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Preface

These proceedings are a record of the Multiple Classifier Systems Workshop,
MCS 2010, held at the Nile University, Egypt in April 2010. Being the ninth
in a well-established series of meetings providing an international forum for dis-
cussion of issues in multiple classifier system design, the workshop achieved its
objective of bringing together researchers from diverse communities (neural net-
works, pattern recognition, machine learning and statistics) concerned with this
research topic. From more than 50 submissions, the Program Committee selected
31 papers to create an interesting scientific program. Papers were organized into
sessions dealing with classifier combination and classifier selection, diversity, bag-
ging and boosting, combination of multiple kernels, and applications. The work-
shop program and this volume were enriched by two invited talks given by Gavin
Brown (University of Manchester, UK), and Friedhelm Schwenker (University of
Ulm, Germany).

As usual, the workshop would not have been possible without the help of
many individuals and organizations. First of all, our thanks go to the members
of the MCS 2010 Program Committee, whose expertise and dedication helped
us create an interesting event that marks the progress made in this field over the
last year and aspire to chart its future research. The help of James Field from
the University of Surrey, who administered the submitted paper reviews, and of
Giorgio Fumera who managed the MCS website deserve a particular mention.
Special thanks are due to the members of the Nile University Organizing Com-
mittee, Ahmed Salah, Amira El Baroudy, Esraa Aly, Heba Ezzat, Nesrine Sameh,
Rana Salah and Mohamed Zahhar for their indispensable contributions to the
registration management, local organization, and proceedings preparation.

This workshop was supported by the Center for Informatics Science at the
Nile University, Egypt, the Center for Vision, Speech and Signal Processing,
University of Surrey, UK and the Department of Electrical and Electronic En-
gineering of the University of Cagliari, Italy. We also thank the International
Association for Pattern Recognition for endorsing the MCS 2010. We wish to
express our appreciation to our two financial sponsors: The Information Tech-
nology Industry Development Agency (ITIDA), which was the main sponsor of
the event, and the Microsoft Innovation Laboratory in Cairo (CMIC).

April 2010 Neamat El Gayar
Josef Kittler

Fabio Roli
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Weighted Bagging for Graph Based One-Class
Classifiers

Santi Segúı1,2, Laura Igual1,2, and Jordi Vitrià1,2

1 Computer Vision Center, Campus UAB, Edifici O, 08193, Bellaterra, Spain
2 Dept. Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585,

08007, Barcelona, Spain

Abstract. Most conventional learning algorithms require both positive
and negative training data for achieving accurate classification results.
However, theproblemof learningclassifiers fromonlypositivedata arises in
many applications where negative data are too costly, difficult to obtain, or
not available at all. Minimum Spanning Tree Class Descriptor (MST CD)
was presented as a method that achieves better accuracies than other one-
class classifiers in high dimensional data. However, the presence of outliers
in the target class severely harms the performance of this classifier. In this
paper we propose two bagging strategies for MST CD that reduce the in-
fluence of outliers in training data. We show the improved performance on
both real and artificially contaminated data.

1 Introduction

One-class classification tries to distinguish one class of objects (target class)
from all other possible objects (outlier class). In contrast to traditional classifier
methods, the one-class classifier methods only use examples of the target class
in the learning process and any information of the outlier class is applied [1]. Its
goal is to model the target class to accept as much number of target examples
as possible while minimizing the number of outliers.

There are three main approaches for building one-class classifiers: density
estimators (Gaussian model [2], mixture of Gaussians [3], Parzen density [4]),
boundary methods (k-centers [5], NN-d [3] and OCSVM [6]) and reconstruction
methods (k-mean clustering [2], self-organizing maps [7]). Density methods es-
timate the density of the training set and set a threshold on this density. These
methods have excellent results when a good probability model is provided and
the sample size is sufficient. Boundary methods estimate the boundary that en-
closes target class examples. These methods heavily rely on the distance between
objects, so they tend to be very sensitive to the scale of features. Most of the
reconstruction methods make assumptions about the clustering characteristics
of the data or their distribution in subspaces. Then, a set of prototypes or sub-
spaces are defined and a reconstruction error is minimized.

Recently, a graph-based one-class classifier method, Minimum Spanning Tree
Class Descriptor (MST CD), has been proposed in [8]. This one-class classi-
fier computes the Minimum Spanning Tree (MST) on the training set, and the
classification rule relies on the distance to the closest edge of this constructed

N. El Gayar, J. Kittler, and F. Roli (Eds.): MCS 2010, LNCS 5997, pp. 1–10, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 S. Segúı, L. Igual, and J. Vitrià

tree. This method achieves better accuracy than others methods in problems
with high dimensional spaces (small amount of samples in comparison with data
dimensionality). MST CD method constructs the entire MST with all data with-
out ruling out any example of the training set in the graph definition. This may
result in a high data sensitivity, affecting the performance when outliers are
present in the target class. We propose to combine multiple MST CD classifiers
to achieve robustness to the presence of outliers to the original MST CD.

Ensemble methods combine outputs of several classifiers using diversified data
to improve the performance. The diversity of classifier outputs is a critical re-
quirement to assure success of ensemble methods. In [9], Kuncheva et.al. note
that the ensemble methods which focuss on creating diversity in an intuitive way
seem to have very good results, however, those methods which measure diversity
and use it explicitly in the process of creating the ensemble, apparently, do not
have the same improvement.

There are three main ways to create diversity: the first one consists of consid-
ering a different pool of examples in each classifier of the ensemble; the second
way consists of considering different set of features; and the last way consists of
using different classifier methods to create each classifier in the ensemble.

Bagging [10] trains each classifier in the ensemble with a resampled version
of the training set. This method is useful for unstable classifiers in which small
changes in the training set cause large changes in the estimated boundary [11].
Weighted bagging [12] is an extension of original bagging which establishes a
different weight for each example to be included in the bootstrap samples in
order to create classifiers robust to outliers.

In this paper, we propose the use of two different ensemble methods for one-
class classification based on MST CD method. In particular, the proposed meth-
ods are bagging MST CD and weighted bagging MST CD which vary the pool of
examples for building each classifier. We show that the combinations of MST CD
dramatically improve the results, even for small size data problems where the
original MST CD behaves well.

The rest of the paper is organized as follows: Section 2 reviews MST CD
method; Section 3 introduces the two proposed methodologies for combining
multiple one-class classifiers: bagging MST CD and weighted bagging MST CD;
Section 4 presents the experimental results; and Section 5 finalizes the paper
with the conclusions and future work.

2 Minimum Spanning Tree Class Descriptor

MST CD is a classifier which is based on a graph representation of the training
data. This classifier was originally proposed in [8]. The graph is computed to
capture the structure of the training data set. In particular, this structure is
based on the Minimum Spanning Tree (MST) [13].

Training process of the classifier is formulated as solving the standard MST
problem. Several algorithms have been proposed for finding the graph, being
Prim’s [14] and Kruskal’s [15] the most popular. The task of these methods
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consists of finding the graph without loops which connects all the vertices, such
that the total length of the edges is minimum. The length of an edge that
connects two target samples xi and xj is usually measured as the Euclidian
distance between these points.

Basic elements of this classifier are not only vertices but also edges of the
graph, giving a much richer representation of the data. Considering edges of the
graph as target class objects, additional virtual target objects are generated. The
classification of a new object x is based on the distance to the nearest vertex or
edge. The projection of x onto a line defined by the vertices {xi, xj} is:

peij (x) = xi +
(xj − xi)T (x − xi)

(‖xj − xi‖) (xj − xi). (1)

If the projection peij lies on the edge, then the distance d(x‖eij) between x
and the edge eij is computed as the Euclidian distance. Otherwise, d(x‖eij) is
derived as the shortest Euclidian distance from one of the vertices {xi, xj}

The distance of the new object x to the target class is defined as the minimum
distance to the set of (n − 1) edges of the MST:

dMST CD(x, X) = min
eij∈MST

d(x‖eij). (2)

The decision whether x belongs to the target or outlier class is based on a
threshold, θ, set on the distances dMST CD. This threshold cannot be derived
as an error on the training set since the distance of all target objects is equal to
zero according to the definition of the distance. Therefore, θ is determined by a
quantile function of the distribution of the edge weights in the given MST . The
quantile function is defined as:

θ ≡ ϑα(ẽ) = ‖e([αn])‖, (3)

where ẽ = (e(1), e(2), ..., e(n)) is the sorted sequence of scalar weights of the edges
in the MST , such that ‖e(1)‖ ≤ ‖e(2)‖ ≤, ...,≤ ‖e(n)‖, [a] returns the nearest
integer of a and α ∈ [0, 1]. Thus, ϑ0(ẽ) returns the minimum distance between
two edges of the MST , ϑ1(ẽ) is maximum, and ϑ0.5(ẽ) is median weight of edges.

3 Ensemble of Minimum Spanning Tree Class Descriptors

The main idea of ensemble methods is to combine the output of several clas-
sifiers, each one trained with diversified data set. The goal of these classifiers
consists of creating more robust, precise and accurate classification systems. It
has been proved that ensemble classifiers improve the classification performance
in many applications, compared to single classifier methods [16]. The use of this
methodology for one-class classification problem is justified when the classifier
method is sensitive to the data, which is the case of MST CD, where the presence
of outlier examples in the training set could be critic.

The proposed methods are bagging MST CD (B MST CD) and weighted bag-
ging MST CD (WB MST CD).
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3.1 Bagging Minimum Spanning Tree Class Descriptors

Bagging was introduced by Breiman in [10], and since then is one of the most
popular ensemble methods. This method trains each classifier in the ensemble
with a resampled version of the training set.

Let X = [x1, · · · ,xN ] be a N x n matrix corresponding to the training data
set, where N is the number of examples, and xi = [x1, ..., xn]T are data examples
described by n features. Bagging generates L new training data sets X ′

i of size N ′

(N ′ ≤ N) by sampling from X uniformly and with replacement. Some instance
of X may not appear in some X ′

i, and some may appear duplicated in X ′
i. In

[11], it was demonstrated that bagging is useful for unstable classifiers in which
small changes in the training set cause large changes in the estimated boundary.
MST CD method is very sensitive to changes in the training data examples, since
we use the entire MST (See Figure 1 (a)). Therefore, bagging can be applied to
MST CD in order to increase robustness of this one-class classifier method (See
Figure 1 (b)). Nevertheless, although bagging has a positive influence in the
classifier the outlier contribution persists in the final classifier.

3.2 Weighted Bagging Minimum Spanning Tree Class Descriptors

In classical bagging, all examples have the same probability to appear in one of
the classifiers of the ensemble. Each bootstrap sample contains the same number
of examples as the training set, but with repeated examples. If all examples have
the same probability, outlier samples are likely to be included in the most part
of the bootstrap samples. Weighted bagging was introduced in [12] to overcome
this problem. The authors proposed to give probability weights to points based
on how close are them to the target class by using a kernel density estimator.
The proposed method implicitly imposes that outlier points (points far from the
target class) should have lower probability weights.

To estimate the probability weights they used the iterative method proposed
in [17]. This method, initially, gives the same probability weight to each sample.
At iteration k, the probability weight is estimated by:

wk(i) = wk−i(i) + log(
fk−1(xi)
f ′

k−i(xi)
), (4)

where fk is the weighted kernel density estimator defined as:

fk(xi) =
m∑

j=1

wk(i)
(2π)d/2σd

k(xi, xj). (5)

And f ′
k is defined as:

f ′
k(xi) =

m∑
j=1

wk(i)
(2π)d/2σd

k(xi, xj)I(j �= i), (6)
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(a) MST CD (b) B MST CD (c) WB MST CD

Fig. 1. Results of MST CD (a), B MST CD (b) and WB MST CD (c) methods on
synthetic Gaussian data and one outlier (indicated by the arrow)

where I is the pulse function and k(xi, xj) is a Gaussian kernel function defined
as:

k(x, y) = exp(−‖x − y‖2

2σ2 ). (7)

Finally, the probability weights are inverted and normalized as follows:

w(i) = (
1

wn(i)
)/
( m∑

j=1

1
wn(j)

)
. (8)

The final probability will be low for samples in low density regions and high for
samples in high density regions.

We consider a toy problem example to illustrate the difference between the
original MST CD and the two proposed ensemble methods: B MST CD and
WB MST CD. Synthetic data set was generated using a Gaussian function and
one outlier was included in the target class. Figure 1 shows the qualitative perfor-
mance of the three methods. In particular, distances computed in the learning
process (Eq. (2)) are depicted using gray level: white means distance 0 and
black means distance larger than 1. The boundary was defined using threshold θ
equal to 1. In the figures, it can be appreciated that MST CD and B MST CD
are not able to reject the included outlier, whereas, the boundary defined by
WB MST CD does not include the outlier.

4 Experiments

In order to evaluate the performance of the one-class ensemble classifier meth-
ods, the area under the receiver operator characteristics (ROC) curve (AUC) is
computed in the experiments [18]. The AUC measure is the total performance
of a one-class classifier integrated over all possible thresholds. As thresholds we
refer the distance to the graph (Eq. (2)). A large AUC value means better perfor-
mance of the one-class classifier, a value lower than 50% means that the classifier
is worst than random guessing. Additionally, we use true positive rate (TPR)
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Table 1. Data sets used in the experiments

Data Set Features #Target class #Outliers class
Heart 9 239 444
Iris 13 150 120
Ecoli 7 52 284
Ionosphere 34 126 225
Spectf 44 95 254
Sonar 60 111 97
Arrythmia 278 237 183
Colon 2000 22 44

and false positive rate (FPR) as a performance metric. Varying the threshold θ
of the graph we can get an specific TPR for a fixed FPR. As was done in [12],
different target of FPRs are fixed; these are, typically, 1%, 5% and 10%.

All the experiments were evaluated using 50% of target class as training set,
and the other 50% of target class together with the outlier class as test set. The
experiments were repeated 20 times and the mean value of the results is pre-
sented. Both, in B MST CD and in WB MST CD, L was fixed to 50. Moreover,
the σ parameter of the kernel density function of weighed bagging was fixed
previously by cross-validation for each database. The complexity parameter, γ,
in MST CD was fixed to the maximum, and the threshold θ was fixed to 0.1.
The MATLAB version of MST CD available in DD TOOL toolbox [19] 1 for
prtools library was used.

Eight databases are used, all of them obtained from UCI repository [20],
except for Colon data which is an example of gene expression data. Data sets
with more examples than features are referred as low-dimensional data and data
sets with more feature than examples are referred as high dimensional data.

Table 1 contains the list of data sets with the corresponding number of fea-
tures and number of examples of the target and outlier class. We sorted them
from data set with highest (first row) until lowest (last row) relation between
examples and features. The low dimensional databases are: Heart, Iris, Ecoli and
Ionosphere, whereas the high dimensional databases are: Spectf, Sonar, Arryth-
mia and Colon. Two experiments were performed, one using the original data
sets (clean data set) and another using a noisy version of the same data sets
(noisy data set).

Clean Data Set. Table 2 presents the results obtained on the 8 data sets. The
AUC value for each method is presented and the rank of the methods are printed
in parenthesis. In each row, the best and not significantly worse than the best
result are marked bold. To measure the significance of the obtained results the
statistical Tukey’s test is used [21] with a confidence level fixed to 95%.

We observe that WB MST CD achieved the best result on 5 of the data sets,
and, on the other 3, it obtained a non statistically worse result than the best
1 http://ict.ewi.tudelft.nl/˜davidt/dd tools.html
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Table 2. Performance using original data sets. AUC measure and rank is presented
for every databases. Best and not significantly worse results than the best are marked
bold. Performance variation (gain) between the ensemble methods (B MST CD and
WB MST CD)and original MST CD is presented.

Data Set MST CD B MST CD Gain WB MST CD Gain
Heart 79.80% (3.0) 81.30% (2.0) +3.7% 82.70% (1.0) +6.5%
Iris 97.90% (3.0) 98.70% (2.0) +6.5% 99.00% (1.0) +9.0%
Ecoli 89.30% (3.0) 92.50% (2.0) +5.8% 93.30% (1.0) +7.4%
Ionosphere 96.90% (3.0) 97.40% (2.0) +5.9% 97.80% (1.0) +8.5%
Spectf 90.10% (2.5) 90.20% (1.0) +0.4% 90.10% (2.5) +1.3%
Sonar 70.10% (1.0) 68.20% (3.0) -0.9% 69.00% (2.0) -0.5%
Arrythmia 79.30% (3.0) 79.60% (1.0) +0.7% 79.50% (2.0) +2.3%
Colon 70.30% (3.0) 71.90% (2.0) +1.6% 72.00% (1.0) +1.7%
Rank (2.4) (1.8) (1.4)

method. In particular, for the 4 low dimensional data sets, the best results
were obtained by WB MST CD. These results were significantly better than the
results obtained by the other two methods. However, on the 4 high dimensional
data sets no clear conclusions can be extracted. MST CD obtained the best
result on Sonar data set, and in the other 3, this method obtained a result not
significantly worse than the best.

Table 3 shows the results of TPR obtained for fixed values of FPRs. We can
observe that the results are equivalent to the ones obtained in Table 2. For the
most part of the data sets the method which gets the highest AUC value also
obtains the highest TPR for all the analyzed FPRs.

Noisy Data Set. The second experiment is performed in a noisy version of the
data sets generated by swapping 10% of the examples in the target class used
as training by examples of the outlier class.

The obtained results are presented in Table 4. We observe that WB MST CD
obtained the best rank, achieving better results than MST CD and B MST CD on
7 of the used data sets, and on the other one the obtained result by WB MST CD
is not significantly worse than the best result. In particular, if we analyze the low
dimensional, WB MST CD scoresmuch better than the other methods for all data
sets. The average increase of the AUC value is higher than 6 points.

In the case of the high dimensional data sets, WB MST CD method achieves
the best result on 3 of the 4 data sets. The gain of WB MST CD with respect
to MST CD is substantially lower than in the case of low dimensional data.

Table 5 shows the performance variation of using the noisy data instead of
clean data. We observe that WB MST CD suffers a lower reduction of the AUC
value than MST CD: the mean values are 7.0%, 4.8% and 3.7% by MST CD,
ensemble B MST CD and ensemble WB MST CD respectively. For example, in
the case of Iris and Ionosphere data sets, the decrease value of the AUC by
MST CD is 9.1% and 10.2% while by ensemble WB MST CD is only 1.2% and
2.6% respectively.
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Table 3. Performance of MST CD, B MST CD and WB MST CD. TPR for some
fixed values of FPRs are presented. Best results are marked bold

Data Set FPR TPR
MST CD B MST CD WB MST CD

Heart 1% 19.67 % 23.03 % 23.68 %
5% 36.18 % 41.58 % 41.91 %
10% 46.58 % 49.80 % 52.83 %

Iris 1% 64.81 % 75.19 % 84.04 %
5% 92.12 % 93.08 % 93.65 %
10% 96.73 % 97.12 % 98.85 %

Ecoli 1% 13.33 % 41.48 % 51.11 %
5% 50.37 % 74.07 % 80.56 %
10% 68.33 % 82.59 % 85.74 %

Ionosphere 1% 64.82 % 68.86 % 73.82 %
5% 75.31 % 78.99 % 84.52 %
10% 88.64 % 89.87 % 92.02 %

Spectf 1% 48.27 % 47.14 % 47.76 %
5% 56.63 % 57.04 % 57.04 %
10% 64.39 % 66.43 % 65.10 %

Sonar 1% 24.21 % 17.89 % 22.81 %
5% 36.84 % 31.93 % 36.05 %
10% 50.35 % 48.95 % 49.82 %

Arrythmia 1% 12.08 % 12.83 % 12.63 %
5% 27.33 % 27.75 % 27.54 %
10% 40.29 % 41.00 % 40.87 %

Colon 1% 27.08 % 26.25 % 27.92 %
5% 43.75 % 45.00 % 45.00 %
10% 54.58 % 56.25 % 56.25 %

Table 4. Performance using the noisy data sets in the training step. AUC measure is
presented for all databases. Best and not significantly worse results than the best are
marked bold. Performance variation (gain) between the ensemble methods and original
MST CD is presented.

