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Preface

Reconfigurable computing (RC) systems have generated considerable interest in
the embedded and high-performance computing communities over the past two
decades, with field programmable gate arrays (FPGAs) as the leading technol-
ogy at the helm of innovation in this discipline. Achieving orders of magnitude
performance and power improvements using FPGAs over traditional micropro-
cessors is not uncommon for well-suited applications. But even with two decades
of research and technological advances, FPGA design still presents a substan-
tial challenge and often necessitates hardware design expertise to exploit its
true potential. Although the challenges to address the design productivity is-
sues are steep, the promise and the potential of the RC technology in terms of
performance, power, size, and versatility continue to attract application design
engineers and RC researchers alike.

The International Symposium on Applied Reconfigurable Computing (ARC)
aims to bring together researchers and practitioners of RC systems with an
emphasis on practical applications and design methodologies of this promising
technology. This year’s ARC symposium (The sixth ARC symposium) was held
in Bangkok, Thailand during March 17–19, 2010, and attracted papers in three
primary focus areas: RC applications, RC architectures, and RC design method-
ologies. A total of 71 papers were submitted to the symposium from 23 coun-
tries: Japan (11), Germany (7), UK (6), Spain (6), Belgium (4), China (4), The
Netherlands (4), Thailand (4), France (3), Republic of Korea (3), Singapore (3),
Canada (2), Republic of India (2), Isle of Man (2), USA (2), Austria (1), Den-
mark (1), Greece (1), Islamic Republic of Iran (1), Malaysia (1), Myanmar (1),
Poland (1), and Tunisia (1). This distribution is reflective of the international
engagement in the disciplines related to RC systems.

In all cases, submitted papers were evaluated by at least three members of
the Program Committee. After careful selection, 26 papers were accepted as full
papers (acceptance rate of 36.6%) and 16 as short papers (global acceptance rate
of 59.1%). Out of the total 42 accepted papers, the topic breakdown is as follows:
practical applications of the RC technology(17), RC architectures(11), RC design
methodologies and tools(13), and RC education(1). The diversity of results and
research presented at the symposium led to a very interesting program, which we
consider to constitute a representative overview of the on-going research efforts
in this field. This LNCS volume includes all accepted papers.

We would like to extend our gratitude to all authors who submitted research
papers to the symposium. We would also like to acknowledge the support and
contribution of the Steering and Program Committee members towards review-
ing papers, paper selection, and offering valuable suggestions and guidance. We
thank the Organizing Committee members for their untiring efforts toward mak-
ing this year’s ARC symposium a grand success. We also thank Springer for their
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continued support of this event. Special thanks are due to the distinguished in-
vited speakers for their contributions to the technical program.

January 2010 Phaophak Sirisuk
Fearghal Morgan

Tarek El-Ghazawi
Hideharu Amano
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Seda Ö. Memik Northwestern University, USA
Saumil Merchant The George Washington University, USA
Fearghal Morgan National University of Ireland, Galway, Ireland
Walid Najjar University of California Riverside, USA
Vikram Narayana The George Washington University, USA
Horácio Neto Technical University of Lisbon (IST)

INESC-ID, Portugal
Joon-seok Park Inha University, Seoul, South Korea
Andy Pimentel University of Amsterdam, The Netherlands
Joachim Pistorius Altera Corp., USA



Organization IX

Marco Platzner University of Paderborn, Germany
Tsutomu Sasao Kyushu Institute of Technology, Japan
Yuichiro Shibata Nagasaki University, Japan
Alastair Smith Imperial College London, UK
Pedro Trancoso University of Cyprus, Cyprus
Ranga Vemuri University of Cincinnati, USA
Markus Weinhardt PACT Informationstechnologie AG, Germany
Stephan Wong Delft University of Technology,

The Netherlands
Roger Woods The Queen’s University of Belfast, UK



Table of Contents

Keynotes (Abstracts)

High-Performance Energy-Efficient Reconfigurable
Accelerators/Co-processors for Tera-Scale Multi-core Microprocessors . . . 1

Ram Krishnamurthy

Process Variability and Degradation: New Frontier for
Reconfigurable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Peter Y.K. Cheung

Towards Analytical Methods for FPGA Architecture Investigation . . . . . 3
Steven J.E. Wilton

Session 1: Architectures 1

Generic Systolic Array for Run-Time Scalable Cores . . . . . . . . . . . . . . . . . . 4
Andrés Otero, Yana E. Krasteva, Eduardo de la Torre, and
Teresa Riesgo

Virtualization within a Parallel Array of Homogeneous Processing
Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Marc Stöttinger, Alexander Biedermann, and Sorin Alexander Huss

Feasibility Study of a Self-healing Hardware Platform . . . . . . . . . . . . . . . . . 29
Michael Reibel Boesen, Pascal Schleuniger, and Jan Madsen

Session 2: Applications 1

Application-Specific Signatures for Transactional Memory in Soft
Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Martin Labrecque, Mark Jeffrey, and J. Gregory Steffan

Towards Rapid Dynamic Partial Reconfiguration in Video-Based Driver
Assistance Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Christopher Claus, Rehan Ahmed, Florian Altenried, and
Walter Stechele

Parametric Encryption Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Adrien Le Masle, Wayne Luk, Jared Eldredge, and Kris Carver

A Reconfigurable Implementation of the Tate Pairing Computation
over GF (2m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Weibo Pan and William Marnane



XII Table of Contents

Session 3: Architectures 2

Application Specific FPGA Using Heterogeneous Logic Blocks . . . . . . . . . 92
Husain Parvez, Zied Marrakchi, and Habib Mehrez

Reconfigurable Communication Networks in a Parametric SIMD
Parallel System on Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Mouna Baklouti, Philippe Marquet, Jean Luc Dekeyser, and
Mohamed Abid

A Dedicated Reconfigurable Architecture for Finite State Machines . . . . 122
Johann Glaser, Markus Damm, Jan Haase, and Christoph Grimm

MEMS Dynamic Optically Reconfigurable Gate Array Usable under a
Space Radiation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Daisaku Seto and Minoru Watanabe

Session 4: Applications 2

An FPGA Accelerator for Hash Tree Generation in the Merkle
Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Abdulhadi Shoufan

A Fused Hybrid Floating-Point and Fixed-Point Dot-Product for
FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Antonio Roldao Lopes and George A. Constantinides

Optimising Memory Bandwidth Use for Matrix-Vector Multiplication
in Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

David Boland and George A. Constantinides

Design of a Financial Application Driven Multivariate Gaussian
Random Number Generator for an FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Chalermpol Saiprasert, Christos-Savvas Bouganis, and
George A. Constantinides

Session 5: Design Tools 1

3D Compaction: A Novel Blocking-Aware Algorithm for Online
Hardware Task Scheduling and Placement on 2D Partially
Reconfigurable Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Thomas Marconi, Yi Lu, Koen Bertels, and Georgi Gaydadjiev

TROUTE: A Reconfigurability-Aware FPGA Router . . . . . . . . . . . . . . . . . 207
Karel Bruneel and Dirk Stroobandt

Space and Time Sharing of Reconfigurable Hardware for Accelerated
Parallel Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Esam El-Araby, Vikram K. Narayana, and Tarek El-Ghazawi



Table of Contents XIII

Routing-Aware Application Mapping Considering Steiner Points for
Coarse-Grained Reconfigurable Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 231

Ganghee Lee, Seokhyun Lee, Kiyoung Choi, and Nikil Dutt

Session 6: Design Tools 2

Design Automation for Reconfigurable Interconnection Networks . . . . . . . 244
Hongbing Fan, Yu-Liang Wu, and Chak-Chung Cheung

A Framework for Enabling Fault Tolerance in Reconfigurable
Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Kostas Siozios, Dimitrios Soudris, and Dionisios Pnevmatikatos

QUAD – A Memory Access Pattern Analyser . . . . . . . . . . . . . . . . . . . . . . . . 269
S. Arash Ostadzadeh, Roel J. Meeuws, Carlo Galuzzi, and
Koen Bertels

Hierarchical Loop Partitioning for Rapid Generation of Runtime
Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Siew-Kei Lam, Yun Deng, Jian Hu, Xilong Zhou, and
Thambipillai Srikanthan

Session 7: Applications 3

Reconfigurable Computing and Task Scheduling for Active Storage
Service Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Yu Zhang and Dan Feng

A Reconfigurable Disparity Engine for Stereovision in Advanced Driver
Assistance Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Mehdi Darouich, Stephane Guyetant, and Dominique Lavenier

A Modified Merging Approach for Datapath Configuration Time
Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Mahmood Fazlali, Ali Zakerolhosseini, and Georgi Gaydadjiev

Posters

Reconfigurable Computing Education in Computer Science . . . . . . . . . . . . 329
Abdulhadi Shoufan and Sorin Alexander Huss

Hardware Implementation of the Orbital Function for Quantum
Chemistry Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Maciej Wielgosz, Ernest Jamro, Pawel Russek, and Kazimierz Wiatr

Reconfigurable Polyphase Filter Bank Architecture for Spectrum
Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Suhaib A. Fahmy and Linda Doyle



XIV Table of Contents

Systolic Algorithm Mapping for Coarse Grained Reconfigurable Array
Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Kunjan Patel and C.J. Bleakley

A GMM-Based Speaker Identification System on FPGA . . . . . . . . . . . . . . 358
Phak Len Eh Kan, Tim Allen, and Steven F. Quigley

An FPGA-Based Real-Time Event Sampler . . . . . . . . . . . . . . . . . . . . . . . . . 364
Niels Penneman, Luc Perneel, Martin Timmerman, and
Bjorn De Sutter

A Performance Evaluation of CUBE: One-Dimensional 512 FPGA
Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

Masato Yoshimi, Yuri Nishikawa, Mitsunori Miki,
Tomoyuki Hiroyasu, Hideharu Amano, and Oskar Mencer

An Analysis of Delay Based PUF Implementations on FPGA . . . . . . . . . . 382
Sergey Morozov, Abhranil Maiti, and Patrick Schaumont

Comparison of Bit Serial Computation with Bit Parallel Computation
for Reconfigurable Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

Kazuya Tanigawa, Ken’ichi Umeda, and Tetsuo Hironaka

FPGA Implementation of QR Decomposition Using MGS Algorithm . . . 394
Akkarat Boonpoonga, Sompop Janyavilas, Phaophak Sirisuk, and
Monai Krairiksh

Memory-Centric Communication Architecture for Reconfigurable
Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Kyungwook Chang and Kiyoung Choi

Integrated Design Environment for Reconfigurable HPC . . . . . . . . . . . . . . 406
Lilian Janin, Shoujie Li, and Doug Edwards

Architecture-Aware Custom Instruction Generation for Reconfigurable
Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

Alok Prakash, Siew-Kei Lam, Amit Kumar Singh, and
Thambipillai Srikanthan

Cost and Performance Evaluation of a Noise Filter for Partitioning in
Co-design Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Victoria Rodellar, Elvira Mart́ınez de Icaya, Francisco Dı́az, and
Virginia Peinado

Towards a Tighter Integration of Generated and Custom-Made
Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Harald Devos, Wim Meeus, and Dirk Stroobandt

Pipelined Microprocessors Optimization and Debugging . . . . . . . . . . . . . . . 435
Bijan Alizadeh, Amir Masoud Gharehbaghi, and Masahiro Fujita

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445



High-Performance Energy-Efficient
Reconfigurable Accelerators/Co-processors for

Tera-Scale Multi-core Microprocessors

Ram Krishnamurthy

Senior Principal Engineer, Intel Corp., OR, USA
ram.krishnamurthy@intel.com

Abstract. With the emergence of high-performance multi-core micro-
processors in the sub-45nm technology era, specialized hardware accel-
erator engines embedded within the core architecture have the potential
to achieve 10-100X increase in energy efficiency across a wide domain
of compute-intensive signal processing and scientific algorithms. In this
talk, we present multi-core microprocessors integrated with on-die
energy-efficient reconfigurable accelerator and co-processor engines to
achieve well beyond tera-scale performance in sub-45nm technologies.
Recent trends and advances in multi-core microprocessors will be pre-
sented, followed by key enablers for reconfigurability of specialized hard-
ware engines to support multiple protocols while substantially improving
time-to-market and amortizing die area cost across a wide range of com-
pute workloads and functions. Specific design examples and case studies
supported by silicon measurements will be presented to demonstrate re-
configurable engines for wireless baseband, signal processing and graph-
ics/media applications. Power efficient optimization of reconfigurable
processors to support fine-grain power management, dynamic on-the-
fly configurability and standby-mode leakage reduction and low-voltage
operability will also be described.



Process Variability and Degradation:
New Frontier for Reconfigurable

Peter Y.K. Cheung

Professor and head of department,
Electrical and Electronic Engineering,

Imperial College,
London SW7 2AZ UK

p.cheung@imperial.ac.uk

Abstract. With the emergence of high-performance multi-core micro-
processors in the sub-45nm technology era, specialized hardware
accelerator engines embedded within the core architecture have the po-
tential to achieve 10-100X increase in energy efficiency across a wide
domain of compute-intensive signal processing and scientific algorithms.
In this talk, we present multi-core microprocessors integrated with on-
die energy-efficient reconfigurable accelerator and co-processor engines
to achieve well beyond tera-scale performance in sub-45nm technolo-
gies. Recent trends and advances in multi-core microprocessors will be
presented, followed by key enablers for reconfigurability of specialized
hardware engines to support multiple protocols while substantially im-
proving time-to-market and amortizing die area cost across a wide range
of compute workloads and functions. Specific design examples and case
studies supported by silicon measurements will be presented to demon-
strate reconfigurable engines for wireless baseband, signal processing
and graphics/media applications. Power efficient optimization of recon-
figurable processors to support fine-grain power management, dynamic
on-the-fly configurability and standby-mode leakage reduction and low-
voltage operability will also be described.



Towards Analytical Methods for FPGA
Architecture Investigation

Steven J.E. Wilton

Professor and Associate Head Academic,
Department of Electrical and Computer Engineering

University of British Columbia, Vancouver, B.C
stevew@ece.ubc.ca

Abstract. In the past 20 years, the capacity of FPGAs has grown by
200x and the speed has increased by 40x. Much of this dramatic im-
provement has been the result of architectural improvements. FPGA
architectural enhancements are often developed in a somewhat ad-hoc
manner. Expert FPGA architects perform experiments in which bench-
mark circuits are mapped using representative computer-aided design
(CAD) tools, and the resulting density, speed, and/or power are esti-
mated. Based on the results of these experiments, architects use their
intuition and experience to design new architectures, and then evaluate
these architectures using another set of experiments. This is repeated
numerous times, until a suitable architecture is found.

During this process, there is virtually no body of theory that archi-
tects can use to speed up their investigations. Such insight, however,
would be extremely valuable. A better understanding of the tradeoff be-
tween flexibility and efficiency may allow FPGA architects to uncover
improved architectures quickly. Although it is unlikely that such an un-
derstanding would immediately lead to an optimum architecture, it may
provide the means to ”bound” the search space so that a wider variety
of ”interesting” architectures can be experimentally evaluated.

In this talk, I will describe recent work towards the development of
such a theory. The current approach is to supplement the experimental
methodology with a set of analytical expressions that relate architec-
tural parameters to the area, speed, and power dissipation of an FPGA.
Optimizing these analytical expressions is done using techniques such as
geometric programming. I will summarize current research in this area,
as well as try to provide some insight into how far we can go with these
techniques.
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Generic Systolic Array for Run-Time Scalable Cores 

Andrés Otero, Yana E. Krasteva, Eduardo de la Torre, and Teresa Riesgo 

Centro de Electrónica Industrial, Universidad Politécnica de Madrid 
{andres.otero,yana.ekrasteva,eduardo.delatorre, 

teresa.riesgo}@upm.es 

Abstract. This paper presents a scalable core architecture based on a generic 
systolic array. The size of this kind of cores can be adapted in real-time to cover 
changing application requirements or to the available area in a reconfigurable 
device. In this paper, the process of scaling the core is performed by the replica-
tion of a single processing element using run-time partial reconfiguration. Fur-
thermore, rather than restricting the proposed solution to a given application, it 
is based on a generic systolic architecture which is adapted using a design flow 
which is also proposed. The paper includes a related work discussion, the pro-
posal and definition of a systolic array communication approach, which does 
not require the use of specific macro structures and permits to achieve higher 
flexibility, and a design flow used to adapt the generic architecture. Further, the 
paper also includes an image filter application as a simple use case, along with 
implementation results for Virtex 5 FPGA. 

Keywords: Digital signal processing, adaptable cores, scalability, systolic ar-
ray, partial runtime reconfiguration. 

1   Introduction 

Current multimedia applications are offered on heterogeneous terminals, with a broad 
range of features, using different communication networks and variable bandwidth 
availability capabilities [1]. As a result, single devices are supposed to deal with mul-
tiple coding standards, which evolve and emerge in short time. Consequently, devices 
lifetime is shortened and their replacement with new ones, with advanced features, 
requires speeding up time-to-market.  

This challenge can be solved providing more flexibility to devices by including 
adaptability capabilities. Device adaptation can be based on different parameters, like 
the battery level, the available computational power, the target coding standard or even 
a profile within a standard. The need of adaptability could be easily fulfilled by the use 
of software implementations. However, most of the multimedia related tasks are com-
pute-intensive and demand high performance and fast execution, which can be 
achieved in hardware. In this context, reconfigurable computing can fulfill both, per-
formance and flexibility, requirements.  

Among the flexibility requirements, there is a wide interest in proving solutions 
that permit to scale in real-time the functionality of a hardware block. Functional scal-
ing is achieved by modifying the size of the operation performed by a core, depending 
on the application requirements at a given moment. Such solutions can be advanta-
geous in many domains. Among others, in coding standards, where scaling is oriented 
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to variable-size hardware operations, like the Discrete Wavelet Transform (DWT) 
presented in [2], the variable-size Discrete Cosine Transform (DCT) in [3] or in motion 
estimation and filters [4], and also, in tasks scaling for multi-standard communication 
systems [5] and [6]. 

This paper addresses a solution where the functional scalability of a hardware block is 
achieved by means of spatially scaling the physical implementation of a core. This means 
modifying the area occupied by the core inside a reconfigurable system. In addition, with 
this kind of solutions, different tradeoffs between the area occupied by a core and its per-
formance can be set. An example of such system can be found in the scalable window 
based image filter proposed in [7], or in the scalable DCT presented in [8].  

A direct approach to create variable-size scaling cores is to implement the same 
task in several cores, with different performance and area requirements, and load a 
suitable one in the system depending on the available hardware resources. Differently, 
highly parallel, modular and regular architectures have been studied as a scalable core 
architecture alternative to reduce the overhead of the adapting process. These architec-
tures can be scaled by means of the addition and removal of parallel blocks resulting in 
lower adaptation times. Among the architectures with these characteristics, scalable 
cores based on systolic arrays and distributed arithmetic are the most common, like the 
ones presented in [9] and [10]. Distributed arithmetic provides scalable solutions to 
perform arithmetic operations, while systolic architectures can solve full computing-
intensive tasks in a broad range of fields. An interesting summary of different systolic 
arrays, each one for a specific application field, can be found in [11].  

There are several alternatives to implement the process of scaling a core, like the 
use of parameterizable HDL code, which results in different core implementations 
once synthesized [12], or to use a clock gating technique for the unused elements [3]. 
However, the first solution does not permit real-time adaptation, while the second one 
does not release the unused logic.). Therefore, the exploitation of partial run-time re-
configuration capabilities of state of the art Field Programmable Gate Arrays (FPGA) 
is the widely adopted solution, since it overcomes these limitations. 

This paper focuses on systolic-array-based scalable cores that permit run-time 
adaptability. However, differently from the related work discussed in the paper, it 
presents a general systolic architecture that can be customized, using a proprietary 
design flow, to solve concrete problems. The proposed solution permits, using a single 
processing element replication process, to scale the functionality of a core mapped at 
run-time, or even to create a new one. The replication of the basic element is carried 
out by means of dynamic reconfiguration. Additionally, an approach to communicate 
single reconfigurable elements of the array, which does not require the use of specific 
macro structures, is provided. The proposed communication approach permits to pro-
vide generality to the systolic array, to gain flexibility and also reduces the run-time 
reconfigurable systems implementation area overhead.   

The rest of the paper is organized as follows. In section 2, the related work is de-
scribed, highlighting the main differences with the proposed solution, which is pre-
sented in detail in section 3. Section 4, provides implementation results and a use case 
of the proposed architecture and finally, conclusions can be found in section 5. 

2   Related Work 

In this section, a review of run-time scalable cores based on systolic arrays is  
included. Some representative related works in this specific topic have been selected 
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and characterized based on two main criterions. The first criterion is related to the array 
implementation and its floorplaning on the dynamically reconfigurable system, which 
defines the overall system flexibility. In this aspect, one and two-dimensional solutions 
can be differentiated. The second criterion, which is related to the system generality and 
also influence in its flexibility, is the partial dynamic reconfiguration design flow used.  

The scalable FIR filter introduced in [13] is an example of a one-dimensional  
architecture, which is scaled by means of the addition of independent modules. Each 
additional module increases the number of coefficients of the filter, adapting the filter 
response to the desired filtering mask in real-time. This is a good example of tradeoff 
between the filter response quality and resource occupation. In this work, the design 
flow was the Xilinx Modular Design, which restricted system flexibility significantly.  

In contrast, the newer Early Access Partial Reconfiguration (EAPR) flow, also pro-
vided by Xilinx, has been selected in [14] and [8]. The first work proposes a Scalable 
two-dimensional DCT architecture, where the EAPR is used to: i) adapt the precision 
of the DCT coefficients and ii) to remove and/or add processing elements to achieve 
different types of zonal coding, from 1×1 up to 8×8. That work also allows the use of 
the area of the removed elements by other tasks, but in a restricted manner. The second 
work, that is also two-dimensional, introduces an interesting reconfigurable DCT 
where processing elements are modified in the FPGA at run-time according to the 
zigzag order. In that work, elements are added or removed depending on the desired 
compression quality.  

Two main conclusions can be drawn from the analysis of the related work. First, all 
the proposals are focused on offering solutions to specific problems or applications. 
Apart from the ones described in this section, other examples of concrete purpose scal-
able works are the template matching reconfigurable architecture presented in [15], the 
FIR filter in [4] or the image filter in [7]. Second, the reconfigurable architecture im-
plementations and the design flows do not permit to completely release the area that is 
not used by the core. Therefore, the use of this unused area is highly restricted and 
permits to load only a narrow set of cores or processing elements. On the contrary, this 
paper provides a general approach to create any scalable, two-dimensional and run-
time reconfigurable systolic array architecture. Furthermore, the solution permits to 
load a broad type of processing elements and cores in the system, cores, which might 
belong to different applications. 

The limitations that derive from the selected design flow, Modular Design or 
EAPR, will be further discussed in section 3 and section 4.  

3   Scalable Systolic Array 

Systolic arrays can be defined as pipelined arrays of processing elements that rhythmi-
cally compute and pass data through its structure. Differently from the related work, 
the approach adopted in this paper is the definition of a generic systolic array that is 
customized afterwards following a design flow described in subsection 3.2. The basic 
idea behind the generic systolic array is the definition of a unique fine or medium grain 
processing element that is replicated in two dimensions. This process is used for build-
ing new systolic arrays based scalable cores or for scaling up/down existing ones. This 
results not only in the scaling of the functionality and/or the area of the core, but also, 
due to the implementation solution proposed in subsection 3.1, permits to free the 
remaining portion of the reconfigurable fabric for loading other cores.  
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The general view of the scalable systolic array can be seen on Figure 1, where the 
specific region for allocating one or several scalable cores is shown.  

 

Fig. 1. System general view. The core is scaled by means of the addition of processing  
elements. 

Similarly to the state of the art, the selected reconfiguration technique is partial dy-
namic reconfiguration. Due to this, the core scaling process does not disturb other 
cores that might be running in the system. Furthermore, the scalable core context 
switch is done at run-time, without stopping its functionality and, therefore pulling data 
out from the array is not required. In the following subsections, the proposed 
processing elements interconnections, as well as the design flow are shown. 

3.1   Processing Elements Interconnection 

An important advantage of systolic arrays is the fact that signals entering or leaving a 
processing element are mainly addressed to its closer neighbors. As a result, the exist-
ing interconnections are very regular. In this work, north, south, east and west ports 
have been considered for each element.  

According to the Modular Design flow [16], different modules have to be con-
nected through bus-macros that allow signals to cross reconfigurable module bounda-
ries. These macros are instantiated in the top design, and in order to act as hard  
modules that do not change, they are constantly reloaded in the systems with partial 
reconfigurations. Due to the nature of these static bus-macros and the related design 
flow, an important tradeoff between the core scaling granularity and the area losses 
appears. The FPGA resources required for the bus-macro implementation cannot be 
used by the core itself and thus it is desirable to keep its number as low as possible in 
order to reduce area overheads. Meanwhile, the less bus-macros are included in the 
systems, the bigger the reconfiguration granularity, and this results in restricted system 
flexibility. From the systolic arrays design point of view, the use of macro structures 
forces the selection of processing elements with higher granularity restricting the sys-
tems flexibility and resulting in systolic arrays architectures that are tightly coupled to 
a specific application. Furthermore, the integration of bus-macros restricts the use of 
the free area, from the one reserved for loading scalable cores, by other cores as cores 
to be loaded have to strictly fit into the area defined by two consecutive macros. 

The problems of resource usage have been partially solved in the latest version of 
the EAPR flow [17], where single slice bus-macros have been introduced. Single slice 
bus-macros are part of the reconfigurable area, instead of being part of the static base 
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design. As a result, fewer resources are consumed by the macros and also, resources 
are not used until a processing element is loaded in the reconfigurable area. However, 
this design flow does not permit to relocate a design along the defined reconfigurable 
area. Therefore, it is not suitable for the processing elements replication process, which 
is essential for achieving the flexibility and generality of the array proposed in this 
paper.  

This paper provides a direct solution of the area/scaling granularity tradeoff by 
proposing a systolic array architecture that does not need bus-macros. This is achieved 
by exploiting the symmetry in the communications between processing elements in the 
systolic array. To achieve this, the north and west connections of an element have been 
designed using the same FPGA routing resources as the south and east connections. 
This symmetry has been also exploited to the design of the array processing elements 
that use the same routing resources to transmit the same signals. As a result, when a 
new element is added to the array in the reconfigurable area, its south routing wires 
will fit with the north wires of the element below, and their north wires with the south 
port of the element above. If the east-west connections keep the same conditions, this 
technique permits all the elements to be wire-compatible without the use of bus macros 
and the communications between the processing elements is guaranteed during dynam-
ic reconfiguration. The symmetry of the north/south and east/west connections can be 
perceived from Figure 2, where three processing elements are included and the ele-
ments connections are highlighted. 

 

Fig. 2. Symmetry of the north/south and east/west connections of the processing element 

Only when a block output has to be connected to several inputs of the adjacent ele-
ment, an additional element, called anchor, is required. Anchor elements are imple-
mented with look up tables and their main functionality is to distribute signals. The use 
of anchors permits to reduce the number of wires that cross the block boundaries. An-
yway, anchor elements are considered part of each processing block. 
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In the use case and results section, some numerical results will be included to quan-
tify the improvement of the non-bus macro approach. 

3.2   Processing Elements Design Flow 

In this subsection, a design flow to generate processing elements, customized to solve 
concrete problems and compatible with the generic systolic array approach is pro-
posed. With this flow, specific scalable systolic solutions can be provided in a broad 
range of computational fields. 

The first step of the flow is to define the systolic architecture that is required for the 
specific application. There exists extensive literature on this topic, including some 
automatic solutions [18]. Afterwards, the defined architecture is mapped into the re-
configurable system and divided in two parts: the systolic array itself and the control 
logic. The array is included in the reconfigurable region of the system and it is built 
and/or scaled with the method proposed in this paper. Differently, the control logic is 
included in the system static area, and is not affected by reconfigurations. Therefore, its 
design has to be valid for all the possible dimensions of the systolic array.  

Once the architecture is mapped, the logic design of the basic elements of the array 
can be done. Each processing element is, indeed, a hard macro that can be directly 
designed with the FPGA Editor tool, or using a VHDL description that is tuned after-
wards to define the shape of the element. After this, the processing element is instan-
tiated five times in an ISE design with specific placement constraints, such that one of 
them is placed in the center and the other four blocks around it. Then, a step-by-step 
routing process is carried out in the FPGA Editor to define the connections between the 
central module and the adjacent ones. In this moment, the symmetry requirement of the 
communications, explained in the previous section, has to be accomplished. Finally, in 
order to generate the partial bitstream, the configuration frames that correspond to a 
single processing element are extracted from the full configuration with the five 
processing elements. This can be done using the bitgen Xilinx tool, or by means of a 
read-back operation of a processing element from the FPGA configuration memory.  
By using this method, when the generated bitstream is replicated in the reconfigurable 
fabric, not only the processing elements logic content, but also, the communications 
among the blocks are automatically configured. This allows the creation and scaling 
of the systolic architecture by means of the replication, through relocation, of the 
unique single processing element. As a result, the total configuration data that has to 
be stored is that of a single processing element. The same relocation capacity is pro-
vided by the Modular Design flow, but with the expense of bus-macros. However, 
with the EAPR flow, a bitstream of the full systolic array has to be stored for each of 
the N possible scalability levels. This is because, on the contrary of the methodology 
proposed of this paper, the new macros that it uses do not permit to relocate modules 
and therefore module replication is not possible. The problem of the growth in the 
number of necessary bitstreams to manage the process of scaling with the EAPR flow 
can be seen in the experimental results of [14]. In the subsection 4.2, a quantitative 
estimation of these advantages will be provided. 

Another important consequence of the relocation possibilities of the flow is that it 
permits to design processing elements independently from the system they will finally 
belong to, something that is not possible with the EAPR flow. This provides generality 
and permits: i) systolic cores to be configured from a library of processing elements or 
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even, ii) to self-replicate a processing element that is already configured in the device 
and does not belong to the library.  

The relocation of processing elements is performed by means of specific software 
functions, combined with the ICAP (Internal Configuration Access port) drivers pro-
vided by Xilinx.  Furthermore, small bit manipulation techniques can be used to tune 
specific parameters of the processing element in order to build heterogeneous systolic 
architectures where each element has different parameter values, like filter constants or 
transform coefficients.  

4   Results and Use Case 

In this section, a general evaluation of the proposed architecture is shown, including a 
theoretical comparison with other existing reconfigurable methodologies to deal with 
scalable architectures. In addition, a use case is provided to check the validity of the 
design flow in order to adapt the generic architecture to a particular problem. Finally, 
some numerical results will be shown related with the implementation of the use case. 
The design has been implemented using a Virtex-5 FX70T FPGA from Xilinx with a 
PPC440 embedded processor. 

4.1   General Evaluation of the System 

In this subsection, the proposed system will be evaluated by comparing its advantages 
in terms of system memory requirements and reconfiguration time with common 
solutions that are based on the Modular Design flow and the EAPR. All the provided 
results are restricted to completely homogeneous squared systolic arrays, but conclu-
sions can be extended to heterogeneous architectures.  

In the proposed solution, the size of the bitstream that has to be stored for the 
unique processing element is: _ _ _ _ _ _         (1) 

being Frames_per_CLB the number of configuration frames of each CLB column of 
the FPGA and  the integer division of n, in this case the number of rows of the 
basic element (Rows_per_element in (1)), by the number of CLB Rows per configura-
tion Frame of the device. Typical values for this parameter are 16 CLBs for each 
Virtex-4 configuration frame and 20 CLBs for Virtex-5. A direct consequence of the 
relocation possibilities explained at the end of subsection 3.2, the total configuration 
data that has to be stored is that of a single processing element. The same result can 
be achieved with the Modular Design flow, but without considering the bus-macros 
overhead, which is high as it will be shown further in this section.  

On the contrary, regarding the EAPR design flow, a bitstream of the full systolic 
array has to be stored for each of the N possible scalability levels. The size of each 
bitstream can be calculated with:  _ _ _ _ _ _    (2) 

The total amount of configuration data that has to be stored in the system with EAPR 
design flow to allow the different levels of scalability is: 
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                                                                                          _ _ _ _                          (3) 

Table 1 shows the improvements with respect to the total amount of necessary configu-
ration data that derive from the proposed solution, comparing with the EAPR and the 
Modular Design flow. As a reference, improvements compared with a static, non scal-
able design of the maximum N N size are included. As it can be seen, the exact value 
of this comparison depends on the relative size of the processing element respect to the 
size of the reconfiguration frame. However, the maximum bound is provided to give a 
general idea of the achieved advantages.  

Table 1. Comparison of the total amount of configuration bits of each technique  

Flow Relation with the proposed flow Maximum Bound 
Static Design _ __ _  

 

Modular Design 1 1 

EAPR _ __ _  
 

 
Regarding the time overhead for the scaling process, the use of the EAPR and the 

modular design flows will be compared with the proposal of this paper. In the present 
approach, the necessary reconfiguration time to scale the systolic array from (N-1)  
(N-1) to N N dimensions is the time to reconfigure the 2N-1 new elements. That is: 

 
 2 1                                      (4) _ _  

 
The same result can be obtained with the modular design flow, again not considering 
the area overflow of bus-macros. However, with the EAPR, it is necessary to reconfi-
gure the full core (  dimensions) in order to perform the process of scal-
ing. The time overhead is: 

 
 

                                   (5) _ _  
 

This parameter has no meaning in the case of the non scalable systolic design. The 
comparison with the proposed method results is shown in Table 2. 

Table2. Comparison of the reconfiguration time overheads respect to the proposed method 

Flow Relation with the proposed flow Maximum Bound 

Modular Design 1 1 

EAPR _ _2 1 _ _  2 1  
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4.2   Use Case Design 

An image filter that performs window–based operations using a reconfigurable mask 
has been developed as an example of the proposed architecture as well as the design 
flow. This operator is the base of several image processing applications. Its principle is 
the application of an N×N pixels window to the image, operating the selected pixels 
according to a mask, and obtaining an output result. Usually, the output of the opera-
tion is the result in the position of the central point of the window. This window is slid 
across the whole image, generating all the points of the processed image. In [7], a very 
good review on this kind of operators is provided. 

The operation developed in this paper is the 2D convolution, which is a special case 
of these windows-based operations. The output is a weighted average of the input 
pixels inside the window, using the mask like the weights. With the technique pro-
posed in this paper, it is possible to create a scalable two-dimensional reconfigurable 
convolution, with the property of modifying its weights and its size in real time. 

The systolic structure developed for the filter includes a static region with some 
control logic and memory elements to provide data in the correct order, and the systolic 
array itself, which is the scalable element. Following the provided design flow, the 
basic processing element of the systolic region of the filter has been designed using the 
FPGA Editor tool. Afterwards, the symmetric connections have been created and a 
partial bitstream for the element has been generated by reading back the corresponding 
portion of the FPGA.  

Finally, to communicate the core with the static region and to bypass the columns 
of the FPGA whose content are not CLBs, as a first approach, static bus-macros have 
been used. Designed bus-macros have to fulfill also with the symmetry requirement for  
 

 

Fig. 3. FPGA Editor layout of the core scaled from dimensions 3×3 to 5×5 whith highlighted 
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the communications among the processing elements. This guarantees that the border-
ing processing elements fit with the static bus-macros, in the same way they fit with 
the other processing elements. The main drawback of this approach is that it renders 
DSPs and BRAMs columns. In addition, the size of each core is limited to the number 
of columns between each two non CLB columns. However this problem, that is com-
mon in runtime reconfigurable system, is minor in the proposed in this paper architec-
ture, since it focuses on small grain processing elements. 

The system has been tested in terms of the scaling process by loading subsequently 
several processing elements in the systems using partial reconfiguration. As a result the 
systolic architecture and the no-macro based approach have been successfully validated.  

Finally, in the Figure 3, layout captures of the FPGA Editor are provided, in order 
to show the result of the process of scaling the systolic architecture from dimensions 3 
× 3 to 5 × 5. The selected FPGA layout allows a maximum size of 7 × 7 elements. 

4.3   Use Case Results 

While in the previous sections, some quantitative advantages of the proposed architec-
ture have been underlined, in this subsection, some implementation results obtained 
from the use case will be provided, in order to prove the mentioned advantages in this 
particular design.  

The first comparison is done in terms of logic consumption, comparing the pro-
posed connections among elements without bus-macros, with respect to an implemen-
tation using Xilinx bus-macros. As it has been already mentioned, the basic processing 
element has four connections:  North and south connections are 10 bits wide, while 
east and west connections are 16 bits wide. Since Xilinx dual-slice bus-macro allows 
an 8-bit communication between two reconfigurable regions, two bus-macros per inter-
face would be required to allow all necessary interconnections. Consequently, the 
overhead of including these bus-macros are 8 CLBs for each processing element. Since 
each basic element occupies 20 CLBs, the area consumption of the elements with bus-
macros would increase a 40%, compared with the solution proposed in this paper. 

Additionally, it can be shown that the total amount of configuration bits is also re-
duced. As it is shown in Figure 3, each processing element occupies 2 columns and 10 
rows in the reconfigurable device. Since each Virtex-5 CLB column requires 36 recon-
figuration frames, 2×36 full frames have to be stored for the basic processing element. 
Differently, in a static and non-scalable solution, a bitstream of the area that corres-
ponds to the biggest possible block should be stored. Regarding this use case, the 7 × 7 
core occupies 14 columns of 70 CLBs each one. To configure each column, data cor-
responding to 4 clock regions are necessary. Since each column has 36 frames, 2016 
frames have to be stored to configure the core. Moreover, in the EAPR design flow, 
considering the 7 scalability possibilities, the storage necessity is 7×2016 frames. A 
summary of this comparison is shown in Table 3. The final measured memory occupa-
tion of the basic processing element is 11 Kbytes. 

Table 3. Amount of configuration frames with each technique for  = 7 

Flow Number of necessary frames Relation with the proposed flow 
Proposed 72 1

Static Design 2016 28
Modular Design 72 1 

EAPR 14112 196
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Finally, regarding the reconfiguration time, the EAPR design flow always con-
sumes the necessary time to reconfigure the full 7 × 7 architecture, while both the pro-
posed and the modular flows, only have to reconfigure the new elements. The FPGA 
Frames that have to be reconfigured to scale the systolic array from (N-1)  (N-1) to 
N N dimensions can be seen in Table 4. A comparison between the two options is 
also shown, for different N values. The number of frames to reconfigure, in the case of 
the design flow proposed in this paper, depends on the value of N, but in the worst 
case, it is 2.15 times better than the achieved with the EAPR flow. The measured time 
to reconfigure each processing element is 0.34 ms. 

Table 4. Comparison of the reconfiguration time of the EAPR flow respect to this proposal 

N Number of frames to 
reconfigure with the 

proposed flow 

Number of frames to reconfigure 
with EAPR 

Relation 

1 72 2016 28 
3 360 2016 5.6 
5 648 2016 3.11 
7 936 2016 2.15 

5   Conclusions and Future Work 

This paper describes the architecture of a generic systolic array with spatial scalability 
capability. The method is based on the replication and relocation of the single element 
using dynamic partial reconfiguration a basic element to generate an array which size 
could be adapted at runtime to the available area in the device, or to the application 
requirements of the executed task. The released area in the device can be freely used to 
load other cores. To allow the process of scaling, a communication structure that does 
not require the use of bus-macros is proposed, resulting in important area savings and 
improved FPGA occupation. Scalability of the solution is guaranteed in non homoge-
neous FPGAs (with embedded RAMs and other predefined blocks) by a symmetric 
bus-macro based feed-through structure, compatible with the scalable part of the archi-
tecture. In addition, a proprietary design flow is provided to adapt the generic architec-
ture to the solution of specific problems. This allows flexibility enhancements with 
respect to the state of the art alternatives. In addition, with this approach, improve-
ments are also achieved for both, the reconfiguration time overhead and the amount of 
configuration data. An image filter has been developed as a use case example.  

Future work will include the development of a library of basic processing elements 
to provide scalable solutions in different data treatment fields, as well as to automate 
the decision of run-time scaling the core, according to changing application require-
ments or system conditions. 
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Abstract. Our work aims at adapting the concept of virtualization,
which is known from the context of operating systems, for concurrent
hardware design. By contrast, the proposed concept applies virtualiza-
tion not to processors or applications but to smaller processing units
within a parallel array of homogeneous instances and individual tasks.
Thereby, virtualization during runtime enables fault tolerance without
the need for spare redundancy: The proposed architecture is able to
switch seamlessly between parallelism for execution acceleration and re-
dundancy for fault tolerance. In addition, faulty instances are completely
decoupled from the system. This allows for an easy dynamic and par-
tial reconfiguration. Using this concept, self-healing mechanisms can be
implemented, as decoupled, faulty instances may be replaced by opera-
tional instances during reconfiguration. We present this hardware-based
virtualization concept on the basis of a parallel array of multipliers used
for ECC point-multiplications.

Keywords: virtualization, middleware, fault tolerance, partial recon-
figuration, self-healing systems, parallel hardware systems.

1 Introduction

In order to execute a task, it has to be assigned to an instance of a resource.
This mapping is called binding. Often, many tasks have to share the same in-
stance. The imbalance between tasks and available resources requires scheduling,
whereas resource conflicts have to be avoided. Furthermore, the contexts of tasks
sharing the same instance may not mix up. One of the several mechanisms uses
virtualization to accomplish this. Virtualization permits several tasks to use the
same instance of a resource. Its fundamental aspect is that each task believes to
be the sole user of an instance. This is done by inserting an abstraction layer
between tasks and resources. As an advantageous side-effect, a task can be trans-
parently executed on another instance of the same resource. Therefore, a task
becomes independent from an explicit binding to an instance of a resource. Thus,
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Fig. 1. Visualization of middleware in distributed computing

in case of a fault, another instance may be utilized to execute the task without
any side-effects. As a result, virtualization is not only suited to manage resource
binding, but also as a basis to implement fault tolerance.

Fault tolerance is an important aspect in the development of embedded sys-
tems. A frequently applied approach is to allocate additional, redundant com-
ponents, which take over the tasks of defective components in case of a fault,
as described in [6], but the drawback is the high resource consumption caused
by redundancy. Furthermore, in normal operation, there is no benefit from these
spare resources. Other mechanisms, additionally, use redundant components for
fault detection [11]. Here, Triple Modular Redundancy (TMR) is used to detect
variations in the output of one of three redundant components. The authors of
[2] and [9] utilize reconfigurable spare areas on the chip, which do not have to
be explicitly held ready for dedicated components. However, the approach men-
tioned in [9] needs two FPGAs, thus is resource intensive, too. To circumvent
the high resource consumption caused by redundancy, the virtualization concept
lends itself to the purpose of resource saving. Using virtualization to gain fault
tolerance is already discussed in [14]. While this approach motivates virtual-
ization by (sub-)networking, we focus on embedded, parallel hardware systems,
which do not require intensive rerouting in case of a fault. We exploit the concept
of virtualization for the development of a system, which dynamically combines
the advantages of parallel execution and redundancy for fault tolerance without
dedicated spare resources.

The paper is structured as follows: In section 2 we introduce the concept of
a middleware approach as the basic platform for our virtualization technique
of hardware resources. Then we describe our virtualization procedure and the
related hardware architecture. Section 3 demonstrates this novel approach by
means of an ECC point-multiplication, which uses the virtualization architec-
ture described before. After an application example, we discuss advantages, lim-
itations, and possible improvements in section 4. Finally, section 5 subsumes
the achieved results and lists some advanced aspects, which will be addressed in
future research work.
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2 Methods

In this section we present the advocated layer between data path and control
unit, respectively between the resources and the task, which is used in our vir-
tualization approach. This layer can be viewed as a kind of middleware, a well
known concept in the area of distributed computing [1]. Firstly, we explain this
specific middleware concept. Secondly, we apply it to a hardware design using a
bus system, then we will show how to exploit the proposed middleware-enhanced
design to virtualize resource entities in a homogeneous multi-processor array.

2.1 Middleware Concept

A middleware structure, as applied in the area of distributed computing [12], is
mainly a protocol aimed to control data transfer and task assignment between
different applications and processing units, as depicted in figure 1. Therefore,
this type of protocol controls the data flow as well as the control flow of the
distributed computing elements in the network. The advantage of this interme-
diate layer is an abstraction of both the control and the data flow within the
processed application.

Middleware on Top of a Bus System. Traditionally, bus systems only per-
form data transfers without manipulating data or control flow. For instance, data
and control flow are managed by a central control unit. A middleware layer, how-
ever, not only performs data transfers, but also has the ability to dynamically
change the data and control flow of an application. Therefore, we extend a com-
mon bus structure to provide a middleware functionality as follows:

A bus system-based middleware unit consists of a bus system with several
data transmission buses, one arbiter unit, and one control bus. The arbiter unit
controls the data transfer between the units of the architecture, e. g., between
distinct processing units and the memory, via the underlying data bus structure.
It also manages the molding processes of each processing unit via the control

Memory

Processing Unit

Computer1

Middleware

Processing Unit

Computer2

Processing Unit

Computer3

Arbiter

Task1 Task2 Task3 Task4

Control
unit

(program)
Control Bus
Data Bus 2
Data Bus 1

Fig. 2. Middleware functionality mapped to hardware
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Algorithm 1. Virtualization by middleware concept
Require: (current schedule)

n, m := 0
Scur ← current schedule
t← getNumOfAllTasksOfCurrentSchedule(Scur )
T [t]← getAllTasksOfCurrentSchedule(Scur )
for i = 0 to t do

if (!(checkAvailabilityOfResourceOfTask(T [i ]))) then
Rf [n]← getResourceOfTask(T [i ])
Tf [n]← (T [i ])
n + +

else
Rh[m]← getResourceOfTask(T [i ])
Th[m]← (T [i ])
m + +

end if
end for
if (isEmpty(Rf [ ])) then

ExecuteTasksOfSchedule(Scur )
return

else
Saux1 ← RescheduleTasks(Scur ,Th [m])
Saux2 ← makeScheduleOf (Rh [m],Tf [n])
while (ExecuteTasksOfSchedule(Saux2 )) do

stallOtherTasks()
end while
ExecuteTasksOfSchedule(Saux1 )
return

end if

bus. The arbiter starts the operation of a processing unit, when all task specific
data are available at this unit. The bidirectional control bus also informs the
arbiter unit if a processing unit has finished its task so that the calculated result
can either be transferred to the global memory or to another processing unit
to prepare its next task execution. The central control unit no longer has the
ability to directly change data and control flow, as it only communicates with
the middleware unit. An example of the scheme of such a bus system-based
middleware is depicted in figure 2. As a result, the middleware layer allows to
dynamically bind tasks to resources, a property being an essential prerequisite
for the proposed virtualization concept.

2.2 Virtualization Concept

By the introduction of task management using the mentioned middleware ap-
proach, we are able to virtualize the hardware instances of this architecture. We
first define several terms in this context: A virtualizable unit is an unit, usually
an instance of a resource, whose assigned task may be executed on another unit.
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A virtualizing unit is an unit, usually an instance of a resource, that took over
the execution of a task initially assigned to another unit. Finally, a virtualized
unit is an unit, usually an instance of a resource, whose assigned task is cur-
rently being executed on another unit. Thus, the virtualization concept features
the following properties:

– Dynamic resource allocation during runtime
Detecting available entities of the needed resource to execute a task.

– Dynamic resource binding during runtime
Mapping the virtualized tasks to an available appropriate resource entity.

– Dynamic rescheduling of the control flow
Adapting the control flow of the application during and after the virtualiza-
tion phase without changing the original program of the application.

To realize the above stated functionalities in a bus system-based middleware
approach, we extended the basic arbiter functionality within the middleware
unit by algorithm 1. In the beginning of the algorithm, all tasks T of the current
schedule Scur, which still have to be processed at the same point in time, are
identified. After getting all unprocessed tasks, their binding is checked. These
tasks are then sorted into two groups. The members of the first group are all
tasks Th that are bound to correctly working resource instances Rh. In the second
group all the tasks Tf with a binding to defective instances Rf are listed.

If the group Rf is empty, the actual schedule Scur, most likely the initial
schedule, is proceeded. Otherwise, a new schedule of both the tasks Th and Tf

is needed. Firstly, the old schedule Scur is reorganized with the tasks Th to the
schedule Saux1. Secondly, a new schedule Saux2 is composed based on the tasks
Tf and the resources Rh.

When both schedules are set up, they are executed sequentially to consider pos-
sible dependencies between the processes of Saux1 and Saux2. The schedule Saux2
is first processed while stalling all the other processes. After the schedule Saux2 is
completed, schedule Saux1 is executed and the algorithm starts all over again.
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Virtualization by the Middleware. To execute a virtualization based on the
above-mentioned procedure, we use one of the multiple data buses, as depicted in
figure 2. This bus is utilized to transfer the task-dependent data from the original,
virtualized instance of a resource to the virtualizing instance. Furthermore, the
control bus is used by the arbiter unit for the virtualization process. It manages
the new schedule and binding of the virtualizing resource without altering the
control flow of the components, which are not involved in the virtualization.

The control flow in this architecture is realized by two units, namely a con-
troller and a middleware unit. The instructions of the application are routed
into the middleware unit before the instructions and control signals are for-
warded to the respective components in the data path. To program this parallel
processor architecture, we used an instruction set of very large instruction words
(VLIW): All parallel executable instructions of all tasks are concatenated. Ad-
ditionally, the virtualizable processing units can be addressed directly by the
VLIW-instruction set.

Memory Architecture and Consistency. Also the memory consistency has
to be considered. One of the costs of the middleware architecture in figure 2 is
the context switching of both virtualized and virtualizing processing unit. Side-
effects may appear during or after virtualization of a processing unit because
the access order of the data may change with respect to the original control
flow of the application. However, these side-effects of the memory due to the
switching procedure have to be avoided in any case. Therefore, methods have
to be applied to assure data consistency and to prevent context switching as
depicted in figure 4.

Each processing unit has a small local scratch pad memory for caching the
task-dependent data. Focusing on the virtualization of functionality, we moved
one data bus of the middleware architecture in figure 2 now to be located between
the local memory of the processing units and their arithmetic part of the data
path. With such an architecture, as depicted in figure 3, no explicit context
switching is needed during a task-transparent virtualization phase.

Based on the distributed memory architecture, the constraints for the data
integrity are simpler compared to multi-threading techniques based on a single

Operating in normal modus Operating in virtualization modus

Save current 
data set of the 
virtualizing unit

Transfer data set 
from virtualized 

unit to virtualizing 
unit

Execute 
operations on 

transferred data 
set according to 

program flow

Recover data set 
of each unit after 

virtualization

Fig. 4. Process steps to assure data consistency
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memory block: Processes connected by the virtualization bus and exclusively
using their own local working memory highly reduce the need for control by
avoiding context switching for the virtualization phase.

3 Application Example: ECC Point-Doubling Operation

A suitable application for these concepts may be found in car-2-car communica-
tion: A fault tolerant and fast signing procedure for prioritized rescue vehicles
is essential to verify the rights to influence the traffic flow in case of emergency
[13]. Due to the complexity of this scenario we abstracted of this application
example to a smaller and essential component - a part of signing by Elliptic
Curve Cryptography (ECC).

ECC is one of the most established asymmetrical cryptography schemes. It is
based on the difficulty of calculating the discrete logarithm on elliptic curves [3].
An elliptic curve is an additive, abelian group with a defined addition operation
and a neutral element called point of infinity.

The elliptic curve crypto system is composed from a mathematical strictly lay-
ered architecture, as depicted in figure 5. The top layer exhibits the operations
of the Elliptic Curve Arithmetic, in general point-addition, point-doubling, and
point-multiplication. These operations originate from the arithmetic operations in
the underlying Finite Field Arithmetic. Each Elliptic Curve Arithmetic operation
requires the execution of multiple lower-level operations. Thus, a cryptographic
operation, e. g., a digital signature, requires just two point-multiplications on the
elliptic curve, but hundreds of point-addition and point-doubling operations, i. e.
correspondingly many operations on the Finite Field Arithmetic.

For comparison purposes, we implemented and synthesized two elliptic curve
arithmetic-coprocessors for the point-double operation on the Virtex-II Pro plat-
form. One coprocessor design is based on the architecture, as depicted in figure
6, with three virtualizable multiplication units for finite field multiplications and
a middleware-extended control unit. The middleware concept is realized by an
additional control unit and an additional bus between the memory components
and the multiplier, which is accessible by each component via multiplexer and
tri-state buffer. The Virtualization CBus manages the control signals between
the processing units and the middleware component. The second design features
three non-virtualizable finite field multiplication units and a normal control unit.
This design basically originates from [7].

Elliptic Curve Arithmetic 

Finite Field Arithmetic 

Point-
Addition

Point-
Double

Point-Multiplication

Multiplication Addition  Squaring

Fig. 5. Layered mathematical structure of elliptic curve arithmetic
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We selected a manual fault-injection as an application scenario to analyze the
virtualization concept of our middleware approach. On both architectures we
simulate a point-doubling operation with no fault, with one fault, and with two
faults, respectively, on a processing unit during runtime. Figure 7 depicts the
data flow graph of the simulated application.

On the left side of the figure the original data flow of a point doubling algo-
rithm in the López-Daham projective coordinates [8] is displayed. The different
background colors of each task node highlight different processing units utilized
to execute the task. On the other side, the rescheduled data flow is schemed
for virtualizing the most left multiplication task running task at t2 of the orig-
inal schedule. The virtualization is forced by a manually injected, static soft
error of the multiplication unit. During the virtualization of the multiplication
task at point in time t2, the multiplier resource symbolized by the white back-
ground color can be reconfigured without stalling the whole application. The
non-virtualizable architecture has to start the application all over, if a fault is
detected. Table 1 depicts the resource consumption of both designs, while figure
8 depicts runtime performance for the three described simulated cases.

The high resource consumption of slices is caused by the discrete and simul-
taneous architecture of the local memory units. In case of the non-virtualizable
architecture, the structure of the local memories uses 52 % of the resources,
while the local memories in the virtualizable architecture sum up to 44 %. Ta-
ble 1 clearly depicts the higher resource amount of the virtualizable architec-
ture. The additional controllable bus for the virtualization and the middleware
unit for managing resource binding during the partial reconfiguration only needs
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15 % of the slices of the virtualizable design and 15 % of its look-up tables. The
additional amount of resources is a reasonable price to pay in order to achieve
the ability of reconfiguring defective units during runtime. The additional logic
of the bus structure increases the delay time of the combinatorial way, thus the
maximum working frequency in our example of the virtualized architecture is
decreased by 26MHz to 94 MHz instead of 120MHz of the non-virtualized.

The point of the fault-injection for the runtime simulation with one fault was
placed before the second squaring section, which points to the time instant t2
in the diagram given in figure 7. On the left hand side of figure 7 the data flow
graph of a point doubling operation with no virtualization is given, while on the
right hand side the data flow of the same point doubling operation with one
virtualizing task is schemed. In the other fault simulation cases the faults were
injected at the time points t2 and t4, respectively, of the schedule depicted in
figure 7.

The process duration of point-doubling operation on both the virtualizable
and the non-virtualizable architecture is the same, if no fault is injected, as

Table 1. Resource consumption of the architectures

Resources virtualizable non-virtualizable
Slices 10634 9030
FlipFlops 6294 6294
LUTs 20142 17051
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Fig. 8. Processing durations of point-doubling on both architectures

depicted in figure 8. In case of a fault, the virtualizing architecture needs one
clock cycle more to start the execution of the virtualized task than starting
the same process on the non-virtualizable architecture on the same processing
unit type. In case of a fault-injection the virtualizable architecture is faster than
the architecture without virtualizable units. This result is caused by the restart
behavior of the non-fault-tolerant architecture after a fault detection. The non-
virtualizable architecture will be faster, if the fault is injected in the first pro-
cessing phase: The processing units, which are not affected by virtualization, are
at least stalled as long as the execution of the virtualized task lasts, whereas the
non-virtualizable architecture is immediately restarted after detecting a fault.

4 Discussion

The example scenario in section 3 shows that this concept of virtualization of a
bus system-based middleware is well-suited to provide fault tolerance in a homo-
geneous parallel working processing unit array without additional redundancy
techniques. This virtualizable architecture has the advantage of correcting defec-
tive instances of resources without changing the control flow of the application
or restarting the entire application at all. For fault-tolerant usage, we premise
already existing, application-specific fault recognition structures.

Especially homogeneous multi-processor architectures take advantage from
using this virtualization concept, as they may switch between parallelism either
for execution acceleration or for dynamically providing redundancy for fault
tolerance. No additional redundant processing units are needed to specifically
implement fault tolerance.

Moreover, the general virtualization approach provides new methods and con-
cepts in the area of self-healing systems based on reconfigurable hardware. Self-
healing systems have the ability not only to tolerate faults, but to recover from
them. As described in section 2.2, the application schedule in the presented
concept does not have to include a non-interrupting reconfiguration schedule
between the different task executions on a resource instance, like in [4]. Other-
wise, no additional generic neighbor cell structures as in [10] are needed to assure
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a self-healing architecture in case of permanent errors, as further described in
[15]. Based on the decoupled control flow of the application and the virtual-
ization procedure for the data path as proposed in this paper, the virtualized
components can be reconfigured during runtime without any context switching
at all. This offers the possibility to reconfigure processing units on task level
rather than on application level. Therefore, this a much finer granularity with
respect to partial reconfiguration.

The presented architecture relies on a distributed memory architecture, aimed
to assure memory consistency during virtualization. Distributed memory implies
distributed code for each task or program on a dedicated memory. Some pro-
gramming paradigms handle distributed memories, as for example for the pro-
gramming of the IBM Cell architecture [5], which is somewhat similar to our
approach with respect to homogeneous, virtualizable processing units. At the
moment, the user has to write individual programs for each memory unit and to
combine them into complex VLIW-code as already detailed before. Furthermore,
no explicit resource binding is actually necessary, since the middleware abstracts
tasks from resources. However, the user has to declare an initial binding. For the
two given reasons, it would be an advantage, if a further layer would be intro-
duced: In this layer programs could be analyzed regarding the possible level of
parallelization, accordingly many resources could be allocated, and the initial
binding could be automated.

During virtualization the application example presented in section 3 stalls.
Thus, extensive rescheduling is avoided at the expense of throughput. An ex-
tension of the presented concept may reschedule the program flow during virtu-
alization in such a manner that a stall of units, which are not affected by the
virtualization, is avoided. By combining and implementing these upgrades an
easy to use, fault-tolerant framework for parallel processing will result.

5 Conclusion

In this paper we introduced a virtualization concept for hardware architectures
on top of a bus system-based middleware approach that is very suitable for ho-
mogeneous multi-processor architectures. According to the transparent task man-
agement of our middleware approach, the gap of the resource utilization between
redundancy and parallelism is narrowed. Virtualization allows to switch between
these two dynamically. Furthermore, virtualization completely decouples any vir-
tualized components. This allows for easy partial and dynamic reconfiguration.
As virtualization in general degrades throughput of the system to some extent,
defective and thus decoupled components may be reconfigured, i. e., repaired. As
a result, our concept not only offers a framework for easy partial and dynamic
reconfiguration, but also provides a basis to implement systems with self-healing
abilities. In future work, we will apply a high-level programming paradigm on the
distributed memory approach. Some process steps will thus be automated, such
as generating initial control flow and binding. Optimization of the reschedule al-
gorithm in case of a fault appearance concludes the envisaged future work.
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Abstract. The increasing demand for robust and reliable systems is
pushing the development of adaptable and reconfigurable hardware plat-
forms. However, the robustness and reliability comes at an overhead in
terms of longer execution times and increased areas of the platforms. In
this paper we are interested in exploring the performance overhead of
executing applications on a specific platform, eDNA [1], which is a bio-
inspired reconfigurable hardware platform with self-healing capabilities.
eDNA is a scalable and coarse grained architecture consisting of an ar-
ray of interconnected cells aimed at defining a new type of FPGAs. We
study the performance of an emulation of the platform implemented as
a PicoBlaze-based multi-core architecture with up to 49 cores realised
on a Xilinx Virtex-II Pro FPGA. We show a performance overhead com-
pared to a single processor solution, which is in the range of 2x - 18x,
depending on the size and complexity of the application. Although this is
very large, most of it can be attributed the limitations of the PicoBlaze-
based prototype implementation. More important, the overhead after
self-healing, where up to 30-75% faulty cells are replaced by spare cells
on the platform, is less than 20%.

1 Introduction

Reliability and consequently, fault-tolerance are becoming key factors for a high
fraction of embedded applications, because they are becoming more and more
pervasive. When you press the brake in your car on an icy day you hope that
the embedded system implementing the ABS has not succumbed to the cold
weather. The classical way of introducing fault-tolerance in hardware is to have
three redundant copies of the hardware plus a voter to detect which output is the
correct one. But what will you do if one of the redundant copies fails permanently
or what if the voter itself is faulty? Then you cannot decide which of the output is
the correct one and the system needs replacement. Certainly, if the application in
question is located alone on Mars you have a problem, but even if the application
is more down-to-earth for instance a chip in a traffic light it certainly would be
nice not having to pay for a repair guy to go and fix it. Therefore proposals for
reconfigurable self-healing hardware platforms have emerged in the last decade.
The eDNA platform as presented in [1] is our proposal. In this work we have
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implemented the first prototype of eDNA - called eDNA 1.0 and we will show
that eDNA is indeed feasible for industrial applications even though it is still on
an early stage and limited by several factors.

1.1 Related Work

eDNA is inspired from the way eukaryotic cells (cells in multicellular organ-
isms) read and interpret the DNA in order to build and maintain an organism.
Other bio-inspired self-healing hardware architectures are emerging from differ-
ent groups such as [2,3,4,5]. [2,4] present a fine-grained reconfigurable self-healing
architecture aimed at an FPGA implementation and is inspired by eukaryotic
cells, just like the eDNA platform. They demonstrate the self-healing capabili-
ties of their system with several examples. However, the architecture suffers from
being too fine-grained, which makes the overhead when programming larger ap-
plications big. A similar approach [5] is inspired by prokaryotic cells (cells in
unicellular organism), however, the paper is conceptual and doesn’t describe
specific implementation details. The eDNA platform distinguishes itself from
these by having a higher logical granularity and the fact that it is aimed at an
ASIC implementation and not an FPGA implementation.

A part from being bio-inspired eDNA utilise dynamic reconfigurability in order
to perform self-healing. With the increasing demand for adaptive hardware plat-
forms there have been a lot of research effort in dynamical reconfigurable FPGAs
and MPSoCs, similar in type to that of eDNA. In order to decrease the cost of
reconfigurability work such as [6,7,8] investigate the advantages of coarse-grained
dynamical reconfigurable FPGAs and MPSoCs. [6] propose a hardware platform
consisting of two Xilinx MicroBlaze[9] cores as well as hardware co-processors
to handle encryption and compression of package payload for network applica-
tions. They show that the use of dynamical reconfigurable co-processors gains
a speed-up of 12-35% compared to a static version. [7] propose an architecture
called QUKU which is a mix of an FPGA and a Coarse-Grained Reconfigurable
Array (CGRA), by overlaying an FPGA with a network of PEs. Furthermore
the architecture has a MicroBlaze soft-core which controls the reconfiguration
of the architecture. They show that the QUKU architecture achieves a very low
configuration time compared to the execution time of two edge-detection algo-
rithms. Finally, [8] has explored how to tune a CGRA to its application domain
by doing a design space exploration on how each application intends to use the
resources on the CGRA.

The contribution of this paper is a description of the first prototype of the
eDNA platform as well as an illumination of the performance to be expected
from it.

The next section will introduce the eDNA design methodology, section 3 will
describe the implemented hardware prototype, section 4 will present and dis-
cuss the performance results obtained and finally, section 5 will present the
conclusion.
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2 eDNA Design Methodology

The purpose of this section is to introduce the features of our proposed system
in order to motivate why we study this type of hardware platform. eDNA is
an abbreviation for electronic DNA and the eDNA platform is a bio-inspired
reconfigurable hardware platform utilising the eDNA to provide two features:
Self-organisation and self-healing. The self-organisation is the process where the
eDNA hardware platform configures itself to execute the application provided by
the user. The self-healing is the process where faults are detected and eliminated.
The eDNA platform consists of an array of homogenous eCells (abbrev. for
electronic cell) connected via a Network-on-Chip (NoC). In the following the
self-organisation and self-healing will be explained.

Fig. 1. Overview of the eDNA design flow

2.1 Self-Organisation

Figure 1 summarises how the self-organisation works. The eDNA design flow
starts from a behavioral specification of the application, expressed as a software
implementation. This software implementation is translated into the eDNA lan-
guage as outlined in figure 1. The eDNA language can be seen in Backus-Nour
Form notation below.

dna ::= <statement>* | <parallel>*

statement ::= <assignment> | <while> | <if> | return <var/c> |<parallel>

parallel ::= parallel <statement>* endparallel

assignment ::= <var/c> = <exp>

while ::= while <bexp> do <statement>* endwhile

if ::= if <bexp> then <statement>* else <statement>* endif

exp ::= <var/c> [<op> <exp>]*

bexp ::= <var/c> [<bop> <bexp>]*

op ::= AND | OR | + | - | ...

bop ::= AND | OR | < | <= | == | != | ...

var/c ::= Letters{A-Z}* | <const> | RAM <var/c>

const ::= 0<const>* | 1<const>*
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Fig. 2. (a)-(c) Modified SW→HW blocks inspired by Ian Page [10]. (d) The parallel
block introduced with the eDNA, which is not a part of [10].

A converter program then encodes the program and feeds it to all of the eCells.
This is the only part which is performed offline, the rest of the process is per-
formed by the eCells online. Once an eCell has received the eDNA program it
starts transforming the program into a task-graph (figure 1). The transformation
from algorithmic description to hardware is done following a translational model
inspired by a paper by Ian Page [10]. Ian Page proposed a way of translating
software code directly to hardware. The translational model of the constructs of
the eDNA language can be seen in figure 2. Note that figure 2(b) and (c) abbrevi-
ates part of the hardware as W-G BOOL and IF-G BOOL, this will be needed later
on. Each block on figure 2 displays a start/finish signal. The start/finish
signal provides a sequencing mechanism to the system. This means that the or-
der of operation of the eDNA code is maintained by this signal. For instance as
seen on figure 2(b) and (c) it is clear that the if and while block respectively
is inactive as long as the start signal coming from the preceding block is 0. At
the top of figure 2 the example code from figure 1 is seen. The sections of the
code which corresponds to the individual blocks of figure 2 is clearly marked.
Note that the communication paths in the task graph (figure 1) is derived from
the communication between the blocks in figure 2. The dashed lines in the task-
graph in figure 1 corresponds to the start-signal lines of figure 2 and the solid
lines corresponds to data coming from the EXPR block of figure 2(a). In order
to decide which eCell should perform which part of the task graph, the con-
cept of cell types will be introduced. The unprogrammed eCell correspond to
a biological stem cell in the sense that stem cells can differentiate into multi-
ple cell types. The unprogrammed eCells can differentiate into 4 different cell
types (seen in the left-middle part of figure 1). Just as a biological organism
uses cellular differentiation to partition different cell tasks, our eCells uses these
predefined cell types to partion the task graph into cell types. The four eCell
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types are named; EXPR, IF-G BOOL, W-G BOOL and PAR (see figure 1). The EXPR
implements the <exp> part of the eDNA language also seen as the EXPR on figure
2(a). The IF-G BOOL and W-G BOOL is the part on figure 2(b)-(c) marked by the
dashed box called IF-G BOOL and W-G BOOL respectively. In addition to [1] the
logical granularity have been raised in order to reduce the number of eCells and
reduce the communication overhead. Finally, the PAR is the cell type which is
responsible for joining two parallel parts of the code.

At the end of the transformation step each eCell has partioned the application
into multiple cell tasks consisting of the cell types. The final step of the self-
organisation is the mapping step. At the boot-up each eCell is assigned a unique
identifier known as an eCell number (seen in the top right corner of the eCell
on figure 1). The eCells then perform a Breadth-First-Search algorithm on the
task graph and assigns increasing integers to the tasks as it goes (the resulting
numbering of the example in figure 1 is shown in the task-graph). If two or
more eCells have equal distance from the source it looks at which node comes
first in the eDNA program and the first one is given the lowest number and
so on. The eCells then compares the numbers of the task graph with its eCell
number. Once it finds the one which is equal, it differentiates to this type of
eCell. Furthermore, at boot-up the eCells are also given a routing table, which
tell the eCells where all the other eCells are located. By looking at the task
graph each eCell can determine which eCells it should communicate with and
the position of the those eCells can be found in the routing table. The eDNA
platform is now fully functioning and executing the application written in the
first step of figure 1.

2.2 Self-healing

The self-healing is the process in which a permanent or transient fault is detected
in an eCell (through a Built-in-Self-Test mechanism) and a spare eCell is selected
to perform the self-organisation with same eCell number as the faulty eCell had.
In that way it will differentiate to become the same cell type as the faulty
eCell had. This is possible because each of the eCells have access to the eDNA
program. Furthermore, eCells who were communicating with the faulty eCell
now communicates with the new version of the faulty eCell. Figure 3 shows
the self-healing reconfiguration for the eDNA program of figure 1. In this case
three eCell dies and consequently, the functionality is moved to spare eCells.

Fig. 3. Self-healing reconfiguration for the eDNA program of figure 1. (a) The optimal
placement, (b) Self-healing after three eCell failures.
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It is clearly seen that the connections between eCells possibly becomes longer
by self-healing. At boot-up every eCell contain a table of coordinates of nearest
spare eCells. Each time a spare eCell takes over functionality, it informs all other
eCells about this event.

In [1] we showed through simulation how self-organisation and self-healing
can be done on the eDNA platform. In this paper the main focus is on how
applications running on the eDNA platform performs, consequently we have
chosen not to implement the self-organisation and self-healing algorithms on
the hardware prototype. For more information aboout the self-organisation and
self-healing see [1]. In this work the eDNA program is placed manually in the
individual cells in order to observe the performance. The partioning of the code
and the mapping of it into different eCells distribute the logic of the program
spatially between eCells, this adds an overhead. And it is this overhead which
this paper aims at elucidating.

3 Hardware Architecture

The eDNA platform consists of an array of eCells connected through a network
(NoC). In the eDNA approach the major overhead is induced by the communica-
tion between eCells. Hence, we will focus on evaluating an efficient network struc-
ture. The eCell is the basic programming block in the system and it consists of a
NA (NA) and a CPU. While the CPU implements the functionality as described by
the eDNA program, the NA is responsible for package transfer and routing. This
architecture is in contrast to classical NoC’s that consists of separated routers and
NA’s. The combination of router and NA is meaningful for this setup due to the
chosen level of granularity of the eCells, the processing time where the CPU blocks
the NA is short and the package size is small. Therefore eCells got extended with
a store-and-forward (SAF) routing functionality. This leads to a simplified homo-
geneous structure of the system, reduces the number of hops and eases the failure
detection which will be implemented in the final design.

3.1 eCell Architecture

The eCell 1.0 architecture is shown in figure 4. The NA consists of a pair of
peripheral switches, a number of registers that are capable of storing a single

Fig. 4. (a) eCell overview PB: PicoBlaze, (b) eCell architecture
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datagram and a state machine that is capable of handling signaling, package
transfers, routing algorithm, triggering the CPU interrupt and controling the
register accesses.

In order to implement the self-organisation and self-healing algorithm (de-
scribed in section 2 and in detail in [1]) in the most flexible way and to explore
different networks and applications we decided to run a soft core CPU connected
to the NA in each eCell. In the final version of the eDNA platform this CPU will
be substituted by dedicated logic in order to reduce chip area and complexity.
Due to the small amount of resources required and its flexibility the PicoBlaze
was chosen. The Xilinx PicoBlaze [11] is based on a 8 bit RISC architecture that
is optimized in size for Virtex and Spartan series of FPGAs. It is provided as
a synthesisable source-level VHDL file which is easy to extend with additional
ports to fit the desired application. There are assembler and C compiler avail-
able. It was possible to implement a test setup consisting of a 7x7 array of eCells
(PicoBlaze and NA) in a mesh-8 6x8 bit (6 parallel 8 bit registers) datagram
architecture on a Digilent XUPV2P board. This setup also includes dedicated
input and an output eCells that connect to a serial interface, allowing the user
to input data and commands to the system and read the results on a terminal.

The datagram architecture is varied between 6x8 bit, 12x4 bit and 24x2 bit
in order to investigate the effect of a higher bandwidth and thus increased
parallelism.

The first 8 bit of the datagram are used as package identifier which describes
the content of the data (e.g start/finish signaling, variable read/write...).
The 8 address bits are split up in 4 bit X/Y-coordinates, the address space is
therefore limited to 225 cells (0 is no valid address) which is meaningful for test
implementations on FPGAs. The remaining 4x8 bit are used to carry data.

3.2 Network Topology and Routing

The distributed approach used in the eDNA platform creates a significant over-
head by transmitting data packages among the eCells. In addition to the data
exchange, the start/finish signaling is implemented purely package-based and
will generate additional traffic in the NoC. It is therefore very important that
the prospective network is able to forward packages in a simple and fast man-
ner since the performance of the whole system greatly depends on the network
properties.

In this paper we will investigate two different versions of the mesh-topology;
the mesh-4 and mesh-8. 4 and 8 are the number of neighbors that each eCell has.
Both networks offers a good compromise between used chip area and number
of hops. In addition they offer the possibility of implementing a simple and
efficient routing algorithm. Both topologies is plausible to fabricate on modern
multi-layer chips.

When a NA of an eCell receives a package, it checks whether the destination
address of the package is reached. If not, then the NA determines the direction of
the destination eCell and sets the output switch to the corresponding position.
Only if the package destination address is reached, the CPU is interrupted to
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perform the eDNA functionality. When the CPU has generated a new package,
the NA checks whether the destination is available by handshaking. This ensures
package rerouting in case of network faults.

Before transmitting, the NA makes sure that the next eCell on the direct way
to the destination eCell is ready. This is done by handshaking and also includes a
dedicated signal which reports whether the corresponding eCell is alive or not. In
case the next eCell is busy, the package is sent to one of the neighboring eCells.
This mechanism ensures that dead or busy eCells on the way to the destination
can be sidestepped. In the eDNA prototype platform, SAF routers are used and
a datagram is equal to a flit. This flow control digit is defined as the smallest
unit of flow control. Due to these design decisions and the fact that only one
package per parallel statement is routed in the network at the time, deadlocks
and livelocks can be avoided.

3.3 Limitations

It is important to realise that the eDNA 1.0 prototype has some properties,
which limits the performance of it:

eDNA synchronisation protocol. In order to ensure that no race conditions
exist (between data and start/finish-signaling) the eCells uses a standard
handshaking protocol. Each time an eCell sends data to another eCell it
waits on an acknowledge-signal from the receiving eCell before sending the
start/finish signal.

Sequential data processing in eCells. Even though each eCell is connected
to 4 or 8 (depending on the topology) neighbors and the fact that all eDNA
operations require at least two operands, the eCell is unable to process in-
coming data in parallel. This is because in the NA there is only space for
storing one data package at a time, which only allows serial operation. This
architecture was chosen to match the PicoBlaze functionality.

8-bit PicoBlaze. Due to the 8-bit data bus width of the PicoBlaze, higher bit
operations becomes computational heavy and slow. Additionally the inter-
rupt response time of maximum 5 clock cycles and the sequential analysis of
the package identifier add a significant delay.

4 Experimental Results

A key contributor to the overhead of the eDNA platform is the network. Con-
sequently, it is important to find the right network setup for the job. First of
all, we want to figure out whether it is most valuable to have a high bandwidth
or a high amount of neighbors. Secondly, we investigate the performance of the
benchmarks in order to show that eDNA 1.0 performs at a level where it would
be feasible to use it in an industrial application, and finally, we investigate the
performance impact of self-healing.

The benchmarks used are; Euclids Greatest Common Divisor (GCD), Fi-
bonacci number generator (FIB), CORDIC-algorithm (CORDIC), Binary Search
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Table 1. The number/connections of eCells in each benchmark

GCD FIB CORDIC BS RSA

# cells 4 5 11 7 5
# connections 16 19 40 22 14

Table 2. #Wires pr. eCell for different architectures

6x8 bit 12x4 bit 24x2 bit

Mesh4 56 104 200
Mesh8 112 208 400

Fig. 5. BS run on two different architectures with optimal placement and after self-
healing (S-H). The lefthand side of figure displays the meaning of the x-axis.

(BS) and RSA-encryption (RSA). Table 1 shows how many eCells the different
benchmarks occupy and the number of connections between them. In the exper-
iments the benchmarks were run with all possible inputs. The benchmarks were
implemented to fit the PicoBlaze architecture in order to execute as efficient as
possible.

In order to find out whether having a high bandwidth or a high amount of
neighbors is the best, BS is implemented on two architectures of eDNA 1.0,
assuming a fixed available area; a 12x4 bit mesh-8 and a 24x2 bit mesh-4. It is
clear, that having 24x2 mesh-8 would be the fastest, but the cost of wires is a
lot bigger as illustrated in 2. It is also interesting to look at the performance
degradation due to self-healing, i.e. making the distance a package has to travel
between eCells longer. When the BS algorithm is executed, we search for targets
at different addresses in the PicoBlaze RAM block and measure the execution
time. Figure 5 shows the performance of BS for these architectures.

The figure shows that there is nearly no difference when running an optimally
placed application. In this case ”optimal” means that the eCells are placed in a
way, such that the number of package transfers are minimised. Due to handshak-
ing and routing overhead the 24x2 bit architecture is able to transmit a datagram
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just slightly faster than the 12x4 bit architecture (2 clock cycles). Therefore hav-
ing more neighbours has a higher positive impact on the performance than the
higher bandwidth, which can clearly be seen after self-healing where the number
of hops is higher. In this case two eCells were moved to a neighboring spare eCell
as shown in figure 3. Consequently, it is clear that the mesh-8 is the best NoC
topology for this application and it will be used in the following experiments.

The next set of experiments will uncover the overhead of running applications
on eDNA 1.0 and also investigate for all the benchmarks, whether it pays off to go
for the highest bandwidth. In order to get reliable performance results, we ran the
benchmarks with all possible inputs and computed the avareage execution time.
In order to make a fair comparison of the execution times of the benchmarks we
compared the performance to that of the implementation of the benchmark on
a single PicoBlaze, because the single PicoBlaze implementations do not suffer
from communication overhead. So by comparing to a single PicoBlaze we get
the overhead related to the distributed logic approach of the eDNA platform.

To elaborate on the overhead by the eDNA implementation, the averaged exe-
cution times of the different benchmarks are normalised to the execution time of
the single PicoBlaze implementation (where normalisation is timeeDNA

timepB
). Figure 6

clearly shows that the overhead is large, but due to the benefits gained from this
architecture it can be argued that these results are acceptable as will be dis-
cussed in section 5. The figure also shows that in all cases the 24x2 is the best as
expected. However, the positive impact of having the higher bandwidth is higher
for the BS, GCD and FIB. The reason for this is that the BS, GCD and FIB al-
gorithms are communication intensive. Therefore, the impact of having a higher
bandwidth is higher in these cases. CORDIC and the RSA are computational
intensive and not communication intensive. While CORDIC uses 32 bit preci-
sion, the RSA contains a multiplier, which is why these are more computational

Fig. 6. Execution time overhead for each of the 5 benchmarks normalised to the bench-
mark running on a single PicoBlaze. The eCells are placed optimally for each of the
benchmarks.
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heavy. Consequently, we can conclude that the more communication intensive
an application is the bigger the overhead becomes. For a computational heavy
application the overhead is around 2x and for a computational light application
the overhead is at most 18x for the various tested benchmarks. Furthermore, by
looking at table 1 and figure 6 it is clear that there are no direct relation between
the size of the application and the overhead.

Now we want to investigate how big the performance degradation is when
the system is self-healing. When an eCell die its functionality is taken over by
a neighboring spare-eCell which tears the original setup apart, thus creating
longer communication paths. Consequently, when the eCells are spread over a
bigger area, the network traffic and latency increases and lowers its performance.
Figure 3 demonstrates the self-healing reconfiguration for the GCD benchmark.
A similar procedure is used for all the benchmarks, i.e. picking three eCells and
moving them to their neighboring spare eCell. Three eCells were chosen because
they correspond to a significant amount of functionality for all the benchmarks.
The results for this self-healing is compared to the optimal placement from the
preceding experiment. Figure 7 shows the self-healing results. It is very clear that
the impact of self-healing is very small - between 0%-20% and as expected the
performance impact is greater for the more communication heavy applications.

Fig. 7. Execution time overhead for each of the 5 benchmarks in a mesh-8 24x2 ar-
chitecture when it is optimally placed and when it is self-healed. Normalised to the
execution time of the benchmark running on a single PicoBlaze.

5 Discussion and Conclusion

To the best of our knowledge this is the only performance study of a reconfig-
urable self-healing hardware architecture so far. The results show that depending
on the weight of the computation for the application implemented on the eDNA
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1.0 the runtime overhead varies between 2x-18x compared to a single proces-
sor implementation. Self-healing of three eCells adds another overhead in the
range of up to 20% in a realistic worst case scenario. The self-healing scenario
simulated in the paper can be considered worst-case because in [1] we propose
a protocol which also ways creates a spare eCell next to the dead eCell, sim-
ply by moving other eCells in a predictable manner. Those results could be
reached mainly by selecting a suitable level of granularity and an efficient NoC
design. These results are satisfying keeping the advantages of the bio inspired
self healing and the previously mentioned design limitations in mind. In con-
trast to the static redundancy approach, the eDNA architecture offers dynamic
reconfiguration, a homogeneous structure and the possibility to save power since
spare eCells do not need to be clocked. Furthermore, the performance will be
increased by removing the limitations imposed on eDNA 1.0. A major limitation
on eDNA 1.0 is the synchronisation protocol. The current setup works in the
way that when a value of a variable changes all eCells that carry this variable
are updated sequentially with corresponding acknowledge messages in order to
avoid synchronisation problems. The eDNA 2.0 will have a more advanced syn-
chronisation protocol which does not rely on acknowledgements. In addition, the
Picoblaze will be replaced by dedicated hardware that processes data in paral-
lel. This requires a Network Adapter that is able to handle parallel incoming
data packages. By removing the PicoBlaze we will also get rid of the interrupt
response time and sequential package identifier analysis, which is a significant
part of the overhead. These design decisions will improve the performance of
the eDNA platform, while adding fault detection on the other hand will increase
overhead.

In this work we have presented the eDNA 1.0 prototype. The paper shows
that eDNA 1.0 performs within acceptable bounds especially when the limita-
tions imposed by its prototype stage is taken into account. It has been argued
that eDNA 2.0 will perform even better due to the improvement of the time con-
suming synchronisation protocol. In addition the absolute system performance
will raise a lot when the serial 8-bit Picoblaze CPU is replaced by dedicated
hardware. Thus our belief that eDNA 2.0 will result in an entirely new type of
FPGA is still upheld.
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Abstract. As reconfigurable computing hardware and in particular
FPGA-based systems-on-chip comprise an increasing number of pro-
cessor and accelerator cores, supporting sharing and synchronization
in a way that is scalable and easy to program becomes a challenge.
Transactional memory (TM) is a potential solution to this problem,
and an FPGA-based system provides the opportunity to support TM
in hardware (HTM). Although there are many proposed approaches to
HTM support for ASICs, these do not necessarily map well to FPGAs.
In particular in this work we demonstrate that while signature-based
conflict detection schemes (essentially bit vectors) should intuitively be
a good match to the bit-parallelism of FPGAs, previous schemes result
in either unacceptable multicycle stalls, operating frequencies, or false-
conflict rates. Capitalizing on the reconfigurable nature of FPGA-based
systems, we propose an application-specific signature mechanism for
HTM conflict detection. Using both real and projected FPGA-based
soft multiprocessor systems that support HTM and implement threaded,
shared-memory network packet processing applications, relative to sig-
natures with bit selection we find that our application-specific approach
(i) maintains a reasonable operating frequency of 125MHz, (ii) has an
area overhead of only 5%, and (iii) achieves a 9% to 71% increase in
packet throughput due to reduced false conflicts.

1 Introduction

As reconfigurable computing systems and in particular FPGAs become more
dense, they are increasingly used to implement larger and more complex
systems-on-chip composed of multiple processor and acceleration cores that must
synchronize and share data. While systems based on shared memory can ease
communication between cores, the programmer’s job of inserting correct lock-
based synchronization can be error-prone and difficult to debug, and the resulting
critical sections of code within locks are serialized, thus reducing the overall
parallelism and efficiency of the system.

Transactional memory (TM) [1, 2, 3] can potentially address both challenges.
First, TM provides an easier programming model for synchronization, allowing
programmers to specify more coarse-grain critical sections (transactions) to be
executed atomically. Second, TM reduces contention on these larger critical
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sections by executing transactions in parallel so long as their memory accesses
do not conflict. Hence we are motivated to implement TM for multiple-core
reconfigurable computing systems; in this paper we focus on implementing TM
for an FPGA-based soft multiprocessor. While TM can be implemented purely
in software (STM), an FPGA-based system can be extended to support TM
in hardware (HTM) with much lower performance overhead than an STM.
There are many known methods for implementing HTM for an ASIC multicore
processor, although they do not necessarily map well to an FPGA-based system.

In this paper we focus specifically on the design of the conflict detection
mechanism for FPGA-based HTM, and find that an approach based on
signatures [4] is a good match for FPGAs because of the underlying bit-level
parallelism. A signature is essentially a bit-vector [5] that tracks the memory
locations accessed by a transaction via hash indexing. However, since signatures
normally have many fewer bits than there are memory locations, comparing
two signatures can potentially indicate costly false-positive conflicts between
transactions. Hence prior HTMs employ relatively large signatures—thousands
of bits long—to avoid such false conflicts. One important goal for our system
is to be able to compare signatures and detect conflicts in a single pipeline
stage, otherwise memory accesses would take an increasing number of cycles and
degrade performance. However, as we demonstrate in this paper, implementing
previously proposed large signatures in the logic-elements of an FPGA can be
detrimental to processor operating frequency. Or, as an equally unattractive
alternative, one can implement large and sufficiently fast signatures using block
RAMs but only if the indexing function is trivial—which can itself exacerbate
false-positive conflicts and negate the value of larger signatures.

1.1 Application-Specific Signatures

To summarize, our goal is to implement a moderately-sized signature mechanism
while minimizing the resulting false conflicts. We capitalize on the reconfigurable
nature of the underlying FPGA and propose a method for implementing
an application-specific signature mechanism that achieves these goals. An
application-specific signature is created by (i) profiling the memory addresses
accessed by an application, (ii) using this information to build and optimize a
trie (a tree based on address prefixes) that allocates more branches to frequently-
conflicting address prefixes, and (iii) implementing the trie in a conflict detection
unit using simple combinational circuits.

Our evaluation system is built on the NetFPGA platform [6], comprising
a Virtex II Pro FPGA, 4 1GigE MACs, and 200MHz DDR2 SDRAM. On
it we have implemented a dual-core multiprocessor (the most cores that our
current platform can accommodate), composed of 125MHz MIPS-based soft
processors, that supports an eager HTM [7] via a shared data cache. We
have programmed our system to implement several threaded, shared-memory
network packet processing applications (packet classification, NAT, UDHCP,
and intrusion detection).
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We use a cycle-accurate simulator to explore the signature design space, and
implement and evaluate the best schemes in our real dual-core multiprocessor
implementation. For comparison, we also report the FPGA synthesis results
for a conflict detection unit supporting 4 and 8 threads. Relative to signatures
with bit selection (the only other signature implementation that can maintain a
reasonable operating frequency of 125MHz), we find that our application-specific
approach has an area overhead of only 5%, and achieves a 9% to 71% increase
in packet throughput due to reduced false conflicts.

1.2 Related Work

There is an abundance of prior work on TM and HTM. Most prior FPGA
implementations of HTM were intended as fast simulation platforms to study
future multicore designs [1, 2], and did not specifically try to provide a solution
tuned for FPGAs. Conflict detection has been previously implemented by
checking extra bits per line in private [1, 2] or shared [3] caches. In contrast
with caches with finite capacity that require complex mechanisms to handle
cache line collisions for speculative data, signatures can represent an unbounded
set of addresses and thus do not overflow. Signatures can be efficiently cleared
in a single cycle and therefore advantageously leverage the bit-level parallelism
present in FPGAs. Because previous signature work was geared towards general
purpose processors [5, 8, 9], to the best of our knowledge there is no prior art in
customizing signatures on a per-application basis.

1.3 Contributions

This paper makes the following contributions: (i) we describe the first soft
processor cores integrated with transactional memory, and evaluated on a real
(and simulated) system with threaded applications that share memory; (ii)
we demonstrate that previous signature schemes result in implementations
with either multicycle stalls, or unacceptable operating frequencies or false
conflict rates; (iii) we demonstrate that application-specific signatures can allow
conflict detection at acceptable operating frequencies (125MHz), single cycle
operation, and improved false conflict rates—resulting in significant performance
improvements over alternative schemes.

2 Previous Signature Implementations for HTM

A TM system must track read and write accesses for each transaction (the read
and write sets), hence an HTM system must track read and write sets for each
hardware thread context. The signature method of tracking read and write sets
implements Bloom filters [5], where an accessed memory address is represented
in the signature by asserting the k bits indexed by the results of k distinct
hashes of the address, and a membership test for an address returns true only
if all k bits are set. Since false conflicts can have a significant negative impact
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on performance, the number and type of hash functions used must be chosen
carefully. In this paper we consider only the case where each one of the k hash
functions indexes a different partition of the signature bits—previously shown to
be more efficient [5]. The following reviews the four known hash functions that
we consider in this paper.

Bit Selection. [5] This scheme directly indexes a signature bit using a subset
of address bits. An example 2-bit index for address a = [a3a2a1a0] could simply
be h = [a3, a2]. This is the most simple scheme (i.e., simple circuitry) and hence
is important to consider for an FPGA implementation.

H3. [5] The H3 class of hash functions is designed to provide a uniformly-
distributed hashed index for random addresses. Each bit of the hash result h =
[h1, h0] consists of a separate XOR (⊕) tree determined by the product of an
address a = [a3a2a1a0] with a fixed random matrix H as in the following example
with a 4-bit address and a 2-bit hash [9]:

[h1, h0] = aH = [a3a2a1a0]

⎡
⎢⎢⎣
1 0
1 1
0 1
1 0

⎤
⎥⎥⎦ = [a3 ⊕ a2 ⊕ a0, a2 ⊕ a1] (1)

Page-Block XOR (PBX). [8] This technique exploits the irregular use of
the memory address space to produce hash functions with fewer XOR gates. An
address is partitioned into two non-overlapping bit-fields, and selected bits of
each field are XOR’ed together with the purpose of XOR’ing high entropy bits
(from the low-order bit-field) with lower entropy bits (from the high order bit-
field). Modifying the previous example, if the address is partitioned into 2 groups
of 2 bits, we could produce the following example 2-bit hash: [a2 ⊕ a0, a3 ⊕ a1].

Locality-sensitive XOR. [9] This scheme attempts to reduce hash collisions
and hence the probability of false conflicts by exploiting memory reference
spatial locality. The key idea is to make nearby memory locations share some
of their k hash indices to delay filling the signature. This scheme produces k
H3 functions that progressively omit a larger number of least significant bits
of the address from the computation of the k indices. When represented as H3
binary matrices, functions require an increasing number of lower rows to be null.
Our implementation, called LE-PBX, combines this approach with the reduced
XOR’ing of PBX hashing. In LE-PBX, we XOR high-entropy bits with low-
entropy bits within a window of the address, then shift the window towards the
most significant (low entropy) bits for subsequent hash functions.

3 Application-Specific Signatures

All the hashing functions listed in the previous section create a random index
that maps to a signature bit range that is a power of two. In Section 5 we
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Fig. 1. Example trie-based signature construction for 3-bit addresses. We show (a) a
partial address trace, where * highlights frequently accessed addresses, (b) the full trie
of all addresses, (c) the initial and final trie after expansion and pruning to minimize
false positives, and (d) the logic for computing the signature for a given address (i.e.,
to be AND’ed with read and write sets to detect a conflict).

demonstrate that these functions require too many bits to be implemented
without dramatically slowing down our processor pipelines. To minimize the
hardware resources required, the challenge is to reduce the number of false
conflicts per signature bit, motivating us to more efficiently utilize signature
bits by creating application-specific hash functions.

Our approach is based on compact trie hashing [10]. A trie is a tree where each
descendant of a node has in common the prefix of most-significant bits associated
with that node. The result of the hash of an address is the leaf position found
in the tree, corresponding to exactly one signature bit. Because our benchmarks
can access up to 64 Mbytes of storage (16 million words), it is not possible
to explicitly represent all possible memory locations as a leaf bit of the trie.
The challenge is to minimize false conflicts by mapping the most contentious
memory locations to different signature bits, while minimizing the total number
of signature bits.

We use a known greedy algorithm to compute an approximate solution to this
NP-complete problem [11]. In the first step, we record in our simulator a trace of
the read and write sets of a benchmark functioning at its maximum sustainable
packet rate. We organize the collected memory addresses in a trie in which every
leaf represents a signature bit. This signature is initially too large to be practical
(Figure 1(b)) so we truncate it to an initial trie (Figure 1(c)), selecting the most
frequently accessed branches. To reduce the hardware logic to map an address
to a signature (Figure 1(d)), only the bits of the address that lead to a branch in
the trie are considered. For our signature scheme to be safe, an extra signature
bit is added when necessary to handle all addresses not encompassed by the
hash function. We then replay the trace of accesses and count false conflicts
encountered using our initial hashing function. We iteratively expand the trie
with additional branches and leaves to eliminate the most frequently occurring
false-positive conflicts (Figure 1(c)). Once the trie is expanded to a desired false
positive rate, we greedily remove signature bits that do not negatively impact the
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false positive rate (they are undesirable by-products of the expansion). Finally,
to further minimize the number of signature bits, we combine signature bits that
are likely (> 80%) to be set together in non-aborted transactions.

4 Evaluation Infrastructure

Table 1 describes our evaluation infrastructure including the platform and
compilation, and how we do timing, validation, and measurement. Due to
stringent timing requirements (there are no free PLLs after merging-in the
NetFPGA support components), and despite some available area on the FPGA,
(i) our caches are limited to 16KB each, and (ii) we are also limited to a maximum
of two processors. These limitations are not inherent in our architecture, and
would be relaxed in a system with more PLLs and a more modern FPGA.
The rest of this section describes our system architecture and benchmark
applications.

Table 1. Evaluation infrastructure

Aspect Description
Compilation Modified gcc 4.0.2, Binutils 2.16, and Newlib 1.14.0

Instruction set 32-bit MIPS-I ISA without delay slots [12], with software mul and div
FPGA Virtex II Pro 50 speed grade 7ns

Platform NetFPGA 2.1 [6] with 4 x 1GigE Media Access Controllers (MACs)
Synthesis Xilinx ISE 10.1.03, high effort to meet timing constraints

Off-chip memory 64 Mbytes 200MHz DDR2 SDRAM, Xilinx MIG controller
Processor clock 125MHz, same as Ethernet MACs

Validation Execution trace generated in RTL simulation and online in debug mode,
compared against cycle-accurate simulator built on MINT [13]

Measuring host Linux 2.6.18 Dell PowerEdge 2950 with two quad-core 2GHz Xeon processors
Packet source Modified Tcpreplay 3.4.0 sending packet traces from a Broadcom NetXtreme

II GigE NIC to an input port of the NetFPGA
Packet sink NetXtreme GigE NIC connected to another NetFPGA port used for output

Max. throughput Smallest fixed packet inter-arrival rate without packet drop, obtained through
bisection search (we empirically found 5 second runs to be sufficient)

System architecture. Our base processor is a single-issue, in-order, single-
threaded, 5-stage pipelined processor. To eliminate the critical path for hazard
detection logic, we employ static hazard detection [14] in our architecture /
compiler. The processor is big-endian which avoids having to do network-to-
host byte ordering transformations. Each processor in Figure 2 has a 16 KB
private instruction cache. The SDRAM controller services a merged load/store
queue of up to 64 entries in-order; since this queue is shared by all processors it
serves as a single point of serialization and memory consistency, hence threads
need only block on pending loads but not stores. As described in Table 2, our
multiprocessor architecture is bus-based and sensitive to the two-port limitation
of block RAMs available on FPGAs. In its current form it will not easily scale
to a large number of processors. However, as we demonstrate later in Section 5,
our applications are mostly limited by synchronization and critical sections, and
not contention on the shared buses; in other words, the synchronization inherent
in the applications is the primary roadblock to scalability.
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Fig. 2. The architecture of our soft multiprocessor with 2 single-threaded processor
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Table 2. On-chip memory hierarchy

Memory Description
Input buffer Receives packets on one port and services processor requests on the other port,

read-only, logically divided into ten fixed-sized packet slots
Output buffer Sends packets to the NetFPGA MAC controllers on one port, connected to the

processors via its second port
Data cache Connected to the processors on one port, 32-bit line-sized data transfers with the

DDR2 SDRAM controller (similar to previous work [15]) on the other port
All three 16KB, single-cycle random access, arbitrated across processors, 32 bits bus

Transactional memory support. The single port from the processors to the
shared cache in Figure 2 implies that memory accesses undergo conflict detection
one by one in transactional execution, therefore a single trie hashing unit suffices
for both processors. Our transactional memory processor uses a shadow register
file to revert its state upon rollback (versioning [16] avoids the need for register
copy). Speculative memory-writes trigger a backup of the overwritten value
in an undo-buffer [7] that we over-provision with storage for 2048 values per
thread. Each processor has a dedicated connection to a synchronization unit that
triggers the beginning and end of speculative executions when synchronization
is requested in software.

Applications. Network packet processing is no longer limited solely to routing,
with many applications that require deeper packet inspection becoming increas-
ingly common and desired. We focus on stateful applications—i.e., applications
in which shared, persistent data structures are modified during the processing
of most packets. Our processors process packets from beginning-to-end by
executing the same program, because the synchronization around shared data
structures makes it impractical to extract parallelism otherwise (e.g. with a
pipeline of balanced execution stages). To take full advantage of the software
programmability of our processors, our focus is on the control-flow intensive
applications described in Table 3. While we could enforce ordering in software,
we allow packets to be processed out-of-order because our application semantics
allow it.



Application-Specific Signatures for Transactional Memory in Soft Processors 49

Table 3. Applications and their mean statistics

Dyn. Instr. Dyn. Instr. Uniq. Sync. Addr.
/packet /transaction /transaction

Benchmark Description Reads Writes
Classifier Regular expression matching on TCP

packets for application recognition.
2553 1881 67 58

NAT Network address translation plus
statistics.

2057 1809 50 41

UDHCP Modified open-source DHCP server. 16116 3265 430 20
Intruder Network intrusion detection [17] mod-

ified to have packetized input.
12527 399 37 23

5 Results

In this section we first evaluate the impact of signature scheme and length on
false-positive conflicts, application throughput, and implementation cost. These
results guide the implementation and evaluation of our real system.

Resolution of Signature Mechanisms. Using a recorded trace of memory
accesses obtained from a cycle-accurate simulation of our TM system that models
perfect conflict detection, we can determine the false-positive conflicts that
would result from a given realistic signature implementation. We use a recorded
trace because the false positive rate of a dynamic system cannot be determined
without affecting the course of the benchmark execution: a dynamic system
cannot distinguish a false-positive conflict from a later true conflict that would
have happened in the same transaction, if it was not aborted immediately. We
compute the false positive rate as the number of false conflicts divided by the
total number of transactions, including repeats due to rollback.

The signatures that we study are configured as follows. The bit selection
scheme selects the least significant word-aligned address bits, to capture the
most entropy. For H3, PBX and LE-PBX, we found that increasing the number
of hash functions caused a slight increase in the false positive rate for short
signatures, but helped reduce the the number of signature bits required to
completely eliminate false positives. We empirically found that using four hash
functions is a good trade-off between accuracy and complexity, and hence we
do so for all results reported. To train our trie-based hash functions, we use a
different but similarly-sized trace of memory accesses as a training set.

Figure 3 shows the false positive rate for different hash functions (bit selection,
H3, PBX, LE-PBX and trie-based) as signature bit length varies. The false
positive rate generally decreases with longer signatures because of the reduced
number of collisions on any single signature bit—although small fluctuations
are possible due to the randomness of the memory accesses. Our results show
that LE-PBX has a slightly lower false positive rate than H3 and PBX for an
equal number of signature bits. Bit selection generally requires a larger number
of signature bits to achieve a low false positive rate, except for UDHCP for
which most of the memory accesses point to consecutive statically allocated
data. Overall, the trie scheme outperforms the others for Classifier, NAT
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Fig. 3. False positive rate vs signature bit length. Trie-based signatures were extended
in length up to the length that provides zero false positives on the training set.

and UDHCP by achieving close to zero false positive rate with less than
100 bits, in contrast with several thousand bits. For Intruder the non-trie
schemes have a better resolution for signatures longer than 100 bits due to
the relatively large amount of dynamic memory used, which makes memory
accesses more random. Quantitatively we can compute the entropy of accesses
as

∑n−1
i=0 −p(xi) log2 p(xi) where p(xi) is the probability of an address appearing

at least once in a transaction—with this methodology Intruder has an entropy
1.7 times higher on average than the other benchmarks, thus explaining the
difficulty in training its trie-based hash function.

Implementation of a Signature Mechanism. Figure 4 shows the results of
implementing a signature-based conflict detection unit using solely the LUTs in
the FPGA for a processor system with 2 threads like the one we implemented
(2T) and for hypothetical transactional systems with 4 and 8 threads (4T and
8T). While the plot was made for a trie-based hashing function, we found that
H3, PBX and LE-PBX produced similar results. As we will explain later, the bit
selection scheme is better suited to a RAM-based implementation. In Figure 4(a)
we observe that the CAD tools make an extra effort to meet our 125 MHz
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Fig. 4. Impact of increasing the bit length of trie-based signatures on (a) frequency
and (b) LUT usage of the conflict detection unit for 2, 4, and 8-thread (2T,4T,8T)
systems. The results for H3, PBX and LE-PBX are similar. In (a) we highlight the
system operating frequency of 125MHz.

required operating frequency by barely achieving it for many designs. In a 2-
thread system, two signatures up to 200 bits will meet our 125MHz timing
requirement while a 4-thread system can only accommodate four signatures
up to 100 bits long. For 8-threads, the maximum number of signature bits
allowed at 125MHz is reduced to 50 bits. Figure 4(b) shows that the area
requirements grow linearly with the number of bits per signature. In practice
for 2-threads at 200 bits, signatures require a considerable amount of resources:
approximatively 10% of the LUT usage of the total non-transactional system.
When the conflict detection unit is incorporated into the system, we found that
its area requirements—by putting more pressure on the routing interconnect of
the FPGA—lowered the maximum number of bits allowable to less than 100 bits
for our 2-thread system (Table 4). Re-examining Figure 3, we can see that the
trie-based hashing function delivers significantly better performance across all
the hashing schemes proposed for less than 100 signature bits.

An alternate method of storing signatures that we evaluate involves mapping
an address to a signature bit corresponding to a line in a block RAM. On
that line, we store the corresponding read and write signature bit for each
thread. To preserve the 125MHz clock rate and our single-cycle conflict detection
latency, we found that we could only use one block RAM and that we could
only use bit selection to index the block RAM—other hashing schemes could
only implement one hash function with one block RAM and would perform
worse than bit selection in that configuration. Because the data written is only
available on the next clock cycle in a block RAM, we enforce stalls upon read-
after-write hazards. Also, to emulate a single-cycle clear operation, we version
the read and write sets with a 2-bit counter that is incremented on commit or
rollback to distinguish between transactions. If a signature bit remains untouched
and therefore preserves its version until a transaction with an aliasing version
accesses it (the version wraps over a 2-bit counter), the bit will appear to be
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set for the current transaction and may lead to more false positives. The version
bits are stored on the same block RAM line as their associated signature bits,
thus limiting the depth of our 16Kb block RAM to 2048 entries (8-bits wide).
Consequently, our best bit selection implementation uses a 11 bit-select of the
word-aligned least-significant address bits.

