M +m = 13uOII +J3f1Jlt, ;
, "

N~ + q A = PU~II +13 flJl(~ ) ,
, "

M~ + x M
3 + m' = J3U~ II + J3flJl(;~ '

, "

(8.135)

(8.136)

(8.137)

wherep= IPodA , 13 = IPoS
2dA and J 3 = IPo(S2)2dA .

As in Eqs.(8.l 06)-(8.109), the force and displacement continuity and bound

ary conditions can be given . The force condition at a point:Jt with S' = si is

- N(si ) + +N(Si )+ Fk =0,

-NA(si ) = +NA(Si ) + F/ (A=1,2).

The force boundary condition at the boundary point :J: is

(8.138)

(8.139)

If there is a concentrated moment at :Jt with Sl = si , the corresponding mo

ment boundary condition is
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-M (S~ ) + +M (S~ ) + Mk =0,

-MA (S~ ) = +MA (S~ ) + M: (A=3).

8 Nonline ar Beams and Rods

(8.140)

The moment boundary condition at the boundary point .y; is

(8.141)

The displacement continuity and boundary conditions are similar to Eq. (8.68).
i.e., u:_= u:+and u~ = B,A (A = 1,2 ).

8.4. A nonlinear theory of straight rods

Consider a nonlinear rod in the initial configuration to be straight, which requires
that the initial curvature and torsion should be zero (K(S) = 0 and reS) = 0 ).

Thus, let s' = x ' , GIJ = 0 and Gll = 1(I , J = 1,2,3). The three dimensional dis

placements, strains, the directional cosine of rotation and the change rate of the
area are given in Eqs.(8.29)- (8.35). It is assumed that the coordinate Xl is along

the longitudinal direction of rod and the other two coordinates X 2 and X 3 are on
the cross section of the rod with the direction ofXl . The coordinates for the de
formed straight rod are (s' , S2 , S 3) . As in the thin beam theory, the widths of rod

in two directions ofX 2 and X 3 are very small compared to the length of the rod in
direction of Xl , the elongation in the two directions of X 2 and X 3 should be very
small, which can be neglected . Based on the aforementioned reasons, the assump
tions for thin rods are adopted.

(i) The elongations in the two directions of X 2 and X 3 are very small (i.e.,
&2 "" 0 and &3 "" 0 ).

(ii) Under bending only, the neutral surface is not deformed (i.e., J'l 2 "" 0 and

J'l3 "" 0).

Choose an arbitrary coordinate frame as (X ', X 2
, X 3

) and the coordinate of

X l goes through the centroid on the cross section of the rod. The centroid curve
of the deformed rod is along the coordinate of s ' in the coordinates of (s', S2, S 3) ,

as shown in Fig .8A. The external forces on the rod can be given as in Eqs.(8.36)

(8040) . Under the torque, the rod possesses torsion r(s') = res) in the direction of

s' . The transverse forces off the shear center produces the torques included in m'
and kM I . Compared to the longitudinal length S , X 2 and X 3 on the cross sec

tion are very small. From assumption (i), three displacements u' = u' (S , X 2
, X 3

)

can be expressed by the Taylor series as
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x2

/V ~\ \
~--- - - -- - - - p -------------------------- -7

Initial configuration
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Deformed configuratio n
8'

Fig. 8.4 A straight rod with initial and deformed configura tion.

U/ =u~(S,t)+ L:=I(X2yqJ~I)(S,t)+L:=I(X3yB~I)(S,t)

+L:~I L:~I (X
2)

m(X
3y «:». t) ,

where

From Eqs.(8.30) and (8.33), the approximate six strains are

_ (0) aCI I X 2 aCI I X 3ci - CI +--2 +--3
ax ( X ' ,X' ) ~(O, O ) ax ( X ' ,X ' ) ~ ( O ,O)

+ 1 a 2~1 21 (X2)2+ 1 a 2 ~1 21 (X3)2
2! a(x ) (X2 ,X')~(0,0) 2! a(x) ( X2 ,X')~(0 ,0)

+ a
2

CI
1 x 2x 3 +...

ax2ax3

(X ' ,x' )=(0 ,0)

(
s: / / ) (I) (S:/ / )Ll(l )

_ (0) VI +UO,I qJI ,1 2 VI + U O,I VI ,I 3
- CI + (0) X + (0) X

1+cI 1+ cI

(8.142)

(8.143)
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(8.144)

(8.145)
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(8.146)

(8.147)
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[

(0./ + u (I) )tJ.(I) 2(0./ + ()(I) )()(I ) ]}
. ,jO) I 0,1 1,1 3 1 2 X 3 ,

- sm ( 13 (0) 2 + (0) 2 +.."
(l +£ 1 ) (l + £ 3 )

where

(8.148)

(8.149)

(8.150)

From Assumption s (i) and (ii), consider the zero order of the Taylor series of the
six strains to give

£ (0) = 0 £ (0) = O: ,jO) = 0 , j O) = 0 , j O) = 0
2 '3 ' 1 12 , I n ' { 23 .

(8.151)
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The deformed rod for X 2 = X 3 = °satisfies the following relation :

(1 + c? »)2= (~I +u~.,)(~1 + u~. ,) .
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(8.152)

Note that one assumed C lI O) = 0, wh ich is not adequate (e.g., Novozhilov, 1953).

Equation (8.152) implies that only 1-dimenisona1 membrane force in the rod is
considered. From Eqs.(8.15 1) and (8.152),

\ 0) 2 (~I + u~ ,)(~I + u~ ,) = 1,
(1+ c, ) . .

(0; + qf »)(o; +qf») = 1,

(0; +ff»)(o; +Bil)) = 1;

(~I +u~ ,)(0; +qf ») = 0,

(~I +u~,,)(o; + Bil)) = 0,

(0; +qf »)(o; +B,(I ») = 0.