Data Set MST CD B MST CD Gain WB MST CD Gain
Heart 69.90% (3.0) 73.60% (2.0) +3.7% 76.40% (1.0) +6.5%
Iris 88.80% (3.0) 95.30% (2.0) +6.5% 97.80% (1.0) +9.0%
Ecoli 82.90% (3.0) 88.70% (2.0) +5.8% 90.30% (1.0) +7.4%
Ionosphere 86.70% (3.0) 92.60% (2.0) +5.9% 95.20% (1.0) +8.5%
Spectf 87.10% (3.0) 87.50% (2.0) +0.4% 88.40% (1.0) +1.3%
Sonar 61.60% (1.0) 60.70% (3.0) -0.9% 61.10% (2.0) -0.5%
Arrythmia 73.00% (3.0) 73.70% (2.0) +0.7% 75.30% (1.0) +2.3%
Colon 67.70% (3.0) 69.30% (2.0) +1.6% 69.40% (1.0) +1.7%
Rank (2.7) (2.1) (1.1)
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Table 5. Performance variation with the presence of 10% of outliers on the target data

Data Set MST CD B MST CD WB MST CD
Heart -9.9% -7.7% -6.3%
Iris -9.1% -3.4% -1.2%
Ecoli -6.4% -3.8% -3.0%
Ionosphere -10.2% -4.8% -2.6%
Spectf -3.0% -2.7% -1.4%
Sonar -8.5% -7.5% -7.9%
Arrythmia -6.3% -5.9% -4.2%
Colon -2.6% -2.6% -2.6%
Mean -7.0% -4.8% -3.7%

5 Conclusions

In this paper, we proposed two ensemble methods for one-class classification:
B MST CD and WB MST CD. Method B MST CD slightly improves the per-
formance of the original MST CD method, however the statistical tests are not
significant. Method WB MST CD, by estimating the probability weights of the
training examples with a kernel density function, achieves much better results.
Moreover, in this case, the obtained results are significant from a statistical point
of view.

An experimental study was performed using 8 data sets, 4 of them low dimen-
sional and 4 high dimensional. Both ensemble methods achieve better accuracies
in low dimensional data sets and similar results in high dimensional data sets
than original MST CD. Experiments with noisy versions of the data were also
performed and statistical test confirms the superiority of WB MST CD for deal-
ing with outliers. WB MST CD results are better in low dimensional data than
in high dimensional data sets. This could be due to the difficulty of estimating
the probability density function in high dimensional data.

Future work will be study alternative ways, preferably non-parametric strate-
gies, to estimate the weights for WB MST CD. Moreover, we will analyze other
graph-representations for building the classifier instead of using MST. Addition-
ally, Random Projections or other graph-based transformations will be consid-
ered to perform the classification. Finally, the sparseness nature of the chosen
graph-based representation makes it feasible to represent large-scale data sets
of high dimensional data. To this aim we should explore the use of approximate
algorithms for building the different components of this classifier.
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10 S. Segúı, L. Igual, and J. Vitrià
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Abstract. Multilabel classification is a challenging research problem in
which each instance is assigned to a subset of labels. Recently, a consid-
erable amount of research has been concerned with the development of
“good” multi-label learning methods. Despite the extensive research ef-
fort, many scientific challenges posed by e.g. highly imbalanced training
sets and correlation among labels remain to be addressed. The aim of this
paper is use heterogeneous ensemble of multi-label learners to simultane-
ously tackle both imbalance and correlation problems. This is different
from the existing work in the sense that the later mainly focuses on en-
semble techniques within a multi-label learner while we are proposing
in this paper to combine these state-of-the-art multi-label methods by
ensemble techniques. The proposed ensemble approach (EML) is applied
to three publicly available multi-label data sets using several evaluation
criteria. We validate the advocated approach experimentally and demon-
strate that it yields significant performance gains when compared with
state-of-the art multi-label methods.

1 Introduction

A traditional multi-class classification system assigns each instance x a single
label l from a set of disjoint labels L. However, in many modern applications such
as music categorisation [1], text classification [2,3], image/video categorisation
[4,5] etc, each instance is to be assigned to a subset of labels Y ⊆ L. This problem
is known as multi-label learning.

There is considerable amount of research concerned with the development of
“good” multi-label learning methods. Despite the extensive research effort, there
exist many scientific challenges. They include highly imbalanced training sets, as
very limited data is available for some labels, and capturing correlation among
classes. Interestingly, most state-of-the-art multi-label methods are designed to
focus mainly on the second problem and very limited effort has been devoted
to handling imbalanced data populations. In this paper, we focus on the first
problem of multi-label learning, and tackle highly imbalanced data distributions
using ensemble of multi-label classifiers.

N. El Gayar, J. Kittler, and F. Roli (Eds.): MCS 2010, LNCS 5997, pp. 11–21, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Ensemble techniques are becoming increasingly important as they have re-
peatedly demonstrated the ability to improve upon the accuracy of a single-
classifiers [6]. Ensembles can be homogeneous, in which every base classifier is
constructed using the same algorithm, or heterogeneous in which base classi-
fiers are constructed using different algorithms. In fact, some state-of-the-art
multi-label learners use homogeneous or heterogeneous ensemble techniques to
improve the overall performance. For example, in [7] Logistic Regression and
Nearest Neighbour classifiers are combined, in [8] random subsets of training
data are used. The aim of this paper is to use heterogeneous ensemble of multi-
label learners to improve the performance. This is different from the existing
work in the sense that the latter mainly focuses on ensemble techniques within
a multi-label learner while we are proposing to combine these state-of-the-art
multi-label methods by ensemble techniques.

Interestingly another advantage of combining multi-label classifiers is that
both imbalance and correlation problems can be tackled simultaneously. The
imbalance problem can be handled by using ensemble of multi-label classifiers
while the correlation problem can be solved by using state-of-the-art multi-label
classifiers as base classifiers that inherently consider correlation among labels.
The proposed ensemble approach (EML) is applied to three publicly available
multi-label data sets from different domains (Scene, Yeast, and Enron) using
18 different multi-label classification measures. We validate the advocated ap-
proach experimentally and demonstrate that it yields significant performance
gains when compared with individual state-of-the art multi-label methods.

The paper is organised as follows. In Section 2, we review state-of-the-art
multi-label methods. Section 3 discusses the proposed ensemble of multi-label
classifiers. Experiments are discussed in Section 4 followed by the results and
discussion in Section 5. Section 6 concludes the paper.

2 Related Work

The sparse literature on multi-label classification driven by problems in text
classification, bioinformatics, music categorisation, and image/video classifica-
tion, has recently been summarised by Tsoumakas et al [9]. This research can
be divided into two different groups: i) problem transformation methods, and
ii) algorithm adaptation methods. The problem transformation methods aim
to transform multilabel classification task into one or more single-label classi-
fication [10,11], or label ranking [12] tasks. The algorithm adaptation methods
extend traditional classifiers to handle multi-label concepts directly [13,14,7]. In
this section, we review the state-of-the-art multi-label learners that are used as
base classifiers in our ensemble approach namely RaKEL [11], Calibrated Label
Ranking (CLR) [12], Multi-label KNN (MLKNN) [13], Instance Based Logistic
Regression (IBLR) [7] and Ensemble of Classifier Chains (ECC) [8].

RaKEL: Multilabel classification can be reduced to the conventional classifi-
cation problem by considering each unique set of labels as one of the classes.
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This approach is referred to as label powerset (LP) in the literature. However,
this approach leads to a large number of label subsets with the majority of them
with a very few examples and it is also computationally expensive. Many ap-
proaches have been proposed in the literature to deal with the aforementioned
problem [11,15]. One state-of-the-art approach is RaKEL (Random k-Labelsets)
[11] that constructs an ensemble of LP classifiers where each LP classifier is
trained using a different small random subset of the set of labels. In order to get
near-optimal performance, appropriate parameters (subset size, number of mod-
els, threshold etc) must be optimised using internal cross validation. However,
these parameters are hard to optimised when the number of training samples is
insufficient.

Ensemble of Classifier Chains (ECC): Multilabel classification can be re-
duced to the conventional binary classification problem. This approach is referred
to as binary relevance (BR) learning in the literature. In BR learning, the original
data set is divided into |Y | data sets where Y = {1, 2, ..., N} is the finite set of
labels. BR learns one binary classifier ha : X → {¬a, a} for each concept a ∈ Y .
BR learning is theoretically simple and has a linear complexity with respect to
the number of labels. Its assumption of label independence makes it attractive
to situations where new examples may not be relevant to any known subset of
labels or where label relationships may change over the test data [8]. However,
BR learning is criticised for not considering correlations among the labels [7,12].
The work in [8] is a state-of-the-art BR approach. Their classifier chain (CC)
approach only requires a single training iteration like BR and uses labels directly
from the training data without any internal classification. Classifiers are linked
in a chain where each classifier deals with the BR problem associated with label
yj ∈ Y . However, the order of the chain can clearly have an effect on accuracy.
An ensemble framework (ECC) is used to create different random chain order-
ings. This method was shown to perform well against BR and other multi-label
classifiers.

Calibrated Label Ranking (CLR): Like one-vs-all approach in BR learning,
the binary pairwise one-vs-one approach has also been employed for multi-label
classification, therefore requiring |Y |2 classifiers as opposed to |Y |. Calibrated
label ranking (CLR) [12] is an efficient pairwise approach for multilabel classi-
fication. The key idea in this approach is to introduce an artificial calibration
label that, in each example, separates the relevant label from the irrelevant la-
bels. This method was shown to perform well against other multi-label classifiers
but mainly on ranking measures.

Multi-label KNN (MLKNN): Instance-based approach is also quite popu-
lar in multilabel classification. In [13], a lazy learning approach (MLKNN) is
proposed. This method is derived from the popular k-Nearest Neighbour (kNN)
algorithm. It consists of two main steps. In the first step, for each test instance,
its k nearest neighbours in the training set are identified. Next, in the second
step, the maximum a posteriori probability label set is identified for a test in-
stance based on the statistical information gained from the label sets of these
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neighbouring instances. This method was shown to perform well in some domains
e.g. in predicting the functional classes of genes in the Yeast Saccharomyces
cerevisiae [7].

Instance Based Logistic Regression (IBLR): IBLR is also a novel ap-
proach to instance-based learning with main idea to combine instance-based
learning (ILR) and logistic regression [7]. The key idea is to consider the labels
of neighboring instances as “features” of unseen samples and thus reduce ILR
to logistic regression. This approach captures interdependencies between labels
for multilabel classification.

3 Ensemble of Multi-label Classifiers (EML)

Let X denote a set of images (instances) and let Y = {1, 2, ..., N} be a set of
labels. Given a training set S = {(x1, y1), ...., (xm, ym)} where xi ∈ X is a single
instance and yi ⊆ Y is the label set associated with xi, the goal is to design a
multi-label classifier H that predicts a set of labels from an unseen example.

As discussed previously, ensembles methods are well-known for overcoming
over-fitting problems especially in highly unbalanced data sets. Ensemble of
multi-label classifiers train q multi-label classifiers H1, H2, ...., Hq. Thus, all
q models are diverse and able to give different multi-label predictions. For an
unseen instance xj , each kth individual model (of q models) produces an N -
dimensional vector Pjk = [p1k, p2k, ....., pNk], where the value pbk is the proba-
bility of the bth class label assigned by classifier k being correct.

There are many ways of combining the outputs of these q classifiers. Among
them, nontrainable combiners such as MEAN, MAX, MIN are the simplest and
most popular way to combine the scores of classifiers with probabilistic outputs
[16]. These combiners have no extra parameters to be trained. In this paper,
nontrainable combiners are used to combine the scores from multi-label classi-
fiers. The only exception is the adjustment of the thresholds using the method
described below and proposed by [8]. It is reported in [17] that properly adjust-
ing the decision thresholds (instead of the traditional value of 0.5) can improve
the performance for a multi-label classifier. Let the sum of probabilities from q
models be stored in a vector W = (θ1, ......., θN ) ∈ R

N such that θb =
∑q

k=1 pbk.
W is then normalised to Wnorm, which represents a distribution of scores for
each label in [0,1]. Let XT be the training set and XS the test set. A threshold
t is then selected using Equation 1 to choose the final predicted multi-label set
Z.

t = arg min
{t∈0.00,0.001,....,1.00}

|LCard(XT ) − LCard(Ht(Xs))| (1)

where LCard (Label Cardinality) is the standard measure of “multi-labelled-
ness” [9]. It is the average number of labels relevant to each instance and is

defined as LCard(X) =
∑ |X|

i=1 |Ei|
|X| where Ei is the actual set of labels for the

training set and a predicted set of labels under threshold t for the test set.
Equation 1 measures the difference between the label cardinality of the training



Improving Multilabel Classification Performance 15

set and the predictions made on the test set. It avoids intensive internal cross-
validation. Hence, the relevant labels in Z under threshold t represent the final
predicted set of labels. It should be clear that the actual test labels are never
seen by the presented threshold selection method. The threshold t is calculated
using the predicted set of labels only.

4 Experiments

Datasets:We experimented with 3 multi-label datasets from a variety of domains.
Table 1 shows certain standard statistics of these datasets. The publicly available
feature vectors are used in this paper for all datasets 1. The image dataset “scene”
is concerned with semantic indexing of images of still scenes [10]. The “yeast” data
set contains functional classes of genes in theYeastSaccharomyces cerevisiae [11,7].
The “enron” is a subset of the Enron email corpus [15].

Table 1. Standard and multilabel statistics for the data sets used in the experiments

Datasets Domain Train Test Features Labels LCard
Enron Text 1123 579 1001 53 3.38
Scene Vision 1211 1196 294 6 1.07
Yeast Biology 1500 917 103 14 4.24

Evaluation Measures: Multi-label classification requires different evaluation
measures than traditional single-label classification. The details can be found
in [9]. They are not shown here due to the lack of space. These measures
can be categorised into three groups: example based, label-based and ranking-
based. In this paper, 18 different evaluation measures are used to compare the
proposed approach. These measures include Hamming Loss, Accuracy, Preci-
sion, Recall, F1, and Classification Accuracy from the example-based category,
and Micro Precision/Recall/F1/AUC, Macro Precision/Recall/F1/AUC from
the label-based group. Additionally, we use One-error, Coverage, Ranking Loss
and Average Precision from the ranking-based group.

Benchmark Methods: The proposed EML method is compared with the state-
of-the-art multi-label classifiers discussed in Section 2: RaKEL [11], ECC [8],
CLR [12] , MLKNN [13], and, IBLR [7]. Since all these multi-label classifiers are
quite diverse, they are selected as base classifiers in the proposed EML method.
MLKNN and IBLR are from the algorithm adaptation group while ECC, RaKEL
and CLR are from the problem transformation group. Further, C4.5 is used as
a base classifier in RaKEL while Linear SVM is used as a base classifier in ECC
and CLR. For the training of MLKNN, IBLR, CLR and Rakel, the Mulan1 open-
source library in Java for multi-label classification is used. For the training of
ECC, the MEKA 2 open-source library is used with the default parameters. Both
1 http://mlkd.csd.auth.fr/multilabel.html
2 http://www.cs.waikato.ac.nz/ jmr30/software
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libraries are an extension of WEKA [18]. All multi-label classifiers are trained
using default parameters which are also the best reported parameters e.g. the
number of neighbours is 10 for IBLR and MLKNN; the number of iterations is
10 for ECC. The multi-label classifiers are compared with the following variants
of the proposed method.

– EMLM : An ensemble of multilabel classifiers using the MEAN rule. It should
be noted that we have also tried several others rules such as MAX, MIN and
only the best is reported here due to lack of space.

– EMLT : An ensemble of multi-label classifiers using the threshold selection
method discussed in Section 3.

5 Results and Discussion

In this section, we discuss the results obtained using EML for the Enron, Medical,
Scene and Yeast datasets using Example, Label and Rank based measures.

5.1 Enron Dataset

Table 2 shows the comparison of EML with the state-of-the-art multilabel clas-
sifiers for the Enron dataset. First, when the individual multi-label classifiers
are compared with each other using various performance measures, it is hard to
pick between CLR and RakEL for this dataset. RakEL delivers excellent per-
formance in the majority of Example-based measures while CLR gives the best
performance in the majority of Label and Rank-based measures. Overall, CLR
and RakEL show the best performance in eight and six evaluation measures
respectively. MLKNN and ECC are also the winners in 2 measures. However,
by using an ensemble of multi-label classifiers, significant performance gains
have been observed in almost all measures. It is also observed that the presented

Fig. 1. Threshold t vs {|LCard(XT ) − LCard(Ht(Xs))|,Accuracy} for Enron
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Table 2. Comparison of proposed ensemble method (EML) with the state-of-the-art
multi-label classifiers for Enron dataset. For each evaluation criterion, ↓ indicates “the
smaller the better” while ↑ indicates “the higher the better”.

CLR RakEL MLKNN IBLR ECC EMLM EMLT

HammingLoss ↓ 0.062 0.050 0.052 0.057 0.063 0.047 0.051
Accuracy ↑ 0.401 0.429 0.352 0.337 0.405 0.411 0.461
Precision ↑ 0.539 0.640 0.630 0.557 0.523 0.698 0.608
Recall ↑ 0.577 0.509 0.390 0.396 0.589 0.447 0.626
Fmeasure ↑ 0.557 0.567 0.482 0.463 0.554 0.545 0.617
SubsetAccuracy ↑ 0.083 0.131 0.093 0.086 0.071 0.133 0.071
Micro Precision ↑ 0.516 0.651 0.680 0.594 0.507 0.746 0.603
Micro Recall ↑ 0.553 0.485 0.363 0.379 0.558 0.416 0.603
Micro F1 ↑ 0.534 0.556 0.473 0.463 0.531 0.534 0.603
Macro Precision ↑ 0.297 0.213 0.163 0.220 0.217 0.212 0.256
Macro Recall ↑ 0.269 0.137 0.078 0.130 0.229 0.099 0.169
Macro F1 ↑ 0.257 0.149 0.088 0.144 0.210 0.118 0.175
Micro AUC ↑ 0.904 0.816 0.900 0.880 0.856 0.918 0.916
Macro AUC ↑ 0.723 0.592 0.632 0.619 0.662 0.724 0.712
One-error ↓ 0.309 0.287 0.269 0.378 0.307 0.238 0.238
Coverage ↓ 11.957 24.073 12.751 14.534 19.411 11.218 11.218
Ranking Loss ↓ 0.085 0.195 0.092 0.109 0.148 0.075 0.075
AvgPrecision ↑ 0.649 0.612 0.641 0.612 0.624 0.699 0.699

# Wins (Ind. Classi.) 8/18 6/18 2/18 0/18 2/18 - -
# Wins (All) 3/18 0/18 0/18 0/18 0/18 10/18 9/18

threshold selection technique (EMLT ) has a significant effect on some evaluation
measures. For example, there is a 12% increase in Accuracy while 48% increase
in Macro F1. In summary, a significant improvement is observed by using both
variants of the proposed ensembles of multi-label classifier techniques (EMLM

and EMLT ).
Figure 1 shows the graph for different values of threshold t in the X-axis and

{|LCard(XT ) − LCard(Ht(Xs))|,Accuracy} in the Y-axis for the Enron data
set. For clarity, only values with t < 0.1 are shown here as optimal value of
the threshold selection measure is between 0 and 0.1 for this dataset. It is clear
from this graph that the threshold selection method is able to deliver a near-
optimal value of accuracy. The optimal value of accuracy is 47.2 under threshold
t = 0.056 (accuracy curve is plotted using actual test labels for demonstration
only). In contrast, the best value of accuracy obtained by Equation 1 is 46.1
under t = 0.051 which is very close to the optimal one. In summary, this graph
clearly shows the merit of the presented threshold selection method as this simple
approach attains near-optimal values without expensive internal cross validation.

