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Abstract. Functional magnetic resonance imaging (fMRI) is a non-
invasive and powerful method for analysis of the operational mechanisms
of the brain. fMRI classification poses a severe challenge because of the
extremely large feature-to-instance ratio. Random Subspace ensembles
(RS) have been found to work well for such data. To enable a theo-
retical analysis of RS ensembles, we assume that only a small (known)
proportion of the features are important to the classification, and the
remaining features are noise. Three properties of RS ensembles are de-
fined: usability, coverage and feature-set diversity. Their expected values
are derived for a range of RS ensemble sizes (L) and cardinalities of
the sampled feature subsets (M). Our hypothesis that larger values of
the three properties are beneficial for RS ensembles was supported by a
simulation study and an experiment with a real fMRI data set. The anal-
yses suggested that RS ensembles benefit from medium M and relatively
small L.

1 Introduction

Functional magnetic resonance imaging (fMRI) measures blood oxygenation
level-dependent (BOLD) signal in a quest to discover how mental states are
mapped onto patterns of neural activity. Advanced as they are, pattern recogni-
tion and machine learning are yet to contribute powerful bespoke techniques to
fMRI data analysis [1, 2]. The formidable challenges come from: (i) the extremely
large feature-to-instance ratio, in the order of 5000:1; (ii) the spatial relation-
ship between the features (voxels in the 3-D image of the brain); (iii) the low
contrast-to-noise ratio; and (iv) the great redundancy in the feature set. Prefer-
ences tend to be for linear classifiers because they are simple, fast, reasonably
accurate and interpretable. The favourite, however, has been the support vector
machine classifier (SVM) [3–7]. A recent comparison of classification methods
for an fMRI data set placed the Random Subspace Ensemble (RS) with SVM
base classifiers as the most accurate classification method across a variety of
voxel pre-selection methods [8]. To construct a random subspace ensemble with
L classifiers, L samples of size M are drawn without replacement from a uniform
distribution over the set of voxels. A classifier is trained on each feature subset
using either the whole training set or a bootstrap sample thereof [9].
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Random Subspace ensembles have been considered for problems with large
dimensionality and excessive feature-to-instance ratio [10], e.g., problems arising
from microarray data analysis [11] and face recognition [12]. The overwhelming
computational demand in applying RS to the raw fMRI data led to the idea of
pre-selection of voxels. Univariate statistical methods have been employed for
that [13, 14]. The importance of a voxel is measured by the p-value of a t-test
(or ANOVA for multiple classes) for equivalence of the class means. The initial
set of voxels is subsequently reduced to a subset of 1000 or 2000 voxels, and RS
ensembles are created on that subset. Admittedly, univariate approaches may
destroy important relationships between features. Such features would not be
indicative individually but may form a highly indicative group. In balance, pre-
selection eliminates the vast majority of irrelevant voxels which justifies some
(hypothetical) loss of discriminative information.

Relevance and redundancy are two different aspects in large-scale feature se-
lection [15], and both are present in fMRI data. As the data is a “snapshot”
of the whole brain, the vast majority of the voxels are irrelevant for each par-
ticular task. The relevant voxels, on the other hand, are likely to be spatially
grouped into clusters exhibiting large correlations (redundancy). Most voxel se-
lection methods do not guard against redundancy because the position, size and
shape of the clusters of relevant voxels is of interest to the investigator. Thus
we examine the effect of the number of relevant voxels on the parameter choices
of RS ensembles. An advantage of RS ensembles compared to many other en-
semble methods and single classifiers is that they need only two parameters,
L, the ensemble size and M , the size of the feature sample. Given the specifics
of fMRI data, this paper offers a theoretical perspective on choosing values of
these parameters. Section 2 introduces the theoretical framework. Simulation
experiments are reported in Section 3, and discussed in Section 4.

2 Random Subspace Ensembles

Let X = {x1, . . . , xn} be the set of n features (voxels). L samples, each of size
M , are drawn without replacement from a uniform distribution over X and a
classifier is trained on each sample. The ensemble decision is made by majority
vote among the L classifiers.

In many fMRI studies, the relevant information is typically a sparse irregular
pattern of responsive voxels in the 3-D image of the brain. It is likely that
a small number of voxels contain most of the discriminative information. We
assume that there are Q “important” voxels, set I = {q1, . . . , qQ}, I ⊂ X ,
where |I| = Q << n, and the remaining n−Q voxels are random noise. We also
assume that the cardinality of the subspaces, M , is much smaller than n. The
question is whether we can recommend L and M for a given n and Q. We base
this study on the following postulate [16–18].