Impact of False Positives on Performance. Figure 5 shows the impact
on performance in a full-system simulation of a varying signature length, when
using either a trie-based hashing function or LE-PBX, the scheme with the
second-lowest false positive rate. The jitter in the curves is again explained by
the unpredictable rollback penalty and rate of occurrence of the false positives,
varying the amount contention on the system. Overall, we can see that signatures
have a dramatic impact on system throughput, except for Intruder for which
the false positive rate varies little for this signature size range (Figure 3(d)).
We observe that for Classifier, UDHCP and NAT, although they achieve a
small false positive rate with 10 bits on a static trace of transactional accesses
(Figure 3), their performance increases significantly with longer signatures. We
found that our zero-packet drop policy to determine the maximum throughput
of our benchmarks is very sensitive to the compute-latency of packets since
even a small burst of aborts and retries for a particular transaction directly
impacts the size of the input queue which in turn determines packet drops. The
performance of NAT plateaus at 161 bits because that is the design that achieves
zero false positives in training (Figure 3(b)). As expected, Figure 5(b) shows that
there is almost no scaling of performance for LE-PBX in the possible signature
implementation size range because the false positive rate is very high.

Measured Performance on the Real System. As shown in Table 4 and
contrarily to the other schemes presented, the size of the trie-based signatures
can be adjusted to an arbitrary number of bits to maximize the use of the
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Fig. 5. Throughput with signatures using trie-based hashing with varying signature
sizes normalized to the throughput of an ideal system with perfect conflict detection
(obtained using our cycle-accurate simulator)
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Table 4. Size, LUT usage, LUT overhead and throughput gain of our real system with
the best application-specific trie-based hash functions over bit selection

Benchmark Max. Signature Total LUT LUT Additional
bits usage overhead throughput

Classifier 92 20492 5% 12%
NAT 68 20325 4% 58%

UDHCP 84 20378 4% 9%
Intruder 96 20543 5% 71%

FPGA fabric while respecting our operating frequency. The maximum signature
size is noticeably smaller for NAT because more address bits are tested to set
signature bits, which requires more levels of logic and reduces the clock speed.
In all cases the conflict detection with a customized signature outperforms the
general purpose bit selection. This is coherent with the improved false positive
rate observed in Figure 3. We can see that bit selection has the best performance
when the data accesses are very regular as in UDHCP, as indicated by the low
false positive rate in Figure 3(c). Trie-based hashing improves the performance
of Intruder the most because the bit selection scheme suffers from bursts of
unnecessary transaction aborts.

CAD Results. Comparing two-processor full system hardware designs, the
system with trie-based conflict detection implemented in LUTs consumes 161
block RAMs and the application-specific LUT usage reported in Table 4. Block-
RAM-based bit selection requires one additional block RAM (out of 232, i.e.,
69% of the total capacity) and consumes 19546 LUTs (out of 47232, i.e. 41%
of the total capacity). Since both kinds of designs are limited by the operating
frequency, trie-based hashing only has an area overhead of 4.5% on average
(Table 4). Hence the overall overhead costs of our proposed conflict detection
scheme are low and enable significant throughput improvements.

6 Conclusions

In this paper we have studied several previously-proposed signature-based
conflict detection schemes for TM. Among those, we found that bit selection
provides the best implementation that avoids (i) degrading the operating
frequency of an FPGA-based soft multiprocessor system or (ii) stalling the
processors for multiple cycles. We have presented a method for implementing
more efficient signatures by customizing them to match the access patterns
of an application. Our scheme builds on trie-based hashing, and minimizes
the number of false conflicts detected, improving the ability of the system to
exploit parallelism. On a real FPGA-based packet processor, we measured packet
throughput improvements of 12%, 58%, 9% and 71% for four applications,
demonstrating that application-specific signatures are a compelling means to
facilitate conflict detection for FPGA-based TM systems.
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Abstract. Using dynamically reconfigurable hardware is useful espe-
cially when a high degree of flexibility is demanded and the application
requires inherent parallelism to achieve real-time constraints. Depending
on various driving conditions different algorithms have to be used for
video processing. These different algorithms require different hardware
accelerator engines, which are loaded into the AutoVision chip at run-
time of the system. The novelties presented in this paper are the determi-
nation of the maximum frequency for dynamic partial reconfiguration of
Xilinx Virtex-II Pro, Virtex-4 and Virtex-5 devices and a modified over-
clocked version of the ICAP controller. In addition an online verification
approach is presented that can determine configuration errors that might
be caused by configuring a device above the specified frequencies. This
results in a reconfiguration throughput which is three times higher than
the maximum throughput specified by Xilinx.

Keywords: Fast Dynamic Partial reconfiguration, FPGA, driver assis-
tance, image processing.

1 Introduction

The work presented in this paper can be applied to any video and image process-
ing application, where different accelerators for mutually exclusive situations are
demanded. Video-based driver assistance has been chosen as one of several ap-
plication areas as it requires real-time processing of different complex algorithms
in diverse situations. A pure software implementation does not offer the required
real-time processing, based on available hardware in automotive environments.
Therefore hardware acceleration is necessary. Dedicated hardware circuits such
as application-specific integrated circuits (ASICs) or off-the shelf application spe-
cific standard products (ASSPs) can offer the required real-time processing, but
they do not offer the necessary flexibility. In addition, the design times for ASICs
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and their development costs have risen over the past years. As video algorithms
for driver assistance are not standardized, design changes are quite frequent,
which rarely makes an ASIC a suitable choice. Thus a flexible, programmable,
situation adaptive hardware acceleration is required. Specific driving conditions
(such as highway, country side, urban traffic, tunnel) require specific optimized
algorithms. Using an ASIC or ASSP the chip area for all the functionality has
to be allocated during design time, as changes after manufacturing are not pos-
sible any more. One can imagine that a large part of the functionality is unused
most of the time. In contrast, reconfigurable hardware (FPGAs) and Graphic
Processor Units (GPUs) offer high potential for real-time video processing. Al-
though NVIDIA presented their low power GeForce G102M GPU, those devices
are still considered very power hungry, especially when compared to state of the
art Spartan6 devices. In addition a CPU has to be involved to transfer the data
from the main memory to the local memory of the GPU, which in turn increases
the overall monetary costs of the complete system. A performance comparison
(pixels processed per clock cycle) between an algorithm implemented on a GPU
and an FPGA can be found in [1].

In the AutoVision architecture [2], only the performance intense parts of the
image processing algorithms are accelerated by coprocessor engines. The remain-
der of the algorithm, the so-called high level application code, is implemented
fully in software on an embedded CPU core, such as the PowerPC (PPC) (avail-
able on various Virtex devices) or Microblaze, allowing it to remain easily update-
able and to provide flexibility for new algorithms. In addition, the application
code running on the embedded CPU is able to trigger a reconfiguration process.
Hence the coprocessors available on the system can be exchanged during run-
time, which allows a much larger set of hardware accelerated functionality than
would normally fit onto a device. This process makes use of the dynamic partial
reconfiguration (DPR) capabilities of Xilinx FPGAs. If a coprocessor is swapped
the remainder of the video processing system, containing for example the video-
input and video-output, remains fully operational. This extends the general idea
of a system-on-chip to a situation adaptive integrated circuit. The AutoVision
architecture is implemented on Xilinx Virtex devices as a proof-of-concept study.
Target architecture will be a Spartan device, which is cost competitive in the
high volume market.

1.1 State of the Art and Related Work

The idea of using hardware acceleration as a solution for computationally inten-
sive applications for real-time visual recognition has been developed many years
ago. Since then, companies have begun manufacturing System on Chips (SoCs)
to be used in automotive or robotic environments. One of them is Mobileye [3],
who presented their EyeQ chip with two ARM cores and 4 dedicated coproces-
sors for object classification, tracking, lane recognition and filter applications.
To reduce the lack of flexibility, Mobileye introduced three programmable Vector
Microcode Processors in their second generation of the EyeQ chip (EyeQ2). A
comprehensive collection of recent vision-based on-road vehicle detection systems
can be found in [4].
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Unfortunately the problem that unused coprocessors persist on the device
while they are not needed, thereby occupying a lot of resources, remains. FP-
GAs can be used to cope with that problem by updating their configuration
information whenever needed. One major aim is to keep the reconfiguration
overhead as low as possible (especially the reconfiguration time). Thus in this
paper an approach is presented to speed up the reconfiguration on various Xilinx
Virtex devices in a way that no video frame has to be dropped.

Various authors addressed the problem of fast DPR, to be used in the sig-
nal and image processing domain. Manet et. al. [5] present an evaluation of
DPR for real signal and image processing applications. Although some other
applications are mentioned, the focus is on applying DPR for Software Defined
Radio (SDR). For fast reconfiguration in their system a controller for the Inter-
nal Configuration Access Port (ICAP), which allows read and write access to
the configuration data, has been implemented on Virtex-4 (V4) devices. This
implementation achieves a throughput of 350 MB/s at a frequency of 100 MHz.
This is close to the theoretical maximum of 400 MB/s at 100 MHz on V4, as
the input data width of the ICAP is 4 bytes.

Another project that requires fast DPR is reported in [6]. Shelburne et. al.
present the Metawire approach that uses fast DPR to emulate a Network-on-
Chip (NoC). As especially the NoC router nodes consume a lot of resources on an
FPGA, the Metawire architecture uses the configuration circuitry as a relatively
high-performance NoC. The configuration information of a Blockram (BRAM)
is read by the ICAP and written to another BRAM afterwards. To accelerate
this process an overclocked V4 ICAP is used, which is capable of providing a
bandwidth in excess of 200 MB/s at a frequency of 144 MHz.

In [7] Bomel et. al present the fast downloading of partial bitstreams for DPR
via a standard ethernet framework on a Virtex-II Pro (V2P) device. Similar
to the implementation presented in [5], Bomel et. al. use an ICAP controller
attached to the On-chip Peripheral Bus (OPB). Their measurements show an
obtained ICAP throughput of up to 50 MB/s (400 Kbit/ms).

A comprehensive survey of run-time reconfiguration speeds by utilizing dif-
ferent ICAP controllers is presented in [8]. Miu et.al. have achieved an average
reconfiguration speed of 332.1 MB/s and a maximum reconfiguration speed of
371.4 MB/s at a cost of a huge amount of 32 Block RAMs in their controller.
One drawback of the presented approach is that only partial bitstreams up to a
size of 64 KB can be used for the reconfiguration. This is due to the fact that
the 32 Block RAMs (512 × 32bit × 32BRAMs = 64KB) are used to hold the
complete partial bitstream.

This paper is organized in the following manner: In Section 2 a scenario is
described where DPR is beneficial. Section 3 gives a brief overview on the Auto-
Vision architecture. Requirements and implementation aspects of fast DPR are
mentioned in Section 4. In Section 5 results and a comparative summary of the
ICAP throughputs mentioned in the literature are presented. Finally the paper
is concluded with an outlook on future activities in Section 6.
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2 Typical Scenario and Hardware Accelerators

In general, a large number of different coprocessors can be implemented on a
System-on-Chip (SoC) in parallel. However, this is not resource efficient, as de-
pending on the application, only a subset of those coprocessors will be active
at the same time. In this section, a typical scenario is presented which shows
that it is beneficial to adapt the hardware to a changing environment. The hard-
ware accelerators used for this scenario were implemented for a proof-of-concept
study.

With hardware reconfiguration, hardware resources can be used more ef-
ficiently. Coprocessor configurations can be loaded into an FPGA whenever
needed, depending on the application. This especially makes sense when the
driving situations are mutually exclusive (day-time/night-time driving, forward/
backward driving, highway/urban environments).

The following typical driving scenario is considered: A car is driving at day-
time on a highway, where other cars can be detected by feature points on their
silhouette or shape. Then the car is approaching a tunnel. Here it is meaningless
to search for feature points as it is more important for the driver to see what is in-
side the tunnel. Thus an algorithm for contrast enhancement on the dark tunnel
entrance is desirable. Inside the tunnel, due to the low luminance level, only the
lights of other vehicles are promising features and have to be distinguished from
tunnel lights. Therefore another algorithm is used. When the car is leaving the
highway and enters an urban environment, a detection of pedestrians according
to their motion seems beneficial. This scenario could be arbitrarily extended by
other situations such as changing weather conditions (rain, fog, snow etc.). In the
AutoVision project this specific typical scenario is used as a proof-of-concept.

The extraction of feature points on the shape or silhouette of a car for in-
stance is done by a hardware accelerator called the ShapeEngine. The contrast
enhancement near gloomy tunnel entrances is done by the ContrastEngine. The
pixel-level processing inside the tunnel can be accelerated by a coprocessor, called
the TaillightEngine. Finally in urban environments, Optical Flow, which is cal-
culated using two separate accelerators, can be used to detect moving objects,
such as pedestrians or cyclists. A detailed description about the organization
and performance of the ShapeEngine and the OpticalFlow can be found in [1]
and [9] respectively.

3 AutoVision Architecture

For the image processing in the situations described in Section 2, several different
hardware accelerators for pixel processing are required. These so called Engines
are attached as bus masters to the Processor Local Bus (PLB). This design allows
for direct memory access (DMA) of the Engines without involving the PowerPC
(PPC) core in the pixel transfer, which leads to a great offload of the CPU.
Simultaneous read and write transfers are supported by the two separate read
and write data buses of the PLB, each 64-bit wide. The AutoVision system has
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been implemented on a Xilinx V2P (Xilinx XUP board) and a V5 device (ML507
board). The incoming pixel data is buffered in on-chip RAM resources (BRAMs)
inside the Video-Input core. When enough data is buffered for a burst transfer,
the Video-Input core transfers the data into the DDR SDRAM via a Multiport
Memory controller (MPMC), which acts as frame buffer. The DMA-capability of
the Video-Input core, and using bursts instead of single-pixel-transfers, leads to
a reduced PLB utilization. The same applies to the Video-Output core which is
used to fetch processed data and send it to the output pins of the FPGA e.g. for
displaying it on an external monitor. Two SRAMs are used for double buffering.
Between processing by the Video-Input and Video-Output, the Engines can op-
erate on the pixel data. A block diagram of the complete architecture including
the major components is shown in Figure 1.

Fig. 1. Simplified block diagram of the AutoVision architecture

4 Fast Dynamic Partial Reconfiguration

Dynamic partial reconfiguration (DPR) is the ability to reconfigure a certain por-
tion (partial) of the device during run-time (dynamic). Currently this feature is
only offered by Xilinx Virtex and Spartan devices. The approaches for higher
configuration data throughput and interconnect optimizations are generally ap-
plicable. A requirement for future video-based driver assistance, especially when
used for safety critical applications, is that video frames must not be dropped.
This requirement again leads to the fact that the reconfiguration of an Engine
has to be as fast as possible, or at least so fast that the real-time requirement
(processing of at least 25 fps = 40 ms per frame) is not violated. Depending on
when and how often the system has to be reconfigured, the process is defined as
Inter Video Frame Reconfiguration or Intra Video Frame Reconfiguration.

4.1 Inter Video Frame Reconfiguration

The Inter Video Frame Reconfiguration (InterVFR) is defined as swapping re-
configurable modules between two consecutive video frames. In Figure 2(a), the



60 C. Claus et al.

time to process an image with one engine is denoted as Ti1. The processing
time required by another engine is denoted as Ti2. The reconfiguration time for
swapping is denoted as TR, and includes clearing the reconfigurable region with
a blank bitstream and loading the new module by using a second partial bit-
stream. If Ti1 + TR < 40ms (25 fps), then InterVFR is possible, which means
that processing an image with an engine and reconfiguring the device can be
done before Ti2 starts.

4.2 Intra Video Frame Reconfiguration

The Intra Video Frame Reconfiguration (IntraVFR) is defined as swapping mul-
tiple reconfigurable modules within one video frame. The hardware accelerator
for the Optical Flow [9] can serve as an example here. It consists of two en-
gines, namely the CensusEngine and the MatchingEngine, which are executed
sequentially. The time to process an image with the CensusEngine is denoted
as Ti1. The processing time required by the MatchingEngine is denoted as Ti2.
As the size of the partial bitstreams for the CensusEngine and the Matchin-
gEngine is considered to be the same the reconfiguration time for both Engines
is equal and denoted as TR (blank and module bitstream)in Figure 2(b). If
Ti1 + Ti2 + 2 × TR < 40ms (25 fps), then IntraVFR is possible.

(a) interVFR (b) intraVFR

Fig. 2. Inter and Intra Video Frame Reconfiguration

4.3 Modified ICAP Controller

To utilize the ICAP a controller has been implemented to achieve a throughput
rate close to the theoretical maximum. This controller, presented in [10], consists
of some logic to load the bitstream data, which is stored in an external memory,
and provide the maximum amount of data per clock cycle to the ICAP. The
ICAP Input Width (IIW) is 8 bit in V2P and 32 bit in V4 and V5 devices,
which results in a maximum throughput of 100MB/s for V2P and 400MB/s
for V4 and V5 if the ICAP is clocked at 100 MHz. The maximum frequencies
specified by Xilinx are 50 MHz for V2P and 100 MHz for V4 and V5. In [10],
a frequency of 100 MHz was used to send data to the ICAP. Higher frequencies
and thus overclocking of the ICAP are possible by using a simple handshaking
protocol. By indicting a busy status, the dedicated ICAP interface notifies the
controller that it is currently not able to process incoming data. Compared to
the implementation in [10], some additional optimizations, such as the usage
of an asynchronous FIFO, have been made. The ICAP controller can now be
easily connected to any V2P, V4 or V5 or Spartan device. The IIW as well
as the burst size (BS) can be configured. Most of the approaches described in



Towards Rapid DPR in Video-Based Driver Assistance Systems 61

literature use a FIFO as intermediate buffer inside the ICAP controller. In order
to obtain a higher throughput and thus shorter reconfiguration times, many
authors concentrate on techniques to keep the FIFO filled all the time. The busy
factor (BF) is used to indicate what percentage of the configuration time the
ICAP is not able to process incoming data.

TP [
byte

s
] = fr[Hz] ∗ IIW [byte] ∗ BF [0, 1] (1)

In literature only Shelburne et. al. [6] use the ICAP on V4 beyond the specified
100 MHz. To safely pass data from one clock domain to another, asynchronous
FIFOs are used. The frequency fw used to write data to the asynchronous FIFO
is usually that of the interconnect (PLB or MPMC) frequency. The frequency
fr used to read from the FIFO can be any frequency that can be generated with
a Digital Clock Manager (DCM). The usage of those different clock domains
subdivides the design into two different domains, namely the fw and the fr

domain as depicted in Figure 3. Results of the throughput obtained by utilizing
the ICAP controller on V2P, V4 and V5 devices with an asynchronous FIFO as
described above, can be found in Section 5.

To achieve the maximum throughput one has to assure that the FIFO used
for intermediate storage of the bitstream data remains filled at all times. This is
the case when Equation 2is fulfilled.

BS[cycles] ∗ DW [bit]
BS[cycles] + L[cycles]

∗ fw > IIW [bit] ∗ fr (2)

The left side of Equation (2) determines how many bits per second can be written
into the FIFO, which of course is dependent on the frequency fw with which the
FIFO is filled. The right side of the equation determines how many bits per
second can be read from the FIFO and provided to the ICAP.

To keep the FIFO filled at all times high speed interconnects are necessary.
Therefore it is possible to connect the ICAP controller either to a PLB Bus or to
an MPMC via custom interfaces without any modification. On the V4 and V5
devices the ICAP controller is connected directly to a port of the MPMC which
is indicated by the dashed arrow in Figure 1 and Figure 3. The number of bytes
that can be written to the ICAP per clock cycle is dependent on the IIW. As
long as the asynchronous FIFO is full, IIW bits can be written into the ICAP
per clock cycle. The data width (DW) determines the input and output width of
the asynchronous FIFO and is dependent on the incoming data. If a 64-bit wide
PLB is used to connect the memory and the ICAP controller, the DW of the
ICAP controller is set to 64 bits. BS determines how many words with a size of
DW each are transferred within a burst. The memory access latency (L) is used
to specify the number of cycles from the point in time the data is requested until
the first word appears at the input of the ICAP controller. This value is strongly
dependent on the implementation of the memory controller. Once it has been
assured that the FIFO remains full during the whole configuration process, the
throughput TP can be calculated using Equation 1. In all of the test designs
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on V2P, V4 and V5, the FIFO remained filled at all times, which means that
Equation 2 was always fulfilled.

4.4 Bitstream Verification

The fast reconfiguration, especially when overclocking the ICAP at non specified
frequencies, imposes an additional task on such a system to verify the reconfigu-
ration process and further verify the functionality of the reconfigurable modules.
At higher reconfiguration speed the configuration packet processor CPP inside
the ICAP may not write correctly into the configuration memory or the bit-
stream itself is corrupted when being transferred from the memory to the ICAP.

Fig. 3. System domains in a reconfigurable system

This breaks the problem of online verification into two main domains, namely
the user domain and the system domain. The user domain contains all the con-
figurable resources (memory, bus system, ICAP controller etc.) and ends before
the ICAP interface as can be seen in Figure 3. The system domain starts from
the ICAP interface and ends at the configuration memory. It contains the CPP
(not accessible by the user) which is responsible for writing into the configuration
memory. Both of these domains have to be verified during the online verification
of reconfigurable modules. The user domain verification will ensure the integrity
of the bitstream before it is fed into the ICAP. The verification of the system do-
main will ensure that the reconfigurable module has been uploaded successfully
into the desired location in the configuration memory. By merging the verifi-
cation information from both domains, information about the reconfiguration
process at run-time can be generated, indicating the success or failure of the
reconfiguration process.

In this approach a CRC IP module has been added in the user domain, right
before the ICAP interface. The module calculates the CRC-16 value for the data
that is fed into the ICAP. If the bitstream is corrupted during the transfer from
the memory to the ICAP, even if a single bit is flipped, it is indicated by this
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module and the configuration can be stopped. The signal indicating a configura-
tion error in the system domain (which is combined with the error signal of the
user domain) is the logical OR of several internal error flags including another
CRC error check inside the ICAP. If a bit flip occurs when data is sampled by
the ICAP, it will be detected. The ICAP produces distinct words at the output
of the ICAP on V2P, V4 and V5 devices. The information from the user domain
(CRC) and system domain (ICAP output) is merged together to indicate a con-
figuration success or failure signal for the system. As the verification in the user
domain is performed online, i.e. in parallel to the configuration process itself, it
does not reduce the throughput. To analyze which actions have to be taken if a
configuration error has been detected is part of future research. Up to now all
reconfigurations at the frequencies mentioned in Section 5 were successful if the
partial bitstreams are not manipulated manually.

5 Results

In [10] it has been shown that the maximum throughput for V2P has been
achieved at 100 MHz. In order to achieve the same for V4 and V5 devices, the
transfer from memory to ICAP has been optimized. Various test to obtain the
maximum throughput by connecting the ICAP controller either to the PLB or
directly to the MPMC have been performed. The maximum throughput specified
by Xilinx (400 MB/s) for V4 and V5 devices at a frequency of 100 MHz is only
possible by connecting the ICAP directly to the MPMC and by using address
pipelining. As reported in Section 4.3, beside optimizing the transfer from the
memory to the ICAP, the frequency fr used to read from the asynchronous FIFO
and provide the data to the ICAP can be increased.

As the ICAP on V2P is only specified up to 50 MHz without using the busy
signal, but no upper boundary is provided when busy is used, the maximum
frequency for ICAP on V2P has to be determined. Table 1 shows the result of
an ICAP controller tested on 15 different XUPV2P boards from Xilinx. The
bitstreams on this board are stored in a DDR SDRAM in order to have fast
access to this data. In all designs the same size for the reconfigurable region
was used, which results in the same bitstream size of 73600 bytes for all the
designs. A hardware counter was used to measure the number of cycles for each
reconfiguration process. The busy factor BF has been determined by averaging
several measurements. Up to a frequency fr of 150 MHz, the reconfiguration on
all platforms was successful. Due to production tolerances some of the tested
devices achieved a frequency of up to 170 MHz. This has been verified by the
approach presented in Section 4.4 and also by reading back the configuration
data via JTAG and comparing it against the initial bitstream. The latter method
is not real-time capable as it takes too long and thus cannot be used in the
AutoVision system. The test results which have been performed to determine
the maximum frequency on V2P are depicted in Table 1. The cycle count differs
between the measurements because the busy signal is asserted more or less often.
Note that the busy signal is not proportional to fr.
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Table 1. Performance measurements on an XUPV2P board

fw fr cycle TR BF TP

[MHz] [MHz] count [μs] [MB/s]
100 80 80800 1010.00 0.911 72.87
100 90 81462 905.13 0.903 81.31
100 100 80871 808.71 0.910 91.01
100 110 81054 736.85 0.908 99.88
100 120 81222 676.85 0.906 108.74
100 130 81692 628.40 0.901 117.12
100 140 81935 585.25 0.898 125.75
100 150 80703 538.02 0.912 136.80

At a frequency of 150 MHz a throughput TP of 136.8 MB/s has been achieved.
The same tests were also performed on V4 and V5 devices. Measurements on V4
have shown that reconfiguration at frequencies of 140 MHz is possible. On V5
several measurements have shown that a throughput of 1200 MB/s is possible,
which has been verified by means of a hardware demonstrator. This through-
put is 3 times higher than the throughput that can be achieved with the fre-
quency specified by Xilinx (400MB/s), and more than 3 times higher than every
throughput that has been reported in literature so far. Without such a high
throughput the realization of IntraVFR is unlikely to succeed. In Table 2 the
ICAP throughput reported by different authors is depicted and compared with
the results obtained with the presented approach.

Table 2. Throughput of ICAP controller on XUPV2P, ML405 and ML507 board

Source Device IIW fr inter- M. TP T. TP

Type [bit] [MHz] connect [MB/s] [MB/s]
[5] V4 32 100 OPB 350 400
[6] V4 32 144 cust. Link 219.31 576
[7] V2 8 100 ethernet 50 90-100
[8] V4 32 100 PLB 371.4 400

authors V2 8 100 PLB 93.94 90-100
authors V2 8 150 PLB 136.8 140
authors V4 32 100 MPMC 400 400
authors V4 32 140 MPMC 560 560
authors V5 32 100 MPMC 400 400
authors V5 32 200 MPMC 800 800
authors V5 32 300 MPMC 1200 1200

As can be seen in Table 2, the theoretical throughput (T. TP ) is equal to the
measured throughput (M. TP ) for frequencies of 100 MHz and 140 MHz, which
means that the maximum throughput for these frequencies has been achieved
on V2P, V4 and V5. As already mentioned, on V2P 150 Mhz is considered to be
the maximum frequency that can be used to reconfigure the device safely. The
throughput of the V2P device is strongly dependent on the busy signal of the
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ICAP. The measurements indicate a maximum value around 91 KB/ms due to
the busy status of the ICAP. The theoretical throughput at 100 MHz (which is
100 KB/ms) can never be achieved due to delays internal to the ICAP. Thus
the measured throughput is considered as the maximum achievable, since every
clock cycle that the ICAP is not busy, the maximum amount of data possible
is provided to the ICAP. None of the authors in [5], [6] or [7] mention why the
maximum is not achieved, but it is most likely due to problems with transferring
bitstream data to the ICAP. The busy signal has neither been appeared on V4
nor on V5 at frequencies between 140 MHz and 300 MHz.

In Table 3 the resources utilized by ICAP controller including the verification
logic are depicted in the third column. The resources are compared against the
results from [8] (second column), as this implementation has achieved the closest
results in terms of throughput. Depending on which interface is chosen, the
resource utilization of the PLB IPIF (fourth column) and the direct connection
to the MPMC (fifth column) is shown.

Table 3. Resource utilization of ICAP designs and IP Interfaces on Virtex-4 FX20

Resources ICAP authors’ authors’ authors’
of [8] ICAP PLB IPIF MPMC IF

4-LUT 963 (5.6%) 354 (2.1%) 671 (3.9%) 29 (0.2%)
(total)

4-LUT used 614 (3.6%) 354 (2.1%) 671 (3.9%) 29 (0.2%)
as logic

4-LUT used as 320 (1.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
shift registers

Slice 469 (2.7%) 197 (1.2%) 347(2.0%) 7 (0.1%)
Flip-Flops

Block RAM 32 (47.1%) 2 (2.9%) 0 (0.0%) 0 (0.0%)
(BRAM)

According to the results in Table 3 connecting the ICAP controller directly
to the MPMC seems preferable. On the other hand adding another port to the
MPMC will increase its overall resource utilization, especially the BRAMs.

Finally it can be shown that Inter as well as IntraVFR is possible by means
of hardware demonstrators. In the demonstrator for the InterVFR, the reconfig-
uration is not noticeable as there is no frame dropped. However, it is possible
to visualize the changes caused by the reconfiguration by utilizing the approach
presented in [11]. In the demonstrator for IntraVFR, 124 reconfigurations are
performed per second (rps). Swapping two modules within one frame, and clear-
ing the reconfigurable region with blank bitstream in each case results in 4
reconfigurations per video frame. Given a frame rate of 31 fps results in the
above mentioned (31 × 4 =) 124 rps.
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6 Conclusion and Outlook

In this paper it has been shown that fast DPR can be utilized in a real-time
environment, such as video based driver assistance, without violating the real
time constraints. This has been achieved through modifications of the ICAP
controller and optimizations in memory transfer. The presented concept has
been verified in demonstrators which show that Inter as well as IntraVFR is
possible. The results obtained outperform all other approaches mentioned in
literature in terms of reconfiguration speed and throughput. Additionally the
correctness of the (re-)configuration is being assured through online verification.

With the demonstrators for InterVFR and IntraVFR (see Section 4.2) it can
be shown that fast dynamic reconfiguration can be applied in real-time systems
in order to save precious on-chip resources. The demonstrators show that at
least two reconfigurations of sequentially working hardware accelerators within
40 ms are possible without the loss of video frames. In addition, as the ICAP is
overclocked, the configuration data is verified during the configuration process.
Finally, the maximum reconfiguration frequency will be determined for V4 and
V5 devices. The demonstrator implemented on a V5 platform serves as a proof of
concept. The target platform is an automotive qualified Xilinx Spartan device,
which will consume less power, and is cost competitive in the high volume mar-
ket. Additional measurements to determine if the reconfiguration will increase
or decrease the power consumption compared to a non-reconfigurable system is
part of future research.
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Abstract. We present new scalable hardware designs of modular mul-
tiplication, modular exponentiation and primality test. These operations
are at the core of most public-key crypto-systems. All the modules are
based on an original Montgomery modular multiplier. Our multiplier is
the first Montgomery multiplier design with variable pipeline stages and
variable serial replications. It is 8 times faster than the best existing
hardware implementation and 30 times faster than an optimised soft-
ware implementation on an Intel Core 2 Duo running at 2.8 GHz. Our
exponentiator is 2.4 times faster than an optimised software implementa-
tion. It reaches the performance of a more complex FPGA design using
DSP blocks which is the fastest in the literature. Our prime tester is
2.2 times faster than the software implementation and is 85 times faster
than hardware implementations of the same algorithm with only 60%
area overhead.

1 Introduction

Most public-key cryptographic algorithms consist of two main stages: the key
generation which requires the ability to generate large prime numbers and the
encryption/decryption part.

Modular exponentiation is a common operation used by several public-key
crypto-systems, such as the Diffie-Hellman key exchange protocol and the Rivest,
Shamir and Adleman (RSA) encryption scheme. It is also, together with modular
multiplication, the core of common prime tests such as the Rabin-Miller strong
pseudo-prime test.

As security is becoming increasingly important, algorithms such as RSA need
more and more bits for the keys used to be secured. For data that need to be
protected until 2030, a 2048 bit key is recommended whereas a 3072 bit key
is recommended for beyond 2031 [2]. This creates a need for scalable designs
working with any bit-width.

Many new algorithms and improvements of existing algorithms for modular
multiplication have been presented during the last decade [10]. This led to many
hardware implementations of modular multiplication [3,4,6,8,9,11], modular ex-
ponentiation [3,7,9,11,12,13], and primality testing [5]. Most implementations
target Field Programmable Gate Arrays (FPGAs) which offer rapid-prototyping
platforms to compare different designs and can be reprogrammed as needed.

P. Sirisuk et al. (Eds.): ARC 2010, LNCS 5992, pp. 68–79, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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As FPGAs are quickly increasing in size, it is becoming more of a challenge to
fully cover the design space available for a given budget. This introduces the need
for parametric designs capable of exploring the entire design space, especially in
terms of the speed-area trade-off.

This paper presents parametric hardware designs of modular multiplication,
modular exponentiation and primality testing. Our main contributions include:
– A new parametric Montgomery multiplier design with variable pipeline

stages and variable serial replications
– A modular exponentiator design based on our Montgomery multiplier
– A Rabin-Miller prime tester design using both our multiplier and our expo-

nentiator
– An implementation of the proposed designs on Xilinx Virtex-5 FPGAs and

a comparison of their performance in terms of speed and area with the main
existing implementations.

Our Montgomery multiplier implementation is 8 times faster than the best exist-
ing hardware implementation [13] and 30 times faster than an optimised software
implementation on an Intel Core 2 Duo running at 2.8 GHz. Our exponentiator
is 2.4 times faster than an optimised software implementation and reaches the
performance of a more complex FPGA design using DSP blocks [12] which is also
the fastest design in the literature. Our prime tester is 2.2 times faster than the
software implementation and is 85 times faster than hardware implementations
of the same algorithm [5] with only 60% area overhead.

The rest of the paper is organised as follows. Section 2 explains the background
relevant to our work. In section 3, we present the main challenges of our designs
and how we address them. In section 4, we compare our FPGA implementations
to the best existing implementations and highlight the scalability of our hardware
architectures. Finally, section 5 concludes the paper.

2 Background

Most modular exponentiation algorithms require the ability to perform fast and
area efficient modular multiplications. In [4], different algorithms for modular
multiplication are compared in terms of the area-time product (AT). The Mont-
gomery modular multiplication algorithm turns out to be the best with an AT
complexity of O(n2).

Another important feature of a crypto-system is the ability to generate large
prime numbers. Probabilistic methods for prime testing, determining whether
or not a number is prime with a certain probability of error, are often used.

Modular Exponentiation. A simple but common algorithm for modular
exponentiation is given in Alg. 1. To compute XE mod N , the algorithm iterates
on the bits of E from the least significant bit (LSB) to the most significant bit
(MSB). At each iteration i, the variable Pi = X2i

mod N is squared modulo
N to obtain Pi+1 = X2i+1

mod N . If ei = 1, the accumulated product Zi is
multiplied by Pi modulo N , otherwise it remains the same. After n iterations, n
being the bit-width of E, Zn contains XE mod N .
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Algorithm 1. Exponentiation algorithm
Input: X,E,N with E =

∑n−1
i=0 ei2i, ei ∈ {0, 1}

Output: Zn = XE mod N
Z0 = 1, P0 = X1

for i = 0 to n− 1 do2

Pi+1 = P 2
i mod N3

if ei = 1 then4

Zi+1 = Zi.Pi mod N5

else6

Zi+1 = Zi7

end8

Algorithm 2. Simple Montgomery algorithm for modular multiplication
Input: A =

∑n−1
i=0 ai2i, B =

∑n−1
i=0 bi2i, N =

∑n−1
i=0 ni2i, (ai, bi, ni) ∈ {0, 1}3,

n0 = 1, 0 ≤ A, B ≤ N
Output: P = A.B.2−n mod N
P = 01

for i = 0 to n− 1 do2

P = P + ai.B3

P = P + p0.N4

P = P div 25

end6

if P ≥ N then P = P −N7

Algorithm 3. Rabin-Miller strong pseudo-prime test
Input: p = 2rd + 1 odd integer, set P of |P | first primes
Output: composite if p is composite, prime if p is probably prime
for i = 0 to |P | − 1 do1

a = P [i]2

if ad = 1 mod p or a2jd = −1 mod p for some 0 ≤ j ≤ r − 1 then3

continue4

else5

return composite6

end7

return prime8

Montgomery Modular Multiplication. A simple version of Montgomery
modular multiplication is presented in Alg. 2. This algorithm iterates on the bits
of A from the LSB to the MSB. At iteration i, ai.B is added to the accumulated
product P . If P is odd, N is added to P . This does not change the result as
the calculation is done modulo N . As N is odd (required by the algorithm), P
becomes even and can be divided by 2 without remainder.
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The drawback of the Montgomery algorithm is that it actually computes
A.B.2−n mod N , introducing an extra 2−n factor which has to be eliminated.
The common method to remove this factor is to convert the inputs in N-residue
[7], to perform the modular multiplication and to convert back the result to a
normal representation by Montgomery multiplying it by one.

Rabin-Miller Primality Test. In this paper, we consider a variant of the
Rabin-Miller strong pseudo-prime test using a few number of primes as witnesses.
This probabilistic test has a low probability of error. Algorithm 3 shows that the
Rabin-Miller test relies on the ability to perform modular multiplications and
exponentiations and is therefore a relevant application for our designs.

3 Design Flow

Our goal is to create parametric designs of Montgomery multiplication, Mont-
gomery exponentiation and Rabin-Miller primality test. The benefits of such
designs are that they can:

– adapt to the present and future needs in terms of key width
– explore a large design space in terms of speed and area, adapting to the

accelerating advancement in FPGA development
– meet the requirements of various hardware encryption projects

Parametric Montgomery Multiplier Design. We choose a one-carry save
adder (CSA) based Montgomery multiplier as the basic block of our design. A
CSA is faster than a ripple-carry adder with no area overhead. Algorithm 4 from
[4] is used. The diagram of a multiplier cell is given in Fig. 1. The bit-width of
this cell is set as a design parameter.

We apply two techniques to our design: pipelining and serial replication.
Pipelining improves the throughput of the design and serial replication improves

Fig. 1. Diagram of a Montgomery multiplier cell
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Algorithm 4. Fast Montgomery algorithm for modular multiplication
Input: A =

∑n−1
i=0 ai2i, B =

∑n−1
i=0 bi2i, N =

∑n−1
i=0 ni2i, (ai, bi, ni) ∈ {0, 1}3

Output: P = A.B.2−n mod N
S = 01

C = 02

for i = 0 to n− 1 do3

if (s0 = c0) and ai = 0 then I = 04

if (s0 �= c0) and ai = 0 then I = N5

if (s0 ⊕ c0 ⊕ b0) = 0 and ai = 1 then I = B6

if (s0 ⊕ c0 ⊕ b0) = 1 and ai = 1 then I = B + N7

S, C = S + C + I8

S = S div 29

C = C div 210

end11

P = S + C12

if P ≥ N then P = P −N13

its latency. Three main challenges have to be addressed to design a parametric
Montgomery multiplier using these techniques:

Challenge 1. Algorithm 4 cannot be easily parallelised due to the data depen-
dencies between the consecutive values of S and C in the main loop. At
iteration i+1, the values of S and C from iteration i are needed to compute
the new value of I and the new values of S and C.

Challenge 2. To explore as much design space as possible, the bit-width, the
number of replications and the number of pipeline stages should be param-
eters which can take any value.

Challenge 3. The control should adapt to the values of these parameters.

Consider Challenge 1. Figure 2 shows the basic structure of our pipelined design.
Each Montgomery cell is a modified version of the basic cell presented earlier. We
cope with Challenge 1 by allowing each basic cell to perform a consecutive part
of the iterations. For this principle to work, the final addition and subtraction
blocks are removed from this cell and the number of iterations performed by
each cell becomes a parameter. The basic cell is added with the ability to load
the S and C registers from the inputs. The current values of S and C are also
available at the output of each cell.

Inside each pipeline block, the CSA can be replicated as many times as needed.
The data dependencies problem prevents us from simply duplicating the CSA
and perform several iterations in parallel. Instead, several CSAs along with the
shift logic are put in series. This is equivalent to unrolling the loop of Alg. 4
r−1 times. The I-selector is also replicated as the values of I differ for each CSA
and at each iteration. At equal frequencies, replication decreases the latency of
the design by a factor of r, the total number of CSAs. The area overhead is less
than r because only a part of the basic cell is replicated. In practice, replication
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Fig. 2. Structure of a 32 bit pipelined Montgomery multiplier with 4 pipeline stages

also increases the critical path, reducing the maximum clock frequency at which
the multiplier can run.

Consider Challenge 2. Allowing the bit-width (n) and the pipeline depth (p)
to take any value makes it more difficult to divide the number of iterations
between blocks. When n is not a multiple of p, each block cannot perform the
same number of iterations. We address this challenge by adding an extra iteration
to the first n mod p pipeline blocks. This leads to n mod p blocks computing
�n/p�+ 1 iterations, and (n − n mod p) blocks computing �n/p� iterations.

Inside a pipeline block, in order to allow the number of replications (r) to take
any value, the result can be extracted from any CSA. This solution deals with
the case when the number of iterations the cell has to perform is not a multiple
of the number of replications.

Consider Challenge 3. A flexible pipeline control is implemented. This control
deals with the updates of two types of registers: the registers between blocks and
the triangular register array. The register triangular structure consists of arrays
of registers controlled as FIFO queues. The inputs enter all the FIFOs at the
same time when the done signal of the very first cell is triggered. The element
at the head of the FIFO of a given cell leaves the queue when the corresponding
cell has finished using it, that is when its done signal is triggered. In practice,
extra registers store the position of the first empty slot in each FIFO, acting
as pointers. When an element leaves the FIFO, the FIFO registers are updated
accordingly (register i takes the value of register i + 1) and the corresponding
pointer is decremented by 1. When an element enters the FIFO, the register
indexed by the pointer is updated with the value of this element and the pointer
incremented by 1.

Inside a pipeline block, the control logic manages the extraction of the result
from the correct CSA, depending on the number of replications chosen and the
number of iterations this particular block has to perform.

Let us consider an example summarizing this section with n = 1024, p = 5
and r = 7. As �n/p� = 204 and n mod p = 4, the first 4 pipeline blocks compute
204 + 1 = 205 iterations and the last one computes 204 iterations. Our flexible
pipeline control deals with this issue. Inside each block, we want 7 replications.
In the first 4 pipeline blocks, we loop through the 7 CSAs 30 times (�205/7�).
The result is extracted from CSA number 2 (205 mod 7) after the last iteration.
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In the last pipeline block, we loop through the 7 CSAs 30 times (�204/7�). The
result is extracted from CSA number 1 (204 mod 7) after the last iteration. This
complex behaviour is managed by the control logic of each pipeline block.

Application to Modular Exponentiation. We use our modular multiplier
to design a parametric hardware implementation of Alg. 1. The exponentiator
uses the pipelining and replication capabilities of the multiplier description.

Two main problems have to be solved for this design to be efficient in terms of
speed and area. First, the multiplier has to be optimally pipelined. We can show
that the number of pipeline stages of the multiplier giving best performance for
use with the exponentiator is equal to two. This is due to the fact that in Alg 1,
Pi+1 depends on Pi and Zi+1 depends on both Pi and Zi. If we use more than
two pipeline stages, the multiplier’s pipeline cannot be kept full due to these
data dependencies.

Second, integrating our multiplier in a bigger design can reduce its running
frequency due to critical path problems. The latency of the adders and subtrac-
tors used in the multiplier would become a bottleneck for large bit-widths. To
reduce the critical path, all the ripple-carry adders and the subtractors can be
pipelined with any depth.

The design of our exponentiator is represented in Fig. 3. It has three main
parameters: the number of multiplier’s pipeline stages, the number of replications
for the multiplier’s pipeline cells, and the pipeline depth of the adders/subtractors.
At each iteration, the current values of P and Z are stored in a RAM. The con-
trol logic manages the inputs to give to the multiplier and the data to write
back. It also controls the multiplier.

Application to Primality Testing. We design a parametric Rabin-Miller
prime tester based on both our multiplier and our exponentiator. The challenge
is to use these two modules optimally, while keeping the design simple.

To save area, one single multiplier is shared by the exponentiator (to per-
form the multiplications needed to compute ad mod p) and the prime tester
(to perform the consecutive modular multiplications needed to compute the
a2jd mod p). To improve the speed of the prime test, the exponentiator takes
full advantage of the pipelining and replication features of the multiplier. How-
ever, it is not worth using the pipeline of the multiplier for the calculation of the
a2jd mod p. It can be shown that the mean value of r in Alg. 3 is equal to two
and that on average the multiplier is only used once directly by the prime tester
at each iteration. Pipelining the computation of the a2jd mod p would therefore
make the design more complex with almost no performance benefit.

A diagram containing the important blocks, signals and connections of the
prime tester is presented in Fig. 4. The values of the first prime numbers are
stored in a ROM. At each iteration, the control logic selects the prime to use
for the test and the inputs to give to the multiplier, to the comparator and to
other intermediate registers. The control logic contains the state machine of the
prime tester which controls the multiplier and the exponentiator.
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Fig. 3. Montgomery exponentiator

Fig. 4. Rabin-Miller prime tester

4 Results

Our three designs are implemented in Verilog. We synthesize our designs with
Xilinx ISE 11.1 for Xilinx Virtex-5 FPGAs with “speed” as the optimisation
mode and “normal” as the optimisation level. The results for the area and the
maximum clock frequency are those given by the synthesis operation. When
comparing the reported performance with other implementations, one should
take into account that they do not all target the same FPGA. These results
only give an idea of how our implementations perform compared to the best
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implementations in the literature. However, the scalability results are made ac-
curate by implementing our designs on the same FPGA for most values of r
and p.

Multiplier. Table 1 compares the execution time of our multiplier with other
implementations for n = 1024 bits. For the software version, we report the mean
and the standard deviation (σ) of the execution time for one million multiplica-
tions of random numbers. The execution time of our hardware multiplier only
depends on p, r and the clock frequency. Our multiplier without any pipelining
and replication is faster than most existing implementations with a runtime of
4.28 μs. It is also faster than the software implementation of modular multi-
plication using the very optimised GMP library on an Intel Core 2 Duo E7400
running at 2.8 GHz. For p = 8 and r = 8, our multiplier is 8 times faster than the
best existing hardware implementation and 30 times faster than the optimised
software implementation. We can still get better performance by increasing r
and p if we target an FPGA with enough available area. Our design scales as
the device scales and can therefore adapt to future FPGA families.

The results of Tab. 1 also show how our multiplier scales with p and r. Keeping
r constant, when p doubles (from 1 to 2), the execution time is halved with 85%
area overhead. This area overhead is less than 100% as the area of the adder
and subtractor required at the output of the pipeline is not negligible, especially
for small values of p and r. Keeping p constant, by increasing r from 1 to 4 a
speedup of 2.5 times is achieved with less than 80% area overhead. Increasing
the number of replications is less area-consuming than increasing the number
of pipeline stages as a smaller part of the basic cell is duplicated. However, the

Table 1. Performance comparison of 1024 bit multipliers

Design Device Clock Area Ex. Time
(MHz) (LUT-FF pairs) (μs)

Our design (p = 8, r = 8) XC5VLX330T-2 99.13 206 982 0.18
Our design (p = 2, r = 8) XC5VLX110T-3 110.98 59 337 0.59
Our design (p = 2, r = 4) XC5VLX110T-3 149.55 42 429 0.87
Our design (p = 1, r = 8) XC5VLX110T-3 102.63 31 925 1.27

Tang [13] XC2V3000-6 90.11 N/A 1.49
Our design (p = 1, r = 4) XC5VLX110T-3 150.23 20 593 1.72
Our design (p = 2, r = 1) XC5VLX110T-3 226.31 23 436 2.28
Our design (p = 1, r = 1) XC5VLX110T-3 239.74 13 671 4.28

GMP 4.2.4 [1] Intel Core 2 Duo
2800 N/A

mean: 5.45
mpz mul/mpz mod E7400 σ: 0.53
Oksuzoglu [11] XC3S500E-

119 6 906 7.62
(1020 bit) 4FG320C
McIvor [8] XC2V3000 75.23 23 234 13.45
Daly [6] XCV1000 55 10 116 18.67

Amanor [9] XVC2000E-6 49 8 064 21.00
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Table 2. Time-Area products normalised to our design for 1024 bit multiplication

Design Area Clock Cycles Time × Area
(LUT-FF pairs)

McIvor [8] 23 234 1025 6.08
Daly [6] 10 116 1027 2.65

Amanor [9] 8 064 1027 2.11
Oksuzoglu [11]

6 906 907 1.60
(1020 bit)

Our design (p = 2, r = 8) 59 337 66 1.00

increase in speed is less substantial due to the negative effect of replication on
the maximum frequency.

Table 2 compares implementations in terms of the Time × Area product.
For p = 2 and r = 8 our multiplier ranks first. It is interesting to see that
(p, r) = (2, 8) is a design point favouring speed over area. Our design benefits
mainly applications with high speed requirements and large area available.

Exponentiator. Table 3 compares the execution time of our exponentiator
with other implementations for n = 1024 bits. The pipeline depth of all ripple-
carry adders and all subtractors is fixed to 8 in order to reduce the critical
path. For the software version, we also report the mean and standard deviation
for one million exponentiations of random numbers. For p = 2 and r = 8, our
implementation running at 97.9 MHz is 2.4 times faster than the optimised
software implementation using the GMP library on an Intel Core 2 Duo E7400
running at 2.8 GHz. Our exponentiator can also reach the speed of the best
Montgomery modular exponentiator in the literature which uses DSP operations.

Prime tester. Table 4 compares the execution time of our prime tester with
other implementations for n = 1024 bits. The pipeline depth of all ripple-carry

Table 3. Performance comparison of 1024 bit exponentiators

Design Device
Clock

Area
Ex. Time

(MHz) (ms)

Suzuki [12] XC4VFX12- 200/400 7 874 LUT-FF + 1.71
10SF363 17 DSP48

Our design (p = 2, r = 8) XC5VLX110T-3 97.9 65 200 LUT-FF 1.74

Tang [13] XC2V3000-6 90.11
14 334 slices +

2.33
62 multipliers

Our design (p = 2, r = 2) XC5VLX110T-3 145.66 28 008 LUT-FF 3.88
GMP 4.2.4 [1] Intel Core 2 Duo

2800 N/A
mean: 4.23

mpz powm E7400 σ: 0.12
Oksuzoglu [11] XC3S500E-

119
6 906 LUT-FF +

7.95(1020 bit) 4FG320C 20 multipliers
Our design (p = 1, r = 2) XC5VLX110T-3 135.9 17 414 LUT-FF 8.14

Blum [3] XC4000 45.7 13 266 LUT-FF 11.95
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Table 4. Performance comparison of 1024 bit prime testers

Design Device
Clock Area Ex. Time
(MHz) (LUT-FF) mean/σ (ms)

Ours (p = 2, r = 8) XC5VLX110T-3 86.7 64 817 2.01/0.741
Ours (p = 2, r = 4) XC5VLX110T-3 87.1 41 970 3.54/1.31

GMP 4.2.4 [1] Intel Core 2 Duo
2800 N/A 4.33/1.82

mpz millerrabin E7400
Ours (p = 1, r = 4) XC5VLX110T-3 87.1 31 538 6.81/2.51
Ours (p = 2, r = 2) XC5VLX110T-3 87.0 30 892 6.64/2.45
Ours (p = 1, r = 1) XC5VLX110T-3 87.1 22 346 25.3/9.32

Cheung [5] (non-scalable design) XC3S2000 6.1 40 262 171.45/
Cheung [5] (scalable design 32 PE) XC3S2000 25.6 18 566 2235.08/
Cheung [5] (scalable design 8 PE) XC3S2000 26.5 5 684 6338.95/

adders and all subtractors is also set to 8. Unlike our other designs, the execution
time of the prime tester depends on the number under test. We choose 10 000
random numbers and use them for all the experiments. We report the mean and
the standard deviation. For p = 1 and r = 1, our prime tester is 6.8 times faster
than Cheung’s non scalable design and takes 1.8 times less area. It is 88 times
faster than the fastest scalable design from [5] with only 20% area overhead. For
p = 2 and r = 8, our design running at 86.7 MHz is 2.2 times faster than the
GMP implementation on an Intel Core 2 Duo running at 2.8 GHz. It is 85 times
faster than Cheung’s non scalable design and only takes 1.6 times more area.

Our multiplier, our exponentiator and prime tester descriptions cover a huge
design space. The exponentiator and the prime tester scale with p and r the same
way as the multiplier except from one point: their speed cannot be increased by
using more than two multiplier’s pipeline stages as shown before. However, once
this threshold is reached, increasing the number of replications remains relevant
in order to increase the speed of these two designs.

5 Conclusion and Future Work

This paper presents a new parametric Montgomery multiplier design with vari-
able pipeline stages and variable serial replications. It is 8 times faster than the
best existing hardware implementation and 30 times faster than an optimised
software implementation on an Intel Core 2 Duo running at 2.8 GHz. We design
a modular exponentiation module based on our multiplier. It is 2.4 times faster
than the optimised software implementation and reaches the performance of a
more complex FPGA implementation using DSP blocks. A Rabin-Miller prime
tester gathering the strengths of our modular multiplication and exponentiation
modules is presented. It is 2.2 times faster than the software implementation
and is 85 times faster than hardware implementations of the same algorithm
with only 60% area overhead. Our three designs are scalable and their perfor-
mance are only limited by the device used. As FPGAs are growing steadily, the
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parametric nature of our modules enables them to fully explore the design space
available in any current and future project.

Current and future work includes extending our replication and pipelining
methods to the exponentiator and the prime tester, making our parametric
multiplier capable of reaching the very low-area end of the design space and
developing tools that automate our replication and pipelining approaches.

Acknowledgments. The support of UK EPSRC and BlueRISC is gratefully
acknowledged.
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Abstract. In this paper the performance of a closed formula imple-
mented in reconfigurable hardware for the Tate pairing Algorithm over
the binary field of GF (2m) is studied. Using the algorithm improvement
of Soonhak Kwon [2], the schedule for performing the Tate pairing with-
out a square root operation is explored along with the area and time
consumption trade-offs involved in the hardware implementation of the
target algorithm.

Keywords: Tate pairing, FPGA implementation.

1 Introduction

Elliptic curve cryptography (ECC) is a popular cryptographic scheme which
achieves a high level of security using small key sizes. With a 163 bit key size,
ECC can ensure the same security level as a 1024 bit key RSA cryptography[11].

Based on ECC operations, pairing is a new type of public-key cryptographic
scheme. Many cryptographic schemes based on the bilinear pairings [4] have
been developed to exploit the pairing algorithm of Miller [3]. The most popular
implementation of the Miller algorithm are the Tate pairing and the Weil Pairing.
For key sizes that are likely to be used in practice, the Tate pairing is proved to
be more efficient than the Weil Pairing in all fields [1,5]. There have been many
algorithm developments and improvements to speed up the computation of the
Tate pairing [4,6,7,8]. The notion of the squared Tate pairing was introduced by
Eisentrager [9] and Barreto et al. [4] to eliminate the need for division as the
denominator becomes one after the final exponentiation.

Implementations of these algorithms in reconfigurage hardware such as FP-
GAs depends on the underlying field (GF (p), GF (3m) and GF (2m)) and a survey
of the previous works done by Dormale and Quisquater [10] summarized these
FPGA-based implementations. In this paper, we show the FPGA implementa-
tion of the refined algorithm of Tate pairing introduced by Soonhak Kwon [2].
This algorithm showed that an efficient closed formula can be obtained for the
computation of the Tate Pairing for supersingular elliptic curves over a binary
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field GF (2m) with odd dimension m. The implementation of the algorithm using
different digit sizes and different numbers of multipliers are examined.

2 Arithmetics over Binary Fields

Since the finite field arithmetic underpins the pairing based cryptosystems, the
efficiency of the reconfigurable design will depend on the efficiency of the basic
operations over such field. In this section, hardware architectures for arithmetic
operations in field of characteristic 2 are discussed.

2.1 Architecture for Computation over GF (2m)

The basic arithmetic operations over binary field are the addition, multiplication,
squaring and inversion over GF (2m)which are the building blocks for the Tate
pairing.

Addition. As a basic operation, addition of two elements on GF (2m) is per-
formed as per c(x) = a(x) + b(x). Since GF (2) addition is performed using an
XOR gate, the addition in GF (2m) simply requires an XOR chain. It is noted
that in the field of GF (2m), the relationship a+a = 0 exists. Thus addition and
subtraction are equivalent here. An addition over GF (2m) is represented as A
in this paper.

Multiplication. Multiplication of two elements c(x) = (a(x)∗b(x)) mod f(x) is

shown as: c(x) = (a(x) ∗ b(x)) = (
m−1∑
i=0

aix
i ∗

m−1∑
j=0

bjx
j) mod f(x). This equation

comprises of two parts. The first part is a multiplication with two inputs of
degree m−1, and an output of degree 2m−2. And the second part is a reduction,
represented as ‘mod f(x)’, which reduces the result of the first part to degree
m−1 or less, through the irreducible polynomial f(x). The cost of this reduction
is small because the fixed irreducible polynomial in the base field used for the
pairings has a small hamming weight, such as trinomial or pentanomial.

A Digit-Serial Multiplication (DSM) was introduced by Hankerson et al. [12].
The DSM Algorithm takes elements a(x) and b(x) and outputs the products
modulo the fixed irreducible polynomial f(x). This algorithm computes d bits
of the input b(x) in an iteration and it takes n = [m

d ] iterations to finish the
multiplication. As can be estimated, the larger the digit size d used, the larger
the area of the multiplier and at the same time, the less time arequired to
complete a multiplication. There is a trade-off between area and computation
time a this performance will be discussed in the coming sections. A multiplication
over GF (2m) is represented as M.

Squaring. A bit-parallel squaring architecture introduced in [13] is used in this
work. Instead of performing a multiplication, this squaring architecture simply
interleaves the input with zeroes, with a 2m−1 to m bit reduction block following
it. A Squaring over GF (2m) is represented as S.
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Division. Division in GF (2m) computes c(x) = a(x)/b(x) mod f(x). It is
equivalent to an inversion by simply setting the input a(x) of the division to
1 ∈ GF (2m). A field division can be performed using an architecture based on
the Extended Euclidean Algorithm introduced in [14]. The architecture com-
putes the result in 2m clock cycles and requires a large area in practice. In
comparison to the time taken for multiplication using the DSM, the time taken
for division of 2m clock cycles is quite time consuming. Since the division only
exists in the final exponentiation, only one divider will be used in the design of
this algorithm to keep the area small.

2.2 Architecture for Computation over GF (24m)

The tate pairing requires Multiplication, Squaring and Division over the exten-
sion field GF (24m) and the field is defined using the polynomial p(x) = x4+x+1.

GF (24m) Multiplication. A multiplication in this extension field can be
implemented using an architecture designed by [16] and presented by Keller [17]
as shown in Fig.1. This architecture used in this work requires 9 M and 16 A.

GF (24m) Squaring. Similar to the GF (2m) squarer, the dedicated GF (24m)
squarer is shown in fig. 2. This architecture computes c(x) = a2(x) mod p(x)
where p(x) = x4 + x + 1, a(x) ∈ GF (24m). As can be seen clearly from its
architecture, the squarer is much more efficient in timing and area than the
GF (24m) multiplier.

MM MM MM

A A A A

a0 3b

M

A

M
AA

M

A A A A A A A A

a0 0a2 b b2b2 b30 1b b a a0 1 a a2 31b b3a a1 3

AA

AA AA

A

3c

m= GF(2 )AdditionA

m= GF(2 )MultiplicationM

a ab0 a1 1 2 2 3b b

c c c0 1 2

Fig. 1. GF (24m) Multiplier
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Fig. 2. GF (24m) Squarer

GF (24m) Inversion. An algorithm for inversion over GF (pn) was presented
in [18], is shown as Algorithm 1.

Algorithm 1. GF (pn) Inversion Algorithm

Input: a(x), p(x) such that deg(a(x)) < deg(p(x))
Output: c(x) = a(x)−1 mod p(x)
Initialize: b = 0; c = 1; p = p(x); g = a(x)
while deg(p) 	= 0 do

if deg(p) < deg(g) then
exchange p, b with g, c respectively

end
j = deg(p) − deg(g)
α = g2

deg(g)
β = pdeg(p).gdeg(g)
γ = gdeg(g).pdeg(p)−1 − pdeg(p).gdeg(g)−1
p = α.p − (β.xj + γ.xj−1).g
b = α.b − (β.xj + γ.xj−1).c
if deg(p) = deg(g) then

p = gdeg(p).p − pdeg(p).g
b = gdeg(p).b − pdeg(p).c

end
end
return c(x) = a(x)−1 = b = p−1

0 .b

In the case of our work, for the field GF (pn), p is set to 2m, and n = 4. In
Algorithm 1, function deg(p) returns the degree of the polynomial p. The input
polynomial p(x) is set to x4 + x + 1 initially of degree 4. a(x) in this algorithm
is considered as a degree 3 polynomial. The while loop in this algorithm reduces
the degree of p by one or more in every iteration until the degree of p reaches
zero. It is obvious that only additions, multiplications, and substractions, which
are treated the same as additions, are necessary in the for loop. At the end of this
algorithm, in the step of final exponentiation, a division and 4 multiplications
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are performed to get the result c(x) such that (a(x) ∗ c(x)) mod p(x) = 1, where
a(x) =

∑3
i=0 aix

i.

3 Tate Pairing

3.1 Elliptic Curve over GF (2m)

A supersingular elliptic curve on the binary finite field GF (2m) is defined by :
E(GF (2m)) : Y 2 + Y = X3 + X + b, where b ∈ {0,1}. Point P = (x, y) on the
curve is defined as a pair of elements (x, y) ∈ GF (2m) which satisfy the curve
equation. In the field of GF (2m), an element is represented as a polynomial
which is made up of a binary sequence of degree m− 1. Therefore a point (x, y)
on the curve E(GF (2m)) is represented by two degree m−1 binary polynomials,
i.e., 2m bits.

3.2 Algorithm of Tate Pairing

For cryptographic operations, the Tate pairing is generally represented by
el(P ; Q), where P and Q are points of order l on the elliptic curve E(GF (2m)).
This function evaluates to a point in the extension field GF (24m).

The most important property of the Tate pairing is that of bilinearity shown
in eq(1), which forms the basis of a wide range of pairing protocols.

el(aP ; bQ) = el(P ; Q)ab (1)

An efficient method of computing the Tate pairing is given in Miller’s Algo-
rithm in [3]. A modified scheme of Miller’s Algorithm is presented by Duursma-
Lee in [8]. The algorithm improved by Kwon [2] improved the Duursma-Lee’s
algorithm by avoiding the square root computation. Three curves are applica-
ble for this algorithm. Among then, the curve Eb : Y 2 + Y = X3 + X has
the embedding degree 4. For better FPGA implementation, Shu and Kwon im-
proved the algorithm in [15], as shown in Algorithm 2. We chose it for our
implementation.

In Algorithm 2, the Tate pairing for a supersingular elliptic curve over GF (2m)
is computed. With the m-bit input sequences P and Q on the elliptic curve Eb,
we get the output C(x) from this algorithm. The output C(x) = {c3, c2, c1, c0} is
the pairing result of this algorithm. c3, c2, c1 and c0 are m-bit binary sequences.
From the algorithm above, we can see that the underlying field operations needed
in the Tate pairing computation are S and M.

Moreover, in the final exponentiation step, C22m−1 can be written in the
form of (C2m

)2 ∗ C−1. Since there is a well known property of GF (2m) that
a2m

= a where a ∈ GF (2m), computing (C2m

)2 needs only several additions
and squarings. Together with the inversion for the computation of C−1, the final
exponentiation can be easily performed.
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Algorithm 2. Improved algorithm for computing Tate pairing

Input: P = (α, β), Q = (x, y) Output: C = el(P ; Q)
1. C ← 1
2. u ← x2 + y2 + b + m−1

2 , v ← u, y ← y2

3. α ← α4, β ← β4, γ ← α(v + 1)
4. for (i = 1 to m; i + +)
5. A(t) ← γ + u + β + (α + v)t + (α + v + 1)t2

6. C ← C2

7. C ← C ∗ A(t)
8. if i < m then
9. u ← u + v + 1, v ← v + 1
10. α ← α4, β ← β4, γ ← α(v + 1)
11. end if
12. end for
13. C(x) = C(x)2

2m−1

14. return C(x)

3.3 Reconfiguration of the GF (24m) Multiplication

Different from normal GF (24m) Multiplication, the operation of C ← C ∗ A(t)
can be simplified. Let

A(t) = w + zt + (z + 1)t2, where w = γ + u + β, z = α + v.
C(x) can be written in the form of c0+c1t+c2t

2+c3t
3, where ci ∈ GF (2m). Thus

for the step C ← C∗A(t), we have C(t)∗(w+zt+(z+1)t2) = c′0+c′1t+c′2t
2+c′3t

3,
where
c′0 = c0w + (c2 + c3)(z + 1) + c3,
c′1 = c0w + (c1 + c2 + c3)w + (c0 + c2 + c3)(w + z + 1) + c3(z + 1) + c0 + c3,
c′2 = c0w +(c1 + c2 + c3)w +(c0 + c2 + c3)(w + z +1)+ (c1 + c2)(w + z +1)+ c1,
c′3 = (c1 + c2 + c3)w + (c1 + c2)(w + z + 1) + c2.

As can be easily seen from the operations above, to update A(t), 5A+4S+1M are
required in every iteration. And to update C(t) in one iteration, 19A+4S+6M
are required. In a parallel architecture, the update of A(t) and C(t) can be done
at the same time. By using different numbers of multipliers, we have different
schedules for computing step 5-11 in Algorithm 2, shown in Fig.3.

In Fig.3, blocks PRE and POST represent the pre- and post-computations of
the 7M. The pre-computations consist of 14A+8S and takes up 44 clock cycles.
The post-computations consist of 12A and some memory writting operations,
taking up 53 clock cycles. The operation for a single M takes n = m

d clock
cycles, with one additional clock cycle reading the product from the output into
memory. In this work, the processor will always spend 104 clock cycles on the
operations excluding multiplicaiton because they are performed in serial. In this
case, only 1 Adder and 1 Squarer are needed in the architecture.
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Fig. 3. Schedules for different numbers of Multipliers

With different number #Mult of multipliers, the design can deal with at
most #Mult multiplications at the same time. We use #Mult =1, 2, 3, 4 and
7 in this paper. Using 5 and 6 multipliers are too inefficient due to the unused
multipliers. Since only 7 multiplications are needed in each iteration, putting
more multipliers in the design will not speed up the operation time. As can be
seen in Fig.3, adding multipliers reduces a multiple of n clock cycles. And using
only one Multiplier, which gives a minimum area design, takes a long operation
time of 7n + 104 clock cycles.

3.4 Architecture Design of Tate Pairing

Fig.4 shows the top architecture for implementing the Tate pairing using Al-
gorithm 2. As can be seen in Fig.4, the top level of the architecture is based
on the GF (2m) modules. A memory bank is also used to store the inputs and
intermediate variables required in the algorithm. The GF (2m) blocks and mem-
ory are controlled by a Finite State Machine (FSM) controller, which iterates
through an instruction set contained in ROM. No GF (24m) modules can be seen
on the top level because the GF (2m) function blocks are reused for each of the
GF (24m) operations. The instructions of the GF (24m) operations are stored in
the ROM, and all the operations have accesses to all the GF (2m) blocks so that
the design will reach a high utilization of all its hardware.
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Fig. 4. FPGA architecture of Tate pairing

4 Implementation Results

In this implementation, the Tate pairing is written in VHDL. The design is
simulated using ModelSim XE III 6.3c, and the target FPGA technology is
Xilinx Virtex II xc2v6000-4ff1152. We designed different numbers (1, 2, 3, 4 and
7) of multipliers, and different digit sizes d (1, 4, 8 and 16) to implement the
target algorithm at the field size of m = 251 and m = 163. The designs can
reach a minimum 108 MHz frequency for m = 251 and 111 MHz for m = 163.
For better comparison, we are using 108 MHz in all the cases of m = 251, and
111 MHz in all the cases of m = 163.

The post Place & Route results of the designs are shown in Table 1 and
Table 2. As can be seen from the tables, the area increases when the digit size
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Table 1. Implementation results, Xilinx xc2v6000-4ff1152, 111MHz, m=163

Mult d Slices Time(ms) A.T(s.Slice) d Slices Time(ms) A.T(s.Slice)
1 1 2147(6%) 1.93 4.14 4 2286(6%) 0.667 1.52

8 2498(7%) 0.424 1.06 16 3268(9%) 0.319 1.04
2 1 2736(8%) 1.17 3.20 4 2958(9%) 0.463 1.37

8 3326(9%) 0.311 1.03 16 4825(14%) 0.250 1.21
3 1 3125(9%) 0.948 2.96 4 3684(10%) 0.363 1.34

8 4316(12%) 0.273 1.18 16 6452(19%) 0.227 1.46
4 1 3503(10%) 0.665 2.33 4 4192(12%) 0.296 1.24

8 5176(15%) 0.236 1.22 16 7761(22%) 0.205 1.59
7 1 4563(13%) 0.416 1.90 4 6155(18%) 0.228 1.40

8 7490(22%) 0.198 1.48 16 12277(36%) 0.183 2.25

and the number of multipliers goes up but the time it takes to complete the
operations reduces. So we take the Area*Time (A.T) product as a parameter.

Fig.5 and Fig.6 show the time for computing the Tate pairing algorithm and
the A.T products of the designs for both m = 251 and m = 163. As can be
seen from the timing curves in Fig.5, adding more multipliers or increasing the
digit size d both speed up the computation. The A.T product curves in Fig.6
show that increasing the digit size d and the number of multipliers do not always
give improvement to the performance of the design. Since a lower A.T product
is always wanted for a design, the design with 2 multiplier and digit size d = 8
makes the best performance for and m = 163. And using 1 GF (2m) multiplier
and d = 16 has the lowest A.T product for the m = 251 designs.

Comparing the results with other FPGA implementations of the Tate pairing
implemented in GF (2m) is shown in Table 3. As can be seen, Keller implemented
a design on the same field of GF (24∗251) [17], on the same technology of Xilinx
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Table 2. Implementation results, Xilinx xc2v6000-4ff1152, 108MHz, m=251

Mult d Slices Time(ms) A.T(s.Slice) d Slices Time(ms) A.T(s.Slice)
1 1 3135(9%) 4.53 14.2 4 3635(10%) 1.41 5.13

8 3790(11%) 0.849 3.21 16 5072(15%) 0.584 2.96
2 1 3793(11%) 2.72 10.2 4 4799(14%) 0.937 4.50

8 5132(15%) 0.592 3.04 16 7275(21%) 0.441 3.21
3 1 4736(14%) 2.12 10.0 4 5499(16%) 0.726 3.99

8 6599(19%) 0.507 3.35 16 9838(29%) 0.394 3.88
4 1 5302(15%) 1.46 7.74 4 6343(18%) 0.570 3.62

8 7856(23%) 0.423 3.32 16 11822(24%) 0.347 4.10
7 1 6965(20%) 0.861 6.00 4 9130(27%) 0.412 3.76

8 11221(33%) 0.338 3.79 16 18693(55%) 0.300 5.61

Table 3. Results Comparison with other work of Tate pairing over GF (2m)

Name, Ref. Target Field Design Size Area Time(ms) Freq.(Mhz)
Keller,[17] GF (2251) 1Mult, d = 1 3370 18.6 40
Keller,[17] GF (2251) 9Mults, d = 6 26132 1.07 43
Shu,[15] GF (2239) 6Mults, d = 16 18202 0.047 100
Shu,[15] GF (2283) 6Mults, d = 16 22726 0.076 84
Li,[19] GF (2283) 12Mults, d = 32 55,844 0.59 159

This work GF (2251) 1Mult, d = 1 3135 4.53 111
This work GF (2251) 7Mults, d = 16 18693 0.30 108

Virtex II XC2V6000-4ff1152. He got the calculation time of at least 1.07 ms,
with an area of 26132(77%) slices. H. Li et al. implemented their design on
Xilinx Virtex 4 XC4VFX140-FF1517-11 [19] where the calculation time is 0.59
ms, almost twice our calculation time, but at the cost of 55,844 slices, which is
much larger than our design. The design done by Shu et al. [15] was implemented
on Xilinx XC2VP1000-6FF-1702. Their designs reached a smaller calculation
time. They expanded all the Additions and Squarings by adding more adders
and squarers. The designs operate with the additions and squarings in parallel.
This method improves the calculation speed when #Mult and digit size d both
are very big, but increases the design area significantly.

5 Conclusion

The implementation of a closed formula for the Tate pairing over the binary
field of GF (2m) has been presented. In this work, we improved the algorithm by
putting all the 7 GF (2m) multiplication in parallel, this reduces the calculation
time significantly when using a maximum of 7 GF (2m) multipliiers. In the top
level design, any GF (24m) operation can call and use all the basic GF (2m)
function blocks. This makes the design of high efficiency and flexibility, and
reduces its area significantly. As mentioned above, using 2 GF (2m) multipliers
and setting the digit size d = 8 reaches the best trade-off between time and area
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for m = 163. And with 1 GF (2m) multiplier and d = 16, the m = 251 design
will reach its lowest A.T product. However, in an area constrained application,
one should choose the best suitable number of multipliers and digit size for a
good performance. While if no area constraint is applied to the designs, for the
benifit of a higher speed, using maximum multipliers with a larger digit size d
is always suggested.
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A Comparison between Hardware Accelerators for the Modified Tate Pairing over
F2m and F3m . In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 297–315. Springer, Heidelberg (2008)

2. Kwon, S.: Efficient Tate Pairing Computation for Elliptic Curves over Binary
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Abstract. An Application Specific Inflexible FPGA (ASIF) [12] is an
FPGA with reduced flexibility that can implement a set of application
circuits which will operate at different times. Application circuits are
efficiently placed and routed on an FPGA in such a way that total rout-
ing switches used in the FPGA architecture are minimized. Later all
unused routing resources are removed from the FPGA to generate an
ASIF. An ASIF which is reduced from a heterogeneous FPGA (i.e. con-
taining hard-blocks such as Multipliers, Adders and RAMS etc) is called
as a Heterogeneous-ASIF. This work shows that a standard-cell based
Heterogeneous-ASIF using Multipliers, Adders and Look-Up-Tables for
a set of 10 opencores application circuits is 85% smaller in area than a
single driver FPGA using the same blocks, and only 24% larger than the
sum of areas of their standard-cell based ASIC version. If the Look-Up-
Tables are replaced with a set of repeatedly used hard logic gates (such
as AND gate, OR gate, flip-flops etc), the ASIF becomes 89% smaller
than the Look-Up-Table based FPGA and 3% smaller than the sum of
ASICs. The area gap between ASIF and sum of ASICs can be further
reduced if repeatedly used groups of standard-cell logic gates in an ASIF
are designed in full-custom. One of the major advantages of an ASIF is
that just like an FPGA, an ASIF can also be reprogrammed to execute
new or modified circuits, but at a very limited scale. A new CAD flow is
presented to map application circuits on an ASIF.

1 Introduction

Field Programmable Gate Arrays (FPGAs) are reconfigurable devices that can
be easily re-programmed to execute a large variety of applications. These devices
are therefore very effective and economical for a product requiring low-volume
production. However, the flexibility of FPGAs makes them much larger, slower,
and more power consuming than their counterpart ASICs (Application Specific
Integrated Circuits) [8]. Consequently, FPGAs are not suitable for applications
requiring high volume production, high performance or low power consumption.
An ASIC has area, speed and power advantages over an FPGA; but at the
expense of higher non-recurring engineering (NRE) cost and higher time-to-
market. The NRE cost and time-to-market are reduced with the advent of a new
breed of ASICs known as Structured-ASIC. Structured-ASIC consist of array of

P. Sirisuk et al. (Eds.): ARC 2010, LNCS 5992, pp. 92–109, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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optimized elements which implement a desired functionality by making changes
on few upper mask layers.

FPGA vendors have also started giving provision to migrate FPGA based
application to Structured-ASIC [1]. The main idea is to prototype, test and even
ship initial few designs on an FPGA; later it can be migrated to Structured-
ASIC for high volume production [6]. In this regard, Altera has proposed a
clean migration methodology [13] that ensures equivalence verification between
FPGA and its Structured-ASIC (known as HardCopy [1]). However, migration
of an FPGA based application to HardCopy can execute only a single circuit.
HardCopy totally loses the quality of an FPGA which uses the same hardware
for executing multiple applications at different times. So, we propose a new
reduced FPGA that can execute a set of circuits at different times. This reduced
FPGA is called as an Application Specific Inflexible FPGA (ASIF). When an
FPGA-based product is in the final phase of its development cycle, and if the
set of circuits to be mapped on the FPGA are known, it can be reduced for
all the given set of circuits. This work extends the idea of an ASIF [12] in two
main directions. (i) A Heterogeneous-ASIF is proposed; it is an ASIF which uses
hard-blocks such as Multipliers, Adders and RAMS etc. A Heterogeneous-ASIF
for a given set of application circuits is also compared with sum of areas of their
standard-cell based ASICs. (ii) A major advantage of an ASIF over sum of areas
of ASICs is achieved by proposing a new CAD flow which can map application
circuits on an ASIF. Just like an FPGA, an ASIF can also be reprogrammed to
execute new or modified circuits, but at a limited scale.

The concept of an ASIF is similar to configurable ASIC cores (cASIC [5]); cA-
SIC is a reconfigurable device that can implement a limited set of circuits which
operate at mutually exclusive times. However, cASIC and ASIF have several ma-
jor differences. cASIC is intended as an accelerator in a domain-specific systems-
on-a-chip, and is not designed to replace the entire ASIC-only chip. For that rea-
son, cASIC supports only full-word logic blocks (such as 16-bit wide multipliers,
adders, RAMs etc) to implement data-path circuits. However, heterogeneous-
ASIF presented in this work supports both fine- and coarse-grained logic blocks.
The routing network used by cASIC and ASIF are totally different. cASIC uses
1-D segmented bus interconnect, whereas ASIF uses 2-D mesh interconnect.
Another major difference between cASIC and ASIF is the approach with which
their routing networks are optimized. cASIC is generated using a constructive
bottom-up “insertion” approach with reconfigurability inserted through the ad-
dition of multiplexers and demultiplexers. On the contrary, an ASIF is generated
using an iterative top-down “removal” technique in which different circuits are
mapped onto an FPGA; flexibility is removed from it to support only the given
set of circuits. The benefit of a “removal” approach over an “insertion” approach
is that any existing FPGA architecture can be reduced to an ASIF using this
“removal” technique.

This paper considers only the area optimization of an ASIF. Delay and power
parameters are not explored in this work. Section 2 describes a reference FPGA
architecture that is reduced to an ASIF; it also presents a software flow to map
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a circuit on the reference architecture. Section 3 discusses floor-planning tech-
niques for different heterogeneous blocks. Section 4 describes an ASIF generation
technique. Section 5 presents the experimental results using a set of opencores
application circuits. A new placement algorithm for mapping application circuits
on an ASIF is presented in section 6. Possible layout generation methodologies
for an ASIF are presented in section 7. Finally section 8 presents a conclusion
and future work.

2 Reference FPGA Architecture and Software Flow

This section describes a reference FPGA architecture that will be reduced to
an ASIF. This reference FPGA is a mesh-based VPR-style (Versatile Place &
Route) [4] heterogeneous architecture, as shown in Figure 1. It contains Con-
figurable Logic Blocks (CLBs) and Hard Blocks (HBs) arranged in columns.
The input and output pads are arranged at the periphery. Each CLB contains
a Look-Up-Table(LUT) and a flip-flop (FF). A block (referred to a CLB or
HB) is surrounded by a uniform length, single driver, unidirectional routing net-
work [10]. The input and output pins of a block connect with the neighboring
routing channel. An FPGA tile showing the detailed connection of a CLB with
its neighboring routing network is also shown in Figure 1. A unidirectional dis-
joint switch box connects different routing tracks (or wire segments) together.
The connectivity of the routing channel with the input and output pins of a
block, abbreviated as Fc(in) and Fc(out), is set to be maximum at 1. The chan-
nel width is varied according to the netlist requirement but remains in multiples
of 2 [10].

A software flow (shown in Figure 2) maps a netlist on the heterogeneous
FPGA. Input to this software flow is a structural netlist in VST (structured
VHDL) format. This netlist is composed of traditional standard cell library
instances and hard block (HB) instances. VST2BLIF tool is modified to convert

Fig. 1. Reference FPGA Architecture
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Fig. 2. Software Flow

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. Block Movement Cases

the VST file with hard blocks to BLIF [3] file format. Later PARSER-1 removes
all instances of hard blocks and passes the remaining netlist to SIS [14] for
synthesis into Look-Up-Table format. Dependence between HBs and remaining
netlist is preserved by adding temporary input and output pins to the main
netlist. After SIS, and later after packaging and conversion of the netlist to NET
format through T-VPACK [2], PARSER-2 adds all the removed HBs into the
netlist. It also removes all previously added temporary inputs and outputs.

A netlist file (in .NET format) includes CLBs (LUTs and/or FF), HBs (Hard
Blocks) and IO (Inputs and Outputs) instances which are interconnected through
signals called NETS. A software module named PLACER uses the simulated
annealing algorithm [4] [7] to place the CLBs/HBs/IO instances on their re-
spective blocks of FPGA. The bounding box (BBX) of a NET is a minimum
rectangle that contains the driver instance and all receiving instances of a NET.
The PLACER attempts to achieve a placement with a minimum sum of half-
perimeters of the bounding boxes of all NETS. It moves an instance randomly
from one block position to another. After each move operation, the BBX cost
is updated incrementally. Depending on cost value and annealing temperature,
the operation is accepted or rejected. After placement, a software module named
ROUTER routes the netlist on the architecture. The router uses a pathfinder
algorithm [11] to route the netlists using FPGA routing resources.

3 Floor-Planning Techniques

If a heterogeneous FPGA is to be reduced to an ASIF, the position of different
blocks on the architecture can be optimized to achieve better area gains. For this
purpose, the PLACER is modified to find out the positions of different blocks on
the FPGA architecture for a given set of netlists. Initially, an FPGA architecture
is defined using an architecture description file. BLOCKS of different sizes are
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defined, and later mapped on a grid of equally sized SLOTS, called as a SLOT-
GRID. Each BLOCK occupies one or more SLOTS. The type of the BLOCK
and its input and output PINS are used to find the size of a BLOCK. In a LUT-
4 based FPGA, a CLB occupies 1 slot, and a 16x16 multiplier occupies 5x5
slots. Input and output PINS of a BLOCK are defined, and CLASS numbers are
assigned to them. PINS with the same CLASS number are considered equivalent;
thus a NET targeting a receiver PIN of a BLOCK can be routed to any of the
PINS of the BLOCK belonging to the same CLASS. The PLACER moves an
instance of a netlist from one BLOCK to another, moves a BLOCK from one
SLOT position to another, or rotates a BLOCK around its own axis. After each
operation, the placement cost is updated for all disturbed NETS. Depending
on cost value and annealing temperature, the operation is accepted or rejected.
Multiple netlists are placed together to get a single architecture floor-planning
for all netlists. With multiple netlist placements, each BLOCK can allow multiple
instances to be mapped onto it; but multiple instances of the same netlist cannot
be mapped onto a single BLOCK.

The PLACER performs an operation on a “source” and a “destination”. The
“source” is randomly selected to be either an instance from any of the input
netlists or a BLOCK from the architecture. If the source is an instance, any
random matching BLOCK is selected as its destination. If the source is a BLOCK
to be rotated, the same source position becomes the destination as well.

If the source BLOCK is to be moved from one SLOT position to another, a ran-
dom SLOT is selected as its destination. The rectangularwindow starting from this
destination slot, having the same size and shape as the source BLOCK is called the
destination window, whereas the window occupied by the source BLOCK is called
a source window. The dashed line in Figure 3(a) is the source window, and the
solid line in Figure 3(b) depicts a valid destination window. The source window al-
ways contains a single BLOCK, whereas destination window can contain multiple
BLOCKS. The destination SLOT is rejected if (i) destination window exceeds the
boundaries of the SLOT-GRID (as shown in Figure 3(c)), (ii) destination window
contains at least one such BLOCK which exceeds the limits of destination window
(as shown in Figure 3(d)) and (iii) source window overlaps destination window di-
agonally i.e. partial horizontal, partial vertical overlap (as shown in Figure 3(e)).
The procedure is repeated until a valid destination slot is found. Once both the
source and destination are selected, the PLACER performs an operation. Differ-
ent operations performed by the PLACER are described as follows:

Instance Move: An instance move operation is applied on a source instance
and a destination block. If the destination block is not occupied by any instance,
the source instance is simply moved to the destination block. If the destination
block is occupied by an instance, then a swap operation is performed.

Block Jump: If source window does not overlap destination window, a block
JUMP operation is performed. All blocks in the destination window are moved to
the source window, and the source block is moved into the destination window.
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Fig. 4. Floor-planning Techniques

Block Translate: If source window overlaps destination window, then a transla-
tion operation is performed. Only horizontal and vertical translation is supported
in this work. No diagonal translation is performed. Figure 3(f) and 3(g) show
a case of vertical translation. The 5 blocks found on the upper 2 rows of the
destination window (as shown in Figure 3f) are moved to the lower 2 rows of the
source window (as shown in Figure 3g). The source block is then moved to the
destination window.

Block Rotate: Rotation of BLOCKS is important when the classes of each of its
pins are different. In such a case, the size of the bounding box varies depending
on pin positions and their directions. Multiples of 90◦ rotation are allowed for
all BLOCKS with a square shape, whereas only a 180◦ rotation is allowed for
rectangular (non-square) BLOCKS. A 90◦ rotation for rectangular BLOCKS
requires both rotation and move operation; which is left for future work. The
orientation of BLOCK is used by the bounding box cost function to calculate
the exact position and direction of each of its PINS. Figure 3(f) depicts a 90◦

clock-wise rotation.
Experiments in section 5 are performed using 3 different types of floor-

plannings. (i) The blocks of same type are placed in columns positioned at equal
distance with one another as shown in Figure 4(a) (referred as Column floor-
planning, ‘C’). (ii) Blocks perform a ‘Block Jump’ and ‘Block Translate’ as shown
in Figure 4(b) (referred as Block Move floor-planning, ‘M’). (iii) Blocks are both
moved and rotated (referred as Block Move/Rotate floor-planning, ‘MR’).

4 ASIF Generation

A simplistic ASIF generation technique is explained with the help of test circuits
shown in Figure 5. Initially a target FPGA architecture is generated with max-
imum number of Blocks required by the two netlists shown in Figure 5(a) and
(b). Both netlists are individually placed and then routed on the target architec-
ture with minimum channel width. Figure 5(c) and 5(d) show the two netlists
placed and routed individually on the target FPGA. Wires used by netlist-1 are
continuous/blue, whereas wires used by netlist-2 are dotted/black. Grey wires
are the unused wires in an FPGA. For simplification, Figure 5 does not show the
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(a) Netlist-1 (b) Netlist-2 (c) Netlist-1 on (d) Netlist-2 on (e) ASIF for
FPGA FPGA Netlist-1,2

Fig. 5. Test Circuits

(a) Normal placement (b) Efficient placement

Fig. 6. Efficient Placement

inner connection details of switch box and connection box. Once placement and
routing of both the netlists is finalized on FPGA, ASIF is generated by removing
all the routing resources that remain unused by both the netlists. Figure 5(e)
shows an ASIF for the two netlists; grey switches and corresponding wires are
removed to generate an ASIF. The area of an ASIF can further decrease if the
netlists are efficiently placed and routed on the FPGA. Efficient placement tries
to place the instances of different netlists in such a way that minimum routing
switches are required in an FPGA. Later, efficient routing encourages different
netlists to route their NETS on an FPGA with maximum common routing paths.
After all netlists are efficiently placed and routed on FPGA, unused switches are
removed from the architecture to generate an ASIF. Efficient placement and
routing techniques are discussed in detail below.

4.1 Efficient Placement

Efficient placement tries to place driver instances of different netlists on a com-
mon block position, and their receiver instances on another common block. Later,
efficient routing increases the probability to connect the driver and receiver in-
stances of these netlists by using the same routing wires. Efficient placement can
be understood with the help of an example shown in Figure 6. Figure 6(a) shows
two simple, placed netlists; having minimum possible BBX placement cost. The
ASIF for these two netlists requires 4 multiplexers (mux-2). Figure 6(b) shows
the same two netlists that are placed efficiently with the same BBX cost just as
for netlists in Figure 6(a); the ASIF for these netlists requires no switch at all.
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Cost = ((W * BBX) + ((100 − W) * DC * NormalizationFactor)) / 100
Where 0 ≤ W ≤ 100, NormalizationFactor = Initial BBX / Initial DC

BBX = Bounding Box Cost, DC = Driver Count Cost
(1)

A simulated annealing algorithm with bounding box (BBX) cost function is
commonly used to place each netlist individually on an FPGA. This type of
placement is called here as an Intra-netlist placement. A new “Driver Count”
(DC) cost function is proposed here to perform efficient placement. This cost
function calculates the sum of driver blocks targeting the receiver blocks of
the architecture over all netlists. A placement based upon “Driver Count” cost
function is called here as Inter-netlist placement. Efficient placement considers a
set of netlists simultaneously and aims at optimizing both intra-netlist and inter-
netlist instance placements. The aim is to minimize the BBX cost of each netlist
and the DC cost over all the netlists. In Figure 6(a) the ASIF has a “Driver
Count” cost of 8, where each block has 2 different drivers. In Figure 6(b) the
“Driver Count” cost is 4; each block has only one driver. Efficient placement uses
a combination of both cost functions (i.e. the bounding box (BBX) cost function
and the Driver Count (DC) cost function). Since BBX cost and DC cost are not
of the same magnitude, initially both costs are adjusted by multiplying one of
them by a normalization factor. This normalization factor is determined from
the initial BBX and DC costs. Weighting coefficients are attributed to both
cost functions and a new weighted cost is computed as shown in Equation 1.
The simulated annealing algorithm later minimizes this new weighted cost. It
should be noted that as the weight for DC function is increased the DC cost
decreases, but the BBX cost increases, and vice-versa. With an increase in the
BBX cost, more routing switches are required to route a netlist, which in turn
means that more area is required. A trade-off needs to be searched to obtain
a good solution. Experiments performed on 20 MCNC benchmark circuits [12]
show that a BBX:DC weighting ratio of 4:1 gives the best area results.

Placement of multiple netlists is supported in the same way as used by cA-
SIC [5]. With multiple netlist placements, each block of the architecture can
allow mapping of multiple instances belonging to different netlists. All netlists
are placed simultaneously; the placer chooses an instance randomly from any
input netlist, and changes its position. The placer is also modified to support
“Driver Count” cost function. The differences in the BBX Cost and the DC
cost are updated incrementally. New weighted cost is calculated with the given
weights; the simulated annealing algorithm uses this new cost to decide if the
movement is accepted or rejected.

4.2 Efficient Routing

Efficient routing tries to minimize the total routing switches required in an ASIF.
This is done by maximizing the shared switches required for routing all netlists on
the FPGA. Efficient wire routing allows different netlists to route their NETS on
an FPGA with maximum common routing paths. After all netlists are efficiently
routed on FPGA, unused switches are removed from the architecture to generate
an ASIF.
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The pathfinder routing algorithm is modified to support efficient wire rout-
ing. Before we describe these changes in detail, a short introduction of the rout-
ing algorithm is presented here. An FPGA routing network is represented by
a graph with nodes connecting each other through edges; each routing wire of
the architecture is represented by a node, and connection between two wires is
represented by an edge. When a netlist is routed on the FPGA routing graph,
each NET (i.e. connection of a driver instance to its receivers) is routed using a
congestion driven “Shortest Path” algorithm. A conflict is said to occur if two
or more NETS of the same netlist share the same node (i.e. routed on the same
wire). Once all NETS in a netlist are routed, one routing iteration is said to be
completed. At the end of an iteration, there can be conflicts between different
NETS sharing the same node. The congestion parameters are updated and iter-
ation is repeated until routing converges to a feasible solution (i.e. no conflicts
are found) or routing fails (i.e. “maximum” iteration count is reached). Multiple
netlists can be routed on the FPGA by allowing nodes to be shared by multiple
NETS belonging to different netlists; however the NETS belonging to the same
netlist cannot share the same node (conflict).

Fig. 7. Efficient Routing

Figure 7 explains different cases through which efficient wire routing mecha-
nism can be implemented in the pathfinder algorithm. Graphical representation
in Figure 7(a) shows a case in which two nodes occupied by NETS of 2 different
netlists drive the same node. Figure 7(b) shows a case in which nodes occu-
pied by NETS of different netlists use different edges to drive different nodes. In
Figure 7(c), both netlists share the same node and edge to drive a single node.
Finally, Figure 7(d) shows a node shared by both netlists which targets different
nodes. In order to reduce the total number of switches, the physical represen-
tation in Figure 7 suggests that case (a) must be avoided because it increases
the number of switches (here a mux-2), whereas case (b), (c) & (d) should be
preferred. If more routing resources exist in FPGA architecture, NETS of differ-
ent netlists can easily find enough free nodes to exploit case (b). For this reason,
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in order to create more routing resources, experiments are performed in section 5
with several channel widths.

(Normal) Cost(n) = CongestionCost(n)
(Avoid) Cost(n) = (1 + Factor) * CongestionCost(n)
(Prefer) Cost(n) = (1 − Factor) * CongestionCost(n)

Where 0 ≤ Factor ≤ 0.99

(2)

The efficient routing scenarios shown in Figure 7 must be integrated into the
pathfinder algorithm. For this purpose the cost function of a node is modified
in a way similar to the time-driven cost function [4]. A particular routing is
avoided or preferred by increasing or decreasing the cost of a node. If a NET is
routed from current node to next node, the cost of next node can be calculated
with the formulas shown in Equation 2. The cost of a node normally depends
on its congestion cost. The increase or decrease in the node cost is controlled by
a constant “Factor”. The value of this factor ranges between 0 and 0.99. If an
FPGA architecture has limited routing resources, a maximum value of “Factor”
might not allow the routing algorithm to resolve all congestion problems. Con-
sequently, the value of “Factor” is gradually decreased if the routing solution
does not converge after a few routing iterations. All experimental results shown
in section 5 use the maximum value of “Factor”. The maximum routing itera-
tion count is set to 30, and the value of “Factor” decreases if routing does not
converge within the first 15 iterations.

Multiple netlists can be routed on an FPGA architecture, either in sequence
or in parallel. Sequential routing of netlists in a particular order is called here
“Netlist by Netlist” routing. Each routed netlist saves information about used
nodes and edges. Later, next netlist uses this information to perform efficient
routing by giving preference to some nodes over others. Simulation tests are
performed with netlists sequenced in different orderings (i.e. netlists ordered
in ascending or descending order, according to their size, channel width, wire
utilization and few random orders). It has been noted that, with limited routing
resources, the total area of an ASIF varies when netlists are arranged in different
sequences. However this difference in area becomes negligible as routing resources
increase.

In order to avoid the dependence on a particular order of netlists, netlists
are routed in parallel. Two parallel techniques are tried; “Iteration by Iteration”
(routing-iterations of different netlists are routed in a sequence) and “Net by
Net” (NETS of different netlists are routed in a sequence). But both techniques
give worse results than the best “Netlist by Netlist” ordering. This is because
in parallel routing techniques, routing of all netlists remains incomplete simul-
taneously. To avoid congestion, NETS keep on changing their path in different
iterations. A path that is chosen by netlist-2 because it is used by netlist-1, might
not eventually be used by netlist-1, but still remains in use by netlist-2. Thus,
due to inaccurate routing information, both parallel methods end up taking more
switches than the best “Netlist by Netlist” results.
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Table 1. Netlist Version-lut4,-lut3,-lut2

Index Netlist Mult Add In Out LUT-4 LUT-3 LUT-2
Name 16x16 20x20

(Common Elements) Version-lut4 Version-lut3 Version-lut2
1. cf fir 24 16 16 25 48 418 37 2149 2149 2149
2. rect2polar 0 52 34 40 1328 1497 3657
3. polar2rect 0 43 18 32 803 803 2280
4. cfft16x8 0 26 20 40 1511 1937 3282
5. fm receiver 1 20 10 12 910 1004 1266
6. fm receiver2 1 19 9 12 1308 1508 1987
7. cf fir 7 16 16 8 14 146 35 638 638 638
8. lms 10 11 18 16 940 965 970
9. rs encoder 16 16 138 128 537 537 537
10. cf fir 3 8 8 4 3 42 18 159 159 159

Maximum 25 52 418 128 2149 2149 3657

Table 2. Netlist Version-Gates

Index Netlist Mult Add In Out mux2 inv an12 nor2 buf and2 nmux2 nand2 zero one flip-flop
Name 16x16 20x20

1. cf fir 24 16 16 25 48 418 37 0 0 400 0 0 0 0 0 25 10 2116
2. rect2polar 0 52 34 40 962 151 68 202 40 94 0 356 1 18 1113
3. polar2rect 0 43 18 32 736 17 5 2 32 0 1 5 31 14 741
4. cfft16x8 0 26 20 40 165 587 47 883 26 75 256 735 37 10 774
5. fm receiver 1 20 10 12 0 124 374 363 0 35 10 408 22 17 374
6. fm receiver2 1 19 9 12 0 205 42 868 234 40 1 566 21 19 248
7. cf fir 7 16 16 8 14 146 35 0 0 128 0 0 0 0 0 8 11 619
8. lms 10 11 18 16 0 40 65 5 16 13 10 40 22 10 912
9. rs encoder 16 16 138 128 0 136 0 8 128 136 0 8 33 16 128
10. cf fir 3 8 8 4 3 42 18 0 0 32 0 0 0 0 0 8 3 148

Maximum 25 52 418 128 962 587 400 883 234 136 256 735 37 19 2116

5 Experimentation and Analysis

5.1 Area Model

A generic area model is used to calculate the area of FPGA and various ASIFs.
The area model is based on a reference FPGA architecture shown in Figure 1.
Areas of SRAMS, multiplexers, buffers, flip-flops and other gates are taken from
a symbolic standard cell library which works on unit Lambda. The total area is
computed as the sum of area of switch boxes, connection boxes, buffers and logic
blocks (CLBs, HBs). The area model also reports the total number of routing
wires used for routing all netlists. When an ASIF is generated, all unused routing
resources are removed. With the removal of switches, wires are connected with
one another to form long wires. Appropriate amount of buffers are added to
reduce these long wires. For example, in case of a LUT-4 based ASIF, a buffer
is added for every wire of length 16 (spanning 16 CLBs) and for every output
wire of a block driving 8 wires (i.e. having a fanout of 8).
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5.2 Benchmark Circuits

A set of opencores circuits are used for experimentations. The synthesized netlists
are passed through the software flow (described in section 2) and converted
into .NET format. Four different versions of netlists are generated (as shown in
Table 1 & 2). The number of multipliers, adders and IOs remain the same in all
the four netlists; however they differ by the type of logic blocks (either by the
size of LUTs used or by the use of gates). Finding the right mix of gates is not
always an easy task. This work attempts three different set of gates; the best set
of gates is selected. The three set of gates are (i) All the netlists are synthesized
using the minimum type of gates (which include only nand gates, zero gates,
buffers and flip-flops). (ii) All the netlists are synthesized using maximum type
of gates i.e. any gate required from the standard-cell library (iii) All the netlists
are synthesized using only commonly used gates required by the netlists; this set
of commonly used gates are manually selected from the synthesis of netlists done
in (ii). The ASIFs generated using the commonly used gates gives the minimum
area results as compared to the ASIFs generated using minimum and maximum
type of gates. Three versions of the 10 opencores circuits using LUT-2, LUT-3
and LUT-4 (along with multipliers, adders and IOs) are presented in Table 1.
Table 2 shows the 4th version of the same netlists with the commonly used gates.
Although the netlists use various sizes of multipliers and adders, their common
maximum size is selected for an FPGA/ASIF. It can also be noticed that due
to the nature of the netlists (due to the number of flip-flops), there is no major
difference between the LUT-4 version and LUT-3 version.

5.3 Results

ASIF generation techniques are applied on 4 different versions of opencores
benchmark circuits shown in Table 1 and 2. Experiments are performed with dif-
ferent floor-planning techniques, and with various routing resources. Figure 8(a)
shows area comparison of different ASIFs, and Figure 8(b) shows the number of
wire segments used by different ASIFs. The X-axis in both of these figures shows
ASIFs generated using 4 versions of the netlist, with different floor-planning tech-
niques. The letters ‘C’, ‘M’ and ‘MR’ represent the type of floor-planning used
(as described in section 3); ‘C’ stands for Column placement; ’M’ stands for Move
operation, where blocks can be jumped or translated; ‘MR’ stands for both Move
and Rotate operation. Y-axis in Figure 8(a) shows the total area of ASIFs in
Lambda square. Y-axis in Figure 8(b) shows the total number of wire segments
(routing tracks) used by different ASIFs. It can be noted in Figure 8(a) that the
area of an ASIF decreases as the channel width (routing resource) increases. This
is because, the availability of more routing resources increase the probability to
prefer case 7(b), (c) and (d), which in turn increase the probability to avoid 7(a);
thus less number of switches are used. However as the channel width increases,
the number of wires also increases (shown in Figure 8(b)). The number of wires
can play a pivotal role in the area of ASIF if it dominates the logic area. This
can happen if an ASIF is generated for a large number of netlists, the layout of
an ASIF is generated in a smaller process technology, or different blocks of an
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(a) Area comparison for different ASIFs (b) Wire count comparison for different ASIFs
with varying channel widths with varying channel widths

(c) Area comparison for ASIFs with different (d) Wire count comparison for ASIF with different
Placement/Routing(P/R) (i) Normal P/R Placement/Routing(P/R) (i) Normal P/R

(ii) No wire sharing (iii) Efficient P/R (ii) No wire sharing (iii) Efficient P/R

(e) ASIC vs. ASIFs with varying LUT (f) Percentage area distribution
sizes and number of netlists for FPGAs and ASIFs

Fig. 8. Experimental Results

ASIF are designed in full-custom. In such a case, an ASIF with smaller channel
width can give a trade-off solution.

From Figure 8(a), it can be noticed that ASIF areas come in the following
order : ASIFArea(LUT-4) > ASIFArea(LUT-2) > ASIFArea(LUT-3) > ASI-
FArea(Gates). This effect is mainly due to the area of logic blocks in ASIFs.
Because of the nature of netlists (shown in Table 1), the maximum number of
LUT-4 in version-lut4 are same as that of LUT-3 in version-lut3; thus ASIF
using version-lut3 is smaller than ASIF using version-lut4. On the other hand,
the number of LUT-2 in version-lut2 are so much greater than number of LUT-3
in version-lut3 that (despite LUT-2 being smaller in size than LUT-3) the total
logic area in an ASIF using version-lut2 bypasses the logic area occupied by the
ASIF using version-lut3. The total logic area of ASIF in version-gates is much
smaller than logic area in version-lut3; however a gates based ASIF uses more
routing resources than used by LUT-3 based ASIF. But, eventually gates based
ASIF gives the best result in terms of area.
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The effect of floor-planning can also be noticed in Figure 8(a). ASIFs for
LUT-4, LUT-3 and LUT-2 based netlists show only a slight area gain (between
0.5% and 6%) with Move (‘M’) and Move/Rotate (‘MR’) floor-planning over
Column floor-planning (‘C’). However, in case of gates version, a considerable
gain (between 8% to 21%) is achieved with Move floor-planning ‘M’. This is
because the gates version of netlists uses 13 different types of blocks, whereas
LUT based version uses only 3 types of logic blocks. The floor-planning of 13
types of blocks in columns greatly restricts the placements of different instances
of a netlist, which in turn requires more routing resources to connect with one
another. The Block Move/Rotate floor-planning did not show much better area
results over Move floor-planning.

Figure 8(c) and (d) compare three different ASIF generation techniques. The
comparison is done for 10 netlists with FPGA floor-planning attained through
block Move/Rotate operation. These techniques differ in the placement and
routing of netlists on FPGA, before being reduced to ASIF. The section (i) in
Figure 8(c)(d) uses normal placement and routing; (iii) uses efficient placement
and routing. Section (ii) uses normal placement; whereas routing of each netlist is
performed using different channel tracks (i.e. no switch boxes and routing tracks
are shared amongst different netlists; only logic blocks and connection boxes
are shared). Consequently, the routing channel width used by (ii) is the sum of
channel widths used by all the netlists; whereas (i) and (iii) share the routing
channels for all netlists. The area of an ASIF shown in (iii) is 33 to 51 percent
better than (i), and 6 to 9 percent better than (ii) for four different netlist ver-
sions at maximum channel widths. The slight improvement of (iii) over (ii) is
due to efficient placement, which places several instances of different netlists on
the same blocks of the architecture; later efficient routing facilitates the use of
common switches and wires to drive the same blocks; thus reducing the number
of switches. Figure 8(d) shows that the number of wires used in (i) are very less
as compared to (ii) and (iii); the wires used in (ii) remains relatively constant;
the wires used in (iii) change with different channel widths. In an ASIF for large
number of netlists, the wires used by (ii) can become so huge that the overall
area of chip becomes wire dominant. In such a case, an ASIF shown in (iii) can
give a trade-off solution using smaller channel widths.