(8.153)

Using the zero ord er terms of X 2 and X 3 in Eq.(8.34), the direction cosine ma

trix ((lij ) 3x3 ) is given by

~I +u~,
cosB(n I ) = III = (0; ,

1'[ I+ c,

_ _0; +qf )
cos B(n I ) -12l - (0) '

a [ 1+ c
2

8 1 +0(1)
L) -I _ 3 Icos U(n I ) - 31 - (0)'

3' [ l+ c
3

(8.154)

From the geometrical relations, the nine directional cosines must sat isfy the trigo
nometric relations without summation on a = 1, 2, 3 as

lallal=l for/ =1 ,2,3

and for a, j3= 1, 2, 3 and a ;t. j3,

(8.155)

(8.156)

As aforesaid, only the three rotat ions of rod are considered. Thus, the unknowns

qf ) and Bil) (/ = 1, 2, 3 ) can be determined by the three Euler angles ( <I> , \fI and

e). The Euler angles <I> and \fI rotates around the axes of X 2 and X 3
, respec

tively, and the Euler angle e rotates around the axis of X ' , as sketched in

Fig .8.5. Due to bending , the first rotation around the axi s of X 2 is to form

(X', X2
, X3

) in Fig.8.5(a) . The second rotation around the axis of X3 gives
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(Xl, X2
, X3

) , as shown in Fig.8.5(b). The last rotation around the axis of X' is

because of the torsion, and the final state of the rod in the frame of (Xl,X2
, X3

)

in Fig.8.5(c) gives the coordinates (s', S 2 , S 3) for the deformed rod. The rotation

deformation is the same as the rotation given by Eq.(8.153) . The rotation matrices
are

[

COS <I> 0 - sin <1>]
R' = 0 I 0 ,

sin <I> 0 cos <I>

(8.157)

(8.159)

(8.158)

o

sin \II

cos \II

o
o _cos O sin e .

- sin e cos O
R' =[~

[

COS \II

R
2

= -s~ \II

From the above rotat ions, the directional cosine matrix ( l = (lij) 3x3 ) is

(8.160)

where

III = cos <I> cos \II,

121 = -cos <I> sin \IIcos e + sin <I> sin e ,

l 31 = cos <I> sin \IIsin e + sin <I> cos e,

ll 2 = sin \II,

122 = cos \IIcos o,
132 = -cos \IIsin e,

113 = - sin <I> cos \II,

123 = sin <I> sin \IIcos e +cos <I> sin e ,

133 = -sin <I> sin \IIsin e +cos <I> cos e .

(8.161)

Compared with Eq.(8.153), equations (8.156) and (8.16 1) give

U~,I = (1 + cI(O»)cos <I> cos \II-1,

<p,(') = -cos <I> sin \IIcos e +sin <I> sin e ,
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(a)

(b)

X'
;a...- 4-- -f--r-- - . Xl
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(c)

Fig. 8.5 Euler angles of rod rotation caused by bending and torsion : (a) the initial (red) to first
rotation (green), (b) the first to second rotation (brown), (c) from the second to the last rotation
(blue) . (color plot in the book end)
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Bil
) = cos <l> sin \fIsin 8 +sin <l> cos 8 ,

u~ I = (1 + &1(0) ) sin \fI,

qf l = cos \fIcos 8 -1,

Bill =-cos\fl sin8, (8.162)

U~,I = -(1 + &1(0) ) sin <l> cos \fI,

tp? ) = sin <l> sin \fIcos 8 +cos <l> sin 8 ,

Bil
) = - sin <l> sin \fIsin 8 +cos <l> cos 8 -1 .

The first, fourth and seventh equations of the foregoing equation give

_ + ~(1 + U~,1 )2 + (U~,1)2
cos \fI - (0)'

1+ &1

, U~I
SIn \fI = --'-(0-) ;

1+ &1

I+u~ 1
cos<l> = + '

~(1+U~,1) 2 +(u~S '

and

1(1 + I )2+( 3 )2
(2) _ + '\J U O,I U O,I 8 -1

tpl - (0) cos ,
1+ &1

(8.163)

(8.164)
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If e = 0, the rotation about the longitudinal axis disappears. So only the bending
rotation exists . This case reduces to the pure bending of the rod as discussed in
Section 8.2.

From Eq.(8.l54), the directional cosine vectors are defined as

(8.165)

Thus, the change ratio of the directional cosines along the deformed rod is

d~~{ I I for a = 1,2,3
(1+t\ )dS

(8.166)

The three vectors form a instantaneous , rotational coordinate frame, and the rota
tion ratio vector about three axes are defined as

(8.167)

From rigid-body dynamics (e.g., Goldstein et aI., 2002), the change ratio of the di
rectional cosines along the deformed rod can be computed in an analogy way, i.e.,

I I 12 13

= WI w2 w3 = euKw)aKlp

i: i; i:
(8.168)

for a = 1,2,3 and I , J , K E {I, 2, 3} with I*, J *' K *' I . From the foregoing

equation, the rotation ratio components are given by

e dial I = e dial I = W
IJK ds aK UK (1+ c I(O) )dS aK J'

(8.169)

In other words, the foregoing equation is expressed by

(8.170)

dla 2

(1+c
l
(O»)dS

»:
( 1+CI(O) )dS

dial
( 1+CI(O))dS

From Eq.(8.161), the foregoing equations gives

1 . d~ de
WI = --(0-) (sin ep- + cos~ cos ep-),

1+cI dS dS
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or

I d\)1 . de
OJ2 = --(0-)(-+ sin \)1-),

]+c, dS dS

I d\)1. de
OJ3 = --(0-) (cos <I> - - sm <I> cos \)1-);

]+c, dS dS

. d\)1 de
~ = sm<I>-+cos \)1cos<I>- ,

ds ds
d\)1 . de

OJ =-+sm \)1-
2 ds ds '

d\)1. de
OJ3 = cos <I> - - sin <I> cos \)1-

ds ds

8 Nonlinear Beams and Rods

(8.171)

(8.172)

Notice that one often assumes dS = ds in Love (1944) , which is not adequate for
large deformation.

On the other hand , using Eq.(8.25), the particle location on the deformed rod is
expressed by

(8.173)

Because X' = S , X 2 and X 3 are independent of S. From Eq.(8.3), the base vec
tor along the longitudinal direction of the deformed rod is given by

and the corresponding unit vector is

- s t I s ! I
_ g, VI +U" VI +U"

n
j

= Ig, 1= ~(~K +U,~)(~K +U,~) I I=~II '

(8.174)

(8,175)

(8,176)

Note that " I = n l ' The base vector in the principal normal direction of the de

formed rod is

(8,177)

where
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g~ == g_12 [U.~I(~K +U.~)(~K +U.~)_(~I +U.~)(~K +U.~)U.~IJ .
II

The unit principal normal vector is

and from Eq.(8.9), the curvature of the deformed rod becomes

iCeS) = Igzl= H:: = ~(x,~s +u,~s )(X,~s +u,~s)

J(U,~ IU,~I)(~K +U,~)(OIK +u,~)-[(oi +X,~)U,~ I] z
- 3 / 2
gil

-I I [ I ~K K ~K Ks, = g- 2 UO,II(UI +UO,I)(UI +UO,I)
II

- (~I + U~,I )(~K + U:'I )U:'II J.