5.2 Scene Dataset

Table 3 shows the comparison of EML with the state-of-the-art multilabel classi-
fiers for the Scene dataset. It is interesting to observe that for this data set, IBLR
and ECC achieve the highest performance in most of the measures when com-
pared with the individual multi-label classifiers. Overall, IBLR, ECC and CLC
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Table 3. Comparison of proposed ensemble method (EML) with the state-of-the-art
multi-label classifiers for Scene dataset

CLR RakEL MLKNN IBLR ECC EMLM EMLT

HammingLoss ↓ 0.122 0.112 0.099 0.091 0.109 0.084 0.095
Accuracy ↑ 0.577 0.571 0.629 0.647 0.683 0.699 0.694
Precision ↑ 0.600 0.598 0.661 0.676 0.716 0.730 0.725
Recall ↑ 0.669 0.612 0.655 0.655 0.727 0.716 0.754
Fmeasure ↑ 0.632 0.605 0.658 0.665 0.722 0.723 0.740
SubsetAccuracy ↑ 0.474 0.503 0.573 0.609 0.605 0.651 0.602
Micro Precision ↑ 0.666 0.732 0.779 0.824 0.696 0.812 0.737
Micro Recall ↑ 0.659 0.600 0.634 0.635 0.708 0.696 0.737
Micro F1 ↑ 0.663 0.660 0.699 0.717 0.702 0.750 0.737
Macro Precision ↑ 0.680 0.729 0.784 0.827 0.713 0.817 0.764
Macro Recall ↑ 0.662 0.609 0.647 0.642 0.715 0.701 0.741
Macro F1 ↑ 0.669 0.663 0.692 0.719 0.712 0.754 0.748
Micro AUC ↑ 0.916 0.894 0.924 0.931 0.901 0.949 0.943
Macro AUC ↑ 0.910 0.886 0.911 0.927 0.898 0.943 0.938
One-error ↓ 0.261 0.293 0.242 0.234 0.273 0.216 0.216
Coverage ↓ 0.543 0.691 0.569 0.551 0.639 0.451 0.451
Ranking Loss ↓ 0.088 0.117 0.093 0.090 0.106 0.070 0.070
AvgPrecision ↑ 0.845 0.817 0.851 0.856 0.831 0.873 0.873

# Wins (Ind. Classi.) 2/18 0/18 0/18 10/18 6/18 - -
# Wins (All) 0/18 0/18 0/18 2/18 0/18 12/18 8/18

give the best performance in ten, six and two evaluation measures respectively.
However, by using the proposed ensemble of multi-label classifiers (EML), signif-
icant performance gains have been observed in all measures except Micro/Macro
Precision. In summary, in addition to performance gains, fusion of multi-label
classifiers also has overcome some limitations of individual multi-label classi-
fiers as the performance of these individual multi-label classifiers may vary in
evaluation measures and from one data set to another.

5.3 Yeast Dataset

Table 4 shows the comparison of EML with the state-of-the-art multilabel clas-
sifiers for the Yeast dataset. First, when the individual multi-label classifiers are
compared with each other using various performance measures, ECC, MLKNN
and IBLR demonstrate very good performance on this dataset. IBLR ranks first
in the ranked-based measures while the performance vary for ECC and MLKNN
in Example and Label based measures. Overall, ECC, IBLR and MLKNN report
the best performance in seven, six and four evaluation measures respectively. As
before, the fusion of multi-label classifiers has significantly improved the overall
performance in all except classification accuracy. It is also observed that the pre-
sented threshold selection technique (EMLT ) makes a significant impact on the
performance especially on example-based measures e.g. 11% and 8.5% increase
in Accuracy and Fmeasure respectively when compared with an ensemble using
the MEAN rule (EMLM ) for fusion.
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Table 4. Comparison of proposed ensemble method (EML) with the state-of-the-art
multi-label classifiers for Yeast dataset

CLR RakEL MLKNN IBLR ECC EMLM EMLT

HammingLoss ↓ 0.210 0.244 0.198 0.199 0.212 0.193 0.197
Accuracy ↑ 0.497 0.465 0.492 0.506 0.535 0.500 0.553
Precision ↑ 0.674 0.601 0.732 0.712 0.654 0.738 0.682
Recall ↑ 0.596 0.618 0.549 0.581 0.669 0.553 0.690
Fmeasure ↑ 0.633 0.609 0.628 0.640 0.661 0.633 0.686
SubsetAccuracy ↑ 0.158 0.091 0.159 0.176 0.197 0.166 0.190
Micro Precision ↑ 0.681 0.596 0.736 0.714 0.648 0.750 0.676
Micro Recall ↑ 0.585 0.616 0.543 0.576 0.656 0.548 0.677
Micro F1 ↑ 0.629 0.605 0.625 0.637 0.652 0.633 0.677
Macro Precision ↑ 0.447 0.430 0.600 0.560 0.460 0.689 0.504
Macro Recall ↑ 0.364 0.420 0.308 0.342 0.423 0.315 0.428
Macro F1 ↑ 0.382 0.407 0.336 0.371 0.403 0.352 0.420
Micro AUC ↑ 0.814 0.785 0.835 0.840 0.806 0.844 0.840
Macro AUC ↑ 0.658 0.626 0.664 0.686 0.642 0.708 0.697
One-error ↓ 0.251 0.338 0.234 0.232 0.278 0.240 0.240
Coverage ↓ 6.589 7.834 6.414 6.350 7.067 6.297 6.297
Ranking Loss ↓ 0.181 0.233 0.172 0.169 0.218 0.163 0.163
AvgPrecision ↑ 0.749 0.693 0.758 0.760 0.730 0.766 0.766

# Wins (Ind. Classi.) 0/18 1/18 4/18 6/18 7/18 - -
# Wins (All) 0/18 0/18 0/18 1/18 1/18 9/18 10/18

5.4 Discussion

The results presented in this paper show the merit of combining multi-label
classifiers. In all three datasets, it is hard to pick a multi-label method that can
perform consistently well. For example while CLC and RakEL performs quite
well on Enron, they do not deliver similar superiority on Scene and Yeast when
compared with ECC, MLKNN and IBLR. Furthermore, since multi-label data
suffers from class imbalance problem, it is natural to apply ensemble techniques
to overcome over-fitting and improve the accuracy of individual classifiers. Both
EMLM and EMLT improve consistently when compared with the individual
methods and across the majority of evaluation measures. However, this perfor-
mance gain is at the expense of inherent computational complexity of ensemble
techniques since several multi-label classifiers need to be trained separately. The
easiest solution is to use parallel computing techniques to improve the efficiency
since all base classifiers can be trained independently.

To the best of our knowledge, this is the first study that aims to combine
the output of various multi-label classifiers. In this paper, we have investigated
nontrainable ensemble techniques based on the MEAN rule and threshold selec-
tion. Since, multi-label classifiers inherently are computationally intensive and
data is highly imbalanced, it opens new research challenges how to use other
combination techniques efficiently such as trainable combiners (Weighted Av-
erage, Fuzzy Integral) or class indifferent combiners (Decision Templates and
Dempster-Shafer Combination). The other interesting research issue that needs
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to be investigated is how to select the base classifiers in EML since different
combinations of base classifiers may perform differently for specific problem
domains.

6 Conclusion

In this paper, heterogeneous ensemble of multi-label learners is presented to si-
multaneously tackle both imbalance and correlation problems. For multi-label
classification, this idea is especially appealing, as ensembles methods are well-
known for overcoming over-fitting problems and improving the performance of
individual classifiers. Two nontrainable ensemble techniques based on the MEAN
rule and threshold selection are investigated and then applied to three publicly
available multi-label data sets using several evaluation criteria. It has been shown
that the presented approach provides a very accurate and efficient solution when
compared with the state-of-the-art multi-label methods.
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Abstract. Often in real world applications only a small number of la-
beled data is available while unlabeled data is abundant. Therefore, it is
important to make use of unlabeled data. Co-training is a popular semi-
supervised learning technique that uses a small set of labeled data and
enough unlabeled data to create more accurate classification models. A
key feature for successful co-training is to split the features among more
than one view. In this paper we propose new splitting criteria based on
the confidence of the views, the diversity of the views, and compare them
to random and natural splits. We also examine a previously proposed ar-
tificial split that maximizes the independence between the views, and
propose a mixed criterion for splitting features based on both the confi-
dence and the independence of the views. Genetic algorithms are used to
choose the splits which optimize the independence of the views given the
class, the confidence of the views in their predictions, and the diversity of
the views. We demonstrate that our proposed splitting criteria improve
the performance of co-training.

1 Introduction

Supervised learning uses a large number of labeled examples to build classifiers.
Such labeled data sets are not always available or need a lot of effort and time
to be collected.

Semi-supervised learning tries to overcome this limitation by inducing high
accuracy classifiers from small sets of labeled data and enough unlabeled data
which may be obtained easily[1].

Co-training is a popular semi-supervised learning technique; that creates clas-
sification models using labeled and unlabeled data. It does so by training more
than one classifier using different versions of the labeled data called views[2]. The
classifiers are then used to predict the labels of the unlabeled data pool. Each clas-
sifier then chooses the predictions in which it is most confident and teaches them
to the rest of the classifiers. Co-training is suitable for many real life applications
because it can utilize unlabeled data given only a small labeled set.

However there are some requirements for the successful use of co-training:
namely that the data is redundant i.e. Information useful for classification is
redundant in both views so each view is sufficient for classification on its own,
and that the features in different views are independent given the class[2]. These
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requirements are met if the features have a natural split. As an example Blum
and Mitchell [2] use a data set of websites where some features are taken from
the text in the webpage and the rest from the hyper links that lead to the page.

In many cases a natural split does not exist or is unknown. Therefore, finding
good artificial splits has been a research topic for years. Nigam et al. use random
splitting of features into two views and demonstrate that co-training could be
successful using a random split if the data is redundant enough[3].

Feger et al propose a graph based algorithm that maximizes the independence
of the two views based on the concept of mutual independence[4]. Wang et al.
show that the co-training process could succeed without splitting the data into
two views, given that the two base classifiers have large differences[5].

There are also efforts to split the features among classifiers in supervised mul-
tiple classifier systems. Opitz in [6] presents a genetic algorithm for creating
ensembles called Genetic Ensemble Feature Selection. In this study a genetic al-
gorithm is used to select the split that maximizes the accuracy of the individual
classifier as well as the diversity of the ensemble by measuring the difference be-
tween the accuracy of the individual classifiers and that of the ensemble. Global
optimization techniques such as genetic algorithms can be used to select feature
splits in co-training however in co-training the labels of the data are not available
so measures such as the accuracy of the classifier cannot be calculated.

In this paper we investigate different artificial feature splits to be used in con-
junction with the co-training algorithm. In particular, we use genetic algorithms
to select the split that optimize different splitting criteria. We use the same con-
ditional mutual information equation used by Feger et al. in [4] , as the fitness
function of the genetic algorithm to minimize the independence of the views given
a class. More importantly in this study we attempt to propose new feature splits
based on maximizing the strength of the individual views. Again, we use a genetic
algorithm to maximize the strength of the individual views and their diversity.

The contribution of this work can be summarized as follows.
Firstly we propose a new criterion for splitting the features in a co-training

setting based on maximizing the strength of the individual views. Since we can-
not measure the accuracy of an individual view with unlabeled data, we devise
a fitness function that measures the confidence of a view based on the entropy
of its output.

Secondly, we aim to satisfy both requirements of co-training by creating a
mixed fitness function that takes into consideration both the confidence of the
individual views and their mutual independence.

Thirdly we introduce a genetic algorithm that maximizes the strength of the
individual views and their diversity. This criterion is similar in concept to that
used by Opitz[6] to create feature subset ensembles. However due to the absence
of labels necessary to calculate the accuracy of the individual views -and the
improvement in accuracy of the combined output- we use the confidence of the
output as an indication of accuracy.

We compare the aforementioned splits against random splits and against the
natural split if it exists. Experiments are conducted on two real data sets using
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Multilayer Perceptron (MLP) and Support Vector Machines (SVM) as the base
classifiers for co-training.

The paper is organized as follows: In the next section we explain the co-
training algorithm. The different criteria for splitting the features are described
in section 3 and 4. Section 5 explains the genetic algorithm and how we use it
to select the feature splits. In sections 6 we present our experiments and discuss
our findings. Section 7 summarizes the paper and provides suggestions for future
work.

2 Co-training

Co-training is a semi-supervised learning method which can induce high accuracy
classifiers from a small number of labeled and a large number of unlabeled data.
First, the features in the original data set are split into two feature sets V1 and
V2, which are called views. Two classifiers C1 and C2 are each trained using one
view of the labeled set L. The two classifiers C1 and C2 are different because
they are trained with different views of the data. Next, all of the examples in
the unlabeled data pool U’- randomly selected from a large unlabeled set U- are
classified by the classifiers C1 and C2. The most confidently classified examples
by each classifier are added to the labeled dataset. U’ is then replenished with
examples randomly selected from the unlabeled data set U. By iterating such
a process, the number of labeled examples L is increased by the self-labeled
examples. As a result, the prediction accuracy of the classifiers is improved.
Figure 1 summarizes the steps of the co-training algorithm.

3 Natural, Random and Independent Feature Splits

In this paper we compare splitting the features according to different criteria.
Previous research on co-training mainly used natural splits, random splits and
splits devised through maximizing the independence between views. We will
review these methods as follows.

3.1 Natural Splits

A natural split exists when the data is naturally described by two disjoint feature
sets. In this case, each feature set is sufficient to perform classification and the
views are truly independent. For example in an email spam classification prob-
lem, one view may contain the features describing the subject of the email and
the other may contain the features describing the body. Natural splits satisfy
the co-training requirements proposed by Blum and Mitchell, they showed that
using unlabeled data for co-training improves the performance when a natural
split exists[2].
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Input:

– L: a small set of labeled example
– U: a large set of unlabeled example
– V1, V2: two sets of describing the example

Algorithm:

– Create a pool U’ by randomly choosing u examples from U
– Loop for k iterations
– Train Classifier C1 from L based on V1
– Train Classifier C2 from L based on V2
– C1 predicts the class of examples from U’ based on V1 and chooses

the most confidently predicted p positive and n negative examples
E1

– C2 predicts the class of examples from U’ based on V2 and chooses
the most confidently predicted p positive and n negative examples
E2

– E1 and E2 are removed from U’ and added with their labels to L
– Randomly chose 2p+2n examples from U to replenish U’
– End

Fig. 1. Co-training algorithm

3.2 Random Splits

Randomly splitting the data is a simple way of creating an artificial split when
a natural split does not exist. Nigam et al showed that co-training works with a
random split if the data is redundant enough[3].

3.3 Independence of Views

Feger et al [4] proposed an algorithm to measure the independence of views in
co-training -which is one of two requirements for successful co-training- based
on the conditional mutual information of the features. The Mutual Information
( MI ) of two features X and Y depends on their entropies H and is defined as
follows:

MI(X, Y ) = H(X) − H(X |Y ) =
∑
xeX

∑
yeY

p(x, y) log2
p(x, y)

f(x)g(y)
(1)

CondMI is MI under the condition of an additional constraint:

CondMI(X, Y |z = c) =
∑
xeX

∑
yeY

p(x, y|z = c) log2
p(x, y|z = c)

p(x|z = c)p(y|z = c)
(2)
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The interdependence of the views is calculated as the sum of the conditional
mutual information of all the features in the two views.

The probabilities used in the CondMI are calculated based on the frequency
of a feature X having the value x i.e. P (X = x) is the number of records in
which X = x over the total number of records. Feger et al. [4] use a graph based
method to select the split that minimizes the dependence between the two views.
Since the number of features may be very large, exhaustively calculating the
dependence between all possible views is computationally infeasible so the split
is produced using a graph partition heuristic[4]. Alternatively we use a genetic
algorithm to select the split that minimizes the dependence. This is described in
more details in the following sections.

4 Proposed Feature Splitting Criteria

Only one of the two requirements for co-training has been addressed in previous
work which is the independence of the views. We propose to create a feature split
that maximizes the strength of the individual views based on their confidence. We
also suggest using a mixed function that considers both requirements. Moreover
we introduce a new criterion for splitting the features based on maximizing the
strength of the views and their diversity to take advantage of the co-training
paradigm. As follows we describe our proposed measures in more details.

4.1 Confidence of the Views

The first requirement for successful co-training is that the features are redundant
enough, that is each view is strong enough to perform classification on its own.
Based on that hypothesis we propose a genetic algorithm to select the split that
maximizes the strength of the views. Since the accuracy of the views cannot be
measured because the data is not fully labeled; we use the confidence of a view
as an indication of its strength.

The confidence of a view is measured by calculating the average entropy of
its output. Entropy is a general measure of the uncertainty. In our case, we use
entropy to measure the uncertainty or fuzziness of an output. The entropy H(X)
of a variable X is given by:

H(X) = −
n∑

i=1

p(xi) logb p(xi) (3)

Where b is the base of the logarithm used.
Each classifier is trained with a view of the labeled dataset; it is then used to

predict the class of the unlabeled data set. The entropy of the output produced
by each input sample is calculated and the average of this over all input samples
indicates the uncertainty of the view. To obtain the split with the most confident
views we minimize E(V1) + E(V2), where E(Vi)is the average entropy of the
outputs of view i.
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4.2 Mixed Criteria

We also propose to create a split that optimizes both requirements of co-training
by simply considering both measures of confidence and independence described
above. We aim to minimize E(V1) + E(V2) + InterCMI(V1, V2), where E(V1)
is the uncertainty of the first view, E(V2) is the uncertainty of the second view,
and InterCMI(V1, V2) is the dependence between them.

4.3 Maximum Diversity

The Independence of the views is considered important in the co-training
paradigm because each view adds different information to the model like in natu-
ral splits. However, in their paper Feger et al. reported that their proposed algo-
rithm for maximizing independence did not improve the accuracy over random
splits. Because only a small number of labeled data is available, their maximum
independence split was not actually much more independent than the random
splits. They used a labeled version of the entire data set to produce a split that
was much more independent, however this split could not be used in co-training
because the labels for the entire data set would not be available[4]. Therefore we
need other methods to ensure that each view adds different information to the
model, so we propose to use feature splits that maximize the diversity between
the views. Opitz used genetic algorithms to split the features among an ensemble
of classifier in a way that would maximize their diversity. He measured diversity
as the difference between the accuracies of individual classifier in the ensemble
and the combined output of the ensemble. This represents the improvement of
the combined output over the individual outputs[6]. We use a similar approach
to maximize the diversity between the views in co-training, but since the data
is unlabeled we could not measure the accuracy of the output so again we use
the confidence in the output to indicate accuracy. We use the equation

E(V1) + E(V2) +
E(V1) + E(V2)

E(V1 ∗ V2)
(4)

where E(V1∗V2) is the entropy of the combined output. This equation minimizes
the entropy of the outputs of individual views and maximizes the entropy of the
combined output thus maximizing conflict between confident views.