Figure 8(e) compares ASIC and ASIF with various number of netlists (the or-
der of netlists in Table 1 is respected). The best achieved ASIFs (generated with
maximum channel width and Block Move/Rotate floor-planning) are compared
here with the sum of areas of ASICs of the netlists. The X-axis represents the
number of netlists used in the experiment; 1 means that only “cf fir 24 16 16” is
used, 2 means that “cf fir 24 16 16” and “rect2polar” are used, and so on. The
Y-axis presents the area in symbolic units (Lambda square). If area occupied by
routing wires is not dominant, a LUT-3 based ASIF for 10 netlists is only 24%
larger than the sum of areas of ASICs, whereas a gates based ASIF is 3% smaller
than the sum of areas of ASICs for 10 netlists. The sum of ASIC areas is slightly
smaller than for the gates based ASIF with 7 or less netlists. Comparison with
an FPGA (not shown in Figure) shows that a LUT-3 based ASIF is 85% and



106 H. Parvez, Z. Marrakchi, and H. Mehrez

a gates based ASIF is 89% smaller than a Heterogeneous LUT-3 based, single
driver, uni-directional FPGA using a channel width of 12.

Figure 8(f) shows the percentage area distribution in FPGA and ASIFs. In
a LUT-3 based FPGA, using a channel width of 12, only 9.3% of the area is
taken by logic area (CLBs, Multipliers and Adders), whereas the remaining area
is taken by the routing area (switch boxes, connection boxes and buffers). In
ASIFs, the routing area is decreased down to such an extent that the logic area
occupies a very important percentage of the total area; in gates version of ASIF,
logic area takes 50% of area for a channel width of 80; in LUT-3 version of ASIF,
logic area takes 64% of area for a channel width of 80.

6 Mapping Application Circuits on an ASIF

An ASIF retains limited routing resources of an FPGA to execute only a known
set of circuits. However, these limited resources in an ASIF might be exploited to
execute any new circuit. Though an ASIF is unable to map the same variety of
circuits as an FPGA does; it might be used to map some elementary circuits, or
slightly modified versions of the same circuits used in the generation of an ASIF.
One of the problems to map a new netlist on an ASIF is to find an appropriate
placement with sufficient routing paths to route all signals. It is not sure if such
a placement solution exists in an ASIF or not. Even if few routable placement
solutions exist, the currently used heuristic based placement algorithms do not
guarantee to find a placement solution from a solution space that contains few or
maybe only one placement solution. In this regard, we attempted the simulated
annealing based placement algorithm to re-place the same set of netlists on an
ASIF which are used in its generation. The placement algorithm needs to find
a placement of the new netlist without increasing the “Driver Count” cost (see
section 4.1) of the ASIF. However, the algorithm is unable to find a routable
placement solution in limited time.

This section presents an elementary version of a branch-and-bound [9] based
placement algorithm which is able to re-place the same set of circuits on their
own ASIF. The same algorithm is later used to map a simple new netlist on
an ASIF. The main idea is to attempt placement of all instances of a netlist on
all possible BLOCK positions of the ASIF. Although, limited routing resources
decrease inter-BLOCK connectivity in an ASIF; attempting all possible combi-
nations can however be an extremely time consuming task. For that reason, the
placement combinations for instances of a netlist are systematically decreased.
The algorithm also ensures that the placement of a driver and its receiver in-
stances are only attempted on interconnected BLOCKS.

The algorithm initially extracts BLOCK connectivity from an ASIF (i.e. which
driver PINS of a BLOCK are routable to which receiver PINS of a BLOCK).
Connectivity information is also extracted for the netlist that is attempted to be
mapped on the ASIF. The connectivity information of the ASIF and the netlist
are used to generate an exhaustive list of BLOCKS (called here as maplist)
on which each instance of a netlist can be mapped. For each instance ‘i’, the
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Table 3. Placement Execution Time (in seconds)

Index Netlist ASIF ASIF FPGA
Name (LUT-3) (Gates) (LUT-3)

1. cf fir 24 16 16 180 151 445
2. rect2polar 11589 173 263
3. polar2rect 182 117 105
4. cfft16x8 ∞ 122 340
5. fm receiver 922 81 103
6. fm receiver2 1083 51 183
7. cf fir 7 16 16 66 60 57
8. lms ∞ 357 69
9. rs encoder 193 69 58
10. cf fir 3 8 8 39 34 11
11. scan path(900 (42%) CLBs) 202 - -

maplist is further reduced by recursively attempting to place its driver and
receiver instances on the BLOCKS found in their own maplist and validating if
routing connection exists between the placed instance ‘i’ and its placed driver
and receiver instances. A BLOCK is removed from the maplist of an instance ‘i’
if any of its Nth level driver and receiver is unable to find any routable BLOCK
position. Once the maplist is finalized for all the netlist instances, a recursive,
tree-pruning based algorithm attempts placement of all instances in a netlist
over all their possible BLOCK positions on an ASIF.

The proposed algorithm is used to find a routable placement solution for 10
opencores circuits which are used to generate the ASIF. Execution time for map-
ping a LUT-3 and gates version netlists on their respective ASIFs is shown in
Table 3. For the sake of comparison, the execution time of simulated anneal-
ing based placement algorithm to map netlists on a LUT-3 based FPGA is also
shown in the table. The execution time of this algorithm mainly depends on the
number of possible BLOCK positions on which each instance can be mapped. A
generalized BLOCK such as a Look-Up-Table tends to give more BLOCK po-
sitions to a netlist instance than a specialized BLOCK such as MULT or AND
gate etc. For this reason, a LUT-3 based ASIF takes more execution time com-
pared to a gate based ASIF. Due to the same reason, the algorithm is unable to
find a routable solution for 2 LUT-3 version netlist in limited time. However, an
ASIF with a generalized BLOCK is more suitable to map new circuits. A simple
scan-path circuit passing through 42% of the CLBs has also been successfully
mapped on an LUT-3 version ASIF for 10 opencores circuits. A scan-path circuit
passing through all CLBs is not possible due to the limited inter-CLB connec-
tions. The mapping of more complex circuits is still in progress. However, the
target netlist modification appears to be inevitable to map new netlists on an
ASIF. The netlist modification may include addition of buffers and instance
replication to better adapt the new netlist according to ASIF characteristics.
Besides, there still remains a lot of room for optimization at the algorithmic and
implementation level. These optimizations can further decrease the execution
time to map new or modified circuit on an ASIF.
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7 Propositions for Layout Generation

No physical layout has been performed yet for an ASIF. All area comparisons
are done using an area model. However, few layout generation methodologies
are proposed here. After the definition of an ASIF, a behavioral VHDL model
of an ASIF can be generated; this model can be placed and routed using any
ASIC CAD flow tool. The tool can be restricted to use the same floor-planing
as performed earlier by the PLACER. Besides, hardware description of an ASIF
can also be integrated as an embedded module into larger designs.

The layout of an ASIF can also be generated using a tile-based layout method-
ology. However due to irregular routing network of ASIFs, there can be large
number of tiles with different sizes and characteristics. Consequently, the width
of column of tiles can be reduced only to the maximum width of any tile in that
column; and the height of row of tiles can be reduced only to the maximum
height of any tile in that row. In such a case, instead of wasting free area in
smaller tiles, some routing connections can be wisely added to increase the flexi-
bility of an ASIF. This added flexibility in ASIFs might increase the probability
of mapping a new circuit on it.

The layout of an ASIF can be facilitated by uniformly reducing an FPGA
to an ASIF (i.e. all tiles in an FPGA or a group of FPGA tiles are reduced in
a uniform manner). Uniform reduction of an FPGA means that if a switch is
removed from a tile, the same switch is removed from all the tiles in that group.
In this way, all reduced FPGA tiles in a group can be easily abutted together
to generate an ASIF layout. Such an ASIF might not be as area efficient as
presented in section 5; however this ASIF may lead to easier layout generation,
easier full-custom layout of the limited number of tiles, and maybe (due to its
uniformity) easy mapping of new application circuits. The amount of area losses
incurred with such a layout generation technique, and its effects on the flexibility
of an ASIF needs to be explored.

8 Conclusion

This paper presents an Application Specific Inflexible FPGA (ASIF) using het-
erogeneous logic blocks. The floor-planning of different hard blocks is performed
to achieve better area gains. A Heterogeneous-ASIF for a group of 10 opencores
circuits is compared with an FPGA and with the sum of areas of ASICs for the
given set of 10 netlists. It has been shown that a Heterogeneous ASIF containing
multipliers, adders and LUT-3 is 85% smaller than a LUT-3 based FPGA, and
only 24% larger than the sum of areas of standard-cell based ASICs for 10 open-
cores netlists. The Heterogeneous ASIF containing multipliers, adders and hard
logic gates is 89% smaller than a LUT-3 based FPGA, and 3% smaller than the
sum of ASICs for the 10 opencores netlists. A new CAD flow is also presented
which can map new application circuits on an ASIF. In future we intend to im-
prove this CAD flow to support mapping of more complex new circuits on an
ASIF. We would like to find area-delay tradeoffs for ASIFs. We also intend to
explore different automatic layout generation techniques for ASIFs.
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Abstract. The SIMD parallel systems play a crucial role in the field of
intensive signal processing. For most the parallel systems, communica-
tion networks are considered as one of the challenges facing researchers.
This work describes the FPGA implementation of two reconfigurable and
flexible communication networks integrated into mppSoC. An mppSoC
system is an SIMD massively parallel processing System on Chip de-
signed for data-parallel applications. Its most distinguished features are
its parameterization and the reconfigurability of its interconnection net-
works. This reconfigurability allows to establish one configuration with
a network topology well mapped to the algorithm communication graph
so that higher efficiency can be achieved. Experimental results for mpp-
SoC with different communication configurations demonstrate the per-
formance of the used reconfigurable networks and the effectiveness of
algorithm mapping through reconfiguration.

Keywords: Reconfigurable architectures, communication networks,
SIMD processors, parallel architectures, FPGA.

1 Introduction

Embedded image or signal processing applications require high performance sys-
tems and highly integrated implementation solutions. They are mostly developed
on embedded systems with high performance processing units like DSP or Sin-
gle Instruction Multiple Data (SIMD) processors. While SIMD systems may
have been out of fashion in the 1990s, they are now developed to make effective
use of the millions of transistors available and to be based on the new design
methodologies such as IP (Intellectual Property) reuse. Nowadays we have a
great variety of high capacity programmable chips, also called reconfigurable
devices (FPGAs) where we can easily integrate complete SoCs architectures for
many different applications. Due to the inherent flexibility of these devices, de-
signers are able to quickly develop and test several hardware(HW)/software(SW)
architectures. In this paper, we used Altera [16] reconfigurable devices to imple-
ment the mppSoC (massively parallel processing System on Chip) architecture
and get experimental results. Our contribution to SIMD on-chip design domain
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consists in the implementation at an RTL abstraction level of a parameterized
system with flexible reconfigurable networks: one dedicated to neighboring com-
munications and one to assure point to point communications. Reconfiguration
is accomplished through instructions. The designer can choose the appropriate
mppSoC configuration to execute a given application.

This paper is structured as follows. Section 2 presents several SIMD archi-
tectures and focuses on the implementation of their interconnection networks.
Section 3 briefly introduces the mppSoC platform. Section 4 details the integra-
tion of reconfigurable communication networks in the mppSoC design. Section
5 discusses some algorithms varying the used interconnection network. Finally,
Section 6 summarizes the contribution with a brief outlook on future work.

2 Related Works

Due to rapid advancement in VLSI technology, it has become feasible to con-
struct massively parallel systems, most of them are based on static interconnec-
tion structures as meshes, trees and hypercubes. Typically, an SIMD
implementation [3] consists of a Control Unit, a number of processing elements
(PE) communicating through an interconnection network (ICN), which often are
custom-made for the type of application it is intended for. If the ICN does not
provide direct connection between a given pair of processors, then this pair can
exchange data via an intermediate processor. The ILLIAC IV [5] used such an
interconnection scheme. The ICN in the ILLIAC IV allowed each PE to commu-
nicate directly with 4 neighboring PEs in an 8x8 matrix pattern. So, to move
data between two PEs, that are not directly connected, the data must be passed
through intermediary PEs by executing a programmed sequence of data transfers
[4]. This can lead to excessive execution time if more irregular communications
are needed. The same problem of communication bottleneck is encountered with
other architectures like [10] and [13], which may cause a significant increase in the
cycle count of the program. Other new SIMD architectures have been proposed
[7] [14] but they don’t perform irregular communications since they integrate
only a neighborhood ICN. A nearest neighbor ICN is good for applications where
the communications are restricted to neighboring PEs. However, there are sev-
eral problems which require non local communications. Some massively parallel
machines [15] [8] have a scheme to cover such communication patterns. But, they
integrate a static ICN. The problem is that different applications might have dif-
ferent demands for the architecture. Several reconfigurable SIMD architectures
have appeared. The Morphosys [12] proposed dynamically reconfigurable SoC
architecture. It contains a sophisticated programmable tri-level ICN. This gives
efficient regular applications, but unfortunately non neighbours communications
seem to be tedious and time consuming. RC-SIMD [2] is a reconfigurable SIMD
architecture based on two segmented unidirectional communication busses. It
is powerful in term of neighboring communications even between distant-PEs,
however not efficient for irregular communications. A dynamically reconfigurable
SIMD processor array is also described in [1]. It includes a two-dimensional array
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of 64x64 identical PEs. It is dedicated to compute programmable mask-based
image processing with only support of small local neighboring operations.

Previous proposals appear incomplete from an application perspective. While
some architectures are powerful in term of inter-PE communication and some of
them are reconfigurable, they can not perform non local operations efficiently.
These parallel architectures are not flexible nor scalable to support the require-
ments of different data parallel applications. The proposed system extends these
works by using flexible reconfigurable communication networks based on para-
metric architecture. In the following, we propose a model of a parallel SIMD
system for SoC named mppSoC and we describe its different components.

3 MppSoC Design

MppSoC is an SIMD massively parallel processing System on Chip built within
nowadays processors. It is composed of a number of 32-bit PEs, each one attached
to a local memory and potentially connected to its neighbours via a regular
network. Furthermore, a massively parallel Network on Chip, mpNoC, is able to
perform irregular communications. The whole system is controlled synchronously
by an Array Controller Unit (ACU). The ACU and PEs are built from the same
processor IP (the miniMIPS [17] in this work). The ACU is a complete processor,
having 5 stages of pipelining, whereas the PE is a reduced one having only the 3
last execution units. This processor building methodology has a significant gain
allowing the integration of a large number of PE on a chip. The ACU transfers
parallel arithmetic and data processing instructions to the processor array, and
handles any control flow or serial computation that cannot be parallelized. The
overall structure of the mppSoC architecture and pipeline is shown in Fig. 1.
The pipelined mppSoC architecture has been described in previous papers [11].
Since mppSoC is designed as a parametric architecture, the designer has to set
some parameters in order to generate one configuration on FPGA such as the
number of PEs, the memory size and the topology of the neighborhood network
if it exists.

The mppSoC system is programmed by a single instruction stream partitioned
into sequential and parallel instructions. The mppSoC instruction set is derived
from the IP processor instruction set used in the design which is modified by
adding parallel instructions. Some specific instructions control the two networks,
allowing data transfer. Below, we will detail the mppSoC networks.

4 MppSoC Communication Networks

In order to improve the parallel system performances, and to satisfy the require-
ments of different data parallel applications we propose flexible and reconfig-
urable communication networks. Availability of such communication is critical
to achieve high performance. MppSoC networks are partitioned into two types:
regular and irregular networks. The designer can use none, one or both routers
to construct the needed mppSoC configuration.
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Fig. 1. MppSoC Design

4.1 Reconfigurable Massively Parallel Network on Chip

The mpNoC IP is an irregular network performing point to point communica-
tions. It accomplishes three main functions in the mppSoC system. Firstly, the
mpNoC is able to connect, in parallel, any PE with another one. Secondly, the
mpNoC could connect the PEs to the mppSoC devices. Thirdly, it is able to
connect the ACU to any PE. The mpNoC allows parallel I/O transfers solving
the need of a high bandwidth required by data parallel applications. It consists
mainly of a Mode Manager responsible of establishing the needed communica-
tion mode and an interconnection network assuring data transfer. MpNoC input
and output ports are connected to switches controlled by the ACU, as shown
in Fig. 2. Theses switches allow to connect either the PEs or the I/O devices
and the ACU to the mpNoC, depending on the chosen communication mode
issued from the ACU to the Mode Manager. In fact, the communication mode
could be set at runtime through a mode instruction, when executed the corre-
sponding connections are activated. The mpNoC reconfiguration is performed
in two levels. The first level is at compile time where the designer chooses to
integrate mpNoC with a selected interconnection network. The second level is
during real-time where the communication protocol between the different devices
can be altered based on the mode instruction. The proposed mpNoC is scalable
according to the number of PEs connected to the network. It integrates an in-
terconnect, responsible of transferring data from sources to destinations, which
may be of different types (bus, crossbar, multi-stages, etc). Different networks
are provided in a library needed when designing mppSoC. Allowing the designer
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Fig. 2. mpNoC integration into mppSoC

to choose the internal network increases run-time performances. The intercon-
nect interface is generic in order to support a configurable size (4x4, 32x32 for
example). While targeting an mpNoC integration into mppSoC, the number of
mpNoC sources and destinations is equal to the number of PEs. When using
mpNoC, we integrate also a controller to ensure synchronization between PEs
since it is the most SIMD important feature. The mpNoC controller verifies if
data transferred by the sender is received by the corresponding receiver. At the
end of the transmission, the mpNoC controller sends an acknowledgment to the
ACU in order to continue executing instructions. The ACU does not issue a new
instruction until the communication occurs.

4.2 Reconfigurable Neighbourhood Network

In most data parallel applications, processors work on neighboring data and
need to communicate fast among themselves for high performance. Thus a neigh-
bourhood network is also integrated in the mppSoC system. Most common data
parallel algorithms need a broad range of processor connectivities for efficient ex-
ecution. Each of these connectivities may perform well for some tasks and badly
for others. Therefore, using a network with a selective broadcast capability, var-
ious configurations can be achieved, and consequently, optimal performance can
be achieved. We propose different regular network topologies: linear array, ring,
mesh, torus, and xnet (a two dimensional toroidal with extra diagonal links).
To change from one topology to another the programmer has to use the mode
instruction with the appropriate topology value in order to assure the appropri-
ate connections. Five values are defined to specify the provided 5 topologies. In
fact, if selected, the neighborhood network with a given topology is generated at
compile time. Then the different neighboring links could be changed at run-time.
To achieve a high reusability and reconfigurability, the neighborhood network
consists of routing elements or switches that are connected to the PEs. Their
interface is equipped with 9 ports or interfaces: north, east, south, west, north
east, north west, south east, south west and local. The local one is the port that
communicates to its attached PE. The switcher activates the appropriate port to
transfer data to the needed destination. The way it forwards the data depends on
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the executed communication instruction. The network is controlled by the ACU
through mode instruction. At every mode instruction, the switches determine
a new network topology for the system. In a sense, this is an extension of the
SIMD paradigm because for each instruction, the data manipulating the connec-
tivity are controlled in exactly the same way as the data for computing. Circuit
switching was adopted to establish the connection, and as a result, a very long
path can be established in a large system. In the regular communication, we can
specify the distance between PEs on the same row or column or diagonal (in the
case of Xnet). The distance defines the number of paths needed to achieve the
communication between the PE sender and the other receiver. Consequently,
one PE can communicate, not only to his direct neighbour, but also to more
distant PE. The nearest neighbourhood network is different from the mpNoC,
since it is faster with a less significant communication overhead. In this case,
all PE communications take place in the same direction at the same time. Since
each interconnection function is a bijection, this transfer of data occurs without
conflicts. Sending and receiving data through networks are managed by different
communication instructions that will be described in the following subsection.

4.3 Communication Instruction Set

We identify different instructions to program an mppSoC system: processor in-
structions, micro instructions and specific instructions which are encoded from
the processor instructions. Communication instructions, MODE, SEND and RE-
CEIVE, are examples of specific ones. They may be used in different ways to
ensure various functions.

MODE instruction serves to establish the needed communication mode in
the case of mpNoC or the network topology in the case of neighborhood commu-
nication. It relies on the store SW instruction: SW cst, @ModeManager, where:

– @ModeManager = ”0x00009003” for mpNoC and ”0x00009004” for the neigh-
borhood network.

– cst is the chosen defined value that corresponds to the mpNoC communica-
tion mode or the topology of the neighborhood network.

The mode values are defined in the mppSoC configuration file. After setting the
required interconnection, data transfers will occur through SEND and RECEIVE
instructions.

SEND instruction serves to send data from the sender to the corresponding
receiver, based on the SW instruction: SW data, address. The 32bits address can
be partitioned in different fields depending on the established mpNoC mode. It
contains in case of:

– PE-PE Mode: the identity of the PE sender, the identity of the PE receiver
and the PE memory address;

– PE-ACU Mode: the identity of the PE sender and the ACU memory address;
– ACU-PE Mode: the identity of the PE receiver and the PE memory address;
– PE-Device Mode: the identity of the PE sender and the device address;
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– ACU-Device Mode: the device address;
– Device-PE Mode: the PE memory address;
– Device-ACU Mode: the ACU memory address.

In the case of regular communication, address contains the distance, the direction
and the memory address. There are eight constant direction values, defined in
the mppSoC configuration file, that the programmer can specify to denote the
eight possible router directions.

RECEIVE instruction serves to obtain the received data, relying on the load
memory instruction: LW data, address. It analogously takes the same address
field as SEND instruction.

According to his application, the programmer can use all instruction types
to satisfy his needs. In the next section, we will present experimental results to
validate the proposed mppSoC design.

5 Experiments

In this work, we have executed 3 algorithms: Matrix Multiplication (MM), re-
duction and picture rotation algorithms, written in MIPS assembly code. In fact,
the GNU MIPS assembler has been modified to generate a binary which can be
directly integrated in the bit stream of the FPGA mppSoC implementation. The
assembly code can be then executed by mppSoC. Each configuration, operating
at 50 MHz frequency, is generated in VHDL code and prototyped on the Altera
Stratix 2S180 FPGA with 179k logic elements. The proposed system can be ef-
ficiently implemented also in any other FPGA family. Different interconnection
networks are evaluated and compared with the implemented algorithms. Exper-
imental results were obtained using the ModelSim Altera simulator to simulate
and debug the implemented design and the Quartus II which is a synthesis and
implementation tool [16] used also to download the compiled program file onto
the chip.

5.1 Matrix Multiplication

One of the basic computational kernels in many data parallel codes is the mul-
tiplication of two matrices (C=AxB). For this application we have implemented
a 64PE mppSoC with mpNoC using two ICN fixed at compile time: a shared
bus and a crossbar. As the space of the FPGA HW is limited, 64 is the highest
number of PEs that we could integrate on the Stratix 2S180 when integrating
the two mppSoC networks. They are arranged in 8x8 grid. The matrices A and
B are of size 128x128, partitioned into 8 submatrices A(i,j) and B(i,j), each of
size 16x16. Each PE is attached to a 1 Kbyte local data memory. To perform
multiplication, all-to-all row and column broadcasts are performed by the PEs.
The following code for PE(i,j) is executed by all PEs simultaneously:
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for k=1 to 7 do

send A(i,j) to PE(i,(j+k) mod 8) /* East and West data transfer */

for k=1 to 7 do

send B(i,j) to PE((i+k) mod 8,j) /* North and South data transfer */

for k=0 to 7 do

C(i,j)=C(i,j)+A(i,k)*B(k,j) /* Local multiplication of submatrices */

Fig. 3 depicts the FPGA resource occupation and the execution time results.
We validated that the architecture based on the crossbar interconnect IP is
more efficient but occupies a large area on the chip. In fact, the full crossbar
has the particularity to perform all permutations. However, its space on a chip
is quadratic depending on the number of inputs and outputs. On the other
hand, busses are relatively simple and the HW cost is small. However, we see
that the execution time when using a bus is over two times higher than when
using a crossbar. This is due to the fact that in a single bus architecture, one
interconnection path is shared by all the connected PEs so that only one PE can
transmit at a time. We have also tested the use of the neighborhood network (2D
mesh selected at compile time) compared to mpNoC. In the mppSoC program we
use the mode instruction with the needed topology value in order to change from
one topology to another. Fig. 4 shows a comparison between 4 different ICN. As
expected, the architecture based on regular network is the most effective for MM
application. These tests show also that the torus network is the most appropriate
neighbourhood network.

Fig. 3. Experimental results of running a MM algorithm on 64-PE mppSoC

Fig. 4. Execution time results using different communication networks
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5.2 Reduction Algorithm

The reduction algorithm [8] presents one basic image processing operations.
When reduction computation is conducted in parallel, it is known that the com-
putation can be completed with the minimum number of steps using a binary-
tree representation as shown in Fig. 5. To implement the reduction algorithm we
use the recursive doubling procedure, sometimes also called tree summing. This
algorithm combines a set of operands distributed across PEs [9]. Consider the
example of finding the sum of M numbers. Sequentially, this requires one load
and M-1 additions, or approximately M additions. However, if these M num-
bers are distributed across N = M PEs, the parallel summing procedure requires
log2(N) transfer-add steps, where a transfer-add is composed of the transfer
of a partial sum to the PE and the addition of that partial sum to the PE’s
local sum. The described algorithm (sum of 16384 integers) is executed on mpp-
SoC configurations with 64 PEs (2D and linear) and with topologically distinct
interconnection networks (mesh/array neighbourhood network and a crossbar
based mpNoC). Execution performances are then compared (Fig. 6). We note
that the architecture of the used parallel system has also a great impact on the
speedup of a given algorithm. We notice that the mppSoC based on the regu-
lar network is the most effective for this type of application. In the case of a
completely-connected topology, the speedup is six times lower than when using
a mesh inter-PE network. The two regular topologies, mesh as well as linear
array, give approximately the same execution time. Indeed, the time obtained

Fig. 5. Parallel reduction computation using four processing elements

Fig. 6. Execution time on different mppSoC configurations
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Fig. 7. Picture rotation

Fig. 8. System scalability/performance running a picture rotation algorithm on a
Stratix 2S180

with a linear router is slightly lower than with a mesh router. This is due to
the additional communication overhead introduced by the mesh router. So, the
linear neighborhood network is the most effective of the reduction algorithm.
These different results show also the flexibility of the mppSoC architecture and
the high efficiency achieved by establishing a well mapped network topology to
one algorithm.

5.3 Picture Rotation

In this algorithm, we realize 17161-pixel picture rotations. The resulting Lena
pictures of Fig. 7 were provided by an execution of binary programs on our
mppSoC FPGA implementation. The image rotation requires a non homoge-
neous data movement and I/O throughput requirements. That’s why, we have
used a crossbar based mpNoC to assure communications and to perform parallel
I/O for reading and displaying the resultant image on a VGA screen. So the
interconned network in this case is the mpNoC. Selective broadcast capability in
this network is enabled by the mode instruction used in the program. We have
also tested different number of PEs with variable memory size. Fig. 8 presents
synthesis and execution results on various mppSoC designs. We notice a com-
promise between area and execution time. The results prove the performance of
the proposed design. Indeed, when increasing the number of PEs (multiplying
by 8) the speedup increases (5 times higher) and the FPGA area is multiplied by
a factor of 4 which is an acceptable rate. The results show that the FPGA based
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implementation is inexpensive and can easily be reconfigured as new variations
on the algorithm are developed.

From all previous experiments we demonstrate the effectiveness of reconfig-
urable and parametrical networks in a massively parallel system. These networks
can perform neighboring as well as irregular communications to satisfy a wide
range of algorithm communication graphs. The designer has to make the right
choice between the two networks, depending on the application, in order to op-
timize the whole system performances. In fact, the flexibility and configurability
of the mppSoC architecture, in particular its interconnection networks, allow the
designer to generate the most appropriate architecture satisfying his needs. It is
vital to have a flexible interconnection scheme that can be applied to the system
design. The parameterization of the mppSoC is also a key aspect to easily tailor
the architecture according to HW as well as SW requirements. The performances
of the described system is found better than other architectures. Compared to
the ASC processor [10] for example, our mppSoC achieves higher performances
(40.48 Mhz with 64 PEs compared to 26.9 Mhz with 50 PEs in the ASC). The
mppSoC PEs are 32bits instead of 8bits and contain 3 pipeline stages instead
of 4. Compared to the SIMD architecture described in [13], mppSoC is more
powerful since it includes a reconfigurable neighboring network rather than a
static 2D torus network and it can respond to the irregular communications. In
[13], data transfers are based on a global bus which may cause some excessive
time since the bus has a limited bandwidth. In term of speed, compared to the
H-SIMD architecture [6] mppSoC shows powerful results. In fact, for matrices
of size less than 512, the H-SIMD machine is not fully exploited and does not
sustain high performance. However, mppSoC is parametric and can be fitted in
small as well as large quantity in one FPGA. With a matrix size of 200 the H-
SIMD makes 7ms to achieve the computation compared to 5ms obtained when
executing multiplication of matrices of size 128 on mppSoC. This comparison
prove the high performance and the efficiency of mppSoC.

6 Conclusion

This paper presents a configurable SIMD massively parallel processing system
prototyped on FPGA devices. MppSoC can be parameterized to contain several
PEs with variable memory size. It is characterized by its reconfigurable communi-
cation networks: a neighborhood network and an mpNoC dedicated to irregular
communications. Including or not an mpNoC in a given mppSoC design is a
trade-off between the cost in term of silicon and the advantage in term of per-
formance and flexibility. To evaluate the mppSoC system we have implemented
different sized architectures with various configurations for three representative
algorithms. The flexibility of the architecture allows to match the design with
the application and to improve the performances and satisfy its requirements.
Future work deal with the choice of the processor IP. The ACU for example is
not reconfigurable in itself but can be replaceable by an equivalent soft processor
or a self designed ACU. The PE could be also obtained by reducing the ACU.
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Our aim is to test other processors with the mppSoC design and assure their
reconfigurability. The ultimate goal is to develop a complete tool chain facilitat-
ing the mppSoC implementation. The nature of the targeted applications may
be the decisive element in the design choice.
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Abstract. For ultra-low-power sensor networks, finite state machines are used
for simple tasks where the system’s microprocessor would be overqualified. This
allows the microprocessor to remain in a sleep state, thus saving energy. This
paper presents a new architecture that is specifically optimized for implement-
ing reconfigurable Finite State Machines: Transition-based Reconfigurable FSM
(TR-FSM). The proposed architecture combines low use of resources with a
(nearly) FPGA-like reconfigurability.1

1 Introduction

Wireless sensor networks are applied in numerous fields, including building automa-
tion, automotive systems, container tracking, and geological surveillance. To ensure
autonomous operation over a long period of time (up to several years), the power con-
sumption of such a node must be very low (some μW). A possible strategy to reduce
power consumption is to keep the microprocessor (CPU) in an inactive low power mode
as long as possible, and to use a separate, hard-wired Finite State Machines (FSMs) for
simple, periodic tasks such as:

– Power management by switching on (or off) peripheral units like sensors, A/D con-
verters and the microprocessor itself.

– Controlling the periodic measurement of sensor values, A/D conversion and deci-
sion upon further processing.

– Handling communication at physical and even MAC layer in wake-up receivers.

Although a hard-wired FSM permits significant reduction of power consumption, its
application is restricted by the fact that it is not programmable as the firmware is. This
restricts the applicability of FSMs to tasks that don’t have to be changed later on. The
exertion of programmable logic such as an embedded FPGA would permit a tradeoff,
but unfortunately introduces a large area and power overhead [1].

In this paper, a new architecture for implementing re-configurable FSMs is pre-
sented: Transition-based Reconfigurable FSM (TR-FSM). TR-FSMs have a low logic,
wiring and configuration effort and are thereby applicable in ultra-low power applica-
tions while offering re-configurability.

1 This work is conducted as part of the Sensor Network Optimization through Power Simula-
tion (SNOPS) project which is funded by the Austrian government via FIT-IT (grant number
815069/13511) within the European ITEA2 project GEODES (grant number 07013).

P. Sirisuk et al. (Eds.): ARC 2010, LNCS 5992, pp. 122–133, 2010.
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The rest of the paper is organized as follows: The following section surveys various
hardware implementations of FSMs. Then the new approach is introduced and imple-
mentation details are described. This is followed by an analysis of the architecture and
its advantages compared to FPGAs, and a conclusion.

2 Related Work

For the implementation of an FSM in an ASIC, synthesis tools use logic minimization
algorithms to find optimal combinational circuits which realize the state transfer func-
tion and the output function. An alternative implementation is to read from a ROM to
retrieve the results of the two functions. Both, the input signals and the state signals are
used as address inputs. The data output of the ROM is split into the FSM output signals
and the next state signals, where the latter are fed back to the inputs through a clocked
register [2].

A RAM in read mode is a simple approach to realize a reconfigurable FSM. By
writing the RAM content to a specific set of data the FSM functions are specified. The
disadvantage of the memory approach is the required size. For nI input signals, nS

state bits and nO output signals, the memory has to offer 2nI+nS words with a width of
nS + nO bits.

The first reconfigurable logic structures were implemented as sum-of-product term
structures in PALs and PLAs [3]. Another widely used circuit design for reconfigurable
logic are FPGAs. These comprise look-up tables, flip-flops and rich routing resources
to universally implement any logic function [3].

The synthesis results for FSMs in an FPGA are suboptimal, according to [4]. There-
fore, new synthesis methods using multi-level architectural decomposition and utiliza-
tion of Block RAMs to reduce the amount of logic resources are introduced. However,
this approach still relies on FPGAs and their disadvantages for low-power applications
as outlined in [1].

In [5], an unbalanced and unsymmetrical architecture for reconfigurable FSMs is
introduced. The FSM is split into a sequential section which implements the state tran-
sition function and a logic section which implements the output signals, both connected
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Fig. 1. Generic FSM (SR: state register)
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via routing resources. Although this approach achieves an area reduction of 43 % and
a power consumption decrease of 82 %, it has overhead due to its concentration on the
logic functions for the next state and output signals.

While the previously mentioned approaches implement the full FSM at once, [6]
only implements the logic required to calculate the next state (and output signals) for
the current state. After every state transition, the internal logic is reconfigured to realize
the next state logic for the current state. While this approach greatly reduces the total
amount of logic elements by increasing their utilization, the permanent reconfiguration
effort is not a low power approach.

3 Transition-Based Reconfigurable FSM

We consider FSMs with nS state bits, nI input signals, and nO output signals, with
the respective signals being Boolean. For wI ∈ {0, 1}nI , s, s′ ∈ {0, 1}nS and wO ∈
{0, 1}nO , the state transition function and the output function is defined by G(s, wI) =
s′ and F (s, wI) = wO , respectively (see Figure 1). That is, we generally assume Mealy

automata, and denote a transition by s
wI/wO−→ s′.

The number of possible transitions per state equals 2nI . Since there are 2nS possible
states, we get an upper bound of nT ≤ 2nS+nI for the total number of transitions for
such an FSM. However, FSMs in concrete applications have a number of transitions
which is considerably lower than this bound. This is especially true for FSMs with
many inputs signals, where certain states are only inspecting a subset of these signals.
An example is shown in Figure 2, which shows the state transition graph (with out-
puts omitted) of the FSM “opus” from the LGSynth93 benchmark [7]. Only the state
“IOwait” inspects all 5 input signals, while all other states consider at most 2. As a
result, the number of transitions in the example is considerably lower (30 transitions)
than the possible number regarding the 10 states (320 transitions) or regarding the 4
state bits necessary for state encoding (2nS+nI = 25+4 = 512 transitions).

For FSMs with such low transition-per-state-ratios, we propose an approach which
focuses on the transitions rather than on the state transition function G, and call this
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Transition-based Reconfigurable FSM (TR-FSM). Instead of providing a big reconfig-
urable block for implementing the whole state transition function, we provide several
smaller reconfigurable blocks for implementing each transition.

Applying TR-FSM for ASIC or SoC-design is a two-stage process. In the first stage,
the necessary resources for the TR-FSM are specified. This can either be an estimation
based on FSM prototypes for a certain application class, or it is based on a collection
of FSMs which the resulting TR-FSM must be able to be configured to. This can be
compared to choosing a sufficiently large FPGA (in terms of slices and BRAM) for
the FSMs. However, in TR-FSMs there are more size parameters to be considered, but
these parameters depend directly on the FSMs in question and not on the state encoding
or the quality of logic minimization and synthesis algorithms.

From this specification, the semiconductor chip containing the TR-FSM is produced.
In the second stage, this TR-FSM embedded in the chip now can be configured with an
actual FSM analogous to configuring an FPGA. However, since the TR-FSM is already
structured like an FSM, the synthesis process is considerably less complex.

3.1 Architecture

Note that for the following considerations we omit the FSM outputs. That is, for our
purposes a transition is a starting state s, a target state s′ and the collection of all input
patterns which cause the FSM to change from state s to s′, even if the associated outputs
are different for each input pattern. The output function F is computed independently,
e.g. with a dedicated reconfigurable block. In Section 3.2, we extend the TR-FSM to an
architecture which also computes the output in line.

The basis of the proposed architecture is the so called transition row (see Figure 3). A
state selection gate (SSG) compares the current state to its configured value and enables
the transition row. A reconfigurable input witching matrix (ISM) selects a subset of nT

out of the nI input signals which then serve as the inputs for the input pattern gate
(IPG), which is a reconfigurable combinational logic block, e.g. a look-up table (LUT).
If activated, the IPG outputs a “1” iff the input pattern matches a certain transition from
the recognized state. We also refer to nT as the size of the transition row. Consider for
example an FSM which changes from state s to s′ on the input patterns 10--- and
0-1--.
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Fig. 3. A transition row
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The ISM of the transition row for this transition would select the leftmost 3 signals
out of the 5 input signals, and the SSG would check for the encoding of the state s. If
s is the current state, the IPG would output a “1” on the input patterns 10- and 0-1,
indicating that the transition s −→ s′ is active, and would output “0” otherwise.

The reconfigurable next state ID register (NSR) of the corresponding transition row
is then selected by a multiplexer (“Select”) and fed back to the state register (SR) as the
new state of the FSM.

The overall architecture contains many such transition rows with varying input width
(see Figure 4). The number of transition rows and their input widths are derived during
the specification stage mentioned above. The output signals are computed in a separate
configurable logic block ("Outputs" in Figure 4), which for example can be a LUT or an
embedded FPGA IP. Note that the state encoding can be chosen freely with respect to
the transition logic, since both, the SSG and the NSR are fully configurable. That is, a
different state encoding won’t yield any benefits like reducing the number of transition
rows needed.

As depicted in Figure 4, the current state is also fed into the next state selection
logic block (“Select”). This allows for a very simple treatment of loops, i.e. transitions
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Fig. 4. The overall TR-FSM architecture
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where the FSM remains in the same state. In the case that none of the transition rows are
activated, the select logic chooses the current state as new state. Therefore, no transition
rows have to be used for loops.

In some cases, one of the input signals of an FSM serves as a reset signal (e.g. the
third input signal of the “opus” example in Figure 2). If it is set, the FSM resets to
its starting state, which we can assume to be encoded by the 0-vector. For such cases,
we propose a special transition row whose ISM selects this signal and directly feeds
it to the state register reset input. Since this reset overrides all transition rows, we can
exclude the reset signal from all other transition rows.

To summarize, the reconfigurable parts of the architecture are the state selection gate
(SSG), the input switching matrix (ISM), the input pattern gate (IPG), and the next state
ID register (NSR).

3.2 Including Output Computation

Instead of computing the output function F with a separate reconfigurable combina-
tional logic block, the output associated to a transition can also be included in the tran-
sition row as output pattern register (OPR), similar to the NSR (see Figure 5).

The disadvantage is that more transition rows have to be included for this approach.

Consider for example two transitions s
10/1−→ s′ and s

11/0−→ s′ in an FSM. With the archi-
tecture presented in Section 3.1, these two transitions could be covered by one transition
row, since the starting state and the target state are identical. Also, the transition row
would only need to inspect one input bit by checking for the input pattern 1-.

If the outputs are considered, two transition rows have to be used here, and both tran-
sition rows have to inspect both input signals. Also, loops can’t be treated as a default
case anymore, since each loop will in general produce a different output. Therefore,
each loop now needs to be implemented with a transition row, too.

The possible output functions F computable with this TR-FSM variant are restricted.
However, if an FSM rarely outputs different values when changing between two specific
states, this approach saves the overly generic reconfigurable block computing F . The
overall TR-FSM architecture in this case would look very similar to Figure 4, except
that the current state is not fed to the next state selection block. Additionally a second
selection block for the output signal replaces reconfigurable combinational logic block
for F .
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Fig. 5. A transition row with output pattern register (OPR)
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3.3 Implementation Details

State Selection Gate (SSG). Since the SSG has to recognize one specific state, it can be
implemented with an nS bit wide AND gate preceded by configurable input inverters.
However, similar to the reset signal discussed in Section 3.1, an FSM might have a
common error state which is reached from several (but not all) states if an error input
is active. For such multi-source transitions, an SSG implemented as an nS input LUT
instead of an AND gate can be used. Now, the respective transition row can be enabled
for multiple states.

Input Pattern Gate (IPG). The IPG can be implemented in different ways. The first
implementation is similar to that of the SSG, i.e., a nT wide AND gate with configurable
input inverters. This gate can recognize only one specific input pattern.

The second implementation is to use a LUT, such that it is possible to activate the
transition for multiple different input patterns. This is beneficial either if the transitions
from one state have mixed don’t care conditions or if an IPG with more inputs than
necessary is used (e.g., because all rows with less inputs are used by other transitions).

Input Switch Matrix (ISM). Consider an ISM with nI input signals of which nT < ni

are connected to the IPG, requiring nI switches per connected signal. Since only one (or
none) of the nI input signals is selected, there are nI +1 possible switch combinations,
which can be encoded as binary numbers with �log2(nI + 1)� bits. Altogether, this
yields nT · �log2(nI +1)� configuration bits per transition row. If we exclude the possi-
bility to select no signal (e.g. if the IPG is realized as a LUT such that it can implement
don’t cares), this number reduces to nT · �log2(nI)�.

Another variant to encode the configuration of an ISM exploits that the order of the
input signals for the IPG is not important. Therefore, a bit vector of size nI of which
a maximum of nT bits are set to “1” is sufficient. Every bit represents a primary input
which is connected to the IPG if its respective bit is “1”. However, this encoding is
only more concise than the previous one if nI + 1 < nT · �log2(nI + 1)�. That is, if a
TR-FSM on average has transition rows of small sizes, the previous encoding is more
beneficial.

The number nI · nT of switches per ISM can also be optimized due to the insignif-
icance of the order of the selected inputs (see Figure 6): If the leftmost input signal is
selected, it can be selected as first IPG input signal, and since it can be selected only

Fig. 6. Optimizing the Input Switch Matrix
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once, no further switches are required for the leftmost input signal. The same holds
for the second input signal on the left and the second IPG input signal, and so on. Also,
the rightmost input signal can always be handled by the last IPG input signal, therefore
the respective switch can be removed from the previous IPG input signals, and so on.
Altogether, from every selection signal, nT − 1 switches can be removed, such that the
total number of switches is [nI − (nT − 1)]nT , which gives a reduction of nT (nT − 1)
switches.

Next State Selection. Every transition row holds the configurable next state ID register
(NSR). A multiplexer selects the next state ID associated with the transition row which
outputs a logical “1”. The configuration applied by the bit stream must ensure, that for
every combination of inputs and states at most one of the IPG emits a logic “1” and all
others emit a logic “0”. The case that all outputs are “0” is legal because in this case the
current state is maintained (note the connection of the current state to the “Select” box
in Figure 4).

We expect the total number of transitions to be rather high (several tens to several
hundreds, see Table 1). For such huge multiplexers the heterogeneous tree approach [8]
was proposed. An implementation with pass transistors or transmission gates provides
a purely combinational circuit [9].

4 Analysis

We analyzed the proposed approach using several benchmark FSMs taken from the
LGSynth93 Benchmark [7]. We chose FSMs which need at least 4 state bits and had
relatively few transitions per state. These FSMs were grouped into 3 sets with roughly
similar values regarding state vector width, input signals, and output signals. For each
group, a TR-FSM was specified by the following algorithm:

Let Γ = {A1, . . . , Ak} be the FSM-group, nI(Ai) the number of input signals of
an FSM Ai, and N = max {nI(A1), . . . , nI(Ak)}. Denote by mi,j the number of
transitions in Ai which need to inspect exactly j input signals (that is, they can be
implemented with a transition row of size at least j). This results in a k × N matrix
(mi,j), where each row effectively specifies an optimal TR-FSM for the respective
FSM.

The TR-FSM for the group Γ is now specified by a vector (MN , . . . , M0), where Mj

is the number of transition rows of size j needed. This vector must satisfy the equations

Mj = max
i=1,...,k

⎧⎨
⎩mi,j −

∑
j<l≤N

Ml − mi,l

⎫⎬
⎭

for each entry. That is, MN = maxi=1,...,k {mi,N}, and the rest of the Mj can be
computed iteratively. This formula takes into account that a transition row of size nT

can also implement a transition which needs to inspect less than nT input signals.
This algorithm was applied to the three groups to specify TR-FSMs with a stand-

alone output logic (Table 1) as well as TR-FSMs which include output signal generation
as described in Section 3.2 (Table 2). In the second case, the FSMs where taken "as is"
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Table 1. Example implementations without outputs

8 7 6 5 4 3 2 1 0
planet 48 6 7 19 71 70 6 7 9 17 31 32
s208 18 5 11 2 35 34 31 2 1 20
s420 18 5 19 2 35 34 31 2 1 20
s510 47 6 19 7 75 52 10 18 24 20
s820 25 5 18 19 107 85 2 3 1 5 9 19 25 21 82
sand 32 5 11 9 90 60 3 14 11 8 4 19 1 68
scf 121 7 27 56 152 152 2 16 2 30 102 100
TR-FSM n.a. 7 27 56 n.a. 152 2 3 1 11 11 11 25 21 67 5087 n.a.
ex1 20 5 9 19 73 57 11 12 31 1 2 68
ex4 14 4 6 9 18 16 2 4 10 9
mark1 15 4 5 16 22 22 6 1 2 13 12
s1488 49 6 8 19 118 116 6 7 9 17 76 1 100
styr 30 5 9 10 92 73 3 24 17 10 3 7 9 81
TR-FSM n.a. 6 9 19 n.a. 116 3 24 17 10 3 58 1 4037 n.a.
bbsse 16 4 7 7 42 35 7 5 19 4 25
cse 16 4 7 7 55 39 14 11 10 3 1 80
keyb 19 5 7 2 46 45 8 8 8 2 6 7 4 2 85
opus 10 4 5 6 22 16 4 1 5 6 11
pma 25 5 8 8 38 38 8 18 7 2 3 82
s1 20 5 8 6 80 68 2 1 4 18 16 19 6 2 100
s386 14 4 7 7 40 32 7 6 18 1 27
TR-FSM n.a. 5 8 8 n.a. 68 8 8 8 2 15 19 6 2 3439 n.a.
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Table 2. Example implementations with outputs

8 7 6 5 4 3 2 1 0
planet 48 6 7 19 111  14 11 34 33 19 60
s208 18 5 11 2 70 64 6 58
s420 18 5 19 2 70 64 6 58
s510 47 6 19 7 75 10 41 24 39
s820 25 5 18 19 149 6 5 1 6 45 46 37 3 98
sand 32 5 11 9 102 5 17 13 15 8 44 71
scf 121 7 27 56 152 2 16 2 30 102 100
TR-FSM n.a. 7 27 56 152 6 5 1 10 42 45 37 3 3 17058 n.a.
ex1 20 5 9 19 136 24 20 34 33 20 5 72
ex4 14 4 6 9 20 2 10 8 7
mark1 15 4 5 16 22 6 1 2 13 7
s1488 49 6 8 19 225 24 23 13 62 63 39 1 100
styr 30 5 9 10 101 6 41 26 8 4 7 9 58
TR-FSM n.a. 6 9 19 225 24 23 31 44 63 39 1 13150 n.a.
bbsse 16 4 7 7 44 8 13 18 5 33
cse 16 4 7 7 58 19 18 15 5 1 88
keyb 19 5 7 2 46 8 8 8 3 6 7 4 2 74
opus 10 4 5 6 22 4 2 9 7 18
pma 25 5 8 8 40 8 18 7 3 4 46
s1 20 5 8 6 80 2 2 4 22 18 22 8 2 100
s386 14 4 7 7 44 11 14 18 1 34
TR-FSM n.a. 5 8 8 80 8 8 8 13 15 18 8 2 4507 n.a.
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without any preprocessing. In the first case, a simple optimization algorithm was applied
to the FSMs in the groups which combined transitions with equal start- and target-state
and different outputs to one transition, which yields less transitions rows. Also, the
transition rows tend to be smaller, since this optimization process produces more don’t
cares. Also, loops didn’t contribute to the entries of the matrix (mi,j), since they are
treated as default transitions and don’t need to be implemented with a transition row. In
both cases, if an FSM possessed a reset input signal, this signal was not considered and
a special transition row as outlined in Section 3.1 was added to the TR-FSM.

The number of configuration bits needed for each TR-FSM was assessed as follows:
Each transition row needs nS configuration bits for the SSG and the NSR, respectively.
Each transition row T of size nT needs �log2 nI� · nT configuration bits for the ISM
(binary encoding) and 2nT configuration bits for the IPG (implemented as LUT). If the
output is computed in the transition rows, we have to add nO bits for each transition
row as well. Summarizing, if T (A) denotes the transition rows of an RT-FSM A, the
number of configuration bits is

T (A) · 2 · nS +
∑

T∈T (A)

(�log2 nI� · nT + 2nT )

if no outputs are considered. The leftmost summand changes to T (A)(nO + 2 · nS) if
the output is also computed in the transition rows. Each of the TR-FSMs specified need
a reset transition row, which requires �log2 nI� configuration bits for the ISM, and one
bit to configure possible inversion of the reset bit.

Table 1 shows the result for TR-FSMs without output computation. Here, the column
“#non-loop transitions” gives the number of transitions which actually need transition
rows for implementation. Table 2 treats the case where the outputs are computed within
the transition rows. In both Tables, below of each of the three groups, the data for the
respective groups’ RT-FSM is given. Note that only relatively few of the input signals
have to be inspected, at most 8 in any case.

Each of the FSMs in each group was then synthesized to the respective group TR-
FSM, which is a simple mapping process of transitions to transition rows with enough
resources. The column to the right shows the resource utilization by comparing the
number of configuration bits needed for the used transition rows to the total number of
configuration bits of the respective group TR-FSM.

Since no silicon implementation of the TR-FSM approach has been done yet, we
don’t compare to an FPGA implementation regarding chip-space and power consump-
tion. Therefore we take the size of the configuration bit stream of both approaches as a
cost indicator. While a LUT in an FPGA only needs 24 = 16 configuration bits, there
are considerably more configuration bits needed to configure the whole slice and espe-
cially the routing between the CLBs. According to [10] the configuration bit stream of
the Virtex family dedicates 864 bits per CLB and therefore 432 bits per slice.

For every FSM in our analysis we took the lower number of slices occupied by the
VHDL or Verilog implementation according to Table 5.7 (p. 83) of [4]. Within each
group, the FSM with the most used slices was picked (see Table 3). With this amount
of slices any other FSM in the particular group can be implemented. The length of
the configuration bit stream was calculated for the maximum FSM, and then compared
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Table 3. Configuration bits needed for TR-FSM and FPGA

Group Conf.Bits TR-FSM max. FSM [4] Slices [4] Conf.Bits FPGA Comparison
1 17,058 scf 168 145,152 11.8 %
2 13,150 styr 119 102,816 12.7 %
3 4,507 pma 71 61,344 7.3 %

to length of the configuration bit stream of the respective group’s TR-FSM. The last
column of Table 3 shows the size of the TR-FSM configuration bit stream compared to
the FPGA configuration bit stream in percent.

This shows that TR-FSMs need considerably less configuration bits than FPGAs
(7.3 to 12.7 %). While we see this as an indicator for a prospective improvement re-
garding area and power consumption, this is also beneficial by itself regarding run-time
reconfigurability and for applications with limited memory resources like wireless sen-
sor nodes. Note that we don’t compare directly to the improvements of [4] since this
approach involves BRAMs.

FPGAs achieve the high flexibility with an high amount of rich and flexible routing
resources. On the other hand the involved short and long wires impose a high capacitive
load and include numerous pass transistors along the path. Both result in increased
power consumption and area overhead. TR-FSM, on the other hand, have a very low
routing overhead, since the general FSM structure is already implemented. Also, the
unused transition rows of an TR-FSM can be switched off by voltage gating to save
power.

Other advantages are the constant latencies of the TR-FSM, since the routing is fixed,
and the fact that the synthesis of an FSM to a specific TR-FSM is very easy, since
arbitrary state encodings can be used and no sophisticated minimization problems are
involved.

5 Conclusion and Future Work

This paper introduces a novel, fixed latency architecture for reconfigurable finite state
machines, which is based on the state transitions instead of the state transfer function
(transition-based reconfigurable FSMs, TR-FSM), which is beneficial if the FSMs in
question have relatively few transitions.

Synthesizing an FSM onto a given TR-FSM is straightforward, and only few con-
figuration bits are needed. Compared to an implementation of FSMs in an (embedded)
FPGA, the approach also promises several advantages regarding power consumption
and area. However, this has to be quantified yet by concrete implementations.

Further extensions of our approach range from multi-bit LUTs for the IPG, such that
a single transition row can handle transitions to multiple different states and/or with
varying output patterns, with only a little overhead in the LUT. For linear sequences
simplified transition rows with zero or one input signal, or specialized time-out transi-
tion rows with an integrated counter are considered.

Transitions which have to consider a high number of input signals should be mapped to
special transition rows with IPGs implemented as sum-of-product logic. Another option
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is to combine two transition rows and place a MUX to select between the outputs of the
two IPGs. Its select input is then driven by another FSM input, so increasing the total
input signal sensitivity list by one. Finally, by enhancing the NSR to latch the current
state, sub-state-machines which are able to return to the caller may be implemented.
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Abstract. Embedded devices used for spacecraft, satellites, and space stations
are vulnerable to the effects of high-energy charged particles. To resolve single-
event latch-up (SEL)-associated troubles more flexibly using limited hardware re-
sources in a space environment, reconfigurable devices such as field programmable
gate arrays (FPGAs) are suitable. However, such reconfigurable systems present
the shortcoming that the circuit itself on the gate array is not robust. The config-
uration context on a configuration SRAM also suffers from single-event upsets
(SEUs) and SELs. This paper therefore proposes an MEMS dynamic optically
reconfigurable gate array that is usable under a space radiation environment. The
technique enables rapid recovery of a programmable device that has been dam-
aged by high-energy charged particles. It uses incorrect configuration data in-
cluding some error bits that had been damaged by particles. The configuration
data are transferred using wireless communications and are retained on an EEP-
ROM/SRAM.

1 Introduction

Embedded devices used for spacecraft, satellites, and space stations are vulnerable to
effects of high-energy charged particles. They can cause single-event upsets (SEUs) and
single-event latch-ups (SELs) in the devices in cases where such particles are incident to
embedded devices. The SEUs cause temporary hardware failures and alter the contents
of SRAMs, DRAMs, and flip-flops, whereas SELs cause permanent hardware damage
[1][2][3][4]. Although such SEUs and SELs are unavoidable, the effects of SEUs are
correctable using triple-module redundancy (TMR) [5][6]; SEL troubles can be averted
and corrected using backup hardware.

However, reconfigurable devices such as field programmable gate arrays (FPGAs)
are very suitable to resolve SEL-associated troubles more flexibly using limited hard-
ware resources in a space environment. When SELs permanently damage a part of
an FPGA, the configuration context can be changed remotely using wireless commu-
nication. However, such a reconfigurable system includes an important shortcoming:
the gate array’s circuit itself is not robust. A configuration context on a configuration
SRAM also suffers from SEUs and SELs; the hardware of other non-programmable
VLSIs is more robust. It has been confirmed that TMR implementations are useful for
such FPGA hardware trouble and for data troubles [7][8]. Therefore, important remain-
ing concerns are how to recover real-time operations on a programmable gate array

P. Sirisuk et al. (Eds.): ARC 2010, LNCS 5992, pp. 134–144, 2010.
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rapidly when the device is damaged by SEUs or SELs and how to remedy unavoidable
damage of configuration data.

Configuration contexts are always affected by radiation in space when configuration
data are transferred with wireless communication and are retained on an EEPROM or
an SRAM (EEPROM/SRAM). Of course, although some damage might be corrected by
error checking and correction methods [9], long-term storage of error-free configuration
data is difficult under a space radiation environment. Furthermore, FPGA reconfigura-
tion times are very slow. For that reason, rapid recovery of a real-time system on an
FPGA is impossible.

As rapidly reconfigurable devices, optically reconfigurable gate arrays (ORGAs) have
been developed that combine a holographic memory and an optically programmable
gate array VLSI [10]–[14]. Contexts of the gate array are stored in a holographic mem-
ory, from which they are read out optically and programmed optically onto the gate
array VLSI using photodiodes. Such parallel configuration enables extremely fast re-
configuration. Furthermore, such ORGA architectures present the possibility of pro-
viding a virtual gate count that is much larger than those of currently available VLSIs
by exploiting the large storage capability of the holographic memory. To date, for re-
alization of a high gate count ORGA-VLSI, Dynamic Optically Reconfigurable Gate
Arrays (DORGAs) have been proposed: they use the junction capacitance of photodi-
odes as dynamic memory, thereby obviating the static configuration memory [11]. In
fact, a 51,272 gate count DORGA-VLSI has been reported [13]. However, program-
ming for a holographic memory is optically executed in conventional ORGAs. For that
reason, simple programming that is similar to that of FPGAs has remained a difficult
undertaking because a complicated writer is required for programming an ORGA [14].

On the other hand, as a microelectromechanical system (MEMS) technology, Texas
Instruments Inc. has recently developed a digital micromirror device (DMD) [17]. The
DMD chip is a spatial light modulator. Its switching speed is μs order and its light effi-
ciency is extremely high. Such devices are useful as electrically rewritable holographic
memories.

This paper therefore proposes an MEMS FPGA that is usable in a space radiation
environment. The technique enables rapid recovery of a programmable device that has
been damaged by high-energy charged particles. It uses incorrect configuration data
including some error bits: the configuration data have already been damaged by par-
ticles while they are transferred with wireless communication and are retained on an
EEPROM/SRAM.

2 Rapidly Reparable Hardware System

A rapidly reparable hardware system using an MEMS is presented in Fig. 1. This system
comprises a wireless communication circuit, an EEPROM/SRAM, an MEMS device,
and an optically reconfigurable gate array VLSI (ORGA-VLSI) [11][12][14]. In the sys-
tem, configuration contexts are sent by wireless communication, after which they are
stored in an EEPROM/SRAM. However, the configuration context might include error
bits that have been created during their transfer by wireless communication. As they
are received, they are retained on the EEPROM/SRAM, where the amount of error bits
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Fig. 1. Rapidly reparable hardware system using MEMS for spacecraft, satellites, and space
stations

(a) (b)

Fig. 2. Structures of (a) an optically reconfigurable logic block and (b) an optically reconfigurable
switching matrix on a fabricated ORGA-VLSI chip

included on the configuration contexts is increased. Therefore, using this method, the
configuration context information is not communicated directly and is not stored di-
rectly on an EEPROM/SRAM. In advance, the configuration context information is
converted to the corresponding holographic memory information. Then, the holographic
memory information is sent on wireless communication and is stored on an EEP-
ROM/SRAM. The stored holographic memory information is transferred cyclically
to the MEMS device. On the other hand, dynamic optically reconfigurable gate ar-
ray (DORGA)-VLSIs always include a fine-grain gate array similar to that of FPGAs.
Structures of an optically reconfigurable logic block and an optically reconfigurable
switching matrix on the fabricated ORGA-VLSI chip are portrayed in Figs. 2(a) and
2(b). Any Boolean function can be programmed onto optically reconfigurable logic
blocks and any wiring between optically reconfigurable logic blocks can be achieved
by the optically reconfigurable switching matrices, as well as those of FPGAs. An
optically reconfigurable logic block consists of a four-input-one-output look-up table
(LUT), some multiplexers, transmission gates, and a delay type flip-flop. These func-
tions are optically reconfigurable using 32 photodiodes arranged perfectly in parallel.
Similarly, switching matrices can be reconfigured optically. All programming points of
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Fig. 3. Optical reconfiguration circuits using static and dynamic techniques

all transmission gates are connected to photodiodes. Finally, all programming elements
of a gate array on the ORGA-VLSI chip can be optically reconfigured simultaneously.
Therefore, high-speed configuration is possible.

An example of a static configuration memory of a previously proposed ORGA is
shown on the left side of Fig. 3. Conventional ORGAs invariably adopt such a static
configuration memory to retain a configuration context. In contrast, in the DORGA ar-
chitecture, photodiodes are used not only for detecting optical configuration contexts
but also for maintaining the state of a single configuration context using junction capac-
itance of the photodiodes, as shown on the right side of Fig. 3. Thereby, the architecture
perfectly removes static configuration memories. For that reason, this architecture can
produce VLSI with a very high gate count [13].

Moreover, the DORGA-VLSI has a high fault tolerance because a DORGA has a
parallel configuration capability that never prevents reconfiguration of any location of
its gate array, even if certain gates or certain configuration circuits are damaged by high-
energy charged particles. However, in FPGAs, partial damage of certain configuration
circuits makes its entire configuration impossible. The clear benefit is that although
SEUs and SELs occur and can affect an ORGA-VLSI, functions can be executed per-
fectly on other non-faulty areas by reconfiguring the ORGA-VLSI.

In this system, a holographic configuration context stored on an MEMS device can
be programmed onto a DORGA-VLSI in an extremely short time by exploiting two-
dimensional optical connections between the MEMS device and DORGA-VLSI when
an SEU occurs. In a holographic memory, each bit of a reconfiguration context can be
generated from the entire area of its holographic memory pattern on the MEMS device.
Consequently, an optical majority voting operation is executed automatically for each
configuration bit. Such situations are shown in Figs. 4(a) and 4(b). Figure 4(a) shows a
normal case using a correct holographic memory with a single bright bit. In this case,
each area of the holographic memory is designed to be transparent at the same phase
points and to be opaque at different phase points for a single bright point on a DORGA-
VLSI plane. Results show that the bright point has high light intensity, which signifies
a binary state H by focusing same-phase light waves. On the other hand, Fig. 4(b)
shows the same single bit generation case, but from a damaged holographic memory.
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(a)

(b)

Fig. 4. Configuration context generations from a holographic memory. Panel (a) presents a normal
case using a correct holographic memory with a single bright bit or binary state H. Panel (b)
depicts the same single bit generation case, but from a damaged holographic memory.

A certain amount of damage might cause transparent points to be transformed to opaque
points. In such an instance, although light power at a bright point of the DORGA-VLSI
plane is slightly decreased, a bright bit still keeps high level by correcting correct phase
waves from the other points of its holographic memory. Furthermore, a certain amount
of damage might cause opaque points to be transparent points. In this case, light power
at the bright point of the DORGA-VLSI plane might also be reduced slightly by adding
a different phase light wave to a certain correct phase light wave. However, the bright
point on the DORGA-VLSI can still keeps high level. Such situations can be considered
as an optical majority voting operation. Even if configuration data include some error
bits, the optical majority voting operation can repair the error bits robustly.

Regarding SELs, the system requires a certain period to repair a gate array because
of a serial transfer, just as FPGAs do. However, the SELs’ probability of occurring is
much lower than that of SEUs. For that reason, this never becomes a serious short-
coming. If an SEL occurs, then the optical buffering technique repairs the gate array
by a serial transfer of wireless communication or by placement of another configura-
tion pattern on the EEPROM/SRAM. Even if configuration data of the serial transfer
include some error bits, the optical majority voting operation can remove the error bits
on configuration data. Therefore, a robust configuration can be achieved for SELs.
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3 MEMS Dynamic ORGA Architecture

Texas Instruments Inc. recently developed a digital micromirror device (DMD) as one
technology used in microelectromechanical systems (MEMS) [17]. The DMD device
chip is a type of spatial light modulator. A photograph of the chip is presented in
Fig. 6(b). It consists of 1,024 × 768 mirrors, each of which is 10.8 × 10.8 μm2. The

Fig. 5. Overview of an experimental system

(a) Experimental system

(b) Digital mirror device (c) Laser

Fig. 6. Photograph of an experimental system
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DMD device is controllable using a personal computer. When a light beam is applied to
the device, mirrors on the DMD chip can reflect a binary data pattern or video image.
The switching speed and light efficiency far surpass those of other spatial light mod-
ulators, e.g. liquid crystal spatial light modulators. The micromirrors are mounted on
tiny hinges, which enable them to tilt either toward the light source or away from it.
Each mirror can be switched on and off up to several thousand times per second. Such
a device is useful as an electrically rewritable holographic memory.

Figure 5 presents an overview of an MEMS dynamic optically reconfigurable gate
array. The MEMS dynamic optically reconfigurable gate array comprises laser sources,
an optical holographic memory, and a dynamic ORGA-VLSI, which uses photodiode
memory architecture. The MEMS holographic memory can store numerous reconfig-
uration contexts, which are addressable by a laser array. The diffraction pattern from
the holographic memory can be received as a reconfiguration context on a photodi-
ode array of a programmable gate array on the dynamic ORGA-VLSI. By virtue of
these features, this architecture enables nanosecond-order reconfiguration and multi-
ple reconfiguration contexts. In addition, since the MEMS device can be programmed
electrically, the circuit information of the MEMS dynamic optically reconfigurable gate
array can be programmed electrically, as well as FPGAs.

3.1 Hologram Generation

Here, a calculation method for two-dimensional holographic medium is introduced.
An aperture plane of target lasers, a holographic plane, and a DORGA-VLSI plane are
parallelized. The laser beam is collimated. The collimated reference wave from the laser
propagates into the holographic plane. The holographic medium comprises rectangular
pixels of size δx×δy on the x1−y1 holographic plane. The pixels are assumed as binary
values. On the other hand, the input object is made up of rectangular pixels of size
dx ×dy on the x2 − y2 object plane. The pixels can be modulated to be either on or off.
The intensity distribution of a holographic medium is calculable using the following
equation:

H(x1,y1) ∝
∫ ∞

−∞

∫ ∞

−∞
O(x2,y2)sin(kr)dx2dy2,

r =
√

Z2
L +(x1 − x2)2 +(y1 − y2)2, (1)

where O(x2,y2) is a binary value of a reconfiguration context, k is the wave number, and
ZL is a distance between the holographic plane and the object plane. The value H(x1,y1)
is normalized as 0–1 for the minimum intensity Hmin and maximum intensity Hmax, as
the following.

H ′(x1,y1) =
H(x1,y1)−Hmin

Hmax −Hmin
. (2)

Finally, the normalized image H ′ is used for implementing a holographic memory.
Other areas on the holographic plane are opaque to the illumination.
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(a) Binary holographic memory (b) Diffraction pattern

Fig. 7. Binary holographic memory pattern and its diffraction pattern of an AND circuit

3.2 Experimental System

For this study, only one configuration system was constructed as the first step for MEMS
dynamic optically reconfigurable gate array development. Figure 6(b) portrays a block
diagram of an MEMS dynamic optically reconfigurable gate array. The MEMS opti-
cally reconfigurable gate array was constructed using an 808 nm, 150 mW semicon-
ductor laser, a digital micromirror device as a holographic memory, and an emulated
DORGA-VLSI. Figure 7(a) shows that an MEMS holographic memory pattern of an
AND circuit was calculated. The holographic memory pattern was displayed on the
DMD device. After programming, all mirrors on the DMD device were moved to ±12◦
angles corresponding to the AND holographic memory pattern. The collimated beam
from the laser source, which is incident to the DMD device, is reflected to the DORGA-
VLSI. The DORGA-VLSI was placed 300 mm distant from the DMD device. For this
experiment, an emulated DORGA-VLSI chip was used. It had been fabricated using
a 0.35 μm triple-metal CMOS process. Although the DORGA-VLSI chip includes a
static configuration memory, the static configuration memory was disabled in this ex-
periment to emulate the DORGA architecture. Therefore, virtually buffered outputs
of junction capacitances of photodiodes are connected directly to the gate array pro-
gramming points. Photodiodes were constructed between the N-well layer and the P-
substrate. The photodiode size and distance between photodiodes were designed as 25.5
× 25.5 μm and as 90 μm to facilitate the optical alignment. The gate array structure is
fundamentally identical to that of typical FPGAs. The DORGA-VLSI chip includes 4
logic blocks, 5 switching matrices, and 12 I/O bits. In all, 340 photodiodes were used
to program the gate array.
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(a) Configuration time (1 μs)

(b) Retention time (12 s)

Fig. 8. Timing diagram presenting the configuration time and retention time of an AND circuit

4 Experimental Results

Using this experimental system, an AND circuit was implemented on the MEMS dy-
namic optically reconfigurable gate array. The configuration was executed successfully.
A CCD captured image of an AND circuit at the position of DORGA-VLSI is presented
in Fig. 7(b), as generated from an AND holographic memory on the DMD device. The
reconfiguration time and retention time of the photodiode memory architecture were
measured, respectively, as 1 μs and 12 s. The reconfiguration time was sufficiently faster
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than that of current FPGAs, and the retention time was sufficiently longer than that of
DRAMs. Additionally, we estimated the switching speed of mirrors on the MEMS holo-
graphic memory. Results confirm that less than 22 μs wireless programming is possible.
Therefore, for SELs, high-speed recovery is possible.

5 Conclusion

This paper has proposed an MEMS dynamic optically reconfigurable gate array that is
useful in a radiation-rich space environment. This paper has described a novel MEMS
dynamic optically reconfigurable gate array with an MEMS binary hologram to exploit
switching of both an MEMS binary hologram and a laser array to achieve optical re-
configuration. Results confirmed that the reconfiguration time and retention time of the
MEMS dynamic optically reconfigurable gate array are, respectively, 1 μs and 12 s.
Consequently, extremely rapid reconfiguration and sufficiently long retention time are
achievable. In addition, programming of an MEMS holographic memory or wireless
programming in less than 22 μs was confirmed as possible. Such architecture opens the
possibility of using programmable devices in a space radiation environment.

In particular, current embedded systems used in space invariably require enclosure
within aluminum plates to protect the systems from high-energy charged particles.
Those plates constitute most of the system weight. In contrast, because the architecture
described herein is extremely robust, only thin aluminum plates need be used. Conse-
quently, this architecture is expected to allow production much lighter total systems.
Therefore, the technique is useful for space-embedded systems in radiation-rich envi-
ronments.
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An FPGA Accelerator for Hash Tree Generation
in the Merkle Signature Scheme
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Abstract. Merkle Signature Scheme relies on secure hash functions and
is, therefore, assumed to be resistant to attacks by quantum comput-
ers. The generation of the Merkle public key, however, is highly time-
consuming because of the huge number of hash operations required to
set up a complete hash tree. Fortunately, setting up such trees features
inherent parallelism, which may be utilized for accelerating this process
using a specific hardware platform. This paper presents a flexible and
efficient hardware architecture on an FPGA platform to accelerate the
generation of Merkle hash trees. Timing measurements on a prototype
with different parameters show a considerable performance boost com-
pared to a similar software solution.

1 Introduction

Current public-key cryptosystems rely on the computational complexity of dif-
ferent mathematical problems such as the factoring of large integers in RSA [1]
or the calculation of the discrete logarithm in elliptic curve cryptography [2]. For
these approaches various hardware accelerators and coprocessor architectures are
available, see, e.g., [3] and [4]. These algorithms are assumed to become inse-
cure in the era of quantum computers [5]. Therefore, several solutions for post-
quantum cryptography have been proposed in the literature such as hash-based,
code-based, lattice-based, and multivariate-quadratic-equation-based cryptosys-
tems, see [6, 7, 8, 9]. Generally, these solutions suffer from efficiency problems
regarding execution time and data and key sizes. To tackle the performance
problems in code-based and multivariate-quadratic-equation based approaches
some hardware architectures have been proposed recently, see [10, 11, 12, 13].

Merkle signature scheme (MSS) is a hash-based cryptosystem. MSS relies on
the Winternitz one-time signature scheme (W-OTS) [6] on the one hand. On
the other, MSS employs a hash tree for authenticating the Winternitz verifica-
tion keys. The construction of this hash tree is a highly time-consuming task
especially for large trees. This paper presents a novel hardware architecture for
the construction of MSS hash trees based on an FPGA-platform. A prototype is
implemented on a Xilinx Virtex-5 device and tested through a dedicated API.

� This work was supported by CASED.
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Performance measurements show the advantage of this solution over a pure soft-
ware implementation.

The remainder of the paper is structured as follows. Section 2 introduces
the Winternitz OTS. Section 3 details the Merkle signature scheme. Section 4
presents the architecture of the proposed MSS hash tree generator. Section 5
provides some implementation aspects and the results.

2 Winternitz One-Time Signature Scheme

The Winternitz One-Time Signature Scheme (W-OTS) [6] is an expansion of
the Lamport-Diffie Scheme [14], which is used to sign messages bit-wise. W-
OTS signs messages block-wise and results, therefore, in shorter signatures. In
the following, the functionality of W-OTS will be illustrated with the aid of
Fig. 1, where Alice intends to sign an 8-bit message (m=10110111) to Bob.

Algorithm 1. W-OTS Key Generation
Require: Winternitz parameter w; Message length and hash value length n.
Ensure: Signature key XW ∈ {0, 1}n×v ; Verification key Y W ∈ {0, 1}n.
1: Determine v = v1 + v2, where v1 = 
 n

w
� and v2 =

⌈
�log2v1�+w+1

w

⌉
;

2: Choose x1, . . . , xv ∈ {0, 1}n uniformly at random;
3: Set XW = (x1, . . . , xv);
4: Compute yi = H2w−1(xi) for i = 1, . . . , v;
5: Compute Y W = H(y1‖ . . . ‖yv);
6: return (XW , Y W ).
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Fig. 1. Illustration of Winternitz One-Time Signature Scheme
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2.1 Key Generation

First, Alice determines a checksum, which equals 1110 in this example. The
checksum must also be signed for security reasons. Following, the message and
the checksum are divided into blocks of the width w = 4 in this case. This width is
denoted as Winternitz parameter. Having three blocks to be signed, three random
numbers x0, x1, and x2 of length n each are then generated. We denote these
numbers as signature sub-keys. All the signature sub-keys form the signature key
XW , i.e. the private key, which must be kept secret. A hash function is applied
15 times to each xi to determine the corresponding verification sub-key yi. The
number 15 corresponds to the maximal decimal that may be represented by a
bit vector of width w = 4. All yi’s are concatenated and hashed to form the
verification key Y W , which is published.

Because of its relevance to our purpose, we give the process of generating a
Winternitz key pair as a pseudo code in Algorithm 1 . Typically, digital sig-
natures are not determined for a long message, but for the hash value thereof.
Assuming an n-bit hash function, Table 1 gives an overview of parameters and
data sizes supported by our architecture.

2.2 Signing Process

To sign the message and the checksum, Alice then applies the hash function 11
times to x0, 7 times to x1, and 14 times to x2. The values 11, 7, and 14 correspond
to the decimals represented by the given message and checksum blocks. Finally,
the digital signature SW , which consists of three sub-signatures s0, s1, and s2,
is sent to Bob.

Note that the Winternitz parameter can be used for trading off the signature
length and the computation overhead. Specifically, with larger w values less
blocks must be signed, i.e. the signature gets shorter, however, the computation
overhead increases for both, generating the keys and signing the message.

2.3 Verification Process

Upon receiving the message, the verification key, and the signature (which may
now be altered to s̃0, s̃1, s̃2 en route), Bob first determines the checksum and
divides the message and the checksum into three blocks, in the same way Alice
did before. Following, Bob applies the hash function 4 times to s̃0, 8 times to s̃1,
and once to s̃2. In other words, Bob completes the number of hash operations
applied to each xi to 15. The resulting potential verification sub-keys ỹ0, ỹ1,
and ỹ2 are then concatenated and hashed again. Bob compares the resulting
potential verification key Ỹ W with the received verification key Y W . If they are
identical, the signature is valid, otherwise not.

Note: Attacking a signature scheme aims at falsifying either the message or
the signature, whereas both forms have the same effect for Bob. To simplify
presentation, we assume that an attacker manipulates the signature. Bob always
regards the received signature, therefore, as potential, which is indicated by a
tilde.
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Table 1. Parameters supported by our architecture

Parameter Description Size (Bit)

n Hash value width. Width of all the seeds, all the Win-
ternitz signature sub-keys (x’s), all the verification
sub-keys (y’s), all the verification keys (Y W ’s), and
all the sub-signatures (s’s)

512

w Winternitz parameter Adjustable (4,6,8)
v1 Message block number Depends on w

v2 Checksum block number Depends on w

v v1 + v2 Depends on w

3 Merkle Signature Scheme

The security of W-OTS relies on using the key pair (XW , Y W ) for signing only
one message. To sign another message, a new key pair must be generated and
the new verification key must be delivered authentically. However, an authentic
delivery of the verification key is as difficult as the authentic delivery of the mes-
sage itself. Merkle proposed a solution for this problem based on hash trees [6].
The Merkle signature scheme (MSS) bases the authenticity of all the verification
keys on the authenticity of only one public key (Y M ), which is placed at the
root of a hash tree, see Fig. 2. The tree leaves are Winternitz verification keys
Y W ’s, which are generated using Algorithm 1. Each internal node represents an
auxiliary verification key, which results from hashing both its child keys. It holds,
for instance, that Y0−1 = H(Y W

0 ||Y W
1 ) and Y M = H(Y0−3||Y4−7). Obviously, a

hash tree of height hmax can be used to sign 2hmax messages. In MSS an authen-
tication path refers to all the keys, which are the siblings of the keys belonging
to the path from the currently used leaf to the root. To sign the 4-th message,
for example, the sender submits the leaf index i = 4, the Winternitz signature
SW

4 and the authentication path A4 = (Y W
5 , Y6−7, Y0−3). Based on S̃W

4 the re-
ceiver determines Ỹ W

4 as depicted in the last section. Then, the potential Merkle
key is determined as follows: Ỹ4−5 = H(Ỹ W

4 ||Y W
5 ), Ỹ4−7 = H(Ỹ4−5||Y6−7), and
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Fig. 2. Merkle Signature Scheme Tree Example
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Ỹ M = H(Y0−3||Ỹ4−7). Ỹ M is then compared with Y M . If they are equal, the
signature is valid.

Constructing large trees using MSS, however, raises two problems regarding
memory usage and computation overhead. It can be shown that to generate a
tree and save all the corresponding keys for hmax = 20, w = 4, and n = 512, a
total of 71 gigabit memory capacity and 2.2 · 109 hash function executions are
required.

To solve the memory problem a stack-based approach is used for the tree con-
struction [6], which only demands a stack size of hmax+1 nodes, see Algorithm 2.
Fig. 6 illustrates this algorithm by applying it to the example tree of Fig. 2. Index
refers to the current leaf. HashCount denotes the number of hashing operations,
that must be performed in step 17. The idea of this algorithm is to hash keys
as soon as possible. This occurs each time, when two keys from the same tree
level are available on the stack. This justifies the stack size of hmax + 1 nodes
mentioned previously.

Note: At the end of tree construction using Algorithm 2 all the keys except
for Y M are lost. To be able to retrieve these keys in the signing phase later, a
chained pseudo random number generator (PRNG) is used, which generates in
each iteration besides the key a new seed used to generate the next key. After
completing the tree construction, only the initial seed, which is used to generate
the first Winternitz signature sub-key, must be stored for recovering all the keys
and seeds in the signing phase.

4 MSS Hash Tree Generator

While Algorithm 2 minimizes the memory usage it still demands huge compu-
tational overhead. In [15] a solution for this performance problem was proposed
which relies on chaining smaller trees. While this solution accelerates the initial
determination of the root key, the signature process becomes slower, as each sign
operation must be followed by additional steps to prepare future trees.

In contrast, the proposed MSS Hash Tree Generator (HTG) tackles the per-
formance problem without deteriorating the signature process, as the complete
tree is generated in the beginning, as in the original Merkle scheme.

4.1 HTG General Architecture

Fig. 4 depicts the general architecture of the proposed generator. Recall that
the goal of the tree construction is to determine the Merkle public key Y M .
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Algorithm 2. MSS Tree Construction
Require: Hash tree height hmax.
Ensure: Merkle key Y M .
1: Index := 0; HashCount := 0;
2: loop
3: if HashCount = 0 then
4: if Index = 2hmax then
5: Y M := stack.pop();
6: return Y M .
7: end if
8: Generate a Winternitz verification key Y W using Algorithm 1;
9: stack.push(Y W );

10: Index := Index + 1;
11: i := Index;
12: while i mod 2 = 0 do
13: HashCount := HashCount + 1;
14: i := i/2;
15: end while
16: else
17: Node = H(stack.pop()||stack.pop());
18: stack.push(Node);
19: HashCount = HashCount− 1;
20: end if
21: end loop

Therefore, this key is the only output of this generator, which expects only an
initial seed SEED0 as an input. SEED0 is provided by the host, which writes
these 512-bit data into an input FIFO on the FPGA and signals that by writing
a command into a command register. The FPGA writes the determined public
key Y M into an output FIFO and signals that by setting a bit in a special status
register, which interrupts the software upon completing the tree generation. The
FIFOs and the registers are not depicted in Fig. 4 for brevity. The width of the
HTG data path including the input and output FIFOs is 64 bit. This corresponds
to the width of the local bus on the used FPGA card on the one hand, and to
the word width of the used hash function SHA-512 on the other, as will be seen
later.

HTG is a high-performance implementation of Algorithm 2, that implies Al-
gorithm 1. The latter demands the generation of pseudo random numbers (x’s)
in Step 2. For this purpose we use the pseudo random number generator specified
in [16] as given in Algorithm 3. This algorithm is mapped to the module PRNG
together with one of the modules SHA512 in the FHM units, see Section 4.2.

An FHM mainly includes a hash module SHA512. Besides the data to be
hashed, the FHM receives the number of times these data must be hashed. This
number is either 1 if an x is to be generated (Algorithm 3, Step 1) or 2w − 1 if
an y is to be determined (Algorithm 1, Step 4).



An FPGA Accelerator for Hash Tree Generation 151

y0

FHM-0

SHA512
y0

FHM-1

YM
Yi

W

SHA512

S
ee

d

+

y1

SEED0

SHA512

Next SEED

FHM-1

Stack
YMi

SHA512

+
+1

y2

S 5
(2)FHM-2

PRNG

SHA512
(3)

SHA512
x0

y3x2 x1x3

FHM-3

HTG
Controller

Fig. 4. Hash Tree Generator

4.2 HTG Functionality

Fig. 5 illustrates the generation of signature and verification sub-keys schemati-
cally: After receiving SEED0, FHM-0 computes x0 by applying the hash func-
tion once to SEED0. On the one hand, x0 is then fed back inside FHM-0 which
is started again to hash x0 2w − 1 times to compute y0. On the other, x0 is
fed back to the PRNG to compute the new seed S1. The latter is then sent to
FHM-1 to compute x1 and y1, and so on. When FHM-0 completes computing
y0, the seed S4 is already available, so that FHM-0 can continue computing x4
without waiting.

The hash module SHA512-(2) determines a verification key Y W
i out of its

v sub-keys y’s (Algorithm 1, Step 5). As the hash function SHA-512 works on
1024-bit blocks (see Section 4.4), SHA512-(2) processes two 512-bit verification
sub-keys at once.

The most-right hash module SHA512-(3) performs the hashing operations
needed to compute the internal nodes and the root of the Merkle tree (Algorithm 2,
Step 17). This task is done with the aid of the Stack under the control of the HTG
Controller, which interacts with these modules to perform Algorithm 2.

Algorithm 3. Pseudo Random Number Generator
Require: SEEDin ∈ {0, 1}n.
Ensure: Pseudo random number x; New seed SEEDout.
1: x = H(SEEDin);
2: SEEDout = (1 + SEEDin + x) mod 2n;
3: return (SEEDout, x).
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4.3 HTG Stack Organization

For hmax = 20 the stack size is 21 entries, which may be addressed using 5
address lines, see Fig. 5. As each entry is 512-bit key and the HTG data path
width is 64 bit, three additional address lines are required to address the 8 64-bit
words of each key. The address lines stem from the HTG Controller and are not
depicted in Fig. 4, for clarity. The stack is realized using block RAMs on the
FPGA. As Virtex-5 BRAMs maximally support 32-bit words, at least 2 BRAMs
are needed to work with 64-bit words.

4.4 SHA512 Module

All hash modules seen in Fig. 4 are identical and based on the hash function
SHA-512 which belongs to the SHA-2 family [17]. SHA-512 operates on 1024-
bit data blocks, which are extended to 80 64-bit words Wi’s by applying some
shift, rotation, and xor operations. A data block is hashed through 80 processing
rounds, which are applied to an 8×64-bit register (A, B, C, D, E, F, G, H). This
register is initiated with a constant value at the start. In each round, one word
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Algorithm 4. SHA-512 Round
1: T1 := H + Σ1(E) + Ch(E, F, G) + Ki + Wi;
2: T2 := Σ0(A) + Maj(A, B, C);
3: H := G;
4: G := F ;
5: F := E;
6: E := D + T1;
7: D := C;
8: C := B;
9: B := A;

10: A := T1 + T2;

of the extended message block Wi and an additional round-specific constant Ki

are incorporated. The extended message words are given as follows:

Wi =

{
M

(i)
i if 0 ≤ i ≤ 15

σ
{512}
1 (Wi−2) + Wi−7 + σ

{512}
0 (Wi−15) + Wi−16 if 16 ≤ i ≤ 79

Thus, the first 16 words correspond to the message words themselves. The other
words are determined using the functions σ

{512}
0 (x) and σ

{512}
1 (x), which are

given as follows:

σ
{512}
0 (x) = ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x)

σ
{512}
1 (x) = ROTR19(x) ⊕ ROTR61(x) ⊕ SHR6(x)

Algorithm 4 depicts how the register words (A, B, C, D, E, F, G, H) are up-
dated in each round. Σ0(), Σ1(), Ch(), Maj() are all logical functions including
negation, AND, XOR, shift, and rotation:

Ch(x, y, z) = (x ∧ y) ⊕ (¬x ∧ z)
Maj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z)

Σ
{512}
0 (x) = ROTR28(x) ⊕ ROTR34(x) ⊕ ROTR39(x)

Σ
{512}
1 (x) = ROTR14(x) ⊕ ROTR18(x) ⊕ ROTR41(x)

Obviously, the calculations of A and E are the most timing-critical tasks in a
round because of the several additions needed to determine these words. For per-
formance reasons, we divide the round path into four pipeline stages as depicted
in Fig. 7. By means of this division, no more than three words are summed in
one stage. Note that this design demands the duplication of the functions Σ1(),
Ch(), and the addition in stage 3. With the aid of this pipelining structure, the
SHA-512 module takes 86 clock cycles to hash one data block and works at a
clock frequency of 190 MHz for a stand-alone implementation. This corresponds
to a processing throughput of 2.4 Gbs.
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5 Implementation and Results

The MSS hash tree generator was implemented on the PCI card ADM-XRC-
5T1 [18], which is equipped with the Virtex-5 FPGA LX110T from Xilinx.
For functionality and performance evaluation we developed a software API and
tested the FPGA implementation against an open-source software implementa-
tion in the toolkit Flexiprovider [19]. Table 2 gives some performance figures
and the resource usage of the HTG for hmax = 10 and hmax = 20 and for differ-
ent values of the Winternitz parameter w. Additionally, several variants of the
generator with different number of the FHM instances were realized and tested
to show the influence of the parallelization on the performance and resource us-
age. Table 2 includes, furthermore, the timing figures obtained from running the
Flexiprovider solution on an Intel Core2Duo E6400, 2.13 GHz with 5 GB RAM.
The utilization ratio given in the last column relates to the total slice number
of 17,280 on LX110T. The HTG generator uses additionally 4 block RAMs for
the stack and for the input and output FIFOs needed to communicate with the
host. From the results of Table 2 the following conclusions can be drawn:

1. The larger the Winternitz parameter, the longer the tree construction takes.
Recall that for a larger w value less sub-signatures must be determined, i.e.
the signature will be shorter, see Section 2.

2. The hardware speedup, but also the resource usage, increase with the number
of FHM instances. Thus this number may be used as performance-cost trade-
off parameter.
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Table 2. FPGA Performance Compared to Software Implementation

Parameters hmax = 10 hmax = 20
Speedup

Utilized
Slices
(Ratio)w FHMs FPGA Software FPGA Software

4
1

1031 ms 11.8 s 1057 s 3.4 h 11
5,014

(29%)6 2777 ms 31.2 s 2844 s 8.9 h 11
8 8216 ms 91.8 s 8413 s 26.1 h 11
4

4
288 ms 11.8 s 295 s 3.4 h 41

7,084
(41%)6 791 ms 31.2 s 810 s 8.9 h 39

8 2330 ms 91.8 s 2386 s 26.1 h 39
4

8
143 ms 11.8 s 146 s 3.4 h 83

11,498
(67%)6 394 ms 31.2 s 403 s 8.9 h 79

8 1176 ms 91.8 s 1204 s 26.1 h 78

3. The speedup is independent of the tree height. Thus, this architecture is
scalable for larger trees, which is suitable for servers supporting message
authentication. Note that only the stack size may need extension when larger
trees should be supported.

Obviously, the presented architecture does not only show the feasibility of
hardware solutions for the sophisticated hash-based cryptography, but also their
high-performance which is indispensable for the acceptance of this class of
cryptosystems.

6 Conclusion and Outlook

A novel hardware architecture for efficient generation of Merkle trees was pre-
sented, which shows the advantage of modern FPGAs to answer performance
questions regarding post-quantum cryptography. Besides the parallelism grade,
many parameters such as the Winternitz parameter and the tree height may be
adjusted to attain desired design objectives.

Expanding the proposed architecture to perform message signing and signa-
ture verification is a part of future work. Message signing seems to be straightfor-
ward regarding the determination of the Winternitz signature, as the same FHM
unit may be used. FHM, however, will read variable number of hashing opera-
tions, which corresponds to the decimal value of the message or checksum block.
In contrast, determining the authentication path is a highly complex task as it
depends on successive pre-calculations after each signing operation. Implement-
ing the verification process is less demanding as no authentication path needs
to be determined. A hardware implementation of the signing and verification
processes seem to be especially beneficial if high throughput is required which
is the case for servers, e.g. an online banking server. Hardware acceleration on
the client side, in contrast, is assumed to be less useful as MSS relies on hash
functions which are fast enough for causal authentication operations.
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Abstract. Dot-products are one of the essential and recurrent building
blocks in scientific computing, and often take-up a large proportion of the
scientific acceleration circuitry. The acceleration of dot-products is very
well suited for Field Programmable Gate Arrays (FPGAs) since these
devices can be configured to employ wide parallelism, deep pipelining
and exploit highly efficient datapaths. In this paper we present a dot-
product implementation which operates using a hybrid floating-point
and fixed-point number system. This design receives floating-point in-
puts, and generates a floating-point output. Internally it makes use of a
configurable word-length fixed-point number system. The internal rep-
resentation can be tuned to match the desired accuracy. Results using a
high-end Xilinx FPGA and an order 150 dot-product demonstrate that,
for equivalent accuracy metrics, it is possible to utilize 3.8 times fewer
resources, operate at 1.62 times faster clock frequency, and achieve a
significant reduction in latency when compared to a direct floating-point
core based dot-product. Combining these results and utilizing the spare
resources to instantiate more units in parallel, it is possible to achieve
an overall speed-up of at least 5 times.

1 Introduction

The dot-product computation, also known as vector scalar product or vector-by-
vector multiplication, is a basic operation in linear algebra. This operation is also
a building block in other fundamental algebraic operations such as matrix-by-
vector, and matrix-by-matrix multiplications. All these operations are recurrent
and central to many scientific algorithms, which range from solution finding for
systems of linear equations [1] to the generation of complex biomedical images [2].
With their prolific employment, and often intensive computational requirements,
it is important to explore methods that allow the acceleration of this basic
operation.
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In computer arithmetic there are a two widely used number systems, fixed-
point and floating-point [3]. The former representation is commonly found in
digital signal processors. This number system is fast, requires a modest amount
of resources, and is well suited to modern commercial FPGA architectures. The
latter number system is more flexible and has the advantage of supporting a
wide range of values. Nonetheless, the digital logic required by floating-point
is more complex, and this complexity comes at a significant performance and
silicon cost.

Power consumption has become an important issue in accelerating scientific
computing using typical high performance microprocessors, hence it has become
increasingly important to explore alternative means of acceleration. This has
positioned Field Programmable Gate Arrays (FPGAs) as a key component in
the exploration of highly optimized reconfigurable architectures where speed-up
can be provided by exploring wide-parallelism, deep-pipelining, fast and efficient
datapaths, and through the usage of customized number systems.

In a typical microprocessor a floating-point unit can take operands from any
source computation. But in a custom hardware accelerator, we have prior knowl-
edge of the source and relationship between each of the operands. We can
therefore take advantage of this knowledge and only perform normalizations,
denormalizations, and alignments [4] when necessary. We extend this reason-
ing to allow for a customized hardware block where the interfaces abide by
floating-point standards but internally the design is optimized for efficient FPGA
implementation.

The main contributions of this paper are thus:

– a parameterizable hybrid floating-point and fixed-point dot-product design,
– a report on performance, latency, and resource utilization results for the

proposed hybrid design (FX) and a standard floating-point (FP) core based
design,

– an empirical error analysis for the absolute and relative solution error for
both FX and FP designs,

– a comparison of the solution accuracy versus resource utilization trade-offs
reported by FX and FP demonstrating that in most of the design space the
FX implementation is superior.

After discussing the relevant background in Section 2, we present an overview of
the hybrid dot-product method in Section 3. Section 4 details the proposed hard-
ware design as well as a direct floating-point dot-product implementation. In the
same section, we make a comparison between resource utilization, performance,
and latency for the implementations. Section 5 describes a precision study based
on a Monte-Carlo simulation. Section 6 presents the most significant findings of
this work, showing that the proposed design offers a superior trade-off between
accuracy and resource utilization. Section 7 concludes the paper.
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2 Background

A dot-product is defined as:

a · b =
n∑

i=1

aibi = a1b1 + a2b2 + · · · + anbn = r, (1)

where a and b are both vectors of order n, and r is the resulting real-valued scalar
quantity. This operation involves adding-up the pairwise products of the two vec-
tors, and requires 2n−1 scalar operations. Taking advantage of the associativity
of addition over the real numbers, dot-products can be highly parallelized and
deeply-pipelined, as shown in Fig. 1, and used in [1,4,5].

PARALLEL
SOLUTION

a1 b1 a2 b2 a3 b3 a4 b4

Fig. 1. A parallel dot-product of order 4

A number x is represented in floating-point using the notation in (2), where
S represents a sign bit, M a mantissa, and E an exponent.

x = (−1)S × 1.M × 2E−bias (2)

In accordance with the IEEE 754 standard for binary FP arithmetic the mantissa
is an unsigned number and a normalized floating-point number will always have
a single one in the most-significant-bit (MSB) position. This bit is implicit and
therefore the mantissa does not need to store it. The exponent is represented as
a non-negative integer from which a constant bias is subtracted.

Floating-point multiplications require a number of stages besides the multipli-
cation of the mantissas and the addition of exponents. These stages include the
normalization, rounding, and re-normalization of the mantissa, if necessary [3].
In the case of floating-point additions two initial stages are required, one to
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Fig. 2. Floating-point multiplier and adder diagrams showing the alignment stage in
the adder and the normalization, rounding and re-normalization stages on both oper-
ations. FLO represents “finding leading one”.

detect which exponent is the highest, and another to align the mantissa of the
lowest number to the same magnitude of the larger number. These stages are
illustrated in Fig. 2.

Floating-point arithmetic defined by the IEEE 754 standard [3] applies to
atomic scalar operations, not to composite computations such as dot-product.
As such, because of the non-associativity of floating-point addition, re-ordering
of operands changes roundoff error. Thus we should see floating-point realiza-
tions of dot-products as producing a “family” of possible arithmetic accuracies
rather than one single accuracy. Our scheme aims to be indistinguishable from
this family under an appropriate measure of accuracy, while out-performing a
straight-forward floating-point core based implementation.

In the fully parallelized and deeply pipeline dot-product circuit depicted in
Fig. 1, where each floating-point operation output is connected to an adder
input, there is a recurrent connection between a normalization, rounding and
re-normalization circuit and a mantissa alignment circuitry. This recurrent logic
consumes significant resources and increases the latency of such operations. In
this work we address this wastage and propose a dot-product design which fuses
the entire dot-product datapath. The design inputs two floating-point number
vectors and generates a floating-point output. Internally it makes use of a con-
figurable word-length fixed-point number system, which eliminates the recurrent
normalization and alignment stages present in straight-forward floating-point im-
plementation. In this proposed implementation, the customizable word-length in
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the adder reduction-tree increases by 1-bit at each stage, automatically avoiding
overflow. The corrected exponent is separately calculated and produced at the
output of the dot-product circuit.

In previous related work, Underwood has performed a study which compared
the performance of dot-products in FPGAs and CPUs [6]. In this 2004 paper it
was predicted that FPGA-based floating-point operations would overtake CPUs
by at least an order of magnitude by 2009. In this paper, we demonstrate that
such performance is indeed possible by configuring FPGA resources into highly
optimized parallel and pipelined datapaths.

In [7], a number of reduction circuits, which are an inherent part of dot-
product operation, are studied. For these circuits, the authors have set three
fundamental requirements. These include: no stalling on multiple input sets of
arbitrary size, the number of adders must be fixed, and buffers are only allowed to
grow up to a reasonable size. The proposed designs successfully address the target
requirements, and solves the problem arising in summation-reduction using high
latency pipelined floating-point cores. In contrast our design aims at reducing
overall latency and minimize area consumption by deviating from a floating-
point core-based design.

In [8], the authors propose a floating-point fused dot-product unit. This unit
is limited to order 2, nonetheless significant improvements are reported. These
improvements include a reduction of latency by 80% when compared to a fully
parallel approach and 50% when compared to a serial approach. In terms of
resource utilization, the fused approach saves 42% when compared to a fully
parallel implementation.

The FloPoCo project [9] is an open-source initiative which provides a frame-
work to automatically generate floating-point operators. The precision of these
operators can be customized to exploit and maximize the flexibility provided by
FPGA. The generated VHDL code is synthesizable and portable to any main-
stream FPGA architecture. However there is no primitive to generate a highly
efficient dot-product datapath.

In [4], Langhammer proposes a tool that automatically fuses a floating-point
datapath. In this paper it is reported that efficiencies gained by fusing the entire
datapaths result in a typical 50% improvement in terms of logic, latency, and
power reduction. The focus is on an automated flow taking best advantage of
the underlying architecture for non-standard floating-point, rather than on the
application-specific hybrid representation we discuss.

In this work we present a fused-hybrid dot-product design that can provide
up to a 5 times speed-up in throughput as well as a reduction in latency by 5
times.

3 Hybrid Dot-Product Design

The proposed design considers the dot-product operation in its entirety. This
allows for the elimination of redundant circuitry that is present in straight-
forward floating-point core based implementations. This redundant circuitry, as
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illustrated in the Section 2, consumes significant resources, accounts for the com-
paratively high latency, and increases the complexity of placement and routing
which in turn lowers the overall operating frequency. Our proposed design is fully
parallelized and deeply pipelined, and can receive a new set of input vectors at
each clock cycle.

This proposed design, as depicted in Fig. 3, comprises of a number of intercon-
nected blocks. At the inputs it receives two sets of n single precision floating-point
numbers. Each of these floating-point numbers is partitioned into its sign-bit,
exponent-bits, and mantissa-bits. At this initial partitioning, the leading hidden
bit which can be 1 or 0, depending on the exponent, is concatenated on to the
mantissa. Subsequently a pair-wise multiplication is performed between corre-
sponding mantissas of each vector, exponents are added together, and respective
sign-bits XORed. At the output of the multiplication stage, the mantissas can
be truncated or expanded into a desirable internal word-length. This allows us
to trade-off resource utilization with solution accuracy, as described in Section 5.
In parallel, all the exponents are compared in a tree with �log2 n� stages. The
highest exponent becomes the reference and all the mantissas are aligned to this
reference. After this alignment, the mantissas are converted into 2’s complement
number representation. In the next stage, the sum-reduction is performed on the
mantissas, and at each level of this reduction-tree the word-length is increased
by 1-bit, to prevent overflow. After this summation, the fixed-point number is
reconverted to sign and magnitude, aligned so as to drop the leading one, and
the exponent corrected. From these values, an IEEE 754 compliant floating-point
number is generated and output.

4 Implementation

We have implemented a number of designs; the first set of designs is a reference
core based floating-point implementation, which we will refer to as “FPn” for an
order-n dot-product; the other set of designs are based on our proposed scheme,
as described in the previous section, we will refer to these as “FXn”. Both sets
were targeted, placed and routed onto a Xilinx Virtex6LX760-2 FPGA, and the
toolchain used was Xilinx ISE version 11.3. This toolchain was set to optimize for
speed with maximum effort. These parameterizable designs can also be trivially
modified to operate on Altera FPGAs.

For all designs, the input and output format uses IEEE 754 single precision
floating-point. However, in both sets of designs, it is possible to trade-off area
against accuracy; in the FP designs this can be done by using a greater precision
internally to the dot-product, e.g. double precision. In our design, this trade-off
is achieved by varying the fixed-point word-length, p.

4.1 Resource Utilization

To measure resource utilization as a function of the internal word-length, p, we
have selected Look-Up-Tables (LUTs) slices as the resource of interest because
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Fig. 4. Resource utilization and performance for the Virtex6 LX760

these are the limiting factor on the target FPGA. In Fig. 4(a) there are three
lines describing slice utilization for each the two sets of implementations. Re-
source utilization growth is linear with input vector order. This growth becomes
quadratic when varying the internal word-length. Both sets of designs utilize the
same number of DSP48 blocks.

It is important to note that a fixed-point implementation with p internal
bits will, in general, have a different solution accuracy when compared to a
floating-point implementation of p internal bits. This issue is addressed in Section
5, where we show our approach provides a superior trade-off for comparable
accuracy.

4.2 Performance and Latency

The operating frequency as a function of internal word-length, p, has been de-
picted in Fig. 4(b) for both sets of implementations. Since these circuits are fully
pipelined and parallelizable their performance in terms of operations per second
is given by (2n − 1) × frequency.

The latencies for the FX and the FP sets of circuits, as a function of input
vectors orders n, are described in (3) and (4) respectively. In (4), Lm and Ls

represent the latencies of the individual floating-point cores for multiplication
and addition, respectively. These latencies vary with word-length, and in the
case of 24-bit mantissas (IEEE 754 single precision), Lm is 8 and Ls is 12, when
utilizing the floating-point modules from the Xilinx CoreGen library. Thus the
latency of the proposed scheme is also superior when n ≥ 5.

FX Latency(n) = 2�log2 n� + 29 (3)

FP Latency(n) = Lm + Ls�log2 n� (4)
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5 Precision Study

In any finite number representation numbers have a limited accuracy. This accu-
racy can be improved by increasing the word-length, which in bit-parallel hard-
ware translates to more resources being allocated. In this section, we create two
random test-benches for vectors of order 2 and 150. Each of these test-benches
comprises of 10000 randomly generated pairs of vectors. Each of these vectors
comprises of single precision floating-point numbers with exponents uniformly
distributed between -50 and 50, and mantissas uniformly distributed over their
natural range.

We have also implemented a software dot-product which emulates the hard-
ware. This software utilizes the MPFR library which is a C library for multiple-
precision floating-point computations with correct rounding [10]. Utilizing this
software and emulating the dot-product with 128-bits of internal precision, we
have generated our reference values. From these values we were able to calculate
the error as function of word-length and of resource utilization, as described in
the following section.

5.1 Word-Length and Error

Running the 10000 randomly generated vectors and varying the word-length we
have produced the two plots as depicted in Fig. 5; the first plot shows circuits
with input vectors of order 2; the other plot depict circuits with input vectors
of order 150. Note that since the error is data dependent, we use the measures
of accuracy given in (5) where S denotes the input test set; testi is the result
produced by the unit under test; and refi is the result produced by our high
accuracy MPFR implementation.

error = min/max/median
i∈S

|refi − testi
refi

| (5)
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It is possible to observe that the floating-point error lines become flat for word-
lengths significantly greater than 24-bits. This reflects the precision of the input
values which are all single precision.