From Eq.(8.11), the unit bi-normal vector is obtained by

with

- :I - K

- I - e ~....¥.L d - Ig3 - I:lK ~ an g33 = .
" g i l iCeS)
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(8.178)

(8.179)

(8.180)

(8.181)

(8.182)

(8.183)

(8.184)

Because of the axial rotation, the rotation vector along the longitudinal arc
length Sl = s of the deformed rod is

(8.185)

where the torsion of the defonned rod is computed from Eq.(8.13), i.e.,

(8.186)

For X 2 = X 3 = 0 , the foregoing equation is rewritten as
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From Eq.(8.185),

k(S) = (0/1/ 0°3= (O/g;,

f(S)=(O/I /oo l = (O/g;,

or

(0/ = k(S)03·1/ +f(S)ol 01/ = k(S)g; +f(S)g{.

However, from Eq.(8 .163), dtr / dS and det> / dS are determined by

det>

dS

or

(8.187)

(8.188)

(8.189)

(8.190)

det>

ds

u~ II (I +u~ I) - u~ IIu~ I, , ..
(8.191)

Substitution of Eqs.(8.163) and (8.190) into Eqs.(8 .171) and (8.188) gives 8 and
d8 / dS when the initial twisting about the longitudinal direction of s is zero
(80 = 0).

As before, the constitutive laws for deformed rods give the corresponding re
sultant stresses for ( a = 1,2, 3 ) as

(8.192)

The internal forces and moments in the deformed rod are defined as

NI = 10"11[(l + &J (I +&3)COS YZ3]dA,

Qz = 1O"IZ[(1+ &z )(1 + &3 ) cos Y23] dA,

Q3 = 10"13[(1 + &z )(l + &3 ) cos Y23 ]dA,

)(Z Z
M3 = 10"11 l+tp? ) [(1+ &3)(1+&Z) cosY23JdA,
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For convenience, the notat ions (Q2 == Nz' Q3 == N3 and T; == M I ) are used .

M == M Il l = M ana'

.N == NI I I = Nana,

l'\ M == l'\ M Il l = g, x.N,

where

dr s! I x 1
g l ==-=(ul +uol)11 and M==-drx.N.

dS . dS
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(8.193)

(8.194)

(8.195)

With Eq.(8. 154), the components of the internal forces in the I I -direction are

= M I(o/ +U~;I) + M z(O; +ffJ/) + M 3(O: +B/)
1+ £(0) 1+ £(0) 1+ £(0) '

I 2 3

xM I = (g, x.N) · I I = eIJK(o/ +U~ I)NK .

(8.196)

(8.197)

Using the external forces as in Eqs.(8.34)- (8.38), equations of motion on the de
formed rod are given by

where

~I +q = pUo.1t + 13ffJI.1t +1281.,1'
l'\

M .I + M +m = v...v0 .1t ,

/ 0 It = [(J3U~ It -12u~ It)+ (J22ffJI( ~; -J23ffJI( ~;), , , , ,

+ (JzA:;; -J33BI:~;)]11 +(J3U~ .1t +J23ffJr;~ +JzA:;~)1 2

- (J2U~ , 1t +JZZffJI(,~~ +JzA:;~)1 3 '

(8.198)

(8.199)



356

J 22 = LPo(X3)2dA,

J 33 = LPo(XZ)ZdA ,

J Z3 = Lpo(X2)(X3)dA ,

and the scalar expressions are for / = 1, 2, 3 ,

N I I - I / (I ) / n (l)
, I +q - PUO ,II + 3qJI,1I + ZO I,II '

M ; + I\M I +m l = /011 ,II ', ,

or

8 Nonlinear Beams and Rods

(8.200)

(8.201)

The force condition at a point.'l{ with Xl = X~ is

- N (X~ ) + + N(X~ ) + Fk =0,

-NI
(X~) = +NI

(X~)+F/ (1 =1,2, 3).

The force boundary condition at the boundary point :J: IS

N(X;)+Fr =0,

N I (X,I) + F,l =0 (/=1,2,3).

(8.202)

(8.203)

(8.204)

If there is a concentrated moment at a point.'l{ with Xl = X~ , the corresponding

moment boundary condition is

-M (X~ ) + +M(X~ ) + Mk =0,

-MI (XD =+MI (X~ ) + M: (1=1,2,3).

The moment boundary condition at the boundary point :J: IS

M(X,I)+M , =0,

M I(X;)+M: =0 (1=1,2,3).

The displacement continu ity and boundary conditions are

(8.205)

(8.206)
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U~_ = u~+ and U,l = B/ (l = 1, 2, 3).
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(8.207)

The rod theory can be reduced to the Cosserat theory of rods (e.g., E. and F.
Cosserat,1909; Ericksen and Truesdell, 1958; Whitman and DeSilva,1969).

8.5. Nonlinear curved rods

Consider an arbitrary coordinates as (SI , S2, S3) on the cross section of the rod.

The deformed curve of the rod is shown in Fig.8.6. The coordinate SI is along the

longitudinal direction of rod and the other two coordinates S2 and S3are on the

cross section of the rod. Without loss of generality, S2 and S3 are collinear to N2

and N 3 for the curvature and torsion directions of the curve, respectively. The co

ordinates for the deformed rod are ( SI , S 2, S 3 ) • Since the widths of rod in two di

rections of S2and S3 are very small compared to the length of the rod, the elon

gations in the two directions of S2and S3 should be very small, which are
ignorable. Thus, the following assumptions will be adopted.

(i) The elongations in the two directions of S2and S3 are very small (i.e., &2 "" 0

and &3"" 0).

(ii) Under bending only, the neutral surface is not deformed (i.e., J'l 2 "" 0 and

J'l3 "" 0).

As in Eqs.(8.69) and (8.74), consider external distributed forces and moments
on the initial configuration for ( J, A = 1, 2, 3 ) as

(8.208)

and concentrated forces on the initial configuration at a point SI = Sk'

Thus, one obtains the relations, i.e.,

F A ISl~s = FI II · NA = F
1

cos B (I / .l\'A) ,

M
A

ISl~s = MI II · NA =M
1

COSB(I / .l\' A) ·

The displacement vectors on the initial configuration are

The internal forces and moments for (SI > S~) are

(8.209)

(8.210)

(8.211)
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z

z

Defannedconfi uration
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Initial configuration

Fig. 8.6 A curved rod with initial and deformed configuration .