Postulate. Accurate and diverse individual classifiers are a prerequisite for bet-
ter ensembles.
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The subset of features, on which the individual classifiers are built, can serve
as an indication of the expected accuracy and diversity of these classifiers. If a
classifier uses only ‘noise’ features, its accuracy will be no better than random
chance. Also, classifiers that use the same ‘important’ features will be similar or
identical, therefore redundant in the ensemble. Finally, we would like the whole
of I to be covered, so that important information is not lost. In other words, we
would like each q ∈ I to be selected at least once in the L samples of M features.

2.1 Usability

Definition 1. We call a classifier usable if its feature subset contains at least
one ‘important’ voxel q ∈ I.

To calculate the probability of drawing a feature subset of a usable classifier, take
Y to be the number of ‘important’ features in a subset of size M , drawn without
replacement from X . Y is a random variable with hypergeometric distribution
with probability mass function

P (Y = i) =

(
Q
i

)(
n−Q
M−i

)

(
n
M

) , i = 0, 1, . . . , Q.

The probability of drawing a usable classifier is

P (usable classifier) = 1 − P (Y = 0) = 1 −
(
n−Q
M

)
(

n
M

)

Definition 2. The degree of usability of the ensemble, U , is defined as the pro-
portion of usable classifiers out of L.

Since the subsets are sampled independently, the probability of having a com-
pletely usable ensemble is

P (U = 1) = P (usable classifier)L =

(

1 −
(
n−Q
M

)
(

n
M

)

)L

. (1)

The ratio of the two binomial coefficients can be simplified for computational
purposes to give

P (U = 1) =

(

1 −
M−1∏

i=0

(
1 − Q

n − i

))L

. (2)

Since we assumed M << n, the equation can be simplified further to

P (U = 1) ≈
(

1 −
(

1 − Q

n

)M
)L

. (3)
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This approximation is equivalent to replacing the hypergeometric distribution
with a binomial distribution. Given the size of n for fMRI data, we can say
that sampling with replacement is approximately equivalent to sampling without
replacement. Y can therefore be approximated with a binomial distribution with
parameters M and p = Q

n . The probability of a usable classifier in this case would

be 1 −
(
1 − Q

n

)M

.
To calculate the expected value of the degree of usability of the ensemble,

E[U ], let Z be a random variable expressing the number of usable classifiers in
the ensemble. Z has a hypergeometric distribution with the following parameters.
The total is the number of all possible samples (without replacement) of size M
from X , i.e.,

(
n
M

)
. The number of usable classifiers is calculated by taking the

number of non-usable classifiers,
(
n−Q
M

)
, from the total. The number of selected

classifiers at a time is L. The expected value of Z is Selected×Usable
Total , therefore the

expected usability of the ensemble is E[U ] = 1
LE[Z]

E[U ] =
1
L

× L ×
(

1 −
(
n−Q
M

)
(

n
M

)

)

= 1 −
(
n−Q
M

)
(

n
M

) . (4)

The expected usability of the ensemble is equivalent to the probability of se-
lecting a usable classifier, and does not depend on the ensemble size L. Our
hypothesis is that the higher the degree of usability, the more accurate the
ensemble.

2.2 Coverage

Definition 3. The degree of coverage of the ensemble, C, is the proportion of
the features q ∈ I (out of Q) selected for one of more of the base classifiers.

For calculating coverage, we can again use the binomial approximation to the
hypergeometric distribution. This implies that the feature subsets are sampled
independently from the X . For a given important feature q ∈ I the probability of
selecting that feature in a sample of size M is M

n . The probability of not selecting
q in a sample of size M is therefore 1 − M

n . The probability of not selecting q

in at least one of L samples of size M is P (q̄) =
(
1 − M

n

)L
. The probability of

q being selected in at least one of the L samples is 1 − P (q̄). The probability of
all features being covered is

P (Complete coverage) = P (C = 1) =

(

1 −
(

1 − M

n

)L
)Q

. (5)

Denote by Z the number of covered features out of Q. Z has binomial distribution
with parameters Q and p = 1 − (

1 − M
n

)L
. The expected coverage is

E[C] =
1
Q

(

1 −
(

1 − M

n

)L
)

Q = 1 −
(

1 − M

n

)L

. (6)
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The expected coverage depends on the ensemble size L and the subset size M
but not on Q. The hypothesis here is that the higher the degree of coverage, the
more accurate the ensemble.