6 Error and Resource Utilization

In the previous section we demonstrated how the internal word-length affected
the solution accuracy. In this section we translate word-length into resource uti-
lization and show how it is possible to trade-off resources with solution accuracy.
It is further demonstrated that by using our proposed design, it is possible to
achieve the same median accuracy, in terms of relative and absolute error, while
saving significant resources when compared to the FP design. This is demon-
strated through the four plots in Fig. 6. For example, using our proposed im-
plementation, with 24 internal bits, it is possible to achieve a better solution
accuracy than using the straight-forward floating-point implementation with 20
internal bits, while consuming almost 4 times less resources. The solution accu-
racy of our design levels-off at a slightly lower accuracy then the straight-forward
floating-point scheme. Therefore, beyond this level of accuracy, the only option
is to use the FP implementation. Apart from this extreme case, our proposed
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design provides a significantly better trade-off between solution accuracy and re-
source utilization for all of its accuracy range. These plots were generated using
median error values, however it is also important to note that both the minimum
and maximum error values provide similar trade-offs.

7 Conclusions

This paper proposes new FPGA-based dot-product design which takes advan-
tage of deep-pipelining, wide-parallelism, highly-efficient datapaths, and makes
use of a hybrid number representation system. This design inputs and outputs
floating-point numbers, but internally makes use of a customizable dynamic
fixed-point (FX) number representation. It analyzes and compares the resource
utilization, performance and latency of the a hybrid design and a direct core
based floating-point design. An empirical study of solution accuracy as a func-
tion of resource utilization is presented. From this study it is demonstrated that
the newly proposed design can provide better solutions utilizing significantly
fewer resources.

It is demonstrated that it is possible to utilize 3.8 times fewer resources,
operate at 1.62 times faster clock frequency, and achieve a significant reduction in
latency when compared to a floating-point based dot-product. Combining these
results and utilizing the spare resources, to instantiate more units in parallel, it
is possible to achieve an overall speed-up of at least 5 times.

Future work could be focused on further improvements to the accuracy, re-
source utilization, and latency by using various number partitioning schemes.
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Abstract. Computing the solution to a system of linear equations is
a fundamental problem in scientific computing, and its acceleration has
drawn wide interest in the FPGA community [1,2,3]. One class of algo-
rithms to solve these systems, iterative methods, has drawn particular
interest, with recent literature showing large performance improvements
over general purpose processors (GPPs). In several iterative methods,
this performance gain is largely a result of parallelisation of the matrix-
vector multiplication, an operation that occurs in many applications and
hence has also been widely studied on FPGAs [4, 5]. However, whilst
the performance of matrix-vector multiplication on FPGAs is generally
I/O bound [4], the nature of iterative methods allows the use of on-
chip memory buffers to increase the bandwidth, providing the potential
for significantly more parallelism [6]. Unfortunately, existing approaches
have generally only either been capable of solving large matrices with
limited improvement over GPPs [4,5,6], or achieve high performance for
relatively small matrices [2,3]. This paper proposes hardware designs to
take advantage of symmetrical and banded matrix structure, as well as
methods to optimise the RAM use, in order to both increase the perfor-
mance and retain this performance for larger order matrices.

1 Introduction

The large amount of resources available on modern FPGAs have made them
suitable for accelerating floating point applications. The solution to a system
of linear equations is a recurring sub-problem within many scientific computing
problems [7], and hence there is considerable value in accelerating this operation.
Iterative methods are one type of algorithm to solve a system of linear equations
and recently studies have shown that by using FPGAs on these algorithms it is
possible to achieve performance improvements of up to an order of magnitude
over general purpose processors (GPPs) [2, 3].

The reason FPGAs are capable of accelerating iterative methods, such as
the conjugate gradient and minimum residual (MINRES) algorithms [8], is that
these algorithms often contain lots of inherent parallelism, the majority of which
originates from a repeated matrix-vector multiplication. Furthermore, as it can

P. Sirisuk et al. (Eds.): ARC 2010, LNCS 5992, pp. 169–181, 2010.
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be shown that in general this operation consumes the best part of the execu-
tion time of the algorithms [9], parallel execution of this operation significantly
reduces the overall execution time. Unfortunately, highly parallel matrix-vector
multiplication circuits require the use of the on-chip RAM to buffer data so as
to provide the desired bandwidth, and hence the available RAM on the FPGA
limits the maximum matrix order that can be implemented.

Given many problems in scientific computing result in large matrices, it is of
interest to determine the extent to which this performance can be maintained
for such matrices. To achieve this, this paper proposes hardware architectures
for performing matrix-vector multiplication that can take advantage of banded
matrix structure, symmetry within the matrix, or both. Banded matrices are
sparse matrices of a specific structure such that all of the non-zero values lie
within a specified bandwidth of the diagonal, and these arise in many problems,
for example when solving partial differential equations [10]. Symmetric matrices
are square matrices that are equal to its transpose, and these are of particular
interest as both conjugate gradient and MINRES algorithms will only converge
to a solution provided the input matrix is symmetric.

This paper will demonstrate that by exploiting these properties, it is pos-
sible to reduce the RAM requirements. Furthermore, as embedded RAMs on
FPGAs have specific structures, this paper proposes an optimisation strategy
using integer linear programming (ILP) in order to translate this reduced RAM
requirement into the minimum use of embedded RAMs. Finally, it will be shown
that by applying these strategies for saving RAM, it is possible to move the
source of limitation on parallelism from RAMs to be a function of the look-up
tables and dedicated multipliers which are used to construct floating point com-
ponents. As a result, this work also goes on to describe parameterisable hardware
architectures, depending upon matrix characteristics such as the bandsize and
matrix order, which can scale to larger matrices and obtain as much parallelism
as possible. The main contributions of this paper can be summarised as follows:

– Hardware architectures for banded matrices and symmetric matrices that
can significantly extend the scalability to large order matrices and achieve
higher degrees of parallelism,

– An optimisation strategy to reduce the number of embedded RAMs depend-
ing upon problem specification,

– Hardware architectures that can trade parallelism with FPGA resources to
achieve greater scalability.

This paper begins with a survey of existing implementations of matrix-vector
multiplication in Section 2, before describing our architectures in Section 3.
Some results showing the benefit of this approach are then given in Section 4,
before the work is concluded in Section 5.

2 Related Work

There has been a large amount of research into FPGA acceleration of floating
point matrix-vector multiplication. The two main factors that distinguish these
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approaches are the method to store the matrix and how the on-chip RAM is
utilised.

At one extreme is the work by El-Kurdi et al. [5]. This implements a streaming
approach such that the ‘stripes’ containing the non-zeros for the matrix and
the vector are held in off-chip RAM and streamed through a set of processing
elements, with one processing element for each stripe to achieve the maximum
parallelism. The advantage of this approach is that due to the streaming nature,
it can operate on arbitrarily large matrices, provided there is sufficient off-chip
RAM. The disadvantage of this approach is that the maximum number of stripes
and hence the maximum parallelism is limited by the I/O bandwidth from a 1.76
single precision GFLOPs peak on a Stratix S80 to 1.5 single precision GFLOPs.

The work by Morris et al. [1] is slightly different, storing the matrix in a more
traditional fashion, using Compressed Sparse Row (CSR) format [11], which
consists of all non-zero values of the matrix, an index to the column the value lies
in, and an index for when each new row begins. The hardware then must match
several matrix values with their corresponding vector element and performs the
multiplications in parallel, before accumulating the results. In comparison to the
work by El-Kurdi et al., it stores the vector on-chip to perform these parallel
multiplications and this slightly improves the maximum performance. However,
it is still limited by I/O, and storing these vectors on chip means its scalability
depends on the available RAM to store these vectors. Further work by Zhuo et al.
[4,12] examined in detail the floating point data hazards, improving the reduction
circuits that accumulate these results to use less silicon, but the performance
was still limited by I/O to be 2.88 single precision GFLOPs, or 2.16 GFLOPs in
practical simulations on a Virtex2 Pro.

DeLorimier and DeHon [6] create an implementation which similarly targets
sparse matrix-vector multiplication for matrices stored in CSR format, but it is
specifically aimed at accelerating this function within iterative methods. This
operation is special as the same matrix is used for every iteration, and hence
this approach suggests loading the matrix into on-chip embedded RAM once,
from which it can be re-used multiple times allowing much more parallelism as
a result of the significantly higher memory bandwidth. Using this method, it
achieved a performance of up to 1.5 sustained double precision GFLOPs on a
Virtex2-6000. However, the maximum matrix size and performance in this work
is limited by the available memory to store the matrix.

The work by Lopes et al. [2] and previous work by the authors [3] acknowledge
that the more modern FPGAs have much larger memories and the floating point
support has improved, and hence maximise the performance of the conjugate
gradient algorithm and MINRES respectively, by storing on dense matrices using
the on-chip RAM. With dense matrices, there is no need for matching vector
elements, and hence matrix-vector multiplication can be achieved easily using
a pipelined dot-product core consisting of a vector multiplier and adder-tree,
as shown in Figure 1. In both works, this proved to be the major performance
increase, with the latter reporting up to 53 sustained single precision GFLOPs on
a Virtex5 330, which could translate to approximately a factor of 10 performance
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Fig. 1. Dot Product Circuit

increase over the peak theoretical performance of a Pentium 4, for matrices of
orders up to 145.

The work by Lopes et al. was then extended for banded matrices to examine
RAM savings [13]; this allowed the maximum order to be extended from 92 in the
dense case to 236 in the banded case for a thin band size of 5. However this work
only implemented a basic architecture which performs parallel multiplication
for the size of the band, but stores the entire vector in registers meaning that
resource use still grows with matrix order, an approach which will be shown to
be inefficient.

The aim of this work is to describe hardware architectures and RAMs configu-
rations to perform the matrix-vector multiplication with the minimum hardware
in such a way that they could easily be plugged into an implementation of an
iterative method such as [2] or [3].

3 Performing Matrix-Vector Multiplication

This section describes simple modifications to the architecture as shown in Figure
1 to solve matrices with specific structures using a high level of parallelism. We
begin with a detailed description of banded matrices before describing the hard-
ware architectures and RAM configurations to implement matrix-vector multi-
plication for this type of matrix, discussing in detail how this same approach
can be used to handle both thin and wide bands. We then describe how this ap-
proach can easily be extended to handle symmetric matrices, reducing the RAM
requirements, before discussing our procedure to optimise the use of RAM and
LUT resources on an FPGA given this RAM requirement. Finally, we discuss
our approach to trade parallelism for scalability for larger matrices.

3.1 Matrix-Vector Multiplication for Banded Matrices

Banded matrices are matrices where all the non-zero elements lie within some
known bandsize M from the main diagonal, as shown in Figure 2(a). As the
location of the non-zeros is known a priori, simple structures can be used to
hold these values such as Compressed Diagonal Storage (CDS) [11], shown in
Figure 2(b).
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(a) Banded Matrix using Traditional Storage.
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(b) Compressed Diagonal Storage

Fig. 2. Methods to Store a Banded Matrix. Each column will be stored in a separate
RAM, as shown in Figures 1 and 5.
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Fig. 3. Required Multiplication over time. In this figure, the values in grey represent
the required vector elements, whilst the values in white represent the required matrix
elements from RAM. Any 0 value refers to a multiplication that need not be performed.

Using CDS to store the matrix, all zeros that do not fall into the band are not
stored. This corresponds to (N −M)(N −M +1) saved elements. However, as is
clear from Figure 2(b), there are still some zeros in this storage. These zeros do
not reflect any in the original matrix, rather they reflect the fact that at the band
ends there are no elements and hence zeros are added instead. This corresponds
to a total of M(M + 1) additional zeros. This implies that if 2M − 1 > N ,
the amount of added zeros created from this redundancy could be greater than
the number of zeros that are avoided by using this storage format. This section
discusses these cases separately.

Thin-Bands (2M −1 ≤ N). In comparison to the method for dense matrices,
the first difference is that instead of using N parallel multipliers, it is only
necessary to perform parallel multiplications for the bandsize (2M − 1), as the
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result of any other multiplications would be zero. The other slight complexity is
that if the matrix is stored using CDS, the associated vector element for each
RAM will change at each cycle. This is demonstrated in Figure 3 which shows
the desired multiplications over time.

However, from Figure 3, it should be clear that the required vector element
for each multiplier is simply shifted once per clock cycle. This would require
little additional hardware in comparison to Figure 1, which uses a vector of reg-
isters, as the shift could be achieved using a serial-in-parallel-out shift-register.
Furthermore, this shift register need only be of size 2M − 1, as opposed to a
vector of N registers.

Wide-Bands (2M − 1 > N). There are two issues when using wide bands.
The first is the excessive storage, as mentioned above, the other is that when
using a banded matrix, the number of parallel multiplication is equal to 2M −1,
but if 2M − 1 > N , this would mean the number of multipliers is greater than
the size of the vector, and hence any such multiplications would correspond to
a multiplication by zero.

As a result, in order to minimise resources, the number of parallel multipliers
should be restricted to N . To map this to the RAMs, the proposed solution
to ‘wrap’ the data in the RAM around N columns, as shown in Figure 4. The
vector can also easily be ‘wrapped’ by feeding the output of the final output of
the shift register back into the input, and adding a multiplexer to choose between
this input and the vector input, this is shown in Figure 5. The control for this
multiplexer is simple and requires little additional hardware.
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Fig. 4. Wrapped Wide Bands

Whilst using N columns of RAM to store the matrix appears to be no better
than a dense implementation, there are two main benefits to this wrapping ap-
proach. The first is that it allows the same hardware to be used for both cases;
the second is that, excluding the dense case, using the optimisation process de-
scribed in Section 3.3, it is possible to save some RAM.
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Fig. 5. Banded Dot Product Circuits

3.2 Matrix-Vector Multiplication for Symmetric Matrices

With symmetric matrices, it is only necessary to either store the lower or upper
diagonal matrix. Interestingly, extending CDS (Figure 2(b)) to only store the
symmetric portion is straightforward: all that needs to be done is to remove the
columns that only hold the redundant data, i.e. all the columns to the left of
that holding the diagonal. However, whilst this reduces the RAM requirements,
in order to use the same architecture (Figure 5), one must emulate the behaviour
of the extra RAMs used for band storage. Interestingly, the organisation of the
RAMs in CDS makes it quite simple to achieve this. Observing Figure 2(b), the
values that have been removed in the symmetric storage are simply seen to be
a delayed version of other columns, the required delays shown in Figure 6.

Fig. 6. Symmetric Shift Register

Implementing Delays for Symmetry on FPGAs. Using FPGAs, there are
three potential methods to create this delay. The simple method would be to
use FIFOs made up of either shift registers or RAMs. The problem with using
this method is that if the delay is large, these FIFOs may also become large and
this may use a lot of resources.

Alternatively, some FPGAs have embedded RAMs which can implement true
dual-port memory [14]. In this case, one port could access the current value,
and the other port select the delayed value, meaning the delay could then be
implemented simply by using a delayed counter which would require minimal
additional circuitry. However, there are more subtle issues when using embedded
RAMs. Xilinx BRAMs on a Virtex 5 are 36KBit, and can be configured in one
of two ways: as 2-18KBit Block RAMs implementing simple dual-port RAM;
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or one single 36KBit true dual-port RAM [14]. This implies that by using the
Block RAMs in true dual-port fashion, the amount of flexibility of the RAMs
is reduced. Viewing this in another way, the likelihood of a large portion of
an embedded RAM being empty is heavily increased, and this can reduce the
number of RAMs available and impact the potential parallelism.

The final choice is that if the delay required for symmetry is greater than the
size of RAM needed to store a column, then the same RAM can be used to also
feed the multiplier for the symmetrical delay without requiring a second port, as
only one of the two multipliers will require input data at any given time. Given
these three options, determining the optimum use of resources is described in
the following section.

3.3 Minimising RAM Use

The amount of RAM required to store the matrix is dependent upon the the size
of matrix N , the bandsize M , and the number of LUTs on the FPGA the user is
willing to allow to be used in the place of embedded RAMs. In order to optimise
the configuration, this section proposes an integer linear programming (ILP)
formulation, which can be solved by many existing solvers, such as CPLEX [15].
A high-level description of this ILP is given in Figure 7(a), with the formal
ILP problem given in Figure 7(b). This section discusses how this formal ILP is
obtained.

Given input matrices of order N and
bandsize M for P problems,
min: Overall RAM Use

subject to:
Matrix Memory Constraints

Symmetric Delay Constraints

Available Register Constraints

(a) ILP Problem General Description.

min:
M∑

i=1

2xi + y1i + y2i

subject to:

∀i, 2Bxi + By1i + z1i ≥ ri

∀i, 2Bxi + By2i + z2i ≥ si

M∑
i=1

z1i +
M∑

i=1

z2i ≤ R

∀i, xi, y1i, y2i, z1i, z2i ∈ Z

(b) Formal ILP Problem.

Fig. 7. Minimising RAM using ILP

Notation. As shown in Figure 2(b), the matrix columns in CDS contain trailing
zeros. It is not necessary to store them, and hence the RAM requirement for
each column decreases. In contrast, as shown in Figure 6, the symmetric delay
required increases for each column. As each column has different requirements,
the variable i is used as an index for the M columns, with i = 1 being the
column containing the diagonals. For the ILP, the values for the RAMs required
and symmetric delay required for column i can then be denoted as ri, and si

respectively. The maximum capacity of the BRAMs in terms of the number of
words they can store is denoted as B, and the number of registers allocated by the
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user as an alternative to embedded RAMs as R; the choice of R will typically be
the number of unused registers, and hence will vary depending upon the type of
FPGA and the number of resources used for other functions in a given hardware
implementation.

There are three choices that to store matrix elements and to implement the
delays: true dual-port RAM, simple dual-port RAM or shift-registers, and as
described in Section 3.2, true dual-port RAM can both store matrix elements
and implement symmetric delay, whereas separate simple dual-port RAM or
shift-registers are needed to implement this delay. To simplify the notation, for
each column i, integer variables which represent the number of true dual-port
RAMs, simple dual-port RAMs, simple dual-port RAMs used for delay for sym-
metry, shift-registers and shift-registers used for delay for symmetry, are denoted
as xi, y1i, y2i, z1i, z2i respectively. As the RAMs and shift registers are physical
components, these must be integer variables, making this an ILP.

Objective Function. The aim is to minimise the RAM use, so the objective
function is a summation of the variables for the various RAMs. However, as the
true dual-port RAMs are twice the size of the simple dual-port RAMs, the cost
for all xi variables is twice that of y1i and y2i.

Matrix Memory and Symmetric Delay Constraints. The three types of
storage must satisfy the matrix memory and symmetric delay constraints for
each column. The complexity in this approach is that, as mentioned in Section
3.2, the true-dual port rams contribute to both the symmetric delay and matrix
memory constraints, and thus this same variable appears in both inequalities.

It should be noted that the values ri and si must be calculated prior to
implementing the ILP. As i increases, the RAM requirement for each column of
a matrix incrementally decreases, and hence the memory requirement for ri is
given by (N−i+1). Furthermore, in previous works [6,2,3] it has been highlighted
that due to the deep pipelines in floating point operators on FPGAs, in order
to maintain high sustained performance it was necessary to perform matrix-
vector multiplication on many different problems in a pipeline, and each of these
problems would have to be stored in RAM. This can easily be incorporated
into the model by modifying the memory requirement for P problems to be
P (N − i + 1). In contrast, as i increases, the symmetric delay requirement for
each column increases incrementally, but for delays, it is no longer necessary to
store multiple problems, and hence si can be found to be i−1. Also, as mentioned
in Section 3.2, if i > N , then there is no need for a separate RAM to implement
the extra delay, and hence si is given by i − 1 if i ≤ N and 0 if i > N .

Finally, one should note that by replacing symmetric delay constraints with
extra memory constraints, it is possible to use this same ILP for banded matrices.

Available Register Constraints. A final constraint is added to allow a user to
trade BRAM with registers. This is likely to be problem dependent, determined
by the FPGA resources used elsewhere and the total available resources.
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3.4 Trading Performance with Slices

It will be shown in Section 4 that the significant reduction in memory use that
this method provides implies that it would no longer be the memory available
that limits the maximum matrix order of the matrix-vector multiplication, rather
the slices and multipliers become the limiting factor.

The reason for the growth in slices is that the number of floating point units
required to perform the parallel multiplication grows according to min(N, 2M −
1). The solution would be to perform partial multiplications of size �min(N, 2M−
1)/α�, where α is an integer, and use a reduction circuit, several of which are
discussed in [12], to sum these partial multiplications. Any problems caused
by the ceiling function are avoided by extra multiplications by zero. As it is
desirable to achieve as much parallelism as possible, α should be as small as
possible. The circuit required for the case of α = 2, which would perform half
the multiplication of the first half of the row during odd cycle and the second
during even cycles, is shown in Figure 8. For different choices of α, only the
reduction circuit would change, many of which are discussed in [12].

Fig. 8. Example Parallel Circuit for Large Dense Matrices

The problem with this circuit is that parallelism is reduced by approximately
a factor of α and hence the maximum performance of the circuit will similarly
decrease. The counter side is that the number of slices will decrease by approx-
imately the same factor as the number of multipliers and size of the reduction
tree is reduced. This method could therefore be used for any general circuit to
trade resources in terms of DSPs and registers for scalability.

4 Results

4.1 RAM Use

The main benefit of this work is that it significantly reduces the RAM use.
Figure 9 consists of four graphs showing the percentage of embedded RAMs of a
Virtex 5 LX330T that are required to hold banded matrices of warying widths.
In these examples, the number of pipelined problems has been set to P = 20,
whilst the number of registers that can be used instead of RAMs has been set
to be equal to the size of one simple dual-port RAM, which corresponds to
approximately 0.5% of the slices of the FPGA.
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(a) Band=20. (b) Band=40.

(c) Band=60. (d) Dense.

Fig. 9. RAM Use

The greater scalability of this approach is clearly shown for the thinnest band-
size, when M = 20, which demonstrates that a large amount resources can be
saved in comparison to the basic method storing a dense matrix, the maximum
matrix order can be extended from 120 to 470 in the banded case and 930 in
the symmetric banded case. It should be noted that this bandwidth would, at
the maximum, require 39 parallel floating point multiplications, and hence could
not be fed using off-chip RAM. As the bandsize increases, though this difference
gets smaller, it is still significant. However, it is interesting to note that the
difference between the dense and banded case decreases much faster than the
difference between the dense and the symmetric case. The reason for this is that
the symmetric delay is only a function of N , whereas storing the band instead
of implementing this delay is a function of N and P . It is also worth noting that
in the graph where there is a wide band of M = 60, there is indeed still RAM
savings using the banded format as opposed to storing it in the dense format,
as mentioned in section 3.1.

4.2 Parallelism

The other claims of this work are that by reducing the amount of RAM used,
it is possible to obtain greater parallelism, and this parallelism becomes limited
by the registers and DSPs and hence it becomes necessary to trade parallelism
for scalability. In order to demonstrate this, Figure 10 compares the resource
use, post place and route, of matrix vector multiplication for a dense matrix of
increasing order, using the architecture from Figure 1 that was used in previous
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Fig. 10. Resource Use

works and this approach. The number of problems has been set to P = 14 for
this is what was used for the largest matrix in [3], the previous work which claims
the highest performance.

This graph demonstrates several points of interest. Firstly it shows that this
work approaches the maximum performance achievable on an FPGA for matrix-
vector multiplication in IEEE single precision floating point, in that it uses
almost all of the slices and DSPs, with most of these being used as floating point
components. This is unlike the method for traditional storage, in which case the
RAM limits the maximum possible parallelism; it is clear, for a matrix order of
150, that the RAM required for traditional storage exceeds that available on the
FPGA. It is also interesting that the transition for RAMs is much smoother for
our method than for using traditional storage; this is a result of our approach
reducing the probability RAMs being largely empty, as mentioned in Section
3.2. In addition, this graph demonstrates the value of reducing the parallelism
to increase the scalability. Finally, one should note that whilst there is still lim-
ited scalability, this is due to the focus on a dense matrix with a large number
of pipelined problems. However, this is nonetheless a valuable test as this com-
ponent could easily be plugged into the iterative solvers in [2,3] to improve their
performance and scalability.

5 Conclusion

Overall, this work has described how to create a parameterisable circuit to imple-
ment matrix-vector multiplication that could be plugged into existing hardware
implementations of iterative methods. Furthermore, it has shown that by taking
into account symmetry and banded matrices, only simple hardware changes to
an implementation of matrix-vector multiplication circuit using a pipelined dot-
product circuit, along with an optimisation strategy for RAM use, are required
to significantly improve both the scalability and performance of the circuit.
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Finally, one should note that any algorithm containing matrix-vector multi-
plication which is suitable for on-chip buffering of data could use this circuit,
whilst the contributions to reduce RAM use on FPGAs could be applied to any
circuit that stores banded or symmetric matrices on-chip.
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Abstract. A Multivariate Gaussian random number generator (MV-
GRNG) is a pre-requisite for most Monte Carlo simulations for financial
applications, especially those that involve many correlated assets. In re-
cent years, Field Programmable Gate Arrays (FPGAs) have received a
lot of attention as a target platform for the implementation of such a
generator due to the high throughput performance that can be achieved.
In this work it is demonstrated that the choice of the objective function
employed for the hardware optimization of the MVRNG core, has a con-
siderable impact on the final performance of the application of interest.
Two of the most important financial applications, Value-at-Risk estima-
tion and option pricing are considered in this paper. Experimental results
have shown that the suitability of the chosen objective function for the
optimization of the hardware MVRNG core depends on the structure of
the targeted distribution. An improvement in performance of up to 96%
is reported for VaR calculation while up to 81% improvement is observed
for option pricing when a suitable objective function for the optimization
of the MVRNG core is considered while maintaining the same level of
hardware resources.

1 Introduction

Monte Carlo simulation plays an important role in many scientific applications,
one of which is financial mathematics. The multivariate Gaussian distribution
is a pre-requisite for such simulations as it captures the correlation between
sources of uncertainties that affect the values of the financial instruments. As the
number of financial instruments continues to increase, the computation of these
simulations has been intensified. Field Programmable Gate Arrays (FPGAs)
have been demonstrated to be a good candidate for the acceleration of random
number generators due to their fine grain parallelism, and many works have
been presented in recent years on the acceleration of many financial applications
[1],[2]. However, to the best of the authors’ knowledge, no published work in
the literature has addressed the question regarding the relative performance of
the various optimization objective functions in the design of a random number
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generator block focusing on the impact that this has on the performance of a
financial application.

In this work, we focus on the implementation of the Multivariate Gaussian
random number generator (MVGRNG) on an FPGA platform and we investigate
the impact of the design decisions taken for the optimization of the MVGRNG
to the performance of a financial application. The application under investiga-
tion are the estimation of the Value-at-Risk (VaR) of a financial portfolio and
option pricing, two of the most widely used applications in financial industry.
Existing approaches in the literature regarding an FPGA based MVGRNG can
be found in [3], [4] and [5]. The work presented in this paper is based on the
framework proposed in [5], as it can accommodate any objective function for the
hardware optimization of a MVGRNG design. Three design criteria are proposed
for the design of a MVGRNG targeting an FPGA device, and their impact to
the estimation of VaR calculation and option pricing are investigated for a set
of hardware resources.

2 Related Work

The first FPGA-based multivariate Gaussian random number generator was
presented in [3]. The authors decompose the input correlation matrix, which
encapsulates the correlation of the distribution of interest, using Cholesky de-
composition in order to take advantage of the lower triangular property of the
resulting matrix. The resulting design is able to serially generate a vector of
multivariate Gaussian random numbers every N clock cycles, where N denotes
the dimensionality of the distribution. In [3], DSP48 blocks are used for the im-
plementation of a MVGRNG on an FPGA platform, requiring N blocks for an
N -dimensional Gaussian distribution. However, the drawback of this approach
is the restriction in resource allocation since the dimensionality of the distribu-
tion dictates the number of DSP48 blocks to be utilized. In their approach, the
minimization of the mean square error between the approximated correlation
matrix and the target one is implemented.

An alternative method which addresses the problem encountered in [3] is
presented in [4]. An algorithm, based on the use of Singular Value Decomposition,
is introduced to approximate the lower triangular matrix, the result of applying
Cholesky decomposition on the correlation matrix, by trading off the error in the
approximation of the input correlation matrix for an improved resource usage.
The approach in [4] requires 2K DSP48 blocks to produce a vector of size N ,
where K denotes the number of decomposition levels required to approximate
the lower triangular matrix while maintaining the same throughput as in [3]. In
addition to an improved resource utilization, [4] offers the flexibility to produce a
hardware system that meets any given resource constraint. However, it has been
shown in [4] that allocating a fixed precision to all of the computation paths of
the architecture does not lead to the optimum resource utilization.

In [5], the precision issue mentioned above has been exploited and word-length
optimization techniques have been introduced to produce an architecture with
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multiple precisions in its datapath. The algorithm presented in [5] further re-
duces the required hardware resources in comparison to [3] and [4]. In addition,
an analysis of the correlation of errors due to truncation operations in the com-
putation datapath has been presented and its effects have been modeled in the
objective function targeting the optimum usage of the hardware resources.

To the best of the authors’ knowledge, the existing approaches in the litera-
ture have not investigated the impact of the objective function employed in the
optimization of the MVGRNG core on the performance of the application that
requires such a block and on the hardware requirements of the core. The authors
in [3] carried out an evaluation of the performance of their approach for a finan-
cial application, the Delta-Gamma asset simulator, but the optimization of the
hardware architecture of a MVGRNG over different objective functions has not
been considered. This work considers two of the most important financial appli-
cations involving Monte Carlo simulation, the estimation of the Value-at-Risk
(VaR) and option pricing.

3 Generating Multivariate Gaussian Random Samples

Following from [5], in order to generate random samples from a given multi-
variate Gaussian distribution with mean m and correlation Σ, the eigenvalue
decomposition technique is used [6]. In this technique, an algorithm known as
Singular Value Decomposition is used to decompose the correlation matrix Σ.
As a result of the decomposition, Σ can be expressed as a linear combination of
three separable matrices UΛUT where U is an orthogonal matrix (UUT = I)
containing eigenvectors u1, ...,uN while Λ is a diagonal matrix with diagonal
elements being eigenvalues λ1, ..., λN . If we let A = UΛ1/2, multivariate Gaus-
sian random samples that follow N(m, Σ) can be generated as in (1), where
z ∼ N(0, I).

x = Az + m = UΛ1/2z + m

= (
√

λ1u1z1 +
√

λ2u2z2 + ... +
√

λKuKzK) + m

=
K∑

i=1

(
√

λiuizi) + m. (1)

The full representation of the original correlation matrix Σ can be achieved if the
number of decomposition levels K is equal to the rank of the correlation matrix.
Thus, the correlation matrix of the original distribution can be approximated by
taking into account K levels of decomposition where K ≤ rank(Σ).

4 Hardware Architecture

The proposed hardware architecture for a multivariate Gaussian random number
generator for an FPGA implementation is based on the eigenvalue decomposi-
tion technique. The generation of random samples from a centralized Gaussian
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distribution, that is a distribution with zero mean, will be the main focus for the
remainder of this paper. Any other non-centralized distribution with the same
correlation can be produced by a simple offset of the generated vectors. From (1),
the correlation matrix under consideration Σ is expressed as UΛUT . Hence, the
random samples x can be generated as x =

∑K
i=1

√
λiuizi ≈ ∑K

i=1 cizi, where
ci denotes a product of

√
λi ·ui after a quantization step with the desired word-

length.
In this work, the multivariate Gaussian samples are generated from the sum

of products of c and z and, thus, the various decomposition levels i are mapped
onto computational blocks (CB) designed for an FPGA. Each CB performs the
multiply-add operation. The architecture is mapped to logic elements only, so
that the precision of the datapath can be varied. Using the proposed approach,
a MVGRNG design is constructed from any combinations of CBs. Figure 1(a)
depicts an example of such architecture where four CBs are used. pi denotes the
precision of the datapath for each level of decomposition while the precision in
the adder path pT is fixed to the maximum precisions of all CBs. Independent
univariate Gaussian samples z are produced from the GRNG block.

The multiply-add operation is pipelined so that all the computational blocks
operate in parallel in order for an improved throughput. Fixed point number
representation is deployed throughout the entire design as it produces designs
which consume fewer resources and operate at a higher frequency in comparison
to designs that use floating point arithmetic. Similar to other existing approaches
in the literature, the elements of each random vector are serially generated re-
sulting to a throughput of one vector per N clock cycles for an N dimensional
Gaussian distribution [3] [4] [5].

5 Constructing MVGRNG Blocks

In this section, the methodology of mapping the hardware architecture described
in Figure 1(a) to an FPGA is discussed. The main concept behind the methodol-
ogy used in this work is the exploration of mixed precisions in the computational
path of the architecture which was proposed in [4]. The high level overview of the
proposed methodology is depicted in Figure 1(b). There are three main stages
in the proposed methodology where, in the first stage, the correlation matrix
Σ is decomposed into a vector c and its transpose using the Singular Value
Decomposition (SVD) algorithm. The resulting vectors are converted into fixed
point representation using one of the user-specified word-lengths from the hard-
ware library. In the second stage, the appropriate coefficients are selected in
order to minimize the error metric according to the selected objective function
which will be described in the next section. The third stage of the proposed
approach removes any inferior designs, that is designs which in comparison to
another design, use more hardware resources but produce worse approximation
error. The last step of this stage calculates the remainder of the original matrix
Σ which is the starting point for the next iteration. These steps are repeated
until the termination condition is met. Examples of the termination condition
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Fig. 1. Proposed Methodology

are a specified approximation error, a given resource constraint or the number
of decomposition levels to be used. The output of the proposed approach is a set
of vectors of coefficients ci which best approximate the input correlation matrix
under a given norm.

The approximated correlation matrix Σ can be decomposed as Σ = CK +W,
where CK , approximates the input correlation using K levels of decomposition
taking into consideration the quantization effects and W is an expected trunca-
tion error matrix, which is a function of the correlation between the error due
to truncation operations [5].

In summary, a framework to design a hardware architecture of a MVGRNG
with the ability to accommodate different objective functions has been discussed.
The coefficients of the correlation matrix of the distribution of interest are cho-
sen based on the objective function of interest. The proposed approach provides
an expectation of the generated correlation matrix given the coefficients in the
various levels of the architecture taking into consideration all sources of errors
injected into the system. It should be noted that the proposed system takes into
account the correlation effect due to truncation error in the approximation of
the correlation matrix. In the next section, the quality of the random samples
produced based on the proposed methodology are used for the estimation of
the Value-at-Risk of a financial portfolio and the pricing of options so the im-
pact of the different objective functions on the two financial applications can be
investigated.
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6 Case Study: MVGRNG in Financial Applications

This section focuses on the two financial applications of interest namely, the
estimation of Value-at-Risk of a portfolio and the pricing of an option. The first
part of this section provides a background description of the two applications.
The discussion is then shifted towards correlated assets where a multivariate
Gaussian random number generator is deployed to model the correlation between
those underlying assets. Three different objective functions are introduced for
the hardware design of the MVGRNG, given a certain constraint on the available
resources, and their impact on the performance of the two financial applications
is investigated.

6.1 Value-at-Risk of a Financial Portfolio

A portfolio is a collection of financial investments such as stocks, bonds and
options. Essentially, the purpose of holding a portfolio is to limit the risk while
increasing the possibility of making profit, where the investment is spread over
a variety of assets with different degree of risk factors. In order to quantify the
expected loss of a portfolio with many correlated assets, the progression of the
risk factors affecting this portfolio must be taken into account. Monte Carlo
simulation is used to simulate the time evolution of the risk factors due to their
stochastic nature. Let us consider a portfolio containing N assets. The market
price of each asset is denoted by Si having drift μi and volatility σi, where
i = 1 . . .N . The correlation between all of the assets in the portfolio under
consideration is captured by a correlation matrix Σ. The dynamics of the price
of each asset are modeled as in (2).

ln(Si(tE)) = ln(Si(t0)) +
E∑

j=1

(μiδt + xj), (2)

where xj denotes a multivariate Gaussian random sample that follows N(0, Σ).
The time interval from t0 to tE is divided into intervals of length δt [7]. The
path taken by the random walk algorithm during the simulation is of interest
only for path-dependent derivatives such as an Asian-style derivative where the
price at maturity is the average price of the path taken over a specified period. A
European-style derivative, on the other hand, does not take this into account and
the price at maturity is taken at the end of the specified period. Value-at-Risk
(VaR) is a measurement used to evaluate a risk of loss of a specific portfolio and
describes probabilistically the market risk of a trading portfolio by measuring
the worst expected loss over a specific time interval at a given level of confidence.

6.2 Option Pricing

An option is a contract between a buyer and seller which permits a buyer, de-
pending the type of option held, the right to purchase or sell a particular asset
at an agreed price on or before the option’s expiration time. In this work, the
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option called “Chooser option” is considered. The strike price, which is a price
when the option is being exercised, of a Chooser option with three underlying
assets is determined by the maximum of the sum of the two highest priced assets
at the end of a specified period of time. Monte Carlo methods are used to calcu-
late the value of these options where multiple underlying assets are involved and
sources of uncertainty are captured by the multivariate Gaussian distribution.

6.3 Objective Functions

In this work, we propose three objective functions for the selection of coefficients
and the precision of the computational paths for each decomposition level in the
design of the MVGRNG core. The following notation is used for all three objec-
tive functions. RK−1 denotes the remaining of the original correlation matrix
after K − 1 levels of decomposition with R0 defined as the original correlation
matrix at the start of the algorithm. The max(.) operator is an element-wise op-
eration for a matrix of interest. Table 1 illustrates the three objective functions
to be used in this work. The first objective function selects the coefficients based
on the minimization of the maximum absolute error in the approximation of
the correlation matrix while the second and third objective functions minimize
the relative and mean square error in the correlation matrix approximation re-
spectively. All three objective functions take into account the correlation effect
between the truncation errors to the final correlation matrix.

Table 1. Objective Functions

Error to be Minimized Objective Functions

Maximum Absolute Error max
∣∣RK−1 − (cKcT

K + W)
∣∣

Maximum Relative Error max
∣∣∣RK−1−(cKcT

K+W)

RK−1

∣∣∣
Mean Square Error 1

N2

∥∥RK−1 − (cKcT
K + W)

∥∥2

6.4 Framework

Figure 2 shows the framework deployed in this work. There are two main com-
ponents in the system. The first part generates random samples from a given
multivariate Gaussian distribution which captures the correlation between the
assets of interest. These random numbers are produced by the proposed system
where the generator is mapped onto an FPGA using mixed precision in the com-
putational paths. The second part of the framework performs the simulation of
the two financial applications under consideration using the randomly generated
data.
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6.5 Experimental Setup

The purpose of this investigation is to assess the performance of the random num-
ber generator core when the already mentioned objective functions are used for
its optimization, for a given resource constraint, using the calculation of VaR and
option pricing application as testbenches. Since we are interested in the impact
of the objective function for the design of the MVGRNG hardware block on the
performance of the applications under investigation, it is adequate for this work
for the two applications to be implemented on a CPU. The target device for the
MVGRNG is a Stratix III EP3SE50F484C2 FPGA from Altera and Quartus II
is utilized as a hardware synthesis tool. The precision of the univariate Gaussian
random samples z is kept constant throughout the design at 18 bits with 3 bits
dedicated for the integer part and 14 bits dedicated for the fractional part. The
set of computational blocks (CBs) that is used in the proposed framework is cho-
sen in order to cover the range between 10 to 18 bits precision in an almost uniform
way where three CBs with 10, 14 and 18 bits precision have been pre-defined in
the hardware library. After the synthesis stage from Quartus II, the resource uti-
lization of 212, 296 and 332 LUTs is reported for CBs using 10, 14 and 18 bits
precision respectively. These results are used by the three objective functions un-
der consideration in order to optimize for the desired architecture. In this work
two types of input correlation matrices are considered, Type I denotes matrices
with high cross correlation between the underlying assets whereas Type II denotes
correlation matrices with very low cross correlation.

6.6 Experiment I: Calculation of VaR

In the first experiment, four portfolios each with five correlated assets are con-
sidered. The underlying correlations between the five assets for each portfolio are
modeled by the four correlation matrices, namely A, B, C and D. A and B are of
Type I while C and D are of Type II. Cross correlation values for Type I matri-
ces are above 0.9 while that of Type II matrices are below 0.01. A fixed resource
constraint is used as a terminating condition for the three objective functions
of interest where the constraint is set to 1660 LUTs since 1660 is equivalent to
five DSP48 blocks which is the amount of hardware resources required by [3], an
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approach that is based solely on DSP48 blocks for producing multivariate Gaus-
sian random numbers on an FPGA platform, for a 5x5 correlation matrix.

In total, four MVGRNG hardware blocks are investigated and compared. The
first three generators are implemented on FPGA using the proposed methodol-
ogy optimizing for three different error metrics as seen in objective functions 1,
2 and 3 respectively, see Table 1. The fourth MVGRNG is generated using [3].
The generated random numbers are then used for the calculation of VaR of both
European-style and Asian-style derivatives and produce the risk assessment for
the four portfolios. The results are compared to a reference design implemented
on general purpose processor using double precision floating point number rep-
resentation using the same ”seed” for the univariate Gaussian random number
generator block.

6.7 Experiment II: Option Pricing

In this experiment two types of Chooser option with 3 assets are considered.
The strike price of Chooser option 1 is defined as the sum of all of its assets
while that of Chooser option 2 is defined as the maximum of the sum of the
two highest priced assets at the end of a specified period of time. Taking into
account the two different correlation matrix types I and II we end up with four
possible cases of Chooser options, Chooser option 1 and 2 both with high and low
cross correlations between their assets. The same procedure as in Experiment I
is taken in order to generate the MVGRNG hardware blocks with the exception
of the termination condition being set to 996 LUTs for resource constraint which
is equivalent to three DSP48 blocks, the amount of hardware required by [3].

6.8 Results: Evaluation of Hardware MVGRNG Blocks

A comparison is made between maturity price of the asset simulated from the
random numbers produced from the four different objective functions of inter-
est. We denote the results from the reference design which uses double precision
floating point as the actual values. Table 2 summarizes the best objective func-
tions, which produce the closest results for the generation of random numbers
from a MVGRNG to the actual values, for each financial application. For both
applications where the underlying assets are highly correlated, the best results

Table 2. Summary of Best Performing Objective Function for Financial Applications
of Interest

Best Metric
Experiment Financial Applications Type I Type II

I European-style VaR MSE REL
Asian-style VaR MSE REL

II Pricing of Chooser Option 1 MSE REL
Pricing of Chooser Option 2 MSE [3]
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Fig. 3. European-style VaR

are obtained by employing the objective function based on the mean square er-
ror. On the other hand, with low cross correlation, the objective function which
is based on the relative error is the best metric for three out of four cases with an
exception of the pricing of Chooser Option 2 where [3] provides the best results.

A selection of plots from the two experiments are shown to illustrate the
behaviour of the two financial applications. Figure 3(a) illustrates a plot of the
difference in mean return of each portfolio with respect to the mean return of the
reference architecture for a European-style VaR. It can be seen that the mean
square error metric gives the nearest approximations to the actual values for
Type I matrices while the relative error is the best metric for Type II matrices.
It can be deduced from the plots that an improvement in performance within
the range of 5% to 96% is reported for Type I matrices while 24% to 80%
improvement is observed for Type II matrices using the four different objective
functions for the same hardware resource utilization for the MVGRNG block.
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Fig. 4. Chooser Options 1 and 2 with Type I Matrix
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Fig. 5. Chooser Options 1 and 2 with Type II Matrix

The upper and lower limits of the value of the returns of each portfolio given
a 95% level of confidence are investigated. The upper limit is defined as the
maximum expected return while the lower limit is the minimum expected return
of each portfolio over a specified confidence interval. The difference of the upper
and lower limits for Type I and Type II matrices are plotted in Figures 3(b) and
3(c). The plots reinforce the trend previously observed for the best objective
functions for Type I and II matrices.

Figures 4 and 5 illustrate plots of the deviation of the strike price from the
actual values for Chooser options 1 and 2 over a range of resources. All graphs
show that the deviation from the actual strike price decreases as the resource
utilization of the MVGRNG hardware block increases. One important point from
these plots is the ability for the proposed approach to produce designs across all
design space whereas [3] will only offer one design for a given correlation matrix.
The plots indicate that for Type I matrix, an improvement in performance within
the range of 17% to 81% and 11% to 71% is reported for Chooser options 1 and
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2 respectively using the four different objective functions. For Type II matrix,
an improvement in performance within the range of 12% to 51% is reported
for Chooser option 1 and 8% to 39% for Chooser option 2 using the three four
objective functions.

In terms of the hardware performance, the operating frequency of all designs
is in the range of 380 to 420 MHz, where the mean is 401.22MHz.

7 Conclusion

In this paper, a methodology to construct and implement a customized hardware
architecture to produce random samples from a multivariate Gaussian distribu-
tion tailored made for a specific financial application is described. Three design
criteria for the optimization of the MVGRNG are proposed and their impact on
the estimation of VaR financial problem and option pricing are investigated. Sim-
ulation results have shown that, for an application with highly correlated assets,
the objective function which optimizes for the mean square error in the approxi-
mation of the target correlation matrix of the multivariate Gaussian distribution
provides the best performance for the same hardware resource utilization. On
the other hand, for an application with low cross correlation between its assets
the objective function based on the relative error provides the best results. An
improvement in performance of up to 96% is reported for VaR calculation while
up to 81% improvement is observed for option pricing using the four different
objective functions.
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Abstract. Few of the benefits of exploiting partially reconfigurable de-
vices are power consumption reduction, cost reduction, and customized
performance improvement. To obtain these benefits, one main problem
needs to be solved is the task scheduling and placement. Existing algo-
rithms tend to allocate tasks at positions where can block future tasks
to be scheduled earlier denoted as ”blocking-effect”. To tackle this ef-
fect, a novel 3D total contiguous surface (3DTCS) heuristic is proposed
for equipping our scheduling and placement algorithm with blocking-
awareness. The proposed algorithm is evaluated with both synthetic and
real workloads (e.g. MDTC, matrix multiplication, hamming code, sort-
ing, FIR, ADPCM, etc). The proposed algorithm not only has better
scheduling and placement quality but also has shorter algorithm execu-
tion time compared to existing algorithms.

1 Introduction

Hardware task scheduling and placement algorithms can be divided into two main
classes: offline and online. Offline assumes that all tasks properties (e.g. task sizes,
execution times, reconfiguration times, etc) are known in advance. The offline ver-
sion can then do various optimizations before runtime. As a result, the offline ver-
sion has a better performance than the online version. However, the offline
version is not applicable for general multipurpose systems in which the proper-
ties of arriving tasks are unknown beforehand. In general multipurpose systems,
the online version is needed.

In the offline version, the algorithm can make offline decisions. Hence, the
time needed for making decisions in the offline version is not taken into account
for the overall application time. In contrast, the online version needs to take
decisions at runtime; as a result, the algorithm execution time is computed as
an additional time for the overall application time. Therefore, the goal of the
online version is not only to get better scheduling and placement quality but
also to have a low runtime overhead.
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Online scheduling and placement algorithms have to find a block of hardware
resources for running each arriving task on a 2D partially reconfigurable device.
When there are no available resources for allocating the hardware task at its
arrival time, the algorithms have to schedule the task for future execution. Here,
the algorithms need to find the earliest starting time and free space for executing
the task on the device in the future.

Many algorithms have been proposed to solve the scheduling and placement
issue mentioned above, such as: Horizon [1], Stuffing [1], Classified Stuffing [2],
Intelligent Stuffing [3], Reuse and Partial Reuse [4], Window-based Stuffing [5],
and Compact Reservation [6]. However, none of them has a blocking-aware abil-
ity; the existing algorithms have a tendency to block future tasks to be scheduled
earlier, referred as ”blocking-effect”. As a result, wasted area (volume), sched-
ule time, and waiting time will increase significantly. To solve this problem, we
propose a novel 3D total contiguous surface (3DTCS) heuristic to equip our al-
gorithm with blocking-awareness. The goal of the proposed algorithm is not only
to achieve better quality but also to have lower runtime overhead.

The main contributions of this paper are:

– the first blocking-aware online hardware task scheduling and placement
algorithm;

– a novel 3D total contiguous surface (3DTCS) heuristic;
– a novel 3D Compaction (3DC) algorithm.

The rest of the paper is organized as follows. In Section 2, we introduce the
problem of scheduling and placement on 2D area models. We give a short review
of existing algorithms in Section 3. In Section 4, we present basic idea of our
blocking-aware algorithm. The 3DTCS heuristic is described in Section 5. In Sec-
tion 6, we present our proposed algorithm in detail. The algorithm is evaluated
in Section 7. Finally, we conclude in Section 8.

2 Problem of Scheduling and Placement on 2D Area
Models

This problem definition is an extension of the definition of the problem of
scheduling and placement on 1D area models as presented in [3]. Given a task
set representing a multitasking application with their arrival times ai, life-times
lti, widths wi and heights hi, online scheduling and placement algorithms tar-
geting the 2D area models of partially reconfigurable devices have to determine
placements and starting times for the task set such that there are no overlaps
in space and time among all tasks. The goals of the algorithms are: a) to utilize
effectively the available FPGA resources (minimize wasted volume); b) to accel-
erate the overall application on the FPGA (minimize schedule time); c) to start
executing arriving tasks on the FPGA earlier (minimize waiting time) and d) to
keep the runtime overhead low (minimize the algorithm execution time).

We define the total wasted volume as the overall number of area-time units
that are not utilized as illustrated in Figure 1(a). Total schedule time is the total
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(a) (b)

Fig. 1. Problem of scheduling and placement on 2D area models (a) and basic idea of
blocking-aware algorithm (b)

number of time units for the execution of all tasks. Waiting time is the difference
between starting and arrival times for each task (in time units). The algorithm
execution time is the time needed to schedule and place the arriving task.

3 Related Work

In [1], Steiger et al. proposed the Horizon and Stuffing algorithms both for 1D
and 2D area models. The Horizon guarantees that arriving tasks are only sched-
uled when they do not overlap in time or space with other scheduled tasks. The
Stuffing schedules arriving tasks to arbitrary free areas that will exist in the future
by imitating future task terminations and starts. In [1], the authors presented that
the Stuffing outperforms the Horizon in scheduling and placement quality.

To tackle the drawback of the 1D Stuffing, Chen and Hsiung in [2] proposed
their 1D Classified Stuffing. By classifying incoming tasks before scheduling
and placement, the 1D Classified Stuffing performs better than the original 1D
Stuffing.

In [3], Marconi et al. proposed their 1D Intelligent Stuffing to solve the prob-
lems of both the 1D Stuffing and Classified Stuffing. The main difference between
their algorithm and previous 1D algorithms is the additional alignment flag of
each free segment. The flag determines the placement location of the task within
the corresponding free segment. By utilizing this flag, the 1D Intelligent Stuffing
outperforms the previously mentioned 1D algorithms.

In [4], Lu et al. introduced their 1D reuse and partial reuse (RPR). The
algorithm reuses already placed tasks to reduce reconfiguration time. As a result,
the RPR outperforms the 1D Stuffing.
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In [5], Zhou et al. proposed their 2D Window-based Stuffing to tackle the
drawback of 2D Stuffing. By using time windows instead of the time events, the
2D Window-based Stuffing outperforms previous 2D Stuffing. The drawback of
their 2D Window-based Stuffing is a high running time cost. To reduce the high
runtime cost of Window-based Stuffing, they proposed their Compact Reserva-
tion (CR) in [6]. The main idea of the CR is the computation of the earliest
available time (EA) matrix for every incoming task. That contains the earliest
starting times for scheduling and placing the arriving task. The CR outperforms
the original 2D Stuffing and their previous 2D Window-based Stuffing.

4 Basic Idea of Blocking-Aware Algorithm

Blocking-unaware algorithms do not care of their task placement positions
whether they will block other incoming tasks or not in the future. They be-
have like drivers who park their vehicles wherever they want. Their parking
places may be stumbling blocks for other drivers to park their cars. Figure 1(b)
(left) illustrates the behavior of online scheduling and placement algorithms that
do not have blocking-awareness. In this simple example, task T3 is becoming an
obstacle for task T4 to be scheduled earlier.

To tackle this problem, we introduce an algorithm that has an awareness to
avoid placement that will be an obstacle for other future tasks. By placing task
T3 to a different location as shown in Figure 1(b) (right), the proposed algorithm
can avoid task T3 to be an encumbrance for task T4 to be started earlier. By
scheduling T4 earlier, the FPGA can finish executing task T4 faster. To give the
algorithm the necessary knowledge to avoid this ”blocking-effect”, the algorithm
places tasks at locations as much as possible touching its prior tasks illustrated
as bold lines on the figure. In next section, we will give a more detail explanation
of this heuristic, termed 3D total contiguous surface (3DTCS).

5 3D Total Contiguous Surface (3DTCS) Heuristic

A hardware task on a 2D partially reconfigurable device using 2D area models
can be illustrated as a 3D box. The first two dimensions are the required area
(wh) on the device for running the task. The other dimension is the time di-
mension (t). To pack hardware tasks compactly during run time at the earliest
time, we propose a new heuristic, named 3D total contiguous surface (3DTCS)
heuristic.

The 3DTCS is the sum of all surfaces of an arriving task that is contacted
with the surfaces of other scheduled tasks as depicted in Figure 2(a). The 3DTCS
contains two components:

– the horizontal contiguous surfaces with previous scheduled tasks and next
scheduled tasks;

– the vertical contiguous surfaces with scheduled tasks and the FPGA
boundary.
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(a) (b)

Fig. 2. 3D total contiguous surface (3DTCS) heuristic (a) and horizontal contiguous
surfaces (b)

Table 1. Computations of horizontal contiguous surfaces for positions in Figure
2(b)(1)-(14)

Positions Horizontal contiguous surfaces
(1) (x2 − x1 + 1)(y2 − y1 + 1)
(2) wh
(3) w(y + h − y1)
(4) (x + w − x1)h
(5) w(y2 − y + 1)
(6) (x2 − x + 1)h
(7) (x2 − x1 + 1)(y2 − y + 1)
(8) (x2 − x + 1)(y2 − y1 + 1)
(9) (x2 − x1 + 1)(y + h − y1)
(10) (x + w − x1)(y2 − y1 + 1)
(11) (x + w − x1)(y + h − y1)
(12) (x + w − x1)(y2 − y + 1)
(13) (x2 − x + 1)(y2 − y + 1)
(14) (x2 − x + 1)(y + h − y1)

In a simple example depicted in Figure 2(a), the horizontal contiguous surfaces
with a previous scheduled task (PST) A4 and with a next scheduled task (NST)
A3 in the figure give this heuristic an awareness on avoiding ”blocking-effect”;
while the other surfaces A1 and A2 (vertical contiguous surfaces) give this heuris-
tic to better pack tasks in time and space. As a result, the proposed algorithm
has a full 3D-view of the positions of all scheduled and placed tasks.

Intuitively, a higher 3DTCS value will result in more compaction both in space
and time. This 3DTCS heuristic gives our proposed 3D compaction algorithm
with blocking-aware ability to pack tasks better as it has a more complete view
of all dimensions.

Figure 2(b)(1)-(14) and Table 1 show all the placement positions and their
corresponding computations of horizontal contiguous surfaces. The arriving task
(AT), with width w and height h, has a bottom-left coordinate (x, y) as shown in
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(a) (b)

Fig. 3. Vertical contiguous surfaces with scheduled tasks (a) and the FPGA boundary
(b)

Table 2. Computations of vertical contiguous surfaces with scheduled tasks for posi-
tions in Figure 3(a)(1)-(16)

Positions Vertical contiguous surfaces with scheduled tasks
(1),(3) w.min(lt, (tf − ts))
(2),(4) h.min(lt, (tf − ts))
(5),(7) (x2 − x1 + 1).min(lt, (tf − ts))
(6),(8) (y2 − y1 + 1).min(lt, (tf − ts))
(9),(14) (x2 − x + 1).min(lt, (tf − ts))
(10),(13) (x + w − x1).min(lt, (tf − ts))
(11),(15) (y2 − y + 1).min(lt, (tf − ts))
(12),(16) (y + h − y1).min(lt, (tf − ts))

Table 3. Computations of vertical contiguous surfaces with the FPGA boundary for
positions in Figure 3(b)(1)-(8)

Positions Vertical contiguous surfaces with the FPGA boundary
(1)-(4) (w + h)lt
(5),(7) h.lt
(6),(8) w.lt

Figure 2(b)(15). The arriving task can be contacted with the previous scheduled
task (PST) and (or) the next scheduled task (NST) to produce the horizontal
contiguous surfaces. The scheduled task has a bottom-left coordinate (x1, y1)
and a top-right coordinate (x2, y2) as illustrated in Figure 2(b)(16).

The arriving task can be contacted with scheduled tasks and (or) FPGA
boundary to produce the vertical contiguous surfaces. All placement positions of
the arriving task (AT) and their corresponding computations of vertical contigu-
ous surfaces with the scheduled task (ST) are shown in Figure 3(a) and Table 2.
The arriving task with a life-time lt is started execution at time ts; the finishing
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time of scheduled task is denoted as tf . Computations of vertical contiguous
surfaces between the arriving task with the FPGA boundary are illustrated in
Figure 3(b) and formulated in Table 3.

6 The 3D Compaction (3DC) Algorithm

Figure 4 shows the pseudocode for the proposed 3D Compaction (3DC). The
algorithm maintains two linked lists: the execution list and the reservation list.
The execution list saves the information of all currently running tasks sorted in
order of increasing finishing times; the reservation list contains the information of
all scheduled tasks sorted in order of increasing starting times. The information
stored in the lists are the bottom-left coordinate (x1, y1), the top-right coordinate
(x2, y2), the starting time ts, the finishing time tf , the task name, the next
pointer, and the previous pointer.

In lines 1-13, the algorithm computes the starting time matrix (STM) with
respect to the arriving task area wh on the device area WH . The algorithm
collects all possible positions that have enough space for the arriving task by
scanning the executing and reservation lists. The algorithm fills each element

Fig. 4. Pseudocode of 3D Compaction algorithm
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of the STM with the arrival time of incoming task a (lines 1-3). The algorithm
updates groups of elements that are affected by all executing tasks in execution
list (lines 4-8) and by all scheduled tasks in reservation list (lines 9-13).

In line 14, the algorithm collects all best positions (candidates) that have the
earliest starting time (best starting time positions: best positions in terms of
starting time) from the STM.

Since the algorithm not only wants to get the best position in terms of start-
ing time (time domain) but the best position in terms of space (space domain)
as well. To pack compactly tasks, we propose to use the 3DTCS heuristic as
presented earlier in Section 5. The algorithm computes the 3DTCS (line 16)
using formulas from Table 1 to Table 3 and chooses the best position from all
the best starting time positions. Hence, the algorithm does not need to compute
the 3DTCS for all positions; it only computes the 3DTCS for the best posi-
tions (candidates) (line 15). Intuitively, the highest 3DTCS value gives the best
position in terms of packing to avoid ”blocking-effect”.

Besides the 3DTCS heuristic, the algorithm also uses the sum of finishing time
difference (SFTD) heuristic for all scheduled tasks that vertically contacted with
the arriving task (referred as a VC set). The algorithm computes current SFTD
(c SFTD =

∑
∀tasks∈V C

|ts + lt − tf |) in line 17. The SFTD heuristic gives our

algorithm an ability to group tasks with similar finishing times to get large free
space during deallocations.

The algorithm chooses the position with the highest 3DTCS value and the
lowest SFTD value for allocating the arriving task (lines 18-27). Allocating the
arriving tasks at the highest 3DTCS compacts the tasks both in time and space;
while grouping tasks with similar finishing times creates more possibility to
produce larger free space during deallocations.

The algorithm allocates the incoming task when there is available space for
the task at its arrival time; otherwise, the algorithm needs to schedule the task
for future execution. If the arriving task can be allocated at its arrival time (line
28), it will be executed immediately and added in the execution list (line 29);
otherwise, it is inserted in the reservation list (line 30).

When the tasks in the reservation list are executed, they are removed from
the reservation list and added in the execution list. The finished tasks in the
execution list are deleted after execution. These updating processes are executed
when the lists are not empty (lines 31-34).

The time complexity analysis of our 3DC is presented in Table 4. In which W ,
H , NET , NRT are the FPGA width, the FPGA height, the number of executing
tasks in the execution list, the number of reserved tasks in the reservation list,
respectively.

The main difference between our algorithm and existing algorithms is the
presence of the 3D compaction ability. Because of this 3D compaction ability,
our algorithm can avoid ”blocking-effect”. In contrast, the existing algorithms
do not have the blocking-awareness. Some existing algorithms only have the
2D compaction ability; instead, our algorithm has the 3D compaction ability to
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Table 4. Time complexity analysis of 3D Compaction algorithm

Lines Time Complexity
1-3 O (WH)
4-8 O (WHNET )
9-13 O (WHNRT )
14 O (WH)

15-27 O (WH)
28-30 O (max (NET , NRT ))
31-32 O (NRT )
33-34 O (NET )
Total O (WHmax (NET , NRT ))

compact tasks both in time and space domains. Besides, the algorithm also has
an ability to group tasks with similar finishing times to achieve larger free space
during deallocations. In the CR, every element of their EA matrix is checked to
know if it falls into the coverage rectangles of execution and scheduling tasks for
updating as shown in [6]. In contrast, our algorithm updates the STM matrix in
groups of elements affected by all executing (lines 5-6) and scheduled tasks (lines
10-11); the algorithm does not need to check each element for updating. As a
result, our algorithm computes starting times faster than the CR. Moreover, our
3DC does not need to compute boundary values for all reconfigurable units of
its free space in the periphery. As a consequence, our algorithm has less runtime
overhead compared to the CR as will be presented later.

7 Evaluation

7.1 Evaluation in Terms of Scheduling and Placement Quality

Evaluation with Synthetic Workloads. We have built a discrete-time sim-
ulation framework in C to evaluate the proposed algorithm. The framework was
compiled and run under Linux operating system on a Pentium-IV 3.4 GHz PC.
To better evaluate the algorithm with synthetic workloads, (1) we modeled re-
alistic random hardware tasks to be executed on a realistic target device; (2) we
evaluated the algorithm not only in terms of scheduling and placement quality
but also in terms of runtime overhead.

To model realistically the synthetic hardware tasks, we use a benchmark set
(e.g. MDCT, matrix multiplication, hamming code, sorting, FIR, ADPCM, etc)
from [10] and then use the DWARV [9] C-to-VHDL compiler to translate the
benchmarks to VHDL. The VHDL code is then synthesized using the Xilinx ISE
8.2.01i PR 5 tools to obtain the information of hardware task size range as a
reference for our random task set generator. The task widths and heights are
randomly generated in the range [7..45] reconfigurable units to model hardware
tasks between 49 and 2025 reconfigurable units to mimic the results of synthe-
sized hardware units. Every task set consists of 1000 tasks, each of which has
a life-time and task size. The life-times are randomly generated in [5..100] time
units, while the intertask-arrival periods are randomly chosen between one time
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unit and a specified maximum intertask-arrival period. Total tasks per arrival are
randomly generated in [1..15]. Since the algorithms are online, the information of
arriving tasks is unknown until their arrival times. We model a realistic FPGA
with 116 columns and 192 rows of reconfigurable units (Virtex-4 XC4VLX200).

Our 3DC is designed for 2D area models. Therefore for fair comparison, we only
compare our algorithm with algorithms that support 2D area models. Since the
RPR [4], the Classified Stuffing [2], the Intelligent Stuffing [3] were designed only
for 1D area models as shown in Section 3, we do not compare them with our 3DC.

Since the Stuffing outperforms the Horizon as presented in [1], we do not
compare our algorithm to the Horizon. In [6], the CR outperforms the original
2D Stuffing [1] and the 2D Window-based Stuffing [5]; therefore, we only compare
our algorithm to the CR.

To evaluate the 3DC, we have implemented three different algorithms: the CR
[6] using BL (Bottom-Left) scheme (CR BL), the CR [6] using BV (Boundary
Value) scheme [7] (CR BV), and our 3DC. The evaluation is based on three
performance parameters as defined before in Section 2.

The CR does not have a blocking-awareness. Instead, our algorithm uses a
3D compaction for avoiding ”blocking-effect”. As a consequence, our algorithm
has a better quality than the CR. The 3DC has up to 4.8 % less schedule time,
38.4 % less waiting time, and 22.9 % less wasted volume compared to the CR as
shown in Figure 5(a).

(a) (b)

Fig. 5. Evaluation with synthetic (a) and real workloads (b)
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The system idle time increases when the maximum inter-task arrival period
increases; as a result, the average total schedule time and the average wasted
volume increase.

The system is busier when the maximum inter-task arrival period decreases;
tasks arrive more frequently to the system. Hence, it is more difficult to schedule
tasks. Consequently, the average waiting time increases.

Evaluation with Real Workloads. To evaluate the 3DC with real workloads,
realistic hardware tasks from [11] were used. In the simulation, we assume that
the life-time lti is the sum of reconfiguration time rti and execution time eti.
The experimental results with real workloads are presented in Figure 5(b).

Figure 5(b) shows that the superiority of our algorithm is not only applicable
for synthetic tasks but also for real tasks. Evaluation with real tasks shows that
our algorithm has up to 4.6 % less schedule time, 75.1 % less waiting time, and
9.9 % less wasted volume compared to the CR.

7.2 Evaluation in Terms of Algorithm Execution Time

To complete the evaluation, we also study the algorithm execution time since
the execution time of online task scheduling and placement is considered as an
overhead for the overall execution time of the applications. To show the effect
of total number of scheduled and running tasks as well as FPGA area, we do
simulation by changing these parameters as presented in Figure 6.

Figure 6 shows that our 3DC runs up to 133 times faster than the CR. The
speed up will be higher for more scheduled and running tasks as well as for larger
FPGA fabrics. Since the CR uses the boundary value heuristic for searching
placement, the CR needs to compute boundary values for all reconfigurable units
of its free space in the periphery. In contrast, our 3DC computes the 3DTCS
only in one step as presented in Section 5. Moreover, the updating is done per
each element of the matrix in the CR; each element is needed to be checked with
all executing tasks and scheduled tasks. In contrast, our algorithm updates the
matrix in groups of elements located by all executing tasks and scheduled tasks;
the algorithm does not need to check each element for updating. As a result, our

Fig. 6. Evaluation algorithm execution time
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3DC has less runtime overhead than the CR by avoiding the CR’s long boundary
value computation and speeding up the starting times computation.

More FPGA area creates additional area suitable for the arriving task (more
free volume) and more total number of scheduled and running tasks forces algo-
rithms to check more tasks; as a result, the algorithms need more time to com-
pute the matrix for finding starting time (all algorithms), all boundary values
for all more candidates (CR algorithm) and all 3DTCS for all more candidates
(3DC algorithm). Because of its long boundary value and matrix computations,
the CR execution time increases faster than our 3DC.

8 Conclusions

To avoid ”blocking-effect” of existing algorithms, we have proposed a new 3DTCS
heuristic and used it to build a novel blocking-aware algorithm, 3D Compaction
(3DC). Because of its 3D compaction, the 3DC places and schedules tasks more
compactly. Moreover, the 3DC is equipped with an ability to group similar fin-
ishing time tasks to form larger free area for better allocating future tasks. Since
the previous algorithm uses the boundary value heuristic for searching suitable
placement, it needs to compute the values for all reconfigurable units of its free
space in the periphery. In contrast, our 3DC computes the 3DTCS only in one
step. In addition, the updating is done per each element of the matrix for finding
starting time in the previous algorithm; each element is checked with all exe-
cuting and scheduled tasks. Our 3DC updates the matrix in groups of elements
located by all executing and scheduled tasks. The experimental results show that
the 3DC not only has better scheduling and placement quality but also has lower
runtime overhead compared to existing algorithms.

A possible direction for future research is to equip the algorithm with an
ability to run tasks at different clock speeds or voltages for power saving (power-
aware) and to place tasks based on required I/O positions (I/O-aware).
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Abstract. Since FPGAs are inherently reconfigurable, making FPGA
designs generic does not reduce chip cost, as is the case for ASICs. How-
ever, designing and mapping lots of specialized FPGA designs introduces
an extra EDA cost. We describe a two staged fully automatic FPGA tool
flow that efficiently maps a generic HDL design to multiple specialized
FPGA configurations. The mapping is fast enough to be executed on-
line in dynamically reconfigurable systems. In this paper we focus on
troute, the routing algorithm used in our tool flow. We used troute
to implement reconfigurable Multistage Interconnection Networks and
show huge improvements in area, speed and mapping time compared to
conventional non-reconfigurable implementations.

1 Introduction

FPGA design differs significantly from ASIC design in the generality of the de-
sign solution. Indeed, ASIC designers need to amortize the NRE (non-recurring
engineering) cost over a large volume of chip instances. This can be done by mak-
ing the design more generic, so that it meets the needs of as many customers
as possible. Besides the regular input data, a generic design takes Parameter
Data as input, specifying how the regular input data should be processed. The
configuration data can differ for each customer or group of customers and can
even change over time. Naturally, more generic ASIC designs will be larger and
possibly have somewhat lower performance, but the gains of selling more chip
instances will in many cases outweigh these disadvantages.

FPGAs, on the other hand, are fully reconfigurable and therefore can be reused
for any function of similar size and complexity. It is thus not useful to make an
FPGA design as generic as possible because this will not make the chip any
cheaper. On the contrary, you may need to switch to a more expensive FPGA to
meet the area and performance cost of the generality. However, making lots of
specialized designs now introduces an extra EDA cost as each specialized design
must be designed separately and mapped to the FPGA. This is no longer feasible
when we wish to switch between different designs at run time, in contrast to the
generic ASIC solution.

Let us for example take the case of a communication network where each node
has its own 128-bit encryption key. A generic ASIC design would store the encryp-
tion key in an internal register. Each node can then be configured for a specific
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key by writing that register. In an FPGA we could use the same technique, but we
could also save area and boost performance of the nodes by generating specialized
FPGA bitstreams for each node. However, there are 2128 possible keys, making it
infeasible to run the FPGA tool chain for each possible key. Also specializing the
new configuration at run time for each key that is selected, is infeasible due to the
amount of time it takes to synthesize such a new configuration.

To solve this problem we propose a two stage tool flow that drastically de-
creases the cost of generating a specialized FPGA configuration. The first stage
of the tool flow takes a Parameterizable HDL Design as input and generates a
Parameterizable FPGA Configuration. A parameterizable HDL design has two
types of inputs: regular inputs and parameter inputs. The latter will not be in-
puts to the final design, but will be bounded to a constant value in the second
stage (thus distinguishing between the various specialized configurations). In our
encryption example, the key will be a parameter input. A parameterizable config-
uration is a set of Boolean functions that generates FPGA configurations given
a parameter value. The second stage, generates specialized configurations by
evaluating the parameterizable configuration for a parameter value. This can be
repeated for multiple parameter values. One can easily see that for large numbers
of parameter values the average cost per configuration is approximately the cost
of running the second stage because the cost of generating the parameterizable
configuration is amortized over all specialized configurations.

In [2,3] we have shown that it is possible to build a two staged tool flow of
which the evaluation of the parameterizable configuration runs 5 orders of mag-
nitude faster than a conventional FPGA tool flow without sacrificing too much
area and performance compared to a fully specialized FPGA design. In this tool
flow only the LUT truth table bits of the configuration are expressed as Boolean
functions of the parameters, whereas the routing is fixed for all configurations.
In this paper, we present a tool flow that also expresses the routing configuration
bits as a function of the parameter inputs. In the experiments section we show
that this can result in a better area utilization and performance. Expressing
the routing bits as Boolean functions of the parameters requires changes in all
stages of the conventional FPGA tool flow (technology mapping, placement and
routing). In this paper, we only discuss the changes in the router in detail. The
other steps will be addressed only briefly.

2 Staged Mapping Tool Flow

Fig. 1 gives an overview of our mapping tool flow. The tool flow uses a compiler
technique called staged compilation, or staged mapping, as we call it in the case of
FPGA mapping. In our staged mapping flow the final result, a Specialized FPGA
configuration, is generated in two steps or stages: the Generic Stage and the
Specialization Stage. In contrast to conventional mapping the design specification
is not entirely introduced at the start of the mapping process but a part of this
design specification is introduced at each stage. A Parameterizable HDL Design
is introduced to the generic stage and the parameter values are introduced to the
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Fig. 1. Overview of our staged mapping tool flow

specialization stage. Each stage processes the result of the previous stage and the
extra specification part to form a new intermediate result that will be introduced
to the next stage. The generic stage produces a parameterizable configuration
and the specialization stage combines this with the parameter values to produce
the specialized configuration.

A parameterizable configuration is a function that takes parameter values as
arguments and produces a specialized configuration1. We represent a parameter-
izable configuration as a vector of Boolean functions whose elements are associ-
ated with the bits in the FPGA’s configuration memory. The Boolean functions
are called Tuning Functions. They are of closed form and have a single output.

The steps needed in the generic stage are similar to those used in conventional
FPGA mapping: synthesis, technology mapping, place and route. In Section 3 we
will explain these algorithms in more detail. It is important to note here that these
algorithms are computationally hard and thus need a large run-time. The spe-
cialization stage generates a regular FPGA configuration by evaluation of the pa-
rameterizable configuration. This involves evaluating a set of closed form Boolean
functions. Hence, the run-time of the second stage is linear in the size of the pa-
rameterizable configurations. The specialization stage will thus run a lot faster
than the generic stage [2]. Therefore, the staged mapping tool flow is more effi-
cient in generating specialized configurations than a conventional tool flow. This
is because our staged flow can reuse the parameterizable configuration for each
parameter value. The effort spend in the generic stage thus is divide over all invo-
cations of the specialization stage. For large sets of parameter values the average
mapping effort is approximately the effort pent in the specialization stage.

3 Overview of the Generic Stage

The problem faced by the generic stage of our tool flow is to produce a parameter-
izable configuration given a parameterizable HDL description while optimizing
some cost function. For the sake of clarity, we concentrate on minimizing the
area used by the parameterizable configuration, but the techniques can be ex-
tended for other optimization criteria such as speed or a combination of area
1 The concept of parameterizable configurations can easily be extended to parameter-

izable partial configurations, which are functions that produce partial configurations
when given the parameter values as argument.
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and speed. Without loss of generality, we will also assume a very simple island
style target architecture with 4-input LUTs and wires of length 1.

Since both the input and output of the tool flow are parameterizable the
internal data structures need to be able to express parameterizability and the
algorithms that transform the data structures need to preserve the parameteriz-
ability. Similar to conventional FPGA mapping we divide the mapping problem
into four subproblems: synthesis, technology mapping, placement and routing.
In what follows we give an overview of these algorithms and the data structures
used in our tool flow.

3.1 Synthesis

The synthesis step converts the parameterizable HDL description into a gate-
level circuit. As we described in Section 2, a parameterizable HDL description
distinguishes regular inputs from parameter inputs so, this distinction has to be
preserved in the gate-level circuits. This can easily be done by allowing both
types of inputs in the gate-level circuit data structure. The synthesis tool simply
has to pass the information about the inputs.

3.2 Technology Mapping

During technology mapping the gate-level circuit produced by the synthesis step
is mapped on the resources available in the target FPGA architecture while
trying to optimize the area of the implementation.

The result of a conventional technology mapper is a mapped circuit containing
two types of functional blocks: LUTs and nets. A LUT can be implemented by
a physical LUT on the FPGA and a net can be implemented by a subset of the
routing switches in the configurable interconnect.

Because the bits in the parameterizable configuration are Boolean functions
of the parameter inputs, both the truth table bits as well as the routing bits can
change. First, a LUT with a truth table that is function of the parameters is
called a Tunable LUT (TLUT) [2]. It’s easy to see that a TLUT is a generalization
of a regular LUT. Second, the way physical LUTs are connected can change
depending on the parameters. We thus need functional blocks that reflect the
parameterizability of interconnections. We call these blocks Tunable Connections
(TCONs). A circuit containing TLUTs (instead of regular LUTs) and TCONs
(instead of nets) is called a Tunable Circuit.

A TCON has any number of input ports I = {i0, i1, . . . , iL−1} and any num-
ber of output ports O = {o0, o1, . . . , oM−1}. Every TCON is associated to a
connection function fcon that shows how the output ports are connected to the
input ports given a parameter value2 P = (p0, p1, . . . , pN−1) ∈ {0, 1}N , see
equation (1). Just like a TLUT is a generalization of a regular LUT, it’s easy to
see that a TCON is a generalization of a net.

fcon : O × {0, 1}N → I
(o, P ) �→ i

(1)

2 Without loss of generality, we combine all parameters into one parameter vector P .
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In what follows we will use a TCON with the functionality of a four-way switch,
as example. This TCON has two inputs {i0, i1} and two outputs {o0, o1}. The
1-bit parameter p controls how the inputs are connected to the outputs. When
p = 0, o0 is connected to i0 and o1 is connected to i1. When p = 1, o0 is connected
to i1 and o1 is connected to i0.

In this paper, we focus on the routing step of the tool flow. Therefore we
assume the tunable circuit is given. More information on mapping to TLUTs can
be found in [2,3]. To our knowledge there are no technology mappers available
that can map to a combination of TLUTs and TCONs.

3.3 Placement

During placement, each of the TLUTs in the tunable circuit is associated to
(placed on) one of the physical LUTs of the FPGA while optimizing for a certain
property, e.g. the routability of the placement.

Many FPGA placers use simulated annealing to place the mapped circuit. The
cost function of a routability-driven placer is an estimate of the total number of
wires the router will need to route the design given the current placement. This
is calculated as the sum of the estimated number of wires used by the individual
nets [1]. This same scheme is used to build a placer for tunable circuits. The only
difference lies in the way we estimate the number of wires used by the router
to route a TCON. In this paper we concentrate on the routing algorithm and
therefore we assume the placement as given.

3.4 Routing

Conventional routers calculate the Boolean values that need to be stored in
the configuration bits of the configurable interconnection network so that the
physical LUTs are connected as is specified by the nets in the mapped circuit.

Our router is more complicated as it needs to calculate Boolean functions for
the configuration bits. On one hand the parameterizable configuration evaluates
to a specialized configuration given a parameter value and on the other hand a
tunable circuit simplifies to a regular LUT circuit for that same parameter value.
Our router will thus calculate Boolean functions for the routing bits so that for
any parameter value the specialized configuration implements the connections
specified by the regular LUT circuit.

In Section 4 we give a detailed description of an algorithm, called troute
that solves this problem.

4 TROUTE

In this section we describe the algorithm troute. Given a placed tunable circuit,
it produces Boolean functions for the routing bits of the target FPGA so that
the physical LUTs are connected as is specified by the TCONs of the tunable
circuit. troute is based on the widely used pathfinder algorithm [1,7].
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Fig. 2. (a) Resource graph for a simple 2× 2 island style FPGA. Wires are solid black
lines; Edges are thin lines; Sources are open boxes; And sinks are filled boxes. (b)
Routing tree of a net (i, {o0, o1, o2, o3}) .

4.1 The Resource Graph

Both pathfinder and troute uses a directed graph, called the Resource Graph,
to represent the routing architecture of an FPGA. Because this graph can be
constructed for many routing architectures, the algorithms are very flexible.

The resource graph is a directed graph C = (V, E), where the vertices V
represent the routing resources (the wires and the ports of the logic blocks). A
directed edge (t, h) represents the possibility of routing a signal from resource t
(the tail of the edge) to resource h (the head of the edge), by setting a switch.
There are two types of port vertices: sources and sinks. Sources represent output
ports of logic blocks while sinks represent input ports of logic blocks.

We can construct a resource graph as follows. Create a vertex vr for each
routing resource r (wire or port) of the target FPGA. For each unidirectional
switch that, when closed, forces the logic value of resources i on resource o,
create a directed edge (vi, vo), and for each bidirectional switch that connects
resource r to resource s, create two directed edges (r, s) and (s, r). There are
many extensions possible to this model [5] (beyond the scope of this paper).

Fig. 2 depicts the resource graph of a simple 2 × 2 island style FPGA with
only length 1 wires and bidirectional switches. The wires are represented by solid
black lines, the sinks and sources by small squares. The sinks are filled and the
sources are not. For the sake of clarity we have not drawn all edges. The thin
lines each represent two edges, one for each sense.

4.2 TCONs, Patterns and Nets

A TCON simplifies to a set of nets for a specific parameter value. We call this set
of nets a Connection Pattern of the TCON. Each connection pattern describes
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one way to connect the output ports to the input ports of a TCON. A TCON
can thus be represented as a set of connection patterns and a connection pattern
as a set of nets.

When the placement of the LUTs is known the source vertex and the sink
vertices associated to respectively the input port and output ports of the nets
in the mapped circuit are known. Each net ν in the LUT circuit can thus be
associated with an ordered pair (soν , SIν) containing a source vertex soν and a
set of sinks vertices SIν . Note that due to the definition of a TCON (Section 3.2),
the sink set of the nets in any pattern are disjoint.

A routing tree RTν for net ν is a rooted tree embedded in the resource graph
C that has the source vertex as root and the sink vertices as its leaves. It does
not contain any other source or sink vertices. This routing tree contains paths
from the source vertex to each sink vertex of the net ν. Fig. 2 shows the routing
tree of a net (i, {o0, o1, o2, o3}). Once the routing tree RTν of a net is found,
setting the FPGA’s routing bits so all connections represented by the net ν are
realized is easy. We just have to set the configuration bits so that the switches
associated to the edges in RTν are closed, and the switches associated to the
edges that only end or start in RTν are open.

Analog to the routing tree of a net, a routing graph RGτ of a TCON τ
is a subgraph embedded in the resource graph C. By controlling the switches
associated to the edges in RGτ it should be possible to realize all connections
specified by the TCON. Therefore, RGτ should contain a routing tree RTπ,ν for
each net ν of each connection pattern π. Since the nets in a pattern coincide,
their routing trees have to be disjoint. Nets that are part of different patterns,
however, don’t coincide. Their routing trees can therefore overlap. We define the
routing graph RGπ of a pattern π as the union the routing trees RTπ,ν.

Routing a tunable circuit thus simplifies to finding a set of disjoint routing
graphs, one for each of the TCONs in the tunable circuit.

4.3 Tuning Functions

Every connection pattern π can be associated to a Boolean function of the pa-
rameters, called the Pattern Condition fπ

cond(P ). This pattern condition is true
for all parameter values that simplify the TCON to pattern π. Note that a TCON
can simplify to the same pattern for several parameter values. Since every net is
part of one pattern, a net is also associated to a pattern condition.

Once the routing tree RTπ,ν for each of the nets in the TCON routing graph
RGτ is found, the condition for a switch to close is given by the logical OR of all
pattern conditions of those nets whose routing trees contain an edge associated
to the switch. The tuning function for the configuration bit that controls the
switch is equal to this condition or its inverse if the control of the switch is
active high or active low respectively.

A possible routing of our 4-way switch example is shown in Fig. 3. The figure
on the left shows the routing trees of the two nets in pattern π0 with condition
fπ0

cond(P ) = p0 and the figure on the right shows the routing trees of the two nets
in pattern π1 with condition fπ1

cond(P ) = p0. The routing graph of the TCON is
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Fig. 3. Routing of the two connection patterns of a 4-way switch, their pattern condi-
tions and the tuning functions

the union of the routing trees. The edges that are crucial to the routing of the
TCON are annotated with their tuning function (Fig. 3) assuming the switches
are controlled active high.

4.4 The Algorithm

The only problem left is finding a set of disjoint routing graphs, one for each of
the TCONs in the tunable circuit.

First, we describe a heuristic subroutine that searches a minimum cost routing
graph for a given TCON. Each vertex v in the resource graph has an associated
cost cv. The cost of a routing graph is the sum of the costs of its vertices. Second,
we explain how to use this subroutine to find a set of disjoint routing graphs
given a set of TCONs.

The TCON Router. We will route a TCON by calculating a routing tree
for each of the nets in the TCON. The union of all these routing trees is the
routing graph of the TCON. We know that nets in a routing pattern coincide and
thus have to be disjoint. However, two nets that are part of different patterns,
never coincide and can thus share routing resources. We use this last property to
minimize the routing cost of a TCON by maximizing the overlap among patterns.

The pseudo code of our proposed heuristic algorithm is shown in Fig. 5. The
algorithm contains two nested for loops. The outer loop loops over all patterns of
the TCON. The inner loop loops over all nets in the current pattern and routes
them using a net router. A net router is a heuristic that searches a minimum
cost routing tree for a given net. We use the net router described in [7].
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while shared resources exist :
for each tcon τ do:

τ .ripUpRouting()
RGτ = routeTcon(τ )
for each vertex v in RGτ :

v.updateSharingCost()
for each vertex v in C do

v.updateHistoryCost()

Fig. 4. Main loop (Negotiated Conges-
tion) of the troute algorithm

function routeTcon(tcon τ)
RGτ = null graph
for each pattern π in tcon τ :

RGπ = null graph
for each net ν in pattern π:

RTν = routeNet(net)
for each vertex v in RTν :

v.inPattern = true
v.inTcon = true

RGπ = RGπ ∪RTν

for each vertex v in RGπ:
v.inPattern = false

RGτ = RGτ ∪RGπ

for each vertex v in RGτ :
v.inTcon = false

return RGτ

Fig. 5. Pseudo code for the TCON
router

In order to forbid resources sharing for nets within one pattern and allow
resource sharing for nets in different patterns we manipulate the cost of the
vertices within the TCON router. Therefore, we keep track of two extra flags
for each vertex in the resource graph: inT con and inPattern. The inT con flag
marks those resources that are used by already routed patterns of the TCON.
The inPattern flag marks those resources that are used by already routed nets
in the current pattern. These flags are used to calculate the manipulated cost of
a resource c′v, as is shown in equation 2.

c′v =

⎧⎨
⎩

∞ if inPattern
0 if inT con ∧ inPattern
cv otherwise

(2)

There are three cases. The first case ensures that a resource that is already
used in the current pattern cannot be used to route an other net in the current
pattern. The second case stimulates resource sharing when a resource is already
in use by the TCON, but not by the current pattern. It does this by making the
cost of these resources equal to zero. The third case is the default case.

Negotiated Congestion. The troute algorithm uses a mechanism called
negotiated congestion to calculate a set of disjoint routing graphs for a given
tunable circuit. The pseudo code of troute is shown in Fig. 4. The algorithm
iteratively rips up and reroutes (routeTcon) each of the TCONs until their rout-
ing graphs are disjoint. Or in other words, there are no shared resources.

In negotiated congestion, the individual routing problems are coupled by up-
dating the vertex costs cv during the routing process (updateSharingCost and
updateHistoryCost). Our algorithm calculates and updates the vertex cost in
exactly the same way as the routability-driven router described in [1].
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Table 1. Properties of nine multi stage Clos network implementations. The num-
bers between brackets are relative compared to the Tcon implementation of the same
size.

Impl. Area Speed Routing Architecture
size type LUTs wires logic depth troute[s] Wm cols rows W

Conv 202 (12.63) 2131 (9.19) 5 (5.00) 7.96 (18.51) 6 20 20 7
16 Tlut 48 (3.00) 526 (2.26) 3 (3.00) 1.06 (2.47) 4 10 10 5

Tcon 16 (1.00) 232 (1.00) 1 (1.00) 0.43 (1.00) 5 8 8 6
Conv 1016 (7.94) 13613 (4.56) 9 (4.50) 294.73 (29.21) 6 47 47 7

64 Tlut 320 (2.50) 3511 (1.17) 5 (2.50) 24.71 (2.45) 8 23 23 10
Tcon 128 (1.00) 2987 (1.00) 2 (1.00) 10.09 (1.00) 9 18 18 11
Conv 6760 (8.80) 97994 (5.49) 12 (4.00) 15415.51 (25.09) 9 114 114 11

256 Tlut 1792 (2.33) 25353 (1.42) 7 (2.33) 1234.66 (2.01) 13 53 53 16
Tcon 768 (1.00) 17853 (1.00) 3 (1.00) 614.30 (1.00) 14 39 39 17

5 Experiments and Results

The troute algorithm was implemented based on a Java version of the VPR
(Versatile Place and Route) [1] routability-driven router, which we implemented.
We use a simple FPGA architecture3 with logic blocks containing one 4-LUT
and one flip-flop. The wire segments in the interconnection network only span
one logic block. The architecture is specified by three parameters: the number of
logic element columns (cols), the number of logic element rows (rows) and the
number of wires in a routing channel (W ).

We validate troute on Multistage Interconnect Networks that are known as
Clos Networks [4]. Our Clos network uses 4 × 4 crossbar switches as building
blocks. We use 4×4 switches because these can be efficiently implemented using
four 4-input TLUTs or four TCONs. We compare three network types called:
Conv, Tlut and Tcon each for three sizes 16 × 16 (3 stages), 64 × 64 (5 stages)
and 256 × 256 (7 stages). Conv uses signals to control the crossbar switches
while Tlut and Tcon use reconfiguration. Tlut only uses reconfiguration of LUT
truth tables while Tcon uses both reconfiguration of LUTs and reconfiguration
of routing. In Tlut all the switches are implemented with 4 TLUTs while in Tcon
the switches in the even stages are implemented using TLUTs and the switches
in the odd stages are implemented using TCONs.

We implemented the nine networks and measured: the number of LUTs, the
number of wires, the logic depth, the routing time and the minimum channel
width (Wm). Table 1 shows the results. The table also shows the parameters of
the FPGA architecture. As suggested in [1], we ensure low-stress place and route
by choosing the number of LUTs in the FPGA architecture 20% larger than the
number of LUTs in the circuit and the number of wires per channel 20% larger
than Wm, the minimum channel width.

3 A description of this architecture is provided with the VPR tool suite in
4lut sanitized.arch.
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The wire utilization of the implementations will be influenced by the placement
of the inputs of the network. If the inputs and outputs are placed far apart more
wires will be needed than when they are placed close together. To normalize this
influence we connect each input and output to a LUT that is connected to no other
signals. This way the placer is free to place the inputs and outputs to minimize
the number of wire resources. These extra LUTs are not accounted for in the LUT
count of Table 1, because they are not part of the actual Clos network.

The routing of the Conv and Tlut implementations is done with the VPR
routability-driven router. Their placement is done using the VPR routability-
driven placer with default settings. The routing of the Tcon implementations
is done using troute. The placement is done using an adapted version of the
VPR routability-driven placer, called tplace (beyond the scope of this paper).

The Tcon networks save up to a factor 8.8 in the number of LUTs compared
to the Conv networks and up to a factor of 3 compared to the Tlut networks.
As a measure for the clock speed we used the number of LUTs in the longest
path (logic depth). When using the Tcon implementation, we can reduce the
logic depth with up to a factor of 5 compared to the Conv implementation and
a factor of 3 compared to the Tlut implementation.

The table also shows that up to a factor 5.49 can be saved in the number
of wires compared to the Conv networks and up to a factor 2.26 compared
to the Tlut networks. This last result might be counterintuitive since TCONs
are more complex to route than nets. However, switching from Conv to Tlut
to Tcon decreases the number of nets/TCONs and the number of LUTs. Less
nets/TCONs connecting less LUTs that can be placed closer together thus results
in less wires used. Because the LUTs get placed closer together Wm goes up, but
it stays far from the channel widths used in commercial FPGAs.

Table 1 also shows the routing time needed for each implementation. All
these experiments are done using an Intel Core 2 processor running at 2.13 GHz
with 2 GiB of memory running the Java HotSpotTM 64-Bit Server VM. Using
the Tcon networks we can save a factor of 18.51 up to 29.21 in the routing time
compared to the Conv networks and a factor of 2.01 to 2.47 compared to the Tlut
networks. This gain in routing time is due to the decrease in routing complexity
as is explained in the previous paragraph.

6 Conclusions

In this paper we introduced a two staged FPGA tool flow that enables fast
generation of FPGA configurations. The generic stage maps a parameterizable
HDL design to a parameterizable configuration that expresses both the truth
table bits and the routing bits as Boolean functions of the parameter inputs. We
also provided a detailed description of troute, the routing algorithm used in
the generic stage of our tool flow.

We used troute to implement reconfigurable Multistage Interconnection
Networks similar to the implementations in [6,8]. Since our design is done at
the abstract level of tunable circuits, while theirs is done at the architectural
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level, our method greatly reduces the design effort. We have also shown that
our implementations greatly improve area (LUTs: 8.80×, wires: 5.49×), logic
depth (4×) and even routing time (25.09×) compared to a conventional non-
reconfigurable implementation. These numbers are for a 256×256 Clos network.
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Abstract. High-Performance Reconfigurable Computers (HPRCs) are parallel 
machines consisting of FPGAs and microprocessors, with the FPGAs used as 
co-processors. The execution of parallel applications on such systems has 
mainly followed the Single-Program Multiple-Data (SPMD) model; however, 
overall system resources are often underutilized because of the asymmetric dis-
tribution of the reconfigurable (co-)processors relative to the (main) processors. 
Furthermore, with the introduction of HPRCs containing multi/many-core tech-
nologies, underutilization of system resources becomes more obvious especially 
for multi-tasking and multi-user usage. To address the asymmetry problem, we 
propose a resource virtualization solution based on Partial Run-Time Recon-
figuration (PRTR). The proposed technique allows space, time, and/or space-
time sharing of the reconfigurable (co-)processors among the (main) processors 
and thus increasing the overall system utilization. We show the effectiveness of 
the proposed concepts through a stochastic execution model verified with ex-
perimental implementations on the Cray XD1 platform. The results demonstrate 
favorable performance as well as scalability characteristics.  

Keywords: Dynamic Partial Reconfiguration, Hardware Virtualization, High 
Performance Computing, Reconfigurable Computing. 

1   Introduction 

Recent years have witnessed the introduction of stand-alone general purpose Recon-
figurable Computers (RCs) as well as parallel reconfigurable supercomputers called 
High-Performance Reconfigurable Computers (HPRCs). Examples of such super-
computers are the SRC-7 and SRC-6 [1], the SGI Altix/RASC [2] and the Cray XT5h 
and Cray XD1 [3]. These systems are capable of delivering high performance as  
well as maintaining flexibility, due to the use of FPGAs. The FPGAs are mainly  
used as co-processing element(s) (CPE) to the main processing element(s) (MPE) in 
order to accelerate critical functions in hardware. Several efforts have proved the 
significant performance speedups obtained by these systems for many different appli-
cations [4]. Applications for HPRCs are mainly developed using the Single-Program 
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Multiple-Data (SPMD) programming model, which is the most common style of 
parallel programming used in HPC platforms. In SPMD [5], the participating proces-
sors simultaneously execute the same program at independent points, operating on 
different parts of the input data. Either shared memory or message passing techniques 
such as MPI may be adopted in order to deploy tasks and execute them in parallel [5], 
[6]. However, the use of SPMD programming paradigms for HPRCs can be challeng-
ing, due to the heterogeneity of the processing elements. This is primarily due to the 
fact that in HPRCs, the reconfigurable processors act as co-processing element(s) 
(CPE) to the main host processing element(s) (MPE).  In particular, when the ratio of 
MPEs, CPEs, and their communication channels differs from unity, SPMD programs, 
which generally assume a unity ratio, might underutilize some of the system process-
ing resources, for example microprocessors [4]. 

In this work, we propose to space, time, and/or space-time share the reconfigurable 
resources among the underutilized MPEs, namely microprocessor(s) and/or processor-
cores by providing a virtual SPMD view and thus improving the overall system 
utilization for multi-user environments. In other words, the pool of reconfigurable 
resources will be virtually increased to maintain the symmetric view of SPMD, i.e. 
unity ratio among the MPEs, CPEs, and their communication channels. The 
implementation of these concepts is based on Partial Run-Time Reconfiguration 
(PRTR) from a practical perspective. We will provide a formal stochastic analysis of 
the execution model supported by experimental work. The execution model considers 
multi-user HPRCs equipped with multi-processor/multi-core technology. Our work 
utilizes PRTR on one of the current HPRC systems, Cray XD1. The results show 
near-linear scalability behavior for compute intensive applications. 

This paper is organized such that section 2 provides a discussion of related work in 
context of run-time reconfiguration and hardware virtualization. Section 3 describes 
the space, time, and space-time techniques for sharing reconfigurable resources.  
Section 3 also includes our analytical model and explains the formulation steps of this 
model. Section 4 shows both the theoretical and the experimental results. Finally, 
Section 5 summarizes and concludes the paper with our findings. 

2   Related Work 

In this work, the primary objective is to share the reconfigurable resources (or CPEs) in 
HPRCs among all system microprocessors and/or processor-cores (or MPEs) in an 
SPMD view, irrespective of the system physical limitations/configuration, thereby 
providing support for true multi-user environments. In other words, regardless of the 
number of main processing elements (MPEs) and the co-processing elements (CPEs) 
in the system, we will try to provide a virtual 1:1 correspondence between MPEs and 
CPEs. To achieve the desired objective, we will leverage previous work and concepts 
that have been used for solving similar and related problems, namely hardware virtual-
ization. For example, we use the concept of virtual FPGA (VFPGA) proposed in [7].  

Many of the proposed solutions in previous research [8], [9], are based on the 
strategies used in Operating Systems to support virtual memory – dynamic loading, 
partitioning, overlaying, segmentation, and paging, etc.  All of these techniques strive 
to provide applications with the view of a larger FPGA, by virtually increasing the 
FPGA logic capacity. This concept of “virtual hardware” requires the use of special 



 Space and Time Sharing of Reconfigurable Hardware 221 

capabilities of the FPGAs, namely, Full Run-Time Reconfiguration (FRTR) and/or 
Partial Run-Time Reconfiguration (PRTR) [10],[11]. However, all of these proposed 
techniques are targeted towards embedded systems, with typically a single main 
processing element (MPE) and only one reconfigurable co-processing element (CPE). 
The multiplicity and imbalanced heterogeneity of the processing elements, common 
to HPRCs, is absent in embedded platforms. Furthermore, HPRC systems impose 
architectural constraints such as a shared configuration interface for the CPEs, as well 
as shared communication interfaces between the MPEs and CPEs. The unique nature 
of HPRCs adds a significant complexity to the virtualization problem, and therefore 
calls for a formal approach in order to solve it. Towards this end, we utilize and build 
on the techniques and methodologies introduced in [10],[11] by providing a 
virtualization infrastructure that allows space, time, and/or space-time sharing of the 
reconfigurable processors. Furthermore, we generalize the execution model based on  
stochastic Markov chains and queueing networks. The new model includes HPRCs 
equipped with multi-processor/multi-core technology utilizing the proposed 
virtualization infrastructure in a true multi-user environment. 

 

Fig. 1. Architectural assumptions (SPMD view of reconfigurable resources on HPRCs) 

3   Techniques for Sharing Reconfigurable Resources 

Our methodology is based on the concept of “Computing in Time - Computing in 
Space” [12] for space, time, and/or space-time sharing of the reconfigurable 
resources. We first develop a formal analysis of the execution model based on our 
methodology, following an approach similar to what has been proposed in [10],[11]. 
In our analysis, we assume a multi-processor/multi-core HPRC architecture with 
asymmetric heterogeneity at the node level [4]. All nodes are identical and in general 
each node is assumed to include a number of main processing elements (MPEs), e.g. 
microprocessors or processor cores, and a number of co-processing elements (CPEs), 
e.g. FPGAs. The number of MPEs, NMPE, is not necessarily equal to the number of 
CPEs, NCPE. In current HPRC systems NMPE is typically larger than NCPE, namely 
NMPE > NCPE. Additionally, each CPE is to be partitioned into a number of virtual 
processing elements (VPEs), NVPE, such that each VPE is associated to a 
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corresponding MPE maintaining a One-to-One correspondence among MPEs and 
their dedicated VPEs resulting in a balanced and symmetric distribution of system 
resources. In other words, the physical reconfigurable resources (FPGAs) will be 
virtualized and split into multiple virtual FPGAs (VFPGAs) such that NVFPGA =  
NVPE in order to accommodate for the symmetry requirement of the SPMD execution. 
Each VFPGA will be located in a separate partially reconfigured region (PRR) on  
the physical FPGA. Finally, the number of necessary VPEs, NVPE, for providing 
/guaranteeing the SPMD behavior can be given by equation (1) as follows: 

CPE
CPE
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N
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As the number of VPEs increases, the size of each VPE reduces; the task granularity 
αtask will determine the maximum number of VPEs, as seen below by rewriting (1): 
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Based on equation (2), space-time scheduling of task execution on VPEs is needed 
when NVPE

tasks<NVPE
cores while space-only scheduling is needed when 

NVPE
tasks≥NVPE

cores. In other words the execution of tasks needs to be performed 
through both space and time schedules when the task granularity is the governing 
bound on the number of VPEs while only space schedules are needed when there is a 
sufficient number of VPEs; at least equal to the number of MPEs. In later discussions, 
we will refer to equation (2) as the SPMD condition. 

The usage model is SPMD in which the system receives some applications as 
input. These applications require on average a few independent hardware functions 
(tasks) that need to be executed on dedicated reconfigurable resources. The execution 
cycle for any task on an HPRC consists of the computation time, the total data input 
time, output time and the configuration time [10],[11], represented by Tcomp, Tin, Tout, 
and Tconfig respectively. The I/O time Tin and Tout represent the time necessary to 
transfer data between the microprocessor and the FPGA. The baseline for our analysis 
is FRTR, where reconfigurable resources (CPEs) cannot be space shared among the 
node microprocessors/processor-cores (MPEs). We will focus our discussions on 
applications that are broken down into hardware tasks only. In addition, we assume  
that each task is fully characterized by its time requirement, Ttask=Tin+Tcomp+Tout.  

 

Fig. 2. Typical task execution per node using FRTR on a multi-user HPRC system 
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The execution model of FRTR on each node, see Fig. 2, is sequential among tasks 
and is independent from their owners (users). This is because the reconfigurable 
resource (CPE), assuming one per node, is not space sharable among the node MPEs 
rendering some MPEs unused. Considering different tasks to have similar average 
execution characteristics albeit different in functionalities, total execution time for the 
case of FRTR can be derived as follows: 

jnodeonuseranybygeneratedtaskanyoftimeconfigfullAverageTT

whereTNT

NTTNTT

TNTTTTTTTTT

TTTT

FRTR
FRTR

config

FRTR
tasktasks

FRTR
node

N

i
tasks

FRTR
task

N

i

FRTR
tasktasks

N

i

FRTR
nodeuser

FRTR
node

FRTR
tasktasks

N

k

FRTR
task

FRTR
nodeuseroutcompinFRTRtask

FRTR
config

FRTR
task

outcompintask

jnodej

users

ji

users

ji

users

jij

ji

jitasks

ji

#.

,

,

111
,

1
,

,,

,

,

≡≡

=⇒

===

⋅==+++=+=

++=

∑∑∑

∑

===

=  (3)

 

jnodeonuseranybygeneratedtaskanyoftimeexecutionAverageT

jnodeonuseranybygeneratedtaskanyoftimetransferoutputAverageT

jnodeonuseranybygeneratedtaskanyoftimencomputatioAverageT

jnodeonuseranybygeneratedtaskanyoftimetransferinputAverageT

task

out

comp

in

#

#

#

#

≡

≡

≡

≡
 

 

FRTRforjnodeonuseranybygeneratedtaskanyoftimeexecutionAverageT FRTR
task #≡  

FRTRforjnodeonusersallbygeneratedtasksalloftimeexecutionTotalT

FRTRforjnodeoniuserbygeneratedtasksalloftimeexecutionTotalT

FRTR
jnode

FRTR
jnodeiuser

#

##,

≡

≡  

3.1   Queuing Analysis and Modeling 

The execution model of our proposed virtualization technique and sharing mechanism 
can be viewed as a combination of three traffic (queueing) processes, namely entry, 
computation, and exit processes, see Fig. 3(a). The entry process is when tasks at the 
beginning of their execution life-cycle request configuration and data transfer from 
the MPEs into the VPEs/VFPGAs. The exit process is when tasks at the end of their 
execution life-cycle request data transfer from the VFPGA back to the MPEs. The 
computation process represents the actual processing performed by tasks on their 
VFPGAs. In our model tasks can continue their computations in parallel while others 
are entering into and/or exiting from the system. In other words, we are considering 
that VFPGA reconfiguration, data transfers (in and out) and computations can be 
overlapped, sharing the I/O channel among all the MPEs in the node. 