F ISI=S= Lk~' Fk+rqdS' ,

M ISI=S= Lk~,M k +rmdS'

+L k=,(R(S)-Rk)x kF+r(R(S)-R(S'))xqdS' ;

orfor J, J , K = 1, 2, 3 (1"* J "* K "* 1),

F 11 =" kF 1+ fSq1dS'
Sl ~s L.Jk~ ' ! ) ,

M 1 II =" M 1 + fSm' dS'
S ~S L.J k=' k .10

+Lk~, elJK(X~ -X;)Fk
K+relJK(X~ -X;)qKdS'.

(8.212)

(8.213)

8.5.1. A curved rod theory based on the Cartesian coordinates

As in Eqs.(8.79)-(8.84) for the strains of the 3-D deformed beam, the exact strain
for the 3-D deformed rods can be obtained. Similar to Eq. (8.142) , the displace
ment field for any fiber of the deformed rod at a position R is assumed by
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u l
=u~(S,t)+ L~~JSz )" qI~I) (S , t ) + L~~JS3 )" B~ I) (S , t )

+L:~l L~~l (S Z)m(S 3)"19;!;(S,t),
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(8.214)

where SI = S , and u~ is displacements of the centroid curve of the rod for

S Z= S3 = 0, and X l = x ' (S l) . The coefficients of the higher order terms qI~I) ,

B~I) and 19~:; (S) (m, n = 1, 2, . . . ) are from the Taylor series expansion , i.e.,

(I ) _ 1 dnu
l

1
qln - ,-- Z- n '

n . d(S) (S 2 . S3 )~ ( 0 . 0 )

B(/ ) =~~I
n n! d(S3)" (S2 .S3 ) ~(0 . 0)'

1 dm+n I 119(/)=__ u
mn min! d(s Z) md(s 3)" (S ' .S 3) =(0 =0)·

_ (0) dcz l S Z dcz l S 3Cz - Cz +- -Z +- 3
dS (S 2. S3)~(0 . 0) dS (S 2. S3)~(0 . 0)

+~ dZ~\ 1 (S Z)Z+ 1 d Z~z zi (S 3)Z
2! d(S) (S2 .S3) ~(0 . 0) 2! d(X) (S2 .S3)~(0.0)

(8.215)

(8.216)
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(8.217)

(8.218)
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1 {2(X l +u(l))m(l)+(Xl +m(l»)m(l)= . 10) + .1 0.1 'r2 ,2 'rl 'r1.1
112 ,,( 0) ~ (0) (0)

cos (12 "Gil G 22(1 + &1 )(1 + &2 )

[

(X l +u(l»)<fJJ(I ) 2(Xl +CA(I »)qJ(I )]}
-sin ;10) .1 0.1 1,1 + .2 I 2 S?

12 G (1 + &(0» )2 G (1 + &(0»)2
II I 22 2

1 {(X l +m(I))B(1) +(Xl +u(l»)1J.(1)+ ,2 'rl 1,1 , I 0,1 II

cos;1~ ) ~GIIG22 (1+&? »)(1+&iO»)

[
(X l (I) )LJ(I ) (X l (I» ) -'li I) ]}

_ sin ;10) ,I + UO,I °1,1 + ,2 + qJI Vii S3+ . .. .
12 G (1+&(0»)2 G (1+ &(0»)2 '

II I 22 2
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(8.219)

(8.220)
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where

I {2(X I +f},(I))m(l)+(XI +m(l))o.(I)= ,,(0) +___ ,3 I 't'2 ,2 't'l II

[ 23 ,)0) ~G( (0) )(1 (0) )cos [ 23 'I/\J22\J33 1+&2 +&3

[

2(X I + rp,(l))rp(l) (X l +f},(I))o.(I)]}-sin 1,0) ,2 I 2 + ,3 I II S 2
23 G (1+ &(0))2 G (1+&(0))222 2 33 3

I {2(X I + rp,( l) )(},(I ) + (X l + f},(I))d: l)+___ ,2 I 2 ,3 I II

COS ri~) (1 +&iO))(1+ &~O))

[

(X i + rp,(I) )0.(1 ) 2(XI + f},( l) )(},( l) ]}_ sin 1,0) ,2 I I I + ,3 I 2 S 3+ . . .
23 G (I + &(0))2 G (I + &(0))2 '22 2 33 3

(8.221)

(8.222)

From Assumptions (i) and (ii) , consider the zero order terms of the Taylor series
of the five stra ins to give

&(0) = 0 &(0) = O· ,)0) = 0 ,)0) = 0 ,)0) = 0
2 '3 ' [ 12 ' [ 13 ' [ 23 .

The stretch of the deformed rod for S 2 =S3 =0 satisfies

(I (0) )2 _ 1 (X l I )(XI I )
+&1 -- I +UOI I +UOI •G ' , , ,

II

(8.223)

(8.224)

Equation (8.224) implies that only l-dimenisonal stretch is considered as in the
cable. Similarly, from the higher order terms of the Taylor series of the six strains,
the relations for the unknowns in displacement field can be obtained. From
Eqs .(8.222) and (8.223) ,
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1 (0) 2 (X ; + u~ , )(X ; + u~ , ) = I ,
Gil (1 +c,) . . , ,

1_(Xl +m(l))(X I +m(l))=I,G ,2 't'l ,2 't'l
22

_I_(XI +8(1 ))(XI +8(1 )) = I:G ,3 ' ,3 I ,
33

(X ; + u~ I )(X ~ + ffJ? )) = 0,, , ,

(X ; +u~, )(X ~ +Bi l)) = 0,, , ,

(X l +m(l))(XI +8(1 )) = 0.
,2 't'l ,3 I
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(8.225)

Using the zero order terms of S 2 and S 3 in Eq.(8.83), the directional cosine ma

trix ( (lij ) 3X3 ) is

(8.226)

From the geometrical relations, the nine directional cosines must satisfy trigono
metric relations in Eqs.(8.155) and (8.156). As in Fig.8.5, consider the initial Euler
angles (<1>0' '¥ 0 and 8 0) rotating about the axes of X l ,X 2 and X 3

, respectively.