5 Genetic Algorithm Optimization

Genetic Algorithms are search technique to find approximate solutions to opti-
mization problems. Genetic Algorithms mimic the behavior of natural selection
to reach an optimum solution to any multi-dimensional problem[7].An optimal
solution is however not guaranteed. Genetic Algorithms attempt to find the best
solution to a problem by generating a population of potential solutions to the
problem in the form of genomes. The quality of the solution is calculated by a
fitness function, whereas the best solution is the minimum of that function. A



28 A. Salaheldin and N. El Gayar

new generation of solutions is produced by applying cross over and mutation to
the current population genomes. Only the fittest solutions survive and are used
to produce the next generation. This process continues until an acceptably good
solution is found.

Genetic algorithms are useful in selecting feature splits because finding the
optimal split exhaustively is not computationally feasible, moreover the feature
vector could be easily represented as a genome for the genetic algorithm. Genetic
algorithms have been successfully used to optimize feature subset ensembles [6]
in the context of supervised learning[8]. In supervised learning the accuracy of
the model is used as the fitness function. However, in semi-supervised learning,
creating a fitness function becomes more challenging.

In this paper we use genetic algorithms to select feature splits that optimize
fitness functions that measure the confidence, independence and diversity of the
views. Solutions are represented as bit strings of the same size as the feature
vector. If bit number i equals 1, then feature i in the feature vector belongs to
view1; alternatively, if the bit equals 0, the feature belongs to view2.

6 Experiments

6.1 Experimental Setup

As follows we will present the details of our experiments. In particular we de-
scribe the data sets, base classifiers and evaluation criteria used.

We use three real data sets to test the feature splitting criteria. The first two
data sets used are from the UCI Machine Learning Repository[9]. The Congres-
sional Voting Records data set consisting of categorical attributes and Breast
Cancer Wisconsin data set consisting of numerical attributes. In addition we use
a data set of fruit images(The Fruits data set) previously collected for a robotic
application. The data set consists of 840 objects for 7 classes of fruits (green ap-
ple, red apple, tangerine, orange, yellow plum, red plum and lemon). 12 different
feature groups are generated for each object. Feature groups are described in
different levels of detail; sometimes up to 1024 features. For more details on the
collection and description of this data set refer to [10]. In our experiments we
use the feature groups of CANNY and color histogram; as our natural splits. As
this paper presents only preliminary results for testing several feature splitting
criteria, we only experiment with two fruit classes.

As co-training can be dependent on the base classifier[11] in the ensemble, we
repeat our experiments using two base classifiers (MLP and SVM).

A MLP is a feed forward artificial neural network model that maps sets of
input data onto a set of appropriate output. We use a MLP with one hidden layer
of 20 nodes. The transfer functions used are tan sigmoid for the hidden layer
and pure linear for the output layer. The training function used is a gradient
descend function with learning rate 0.1. On the other hand, SVMs are machine
learning techniques that use a hyper plane or a set of hyper planes to divide a
high-dimensional space. We use a SVM classifier with a Gaussian RBF kernel
for our experiments.
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As mentioned before, a genetic algorithm is used to minimize the fitness func-
tions based on the feature splitting criteria. Because genetic algorithms may give
many suboptimal solutions, each fitness function is used to generate 10 solutions.
The results of the 10 solutions are then averaged. The population size used is 20
samples and the number of generations is 100 generations.

We test the feature splitting criteria described in sections 3 and 4 using the
above mentioned datasets and base classifiers. 10 Random splits are generated
where each feature belongs to one of two views. Fitness functions are formulated
to calculate the independence of the views as described in section 3 and our
new splitting criteria as described in section 4. A genetic algorithm is used as
described above to generate the solutions based on the splitting criteria. Co-
training is run 10 times for each split, and the average of the error is calculated.
We also test the natural split in the fruits data set.

6.2 Results

First to test if the confidence is really a good indication of accuracy, we train
the classifier using the views with the most confidence (without co-training) and
test them against classifiers trained using random subsets of the feature vector.

The following table shows the errors of using most confident views against
random views, where

∑
views is the sum of the errors of the individual views.

Table 1. Error in confident views against random views

Base Classifier
∑

confident views
∑

random views
MLP Votes dataset 33% 47.1%
SVM Votes dataset 39.4% 36.5%
MLP Fruits dataset 58.1% 72.9%
SVM Fruits dataset 23.5% 13.5%

MLP Breast Cancer dataset 31.7% 37.2%
SVM Breast Cancer dataset 68.7% 67.1%

Table 1 shows that the confidence of a view is a good indication of its strength
when using Multilayer perceptron but not when using SVM.

Next we test co-training using the features splits described in sections 3 and
4. Tables 2-5 summarize the errors for co-training after 10 iterations using the

Table 2. Error in co-training on UCI data using MLP

Votes Random Split Independence Confidence Mixed(conf+Ind) Diversity
E1,2 14.1% 14.95% 14.38% 14.55% 12.17%
CE 13% 11.34% 12.13% 11.1% 10.93%

Breast Cancer Random Split Independence Confidence Mixed(conf+Ind) Diversity
E1,2 16.55% 16.47% 14.52% 12.97% 11.51%
CE 14.18% 12.91% 13.3% 10.4% 9.96%
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Table 3. Error in co-training on Fruits data using MLP

Random Split Independence Confidence Mixed(conf+Ind) Diversity Natural
E1,2 25.625% 23.06% 23.45% 22.435% 12.975% 14.765%
CE 26.37% 22.62% 22.84% 22.125% 12.8% 13%

Table 4. Error in co-training on UCI data using SVM

Votes Random Split Independence Confidence Mixed(conf+Ind) Diversity
E1,2 14.705% 14.755% 16.4% 14.2% 15.6%
CE 14.24% 13.6% 13.6% 13.32% 13.49%

Breast Cancer Random Split Independence Confidence Mixed(conf+Ind) Diversity
E1,2 47.83% 44.24% 42.39% 44.44% 36.86%
CE 52.47% 46.73% 39.68% 39.065% 36.15%

Table 5. Error in co-training on Fruits data using SVM

Random Split Independence Confidence Mixed(conf+Ind) Diversity Natural
E1,2 9.75% 9.875% 8.475% 7.62% 10.925% 10.815%
CE 9.5% 10.87% 9.45% 9.19% 11.1% 10.25%

different splitting criteria for the MLP and the SVM base classifiers for the three
data sets. E1,2 is the average error of the individual views, CE is the error of
the combined output.

From the previous tables we observe the following:
For MLP, the split maximizing the diversity gives the best performance for all

data sets. The mixed split also performs well on all data sets, and outperforms
splits that only optimize one requirement of co-training. We further observe
that maximizing the confidence of the views gives better results than randomly
splitting the features. This is expected since confidence implies the strength of
views when using MLP. This gives credit to the requirement put forth by Blum
and Mitchell [2] that the strength of the views is important for co-training.
Terabe et al. who used the same votes data set similarly reported that splits
with stronger views perform better than splits with weaker views when using
RBF Neural networks, however they did not test this by generating optimized
splits but rather by randomly creating a number of splits and testing the splits
with the strongest views against the ones with the weakest views[12]. They also
calculated the accuracy by testing the models with labeled data which could
not be used in a real co-training application. Splits that maximize independence
also give less error than random splits. Feger et al. reported that maximizing
the independence between the views did not improve the performance, however
they showed that on their data set, using the maximum independence algorithm
on a small labeled data set did not produce a split that was significantly more
independent than the random splits[4]. Terabe et al found that Independence of
the views when using RBF Neural networks helped co-training on the votes data
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set[12] , again they did not generate an optimized split but randomly generated
a number of splits and tested the most independent splits against the least
independent ones.

For SVM, the diversity and mixed splitting criteria performed well on the
votes and breast cancer data sets. Again the splits that take into consideration
both confidence and independence of the views perform better than splits that
only consider one of the two criteria. The maximum confidence split improves on
random splits even though in SVM the confidence of a view does not necessarily
imply its strength. On the Fruits data set the different splits generally do not
improve on the random split, only the maximum confidence and the mixed split
improved slightly. Even the natural split performed worse than the random split.
Feger et al[4] similarly reported that a natural split is outperformed by the
random split under SVM.

7 Summary and Future Work

In this paper we propose three new criteria for splitting features in co-training
and compare them against existing artificial splits and natural split.

We propose a genetic algorithm to generate feature splits with optimum con-
fidence of views. We also propose a feature split that maximizes both confidence
of the views and the independence of the views. The independence of the views
is calculated using the equation of conditional mutual information used before
by [4]. We show that satisfying both requirements of co-training with a mixed
fitness function is better than using only one of the two criteria to split the
features. Finally we propose a third criterion for splitting the features based
on maximizing the views’ diversity. The concept of maximizing the diversity of
feature subsets was used before by [6] in supervised learning ensembles. We use
a fitness function that calculates the confidence of the views and their diversity,
and use a genetic algorithm to maximize this function. Our empirical results
on two data sets show that our proposed splits are promising alternatives to
randomly splitting the data.

We confirm that co-training depends on the base classifier[11] and that Neural
networks performs better under co-training than SVM[4].

Currently we are in the process of testing our new splitting criteria on more
data sets, using more base classifiers, and different versions of co-training to
investigate their effect on the performance. We also propose to extend our ex-
periments to more than two views in the future.
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Abstract. We have previously described an incremental learning algorithm, 
Learn++.NC, for learning from new datasets that may include new concept 
classes without accessing previously seen data. We now propose an extension, 
Learn++.UDNC, that allows the algorithm to incrementally learn new concept 
classes from unbalanced datasets. We describe the algorithm in detail, and pro-
vide some experimental results on two separate representative scenarios (on 
synthetic as well as real world data) along with comparisons to other approach-
es for incremental and/or unbalanced dataset approaches. 

Keywords: Incremental Learning, Ensembles of Classifiers, Learn++, Unba-
lanced Data. 

1   Introduction 

Incremental learning requires an algorithm that is capable of learning from new data 
that may introduce new concept classes, while retaining the previously acquired know-
ledge without requiring access to old datasets. The ability to learn new information and 
retaining existing knowledge are often conflicting in nature, which is commonly 
known as the stability-plasticity dilemma [1]. Ensemble based systems typically pro-
vide a good balance between the two by simultaneously increasing the memory (to aid 
stability) and learning capacity (to aid plasticity) of the learning algorithm. An ensem-
ble based algorithm can add new classifiers to learn the new data and keep the previous 
classifiers to retain the existing knowledge.  However, such an approach has its own 
shortcomings: there will always be classifiers trained on a subset of the concept 
classes, which are hence guaranteed to misclassify instances from classes on which 
they were not trained, potentially out-voting classifiers that were trained on such 
classes.  While there are several ensemble-based incremental learning algorithms, such 
as those proposed in [2], [3], [4], this issue of out-voting is only explicitly addressed in 
Learn++.NC (New Class) [2], through a dynamic consult and vote approach. This ap-
proach allows each classifier to predict – based on the votes of others – whether it has 
been trained on a specific concept class, and withhold its vote on instances of classes 
that it predicts that it has not seen [2]. Learn++.NC have previously been shown to 
provide favorable accuracy and parsimony properties compared to its predecessor 
                                                           
∗ Corresponding Author. 
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Learn++, as well as other ensemble based algorithms that are capable of incremental 
learning, such as dynamic weighted majority, bagging, AdaBoost and arc-x4.  
Learn++.NC, however, was not designed to address –and hence could not handle – class 
imbalance, nor can it address the rare but pathological scenario of adding new classes 
while simultaneously removing existing ones on a subsequent dataset. Learning from 
unbalanced data was previously attempted in an algorithm called Learn++.UD [5], 
however, that algorithm was not able to learn new classes. In this paper, we propose a 
new algorithm that is capable of learning new classes, even in the presence of relative-
ly unbalanced data (including datasets with multiple minority classes). 

Unbalanced data is a very real problem that draws growing interest [6] due to its 
prominence in several applications, such as fraud in financial transactions, spam de-
tection, and weather prediction. Class imbalance occurs when a dataset does not have 
an equal number of exemplars from each class, which may be quite severe in some 
applications [7]. Common approaches to address class imbalance typically include 
oversampling or undersampling. The former involves increasing the number of minor-
ity class instances by creating copies of existing ones, which maybe prone to overfit-
ting; whereas the latter involves removing majority class samples at random, which 
may cause loss of important information about the majority class.  Perhaps one of the 
most unique, popular and unarguably successful approaches for class imbalance is the 
SMOTE algorithm [8], which modifies the feature space by creating a set of synthetic 
samples that lie on the line segment connecting two existing minority examples.  The 
SMOTE algorithm was combined with the AdaBoost.M2 algorithm in [9] which al-
lows for an ensemble approach to be combined with SMOTE.  

The new member of the Learn++ family of algorithms described in this paper is the 
Learn++.UDNC as it borrows techniques from both Learn++.UD and Learn++.NC.  This 
version of Learn++ combines preliminary confidence measures in Learn++.NC, with a 
transfer function that adjusts the voting weights of classifiers based on the number of 
instances seen from each class, as well as the class imbalance in each dataset. This 
approach works well in situations where an incremental learning is required to classi-
fy data coming from moderately imbalanced data distributions and new classes are 
being added and / or removed incrementally.  It also works well in situations where 
classes are being added and removed at the same time from a database. 

2   Learn++.UDNC 

The Learn++.UDNC algorithm, whose pseudocode is shown in Fig. 1, receives subse-
quent dataset  with  training examples, , , … , , and class labels , , … , , a BaseClassifier to be used in ensemble generation, and Tk the 
number of classifiers to be generated from the kth dataset . The algorithm works 
incrementally, hence never uses instances from previously seen datasets. Similar to 
that of AdaBoost [10], a distribution  is maintained according to which instances are 
drawn to train each classifier. Unlike AdaBoost, however, this distribution is updated 
based on the performance of the current ensemble, and not that of the previous clas-
sifier. The ensemble decision itself, on the other hand, uses a preliminary confidence 
measure and adjusts this confidence measures by the cardinality of each class in the 
training set. 
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The algorithm uses two loops for training, one indexed on k for subsequent data-
sets, and the other on t for individual classifiers to be generated for each training data-
set. In step 1 of the inner loop (where we drop the superscript , when the meaning is 
unambiguous, to avoid notational clutter),  is normalized to ensure a proper distri-
bution, from which a training data subset  is drawn is step 2. A hypothesis  is 
obtained from BaseClassifier in step 3, whose error is computed with respect to the 
current data distribution .  is discarded if this error is greater than ½ and a new 
subset is drawn from  to create a new classifier.   

Each classifier receives class specific weights, , , computed in step 4, based on 
the performance of , the number of instances   is trained on for each class and the 
number of instances observed from a specific class.  This method of computing the 
classifier weights limits the values of the classifier weights between 0 and 1, if sam-
pling without replacement from  is used.  Other weighting methods similar to those 

 

, ∑ ,  

Algorithm: Learn++.UDNC 
Input: Training dataset , 1,2, … ,   
 Sequence of input patterns ;  for 1,2, … ,  
 Supervised learning algorithm: BaseClassifier  , , the number of class-c instances in  
 Integer , specifying the number of BaseClassifiers to create at  
 

Do for 1,2,3 … ,  
   Initialize 1/  ,  ∑  

   If k>1,  
• Update  and number of classifiers in the ensemble 

• Update , , ∑ ,∑ , ,   1,2, … , , 1,2, … ,  

• Start the sub-ensemble generation from Step 5 of the following loop. 
   Do for t = 1, 2, … 

1. Set / ∑  

2. Call BaseClassifier, providing  drawn from  
3. Obtain a hypothesis :  and calculate its error 

        If 1 2⁄ , discard  and go to step 2. Otherwise compute 
         Normalized performance 1 2 , 0 1   

4. Compute class specific weights 

        where  is the number of class-c instances in  
5. Call EnsembleDecision to obtain sub-ensemble composite hypothesis  
6. Compute Error on composite hypothesis ∑  
7. Set / 1  and update the instance weights ,1,  

 
 

   endfor 
endfor 
Call EnsembleDecision to obtain final hypothesis  

Fig. 1. Learn++.UDNC Algorithm 
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used in the original Learn++ (including that of AdaBoost) follow a log 1⁄  form, 
which are bound between 0 and infinity. While optimal for learning from a single 
dataset, log 1⁄  assigns weights to classifiers based on their performance on the 
entire dataset, and not on the ability of a classifier to predict a specific class. The 
proposed weighting approach, described in detail below, gives more weight to clas-
sifiers that have more experience with a specific class.  This voting scheme also re-
duces the outvoting problem that occurs when classifiers not trained on a specific 
class vote – inevitably incorrectly – for instances that come from that class.  

The EnsembleDecision function is called in step 5 to obtain the composite hypo-
thesis  of the current subensemble. The error of the subensemble on  is com-
puted in step 6 and is used to update the instance weights,  (step 7), emphasizing 
the instances misclassified by the subensemble.  This process is repeated until the 
subensemble has  classifiers, bring the total number of classifiers to . At any 
time, the current overall ensemble decision (final hypothesis on all datasets) can also 
be obtained by calling the EnsembleDecision.  

When called within the inner loop, EnsembleDecision combines all classifiers gen-
erated for a subensemble and evaluates the subensemble performance using the dy-
namically weighted voting mechanism in conjunction with a reweighting transfer 
function that takes class imbalance into consideration. When called for the final hypo-
thesis, EnsembleDecision combines all classifiers generated thus far. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Ensemble Decision 
 
 
 
 

, ,  

, ,: ,  

, , ,∑ ,  

arg max ,  

Algorithm: EnsembleDecision
Input:  Set of instances to be classified , , … ,  
    Hypotheses  trained for  and hypothesis weight matrix w ,  
    , , the number of class-c instances in  
   Integer , specifying the number of BaseClassifiers to create at  
Initialization: Calculate ∑  
    Compute sum of class specific weights for kth subensemble 

Do for   1, 2, … ,  
1. Obtain preliminary confidences  

, … , , 1,2, … , , 1,2, … ,  
2. Apply transfer function , , , , , , ,  

3. Update sub-ensemble confidence  

4. Compute ensemble decision 

  endfor 
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The pseudocode for EnsembleDecision is shown Fig. 2.  The inputs are a set of in-
stances , , … ,  to be classified, the hypotheses in the current subensemble 
( ) trained on , the hypothesis weight matrix ( , ), and the number of instances, , , from each class in . Initialization involves computing a normalization con-
stant ,  as the total sum of class-specific weights for each class  seen by classifiers 
trained on .  A preliminary confidence ,  is computed in step 1 for each class on 
which the classifiers in the kth subensemble were trained. ,  represents the confi-
dence of the kth subensemble in classifying class-c instances. This confidence is 
bound to be biased towards those classes with many instances. A transfer function is 
then applied in step 2 to reduce this bias on classes where training data is abundantly 
available. Step 3 updates the subensemble confidences ,  according to the cardinali-
ty of each class on which the subensemble was trained, relative to cardinality of the 
classes that all subensembles have seen.  Finally, the ensemble confidence on a spe-
cific class is the sum of the subensembles confidences for that class, which form , .  
The ensemble decision for  becomes the class corresponding to the largest sum of 
subensemble confidences. 

3   Experimental Results 

The Learn++.UDNC algorithm was tested on two different datasets, each with several 
scenarios.  The first is a synthetic Gaussian data, which allows us to compute Bayes 
performances, and the second one uses a real-world 10-class dataset available from 
[11]. The class specific performances (recall) as well as overall performances of 
Learn++.UDNC are compared to those of fuzzy ARTMAP, an incremental learning 
algorithm capable of learning new classes, and SMOTE, which can learn from unba-
lanced data. 