We base our analysis of the execution model on Markov processes. In particular, 
we will utilize the mathematical formulation of discrete-parameter (discrete-time) 
Markov chains [13]. Markov chains are described in general using a state diagram in 
which each state represents a case when the system contains a certain number of 
customers (tasks in our case). The system transitions from one state Si to another state 
Sj with a probability pij known as the one-step transition probability, see Fig. 3(b). The  
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probability distribution of a Markov chain is completely determined by the one-step 
transition probability matrix, P=[pij], and the initial-state probability vector [13], see 
equation (4). Equation (5) shows some important and useful properties of P. 
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(5)

The total execution time on node j can be determined/defined by the time step  
at which the instantaneous state probability vector becomes very close, within a 
certain error threshold ε, to its final steady state value. In other words, we define the 
total execution time as the minimum time step that is necessary for the system to 
reach as close as possible its final steady state where behavior transients become  
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(3a) Traffic processes (3b) Discrete-time Markov chains state 
diagram 

Fig. 3. Queueing execution model 

insignificant to a certain error threshold ε. This argument can be described as follows 
by equation (6): 
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Taking into consideration that the final execution time on the system is determined by 
the longest execution time among all nodes, namely the slowest (critical) node, the 
performance gain (speedup) of PRTR in reference to FRTR can be expressed as 
follows by combining equations (3) and (6): 
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Due to the fact that typical HPRC architectures are designed with a single 
configuration port and a single communication channel between MPEs and CPEs, we  
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(4a) Traffic processes 

 

 

 
 
 

(4b) Birth-Death state model 

Fig. 4. Simplified execution model 

will use a special class of Markov chains that is typically used to describe queueing 
systems. More specifically, we will simplify our model as a birth-death process in 
which transitions are allowed between only neighboring states. The simplified 
execution model is shown in Fig. 4. Equation (8) describes the simplified model. 
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In order to investigate how scalable our approach, we will introduce what we call the 
scalability factor, η. The scalability factor, η, can be defined as the normalized 
speedup. In other words, the speedup achieved by a multiple of MPE-VPE pairs 
would be normalized with respect to the speedup achieved by one MPE-VPE pair. 
More specifically, η is defined as the ratio between two values of the speedup, namely 
S(NVPE) and S(1), as a function of NVPE. This expression can be written as shown in 
equation (9). By taking the limit of equation (9) as the number of VPEs increases 
indefinitely, namely NVPE ∞, the asymptotic scalability behavior can be obtained as 
given by equation (10). 
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(10)

4   Results 

Our experiments have been performed on one of the current HPRC systems, Cray 
XD1 [3]. The Cray XD1 is a multi-chassis system. Each chassis contains up to six 
nodes (blades). Each blade consists of two 64-bit AMD Opteron processors at 2.4 
GHz, one Rapid Array Processor (RAP) that handles the communication, an optional 
second RAP, and an optional Application Accelerator Processor (AAP). The AAP is a 
Xilinx Virtex-II Pro XC2VP50-7 FPGA with a local memory of 16MB QDR-II 
SRAM [3]. 

To verify the proposed virtualization techniques and the execution model, a set of 
experiments were conducted, starting with an application that carries out image feature 
extraction. In the chosen application, high frequency noise components were first 
removed from the images using two different algorithms, followed by some processing 
to extract the object edges of interest. Specifically, a sequence of image processing 
functions were executed, namely median filtering followed by Sobel edge detection, 
and smoothing filtering also followed by Sobel edge detection. The final images were 
then transferred back to the microprocessor memory for some quality checks.  

Table 1. Selected scenarios for Cray XD1 

 
Case 1 

(Tcomp<Tin<Tout) 

Case 2 

(Tcomp=Tin<Tout) 

Case 3 

(Tin<Tcomp<Tout) 

Case 4 

(Tin<Tcomp=Tout) 

Case 5 

(Tin< Tout<Tcomp) 

Tcomp (msec) 0.299 2.991 64.109 641.092 6410.92 

 
It may be noted that the SPMD condition as described by equation (2) suggests that 

the maximum number of PRRs should at least equal the number of microprocessors 
(MPEs) per node.  For Cray XD1, the number of MPEs per node is two. We therefore 
conducted an initial set of experiments using dual VFPGAs (VPEs). In order to 
evaluate the proposed execution model for a larger number of cases, we added some 
features to the virtual infrastructure on Cray XD1 to emulate scenarios for a larger 
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number of VFPGAs (PRRs). The emulation-based virtual infrastructure accepts a 
minimum set of parameters for XD1 since it is running on the machine itself. These 
parameters include the number of VFPGAs and different computation times to 
emulate different tasks, etc. Five scenarios were emulated to validate the model and 
the proposed infrastructure as shown in Table 1. These scenarios were selected to 
investigate different classes of applications starting from the least computational 
intensive, namely I/O intensive, in case 1 to the most computational intensive 
applications in case 5, see Table 1. A large (infinite) amount of task traffic was 
submitted to be executed on a variable number of VPEs from 1 to 10 VFPGAs. 

Results for the described scenarios were obtained from actual runs on Cray XD1, 
and compared against the proposed execution model presented in Section 3. The 
measured results were found to be in good agreement with the mathematical model. 
Fig. 5 shows some of these experimental findings for the scenarios listed in Table 1, 
as a speedup over the conventional execution based on FRTR. The parameters 
collected from our experiments are TFRTR= 1678.040 ms, TPRTR= 19.771 ms, Tin=2.991 
ms, and Tout= 641.092 ms. Equation (7) suggests that the speedup value should be 
3.49, which is consistent with the value measured and shown in Fig. 5(a). 

 

 

(5a) Speedup achieved using multiple PRRs 
(VFPGAs) as a function of NVPE = Nregions 

(5b) Scalability factor, η 

Fig. 5. Performance of applications using virtual resources 

It is worth mentioning that for the measured parameters on Cray XD1 there is a 
region in Fig. 5(a) where the measured speedup is not upper bounded by the total 
number of processing elements, NMPE. The upper bound is rather dictated by the ratio 
between TFRTR and TPRTR. This is true to a certain point, see Fig. 5(a), beyond which 
the situation reverses and the speedup would be upper bounded by the total number of 
processing elements, NVPE. This is due to the fact that for a small number of VPEs the 
savings in the total execution time is not because of the parallel execution of tasks but 
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rather because of the savings in (re)configuration overhead. On the other hand, for a 
large number of VPEs the savings in the total execution time because of the parallel 
execution of tasks become more significant than the savings in (re)configuration 
overhead.  

Finally, the scalability, as defined by equation (9), of our approach is shown in  
Fig. 5(b). In general, HPC applications with constant overhead show a similar 
scalability behavior to the one shown in Fig. 5(b). Such behavior is typically due to 
communication overhead between the system nodes. In our case, the overhead is due 
to (re)configuration and data transfer back and forth between the MPEs and VPEs, see 
equation (10). As shown in Fig. 5(b), when the task computation time, Tcomp, becomes 
much larger than the associated overhead, the execution speedup, using our 
techniques, approaches linear behavior. In other words, the execution of highly 
compute intensive applications using our virtualization techniques becomes linearly 
scalable, which is a typical behavior on HPC supercomputers. 

5   Conclusion 

In this paper we presented an effort of virtualizing and space, time, and/or space-time 
sharing of reconfigurable resources based on Partial Run-Time Reconfiguration 
(PRTR) for High-Performance Reconfigurable Computing (HPRC) systems 
configured with multi-processor/multi-core technologies. We investigated the 
performance potential of our proposed virtualization techniques on HPRCs from both 
theoretical and practical perspectives. In doing so, we derived a formal stochastic 
model of multi-user SPMD execution on HPRC systems relative to the baseline of 
Full Run-Time Reconfiguration (FRTR). The model provided us with theoretical 
expectations which served as a frame of reference against which we projected our 
experimental results. In addition, it helped us gain in-depth insight about the 
boundaries and/or conditions for possibilities of performance gain using PRTR for 
resource sharing and virtualization. In achieving this objective, our approach was 
based on leveraging previous work and concepts that were introduced for solving 
similar and related problems. 

In conducting the experimental work, we utilized one of the current HPRC 
systems, Cray XD1. We also discussed the requirements and setups for PRTR-based 
resource virtualization on Cray XD1. The experimental results showed good 
agreement with the analytical model expectations. Sharing reconfigurable resources 
among the underutilized microprocessors/processor-cores by providing a virtual 
SPMD view allows improving the overall system versatility, resources utilization, and 
application performance in multi-user environments. The approach we followed for 
Cray XD1 has been proven to be scalable and general to be applied to any of the 
available HPRC systems. 
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Abstract. Coarse-grained reconfigurable architectures have drawn increasing 
attention due to their performance and flexibility. While many coarse-grained 
reconfigurable architectures have demonstrated impressive performance im-
provements, their effectiveness heavily depends on the quality of the compilers 
and/or mappers. However, this mapping process is difficult since it requires the 
solution of multiple problems simultaneously: compilation of the application 
and configuration of the architecture while maximally exploiting the parallelism 
in both the application and the architecture. Utilization of routing resources also 
adds to the complexity of the mapping process. In this paper, we introduce rout-
ing-aware mapping algorithms for coarse-grained reconfiguration architecture. 
In particular, we consider Steiner point routing, since it gives better results than 
spanning tree based routing. After presenting an optimal formulation using in-
teger linear programming (that doesn’t scale), we present a fast heuristic map-
ping algorithm. Our experimental result on randomly generated examples 
shows that our algorithm considering Steiner point routing gives 10% better 
performance result than the one using spanning tree routing. And our heuristic 
algorithm finds optimal solutions for 96% of the cases on the average within a 
few seconds. We also convey similar results on a suite of benchmarks collected 
from Livermore loops, Mediabench, and DSPStone benchmarks.  

Keywords: Coarse-grained reconfigurable architecture, high-level synthesis, 
mapping, routing. 

1   Introduction 

With the increasing requirements for more flexibility and higher performance in em-
bedded systems design, reconfigurable computing is becoming more and more popu-
lar. Typically, the coarse-grained reconfigurable architectures (CGRAs) consist of a 
reconfigurable array of processing elements (PEs) and a host processor (RISC or 
VLIW architecture). The computation intensive kernels of the applications – typically 
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loops – are mapped to the reconfigurable array while the remaining code is executed 
by the processor. However it is not easy to map an application to the reconfigurable 
array because of the high complexity of the problem that requires compiling the ap-
plication on a dynamically reconfigurable parallel architecture, with additional  
complexity of dealing with complex routing resources. The problem of mapping an 
application onto a CGRA to minimize the number of resources giving best perform-
ance has been shown to be NP-complete [13]. Few automatic mapping/ compil-
ing/synthesis tools have been developed to exploit the parallelism found in the  
applications and extensive computation resources of CGRAs. Some research [1] uses 
GUI-based design tools to manually generate a mapping, which would have difficulty 
in handling big designs. Some researchers [2][3] only focus on instruction-level paral-
lelism, failing to fully utilize the resources in CGRAs, which can be achieved by 
exploiting loop-level parallelism. More recent efforts [4]-[9] introduce compilers to 
exploit the parallelism in the CGRA to better utilize the resources of CGRA. How-
ever, they neither guarantee optimal solutions nor show how close the solutions are to 
the optimal. Furthermore, some researchers [4][5][9] use shared registers to solve 
mapping problem. Although these shared registers simplify the mapping process, they 
may increase the critical path delay and could be eliminated if routing resources were 
considered explicitly during the mapping process. In [6], they introduce edge-centric 
modulo scheduling, which is similar to our approach in the sense of routing-
awareness. However, their routing approach is based on spanning tree, thus it may 
give worse result than the one extended to Steiner tree. 

In this paper, we first present a novel integer linear programming (ILP) formula-
tion considering Steiner points to optimally map applications on the CGRA. Since this 
formulation also considers Steiner points, it yields better solutions than the one using 
only spanning tree. However, ILP exhibits long run-times for large problem sizes and 
is therefore unsuitable for design space exploration. In this paper, we also present a 
fast heuristic mapping algorithm for CGRA that is routing aware and incorporates 
Steiner points.  

2   Coarse-Grained Reconfigurable Architecture 

Our target architecture consists of a reconfigurable computing module (RCM) for 
executing kernel code segments and a general purpose processor for controlling the 
RCM, which are connected with a shared bus. The RCM used in our platform consists 
of an array of PEs, several sets of frame buffers, and a configuration cache memory 
[10]. Fig. 1 shows our CGRA and internal structure of the PEs. It is connected with 
the nearest neighboring PEs-top, bottom, left, and right. The size of the array can be 
optimized to a specific application domain [10]. In Fig. 1, for example, the architec-
ture contains a 4x4 reconfigurable array of PEs. The area-critical functional units 
(such as multipliers) are located outside the PEs and shared among a set of PEs [10]. 
Each area-critical functional unit is pipelined to curtail the critical path delay, and its 
execution is initiated by scheduling the area-critical operation on one of the PEs that 
share this area-critical resource. Thus each PE can be dynamically reconfigured either 
to perform arithmetic and logical operations with its own ALU in one clock cycle, or 
to perform multiplication or division operations using the corresponding shared func-
tional unit in several clock cycles with pipelining.  
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Fig. 1. Coarse-grained reconfigurable architecture 

 

(a) Spanning tree                (b) Steiner tree 

Fig. 2. Spanning tree vs. Steiner tree 

The data memory in Fig. 1 is used for storing data that can be accessed by the PEs. 
There are two sets of memory, each of which consists of three banks: one connected 
to the write bus and the other two connected to the read buses. These read/write buses 
are also shared by the PEs like the shared functional units. Two sets of memory are 
used for double buffering. 

The configuration cache is composed of an array of memory elements having the 
same size as the array of PEs, that is M (number of PEs in a column) by N (number of 
PEs in a row) array of Cache Elements (CEs). Note that the area-critical resources are 
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activated through individual PEs that share these resources in each row and thus need 
not be explicitly modeled as PEs. Each CE has H layers so that each PE can be recon-
figured independently of other PEs. 

When mapping kernels onto the reconfigurable architecture, we use temporal map-
ping technique [11] to execute one iteration of a loop with one column of PEs by 
changing the configurations dynamically. Other columns are used for executing other 
iterations of the loop to achieve loop-level pipelining. 

 

(a) Data flow graph  (b) Routing with spanning tree  (c) Routing with Steiner tree 

Fig. 3. Motivational example that Steiner tree based routing gives better result 

3   Motivation 

3.1   Spanning Tree vs. Steiner Tree 

Fig. 2 shows the difference between spanning tree and Steiner tree. The shortest 
Steiner tree problem is as follows: given a set of vertices, interconnect them by a set 
of edges such that the sum of the lengths of all edges is minimized. The difference 
from the shortest spanning tree problem is that extra intermediate vertices (Steiner 
points or Steiner vertices) and edges may be added in order to reduce the sum of the 
lengths of all edges.  

3.2   Motivational Example 

Fig. 3 shows a motivational example illustrating how a Steiner tree gives a better 
solution than that obtained by considering only spanning tree for the mapping prob-
lem. Here, we assume temporal mapping onto a column of four PEs, which has  
mesh connectivity. Fig. 3(a) shows the data flow graph of a butterfly addition exam-
ple. A vertex represents an operation to execute, and an edge represents data-
dependency. The previous approaches [4]-[9] use minimum spanning tree for routing, 
by finding a shortest path in the architecture for every edge in the data flow graph. 
Fig. 3(b) shows that the total latency obtained by applying spanning tree is 5. How-
ever, if we consider Steiner tree, we can reduce the latency down to 4 as shown in 
Fig. 3(c). 
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4   Problem Formulation 

4.1   Notation and Definition 

The main objective is to map a given loop kernel to the CGRA such that the total 
latency is minimized while satisfying several constraints. In this section we define the 
notations that are used throughout this paper, and formulate our problem using integer 
linear programming (ILP). 

Loop kernel. The loop kernel is represented by a control data flow graph (CDFG), 
K=(V, E, D), where V is the set of vertices, E is the set of data-dependency edges, and 
D is the set of loop-carried dependency edges. The vertices in V represent the opera-
tions in the loop, and an edge e=(u, v)∈E exists for a pair of vertices, u, v∈V, iff 
operation v is data-dependent on operation u, and edge d=(u, v)∈D exists for a pair 
of vertices, u, v∈V, iff operation v has loop-carried dependency on operation u. 

CGRA. A column of the CGRA which has M PEs with H configuration cache layers 
can also be represented by a graph C=(P, L), where P is the set of vertices and L is the 
set of edges. For a given column of the CGRA, vertex pkl∈P, 1≤k≤H, 1≤l≤M, repre-
sents the l-th PE that is configured by the k-th layer of the configuration cache. For 
any pair of vertices p, q∈P, an edge l=(p, q)∈L exists, iff there is an interconnection 
between PEs corresponding to p and q. 

Application mapping. The application mapping problem is formulated as follows. 
Given a kernel graph K=(V, E, D) and a CGRA graph C=(P, L), find a mapping of K 
onto C with the objective of minimizing total latency under resource constraints. Note 
that the problem is not just finding a subgraph of C that is isomorphic to K, since we 
should also consider the case where a PE sends the output data to the destination indi-
rectly using other PEs as routing resources 

4.2   ILP Formulation 

The problem of application mapping onto a CGRA has been proven to be NP-
complete [13], even in the special case where the application is represented by a com-
plete binary tree and the CGRA consists of a two dimensional grid with just the 
neighboring connections. In the absence of a polynomial-time exact algorithm, we 
formulate the problem as an integer linear programming (ILP) problem to find opti-
mal solutions. The novelty of our ILP formulation is that we consider Steiner points 
routing to yield better results. 

Routing vertices and routing PEs . When two vertices are mapped respectively to 
two PEs that have no interconnections between them, we add extra dummy vertices 
for data forwarding. Such vertices are called routing vertices, and the corresponding 
PEs are called routing PEs. To accommodate the routing PEs, we insert extra routing 
vertices into each edge of K. Since the exact number of routing PEs required for an 
edge ei∈E is not known until the mapping is completed, we insert the maximum 
possible number of routing vertices. Let Rei be the set of inserted routing vertices into 
ei, and let R=∪∀ i R

ei be the set of all routing vertices. An upper bound of the number 
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of routing PEs for edge ei is given by Tw
i-1 (i.e. |Rei|≤Tw

i-1), where Tw
i is obtained by 

subtracting ASAP schedule time of the tail vertex of edge ei from ALAP schedule 
time of the head vertex. The worst-case latency of K (which is used in the ALAP 
scheduling), is obtained by assuming that there is only one PE. Then we take trans-
formation K K’=(V’, E’, D) by inserting |Rei| vertices into each edge ei∈E. Fig. 4 
shows the original kernel K (Fig. 4(a)) transformed into K’ by inserting the candidates 
of routing vertices (dark vertices in Fig. 4(b)) into every edge in K. Now the problem 
of mapping K to C is transformed to the problem of mapping K’ to C. Unlike normal 
vertices, the candidates of routing vertices for an edge can be mapped to the same PE 
at the same control step, including the PE on which a normal vertex (head or tail ver-
tex of the edge) is mapped. 

 

(a) Kernel K            (b) K’         (c) Mapping result 

Fig. 4. Example of ILP formulation 

Boolean decision variables 
 vikl is 1 if i-th vertex vi∈V is mapped onto pkl∈P. 
 rijkl is 1 if j-th candidate of routing vertex rj∈Rei for ei∈E is mapped onto pkl∈P. 
 qijkl is 1 if j-th routing vertex rj∈Rei is mapped onto pkl∈P, but no normal vertex 

is mapped onto pkl, which means pkl is used as an actual routing PE for the routing 
vertex. 

Objective function. The objective to be minimized is the total latency when we map 
K onto C. For this, we add a sink vertex (vs) to K and calculate the total latency (T) as 
follows. 

⎡ ⎤ )1/( −⋅+= FIIT βα ,    when β/F≤N  (1) 

⎡ ⎤NFNII //))1(( βα ⋅−⋅+ ,    when β/F>N   (2) 

where ∑∑ ⋅=
H

k

M

l
klsvkα is the latency of sink vertex, II is the initiation interval calcu-

lated from D (set of loop-carried dependency edges), β is the number of iterations, F 
is the unroll factor, and N is the number of columns in the CGRA. 

Constraints. Among many constraints, we only show the constraints related to 
Steiner point routing in this paper, due to the space limitation. 
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For ,1,1,1),(1 MlHkRjEorVi e ≤≤≤≤≤≤≤≤
 

- Single mapping to a PE at a time: 

lkv
V

i
ikl ,,1 ∀≤∑     (3) 

jilkvVvr
V

i
qijkijkl ,,,,1}){( ∀≤−∈+ ∑    (4) 

where V-{vq} is the subset of V excluding vertex vq, which is the head vertex of 
edge ei = (vp, vq). 

- Allow Steiner points: 

jilkrRqvq
E

i

R

j
p

ei
ijkl

V

i
iklijkl

e

,,,,1}){( ∀≤−∈++ ∑∑∑           (5) 

where Rei-{rp} is the subset of Rei excluding routing vertices rp which has the same 
predecessor vertex with current qijkl. 

- {q} is a subset of {r}: 

jilkrq ijklijkl ,,,,0 ∀≤−     (6) 

- Routing PE (r=1 but no v is mapped) should set q: 

jilkvrq
V

i
iklijklijkl ,,,,0 ∀≥+− ∑     (7) 

5   Design Flow and Mapping 

5.1   Overall Design Flow 

Fig. 5 describes the overall design flow, which integrates the process of mapping of 
kernels on the reconfigurable array. The mapping process is based on high-level syn-
thesis (HLS) techniques. Since the HLS techniques and loop-level pipelining fit well 
with temporal mapping, we focus only on temporal mapping in this paper. 

We first partition the application into two parts, one running on the RISC processor 
and the other running on the RCM. The result of partitioning is two sets of code seg-
ments written in C. For the code segments for the RISC processor, we statically sched-
ule them and generate assembly code with a conventional compiler. For the code  
segments for the RCM (generally loop kernels), we generate a control data flow graph 
(CDFG) using the SUIF2 [12] parser. During this process, we perform loop unrolling to 
maximize the utilization of PEs. We then perform HLS to get the schedule and binding 
information for one column of PEs. Since we have multiple columns, we let each col-
umn of the CGRA execute its own iteration of the loop to implement loop pipelining. 

5.2   Heuristic Algorithm for Mapping 

As shown in Fig. 5, our heuristic mapping algorithm consists of two phases: i) list 
scheduling to get an initial solution, and ii) quantum-inspired evolutionary algorithm 
(QEA) [14] to get a more refined solution which is close to the optimum. 
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Fig. 5. Overall design flow 

List Scheduling. Over the unrolled CDFG, we run list scheduling with the given 
resource constraint in order to obtain the initial solution (this initial solution is used at 
the beginning of second phase of QEA). First, we topologically sort the vertices from 
the sink to the source. Among the vertices in the sorted list, the vertex with the high-
est priority is scheduled, if all the predecessor vertices are already scheduled and the 
vertex is reachable from all the scheduled predecessor vertices through the currently 
available interconnections of the CGRA. When mapping a vertex onto the array of 
PEs, we consider the following constraints of CGRA: interconnect constraint and 
shared resource constraint. If there is no direct connection available for implementing 
a data dependency between two PEs, we try to find a shortest path using the unused 
remaining PEs as routers. To find the shortest path, we first construct a graph with the 
remaining PEs (PEs that have not been used yet). The vertices and edges of the graph 
represent the remaining PEs and their interconnections, respectively. Then we use 
Dijkstra’s algorithm to find a shortest path. Even if we can find a path, we also have 
to consider the constraint caused by sharing area-critical functional units. For exam-
ple, if we have only one multiplier shared among the PEs in a row, we cannot use the 
multiplier again within N (number of PEs in a row) cycles after its use, since the mul-
tiplier must be used for pipelining by other columns. In this case, the vertex using the 
shared resource is scheduled N cycles later with proper routing of data. 

QEA. QEA is an evolutionary algorithm that is known to be very efficient compared 
to other evolutionary algorithms [14]. The fitness function that we use for the QEA is 
the performance, which is the inverse of the total latency given by the expressions (1) 
or (2) in the ILP formulation. 

The QEA, like genetic algorithms, generates dozens or hundreds of possible cases 
(through rotation instead of crossover operation) and evaluates each case to choose 
the best solution. This solution is then used to produce the next generation (refer to 
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[14] for the details). The iterative improvement continues until it finds a solution 
which is equal to the result of ASAP scheduling obtained by no resource constraint, or 
there is no improvement during some time interval. We stop the iteration if it reaches 
the ASAP solution since it is a lower bound of optimal solution. 

We seed the QEA to start from the list scheduling result and attempt to reduce the 
total latency. Since the QEA starts with a relatively good initial solution, it tends to 
reach a better solution sooner than starting with a random seed. As a result of QEA, 
the schedule and binding of each vertex are determined. Once the schedule and bind-
ing are obtained, it tries to find the routing path among the vertices with unused  
remaining PEs to see if these schedule and binding results violate the interconnect 
constraint. For the routing, we order the edges to be routed since the previous routing 
may affect the later routing. The ordering is determined as follows. 

 Edges located in the critical path get higher priority. 
 Among the edges located in the critical path, edges that have smaller slack (shorter 

distance) get higher priority. 
 If a set of edges have the same tail vertex, then the set of edges becomes a group 

and the priority of this group is determined by the highest priority among the 
group members. This grouping is necessary for finding a Steiner tree. 

According to the above priority, we make a list of candidate edges and find a shortest 
path for each edge in that order. For finding a Steiner tree, we try to find a path for 
each outgoing edge individually, and if some paths use the same routing PE, it be-
comes a Steiner point.  

Although this approach may not always find an optimal path, it gives more chances 
to find a better solution. Indeed, our experimental results in the next section show that 
our approach finds optimal solutions for 96 percent of the randomly generated exam-
ples on the average. 

6   Experiments 

6.1   Experimental Setup 

To demonstrate the effectiveness of our approach, we perform three different experi-
ments: i) experiment with an illustrative example to show that Steiner tree gives a 
better solution than spanning tree, ii) experiment with a random set of CDFG exam-
ples, and iii) experiment with a collection of standard benchmarks from the Livermore 
loops, Mediabench, and DSPStone benchmark suites. 

For the first experiment, we consider mesh connectivity (lack of routing resources 
better reveals the effect of considering Steiner tree) and for the rest, we consider 
mesh-plus connectivity. In the mesh-plus connectivity of 4 PEs in a column, intercon-
nects of one hop distance are added to the mesh interconnect. In the mesh-plus con-
nectivity of 8 PEs in a column, left 4 PEs (or right 4 PEs) are fully connected, and 
pair-wise interconnect is added between the two groups of 4 PEs. Especially for the 
second experiment, we have devised a random kernel CDFG generator. Our CDFG 
generator randomly generates 100 CDFGs for each value of node cardinalities from 5 
to 20 nodes (1600 in total). We assume the number of PEs in a column is 4 for  
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randomly generated CDFGs containing 5 to 15 nodes. And for the case of 16 to 20 
nodes, we assume the number of PEs in a column to be 8. All experiments are done 
on Pentium4 2.4GHz dual processor machine with 4GB RAM. We use glpk4.2 [15] 
for solving the ILP formulation. 

6.2   Experimental Result 

Illustrative Example. Table 1 shows the experimental result of the example shown in 
Fig. 3. We assume 4 PEs in a column which has mesh connectivity. As expected, the 
approach using Steiner tree gives better solution than using spanning tree. Both ILP 
and heuristic approaches give optimal solutions. However, the heuristic approach is 
three orders of magnitude faster than the ILP approach. 

Randomly Generated CDFGs. Fig. 6 shows the experimental result of 100 randomly 
generated examples for each problem size. The X-axis represents the number of nodes 
that each input application contains, and the left Y-axis shows the log scaled average 
mapping time and right Y-axis shows the percentage finding optimal solution with the 
‘Heuristic’ approach for 100 examples. Since ‘ILP’ takes a lot of time for large input 
graphs, we stop the ILP solver after 900 seconds. ‘ILP’ is unable to find a solution for 
the case of 8 PEs in a column within 10 hours, thus we set the optimal solution to be 
equal to the ASAP result. Note that the ASAP result is a lower bound of the optimal 
solution. The ‘Heuristic’ approach is about three orders of magnitude faster than  
 

Table 1. Experimental result of spanning tree vs. Steiner tree. 

  Latency (cycles) Mapping time (secs) 
Spanning tree 5 1022 ILP 

Steiner tree 4 965 
Spanning tree 5 ≤ 1 

Heuristic 
Steiner tree 4 ≤ 1 

 

Fig. 6. Experimental result of random examples 
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Fig. 7. Latency comparison of standard benchmarks 

Table 2. Characteristics and experimental result of benchmark examples 

 
# of 

nodes 
# of  

iterations
Unroll 
factor 

RCM w/ 
Spanning 
(cycles) 

RCM w/ 
Steiner 
(cycles) 

Optimal 
(cycles) 

hydro 5 8 4 7 7 7 
matrix_mult_4x4 7 4 2 6 6 6 
inner_product 7 8 2 8 8 8 
complex_update 8 4 2 5 5 5 
iccg 8 8 2 13 13 13 
tri-diagonal elimination 9 8 4 13 13 13 
dequantType1 (mpeg4_dec) 10 16 4 15 15 15 
bdist2 (mpeg2_enc) 16 8 4 13 13 13 
1d_chendct (jpeg_enc) 60 8 1 19 18 18 

 
the ‘ILP’ approach, still finding optimal solutions for 96 percent on average. Even in 
the case of non-optimal solutions, the difference from the optimal solution is just one 
cycle on average. For the randomly generated test examples, our approach using 
Steiner point routing gives 10 percent better performance result on average than the 
one using spanning tree routing. 

Standard Benchmark Suites. We experiment with a set of benchmarks collected 
from the Livermore loops, Mediabench, and DSPStone benchmark suites. We assume 
8 PEs in a column with mesh-plus connectivity. Fig. 7 shows the total latency values 
obtained on the RCM by our approach together with those obtained by software im-
plementation on an ARM7 processor. Table 2 shows their characteristics and com-
parison between the approaches using spanning tree and Steiner tree. For the small 
sized benchmark examples (number of nodes ranges from 5 to 16), there is no differ-
ence between them. However, as the application size increases (1d_chendct example 
has 60 nodes) routing problem becomes more important. Currently we are working on 
applying our algorithm to rather big sized practical examples. 
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7   Conclusion 

In this paper, we present approaches to the routing-aware mapping algorithm consid-
ering Steiner points for coarse-grained reconfigurable architecture. After outlining an 
optimal integer linear programming formulation, we present a fast heuristic based on 
high-level synthesis techniques that uses loop unrolling and pipelining techniques to 
generate loop parallelized configurations. Experimental results on randomly generated 
test examples show that our proposed approaches considering Steiner points, give 10 
percent better performance than the one using spanning tree. Furthermore our heuris-
tic algorithm finds an optimal solution for 96 percent on average within a few sec-
onds. Experiments on benchmarks also convey similar results. 
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Abstract. A Reconfigurable Interconnection Network (RIN) is a cus-
tom designed on-chip switching network yielding routing solutions for a
pre-given set of applications. Like FPGA routing networks, the RIN is
used to make reconfigurable interconnections among functional blocks.
Unlike FPGAs, the network topology of a RIN is irregular as it is de-
signed for a given set of routing requirements and optimized for area,
power and delay minimizations. In this paper, we propose an auto-
matic design scheme for RINs, including routing specification formu-
lation, graph modelings, network topology designs, routing algorithms,
and MUX-based network circuit implementation. A CAD tool is devel-
oped based on the design scheme, which takes a set of routing require-
ments as input and produces the corresponding RIN network topology
and network circuit in HDL format. We present the area costs of various
RINs generated by the CAD tool with Altera’s Quartus II, and illustrate
the RIN design scheme with a reconfigurable multi-stream video system
prototype.

1 Introduction

Our study on Reconfigurable Interconnection Network (RIN) was motivated by
the design of reconfigurable System-on-Chips (SoCs) for a pre-specified set of ap-
plications. The system can be reconfigured to run one application at one time,
and another application at another time, or several applications simultaneously.
Each application requires a sub-group of available Functional Blocks (FB), which
are connected together by a specific interconnection pattern (a routing require-
ment) determined by the application. We use a RIN as a reconfigurable block to
make the various interconnections among the FBs. Since the RIN is used to do
the routing for a given set of applications, it can be optimized for resource usage.
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Fig. 1. RIN and its application in reconfigurable system

This leads us to consider the general RIN design problem. That is, given a set of
routing requirements, to design a switching network such that it is guaranteed
to route each of the given routing requirements, meanwhile having a low cost on
area and power and delay.

Fig.1(a) shows the application of RINs in a reconfigurable multi-stream video
system, where the RIN is used to switch stream-video signals going through dif-
ferent processing units. Fig.1(b) shows the block diagram of the RIN, in which
the switching module consists of wires and switches that connect input signal
ports to output signal ports. The ON/OFF of switches are controlled by con-
trol bits. Control bits are stored in the configuration registers, which are loaded
through load registers. The load registers get values through address and con-
figuration data path.

The idea of using RINs as a reconfigurable component in a reconfigurable
system has been previously discussed. For instance, RINs have been used in
Built-In-Self-Testing (BIST) design [9] and fault-tolerance design. In these ap-
plication instances, a RIN is an application specific functional block satisfying
a given Routing Specification (RS). After the design step for the given specifi-
cation, it is added into the host design, followed by the standard IC design flow
for floor plan and routing. On the other hand, the routing networks in FPGAs
are reconfigurable interconnection networks. However, FPGA routing networks
are designed to do routing for genetic functions and always have regular topol-
ogy styles such as mesh, row, or tree [8]. A RIN is customarily designed for a
given set of routing requirements and often comes with an irregular topology.
For on-chip communications, a RIN provides dedicated interconnections among
FBs, so it is suitable for stream data communication with low clock frequency.

Even though RINs have been used in many applications, there are no sys-
tematic design scheme and design automation tool available. In this paper,
we propose a design scheme together with a CAD tool for the design automa-
tion of RINs. The scheme includes both hardware and software. The hardware
part involves routing specification, network topology design and network circuit
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design. The software part deals with the topology generation, circuit generation
and routing. The CAD tool takes a set of routing requirements as input and
produces the corresponding RIN topology and circuit in HDL format.

The rest of this paper is organized as follows. Section 2 gives the formulations
of RS and RIN design problem. Section 3 presents the network topology designs
for directed RINs, including 1-stage crossbars, multistage Clos networks and our
generalized Clos networks. Section 4 presents the topology designs for undirected
RINs. In Section 5, we first give the RIN design automation flow together with
the corresponding CAD tools, and then the experimental results done by Altera
Quartus II on a variety of RIN circuits, followed by an illustration of applying
the tool to generate a RIN for the application of a multi-stream video system.

2 RIN Design Specifications

This section gives the general formulations for routing requirements, routing
specification, and the RIN design problem.

2.1 Routing Specifications

The function of a RIN is to make required interconnections of the ports of
FBs according to application specifications. The set of FBs contains all the
fundamental blocks to be used in the anticipated applications. Each FB contains
input/output/inout pins. An application uses a subset of the FBs with specific
interconnections of their pins. The term net refers to an interconnection request
of two or more pins. A net is a 2-pin net (or point-to-point connection) if it
connects an output pin (source) to an input pin (sink), and multi-pin net (or
one-to-many connection) if it connects an output pin to two or more input pins.
An inout pin can function either as an input pin or output pin depending on
how it is used. A realization (or routing) of a net is a physical connection of the
pins by wires and ON switches. An application corresponds to a set of disjoint
nets, which is referred to as a routing requirement.

In a traditional ASIC design, there is usually only one routing requirement
dedicated for one application. The routing problem is to determine how to layout
the wires to realize all the nets of the routing requirement. When multiple appli-
cation design is considered, a super set of FBs and a set of routing requirements
over the pins are given. We consider using a RIN to realize the given routing
requirements after the system is fabricated and when the system is in use. As
a functional block, the input/ouput/inout pins of the RIN will be connected to
the output/input/inout pins of other function blocks. To avoid confusion, we use
the term input/output/inout port to refer to the input/output/inout pin when
designing a RIN. Then the sets of input, output and inout ports, and the set
of routing requirements over the ports forms the routing specification (RS) for
RIN design. It can be formulated as follows.

Let A, B and U denote the sets of input, output and inout ports respectively.
A net N (or (t + 1)-pin net) connecting an input/inout port p0 ∈ A∪U to some
output/inout ports p1, . . . , pt ∈ B ∪ U is represented as N = {p0, p1, . . . , pt}.
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A routing requirement consists of a set of disjoint nets, represented as R =
{Ni : i = 1, . . . , k}, where each Ni is a net and Ni ∩ Nj = ∅ if i 	= j. A
set of routing requirements is represented as C = {R1, . . . , Rs}, where each
Rj = {Nji : i = 1, . . . , kj} is a routing requirement for j = 1, . . . , s. Then the
RS is formulated as the quadruple (A, B, U, C).

A RIN satisfying RS (A, B, U, C) is a module consisting of wires and switches
connecting ports of A, B, U and satisfying that, for each routing requirement
R ∈ C, there is ON/OFF assignments of the switches so that all nets in R are
realized and two different nets are disjoint.

2.2 RS Simplification

The RS (A, B, U, C) is derived directly from the output, input, and inout ports
of other FBs and the set of routing requirements associated with the anticipated
applications. It can be simplified without affecting the design of RIN. For exam-
ple, if a net is contained in every routing requirement, then a fixed routing of the
net will be satisfying the requirement. Therefore, the net can be removed from
RS. It is proved that the following reduction rules can be used for simplification.

R1. If a ∈ A ∪ B ∪ U is not contained in any net, remove a from A ∪ B ∪ U .
R2. Remove all nets N such that |N | = 1.
R3. If a net N is contained in every routing requirement of C, then remove N

from all the requirements.
R4. If {a, a′} is the only net containing a, then remove net {a, a′} from C. In

this case, a switches joining a to a′ must be added to RIN.

Repeatedly applying the above rules to the resulting routing specification until
no further reductions can be done, we obtain a reduced RS (A, B, U, C). Further
more, we decompose (A, B, U, C) into minimal RSs (Ai, Bi, Ui, Ci), i = 1, . . . , k,
where Ai, Bi, Ui, i = 1, . . . , k are mutually disjoint and a minimal RS is one
which can not be decomposed further. We need only consider the problem of
designing a RIN for a minimal RS because the RIN for non-minimal RS is the
union of RINs of all its minimal RSs.

We only consider the design for two types of RSs, directed and undirected.
A directed RS contains no inout ports, i.e., U = ∅, denoted by (A, B, C). We
use directed RINs consisting of wires and unidirectional switches for directed
RS. An undirected RS only contains inouts ports, i.e., A = B = ∅, denoted by
(U, C), and we use undirected RIN consisting of wires and bidirectional switches
for undirected RS. If A∪B 	= ∅ and U 	= ∅, we treat all ports as inout ports and
design an undirected RIN accordingly.

3 Design for Directed RINs

In this section, we propose the topology design and circuit implementation for
directed RS (A, B, C). We first give the graph modeling for directed RINs and
MUX-based implementation, then propose four candidate topology designs in
the tradeoff of different resource costs.
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3.1 Graph Modeling and Implementations

We model a directed RIN for (A, B, C) by a multistage digraph. A k-stage di-
graph is a digraph G = (V0∪· · ·∪Vk, E), where V0, . . . , Vk are disjoint node sets,
and each edge (or arc) in E is from a node in Vi to a node in Vj with j > i. If
every edge is joining a node of Vi to a node of Vi+1, we call it k-stage bipartite
digraph. Particularly, A = V0 are input nodes and B = Vk are output nodes,
and nodes in Vi, 1 ≤ i ≤ k − 1 are intermediate nodes.

The graph modeling provides an effective way to do routing in the network.
The routing of a 2-pin net is a path from the input node to the output node,
and the routing of a mult-pin net is a tree with the input node as root and
output nodes as leaves. For example, Fig.2(a) shows the 3-stage (4, 4)-Clos net-
work and the routing of 2-pin routing requirement {{p0,1,1, p3,2,2}, {p0,1,2, p3,1,1},
{p0,2,1, p3,1,2}, {p0,2,2, p3,2,1}}, and Fig.2(b) the routing of multi-pin routing re-
quirement {{p0,1,1, p3,1,2, p3,2,1}, {p0,2,2, p3,1,1, p3,2,2}}. We say a graph G is a
topology candidate for the given RS (A, B, C) if G contains a routing for every
routing requirement of C.

The graph modeling is effective for the circuit implementation. It can be
implemented by a multi-stage crossbar, as shown in Fig.3(a), in which an edge
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corresponds to a crosspoint switch and a node corresponds to a wire (either
vertical or horizontal). It can also be implemented by a multiplexer network,
as shown in Fig.3(b), in which an edge corresponds to a wire and a non-input
node corresponds to a multiplexer. We use multiplexer network as the circuit
implementation in our design scheme and CAD tool.

3.2 One-Stage Networks

Given a directed RS (A, B, C). We define the interconnection digraph, denoted
by IG(A, B, C), of (A, B, C) as bipartite digraph (A, B, E), where (u, v) ∈ E
if u ∈ A, v ∈ B and u, v are contained in a net of a routing requirement of
C. That is, we add an edge joining node u of A to node v of B provided u is
connected to v in some of the given routing requirement. The interconnection
digraph IG(A, B, C) of (A, B, C) is a topology candidate for (A, B, C). This is
because, for any net N = {p0, . . . , pt} of a given routing requirement, the routing
of N in G can always be done by the edges (p0, p1), . . . , (p0, pt). This indicates
that IG(A, B, C) is nonblocking for any of the given routing requirements and
routing can be done in linear time. Clearly, IG(A, B, C) is a 1-stage switching
network (or a partial crossbar), and contains no intermediate nodes. Hence,
IG(A, B, C) is the best topology candidate for (A, B, C) in terms of switch
delay and intermediate nodes and routing algorithm.

There are situations that we want to do routing for new applications other
than the pre-given ones after the RIN is designed. A new application must use a
subset of the given FBs, and the interconnection is likely among the FBs which
are feasible. We determine a feasible interconnection by checking if a similar type
of connection has been given in the pre-given routing requirements. Specifically,
if an input node u has a connection to an output node v, and input node x has
connection to an output nodes v and y in the pre-given routing requirements,
then it is possible to connect u to y in a new application. So, we add edge (u, y) to
improve the routing capacity. As a result of repeatedly applying this operation,
a complete bipartite graph (or full crossbar) over (A, B) is derived, we call it the
compete interconnection digraph of (A, B, C), and denote it by IG(A, B, C). We
see that IG(A, B, C) has the capacity of making all possible interconnections of
the input, output ports. Therefore, it is the best solution in terms of routing
capacity, delay, intermediate nodes and routing algorithm.

3.3 Multistage Clos Networks

Both IG(A, B, C) and IG(A, B, C) could be inefficient in terms of switch cost.
For instance, when IG(A, B, C) is an (N, N)-network, i.e., |A| = |B| = N , the
switch cost of IG(A, B, C) is O(N2), so IG(A, B, C) may not fit in the host design
when N is large. In this situation, we use unicast (for 2-pin net) or multicast (for
multi-pin net) rearrangeable multistage switching networks to expand the dense
subgraphs so as to reduce the switch cost. This is a tradeoff between the switch
cost and the costs on delay and intermediate nodes as increasing the number of
stages will increase both the switch delay and the number of intermediate nodes.
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The tradeoff can significantly reduce the overall area cost as well as the power cost
due to the reduction of the number of switches.

Multistage switching networks have been studied extensively in the fields of
communication networks and parallel/distribuited computing since the early
work of Clos [2]. Various routing capabilities such as strictly/wide-sense non-
blocking, rearrangable, unicast, multicast, and broadcast, have been proposed.
Huang [7] gave a comprehensive coverage on the mathematical theory of switch-
ing networks. Dolev et al. [3] proved that, theoretically, a k-stage rearrangeable
broadcast (N, N)-network (of N inputs and N outputs) has a lower bound of
O(N1+1/k) switches and an upper bound of O((N log N)1+1/k) switches. Practi-
cally, Clos networks are often used due to its scalable routing capacities, simple
structure and routing algorithms. We use 3-stage Clos network, which can be
represented as a multistage bigraph as follows.

C(n1, r1, m, n2, r2) = (V0 ∪ V1 ∪ V2 ∪ V3, E1 ∪ E2 ∪ E3),
V0 = {p0,j,s : j = 1, . . . , r1, s = 1, . . . , n1},
V1 = {p1,j,s : j = 1, . . . , r1, s = 1, . . . , m},
V2 = {p2,j,s : j = 1, . . . , r2, s = 1, . . . , m},
V3 = {p3,j,s : j = 1, . . . , r2, s = 1, . . . , n2},
E1 = {(p0,j,s, p1,j,t) : 1 ≤ s ≤ n1, 1 ≤ t ≤ m, 1 ≤ j ≤ r1},
E2 = {(p1,j,t, p2,h,t) : 1 ≤ t ≤ m, 1 ≤ j ≤ r1, 1 ≤ h ≤ r2},
E3 = {(p2,j,s, p3,j,t) : 1 ≤ s ≤ n2, 1 ≤ t ≤ m, 1 ≤ j ≤ r2}.

(1)

When the RS (A, B, C) contains only 2-pin nets, we use unicast rearrangeable
switching networks. It was known that a 3-stage Clos network C(n1, r1, m, n2, r2)
is unicast rearrangeable if m ≥ max{n1, n2} and routing can be done efficiently.
Particularly, the symmetric 3-stage Clos network C(n, r, m, n, r) is unicast re-
arrangeable when m ≥ n. Moreover, by setting m = n = r = N1/2, the
C(N1/2, N1/2, N1/2) is unicast rearrangeable with 3N3/2 switches and the mini-
mum 2N intermediate nodes. Therefore, we use the unicast 3-stage Clos network
C(n1, r1, max{n1, n2}, n2, r2) as the next network topology candidate, followed
by the 5-stage Clos network candidate, and so on. Note that when expanding
IG(A, B, C) into Clos network C(n1, r1, m, n2, r2), we calculate the values for
n1, r1, m, n2, r2 so that the resulting Clos network satisfies the required RS and
has the minimum number of switches.

When the RS (A, B, C) contain multi-pin nets, we use multicast or broadcast
rearrangeable switching networks. It was known [11] that C(n1, r1, m, n2, r2) is
broadcast rearrangeable and has a linear time routing algorithm when m ≥
2(n1 − 1)(log r2/ log log r2) + (log r1)1/2(n2 − 1) + 1. By setting r1 = n1 =
r1 = n2 = m = O(N1/2), the derived N -network is broadcast rearrangeable
with switch cost O(N3/2 log N/ log log N). Therefore, with multi-pin RS, we use
C(n1, r1, m, n2, r2) with m = 2(n1−1)(log r2/ log log r2)+(log r1)1/2(n2−1)+1
as the 3-stage topology candidate.

3.4 Generalized Clos Networks

The multicast rearrangeable Clos networks could be bad on node cost. For ex-
ample, the number of intermediate nodes in the broadcost 3-stage (N, N)-Clos
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network is O(N log N/ log log N). The intermediate node will increase fast when
the stage number increase. To avoid the cost explosion of the intermediate nodes,
we propose a (2k+1)-stage rearrangeable multicast switching network which uses
the minimum number of 2kN intermediate nodes with a tradeoff of switch cost.

The idea is to add more switches to the middle stage of the unicast Clos net-
work so as to increase the routing capacity. It was known that if the middle stage
becomes hyperuniversal [5], then the resulting the 3-stage network is multicast
rearrangeable. For any non-negative integer 0 ≤ w ≤ m, define:

E2(w) = {(p1,j,h, p2,j′,h′) : |h − h′| ≤ w},
Cw(n1, r1, m, n2, r2) = C(n1, r1, m, n2, r2) + E2(w). (2)

It was known that when w = 3r1 + 3r2, Cw(n1, r1, max{n1, n2},n2, r2) is mul-
ticast rearrangeable with the minimum number of intermediate nodes and effi-
cient routing algorithm [6]. Therefore, we choose C3r1+3r2(n1, r1, max{n1, n2},
n2, r2) as an alternative topology candidate. Since the middle stage of Cw(n1, r1,
max{n1, n2}, n2, r2) contains max{n1, n2}/w disjoint (wr1, wr2)-full crossbars,
we can continue to expand these full crossbars into 3-stage networks to derive a
5-stage multicast rearrangeable (N, N)-network as the next candidate for RIN.

4 Design for Undirected RINs

This section presents candidate topology designs for undirected RS (U, C). The
design scheme is similar to that of directed RS.

4.1 Interconnection Graphs

We model an undirected RIN by a simple graph G = (U ∩ V, E), where U
is the set of inout nodes, V the set of intermediate nodes, and E the set of
edges representing switches. Fig.4(a) illustrates a reconfigurable system with an
undirected RIN, and (b) the graph representation and MUX implementation.
The main problem is to find a topology candidate for (U, C) with a small number
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of edges and intermediate nodes as well as short delays. Similar to directed RIN
design, we first consider the topology candidates that use no intermediate nodes,
and then multistage network solutions.

Given RS (U, C). We call graph G = (U, E) an interconnection graph of (U, C)
if, for any net N of C, the induced subgraph G[N ] is connected. Then an inter-
connection graph G of (U, C) is a topology candidate of (U, C) because, for any
requirement R = {Ni : i = 1, . . . , k} ∈ C, since G[Ni] is connected, there is a
spanning tree Ti of G[Ni] for every i = 1, . . . , k. By assigning ON to all switches
on T1 + · · ·+Tk, and OFF to other switches of G, thus we obtain a routing for R
on G in a linear time. In addition, G is a candidate without intermediate nodes.
We use IG(U, C) to denote an interconnection graph of (U, C).

The existence of interconnection graphs is obvious as the complete graph over
U , denoted by IG(U, C), is an interconnection graph of (U, C). Since IG(U, C)
has the full routing capacity, so we use IG(U, C) as the first candidate. The
number of edges in IG(U, C) is O(N2), it may not fit in the host design, so
next we try to find an IG(U, C) with the minimum number of edges. Since the
problem of finding a minimal interconnection graph is NP-hard [4], we use the
greedy algorithm proposed in [4] to find an IG(U, C), and use it as the second
candidate.

4.2 Multistage Switching Networks

When both IG(U, C) and IG(U, C) have a high cost on switches, we then con-
sider using the 1-sided 3-stage Clos network, which is defined as follows.

PSN(n, m, r) = (U1 ∪ · · · ∪ Ur ∪ V1 ∪ · · · ∪ Vr, E1 ∪ · · · ∪ Er ∪ Ec)
Uj = {uj,h : 1 ≤ h ≤ n}, j = 1, . . . , r,
Vj = {vj,h : 1 ≤ h ≤ m}, j = 1, . . . , r,
Ej = {uj,hvj,h′ : 1 ≤ h ≤ n, 1 ≤ h′ ≤ m}, j = 1, . . . , r,
Ec = {vj,hvj′,h : 1 ≤ j, j′ ≤ r, 1 ≤ h ≤ m},

(3)

where U = U1 ∪ · · · ∪ Ur is the set of inout nodes, and V = V1 ∪ · · · ∪ Vr is
the set of intermediate nodes. The middle stage (V, Ec) of PSN(n, m, r) forms
an (r, m)-switch box. It was known that PSN(n, m, r) is unicast (multicast)
rearrangeable [6] if the middle switch box is universal [1] (hyperuniversal [5]).

The routing on PSN(n, m, r) can be done efficiently by three steps. Step 1
induces the routing requirement to a routing requirement on the center switch
box, step 2 finds a routing of the routing requirement on the switch box, and
step 3 extends the switch box routing to the inout stage. For example, Fig. 5(a)
depicts the PSN(4, 4, 4). Let R = {N1, . . . , N7} be a routing requirement for
PSN(4, 4, 4), N1 = {u1,1, u2,1}, N2 = {u1,2, u2,2, u4,3}, N3 = {u1,4, u4,4}, N4 =
{u4,2, u2,3, u3,3}, N5 = {u1,3, u3,2}, N6 = {u3,1, u2,4}, N7 = {u4,1, u3,4}. Then
R induces the routing requirement R′ = {R′

1, . . . , R
′
7} on the center (4, 4)-SB,

where R′
1 = {1, 2}, R′

2 = {1, 2, 4}, R′
3 = {1, 4}, R′

4 = {4, 2, 3}, R′
5 = {1, 3}, R′

6 =
{3, 2}, R′

7 = {4, 3}. Fig.5(b) shows the routing of R′ on the center switch box,
and (c) the routing of R on PSN(4, 4, 4) extended from the routing of R′.
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Fig. 5. One-sided 3-stage Clos network and routing

Therefore, for 2-pin net RS, we use a universal switch box (USB) designs given
in [10] to substitute the center switch of PSN(n, m, r) to obtain a rearrangeable
unicast switching network [12].

For multi-pin net RS, we use the following generalized Clos network. For any
integer w with 0 ≤ w ≤ m, define:

Ew(m, r) = {vj,hvj′,h′ : 1 ≤ j, j′ ≤ r, j 	= j′; 1 ≤ h, h′ ≤ m, |h − h′| ≤ w},
PSNw(n, m, r) = PSN(n, m, r) + Ew(m, r).

(4)
It was known that when w = 3r, PSNw(n, m, r) is broadcast rearrangeable
with switch cost O(mr3), and the minimum intermediate node cost O(mr) , and
an O(m2r5) time routing algorithm [6]. Therefore, we use PSNw(n, m, r) for
w = 1, 2, 3 as the topology candidates.

5 CAD Tools for RIN Generation

We developed CAD tools for the design automation of RIN based on the design
scheme proposed above. The tool consists of following programs.

1. RS extractor: to determine RS (A, B, U, C).
2. RS simplifier: to produce a set of reduced minimal RSs.
3. RIN topology generator: given directed RS (A, B, U, C), to generate a se-

quence of topology candidates.
4. RIN circuit generator: given an RIN topology graph (either directed or undi-

rected), to generate the circuit in Verilog HDL format.
5. Control circuit generator: to generate control circuits for RINs.
6. Router: to find routing for a given routing requirement.
7. Configuration bit generator: to convert the routing to configuration bit

stream.

Fig.6 depicts the RIN automatic design flow with the tool. First of all, it extracts
the RS (A, B, U, C). Second, depending on (A, B, U, C), choose to use directed
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RIN or undirected RIN. The simple criteria is, if there is not inout in the RS,
we use directed RIN; otherwise use undirected RIN. In either case, we use the
RIN topology generator to generate a sequence of digraphs (or simple graphs)
as topology candidates. Third, for each of the candidates in the sequence, use
the RIN circuit generator to generate multiplexer modules for each node of the
same degree, then the switching modules using the multiplexors, followed by the
switch control module and top level interface modules. After an RIN circuit is
generated, we test it with existing CAD tools such as Altera Quartus II. After
the testing, we insert it into the host design for system testing. If it is passed,
the design cycle is stopped; or otherwise we put the next topology candidate
into the design cycle.

To test the RIN topology generator and circuit generator, we first use RIN
topology generator to produce a variety of network topology candidates. Then
input the topology description file into the RIN circuit generator, which gener-
ate the corresponding network circuits. We then compile and simulate the RIN
circuits using Altera’s Quartus II targeting at Altera’s Cyclone FPGA chip. Ta-
ble 1 shows the experimental results for the directed s-stage (N, N)-RIN (of N
input ports and N -output ports) with N = 8, 32, 128, 512, s = 1, 3, 5 and s-stage
undirected N -RIN (of N inout ports) with N = 8, 32, 128, 512, s = 1, 3. All the
experimented RINs have data width one. The logic unit number column shows
the number of logic units used by the RIN. The decrease percentage is derived
by comparing with the corresponding 1-stage network. The number of logic units
reflects the area cost. We see that when N is large, increasing the number of
stages will significantly reduce the number of logic unit usage.

To verify the application of RINs, we use the tool to generate a RIN for the
application of reconfigurable multi-stream video system. After it is generated and
passed testing, we add it into the application design and connect the ports of the
RIN to the ports of existing modules with the Altera’s Quartus II FPGA design
KDE. The design has four video inputs and two video output, there are four
pre-given applications, each with the video signals going to different processing
modules. We store the configuration bits for each application in the memory, and
assign call numbers 0, 1, 2, 3 for them respectively. After compiling, we load the
design configuration into the Altera FPGA prototyping board. When the system
is turned on, we input a call number and then give a configuration enable signal.
The system successfully went through the configuration process, which first loads
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Table 1. Experimental results on generated directed (N, N)-RINs and undirected N-
RINs with Altera Quartus II

Directed (N, N)-RIN Undirected N-RIN
N stage switch decrease logic unit decrease switch decrease logic unit decrease

s number in % number in % number in % number in %
8 1 64 0% 40 0% 32 0% 52 0%
8 3 64 0% 32 20% 64 -100% 90 -73%
8 5 80 -25% 45 -12% - - - -
32 1 1024 0% 672 0% 512 0% 546 0%
32 3 512 50% 288 57% 350 32% 661 -21%
32 5 512 50% 304 54% - - - -
128 1 16384 0% 10880 0% 8192 0% 7258 0%
128 3 4096 75% 2561 76% 1584 80% 3995 45%
128 5 3072 81% 1665 84% - - - -
512 1 262144 0% 174593 0% 131072 0% 96615 0%
512 3 32768 86% 20993 89% 7392 94% 32383 66%
512 5 19505 92% 12800 92% - - - -

the corresponding configuration bit stream into load registers associated with
each node, then configuration enable signal is automatically applied so that all
the control bits are passed from load registers to the configuration registers. After
configuration process is done, a feedback signal successfully initiates starting the
target application. This experiment proves that the RIN generated by the tool
works well with the reconfigurable application system.

6 Conclusions

Application specific reconfigurable interconnection network (RIN) provides an
efficient solution for the design of reconfigurable systems. However, the RIN
designs in network topology design, circuit generation, and routing is a diffi-
cult problem due to variations of routing specifications and irregular network
topologies. In this paper, we proposed a RIN design automation scheme and
CAD tools, which resolves the RIN topology design by decomposing the net-
work into primitives and then using the existing switching network design re-
sults, the circuit design by the automatic generation, and the routing difficulty
by a novel topology-aware routing algorithm and configuration bit storage. Our
experimental result shows that using RIN for reconfigurable computing can be
done effectively with the proposed design automation CAD tools.
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Abstract. Fault tolerance is a pre-request not only for safety criti-
cal systems, but almost for the majority of applications. However, the
additional hardware elements impose performance degradation. In this
paper we propose a software-supported methodology for protecting re-
configurable architectures against Single Event Upsets (SEUs), even if
the target device is not aware about this feature. This methodology ini-
tially predicts areas of the target architecture where faults are most pos-
sible to occur and then inserts selectively redundancy only there. Based
on experimental results, we show that our proposed selectively fault-
tolerance results to a better tradeoff between desired level of reliability
and area, delay, power overhead.

1 Introduction

SRAM-based Field-Programmable Gate Arrays (FPGAs) are arrays of Con-
figurable Logic Blocks (CLBs) and programmable interconnect resources, sur-
rounded by programmable input/output pads on the periphery. Even though
their programmability feature makes them suitable for widely application im-
plementation, a number of design issues have to be tackled. Among others, relia-
bility issue becomes worse as devices have evolved. For instance, as the transistor
geometry and core voltages decrease, while the numbers of transistors per chip
and the switching frequency increase, the target architectures become more sus-
ceptible to incur faults (i.e., flipped bit or a transient within a combinatorial
logic path). Consequently, mechanisms that handle faults detection and correc-
tion during device operation are required, even for non critical safety systems.

The last ten years many discussions were done about the design of reliable
architectures with fault tolerant features. More specifically, the term fault tol-
erant corresponds to a design which is able to continue operation, possibly at
a reduced level, rather than failing completely, when some part of the system
fails [1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14]. These solutions include fabrica-
tion process-based techniques (i.e. epitaxial CMOS processes) [10], design-based
techniques (i.e. hardware replicas, time redundancy, error detection coding, self-
checker techniques) [4], mitigation techniques (i.e. multiple redundancy with
voting, error detection and correction coding) [5], and recovery techniques (i.e.
reconfiguration scrubbing, partial configuration, rerouting design) [11].

P. Sirisuk et al. (Eds.): ARC 2010, LNCS 5992, pp. 257–268, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Even though fault tolerance is a well known technique, up to now it was
mostly studied for ASIC designs. However FPGAs poses new constraints (i.e.
higher power density, more logic and interconnection resources, etc), while the
existing fault models are not necessarily applicable. To make matters worse,
faults in FPGAs can alter the design, not just user data. In addition to that,
the FPGA designs utilize only a subset of the fabricated resources, and hence
only a subset of the occurred faults may result to faulty operation. Consequently,
FPGA-specific mitigation techniques are required, that can provide a reasonable
balance among the desired fault prevention, the performance degradation, the
power consumption and the area overhead due to the additional hardware.

Up to now there are two approaches for preventing faults occurring on FPGAs.
The first of them deals with the design of new hardware elements which are
fault tolerant enabled [2, 4, 12, 15]. These resources can either replace existing
hardware blocks in FPGAs, or new architectures can be designed to improve
robustness. On the other hand, it is possible to use an existing FPGA device
and provide the fault tolerance at higher level with CAD tools [2, 3, 4, 8, 13, 14].

Both of these approaches have advantages and disadvantages, which need to
be carefully concerned. More specifically, the first approach results to a more
complex architecture design, while the derived FPGA provides a static (i.e. de-
fined at design time) fault tolerant mechanism. On the other hand, the imple-
mentations belonging on second approach potentially are able to combine the
required dependability level, offered by fault tolerant architectures, with the low
cost of commodity devices. However, this scenario imposes that the designer is
responsible for protecting his/her own design.

In [12] a fault tolerant interconnection structure is discussed, where the faults
are corrected by spare routing channels which are not used during place and
route (P&R). A similar work is discussed in [13], where a defect map is taken as
input to P&R tool and then application’s functionalities are not placed in the
faulty blocks. In another approach [14], EDA tools take as input a generic defect
map (which may be different from the real defect map of the chip) and generate
a P&R according to this. A work that deals with a yield enhancement scheme
based on the usage of spare interconnect resources in each routing channel in
order to tolerate functional faults, is discussed in [15]. The only known com-
mercial approach for supporting fault tolerance in FPGAs can be found in [8].
This implementation inserts two replica blocks for each of the application’s logic
blocks, which are working in parallel, while the output is derived by comparing
their outputs with a majority voting. Table 1 gives a qualitative comparison in
terms of supported features for a number of fault tolerant approaches found in
relevant references.

In this paper we propose a software supported methodology that improves
application’s reliability, without inserting excessive amount of redundancy over
the entire FPGA architecture. More specifically, we identify sensitive sub-circuits
(where faults are most possible to occur) and we apply the proposed fault tolerant
technique only at these critical regions rather than inserting redundancy in the



A Framework for Enabling Fault Tolerance 259

Table 1. Qualitative comparison among fault tolerant approaches

Feature [8] [12] [13] [14] [15] Proposed

Fault tolerant
TMR Spare Defect Defect Spare TMR &

routing map map routing fault map
Protects Logic Routing Logic Logic Routing Logic
Modifies HDL Hardware HDL HDL Hardware HDL
Applied uniformly Yes Yes No No Yes No

Onlinefault management No No No No No Yes

Multiple fault
tolerant techniques No No Yes No No Yes
Software support Yes No Yes Yes No Yes
Public available No No No No No Yes
Complete framework Yes No No No No Yes

entire device. Such an approach results to better tradeoff between desired fault
coverage and area, delay and power consumption.

The main contributions of this paper are summarized, as follows:

1. We introduce a novel methodology for supporting on-line fault detection and
correction for FPGA devices.

2. We identify sensitive sub-circuits (where faults are most possible to occur)
and we apply the proposed fault tolerant technique only at these points,
rather than inserting redundancy in the entire device.

3. We developed a tool that automates the introduction of redundancy into
certain portions of an HDL design.

4. The derived application implementations are validated with a new platform
simulator.

The rest paper is organized as follows: In section 2 we discuss the motivation of
this paper, while section 3 describes the implemented fault tolerant technique.
The proposed methodology, as well as its evaluation is discussed in detail in
sections 4 and 5, respectively. Finally, conclusions are summarized in section 6.

2 Motivation

The source of errors in ICs can be traced to three main categories: (i) due
to internal to the component (i.e. component failure, damage to equipment,
cross-talk on wires), (ii) generally external causes (i.e. lightning disturbances,
radiation effects, electromagnetic fields), and (iii) either internal or external (i.e.
power disturbances, various kinds of electrical noise). Classifying the source of
the disturbance is useful in order to minimize its strength, decrease its frequency
of occurrence, or change its other characteristics to make it less disturbing to
the hardware component.

The first step in order to build a reliable system is to identify possible regions
with increased probability of failure. Throughout this paper we study faults
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related to power, thermal, as well as random effects. More specifically, the in-
creased switching activity results to higher power consumption and consequently
to higher on-chip temperatures. In [17], Black mentioned that the mean time to
failure (MTTF ) of aluminum interconnects exponentially decreases as the tem-
perature (T ) of a chip increases. Equation 1 gives the mathematical expression
that describes this phenomenon.

MTTF ∝ e
Ea
kT

Jn
dc

(1)

where Ea is the enable energy (its value is defined experimentally), Jdc denotes
the threshold of electromigration current, while n and k are constants. The
switching activity of an application is a property which does not depend either to
the target platform, or the employed toolset that performs application mapping.
However, the employed toolset introduce some constraints regarding the spatial
distribution of regions with excessive high (or low) values and consequently with
increased (or decreased) probability of failure [18]. Regarding the random faults,
they exhibit a distribution of independent (non-correlated) failures.

By combining the spatial variation of these values of the three parameters
over the FPGA device, we are able to identify regions with increased failure
probability. In order to show that different applications result to different distri-
butions of failure probabilities (even for the same P&R algorithms), Fig.1 plots
this variation over an 64×64 FPGA array regarding the s298 and frisc bench-
marks, without considering yet any redundancy. In this figure, different colors
denote different failure probabilities, while as closer to red color a region is, the
higher probability for this region to occur a fault.

Based on these maps, it is evident that the failure probability is not constant
across the FPGA or among different applications, since it varies between two
arbitrary points (x1,y1) and (x2,y2) of device. Based on this distribution it is
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Fig. 1. Spatial distribution of failure probability for (a) s298 and (b) frisc benchmarks
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feasible to determine regions on the device with excessive high values of failure
probability (regions of importance), where we have to pay effort in order to
increase the fault tolerance. Consequently, the challenge, with which a designer
is faced up, is to choose only the actually needed redundancy level, considering
the associated spatial information from the distribution graph.

A second important conclusion is drawn from Fig.1: although the majority of
existing fault tolerant techniques exhibits a homogeneous and regular structure,
the actually critical for failure resources provide a non − homogeneous and
irregular picture. Consequently, careful analysis of the points of failure must
be performed, while the target system implementation needs to combine regions
with different density of fault tolerance.

3 Proposed Fault Tolerant Technique

Our target is a generic recent FPGA device similar to the Xilinx Virtex architec-
ture, consisting of an array of configurable logic blocks (CLBs), memories, DSP
cores and programmable input and output blocks (placed on its periphery). We
assume that the logic blocks are formed by a number of Basic Logic Elements
(BLEs), each of which is composed of a set of programmable Look-Up Tables
(LUTs), multiplexers, and flip-flops. The communication among these hardware
blocks is provided by a hierarchical interconnection network of fast and versatile
routing resources. More info regarding the architecture of target FPGA can be
found in [19].

In order to provide fault tolerance, we incorporate an R-fold modular redun-
dancy (RMR) technique. Such a mechanism can effectively mask faults if only
less than ((R + 1)/2) replicas are faulty (either on combinational and sequential
logic), but the faults present in different register locations and the voter works
properly. This approach was first studied by J. Neumann [16], while the only
commercial software product [8] for supporting fault tolerance in FPGAs is also
based on this technique.

The main advantages of incorporating an RMR-based technique are summa-
rized, as follows: (i) the corrective action is immediate, since the faulty module
never affects the circuit, (ii) there is no need for fault detection procedures,
and (iii) the conversion of a non-redundant system to a redundant one is easily
undertaken without hardware modifications. On the other hand, this approach
cannot recover faults occurred on routing fabric. If these faults are also required
to be detected and repaired, another technique (usually based on spare routing
resources) must be incorporated in conjunction.

At the RMR-based technique, the reconfigurable platform is encoded as a
M -of-N system, consisting of N hardware blocks where at least M (M<=N) of
them are required for proper device operation. Let’s assume that different blocks
fail with statistically independent order and if a block fails then it remains non-
functional (i.e. the faults are not temporal). If R(t) denotes the probability of an
individual block to be still operational at time t, then the reliability of a M -of-N
architecture corresponds to the probability that at least M blocks are functional
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at time t. By assuming that fp denotes the probability entire reconfigurable
architecture to suffer by a common failure, then the system’s reliability is defined,
as follows:

RMofN (t) = [(1 − fp)
N∑

k=M

{(
(

N

k

)
Ri(t))(1 − R(t))N−k}] (2)

where
(
N
k

)
= N !

(N−k)!k! . In case a fault affects the entire architecture (i.e., fp=0),
then the FPGA’s reliability is calculated based on Eq. 3. Whenever R(t) <0.5,
the hardware redundancy become a disadvantage, as compared to a platform
without redundancy at all.

RMofN (t) =
N∑

k=M

{(
(

N

k

)
Ri(t))(1 − R(t))N−k} (3)

The output of this system is derived from a voting mechanism by receiving a
number of N={i1, i2, ..., iN} inputs from a M -of-N architecture. A typical voter
does a bit-by-bit comparison and then outputs the majority of the N inputs.

In this work we study an instantiation of the RMR principle, where R=3.
This instantiation is also known as Triple Modular Redundancy (TMR), similar
to the one incorporated by commercial tool [8]. Fig.2(b) shows the extension of a
non fault tolerant architecture (Fig.2(a)) in order to support the TMR approach,
while the logic description for the employed majority voter is shown in Fig.2(c).
Even though voters can be designed as a pre-fabricate circuits, it is usual to
implement them in logic fabric (i.e. BLEs) for increased flexibility.

Such a voting scheme can prevent upset effects through the logic at the final
output. Consequently, they can be placed in the end of the combinational and
sequential logic blocks, creating barriers for the upset effects. On the other hand,
they cannot prevent faulty operations when more than N/2 of input signals are
not valid.

A critical issue that affects the efficiency of the fault tolerant mechanism is
the granularity of application’s size that replicated and voted. For instance, a
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Fig. 2. Logic blocks instantiations (a) without fault tolerant, (b) with the employed
TMR redundancy, and (c) the employed majority voter schematic and its truth table.
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small size block partition requires a large number of voters that may be too
costly in terms of area, performance and power overhead. On the other hand,
placing only voters at the last output increases the probability an upset in the
routing affecting two (or more) distinct redundant logic blocks to overcome the
fault correction.

4 The Proposed Fault Tolerant Framework

In this section we describe the proposed framework for supporting the fault tol-
erance. The goals of this methodology are to ensure reasonable fault masking at
the same time with error detection, diagnosis and recovery, as well as acceptable
penalty in delay, power/energy consumption and silicon area.

Up to now, almost the majority of fault tolerant implementations were applied
uniformly over the entire device, ignoring about constraints posed from the target
application and assuming that the failure probability is uniformly distributed
over the device. However, as the fault tolerance is tightly firmed to additional
(i.e. spare or redundant) hardware, this assumption may not be an acceptable
option, due to the extra area, delay and power overhead. Moreover, for some
designs we can afford lower reliability level for a reduced mitigation cost.

As we have already shown in Figure 1, the spatial distribution failure probabil-
ity does not exhibit a regular picture across the FPGA. Consequently, a uniform
fault tolerant design approach cannot be an efficient solution, giving rise to new
techniques to achieve the desired circuit reliability at lower (hardware) cost.
More specifically, by employing the proposed framework we can determine parts
of application with increased failure probability, and then selectively inserts re-
dundancy to them.

Fig.3 shows the proposed framework for supporting fault tolerance in recon-
figurable architectures. At this framework rather than modifying the FPGA
architecture, we annotate appropriately the application’s description with the
desired redundancy. Initially, an application profiling is performed to find appli-
cation’s functionalities with increased failure probabilities (i.e. due to increased
switching activity). Then, the application is P&R on the target FPGA in order
to determine the spatial location where these critical functionalities are physical
mapped. By intersecting the placement info for functionalities with their failure
probability, it is possible to build a map that shows how this probability is ac-
tually distributed over the FPGA. Rather than existing approaches for building
TMR-based implementations [8, 12, 13, 14, 15], where redundancy is applied
uniformly over the entire architecture, we protect mostly these sensitive areas.

Another critical parameter in this framework is the desired level of fault cov-
erage. This level can be expressed either as the acceptable extra area overhead,
or the desired percentage of repaired faults. Among others a more aggressive ap-
proach results to higher percentage of repaired faults, but it comes with penalties
in additional area, delay and power consumption. In addition to that, in critical
regions it is possible to increase the device reliability by selectively incorporating
a fault tolerant approach with finer granularity.
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Fig. 3. The proposed fault tolerance framework

Having as input the map with fault probabilities in conjunction to the desired
level of fault coverage, it is feasible to annotate application’s HDL description
with TMR. The focused TMR is a more acceptable solution, as compared to ex-
isting uniform implementations [8]. In case additional fault coverage is required,
there is another tradeoff between fault coverage and performance/area cost.

In order to automate the proposed framework, we have developed a new tool
named Fault-Free, which is part from the MEANDER tool flow [10]. Apart from
this tool, the proposed methodology is transparent to the selected CAD tool
chain can be used as an intermediate step between synthesis and P&R.

5 Experimental Results

In this section we provide a number of experimental results that prove the ef-
ficiency of the proposed methodology. This evaluation is performed with the
usage of 20 biggest MCNC benchmarks [7], while our fault model can study
failures occurred due to power, thermal and random effects. Such a fault model
follows a distribution of independent (non-correlated) failures. The failure rate
during the device’s useful life is assumed constant, while there are varying fail-
ure rates during the infant mortality (gradually reduction of failure rate) and
wear-out phases (gradually increase of failure rate). This approach is acceptable
for studying errors in CLBs, SRAM cells, interconnection resources, etc.

Fig.4 plots the sensitive configuration bits by calculating the failure probabil-
ity of hardware resources for an FPGA array composed by 64×64 slices which
implements the frisc application [7]. The way this info was extracted and plot-
ted, have already discussed in Fig.1. However, In Fig.4 we depict how this failure
probability is updated as we insert gradually more TMR redundancy in appli-
cation’s functionalities mapped onto critical regions. More specifically, we show
results about D=30% and D=45% redundant hardware blocks, as compared to
implementation without redundancy (i.e. D=0%) and the existing TMR which
is applied uniformly over the device (D=100%) [8].

Based on Fig.4, a number of conclusion may be derived. Among others, as
we apply more redundancy (i.e. increase D), the failure probability decreases.
However, this decrease is not linear, since the improvement in failure probability
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Fig. 4. Resource map with increased failure probability about frisc benchmark for
different percentages of TMR redundancy

from D=0% to D=30% is much higher as compared to the case where D range
from 45% up to 100%. In addition to that, even for the case where TMR is applied
uniformly over the FPGA (i.e. D=100%), there is still a failure probability due
to errors occurred at the interconnection network.

The efficiency for the alternative TMR-based implementations discussed in
this paper can be found in Fig.5, where we study the percentage of repaired
over the injected faults. More specifically, in order to make this experiment, for
each of the curves we calculate the bitstream file for frisc application. This size
ranges from B=865 Kbits (D=0%) up to B=1382 Kbits (D =100%), while each
of these files remains constant along the corresponding curve. Then, we inject
randomly a number of faulty bits in this configuration data. The amount of faulty
injected bits, mention with F , ranges from 5% up to 20% of the configuration’s
file size. We assume that the faults are randomly distributed between logic and
interconnection resources. If a single fault occurred at logic block (i.e. CLB) that
incorporates TMR mechanism, the fault is repaired. Otherwise (i.e. more than
one faults on logic or fault(s) in routing fabric), these faults cannot be eliminated
and reported in the Fig.5. The horizontal axis of this figure corresponds to
the percentage of injected faulty bits over the size of configuration data, while
the vertical one shows the percentage of faulty bits over the total injected bits
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Table 2. Performance evaluation results for different TMR implementations

Energy×Delay Product (nJ·nsec)
Benchmark # of Array W No TMR TMR TMR TMR [8]

CLBs (R=0%) (R=30%) (R=45%) (R=100%)
alu4 1,522 43×43 12 4.77 5.87 6.21 8.21
apex2 1,878 47×47 13 8.30 8.91 9.14 10.3
apex4 1,262 39×39 15 4.13 4.85 5.09 6.3
bigkey 1,817 58×58 7 1.41 1.86 1.92 2.94
clma 8,383 99×99 15 133 148 155 174
des 1,591 68×68 8 16.5 17.1 17.8 19.9
diffeq 1,497 42×42 9 2.21 2.85 3.42 3.77
dsip 1,370 58×58 8 6.29 6.98 7.25 8.19
elliptic 3,604 65×65 12 18.2 20.1 22.3 25.7
ex1010 4,598 73×73 12 37.1 38.6 40.4 44.2
ex5p 1,064 35×35 15 3.86 4.37 5.05 5.97
frisc 3,556 64×64 16 22.0 24.6 25.9 27.4
misex3 1,397 41×41 12 4.35 5.14 5.87 6.59
pdc 4,575 73×73 20 58.0 63.1 65.6 70.3
s298 1,931 47×47 9 12.5 14.58 15.9 19.3
s38417 6,406 87×87 9 24.2 26.99 27.8 29.4
s38514.1 6,293 86×86 10 25.1 27.87 28.9 32.4
seq 1,750 45×45 14 5.47 6.11 6.51 7.97
spla 3,690 65×65 16 25.8 28.56 30.9 38.6
tseng 1,401 41×41 8 0.69 0.93 1.26 1.81
Average 2,979 59×59 12 20.7 22.9 24.1 27.2
Ratio: 1.00 1.11 1.17 1.31
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that remain faulty after applying the recovery mechanism. In other words, the
vertical axis plots the efficiency to repair faults for the alternative redundant
implementations. As a reference point we use the scenario without redundancy,
denoted as D=0%. Also, in this graph we highlight the values affecting resonable
scenarios about the expected percentages of occurring faults in real-life or exotic
(i.e. space, military) applications.

Based on Fig.5 we can conclude that the proposed methodology results to
significant error prevention, even for the cases with small area overhead (i.e.
D=30%). More specifically, such a redundancy scheme results about to 65% er-
ror correction in case where F=5%. In case a more aggressive implementation is
assumed (i.e. D=45%), then the error correction is about 88%, as compared to
an implementation without redundancy (D=0%). The existing TMR approach
[8] results to an additional improvement of 5%, but this impose 55% more re-
dundancy. Also, we have to mention that even when all the functionalities are
replicated with TMR (D=100%), there is still a failure probability, since TMR
does not prevent faults in routing infrastructure.

One of the main disadvantages of applying fault tolerant techniques is the
performance degradation due to additional hardware blocks. Table 2 depicts the
number of utilized CLBs, the size of FPGA array, the number of routing wires
in each track, as well as the Energy×Delay Product (EDP) for the original (i.e.,
R=0%), as well as the three TMR instantiations discussed in this paper. For this
study we use the 20 biggest MCNC benchmarks [7]. Based on Table 2, the exist-
ing way for implementing TMR (R=100%) results to 31% EDP overhead over
the initial mapping (R=0%). However, as we shown in Figure 7, such an extreme
solution does not lead to significant error prevention, as compared to a case with
fewer, but more focused replica blocks. For instance, the HDL annotation that
corresponds to D=45%, achieves EDP savings (as compared to D=100%) about
13%, with an almost negligible penalty in error correction (about 5%).

6 Conclusions

A novel framework for exploring and supporting fault tolerance at FPGAs was
introduced. This framework is based on the TMR approach, but rather than
annotating the whole application’s description with redundancy, we replicate
only application’s functionalities implemented onto regions with increased fail-
ure probability. Since our framework does not require dedicated hardware blocks
for supporting fault tolerance, it leads to increased flexibility, while it can be
also applied to commercial devices as an additional step between synthesis and
P&R. Moreover, our approach can provide a tradeoff between the desired reli-
ability level and the extra overhead due to extra hardware resources. Based on
experimental results, we shown that the proposed fault tolerant technique is not
so much expensive in term of area, delay and energy dissipation, as compared
to existing TMR solutions, while it leads to almost similar error correction.
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Abstract. In this paper, we present the Quantitative Usage Analysis of Data
(QUAD) tool, a sophisticated memory access tracing tool that provides a compre-
hensive quantitative analysis of memory access patterns of an application with the
primary goal of detecting actual data dependencies at function-level. As improve-
ments in processing performance continue to outpace improvements in memory
performance, tools to understand memory access behaviors are inevitably vital
for optimizing the execution of data-intensive applications on heterogeneous ar-
chitectures. The tool, first in its kind, is described in detail and the benefit and
the qualities of the presented tool are described on a real case study, the x264
benchmarking application.

1 Introduction

With the increased proliferation of Chip Multiprocessors (CMP), there is a compelling
need for utility tools to facilitate the application development process, tuning and opti-
mization. This requirement becomes more critical with the introduction of hybrid archi-
tectures incorporating reconfigurable devices [1]. Since the applications form the basis
of such designs, the need to tune the underlying architecture for extracting maximum
performance from the software code has become imperative [2]. As the size of recon-
figurable fabrics increases, mapping an entire application onto a reconfigurable device
does not seem elusive anymore. Traditionally, FPGAs contained the logic and some
temporary memory for a kernel, or even the logic for the whole application, but never
the logic and memory for an entire application [3]. Although this in itself is an impor-
tant step towards decreasing the processor-memory gap, there is an inevitable demand
for tools that can help users to have a clear understanding of the memory requirements
of an application. To accomplish this goal, a thorough analysis of the memory access
behavior of an application is vital. This demand proves to be even more crucial consid-
ering the fact that the main obstacle limiting the performance of reconfigurable systems
is the memory latency [4].

Even in the best case scenario, when all the memory addresses can fit on a single
chip, the latency to access memory locations from different parts imposes a substantial
delay. In [3], the memory access behavior of an application (g721 e) whose logic and
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memory was entirely mapped onto a reconfigurable device, is discussed. The idea of
mobile memory is also investigated to dynamically move the memory closer to the
location where it is accessed. It justifies the motivation to lessen the distance between
the accessors and the memory locations.

Inspecting the behavior of an application in general, and the actual pattern of mem-
ory accesses in particular, is an essential aspect of carrying out effective optimizations
for the application development of reconfigurable systems. As a result, many research
initiatives are emerging that target support tools for application behavior analysis from
different perspectives.

The main contributions of this paper are the following:

– the description of an efficient tool, QUAD, to provide information that can be used
in addressing memory-related bottlenecks in reconfigurable computing systems

– the detection of actual data dependency between functions compared to conven-
tional data dependency discovered by similar memory access analysers

– the validation of the proposed tool in a real case study

The rest of the paper is organized as follows. Section 2 gives an overview of the related
research. In Section 3, we present an overview of the Delft Workbench (DWB) and
the profiling framework which includes QUAD as a dynamic memory access profiler.
Section 4 introduces QUAD and describes some of the design and implementation is-
sues. In Section 5, a real application case study is examined. Finally, Section 6 provides
concluding remarks and an outline of the future research.

2 Related Research and Problem Definition

Profilers are tools that allow users to analyze the run-time behavior of an application
in order to identify the types of performance optimizations that can be applied to the
application and/or the target architecture. Generally, profiling refers to a technique for
measuring where programs consume resources, including CPU time and memory. Gen-
eral profiling tools such as gprof [5], can provide function-level execution statistics for
the identification of application hot-spots. However, they do not distinguish between
computation time and memory access time. As a result, they can not be employed to
locate potential system bottlenecks regarding memory-related problems.

In [6,7], the authors provide target independent software performance estimations.
However, they lack a thorough memory access analysis, which is vital in tuning perfor-
mance optimizations in hybrid reconfigurable architectures. [8] describes an approach
for evaluating the performance and memory access patterns of multimedia applications
through profiling. The tool is only utilized for algorithmic complexity evaluation and its
accuracy in performance estimation is not investigated. The way an algorithm interacts
with memory has a large impact on performance. More precisely, the memory reference
behavior of an application, at the most basic level, depends on the intrinsic nature of the
application. However, the developer still has considerable flexibility in manipulating
the algorithm, data structures and program structure to change the memory reference
patterns [9].

Most existing memory access analysis tools only focus on detecting memory bottle-
necks, or faults/bugs/leaks and provide no detailed information regarding the inherent
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data dependencies in a program’s memory reference behavior [10,11]. One of the early
simple tools developed for understanding memory access patterns of Fortran programs
is presented in [12]. The tool instruments a program and produces a flat trace file of all
memory accesses which can be visualized later. Similarly, a tool set is presented in [13]
to reveal the pattern of memory references. It generates a set of histograms for each
memory access in a program regarding the strides of references.

In [14], the authors present a quantitative approach to analyze parallelization oppor-
tunities in programs with irregular memory access patterns. Applications are classified
into three categories with low, medium and high dependence densities. Similar to our
work, Embla [15] allows the user to discover the data dependencies in a sequential pro-
gram, thereby exposing opportunities for parallelization. Embla performs a dynamic
analysis and records dependencies as they arise during program execution. However, in
this work, we intend to discover the actual data dependency, which is different from the
conventional data dependency referred to in Embla and other similar tools. By defini-
tion, data dependency is a situation in which a program segment (instruction, block,
function, etc.) refers to the data of a preceding segment. Actual data dependency arises
when a function consumes data that is produced by another function earlier. In other
words, the common argument passing by the caller function to the callee regarding data
distribution does not necessarily imply that the data will be used later in the called func-
tion. Furthermore, in our approach the usual restriction of data dependency detection
based on hierarchies of function calls (commonly depicted with call graphs) is relaxed
as we merely trace the journey of bytes through memory addresses and do not rely on
the control dependencies of tasks to detect potential data dependencies.

In this paper, we present QUAD (Quantitative Usage Analysis of Data), a memory
access tracing tool that provides a comprehensive quantitative analysis of the memory
access patterns of an application with the primary goal of detecting actual data de-
pendencies at function-level. To the best of our knowledge, this is the first tool that
addresses the actual data dependency detection and abstracts away from the properties
of data dependency detection of an application on a particular architecture. In addition,
previous research into data dependency detection has mainly focused on the discovery
of parallelization opportunities. However, we do not necessarily target parallel appli-
cation development. Even though QUAD can be employed to spot coarse-grained par-
allelism opportunities in an application, it practically provides a more general-purpose
framework that can be utilized in various reconfigurable systems’ optimizations by esti-
mating effective memory access related parameters, e.g. the amount of unique memory
addresses used in data communication between two cooperating functions. QUAD can
also be used to estimate how many memory references are executed locally compared
to the amount of references that have to go to the main memory.

Accessing memory locations sequentially, or within predefined strides, can be
considered very efficient on cache-based computing systems. This information can be
useful in the presence of memory hierarchies on a system and can be a source of per-
formance improvement. Frequently, it is possible for the programmer to restructure the
data or code to achieve better memory reference behavior. Inefficient use of memory
remains a significant challenge for application developers. QUAD can also be utilized
to diagnose memory inefficiencies by reporting useful statistics, such as boundaries of
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memory references within functions, detection of unused data in memory, etc. QUAD
can be easily ported to different architectures as long as there exists a primitive tool
set that can provide the basic memory read/write instrumentation capabilities, like BIT
[16] for instrumenting java byte codes.

The main features of the tool proposed in this paper, are listed in the following.

– QUAD detects the actual data dependency at function-level in an application, which
involves a higher degree of accuracy compared to the conventional data dependency
detected by other similar tools.

– QUAD does not require any modification of the binaries and it has no compiler
dependence other than debug information. It also abstracts away from the properties
of a particular architecture.

3 Profiling Framework in DWB

This work has been carried out in the context of the Delft WorkBench (DWB) [17]
and the hArtes [18] projects. The DWB is a semi-automatic tool platform for integrated
hardware/software co-design targeting heterogeneous computing system containing re-
configurable components. It aims to be a comprehensive platform supporting develop-
ment at all levels starting from profiling and partitioning to synthesis and compilation.
Conversely, the closely related hArtes project targets the same heterogeneous systems.
However, it also takes into account digital signal processing hardware and provides its
own heterogeneous platform.

The Delft Workbench focuses on four main steps within the entire heterogeneous
system design.

– Code Profiling and Cost Modeling - focuses on identifying application hot-spots
and on estimating implementation costs for different components [19].

– Graph Transformations - aim to use the profiling information and estimates for
clustering tasks, partitioning tasks over components, optimizing tasks, or restruc-
turing the task graph [20,21,22].

– VHDL Generation - When tasks need to be implemented on Reconfigurable com-
ponents, this tool allows to automatically translate the high level language descrip-
tions into VHDL [23].

– Retargetable Compiler - schedules and combines all the implemented parts of the
application and it generates the executable binary [24].

The work in this paper mainly revolves around code profiling. Figure 1 depicts in de-
tail the profiling framework envisioned by the DWB platform. We distinguish between
static and dynamic profiling paths. Static profiling can provide estimates in a small
amount of time, whereas dynamic profiling provides accurate measurements of several
aspects like execution time and memory access behavior. The dynamic profiling path
focuses on run-time behavior of an application and, therefore, is not as fast as the static
profiling. Furthermore, the dynamic profiling requires representative input data in order
to provide relevant measurements. gprof is used to identify hot-spots and frequently
executed functions, while QUAD is concerned with tracing and revealing the pattern of
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Fig. 1. Profiling Framework within DWB

memory references with the primary aim to detect actual data dependencies between
functions. In this paper, we only focus on the representation and implementation details
necessary for the description of QUAD.

4 QUAD Design and Implementation

4.1 Pin

QUAD is a Dynamic Binary Analysis (DBA) tool which analyzes an application at the
machine code level as it runs. DBA tools can be built from scratch or be implemented
using a Dynamic Binary Instrumentation (DBI) framework. Instrumentation is a tech-
nique for inserting extra code into an application to observe its behavior. This process
can be performed at various stages either in the source code, or at compile-time, or at
post-link time, or at run-time. QUAD is implemented as a tool using the Pin [25] run-
time binary instrumentation system. By using Pin, we have the benefit of working trans-
parently with unmodified Linux, Windows and MacOS binaries on Intel ARM, IA32,
64-bit x86, and Itanium architectures. Thanks to the instrumentation transparency, Pin
preserves the original application behavior. The application uses the same addresses
(both instruction and data) and the same values (both register and memory) as it would
in an uninstrumented execution. This transparency, vital for correctness, results in more
relevant information collected by the instrumentation. Dynamic instrumentation is par-
ticularly beneficial for this type of tools. It captures the execution of arbitrary shared
libraries in addition to the main program and it has no dependence on the instrumented
application’s compiler. Requiring only a binary and being compiler-independent does
not imply that the source code is not needed for program revisions. Instead, it provides
flexibility for the tool to be language-independent and it can be used with any compiler
toolchain that produces a common binary format. Furthermore, it does not require the
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user to modify the build environment to recompile the application with special profiling
flags.

Since QUAD relies on dynamic instrumentation and it is compiler-independent, de-
tecting the producers/consumers of the data being stored/loaded via memory addresses
must be done in the absence of any kind of control/data flow or call graphs. As a conse-
quence, the detection is based only on the dynamic execution of the program. In order
to provide some degree of flexibility, QUAD also implements and maintains its own
call graph during the execution of a program.

4.2 QUAD Overview

QUAD has been designed as a base system to provide useful quantitative information
about the data dependence between any pair of cooperating functions in an application.
Data dependence is estimated in the sense of producer/consumer binding. More pre-
cisely, QUAD reports which function is consuming the data produced by another func-
tion. The exact amount of data transfer and the number of Unique Memory Addresses
(UMA) used in the transfer process are calculated. Based on the efficient Memory Ac-
cess Tracing (MAT) module implemented in QUAD, which tracks every single access
(read/write) to a memory location, a variety of statistics related to the memory access
behavior of an application can be measured, e.g. the ratio of local to global memory
accesses in a particular function call.

Figure 2 illustrates the architectural overview of QUAD along with the components
in Pin. At the highest level, there is a Virtual Machine (VM), a code cache, and an
instrumentation API. The main component inside QUAD is the MAT module, which
is responsible for building and maintaining dynamic trie [26] data structures to provide
relevant memory access information as fast as possible. The trie data structure acts as a
shadow memory for each byte accessed within the address space of an application.
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Fig. 2. Architectural overview of QUAD

The VM consists of a Just-In-Time (JIT) compiler, an emulator, and a dispatcher. Af-
ter Pin gains control of the application, the VM coordinates its components to execute
the application. The JIT compiles and instruments the application code, which is then
launched by the dispatcher. The compiled code is stored in the code cache. Entering
(leaving) the VM from (to) the code cache involves saving and restoring the application
register state. The emulator interprets instructions that cannot be executed directly. It
is used for system calls which require special handling from the VM. Since Pin does
not reside in the kernel of the operating system, it can only capture user-level code. As
Figure 2 shows, three binary programs are present when an instrumented program is
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running: the application, Pin, and QUAD. Pin is the engine that instruments the appli-
cation. QUAD contains the instrumentation and analysis routines and it is linked with a
library that allows QUAD to communicate with Pin.

4.3 QUAD Implementation

The interfaces to most run-time binary instrumentation systems are API calls that al-
low developers to hook in their instrumentation routines. In Pin, the API call to INS
AddInstrumentationFunction() allows a user to instrument programs based on a single
instruction while the RTN AddInstrumentFunction() provides instrumentation capabil-
ity at routine granularity. QUAD uses these two API routines to set up calls to the
instrumentation routines Instruction() and UpdateCurrentFunctionName(). These two
instrumentation routines, in turn, call the two main analysis routines RecordMemRef()
and EnterFunc() which are responsible for updating tracing information of memory
references and maintaining an internal call graph respectively. Figure 3 illustrates an
implementation overview of QUAD. The detailed algorithms associated with each mod-
ule are not included in this paper for brevity. Nevertheless, in the following we provide
some description highlights.

The initialization process in the main module includes Pin system initialization, com-
mand line options parsing, internal call graph initialization, and some output XML file
preprocessing. The Instruction() instrumentation routine sets up the call to RecordMem-
Ref() routines every time an instruction that references memory is executed. When Pin
starts the execution of an application, the JIT calls Instruction() to insert new instruc-
tions into the code cache. If the instruction references memory (read or write), QUAD
inserts a call to RecordMemRef() before the instruction, passing the Instruction Pointer
(IP), Effective Address (EA) for the memory operation, a flag indicating whether it is a
read or write operation, number of bytes read or written, and a flag showing whether or
not the instruction is a prefetch. The analysis routine returns immediately upon detec-
tion of a prefetch state for an instruction. INS InsertPredicatedCall() injects the analysis
routine and ensures that the analysis routine is invoked only if the memory instruction
is predicated true. There is also a separate RecordMemRef() analysis routine for the
case that we are interested to trace local memory references within the stack region.
In this case, the value of stack pointer is also passed to the analysis routine for fur-
ther investigation. Instruction() also monitors the ret instruction to leave a function and
upon detection calls a different analysis routine that updates the internal call graph if
necessary.
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The main objective of RecordMemRef() is to identify the function responsible for the
current memory reference and to pass the required information to the MAT module. The
instrumentation at the routine granularity in QUAD is responsible for pushing the name
of the currently called function onto an internal call stack. Note that the respective pop
operation is later performed upon detection of the ret instruction. QUAD needs to main-
tain its own call graph because a user may not be interested to dive into library routines
or routines that are not included in the main binary image file. In these cases, QUAD
assumes the most recent caller routine from the main binary as the one responsible for
issuing memory references.

4.4 Memory Access Tracing (MAT) Module

In order to spot and to extract memory reference information during the execution of
an application, an efficient memory access tracing module is implemented. The trac-
ing process utilizes trie data structures for fast storage and retrieval. MAT defines trie
structures with base 16 that is representative of memory addresses in hexadecimal for-
mat. Each hexadecimal digit in a 32-bit memory address corresponds to one level in the
trie data structure, leaving 8 levels deep in the hierarchy for complete address tracing.
The trie data structure is designed to grow dynamically on demand for reducing mem-
ory usage overhead as much as possible. This means that if a particular memory address
is fed to MAT for the very first time, the levels required to trace that particular address
are created in the trie. Hence, no space is allocated for unused memory addresses. The
saving is considerable because the complete data structure is expected to be gigantic
and may result in memory overflow in some systems.

The memory reference recording process is accomplished in two distinct phases.
In the first phase, we trace an 8-level trie for a particular memory address. For each
memory reference three different arguments are specified: memory address, function
ID, and read/write flag. In case of a write access, the corresponding shadow memory
address in the trie is labeled with the caller (producer) function ID. When a read flag is
detected, the function ID responsible for the most recent write in the memory address
is retrieved and passed along with the consumer function ID to the second phase where
a data communication record is created.

The memory reference information gathered by QUAD during the execution of an
application are reported in two separate formats. The producer/consumer binding infor-
mation is saved in a text file using standard portable XML format. This makes it easy
for third-party applications to import data for further interpretation and processing. The
actual data dependency bindings between functions is also provided in the form of a
graph data structure, which is called Quantitative Data Usage (QDU) graph.

5 Case Study

We used x264 [27] as a benchmark to test QUAD in a series of experiments. The goal is
to have an initial understanding of the application behavior regarding the data commu-
nication patterns, memory usage, and memory requirements. The information provided
by QUAD can be used later in HW/SW partitioning and mapping as well as to hint
application developers how to revise and optimize the code for a specific architecture.
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x264 is a free library for encoding H.264/AVC video streams. The version used in this
work is a modified x264 r654 encoder tailored to the MOLEN [28] paradigm taking
into account the restrictions in terms of coding rules accepted by the DWARV hardware
compiler [23].

5.1 Experimental Setup

All the experiments were executed on an Intel 64-bit Core 2 Quad CPU Q9550 @
2.83GHz with the main memory of 8GB, running Linux kernel v2.6.18-164.6.1.el5.
The x264 source code was compiled with gcc v3.4.6 and with the profiling option en-
abled. We need to use gprof as an auxiliary tool to interpret the data and to make some
conclusions. The standard command line options used to run the 64-bit compiled ver-
sion of x264 was the following:

1. –no-ssim - to disable the computing of structural similarity (SSIM) index;
2. rate control -q1 - to indicate almost lossless compression;
3. –no-asm - to disable all stream processing optimizations based on CPU capabilities.

The 64-bit version of QUAD was used with the following command line options:

1. ignore stack access - to ignore all the memory accesses to the stack region. This
gives a clear view of the data transferred via non-stack region.

2. use monitor list - to include only some critically potential functions in the report
files, due to the high complexity and the size of the x264 application.

akiyo qcif was used as the input data file for encoding. It is a raw YUV 4:2:0 file with
the resolution of 176x144 pixels containing 300 frames. The output was in raw byte
stream format.

5.2 Experimental Analysis

x264 contains over two hundreds functions. The set of functions to be called are de-
termined based on different options selected by the user or by the input/output file
specifications. On the basis of the computation-intensive kernels identified in the flat
profile provided by gprof, we chose a number of functions (or series of functions) for
further inspection. The main criterion adopted here was the suitability for the DWARV
compilation tool. Table 1 presents part of the flat profile.

Table 1. Flat profile for x264

function name % time self seconds calls total ms/call self ms/call
pixel satd wxh 34.51 0.49 1361024 0 0
x264 cabac encode decision 8.45 0.12 10808084 0 0
get ref 7.75 0.11 1165182 0 0
block residual write cabac 7.04 0.1 400643 0 0
x264 pixel sad x4 16x16 5.63 0.08 88506 0 0
x264 frame filter 5.63 0.08 2700 0.03 0.03
x264 pixel sad x4 8x8 3.52 0.05 243588 0 0
refine subpel 2.82 0.04 151014 0 0
motion compensation chroma 2.11 0.03 442213 0 0

% time is the percentage of the total
execution time of the program used
by the function; self seconds is the
number of seconds accounted for by
the function alone; calls is the num-
ber of times a function is invoked;
total ms/call is the average number
of milliseconds spent in the func-
tion and its descendants per call; self
ms/call is the average number of mil-
liseconds spent in the function per
call.
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Table 2. Summary of data produced and consumed by satd- and sad-related kernels

function name IN IN UMA OUT OUT UMA
pixel satd wxh 326310528 137425 91578266 5126
x264 pixel satd 16x16 40607660 1523 26133254 1233
x264 pixel satd 16x8 5795852 1009 2849136 722
x264 pixel satd 4x4 34342432 2745 18099806 2318
x264 pixel satd 4x8 3091448 1953 1610194 1644
x264 pixel satd 8x16 6248933 1053 3152620 650
x264 pixel satd 8x4 3019905 1937 1568928 1594
x264 pixel satd 8x8 91709500 3307 46203830 3049

function name IN IN UMA OUT OUT UMA
x264 pixel sad 16x16 59965275 103924 5704610 624
x264 pixel sad 16x8 9159212 55626 1736556 480
x264 pixel sad 4x4 0 0 0 0
x264 pixel sad 4x8 0 0 0 0
x264 pixel sad 8x16 8924130 53174 1709404 566
x264 pixel sad 8x4 0 0 0 0
x264 pixel sad 8x8 53730341 89155 10838624 664

IN represents the total number of bytes read by the function; IN UMA indicates the total number of unique memory addresses used in reading; OUT represents the total
number of bytes read by any function in the application from memory locations that the specified function has written to those locations earlier; OUT UMA indicates the
total number of unique memory addresses used in writing.

As presented in the Table 1, pixel satd wxh is the main kernel of the application
accounting for 35% of the total execution time. It was initially selected as the main can-
didate kernel for hardware mapping along with sad-related functions. Although x264
cabac encode decision is the most frequently called function, each call has a smaller
contribution compared to pixel satd wxh. As a result, the overall contribution of x264
cabac encode decision drops considerably. There are several satd-related functions
defined in the form of Macros corresponding to various block sizes. These macros,
when expanded, create different functions calling the main pixel satd wxh making it
a very critical function on the execution path. Table 2 summarizes the results of mem-
ory access tracing for satd- and sad-related functions. As expected, pixel satd wxh is
the top consumer on the list (in total more than 300MB) as all the other satd-related
functions call this kernel to perform their primary tasks.

It is worth noting that some sad-related functions (the ones with 4 rows and/or
columns) do not exhibit any data transfers, which is an indication that they are not
called. This depends on the input file characteristics and options used. Although the ker-
nels are intensely reading (writing) data from (to) memory, the number of unique mem-
ory addresses used in the data transfer is limited (MBs data transfer vs. KBs locations).
This indicates the possibility of allocating memory buffers, e.g. on FPGA BRAMs to
gain better performance. QUAD can also provide a detailed map of the used memory
addresses for the examination of mapping opportunities on a target architecture. The
auxiliary functions communicating with kernels are recognized and presented in the
QDU graph. These auxiliary functions can be sources of further investigation. For ex-
ample, one might investigate mapping tightly coupled functions on FPGA and creating
a buffer to facilitate the data transfer, or merging auxiliary function(s) with the primary
kernel to cut off data transfers between functions. In case of pixel satd wxh, mc copy
w16 is tightly coupled with the main kernel and it is responsible for producing approxi-
mately 130 MB of data (75k UMA). Further inspection of mc copy w16 reveals that it
belongs to the motion compensation library and merely calls the built-in memcpy rou-
tine of the C language library in a loop in order to create a block of pixels from a flat set
of pixels with a predefined stride. It seems feasible to rewrite the routine from scratch
and to combine it with the kernel.

sad-related routines are also defined in the form of Macros corresponding to various
block sizes. Unlike satd-related functions, these macros, when expanded, create differ-
ent functions with separate bodies. In order to evaluate the impact of an identical kernel
routine for the sad-related functions, we created a new function called pixel sad wxh
and revised all the sad-related functions to call this critical kernel. It is a more likely
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Table 3. Flat profile for the revised x264 (non-instrumented and QUAD-instrumented binaries)

function name % time self seconds calls rank % time(+QUAD) self seconds rank(+QUAD)
pixel sad wxh 33.45 0.5 2646060 1 22.94 546.53 1
pixel satd wxh 24.32 0.36 1361024 2 7.61 181.18 4
x264 frame filter 8.11 0.12 2700 3 9.96 237.21 3
get ref 7.43 0.11 1165182 4 7.49 178.41 5
motion compensation chroma 5.41 0.08 442213 5 3.25 77.53 7
block residual write cabac 4.73 0.07 400643 6 2.64 62.96 8
x264 cabac encode decision 2.03 0.03 10808084 8 14.62 348.32 2
x264 macroblock cache load 2.03 0.03 29700 9 1.49 35.39 12
x264 cabac encode bypass 1.35 0.02 2234007 10 4.84 115.29 6

Table 4. Data produced/consumed by pixel satd wxh & sad-related functions in the revised x264

function name IN IN UMA OUT OUT UMA
pixel sad wxh 816414788 245781 100154164 2976
pixel satd wxh 326389008 137389 91580364 5108
x264 pixel sad 16x16 16169821 885 7275066 614
x264 pixel sad 16x8 4588984 793 2122520 510
x264 pixel sad 8x16 4480742 843 2066828 552
x264 pixel sad 8x8 39174841 1011 17382666 732

candidate for implementation on FPGA devices. Table 3 depicts part of the flat profile
for x264 after the introduction of the new pixel sad wxh kernel. pixel sad wxh now
gets the dominant position with the contribution of about 33.5% to the whole applica-
tion’s execution time. Note that it is also called nearly double of the times compared
to the second dominant kernel, pixel satd wxh. The gprof flat profile of the QUAD-
instrumented binary is also provided. The considerable increase in the self-seconds
contribution of each kernel is due to the overhead introduced by the QUAD instrumen-
tation code routines. However, the ranking provided in this respect is somehow more
representative of real execution time regarding the data communication between func-
tions via non-local memory. It is due to the fact that we do not take into consideration
stack-region memory accesses and only upon detection of a non-local memory access,
a time-consuming routine to parse the trace trie is called.