The Euler angles of the defonned rod are (<1>, '¥ and 8 ). As same as in

Eq.(8.l 57)-(8.159) gives the direction cosine matrix (l = (lij )3xJ in Eqs.(8.l 60)

and (8.161) for the deformed rod. Compared with Eq.(8.235), with Eq.(8.I56),
equation (8.161) for the deformed rod gives
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X 2 +fA(2)
,2 I = COS \IICOS 8 ,
J(J;;

X 2+B,(2)
,3 I = _ COS \IIsin 8,
JG::

X~+U~I .r: , = -Sill <I> cos \II,
"Gil (1+&1(0»)

X 3 + rp (3)

,2~ = sin <I> sin \IIcos 8 + cos <I> sin 8 ,
" G22

X 3 +B,(3)Jc;;; = - sin <I> sin \IIsin 8 +cos <I> cos 8 .
G33

The first, fourth and seventh equations of Eq.(8.227) give

!(XI
I + U~ I) 2 +(X~ +U~ I) 2

cos \II = +" " "JG:: (1 + &1(0) )

. X~ +U~I
Sill \II = ' , .JG:: (1 + &1(0» ) ,

X l +u l

cos <I> = + ,I 0.1

~(X,II +U~ , 1)2 +(X,~ +u~,Y

. X~ +U~ I
Sill <I> =+ "

!(X I +UI )2+(X3+U3 )2
" ,I 0,1 ,I 0,1

and

(8.227)

(8.228)
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X 3 L}(3)
.3 +u, I Li23 • I'rr =±-( c-: sme+(X, +uo,)cose) ,
VG33 Li VG" (1+c,(O)) "

where

Li = ~(X,', + U~ , 1) 2 + (X,; + U~, 1) 2 ,

Lil 2 = (X ~ + u~ , )(XI
, + u~,) ,, , , ,

Li23 = (X,; +u~,,)(X,~ +u~,,).
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(8.229)

(8.230)

(8.231)

If e = eo, the rotation about the longitudinal axis disappears . So only the bending

rotation exists, which is the pure bending of the rod as in Section 8.3.1.
From Eq.(8.165), the change ratio of the directional cosines along the deformed

rod in Eq.(8.166) becomes

dla = dial I = dial I'" =1 2 3
I ~ I lora , , .

ds ds VG" (1+c 1(0))dS

As in Eq.(8.168), the change ratio of the directional cosines along the deformed
rod can be computed by

where the rotation ratio components in Eq.(8.232) are

0) =e dial I = e dial I
J IJK ds a K UK JQ::(1 +c,(O))dS o«:

From Eq.(8.16 1), the foregoing equations give

(8.232)

(8.233)

(8.234)

I . d'P de
~ = ~ (sm<l>-+ cos'Pcos<l>-),

VGII (1+c
l
(O) ) dS dS

I d'P . de
0) = (-+sm'P-),

2 JQ::O +cl(O)) dS dS

I d'P. de
0)3 = ~ (cos <I>--sm <I> cos 'P-);

VGII (1+c
l
(O) ) dS dS

similar to Eq.(8.171).
In an alike fashion, using Eq.(8.25), the particle location on the deformed,

curved rod can be expressed by

(8.235)

The corresponding base vector of the deformed, curved rod is
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(8,236)

and the unit vector for the deformed, curved rod is

- X l I X l I
ii =-.!L = ,I +U,I I = ,I +U,I I

1 I - I I I I I I I rrG (1 ) I'
gl V(X,I +U,I)(X,I +U,I) "VII +C1

For 52 =5 3 =0 ,
- X l I X l I

ii =-.!L = ,I +UO,I I = ,I +UO,I I
1 I - I I I I I I I rrG (1 (0) ) I '

g, V(X,I +UO,I)(X,I +UO,I) "VII +C1

The base vector in the principal normal direction is as in Eq,(8 ,177), i.e.

where

Thus, the unit principal normal vector in Eq,(8, 179) can be rewritten, i.e.

where the curvature of the deformed rod is

K(5) =Ig2I=;g;; =~(X,~s + u,~J(X,~s + u,~J = -~ / 2 F:,
gil

3 1 = (X ~ I +U ~ I)(X~I +U ~ I)(X~ +u~)(X~ +u~), , , , , , , ,

- [(X,~ +X,~ )(X,~I +U,~I)f,

3 1=(X~I +u~ Il)(X~1 +u~Il)(X~ +U:I)(X~ +U: 1), , , , , , , ,

-[(X,~ +U~,I)(X,~I +u~,Il)f,

(8,237)

(8.238)

(8.239)

(8.240)

(8.241 )

(8.242)

(8,243)

(8.244)
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The rotation vector of the deformed, curved rod can be expressed as in Eq.(8.185),
i.e.,

where the torsion of the deformed rod is

_ el'K(X; +U~)(X;I +U~I)(X~II +U~II)reS) = J • • • _ . • ' .

-I

The foregoing equation for S2 =S3=0 becomes

From Eq.(8.245), equations similar to Eqs.(8.188) and (8.189) are:

k( S) = OJI I I • n3 = OJd"t;,
t(S) = OJII I · n l = OJd?;,

or

OJI = k(S)n
3

.11 +t(S)nl .11

= k(S)g; + t(S)g; .

From Eq.(8.238), d'f' I dS and dcf> I dS are determined by

d'f' (X~ I + u~ 11 )1l2-[1l12 (X~ l + u~ 11 ) + 1123(X~ , +u~ 11 )]-+ . . .. ..
dS - - G (I + c (0 ) ) 2 IIII ,

d<l> _ (X.~ I + U~. I I)(X .', + u~ . , ) - (X.
I
ll + U~ .ll)(X.~ + U~. I) .

dS - - 112 '

or

d'f' (X~ , +u~ 1l)1l2 -[1l1 2(X~ 1 +u~ I I)+1l23(X~ , +U~ ll)]-=± . . .. 3 • •

ds [~(1+ c,(O))J II

dcf> (X.~ I + U~.II)(X .', + u~., ) - (X.
I"

+ u~.,,)(X.~ + U~.I )
- -
ds ~(1 + c,(O) )1l2

(8.245)

(8.246)

(8.247)

(8.248)

(8.249)

(8.250)

(8.251)

Substitution of Eqs.(8.228) and (8.250) into Eqs.(8.234) and (8.248) gives e and
de l dS .