3.1   Gaussian Data 

The first set of experiments involves 2D Gaussian data with four classes.  The means 
for the data sets were 0,0 , 1,1 , 1,0  and 1, 1 , 
where the subscript refers to the class label.  All covariance matrices assume that the 
features are uncorrelated with variances 0.35 and 0.15.  Fig. 3 
shows the decision boundary of the Bayes classifier on this database.  The BaseClas-
sifier used in the Learn++.UDNC was an MLP with 20 hidden nodes on a single layer 
trained with an error goal of 0.05 and logistic sigmoid activation functions. Fifteen 
classifiers were created for each database that was introduced to the algorithm.  
Table 1 contains the class distributions of two Gaussian experiments, indicating the 
introduction of new classes in subsequent datasets, as well as the class imbalance at a 
ratio of 1 to 50. Also, note that the TEST data includes instances from all classes. In 
the first experiment, a new class, , becomes a second minority class, whereas the 
second experiment completely removes a class from the current training set. The 
SMOTE algorithm was applied to both  and  for  in experiment 1 since  
became a minority class along with . 
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Table 1.  Data Distribution for Experiments with Synthetic Gaussian Data 

 Experiment 1 Experiment 2 
Class →         

 10 0 0 500 10 0 0 500 
10 500 0 500 10 500 0 500 
10 500 500 500 10 500 500 500 

 10 500 10 500 10 500 0 500 

Test 200 200 200 200 200 200 200 200 

[[ 

 

Fig. 3. Bayes Decision Boundary 

The results from these two experiments are shown in Table 2 and Table 3.  We ob-
serve that the Learn++.UDNC outperforms the ARTMAP on all of the minority class 
examples (recall), as well as overall performance in both experiments. Also, 
Learn++.UDNC performance on recall is comparable to that of SMOTE (with no sig-
nificant difference between the two), but since Learn++.UDNC is an incremental 
learning algorithm it can recall  better on  when  is drastically reduced from 
the training set. On the other hand, SMOTE does a better job in recalling  for 
which the imbalance becomes progressively more severe (1 to 50 in  and 1 to 100 
in ).  Even though 3 is minority in 4, Learn++.UDNC is able to recall its 3 
knowledge from 3 , whereas SMOTE does not have this opportunity. Hence 
Learn++.UDNC will have seen more of the data space to accurately predict on 3 
while it may take additional data to learn the minority class ( ). SMOTE, on the 
other hand, can handle the more severe imbalance in any single setting. 

It is perhaps a bit unfair to compare an ensemble based incremental learning algo-
rithm to a single classifier based SMOTE, not designed for incremental learning. 
Hence we do not comment on the substantially better overall performance of 
Learn++.UDNC over SMOTE, which is expected and not surprising; but rather we 
only comment on recall performance on the minority class, where the performances 
are more comparable, particularly for moderately unbalanced datasets. Furthermore, 
we merely point out that Learn++.UDNC is capable of addressing unbalanced data (at 
least at a ratio of 1 to 50), while adding the capability of incremental learning of new 
classes, which themselves may be in minority. 

1

4

2

3
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Table 2. Gassian Expierment 1 Results on TEST dataset 

      Overall 

A
R

T
M

A
P  41.60±16.53 0 0 99.55±0.20 35.29±4.11% 

41.75±12.86 87.60±6.21 0 96.00±2.05 56.45±3.50% 

 14.85±6.12 90.70±2.07 92.50±1.22 96.30±1.11 73.59±1.53% 

 18.95±7.04 91.35±0.83 85.90±2.74 95.65±1.32 72.96±1.62% 

SM
O

T
E

 92.10±3.00 0 0 97.90±1.20 47.50±0.71% 
78.95±5.68 94.95±0.78 0 96.45±1.09 67.59±1.39% 

 60.00±5.62 94.44±1.09 91.70±2.71 95.90±1.59 85.50±1.26% 

 69.35±6.43 94.45±0.76 78.25±7.28 96.15±1.55 84.55±1.87% 

L
ea

rn
++

. 
U

D
N

C
 

91.55±2.25 0 0 98.40±0.55 47.49±0.50% 

 78.65±3.53 91.55±1.48 0 98.90±0.33 67.28±0.96% 

59.15±4.33 93.70±0.93 90.30±1.63 98.60±0.37 85.44±1.00% 

 56.75±4.56 94.75±0.57 90.35±1.61 98.75±0.35 85.15±1.07% 
Bayes 93.1% 

Table 3. Gassian Expierment 2 Results on TEST dataset 

      Overall 

A
R

T
M

A
P 39.90±13.65 0 0 99.80±0.25 34.93±3.38% 

 33.95±9.78 97.55±6.27 0 96.60±1.08 52.52±2.73% 

16.05±2.41 86.10±3.29 93.85±1.55 94.70±1.15 72.68±0.93% 

 19.05±4.69 86.40±3.90 91.05±2.29 94.20±1.12 72.68±1.92% 

SM
O

T
E

 92.30±3.11 0 0 97.10±0.84 47.35±0.60% 
78.75±4.81 96.10±0.98 0 95.35±0.79 67.55±1.23% 

 67.50±5.15 95.60±0.73 90.65±1.83 94.30±0.42 87.01±0.99% 

 79.15±5.17 95.85±1.39 0 94.05±2.95 67.26±1.37% 

L
ea

rn
++

. 
U

D
N

C
 

91.45±2.90 0 0 95.35±1.12 46.70±0.49% 

 79.05±3.85 89.70±1.65 0 96.20±0.76 66.24±0.87% 

52.80±4.14 92.10±1.14 91.40±1.13 95.65±0.51 82.99±1.08% 

 50.30±3.86 93.25±1.06 91.15±1.14 95.75±0.51 82.61±1.01% 

Bayes 93.1% 

3.2   OCR Data 

The Optical Character Recognition (OCR) database consists of numerical characters 
0~9 in a 8x8 matrix with two features removed due to zero variance of these fea-
ture.  The training and testing class distributions are shown in Table 4, which has 
multiple new classes being introduced and removed at the same time in subsequent 
datasets. In addition to four datasets being introduced incrementally, Table 4 also 
shows a dataset  which replaced  in the OCR experiment. This new dataset, 

, makes two of the previously seen classes minority class but includes instances 
from all classes. The results are shown in Table 5, which compares Learn++.UDNC 
to ARTMAP. 
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Table 4.  Database Distribution with Removal of Classes 

Class → 0 1 2 3 4 5 6 7 8 9 
 0 257 248 0 0 248 248 0 0 252 

 0 0 247 257 0 0 247 252 0 0 

 248 0 0 256 0 0 0 252 248 0 

 247 256 0 0 252 247 0 0 247 252 

 20 20 250 250 250 250 250 250 250 250 

Test 50 58 66 62 59 55 62 63 54 58 

    
An MLP was used as the BaseClassifier with a 62x20x10 architecture with sig-

moidal activation functions and an error goal of 0.05. Five classifiers were created 
with each dataset. The single classifier with SMOTE was not used with the OCR data 
because we wanted to see the effect of the class imbalance within a challenging in-
cremental learning setting, where SMOTE – not designed to handle incremental data 
– would naturally be unsuccessful, and hence result in an unfair comparison. This is 
because Learn++.UDNC will always be able to predict on previously seen classes that 
are not present in the current dataset, whereas SMOTE cannot predict on instances 
from classes not seen on the current training data. 

Table 5. Results on the OCR Database 

 0 1 2 3 4 5 6 7 8 9 All 

A
R

T
M

A
P

 0 85.7 90.2 0 0 85.7 98.9 0 0 87.2 45.0±0.7% 

 0 85.6 90.0 77.2 0 73.7 99.1 93.2 0 63.8 58.1±1.7% 

 98.8 60.0 79.3 76.1 0 63.4 91.1 87.1 70.2 52.9 67.9±1.9% 

 96.1 83.7 72.0 62.8 80.2 77.1 79.3 82.3 74.3 76.4 78.5±1.5% 

 97.2 80.9 88.7 91.1 94.6 87.7 94.9 94.6 87.5 86.6 90.3±0.9% 

L
ea

rn
++

.U
D

N
C  0 93.5 98.0 0 0 97.6 99.3 0 0 95.2 48.6±0.2% 

 0 84.7 97.6 92.1 0 85.7 99.8 96.3 0 48.5 60.3±1.4% 

 99.8 70.4 96.9 92.6 0 88.1 97.5 97.1 80.7 63.1 78.7±1.1% 

 99.5 88.4 96.9 91.9 78.7 89.4 98.9 98.4 85.7 68.2 89.6±0.5% 

 99.8 96.1 88.0 93.9 76.9 88.9 99.8 99.8 87.5 72.4 90.3±0.6% 

 
Table 5 shows the results for the Learn++.UDNC and ARTMAP applied to the in-

cremental learning problem described in Table 4.  A large performance boost is ob-
served for Learn++.UDNC as  is introduced, resulting in fuzzy ARTMAP being 
outperformed by a large margin.  The Learn++.UDNC maintains the best recall of the 
minority classes when  is introduced, however the overall performances here are no 
longer significantly different. Of the two minority classes, while the recall of charac-
ter 0 for both algorithms are very close, the recall for character 1 with the 
Learn++.UDNC is significantly better than that of ARTMAP. 

An additional experiment was also created with the OCR data that has a single mi-
nority class (character 0), with 40 instances of this class presented with each dataset, 
otherwise using the same class introduction and removal shown in Table 4. Therefore,  
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the minority class is always present in the data and the incremental learning algorithm 
needs to continue to learn new parts of the minority and majority classes. (  is not 
present in this new experiment). 

Table 6. OCR Database Results with Single Minority Class 

 0 1 2 3 4 5 6 7 8 9 All 

A
R

T
M

A
P

  68.6 85.9 88.3 0 0 92.3 96.9 0 0 83.9 51.8±0.7% 

 82.9 83.8 88.0 78.4 0 67.3 96.2 96.4 0 54.6 64.5±1.6% 

 87.7 58.4 77.8 78.1 0 63.7 89.6 93.4 72.9 44.8 66.2±3.0% 

 85.1 81.7 70.2 66.1 86.8 79.5 81.1 88.6 73.5 71.4 78.3±1.9% 

L
ea

rn
++

.U
D

N
C

  97.9 97.2 94.4 0 0 90.7 97.1 0 0 95.17 57.1±0.5% 

 99.6 88.8 94.0 93.9 0 71.6 97.8 97.9 0 57.9 69.8±1.4% 

 99.6 70.0 89.1 95.6 0 71.3 92.0 97.9 86.1 62.7 75.5±1.5% 

 99.4 83.2 89.3 94.9 88.9 81.5 97.3 98.2 89.6 69.8 88.9±0.9% 

 
Table 6 shows that the Learn++.UDNC is able to consistently outperform fuzzy 

ARTMAP, not only on the minority class (0), but also on classes 2,3,6,7,8,  with gen-
erally higher (but not statistically significant) performance on others. 

4   Conclusions and Future Work 

We described an incremental learning algorithm, Learn++.UDNC, that combines sev-
eral novelties of different algorithms within the Learn++ family, including a class 
specific weighting method, normalized preliminary confidence measures and a new 
transfer function that is used to reduce the confidence bias of a sub-ensemble trained 
on a majority class. Preliminary results indicate that Learn++.UDNC is able to consis-
tently outperform fuzzy ARTMAP under a variety of incremental learning scenarios 
and with a wide margin on unbalanced data problems. This was observed with both 
synthetic and real-world incremental learning problems. While not quite as effective 
as SMOTE on severely unbalanced data, we have shown that the Learn++.UDNC 
performs comparably to SMOTE on minority class recall on moderately unbalanced 
datasets, but with the added advantage of learning incrementally, without applying 
any oversampling (or undersampling). This algorithm has shown the ability to per-
form well on a broad spectrum of incremental learning problems where the previous 
members of the Learn++ algorithms are not able to be reliable predictors on all classes. 
Current and future work include evaluating the algorithm on more severe unbalanced 
data on synthetic and real-world datasets, as well as integrating SMOTE and Learn++. 
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Tomographic Considerations in Ensemble
Bias/Variance Decomposition

David Windridge

CVSSP, University of Surrey, Guildford, UK

Abstract. Classifier decision fusion has been shown to act in a man-
ner analogous to the back-projection of Radon transformations when
individual classifier feature sets are non or partially overlapping. It is
possible, via this analogy, to demonstrate that standard linear classifier
fusion introduces a morphological bias into the decision space due to the
implicit angular undersampling of the feature selection process. In stan-
dard image-based (eg medical) tomography, removal of this bias involves
a filtration process, and an analogous n-dimensional processes can be
shown to exist for decision fusion using Högbom deconvolution.

Countering the biasing process implicit in linear fusion, however, is the
fact that back projection of Radon transformation (being additive) should
act to reduce variance within the composite decision space. In principle,
this additive variance-reduction should still apply to tomographically-
filtered back-projection, unless the filtration process contravenes.

We therefore argue that when feature selection is carried-out indepen-
dently for each classifier (as in e.g. multi-modal problems) unfiltered de-
cision fusion, while in general being variance-decreasing, is typically also
bias-increasing. By employing a shot noise model, we seek to quantify
how far filtration acts to rectify this problem, such that feature selection
can be made both bias and variance reducing within an ensemble fusion
context.

1 Introduction

A central result of both the MCS and regression ensemble fields is that of the
bias-variance-covariance decomposition of the mean squared error (MSE) [8,1].
Whereas in individual classifiers we are concerned only with a bias-variance
trade-off (i.e. assessing flexibility verses structural risk), Ueda and Nakano [4]
demonstrated that ensembles must also consider correlations between estima-
tors either implicitly or explicitly. This can be related to the Tumer and Gosh
[7] framework for describing fused classifier error in terms of the effect on the
margin. Thus (adopting the nomenclature of Brown et al. [1]), we have that
f(X, y, params) defines an estimator of some true underlying function t(X, y)
defined over the feature space X w.r.t. to the class y. We denote the combination
of M estimators as:

f̄ =
1
M

ΣM
i=1fi(X, y, params) (1)

(Henceforth, we drop the parameter-denotation from f and t)

N. El Gayar, J. Kittler, and F. Roli (Eds.): MCS 2010, LNCS 5997, pp. 43–53, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Thus, we have that for an ensemble of M estimators, the estimated mean
square error can be decomposed via eqn. 1 as follows:

E{MSE} = E{(f̄ − t)2} = (E{f̄} − t)2 + E{(f̄ − E{f̄})2} (2)
= bias(f̄)2 + variance(f̄). (3)

= ¯bias
2 +

1
M

¯var +
(

1 − 1
M

)
¯covar (4)

where the bar dictates an ensemble average quantity, i.e.:

¯bias =
1
M

Σi(E{(fi − t)}) , ¯var =
1
M

ΣiE{(fi − E{fi})2} (5)

¯covar =
1
M

ΣiΣj �=iE{(fi − E{fi})(fj − E{fj})} (6)

E{.} is the expectation over all samples and all X . Error minimization hence
requires that we seek to reduce the bias, variance and covariance of the con-
stituent classifiers as far as possible. It is thus clear that various advantages
accrue from using ensembles: we allow for the possibility for uncorrelated biases
to cancel each other out and for the relative suppression of absolute deviations
via the additivity of variance. It is also possible that, unlike the other terms,
covariance can be negative, permitting a further avenue for error minimization
in the ensemble.

In the current scenario, we consider only estimators fi that include an (explicit
or implicit1) feature selection stage for each classifier, such that the rejected
features are treated by the omission of ordinates from the data vectors, i.e.:

∀Xn, y, params fi(Xn, y, params) ∝ fi(xni , y, params)

with ni ⊂ n (specifically, xni is a projective subset of Xn, a convention we shall
adopt throughout). Classifiers are hence taken to model marginal distributions
of t(Xn, y) (though we will still consider the classifier to be defined over all Xn,
as this will become important later). This consideration potentially complicates
all 3 aspects (bias, variance and covariance) of the standard analysis, and reveals
other strategies for reducing the overall MSE.

For example, ensemble covariance should tend towards zero when it is le-
gitimate to make a naive Bayes assumption about the data irrespective of the
underlying classifiers; that is, classifier diversity may be brought about by the
feature selection process rather than the intrinsic nature of the classifiers in an
ensemble. (Arguably the strongest motivation for feature selection in an MCS
context is projection of largely independent data into independently-classified
marginal distributions in order to maximize sampling (and thereby minimize
structural risk) at no cost to the feature-space coverage; however, we here con-
sider the more general case in which features may be associated to classifiers for

1 In multi-modal decision fusion, we can consider the individual modalities as being a
feature-selected subset of some composite space.
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purely instrumental reasons). In rejecting the naive Bayes assumption as gener-
ally unrepresentative, it is evident that classifier variance can only be reduced
by a factor related to the increase in bias within a feature-selection context
(classification within marginal projections implies fewer parameters to represent
the data). Feature-selected classier ensembles can thus not take advantage of any
intrinsic decorrelation in bias in the same way as non-feature-selected ensembles.

Feature selection thus, in general, acts to reduce variance via the reduction
in dimensionality, reduce co-variance via the introduction of the possibility of
classifiers relating to potentially independent subspaces, but increases bias by
eliminating information-bearing feature compositions (cf [3]).

The argument of this paper is that this issue is not necessarily as clear-cut
as is usually considered: that we can, in fact, exploit feature selection to reduce
variance and yet offset some the increase in bias by appropriate treatment (eg
deconvolution) of the morphological sampling artifacts induced by the feature
selection process. To do this we need to consider the tomographic nature of the
feature-selection/combination process. Section 2 will therefore outline this anal-
ogy and its practical application. Section 3 will extend this work by quantifying
a theoretical application of this approach in bias/variance terms and section 4
will apply an experimental test of the idea.

2 The Tomographic Analogy for Classifier Fusion

Full details of the tomographic approach to removing the morphological bias
from decision fusion are given in [9]. Put briefly, the tomographic analogy as-
sumes that the projective nature of feature selection process with respect to the
original feature space, followed by the subsequent representation of marginals
within generative (and to a lesser extent discriminative) classifiers can be mod-
elled as n-dimensional Radon transformation (Radon transformation being the
’line-of-sight’ integration carried out by eg X-ray detectors in medical imaging).
Thus we assume:

f(xi, y)dxi ≈
∫ xi+dxi

x

ti(xi, y)dxi ≡
∫ xi+dxi

x

∫
all x′

t(Xn, y)dx′ dxi (7)

where xi ∈ Xni & x′
i ∈ X′ni with Xni ⊂ X and X ′ni = Xn⊥ (i.e. X ′ni is

the orthogonal complement of Xn
i ; ti(xi, y, params) is thus the true marginal

distribution.
If multiple classifiers are derived in this fashion (i.e. so that it is not necessar-

ily the case that feature sets within the individual classifiers are fully coincident)
then it can be shown that linear classifier combination (eg Sum Rule, Product
Rule) is either equivalent to, or bounded by, back-projection, the inverse opera-
tion to Radon projection; pb(Xn) = 1

M ΣM
i=1fi(xi, y). However, this introduces

an axially aligned artefact, A(Xn) = Σidxi.
∫

all dX ′ni , that is a consequence of
the fact that the Radon projections induced by feature selection represent only



46 D. Windridge

a small fraction of the total angular sample-space required for lossless recon-
struction of the function t(Xn, y). What is recovered by back-projection (i.e.
linear classifier fusion) is an estimation of the function t(Xn, y) 	 A(Xn) (ie
the true function t convolved with the artefact A). What we actually require is
an estimate of t(Xn, y). While, in general, it is impossible to recover all of the
’lost’ information brought about by feature selection by deconvolving A from the
back-projected (ie fused classifier) output, performing this deconvolution does
give rise to a morphologically unbiased estimate of t.