Table 4 summarizes the results of memory access tracing for pixel satd wxh and
sad-related kernels in the revised version of x264. As expected, the communication load
of pixel sad wxh dominates the former main kernel pixel satd wxh. However, there is
a substantial increase in the total amount of bytes consumed by this new kernel (about
800MB) compared to the collective number of bytes consumed by the sad-related func-
tions in the original version. This is due to the fact that the sad-related functions have
to pass extra arguments to the new kernel. The new kernel uses the extra information to
distinguish between different sad-related functions. The number of bytes consumed in
pixel sad wxh can be further reduced by a revision of the code to minimize this over-
load. The total number of bytes produced and consumed beside the unique memory
addresses used inside individual sad-related functions are significantly reduced since
the load is shifted to the new pixel sad wxh kernel.

Including the local memory accesses in the tracing would also reveal notable ob-
servations. By including stack region accesses, pixel satd wxh becomes the dominant
kernel once again (22.15% of the whole contribution). This indicates that if there is no
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intention to map the local temporary memory into the hardware and fetching data from
external memory is expensive, there is a high probability that mapping pixel satd wxh
onto hardware is preferable compared to pixel sad wxh.

6 Conclusions

The gap between processors and memory performance will be a major challenge for
the optimization of memory-bound applications on hybrid reconfigurable systems. This
demands the development of utility tools to help users in tuning applications for maxi-
mal performance gain of these systems. In this paper, we have presented QUAD, a tool
that provides a comprehensive quantitative analysis of the memory access patterns of an
application. QUAD can be employed in detecting coarse-grained parallelism opportuni-
ties as well as providing information about the memory requirements of an application.
The information is particularly useful in buffer size estimation for local memory reallo-
cation to store data in case of mapping kernels onto reconfigurable devices that initially
cause memory bandwidth problems. QUAD has been tested on a real x264 benchmark-
ing application and a detailed discussion was presented based on the extracted statistics.
In the future work, we are planning to utilize the information provided by the tool for
task clustering in heterogeneous reconfigurable systems.
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Abstract. Runtime reconfiguration provides an efficient means to reduce  
the hardware cost, while satisfying the performance, flexibility and power re-
quirements of embedded systems. The growing complexity of the applications 
necessitates methods that can rapidly identify a suitable set of configurations by 
splitting the computational structures into temporal partitions in order to evalu-
ate the benefits of runtime reconfiguration early in the design cycle. In this  
paper, we present a hierarchical loop partitioning strategy that reduces the com-
plexity of the search space for determining the runtime custom instruction con-
figurations for reconfigurable processors. Experimental results show that the 
proposed partitioning strategy can lead to an average and maximum perform-
ance gain (in terms of clock cycle savings) of over 14% and 31% respectively 
when compared to a recently reported technique. In addition, when compared to 
the existing technique, the proposed partitioning method has significantly lower 
runtime in many of the cases considered.  

Keywords: FPGA, Runtime reconfiguration, temporal partitioning. 

1   Introduction 

Emerging embedded applications for portable battery operated devices (e.g. mobile 
phones, PDAs, mobile gaming devices, etc.) necessitates computing platforms that are 
capable of meeting the increasing performance demands at low cost and low energy 
budget. At the same time, these computing platforms must maintain a high degree  
of flexibility to meet the shrinking time-to-market window. To this end, the instruc-
tion set extension capability of reconfigurable processors (e.g. [1]-[3]) provides an 
attractive means to meet these stringent requirements of embedded systems. A recon-
figurable processor consists of a microprocessor core that is coupled with a RFU 
(Reconfigurable Functional Unit), which facilitates critical parts of the application to 
be implemented in hardware e.g. FPGA (Field Programmable Gate Array) in the form 
of custom instructions. 

Runtime reconfiguration offers the potential to realize cost efficient systems  
that can still lead to high performance by changing the configuration of a small  
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reconfigurable hardware at runtime. The two main drawbacks that discourage the use 
of runtime reconfiguration in embedded real-time systems is the large reconfiguration 
overhead in commercial FPGA architectures, and the lack of supporting tools and 
methodologies. 

In this paper, we present a framework that rapidly generates custom instruction 
configurations for a given application and evaluate the benefits of runtime reconfigu-
ration on a reconfigurable processor with an area-constrained RFU. 
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Fig. 1. Target architecture 

The target RFU model in Figure 1, which is described in detail in [4], consists of a 
set of multi-bit logic blocks that is organized around an interconnection network. 
Each multi-bit logic block incorporates programmable fine-grained logic elements 
that are similar to those found in commercial FPGA architectures. However, unlike 
commercial architectures, the logic elements within each multi-bit block shares the 
same configuration memory, which leads to reduce runtime reconfiguration overhead. 
In this paper, we assume that the full reconfiguration model is adopted, i.e. each re-
configuration will result in new configurations loaded onto all the logic blocks in the 
RFU. If the computation resource requirement of the custom instructions exceeds the 
number of available logic blocks in the RFU, then the custom instructions are mapped 
to different configurations. At runtime, a reconfiguration manager automatically loads 
the required configurations onto the logic blocks for computing the custom instruc-
tions. The proposed runtime management scheme relies on the dynamic execution 
profile to replace the functionality of the logic blocks with the goal of minimizing the 
overall reconfiguration overhead (see [4]). 

1.1   Related Work 

The potential benefits of instruction set extension have led to numerous amount of 
research work that focuses on generating custom instructions from a given application 
(see [5] for a list of references). In order to select custom instructions for different 
runtime configurations, temporal partitioning must be performed to divide the design 
into mutually exclusive configurations such that the computational resource require-
ment of each configuration is less than or equal to the reconfigurable resource capac-
ity of the RFU. 
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The task partitioning algorithm presented in [6] for minimizing the communication 
cost is achieved in two steps. In the first step, an initial partition is obtained by using a 
network flow based algorithm to produce a set of feasible mean cuts. In the second 
step, a scheduling technique is employed to select an optimal global solution. 

The work in [7] employs ILP (Integer Linear Programming) to achieve near-
optimal latency designs for temporal partitioning of the application task graph. A loop 
transformation strategy was used to maximize the throughput while minimizing the 
runtime reconfiguration overhead.  

The framework presented in [8] automatically partitions loops to a target platform 
consisting of a processor, RFU and memory hierarchy. A hierarchical loop clustering 
strategy is used to partition a loop into smaller clusters in order to perform optimal 
hardware-software partitioning of the loop clusters. The loop clustering strategy trav-
erses the hierarchical loop graph in a top-down fashion and recursively clusters the 
nested loops until the sizes of all the clusters are within a pre-defined limit. The cur-
rent framework in [8] does not allow multiple loops in a single configuration. 

The work in [9] describes an architecture-aware temporal partitioning strategy for 
mapping custom instructions on an adaptive extensive processor, which incorporates 
coarse-grained functional units. The strategy partitions and modifies custom instruc-
tions that violate the RFU constraints, in order to map them onto the RFU. 

Recently, a framework was presented in [10] to select custom instruction versions 
to be mapped onto appropriate configurations. A custom instruction version consists 
of a set of custom instructions from a particular loop that satisfy the area constraint of 
the RFU. The partitioning scheme consists of temporal partitioning of frequently 
executed application loops with custom instructions into one or more configurations, 
and spatial partitioning to select an appropriate custom instruction version for each 
loop within a configuration. The temporal partitioning problem has been modeled as a 
k-way graph partitioning problem, and spatial partitioning is resolved using dynamic 
programming. The framework assumes the availability of the custom instruction  
versions and their corresponding hardware area-time measures. This necessitates 
time-consuming hardware implementation of the custom instructions prior to the 
partitioning process if no high level estimation strategy is in place. In the worst case, 
the temporal partitioning algorithm in [10] iterates l times, where l is the number of 
hot loops. 

1.2   Our Work 

This paper presents a framework that rapidly partitions loops, which constitute the 
most frequently executed segments of embedded applications, into configurations and 
selects profitable custom instructions in the respective configurations. This enables 
the benefits of runtime reconfiguration to be evaluated early in the design cycle with-
out undergoing time consuming hardware implementation. Unlike methods in [8] and 
[10], the proposed strategy takes into consideration the nested loop paths, and is not 
restricted to only hot loops which will vary with the input data. This can potentially 
lead to higher performance gain by leveraging on the target architecture’s capability 
to perform dynamic execution profiling for determining suitable configurations to be 
loaded onto the RFU at runtime. Unlike the framework in [10], our work does not 
generate custom instruction versions and their corresponding hardware area-time 
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measures prior to the partitioning process. Instead, we employ an efficient strategy 
that rapidly estimates the hardware area-time information of the custom instructions. 
In addition, the proposed framework relies on a hierarchical loop partitioning strategy 
that is similar to [8] for rapid partitioning of the application loops with custom in-
structions into one or more configurations. The proposed strategy utilizes efficient 
heuristics that takes into account the reconfiguration cost for partitioning loops into 
configurations. Finally, custom instructions for the respective configurations are then 
selected using a greedy algorithm. It is worth mentioning that the proposed method 
can be adopted in commercial FPGA tools as the target RFU model incorporates  
programmable logic elements that are similar to those found in commercial FPGA 
architectures. 

2   Proposed Framework 

Figure 2 gives an overview of the proposed framework. We have relied on the Trima-
ran compiler infrastructure [11] to generate the IR (Intermediate Representation) of 
the applications in the form of DFG (Data-Flow Graph). The IR serves as input to the 
Custom Instruction Generation stage to identify a set of custom instruction candi-
dates. Details of the Custom Instruction Generation stage can be found in [5]. 

 

Fig. 2. Proposed framework 

The hardware area-time information of the custom instruction candidates are then 
rapidly estimated without undergoing time-consuming hardware implementation. This 
step estimates the area costs and critical path delays of the custom instruction candi-
dates when they are implemented on the multi-bit logic blocks of the RFU. In this 
paper, we target programmable logic elements similar to those found in the Xilinx 
Virtex device [12]. It is noteworthy that the hardware area-time results using the  
proposed estimation technique have been shown to be within 8% of those obtained 
using hardware synthesis. In addition, the hardware estimation can be achieved in  
the order of milliseconds. The details of the hardware estimation process can be found 
in [5].  

A hierarchical loop graph is then generated to enable rapid temporal partitioning of 
loops using the proposed hierarchical loop partitioning strategy. Note that the parti-
tioning strategy relies on the hardware estimation results to obtain a profitable set of 
custom instruction configurations. 
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Finally, performance evaluation is performed using Trimaran’s simulation envi-
ronment, which converts the IR into executable codes and emulates the execution on a 
virtual HPL-PD processor [11]. 

3   Hierarchical Loop Generation 

The proposed partitioning strategy relies on a HLG (Hierarchical Loop Graph) repre-
sentation of the application in order to reduce the complexity of the search space  
for determining the runtime configurations. Figure 3 shows the HLG representation of 
a CFG (Control Flow Graph). Each node in the HLG (except for the root node R) 
represents a unique loop in the CFG. For example loop L1 consists of the nested loop 
path with basic blocks 1, 2, 3, 5, 7 and 8. A directed edge between two nodes s, d in 
the HLG, where s, d are at different HLG levels (s is not the root node), signifies that 
d is a nested loop of loop s. The nodes in the HLG are also associated with a value fx, 
which denotes the execution frequency of the corresponding loop. 

 

Fig. 3. Hierarchical Loop Graph of CFG 

Due to the difficulty in identifying loops across function boundaries in the Trima-
ran CFG, our current framework constructs the HLG from the application loop trace, 
which is derived from the basic block trace (see Figure 2). The basic block trace re-
cords the dynamic execution flow of the application basic blocks. The loop trace can 
be derived from the basic block trace by reading each basic block entry in the trace 
file and checking if it is part of a new loop or existing loop. A loop is identified when 
a particular segment of a trace consists of duplicated basic blocks. New or existing 
loops can be determined by maintaining a history of loops that have been identified so 
far. Finally, information pertaining to how the loops are nested within one another and 
the execution frequency of each unique loop are determined from the loop trace to 
construct the HLG. 
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4   Hierarchical Loop Partitioning Strategy 

The proposed hierarchical loop partitioning consists of two main tasks: 1) temporally 
partition the application loops based on the HLG into one or more configurations, 
such that the overall performance gain of runtime reconfiguration is maximized, and 
2) select profitable custom instructions from the loops in each configuration. The final 
output of the algorithm is a set of configurations and the selected custom instructions 
in each configuration. 

4.1   Temporal Partitioning  

Figure 4 illustrates the proposed temporal partitioning strategy, where Lx is a node in 
the HLG and Cy denotes a configuration. The partitioning algorithm aims to reduce 
the search space by giving preference to loops at the lower levels in the HLG and 
considering the higher levels (nested loops) only when they are necessary. Figure 4(a) 
shows an example of the Level 1 nodes in the HLG. The dummy root node, which is 
the parent of the Level 1 nodes, is included for programming consistency. 

 

Fig. 4. Example of proposed temporal partitioning strategy 

The partitioning strategy evaluates the first loop in Level 1 of the HLG (i.e. L1) and 
found that it can directly map onto a configuration (see Figure 4(b)). The loop can be 
directly mapped onto the configuration if the logic requirement of the custom instruc-
tions in that loop can efficiently utilize the resource capacity of the configuration. The 
partitioning algorithm then moves on to evaluate the next loop in Level 1 without the 
need to consider the nested loops of L1. In the event that the custom instructions of a 
loop under-utilizes the resource capacity of the configuration, it is considered for 
merging with the next loop on the same level. This is shown in Figure 4(c) where L2 
and L3 are merged into a single configuration. Note that the nested loops of L2 and L3 
are not evaluated further. However, if the logic requirement of the custom instructions 
in the loop (e.g. L4 in Figure 4(d)) is larger that the resource capacity of a configura-
tion, an unfolding process may take place to allow the nested loops to be evaluated. It 
can be observed that only the immediate nested loops (or child nodes in the next 
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higher level) are unfolded at a time. The evaluation process for direct mapping,  
merging and unfolding is then performed on these nested loops. For example in  
Figure 4(e), it can be observed that the nested loop L5 can be directly mapped to a 
configuration, while the nested loop L6 is further unfolded to the next higher level. In 
subsequent iterations, some of the nested loops of L6 are merged into a configuration 
(i.e. L7 and L8), while others are directly mapped onto a configuration L9). The process 
is repeated until all the loops in Level 1 of the HLG have been evaluated. 

Figure 5 shows the algorithm for temporal partitioning. The temporal partitioning 
strategy consists of three main processes: 1) unfolding, 2) merging, and 3) direct 
mapping. Heuristics are employed to determine which of these three processes that 
the loop will be subjected to (i.e. line 3, 7 and 11). These heuristics are based on com-
paring the estimated area of all profitable custom instruction candidates in loop x, 
with a constant that is a product of the resource capacity of the configuration (i.e. A) 
and a pre-defined factor (i.e. u or m). The output of the temporal partitioning algo-
rithm is a configuration set C, where each configuration in the set is associated with 
one or more loops in the HLG. 

Let’s first define a profitable custom instruction candidate i in loop x as one that 

satisfy the constraint in (1), where x
ig  is the gain of the profitable custom instruction 

candidate and tlb is the reconfiguration time of a single multi-bit logic block, in terms 
of number of software clock cycles. ai is the estimated area of i that is obtained using 

the method discussed in [5]. x
ig  is calculated as shown in (2), where fx is the execu-

tion frequency of loop x, and x
in  is the number of software clock cycles for i. We 

assume that each operation in the Trimaran IR takes one software execution clock 
cycle. 

lb
i

x
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x
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x
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The constraint in (1) ensures that only custom instruction candidates that can still lead 
to notable performance gain after taking into account the runtime reconfiguration 
overhead are considered as profitable custom instructions. Line 2 in Figure 5 shows 
the heuristic used to evaluate if the current loop x needs to be unfolded to the next 
higher level in the HLG. The unfolding process can only take place when the follow-
ing conditions are satisfied. Firstly, given a configuration area A, the estimated area of 

all the profitable custom instruction candidates ( ∑=
pron

i
ix aA

_

, where n_pro is the 

number of profitable custom instructions in loop x) must be larger than u x A, where u 
is a pre-defined unfolding factor ( 21 <≤ u ). 

Secondly, in order for the loop to be unfolded, it must contain nested loops (see 
line 18). If these conditions are met, the unfolding process recursively calls the tem-
poral partitioning algorithm, where the immediate nested loops of loop x will be un-
folded (line 19). If the first condition is met but the second condition is violated, loop 
x is directly mapped onto a single configuration (line 21). 
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Procedure Temporal_Partiion (node)

Procedure Hierarchical_Loop_Partitioning (HLG, Ci)

2. Temporal_Partitioning (root);
3. Sel_CI = Cusom_Instruction_Selection (C, Ci); 
4. return;

Input:   Hierarchical Loop Graph (HLG), 
             custom instruction candidates (Ci)
Result: Selected custom instructions for each 
             configuration (Sel_CI)

1. for each loop x that is a child of node
2. if Ax > u*A then

1. configuration set C = empty;

4. else if Ax < m*A then
5. Put loop x into stack for merging;
6. else if m*A < Ax < u*A then
7. Direct_Map (x);
8.  end if

10. if stack is not empty then
 11. Merge_Loop (stack);
12. end if

9.  end for

14. if Compute_Effective_Gain (c) > 
Compute_Effective_Gain (                 with nested     

         loops of node) then

3. Unfold_Loop (x);

Procedure Unfold_Loop (x)

18. if loop x has nested loops in HLG then
19. Temporal_Partition (x);
20. else
21. Direct_Map (x);

23. return;
22. end if

Procedure  Direct_Map (x)

25. if Compute_Effective_Gain (c) > 0 then
26.       Insert c as a new configuration in C
27. end if
28. return;

Inputs: HLG, configuration set (C), configuration area (A),
             area of profitable custom instructions for each 
             loop x in HLG (Ax)
Output: Set of configurations C

Procedure Merge_Loop (stack)

29.  Initialize new configuration c with unutilized area Ac = A; 
30. for each loop x in stack
31.       if Ac > Ax then    
32. Include loop x in configuration c;
33. Ac = Ac – Ax;
34. else
35. if Compute_Effective_Gain (c) > 0 then
36.                 Insert c as a new configuration in C;

38.            Initialize new configuration c with unutilized  
                 area Ac = A - Ax; 

37. end if

39. Include loop x in new configuration c;
40. end if
41. end for
42. if c != { } && Compute_Effective_Gain (c) > 0 then
43.       Insert c as a new configuration in C;
44. end if
45. return;

Cci ∈∀

15. Replace ci with c in C;

24.  Initialize new configuration c and insert loop x in c; 

13. Initialize new configuration c and insert node in c; 

16. end if
17. return;  

Fig. 5. Algorithm for temporal partitioning 

The heuristic that is used to consider if loop x should be merged with other loops in 
the same nested level of the HLG is shown in Line 4 of Figure 5. In particular, if the 
estimated area of all the profitable custom instruction candidates in loop x is less than 
m x A, where m is a pre-defined merge factor ( 1<m ), then the loop will be pushed 
into a stack to be considered for merging (Line 5). Note that these loops have been 
inserted into the stack as each of them will under utilize the logic capacity of the 
RFU. 

When all the loops in a particular level have been considered, the loops that are in-
serted in the stack are partitioned into configurations. The merging process (line  
29-44) employs a greedy approach to merge the loops in the stack until the total esti-
mated area of the profitable custom instruction candidates in the merged loops exceed 
the given configuration area A (line 31-33). When the current configuration cannot 
accommodate a loop in the stack due to the area constraint, a new configuration is 
created for the loop (line 38-39). A configuration of merged loops is considered as a 
valid configuration only if the effective gain of the configuration is larger than 0 (line 
35 and 42). 

The effective gain of configuration c (Gc), that is calculated using the Com-
pute_Effective_Gain function, is the total gain of all the profitable custom instruction 
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candidates in the loops of c that have been greedily selected by taking into account the 
runtime reconfiguration overhead. Gc is calculated as shown in (3), where n_rtrc is the 
number of times configuration c will be reconfigured in the application and n_ml is 
the number of loops that have been merged in configuration c. n_rtrc can be deter-
mined from the loop trace. tconfig is the overhead to reconfigure all the logic blocks 
(i.e. tconfig = n_lb x tlb, where n_lb is the number of logic blocks). The merging process 
terminates when all the loops in the stack has been considered for merging. 

)_(
_

cconfig

mln

x i

x
ic rtrntgG ×−= ∑∑     (3) 

The heuristic in Line 6 of Figure 5 is used to determine if loop x can be directly-
mapped to a single configuration. In particular, loop x can be directly mapped to a 
single configuration if the estimated area of all the profitable custom instruction can-
didates in loop x is 1) larger than m x A, and 2) less than u x A. It can be observed that 
similar to the merging process, a configuration is valid only if its effective gain is 
larger than 0 (line 25-26).  

Note that the algorithm may eventually discard the configurations resulting from 
the unfolding process if it does not lead to higher performance gain (lines 14-15). 

4.2   Custom Instruction Selection  

In the temporal partitioning process, we have identified a set of configurations and 
their associated loops. The next step in the proposed partitioning strategy is to select 
custom instructions for each of the configurations. This is achieved by employing a 
greedy algorithm to select custom instructions with the highest gain in each configu-
ration such that the total area required by the selected custom instruction does not 
exceed the logic capacity of the RFU. The gain of the custom instructions in the loops 
associated with the configuration is first estimated using (2) and sorted in decreasing 
gain. The greedy algorithm then selects the custom instructions by giving preference 
to those with the highest gain in the sorted list such that the area of the selected cus-
tom instructions does not exceed the logic capacity. This process is repeated for all 
the configurations. 

5   Experimental Results 

In order to evaluate the benefits of the proposed partitioning strategy, we have em-
ployed six widely-used embedded benchmarks from [13]-[15]. We compare the pro-
posed hierarchical partitioning strategy (denoted as Hierarchical) with a recently 
reported iterative method [10] (denoted as Iterative). Both methods perform temporal 
partitioning of the application loops and selection of custom instructions from the 
temporal partitions. For the Hierarchical method, we have empirically determined 
suitable values of u and m to be 1.2 and 0.6 respectively. We also assume that tlb = 3K 
clock cycles (similar to the configuration time of one hardware unit in [10]). We have 
employed the full basic block trace for all the applications considered except for 
mpeg2 enc, where a partial basic block trace file is used to generate the loop trace and 
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HLG as the original basic block trace file is very large. Similar to [10], we assume 
that the hardware area constraint is about 20-30% of the maximum hardware area that 
is required to accommodate all the custom instructions such that runtime reconfigura-
tion is not necessary. 

Table 1 compares the performance gain of the two methods. The performance gain 
is measured in terms of the clock cycle savings that resulted from instruction customi-
zation after taking into account the runtime reconfiguration cost. It can be observed 
that Hierarchical outperforms Iterative in all cases. This is due to the fact that Hierar-
chical takes into consideration the nested loop paths and is not restricted to hot loops. 
Hierarchical achieves an average and maximum performance gain of over 14% and 
31% respectively when compared to Iterative. 

Table 1. Comparison of performance gain 

Clock Cycle Savings (K Cycles)

Adpcm Enc

Cjpeg

Mpeg2 Enc

Virterbi00

Epic

Sha

HierarchicalIterative %Gain

2030

1993

2917

173640

998

44309

2056 1.28

15.93

24.41

6.37

5.51

31.93

2310

3629

184695

1053

58458
 

Table 2. Comparison of partitioning runtime 

 

Table 2 compares the partitioning runtime between the two methods. For the pro-
posed Hierarchical method, the runtime is measured for the tasks described in Section 
4. Similarly, the runtime for the Iterative method is only measured for temporal and 
spatial partitioning. The time taken to generate the custom instruction versions and the 
corresponding hardware area-time measures in [10] is not considered. Both methods 
rely on the custom instruction generation process discussed in [5], and hence the time 
taken to identify the custom instructions is not considered in the comparison.  

It can be observed that the runtime of Hierarchical is significantly lower than Itera-
tive in most cases (i.e. Adpcm Enc, Cjpeg and Virterbi00), and comparable in the 
remaining cases (the difference in runtime in these remaining cases is less than 0.04s). 
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This is due to the fact that the proposed strategy significantly reduces the search space 
of the loop partitioning process by evaluating the nested loops only when the profit-
able custom instructions in the corresponding larger loops cannot be mapped entirely 
onto the RFU area. 

6   Conclusion 

We have presented a framework for reconfigurable processors that employs a hierar-
chical partitioning strategy which aims to maximize the performance of custom  
instruction realization through runtime reconfiguration, while minimizing the recon-
figuration overhead. The proposed hierarchical partitioning strategy heuristically 
determines whether the loops in the HLG can be directly mapped to a configuration, 
merged with other loops or unfolded to the nested loops. Nested loops are only evalu-
ated when the profitable custom instructions in larger loops cannot be mapped en-
tirely onto a restricted RFU area. This strategy significantly reduces the search space 
of the partitioning process, resulting in rapid identification of temporal partitions. A 
greedy algorithm is then used to select custom instructions in each temporal partition. 
Experimental results show that the proposed hierarchical partitioning strategy can 
lead to a higher performance gain than a recently reported iterative partitioning ap-
proach. In addition, the partitioning runtime of the proposed partitioning strategy is 
significantly lesser than the iterative method in many of the cases considered. This 
enables rapid design exploration for maximizing the utilization of reconfigurable 
space through runtime reconfiguration. Future work includes devising a method to 
generate the HLG from the application CFG and profiling information from Trimaran, 
as generating the HLG from the basic block trace is not feasible when the trace file is 
too large.  
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Abstract. Active storage is a promising solution for data processing. Many ex-
isting active storage systems utilize spare CPU processing power on the storage 
controllers to execute active service. The software approach is very flexible for 
various applications, but the performance is quite low for computational-
intensive service tasks. This paper presents a low power SoC-based hardware 
solution for high performance active storage. The basic idea is incorporating 
flexible reconfigurable accelerators in storage controllers for efficient active 
service processing. In order to reduce the reconfiguration latency, we also pro-
posed hybrid configuration prefetching and configuration caching algorithms 
according to the task pattern. In the experiments, we presented results on appli-
cations such as data security, data compression and image processing with our 
FPGA prototype for an active storage processor. 

Keywords: reconfigurable computing, active storage, configuration prefetch-
ing, configuration caching. 

1   Introduction 

Driven by Moore’s law, the computer chip has evolved from a simple integrated cir-
cuit to a SoC (System on Chip) with millions of transistors. The benefits for such 
ongoing integration are smaller form factor, lower power and higher performance. 
Storage controllers such as RAID, NAS and SAN storage controllers are the key 
hardware components for data center and enterprise information systems. It becomes 
a trend that more newly designed storage controller chips have utilized SoC technol-
ogy. Examples are Intel Tolapai EP80579 SoCs (13-20w) for NAS applications, and 
D-Link iSNP8000 SoCs (less than 66w) for iSCSI storage.  

Active storage means the storage system can process data by itself besides merely 
storing data. Moving computation close to data has several advantages: 1) reduce 
server overhead, and reduce data traffic between the storage system and the host 
server; 2) increase performance by running applications on multiple storage devices in 
parallel; 3) achieve large power savings [1]. Research works on active storage system 
include CMU’s Active Disks for data mining and multimedia processing [2]; Intel 
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lab’s Diamond system for interactive search through non-indexed data [3]; and Texas 
A&M University’s MVSS for data security and data processing [4]. 

The previous research efforts on active storage are based on a premise that modern 
storage architectures have progressed to a point that there is the real possibility of 
utilizing unused processing power of the storage devices. If the storage controller  
uses high performance general purpose processor, it makes sense. While using less 
powerful embedded processors on SoCs, it’s quite difficult for the storage system to 
perform I/O and computational-intensive tasks like data encryption/decryption and 
multimedia processing with good efficiency. 

Two solutions can be used to incorporate more computation power into SoCs: 
multi-processors and dedicate hardware accelerators. But neither way is very suitable 
for the active storage controllers that require both computation power and consider-
able flexibility for various applications.  

For MPSoC, 1) The architecture must be tailored for the application to meet the 
constraints such as power, performance and cost, so it’s hard to define a general 
MPSoC architecture for a wide range of active service; 2) Some functions require 
operations that do not map well onto a CPU’s data operations. For instance, bit-level 
operations are difficult to perform efficiently on some processors; 3) highly respon-
sive input and output operations may be best performed by an accelerator with an 
attached I/O unit [5]. 

The hardware accelerator has good performance, but the flexibility is very poor. 
We cannot modify or update any service function after the active storage system is 
running. We will also meet problems when a large number of accelerators need to be 
integrated into the SoC because of limited expansion capability.  

Reconfigurable computing refers to systems incorporating some form of hardware 
programmability. Dynamic reconfiguration, also known as run-time reconfiguration, 
uses a dynamic allocation scheme that re-allocates hardware at run-time. It can in-
crease system performance by using highly-optimized circuits that are loaded and 
unloaded dynamically during the operation of the system. Reconfigurable computing 
provides the flexibility of software processors and the performance of dedicated 
hardware processing engines [6]. 

The basic idea of this paper is to integrate reconfigurable accelerators into the stor-
age SoC controller for high performance active storage. Our hardware system can be 
used in all existing active storage frameworks with two modifications: 1) use dedi-
cated hardware processing rather than software processing; 2) the service is dynami-
cally added by circuit reconfiguration, while in traditional systems a new service is 
added by loading a piece of code (filter applet) onto devices. Other aspects such as 
application interface and device level service binding mechanism will remain un-
changed. When user requests arrive, the storage controller must first interpret the 
received I/O commands associated with certain services, then access data on the disk 
drives and perform computation. In this paper we mainly focus on data processing 
with reconfigurable hardware, and other software issues for active storage system 
designs such as device model, user application interface and service binding will not 
be discussed in detail. 
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We chose Xilinx Virtex-5 FPGA which supports Partial Run-Time Reconfigura-
tion (PRTR) as the hardware platform and built our prototype design. This paper 
addressed two practical design issues as follows: 1) Implement reconfigurable accel-
erators on standard SoC; 2) Propose optimized configuration prefetching and configu-
ration caching algorithms according to active storage service processing pattern. 

In real designs, FPGA devices may be too expensive and consume too much 
power. To solve these problems, reconfigurable accelerators can be implemented on 
the programmable gate array area of the SoC chip, and the rest static parts of the stor-
age processor can be implemented by low-power ASIC technology on the same chip. 
Many reconfigurable computing systems (e.g. GARP, Chimaera and Morphosys) 
have shared this idea. In this paper we used FPGA device to study the reconfigurable 
hardware architecture and related configuration management issues. 

The paper is organized as follows: In section 2, we stated how to implement  
reconfigurable accelerators based on standard SoC architecture. In section 3, we pre-
sented optimized configuration prefetching and configuration caching algorithms to 
reduce configuration latency when multiple accelerators were available in the SoC. In  
section 4 we built our prototype system and conducted experiments using some  
applications as case studies. Finally in section 5 we concluded this paper. 

2   Reconfigurable Active Storage Processor Design 

There are two ways to couple a dedicated hardware processing engine into the Xilinx 
SoC: 1) a coprocessor; 2) an accelerator. The coprocessor can be viewed as the func-
tion expansion block of a processor’s ALU module. Software controls a coprocessor 
by using some special instructions. In Xilinx Virtex-5 FPGAs, We can connect a 
coprocessor with a Microblaze processor via FSL interface, and we can also couple a 
coprocessor to an on-chip PowerPC core. The efficiency of the coprocessor is directly 
determined by the performance of the processor. The drawback is that the processor 
must take the responsibility of data transfer during processing. The coprocessor sys-
tem is suitable for computational-intensive applications, but it’s not the right choice 
for data-intensive application. Most active storage service deals with data files, and a 
large amount of data should be transferred between the coprocessor and the memory, 
and this will cause a heavy CPU load. 

When a dedicated processing engine is connected on the I/O bus and acts as a pe-
ripheral, we call it a hardware accelerator. Software controls an accelerator by writing 
its registers which mapped into a certain memory space location. Xilinx SoC is based 
on IBM CoreConnect bus architecture. The accelerator is attached on the PLB bus, 
and a central DMA controller can be used for data transfer between the memory and 
the accelerator. In this paper we choose accelerator scheme for active service process-
ing. A SoC prototype design for active storage processor is illustrated in Fig. 1, and a 
hardware accelerator is integrated in the system. 

We used the application of 128-bit AES encryption to study the performance of the 
accelerator scheme. Our experiments showed that the Xilinx SoC with a 400MHz 
PPC440 could only get a throughput of 3.7MB/s by running Optimized ANSI Code 
for the Rijndael cipher (standalone program) [7]. 
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Fig. 1. Storage Processor for Network-Attached Storage Application 

The AES encryption is comprised of a variable number of rounds (determined by 
the key and block lengths) with each round containing four stages: ByteSub, Shif-
tRow, MixColumn and RoundKeyAddition. The cipher core performs a complete 
encrypt sequence on a 128-bit word in 22 clock cycles (20 cycles for the 10 rounds, 
plus 1 cycle for initial key expansion, and 1 cycle for data output). When running at 
the frequency of 100MHz, this core can reach a maximum throughout of 73MB/s.  
In the experiments, we have the following hardware settings to test the accelerator 
performance: 

a) Microblaze processor v7.10d (with 8KB I/D Cache), 100MHz 
b) PLB, 100MHz 
c) Accelerator, 100MHz 
d) DDR2 SDRAM, 200MHz 

Running a standalone control program (without OS), the AES accelerator reached a 
sustainable throughput of 16.28MB/s, which is 66 times faster than a 100MHz Micro-
blaze and 4.4 times faster than a 400MHz PowerPC440 processor. 

A SoC design with a single reconfigurable accelerator is shown in Fig. 2, and there 
are some essential components in the system: HWICAP is for chip reconfiguration; 
SystemACE controller is used to read bit-streams in the compact flash; 
XPS_LL_SOCKET acts as a virtual peripheral to declare certain memory space map-
ping for the RPU (Reconfigurable Processing Unit) during static SoPC design phase. 
Dynamic modules and statics modules must be connected via special bus macros. 
Before reconfiguration user software uses GPIO to disable the bus macros to discon-
nect the RPU from the system and enable them when the reconfiguration is over. In 
real applications we can integrate multiple reconfigurable accelerators into the system 
to processing application in parallel.  

A side-effect of reconfigurable computing technology is the large reconfiguration 
latency. According to our experiments, an AES-128 encryption module with the bit-
stream size of 178KB needed 12.8 ms to load the configuration data from DDR2 
memory to FPGA device. Reconfiguration latency will enormously downgrade the  
 



298 Y. Zhang and D. Feng 

system performance when dynamic hardware modules switch at high frequency. With 
the growing of the Internet, the total data volume becomes larger and larger. Among 
all the data, most of them are small files (less than 1MB) like emails, text and JPEG 
images. When storage controllers use reconfigurable computing hardware to process 
these small data, configuration latency cannot be ignored. Related techniques to re-
duce reconfiguration latency are configuration compression, configuration data reuse 
and configuration scheduling [8]. In this paper we mainly focused on configuration 
caching and configuration prefetching. 

 

Fig. 2. Reconfigurable Accelerator Design 

3   Configuration Scheduling for Active Storage Service 

Configuration prefetching and caching are well known techniques for reducing recon-
figuration latency when multiple RPUs are available. Before moving deeper into the 
details, we would first study the active service processing pattern. A service task that 
sent to the active storage controller always deals with a certain file, and a task often 
contains several subtasks (also called filters). We define each subtask as a RFUOP 
(Reconfigurable Function Unit Operation), and in our system a RFUOP can be placed 
(configured) on any RPU. The active service processing pattern has the following 
characters: 

a) Multiple tasks can be processed in parallel. 
b) Subtasks within a task should be processed in sequence. 

Configuration scheduling (prefetching and caching) should be based on not only 
the task processing pattern, but also the reconfigurable hardware system. In this paper 
we assume that each RPU is big enough to hold any single RFUOP in the system. The 
task scheduling algorithm is shown in Fig. 3. 
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if  (there are tasks in the queue)
A1: allocate a RPU for each task according 

to First In First Served principle;

if (number of available RPUs = 0)
A2: Tasks in the back of the queue should wait.

if (other tasks are finished, and there are idle RPUs)
goto A1;

else
A3: Apply static configuration prefetching to the 

subsequent subtasks of higher priority tasks;

// The queue is empty, but NO idle RPUs are available;
if (a new task arrives and there are suspended static prefetched RFUOPs) 

calculate the remaining waiting time of each suspended RFUOP;

if (the configuration time of the new task < 
                    remaining waiting time)
B1: cancel the static prefetched RFUOPs

and allocate its RPU for the new task;
else

goto A2;

if (the queue is empty and idle RPUs are available)
C1: apply  Markov dynamic configuration prefetching 
               for the last task.

 
Fig. 3. Pseudo Code for Task scheduling algorithm 

3.1   Configuration Prefetching 

There are two kinds of configuration prefetching techniques: static and dynamic pre-
fetching. Static configuration prefetching improves the performance by overlapping 
configuration process and computation process [9]. For example, a task with two 
RFUOPs arrives, and RFUOP-1 must be finished before RFUOP-2 can start. While 
RFUOP-1 is running on RPU-A, static prefetching configures RPU-B as RFUOP-2 in 
advance, thus the reconfiguration latency can be hidden before RFUOP-2 starts. We 
can apply static prefetching to any task with multiple sequential subtasks, and this 
technique always speeds up a single task’s execution. When several tasks are to be 
processed in the queue, static configuration prefetching may not be feasible. Let’s use 
the above example again, suppose the execution time of RFUOP-1 is much longer 
than the configuration time of RFUOP-2. When static configuration prefetching hap-
pens, RPU-B will be kept suspended for quit a long time before RFUOP-1 finishes. 
Precious computational resource which can be used for other tasks is wasted. In real 
applications, it’s a common case that execution time is longer than configuration 
latency, and static prefetching should take place if there are idle RPUs after each task 
has be allocated a RPU (as in clause A3 of the pseudo code in Fig. 3) , thus we can 
get better overall performance. 
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Another technique to reduce the reconfiguration latency is dynamic configuration 
prefetching. Dynamic configuration prefetching tries to predict the upcoming task and 
configure its RFUOP before it arrives. Dynamic configuration prefetching happens 
when the task queue is empty and there is an idle RPU on the chip (as in clause C1 of 
the pseudo code in Fig. 3). We should always apply dynamic configuration prefetch-
ing if possible. This can help to improve the performance if we can “guess” accu-
rately. Markov prefetching is a very unique approach in general-purpose computing 
systems, and it can also be applied to configuration prefetching. The tasks can be 
represented as the vertices in the Markov graph and the transitions can be built and 
updated using the task access sequence. A simplified mechanism is used to update the 
state transition probability. For each occurrence of state transition (x, y), the probabil-
ity of state transition (x, z) is updated as: 

, ,

, ,

/ (1 ),

( ) / (1 ),

x z x z

x z x z

P P C z y

P P C C z y

= + ≠
= + + =                               (1) 

In (1) C is the training step size, or learning rate, which determines how fast the pre-
dictor adapts to changes in the execution pattern [10]. We can set C to 1 for simplify-
ing the calculation. When dynamic prefetching happens, the first RFUOP in the task 
that has the biggest probability value should be loaded onto the chip. 

Our proposed hybrid algorithm that combines static and dynamic configuration 
prefetching tries to consider both overall efficiency and the single task’s performance. 

3.2   Configuration Caching 

In clause A1, A3 and C1 of the pseudo code in figure 3, if several idle RPUs are 
available for a new RFUOP, we need to swap out a victim RFUOP according to the 
configuration caching algorithm. Caching configurations on an FPGA is similar to 
caching instructions or data in a general memory. It retains the configurations that 
will be most-likely used in the future so the amount of configuration data that needs to 
be transferred to the chip can be reduced. But configuration caching is different from 
general caching. In reconfigurable systems, the loading latency of configurations may 
vary due to non-uniform configuration sizes of different RFUOPs. So decision should 
be based on not only the used frequency of a RFUOP but also its configuration size.  

When configuration replacement occurs and there are tasks/subtasks waiting in the 
queue, we can apply the general offline caching algorithm [11] to choose the victim 
RFUOP (similar to the Belady algorithm). The configuration manager maintains a 
window which starts at the current reconfiguration, and contains an occurrence of all 
currently loaded RFUOP configurations. Fig. 4 illustrates how to setup a re-
appearance window for Task 1 and Task 2 in the queue. According to the general 
offline caching algorithm, if a RFUOP need to be swapped out, for each candidate, we 
multiply the loading latency and its number of appearances in the window, and then 
replace the RFUOP with the smallest value. 

When configuration replacement happens and there are no tasks/subtasks waiting 
in the queue, we should apply the online caching algorithms. Comparing with the 
history based the LRU algorithm; the penalty based algorithm [12] is more suitable 
for the reconfigurable computing systems. The penalty based algorithm used a vari-
able “credit” to determine the victim. Every time an RFUOP is loaded onto the chip, 
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Fig. 4. How to setup the re-appearance window 

its credit is set to its size. When a replacement occurs, the RFUOP with the smallest 
credit is evicted from the chip, and the credit of all other RFUOPs on-chip is de-
creased by the credit of the victim. The penalty based algorithm isn’t suitable for 
active storage service processing, and this is because the upcoming RFUOP should 
always be the first RFUOP of the new task. In this paper a modified penalty based 
algorithm is presented and it is described as follows: 

a) Each kind of Task has a credit. Every time the first RFUOP of the task is loaded 
in the chip, the task’s credit is set to the size of its first RFUOP. 

b) When a replacement occurs, the victim is chosen according to these two rules:  
b.1 The chosen RFUOP victim should belong to the task that has the smallest 

credit. 
b.2 If two or more RFUOPs from the same task can be evicted in rule b.1, the 

RFUOP in the back of RFUOP sequence will be evicted. 
c) When the RFUOP is evicted from the chip, the credit of all other tasks on-chip is 

decreased by the credit of the task contains this victim. 

4    Experiments 

In the experiments, we built the prototype design on Xilinx XUPV5-LX110T  
development board. The SoC design contained a Microblaze processor which ran 
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XilKernel OS, and several reconfigurable accelerators. The system used a 4GB Com-
pact flashcard to emulate a hard disk and a UART interface to communicate with  
a client machine that sent user service requests. We used applications like AES en-
cryption/decryption, LZRW3 lossless data compression/decompression and image 
processing (edge detection) to study the performance. The following content lists the 
service models for active storage systems; the symbolic description uses W for writes 
and R for reads. The left side of the symbolic name specifies input and the right side 
specifies output. 

a) 1W->2W: Data will be written to the original file, then another new file is cre-
ated that will receive the data after it has been processed. 

b) 1W->1W: Data are processed then written to the original file. 
c) 1R->1W: Data previously stored on the storage device are re-processed into a 

new file. 
d) 1R->1R: Data are processed, and then the output is sent to the reading process. 

In our experiments, we always used 1R->1W model and user requests were sent to 
our prototype storage controller via UART interface. The 1R-> 1W pattern combines 
the following service tasks as shown in Table 1. 

Table 1. Task Description 

 

According to Table 1 there are totally 9 RFUOPs and 11 kinds of tasks in our  
experiments. The client generated the same two sets of mixed workloads (each task 
was repeated 5 times, totally 55 requests) with two modes respectively: 1) Compact 
mode – In most cases there is little time interval between two consecutive tasks. 2) 
Loose mode - On the contrary, in loose mode most tasks are not so tightly scheduled 
as in compact mode. In the experiments we used average task response time (indicate 
how fast a service can be served) as the metric to measure the performance.  
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Here we used small files (less than 0.5MB) as objects of the experiments, and the 
RFUOP’s reconfiguration latency was comparable to its execution time and tasks 
were made highly dynamic. We first conducted experiments to see the effect of con-
figuration prefetching, and in these tests configuration caching were not applied.  
Fig. 5 shows the results. For loose mode task set, static prefetching was very effec-
tive, particularly when a small number of RPUs were intergraded. For compact mode 
task set, the number of RPUs always dominated the overall performance, as the  
number of RPUs increased both static and dynamic prefetching contributed more to 
system performance. This is because the chance for prefetching also increased. 

 

(a)  Compact mode task set             (b) Loose mode task set 

Fig. 5. Effect of hybrid configuration prefetching 

 

(a)  Compact mode task set            (b) Loose mode task set 

Fig. 6. Effect of hybrid configuration caching 

The second experiment was conducted to study the result of configuration caching 
(configuration prefetching was not applied). Fig. 6 shows the results and we can see 
that for both compact and loose mode task sets, configuration caching had very lim-
ited effect when less than 3 RPUs were available on the chip. Both configuration 
caching algorithms took effect when RPU number reached 4 or 5. 
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In the next group of tests, we combined both prefetching and caching algorithms, 
and the experimental results are shown in Fig. 7. For compact mode task set, configu-
ration prefetching and caching could reduce the average response time by 16.7% 
when 5 RPUs were available. For loose mode task set, configuration prefetching and 
caching could reduce the average response time by 32.4% when only 3 RPUs were 
available. 

 

(a) Compact mode task set             (b) Loose mode task set 

Fig. 7. Effect of configuration caching and prefetching 

Finally, we also had software implementations for all the application algorithms on 
the storage controller. Using the same task sets, our reconfigurable computing system 
(with 3-5 RPUs) got 16-37x performance gain over a 400MHz PPC440 hardcore 
based SoC on virtext-5 FXT device. 

5    Conclusion 

In this paper we presented an adaptable reconfigurable computing solution for SoC-
based active storage controllers to efficiently process active service. The prototype 
hardware system was implemented on Xilinx virtex-5 LXT FPGA. Reconfigurable 
accelerators were coupled to the host to speed up computation-intensive applications. 
The downside of the system is large reconfiguration latency, which will downgrade 
the performance when applications are highly dynamic. To solve this problem, hybrid 
configuration caching and prefetching algorithms were proposed according to active 
service processing pattern. 
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Abstract. Depth extraction in stereovision applications is very time-
consuming and requires hardware acceleration in real-time context. A
large number of methods have been proposed to handle this task. Each
method answers more or less to real-time constraints, depending on the
applicative context and user’s needs. Thus, flexibility is a strong re-
quirement for a generic hardware acceleration solution, particularly when
ASIC implementation is targeted. This paper presents REEFS1, a recon-
figurable architecture for embedded real-time stereovision applications.
This architecture is composed of three reconfigurable modules that en-
able flexibility at each step of depth extraction, from correlation window
size to the matching method. It generates VGA depth maps with 64 dis-
parity levels at almost 87 frames per second, answering hard real-time
requirements, like in Advanced Driver Assistance Systems.

1 Introduction

Stereovision is widely used in many fields of computer vision, from robotics to
intelligent transportation. Its principle is to calculate the depth of scene by tri-
angulation from two images taken from different view points. The depth map
is created using different methods and parameters, depending on the target ap-
plication; in this article we focus on embedded stereovision applications. Some
of these applications, such as advanced driver assistance systems (ADAS), have
strong accuracy and real-time requirements. Other applications, like in mobile
multimedia systems, have lower performance requirements but harder embedded
constraints. Besides, a plethora of algorithmic solutions have been investigated
to answer these issues.

Strong embedded and real-time requirements of stereovision applications im-
ply the use of hardware accelerators. The algorithmic variability leads us to
consider hardware flexibility as an important requirement as well. However, a
trade-off must be found between efficiency and the level of flexibility. General
1 Reconfigurable Embedded Engine for Flexible Stereovision.

P. Sirisuk et al. (Eds.): ARC 2010, LNCS 5992, pp. 306–317, 2010.
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Purpose Processors (GPP) are very flexible, through programming, but do not
provide enough processing power to answer current requirements, as it consume
too much power (40 to 100W). The use of Graphical Processing Units is more and
more investigated to execute real-time vision applications as they provide high
processing power and remain user-friendly through programmability. However,
their power consumption (up to 100W) remains too high for many applications.
FPGAs gives access to a high level of flexibility and high performances, but
still with a low efficiency (regarding surface/performance/power ratio). Finally,
application specific architectures provide high efficiency and allow real-time ex-
ecution with a few Watts. However, their flexibility is limited to parameters
customization (image size, disparity range, etc).

We propose a hardware architecture, targeting ASIC implementation. This
architecture has a level of reconfiguration enabling area-based image processing
techniques, and particularly advanced depth maps creation techniques, with a
wide range of applicative conditions. Besides, our solution is designed to meet
the requirements of applications in ADAS and can be scaled to adapt to any
level of performance. The paper is organized as follows: section 2 presents the
context of stereovision systems, outlining algorithmic flexibility needs and pre-
senting related works. Section 3 presents the proposed architecture and its three
reconfigurable modules. ASIC synthesis results and configuration examples are
presented in section 4. Finally, conclusions and outlooks are given in section 5.

2 Stereovision Systems

Depth extraction is done by disparity map generation. Disparity is the gap be-
tween a point in the first image, called reference image, and the corresponding
point in the second image. The disparity of a point is inversely proportional to
its depth. Disparity map creation can be divided into two main steps: match-
ing cost processing and corresponding pixels matching. The first step consists
in evaluating the level of correspondence between pixels in the reference image
and pixels from the other image: a matching cost is generated for each pixels
pair. The second step uses these matching costs to extract the correct disparity.
There are two main approaches for disparity map creation: feature-based ap-
proaches and area-based approaches. Feature-based approaches match features
like edges, corners or points of interest and then require a reduced computational
time. Area-based approaches process disparity for all the pixels of the reference
image, generally taking into account their neighborhood. In this article, we fo-
cus on area-based approaches as they give access to high-density maps and are
generally very regular and highly parallelizable. Furthermore, they are executed
in deterministic time, which is required in high safety real-time applications.

The matching cost processing step is different from an application to another
by the use of various metrics and window sizes and shapes [8]. The common
metrics are SAD (Sum of Absolute Differences), SSD (Sum of Squared Differ-
ences), NCC (Normalized Cross-Correlation). SAD is often used in embedded
solutions because it implies low processing cost; SSD and NCC require complex
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operations, like square or multiply, and thus are hardly compatible with em-
bedded constraints. Centered versions of these metrics (ZSAD, ZSSD, ZNCC)
are less sensible to illumination variations between the two images, but require
more processing time. CENSUS is another interesting metric as it is insensitive
to illumination variations and has a low processing cost.

The pixel’s neighborhood used in matching cost processing has an influence on
the quality of generated disparity maps and the processing time. The window’s
shape is generally rectangular. Large windows are adapted to low-textured area
but are less precise on edges than small ones. However, small windows produce
noisy disparity maps. A way of improvement is to use multiple windows: in [4]
for instance, the cost is calculated on a centered window and on four peripheral
windows. The two peripheral windows with the best cost are added to the central
cost. This way, a composite window is processed, that adapts its shape to the
data.

The second step, the corresponding pixel matching, can be done by local meth-
ods, semi-global methods or global methods. The most common local method,
called Winner Take All (WTA), consists in choosing the pixels pair with the
best matching cost. This technique implies very low processing time but gives
poor results on noisy stereo images and in ambiguous areas (occultation zones or
repetitive textures). A possible enhancement is to detect and invalidate wrong
matches: the error rate decreases as well as the disparity map density. The level
of confidence of a match can be determined by analyzing matching costs dis-
tribution [7]. Another way of detecting wrong disparities is to use symmetry
constraint [3] and compare the disparity map processed with the left image as
reference and the disparity map processed with the right image as reference:
disparities that do not correspond are thus invalidated. Semi-global matching
methods give access to high density disparity maps with a lower error rate. In
these methods, a constraint is applied to a part of the image to enhance dis-
parity continuity and thus to reduce noise. Dynamic programming [6] is a well
known semi-global method: disparity on image lines is optimized using order and
unicity constraints. However, it requires much more memory than local methods
(≈ 100kB for VGA images). Global matching methods are too costly to be used
in embedded solutions because their memorization needs are too high (≈ 100MB
for VGA images) and the number of operations can be more than 108 operations
per pixel. Detection quality can also be increased by using preprocessing or post-
processing. Rank filter applied on both images before matching cost processing
eliminates illumination variation sensibility [8]. In [7], a median filter is applied
on the disparity map to eliminate wrong matches.

Image size is an important parameter regarding the quality of the result and
the needed processing time. Smaller QVGA stereo pairs (320x240) are often used
to shorten the processing time. However, higher image resolutions give access to
more detailed disparity maps, especially for far objects, implying more processing
time. The maximum disparity range is also an important parameter: it depends
on the stereo cameras pair geometry and defines the minimum detection distance.
Besides, as close objects detection is generally critical, maximum disparity range
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highly depends on detection requirements. For a VGA stereo pair, maximum
range usually varies from 64 to 128, or even 256 pixels.

A lot of application specific architectures aim to answer stereovision problem,
but without flexibility considerations. For example, the Deepsea processor [9]
uses CENSUS metric on 7x7 windows for 52 disparity range and is able to gen-
erate 512x480 disparity maps at 200 fps, which corresponds to a performance
of 2.6 GPDS2. SIMD architectures give access to more flexibility but with lower
performance. For example, the IMAP VISION of NEC [6] processes dynamic
programming based disparity maps on 128 per 128 regions of interest with 64
dispariy levels at 10 fps (≈11 MPDS). In [2], the proposed architecture parame-
ters (image size, disparity range and correlation window size among others) can
be tuned by static FPGA reconfiguration. It reaches a maximum peformance of
8 GPDS. An adaptive architecture targeting both ASIC and FPGA implemen-
tations is proposed in [1]. It is flexible on disparity range and windows size, and
achieves 2 GPDS. However, the flexibility of the correlation window is based on
processing block merging, which limits the possibilities. The VoC [5] is based on
a reconfigurable matrix and processes matching costs on windows with various
sizes, but only with SAD metric. Its performance is about 1.4 GPDS.

As shown in this section, stereo matching methods taxonomy is wide and the
quality of a given method strongly depends on targeted applications, even in
the same applicative field. Thus, flexibility is a strong requirement for a generic
hardware acceleration solution targeting ASIC implementation.

3 Presentation of the REEFS Architecture

3.1 Global Overview

The proposed architecture is flexible enough to execute a broad range of algo-
rithms. Besides, targeting the ADAS domain, associated requirements are to be
fulfiled. First of all, the image frequency for this kind of applications is typi-
cally 40 fps. Secondly, as we need high quality detection, we have based our
study on VGA images (640x480), which implies a maximum disparity from 64
to 128 pixels. However, other image sizes can be used as well, depending on
user’s requirements. The maximum window size for matching cost calculation
is established to 15x15, which is large enough for most known applications. As
shown in figure 1, the REEFS (Reconfigurable embedded Engine for Flexible
Stereovision) is a data-flow oriented architecture composed of three reconfig-
urable modules. Based on the assumption that input images are rectified, the
architecture extracts disparity over lines. Thus, for a given line, needed pixels
are located on 15 lines in both images which are stored in line buffers. This
on-the-fly approach allows memory use reduction.

2 PDS: Point Disparity per Second, i.e. the number of matching costs generated per
second. Note that this metric does not take into consideration complexity of the cost
generation method and the matching method.
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15 x 2 x 8 bits/cycle
(pixels)

32 bitsparameters

Configuration
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Fig. 1. The REEFS allows the generation and the analysis of 9 matching costs per
cycle. It is based on three reconfigurable modules, namely the Windows Processing
Matrix (WPM), the Flexible Reduction Tree (FRT) and the Matching Cost Analyzer
(MCA).

The first reconfigurable module, called Windows Processing Matrix (WPM),
handles the first step of matching costs generation: sub-costs generation. It pro-
cesses, every cycle, 15x15 windows on both images (225 pixels pairs) and gen-
erates as many sub-costs as pixel pairs. The WPM’s reconfiguration allows to
specify which metric is used for matching costs generation. To reduce the mem-
ory bandwith implied by window updates, currently processed pixels are stored
inside the WPM. Exploiting data redundancy between two consecutive win-
dows, the neighborhood update is done in one cycle by loading 15 pixels column
from buffer lines. The second reconfigurable module, the Flexible Reduction Tree
(FRT), sums the 225 sub-costs to obtain matching costs. Regarding current re-
quirements, a minimum of 4 matching costs must be generated every cycle3.
However, as multiple windows support is targeted, a maximum of 9 matching
costs are generated each cycle. The shape and size of the window on which each
matching cost is processed are application-dependant and can be modified by
reconfiguring the FRT. Finally, the Matching Costs Analyzer (MCA) processes
9 matching costs each cycle to extract related disparity and metadata used by
external high-level decision modules. These output data are stored in a buffer
memory, named output memory in the figure 1, that is read by external mod-
ules. The MCA reconfiguration gives access to various extracting methods. A
processor has been added to handle irregular processing; it has access to MCA
input and output data and to the output memory. We now describe in detail the
three reconfigurable modules: WPM, FRT and MCA.

3.2 Windows Processing Matrix

Most of the matching cost functions can be written as follows:

C =
∑

NR,NA

f(PR, PA, cR, cA) (1)

3 With a given system frequency of 200MHz, generating VGA disparity maps at 40fps
implies the processing of 640×480×40×64

200e6
≈ 4 matching costs per cycle.
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In this formula, the matching cost C is the sum of all sub-costs f(PR, PA, cR, cA).
Each sub-cost is calculatedusing a pixels pairPR andPA, belonging respectively to
reference area NR and to area NA, and constants cR and cA related respectively
to area NR and NA. The function f corresponds to the metric used. As we target
a system able to generate one matching cost per cycle, we need to process as
many sub-costs as there are in the concerned areas, using the desired metric.
Besides, among common metrics, SAD, ZSAD and CENSUS are chosen for their
simplicity and the fact that each provides result with characteristics different
from the others.
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Fig. 2. The Windows Processing Matrix, composed of 15 columns of 15 RPEs each,
processes 225 sub-costs necessary for matching costs generation on 15x15 areas each
cycle. Reconfiguration of RPEs functionality and interconnection enables flexibility on
the implemented metric.

As shown in figure 2, the WPM is composed of 15 columns of 15 Reconfig-
urable Processing Elements (RPE) each. These 225 RPEs allow generating one
matching cost over an area of 15x15 pixels every cycle. Various operations can be
executed by the RPE, depending on the chosen configuration: difference (D), ab-
solute difference (AD), comparison (CMP), CENSUS and output weighting. The
reconfiguration ability provides flexibility on the sub-cost generation function (f
in equation 1) used and thus on the metric implemented.

The inputs connexion of a RPE can also be reconfigured: each input can be
connected to one of the two assigned pixel registers (r0 and r1 in figure 2), which
store a pixel of the considered neighborhood (PR and PA in equation 1). It can
also be connected to the column register Rc, which stores data that are common
to the whole column. This register is useful when constant parameters (cR and cA

in equation 1) are needed as inputs, for instance in Zero-mean metrics, CENSUS
or even in RANK filter. At last, each input can be connected to the output of
the previous RPE. Thus, complex operations can be executed at each cycle. For
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example in ZSAD, one RPE handles zero-mean rectification on pixels while the
other one performs absolute differences.

3.3 Flexible Reduction Tree

The Flexible Reduction Tree’s first purpose is to sum, each cycle, the 225 sub-
costs generated by the WPM to obtain up to 9 matching costs. It must also
answer flexibility requirements on the shape and the size of windows to ensure a
good level of algorithmic variability. As displayed in figure 3, the FRT is divided
in 3 levels. The first level is composed of reconfigurable sub-trees each assigned
to a WPM column. The second level is also composed of the same type of sub-
tree. The configuration of the first level allows to specify vertical patterns while
the configuration of the second level impacts horizontal patterns. The last level
is a simplified sub-tree (see figure 4(b)) which enables the combination of several
matching costs.

s0(0,14)
sub-tree

(1,0)

15

sub-tree
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Fig. 3. The Flexible Reduction Tree sums the 225 sub-costs generated each cycle by
the WPM. It is divided in 3 levels.
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Fig. 4. The first two levels of the FRT are composed of sub-trees shown in 4(a). The
third level is a simpler sub-tree shown in 4(b). Active ways are selected by configuration.
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The first type of reconfigurable sub-tree is shown in figure 4(a). It consists in
a 3-ways adders tree with reconfigurable connectivity: each adder input can be
disabled, in order to define the desired pattern, which is specified by a configu-
ration register, cfg in figure 4(a). The overlapping of 3-ways adders inputs gives
access to higher flexibility in multiple windows generation. Thus, the maximum
vertical and horizontal overlapping is 5 pixels between two windows and 3 pixels
between three windows, which increases combination possibilities. Nevertheless,
the maximum window size depends on the number of matching costs to be pro-
cessed simultaneously. For example, for a single matching cost, window size can
vary from 2x2 to 15x15 pixels. In multiple windows mode, the maximum size is
reduced to 11x11.

3.4 Matching Costs Analyzer

The purpose of matching costs analysis is to extract correct disparity and meta-
data from generated matching costs. This step uses simple operations like
comparison or addition, and more elaborated operations like sorting or counting.
However, the input data bandwidth is still high (9 matching costs per cycle) which
implies the use of parallel processing units.

The Matching Costs Analyzer goal is to apply these operations on generated
matching costs. We based the MCA architecture on sorting networks structure as
it suits well to data analysis and exchange. Instead of simple compare-exchange
operators, our network is composed of reconfigurable elements named ASCE
(Add-Sub-Compare-Exchange). These processing elements have two inputs and
two outputs and provide a set of operations summarized in table 1. Intercon-
nection between ASCEs from a column to another is fully flexible by reconfi-
guration. It is also possible to plug inputs and outputs of the MCA together
to create longer data paths. Figure 5 shows a MCA composed of 4 columns
of 9 ASCEs each. In this figure, cfg specifies the configuration for interconnec-
tions and ASCEs functions. As the processing power is limited by the number
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Fig. 5. The Matching Cost Analyzer is composed of reconfigurable elements (ASCE)
and handles matching methods. Each ASCE’s input can be connected to the previous
column ASCE’s output through a reconfigurable interconnection (crossed box).
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Table 1. Operations supported by an ASCE. a and b are the inputs. c and d are the
outputs. Loop indicates if the operation can be looped, i.e. b receives the data present
the previous cycle in output c. In counter mode, count is the internal counter value.

Name Loop Outputs Name Loop Outputs

ID yes c=a, d=b Mm yes c=max(a,b), d=min(a,b)

ADD yes c=(a+b), d=0 mM yes c=min(a,b), d=max(a,b)

CRb yes c=count if a=1, d=b MC yes c=max(a,b), d=cmp(a,b)

CRbc yes c=count if a=1 else c=b, d=0 mC yes c=min(a,b), d=cmp(a,b)

Necb no c=a if b=0 else c=-a, d=a Subs no c=(a-b), d=sign(a-b)

of ASCEs, the allowed analysis complexity depends on the number of simulta-
neous reference pixels processed by the matrix, i.e. the number of independent
processes executed.

3.5 Reconfiguration

The reconfiguration is done through the configuration port: each configuration
register has its own address and thus, each module can be reconfigured indepen-
dently. The bitstream total size is about 1800 bits (225 bytes). The architecture
supports two reconfiguration modes. The first one is the static reconfiguration
mode: each module is reconfigured once at the initialization of the system and
no reconfiguration is needed while the application is running. Dynamic recon-
figuration mode is also supported, as the whole architecture reconfiguration is
done in less than 100 cycles. However, the frequency of reconfigurations is lim-
ited by performance requirements as bitstream loading implies penalties. The
typical reconfiguration granularity is the image line: several processings can be
alternately executed on each line, allowing hardware reuse. For instance, at first,
the architecture is configured for Rank filtering. All the pixels of a given line are
filtered and stored in a line buffer, which takes about 1300 cycles (640 cycles
for each image). Then the architecture is reconfigured to perform disparity ex-
traction on filtered pixels. The extraction step takes approximately 41000 cycles
(640 × 64 cycles). The reconfiguration overhead in this case study is less then
0.5% of the whole processing time.

4 Implementation Results and Case Studies

4.1 Real-Time Performances and ASIC Synthesis

An ASIC synthesis of the proposed architecture has been carried out, with ST
65nm Low Power technology, at 200MHz. This synthesis permits us to obtain
a good estimation of the surface for each reconfigurable module : 0.7 mm2 for
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the WPM, 0.3 mm2 for the FRT and 0.5 mm2 for the MCA. The total surface
is around 1.5 mm24, which satisfies the embedded constraints of ADAS. At
200MHz frequency, and considering a VGA stereo pair with a disparity range
of 64 pixels, the generation of 1 to 9 matching costs per cycle gives access to
a frame rate from 10 fps to 87 fps. It corresponds to a maximum performance
of 1.7 GPDS, which is quite high regarding the flexibility provided. Besides,
the REEFS architecture is fully compliant concerning real-time requirements for
Advanced Driver Assistance Systems which are usualy set to 40 fps.

4.2 Configuration Cases

In the following, two configuration examples are presented to show the flexibility
and the real-time abilities of the architecture. The first example enables a high
frame rate with basic matching method. In the second example, both match-
ing costs generation and matching method are more complex, which implies a
lower frame rate. For each case, results on performance (frames per second) and
utilization level are presented. The utilization level represents the number of re-
configurable processing elements used in each module. We consider that the left
image is the reference image.
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Fig. 6. Example of a MCA module’s configuration that allows the processing of WTA
method on 9 independent matching costs. The reached frame rate is 87 fps. The suffix
-L indicates a looped operation.

In the first example, WPM and FRT modules are configured to generate 9
independent CENSUS matching costs on 5x5 windows, without overlapping. The
MCA module applies a Winner-Take-All method simultaneously on each cost,
as shown in figure 6. Thus, for each MCA line, the first ASCE compares the
cost mc(k) in input with the current minimum cost (stored inside the element).
If a new minimum value is detected, the second ASCE, which is configured as
a counter, updates its output with its internal counter value. The result cur-
disparity(k) represents the gap that gives the best matching cost for reference

4 The surface occupied by registers is about 28% of the total surface.
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Fig. 7. Example of multiple windows costs generation followed by the extraction of dis-
parity and metadata for symmetry constraint checking and confidence level calculation.
Inputs and outputs in bold are plugged together.

pixel k. In this configuration, the theorical frame rate is 87 fps. Concerning the
utilization level, both WPM and MCA are used at 100%, and the FRT is used
at 72%.

The second configuration example enables the processing of one SAD match-
ing cost on multiple windows, as proposed in [4]. The FRT module generates one
central 7x7 window and four 7x7 peripheral windows, with overlapping. Figure 7
shows the MCA’s configuration. In a first step, the 2 minimum peripheral costs
are extracted and summed with the central cost to generate a combined cost
(part 1). Then, this combined cost is used in a second step for the extraction
of the left reference disparity (cur-disparityLR) with WTA method and the first
and third best related matching costs (part 2). The combined cost is also used
for extracting the right reference disparity (cur-disparityRL) with WTA method
(part 3). After 64 shifts, all metadata are processed by the processor to filter
wrong disparities with symmetry constraint checking and confidence level cal-
culation. As one matching cost is processed each cycle, the frame rate is 10 fps.
Only 54% of the WPM’s RPEs are used while the FRT is still used at 72%. The
MCA module is used at 67%.

5 Conclusion

Disparity maps generation is a key stage in real-time embedded stereovision ap-
plications. A high number of algorithmic solutions exists and the choice depends
on the targeted application and applicative constraints. Thus, we propose a re-
configurable architecture that enables a high algorithmic flexibility. The REEFS
architecture provides flexibility on the metrics, the size and the shape of corre-
lation windows, and on matching methods. Besides it answers real-time require-
ments as it can produce 640x480 disparity maps at a maximum frame rate of
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87 fps. The three main reconfigurable modules have been synthesized and the
total surface is about 1.5 mm2. The characteristics of our architecture satisfy
the requirements of Advanced Driver Assistance Systems.

In the future, this architecture will be integrated in a System on Chip for
ADAS. This SoC will integrate high-level processing units for disparity map
analysis: road-plan extraction or obstacle localisation for instance. In this con-
text, it will be possible to scale and to parallelize the current architecture to
increase the maximum frame rate when using large windows or performing com-
plex analysis. The execution of other types of area-based image processing will
also be considered in this SoC.
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Abstract. This paper represents a modified datapath merging technique to am-
ortize the configuration latency of mapping datapaths on reconfigurable fabric 
in Run-Time Reconfigurable Systems (RTR). This method embeds together the 
different Data Flow Graphs (DFGs), corresponding to the loop kernels to create 
a single datapath (merged datapath) instead of multiple datapaths. The DFGs 
are merged in steps where each step corresponds to combining a DFG onto the 
merged datapath. Afterwards, the method combines the resources inside the 
merged datapath to minimize the configuration time by employing the maxi-
mum weighted clique technique. The proposed merging technique is evaluated 
using the Media-bench suit workloads. The results indicate that our technique 
outperforms previous HLS approaches aimed at RTR systems and reduces the 
datapath configuration time up to 10%. 

Keywords: Reconfigurable Computers, Run-Time Reconfiguration, CAD Al-
gorithms for FPGA and Reconfigurable Systems. 

1   Introduction 

Multimedia applications contain computationally intensive kernels that demand 
hardware implementation in order to exhibit real time performance. The kernels can 
be accelerated by employing reconfigurable units which provide flexibility and reus-
able hardware resources. Often FPGA resources are limited and all the kernels cannot 
be mapped inside the FPGA. Hence, the kernels are to be configured at run-time in 
order to create a virtual hardware and accelerate more sections of the applications 
[1,2]. This is called Run-Time Reconfiguration (RTR).  

The RTR in FPGA involves dynamic reconfiguration that with the current technol-
ogy is a time-consuming process and hence affects the available system performance. 
For example, the MOLEN reconfigurable processor which is depicted in Fig.1 utilizes 
custom configured hardware to execute computational intensive functions [3]. The 
MOLEN architecture consists of two parts; General-Purpose Processor (GPP) and 
Reconfigurable Processor (RP), which is usually implemented on an FPGA. The RP 
is used for hardware acceleration. The execution phase by the RP is divided into  
two distinct steps: set and execute. In the set phase, RP is configured to perform the 
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required datapath and, in the execute phase the actual function is executed. However, 
the run-time reconfiguration in the set phase imposes considerable overhead to the 
performance of the system. Therefore, the configuration should be done as soon and 
efficient as possible. 

 

Fig. 1. MOLEN Hardware Organization 

There are many proposals for the configuration time reduction in RTR system. 
Some researchers have attempted to reduce configuration overhead by reusing the 
same hardware for different applications or rearranging the execution order of tasks in 
a sequence that requires lower number of reconfigurations [4]. Thus, however, it can 
not be applied to many realistic applications. Cashing the configuration bit-stream is 
another solution that was represented in [2] for the configuration overhead reduction 
however, spatial and temporal locality of references is not yet proven or accepted as a 
general principle in replacement policy for RTR systems, and needs more investiga-
tion. The configuration overhead can be efficiently hidden by employing approaches 
such as configuration perfecting where a static schedule is present [2]. Such totally 
predictable application schedules form only a small subset of the total class of the 
applications suitable for reconfigurable hardware acceleration.  

The average configuration time can be computed using the average configuration 
bit-stream and the speed of the configuration interface [5]. So, it is apparent that the 
reduction in the bit-stream length is conducting to the reduction in the configuration 
time. Some researchers focus on reducing the configuration time of a FPGA by com-
pressing the bit-stream. However, such techniques are costly and affect the perform-
ance of the system [6]. Therefore, it is better to amortize the configuration time using 
High Level Synthesis (HLS) [7]. 

In HLS, Data Flow Graphs (DFG) are created for the computational intensive ker-
nel loops. Afterwards, the resources in the DFG are shared to create a datapath. In this 
way, the hardware cost is reduced. The synthesis process comprises the major tasks of 
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scheduling, resource allocation, resource binding, and interconnection binding 
[8,9,10]. 

Making a multimode datapath instead of multiple datapaths can effectively reduce 
the hardware cost [11]. Datapath merging is a technique introduced to create a recon-
figurable datapath for two or more DFGs [12,13]. It enables the reuse of hardware 
resources by identifying similarities among several DFGs. This technique was em-
ployed in [14] for the reduction of configuration time. This technique, however, can-
not minimize the configuration time in RTR systems.  

The main contribution of this paper is presenting a modified datapath merging 
technique for the configuration time reduction in an RTR system. In the proposed 
technique we combined the resources inside the merged datapath to reconstruct it to a 
new merged datapath which requires fewer functional units and multiplexers in order 
to minimize the configuration bit-stream. 

The next section explains the configuration time reduction in datapath merging.  
Section 3 presents the suggested datapath merging technique. The experimental re-
sults are included in Section 4, and Section 5 concludes the paper. 

2   Configuration Time Reduction in Datapath Merging 

The problem can be considered as merging only those DFGs that correspond to com-
putational intensive kernels while making a merged datapath with a reduced configu-
ration time. 

Let DFG G=(V,E), where V={vi | i=1...n}, is a set of vertices and E={ej| j=1...m}, 
is a set of edges. A vertex v∈V represents an operation executable by a functional unit 
that has a set of input ports p. An edge e=(u,v,p) ∈ E, indicates a data transfer from 
the vertex u to the input port p of vertex v.  

Vertex-merging is the creation of a vertex v' replacing vertices vi vj... vk and edge-
merging is the creation of an edge e'=(u',v',p') replacing edges ei = (ui,vi,pi), ej = 
(uj,vj,pj).. ek = (uk,vk,pk).  

In order to merge edges, their vertices are to be merged while their corresponding 
input ports are matched together. Here, a functional unit is used for each merged ver-
tex v' capable of performing the functions of vertices mapped onto v'. 

A merged datapath MD=(V',E'), corresponding to DFGs Gi=(Vi,Ei) i=1...n, is  a di-
rected graph. A vertex v'∈ V' represents a merge of vertices vj∈ Vj and an edge 
e'=(u',v',p') ∈ E' represents a merge of edges ej∈ Ej where j∈J ⊆ {i,...,n}. 

The configuration time TC of the merged datapath MDP=(V',E')  is: 

TC= TF + TI 

Where ( )F f
v V

T vT
′ ′∀ ∈

′= ∑ is the functional units configuration time and 

( ) MUXI i
v V

TT
′ ′∀ ∈

= ∑  is the multiplexer's configuration time in the merged datapath 

[14]. Tf (v') is the configuration time of a functional unit (or storage unit) allocated to 
v', and Ti (MUX) represents the configuration time of multiplexers employed at the 
input port of a vertex. There are different ways to merge vertices and edges from 
DFGs and this, in effect, can produce several merged datapaths for the input DFGs. 
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An optimized merging method is required in order to manage resource allocation, 
resource binding, interconnection binding and also minimizing the datapath 
configuration time of DPM. It means the realization of a MDP for the DFGs is 
desirable if TC is minimal. 

Fig.2 illustrates an example of datapath merging where DFGs G1 and G2 from this 
figure are merged and the merged datapath MDP is created. Considering these DFGs, 
if operation of a vertex from G1 and operation of a vertex from G2 can be computed 
with the same type of functional unit, they will become potential for merging. For 
example, a1∈G1 and  b1∈G2 can be executed by the same functional unit. Thus, these 
vertices are merged together and the vertex (a1/ b1) is created for them in MDP. If a 
vertex cannot be merged onto other vertices, it will remain in the merged datapath 
without any modification. After merging two vertices, multiplexers are employed in 
the merged datapath to select the currect input operand. This is illustrated in the input 
ports of vertex (a5/ b3) in Fig.2 
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Fig. 2. The merged datapath MDP for DFGs G1 and G2 [14] 

 

An edge from G1 cannot be merged onto an edge from G2 unless the vertices of the 
edges are merged. As it can be seen in Fig.1, because of merging both of the vertices 
a3 and a5∈ G1 onto the other vertices b2 and b3∈G2, the edges (a3, a5) and (b2, b3) are 
merged together and the edge (a3/b2 , a5/b3) is created instead in MDP. In this case, it 
is not necessary to use a multiplexer in the input ports of the vertex (a5 / b3) to select 
the input operands. 
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3   The Proposed Datapath Merging Technique 

Although merging DFGs using Integer Linear Programming (ILP) can minimize the 
merged datapath configuration time, it is an NP-complete problem where the number 
of DFGs increases or number of nodes in DFGs increases [12].  Therefore, in the 
proposed datapath merging technique, the DFGs are merged together in steps. 
Afterward, the resources inside the merged datapath are combined to optimize the 
configuration time. In this way, the desired merged datapath for the input DFGs is 
created.  

Combining the resources inside the merged datapath paves the way for having the 
merged datapath with smallest configuration time. Thus, we can define the merging 
problem to create the desired merged datapath as follows: 

Given a merged datapath MDP, the desired merged datapath, MDP', is realized such 
that the merged datapath configuration time TC is minimal.  

Fig.3 shows an example of datapath merging proposed in this paper to merge 
DFGs. In Fig. 3(a), five simple DFGs, G1,..., G5 are illustrated. Each hardware unit 
and interconnection unit (multiplexer) has its own configuration time. These DFGs 
are merged in steps employing the method in [14] while the datapath configuration 
time, TC, is reduced and MDP is created. Fig. 3(b) shows the results of sharing the 
resources inside MDP to create MDP' for the DFGs. It combines the resources inside 
the MDP, together to minimize the configuration time. In this figure, the vertices c1 

and e1 from MDP have been merged to create a vertex c1/e1 in the MDP'. On the other 
hand, vertices a2/b2/c2 and d2/e2 are merged together to create vertex a2/b2/c2 /d2/e2 in 
MDP'. Therefore, two edges (a2/b2/c2 , c1) and (d2/e2 , e1) in MDP can be merged 
together to create an edge (a2/b2/c2 /d2/e2, c1/e1) in MDP'.  
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Fig. 3. (a) merging five DFGs G1,…, G5  in steps to create merged datapath MDP, (b) sharing 
the resources inside MDP to create MDP'  
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We merge the resources inside MDP in three stages. In the first stage all merging 
possibility among the resources inside MDP are to be considered as a compatibility 
graph. To do this, we employed the compatibility graph in [13] but use different 
approach to reduce the configuration time. Then in the second stage, the maximum 
weighted clique in this graph " Mc " is found.  By searching Mc in the compatibility 
graph and reconstructing the MDP using this clique, MDP' is created.  

To combine the resources inside the merged datapath, the merging possibilities 
among the vertices and the merging possibilities among the edges in the merged 
datapath MDP should be taken into consideration. The compatibility graph shows the 
merging possibility among the vertices inside MDP to create the same type of vertex 
in MDP' or, the merging possibility among the edges inside MDP to create the same 
type of edge in MDP'. Below, the compatibility graph Gc for the input merged 
datapath MDP is defined formally.  

A compatibility graph corresponding to input merged datapath,  MDP is an undi-
rected weighted graph Gc=(Nc,Ac)  where: 

 

• Each Node nc∈Nc with weight wc corresponds to: 
— Vertex-merging that is a possible merging of the vertices vi,vj … vk∈MDP to 

create a vertex vi..k ∈MDP' where it does not merge the same vertex from a 
DFG Gx onto different vertices from a DFG Gy or vice-versa. 

— Edge-merging that is a possible merging of edges ei=(ui,vi,pi), ej=(uj,vj,pj) … 
ek=(uk,vk,pk)∈MDP  to create an edge ei..k∈MDP' where it does not merge 
the same vertex from a DFG Gx onto a different vertices from a DFG Gy or 
vice-versa. 

• Each arc ac=(nc,mc)∈Gc illustrates that its nodes nc and mc (merging nodes) are 
compatible. It means they do not merge the same vertex from a DFG Gx onto dif-
ferent vertices from a DFG Gy or vice-versa.  

• Each node's weight, wc, represents the reduction in configuration time resulting 
from merging the vertices or merging the edges. 

By merging vertices vi,vj..vk ∈ MDP together, a vertex v' is created in MDP'. Be-
sides, for each input port of v' which has more than one incoming edge, MDP' will 
have a multiplexer to select the input operand. That is the reason to add multiplexer to 
the input ports of v', or add an input to previous multiplexers (if vi has a multiplexer).  

In this case, configuration time reduction of the nc ∈ Gc is equal to the difference 
between the configuration time of the hardware units and multiplexers before merging 
vertices and, their configuration time after merging, that is: 

wi = (Tf (vi) + Tf ( vj)) - (Tf (v') + m×T(muxi))   (1) 

Tf (vi) and Tf (vj) in equation (1) are the hardware units configuration time before the 
merging and (Tf (v') is the hardware units configuration time after the merging. 
Furthermore, m×T(muxi) is used to show the increase due to the multiplexer 
configuration time. If the multiplexer has the same number of inputs as it had before, 
then m=0. Otherwise, m shows the increase in the size of the multiplexer (for example 
going from 4 ports multiplexer to 8 port multiplexer, m=1). 

By merging edges ei,ej..ek ∈ MDP, for each input port of v', one incoming edge is 
created in MDP'. Hence, there will be no multiplexer creation or there will be no 
change in the number of multiplexer inputs. Configuration time reduction achieved by 
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this type of merging corresponds to equation (2) that is the weight of removing the 
multiplexers, or decreasing the size of the multiplexers. 

wi = m × T (muxi)              (2) 

The nodes in the compatibility graph have signed integer weights. Because, although 
some vertex-merging have negative weights (i.e., increase in the configuration time), 
their resultant weight with edge-merging has positive weight (i.e., reduction in con-
figuration time). Note that the edges from MDP are not merged unless their vertices are 
merged. In this way, negative vertices should be included in the compatibility graph. 

Up to here, all the merging possibilities inside the MDP' have been presented as the 
compatibility graph Gc. Choosing compatible nodes with more weight in Gc in order 
to create MDP', is equal to finding a completely connected sub graph with more 
weight from Gc. This graph is called clique in the graph algorithms. A clique Cc is a 
subset of nodes in a compatibility graph, Cc ⊂ Gc, such that for all the distinct nodes 
u,v ∈Cc, they are connected together (u,v ∈Ec). A clique is maximum if there are no 
larger cliques available in Gc. The maximum weighted clique Mc, is a clique in Gc 
that the total weight of its nodes is more than any other Cc in Gc. By employing the 
maximum weighted clique, MDP' can be created. 

Calculation of the maximum weighted clique from the compatibility graph is 
known to be an NP-complete problem [15]. In order to solve the problem, 
Branch&Bound algorithms can be employed. They provide an appropriate problem 
search space in order to solve the maximum weighted clique problem. The algorithm 
presented in [16] chooses an efficient method to select nodes and predicts bounds for 
quick backtracking. Our proposed technique uses the same optimizations as indicated 
in [16], but the assumption to have positive weights for the nodes in the input graph 
have been changed to the signed integer weights for the nodes.  

After finding Mc in the compatibility graph, the merging possibilities represented 
by the nodes in Mc is used to reconstruct MDP and create MDP'. Each node in Mc 
gives a merging possibility among the edges (or among the vertices) inside MDP. 
This way, edges and vertices inside the MDP are merged together to minimize the 
configuration time where, these merges do not merge the same vertex from a DFG Gx 

onto a different vertices from a DFG Gy. 

4   Experimental Results and Analysis 

To evaluate the effectiveness of the proposed technique, we made comparison with 
techniques that were proposed in [14] and [7]. In [14] a datapath merging technique, 
based on inter-DFGs resource sharing, has been proposed. It applies the HLS 
algorithms such as functional unit allocation, register allocation, and interconnection 
binding, simultaneously to the DFGs in steps. In [7] conventional HLS technique for 
RTR system, based on intra-DFG resource sharing, has been proposed. It applies HLS 
algorithms to each DFG to create its datapath. These techniques and the proposed 
technique in this paper were applied to five benchmarks from the Media-bench suite 
[17]. There are computational intensive kernels (inner loop kernels) in each 
benchmark that their entity makes them suitable for mapping into a reconfigurable 
unit in the RTR system. Each benchmark was compiled using the GCC compiler and 
for each loop, a DFG was generated from the loop RTL code. 
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For each benchmark, up to 3 kernels were considered and their corresponding 
DFGs were iteratively merged from the larger DFG into the smaller one. The configu-
ration time of bit-stream in a FPGA is estimated as: (size of bit-stream) / (configura-
tion clock frequency). After obtaining the bit-stream of a functional unit and a  
multiplexer by ISE 10.2, their configuration times were calculated based on their 
configuration bit-stream. Xilinx FPGAs support partial reconfiguration therefore; they 
are suitable for RTR systems. In our experiment, FPGA Virtex5-xc5vlx was em-
ployed as a targeted platform. In order to present the efficiency of our technique, the 
maximum configuration clock frequency of the FPGA (100 Mbps) was considered 
which is the worst case scenario for our method. 

Table 1. Kernels configuration time TC resulted from datapath merging algorithms in Media-
bench applications 

Benchmark 
(Number of DFGs) 

TC in [7] (ms) TC in [14] (ms) TC in Proposed 
Algorithm (ms) 

Epic-decoder(3) 11.04 6.39 5.82 
Epic-coder(3) 4.87 2.66 2.49 
Mpeg2-decoder(3) 5.83 4.11 3.64 
Mpeg2-coder(3) 7.51 5.68 4.87 
G721(2) 10.6 6.39 5.82 

 
To apply the proposed technique and previous datapath merging technique to 

DFGs, initially each DFG was scheduled using As Soon As Possible (ASAP) schedul-
ing algorithm in advance. Later, the proposed datapath merging technique and 
datapath merging technique in [14] were added to the scheduled DFGs to archive their 
merged datapaths. To implement the conventional HLS technique in [7], each DFG 
was scheduled in advance and the resources inside the DFG were shared using the 
Integer Linear Programming (ILP) algorithm afterward to obtain the datapath. The 
configuration time of each datapath, and the merged datapaths were calculated based 
on the configuration clock frequency of the FPGA. 

Table 1 illustrates the configuration time to map the kernels on reconfigurable  
fabric for each benchmark resulted from applying the proposed technique and the 
techniques in [14] and [7] to DFGs. As illustrated in Table 1, the datapath merging 
techniques have lower configuration time in general and the proposed technique has 
the least configuration time. The main reason for this is the shorter length of the gen-
erated bit-stream by the proposed technique. For G721, there are two DFGs in the 
benchmark and the improvement of the proposed technique and previous merging 
algorithm is the same.  

Fig.4 shows the configuration time reduction percentage of the DFGs after apply-
ing the above mentioned-techniques to each benchmark where the FPGA Xilinx 
Virtex5-xc5vlx is the target platform. As illustrated in this figure, there is a substantial 
difference between the results of the datapath merging techniques and conventional 
HLS technique in [7] in terms of the configuration time reduction. The proposed 
datapath merging technique lowered the configuration time up to 50% in comparison 
to the technique in [7]. On the other hand, it can decrease the configuration time up to 
10% more than the datapath merging technique in [14] for these benchmarks. 
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Fig. 4. Percentage configuration time reduction in datapath merging algorithms for Media-
bench applications 

We conclude that sharing the resources among the DFGs is the main cause of hav-
ing shorter bit-stream. In the same line, merging more resources in the proposed 
datapath merging technique results in more reduction in configuration time compared 
to the previous datapath merging technique. The results lead us to the conclusion that 
the proposed datapath merging approach is suitable for the synthesizer in run-time 
reconfigurable systems. 

5   Conclusion 

In this paper a modified datapath merging technique for the reduction of datapath con-
figuration time was introduced. Our proposed technique combines the resources inside 
the merged datapath to minimize the configuration time. To this end, we set off to find a 
compatibility graph that indicates to similarity between the resources inside the merged 
datapath. Afterwards, we determined a maximum weighted clique in the compatibility 
graph to reconstruct the merged datapath. This is an NP-complete problem thus; a 
Branch&Bound algorithm was employed to solve the problem. Applying the proposed 
technique to the workloads from the Media-bench suite in terms of the configuration 
time reduction, shows an improvement up to 50% in comparison to the conventional 
HLS algorithm in [7] and an improvement up to 10% in comparison to the previous 
datapath merging technique in [14]. Overall, the proposed merging technique in this 
paper can efficiently decrease the configuration time in RTR systems. It should be men-
tioned that datapath merging approach will increase the kernel execution time; however, 
the configuration time is measured in milliseconds while the kernel execution time is in 
nanoseconds. Therefore, the increase in the execution time of kernels is negligible com-
pared to the configuration time reduction.  Nonetheless, where kernels have significant 
number of iterations, this time overhead (increase in the execution time of the kernels) is 
comparable to the configuration time reduction and we should consider it in datapath 
merging. Furthermore, we will investigate this factor in datapath merging. 
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Abstract. Teaching reconfigurable computing to computer science stu-
dents demands special attention due to limited student experience in
electronics and digital system design. This paper presents a compact
course on reconfigurable processors, which was offered at the Technische
Universität Darmstadt, and is intended for instructors aiming to intro-
duce a new course in reconfigurable computing. In contrast to courses on
digital system design, which use FPGAs as a case platform, our course
places this platform at the centre of its focus and highlights its features
as a basis for reconfigurable computing.

1 Introduction

With their increasing integration densities and their computational capabilities,
FPGAs are invading computer architectures considerably, for example, as appli-
cation accelerators [1]. Thus, understanding system design with FPGAs is not
limited to students focused primarily on hardware design. Rather, students fo-
cused on software and algorithms, such as most computer science majors, will
benefit from these architectures to build high-performance coprocessors, which
serve several applications due to reconfigurability. To qualify those students for
this field, special courses on reconfigurable computing should be offered. Unfortu-
nately, most related work on teaching configurable hardware is either specific to
students of electrical engineering with corresponding previous knowledge [2,3],
or uses FPGA platforms to teach different topics such as digital design founda-
tions and computer architectures [4,5,6,7] with corresponding abstractions from
the FPGA platform. This paper describes a course on reconfigurable processors,
which we have offered in the computer science department at Technische Uni-
versität Darmstadt (TUD) since 2002. In contrast to other courses, which use
the FPGA as a case platform, our course places this platform at the centre of in-
vestigation as an enabler of reconfigurable computing. This investigation ranges
from the effect of a switch transistor on timing behaviour to using embedded
processors on FPGAs to set up systems-on-chip. We believe that this thorough
learning of today’s FPGA platforms is a precondition, not only for its usage in
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applied reconfigurable computing, but also for understanding the present lim-
its of these platforms as a motivation for further research work in the field of
reconfigurable computing. The course has the following didactical features:

1. The course comprises 13 90-minute lectures and 6 labs, which corresponds
to a total of 4.5 credit points according to the European Credit Transfer
System (ECTS). One credit point in ECTS corresponds to 25 to 30 working
hours by students [8]. The presented course assumes a workload of about
135 hours, where 20 hours thereof are lecture time. The remaining hours are
spent in labs and self-study.

2. The course is structured based on a new What-Why-How Model (WWH-
Model) which presents a guiding theme for all course topics. By this means,
instructors are able to extend selected topics or to add new ones without
affecting the logical and didactical structure of the course. In the scope of
constructive alignment [9], the WWH-Model can be employed to define the
intended learning outcomes.

3. The course aims at increasing both the width of declarative knowledge by
the variety of lecture topics and the depth of functioning knowledge by lab
design assignments.

4. The lectures are supported by interactive slides, demonstrations using com-
mercial tools, and by an excursion in a semiconductor fabrication plant at
the Institute for Semiconductor Technology at TUD.

5. Student learning outcomes are evaluated both by formative assessment in
the labs and by a summative assessment by a written exam.

Section 2 points out the importance of reconfigurable computing in education.
Section 3 describes the structure of the course reconfigurable processors at TUD.

2 Reconfigurable Computing in Education

2.1 Why Teaching Reconfigurable Computing

Reconfigurable computing refers to the computing on a reconfigurable platform,
which is currently an FPGA, but can include other adaptable fabric. Many com-
puter scientists consider FPGAs to be more than just hardware chips for fast
prototyping. Due to a performance boost of several orders of magnitude and,
at the same time, power saving of more than one order of magnitude, some re-
searchers use the concept of reconfigurable computing even to express a paradigm
shift in computing, which could or should replace computing paradigm based on
von Neumann architecture [10]. Whatever the understanding of reconfigurable
computing, its original benefit results from combining two features which are
never combined by other architecture solutions such as array processors, super-
computers, and graphical processing units: High performance due to hardware
capability and economic efficiency due to reconfigurability, which allows using
the same platform for many computing purposes. Thus, reconfigurable com-
puting aims at constructing high-performance application specific processors or
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coprocessors which share the same platform. To achieve this aim, researchers
and industries have been trying to answer an allocation question, i.e., what the
reconfigurable platform should look like? and a mapping question, i.e., how we
should map applications onto the reconfigurable platform?

Understandably, the allocation question is more critical as the reconfigurable
platform is the technological enabler of reconfigurable computing. Neverthe-
less, answering this question was always restricted by industrial concerns about
economies of scale. Despite several proposals on novel platforms mostly featur-
ing coarser granularity [11], FPGAs remain the most economic choice to support
reconfigurable computing. Given the reconfigurable platform, the mapping ques-
tion largely amounts to a platform-based design process, which has large simi-
larities with other platform-based design approaches. The difference is that the
design approach for reconfigurable computing must consider several applications
or several application portions sharing the platform. The dream of a platform-
independent design approach of reconfigurable systems will remain a dream as
long as the more modest dream of Electronic System-Level design (ESL) is not
brought to reality.

Knowing its importance and its challenges, which were recently recognized
by the Association for Computer Machinery by establishing the Transactions on
Reconfigurable Technology and Systems journal [12], it is evident that learning
reconfigurable computing at universities is essential for its success.

2.2 Reconfigurable Computing in IEEE/ACM Curriculum

Obviously, reconfigurable computing is a field of computer engineering. The
IEEE/ACM curriculum in computer engineering in its last report [13], how-
ever, did not address this field explicitly. This can simply be seen by the fact
that neither the word reconfigurable nor any of its derivatives appear anywhere
in this report. Although this situation seems to be advantageous regarding the
freedom in defining the learning outcomes for a new course on reconfigurable
computing, a reasonable amount of care should be exercised to keep in line with
pedagogical precepts of the IEEE/ACM curriculum and to define the scope of
such a course in relation to other units in that curriculum, which address FP-
GAs in some or other way. To be more specific, the IEEE/ACM curriculum in
computer engineering addresses FPGAs in 3 areas of knowledge and 4 units, as
summarized in Table 1.

From this table it is obvious that FPGAs do not take a central role in any unit,
as they do in reconfigurable computing. Therefore, it is highly advantageous to
introduce a new unit (course) which tackles reconfigurable computing with FP-
GAs at its center and addresses other aspects of reconfigurable computing based
on a thorough understanding of this platform. Putting the FPGA at the center
is essential for two reasons. First, it is almost the only reconfigurable platform,
which can be deployed in labs to enhance functioning knowledge. Secondly, to
understand why and how reconfigurable computing aims at new platforms, it is
essential to understand all the details and limits of current FPGAs.
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Table 1. FPGA-related topics and learning outcomes in the IEEE/ACM curriculum
in computer engineering

Knowledge Area Unit (i.e. Course) Topics Learning Out-
comes

Digital Logic CE-DIG6: Digital
systems design

Totally 7 topics.
The last one: Pro-
grammable logic
devices (PLDs) and
field-programmable
gate arrays (FP-
GAs), PLAs, ROMs,
PALs, complex
PLDs.

Totally 4 learning
outcomes. The last
one: Utilize pro-
grammable devices
such as FPGAs
and PLDs to imple-
ment digital system
designs.

Embedded Systems CE-ESY8: Embed-
ded multiprocessors

Totally 4 topics. The
last one: Platform
FPGAs as multipro-
cessors

Totally 3 learning
outcomes. Not one
relates to FPGAs

VLSI Design and
Fabrication

CE-VLS5: Semicon-
ductor memories and
logic arrays

Totally 10 topics.
The 9th one: FPGA
and related devices

Totally 8 learning
outcomes. Not one
relates to FPGAs

CE-VLS10: Semi-
custom design
technologies

Totally 7 topics. The
6th one: FPGA and
related devices

Totally 3 learning
outcomes. Not one
addresses FPGAs
explicitly.

2.3 Reconfigurable Processors Learning Outcomes

Knowing that reconfigurable computing aims at the development of reconfig-
urable processors or coprocessors, and to highlight the applied aspects of our
course, we entitled it ”Reconfigurable Processors”. Please note that the word
’processor’ in our course does not refer to the central processing unit and that
any coprocessor is a processor in the end. In the style of constructive alignment
[9] we formulate the learning outcomes of our course as follows:

1. Define a reconfigurable processor and explain its main features
2. Compare reconfigurable processors with other processor types
3. Design a reconfigurable processor based on modern FPGAs
4. Identify fine-grain and coarse-grain reconfigurable resources
5. Explain some applications of reconfigurable processors

While learning outcomes 1, 2, 4, and 5 mostly aim at widening the declara-
tive knowledge of students, learning outcome 3 tends to deepen the functioning
knowledge by applying practical approaches and commercial tools to design re-
configurable processors on FPGAs. Learning outcome 3 is therefore supported
by lab sessions. The width of declarative knowledge helps to define the rela-
tion of this course to other courses at TUD, where this knowledge is deepened
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or applied, i.e. becoming functioning knowledge. Our course, for instance, de-
scribes SystemC as a high-level design approach for reconfigurable computing.
The details of SystemC are treated in depth in the course Embedded Systems I.

3 Course Construction

3.1 What-Why-How Model

A course title is the most essential keyword, which often presents a novel and
sometimes mysterious concept for students. An early understanding of the di-
mensions of this keyword is essential for familiarizing students with the new
topic. In engineering fields, a course title has often three dimensions which are
highlighted by asking questions of the form: what?, why?, and how? (See Fig. 1).

The question ”What?” is usually answered based on students’ previous knowl-
edge and experience already acquired elsewhere. Instructors may use this ques-
tion to verify the suitability of the course in some curriculum or to define the
prerequisites for the course. The question ”Why?” points out the relevance of
the new topic. This can normally be answered by presenting some requirements
which can not be fulfilled by objects or methods learnt in other courses. The
question ”How?” addresses the engineering aspect and describes how to put the
learnt material into practice. The number of questions and the way they are
asked depend strongly on the course topic and on the word choice in the title.

Specific to the course ”Reconfigurable Processors”, the authors follow the
WWH-Model presented in Fig. 1, which is introduced in the first 90-minute lec-
ture to outline the course topics and to derive its structure. The numbers in
Fig. 1 refer to the sequence in which the questions are answered in the first

(2)(2) WhyWhy reconfigurablereconfigurable processorsprocessors??

WHY?WHY?WHY?WHY?

WHAT?WHAT?WHAT?WHAT? HOW?HOW?HOW?HOW?

(1)(1) WhatWhat isis a a reconfigurablereconfigurable
??

(4)(4) HowHow cancan a a reconfigurablereconfigurable
bb fi dfi d??processorprocessor??

(3)(3) WhatWhat isis reconfiguredreconfigured
exactlyexactly??

processorprocessor bebe reconfiguredreconfigured??

(5) How(5) How cancan a a reconfigurablereconfigurable
processorprocessor bebe employedemployed??

Fig. 1. What-Why-How Model for course construction
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lecture for didactical purposes. The first question is answered based on the fa-
miliarity of computer science students with the concept of processor: A reconfig-
urable processor (RP) is a processor which changes its functionality by changing
its architecture, as opposed to a general purpose processor (GPP) which never
changes its functionality because of its hard-wired architecture. However, GPPs
can execute largely different tasks due to the fine granularity of operations they
can perform. Any complex task must be divided into a sequence of these fine-
grain operations, which are then executed on the GPP sequentially. In contrast,
reconfigurable processors perform coarse-grain operations, which make them less
flexible than GPPs. This statement introduces the next question: Why a recon-
figurable processor? Originally, the advantage of using RPs results from their
performance as hardware platforms. Thus, question 2 amounts to: Why is hard-
ware faster than software? A 4-fold answer can be given: Hardware is faster than
software because of its ability to support wider data paths, to execute course-
grain operations, to use several computational units which operate in parallel
or in pipeline mode, and to use internal memories, which accelerates data ac-
cess. Question 3 addresses the reconfiguration resources. For a processor to be
reconfigurable it must contain architecture elements which are changeable. Gen-
erally, architectural elements of a processor perform one of three tasks: They
either perform computation, interface the processor with outside, or transfer
data. Therefore, each reconfigurable processor must contain configurable logic
cells, configurable input/output blocks, and configurable routing resources. Re-
configuring these architectural elements demands the writing of new configura-
tion bits. This statement leads to question 4 in Fig. 1, which can now be put
as follows: How to generate the configuration bits, how to write them into the
reconfigurable processor, and how they are kept on this processor? Generating
the bit stream is based on a complex design process, which includes system
specification, design entry, simulation, synthesis, placing, routing, and timing
analysis. For a general understanding of this design process in the first lecture,
we apply it to a simple digital circuit, an adder, based on a VHDL model. The
Integrated Software Environment (ISE) from Xilinx is then used to synthesize
the code, place and route the netlist, and generate the bit stream which is then
written to a Spartan-3 FPGA on a Starter Board. The adder uses some buttons
and the DIP-switches on the board to enter the summands. 7-segment displays
show the entered summands and the result. Afterwards, the VHDL code is mod-
ified slightly to make a multiplier. The design process is started again and the
multiplier is demonstrated for persuasion. The last question in Fig. 1 relates to
employing a reconfigurable processor and can be answered by giving examples
for different applications such as signal processing and cryptography.

3.2 WWH Model and Learning Outcomes

As mentioned earlier, the WWH model can assist in writing learning outcomes.
The constructor may ask as many questions as the learning outcomes or vice
versa. For our course, Table 2 maps to the questions from the WWH model to
the learning outcomes given in Section 2.3.
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Table 2. From WWH-Model to learning outcomes

WWH Model Question Learning Outcome

What is a reconfigurable processor? Define a reconfigurable processor and ex-
plain its main features.

Why reconfigurable processors? Compare reconfigurable processors with
other processor types

How can a reconfigurable processor be re-
configured?

Design a reconfigurable processor based on
modern FPGAs

What is reconfigured exactly? Identify fine-grain and coarse-grain recon-
figurable resources

How can a reconfigurable processor be em-
ployed?

Explain some applications of reconfig-
urable processors

Table 3. Reconfigurable processors: lecture structure

Question from WWH-Model Topic Lecture No.

All questions in overview Introduction 1
How can a reconfigurable processor
be reconfigured?

Introduction into synthesizable
VHDL modeling (1)

2

Introduction into synthesizable
VHDL modeling (2)

3

Configuration technologies 10
Partial and dynamic configuration 11
High-level design of reconfigurable
processors

12

What is reconfigured exactly? Configuration of logic cells 4
Configuration of I/O blocks 5
Configuration of routing resources 6
Configuration of coarse-grain ele-
ments

7

Why reconfigurable processors? Integrated circuits: history and
classification

8

Processors: history and classifica-
tion

9

How can a reconfigurable processor
be employed?