As in Eq.(8. l92), the constitutive laws for deformed rods give the correspond
ing resultant stresses, and the internal forces and moments in the deformed rod are
in the form of Eq.(8.193), i.e.,
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N1 = LCTIl[(I+cJ(1+C3)COSYZ3]dA,

Qz = LCT, z [(1 + cz)(1+ C3)cos YZ3]dA,

Q3 = LCTI3[(1+cZ)(1+c3)COSY23]dA,

r S ZJ(i;; [ Z ]
M3 = JACTII 1+ lp?) (l + C3)(1 + CZ) cos YZ3 dA,

r S3J(i;; [ Z ]
M z =-JACT11 1+8(3) (1+cJ (1+cZ)COSY23 dA,

1

i
S 3(1+C3)J(i;; S Z(1+cz)J(i;;

T. = [CT CT ]
, A IZ 1+ 8 (3) ' 3 1+ (Z), lp,

X [ (1 +C3)(1 +CZ)COS YZ3]dA.

(8.252)

The notations Qz == Nz' Q3 == N3, and 1; == M, are used again. The internal forces

are expressed as in Eq.(8.l94), i.e.,

where

M == MIl l = Malla,

.N == N II I = Nalla,
l'iM == l'iM Il l = g, x.N,

dr I I l'i 1
gl ==-=(X 1 +uol)l l and M==-drx.N.

dS " ds

(8.253)

(8.254)

With Eq.(8.225), the components of the internal forces in the I I -direction are

N I= Nalla' 11 = Na COSO(Da,1
1

)

Nl (X~ +u6,) Nz(X~ +lp() N3(X~ +O()
= ' ' + ' + ----==--"-' --'--JG::(1 + c,(O)) J(i;;(I + ciO )) J(i;;(1 + cjO)) ,

M
I

=Malla ·I I=MacosO(D I)
a 'l

M,(x~ +u6,) Mz(X~ +lp() M3(X~ +O()
= ' ' + ' + 'JG::(1+ cl(O)) J(i;;(1 + ciO)) J(i;;(1+ cjO)) ,

l'iMI =(g,x.N) ·11=eIJK(X~ +u~I)NK .

(8.255)

(8.256)

Using the external forces as in Eqs.(8.208) -(8.212), equations of motion on the
deformed rod are given as in Eq.(8.198), i.e.,
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~I +q = PUO•II +1lPI.II + 1z81,11,

M 1 + l\' M +m = / O II ', ,

where

/ O II = [(J3U~ 1I -1zu~ II)+(Jzzrpl( ~: -JZ3rpl( ~:), , , , ,

+(JzA(~1-J338i~;)]I , +(J3U~ 1I +JZ3rpl( ~~ + J zz8i:;)I z, , , , ,

-(JZU~ II +JZZrpl( ~~ + J z38i:;)I 3,, , ,

and the scalar expressions are for 1 = 1, 2, 3 ,

or

[
NI (X ~ +U~I) Nz (X~ +rp/) N3 (X~ +8/)]
JG:: (1 + CI(~) ) + JG:: (~ +ciO») + ,JG;;(~ +cjO) ) 1

/ - / I (I ) 1 n (l ) .+q - PU(O),II + 3rpl,1I + ZUI,II '

[ MI (X~ +U~ I) Mz(X~ +rp/) M3(X~ +8/):
JG:: (~ + CI(~» ) + JG:: (~ +ciO) ) + ,JG;;(~ + cjO) ) ,I

+eJJK(X,~ +ut,I)N K+m/ =(/0,rJ·I / .
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(8.257)

(8.258)

(8.259)

(8.260)

From Assumption (i), one has cia) = cjO) = 0 . In addition, the force and moment

balance conditions at any point .y: , and the force boundary conditions are given in

Eqs.(8.203)- (8.206), and the displacement continuity and boundary conditions are
the same as in Eq.(8.207).

8.5.2. A curved rod theory based on the curvilinear coordinates

In this section, the curved rod theory on the curvilinear coordinates is discussed in
an analogy way as in the Cartesian coordinates. The strains for 3-D deformed
beam in Eqs.(8.110)-(8.116) can be used for the 3-D deformed rod. Similar to
Eq.(8.214), the displacement field for any fiber of the deformed rod at a position
R is assumed by

UA
=u~(S,t)+L:=I(Szrrp~A)(S,t)+L:=I(S 3 r8~A)(S,t)

+L:=IL:=Jsz)m(S3 r zJ~~)(S,t),

(8.261)
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where S' =S and u~ (A =I, 2, 3) are displacements of centroid curve of the rod

for S2 =S3=O. The coefficients of the Taylor series expansion qJ~A ) , (J~A ) and

19~~) (m, n = 1, 2, ... ) are

(I) _ I anu l I
qJn - , - - 2- n '

n . a(S) (S' ,s' ) ~(O ,O )

(J(I) =~~I
n n! a(S3)" (S 2, S3)= (0,0 ) ,

I am+n I I
19(1 ) = u

mn min! a(S2)ma(S3)" (S ' , S ') =(O,O) '

(8.262)

(8.263)
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(8.264)

(8.265)
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[

(8 A (A» ) (A) 2( s:A (A) ) (A) ]}
_ sin riO) I + UO;I CfJI ;1 G + V 2 + CfJ1 CfJ2 G S 2

12 G (1+ C(0)) 2 AA G (1+ C(0») 2 AAII I 22 2

1 {(8 A+ m(A))~(A) + (o.A+ U(A) )tJ.(a)+___ 2 '1'1 1,1 I 0,1 II G
,)0) ~ (0) (0) AA

eos [ 12 " GIP 22 (1 + CI )(1 + C2 )

[(
o.A (A ) ) ~(A)G ( S:A (A» ) o(A) ]}, ,)0) I + UO;I 1;1 AA V 2 + CfJI l.!j I G S3 ,

-SIll [ I + +",
12 G (1 + c (0))2 G (1 + c (0») 2 AA 'II I 22 2

;v, '" ,) 0) + a;v, 31 S2+ a;v, 21 S313 [ 13 2 3
as (S' , S3)=(0, 0) as (S2,S3)=(0, 0)

+~ a
2

;v,31 (S 2)2+~ a 2r131 ( S 3) 2

2! a(s2)2 (S' ,S 3)=(0, 0) 2! a( s 3)2 (S2,S3)=(0,0)

a
2

I+-----.2:lL s2S3+" ,
as

2as3
(S' ,S3)=(0,0)

{(
s:A l)(A») (A) ( S:A (A» ) ,o(A)

= ,) 0) + __1_ V 3 +°1 CfJI ;1 + VI +UO;I Ujl G
[ 13 ,)0) ~ (0) (0) AA

eos[13 "GIIG33(1+ E\ )(1+ c 3 )