2.3 Feature Set Diversity

Note that for fixed n and Q, E[U ] is monotonically increasing on M , and E[C]
increases with both L and M . This suggests that larger ensembles with larger
feature sample size M should be preferred. In the extreme case where M = n,
the ensemble will contain identical copies of the base classifier trained on all
features. This defeats the point of having an ensemble altogether. Besides, with
the extremely large feature-to-instances ratio, the individual classifier may easily
overfit the data. Therefore we introduce a third property.

Definition 4. Denote by S1, S2, . . . , SL the L feature subsets sampled from X .
Consider S1, S2 ⊂ X such that |S1| = |S2| = M . Denote by I1 ⊆ I and I2 ⊆ I
the respective subsets of ‘important’ features in S1 and S2 respectively. We define
Feature Set Diversity (D) as

D(S1, S2) = |I1 ∪ I2| − |I1 ∩ I2|.

Two classifiers are non-identical if their feature subsets differ by at least one
‘important’ voxel. Each feature q ∈ I may or may not contribute to D. A value
of 1 will be added if q is in either set but not in both. Then the expected diversity
for any pair of subsets S1 and S2 is

E[D] =
Q∑

i=1

P (qi ∈ I1)P (qi /∈ I2) + P (qi /∈ I1)P (qi ∈ I2).

Since all features in I have equal chance of being selected in a subset of size M ,
and the subsets are drawn independently,

E[D] = 2Q
M

n

(
1 − M

n

)
. (7)

This calculation disregards non-usable classifiers. So an ensemble can be diverse
even if it contains non-usable classifiers for which I1 = I2 = ∅.

Figure 1 shows the theoretical and simulated curves for E[U ] (4), E[C] (6)
and E[D] (7) for n = 1000, Q = 100 and L = 10. Changing the value of L to
50 and 100, and Q to 10 and 50 did not lead to large differences in the shapes
and positions of the curves. The results suggest that values of M close to n

2 are
optimal as all three criteria reach their maxima, also observed across different
ensemble sizes.

3 A Simulation Experiment

The important question here is to what extent the three characteristics are re-
lated to the classification accuracy of the RS ensemble.
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Fig. 1. Theoretical and simulation curves (coinciding) for the expected values of U , C
and D for n = 1000, Q = 100 and L = 10. The empirical curve is calculated as an
average of 10 ensembles with randomly sampled L = 10 sets of M features.

3.1 Data

We decided to use simulated data that exhibit properties similar to real data
while keeping control on the parameters n and Q. We used an fMRI data set
collected at the School of Psychology, University of Bangor. The data consisted
of the single-subject BOLD responses to 3 types of stimuli: faces, places and
objects. Each presentation of a stimulus defined a point in the data set. The
total number of voxels (features) was 106720 and the number of objects was 36,
12 in each class. The classification task was to predict which type of stimuli the
subject is looking at, judging by the fMRI response.

For a 2-class problem, Contrast-to-Noise-Ratio (CNR) is defined using the
means and the standard deviations for the classes, separately for each voxel.
For voxel v, CNR is μ1(v)−μ2(v)

1
2 (σ1(v)+σ2(v))

, where μi(v) is the mean and σi(v) is the
standard deviation of v for class i. The higher the CNR, the more separable
the two classes are using only voxel v. We took only classes 1 and 2 (faces
and places) and calculated CNR for each voxel. The voxels were then sorted by
their CNR, in descending order. The means and the covariance matrices for the
two classes of the top Q voxels were stored and subsequently used to simulate
the first (important) Q features in the data. We simulated multivariate Gaussian
distributions for each class, using the Statistics toolbox of Matlab. The remaining
n − Q features were simulated as independent random noise with mean zero
and standard deviation equal to the mean CNR for the Q important features.
Running a separate simulation study even in addition to the experiments with
the real data was necessary in order to have control over Q in a surrogate pseudo-
real environment.

3.2 Experimental Protocol

The parameters were varied in the following ranges: the total number of features,
n, took values 200, 500 and 1000, and the number of ‘important’ features, Q,
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was chosen accordingly to model ratios Q
n of 0.02, 0.05, 0.1, 0.25, 0.5 and 1. The

feature set cardinality, M , took 20 equally spaced values from 1 to n, and the
ensemble size L took values at regular intervals from 1 to 200.

For each combination (M, L, Q, n), we generated 10 data sets with 20 training
examples (10 per class) and 200 testing examples (100 per class). The small size
of the training data was chosen to mirror that of real data sets. SVM was used
as the base classifier. For each (M, L, Q, n) we calculated the RS ensemble error,
and also estimated the observed degree of usability U , the degree of coverage C,
and the feature set diversity D of the ensemble.