Rather than explicitly perform this deconvolution, pre-filtration of the Radon
integrals is generally used prior to back-projection in medical imaging. However,
since this approach can gives rise to negative values unrepresentative of stochas-
tic estimates, the present paper considers a post-filtration approach, via iterative
Högbom deconvolution of the biasing artefact2.

Högbom deconvolution consists in iterative removal of the biasing artefact
and replacing it by a Dirac delta function (or a coarse approximation to it) in
the composite decision space. This process can be shown [10] to be equivalent to
seeking correlated morphology in the classifiers and progressively reconstructing
the morphology giving rise to this correlation in the composite decision space. It
thus outperforms linear combination methods by using the correlated morpholo-
gies of classifiers in the ensemble to give more information about the sampled
point than would otherwise be available. (Note that this approach works even
for discriminative classifiers, though is optimal for generative classifiers). As a
pseudo-code, the Högbom methodology is as set out in Appendix 1.

3 Theoretical Study: Morphologically Induced Bias
Following Variance-Motivated Feature-Selection

For the present study, we assume a generative model of classification, in which
classifiers (even if feature-selected) estimate the overall class distribution. If we
were further to assume a unimodal model in which classes are represented by an
arbitrary single-peaked distribution then the Högbom algorithm is provably opti-
mal (ie can potentially recover the entire composite distribution t(Xn, y) ) from
the marginal classifiers, provided the unimodality is of known cross-sectional
form. This covers a wide range of possibilities included Gaussians with arbitrary
covariance matrices. Under more realistic conditions (ie with an unknown cross-
section), the Högbom algorithm is generally sub-optimal, but well-behaved, mak-
ing only conservative (ie non-biasing) assumptions about the ambiguities arising
from deconvolution, such that unimodal distributions of t(Xn, y) will give rise to
identically unimodal estimates test(Xn, y) for all possible Radon projections and

2 Note that Högbom deconvolution is not necessarily an approach that would be eco-
nomic in practise; we here consider it because of its guaranteed positivity preserving
characteristics. Note that efficient implementations of post-filtration are possible by
appropriate kernelisation of the method (though beyond the scope of the current
paper to set-out).
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back-projections of Xn. The same is not generally true of linear fusion methods;
an arbitrary change of basis of test(Xn, y) can potentially introduce differing
numbers of modes within transformed marginal distributions.

In order to estimate the effect that this axial bias has on a standard feature-
selection/classifier-fusion approach, we consider instead a simplified shot noise
distribution model within Xn, such that n individual classifiers consist of non-
intersecting unidimensional marginal distribution estimates (i.e. one feature is
allocated for each of the n classifiers). The shot noise model considered consists of
a random placement of Ktot distribution centroids such that, within each feature
i, the marginal projection of each one of the K individual distributions has a
well-defined width of ωi (such that the marginal density projection has a value
of exactly zero elsewhere). This occurs within a bounded width Δi attributable
to the feature as a whole.

The marginal distribution estimate is the integral over the remaining n − 1
components (assuming 1 selected feature per classifier) of the K distributions,
which thus have density distributions D in Xn and marginal distributions Di in
Xn

i , i.e.:

Pi(xi) =
∫
∀xj:j �=i

ΣKtot

K=1D(x − cK) dx ≡ ΣKtot

Ki=1Di(xi − cK
i ) (8)

where x = (x1, x2, . . . xn) and cK = (cK
1 , cK

2 , . . . cK
n ) is the Kth cluster center.

For the sake of the current analysis, we initially assume that marginal distri-
butions are sufficiently densely-sampled for there to be no significant variance
issues when classifiers Ci are assigned to each feature, with undersampling only
evident in the composite space x (perhaps motivating the feature selection in
the first place). That is, we wish to isolate the tomographic influence on bias at
this stage.

Since Di(xi − cK
i ) is only non-zero for xi = cK

i ± ωi/2, we can write:

Pi(xi) = Σk(xi)Di(xi − ck
i ) (9)

where k(xi) ≤ Ktot indexes the set of cluster centers for which cK
i = xi ± ωi/2

(ie the clusters that become ’merged’ under marginal projection).
The Högbom algorithm iteratively identifies and removes either whole or

partial D(x − cK) components from the back-projected (sum rule) compos-
ite space by recursively selecting the peaks in the density functions of clas-
sifiers defined over each marginal distribution. In general, the peaks of each
marginal distribution estimate will be defined by the peaks of k(xi) which is,
in turn, determined solely by the distribution of shot noise in the model (this
is always true if Di(xi − ck

i ) = const for xi = (cK
i ± ωi/2). This means that

Pi(xi) ≈ P (k(xi)) = KtotCkpk(1− p)Ktot−k (ie k is Binomially distributed, with
p = ωi/Δi.)

In the recursive Högbom deconvolution, all marginal distribution components
of D at ’density level’ k/(Ktotωi) < h < (k + 1)/(Ktotωi) are removed at the k-th
iteration (these components are the level sets parameterized by h, i.e. the closed
topological sets created by the truncation of the marginal density at value h).
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The original shot noise components to which these level sets refer cannot be dis-
ambiguated by the procedure if the cardinality of closed topologies is greater than
1 for more than one of the features, and the reconstituted space must consist in all
possible compositions of components ie {{ckh

1 }×{ckh
2 }× . . .}, with kh the number

of marginal components for which h ≤ k.const. The cluster centers generated in
the composite space are thus the set of all ordered n-tuples:

{(a1, a2, . . . aI)|a1 ∈ {ckh
1 }, a2 ∈ {ckh

2 } . . .aI ∈ {ckh
2 }} ) .

From the Binomial distribution of marginal components, we have that the
mean density level of the marginal distributions is Ktot.

ωi

Δi
. 1
Ktot

, meaning that

there will be ≈
(

Δi

ωi

)n

cluster centers in the reconstituted space following
Högbom deconvolution if Ktot is large. Under sparse conditions, however, this fig-
ure will be (Ktot)n. All but Ktot of these reconstituted cluster centers are excess
with respect to the true distribution of t in Xn; however we are guaranteed that
these Ktot cluster centers are accurately represented if the marginal density esti-
mate is accurate. These excess cluster centers (of cardinality ≈ ((Ktot)

n − Ktot))
constitute the main source of remaining bias in the tomographic fusion model
when applied to the shot noise model, representing the irrecoverable information
loss implicit in feature selection.

Without Högbom deconvolution (ie using standard linear decision fusion),
cluster centers are not explicitly identified in the composite space Xn. However,
each point of the back-projected composite space does contain a contribution
from the correct center. In fact, the unfiltered back-projected space consists
of Dirac delta functions located at the correct centers ( ie δ(c1

1, c
1
2), δ(c

2
1, c

2
2) . . .

δ(cK
1 , cK

2 ) ) that are convolved with the axially-aligned-artefact A(Xn), such that
the reconstituted classifier density generated by standard linear classifier combi-
nation is ΣKD(x−cK))	A(Xn). However, the interstices of the convolved arte-
facts themselves produce further Dirac delta functions (eg δ(c1

1, c
2
2), δ(c2

1, c
1
2), etc),

that are equivalent to the novel cluster centers produced by the Högbom algo-
rithm. Thus, filtered and unfiltered decision fusion are identical in terms of the
generation of spurious cluster centers within the decision space under a shot noise
model. This represents the unavoidable bias in decision fusion. However, in the
absence of Högbom filtration, there is also the additional ambiguity created by
the convolution artefacts. This represents the excess bias created by standard
linear combiners.

Thus, to quantify these biases, we have that the excess bias generated by
linear combination followed by Högbom filtration is:

BiasTom ≈
∫
∀xj :j �=i

ΣKtot

K=1D(x − cK) dx .
1

Ktot
((Ktot)

n − Ktot)
2 (10)

≈
[

1
Ktot

((Ktot)
n − Ktot)

2
]

(11)

The corresponding quantity for the sum rule decision scheme (representing linear
fusion), which includes the axially-aligned artefacts generated by the convolution
of reconstructed cluster centers with A, is the following:
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BiasSum=
n∑

i=1

1
n

∫
∀xj:j �=i

dx′
i.

∫
xi

Ktot∑
K=1

Di(xi−cK
i )2 dxi−

∫
∀Xn

D(x−cK)2 dx(12)

≈Σn
i=1

(
1

nKtot

[
Ktot

(
Πn

i=1
Δi

ωi

)
− Ktot

])2

(13)

(weighted sums, while not directly considered, should behave similarly)
Since the condition of sparsity is that Δi

ωi
>> Ktot this implies that linear

decision schemes will always have higher bias than the tomographically-filtered
equivalent for sparse distributions for the case of single features per classifier
with distribution centers as per the shot noise model. The problem worsens with
both increasing dimensionality and increasing sparsity.

3.1 Variance Estimation

Variance is imported into this simplified model by considering sampling vari-
ation with respect to the marginal histograms standing in for classifiers. Vari-
ance within single-feature classifiers is hence reduced by a factor relating to the
marginal integration; we denote this post-feature-selected marginal variance: vi.
However, in addition to this variance reduction mechanism, the back projection
implicit in feature selection has the potential to reduce this variance further via
summation. Specifically, in the composite decision space, we expect this further
reduction at the points of convergence of the non-zero marginal histograms due
to the combination. For the (normalized) sum rule, as for the Högbom-filtered
decision space, this implies a variance of 1

n2 Σn
i=1vi at the cluster centers (on

the assumption of decorrelation). However, elsewhere the non-zero component
caused by the Radon artefacts in the sum rule will not experience this reduc-
tion; variance for the axial component will be as for the marginal distributions
(i.e. vi). In general, these will dominate for a sparse distribution, giving a total
variance of:

VarianceSum ≈ Σi(Δi

ωi
− Ktot)ωi.vi + Kn

tot
1

n2 Σnviωi

The corresponding variance for the filtered combination is simply:

VarianceTom ≈ Kn
tot

1
n2 Σnviωi

However, this analysis does not consider the effect of Högbom deconvolution
within cluster centers, where the recursive identification of morphology may
introduce other sources of variance.

4 Experimental Investigation at the Sparse/Dense
Boundary

In order to quantify these effects further, we perform an experimental imple-
mentation using the shot noise model. In particular, we wish to evaluate more
typically borderline cases, in which the sparseness of distribution centroids is
reduced to the point of dense overlap.
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To do this, we distribute randomly-parameterized Gaussian distributions
within the composite (i.e. non-feature selected) pattern-space, and form uni-
dimensional marginal histograms to act as classifiers of the overall distribution.
We hence consider a two class case, in which each class consists of a density
function so specified. The random distributions are obtained according to the
standard multivariate Gaussian distribution,

f(X) =
∑

e

|covmate|− 1
2

2πd/2 .Ae.e
− 1

2 (X−Me)T covmat−1
e (X−Me) (14)

d is the dimensionality of the problem (in this case 2); P (A) = const for A ∈ [0, 1]
The covariance matrix covmat is derived via its Eigendecomposition; i.e.

covmat = UΛUT , such that U is considered a rotation matrix over arbitrar-
ily chosen θ thus:

P (θ) = const for 0 < θ < 360, P (θ) = 0 otherwise.

U =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, Λ =

(
Rx 0
0 Ry

)
P (Rx), P (Ry) = const for 0 < Rx, Ry < 1, P (Rx), P (Ry) = 0 otherwise.

Sampling of this distribution is achieved via Cholesky factorization of covmat
and multiplication with randomly sampled vector uniform distribution over the
domain bounded by the Δi’s. As a proxy for sparseness variation, we keep the
number of marginal histogram bins fixed, and range over Gaussian number,
width and sampling parameters (we choose σ−1 = [1 : 10]∗const, Gauss no = [1 :
5] and max sample no = 9375 so as to nominally straddle the sparse/dense border
at σ−1 ≈ 6, when σ is of the order of the histogram bin width). Bias and variance
are then evaluated with respect to the two fusion methodologies; the density-
normalised Sum Rule and Högbom filtered Sum Rule (since we evaluate bias and
variance with respect to the final fused classifiers in the composite space, it is not
appropriate to consider intra-ensemble covariance). We also consider a histogram
binning classifier in the original space with identical bin-width characteristics
to the marginal histograms. Two separate distributions are created for each
sampling of the parameters and designated as class 1 and 2. A misclassification
rate is also calculated. Results are as depicted in figures 1-3.

5 Discussion and Conclusions

We find that, under the test conditions of borderline sparse/dense shot-noise
distribution, the Högbom method retains its low bias but develops a significantly
higher variance than the Sum rule despite backprojection. However, this does
not appear to affect Bayes error rate adversely. Hence the ”boundary bias” [2]
(i.e. bias(f, E(f̄)) = sign(1/2− f)(E(f̄)− 1/2)) that typically favors generalized
low variance over low bias in terms of the Bayes error rate does not apply in this
case. This would suggest that the Högbom method experiences low bias and low
variance at the most classification-critical regions.
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Fig. 1. Bias, Variance and Error Rate Per Histogram Bin vs Sparsity

In conclusion, we have shown theoretically that under sparse conditions, fil-
tered classifier fusion can decrease both bias and variance. In experimental con-
ditions with more marginal distributions, this decreased bias is retained only at
the expense of increased variance with respect to the linear decision rules. This
would appear to be a side effect of seeking morphological correlation within the
classifiers. However this does not appear to adversely effect misclassification rate.

Should this increased variance prove to be problematic in more general sce-
narios, bootstrap re-sampling (i.e. bagging) should mitigate the effect. In this
way we can simultaneously reduce ensemble bias and variance (cf eg [6], [5]).
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Appendix 1: Procedural Implementing of Post-filtered
Tomographic Classifier Combination

1. Assemble the combiners as a series of estimators ranging over n discrete
feature spaces of respective dimensionality; a1, a2 . . .an for the class set;
ω1, ω2, ...ωm; label these Pn(Xn), where Xn ranges over the vector space of
dimensionality an.

2. Select the first class of the series, ω1, and establish peak probability density
value(s), Pmax

n , for of each expert’s individual representation of that class.
3. Specify a pair of accuracy parameters, Δz and Δx, that respectively denote

the probability density and feature-space resolutions.
4. Establish the ’hyper-area’ between the probability density ordinates repre-

senting the peak value and (peak value−Δz) for each of the classifier PDFs:
ie, the scalar number of (Δx)ai × Δz units between the two probability
density values for each of the classifiers in the fusion. Vectors within these
bounds are designated X ′

n.
5. Specify a matrix of dimension; a1 + a2 + . . . + an with each element des-

ignating an (initially zero) probability density value attributable to every
(Δx)a1+a2+...+an unit of the composite feature-space. Add a value, N , to
those points representing all combinations of n concatenations of the respec-
tive (co-)ordinates established in 4: That is, the Cartesian product {X ′

1} ×
{X ′

2} × {X′
3} × . . . × {X ′

n}. (N must be >
∑n

i=1 Pmax
n ).

6. Subtract the resolution parameter Δz from each peak value Pmax
n ; ∀i, and

set an iteration parameter (say, t) to zero.
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7. Subtract a quantity |X ′
1| × |X ′

2|... × |X ′
i−1| × |X ′

i+1| × ... × |X ′
n| × dz from

the current peak value of each classifier, Pmax
n ; |X ′

j | being the scalar values
derived in 5, ie: the number of coordinate vectors {X′

i} of dimensionality ai

counted by the PDF hyper-area establishing procedure above. Note, espe-
cially, the absence of |X ′

i| in the product entity.
8. Establish the new hyper-area value associated with subtraction 7, ie: the

hyper-area between the probability density ordinates representing the pre-
vious and current peak-values (as per 4).

9. Allocate a value N − t.Δz to those points in the deconvolution matrix rep-
resenting novel coordinates established after the manner of 4. That is, the
Cartesian product difference:
[({X ′

1}old∪{X ′
1}new)×({X′

2}old∪{X ′
2}new)×. . .×({X′

n}old∪{X ′
n}new)]−

[{X ′
1}old × {X′

2}old . . . {X ′
n}old]

(t the cycle count number, N as above).
10. Increment the cycle counter, t, by 1 and go to 7 while Pmax

n > 0, ∀i.
11. After termination of the major cycle 7-11, subtract a value t.Δz from each

point of the deconvolution matrices to establish true PDFs, if required (see
footnote 5).

12. Repeat from 2 for the remaining classes in the sequence ω1, ω2 . . . ωm.
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Abstract. Functional magnetic resonance imaging (fMRI) is a non-
invasive and powerful method for analysis of the operational mechanisms
of the brain. fMRI classification poses a severe challenge because of the
extremely large feature-to-instance ratio. Random Subspace ensembles
(RS) have been found to work well for such data. To enable a theo-
retical analysis of RS ensembles, we assume that only a small (known)
proportion of the features are important to the classification, and the
remaining features are noise. Three properties of RS ensembles are de-
fined: usability, coverage and feature-set diversity. Their expected values
are derived for a range of RS ensemble sizes (L) and cardinalities of
the sampled feature subsets (M). Our hypothesis that larger values of
the three properties are beneficial for RS ensembles was supported by a
simulation study and an experiment with a real fMRI data set. The anal-
yses suggested that RS ensembles benefit from medium M and relatively
small L.

1 Introduction

Functional magnetic resonance imaging (fMRI) measures blood oxygenation
level-dependent (BOLD) signal in a quest to discover how mental states are
mapped onto patterns of neural activity. Advanced as they are, pattern recogni-
tion and machine learning are yet to contribute powerful bespoke techniques to
fMRI data analysis [1, 2]. The formidable challenges come from: (i) the extremely
large feature-to-instance ratio, in the order of 5000:1; (ii) the spatial relation-
ship between the features (voxels in the 3-D image of the brain); (iii) the low
contrast-to-noise ratio; and (iv) the great redundancy in the feature set. Prefer-
ences tend to be for linear classifiers because they are simple, fast, reasonably
accurate and interpretable. The favourite, however, has been the support vector
machine classifier (SVM) [3–7]. A recent comparison of classification methods
for an fMRI data set placed the Random Subspace Ensemble (RS) with SVM
base classifiers as the most accurate classification method across a variety of
voxel pre-selection methods [8]. To construct a random subspace ensemble with
L classifiers, L samples of size M are drawn without replacement from a uniform
distribution over the set of voxels. A classifier is trained on each feature subset
using either the whole training set or a bootstrap sample thereof [9].

N. El Gayar, J. Kittler, and F. Roli (Eds.): MCS 2010, LNCS 5997, pp. 54–63, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Random Subspace ensembles have been considered for problems with large
dimensionality and excessive feature-to-instance ratio [10], e.g., problems arising
from microarray data analysis [11] and face recognition [12]. The overwhelming
computational demand in applying RS to the raw fMRI data led to the idea of
pre-selection of voxels. Univariate statistical methods have been employed for
that [13, 14]. The importance of a voxel is measured by the p-value of a t-test
(or ANOVA for multiple classes) for equivalence of the class means. The initial
set of voxels is subsequently reduced to a subset of 1000 or 2000 voxels, and RS
ensembles are created on that subset. Admittedly, univariate approaches may
destroy important relationships between features. Such features would not be
indicative individually but may form a highly indicative group. In balance, pre-
selection eliminates the vast majority of irrelevant voxels which justifies some
(hypothetical) loss of discriminative information.