[

(o.A (A» ) (A) (S:A l)(A)),O(A) ] }
-sin riO) I +UO;I CfJI ;1 + V 3 +°1 Ujj G S2

13 G (1+ c(0) )2 G (1+ c(0» )2 AAII I 33 3

1 {2(o.A+U(A))B(A) +(8A+~(A»)tJ.(A )+___ I 0;1 2 3 I 1;1 G
, ) 0 ) ~( O»)( (0 ) ) AAeos[13 "GIIG331+ CI 1+ c 3

[

(o.A+U(A»)lJ. (A) 2(8A+~(A»)(}(A)] }
- sin riO) I 0,1 1,1 + 3 I 2 G S3 + " , '

13 G (1+c(0))2 G (1+c(0») 2 AA 'II I 33 3

(8.266)

(8.267)
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[

2(IY + m(A))m(A) (JA + 8(A))l9.(A)] }
-sin 1,0) 2 'n 't'2 + 3 I II G S2

23 G (1+£(0»)2 G (1+£(0))2 All
n 2 n 3

1 {2(O,A+ m(A))8(A) + (O,A+ 8(11 ))l9.(A)+ 2 '1'1 2 3 I II G
,)0) ~( O»)( (0» ) AAcos ( 23 \/G22G33 1+ £2 1+ £3

. [(O,A+m(A»)l9.(A) 2(O,A+8(A»)8(A)] }-smt,0) 2 '1'1 II + 3 I 2 G S 3+ • ••
23 G (1 + £(0»)2 G (1 + £(0»)2 All '

n 2 n 3

where
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(8.268)

(8.269)

From Assumptions (i) and (ii), the zero order term of the Taylor series of the five
strains gives

£(0) = 0 £(0) = O: ,)0) = 0 ,)0) = 0 ,)0) = 0
2 '3 ' (12 ' ( 13 ' ( 23 •

The stretch of the deformed rod for S2 = S3 = 0 satisfies

(1 (0» )2 _ GAIl ( S:A A)( s:A A)+£1 --- V I +UO'I VI +UO'I 'G . .
II

From Eqs.(8.269)-(8.271),

GAIl (0) 2 (Jt +u~I)(bt +U~I) = I,
GII(1 + £1 ) . .

~AII (~II + (jJI(A))(J2
A+ (jJ1(A)) = I,

22

(8.270)

(8.271)
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GAA (OA+ (),(A))(OA+ (),(A)) = I'G 3 , 3 1 ,
33

(~A + U~,)(02A + rp,( A))GAA = 0,

(~A +U~,)(ot +B/ A))GAA = 0,

(0: + rpl(A))(ot + B/A))GAA = 0.
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(8.272)

Using the first order terms of S2 and S3 in Eq.(8.l15), the direction cosine ma

trix ((lij )3x3) is

(8.273)

As in Fig.8.5, the unknowns rp?) and B?)(1 = I, 2, 3) can be determined by the

three Euler angles (<t> , \fI and e). Similarly, the Euler angles <t> and \fI rotates

around the axes of S2 and S 3, respectively, and the Euler angle e rotates around

the axis of SI. Due to bending, the first rotation around the axis of S2 is to fonn
- - -

(Sl , S2 , S3) . The second rotation around the axis of S 3 gives (SI , S2,S3) . The

last rotation around the axis of S' gives a frame of(S', S2, S3) for the final state

of the rod, which is the coordinates (s' , S2, S3) . The direction-cosines give

l+u~,
--(~~)- = cos <t> cos \fI ,
(I +6'1 )

rp? )JG:: . . .
~ = - cos <t> sin \fI cos e+ sin <t> sin e,

"G22

B?)JG:: . . .
~ = cos <t> sm \fI sm e +sm <t> cos e;

"G33

u~;,JG::
sin \fI,JG::(1+ 6',(0))

rp?) = cos \fI cos e -I,

B?)JG:: .
---'--~==- = - cos \fI sm e·JG:: '

(8.247a)
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L1
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U~I J(J;; .
~ = -Sill <1> COS 'P ,

" Gil (1+ £1(0»)

qJ? )J(J;; . . .
~ = Sill <1> Sill \}l COS e+ COS <1> Sill e,

" G22

(f) = - sin <1> sin \}l sin e + cos <1> cos e - I .

The first, fourth and seventh equations in Eq.(8.274) yield

~(1 + U~ I ) 2 GI I +(U~I)2G33
cos \}l = + ' .JG::(1+ £1( 0» )

• U~IJG;;
Sill \}l = ' .JG::(1+ £1(0» ) ,

(1 +U~I )JG::
COS <1> = + .

~(I + U~ . 1) 2 Gil + (U~,1) 2 G33

• U~ I rc;;;
Sill <1> = =+= ' "U

33

~(l + U~;1) 2 Gil + (U~;1)2 G33

and

where
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(8.274b)

(8.275)

(8.276)
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~ = Jo +U~;,) 2 Gil + (U~;,)2 G33 '

~' 2 = (U~;,)O +U~;, )JGIlG22 ,

~23 =U~;,U~;,JG22G33"
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(8.277)

(8.278)

If E> = 0 , the rotation about the longitudinal axis disappears. So only the bending
rotation exists, which is the pure bending of the rod as in Section 8.3.2.

From Eq.(8.165) , the change ratio of the directional cosines along the deformed
rod in Eq.(8.166) becomes

dla = dUaA GA) = laA;' GIr' A for a=l , 2, 3.
ds ds "Gil (1+&,(0)

Similar to Eq.(8.l68), the change ratio of the directional cosines along the de
formed rod can be computed by

where the rotation ratio components in Eq.(8.169) are computed by

«:

From Eq.(8.161) , the foregoing equations give

I [ d\ll . dE> 2 ]
OJ, = Ir' (-sm<1>+-cos\llcos<1»-f'3 ,

"G il (1+&,(0) dS dS

1 [d\ll dE> . 3 ]OJ = (-+-sm\ll)-r
2 .JG::(I+&,(0) ) dS dS II ,

1 [ d\ll dE> . , ]
OJ3 = Ir' (- cos <1> - - sin <1> cos \Il) - f' 2 ;

"Gil (1+&,(0) dS dS

(8.279)

(8.280)