3.3 Results

Figure 2 gives an example of the type of surfaces over the (L, M) grid, obtained
through the simulations. Each point in the space is calculated as the average
across 10 simulations with data drawn independently from the chosen ‘realistic’
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Fig. 2. The three RS characteristics and the ensemble error as functions of the ensemble
size L and the feature set size M . Each of the 2 classes in the data set was sampled
from a Gaussian distributions with Q = 50 relevant and n − Q = 450 noise features.
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Table 1. Summary of the simulation results. Ē is the average RS ensemble error across
the (L, M) grid. Ē∗ is the value of the ensemble error for the recommended parameter
values, M = n

2
and L = n

10
.

Correlation with E
Q
n ratio Ē Ē∗ Usability Coverage Diversity
0.02 4.09 1.25 −0.940 −0.863 −0.410
0.05 3.81 1.75 −0.972 −0.903 −0.438
0.10 3.83 1.40 −0.855 −0.802 −0.581
0.25 3.19 0.90 −0.593 −0.640 −0.608
0.50 3.65 2.15 −0.123 −0.233 −0.608
1.00 6.88 1.05 N/A 0.014 −0.448

distribution. The surfaces in the plots were obtained with n = 500 and Q = 50.
They have typical shapes observed for the six Q

n ratios. The surfaces confirm
visually the hypothesis that larger usability, coverage and feature set diversity
lead to better ensembles (lower error).

As expected, the degree of usability (subplot (a)) does not depend on L, and
quickly raises to 1 with M . The ‘tent’-shaped surface of D in subplot (c) also
depends on M but not on L. Largest values of D are achieved for M ≈ n

2 . Like
U , the degree of coverage, C, maintains its maximum value of 1 for the largest
part of the (L, M) grid. The figure also suggests that small to medium values
of the ensemble size L are sufficient. Hence, as a rule of thumb, we recommend
M = n

2 and L = n
10 for fMRI type of data.

Table 1 shows a summary of the simulation results. We show the Q
n ra-

tio, the average error rate of the RS ensemble over the whole (L, M) grid,
Ē, as well as the error using the recommended values, Ē∗. For all Q

n ratios,
Ē > Ē∗. We also give the correlation coefficients between the RS ensemble er-
ror E, on the one hand, and U , C, and D, on the other hand. Even though
calculated on an artificial grid, these coefficients support the hypothesis that
large values of usability, coverage and feature-set diversity are beneficial for the
ensemble.

3.4 Experiment with the Real fMRI Data

The RS ensemble with SVM base classifiers was run on classes 1 and 2 (faces
and places) of the real fMRI data set. First, n = 1000 voxels were pre-selected
by the SVM method [14]. An SVM classifier was trained on all voxels, the vox-
els were sorted by descending absolute value of the SVM weights, and the top
1000 voxels were retained. Three-fold cross-validation was applied to test the RS
ensemble for a 10 × 10 grid of values for M and L. M was varied from 1 to n
at equal intervals, and L was varied from 1 to n/5. Figure 3 plots the surface
of the ensemble error over the (L, M) grid. The recommended values of M = 500
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Fig. 3. RS error on the real fMRI data set as a function of the ensemble size L and the
feature size M . The recommended values for L and M are overlayed on the surface.

and L = 100 are marked as lines on the 3-D plot. The lines intersect near the
minimum of the error surface, which confirms empirically the recommendation
for L and M . While the average error over the whole grid was 0.2138, the error
at M = 500 and L = 100 was 0.0521.

4 Conclusions

We examine the Random Subspace ensemble (RS) for fMRI type of data where
the feature-to-instance ratio is in the order of 50000:1, and the number of truly
relevant features (voxels in the 3-D image of the brain) is much smaller than
the total number of features. Following previous fMRI studies we consider n
pre-selected voxels, where n is in the region of 1000. Assuming that there are Q
‘important’ features among the pre-selected n features, three characteristics of
the RS ensemble are defined: usability U , coverage C and feature-set diversity
D. Expected values of these characteristics are derived theoretically as functions
of n, Q, L and M . Our hypothesis was that higher values of U , C and D are
beneficial for the RS ensemble. A simulation study was carried out, with two
heteroscedastic Gaussian classes whose covariance matrices were estimated from
a real fMRI data set and augmented with Gaussian noise. The results support
the research hypothesis. As a rule of thumb, we propose to use feature set size
M = n

2 and ensemble size L = n
10 . These values were found to work well for the

real fMRI data.
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