Relevance and redundancy are two different aspects in large-scale feature se-
lection [15], and both are present in fMRI data. As the data is a “snapshot”
of the whole brain, the vast majority of the voxels are irrelevant for each par-
ticular task. The relevant voxels, on the other hand, are likely to be spatially
grouped into clusters exhibiting large correlations (redundancy). Most voxel se-
lection methods do not guard against redundancy because the position, size and
shape of the clusters of relevant voxels is of interest to the investigator. Thus
we examine the effect of the number of relevant voxels on the parameter choices
of RS ensembles. An advantage of RS ensembles compared to many other en-
semble methods and single classifiers is that they need only two parameters,
L, the ensemble size and M , the size of the feature sample. Given the specifics
of fMRI data, this paper offers a theoretical perspective on choosing values of
these parameters. Section 2 introduces the theoretical framework. Simulation
experiments are reported in Section 3, and discussed in Section 4.

2 Random Subspace Ensembles

Let X = {x1, . . . , xn} be the set of n features (voxels). L samples, each of size
M , are drawn without replacement from a uniform distribution over X and a
classifier is trained on each sample. The ensemble decision is made by majority
vote among the L classifiers.

In many fMRI studies, the relevant information is typically a sparse irregular
pattern of responsive voxels in the 3-D image of the brain. It is likely that
a small number of voxels contain most of the discriminative information. We
assume that there are Q “important” voxels, set I = {q1, . . . , qQ}, I ⊂ X ,
where |I| = Q << n, and the remaining n−Q voxels are random noise. We also
assume that the cardinality of the subspaces, M , is much smaller than n. The
question is whether we can recommend L and M for a given n and Q. We base
this study on the following postulate [16–18].

Postulate. Accurate and diverse individual classifiers are a prerequisite for bet-
ter ensembles.
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The subset of features, on which the individual classifiers are built, can serve
as an indication of the expected accuracy and diversity of these classifiers. If a
classifier uses only ‘noise’ features, its accuracy will be no better than random
chance. Also, classifiers that use the same ‘important’ features will be similar or
identical, therefore redundant in the ensemble. Finally, we would like the whole
of I to be covered, so that important information is not lost. In other words, we
would like each q ∈ I to be selected at least once in the L samples of M features.

2.1 Usability

Definition 1. We call a classifier usable if its feature subset contains at least
one ‘important’ voxel q ∈ I.

To calculate the probability of drawing a feature subset of a usable classifier, take
Y to be the number of ‘important’ features in a subset of size M , drawn without
replacement from X . Y is a random variable with hypergeometric distribution
with probability mass function

P (Y = i) =

(
Q
i

)(
n−Q
M−i

)(
n
M

) , i = 0, 1, . . . , Q.

The probability of drawing a usable classifier is

P (usable classifier) = 1 − P (Y = 0) = 1 −
(
n−Q
M

)(
n
M

)
Definition 2. The degree of usability of the ensemble, U , is defined as the pro-
portion of usable classifiers out of L.

Since the subsets are sampled independently, the probability of having a com-
pletely usable ensemble is

P (U = 1) = P (usable classifier)L =

(
1 −

(
n−Q
M

)(
n
M

) )L

. (1)

The ratio of the two binomial coefficients can be simplified for computational
purposes to give

P (U = 1) =

(
1 −

M−1∏
i=0

(
1 − Q

n − i

))L

. (2)

Since we assumed M << n, the equation can be simplified further to

P (U = 1) ≈
(

1 −
(

1 − Q

n

)M
)L

. (3)
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This approximation is equivalent to replacing the hypergeometric distribution
with a binomial distribution. Given the size of n for fMRI data, we can say
that sampling with replacement is approximately equivalent to sampling without
replacement. Y can therefore be approximated with a binomial distribution with
parameters M and p = Q

n . The probability of a usable classifier in this case would

be 1 −
(
1 − Q

n

)M

.
To calculate the expected value of the degree of usability of the ensemble,

E[U ], let Z be a random variable expressing the number of usable classifiers in
the ensemble. Z has a hypergeometric distribution with the following parameters.
The total is the number of all possible samples (without replacement) of size M
from X , i.e.,

(
n
M

)
. The number of usable classifiers is calculated by taking the

number of non-usable classifiers,
(
n−Q
M

)
, from the total. The number of selected

classifiers at a time is L. The expected value of Z is Selected×Usable
Total , therefore the

expected usability of the ensemble is E[U ] = 1
LE[Z]

E[U ] =
1
L

× L ×
(

1 −
(
n−Q
M

)(
n
M

) )
= 1 −

(
n−Q
M

)(
n
M

) . (4)

The expected usability of the ensemble is equivalent to the probability of se-
lecting a usable classifier, and does not depend on the ensemble size L. Our
hypothesis is that the higher the degree of usability, the more accurate the
ensemble.

2.2 Coverage

Definition 3. The degree of coverage of the ensemble, C, is the proportion of
the features q ∈ I (out of Q) selected for one of more of the base classifiers.

For calculating coverage, we can again use the binomial approximation to the
hypergeometric distribution. This implies that the feature subsets are sampled
independently from the X . For a given important feature q ∈ I the probability of
selecting that feature in a sample of size M is M

n . The probability of not selecting
q in a sample of size M is therefore 1 − M

n . The probability of not selecting q

in at least one of L samples of size M is P (q̄) =
(
1 − M

n

)L
. The probability of

q being selected in at least one of the L samples is 1 − P (q̄). The probability of
all features being covered is

P (Complete coverage) = P (C = 1) =

(
1 −

(
1 − M

n

)L
)Q

. (5)

Denote by Z the number of covered features out of Q. Z has binomial distribution
with parameters Q and p = 1 − (

1 − M
n

)L
. The expected coverage is

E[C] =
1
Q

(
1 −

(
1 − M

n

)L
)

Q = 1 −
(

1 − M

n

)L

. (6)



58 L.I. Kuncheva and C.O. Plumpton

The expected coverage depends on the ensemble size L and the subset size M
but not on Q. The hypothesis here is that the higher the degree of coverage, the
more accurate the ensemble.

2.3 Feature Set Diversity

Note that for fixed n and Q, E[U ] is monotonically increasing on M , and E[C]
increases with both L and M . This suggests that larger ensembles with larger
feature sample size M should be preferred. In the extreme case where M = n,
the ensemble will contain identical copies of the base classifier trained on all
features. This defeats the point of having an ensemble altogether. Besides, with
the extremely large feature-to-instances ratio, the individual classifier may easily
overfit the data. Therefore we introduce a third property.

Definition 4. Denote by S1, S2, . . . , SL the L feature subsets sampled from X .
Consider S1, S2 ⊂ X such that |S1| = |S2| = M . Denote by I1 ⊆ I and I2 ⊆ I
the respective subsets of ‘important’ features in S1 and S2 respectively. We define
Feature Set Diversity (D) as

D(S1, S2) = |I1 ∪ I2| − |I1 ∩ I2|.

Two classifiers are non-identical if their feature subsets differ by at least one
‘important’ voxel. Each feature q ∈ I may or may not contribute to D. A value
of 1 will be added if q is in either set but not in both. Then the expected diversity
for any pair of subsets S1 and S2 is

E[D] =
Q∑

i=1

P (qi ∈ I1)P (qi /∈ I2) + P (qi /∈ I1)P (qi ∈ I2).

Since all features in I have equal chance of being selected in a subset of size M ,
and the subsets are drawn independently,

E[D] = 2Q
M

n

(
1 − M

n

)
. (7)

This calculation disregards non-usable classifiers. So an ensemble can be diverse
even if it contains non-usable classifiers for which I1 = I2 = ∅.

Figure 1 shows the theoretical and simulated curves for E[U ] (4), E[C] (6)
and E[D] (7) for n = 1000, Q = 100 and L = 10. Changing the value of L to
50 and 100, and Q to 10 and 50 did not lead to large differences in the shapes
and positions of the curves. The results suggest that values of M close to n

2 are
optimal as all three criteria reach their maxima, also observed across different
ensemble sizes.

3 A Simulation Experiment

The important question here is to what extent the three characteristics are re-
lated to the classification accuracy of the RS ensemble.
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Fig. 1. Theoretical and simulation curves (coinciding) for the expected values of U , C
and D for n = 1000, Q = 100 and L = 10. The empirical curve is calculated as an
average of 10 ensembles with randomly sampled L = 10 sets of M features.

3.1 Data

We decided to use simulated data that exhibit properties similar to real data
while keeping control on the parameters n and Q. We used an fMRI data set
collected at the School of Psychology, University of Bangor. The data consisted
of the single-subject BOLD responses to 3 types of stimuli: faces, places and
objects. Each presentation of a stimulus defined a point in the data set. The
total number of voxels (features) was 106720 and the number of objects was 36,
12 in each class. The classification task was to predict which type of stimuli the
subject is looking at, judging by the fMRI response.

For a 2-class problem, Contrast-to-Noise-Ratio (CNR) is defined using the
means and the standard deviations for the classes, separately for each voxel.
For voxel v, CNR is μ1(v)−μ2(v)

1
2 (σ1(v)+σ2(v)) , where μi(v) is the mean and σi(v) is the

standard deviation of v for class i. The higher the CNR, the more separable
the two classes are using only voxel v. We took only classes 1 and 2 (faces
and places) and calculated CNR for each voxel. The voxels were then sorted by
their CNR, in descending order. The means and the covariance matrices for the
two classes of the top Q voxels were stored and subsequently used to simulate
the first (important) Q features in the data. We simulated multivariate Gaussian
distributions for each class, using the Statistics toolbox of Matlab. The remaining
n − Q features were simulated as independent random noise with mean zero
and standard deviation equal to the mean CNR for the Q important features.
Running a separate simulation study even in addition to the experiments with
the real data was necessary in order to have control over Q in a surrogate pseudo-
real environment.

3.2 Experimental Protocol

The parameters were varied in the following ranges: the total number of features,
n, took values 200, 500 and 1000, and the number of ‘important’ features, Q,
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was chosen accordingly to model ratios Q
n of 0.02, 0.05, 0.1, 0.25, 0.5 and 1. The

feature set cardinality, M , took 20 equally spaced values from 1 to n, and the
ensemble size L took values at regular intervals from 1 to 200.

For each combination (M, L, Q, n), we generated 10 data sets with 20 training
examples (10 per class) and 200 testing examples (100 per class). The small size
of the training data was chosen to mirror that of real data sets. SVM was used
as the base classifier. For each (M, L, Q, n) we calculated the RS ensemble error,
and also estimated the observed degree of usability U , the degree of coverage C,
and the feature set diversity D of the ensemble.

3.3 Results

Figure 2 gives an example of the type of surfaces over the (L, M) grid, obtained
through the simulations. Each point in the space is calculated as the average
across 10 simulations with data drawn independently from the chosen ‘realistic’
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Fig. 2. The three RS characteristics and the ensemble error as functions of the ensemble
size L and the feature set size M . Each of the 2 classes in the data set was sampled
from a Gaussian distributions with Q = 50 relevant and n − Q = 450 noise features.
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Table 1. Summary of the simulation results. Ē is the average RS ensemble error across
the (L, M) grid. Ē∗ is the value of the ensemble error for the recommended parameter
values, M = n

2
and L = n

10
.

Correlation with E
Q
n ratio Ē Ē∗ Usability Coverage Diversity
0.02 4.09 1.25 −0.940 −0.863 −0.410
0.05 3.81 1.75 −0.972 −0.903 −0.438
0.10 3.83 1.40 −0.855 −0.802 −0.581
0.25 3.19 0.90 −0.593 −0.640 −0.608
0.50 3.65 2.15 −0.123 −0.233 −0.608
1.00 6.88 1.05 N/A 0.014 −0.448

distribution. The surfaces in the plots were obtained with n = 500 and Q = 50.
They have typical shapes observed for the six Q

n ratios. The surfaces confirm
visually the hypothesis that larger usability, coverage and feature set diversity
lead to better ensembles (lower error).

As expected, the degree of usability (subplot (a)) does not depend on L, and
quickly raises to 1 with M . The ‘tent’-shaped surface of D in subplot (c) also
depends on M but not on L. Largest values of D are achieved for M ≈ n

2 . Like
U , the degree of coverage, C, maintains its maximum value of 1 for the largest
part of the (L, M) grid. The figure also suggests that small to medium values
of the ensemble size L are sufficient. Hence, as a rule of thumb, we recommend
M = n

2 and L = n
10 for fMRI type of data.

Table 1 shows a summary of the simulation results. We show the Q
n ra-

tio, the average error rate of the RS ensemble over the whole (L, M) grid,
Ē, as well as the error using the recommended values, Ē∗. For all Q

n ratios,
Ē > Ē∗. We also give the correlation coefficients between the RS ensemble er-
ror E, on the one hand, and U , C, and D, on the other hand. Even though
calculated on an artificial grid, these coefficients support the hypothesis that
large values of usability, coverage and feature-set diversity are beneficial for the
ensemble.

3.4 Experiment with the Real fMRI Data

The RS ensemble with SVM base classifiers was run on classes 1 and 2 (faces
and places) of the real fMRI data set. First, n = 1000 voxels were pre-selected
by the SVM method [14]. An SVM classifier was trained on all voxels, the vox-
els were sorted by descending absolute value of the SVM weights, and the top
1000 voxels were retained. Three-fold cross-validation was applied to test the RS
ensemble for a 10 × 10 grid of values for M and L. M was varied from 1 to n
at equal intervals, and L was varied from 1 to n/5. Figure 3 plots the surface
of the ensemble error over the (L, M) grid. The recommended values of M = 500
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Fig. 3. RS error on the real fMRI data set as a function of the ensemble size L and the
feature size M . The recommended values for L and M are overlayed on the surface.

and L = 100 are marked as lines on the 3-D plot. The lines intersect near the
minimum of the error surface, which confirms empirically the recommendation
for L and M . While the average error over the whole grid was 0.2138, the error
at M = 500 and L = 100 was 0.0521.

4 Conclusions

We examine the Random Subspace ensemble (RS) for fMRI type of data where
the feature-to-instance ratio is in the order of 50000:1, and the number of truly
relevant features (voxels in the 3-D image of the brain) is much smaller than
the total number of features. Following previous fMRI studies we consider n
pre-selected voxels, where n is in the region of 1000. Assuming that there are Q
‘important’ features among the pre-selected n features, three characteristics of
the RS ensemble are defined: usability U , coverage C and feature-set diversity
D. Expected values of these characteristics are derived theoretically as functions
of n, Q, L and M . Our hypothesis was that higher values of U , C and D are
beneficial for the RS ensemble. A simulation study was carried out, with two
heteroscedastic Gaussian classes whose covariance matrices were estimated from
a real fMRI data set and augmented with Gaussian noise. The results support
the research hypothesis. As a rule of thumb, we propose to use feature set size
M = n

2 and ensemble size L = n
10 . These values were found to work well for the

real fMRI data.

Acknowledgements

We are grateful to David Linden and Stephen Johnston, School of Psychology,
Bangor University, UK, for providing the fMRI data.



Choosing Parameters for RS Ensembles for fMRI Classification 63

References

1. Norman, K.A., Polyn, A.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-
voxel pattern analysis of fMRI data. Trends in Cognitive Sciences 10, 424–430
(2006)

2. Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: a
tutorial overview. NeuroImage 45(1, suppl. 1), 199–209 (2009)

3. Cox, D.D., Savoy, R.L.: Functional magnetic resonance imaging (fMRI): detect-
ing and classifying distributed patterns of fMRI activity in human visual cortex.
NeuroImage 19(2), 261–270 (2003)

4. LaConte, S., Strother, S., Cherkassky, V., Anderson, J., Hu, X.: Support vector
machines for temporal classification of block design fMRI data. NeuroImage 26(2),
317–329 (2005)

5. Mourao-Miranda, J., Bokde, A.L., Born, C., Hampel, H., Stetter, M.: Classify-
ing brain states and determining the discriminating activation patterns: Support
Vector Machine on functional MRI data. NeuroImage 28(4), 980–995 (2005)

6. Wang, Z., Childress, A.R., Wang, J., Detre, J.A.: Support vector machine learning-
based fMRI data group analysis. NeuroImage 36(4), 1139–1151 (2007)

7. Ku, S.-p., Gretton, A., Macke, J., Logothetis, N.K.: Comparison of pattern recogni-
tion methods in classifying high-resolution BOLD signals obtained at high magnetic
field in monkeys. Magnetic Resonance Imaging 26(7), 1007–1014 (2008)
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Abstract. Functional Trees are one type of multivariate trees. This
work studies the performance of different ensemble methods (Bagging,
Random Subspaces, AdaBoost, Rotation Forest) using three variants
(multivariate internal nodes, multivariate leaves or both) of these trees
as base classifiers. The best results, for all the ensemble methods, are
obtained using Functional Trees with multivariate leaves and univariate
internal nodes. The best overall configuration is obtained with Rotation
Forest. Ensembles of Functional Trees are compared to ensembles of uni-
variate Decision Trees, being the results favourable for the variant of
Functional Trees with univariate internal nodes and multivariate leaves.
Kappa-error diagrams are used to study the diversity and accuracy of
the base classifiers.

Keywords: Functional Trees, Decision Trees, Bagging, Random Sub-
spaces, Boosting, Rotation Forest.

1 Introduction

Decision trees [1] are one of the most commonly used base classifiers for ensem-
ble methods [2]. They are fast and rather unstable, making them ideal as base
classifiers.

Usually, decision trees are assumed to be univariate, that is, each internal node
only considers one attribute. Nevertheless, there are several approaches for con-
structing multivariate trees [3,4,5,6]. Although these methods can improve the
results of univariate decision trees, they can be less adequate as base classifiers:
they are slower and more stable than univariate decision trees.

This work studies the application of different ensemble methods to Functional
Trees [5] (a type of multivariate trees). In that work [5], Bagging was used as
a variance reduction method. The present work also considers different ensem-
ble methods (Random Subspaces [7], AdaBoost [8], Rotation Forest [9]) and
compares them with the corresponding ensembles of univariate Decision Trees.
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There are some works that considered ensembles of multivariate decision trees.
In [7], the Random Subspace method was used with trees using different split-
ting functions, some of them multivariate. In [10], Bagging was used with Mean
Margins Decision Trees, a type of multivariate tree.

One of the current approaches for ensemble construction is training the base
classifiers using different projections of the data set [11,9,12,13]. When using
univariate decision trees as base classifiers of these methods, the resulting trees
are multivariate on the original space. Hence, a sensible question is if it is bet-
ter to use non projection-based ensemble methods with multivariate trees or
projection-based ensemble methods with univariate trees. This work considers
Rotation Forest as the projection-based method.

The combination of projection-based ensembles with multivariate trees can
seem pointless at first glance (at least for linear projections), but it can have
sense if we take into account that in Functional Trees we can restrict multivariate
nodes to the internal nodes or the leaves. If the internal nodes are univariate,
the classifiers constructed in different subspaces can be rather diverse.

The rest of the paper is organized as follows. Section 2 gives an introduction
to Functional Trees. The experiments and results using ensembles of Functional
Trees are described in Section 3. Ensembles of Functional Trees are compared to
Ensembles of Decision Trees in Section 4. Section 5 shows kappa-error diagrams.
The conclusions are presented in Section 6.

2 Functional Trees

Functional trees [5] are multivariate trees that can use combinations of attributes
in the leaves and/or in the internal nodes. If the combinations of attributes are
allowed in the two types of nodes, they are denoted as FT. Otherwise, they
are denoted FT-Inner or FT-Leaves, depending if the combinations are allowed
in one type of nodes or in the other. They can be used for classification and
regression, although this work will only consider classification.

The method follows the standard top-down approach. For each internal node,
a model is constructed using the training examples available for that node. In the
used implementation [14] the models are constructed using logistic regression [6].
As many attributes as classes are created, their values are the probabilities pre-
dicted by the model for the corresponding class. For the selection of the attribute
for the internal node, both the original and the newly constructed attributes are
considered. If one of the new attributes is selected, the internal node will be
multivariate.