(8.281)

similar to Eq.(8.171) . Note that for the orthogonal curvilinear coordinates, one has

f~r = 0 (A :t!T *K *A), f~A = -GAA ,r/2Grr (A * f) and f~r = GAA,r/2GAA

(no summation on A).
In an alike fashion , using Eq.(8.25), the particle location on the deformed,

curved rod can be expressed by

The corresponding base vector of the deformed, curved rod is

g, =gtGA =(Jt +U;~)GA'

(8.282)

(8.283)
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and the unit vector for the deformed, curved rod is

- s: A s: A
fi = -.!L = I + U ;I G = 1 + U ;I G

1 Igl I ~(~r +u;;)(~r +U;;) A .,JG:;(1+ CI ) A'
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(8.284)

(8.285)

The base vector in the princ ipal normal direct ion of the deformed, curved rod is as
in Eq.(8. 177), i.e.,

(8.286)

where

(8.287)

Thus , the unit principal norm al vector in Eq.(8.179) can be rewritten, i.e.,

(8.288)

where the curvature of the deformed rod is

(8.289)

(8.290)

(8.291)

The rotat ion vector of the deformed curved rod can be expressed as in Eq.(8. 186),
i.e.,

(8.292)
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where the torsion of the deformed rod is
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For S 2 = S 3 = 0 , the foregoing equation becomes

From Eq.(8.292) ,

R-(S) = OJAN A ·n3 =OJAg~,

f(S) = OJAN A ·n, =OJAg~,
or

(8.293)

(8.294)

(8.295)

(8.297)

(8.296)

OJA= R-(S)n3 • NA + f(S) n, .NA

= R-(S)g~ + f (S)gt .

From Eq.(8.275), d\fl I dS and d<l> I dS are determined by

d\fl = + 1 {/:,2.!!...-(U2 fG)
dS Gil(1 +e

l
(0) ) 2 /:, dS 0;1"./ V

22

- /:' 12 ~ [(1 + U~;,)~J-/:'23 ~ (U~;,.jG;;)} ,

d<l> 1 { I ~ d 3.jG;;-=--2 (1+UOI) GII-(UO' G33)dS /:, . dS '

-(U~ ; I.jG;;) ~ [(1 +U~;I)~J} .

Substitution of Eqs.(8.275) and (8.297) into Eqs.(8.28 I) and (8.295) gives Band
dB I dS .

As in Eq.(8.193), the constitutive laws for deformed rods give the correspond
ing resultant stresses . Similar to Eq.(8.194), the internal forces and moments in the
deformed rod are defined by

N I = L(}Il [(1+e2 )(1 +e3 ) cos r23 ]dA,

Q 2 = L(}l2 [(1 +e2)(1 +e3)cos r23] dA,

Q 3 = L(}13 [0 +eJ(1 +e3)cos r23 ]dA,

S 2 2

M 3 = L(}Il 1+ tpr2) [(1 + e3)(1 + eJ cos r23] dA,

(8.298a)
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(8.298b)

The notations Q2 == N 2 , Q3 == N 3 , and T; == M, are used again. The internal

forces are expressed as in Eq.(8.195), i.e.,

where

M == M ANA= Mana'

.N == NA NA= Nana,
]\'M == ]\'MA NA=glx.N,

(8.299)

(8.300)

With Eq.(8.273), the components of the internal forces in the G A -direction are

N
A

= Na"a ' N A = N; cosB(na.i'\A)

=[ N,(ot +U~I) + N2 (O~ +qJt )) + N3(ot +B1(A)).JG::
.JG::(1+ c,(O)) .jCi;;(I + ciO)) .jG;;(I + ciO) ) AA '

M
A

=Ma" a·NA=MacosB(n a.i'\A)

=[M,(ot +U~I) + M2(O~ +qJl(A)) + M3(ot +BiA))]JG::
.JG::(I + c? )) .jCi;;(I + ci O) ) .jG;;(I + ciO)) AA '

i'\ M A =(glx.N)·NA= eArK(~r +U~I)~Grr NK .

(8.30 I)

(8.302)

Using the external forces as in Eqs.(8.209)- (8.213), equations of motion on the
deformed rod are given as in Eq.(8.267), i.e.,

where

~s + q = PUO,t1 + 13qJI,t1 + 12B1" I'

M ,s+ i'\M+m= J0,t1'

J 0 ,t1 = [(J3U~, t1 -J2u~"J+(J22qJr~; -J23qJ,(,~;)

+(J23Bi~1-J33Bi~1)]N I +(J3U~ t1 +J23qJ,( ~~ +J22Bi ~;)N 2
" ",

-(J2U~ t1 +J22qJ,( ~~ +J23Bi ~;)N3 ', , ,

(8.303)

(8.304)
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and the scalar expressions are for A = 1, 2, 3 ,

N A A_ A I (A) I L)(A)
;1+ q - PU(O),II + 3qJ,,1I + 2u I,1I '

M;~ + l'iMA +mA= C70,1I) ·NA,

or

8 Nonlinear Beams and Rods

(8.305)

{[
NI(Jt +u; ,) + N2 (J: +qJI(A)) + N3 (J3

A
+B1(A))]JG::}

1(;(1+ £(0)) ~(1+ £( 0)) ~(1+ £(0)) AA
"VII 1 "V22 2 "V33 3 ;1

+ -t" = PU~II + 13qJ,(,~ ) + 12BI:~ ) '

{[
M1(Jt +U; ,) + M 2 (J: +qJ,(A)) + M3(J: +Bt ))]JG::}
1(;(1 + £(0)) ~(1 +£(0)) ~(1 + £(0)) AA

"VII 1 "V22 2 "V33 3 ;'

+ eArK(~r +U~I)~GrrN K +mA= (J'0,rJ·NA·

The force cond ition at a point .'lt with S' = si is

- N(s i ) + +N(Si ) + Fk = 0,

-NA(si ) = +NA(Si)+ F/ (A=1,2,3).

The force boundary condition at the bound ary point :J: is

(8.306)

(8.307)

(8.308)

If there is a conc entrat ed moment at a point .'lt with Sl = si, the corre sponding

moment bound ary cond ition is given by

- M(s i ) + +M(Si ) + M k = 0,

-M A(si ) = +M A(Si )+ M: (A=I,2,3).

The mome nt bound ary condition at the boundary point :J: is

(8.309)

(8.310)

The displacemen t continuity and boundary conditions are similar to Eq. (8.207),

i.e., u:_= u:+ and u: = S: (A = I, 2, 3 ).
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(green), (b) the first to second rotation (brown), (c) from the second to the last rotation (blue).
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