Applications 13

3.3 Lecture Structure

Depending on the WWH-Model the lecture is structured as depicted in column
2 of Table 3. The order of handling these topics given in column 3 presents
an alternative which seemed to be reasonable for students in our department.
Depending on the situation in other departments some topics may be shifted.
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4 Conclusion

We presented a course on reconfigurable processors suitable for students of com-
puter science. In contrast to courses on digital system design, which use FPGAs
as a case platform, our course placed this platform in the center of focus and
highlights its features as a basis for reconfigurable computing.
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Abstract. This paper presents FPGA acceleration and implementation
results of a hardware module for generating orbital function. The authors
have implemented some of the computationally demanding part of the
GPP quantum chemistry source code in FPGA. The orbital function core
is composed of the authors’ customized floating-point hardware modules.
These modules are scalable from single to double precision, capable of
working at frequency ranging from 100 to 200 MHz. Besides hardware
implementation, the design process also involved reformulation of the
algorithm in order to adapt them to the platform profile. The compu-
tational procedure presented in this paper is part of an algorithm for
generating exchange-correlation potential, and is also recognized as one
of the most computationally intensive routines. This feature justifies the
effort devoted to develop its hardware implementation.

Keywords: High Performance Reconfigurable Computing, FPGA,
quantum chemistry, Custom Computing, HPC.

1 Introduction

The precision of floating-point operations becomes a primary concern when deal-
ing with low-level quantum chemistry procedures, thus the authors have taken
various measures to optimize them, both in terms of resource consumption and
processing speed. These goals seem to be contradictory, but FPGA technology
allows manipulation at the bit level which can be regarded as a huge advantage
over GPP and GPU (Graphics Processing Unit) solutions which operate on data
of fixed bit-length. The flexibility of the precison adjustment also justifies the
choice of VHDL as the design language instead of one of the HLLs (High Level
Language).

The proposed implementation employs the RASC platform, a detailed de-
scription of which, along with Altix system transfer modes, is covered in [1,7].

2 Algorithm Consideretion

One of the most common and the simplest approximation theories for solving
the schroedinger equation is the Hartree-Fock algorithm. The general procedure

P. Sirisuk et al. (Eds.): ARC 2010, LNCS 5992, pp. 337–342, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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for solving the Hartree-Fock equation is to make the orbitals self-consistent with
the potential field they generate. This is achieved through the self-consistent
field (SCF) method [2].

The SCF procedure for solving the Hartree-Fock equation leads to the follow-
ing equation in matrix formulation:

FC − SCE = 0 (1)

where F is the Fock-operator, C is the matrix of the unknown coefficients, S is
the overlap matrix and E contains energy eigenvalues. All matrices are of the
same size.

Solving the Hartree-Fock equation is an iterative process. The coefficients
(corresponding to an electric field) are used to build the Fock-operator F, with
which the system of linear equations is solved again to get a new solution (a new
electric field). The procedure is repeated until a solution reaches a previously
established level of accuracy.

The Fock operator depends on orbitals, which in turn are its eigenfunctions.
Therefore orbitals have to be calculated for each iteration of the whole Hartree-
Fock algorithm. That is why the orbital calculation presented in this paper
contributes significantly to the overall performance of the application.

Orbital function is expressed by equation 2 [2]:

χklm(r) = rk
xrl

yrm
z Cn

∑
i

CiNie
−αir

2
(2)

where rx, ry , rz and r2 = r2
x + r2

y + r2
z denote atom centered spatial coordinates

of each point in the grid. An atom base is represented by Ci and αi coefficients.
The k, l, m indices depend on the type of atom shell (s, p, d or f). Cn and Ni

are normalization coefficients.

3 Architecture of the Orbital Module

The RASC accelerator is controlled by the host processor which handles the
hardware algorithm execution on the FPGA. Several routines are to be per-
formed by the host processor in order to send data, launch the accelerator and
fetch results afterwards. As the FPGA internal memory resources are limited,
the maximum single computational data block is parameterized and its size can
be adjusted within the range between 128 and 512 of the grid points. The maxi-
mum number of atoms composing the molecule is 32. Furthermore it is assumed
that the number of atom base coefficients (Ci and αi) does not exceed 64.

The implementation of the orbital generation function requires both designing
hardware modules and software routines. To enable adoption of a modular design
approach eq. 2 was decomposed into two sections (similar to [8]) - the exponential
part (denoted as EP):

χe(r) =
∑

i

CiNie
−αir

2
(3)
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and the polynomial part (PP):

χp(r) = rk
xrl

yrm
z Cn (4)

where Cn = 1/3 if max(k,l,m)=2, 1/15 if max(k,l,m) = 3, 1 otherwise. And shell
types are defined by Cn = s if k+l+m=0, p if k+l+m=1, d if k+l+m=2, f if
k+l+m = 3.

Both 3 and 4 equations are designed as separate units which make up the
orbital function module. The polynomial part (PP) module generates coefficients
for the forthcoming atom and at the same time evaluates orbital values for a
currently processed atom. Such a pipelined approach requires an EP module to
provide the exponential part computed in advance so the PP unit can sustain
data processing. Both modules work independently to some degree - controlled
by the Fine State Machine (FSM). It should be noted that the same set of
polynomial coefficients can be used several times for different EP results. This
holds for all the orbitals within the same atom. On the other hand, calculating
an EP result takes several clock cycles (one clock cycles per a sum iteration).
Therefore for large atoms (composed of many shells), the calculation bottleneck
is the EP module. Conversely, for a small one, the calculation bottleneck is in
the PP module. As the size of an atom changes, in terms the number of shells,
the load balance of the EP and PP modules shifts. A set of FIFO memories have
been employed to avoid data transfer stalls between the units and to evenly
distribute the load balance for different values.

A uniform input data stream is well suited for FPGA implementation, but un-
fortunately this is not a case of the algorithm described in this paper. Quantum
chemistry complexity is reflected by the diverse structure of input data which
imposes some difficulties related to their efficient relocation. Thus a dedicated
method of data formatting was introduced and implemented on the host processor
to consolidate the data, which are subsequently sent over to the RASC accelerator.

4 Implementation and Acceleration Results

Once the hardware module was implemented on the FPGA, several computa-
tional tests were conducted to compare the RASC performance with the Itanium
2 processor. Some of the tests were done for the water molecule calculated in
the block composed of 512 point of the three dimensional grid. It took Itanium
2 processor roughly 2885 μs to perform such an operation, which is close to the
3174 μs consumed by FPGA. It is worth noting that the predominate shell of
the water molecule is s. Due to the architecture of the hardware module, shell
types have an impact on the overall performance. Consequently, an increase
of the atom shell size allows full advantage to be taken of LUT and pipeline
mechanisms implemented on the FPGA and the accelerated system starts to
outperform GPP processor implementation, as depicted in the figures 2,3.

Figure 2 presents various speed-ups achieved for different atom shells domi-
nating in the computations. The atom shell impacts the volume of computations
which must be performed to obtain a single orbital result. The number of Ci and
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Fig. 1. Block diagram of the orbital generation module

Fig. 2. Impact of the predominating shell on the speed-up (for the constant number
of Ci and αi coefficients = 1)
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Fig. 3. Impact of the number of atom base coefficients on the speed-up(for the s shell)

Table 1. Implementation results of the Orbital module - single precison

Implementation results # 4-input LUT # flip-flops # 18-Kb BRAMs
Orbital module 8034 (4.5%) 7025 (3.4%) 14 (4.1%)

Orbital module + core services 17365 (9%) 20972 (11%) 37(11%)

Table 2. Primary parameters of the module

Parameter Value
Frequency [Mhz] 100
Max. Error [ulp] 1

RMSE (Root Mean Square Error) 0,67
Pipeline delay [clk] 64

αi coefficients also affects the calculation effectiveness(Fig. 3). Discrepancy in the
number of Ci and αi coefficients and the type of atom shell is the main source of
dynamic variation of load balance between the EP and PP modules. The ideal
case would be an equal number of polynomial Ci and αi, but unfortunately, this
rarely occurs in the computations. Therefore various buffering methods have
been employed (Fig.1).

FPGA delivers sustained performance while the processor efficiency drops
with the growth of the molecule size. Presented results of a 3, 5× speed-up do not
seem to be impressive but some enhacements to be implemented are expected to
improve the performance of the system. The most important one is a top atom
shell prediction mechanism which will eliminate the necessity of generating a
complete set of polynomial coefficients for every atom. Only the orbitals which
are used for the current calculation will be generated.
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FPGA resources consumed by double precision implementation of the orbital
module are roughly three times higher than presented in (Tab. 1).

5 Summary

In this paper, a novel approach to generating orbital function in quantum chem-
istry has been presented. The authors aim to implement the exchange-correlation
potential generation and the orbital function is considered to be a milestone on
the way to achieving this. On the other hand, the presented implementation was
also considered to be a benchmark meant to deliver reliable test results which al-
low estimation of quantum chemistry acceleration effectiveness on FPGAs. The
obtained speed-up is promising and is expected to be higher along with improve-
ments introduced. Furthermore, resource consumption is relatively low due to
the 32-40 bit data precision adopted across building units of the orbital mod-
ule. An additional role of the presented module is also a data serialization for
subsequent modules of the system for exchange-correlation potential generating
which are expected to contribute significantly to the overall speed-up.
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Abstract. This paper presents a brief tutorial and background on im-
plementing filter banks for spectrum sensing. It discusses the advantages
of this approach over standard FFT-based spectral estimation. A general
architecture for implementation of filter banks on FPGAs is then pre-
sented, exploiting heterogeneous resources. It takes advantage of the fact
that subband filters run at a reduced sample rate, and hence can share
the same computational resources. We show how to facilitate this sharing
of resources by saving state for each subband. The architecture is fully
reconfigurable, allowing sensing parameters to be changed at runtime.
Resource usage figures are given, showing the efficiency of the architec-
ture. We finally discuss how this architecture can be adapted to signal
reception.

1 Introduction

The Fourier transform (FT) is perhaps the most widely used, and generally
applicable component of the signal processing toolbox. It allows us to obtain the
frequency domain representation of a time domain signal. Unfortunately, using
the FT for signal analysis in DSP systems, we face a problem due to the discrete
nature of digital systems. The abrupt edges in the time domain translate into
sinc functions in the frequency domain. This results in what is called spectral
leakage; where some of the energy in a bin “leaks” into adjacent bins. This
gives an inaccurate spectral footprint, especially when adjacent bins have vastly
differing amplitudes, as illustrated in Fig. 1. This inaccurate representation can
underestimate available spectrum for a cognitive radio. This can be overcome
by windowing in the time-domain. Polyphase filter banks are an efficient way of
accomplishing this.

Filter banks are an established structure used in multirate signal processing
and have applications in compression and image processing. [1] When trying to
decompose signals into subbands, we typically modulate a prototype low-pass
filter to the appropriate centre frequencies. This requires as many different low-
pass filters as there are subbands, and each of these must be run at the input
sample rate. Fig. 2 shows a frequency domain representation of the filters.
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Fig. 1. Spectral leakage using PSD estimation
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Fig. 2. Frequency representation of a filter bank

Polyphase filter banks enable us to do this more efficiently, by decomposing
a single prototype filter, into subfilters and effectively modulating these using an
FFT. These filters can then be run at a fraction of the original sampling rate.
While filter banks are not new, a number of exciting candidate applications,
specifically in the area of cognitive radio, are reawakening research in the area,
while demanding much larger dimensions than have been previously required.
In this paper, we present a brief tutorial on the theory behind polyphase filter
banks, we analyse the computational requirements, then present a reconfigurable
FPGA-based architecture for polyphase filter banks for spectrum sensing.

Using filter banks for spectrum sensing offers a number of advantages. Firstly,
we can scan wide portions of the spectrum (high input sampling rate), efficiently
(using fewer resources at a lower sampling rate). Secondly, the results of spectrum
sensing using filter banks are far more accurate than basic energy detection using
an averaged FFT. Finally, the use of filter banks for transmission and reception of
signals is an area that has gained renewed interest at present. It is envisaged that
such techniques could supersede current multicarrier transmission methods. [2]
It would then be possible to use the same computational structure for sensing
and receiving; an attractive proposition for resource limited cognitive radios. The
main contribution of this paper is the scheme by which we are able to share the
filtering circuitry between subbands while maintaining state for each of them.

This architecture will be used within an FPGA-based cognitive radio frame-
work [3] to explore aspects of spectrum sensing and wideband transmission; hence
the importance of a reconfigurable design. We present a brief background in Sec-
tion 2, followed by an overview of related work in Section 3. We then present the
proposed architecture and implementation results in Sections 4 and 5, respectively.
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2 Background

Frequency division multiplexing (FDM), allows us to combine multiple transmis-
sion streams by arranging them adjacently in the frequency domain. Typically,
we split the overall bandwidth of the FDM signal into N subbands, modulating
data onto each subcarrier independently. Protocols like Orthogonal Frequency
Division Mutiplexing (OFDM) allow us to modulate several independent streams
of data across a wide band, overcoming the weaknesses of narrow band techniques
applied to wide bands, in terms of robustness.

One of the primary tasks of a cognitive radio (CR) is spectral estimation,
that is, determining portions of the spectrum that can be used for transmission.
This allows the CR node to establish communication with other nodes without
interfering with primary users. This is most simply done by using an FFT to
provide a spectral estimate. However, an FFT only provides an instantaneous
representation of the spectrum, so this must be averaged over a number of win-
dows to give a spectral estimate that is of any use. When taking an FFT over
a fixed sized window, spectral leakage can occur. This is due to the sharp edges
of a square window causing what should be delta functions in the frequency do-
main to become sinc functions, the sidelobes of which can interfere with adjacent
frequency bins.

The standard solution for obtaining more accurate estimates is to use win-
dowing to weight the samples in the input window. Windowing over multiple
overlapping windows provides more accurate results, and can be implemented
using a polyphase filter bank. [4]. An N -band polyphase filter bank consists of
a commutator that switches input samples into one of N subband filters suc-
cessively. The coefficients of the rth subband filter, hr(n) are derived from the
prototype filter, hP(n), using the following identity:

hr(n) = hP (r + nN) (1)

Hence, for a prototype filter with N ×M coefficients, decomposed into N bands,
each filter has M coefficients. This can be seen as a lexicographic reordering; rear-
ranging the 1-dimensional hP(n) coefficients row-wise into N rows, then reading
back the coefficients column-wise. The outputs of the filters are then connected
to an N -point Discrete Fourier transform, which creates the modulation effect on
the filter responses. When N is a power of 2, we can use an FFT, for which highly
efficient architectures exist. A general polyphase filter architecture is shown in
Fig. 3.

Each subband filter only operates on 1/Nth of the input samples. So filter
h0(n) operates on inputs x0, xN , x2N , · · ·, filter h9(n) operates on inputs x9,
xN+9, x2N+9, · · ·, and so on. These subband filters are thus run at 1/Nth of the
input sample rate. [5] This is what makes this method so attractive from the
computational perspective: the performance requirement in the subband filters
is 1/Nth of that for running them at full sample rate. Or alternatively, we can
share the same computational circuitry between the subband filters.
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Fig. 3. The polyphase decomposition

3 Previous Work

FPGAs are ideally suited to accelerating filters, due primarily to the provision of
embedded multipliers and multiply accumulate (MAC) units on modern devices.
Typically, finite impulse-response (FIR) filters are accelerated in hardware by
parallelising the MACs; a filter with k coefficients requires k MACs to run at
maximum speed. A more compact implementation can use fewer MACs, but
at a cost of more clock-cycles per result. Implementing FFTs on FPGAs is
straightforward nowadays, with efficient, feature-rich cores provided by device
vendors.

Most hardware implementations of polyphase filter banks so far have focussed
on much smaller problems. For spectrum sensing or filter bank-based com-
munications, we typically consider 128–2048 subbands and prototype filters of
increased dimensions. In [6], a 16-band polyphase filter bank architecture is pre-
sented, along with basic optimisations of wordlengths and multiplications. In
[7], a wideband channeliser is implemented on a Xilinx Virtex-4 FPGA, to ex-
tract frequencies of interest and recombine them in a narrower bandwidth. The
number of bands in this implementation is 32, and synthesis results are given.
In [8], we are presented with a polyphase filter bank implementation used in
MP3 decoding, again with a 32-band decomposition. This implementation is fo-
cussed on the MP3 standard, and little discussion of architectural optimisations
is presented.

The Xilinx FIR Compiler core [9] does offer a Channeliser mode, however this
only allows for a fixed implementation, and the specific architecture used for the
implementation is not discussed. We have been unable to identify any work that
focusses on polyphase filter bank implementations for spectrum sensing or for
reception. The dimensions of the problem differ significantly, and this is what we
tackle in this paper. This architecture facilitates much larger prototype filters, a
significantly increased number of subbands, and allows for runtime reconfigura-
tion of the filter bank parameters. We also focus on how state can be preserved
between application of the computational core to the different subbands in turn.
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4 Proposed Architecture

4.1 Overview

Our aim is to create a general filter bank architecture that can be used for both
spectrum sensing and for reception as part of a cognitive radio system. The basic
structure of polyphase filter banks was discussed in Section 2. An input signal
is commutated to a bank of FIR filters, the coefficients of which are derived
from the prototype filter using the method explained in Section 2. If we have N
subbands, then each subfilter is only activated once for every N inputs. Hence,
we can design a compact architecture by sharing the same filter hardware among
the subband filters and running it at the input sample rate. The outputs of the
filters are fed through to an FFT for combination.

4.2 Efficient Implementation

The challenge in sharing a single filter engine between the subband filters arises
because we need to be able to access a new set of coefficients in each clock
cycle, and store the intermediate state of the filter once the next sample has
been received into the filter. This would allow an N -band filter bank, with M
coefficients per subband filter, to consume the same area as an M point FIR
filter plus whatever resources are necessary for storing N different states. Fig. 4
shows an overview of the proposed architecture.

Prior to processing, we must load the coefficient memories. To preclude the
need for a large memory to store the prototype filter prior to distribution, we
distribute the coefficients directly into the combined memories. The load coeffs
input is pulsed. In the following cycle, the filter coefficients are fed in, one per
clock cycle on the coeff in input. The values of num bands and num sbcoeffs
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determine how the memories are written to. A shift register with a single 1 is
enabled when loading coefficients. This is connected to the write enable signal of
each of the memories, and shifts in each cycle, writing into subsequent memories.
num sbcoeffs determines when this shift register resets to the first index, hence
writing into the second address of the first memory. A counter that counts up
after each complete row of coefficients serves as the write address. Once the
coefficients are loaded, the circuit switches to processing mode, which is depicted
in Fig. 4.

The filters in our system have real coefficients but operate on complex inputs;
effectively, we have a duplicate filter for the imaginary part of the input, as for
the real part. We implement the filter core in transposed form. Each MAC has
a single cycle latency. To manage the sharing of the coefficients and storage of
intermediate data, we keep track of the current subband index in the register
sb count. This is a counter which counts up in every clock cycle. This counter is
used to address the coefficient memory, loading the correct coefficients for the
subband being processed.

Storing the intermediate state of the filter is accomplished in a similar fashion
to the coefficient control. Each MAC has an associated state memory, which
stores the output of the MAC into a location one cycle-delayed from the coeffi-
cient index. While we store the result for one subband, we are loading the state
for the next. Since we have dual-port memories on the FPGA, this arrangement
does not present any problems. By ensuring the index count loops at the cor-
rect maximum count (num bands−1), the data is correctly dealt with from one
complete iteration through the bands to the next.

The output of the filters is then rescaled (discussed in Section 4.3), before
being passed to the FFT core, the result of which, represents the system output.
The serial output of the FFT represents the combination of subband outputs as
per the polyphase definition.

4.3 Wordlength Considerations

When dealing with very large filters, we expect to see some very small coeffi-
cients. In the absence of floating point arithmetic units, we can either use wide
fixed point representations or manage scaling manually. Rather than make the
resource sacrifice necessary for wide filters, we choose to take advantage of a
property of the subband filters. Since each filter is independent of the next, it
is feasible to scale the coefficients of each filter independently of the others for
the filtering operation, as long as the scales are restored when the outputs of
the subband filters are combined. This gives us a significant area saving, while
maintaining filter accuracy.

In this implementation, the input samples have 16-bit signed real and imagi-
nary parts, the coefficients are also in 16-bit signed representation. This allows
us to make efficient use of the embedded DSP Blocks on the FPGA. The archi-
tecture allows for coefficients to be input as 32-bit numbers along with a scale
value. The scale value for each MAC is stored in a memory, and is used at the
output of the filter to correctly rescale the samples before they are passed to the
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FFT. The scale value must be computed in advance by the user, but is simply a
case of finding the maximum dynamic range for each subband filter and scaling
by a power of 2.

4.4 Reconfiguration

Changing the number of subbands or the size of each subband filter is facili-
tated at runtime. The load coeffs signal is simply asserted with new values for
num bands and num sbcoeffs. New coefficients are then fed into the system. Such
a reconfiguration is applied by changing the count limit for the commutator, ad-
justing which MAC output feeds into the FFT, and changing the FFT point
size (which is a supported feature of the Xilinx FFT Core). In this way, we can
dynamically switch the properties of the architecture to suit different sensing
and reception requirements.

5 Initial Results

The architecture has been synthesised for the Xilinx Virtex-5 XCVFX70T, as
found on the ML507 Development Board which is used for our cognitive radio
implementations. The architecture itself can achieve a maximum clock speed of
150MHz (or 125MHz as we exceed 80% device usage), which exceeds the 100MHz
bus requirement for our implementation framework. We initially provide results
for a reconfigurable implementation with a maximum subband count of 1024.

Resource usage can be estimated in advance, based on the maximum allowable
values for num bands and num sbcoeffs. While these values can be changed at
runtime, we must set limits, which determine the resource usage. The maximum
number of subbands determines the depth of the memories used for storing co-
efficients and state information. The maximum number of subband coefficients
determines the number of MAC units and hence the number of memories re-
quired. For 16-bit coefficients, we can store up to 1024 entries in a single 18Kb
Block RAM. Note that the Block RAM count returned by the tools for a Virtex-5
device counts 36Kb Block RAMs (which can be used as two 18Kb Block RAMs).
Hence, reducing the number of bands does not reduce the memory usage for stor-
ing the coefficients.

The state memories store 64-bit data (concatenated 32-bit real and imaginary
parts), hence for 1024 bands, we would require four 18Kb (or two 36Kb) Block
RAMs per state memory. For 512 bands, we would require two 18Kb (one 32Kb)
Block RAMs, and for 256 or fewer bands, we would require one 18Kb Block RAM
per state memory. We expect logic usage of the filter portion not to change with
a reduced number of bands, as the only difference will be the width of the address
counters.

The design’s area is dominated by BlockRAM and DSP48E usage, though the
FFT core adds considerable logic usage. For a 1024 band implementation, we
would be restricted to a maximum filter size of 57 taps, though we expect the
clock speed to be reduced when nearing 100% usage.
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Table 1. FPGA resource utilisation

Filter Coeffs LUT/FF Pairs BlockRAMs DSP48Es
8 1,120 20 16
16 1,760 40 32
32 3,170 80 64
48 4,480 120 96
1024pt FFT 7,100 4 13
Available 44,800 148 128

We believe performance can be increased by further pipelining of the memories
and MAC units, though this is not required for our purposes.

6 Conclusion

By exploiting the embedded memories and multipliers on modern FPGAs, we
have been able to design an efficient generalised architecture for polyphase filter
banks. It allows a single filter structure to be used by alternate subbands in con-
secutive clock cycles. The architecture scales up to the large dimensions required
for spectrum sensing, and due to the memory-based implementation facilitates
reconfiguration at runtime. By incorporating this design into our Cognitive Radio
framework [3], we can time-multiplex sensing with other functions of a cogni-
tive radio system on a smaller device. The reconfigurability of this architecture
makes it ideally suited to explorative research in the area.
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Abstract. Coarse Grained Reconfigurable Array (CGRA) architectures
give high throughput and data reuse for regular algorithms while provid-
ing flexibility to execute multiple algorithms on the same architecture.
This paper investigates systolic mapping techniques for mapping biosig-
nal processing algorithms to CGRA architectures. A novel methodology
using synchronous data flow (SDF) graphs and control and data flow
(CDF) graphs for mapping is presented. Mapping signal processing algo-
rithms in this manner is shown to give up to a 88% reduction in memory
accesses and significant savings in fetch and decode operations while pro-
viding high throughput.

1 Introduction and Related Work

Biosignal processing is widely used in the field of biomedical engineering. Biosig-
nals are generally one dimensional and multichannel. To perform monitoring
without interrupting the patient’s daily life, development of portable low power
biosignal processing devices is essential especially for implantable devices. A
Coarse Grained Reconfigurable Array (CGRA) architecture consists of a grid
of interconnected reconfigurable processing units which can perform logical or
arithmetic operations. CGRA architectures promise low power consumption and
high performance while maintaining high flexibility [1]. Mapping applications to
array architectures has been a topic of interest to researchers since efficient al-
gorithm mapping is crucial for achieving high performance. Mapping of some
DSP algorithms onto the MONTIUM coarse grained reconfigurable architecture
was presented in [2]. Applications were mapped specifically for the MONTIUM
architecture and the mapping was performance centric. A Synchronous Data
Flow (SDF) graph was presented in [3] for mapping and scheduling applications
to parallel DSP processors. It showed the usability of the SDF graph for con-
current and automatic scheduling for parallel processors. A Cyclo-Static Data
Flow (CSDF) graph was presented in [4]. It allowed static scheduling of high
frequency DSP algorithms in multi-processor environments. However, it is not
always possible to find repeatable finite schedules [5].

This paper presents a novel two layer data flow graph approach to map biosig-
nal algorithms in a systolic manner to CGRA architectures. There are two main
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differences between the proposed approach and previously proposed approaches.
First, the mapping of algorithms is done for CGRA architecture and hence the
mapping is constrained by the architecture. Second, the proposed mappings are
focused on low power consumption rather than high performance. Reading data
from memory is one of the most power consuming processes in the processor exe-
cution cycle [6]. Hence, power consumption is reduced by reducing the number of
memory accesses and elimination of the fetch-decode stages of the execution cy-
cle. The high degree of computational parallelism in CGRAs allows for aggressive
voltage scaling. Case studies of mapping for various biosignal processing algo-
rithms are provided. To the authors’ knowledge, this is the first time that systolic
style mapping for CGRA architectures has been described and evaluated.

2 Proposed Algorithm

To map an algorithm in a systolic manner onto a CGRA architecture requires
spatio-temporal mapping of the algorithm. To address this problem, the algo-
rithm which is going to be mapped is first presented as a Synchronous Data
Flow (SDF) graph [3] which is a very abstract view of the application and then
each node of the SDF graph is presented as a Control and Data Flow (CDF)
graph [7]. The algorithm is as follows:

Step 1: Prepare the SDF graph for the application

Step 2: Rearrange SDF graph for systolic mapping

To map the algorithm in a systolic manner, all of the computing elements should
run simultaneously and so the blocking factor (j ), which determines the number
of nodes run in parallel, should be equal to the number of nodes (n) presented
in the SDF graph. A series of rearrangements of the SDF graph needs to be
performed until the targeted blocking factor is achieved.

Step 3: Schedule the SDF graph

In systolic arrays, each CFU executes an operation in a single cycle and it ex-
ecutes the same operation during every cycle until the CFU is reconfigured or
disabled. If i is the index of the node in the SDF graph then scheduling (ψ)
will be:

ψi = {1}; ∀i (1)

Step 4: Prepare CDF graph for each node in SDF graph

A CDF graph for each node in the SDF graph is prepared. As mentioned before,
each CFU operation must be finished in a single cycle. So, this phase is dependant
on the architecture of the CFU. If a CFU is not able to execute the operation
in a single cycle then the operation will be divided into smaller operations and
the mapping process is repeated from Step 1.
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Step 5: Get the topology matrix and delay matrix

The topology matrix for the SDF graph is prepared. The operations of nodes
are allocated to CFUs according to the connectivity in the topology matrix (Γ ).
This operation allocation task is dependant on the interconnection topology of
the array and topology matrix act as a guide for this purpose. Because a systolic
mapping requires synchronization in data injection, the delay matrix is prepared
for applications where the data is not injected at the same time in all CFUs.

There are no specific rules in the SDF graph paradigm to constrain the number
of I/O ports in the node. So, to keep the mapping constrained to the number
of I/O ports in the CFU and since j = n, the following conditions should be
satisfied for the topology matrix.

Condition 1 (for binding number of output ports):

R∑
i=1

pin ≯ total number of outputs in a CFU

where R = number of arches in the SDF graph and p = number of produced
tokens at the node.

Condition 2 (for binding number of input ports):

R∑
i=1

cin ≯ total number of inputs in a CFU

where c = number of consumed tokens at the node.

3 Application Mapping

The algorithms listed in Table 1 were manually mapped to CGRA as shown in
Figure 1. The CFU model is shown in Figure 1(a). Each CFU in the CGRA
can perform one of the five operations, multiply accumulate (MAC), multiply
subtract (MSUB), addition (ADD), subtraction (SUB) or no operation (NOP).
The array architecture has interconnections as shown in Figure 1(b).

NOP – No operation
ADD – Add
SUB – Subtraction
MAC – Multiply accumulate
MSUB – Multiply subtraction

(a) (b)

Fig. 1. a) A model of the considered CFU; b) A CGRA architecture example



354 K. Patel and C.J. Bleakley

4 Results

All the algorithms described above were modelled and simulated using a Con-
figurable Array Modeller and Simulator (CAMS) [8] for CGRA architectures.
CAMS is a cycle accurate functional simulator for CGRA architectures written
in the Java programming language. For filters, coefficients were determined using
Matlab and the results were verified against Matlab. The performance figures
for the CGRA were compared with those for the TI C5510. For TI C5510 DSP
processor, the results were derived from manual and mathematical analysis of
equations from [9]-[10]. Table 1 shows a comparison in terms of the number of
operations and the number of CFUs required to map the algorithms discussed
in the previous section. The number of operations required for the CGRA ar-
chitecture and DSP is almost same in all the cases. However, using the CGRA
architecture, higher throughput can be achieved for continuous data processing
because of parallelism and systolic mapping.

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 0 0 0 0
0 1 −2 0 0 0
0 0 1 −2 0 0
0 0 0 1 −2 0
0 0 0 0 1 −2
0 0 0 0 0 1
−1 −1 −1 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(a)

1 21 -2
3 41 -21 -2

5 6
1 -21 -2

41 2 3 65
1

7
Data input

-1 -1 -1 -1 -1 -1

(b)

Input Data Coefficient

Store data in output register

Execution 
cycle

To next CFU

From output register 
of previous CFU

(c)

Fig. 2. a) 5 taps FIR filter SDF graph; b) FIR filter CDF graph for a single CFU

Table 1. Peformance of some common biosignal applications

Total Operations
Algorithm Iterations (for single iteration) Number

CGRA DSP of CFUs

FIR filter 256 6 6 6
Matrix Multiplication 25 67 64 16
Matrix Determinant 25 15 17 5

FFT Butterfly 25 9 8 8
Wavelet Filterbank 256 8 8 10

DFT 8 61 61 61

Table 2 shows the number of register accesses (RGA) and the number of RAM
accesses (RMA) required for the CGRA architecture and DSP. An improvement
in RMA of up to 8.5 times can be seen because of the systolic mapping.
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Table 2. Register and RAM accesses comparison for some biosignal algorithms

Algorithm CGRA DSP Memory access
RGA RMA RGA RMA reduction (%)

FIR filter 12 2 12 7 71
Matrix Multiplication 208 42 256 192 78
Matrix Determinant 35 16 26 10 73

FFT Butterfly 25 8 68 5 -60
Wavelet Filterbank 16 2 16 9 77

DFT 188 15 183 130 88

Fig. 3. RDR comparison of some biosignal algorithms

Fig. 4. A comparison of the required number of fetches, decodes and configurations
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Figure 3 shows a comparison of RAM Data Reuse (RDR) for all three CGRA
architectures. RDR is given by:

RDR =
Number of unique RAM addresses accessed

Number of RAM accesses
(2)

It is clear from the results that data reuse for CGRA architectures is considerably
higher than that of DSP processor except for the FFT butterfly.

Figure 4 shows a comparison of the number of fetch-decodes required on
a TIC5510 DSP and the number of reconfigurations required for the CGRA
architecture to execute the algorithms described before. The number of iterations
are shown in brackets. It can be seen that activity can be reduced by avoiding the
fetch and decode steps using systolic CGRA architectures for regular biosignal
processing algorithms.

5 Conclusion

This paper proposed mapping biosignal applications in a systolic manner onto
a CGRA architecture. To map biosignal processing algorithms on the CGRA
architecture, two types of graphs, SDF graph and CDF graph, were integrated
in the mapping procedure to garner the structure of the signal processing algo-
rithms. This type of signal processing technique shows up to a 88% reduction
in memory accesses for regular algorithms compared to that of a conventional
DSP. The paper illustrates the efficiency of the proposed approach for low power
biosignal applications.
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Abstract. Speaker identification is the process of identifying persons from their 
voice. Speaker-specific characteristics exist in speech signals due to different 
speakers having different resonances of the vocal tract and these can be 
exploited by extracting feature vectors such as Mel frequency cepstral 
coefficients (MFCCs) from the speech signal. The Gaussian Mixture Model 
(GMM) as a well-known statistical model then models the distribution of each 
speaker’s MFCCs in a multidimensional acoustic space. The GMM-based 
speaker identification system has features that make it promising for hardware 
acceleration. This paper describes the classification hardware implementation  
of a text-independent GMM-based speaker identification system. A speed factor 
of 90 was achieved compared to software-based implementation on a standard 
PC.  

Keywords: Speaker Identification, MFCC, GMM, Field Programmable Gate 
Array (FPGA).  

1   Introduction 

Speaker recognition is the process of automatically recognizing who is speaking by 
using speaker-specific information included in the speech waveform [1]. It is 
receiving increasing attention due to its practical value, and has applications ranging 
from police work to automation of call centres. Speaker recognition can be classified 
into speaker identification (discovering identity) and speaker verification 
(authenticating a claim of identity). 

Traditionally, most speaker identification systems have been based on software 
running on a single microprocessor. The problem with software is that its sequential 
operation means that it can be slow for high throughput real time signal processing 
applications. FPGAs have been used in many areas to accelerate algorithms by 
exploiting pipelining and parallelism in a much more thorough way than can be done 
using general-purpose microprocessors. To date, most attempts to apply FPGA 
processing to speech problems have focused on the problem of speech recognition  
[2-6]. Relatively few researchers have investigated the problem of hardware 
implementation of speaker identification [7] and these investigations have not aimed 
to achieve large speed-ups. 
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This paper presents results for the implementation of a text-independent, closed-
set speaker identification classification system on a platform consisting of an Alpha 
Data RC2000 PCI card equipped with a single Xilinx Virtex-II XC2V6000 FPGA. 
The goal was to achieve a system that can process a large number of voice streams 
simultaneously in real time.  

2   Speaker Identification System 

A block diagram shown in figure 1 is the top-level system designed to implement 
speaker identification. The input speech is sampled and converted into digital format. 
Feature vectors are extracted from the input speech in the form of MFCCs. Training is 
performed offline and results in a set of stored speaker models that are stored in 
RAM. The hardware implementation processes input speech streams, and performs 
feature extraction and classification. 

 
 
 
                                                                                                              

 
 

 

Fig. 1. Top-level Structure of Speaker Identification System 

2.1   Feature Extraction 

The purpose of feature extraction is to convert the speech waveform to a set of 
features for further analysis. The speech signal is a slowly time varying signal and 
when it examined over a sufficient short period of time, its characteristics are fairly 
stationary, whilst over long periods of time the signal characteristics change to reflect 
the different speech sounds being spoken. In many cases, short time spectral analysis 
is the most common way to characterize the speech signal. Several possibilities exist 
for parametrically representing the speech signal for the speaker identification task, 
such as MFCC, Linear Prediction Coding (LPC), and others. In this work MFCCs are 
chosen. Figure 2 shows a block diagram of the MFCC feature extraction. The digital 
speech signal is blocked into frames of N samples, with adjacent frames being 
separated by M samples. The first frame consists of the first N samples. The second 
frame begins M samples after the first frame, and overlaps it by N-M samples and so 
on. Each individual frame is windowed so as to minimize the signal discontinuity at 
the beginning and end of each frame.The Fast Fourier Transform (FFT) converts each  
 

 
 
 
 
 

Fig. 2. MFCC Feature Extraction Block Diagram 
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frame of samples from the time domain into the frequency domain. The frequency  
scale is then converted from the hertz to the mel scale, using filter banks, with 
frequency spaced linearly at low frequencies and logarithmically at high frequencies, 
and the logarithm is then taken. This is done in order to capture the phonetically 
important characteristics of speech in a manner that reflects the human perceptual 
system. The Discrete Cosine Transform (DCT) is then applied to the output to 
produce a cepstrum. The first 17 cepstral coefficients of the series are retained, their 
means are removed and their first order derivatives are computed. This results in a 
feature vector of 34 elements, 17 MFCCs and 17 deltas. These vectors (xt) are then 
passed on to the classification stage. The logic resources used for the hardware 
implementation of feature extraction are shown in table 1. Due to the low frequency 
of speech data and fully pipelined nature of the MFCC datapath, a very large number 
of speech streams can be multiplexed through one MFCC unit. 

Table 1. Logic resources for MFCC Module 

Logic Resources Numbers 
Slices 8696 
FFs 9187 
BRAMs 2 
LUTs 16317 
IOBs 98 
Emb. Mults 1 

2.2   Gaussian Mixture Models (GMMs) 

The GMM forms the basis for both the training and classification processes. This is a 
statistical method that classifies the speaker based on the probability that the test data 
could have originated from each speaker in the set [1,8].  

A statistical model for each speaker in the set is developed and denoted by λ. For 
instance, speaker s in the set of size speaker S can be written as follows 

λs = {wi, μi, σi}       i = 1,…..,M ; s= 1,…….,S (1)

where, w is weight, μ is mean, and σ is diagonal covariance. A diagonal covariance, σ 
is used rather than a full covariance matrix, Σ, for the speaker model in order to 
simplify the hardware design. However, this means that a greater number of mixture 
components M will need to be used to provide adequate classification performance. 

The training phase (which is performed offline) makes use of the expectation 
maximization (EM) algorithm [1,8] to compute the means, covariances and weights of 
each component in the GMM iteratively. 

In the classification stage a series of input vectors are compared and a decision is 
made as to which of the speakers in the set is the most likely to have spoken the test 
data. The input to the classification system is denoted as  

X = {x1, x2, x3,………..,xT} (2)
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The rule to determine if X has come from speaker s can be stated as 

p(λs | X) > p(λr | X)    r =1,2,……S (r ≠ s) (3)

Therefore, for each speaker s in the speaker set, the classification system needs to 
compute and find the value of s that maximizes p(�s|X) according to 

)(
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λλλ =  (4)

The classification is based on a comparison between the probabilities for each 
speaker. If it can be assumed that the prior probability of each speaker is equal, then 
the term of p(λs) can be ignored. The term p(X) can also be ignored as this value is the 
same for each speaker [1], so  
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Practically, the individual probabilities, p(xt | λs), are typically in the range 10-3 to  
10-8. With a test input of 10 seconds there are 1000 test vectors. When 10-8 is 
multiplied to itself 1000 times a standard computer and certainly any system 
implemented on an FPGA will underflow and the probability for all speakers will be 
calculated as zero. Thus p(X | λs) is computed in the log domain in order to avoid this 
problem. The likelihood of any speaker having spoken the test data is then referred to 
as the log-likelihood and is represented by the symbol L. The formula for the log-
likelihood function is [1] 

∑
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The speaker of the test data is statistically as the speaker s that maximizes the log-
likelihood function L. 

3   Hardware Implementation of Speaker Classification 

The formulas implemented in the datapath of the classification unit are: 
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The hardware uses Gaussian mixture models with 32 components. Equation 8 is used 
to compute log of the probability of each vector having come from a particular 
component of a given speaker model. This is computed in the log domain by a 
parallel array of datapaths using dynamically scaled 16-bit fixed point data. In general 
it is not possible to simultaneously instantiate 32 copies of the datapath, so the data 
must be multiplexed through a smaller number of computation units. For the 
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XC2V6000 chip, four copies of the datapath could be instantiated simultaneously. 
The limiting factor was the number of block multipliers available.  

The resulting values for ln(wibi(x)) are then fed through log-add blocks to compute 
equation 7. The log-add logarithm is a method that uses look-up-tables of a modest 
size to provide an efficient way to compute ln(A+B) in hardware when ln(A) and 
ln(B) are known [9]. The log-likelihood values L(�s) for each speaker in the set are 
computed through equation 6. Finally a classification is made based on the speaker 
with the largest log-likelihood value.  

4   Testing 

The accuracy of speaker recognition was tested using an utterance length of five 
seconds. Table 2 summarizes these results for both hardware and software. The 
accuracy is fairly similar with the software system showing some improvement over 
the hardware system. This is to be expected as the software implementation uses full 
double precision accuracy. However, the difference is tolerable given the significant 
speed up achieved in hardware.  

Table 2.  Hardware and software results for testing with 5s of test utterance 

Utterance length Software – 5 seconds Hardware – 5 seconds 
Test 1 80.77% 78.30% 
Test 2 56.40% 55.20% 
Test 3 68.54% 64.90% 
Test 4 72.75% 69.40% 
Mean 69.62% 66.95% 
S.D 10.17 9.61 
95% confidence 9.96 9.42 

Table 3. Hardware and software timing parameters 

System Parameter 
Hardware – XC2V6000 Software  

Data Transfer 
16.8ms for 500 vector 
transfer Not applicable 

Classification 
0.8ms per vector for 
speaker set of size 20 

69ms per vector for 
speaker set of size 20 

 
The speed of the software system was measured using a speaker set of size 20. Test 

data from one of the speakers was used and the experiment was repeated 100 times 
consecutively with an average being computed over the hundred. Table 3 presents the 
results from the software testing along with the results from the hardware testing on 
the XC2V6000 board.   

The classification part of the speaker identification system implemented on the 
XC2V6000 platform is 90 time faster than software. When considering real time 
implementation of speaker identification with feature vectors from one speech input 
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being provided every 10 ms the software system would only be able to perform 
calculations on five speaker models. 

5   Conclusion 

The analysis of hardware versus software has demonstrated that speaker identification 
classification is about 90 times faster on hardware. This means that the hardware 
system is capable of processing 90 times more audio streams in real time than could 
be done in a PC. The limiting factor for implementation on the XC2V6000 device is 
the number of embedded multipliers and its maximum clock speed. 

References 

1. Reynolds, D., Rose, R.: Robust Text-independent Speaker Identification using Gaussian 
Mixture Speaker Models. IEEE Trans. on Speech and Audio Processing 3(1), 72–83 (1995) 

2. Melnikoff, S., Quigley, S., Russell, M.: Speech Recognition on an FPGA Using Discrete 
and Continuous Hidden Markov Models. In: International Workshop on Field-
Programmable Logic, pp. 202–211 (2002) 

3. Melnikoff, S., Quigley, S., Russell, M.: Implementing a Simple Continuous Speech 
Recognition System on an FPGA. In: IEEE Symposium on Field Programmable Custom 
Computing Machines, Los Alamitos, pp. 275–276 (2002) 

4. Miura, K., Noguchi, K., Kawaguchi, H., Yoshimoto, M.: A Low Memory Bandwidth 
Gaussian Mixture Model (GMM) Processor for 20,000-Word Real-Time Speech 
Recognition FPGA System. In: International Conference on Field Programmable 
Technology (2008) 

5. Yoshizawa, S., Wada, N., Hayasaka, N., Miyanaga, Y.: Scalable Architecture for Word 
HMM-Based Speech Recognition and VLSI Implementation in Complete System. IEEE 
Trans. on Circuits and Systems, 70–77 (2006) 

6. Lin, E., Yu, K., Rutenbar, R., Chen, T.: A 1000- Word Vocabulary, Speaker-Independent, 
Continuous Live- Mode Speech Recognizer Implemented in a Single FPGA. In: 
International Symposium on Field-Programmable Gate Arrays (FPGA), pp. 60–68 (2007) 

7. Ramos-Lara, R., López-García, M., Cantó-Navarro, E., Puente-Rodriguez, L.: SVM 
Speaker Verification System based on a Low-Cost FPGA. In: Field-Programmable Logic 
and its Applications, pp. 202–211 (2009) 

8. Holmes, J.N., Holmes, W.J.: Speech Synthesis and Recognition, 2nd edn. Taylor & Francis, 
London (2001) 

9. Melnikoff, S., Quigley, S.F.: Implementing the Log-add Algorithm in Hardware. Electronic 
Letters (2003) 



An FPGA-Based Real-Time Event Sampler

Niels Penneman1,2, Luc Perneel3,
Martin Timmerman1,3, and Bjorn De Sutter1,2

1 Electronics and Informatics Department, Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium

2 Computer Systems Lab, Ghent University
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

{niels.penneman,bjorn.desutter}@elis.ugent.be
3 Dedicated Systems Experts

Bergensesteenweg 421 B12, 1600 St-Pieters-Leeuw, Belgium
{l.perneel,m.timmerman}@dedicated-systems.info

Abstract. This paper presents the design and FPGA-implementation
of a sampler that is suited for sampling real-time events in embedded
systems. Such sampling is useful, for example, to test whether real-time
events are handled in time on such systems. By designing and imple-
menting the sampler as a logic analyzer on an FPGA, several design
parameters can be explored and easily modified to match the behavior
of different kinds of embedded systems. Moreover, the trade-off between
price and performance becomes easy, as it mainly exists of choosing the
appropriate type and speed grade of an FPGA family.

Keywords: real-time testing, event sampling, logic analyzer, FPGA.

1 Introduction

Real-time (RT) computing systems have constrained reaction times, i.e., dead-
lines have to be met in response to events. Ensuring that the constraints are met
on a device for a given operating system and set of applications becomes difficult
as soon as either of them shows non-trivial behavior. For hard RT systems guar-
antees have to be provided, which is often done by means of worst-case execution
time analysis and by relying on predictable algorithms and hardware [1,2].

Given the criticality of the RT behavior for safety, quality of service, and other
user-level requirements, extensive testing of the RT behavior is often performed
on a full system. Hence precise methods are needed for observing that RT be-
havior. Some requirements of these methods are that (1) they should be fast
and accurate to allow the correct observation of events happening at high rates,
(2) they should be non-intrusive to make sure that the system under test (SUT)
behaves as similar to the final system as possible, (3) the methods should be
configurable for different measuring contexts, given the wide range of RT dead-
lines and of application behaviors, and (4) given that relatively few developers
will test RT behavior, the required infrastructure needs to be cheap.

P. Sirisuk et al. (Eds.): ARC 2010, LNCS 5992, pp. 364–371, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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On many embedded systems, the rate at which events occur is so high that
software-only solutions cannot meet the first two requirements. This paper
presents an FPGA-based event sampler which can be used in a hardware-software
cooperative approach. The SUT emits signals through hardware when events oc-
cur, which are then captured by the sampler. This system will be (1) fast enough
because it runs on an FPGA, (2) reconfigurable by altering design parameters
or by choosing different FPGAs, (3) cheap because it does not require high-end
FPGAs, and (4) non-intrusive because the required changes to the SUT are min-
imal. Our proposal is in line with today’s use of FPGAs to speed up EDA tasks
such as software-hardware co-design and system simulation.

The remainder of this paper is structured as follows. Section 2 provides more
background information on the problem of RT event sampling. The design of an
FPGA-based sampler is presented in Section 3, after which Section 4 evaluates
the performance obtained with this design, and Section 5 draws conclusions.

2 Real-Time Sampling System

The goal of our system is to sample signals emitted by the SUT, timestamp
them, and send them to the tester’s workstation for further interpretation.

Hardware signals corresponding to events on the SUT have to be emitted
with the least possible intrusion on its behavior. Furthermore, the emitted sig-
nals have to reach the logic analyzer with predictable, fixed latency; otherwise,
precise tracking of RT behavior is not possible. This rules out several existing
communication interfaces such as PCI, PCI Express and IEEE 1149.1 JTAG.

By contrast, General Purpose Input Output (GPIO) interfaces can be con-
trolled with fixed latency, using memory-mapped IO through GPIO registers.
The adaptation of a RT OS to emit signals via a GPIO interface upon events
is then limited to manual instrumentation of the code, adding at most a few
instructions per event. Similar uses of GPIO can be found in, e.g., [3,4].

Six commercially available logic analyzers have been evaluated [5,6,7,8,9,10].
None of these devices can sample for a prolonged time with high accuracy. Firstly,
most of them sample continuously, instead of only storing samples as events oc-
cur. Hence, large amounts of data are generated. Secondly, the available memo-
ries tend to be too small to capture a reasonable amount of events.

It is clear that both a large memory and event-based sampling are key to
solving our problem. For that reason, our design captures data from eight input
channels: four channels for actual test data, two channels for interrupt generation
testing, one channel for the SUT to signal an error, and one channel for times-
tamp counter overflow detection (optionally configurable as external input [11]).

Figure 1 shows an overview of our design. Samples are 32 bits in size, of
which 8 map to the input signals, and 24 are dedicated to the timestamp. The
timestamp is provided by a counter, operating at the sampling frequency. In
order to reconstruct the exact timing, counter overflows are also stored as events.
A control block on the data path enables the sampler to start and stop registering
events. Users can interact with this block through the management interface. The
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Fig. 1. Conceptual design of the logic analyzer device. Black arrows indicate data
edges, while white arrows indicate control signals.

control block may also stop the sampling process whenever errors are detected,
and provides reset functionality as a recovery mechanism. The samples stored
in internal memory can be retrieved through the output interface.

3 Logic Analyzer Design

This section discusses the different components of our design as a so-called Sys-
tem on a Programmable Chip (SOPC) on Altera’s Cyclone III FPGA devices.
Although our design will also work on more advanced FPGAs, our design choices
will be based on the EP3C25F324C8 FPGA. Some properties of the Cyclone III
device family are presented in Table 1.

3.1 Communication with the Workstation

As indicated on the right in Figure 1, the sampler needs to transmit sampled data
to the workstation of the tester. Moreover, the tester must be able to control the
sampler. Ethernet is fast enough for our purpose and future-proof with respect to
commonly used workstation configurations. Although hardware TCP/IP stack
implementations exist [12,13], they are either limited in functionality or overly
complex in terms of hardware and resource usage. Alternatively, Altera provides
a SOPC development environment [14] with ready-to-use components [15,16,17],
including the Nios II soft-core CPU and an Ethernet MAC suitable to run a
software TCP/IP stack. Opting for this solution requires us to design a custom
SOPC. The CPU can then be used to run both the TCP/IP stack and the
software control over the whole sampler.

In the structure of the whole RT sampler design, the five components on the
top right of Figure 2 implement the Ethernet interface. The Ethernet MAC core
has two streaming interfaces, one for transmitting (TX) and one for reading (RX)
data. Each of these interfaces needs to be connected to the data memory using

Table 1. Overview of some relevant features of targeted Altera Cyclone III devices

Device Logic Elements 9kb Memory Blocks Total RAM Bits PLLs Global Clock Networks
EP3C25 24,624 66 608,256 4 20
EP3C40 39,600 126 1,161,216 4 20
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Fig. 2. Structure of the whole logic analyzer design

scatter-gather DMA controller cores. The operation of these cores is defined
through DMA descriptors. In order to improve performance, a separate on-chip
memory region is allocated to hold these descriptors. The Nios II CPU connects
to all of these components using memory-mapped interfaces. The Ethernet MAC
and DMA cores implement slave ports and interrupt senders through which
they can be controlled and monitored. The CPU also needs access to the DMA
descriptor memory to allocate and initialize descriptors.

The software TCP/IP implementation running on the Nios II core controls
all this hardware. Output data to be transmitted to the tester’s workstation
is obtained from external DDR SDRAM via the DDR SDRAM controller. The
rationale for this type of memory is explained in Section 3.3.

3.2 Control over the Logic Analyzer

The Nios II CPU, on which the control software will run, comes in three dif-
ferent configurations [16]: economy, standard and fast. We chose the standard
configuration: the fast configuration is too large, offering features our software
cannot exploit, while the economy version does not offer enough performance.

The software [11] is built on the MicroC/OS-II RT OS [18]. Alternatives are
available, such as uClinux [19] and eCos [20]. Their Nios II ports [21] were not
considered because they were either outdated or lacked integration support with
recent Altera software versions. The TCP/IP stack is provided by InterNiche.

The initial memory footprint of the software varies between 1256 and 1350
kB, depending on how much debug code is included. As detailed in Section 3.3,
samples need to be moved from the SSRAM into the SDRAM before they can be
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Fig. 3. SOPC components constituting the SSRAM interface

sent over the network. Therefore, a buffer is allocated statically in the SDRAM
with the size of the SSRAM, which accounts for 1024 kB of the footprint.

3.3 Memory Architecture

Our logic analyzer requires memories to store the timestamped signals before
they are being transferred to the tester’s workstation. We opted for an approach
with three types of memory: on-chip RAM, SSRAM, and DDR SDRAM.

SSRAM provides burstable and hence predictable storage. The timestamping
core acts as a master to this memory to store samples through the interface shown
in Figure 3. The DMA controller at the bottom of Figure 2 also acts as a master
to transfer samples from the SSRAM to the SDRAM through the clock crossing
bridge. Clock crossing bridges add their address as an offset to the address of their
slave components. Since Altera requiresSOPC designs to use a flat memory model,
offset bridges must be introduced to compensate for this behavior.

In order to prevent other components from interfering with the single-port
SSRAM, the slower SDRAM is used as general-purpose data memory. This
means that the Ethernet interface also gets its data from the SDRAM. Sam-
ples are transferred to this SDRAM from the SSRAM in a fast and predictable
manner by the DMA controller, controlled by the software. By filling the buffer
internal to the timestamping core instead of writing samples directly to the
SSRAM, the SSRAM port can be freed to allow transfers to the SDRAM. Be-
cause the software controls both processes (unlike the Ethernet interface, which
is also dependent on external factors), it is capable of scheduling the reads and
writes to the SSRAM without blocking the timestamping core unnecessarily.

3.4 Timestamping Core

The gateware for the actual timestamping needs to fit in Altera’s SOPC model
to allow interaction with other components such as the CPU and memory de-
vices. For that reason the timestamping core is designed as a custom component
following the Altera SOPC standards. This core samples external signals, adds
timing information and manages an integrated on-chip buffer.

The pipelined data flow within the timestamping core is depicted in Figure 4.
The timestamp counter is continuously incremented at the sampling frequency.
First, raw input from the FPGA pins is combined with the value of the timestamp
counter into a sample. Next, the input bits are compared with the relevant bits
of the previous sample. When sampling is enabled and the inputs are different,
the new sample is enqueued in the on-chip FIFO buffer.
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Fig. 4. Pipelined data flow within the timestamping core

The on-chip FIFO buffer provides independent read and write ports. Adapter
logic enables the read side to operate as a memory-mapped bus master. The
address to write to in the SSRAM is provided by the address counter, which is
incremented on each write operation. A separate sample counter keeps track of
the number of samples written, and is incremented at the same time.

Due to the design of the memory-mapped master interface, the address counter
starts just before the base address of the external memory. While the number
of stored samples could be derived from the rightmost 19 bits of the destination
address, doing so would require a 19-bit addition. Although reporting on this
number is generally not a critical operation, detecting that the off-chip memory
is full is however critical. In the separate sample counter, bit 19 indicates this
condition. Therefore, using separate counters outperforms the solution with a
19-bit addition.

3.5 Clock Domains and Other Logic

The whole design was split in two clock domains, because the control over the
whole system is less time-critical than the components involved in sampling,
allowing optimal placement on the FPGA of the latter. Both domains interface
with each other through a clock crossing bridge as depicted in Figure 2.

3.6 Tuning the Design

The sampling accuracy of our design can obviously be improved by using faster
FPGAs or by using bigger ones on which the additional resources increase the
freedom of the fitter, which will hence be able to reach higher clock speeds.

The accuracy can also be increased by introducing a third clock domain for the
timestamping core, which runs at a higher clock rate than the SSRAM interface.
In this configuration, the size of the FIFO buffer internal to the timestamping
core will determine the maximum burst size. Larger buffers allow longer bursts,
but also require larger FPGAs. Since our design uses 63 out of 66 memory blocks
on our target device, there is barely any room left to experiment with these
features. Using more memory blocks severely limits the freedom of the fitter,
and hence results in a significant drop of the maximum sampling frequency.
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Table 2. Resource utilization of the complete design on an EP3C25F324 FPGA

Logic Elements RAM bits 9kb Memory Blocks PLLs Pins
16,670 (67.7%) 238,382 (39.2%) 63 (95.5%) 2 (50.0%) 130 (60.2%)

Fig. 5. Maximum sampling frequency obtained on several Cyclone III FPGAs

4 Performance Evaluation

All synthesis was performed with Altera Quartus II v9.0 [14], targeting the
Altera Cyclone III FPGA starter kit. Table 2 shows the resource utilization of
the complete design on the target FPGA. Figure 5 shows the maximum sampling
frequency on different Cyclone III devices. For each device, the SDRAM interface
was set to operate at the maximum frequency according to its speed grade.

To interpret these results, one should know that the EP3C40F484 devices are
next in line to EP3C25F324 devices when it comes to available LEs, M9K blocks,
and configurable IO pins; detailed specifications are shown in Table 1. The larger
devices result in a speed gain for the fastest (C6) and slowest (C8) speed grades.
However, the difference for the C6 grade is not significant, as results may slightly
vary with pin assignments or different synthesis parameters.

We can draw the following conclusions: Except for the C8 speed grade, the
resource utilization of the device on the FPGA does not harm its performance.
For sampling frequencies up to 150 MHz, the smallest, cheapest and slowest
FPGA (EP3C25F324C8) is sufficient. For sampling frequencies up to 200 MHz,
the C6 speed grade of the same size (EP3C25F324C6) is a safe bet.

5 Conclusions

This paper presented the design of an FPGA-based RT event sampler that can
be used to test the RT behavior of embedded systems. It supports fast, non-
intrusive sampling, and is cheap because low-cost FPGAs suffice. Its performance
scales very well with different FGPA classes and speed grades. Furthermore,
by changing some design parameters, such as buffer sizes, a wide range of RT
behaviors can be targeted easily, e.g., with or without long bursts of events.
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Abstract. This paper reports an evaluation of CUBE, which is a multi-FPGA
system which can connect 512 FPGAs in a form of a simple one dimensional ar-
ray. As the system well suits as stream-oriented application platforms, we evalu-
ated its performance by implementing edit distance computation algorithm, which
is a typical streaming algorithm. Performances are compared with Cell/B.E.,
NVIDIA’s GeForce GTX280 and a general multi-core microprocessor. The re-
port also analyzes pipeline utilization, and discusses performance efficiency, logic
consumption and power efficiency with comparison to other multi-core devices.

1 Introduction

There is a growing demand of high-performance computing systems to cope with in-
creasing data size and amount of arithmetic operations in various scientific computation.
On top of this, several multi-FPGA systems have been proposed as reasonable methods
to efficiently solve large-scale applications[1] which adopt extremely iterative algo-
rithms, or use large-scale data that cannot be loaded onto a single FPGA[2][3][4]. This
is the leading motive for launching a new project in 2008 to design a hardware platform
called CUBE[5], a system that can integrate a maximum of 512 FPGAs. CUBE is an
extremely simple system; 64 identical FPGAs on one board are connected in a form of
one-dimensional array topology, and its diameter can be extended by connecting mul-
tiple boards. These FPGAs do not have shared memories nor external local memories,
and all data are simply passed on to neighboring FPGAs with their 64-bit data path.

Despite its simplicity, CUBE is expected as high-performance platform for various
applications with intense computation by exploiting its systolic architecture. One suit-
able example is stream-oriented applications. In this work, we evaluate performance for
computing Levenshtein distance, which is a typical algorithm for stream-oriented pro-
cessing. Levenshtein distance is also called an edit distance of two character strings,
which is a number of operations for modifying one character string into the other.
This is a computational-bound algorithm with various exploitable parallelism, and is
often applied for performance evaluation of computation systems. The performance of
CUBE is studied in detail by comparing it with multi-threaded execution of software
on Cell/B.E., NVIDIA’s GeForce GTX280 and Core 2 Quad.

P. Sirisuk et al. (Eds.): ARC 2010, LNCS 5992, pp. 372–381, 2010.
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Table 1. Environment of C-
LD program code

CPU Intel Core 2 Quad Q6600 @ 2.4GHz
RAM 4.0 GByte
OS GNU/Linux 2.6.23 X86 64
Compiler gcc-4.1.2(-O3 -lpthread)

2 CUBE: A 512-FPGA Cluster

2.1 Architecture Overview

CUBE is a massively-parallel processing platform that consists of a large number of
FPGA chips. Fig.1 is a block diagram showing the basic idea of CUBE. The system is
made from multiple boards each containing a large number of FPGAs (64 FPGAs in
the figure). In the current design, each board contains 64 Xilinx FPGAs (XC3S4000-
5-FG676), and eight boards can be connected at maximum to integrate a total of 512
FPGA devices.

Each FPGA on the board is regarded as “PEs”, and they are connected in a form of
one dimensional array. Each of them accepts data from the previous, and passes to the
next PE. Like this, data are processed in a systolic manner. Global buses are not adopted
to the architecture in order to suppress wiring delay and to achieve higher scalability.

Due to systolic arrangement of FPGAs, application with intensive stream computa-
tion is preferable. Five types of applications have already been implemented on
CUBE[5]: 64 FPGA devices on a single board of CUBE could search 240 key space
in 1460 seconds with a power dissipation of 104W. Similar computing performance can
be obtained with a cluster of 359 Intel Quad-Core Xeon 2.5GHz processor, but with
approximately 690 times larger power consumption.
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3 Levenshtein Distance

Levenshtein distance (LD), also called ”edit distance”, is a score representing a degree
of similarity between two character sequences.

The score of edit distance is obtained by counting a number of operations required to
convert an original string (strA) to another string (strB). To do so, three types of basic
operations are defined:(1) substitution, (2) insertion, and (3) deletion. The calculation
proceeds obtaining values in element of the score table c. The size of the score table is
(lenA + 1) × (lenB + 1), where lenA and lenB are numbers of characters in strA and
strB, respectively.

All c(i, 0) and c(0, j) (The first row and first column) store initial values of i and j,
respectively. Each c(i, j) is calculated as following two steps; (1) Temporary variable
a is stored “1” when (i − 1)th character strAi−1 in strA equals to (j − 1)th character
strBj−1 in strB. If strAi−1 is not equivalent with strBj−1, a becomes “0”. (2) c(i, j)
is set as the minimum value among c(i−1, j)+1, c(i, j−1)+1 and c(i−1, j−1)+a.
Finally, a score between strA and strB is stored into a element c(lenA, lenB). Fig.2
shows an example of operating sequence for calculating the score between “write” and
“weight”.

4 Parallel Execution of LD Algorithm

This section describes the implementation of LD algorithm in C language. The pro-
gram was implemented to make its parallelism clear before FPGA implementation. It is
also used for comparing performance with multi-core processors and other accelerators
whose results are shown later. First, we discuss the inherent parallelism of LD algorithm
and then introduce problem reduction technique for multi-thread execution.

4.1 Parallelism of LD Algorithm

Calculation of the score table can be divided into multiple blocked processes as shown
in Fig.3. It shows the procedure to divide two sets of 24 strings into 36 sub-blocked
problems with six sets of 4 strings.

It is possible to compute Block B(0,1) and B(1,0) in parallel after completion of
B(0,0). In a similar way, blocks on dashed-line Tn can be calculated simultaneously af-
ter computation of blocks on Tn−1. Inputs of the calculation B(i, j) are: sub-sequences
of strA and strB, intermediate data p(i, j − 1) and q(i − 1, j) of a row and a column,
and top-left most data a(i− 1, j − 1) from neighboring blocks. B(i, j) transfers p(i, j),
q(i, j) and a(i, j) to its neighboring blocks. The number of simultaneously-computable
blocks increases when the length of an input sequence is large.

4.2 Implementation of Multi-thread Execution

The multi-thread program calculates the score among sequences using blocked algo-
rithm, which is supported by multi-thread execution using pthread library.
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The program introduces two parametrized features to evaluate the effectivity of multi-
thread operations. First is the block size for dividing the score table. For maximizing
parallel efficiency, a block must consist of a character, while overhead of thread syn-
chronization increases according to granularity of a block. Second is the number of
threads which run simultaneously. It can be specified independently from the number
of core in a microprocessor. Throughput increases when multiple threads is executed
on a single core. Both parameters can be specified as command-line options.

4.3 Performance of a Recent Multi-processor

To investigate the performance of recent multiprocessor, detailed analysis is necessary
using various parameter configurations. Number of calculating Levenshtein distance
were evaluated with a recent multi-processor as shown in Table.1. The implemented
program code was run with configurations set from two viewpoints, block size and a
number of thread.

First, we examined the number of concurrently-executable threads by fixing the
length of character sequences and run the program with various block sizes. Fig.4 shows
time required for computing character sequences which consist of 256 × 1024 charac-
ters with seven types of block sizes. It was improved according to the increase of block
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size and the number of thread. This performance degradation in small block size with
large number of thread may be caused by overhead of synchronizations among many
blocks. Performances using four threads were well balanced when the number of thread
was equal to the number of physical cores in Core 2 Quad processor.

Second, we studied the relationship between length of character sequence and com-
putation time with fixed block size and variable number of threads. The result is shown
in Fig.5. Note that y-axis is a logarithmic axis. Computation time increases according
to the increase of character length following the computational order of Levenshtein
distance O(N2). Fig.5 also shows that the performance is optimal when the number of
thread is equal to the number of core, except for a case when the length of a character
sequence is 4096. In this special case, the best performance is obtained using only one
thread, because the length of character sequence is equal to the block size.

5 Implementation on CUBE

For hardware implementation on CUBE, calculation- and data-flow among FPGA chips
must be discussed first. As CUBE is a large one-dimensional FPGA array, data-flow
must have one-way traffic throughout the first FPGA chip to the last one. In addition, for
achieving pipeline efficiency, it is essential to consider both on-chip and off-chip data
flow. As a set of data is transferred between adjacent two FPGAs in one-way traffic,
CUBE can be regarded as a large systolic array. Therefore, calculation of LD using
CUBE is divided into two stages: data-transfer stage and computation stage.

5.1 Data-Flow between FPGAs

The blocked algorithm is also considered as a reasonable and proper way to divide
operation for parallel execution using FPGAs. Through operation process of LD in
Fig.2, an appropriate approach is for each FPGA to take a vertical block array, as shown
in Fig.3. Fig.3 shows an example of off-chip data-flow, when six FPGA chips consist
the system.

An FPGA “PE0” in Fig.3 holds the first sub-sequence of strB0 and compares with
the sub-sequences from strA0 to strA5 per calculation stage. PE1 and following PEs
calculate the i-th column of the score table in a similar way.

Fig.6 shows a computational scheme of LD with four blocks on four FPGAs con-
nected in series. Before starting computation, sub-sequences strBj are distributed to
each PEs. The size of sub-sequence is selected appropriately in order to be calculated in
a PE. If the number of sub-sequences is larger than the number of PEs, the calculation
is repeated. In case when the number of sub-sequence is less than the number of PEs,
computation would be done using FPGAs with small ID numbers. In this case, the re-
maining FPGAs are not involved in the computation, and its results would be bypassed
throughout the systolic chain.

At a transfer stage, sub-sequences strAi are thrown into the input signals of CUBE.
At a calculation stage, all PEs compute a block algorithm using input strAi and pi from
the previous PE, then transfer strAi and p(i,j) to the next PE. All PEs transfer calculated
results a(i,j), pi and sub-sequence strAi. Calculated result q(i,j) and sub-sequence strBj

are reused in the PE.
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At the end of computation, the tail PE outputs the score a(3,3) with other intermedi-
ate data p(3,j) and a(3,3) which are used in the next round for computation of a large
sequence. In this case, intermediate data q(i,3) in each PE have to be gathered to PE3
for reuse after computation.

5.2 Calculation Inside FPGA

Each FPGA performs a block calculation. The core computation is consisting of an
addition and comparison for three data (See Section 3). The block calculation is com-
posed of circulation of the core computation for two sub-sequences and intermediate
score data.

An implemented architecture for LD is shown in Fig.7. The architecture consists
of two layers: LD thread module and LD core module. The microcode-based architec-
ture is adopted for extending or updating FPGA. Both modules have a controller with
memory to select calculation data. These memories are implemented by BlockRAM of
Xilinx’s FPGA.

An LD core calculates a score of 8 × 8 strings with a computational core which has
three sets of a comparator and an adder. The input data is selected by control mem-
ory every clock cycle. As all modules are recommended to drive over 100MHz from
hardware constraint. LD core module forms four-stage pipeline consisting of reading
computation data from registers, adding scores, comparing them, and writing back the
score to intermediate registers and p or q registers for output transfer.

The LD core completes calculation for 8 × 8 strings for 80 clock cycles. The com-
putation ratio, which is the rate of productive operation by the whole clock cycles, is
64/80 = 0.8.

The LD thread has 16 LD cores for effective use of FPGA. The controller in
LD thread issues instruction of 8 × 8 strings calculation to each LD core in series.
The controller issues instructions every 83 clock cycles each of which includes reading
and writing to p and q memories in the LD thread. As the number of LD core increases
and decreases according to advance of computation, the net of computation ratio in an
LD core becomes 0.398.
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Table 2. Resource utilization and op-
erating frequency

LD thread LD unit XC3S4000
Slices 22483 1340 27648
FFs 17985 1063 55296
LUTs 42369 2496 55296
BRAMs 10 1 96
Freq. 125.594 156.966 -

Table 3. Power requirement for each
systems

Vendor Device Power (W)
Intel Core2Quad Q6600 105
Sony ZEGO(BCU-100) Cell/B.E. 330
NVIDIA GeForce GTX280 236
Imperial CUBE (8 boards) 832
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6 Evaluation

6.1 Hardware Resources

All modules were written in Verilog-HDL, and synthesis, placement and routing were
done by Xilinx’s ISE10.1i. Target device of the design is Xilinx’s Spartan-3 (XC3S4000-
5-FG676) on CUBE. Any instruction memories in LD modules and p- and q- memories
in LD thread were utilized from Xilinx’s LogiCORE BlockRAM.

Table 2 shows estimations of logic resources and operating frequencies of each mod-
ule. Constraints of the design are to integrate all LD thread modules and data-transfer
FIFOs into a single FPGA, and also to maintain the internal operating frequency higher
than 100MHz. The architecture of this implementation can be easily extended for other
FPGAs with larger logic resources.

6.2 Computation Speed

The performance of each FPGA in CUBE is estimated assuming 100MHz of operating
frequency, and data transfer rate of 64 bits per clock cycle. Each FPGA takes 2573 clock
cycles to calculate score of 128 strings, and 82 clock cycles to transfer 644 Bytes. The
transferring data has a header flit at the head of a packet. Above values are introduced
by following equations:

[calculation time] = 83× (1 + 2 + · · ·+ 16 + 15 + · · · 1) = 2573[clock cycles] (1)

[transfer time] = (strAi + pi + aij)/64 = (1× 128 + 4× 128 + 4)[Bytes]/64

= 80.5[clock cycles] (2)

Since sending and receiving operations are overlapped, the total time by calculation
and transfer stages is 2573 + 82 = 2655 clock cycles. When the number of block n in
both sequences are less than 512, number of block calculation is 2n − 1 times. When
n is larger than 512, the computation time is simply the multiple of computation time
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in case of n = 512. If sequence length is 128K characters (n = 1024), calculation of
n = 512 is repeated for four times.

6.3 Competitions of Computing Environment

To analyze the computing performance for LD, four computing environments were used
to measure their performance: (1) three variations of CUBE: a single Spartan-3, one
board of CUBE, and full system of CUBE with eight boards, (2) Core 2 Quad (dis-
cussed in Section 4), (3) Cell/B.E. which is equipped on ZEGO(BCU-100)[6], and (4)
NVIDIA’s GeForce GTX280 as a GPU.

Performances of these platforms are evaluated by three standpoints, computation
time, operating performance and power efficiency. The results of them are shown in
Fig.8, Fig.9 and Fig.10, respectively. Fig.8 shows the calculation time to obtain the
score of various length of LD.

As the LD algorithm described in Section 3 is accumulation of score calculation to
fill a score table, performances are also obtained by the number of operation to get a
score in each operation. Fig.9 shows the operation throughput in one second. Power
consumptions are shown in Fig.10, where the results are normalized to the consuming
power of CUBE.

7 Discussion

7.1 Performance Improvement for CUBE

As the result of these evaluations, CUBE shows the best performance compared to other
devices even though naive blocked algorithm was adopted. For achieving better perfor-
mance, the most important factor is to consider the density of calculation. According
to Section 5.2, the computation ratio in LD thread is 0.398. The simplest method to
achieve higher computation ratio is to modify the “granularity” of computation.

In the current implementation, the base unit of computation is a “string” with 8 char-
acters to be calculated by a single LD core module, and 16 strings comprise a single
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“block”. Thus, 128 characters are calculated within a single block. In this case, the
computation ratio r in LD thread is:

r = 0.398 × (1 + 2 + · · · + 16 + 15 + · · · + 1)/16/(16 + 16 − 1)) = 0.205 (3)

According to this computational ratio, logic resources in CUBE is not effectively used.
Due to the nature of blocking algorithm, there is only one stage out of 31 stages that all
16 LD core modules are being used in case of a single block with 128 characters.

To improve the computational ratio r, the number of characters in a single block
should be increased. Assuming that 256 characters are in a single string (or LD thread),
the computational ratio becomes:

r = 0.398 × (1 + 2 + · · · + 16 × 16 + 15 + · · · + 1)/16 × 2
/((15 + 16 + 15) × 2) = 0.268 (4)

In this case, all 16 LD thread modules become active for multiple stages, which enhance
the operational ratio of computational units.

7.2 Performance Comparison

From the results of GPU and CUBE in Fig.9, operation throughput increases quadrat-
ically while the system has resource capacity. However, when the size of sequences
reaches the specific length, operation throughput are suppressed the definite speed.

Power consumptions were estimated as shown in Fig.10 normalized to the power
of CUBE. This was obtained based on Fig.9 and data-sheet values of each devices
shown in Table 3. Fig.10 shows that CUBE can provide a good power efficiency. These
quantitative results suggest that CUBE is a power efficient system.

8 Conclusion and Future Work

This paper reported and discussed implementation and evaluation of Levenshtein dis-
tance (LD) algorithm for CUBE, which is a computation system using maximum of 512
FPGA devices. By exploiting data- and loop- level parallelism in LD, CUBE shows the
best performance compared to other implementations of x86 multiprocessor, Cell/B.E.
and GeForce GTX280.

As a future work, bit-parallel and pruning techniques will be implemented on CUBE.
Also, further performance analysis such as relationships between number of blocks and
computational performance will be conducted in order to find the number of threads
that extracts the highest potential performance of CUBE.
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Abstract. Physical Unclonable Functions promise cheap, efficient, and
secure identification and authentication of devices. In FPGA devices,
PUFs may be instantiated directly from FPGA fabric components in
order to exploit the propagation delay differences of signals caused by
manufacturing process variations. Multiple delay based PUF architec-
tures have been proposed. However, we have observed inconsistent results
among them. Ring Oscillator PUF works fine, while other delay based
PUFs show a significantly lower quality. Rather than proposing complex
system level solutions, we focus on the fundamental building blocks of
the PUF. In our effort to compare the various delay based PUF archi-
tectures, we have closely examined how each architecture maps into the
FPGA fabric. Our conclusions are that arbiter and butterfly PUF ar-
chitectures are ill suited for FPGAs, because delay skew due to routing
asymmetry is over 10 times higher than the random variation due to
manufacturing process.

1 Introduction

A Physical Unclonable Function (PUF) has the unique advantage of generating
volatile chip-specific signatures at runtime. It not only excludes the need of an
expensive non-volatile memory for key storage, but also offers robust security
shield against attacks. It is emerging as a promising solution to issues like in-
tellectual property (IP) protection, device authentication, and user data privacy
by making device specific signatures possible.

The majority of the PUF designs are based on delay variation of logic and
interconnect. The fundamental principle followed in these delay-based PUF is to
compare a pair of structurally identical/symmetric circuit elements (composed
of logic and interconnect), and measure any delay mismatch that is introduced
by the manufacturing process variation, and not by the design.

We will show that Arbiter PUF and Butterfly PUF are inherently difficult
to implement on FPGA due to the delay skew present between a pair of circuit
elements that are required to be symmetric in these PUFs. This static skew is
an order of magnitude higher than the delay variation due to random process
variation. Our main contribution in this paper is to present the complexities in
implementing two PUFs on a 90nm commodity FPGA platform.A more detailed
technical report discussing the root causes of these complexities and details of
our implementations is available in [6].

P. Sirisuk et al. (Eds.): ARC 2010, LNCS 5992, pp. 382–387, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 Background

A PUF is a function that generates a set of responses while stimulated by a set
of challenges. It is a physical function because the challenge-response relation is
defined by complex properties of a physical material, such as the manufactur-
ing variability of CMOS devices. Its unclonability is attributed to the fact that
these properties cannot be controllably reproduced, making each device effec-
tively unique. Though many PUF architectures have been proposed, we focus
on the categories of PUF based on the delay variation of logics and intercon-
nects, specifically the arbiter PUF (APUF) and the Butterfly PUF (BPUF).
In the technical report [6], these architectures are also compared with the ring
oscillator PUF architecture [5].

Arbiter PUF - An APUF, proposed by Lim et.al [2], is composed of two
identically configured delay paths that are stimulated by an activating signal(Fig.
1(a)). The difference in the propagation delay of the signal in the two delay
paths is measured by an edge triggered flip-flop known as the arbiter. Several
PUF response bits can be generated by configuring the delay paths in multiple
ways using the challenge inputs.

Fig. 1. (a). The Arbiter PUF structure. The symmetric pairs of components are high-
lighted with matching patterns. (b) A BPUF cell with two cross coupled latches.

Butterfly PUF - The Butterfly PUF, proposed by Kumar et.al [3], is a tech-
nique that aims to emulate the behavior of an SRAM PUF [1]. However, the
functionality of this PUF is based on the delay variations of interconnects. A
BPUF cell employs two cross-coupled latches, and exploits the random assign-
ment of a stable state from an unstable state that is forcefully imposed by
holding one latch in preset while the other in clear mode by an excite signal
(Figure 1(b)). The final state is determined by the random delay mismatch in
the pair of feedback paths and the excite signal paths due to process variation.

The equation for delay d of a net N in a circuit is shown in Equation 1, where
dS is the static delay as determined by the static timing analysis tools, and dR
is the random delay component due to process variation.
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dN = dS + dR (1)

The delay difference between two nets, N1 and N2 , in a circuit maybe be ex-
pressed as a sum of static delay difference ΔdS and random delay difference ΔdR
[6] as shown in Equation 2.

Δd = dS1 − dS2 + dR1 − dR2 = ΔdS + ΔdR (2)

A delay-based PUF circuit involves extraction and comparison of the random
delay, dR while minimizing ΔdS. In the ideal case for a delay based PUF, ΔdS →
0 and the delay skew is purely a function of the random delay component.
However, typically the output of a given PUF structure will be at least partially
dependent on ΔdS, causing the output to be biased. Further, if ΔdS > ΔdR,
the effect of random variation becomes insignificant, and the output of the PUF
structure becomes static regardless of dR. The effectiveness of the PUF depends
on how much symmetry we can achieve between a particular pair of elements in
order to minimize the effect of ΔdS. This symmetry requirement determines the
implementation complexity of a PUF on FPGA.

In Figure 1(a), the basic structure of APUF, is shown. The pairs of nets
connected to the multiplexers (pairs shown with different patterns) need to be
symmetric in order to minimize ΔdS. In figure 1(b), a BPUF cell is presented.
For a functional BPUF, the pair of nets AB/AC as well as XY/X’Y’ need to be
symmetric along with the latches.

3 PUF Architecture in FPGA

The Xilinx Spartan3E FPGA device that we used as a platform in our exper-
iments is made up of Configurable Logic Blocks (CLBs) surrounded by a sea
of interconnect. Inside the CLB, there are 4 slices which contain configurable
look-up tables and flipflops. In this section, we examine the mapping of PUF
elements into this structure.

3.1 Arbiter PUF

The two primary components required for the Arbiter PUF architecture are the
switches and the arbiter itself. A useful secondary component is a delay element:
trivial logic that inserts additional delay into the paths. We used identical 2-input
MUXes in two different slices for the switches. The arbiter was instantiated as a
positive clock-edge triggered flipflop in a slice. A look-up table in a slice served
as the delay element. We examined several different mapping schemes for these
components [6].

Using timing analysis tools, we observed the routing delay caused by each com-
ponent. This value does not account for the manufacturing variability. Therefore,
we hoped to find identical static delays for symmetric routes. Figure 2(a) shows
the delay caused by each component for a possible route. There are two values
for the switch component: Switch Nominal is the delay of the signals when the
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Fig. 2. (a) Individual delays of each component. (b). Cumulative delay of the path
through after each component.

paths are straight, Switch Crisscross is the delay of the signal when the paths
are crossed. Figure 2(b) shows the cumulative delay of the signal propagated
along the route when the switches are crossed.

These results indicate that this PUF structure will not function. The 3σ value
of delay variation due to process variability in 90 nm technology has been es-
timated to be approximately 3.5% [4]. On the other hand, we observe that in
this case, variation due to routing is much higher than expected variation due
to process variability: dS/dR is 25.6 times.

There are two causes of routing variation in this design: the asymmetric routes
for the switch crisscrossing paths and the much more dramatic asymmetric routes
to the arbiter. The larger difference in arbiter routes is due to the fact that
routing to a CLK input of a flipflop requires sending the signal through multiple
additional segments to reach the CLK port, whereas the route to the D input of
the flipflop is comparatively simple.

All attempted mapping schemes produced similar results. While some di-
rections significantly reduced the routing delay, a difference of at least 100 ps
remained. Figure 3 shows the delays we observed for the arbiter component
in each direction, depending on the location of the arbiter, and the mapping
scheme. Under the best possible conditions of 2 CLB mapping and West to East
placement, we observe ΔdS/ΔdR to be 11.6 times.These results indicate that
additional delay due to the complexity of routing a signal to the CLK input of
a flipflop cannot be avoided using current routing schemes and architectures.
Asymmetry in routing of crisscrossing switch routes is also present, but that
delay difference is dwarfed by the arbiter.

3.2 Butterfly PUF

Though the pair of latches can be safely assumed to be identical in a Butterfly
PUF, the real design challenge comes when a designer has to ensure that the
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Fig. 3. Delay difference in routing to the D input and the CLK input of a slice under
various conditions. NS - North to South layout; SN - South to North; EW - East to
Wes; WE - West to East.

Fig. 4. (a) The delay values of nets XY and X’Y’. Two configurations correspond to
two possible placements of the pair of latches inside a CLB. (b) The delay values of
nets AB and AC. Eight configurations correspond to four possible placements of the
excite signal buffer in a CLB for each of the two possible placements of the latches in
the CLB.

interconnection pairs (XX’/YY’ and AB/AC) are symmetric. Since no layout
level information inside the switch box is available, we depend on the static
delay values provided by the design tool. In Figure 4, we present a set of data
showing the delay skew in the pair of nets AB/AC and XY/X’Y’ (refer to figure
2(b)) as a result of automatic routing with timing constraint.

For the delay skew in XY/X’Y’ net pair, the minimum value of the ratio
ΔdS/ΔdR is estimated to be 17 whereas the same quantity for the delay skew in
AB/AC is 16. Since ΔdS is an order of magnitude higher than ΔdR, it is obvious
that this PUF implementation will produce highly biased outputs. Even with the
manual routing, it has been observed that the delay of a pair of interconnects
do not match based on the static delay value. From the results it is evident that
BPUF cell suffers from the asymmetric nature of the FPGA routing resources.
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Thus, our observations contradict the results presented in [3]. However, we note
that our experiments have been done on a Spartan-3E FPGA, and not on a
Virtex-5 as used in [3].

4 Conclusion

In this work, we have analyzed how the peculiarities of FPGA routing affect
the implementations of delay based PUFs. Our results show that symmetry re-
quirements for Arbiter and Butterfly PUF architectures cannot be satisfied us-
ing available FPGA routing schemes, despite the apparent routing flexibility of
FPGA devices. Using the best possible routing, the delay difference due to static
variation routes is an order of magnitude higher than expected delay variation
due to manufacturing variability. Yet an architecture without the mirror symme-
try requirement, such a Ring Oscillator based PUF, can produce a working PUF.
Ultimately, understanding how a particular PUF architecture maps into FPGA
fabric allows us to select a promising architecture for further investigation and
characterization of PUF circuits in FPGAs.
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Abstract. Most of reconfigurable processors are adopting bit-parallel
computation. On executing a program on such a reconfigurable proces-
sor, since bit-parallel computation require more hardware than bit-serial
one, programs are often divided into several configuration and executed
sequentially, which cause large overhead on performance. To solve the
problem, we have developed a reconfigurable processor based on bit-
serial operation, which can execute more operations in a reconfigurable
part enough to prevent such a division of configuration and keep the chip
area small. This paper shows that a reconfigurable processor based on
bit-serial computation achieves higher performance than the traditional
one based on bit-parallel computation under the condition of same chip
area, by the evaluation using median filter as benchmark program.

Keywords: Reconfigurable processor, Bit-serial computation, Perfor-
mance evaluation, DS-HIE.

1 Introduction

For various types of applications many systems have been implemented with a
reconfigurable processor as an accelerator [1][2]. In principle, a reconfigurable
processor can achieve high performance as same as ASIC when enough oper-
ation units required in the target application is included in the reconfigurable
processor. In fact, however, it is difficult to prepare enough operation units since
the overhead of chip area or delay by the circuit to provide its reconfigurability is
large. Therefore, we need to divide the target application into several parts then
execute each part with dynamically reconfiguration. Such a division of target
application, however, causes more overheads on chip area or delay since data
transfers between divided parts are inserted. As the result, the performance gap
between ASIC and reconfigurable processor becomes larger. From these point,
it is important to decrease such an overhead caused by data transfer.

To prevent the overhead by data transfer, our objective is to prepare many
operation units in a reconfigurable part while keeping chip area small. To achieve
the objective, we have developed a reconfigurable processor DS-HIE [5][4] which
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adopts bit-serial computation method. By utilizing bit-serial computing, more
operation units in the DS-HIE processor can be implemented than that of the
well-known bit-parallel computing processor. This paper confirms that the DS-
HIE processor achieves higher performance compared with that of bit-parallel
computation by adopting bit-serial computation, under the condition with same
chip area.

The organization of this paper is as follows. Section 2 summarizes the DS-HIE
processor then Section 3 explains the detailed design of the DS-HIE processor.
Section 4 compares the DS-HIE processor with a processor which adopts a bit-
parallel computation in terms of gate counts. Section 5 shows the results of
performance evaluation of the DS-HIE processor, the benchmark program is
median filter. Finally, Section 6 concludes this paper.

2 Overview of DS-HIE Processor

The key features of the DS-HIE processor which achieves high performance in a
reasonable chip size are as the following

– By adopting bit-serial computation, the DS-HIE processor can have more
operation units that which adopts bit-parallel computation.

– Benes network adopted as routing resource can provide a rich network while
keeping chip size small.

– Feedback path in a Operation Stage can provide further flexibility on routing.

In this paper, the page count is limited so please refer to the paper [4] [5] for its
details.

Figure 1 shows the block diagram of the DS-HIE architecture, which consists
of a Data Supply Unit, an Input Buffer, an Output Buffer, a Context Buffer and a
Reconfigurable Part. A RISC processor plays the role of a control processor of the
DS-HIE processor. Upon execution, the RISC processor transfers the data to the
Input Buffer through the Data Supply Unit, and sends an execution signal. When
the DS-HIE processor receives the execution signal, it starts processing the data
in a streaming manner. While the DS-HIE processor is processing the data, the
RISC processor prepares the next piece of data and receives the calculated data
from the Output Buffer. Furthermore, the Context Buffer has two context entries,
which represent configuration information for the DS-HIE processor. While one
of the two entries is used for execution on the DS-HIE processor, the another
can be used for prefetching the next Context.

3 Detailed Design of Bit-Serial FU

This section describes the detailed design of the Bit-Serial Function Unit(BS-
FU) in the DS-HIE processor developed for this paper’s evaluation. At first, we
will look at timing adjustment method adopted in the bit-serial FU then will
move onto the specification of the bit-serial FU.
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DS-HIE processor

Input Buffer

Reconfigurable Part
Fig. 1. Block Diagram of DS-HIE processor Fig. 2. Method for Timing
Adjustment

3.1 Timing Adjustment Unit

Bit-serial computation processes only one bit of data at a time, so that the bit
positions of data inputted into a function unit must be aligned when the function
requires two or more inputs. To align bit position, we adopted a method which
stores two inputs before a BS-FU then feeds the two input data into the BS-FU,
as shown in Figure 2. In this method, each buffer stores input data until the
another buffer keeps an input data. If both input buffers are filled, then both
buffers start to feed the data into its BS-FU at same timing.

The reasons why we adopted this method are as follows:

– The number of timing adjustment units required is same as the number of
the BS-FU. So it is reasonable to place a timing adjustment unit before a
BS-FU rather than to place a timing adjustment unit independent with a
BS-FU.

– For shift operation, we can implement it in a BS-FU within small chip area
by utilizing the buffer for timing adjustment placed in front of the BS-FU.

– For multiply operation, we can adopt serial-parallel multiplier [3] by im-
proving a timing adjustment unit to feed bit-parallel data as multiplier’s
input. By the improvement of a timing adjustment unit, a BS-FU can be
implemented in a small chip area, compared with one adopted serial-serial
multiplier.

– A buffer in a timing adjustment unit can be used as a storage for storing a
constant data.

3.2 Specification

In DS-HIE processor, bit-width of operation executed in the BS-FU is 16bits.
The reason why 16bit was selected is because the first target application of the
DS-HIE processor was image processing. The BS-FU in the DS-HIE processor
has two inputs and one output, however the destination of the output can be
sent to two different destination.

    
RISC

Processor

Output Buffer

Context Buffer

Operation Stage

Benes Network

Benes Network Function Unit

...

...
...

one word of operation

bit-serial function unit
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Fig. 3. Timing chart of BS-FU Fig. 4. Block Diagram of BS-FU

Figure 3 shows the timing chart of the BS-FU. It takes 16 cycles to store all
bits of an input data since its first bit is stored. These input data are stored in
buffers inside of a timing adjustment unit. The timing adjustment unit allows
input data of the BS-FU to arrive at different timing. After both input data are
arrived, the timing adjustment unit supplies these data at same timing.

3.3 Organization

Figure 4 illustrates the block diagram of the BS-FU. The BS-FU consists of a
Shifter/Timing Adjustment Unit, ALU and MUL. The Shifter/Timing Adjust-
ment Unit includes a timing adjustment unit described in previous subsection.
Further, the MUL in the BS-FU requires bit-parallel data of the input Bin, as
described later, so that the Shifter/Timing Adjustment Unit also provides the
bit-parallel data of Bin. These functions of the Shifter/Timing Adjustment Unit
are specified by a context data.

The operations executable in the ALU are ADD, SUB, AND, OR, XOR, NOT,
and NOP. The ALU has two bit-serial input port and one bit-serial output port.
These operation of the ALU is specified by a context data.

The MUL is a serial-parallel multiplier[3] which one input is a bit-serial data
and the another is a bit-parallel data. The serial-parallel multiplier requires a
buffer to convert a bit-serial data to a bit-parallel data and save it. The buffer in
the Shifter/Timing Adjustment Unit is also used as a buffer for the conversion,
so we do not need an additional buffer in the BS-FU. The low order word of
the product appears at the ML output, and the high order word appears at the
MH output. The MUL starts to output high order word after the last bit of
the low order word is outputted, so it takes 50 cycles to finish entire multiply
operation including the high order word of the product.

The configuration data for the BS-FU requires 16 bits, which consists of the
following bits, 6 bits for output select, 4bit for ALU, 4 bits for shift operation
and multiplier, and 2 bits for constant data mode.

4 Evaluation of Gate Counts

This section shows the area of two DS-HIE processors: one is the DS-HIE pro-
cessor with bit-serial computation (we call it DS-HIE processor ver.BS) as we
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Table 1. Specifications of DS-HIE proces-
sors

ver. BS ver. Para
# of Operation Stage 4 4
# of FUs(total) 512 128
Context Buffer 2 entries 2 entries
Input latency of FU 16 1
Operation latency of FU 2 2
Output latency of FU 16 1

Table 2. Synthesis result of each DS-
HIE processor

ver. BS ver. Para
FU 1.28k 4.68k

Benes Network 18.7k 26.5k
Operation Stage 183k 179k

Reconfigurable Part
(total)

731k 716k

DS-HIE processor 1,360k 811k

Table 3. Result of performance evaluation of median filter

1 data access per cycle 4 data access per cycle
ver. BS ver. Para ver. BS ver. Para

execution time 624 ms 3,310 ms 624 ms 1,500 ms
# of context 1 4 1 4
transferred data 220 Mbyte 1,190 Mbyte 220 Mbyte 1,190 Mbyte

previously mentioned, and the another is a DS-HIE processor with bit-parallel
computation (we call it DS-HIE processor ver.Para). To fairly compare these
DS-HIE processors on performance, this section clarifies the area of these Re-
configurable Part in DS-HIE processors are about same. Table 1 summarizes the
specifications of the DS-HIE processors ver.BS and ver.Para.

Table 2 shows the synthesis results. The results were evaluated by NAND
gate counts, and the clock frequency of DS-HIE processor ver.BS and ver.Para
were 200 MHz and 60 MHz respectively. From the table, we can find that the
area of the Reconfigurable Part in the DS-HIE processor ver. BS is as about
same as that in the DS-HIE processor ver. Para. The total area of the DS-HIE
processor ver. BS, however, is larger than that of the DS-HIE processor ver.
Para. The reason is that the number of port in the Input Buffer and the Output
buffer are increased and the configuration data is also increased so that required
buffers are increased. In this paper, we focus on the area and performance of
Reconfigurable Part, so we don’t mind the difference.

5 Performance Evaluation

This section shows the results of performance comparison of the DS-HIE pro-
cessor ver. BS with the DS-HIE processor ver. Para.

In this evaluation, we evaluate the performance on executing median filter
with an image with 1280 × 960 pixels. As the ability of data transfer, we eval-
uated two cases: one is to access one 16 bits data per cycle, and the another is
to access four 16 bits data per cycle.
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Table 3 shows the result of performance evaluation which benchmark program
is median filter. On the evaluation result of 1 data access per cycle, the execution
time of the DS-HIE processor ver. Para is worse than the result of 4 data access
per cycle. The reason is that the ability of data transfer is not enough in the case
of 1 data access per cycle. On the other hand, the performance of the DS-HIE
processor ver. BS is as same as the result of 4 data access per cycle. This result
shows the DS-HIE processor ver. BS can achieve higher performance even the
condition which the ability of data transfer rate is lower.

6 Conclusion

In this paper, we evaluated a reconfigurable part with bit-serial computation,
compared with that with bit-parallel computation. The DS-HIE processor was
used as a target processor. From logic-synthesis result, we found that the re-
configurable part with 512 bit-serial function units has about same gate counts
as that with 128 bit-parallel function units. Further, we found that the recon-
figurable part with 512 bit-serial function units can achieve higher performance
than that with 128 bit-parallel function unit by keeping a required data transfer
rate lower.
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Abstract. FPGA implementation of MGS-QRD is presented in this
paper. Mapping conventional QR triangular array of (2m2+3m+1) cells
onto a linear architecture of m+1 cells is employed to reduce the num-
ber of required QR processors. The architecture for MGS-QRD imple-
mentation is discussed, including the structure of a boundary cell (BC)
and internal cell (IC). A divider in BC is modified as a Look-Up Table
(LUT) and multiplier. The multiplier divided from the divider can be ac-
complished by sharing it with another multiplier to reduce the resource
for BC implementation. Furthermore, the conventional complex multi-
plication in IC is also modified with three multipliers and four adders.
The designed architecture based on discrete mapping of MGS-QRD is
implemented to examine FPGA resource utilization. The implementa-
tion results show the FPGA performance and resource utilization of
MGS-QRD.

1 Introduction

As demand for wireless communication increases rapidly throughout the coming
decade, the need for higher data rates will require a technique in order to in-
crease capacity. Recently, multiple-input multiple-output (MIMO) systems have
been received considerable interest [1]. It is well known that MIMO systems
can significantly improve the throughput of wireless communication systems by
transmitting and receiving multiple data streams concurrently [1]. MIMO sys-
tems use multiple antennas at both receiver and transmitter. For implementation
aspect, a signal processing unit involved in a MIMO receiver should be taken into
account. Therefore, an implementation method which provides new architectures
with high performance requirements becomes challenging.

Matrix inversion and triangularization such as QR decomposition (QRD) or
singular value decomposition (SVD) are important for all MIMO receivers. The
QR decomposition can be done by using Givens rotations (GR) [2], Householder
reflection (HR) [3], or Modified-Gram-Schmidt (MGS) [3]. The MGS is a slightly
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modified and numerically superior version of the Classical Gram-Schmidt algo-
rithm. It was proven in [3]-[4] that the MGS is numerically identical to GR offer-
ing the same level of numerical stability and accuracy. The number of operations
for QRD using MGS and GR of matrix is almost identical when M ≥ N [5]. The
MGS requires fewer operations than GR and HR when M ≥ 2N/3.

Due to the complexity of the MGS-QRD, the MIMO receivers are traditionally
implemented on digital signal processors (DSPs), such as the Bell Labs layered
space-time (BLAST) system. Since it does not support parallel computation, the
speed of the DSP implementation is often limited, especially as the number of an-
tennas increases. As the main drawback of DSP, a field programmable gate array
(FPGA) device is widely used to meet the specific requirement in MIMO sys-
tems. An efficient architecture, a triangular systolic array, was proposed for QRD
to achieve highly parallel computation. However, to implement it, for example
on FPGA, the utilized resource for hardware implementation may be very large.
This is not practical when the number of antenna element is extremely increased.
To reduce the complexity of hardware implementation, mapping QRD systolic
array onto another architecture was proposed [6]-[7]. Although the approach can
significantly reduce hardware complexity, recursive least square (RLS) algorithm
is not suitable for high data rate applications because it need convergence time
to obtain an optimal solution.

This paper presents FPGA implementation of MGS-QRD for least square
(LS) MIMO systems. The architecture based on discrete mapping is employed to
implement MGS-QRD. The structure of processor cells is designed for complex-
value matrix. The implementation results are shown to compare the performance
and resource utilization of different structures.

2 Architectural Design for MGS-QRD

One of the most popular factorization is QR decomposition which generally
employed to invert a matrix. The applications of QRD for solving the least square
problems include adaptive antenna and MIMO systems etc. To achieve QRD via
triangular systolic array, (N2 + N)/2 processor cells are required for a N × N
square matrix. Although the systolic array enable highly-parallel computation,
a direct implementation of systolic array would not be practical because of high
operation complexity.

In [6], the QRD using GR was applied to RLS problems to find a weight vector of
adaptive beamforming systems. In the approach, a triangular array of (2m2+3m+
1) cells can be mapped onto a linear architecture of (m+1) processors comprising a
BC and m ICs. In this paper, we utilize the mapping technique of QR systolic array
based on MGS algorithm for LS problem in MIMO systems. Fig. 1 depicts the
architecture of QR processing unit comprising processor elements (PEs), data bus,
and control unit. The unit is based on mapping the triangular systolic array onto
the linear array architecture. All the BC operations of a systolic array are assigned
to one processor, while all the IC operations are implemented on a row of separated
processors. Even if the number of ICs is reduced less than one row compared with
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Fig. 1. MGS-QRD processing unit

the conventional systolic array, at least one BC is required. According to fig. 1,
the PE0 is BC and others PE are ICs. Each PE performs for more than one clock
cycle. This is due to mapping the conventional systolic array onto a linear array
architecture. The number of the PEs depends upon the matrix dimension. The
control unit is used for exchanging data among PEs via the data bus. To achieve
the efficient QR processing unit, we consider not only the technique of reducing
the number of processor cells but also the hardware architecture of BC and IC as
shown next below.

The structure of BC and IC proposed in [8] computes only the real-value ma-
trix. In this paper, the hardware architecture of a MGS-QRD processing unit for
a complex-value matrix is implemented. The QR decomposition can be separated
into two steps. First, the diagonal line elements (rij) of the upper triangularmatrix
R and the unitary matrix Q are computed. The diagonal line element is obtained
from the square root of the summation of the square of each element in the column
j of a(aj). This process is indicated by circular of BC in fig 1. Fig. 2 illustrates a
structure of the BC comprising two multipliers, two adders, two dividers and one
square root. Because of iterative structure of BC, the N +1 delay units inserted at
the uppermost and lowest of the structure is used todelay the matrix input for com-
puting qj . Note that the BC structure contains two dividers as seen in the figure.
Generally, a divider would consume too many hardware resources. Thus, the divi-
sion, namely A/B, is modified as (1/B)A which is accomplished by using a look up
table (LUT) and multiplier. Since one part of the modified division is a multiplier,
it can be done by sharing hardware with another multiplier when the multiplier
does not handle computation. Fig. 3 shows the modified BC structure of MGS-
QRD. Note that one of the dividers is eliminated. The division for 1/rij is easily
accomplished by a LUT, it needs small resource for hardware implementation.

Second, qj value from BC is sequentially feed to IC and the non-diagonal
line element rij of matrix R is computed. The resulting rij is then used to
compute a new matrix input A(ap

i ) as seen in the fig. 4 in which the structure
of an IC is illustrated. In the figure, the new matrix input ap

i is obtained from
the subtraction of the matrix input and the product of rij and qi. Multiplexer
and demultiplexer are employed to select operation for rij and ap

i in order to
reduce the utilized resource of implementation. Complex multiplication in the
IC generally comprises four multipliers and two adders. Following the derivation
in [9], operation for complex multiplication can be modified as three multiplier
and five adders. The technique is therefore applied to our proposed architecture.



FPGA Implementation of QR Decomposition Using MGS Algorithm 397

Fig. 2. Structure of BC

Fig. 3. Structure of a modified BC

Fig. 4. Structure of an IC
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3 FPGA Implementation Results

To examine the FPGA resource utilization, the designed architecture of MGS-
QRD was implemented on the Xilinx Virtex2-Pro XC2VP30 device. The FPGA
resource utilization of BC with and without sharing multiplication is compared.
We classify multipliers used in BC into four different implementation techniques
i.e. 1. multiplier block without sharing multiplication in BC 2. parallel multiplier
without sharing multiplication in BC 3. multiplier block with sharing multipli-
cation in BC and 4. parallel multiplier without sharing multiplication in BC. We
found that the utilized resource for BC using and not using multiplier block is
almost equal. In addition, the use of hardware sharing of multipliers consumes
smaller resource than that of without sharing of multipliers.

The utilized resource for FPGA implementation of conventional and modified
complex multipliers is also investigated. It is clear that the resource obtained by
the use of modified complex multipliers is smaller than that of conventional com-
plex multipliers. The resource utilization of IC with modified complex multipliers
can be reduced about 15.5% of equivalent gates.

The designed architecture according to fig. 1-4 is implemented on the Xilinx
Virtex2-Pro XC2VP30 device. The architecture is based on discrete mapping
discussed above. Table 1 shows comparison of utilized FPGA resource and per-
formance of MGS-QRD processing unit with different input-matrix dimensions.
Note that the equivalent gate count of the unit for odd and even matrix di-
mension, for example 2x2 matrix and 3x3 matrix, is equal because of the same
number of PEs. In total, it takes (2N − 1)(2N + 1) − (2N − 2)(N − 1) and
(2N)(2N + 1) − (2N − 1)(N − 1) cycles of the linear architecture to complete
one specific QR update for odd and even matrix dimension, respectively. Fur-
thermore,the processing unit proposed in [8] comprises four processing elements
(including BC and ICs) and takes 44 clock cycles to compute QRD for a 4 × 4
square matrix. In paper, it take only three processing elements (including BC
and ICs) and take 55 clock cycles. Although, the cycle time of computing QRD
in our approach is much than that in existing architecture, the throughput of

Table 1. Comparison of utilized FPGA resource and performance of MGS processing
unit with different input-matrix dimensions

N ×N No.PE Time Unit Total Cycle Equivalent gate Throughput (M)
2× 2 2 4 17 16,820 7.22
3× 3 2 5 27 16,820 3.82
4× 4 3 8 51 24,058 2.40
5× 5 3 9 67 24,058 1.66
6× 6 4 12 101 31,297 1.22
7× 7 4 13 123 31,297 0.94
8× 8 5 16 167 38,535 0.74
9× 9 5 17 195 38,535 0.60

10× 10 6 20 249 45,634 0.50
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the proposed architecture implemented on FPGA (2.4 Msps)is higher than that
of the existing architecture implemented on ASIC (1.47 Msps). This is becauce
that there is a repetitive section meaning that the next input can be feed to the
processor before QRD calculation is completed [6].

4 Conclusions

The MGS-QRD based on linear mapping proposed in [6]-[7] has been imple-
mented on FPGA. The structure of BC with multiplication sharing and IC
with modified complex multiplication is shown. The implementation results have
shown that the MGS-QRD with designed architecture consumes smaller resource
than that with conventional architecture (without mapping, hardware sharing
and modified complex multiplier).
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Abstract. This paper presents a memory-centric communication architecture 
for a reconfigurable array of processing elements, which reduces the communi-
cation overhead by establishing a direct communication channel through a 
memory between the array and other masters in the system. Not to increase the 
area cost too much, we do not use a multi-port memory, but divide the memory 
into multiple memory units, each having a single port. The masters and the 
memory units have one-to-one mapping through a simple crossbar switch, 
which switches whenever data transfer is needed. Experimental results show 
that the proposed architecture achieves 76% performance improvement over the 
conventional architecture. 

Keywords: memory-centric, CGRA, reconfigurable array architecture, com-
munication overhead. 

1   Introduction 

Coarse-grained reconfigurable array architecture (CGRA) has been proposed to tackle 
both issues of flexibility and performance [1]. A typical CGRA has a reconfigurable 
array of processing elements (PEs) to boost its performance through parallel execu-
tion. Each PE is a small sized execution unit that can be configured dynamically and 
such dynamic configurability renders the flexibility of CGRA. 

Fig. 1 (a) shows a generic template of conventional CGRA [1]. It has a two dimen-
sional reconfigurable array of PEs for parallel computing. The PEs do not have ad-
dress generation units to keep their size small. So they receive/send input/output data 
from/to a memory called frame buffer passively through a set of data buses running 
for each column of the array. As shown in Fig. 1 (a), a typical CGRA has two storage 
units. One is configuration cache and the other is frame buffer. Configuration cache 
feeds instructions which are executed by the PEs. It also contains information on the 
time when the data in the frame buffer should be loaded on the data bus and when the 
data on the bus should be stored into the frame buffer, so that the PEs are able to re-
ceive and send data without separate address generation units. These instructions can 
be stored only at system initialization stage, such that it does not affect the system 
performance.  
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(a)  Conventional architecture (b) Proposed architecture 
 

Fig. 1. The conventional CGRA and the proposed CGRA 

 
Since the frame buffer is used to feed input data to the PEs in the array and to store 

output data from the PEs, enormous amount of data goes in and out of the frame 
buffer for most multimedia applications. This can be a serious burden to the system 
bus and controllers such as a processor or a DMA unit. Usually, in such a CGRA, the 
frame buffer and the PE array are tightly coupled with each other, and so the commu-
nication between them is not a problem. On the other hand, outside the array, read-
ing/writing data from/to the frame buffer on the side of processor or main memory 
becomes a serious bottleneck for the entire system performance due to the limited 
bandwidth and latency of the system bus. According to our simulation result, the 
communication overhead can be five times longer than the computing time of the 
array, depending on the application. 

To overcome such limitation, reconfigurable array architecture with a multiple 
banked frame buffer has been proposed [2][3]. It enables the architecture to do double 
buffering for hiding the communication overhead, which helps in some case. How-
ever, it does not work well when the application has a cyclic data dependency, and the 
limited bandwidth of the system bus can cause serious performance degradation. So it 
is crucial to reduce the communication overhead itself, to improve the overall system 
performance. 

To cope with this limitation, in this paper, we propose a memory-centric communi-
cation architecture where data is transferred through a scratch pad memory (SPM) 
without passing through a traditional system bus. It improves the system performance 
significantly, especially when the communication overhead cannot be hidden due to 
cyclic data dependency.  

2   Proposed Architecture 

2.1   Architecture Overview 

Fig. 1 (b) shows an overview of the proposed architecture. The whole system consists 
of a processor with caches, a PE array with configuration caches and address genera-
tion units, an interface to a network or bus which provides interconnection to the main 
memory and peripherals, and a central memory tightly coupled with each component 
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through a crossbar switch. The central memory works as an SPM to the processor and 
as a frame buffer to the PE array at the same time.  

2.2   Central Memory 

Fig. 2 shows the concept of the central memory. Data communication takes place 
through this memory instead of a system bus. The central memory is divided into 
multiple memory units, each having a single port. As shown in the figure, the masters 
(including the processor, the PE array, and the network/bus interface) and the memory 
units have one-to-one mapping, so that each master accesses only one memory unit at 
a time. For the communication between masters, the data can be transferred without 
copying it, but by just changing the mapping information. 

The central memory is divided into two regions: shared region and exclusive re-
gion. Shared region contains configuration information for the central memory includ-
ing the mapping information between masters and the memory units. Control signals 
(mainly for synchronization) or small sized data transferred between the masters are 
also stored in the shared region. On the other hand, data to be transferred in a large 
quantity from one master to another is stored in the exclusive region. The exclusive 
region is divided into K units according to the number of masters connected to the 
central memory. These K units share the same logical addressing space, but use dif-
ferent physical memory blocks. Since no system bus is involved in the data transfer, 
this memory structure enables masters to simultaneously access the exclusive regions 
to fetch input data and store output data without bus contention, in contrast to the 
conventional architecture. Unlike other masters, the PE array needs to fetch multiple 
data concurrently within a cycle and so each exclusive region is again divided into 
multiple (N) blocks with each block attached to a column of the PE array and with the 
bit-width of each block equal to that of a PE’s datapath. 

Regarding to the implementation, the shared region is implemented with a multi-
port register file and the exclusive region is implemented with multiple one-port 
memories. Because the cost and power consumption of the multi-port register file 
increase rapidly with the size, the size of the shared region should be minimized. On 
the other hand, the exclusive region of the central memory uses multiple one-port  
 

 

 
 

Fig. 2. The concept of the central memory 
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memories instead of one big multi-port memory not to increase area and power over-
head. According to our experiments, total area of the proposed memory structure with 
two one-port memories (including the crossbar switch) is 22.57% smaller than that of 
the dual-port memory on average, and the dynamic power and leakage power is re-
duced by 43.09% and 22.15%, respectively. 

In terms of performance, one may expect slight degradation since the communica-
tion requires changing the mapping configuration in the proposed memory structure. 
However, the change can be done within one cycle, and it is not a problem for data 
communications in a large quantity (for word-by-word or small-sized data communi-
cations, one can still rely on the shared region). Even if we use one big multi-port 
memory, there will be an overhead of changing the base address to the next chunk of 
data, which actually takes more cycles than just switching the mapping.  

Moreover, by dividing exclusive regions physically and using a crossbar switch, a 
master can only access one memory unit at a time. Thus we can avoid memory  
conflict or race condition and also eliminate the risk of corrupting other master’s 
memory. For a safe use of multi-port memory, it is desirable to add extra memory 
protection hardware to prevent memory conflict or race condition, which is not 
needed in the proposed memory structure. 

In the proposed multiple one-port memory structure, we limit the number of mas-
ters to four, since we are using a crossbar switch which is not quite scalable.  

2.3   PE Array 

In the proposed architecture, to read/write data, PEs should invoke a read/write re-
quest to the address generation unit. Since the PEs have bit width limitation, they may 
not be able to cover full address space. Thus instead of sending the full address for 
data transfer directly to the central memory, they pass two arguments – one for the 
index to the data address table and the other for the offset – to the address generation 
unit, and the address generation unit does actual memory access. The address genera-
tion unit contains a table of base addresses to the data to be accessed by the PEs. The 
slots of the table can be filled up during system initialization or while the system is 
running. When it receives a request, it finds the base address in the table using the 
index passed through the data bus from the PE as one of the arguments. Then it adds 
the base address to the offset which is passed as another argument, generating the full 
address to the central memory for read or write operation. 

3   Experiments 

The experiments have been performed on a conventional CGRA as well as the pro-
posed CGRA, both modeled using SoC Designer 7.0 [4] with cycle accurate compo-
nents. The conventional architecture consists of an ARM7TDMI with 64KB cache as 
the processor, a DMA controller, and a PE array with a frame buffer whose size is 
6KB. The proposed architecture consists of an ARM7TDMI with 64KB cache as the 
processor, a central memory, a PE array (without frame buffer), and a network/bus 
interface. The central memory has three units, 2KB each, for the exclusive region and 
64B for the shared region. 
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Table 1. Simulation Result 

Conventional Proposed Speed up 

Total Comm. overhead Total Comm. overhead 

Cycles Cycles Ratio Cycles Cycles Ratio 
Total 

Comm. 
Decreased 

Non-cyclic JPEG Decoder 4321 0 0.0% 4278 0 0.0% 1.01 - 
Intra 16796 5905 35.2% 10863 0 0.0% 1.55 - MPEG-4 

Decoder Inter 20694 11205 54.2% 12858 1337 10.4% 1.61 88.1%
Physics Engine 5952892 3038673 51.1% 2805502 785783 28.0% 2.12 74.1%

Cyclic 

Average - - 46.8% - - 12.8% 1.76 81.1%

 
Both non-cyclic data dependent application and cyclic data dependent application 

have been used for the experiments. For the non-cyclic data dependent application, 
JPEG decoder has been chosen. Dequantization and IDCT process of the JPEG de-
coder have been mapped to the PE array and all other processes have been mapped to 
the processor. However, for Huffman decoding process, since general purpose proces-
sor is not suitable for bit manipulation, the method proposed in [5] has been applied. 

For the cyclic data dependent application, MPEG-4 decoder and 3D crash-wall 
simulation physics engine have been used. As in the JPEG decoder, the method in [5] 
has been used for the Huffman decoding process in the MPEG-4 decoder. And the 
interpolation, dequantization, and IDCT processes are mapped to the PE array. All 
other processes including post process and header decoding process are mapped to the 
processor. The 3D physics engine actually consists of floating point operations, for 
which we have adopted the method in [6]. We have mapped compute-intensive tasks 
to the PE array, and control-intensive tasks to the processor.  

Table 1 shows the simulation result. For the JPEG decoder, since it does not have 
cyclic data dependency, it is possible to use double buffering in the conventional 
architecture to hide communication overhead. Thus, as the simulation results show, 
the communication overhead is hidden into the computation cycles of the processor to 
which the Huffman decoding is mapped. However, because the conventional architec-
ture uses the system bus as a communication medium, there can be bus contention. 
This is why the conventional architecture takes more execution cycles than the pro-
posed architecture. 

In the MPEG-4 decoder, since the task data dependency is somewhat different 
when we decode intra-prediction frames and inter-prediction frames, we measure the 
simulation result separately. The numbers in cycles represent average number of cy-
cles taken to decode one macroblock. As the simulation result for the intra-prediction 
shows, in the conventional architecture, the processor spends more than 35% of the 
total execution time on busy-waiting for the completion of input/output data copy. 
However, in the proposed architecture, it removes the communication overhead com-
pletely achieving 55% overall performance improvement. For the inter-prediction 
whose data dependency is much denser than that of the intra-prediction, in the con-
ventional architecture, it suffers from a serious memory bandwidth bottleneck prob-
lem. The simulation result shows that the processor spends over 54% of the total 
execution time to wait for transferring data from the main memory to the frame 
buffer. On the other hand, in the proposed architecture, the processor idle time is 
measured to be only 10.4% of the total execution time. 



 Memory-Centric Communication Architecture for Reconfigurable Computing 405 

 

In the simulation of 3D graphics physics engine, more than 50% of the total execu-
tion time is spent on transferring input data and output data in the conventional archi-
tecture. For the proposed architecture, the communication overhead is reduced to 
about 28%. 

4   Conclusion 

In this paper, we propose memory-centric CGRA, which reduces communication 
overhead by establishing a direct communication channel through a central memory. 
Instead of copying data between main memory and frame buffer, which is done in 
conventional CGRAs, the proposed approach uses only the central memory as the 
communication channel. It avoids using costly multi-port memory by switching the 
mapping between masters and memory units. The simulation results with multimedia 
applications show that our approach reduces communication overhead by over 80% 
and improves overall performance by 76% on average. 
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Abstract. Using FPGAs to accelerate High Performance Computing (HPC) ap-
plications is attractive, but has a huge associated cost: the time spent, not for 
developing efficient FPGA code but for handling interfaces between CPUs and 
FPGAs. The usual difficulties are the discovery of interface libraries and tools, 
and the selection of methods to debug and optimize the communications. Our 
GALS (Globally Asynchronous Locally Synchronous) system design frame-
work, which was originally designed for embedded systems, happens to be out-
standing for programming and debugging HPC systems with reconfigurable 
FPGAs. Its co-simulation capabilities and the automatic re-generation of inter-
faces allow an incremental design strategy in which the HPC programmer co-
designs both software and hardware on the host. It then provides the flexibility 
to move components from software abstraction to Verilog/VHDL simulator, 
and eventually to FPGA targets with automatic generation of asynchronous in-
terfaces. The whole design including the generated interfaces is visible in a 
graphical view with real-time representation of simulation events for debugging 
purpose.  

Keywords: hardware-software interface generator, asynchronous, GALS. 

1   Introduction 

Using FPGAs to accelerate HPC applications involves a huge cost in time. Develop-
ing efficient FPGA code is far from being the most time-consuming part of the proc-
ess. The main problem usually comes from handling the interface between CPU and 
FPGA: figuring out which libraries to use and how to debug the communications. In 
fact the difficulties are: 

• the choice and description of the interface between the main software and the 
FPGA implementation; 

• how to setup an environment that enables the software programmer to co-
design and debug his HPC+FPGA application. 

One feature that is usually difficult to achieve is the ability to design and debug the 
HPC+FPGA application on a separate non-HPC host. This leads to tremendous in-
creases in efficiency as the programmer is free from the HPC constraints: remote text-
based terminal, delays for processes to be scheduled, and dynamic compute node 
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allocation. Of course, the debugging environment also needs, at some point, to be able 
to target directly the HPC environment as specific bugs may appear at that stage only. 
The design environment proposed here allows HPC designers to: 

• Design and debug their whole design on a non-HPC host, by linking the 
software code to Verilog or VHDL simulators; 

• Remotely target the real HPC system while keeping debugging feedback in 
the IDE; 

• Move components one by one from software abstractions to hardware with 
the new interfaces being automatically regenerated. 

1.1   Background 

In order to open up the FPGA market to software programmers, a variety of C-like 
programming languages have appeared and are available to the HPC programmer [1]: 
Mitrion-C [2], Celoxica with Handle-C [3], and Nallatech Dime-C [4] being the main 
ones. These languages provide a higher level of abstraction than conventional Verilog 
or VHDL and appear more familiar to software HPC developers, leading to shorter 
development times. However, one of the real benefits of these languages is that they 
are provided with complete integrated design environments, pre-configured for spe-
cific HPC systems. These environments are able to handle the complexity of interfac-
ing CPUs to FPGAs themselves, freeing the user from what we believe is the most 
difficult task. 

The design environment presented in this paper provides similar benefits for inter-
facing automatically the software running on CPUs to FPGA code described in  
Verilog or VHDL. Programming in Verilog and VHDL also has some desirable prop-
erties: code efficiency and control of the implementation details are sometimes neces-
sary as the FPGA clock runs ten times slower than CPU clocks. Although these HDL 
languages may require significantly longer development times, their availability for 
small efficient accelerators is important. With experience, shorter design times can 
also be achieved as pre-programmed IPs and open-source modules are also available 
for re-use in these hardware languages. 

2   GALAXY Design Framework 

The GALAXY framework [5] was originally designed for GALS (Globally Asyn-
chronous Locally Synchronous) embedded system design. It aims at providing an 
environment of development for iterative design and prototyping of embedded sys-
tems where the circuit designer can refine the system description from high levels of 
abstraction to lower levels, and from software simulation to FPGA prototyping. Com-
ponents are handled independently at any level of abstraction, targeting any simulator, 
and the communication interfaces between components, between abstractions and 
between simulators are automatically regenerated for each simulation. Through the 
use of various FPGA prototyping boards, we discovered that the GALAXY IDE and 
tools could help greatly in the task of HPC acceleration. 

The framework provides a graphical IDE where software and hardware compo-
nents are represented as entities (Fig. 1). Each of these components can have multiple  
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Fig. 1. GALAXY Integrated Design Environment – Dual  Graph View 

implementations (for example an FFT component can have a software implementa-
tion in C calling a library and a hardware implementation in Verilog) and implemen-
tations can be switched from one to another at the click of a mouse. 

For each component the user selects a “simulation target” (where simulation actu-
ally includes anything from software execution to FPGA boards) dependent on its 
source code description: a C description can be executed on host, whereas a Verilog 
description can be simulated in a Verilog simulator or synthesized and sent to an 
FPGA. If C synthesizers are available and added to GALAXY’s tool flow system, 
Verilog simulators and FPGA targets become automatically available to components 
described in C (this is also applicable to any other language). 

When two connected components are set to different simulation targets, the  
communication links are replaced by asynchronous components following a  
delay-insensitive protocol. This allows the user to experiment with several architec-
tures before optimizing the critical paths, and appears to be an efficient way to  
proceed. 
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Fig. 2. GALAXY Tool Flow View showing back-end tools 

2.1   The ASIP (Asynchronous-Synchronous IP) XML Format 

ASIP is a standard component-based description format describing the tree of compo-
nents making up a circuit. It was developed as part of the GALAXY project. Starting 
from a top-level component, each component is described in a standard hierarchical 
way, with a specification of its interfaces, sub-components and connections between 
sub-components. The leaf components contain a description of their associated source 
code in any HDL. 

What makes ASIP interesting is a set of special constructs, which define the as-
sumptions made to be able to refine a system into asynchronous parts and the con-
straints on the system description these assumptions impose: 
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• Asynchronous channels: In the description of the interface and connections, the 
standard wire and TLM socket types are available, but also an asynchronous channel 
type. Asynchronous channels are associated to asynchronous protocols. This new 
channel type allows further design exploration, where the designer can try out various 
protocols, for example to check for link efficiency. Protocol adapters are automati-
cally added in the GUI where necessary, clearly showing to the designer where  
bottlenecks may arise. 
• Multiple implementations: For each ASIP component, the designer can provide 
multiple implementations. They must describe the same behaviour and share the same 
interface, but can be in different languages and at different levels of abstraction. 
• Multiple interfaces + transactors: This feature was brought in after long discus-
sions, and makes the GALAXY framework unique: for each ASIP component, the 
designer can provide multiple interfaces! The problem is that other components in the 
system might expect one particular interface, and letting the user switch a compo-
nent’s interface could invalidate some connections. For this reason, some constraints 
apply: proper use of multiple interfaces can be achieved by providing interfaces that 
are functionally equivalent. The ASIP format encourages this by requiring transactors 
between the various interfaces. In practice, interfaces are supports for the same com-
munications at different levels of abstraction, with/without debugging signals, and to 
support synchronous-asynchronous IP wrapping in the GALS context. 

An ASIP component can therefore have many implementations and multiple inter-
faces. Adapters between the different interfaces are included in the ASIP description 
as transactors, letting the designer select an interface at one level of abstraction for the 
IP, and a different level of abstraction for its implementation. For example, if an IP is 
included in a system using its pin-level interface, and the architect needs to simulate it 
at the SystemC TLM level, an inconsistency is raised and the transactor “pin-level to 
TLM” is automatically inserted to simulate the component using its TLM description 
and adapt the transactions to the pin-level interfaces of the connected components. 
The ability to provide and switch easily between multiple implementations and  
interfaces, together with the presence of transactors between interfaces, allow a very 
efficient design space exploration, where IPs can be switched between levels of ab-
straction in a single operation. In most cases, the transactors can even be automati-
cally generated, for example when TLM sockets are mapped to asynchronous  
channels. 

2.2   GALAXY Back-End Tool Flow 

ASIP descriptions are processed by a collection of back-end tools to achieve the re-
generation of interfaces for transparent co-simulation for every change in the system 
architecture. The ASIP flow is as follows (see also an example with four simulation 
targets in Fig. 2): 
  
• Asip-add-cosim-comps inserts co-simulation components in the ASIP file.  

Each time two connected components are set to be simulated on a different 
simulator, the connection is split into two and a co-simulation component is 
added at each end. The co-simulation components behave as if they were  
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wirelessly transferring the data to each other. After this step, the graphs of com-
ponents corresponding to each simulator are fully disconnected from each other, 
even though they are still all contained in the same ASIP file. In a HPC envi-
ronment, these components are programmed to use the HPC communication li-
braries provided with the FPGA system. 

• Asip-target-split creates one ASIP file per simulator. All the components target-
ing a specific simulator are copied to the corresponding file. Incidentally, a flat-
tening of the ASIP structure is also performed at this stage. All the hierarchy is 
removed and each resulting file is made of one top level components containing 
directly all the leaf components. 

• Each ASIP file is then processed by the code generators asip2systemc, asip2v, 
asip2vhdl, asip2asm or asip2bash to generate the top-level source code in an ap-
propriate language for the selected simulator. Keeping the same structure as the 
input ASIP file, the generated source code is a top-level code instantiating and 
linking together the various IP source codes. Due to the ASIP flattening occur-
ring in asip-target-split, the generated source code is actually a top-level proce-
dure instantiating user-written modules. Most of the time, intermediate modules 
are created to rename and reorder the signals in order to match the user-defined 
component interfaces. 

• Finally, each generated source code undergoes its own flow as shown in each 
branch in Fig. 2, specific to the targeted simulator. It can be compiled, synthe-
sized, placed and routed, sent to FPGAs, executed on the host or interpreted. The 
information about the available tools is stored in the Tool Flow System. 

2.3   Tool Flow System: Execution of Tool Flows 

The GALAXY IDE also serves as a front-end to launch all the tools, internal back-
end tools or external tool flows. A tool flow window allows the user to control these 
tools, and an execution window provides means of interaction with these tools. 

The Tool Flow System is the gateway to link external (vendor or open-source) 
tools to the GALAXY framework. It has a well-defined interface to facilitate the 
integration of new tools and tool flows. Its aim is to generate, from the knowledge of 
available tool flows, an execution sequence of tools to go from the ASIP and IP 
source codes to the simulators. To achieve this, the tool flow database is made of 
three main sections: 

• available file formats (including how to recognise them, e.g. from their ex-
tension); 

• available simulators, specifying which input file formats they require; 
• available translators (tools able to convert one file format into another, such 

as compilers and synthesizers), with their required input and produced output 
file formats. 

From this information, a graph of tools and file formats is created (Fig. 3), and appro-
priate execution sequences are generated when the user desires to “simulate file X 
with simulator Y”. 
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Fig. 3. GALAXY Internal and External Tool Flow 

2.4   Ability to Design and Debug on a Separate non-HPC Host 

The GALAXY IDE is usually running on a host with graphical display, therefore not 
directly on the HPC system. In the first stage of the design process, the HPC designer 
can design and simulate the HPC application on the non-HPC host, giving him the 
advantage of faster access and direct control over the hardware simulators. This leads 
to tremendous increases in efficiency, as the programmer is free from the HPC con-
straints: remote text-based terminal, delays for processes to be scheduled, dynamic 
compute node allocation. 

A good way to run and debug the system on a single non-HPC host is to have the 
FPGA code simulated in a Verilog simulator, or even better: a graphical debugger like 
ISE. 

However, parallel HPC code cannot always be compiled and executed on any host, 
due to the links to MPI libraries, but a non-MPI test harness is usually an acceptable 
way to start the design of the FPGA code. Of course, the debugging environment also 
needs, at some point, to be able to target directly the HPC environment, as specific 
bugs may appear at that stage only. This is achieved by the Tool Flow System after 
configuration of scripts to handle the transfers between the host and the HPC system. 
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Scripts can include the ability to access HPC systems behind gateways and submit 
jobs in queues. 

3   Conclusions and Further Work 

The GALAXY framework, originally designed for GALS embedded system design, 
happens to be mature for the design of accelerated HPC applications. It allows HPC 
programmers to apply an iterative strategy for the use of HPC FPGA boards. They 
can design and debug their whole design on a non-HPC host, by linking the software 
code to Verilog or VHDL simulators, and then remotely target the real HPC system 
while keeping debugging feedback in the IDE. Components can be moved one by one 
from software abstractions to hardware with the new interfaces being automatically 
regenerated. 

The generated asynchronous interfaces happen to be efficient enough for a first 
version of the user’s HPC application. They allow the user to experiment with several 
architectures before optimizing the critical paths, and appear to be an efficient way to 
proceed. 

Although no benchmark is available yet, the GALAXY framework presented in 
this paper has been augmented for HPC by using a Cray XD1 with Xilinx Virtex 4 
FPGAs. The Xilinx tool flow has been integrated in the tools, and we are now work-
ing on a demonstrator. 
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Abstract. Instruction set extension is becoming extremely popular for
meeting the tight design constraints in embedded systems. This mecha-
nism is now widely supported by commercially available FPGA (Field-
Programmable Gate Array) based reconfigurable processors. In this pa-
per, we present a design flow that automatically enumerates and selects
custom instructions from an application DFG (Data-Flow Graph) in an
architecture-aware manner. Unlike previously reported methods, the pro-
posed enumeration approach identifies custom instruction patterns that
can be mapped onto the target FPGA in a predictable manner. Our in-
vestigation shows that using this strategy the selection process can make
a more informed decision for selecting a set of custom instructions that
will lead to higher performance at lower cost. Experimental results based
on six applications from a widely-used benchmark suite show that the
proposed design flow can achieve significantly higher performance gain
when compared to conventional design approaches.

1 Introduction

The rapidly increasing time-to-market pressure and demand for higher perfor-
mance is consistently pushing FPGA-based systems to the forefront of embedded
computing. One of most popular ways of using this FPGA space, is by adding
Custom Instructions to the system. Although a lot of research has been done in
the area of custom instruction generation, commercial FPGA tools still lack a
consolidated framework for automatic implementation of custom instructions for
a given application code. There are typically two major steps in custom instruc-
tion implementation namely, custom instruction (pattern) identification and cus-
tom instruction (pattern) selection. A commonly adopted approach in pattern
identification is pattern enumeration, which tries to identify all the legal custom
instruction patterns within an application. Pattern selection then selects a set of
non-overlapping patterns for final implementation based on certain constraints
such as area and performance. In certain design flows, a design exploration step,
which takes into consideration the area required by each pattern, is undertaken
to propose a set of custom instructions for a given performance area constraint.

P. Sirisuk et al. (Eds.): ARC 2010, LNCS 5992, pp. 414–419, 2010.
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Fig. 1. Proposed Instruction Set Extension Methodology

There has been a number of previous work in the area of pattern identification
and selection. Atasu et al. in [1] described a branch and bound algorithm that
enumerates all the legal patterns from an application DFG, while pruning off
the ones, which violate the fundamental micro-architectural constraints. Their
method produced significantly better performance when compared to the state
of the art techniques at that time. However, the complexity of the branch and
bound algorithm in their work increases rapidly with the size of the DFG.

Clark et al. presented a complete design framework for automatic identifi-
cation of pattern candidates within a DFG and a compiler framework to take
advantage of such custom units [2]. In their selection stage, a greedy heuristic was
used to select the candidate with largest (speedup/area) ratio before selecting
any other patterns.

Chen et. al. presented a novel algorithm for rapid identification of custom
instructions for extensible processors which was especially useful for large DFGs
[3]. Li et. al. [4] proposed further enhancements in Chen’s algorithm and thus
achieving up to 50% faster tool runtime for enumerating patterns with single-
output constraint.

Lam et. al. [5] presented a custom instruction generation design flow that
incorporates a novel way for estimating the area of custom instructions in the
final hardware by clustering the candidate patterns [5].

All the enumeration algorithms described above take the micro-architectural
properties of the underlying hardware as a fundamental set of constraints, for
example the number of input or output ports available for custom instruction
implementation. Although these constraints must be used during enumeration,
we propose a custom instruction generation strategy that incorporates the target
architecture information in the pattern enumeration and selection phases as
shown in Fig. 1.

In particular, the proposed pattern enumeration approach generates only pat-
terns that can be fully mapped onto the logic elements of the target FPGA archi-
tecture. As the hardware area-time of the custom instruction patterns from the
enumeration phase are implied, effective pattern selection can be performed to
choose a set of custom instructions that can lead to higher performance at lower
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cost when compared to conventional design approaches that focus on selecting
large and recurring custom instructions.

The rest of the paper is organized as follows. Section 2 discusses the proposed
pattern enumeration algorithm, while section 3 explains the pattern selection
phase. Section 4 deals with the experiments and results. Section 5 concludes this
paper.

2 Pattern Enumeration

Pattern enumeration is defined as the process of identifying all the legal patterns
(subgraphs) within a DFG. The legal patterns of an application must obey a set
of constraints that is compatible with the micro-architectural constraints of the
underlying architecture [1], [3]. These micro-architectural constraints are used
to prune away the illegal patterns. In addition, memory and branch operations
are generally not allowed in a custom instruction.

The proposed pattern enumeration technique in this paper extends the method
in [3] and [4], which have been shown to be orders of magnitude faster than other
existing algorithms for large DFGs. In particular, we have incorporated addi-
tional constraints, which ensures that the enumerated patterns can be mapped
onto the target FPGA in a predictable manner. In the following sub section we
will describe the proposed architecture-aware pattern enumeration method.

2.1 Architecture-Aware Pattern Enumeration

In order to perform architecture-aware enumeration, we have introduced addi-
tional architecture specific constraints during pattern enumeration phase to limit
the number of enumerated patterns to those that would lead to efficient mapping
on the target FPGA and achieve high performance. Similar to [5], we have used
Trimaran to compile the C Code of the benchmark application. The output of
the Trimaran compiler is called a “Rebel” file which is used as the input to our
enumeration stage. The “Rebel” file obtained from Trimaran gives the applica-
tion representation using the basic operations of the Trimaran instruction set
architecture. We mentioned before that we have used the enumeration algorithm
from [3] and [4] in our work. This enumeration algorithm works in the following
manner: It searches for valid patterns, starting with an empty pattern P, the
convex DFG G of a basic block and a redundancy guarding node referred to as
rg. The algorithm recursively invokes the enumeration procedure, which consists
of three functions, select node, unite and split. Function select node returns a
selected node from the remaining node set (G-P). The function unite handles
the condition of addition of valid nodes into the pattern to create a new pattern,
while the split function handles the situation where the selected node cannot be
added to the pattern. The function unite can merge multiple nodes if the node
selected by the function select node is of high quality. It is in this unite step,
wherein we can check the extra constraints for our purpose during the merg-
ing of a selected node with the existing pattern. Meanwhile, the function split
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can decompose the current DFG G(V,E) into one or two sub-graphs by split-
ting them when necessary, thus reducing the depth of recursive search. Using
this methodology the output of the unite phase always produces a valid pattern
which is ready for the selection stage. The details of the algorithm can be found
in [3] and [4].

Lam et. al. in [5] showed a novel method for estimating the area of a given
pattern. They applied various architecture specific constraints to ensure that a
candidate pattern can be fully implemented within a logic group (a set of FPGA
logic elements with the same hardware configuration) on the Xilinx Virtex 4
FPGA. In particular, after the pattern selection phase, they partitioned each of
the selected pattern into clusters, wherein each cluster could be implemented in
one logic group. This enabled them to estimate the total number of logic groups
required to implement the selected patterns on the target architecture. A detail
description of the constraints used by them for Clustering can be found in [5]. We
incorporated these rules along with the previously mentioned micro-architecture
constraints, during our enumeration phase in order to enumerate only “clusters”.
This ensured that all the patterns we enumerated could be implemented in the
logic blocks of the FPGA. It is noteworthy that although we have demonstrated
the proposed approach for the Virtex 4 FPGA, our idea is generic enough to be
used with other FPGA families.

Once the valid clusters are enumerated, we begin the selection phase. In this
phase, we select the most profitable patterns to be implemented as custom in-
structions. In the next section we will explain the pattern selection step in detail.

3 Pattern Selection

After enumerating all the possible legal patterns from the enumeration phase,
we perform graph-subgraph isomorphism using “VFLib” to find the similar pat-
terns and group them together. Each pattern group is defined as a template,
whereby each template corresponds to a set of similar patterns. In the next step,
pattern selection is performed to find a set of non-overlapping patterns for final
implementation.

We have used the approach described in [6] for pattern selection. A conflict
graph is created based on the enumerated patterns.The objective of creating this
conflict graph is to facilitate choosing a set of non-overlapping patterns for final
implementation.

Once the conflict graph is created, we use the steps described in [5] to compute
the local Maximum Independent Set (MIS) in order to obtain a set of non-
overlapping patterns within each template. This aims to find the largest set of
vertices in every template of the conflict graph that are mutually non-adjacent.
The process of computing the local MIS relies on a similar heuristic used in [6]
and [7], which aims to select large and recurring custom instructions. The metric
for this heuristic is calculated based on the product of the number of nodes in a
template and the number of corresponding patterns in the DFG.

After the local MIS is calculated, the templates are arranged in decreas-
ing order of their MIS weight. In order to perform constraint-aware pattern
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selection, the template with the largest MIS weight is evaluated first. It is se-
lected for implementation if the area constraint is not violated. If this template
violates the area constraint, we move on to evaluate the template with the next
largest MIS weight and so on, unless a suitable template is found and selected.
Once a template is selected, the corresponding patterns of the template are
implemented as custom instructions. These selected patterns are then removed
from the conflict graph, and the remaining area for custom instruction imple-
mentation is updated. The algorithm repeats to find a new set of local MIS for
each template. The algorithm terminates when either the conflict graph becomes
empty or the area constraint is violated.

4 Experiments and Results

In this section, we compare the results obtained using our proposed architecture-
aware custom instruction design flow with a conventional approach that aims to
select large and recurring custom instructions without considering how they can
be mapped onto the target FPGA. The conventional methodology has been
implemented using the methods described in [3], [4] for enumeration, [5], [6] for
selection and [8] for design space exploration.

The cycle savings after using the extended instruction set has been calculated
using the following formula [5] for both the conventional and proposed methods:

cycle savings = [
∑n

1 Num of Nodes ∗ Dynamic Occurance] −
[
∑n

1 Critical LUT Path ∗ Dynamic Occurance] (1)

(a) Sha (MiBench) (b) Blowfish
(MiBench)

(c) Rijndael
(MiBench)

(d) Susan (MiBench) (e) Basicmath
(MiBench)

(f) Patricia (MiBench)

Fig. 2. Performance vs. Area Curves for Benchmark Applications
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The first term in the above equation 1 represents the software execution time
of a custom instruction whereas the second term depicts the time in number of
clock cycles if the custom instruction is executed in the hardware.

The graphs in Fig. 2 clearly show the advantage of the proposed architecture-
aware custom instruction generation process. This methodology is especially
useful for Area-Constrained FPGA designs.

5 Conclusion

In this paper, we proposed a design flow for automated custom instruction gen-
eration that takes into account the target FPGA architecture in both the cus-
tom instruction enumeration and selection phase. In particular, the proposed
enumeration approach incorporates a set of rules that identifies custom instruc-
tion patterns which can be fully mapped onto the logic elements of the FPGA
architecture. As the hardware area-time of the candidates are available after
the enumeration process, the selection process can effectively choose a set of
custom instructions that lead to high performance at low cost. Experimental
results based on six applications from the MiBench benchmark suite show sig-
nificant performance improvement of up to 5 orders of magnitude over an existing
approach.
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Campus de Montegancedo s/n, Boadilla del Monte, 28660, Madrid-Spain
victoria@pino.datsi.fi.upm.es, {emicaya,vpeinado,fdiaz}@eui.upm.es

Abstract. We have studied a Noise Canceller filter to estimate its per-
formance parameters of speed, area and power consumption in different
implementations. They have been oriented to find solutions for two kinds
of applications: low-power or high speed. The results may be used as in-
puts to a partitioning algorithm in Co-design methodologies. The algo-
rithm for filter implementation presents a big dispersion in the upper and
lower bounds of the variables. The performance dependence by using the
same data-format size for all the variables and multiple data-format size
adjusted ad hoc for each one of them was evaluated. The results from the
Virtex-4 and Stratix II families and TMS320C5510 and TMS320C6416
microprocessors are presented and discussed.

Keywords: Cost Evaluation, Performance Evaluation, HW/SW Co-
design, Metrics, Data format Optimization, Software Profiling, FPGAs
implementation, Noise cancellation.

1 Introduction

In Hardware/Software Co-design Methodologies the space design of a given
problem is explored in order to find a good solution accordingly to its perfor-
mance/cost restrictions. The partition stage guides the designer in which parts
should be implemented in hardware or in software or automatically splits the
problem into them. Representative examples of available tools and design en-
vironments as Ptolemy [1], Polis/Metropolis [2], CoWare [3], etc, restrict the
design exploration to predefined library-based components. These components
are characterized by a given metric and fed into the partition algorithms. In
this paper we will focus on the evaluation of an Adaptive Noise Canceller Filter
for different implementations in commercial DSP microprocessors and FPGA’s
which may be included in the predefined component library to be used in the de-
sign space exploration. The Adaptive Noise Canceller studied here, can be used
for Speech Enhancement Interfaces in adverse environments with high levels of
noise.

P. Sirisuk et al. (Eds.): ARC 2010, LNCS 5992, pp. 420–425, 2010.
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2 Filter Description

The recording scheme and computational structure of the filter can be found in
[4]. It shows a very good behavior in highly non-stationary environments having
a competitive performance compared which other filters [5]. The algorithm de-
mands 9 additions, 15 multiplications and 6 divisions per stage. Then, the num-
ber of operations involved per sample will be 126 additions, 210 multiplications
and 84 divisions, considering 14 stages filter. The algorithm is computationally
costly specially taking into consideration that most of the DSP microproces-
sors and all FPGA’s lack of the division operation implemented by hardware.
This fact is an obvious disadvantage but the algorithm presents the advantage
of requiring very small arrays of memory for the speech input data instead of
large buffers because the processing of the speech samples can be done as soon
as they become available. Nevertheless, its high computational cost makes the
problem suitable to explore different alternatives of implementation. The filter
design space exploration requires taking into consideration its implementation in
FPGA’s. High level synthesis tools have the limitation of using only integer data
types, which has important implications on the accuracy. There are tools which
convert from floating-point to fixed-point formats [6] and optimize word-length
[7]. These tools are very helpful but the results are not good enough when ac-
curacy is critical, as is the case of the algorithm under study. Then word-length
estimation was carried out in [4]. A large dispersion on the variable bounds was
observed. It was found that some of the parameters have values below one and
other exceed the range of representation for integer numbers for 32 bits. Then,
the optimization of word-length for the different variables was carried out, which
is NP-hard [8]. An exhaustive simulation study was done to determine the min-
imum number of bits to represent each variable having in mind the accuracy
and the quality of spoken-commands intelligibility after filtering. The criterion
to validate the results consisted in estimating the errors between the results in
floating-point arithmetic and different integer-data formats using a scale factor.
The longest word-length was obtained for the forward and backward residual
errors (40 bits), the shortest word-length was 16 bits to estimate the noise and
clean signals and the word-lengths for the rest of the variables was included
among those extreme values [4].

3 Platforms, Devices and Tools

Having in mind embedded applications, it was decided to estimate the problem
for two extreme solutions, that is, for applications with performance restrictions
in speed or in power consumption. Fixed-point processors as TMS320C5510 ori-
ented to low-power applications and TMS320C6416 oriented to high performance
applications were chosen for the evaluations. Concerning the election of FPGA
platforms the Stratix II and Virtex-4 families recommended for DSP applications
have been considered. The estimations will be done with the pairs EP2S30F484C-
4 and 4VLX25sf363:11, and EP2S15F484C-4 and 4VLX15sf363:11. The granu-
larity chosen to study the problem was at the level of algorithm and ANSI-C
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modeling was used. The software synthesis to assembler was carried out by means
of the Code Composer Studio from Texas Instruments. The transformation from
C-code (ImpulseC) to RTL-VHDL code was done by Co-Developer from Impulse
Technologies. The hardware synthesis was carried out by Quartus II from Altera
and ISE from Xilinx. PowerPlay from Altera and XPower from Xilinx were the
tools for power estimation. Another fact that affects the quality of the results is
the design tool settings; in our case default values have been used.

4 Results

The estimation results have been calculated under two different points of view.
First, all the variables of the algorithm have been coded with the number of bits
of the most costly variable; then the format is fixed to 40 bits for all of them.
And second, the variables are coded in multiple formats adapted to their optimal
word-length. The arithmetics implemented has been fixed-point and two’s com-
plement in both cases. The operations of multiplication and division have been
also programmed in C. The reason is mainly due to the use of the Co-Developer
tool which limit the data format for fixed-point preprogrammed operations to
32 bits size. The multiplication algorithm developed is the classical Booth al-
gorithm [9] and the division is implemented as the Goldschmidt algorithm [10]
based on the calculation of successive multiplications.

4.1 Metrics

The metrics is the key point to make the evaluation results useful when fed in a
partitioning algorithm. The algorithm should be characterized by its estimation
of area, time and power parameters in hardware and software implementations.
Each parameter must summarize in single number significant information (like
its fingerprints) of that particular solution implementation in order to make it
comparable with other possible predefined library components and also to assure
its portability among different Co-design environments to facilitate its reusabil-
ity. Then, two main questions arise. How to make the results comparable among
microprocessors or FPGA’s which have architectures too different? What are
the units better describing the parameter quantization? The area of software
(as) will be evaluated by the number of memory bits occupied by the program
code and data, assuming that the demand of space in memory for each instruc-
tion is different in the two considered microprocessors. Meanwhile the hardware
area quantification (ah) will be based on the logic structure of the FPGA’s,
Adaptive Logic Modules (ALM) for Altera and Slices for Xilinx. The units will
be expressed as the number of LUT of four inputs. The factor to convert the
estimated resources from one to other architecture has been taken from the in-
formation provided by Altera [11], no other source of information about this
conversion has been found in the literature for time being. These consider the
equivalence of one ALM from StratixII matching to 2,6 times 4 LUT’s and one
Slice from Virtex-4 equaling to 2 times 4LUT’s. The hardware time (th) will be
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expressed as the number of samples processed per second (s/s). The hardware
power consumption (ph) results will be given in terms of the dynamic power
(mW/MHz) only. The results presented were obtained for an 80% signal tog-
gle rate. The software power (ps) estimation is calculated with the spreadsheet
provided by Texas Instruments for its DSP processors taking into consideration
CPU activity and the current and the voltage of operation.

4.2 Estimation

Four different cases were evaluated in the option of 40 bits fixed format. The
main difference among them resides in the way of implementing the algorithm
and the resource restrictions for the variables when mapping them on the FPGA.
In Case I, all the variables are stored in registers only and the devices used
were EP2S30F484C-4 and 4VLX25sf363:11, meanwhile for the rest of the eval-
uated cases, the implementation was done on the devices EP2S15F484C-4 and
4VLX15sf363:11. In Case II and Case III, implementations on single-port and
dual-port RAM memories respectively were considered. And finally Case IV, was
the least restrictive of them all, allowing the use of dual-port RAM memories
and internal DSP block multipliers from the FPGA’s. The results are summa-
rized in Table 1 (1) for Altera and (2) for Xilinx. Obviously, the performance
obtained for the different cases is in agreement to resource restrictions. Gener-
ally speaking, Case IV may be considered the best, Case I the worse and Case
II and Case III solutions between them. Analyzing these two last cases in detail,
we may observe in dual-port RAM memory realizations that the speed decreases
for both Altera and Xilinx, the area and power increases in Altera’s and they
maintain around the same values in Xilinx’s.

Table 1. Hardware estimation results for 40 bits fixed format

Speed (1) Area (1) Power(1) Speed (2) Area (2) Power (2)
(s/s) (4LUT’s ) (mW/Mhz) (s/s) (4LUT’s ) (mW/Mhz)

Case I 2769 28584 1.25 2665 21000 2.18
Case II 2741 15839 1.78 2676 11312 1.73
Case III 2494 16203 2.22 2660 11300 1.72
Case IV 103842 7680 1.7 92575 8280 1.2

These results evidence the computational structure of the algorithm being
different from other kind of filters or FFT algorithms where dual-port memories
structures are much appropriated for these implementations. Then, it may be
concluded that the better performance is achieved for Case IV in Altera’s imple-
mentation. The word-length adjusted ad hoc after optimization for each variable
is studied next. The implementation was done with dual-port RAM memory and
DSP block multipliers to make the results comparable with Case IV. These re-
sults show an important improvement in area and power consumption but they
are worse in speed when compared with fixed format Case IV in both Altera and
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Table 2. Hardware estimation for word-length adjusted ad hoc

Speed Area Power
(s/s) (4LUT’s) (mW/Mhz)

Altera 50342 4430 0.93
Xilinx 47808 3818 0.62

Table 3. Software estimation results with 40 bits format and optimal number of bits
for the variables

Microprocessor Format Execution time (ts) Area (as) Power (ps)
(s/s) (bits) (mW/MHz )

TMS320C5510 40 bits 36.36 156144 0.92
Optimal 43.48 153416 0.91

TMS320C6416 40 bits 158.73 286272 1.54
Optimal 196.07 288000 1.52

Xilinx realizations. The poor behavior of this last parameter is due to the delay
suffered by the variables caused by size adaptation to internal DSP multipliers in
the FPGA’s. It may be concluded that the best choice for applications with speed
restrictions is the Altera implementation in 40 bits-data format, meanwhile if
the restriction is power consumption the data format should be implemented ad
hoc in Xilinx FPGA’s, in both cases using dual port RAM memories and DSP
block multipliers.

A similar study carried out for hardware estimation has been done for software
estimation. First the algorithm considering 40 bits length has been implemented,
later on adjusting ad hoc the number of bits for each variable. The results are
shown in Table 3.

They are in coherence with the characteristics of the microprocessors. Obvi-
ously, the 5510 microprocessor presents better results for low-power and the 6416
for high speed applications. Which is interesting to analyze here is the impact
of the ad hoc data formats in the parameters estimation. It may be observed
that the execution time improves in 16,4% for the 5510 microprocessor and in
19,1% for the 6416. The ad hoc variables format has different effects in the re-
sulting area for the platforms studied. The 5510 experiments a decrement and
an increment is observed in the 6416. This is due to the differences of assembler
programming. The memory positions for the program instructions are fixed to
two bytes in the 6416, which make it faster. Meanwhile each instruction in the
other microprocessor occupies different number of bits, being more suitable for
the ad hoc format. In both platforms there is a slight reduction in the power con-
sumption when ad hoc formats are considered. As a conclusion, it may be said
that the ad hoc format improves speed and power consumption but the format
influence in software area results depends on how many bytes each instruction
in memory occupies.
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5 Conclusions

A digital filter for noise cancellation has been described and its performance/cost
parameters have been estimated from different implementations in hardware and
software. The objective of these implementation characterizations is to use the
resulting parameters as inputs in a partition algorithm in Co-design Methodolo-
gies. The first decision which had to be adopted was what platforms, devices and
design tools to use. The first problem faced was to define a metric representa-
tive enough to make the comparisons possible among elements having different
architectures making comparisons very difficult in a precise manner. The solu-
tion implemented with multiple data format sizes improves the results of time
and power obtained with single data format sizes but the behavior of the area
parameter depends on the microprocessor architecture. Moreover, improvements
are attained in the parameters of area and power and losses of about a half in
speed in hardware implementations.
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Abstract. Most of today’s high-level synthesis tools offer a fixed set
of interfaces to communicate with the outer world. A direct integration
of custom IP in the datapath would often be more beneficial than an
integration using such communication interfaces. If a certain interface
protocol is not offered by the tool, either translation blocks (wrappers)
are needed or the code should be written at a lower level. The former so-
lution may hurt the performance, while the latter one is often impossible
using an untimed high-level description.

In this paper interface protocols or sets of IP core accesses are first
described at a low level as sets of operations with scheduling information
(macros). During the synthesis process, corresponding function calls are
mapped to these macros. This facilitates the integration of custom-made
hardware and hardware generated by high-level synthesis tools.

1 Introduction

The increasing number of transistors that can be put on a single chip, has led to a
growing design gap. Therefore, hardware design has to be lifted to a higher level,
as exemplified by the growing interest in high-level synthesis (HLS) techniques
[5]. However, hardware designers like to have full control over critical design
parts, which hinders the adoption of current HLS environments.

In the software world high-level languages have become mainstream since long.
However, for critical pieces of code, manually written assembler code may still
outperform compiled high-level code. In-line assembler allows to exploit the full
power of certain processor instructions while still enjoying the benefits of high-
level languages for the less critical program code. It would be very interesting to
have a similar option for hardware design. The limitations of current HLS tools
will be more tolerable if the designer can take over control for those parts of a
design where the synthesis results are not satisfactory.

Many HLS tools offer a built-in library of macros to communicate with the
outer world. The inclusion of a custom-made block should typically be specified
as communication with an external block, that has to fit a certain interface. A
translator block, called a wrapper, may be used to translate one interface into
another (Fig. 1), but this may create an overhead (see Sect. 4). Describing the
communication at a lower level, e.g., using multiple statements in the high-level
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IF2
FU

IF1
IO

Fig. 1. An IO hardware block translates the interface of the functional unit (IF1) to
the desired interface (IF2)

input language to describe one external transaction, may often be impossible
since the concurrency of signal assignments cannot be forced in untimed C code.

This paper presents a method to describe interface protocols as a sequence of
schedule1 steps with transition information (Sect. 2), such that it can be dealt
with on equal terms with the built-in macros or interfaces of the HLS tool.
Macros may also be used to interact with custom-made IP blocks in a more
integrated way. Our scheduler is able to pipeline transactions and operations
without specific directives (Sect. 3). Hereby, we still have the advantages of
a modular design flow: portability and a clear separation for the designer of
communication and functional behavior, but with less overhead thanks to the
tighter integration of these two in the generated hardware.

2 Macro Schedule Description

A macro is a set of operations described at a cycle- and pin-accurate level that
together with the external hardware it communicates with implements a func-
tionality corresponding to one high-level construct, e.g., a memory access, a
mathematical operation performed by an IP core, . . . (In this section we restrict
ourselves to well known memory examples. Real IP-cores are used in Sect. 4.2).
Such a macro can be described as a finite state machine (Fig. 2 and Fig. 3). The
area between two dashed lines corresponds to one state. Transitions, indicated
with arrows, are triggered by events (clk ↑), possibly guarded by conditions put
between [ ]. Operations that are executed at a state transition are put behind
a ‘/’. State charts only execute operations at state transitions. We use a more
compact notation where operations inside a state represent operations that are
executed at each outgoing transition as explicitly shown in Fig. 2(a and b). For
each macro a corresponding C function is written. During synthesis, calls to
these functions are mapped to the corresponding macros.

From this information, our scheduler derives which signals are used by a macro
instance in which cycles (Fig. 4(a and b)). It is able to overlap several instances
of one macro (Fig. 4(c)), but also instances of different macros sharing ports
(Fig. 4(d)). If in a clock cycle a macro does not apply a value to an output, that
output can be used by another macro execution. Else, it receives a default safe
value (Fig. 2(c)). That these default values are not forced by macros that do not
use a certain output is essential to the ability of automatically pipelining macro
instances.
1 Scheduling in HLS is the task of assigning operations to clock cycles (or control

steps) in a static way, i.e. in the hardware generation process.
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clk

clk

clk

@mem@_ad<=ad

return_val:=@mem@_q

clk

clk

clk

/
@mem@_ad<=ad

/
return_val:=@mem@_q

(a) (b) Alternative representation of (a)

defaults (
@mem@ ad <= (others => ’−’);
@mem@ d <= (others => ’−’);
@mem@ we <= ’0’;
)

schedule:
@mem@ ad <= ad;
<nc>
<nc>
return val := @mem@ q;
<end>

(c) Default values of outputs (d) Textual schedule representation

Fig. 2. Protocol description for a single cycle memory read. The @mem@ substring is a
placeholder for the name of the memory instance. <nc>= new cycle.

clk

clk

clk

clk

@mem@_wr_req<=’0’
[@mem@_ack=’1’] /

@mem@_wr_req<=’1’
@mem@_d<=value;
@mem@_ad<=ad;

[@mem@_ack=’0’] /

[@mem@_ack=’0’]/
@mem@_wr_req<=’1’
@mem@_ad<=ad
@mem@_d<=value

[@mem@_ack=’1’]

Fig. 3. Protocol description for a memory write with a full handshake

t

(c)
t

(b)
t

(d)

A_d

A_we

A_ad

A_q

t

(a)

Fig. 4. Occupation of ports for single-cycle memory transactions (a) read, (b) write.
Both reads and writes can be pipelined with initiation interval 1 (c), but also a mix of
reads and writes (d).
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Conditional state transitions (Fig. 3) result in an indeterministic execution
time. Our scheduler is able to combine macros (and built-in constructs) with
both deterministic and non-deterministic execution time (Sect. 3).

3 The Scheduling Algorithm

Scheduling operations with fixed time intervals can be done using behavioral
templates [11]. A behavioral template is a set of nodes of a control data flow
graph (CDFG) coupled with cycle offsets. If one of the nodes of the template
is scheduled, the schedules of all the other nodes are defined by the relative
offsets. Behavioral templates for a single cycle read and write are recognized
in the first and last cycle of the schedule in Fig. 5(a). We extended the con-
cept of behavioral templates with conditional state transitions that introduce an
indeterministic execution time (E.g., handshake read of array B in Fig. 5.). A
conditional state transition cannot be scheduled in parallel with a template that
has a fixed cycle offset, unless some kind of micro-threading is used (which is

clk
clk

clk

clk

clk

clk

clk

clk

[B_ack=’0’] /
B_ad<=tmp0;

[B_ack=’1’] /
tmp1:=B_q;

B_rd_req<=’1’

B_rd_req<=’0’tmp3:=tmp2+tmp1

A_d<=tmp3;A_ad<=i; A_we<=’1’

[B_ack=’1’]

[B_ack=’0’]/
B_ad<=tmp0
B_rd_req<=’1’

tmp2:=A_q

A_ad<=itmp0:=i+1

(a) Schedule for A[i]=A[i]+B[i+1]

clk

clk

clk

clk

clk
clkclk

tmp2:=A_q

tmp3:=tmp2+tmp1

A_d<=tmp3;A_ad<=i; A_we<=’1’

tmp1:=B_q; B_rd_req<=’0’
[B_ack=’1’] /A_ad<=tmp0B_rd_req<=’1’

B_ad<=i;
[B_ack=’0’]/ B_ad<=i; B_rd_req<=’1’

[B_ack=’0’] /tmp0:=i+1;[B_ack=’1’]

(b) Schedule for A[i]=A[i+1]+B[i]

Fig. 5. Behavioral templates (boxes) take care of the relative schedule constraints
(offsets) of different operations of a macro during the scheduling process



430 H. Devos, W. Meeus, and D. Stroobandt

while nodes remain to be scheduled {
ready list := all nodes that do not depend on unscheduled nodes
for each node in the ready list {

find earliest execution cycle of this node based on dependencies
while conflicting resource constraints

increase execution cycle of this node
schedule this node at the found execution cycle

update consumed resources
}

}

Fig. 6. The scheduling algorithm. A node is a behavioral template consisting of several
CDFG operations, or a single operation that is not included in any behavioral template
(could be regarded as a singleton behavioral template).

kept as future work). This is regarded as a conflicting resource constraint. How-
ever, single cycle operations can be made on the conditional state transitions
that are taken exactly once, e.g., tmp0:=i+1 in Fig. 5(b).

Our scheduling algorithm (Fig. 6) schedules operations as soon as possible. If
two operations are ready to be scheduled but have conflicting constraints the one
that comes first in the input C code is selected. In future work we will explore
more advanced scheduling heuristics. The outer loop does not iterate over cycles,
but over the nodes to be scheduled. This differs from classical algorithms. The
nodes in the algorithm are behavioral templates that may consist out of multiple
operations scheduled together or operations not being part of a behavioral tem-
plate, regarded as singleton behavioral templates (that can be combined with
conditional transitions).

4 Experiments

Our high-level synthesis environment, JCCI [6] (Java C to CLooG [3] Interface),
reads in macro descriptions (in a textual representation, cf. Fig. 2(d)). Function
calls in the C input code that correspond to macros are recognized and replaced
with the scheduling information of the corresponding macros.

4.1 Memory and FIFO Interfaces for a Sobel Edge Detector

The kernel of the Sobel edge detector [8] algorithm contains a 3 × 3 sliding
window operation. Five conceptually different designs were described in C.

1: The standard textbook algorithm. 2: Variables store the input values that
are reused in the next two column iterations. This reduces the number of memory
reads with a factor three. 3: Vertical reuses are exploited by storing two lines of
the image in FIFO buffers. This reduces the memory reads with roughly another
factor three. The FIFO buffers are created as IP cores (Altera MegaWizard) and
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Fig. 7. Simulation and synthesis results for 5 implementations of a Sobel edge detector
on an Altera Stratix III (EP3SL150F1152C2) for different interfaces. ALUT = Adaptive
Look-Up-Table. Execution time and number of clock cycles for a 320×320 input image.
The number of DSP and memory blocks used are not plotted since they do not depend
on the IO interface.

accessed using macros. Designs 2 and 3 are similar to the designs listed in [7,12].
4: similar to 3, but the FIFO is made using single port memory blocks, with a
macro that implements the address increments with wrap around. 5: no FIFO
macros used. A C description of FIFOs is used to buffer the two lines of pixels.

For each of these designs we generated three variants with a different memory
interface (Fig. 7). A first variant uses a single-cycle memory (cf. Fig. 2). A second
one uses a memory with a full handshake protocol (cf. Fig. 3). A third variant is
identical to the second extended with a block that converts the full handshake
protocol into a single-cycle protocol, similar to Fig. 1 (with IF1 the handshaking
and IF2 the single-cycle protocol). This mimics the situation where a protocol
is not part of the HLS tool’s library and a wrapper is inserted.

Results and Discussion. The interface conversion blocks introduce (on the
average) an overhead in area and clock cycles (Convert vs. Single-cycle in Fig. 7).
In some cases a wrapper augments the clock frequency, but this is counterbal-
anced by the increased number of cycles. It is thus beneficial to include the
proper protocol directly. The usage of macros to describe the FIFOs gives better
results than the equivalent description in C code. Probably, other HLS tools may
generate line buffers in a much more efficient way. However, the point we want
to make here is that the user can take control over the synthesis process when
the HLS techniques do not give satisfactory results.
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4.2 Integration of Floating-Point Megacores

The Altera Floating Point Megafunctions [1] implement IEEE 754-compliant
floating-point operations. The cores are pipelined and have a known latency
(add/sub: 7 cycles, mul: 5 cycles, div: 6 cycles). The addition and subtraction
use the same block. A select signal is used to choose between the two. After
writing a macro description (applying the input values in the first cycle and
reading the output a fixed number of cycles later), a C function that performs
one floating-point operation can be synthesized using the corresponding IP core.
Our scheduler is able to pipeline all operations and it knows that a sub and an
add cannot be started at the same time. We tested the macros by implementing
the Newton-Raphson algorithm to find a zero of a fifth degree polynomial:

xn+1 = xn − f(xn)
f ′(xn)

= xn − a5x
5
n + a4x

4
n + a3x

3
n + a2x

2
n + a1xn + a0

5a5x4
n + 4a4x3

n + 3a3x2
n + 2a2xn + a1

. (1)

The time needed to set up this design was less than two hours from C-code
to synthesisable VHDL: 15’ to create the Altera floating point megacores with
the Altera QuartusII MegaWizard Plug-In Manager; 15’ to convert all float-
ing point operations in the C code into function calls, such as fp add, fp sub,
. . . (E.g. x2=x*x; becomes x2=fp mul(x,x);); 30’ to describe the macro sched-
ules for each of these floating point operations; some additional time for con-
structing the top-level and testbench, and testing. On an Altera Stratix III
(EP3SL150F1152C2), the design can clock at 150.60 MHz, and does one eval-
uation of (1) in 69 cycles, i.e. 458 ns. The design uses 20 DSP blocks (5% of
the FPGA), 4608 Memory bits (< 1%), 2147 combinational ALUTs (2%), 26
memory ALUTs (< 1%) and 3079 dedicated logic registers (3%). On an Intel
Core2 Quad CPU Q6600 at 2.40 GHz the same computation takes 43 ns or
roughly 90 cycles. The focus of this experiment, however, is not the comparison
of the FPGA and processor implementations, but the ease of integration of the
floating-point cores.

5 Related Work

Some HLS tools focus on the datapath and have little attention for the commu-
nication interface. SPARK [9], e.g., generates 1 port for each array element.
Impulse-C [10] offers a set of macros for the communication with hardware
blocks, e.g., FIFOs and channels, but no user-specified interfaces can be defined.

The approach of Mentor Graphics’ Catapult C [4] is similar to ours. Catapult
C accepts a pure untimed C++ description as its input. The user can define its
own interfaces with a library builder. The interface resource consists of an I/O
hardware block connected to a standard interface (similar to the architecture in
Fig. 1). Property mappings are used to describe the delay (for combinational
logic) or initiation delay (needed for pipelining) of a transaction. This allows
to pipeline different instantiations of the same transaction as in Fig. 4(c). We
doubt, however, if it would be possible to detect a pipeline option as in Fig. 4(d).
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Transaction Level Modeling (TLM) using SystemC is used for system-level
design and architecture exploration. TLM-RTL transactors connect blocks with
interfaces at different abstraction levels: a TLM interface, which is a function call,
and an RTL interface. For simulation, this is similar to the concept of macros.
However, our focus is on the hardware generation and not on the modeling.

SpecC has modeling capabilities similar to SystemC but has a designer-assisted
tool flow to RTL [13]. Communication is implemented with protocol adapters,
similar to [2], where an IO block is inserted for interface translation.

6 Conclusions

The growing complexity of digital system design has raised the need for more
flexible HLS tools. This paper presents a method to extend such a tool with the
ability to generate custom interface protocols or IP core integration, without the
overhead that would be caused by wrappers. This enables a tighter integration
of generated and custom-made hardware and may create a design flow in which
the strengths of HLS tools and manual hardware design can be combined.
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Abstract. This paper proposes a methodology based on formal correspondence 
checking to automatically debug and also optimize pipelined microprocessors 
including reconfigurable processors with timing error recovery techniques. 
Since formal verification analyzes the design exhaustively, it may give good in-
sights into not only debugging but also optimization of hardware designs with 
complicated control structures. The paper gives two main contributions,  
1) modeling and formal verification of pipelined microprocessors including re-
configurable processors with timing error recovery techniques and 2) an ap-
proach to debug and optimize the implementation using the UCLID system as a 
correspondence checker. Using our method, the debug time can be reduced  
significantly. In addition, the implementation can be optimized by removing 
unnecessary signals and components while the correctness of the design is 
guaranteed.  

Keywords: formal verification, architecture level debugging and optimization, 
pipelined microprocessors, reconfigurable processors. 

1   Introduction 

Reconfigurable computing is becoming increasingly attractive for a broad range of 
applications due to achieving much more flexibility in hardware and improving per-
formance in comparison with software-only implementations. In such reconfigurable 
systems, the correctness of reconfigurable microprocessors is a key for their applica-
tions and should be checked before developing and debugging the application. More-
over, the increased parallelism provided by superscalar and out-of-order mechanisms 
in advanced microprocessors has made correctness statements for verification more 
complicated. Several formal verification techniques including symbolic model check-
ing [1], theorem proving [2-3] and approaches based on decision procedures [4-5] 
have been proposed to verify such micro-architectures.  

On the other hand there are some approaches [8-10] [12] based on SAT or SMT 
solvers to debug hardware designs using the erroneous traces. Those methods depend 
on existence of such traces and also their corresponding correct results. Usually the 
existence of the erroneous and also the correct traces rely on a testbench that is able to 
reveal the bugs. In [12] a diagnosis method is presented which extends the SAT-based 
diagnosis for the RTL designs. The design description as well as error candidate sig-
nals are specified in the word level and therefore word-level multiplexers are added 
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into error signals. Finally to solve the resulting formula, a word-level solver is used. 
None of those methods address automatic debugging or optimization issues. 

In this paper, we propose a methodology which utilizes formal verification tech-
niques to debug and optimize a given pipelined processor more efficient. In our meth-
odology, an RTL code of the implementation and the Instruction Set Architecture 
(ISA) as the specification are given. We assume that the RTL design is incrementally 
developed which is an implication to design reconfigurable processors. In this way we 
are able to easily define a list of error candidate signals which is one of the inputs to 
our debugging and optimization algorithms (see VarList in Fig. 3 and Fig. 5) and 
formal verification can effectively and incrementally verify design changes. First of 
all the RTL Verilog code is abstracted to the term-level in UCLID using v2ucl tool 
[11]. Then a correspondence checking between the specification and the implementa-
tion is performed until we obtain a golden model of the implementation. After that, 
the implementation is systematically modified and then symbolically simulated until 
we get an optimized model of the implementation. Our contributions in this paper are: 
1) presenting a technique to locate and correct the bugs while correct outputs are 
derived from the specification instead of being provided by the user, 2) presenting a 
method to systematically optimize the design by looking for unnecessary control 
signals and avoiding functional redundancy and 3) utilizing the specification rather 
than one counter-example at a time to check all possible paths in the implementation 
by employing a symbolic simulator. 

The rest of this paper is organized as follows. We explain our methodology in  
Section 2. In Section 3 we introduce our case study of a timing error recovery  
technique and present how to debug and optimize it. Finally we conclude in Section 4. 

2   Microprocessor Debugging and Optimization Methodology 

This section presents our methodology to debug a given design and improve its per-
formance which is based on correspondence checking technique supported by UCLID 
[6]. Note that architecture-level verification and optimization are even important for 
reconfigurable microprocessors to guarantee the absence of hardware errors and to 
escape from bugs through reconfiguration.  

The main phase of debugging or optimizing a design is to systematically modify it. 
To do so, an extra logic is added to the implementation. Fig. 1(a) shows a state vari-
able Var which is connected to m blocks (B1 to Bm). To change the value of Var, m 
multiplexers are inserted so that the original variable Var is attached to the 0-input of 
the multiplexers and the multiplexers’ outputs are connected to the Var’s fanout cone  
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…… 

(a) (b)

B1

Bm

……

Var_Control1
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Fig. 1. Systematic modification 
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Fig. 2. Correspondence checking 

as shown in Fig. 1(b). In addition, for each block Bi (i=1 to m) two new variables 
Var_Alternativei and Var_Controli are attached to multiplexer’s 1-input and select-
input respectively. Although this idea was applied to the problem of RTL debug [8], 
we utilize it at a higher level of abstraction where the design is implemented using 
uninterpreted functions and predicates.  

The UCLID system utilizes the logic of Counter Arithmetic with Lambda Expres-
sions and Uninterpreted Functions (CLU) to specify and verify systems which have 
infinite or unbounded state [6]. A flushing refinement proof is used to check whether the 
state of a pipelined machine (implementation) is equivalent to its corresponding ISA 
state (specification) by completing the partially executed instructions in the pipeline. 
First the implementation (Qimpl) is symbolically simulated with an arbitrary input com-
bination for one step (Qimpl  Q1

impl in Fig. 2). Then the pipeline is flushed for n steps 
until all partially executed instructions can be completed and the programmer-visible 
parts of the implementation are saved (Q1

impl  Q’impl). After that, we re-initialize to the 
start state and in order to have a corresponding state of the implementation in the speci-
fication, first the implementation is flushed for n steps (Qimpl  Q2

impl), and then the 
state of the implementation is projected into that of the specification (Q2

impl  Qspec). 
After symbolically simulating the specification for one step (Qspec  Q’spec), the pro-
grammer-visible components such as Program Counter (PC), Register File (RF) and 
Memory (Mem) in the Q’impl should be equivalent to those of Q’spec. 

2.1   Debugging Technique  

In order to check the correspondence between the implementation (Impl) and  
the specification (ISA) as discussed before, we check the following correspondence 
property: 

P1:  (Impl.PC = ISA.PC & Impl.RF = ISA.RF &  Impl.Mem= ISA.Mem)                     (1) 

If the formula is valid, Impl is taken into account as a golden model of the implemen-
tation which can further be optimized using our optimization technique. If the formula 
is not valid, instead of checking the counterexample generated by the UCLID which 
is a time-consuming and difficult task, we apply our proposed debugging method.  
Fig. 3 depicts the proposed semi-automatic debugging technique. We assume that a 
buggy model of the implementation (Impl), the specification (ISA), and a list of vari-
ables which may be the root-causes of the bugs in the implementation (VarList) are 
given. Although VarList can contain all state variables in the implementation or a 
subset of them which can be automatically generated, since we have employed an 
incremental development methodology to implement the design, we select those vari-
ables which are incrementally added to the original design and may cause the design 

Simulate one step Simulate one step 

… 
Flush n steps 

… 
Flush n steps 

EQ 
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impl 
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fails. There is an assumption that a single failure can be corrected by adding a single 
multiplexer.  

Our debugging technique starts by enriching the buggy implementation (Impl) in 
such a way that each variable in VarList is replaced with a multiplexer (En-
riched_Impl) as explained in Fig. 1 (lines 1-2 in Fig. 3) when the correspondence 
property between Enriched_Impl and the ISA model is as follows: 

P2: (Enriched_Impl.PC = ISA.PC & Enriched_Impl.RF = ISA.RF &  Enriched_Impl.Mem = ISA.Mem)  (2) 
 

Debug_Technique(Impl, ISA, VarList, n) 
Inputs: Impl: implementation; ISA: specification;  
         VarList: list of variables;  
Output: golden model of the implementation 

1   For all variables in VarList 
2       Enriched_Impl = Modify Impl based on Fig. 1; 
3  Valid = Simulate (Impl, Enriched_Impl, ISA);  
4   Look for variables with Var_Control=1;  
5   Impl = Fix the bug;  
6   Update VarList;
7   Valid = Simulate (Impl, ISA);
8   If (Valid) return Impl;     
9   ElseIf (VarList is empty)   Bug is not locatable! 
10  Else go to step 1; 
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Fig. 3. Debug method  Fig. 4. (a) A buggy implementation, (b) first 
enriched implementation, (c) second enriched 
implementation 

 
After that, two implementations, i.e. the buggy implementation (Impl) and the 

modified implementation (Enriched_Impl), are compared with the specification (ISA) 
using the UCLID system (line 3). To do so, the validity of ~(~P1 & P2) is checked to 
indicate under what conditions the buggy implementation fails (because of ~P1 in the 
formula), while the modified one  works correctly (due to using P2 in the formula). At 
this point, the UCLID generates a counterexample which can easily be traced to lo-
cate the bug. We just need to look for those variables whose Var_Control signals are 
set to 1 (line 4). In other words, that part of the counter example shows the difference 
between the buggy implementation and the enriched one. Therefore the user can eas-
ily identify the reasons for failure by checking the state of the design at the k-1th and 
kth steps and perform appropriate modification. According to the value of 
Vari_Alternative when Vari_Control is 1, the buggy implementation is modified and 
VarList is updated accordingly (lines 5-6). Then the correspondence between the Impl 
and the ISA model is checked (line 7). If the correspondence formula holds Impl is 
returned as a golden model (line 8). Otherwise if VarList is not empty the algorithm 
goes to step 1 to repeat the process (line 10 in Fig. 3) until the formula is valid or 
there is no variable in VarList.  

As an example, consider a DLX processor with two RR and RI instructions.  
Fig. 4(a) shows a part of the implementation that has changed due to adding BR in-
struction, where VarList = {deValid, emValid}. Note that emBranch in Fig. 4(a)  
indicates whether or not a branch is taken, where TakeBranch is an uninterpreted 
predicate. Fig. 4(b) illustrates the enriched implementation after adding multiplexers 
into deValid and emValid state variables. After correspondence checking between two 
implementations and the specification, i.e., checking ~(~P1 & P2), we have found out 
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that Var1_Control is activated at the 2nd step while a BR instruction is being executed. 
During this step, Var1_Alternative is set to 0 which causes emValid to become 0 at the 
next step while in the buggy implementation emValid becomes 1. In other words, the 
execute stage (emValid) should be invalidated when a branch is taken (emBranch is 
true). Hence we have modified emValid state variable as shown in Fig. 4(c). The 
fourth row in Table 1, DLX-DBG2, gives the results. 

It is interesting to note that after simulating the new implementation with the speci-
fication (according to line 7 in Fig. 3), the formula (P1) was not valid and therefore 
we have applied our debugging technique again. The ~(~P1 & P2) formula is checked 
again when VarList = {deValid} and the enriched implementation is as shown in Fig. 
4(c). In this case, Var2_Control is activated at the 2nd step when the instruction is BR 
again. Moreover, Var2_Alternative is set to 0 which causes deValid=0 at the next step 
while in the buggy implementation deValid=1. It means that the decode stage  
(deValid) must be invalidated when a branch is taken. The fifth row in Table 1,  
DLX-DBG3, reports the results. Finally the correspondence checking between the 
implementation and the specification is successfully done.  

2.2   Optimization Technique  

Fig. 5 depicts the proposed optimization technique. We assume that a golden model of 
the implementation (Impl), the specification (ISA), and a list of variables (VarList) 
which may make the implementation more optimized are given. First of all, Impl is 
modified by replacing each variable in VarList with a multiplexer (Enriched_Impl in 
lines 1-2). Then a variable Vari is selected from VarList (line 3) and Vari_Alternative 
≠ Vari as an invariant is added to the enriched implementation (line 4). After that, the 
MUXs added into all variables except Vari are deactivated by setting Varj_Control=0, 
where j≠i (line 5). Finally the correspondence between two implementations (Impl 
and Enriched_Impl) and the specification (ISA) is checked (line 6). Although P1 and 
P2 are similar to those used by the debugging technique (see (1) and (2)), the corre-
spondence formula for the optimization is ~(P1 and ~P2) that generates conditions in 
which the golden implementation works correctly (P1), while the modified one fails 
(~P2). If the formula is valid, it means that there exists functional redundancy so that 
we can further optimize the implementation by removing this redundancy (line 7). If 
the formula is not valid, we can conclude that no optimization with respect to Vari is 
possible. After removing Vari from VarList (line 8), if VarList is empty Opt_Impl is 
returned as an optimized model of the implementation (line 9). If VarList is not 
empty, Opt_Impl is considered as Impl and the algorithm goes to step 1 to repeat the 
optimization process for another variable (line 10).  

Let us consider the previous example again. Fig. 6(a) shows a part of the imple-
mentation after adding BR instruction, where VarList = {mwValid}. In order to see 
whether the functionality of mwValid can be optimized or not, its inputs are replaced 
with multiplexers and then activated one by one. When a multiplexer is added  
into ~emBranch input as shown in Fig. 6(b) and Var1_Alternative ≠ ~emBranch is 
considered, the UCLID indicates that ~(P1 & ~P2) is valid. In other words, 
~emBranch is redundant and can be removed. The last row in Table 1, DLX-OPT3, 
gives the results. 
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Optimization_Technique(Impl, ISA, VarList, n) 
Inputs: Impl:implementation;ISA:specification;VarList: list of variables; 
Output: Opt_Impl: optimized model of the implementation 

1      For all variables in VarList
2 Enriched_Impl = Modify Impl based on Fig. 1; 
3      Select Vari from VarList;
4      Consider Vari_Alternative ≠ Vari as an invariant; 
5      Deactivate MUXs of all variables except that of Vari;
6      Valid = Simulate (Impl, Enriched_Impl, ISA);  
7      If (Valid)   Opt_Impl = remove redundancy;        
8      Remove Vari from VarList;
9      If (VarList is empty)     return Opt_Impl;        
10    Else Impl = Opt_Impl and go to step 1;  
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Fig. 5. Optimization method   Fig. 6. (a) A part of implementation 
before optimization, (b) enriched 
implementation  

3   Case Study: Pipelined Timing Error Recovery Techniques 

In order to demonstrate the effectiveness of our method, we have considered timing 
error recovery (TER) technique in pipelined microprocessors. Parameter variation in 
integrated circuit devices has become a major challenge so that it may cause sections of 
a chip to be slower than others. Hence, logic paths in those sections may take longer 
delay to propagate signals and hence induce timing errors. In [7] a novel architecture, 
Razor, has been proposed to detect and correct occasional errors. The main idea is to 
append a shadow latch to each main flip-flop. The shadow latch uses a delayed clock to 
sample the outcome of the combinational logic one more time and to compare it with 
the data sampled earlier by the main flip-flop at the edge of the normal clock. If the data 
arrives late with respect to the normal clock, the main flip-flop stores a wrong value 
while the shadow latch may store the correct one. In this case a timing error has oc-
curred. Although the detection is done in the Razor flip-flops, the timing errors are cor-
rected through architectural replay mechanism. To model Razor-II technique, three 
things should be implemented: 1) timing error detection 2) bubble or no-operation 

0(NOP) insertion and 3) re-execution or replay. Fig. 7 illustrates how they have been im-
plemented with UCLID. Corresponding to each stage there are two variables 1) TE 
(timing error) which is the output of an uninterpreted predicate to specify if a timing 
error has occurred and 2) Valid as a state variable to indicate whether the related data 
is valid or not. For instance fdValid in Fig. 7(a) is the Valid register between the fetch 
and decode stages and shows whether the data provided by the fetch stage is valid or 
not. Also the TE1 and TE5 state whether the fetch stage and the write-back stage have 
a timing error problem, respectively. In addition, the Errori (i=1 to 5) state variable 
passes along the pipeline as shown in Fig. 7(b) to inform the next stages (i+1,…) if a 
timing error was detected at the stage k (k=1 to i). In Fig. 7(a), if (Error5 or TEi) is 
activated, the related Valid signal will be zero. Otherwise the normal function is done. 
Fig. 7(c) shows how an errant instruction can be re-executed. It can be seen in this 
figure that the PC is passed through the pipeline until we reach the write-back stage. 
If an error was detected in one of the stages in the pipeline, Error5 will be asserted 
and therefore the PC in the WB stage, i.e., mwPC, is written into the PC in the fetch 
stage.  



 Pipelined Microprocessors Optimization and Debugging 441 

 

 

Fig. 7. Implementation of Razor-II timing error recovery technique 

Table 1. Preliminary experimental results 

Processor #line #var #truth #term #bool CNF-var CNF-cls time (s) 

DLX-FV 597 190 3048 1782 43152 40952 121678 1.61 

DLX-DBG1 896 203 4068 1966 64020 61336 181348 2.48 

DLX-DBG2 672 179 3234 1573 49518 47327 139501 1.91 

DLX-DBG3 651 179 3024 1596 49961 47767 140923 1.93 

DLX-OPT1 896 268 5679 3066 105811 102063 302668 4.08 

DLX-OPT2 896 219 4206 2356 73947 71028 210268 2.87 

DLX-OPT3 664 154 2841 1218 38551 36696 108112 1.47 

 
The experiments were performed on a 3.33GHz Intel Core2 Duo with 3 GB mem-

ory running Linux. zChaff has been used as the SAT solver within UCLID. Table 1 
summarizes the results for different cases discussed in the following subsections. In 
this table, columns #line and time indicate the number of lines in the UCL file and the 
CPU time taken by the decision procedure in seconds respectively. In addition, the 
number of variables, the number of nodes corresponding to truth-expressions, i.e. 
Boolean expressions, the number of nodes corresponding to term-expressions, i.e. 
word-level expressions, the size of Boolean formula obtained after translating a CLU 
formula to a propositional formula, the number of CNF variables and clauses are 
reported in columns #var, #truth, #term, #bool, CNF-var, and CNF-cls respectively. 
Note that out-of-order architectures challenge existing verification techniques because 
the number of cycles required to empty large reorder buffer completely is so large and 
the logical formulas to be constructed and manipulated are too complex. 

In order to formally verify this timing error recovery technique, we have imple-
mented it into a 5-stage single-issue DLX processor which has five types of instruc-
tions: store word, load word, conditional branch, three-registers ALU instructions and 
ALU immediate instructions. The implementation is symbolically simulated with an 
arbitrary input combination for one step and then the pipeline is flushed for 5 steps 
until all partially executed instructions are completed. On the other hand, first the 
implementation is flushed for 5 steps and then the state of the implementation is pro-
jected into the state of the specification. Finally the specification is symbolically 
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simulated for one step. After that the two models are compared to see whether they 
are equivalent or not. One issue for verifying TER techniques is the fact that we are 
not able to model multiple clocks in the UCLID system. To alleviate this problem, we 
have considered an uninterpreted predicate TErr to randomly activate the error signal 
of stage i (TEi : i=1 to 5). The second row, DLX-FV, in Table 1 shows the results for 
verifying 5-stage DLX processor with error recovery technique. Although our meth-
odology is flexible enough that can be applied to out-of-order superscalar microproc-
essors, we leave it as a future work to show an automatic mechanism for debugging 
and optimization of wide-issue out-of-order microprocessors. Note that out-of-order 
architectures challenge existing verification techniques because the number of cycles 
required to empty large reorder buffer completely is so large and the logical formulas 
to be constructed and manipulated are too complex. 

3.1   Semi-automatic Debugging 

After implementing the timing error recovery techniques in the UCLID system, using our 
debugging methodology we found out some enhancements to our implementation as well 
as some bugs in the implementation of our case study. We have observed real bugs which 
were not false negative. For instance, one of bugs happened when a load instruction 
followed by two consecutive store instructions. In order to identify the failure reason,  
we have replaced ~next[Error4] with m_Error4  in Fig. 8(b) and considered  
Error4_Alternative ≠ ~next[Error4] as the invariant explained before. After simulating 
the design, we obtained a counterexample in which Error4_Control=1 and  
Error4_Alternative=1 at the 5th step of simulation. Based on the formula ~(~P1 and 
P2) discussed in Fig. 3, the counterexample gives an example in which P1 is not valid 
while P2 is valid. It shows that if a timing error occurs in the execution stage (TE3=1) 
and ~next[Error4]=1 at the 5th step, two implementations behave differently. After 
more investigations, we figured out the main reason for the problem. The problem 
occurs when the second store instruction saves an incorrect data into the memory 
while the first store instruction has a timing error and the destination of the load in-
struction is equal to the source of the store instructions. In Fig. 8(a) the second store 
instruction writes something into the memory because the select-line of the multiplexer 
is true (emType=ST & emValid=true & next[Error4]=false). In this way we could find 
out that ~next[Error4] should be replaced by ~Error4. The third row in Table 1, DLX-
DBG1, gives the results. 

 

Fig. 8. An incorrect write into the memory – debugging example 
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3.2   Semi-automatic Optimization 

After obtaining a golden model of the implementation, we have tried to optimize the 
implementation by removing unnecessary parts in an interactive manner. In other 
words, we have looked for some sections of the algorithm which are not necessary to 
be supported in special cases. We have applied the optimization method in Fig. 5 to the 
opti and Errori (i=1 to 5) variables in the design, where opti is the select-input of  
the multiplexer in Fig. 7(a). We have modified the above-mentioned variables one by 
one at different simulation steps when various timing errors have been taken into ac-
count. This way we could find some special cases which do not need to be considered: 

1. When a timing error happens in the execution stage (Timing_error3), it is not 
necessary to insert bubble in the first stage (fdValid). DLX-OPT1 row in Table 1 
reports the results.  

2. We have also observed that if a timing error occurs the instruction and the PC in 
the fetch stage are not important. The seventh row in Table 1, DLX-OPT2, gives 
the results.  

3. Moreover, if multiple timing errors occur, it is sufficient to only consider the 
nearest one to the WB stage. 

4   Conclusion and Future Work 

In this paper, we have proposed a methodology for debugging and optimizing of pipe-
lined microprocessors which is based on formal verification techniques. We have 
applied our method to timing error recovery techniques in pipelined processors in 
order to find out the source of the bugs as well as unnecessary signals and compo-
nents. Although we have discussed our methodology based on the UCLID system, 
any other symbolic simulator can be utilized. As a future work, we are going to apply 
our methods to out-of-order superscalar microprocessors. 

References 

1. Jhala, R., McMillan, K.: Microarchitecture Verification by Compositional Model Check-
ing. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 396–410. 
Springer, Heidelberg (2001) 

2. Arons, T., Pnueli, A.: A Comparison of Two Verification Methods for Speculative Instruc-
tion Execution. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, p. 
487. Springer, Heidelberg (2000) 

3. Hosabettu, R., Gopalakrishnan, G., Srivas, M.: Verifying Advanced Microarchitectures 
that Support Speculation and Exceptions. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. 
LNCS, vol. 1855. Springer, Heidelberg (2000) 

4. Burch, J., Dill, D.: Automatic Verification of Pipelined microprocessor Control. In: Dill, 
D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg (1994) 

5. Velev, M.N.: Using Rewriting Rules and Positive Equality to Formally Verify Wide-issue 
Out-of-order Microprocessors with a Reorder Buffer. In: Design, Automation and Test in 
Europe (DATE), pp. 28–35 (2002) 



444 B. Alizadeh, A.M. Gharehbaghi, and M. Fujita 

 

6. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and Verifying Systems using a Logic of 
Counter Arithmetic with Lambda Expressions and Uninterpreted Functions. In: Brinksma, 
E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 78. Springer, Heidelberg (2002) 

7. Das, S., Tokunaga, C., Pant, S., Ma, W.-H., Kalaiselvan, S., Lai, K., Bull, D., Blaauw, 
D.T.: RazorII: In Situ Error Detection and Correction for PVT and SER Tolerance. IEEE 
Journal of Solid-State Circuits 44(1), 32–48 (2009) 

8. Smith, A., Veneris, A., Fahim Ali, M., Viglas, A.: Fault Diagnosis and Logic Debugging 
using Boolean Satisfiability. IEEE Trans. on Computer-aided Design of Integrated Circuits 
and Systems 24(10), 1606–1621 (2005) 

9. Mangassarian, H., Veneris, A., Safarpour, S., Benedetti, M., Smith, D.: A Performance-Driven 
QBF-Based Iterative Logic Array Representation with Applications to Verification, Debug 
and Test. In: Int’l Conference on Computer-Aided Design (ICCAD), pp. 240–245 (2007) 

10. Sulflow, A., Wille, R., Fey, G., Drechsler, R.: Evaluation of Cardinality Constraints on 
SMT-based Debugging. In: 39th International Symposium on Multiple-Valued Logic 
(ISMVL), pp. 298–303 (2009) 

11. http://uclid.eecs.berkeley.edu//v2ucl 
12. Mirzaeian, S., Zheng, F., Cheng, K.-T.: RTL Error Diagnosis Using a Word Level SAT-

Solver. In: International Test Conference (ITC), pp. 1–8 (2008) 



Author Index

Abid, Mohamed 110
Ahmed, Rehan 55
Alizadeh, Bijan 435
Allen, Tim 358
Altenried, Florian 55
Amano, Hideharu 372

Baklouti, Mouna 110
Bertels, Koen 194, 269
Biedermann, Alexander 17
Bleakley, C.J. 351
Boesen, Michael Reibel 29
Boland, David 169
Boonpoonga, Akkarat 394
Bouganis, Christos-Savvas 182
Bruneel, Karel 207

Carver, Kris 68
Chang, Kyungwook 400
Cheung, Chak-Chung 244
Cheung, Peter Y.K. 2
Choi, Kiyoung 231, 400
Claus, Christopher 55
Constantinides, George A. 157, 169, 182

Damm, Markus 122
Darouich, Mehdi 306
de Icaya, Elvira Mart́ınez 420
Dekeyser, Jean Luc 110
de la Torre, Eduardo 4
Deng, Yun 282
De Sutter, Bjorn 364
Devos, Harald 426
Dı́az, Francisco 420
Doyle, Linda 343
Dutt, Nikil 231

Edwards, Doug 406
El-Araby, Esam 219
Eldredge, Jared 68
El-Ghazawi, Tarek 219

Fahmy, Suhaib A. 343
Fan, Hongbing 244
Fazlali, Mahmood 318
Feng, Dan 294
Fujita, Masahiro 435

Galuzzi, Carlo 269
Gaydadjiev, Georgi 194, 318
Gharehbaghi, Amir Masoud 435
Glaser, Johann 122
Grimm, Christoph 122
Guyetant, Stephane 306

Haase, Jan 122
Hironaka, Tetsuo 388
Hiroyasu, Tomoyuki 372
Hu, Jian 282
Huss, Sorin Alexander 17, 329

Jamro, Ernest 337
Janin, Lilian 406
Janyavilas, Sompop 394
Jeffrey, Mark 42

Kan, Phak Len Eh 358
Krairiksh, Monai 394
Krasteva, Yana E. 4
Krishnamurthy, Ram 1

Labrecque, Martin 42
Lam, Siew-Kei 282, 414
Lavenier, Dominique 306
Lee, Ganghee 231
Lee, Seokhyun 231
Le Masle, Adrien 68
Li, Shoujie 406
Luk, Wayne 68
Lu, Yi 194

Madsen, Jan 29
Maiti, Abhranil 382
Marconi, Thomas 194
Marnane, William 80
Marquet, Philippe 110
Marrakchi, Zied 92
Meeus, Wim 426
Meeuws, Roel J. 269
Mehrez, Habib 92
Mencer, Oskar 372



446 Author Index

Miki, Mitsunori 372
Morozov, Sergey 382

Narayana, Vikram K. 219
Nishikawa, Yuri 372

Ostadzadeh, S. Arash 269
Otero, Andrés 4

Pan, Weibo 80
Parvez, Husain 92
Patel, Kunjan 351
Peinado, Virginia 420
Penneman, Niels 364
Perneel, Luc 364
Pnevmatikatos, Dionisios 257
Prakash, Alok 414

Quigley, Steven F. 358

Riesgo, Teresa 4
Rodellar, Victoria 420
Roldao Lopes, Antonio 157
Russek, Pawel 337

Saiprasert, Chalermpol 182
Schaumont, Patrick 382
Schleuniger, Pascal 29

Seto, Daisaku 134
Shoufan, Abdulhadi 145, 329
Singh, Amit Kumar 414
Siozios, Kostas 257
Sirisuk, Phaophak 394
Soudris, Dimitrios 257
Srikanthan, Thambipillai 282, 414
Stechele, Walter 55
Steffan, J. Gregory 42
Stöttinger, Marc 17
Stroobandt, Dirk 207, 426

Tanigawa, Kazuya 388
Timmerman, Martin 364

Umeda, Ken’ichi 388

Watanabe, Minoru 134
Wiatr, Kazimierz 337
Wielgosz, Maciej 337
Wilton, Steven J.E. 3
Wu, Yu-Liang 244

Yoshimi, Masato 372

Zakerolhosseini, Ali 318
Zhang, Yu 294
Zhou, Xilong 282


	Title page
	Preface
	Organization
	Table of Contents
	Keynotes (Abstracts)
	High-Performance Energy-Efficient Reconfigurable Accelerators/Co-processors for Tera-Scale Multi-core Microprocessors
	Process Variability and Degradation: New Frontier for Reconfigurable
	Towards Analytical Methods for FPGA Architecture Investigation

	Session 1: Architectures 1
	Generic Systolic Array for Run-Time Scalable Cores
	Introduction
	Related Work
	Scalable Systolic Array
	Processing Elements Interconnection
	Processing Elements Design Flow

	Results and Use Case
	General Evaluation of the System
	Use Case Design
	Use Case Results

	Conclusions and Future Work
	References

	Virtualization within a Parallel Array of Homogeneous Processing Units
	Introduction
	Methods
	Middleware Concept
	Virtualization Concept

	Application Example: ECC Point-Doubling Operation
	Discussion
	Conclusion
	References

	Feasibility Study of a Self-healing Hardware Platform
	Introduction
	Related Work

	eDNA Design Methodology
	Self-Organisation
	Self-healing

	Hardware Architecture
	eCell Architecture
	Network Topology and Routing
	Limitations

	Experimental Results
	Discussion and Conclusion
	References


	Session 2: Applications 1
	Application-Specific Signatures for Transactional Memory in Soft Processors
	Introduction
	Application-Specific Signatures
	Related Work
	Contributions

	Previous Signature Implementations for HTM
	Application-Specific Signatures
	Evaluation Infrastructure
	Results
	Conclusions
	References

	Towards Rapid Dynamic Partial Reconfiguration in Video-Based Driver Assistance Systems
	Introduction
	State of the Art and Related Work

	Typical Scenario and Hardware Accelerators
	AutoVision Architecture
	Fast Dynamic Partial Reconfiguration
	Inter Video Frame Reconfiguration
	Intra Video Frame Reconfiguration
	Modified ICAP Controller
	Bitstream Verification

	Results
	Conclusion and Outlook
	References

	Parametric Encryption Hardware Design
	Introduction
	Background
	Design Flow
	Results
	Conclusion and Future Work
	References

	A Reconfigurable Implementation of the Tate Pairing Computation over $GF$(2^{$m$})
	Introduction
	Arithmetics over Binary Fields
	Architecture for Computation over $GF$(2^{$m$})
	Architecture for Computation over $GF$(2^{4$m$})

	Tate Pairing
	Elliptic Curve over $GF$(2^{$m$})
	Algorithm of Tate Pairing
	Reconfiguration of the $GF$(2^{4$m$}) Multiplication
	Architecture Design of Tate Pairing

	Implementation Results
	Conclusion
	References


	Session 3: Architectures 2
	Application Specific FPGA Using Heterogeneous Logic Blocks
	Introduction
	Reference FPGA Architecture and Software Flow
	Floor-Planning Techniques
	ASIF Generation
	Efficient Placement
	Efficient Routing

	Experimentation and Analysis
	Area Model
	Benchmark Circuits
	Results

	Mapping Application Circuits on an ASIF
	Propositions for Layout Generation
	Conclusion
	References

	Reconfigurable Communication Networks in a Parametric SIMD Parallel System on Chip
	Introduction
	Related Works
	MppSoC Design
	MppSoC Communication Networks
	Reconfigurable Massively Parallel Network on Chip
	Reconfigurable Neighbourhood Network
	Communication Instruction Set

	Experiments
	Matrix Multiplication
	Reduction Algorithm
	Picture Rotation

	Conclusion
	References

	A Dedicated Reconfigurable Architecture for Finite State Machines
	Introduction
	Related Work
	Transition-Based Reconfigurable FSM
	Architecture
	Including Output Computation
	Implementation Details

	Analysis
	Conclusion and Future Work
	References

	MEMS Dynamic Optically Reconfigurable Gate Array Usable under a Space Radiation Environment
	Introduction
	Rapidly Reparable Hardware System
	MEMS Dynamic ORGA Architecture
	Hologram Generation
	Experimental System

	Experimental Results
	Conclusion
	References


	Session 4: Applications 2
	An FPGA Accelerator for Hash Tree Generation in the Merkle Signature Scheme
	Introduction
	Winternitz One-Time Signature Scheme
	Key Generation
	Signing Process
	Verification Process

	Merkle Signature Scheme
	MSS Hash Tree Generator
	HTG General Architecture
	HTG Functionality
	HTG Stack Organization
	SHA512 Module

	Implementation and Results
	Conclusion and Outlook
	References

	A Fused Hybrid Floating-Point and Fixed-Point Dot-Product for FPGAs
	Introduction
	Background
	Hybrid Dot-Product Design
	Implementation
	Resource Utilization
	Performance and Latency

	Precision Study
	Word-Length and Error

	Error and Resource Utilization
	Conclusions
	References

	Optimising Memory Bandwidth Use for Matrix-Vector Multiplication in Iterative Methods
	Introduction
	Related Work
	Performing Matrix-Vector Multiplication
	Matrix-Vector Multiplication for Banded Matrices
	Matrix-Vector Multiplication for Symmetric Matrices
	Minimising RAM Use
	Trading Performance with Slices

	Results
	RAM Use
	Parallelism

	Conclusion
	References

	Design of a Financial Application Driven Multivariate Gaussian Random Number Generator for an FPGA
	Introduction
	Related Work
	Generating Multivariate Gaussian Random Samples
	Hardware Architecture
	Constructing MVGRNG Blocks
	Case Study: MVGRNG in Financial Applications
	Value-at-Risk of a Financial Portfolio
	Option Pricing
	Objective Functions
	Framework
	Experimental Setup
	Experiment I: Calculation of VaR
	Experiment II: Option Pricing
	Results: Evaluation of Hardware MVGRNG Blocks

	Conclusion
	References


	Session 5: Design Tools 1
	3D Compaction: A Novel Blocking-Aware Algorithm for Online Hardware Task Scheduling and Placement on 2D Partially Reconfigurable Devices
	Introduction
	Problem of Scheduling and Placement on 2D Area Models
	Related Work
	Basic Idea of Blocking-Aware Algorithm
	3D Total Contiguous Surface (3DTCS) Heuristic
	The 3D Compaction (3DC) Algorithm
	Evaluation
	Evaluation in Terms of Scheduling and Placement Quality
	Evaluation in Terms of Algorithm Execution Time

	Conclusions
	References

	TROUTE: A Reconfigurability-Aware FPGA Router
	Introduction
	Staged Mapping Tool Flow
	Overview of the Generic Stage
	Synthesis
	Technology Mapping
	Placement
	Routing

	TROUTE
	The Resource Graph
	TCONs, Patterns and Nets
	Tuning Functions
	The Algorithm

	Experiments and Results
	Conclusions
	References

	Space and Time Sharing of Reconfigurable Hardware for Accelerated Parallel Processing
	Introduction
	Related Work
	Techniques for Sharing Reconfigurable Resources
	Queuing Analysis and Modeling

	Results
	Conclusion
	References

	Routing-Aware Application Mapping Considering Steiner Points for Coarse-Grained Reconfigurable Architecture
	Introduction
	Coarse-Grained Reconfigurable Architecture
	Motivation
	Spanning Tree vs. Steiner Tree
	Motivational Example

	Problem Formulation
	Notation and Definition
	ILP Formulation

	Design Flow and Mapping
	Overall Design Flow
	Heuristic Algorithm for Mapping

	Experiments
	Experimental Setup
	Experimental Result

	Conclusion
	References


	Session 6: Design Tools 2
	Design Automation for Reconfigurable Interconnection Networks
	Introduction
	RIN Design Specifications
	Routing Specifications
	RS Simplification

	Design for Directed RINs
	Graph Modeling and Implementations
	One-Stage Networks
	Multistage Clos Networks
	Generalized Clos Networks

	Design for Undirected RINs
	Interconnection Graphs
	Multistage Switching Networks

	CAD Tools for RIN Generation
	Conclusions
	References

	A Framework for Enabling Fault Tolerance in Reconfigurable Architectures
	Introduction
	Motivation
	Proposed Fault Tolerant Technique
	The Proposed Fault Tolerant Framework
	Experimental Results
	Conclusions
	References

	QUAD – A Memory Access Pattern Analyser
	Introduction
	Related Research and Problem Definition
	Profiling Framework in DWB
	QUAD Design and Implementation
	Pin
	QUAD Overview
	QUAD Implementation
	Memory Access Tracing (MAT) Module

	Case Study
	Experimental Setup
	Experimental Analysis

	Conclusions
	References

	Hierarchical Loop Partitioning for Rapid Generation of Runtime Configurations
	Introduction
	Related Work
	Our Work

	Proposed Framework
	Hierarchical Loop Generation
	Hierarchical Loop Partitioning Strategy
	Temporal Partitioning
	Custom Instruction Selection

	Experimental Results
	Conclusion
	References


	Session 7: Applications 3
	Reconfigurable Computing and Task Scheduling for Active Storage Service Processing
	Introduction
	Reconfigurable Active Storage Processor Design
	Configuration Scheduling for Active Storage Service
	Configuration Prefetching
	Configuration Caching

	Experiments
	Conclusion
	References

	A Reconfigurable Disparity Engine for Stereovision in Advanced Driver Assistance Systems
	Introduction
	Stereovision Systems
	Presentation of the REEFS Architecture
	Global Overview
	Windows Processing Matrix
	Flexible Reduction Tree
	Matching Costs Analyzer
	Reconfiguration

	Implementation Results and Case Studies
	Real-Time Performances and ASIC Synthesis
	Configuration Cases

	Conclusion
	References

	A Modified Merging Approach for Datapath Configuration Time Reduction
	Introduction
	Configuration Time Reduction in Datapath Merging
	The Proposed Datapath Merging Technique
	Experimental Results and Analysis
	Conclusion
	References


	Posters
	Reconfigurable Computing Education in Computer Science
	Introduction
	Reconfigurable Computing in Education
	Why Teaching Reconfigurable Computing
	Reconfigurable Computing in IEEE/ACM Curriculum
	Reconfigurable Processors Learning Outcomes

	Course Construction
	What-Why-How Model
	WWH Model and Learning Outcomes
	Lecture Structure

	Conclusion
	References

	Hardware Implementation of the Orbital Function for Quantum Chemistry Calculations
	Introduction
	Algorithm Consideretion
	Architecture of the Orbital Module
	Implementation and Acceleration Results
	Summary
	References

	Reconfigurable Polyphase Filter Bank Architecture for Spectrum Sensing
	Introduction
	Background
	Previous Work
	Proposed Architecture
	Overview
	Efficient Implementation
	Wordlength Considerations
	Reconfiguration

	InitialResults
	Conclusion
	References

	Systolic Algorithm Mapping for Coarse Grained Reconfigurable Array Architectures
	Introduction and Related Work
	Proposed Algorithm
	Application Mapping
	Results
	Conclusion
	References

	A GMM-Based Speaker Identification System on FPGA
	Introduction
	Speaker Identification System
	Feature Extraction
	Gaussian Mixture Models (GMMs)

	Hardware Implementation of Speaker Classification
	Testing
	References

	An FPGA-Based Real-Time Event Sampler
	Introduction
	Real-Time Sampling System
	Logic Analyzer Design
	Communication with the Workstation
	Control over the Logic Analyzer
	Memory Architecture
	Timestamping Core
	Clock Domains and Other Logic
	Tuning the Design

	Performance Evaluation
	Conclusions
	References

	A Performance Evaluation of CUBE: One-Dimensional 512 FPGA Cluster
	Introduction
	CUBE: A 512-FPGA Cluster
	Architecture Overview

	Levenshtein Distance
	Parallel Execution of LD Algorithm
	Parallelism of LD Algorithm
	Implementation of Multi-thread Execution
	Performance of a Recent Multi-processor

	Implementation on CUBE
	Data-Flow between FPGAs
	Calculation Inside FPGA

	Evaluation
	Hardware Resources
	Computation Speed
	Competitions of Computing Environment

	Discussion
	Performance Improvement for CUBE
	Performance Comparison

	Conclusion and Future Work
	References

	An Analysis of Delay Based PUF Implementations on FPGA
	Introduction
	Background
	PUF Architecture in FPGA
	Arbiter PUF
	Butterfly PUF

	Conclusion
	References

	Comparison of Bit Serial Computation with Bit Parallel Computation for Reconfigurable Processor
	Introduction
	Overview of DS-HIE Processor
	Detailed Design of Bit-Serial FU
	Timing Adjustment Unit
	Specification
	Organization

	Evaluation of Gate Counts
	Performance Evaluation
	Conclusion
	References

	FPGA Implementation of QR Decomposition Using MGS Algorithm
	Introduction
	Architectural Design for MGS-QRD
	FPGA Implementation Results
	Conclusions
	References

	Memory-Centric Communication Architecture for Reconfigurable Computing
	Introduction
	Proposed Architecture
	Architecture Overview
	Central Memory
	PE Array

	Experiments
	Conclusion
	References

	Integrated Design Environment for Reconfigurable HPC
	Introduction
	Background

	GALAXY Design Framework
	The ASIP (Asynchronous-Synchronous IP) XML Format
	GALAXY Back-End Tool Flow
	Tool Flow System: Execution of Tool Flows
	Ability to Design and Debug on a Separate non-HPC Host

	Conclusions and Further Work
	References

	Architecture-Aware Custom Instruction Generation for Reconfigurable Processors
	Introduction
	Pattern Enumeration
	Architecture-Aware Pattern Enumeration

	Pattern Selection
	Experiments and Results
	Conclusion
	References

	Cost and Performance Evaluation of a Noise Filter for Partitioning in Co-design Methodologies
	Introduction
	Filter Description
	Platforms, Devices and Tools
	Results
	Metrics
	Estimation

	Conclusions
	References

	Towards a Tighter Integration of Generated and Custom-Made Hardware
	Introduction
	Macro Schedule Description
	The Scheduling Algorithm
	Experiments
	Memory and FIFO Interfaces for a Sobel Edge Detector
	Integration of Floating-Point Megacores

	Related Work
	Conclusions
	References

	Pipelined Microprocessors Optimization and Debugging
	Introduction
	Microprocessor Debugging and Optimization Methodology
	Debugging Technique
	Optimization Technique

	Case Study: Pipelined Timing Error Recovery Techniques
	Semi-automatic Debugging
	Semi-automatic Optimization

	Conclusion and Future Work
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