The construction of the logistic models is done according to the method de-
scribed in [6]. LogitBoost [15] is used, the base regressors that it combines are
obtained using linear functions of one of the attributes.

When pruning the tree, the method considers the replacement of an internal
node with a leaf that predicts a class, but also with a leaf that predicts according
to the logistic model. Hence, it is also possible to have models in the leaves. In
this type of leaves, the prediction is not always the same class, but the prediction
obtained using the logistic model (a classifier) that is associated to that leaf.
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Fig. 1 shows the three types of Functional Trees for the “dna” data set. Lo-
gistic models can appear, depending on the type, in internal nodes and leaves.
They are denoted, respectively, LMI and LML, followed by a sequential number.

In the internal nodes, the logistic models are used to split the data, comparing
the probability predicted by the logistic model for one of the classes with a
threshold. For instance, “LMI1 C3” indicates that the value compared is the
probability for the third class according to the logistic model LMI1.

Instead of the logistic models, in the internal nodes can appear the original
attributes (e.g., a090, a150), while in the leaves can appear the predicted class
(e.g., Class=3).
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Fig. 1. Examples of Functional Trees

3 Experiments: Ensembles of Functional Trees

3.1 Settings

Table 1 shows the characteristics of the data sets used in the experiments. They
are from the UCI repository [16].

Weka [14] was used for the experiments. The experiments were done using
5 × 2 folds cross-validation [17]. The ensemble size was 10. The reason for this
small number is the complexity of functional trees, in memory size and training
and testing times.
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Table 1. Summary of the data sets used in the experiments

Dataset #N #D #E #C
abalone 7 1 4177 28
anneal 6 32 898 6
audiology 0 69 226 24
autos 15 10 205 6
balance-scale 4 0 625 3
breast-w 9 0 699 2
breast-y 0 9 286 2
bupa 6 0 345 2
car 0 6 1728 4
credit-a 6 9 690 2
credit-g 7 13 1000 2
crx 6 9 690 2
dna 0 180 3186 3
ecoli 7 0 336 8
glass 9 0 214 6
heart-c 6 7 303 2
heart-h 6 7 294 2
heart-s 5 8 123 2
heart-statlog 13 0 270 2
heart-v 5 8 200 2
hepatitis 6 13 155 2
horse-colic 7 15 368 2
hypo 7 18 3163 2
ionosphere 34 0 351 2
iris 4 0 150 3
krk 6 0 28056 18
kr-vs-kp 0 36 3196 2
labor 8 8 57 2
led-24 0 24 5000 10
letter 16 0 20000 26
lrs 93 0 531 10

Dataset #N #D #E #C
lymphography 3 15 148 4
mushroom 0 22 8124 2
nursery 0 8 12960 5
optdigits 64 0 5620 10
page 10 0 5473 5
pendigits 16 0 10992 10
phoneme 5 0 5404 2
pima 8 0 768 2
primary 0 17 339 22
promoters 0 57 106 2
ringnorm 20 0 300 2
sat 36 0 6435 6
segment 19 0 2310 7
shuttle 9 0 58000 7
sick 7 22 3772 2
sonar 60 0 208 2
soybean 0 35 683 19
soybean-small 0 35 47 4
splice 0 60 3190 3
threenorm 20 0 300 2
tic-tac-toe 0 9 958 2
twonorm 20 0 300 2
vehicle 18 0 846 4
vote1 0 15 435 2
voting 0 16 435 2
vowel-context 10 2 990 11
vowel-nocontext 10 0 990 11
waveform 40 0 5000 3
yeast 8 0 1484 10
zip 256 0 9298 10
zoo 1 15 101 7

#N: numeric features, #D: discrete features, #E: examples, #C: classes.

As base classifiers, the three variants of Functional Trees were considered:
using models in the internal nodes and leaves (denoted as FT), using models
only in the leaves (denoted ad FT-Leaves) and using models only in the internal
nodes (denoted as FT-Inner).

As ensemble methods, five configurations were considered: Bagging, Random
Subspaces (using 50% or 75% of the features), AdaBoost and Rotation Forest.
The combinations of base classifiers and ensemble methods produces 15 differ-
ent configurations. Moreover, the three base classifiers are also considered as
standalone methods.

For each data set and configuration, the accuracy is calculated. For comparing
the methods, average ranks [18] are used. The value of the average ranks are
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Table 2. Average ranks of ensemble methods with functional trees

Average Ensemble Base
Rank Method Classifier

1 4.23 Rotation Forest FT-Leaves
2 5.98 Bagging FT-Leaves
3 7.01 Subspaces-75% FT-Leaves
4 7.23 Subspaces-75% FT
5 7.42 Rotation Forest FT
6 8.19 Bagging FT
7 8.41 Subspaces-50% FT-Leaves
8 8.90 AdaBoost FT-Leaves
9 9.61 AdaBoost FT

10 9.81 Subspaces-50% FT
11 9.90 Rotation Forest FT-Inner
12 10.60 Subspaces-75% FT-Inner
13 10.68 Bagging FT-Inner
14 11.01 Single FT-Leaves
15 11.50 AdaBoost FT-Inner
16 12.94 Subspaces-50% FT-Inner
17 13.02 Single FT
18 14.54 Single FT-Inner

FT- FT-
Leaves FT Inner

Rotation Forest 4.23 7.42 9.90
Bagging 5.98 8.19 10.68
Subspaces-75% 7.01 7.23 10.60
Subspaces-50% 8.41 9.81 12.94
AdaBoost 8.90 9.61 11.50
Single 11.01 13.02 14.54

between one and the number of considered configurations. Smaller values of the
average rank indicate better results.

3.2 Results

Table 2 shows the average ranks of the considered methods. The best configura-
tion is Rotation Forest using FT-Leaves as base classifier. The second and third
configurations also use FT-Leaves, with Bagging and Random Subspaces (75%),
respectively.

For all the considered ensemble methods, FT-Leaves as base classifier has a
better average rank than using FT. Moreover, FT as a base classifier also has a
better average rank than using FT-Inner. The same order (FT-Leaves, FT and
FT-Inner) is preserved when using these methods without ensembles.

The results for AdaBoost are worse than the results for the other method
(with the possible exception of Subspaces-50%). A possible cause could be that
Boosting is used in the construction of Functional Trees, using Boosting twice
could be redundant.

4 Comparison with Ensembles of Decision Trees

In this section, ensembles of functional trees are compared with ensembles of
decision trees.
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Table 3 shows the average ranks for each ensemble method. Five base clas-
sifiers are considered, the three types of Functional Trees and Decision Trees,
pruned and unpruned. There is a set of average ranks for each ensemble method,
the values are between one and five, because five base classifiers are considered.
For all the considered cases, FT-Leaves has the better average rank.

Table 3. Average ranks of decision and functional trees as base classifiers for different
ensemble methods

FT- FT DT- DT- FT-
Leaves Pruned Unpruned Inner

Single 2.01 2.60 3.23 3.90 3.27
Bagging 2.19 2.68 3.29 3.39 3.45
Subspaces-50% 2.09 2.64 3.33 2.98 3.96
Subspaces-75% 2.23 2.40 3.48 3.48 3.42
AdaBoost 2.35 2.71 3.23 3.48 3.24
Rotation Forest 2.12 3.15 3.00 2.86 3.87
Average 2.19 2.71 3.26 3.35 3.49

Table 4 shows the average ranks obtained from all the considered configu-
rations. The best average rank is again for Rotation Forest of FT-Leaves. The
second position is for Bagging of FT-Leaves, while the third and fourth positions
are for Rotation Forest with Decision Trees. The first configuration that does
not uses Functional Trees nor Rotation Forests is Bagging of pruned Decision
Trees, in position 15.

Table 4. Average ranks of ensemble methods with Functional and Decision Trees

Average Ensemble Base
Rank Method Classifier

1 6.83 Rotation Forest FT-Leaves
2 9.19 Bagging FT-Leaves
3 9.24 Rotation Forest DT-Unpruned
4 9.46 Rotation Forest DT-Pruned
5 10.54 Subspaces-75% FT-Leaves
6 11.12 Subspaces-75% FT
7 11.18 Rotation Forest FT
8 12.27 Bagging FT
9 13.07 Subspaces-50% FT-Leaves

10 13.11 AdaBoost FT-Leaves
11 14.69 AdaBoost FT
12 14.93 Subspaces-50% FT
13 15.23 Rotation Forest FT-Inner
14 15.82 Single FT-Leaves
15 15.85 Bagging DT-Pruned

Average Ensemble Base
Rank Method Classifier

16 16.32 Bagging FT-Inner
17 16.35 Subspaces-75% FT-Inner
18 16.60 Bagging DT-Unpruned
19 16.65 AdaBoost DT-Pruned
20 17.15 AdaBoost DT-Unpruned
21 17.32 AdaBoost FT-Inner
22 18.20 Subspaces-50% DT-Unpruned
23 18.21 Subspaces-75% DT-Pruned
24 18.73 Subspaces-75% DT-Unpruned
25 18.90 Subspaces-50% DT-Pruned
26 19.18 Single FT
27 20.33 Subspaces-50% FT-Inner
28 21.98 Single FT-Inner
29 22.10 Single DT-Pruned
30 24.41 Single DT-Unpruned
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An Experimental Study on Ensembles of Functional Trees 71

Regarding the question if it is better to use a projection-based ensemble
method with univariate trees or a non projection-based ensemble method with
multivariate trees, the first answer is that neither is the best. Projection-based
ensemble methods are not incompatible with multivariate trees, the best method
is Rotation Forests of FT-Leaves. A more direct answer is that Rotation Forest
of Decision Trees are better (according to the average ranks) than all the non
projection-based ensembles of Functional Trees, with only one exception, Bag-
ging of FT-Leaves. Nevertheless, the average ranks are very similar (9.19, 9.24
and 9.46).

5 Kappa-error Diagrams

Figure 2 shows kappa-error diagrams [19], for some data sets and the best five
configurations according to the average ranks. In each diagram, the average of
the points is shown with a star.

In order to summarize the kappa-error diagrams for all the data sets, kappa-
error relative movement diagrams [20] are used. Figure 3 shows these diagrams.
They show the relationship, for all the data sets, between the kappa error dia-
grams of two methods. Given the average values of the points in the kappa error
diagrams of the two methods, an arrow can be drawn from one of the centers
to the other. In relative movement diagrams, the base of the arrow is taken to
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the origin of coordinates and there are as many arrows as data sets. In these
diagrams, the horizontal axis represents the kappa difference while the vertical
axis represents the error difference.

Comparing Bagging and Rotation Forests of FT-Leaves, there is not a clear
pattern. There are very few arrows that go top right (the undesired direction,
less diversity and more error). In the comparison of Random Subspaces and
Rotation Forest of FT-Leaves, again very few arrows go top right. There are
more arrows that go down than up. The arrows that go down right can be much
longer than the others.

Comparing Rotation Forest of Decision Trees with FT-Leaves, there are only
two arrows that go up right, but they are rather long. The great majority of
the arrows go down right. This means that for FT-Leaves the base classifiers are
less diverse but more accurate. Hence, the improvements obtained on Rotation
Forests by using FT-Leaves as base classifiers instead of Decision Trees are due
to the better accuracies of the base classifiers. The diagrams for pruned and
unpruned decision trees are very similar.

6 Conclusions

This work presents an experimental study on ensembles of Functional Trees.
The three types of Functional Trees (models in the leaves, models in the internal
nodes, models in both) have been considered as base classifiers for Bagging,
Random Subspaces, AdaBoost and Rotation Forest.

According to the average ranks, FT-Leaves is better than FT and FT is better
than FT-Inner, regardless of the ensemble method used.

Ensembles of Functional Trees have been compared with ensembles of Decision
Trees (both pruned and unpruned). Ensembles of FT-Leaves have better average
ranks than ensembles of Decision Trees.

From all the considered configurations, including ensembles of decision trees,
the best overall configuration is Rotation Forest of FT-Leaves. Comparing Ro-
tation Forests of Decision Trees with other ensembles of Functional Trees, the
average ranks are favourable for Rotation Forest with only one exception, Bag-
ging of FT-Leaves.

Kappa-error diagrams have been used to study the diversity and accuracy
of the base classifiers. Generally, the base classifiers in Rotation Forest of FT-
Leaves are less diverse but more accurate than the base classifiers of Rotation
Forest of Decision Trees.
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12. Garćıa-Pedrajas, N., Garćıa-Osorio, C., Fyfe, C.: Nonlinear boosting projections
for ensemble construction. Journal of Machine Learning Research 8, 1–33 (2007)

13. Schclar, A., Rokach, L.: Random projection ensemble classifiers. In: Enterprise
Information Systems 11th International Conference Proceedings. LNBIP, vol. 24,
pp. 309–316. Springer, Heidelberg (2009)

14. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005),
http://www.cs.waikato.ac.nz/ml/weka

15. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical
view of boosting. The Annals of Statistics 38, 337–374 (2000)

16. Asuncion, A., Newman, D.: UCI machine learning repository (2007),
http://www.ics.uci.edu/~mlearn/MLRepository.html

17. Dietterich, T.G.: Approximate statistical test for comparing supervised classifica-
tion learning algorithms. Neural Computation 10, 1895–1923 (1998)
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Abstract. In adversarial classification tasks like spam filtering, intru-
sion detection in computer networks and biometric authentication, a
pattern recognition system must not only be accurate, but also robust
to manipulations of input samples made by an adversary to mislead the
system itself. It has been recently argued that the robustness of a classi-
fier could be improved by avoiding to overemphasize or underemphasize
input features on the basis of training data, since at operation phase
the feature importance may change due to modifications introduced by
the adversary. In this paper we empirically investigate whether the well
known bagging and random subspace methods allow to improve the ro-
bustness of linear base classifiers by producing more uniform weight val-
ues. To this aim we use a method for performance evaluation of a classifier
under attack that we are currently developing, and carry out experiments
on a spam filtering task with several linear base classifiers.

1 Introduction

In adversarial classification tasks like spam filtering, intrusion detection in com-
puter networks and biometrics [1,2,3,4], the goal of a pattern recognition system
is to discriminate between two classes, which can be named “legitimate” and
“malicious”, while an intelligent adversary manipulates samples to mislead the
system itself. Adversarial classification problems are therefore non-stationary,
which implies that a pattern recognition system should be designed by taking
into account not only its accuracy (usually evaluated from a set of training sam-
ples) but also its robustness, namely the capability of undergoing an accuracy
degradation as low as possible when it is under attack. Very few works addressed
so far the problem of devising practical methods to improve robustness. Recently,
in [7] it was suggested that a more robust classifier could be obtained by avoiding
to give features too much or too little emphasis during classifier training, and
a similar approach was suggested in [6]. This allows to design robust classifiers
against attacks in which the adversary exploits some knowledge on the classifi-
cation function (e.g., the most discriminant features), as we discuss in the next
section.

It is well known that one of the main motivations for the use of multiple clas-
sifier systems (MCSs) is the improvement of classification accuracy with respect

N. El Gayar, J. Kittler, and F. Roli (Eds.): MCS 2010, LNCS 5997, pp. 74–83, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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to a single classifier. Recently, MCSs have also been applied to adversarial clas-
sification tasks based only on intuitive motivations, although there is no clear
evidence so far that they can be also useful to improve robustness. Our aim
is to investigate whether and under which conditions MCSs allow to improve
the robustness of a pattern recognition system in adversarial classification tasks,
with respect to a single classifier architecture. In this work we will focus on two
of the most known methods for constructing MCSs, namely bagging [8] and the
random subspace method (RSM) [9]. The reason is that we argue that these
methods could result in avoiding to give features too much or too little emphasis
with respect to a single classifier during classifier training, which is the strat-
egy suggested in [7] to improve robustness. Accordingly, we first experimentally
investigate whether this assumption holds in practice, and then, whether this
allows bagging and RSM to produce more robust classifiers. Our experimental
analysis was carried out on a spam filtering task, using the well known and
widespread open source anti-spam filter SpamAssassin [10].

In Sect. 2 we survey related works. The method to assess the robustness is
explained in Sect. 4.1. The experiments are reported in Sects. 4 and 5.

2 Related Works

MCSs are currently being used in several adversarial classification tasks, like mul-
timodal biometric systems [1,4], intrusion detection in computer systems [2], and
spam filtering [11,12,13]. Two practical reasons are that in many of such tasks sev-
eral heterogeneous feature subsets are available, and they can be easily exploited
in a MCS architecture where each individual classifier is trained on a different fea-
ture subset [1]; moreover, in tasks like intrusion detection it is often necessary to
face never-seen-before attacks, which can be easily done with a MCS architecture
by adding new classifiers. For instance, MCSs are used in commercial spam fil-
ters which use heterogeneous information sources to label incoming e-mails (like
the e-mail’s text, its header, the attached images if any, etc.). Another motivation
was proposed by several authors: using many classifiers would improve robustness
because it would require the adversary to evade all the individual classifiers, or at
least more than one of them, to evade the whole system [4,2,11]. However, we point
out that this motivation is only based on intuition, and its validity has never been
evaluated. Accordingly, understanding whether and how MCSs actually allow to
improve robustness is still an open question.

In our past works we addressed this problem under several viewpoints. Since
adding new detection rules to a system in response to new attacks is a common
practice in spam filtering and in intrusion detection in computer systems, in
[14] we investigated whether adding classifiers to a given ensemble can improve
its robustness. In [15] we analysed a randomization strategy based on MCSs to
improve robustness by preventing an adversary from gaining too much knowl-
edge on a classifier. However in these works we used an analytical model for
adversarial classification problems proposed in [5], which is based on unrealis-
tic assumptions, and thus our results could not be exploited to devise practical
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methods to design robust classifiers. In [16] we provided an empirical evidence1

that a MCS architecture can be more robust than a single classifier architecture.
This work was however limited to a non-standard MCS architecture (a logic OR
of Boolean outputs of individual classifiers).

Among the few practical methods proposed so far in the literature for im-
proving classifier robustness, the ones in [6,7] are particularly interesting since
they are not limited to a specific task. In [7] it was pointed out that assessing
the performance of a classifier during its design phase is likely to provide an op-
timistic estimate of the performance at operation phase, since training samples
cannot contain any attack targeted to the classifier under design. In particular,
if some features have a high discriminant capability on training samples and the
adversary is aware of that, he could manipulate his samples at operation phase
to modify the values of such features. The consequence is that their discrimi-
nant capability becomes lower at operation phase. For instance, text classifiers
based on the bag of words feature model (in which terms occurrence or fre-
quency are used as features) are widely used in spam filters. However spammers
can guess the most discriminant terms that characterize spam and legitimate
emails, and indeed two real and widely used attack strategies consist in cam-
ouflaging “spammy” terms (e.g., by misspelling them) to avoid their detection,
and in adding “legitimate” terms not related to the spam message. The strategy
proposed in [7] to improve robustness is hence to avoid to give features too much
or too little emphasis during classifier training, to protect the classifier against
such kinds of attacks. Several versions of this strategy were devised for linear
classifiers, resulting in learning algorithms whose goal is a trade-off between at-
taining a high training accuracy and forcing the feature weights to be as much
uniform as possible. A seemingly different strategy was proposed in [6], where a
SVM-like learning algorithm was developed to make a linear classifier based on
Boolean features robust against the modification of the most important features.
Interestingly, it turns out that the effect of the proposed algorithm is similar to
the strategy of [7], namely it results in producing more uniform weight values.

3 Motivations of This Work

The strategies in [6,7] are based on the intuition that, to improve robustness
against attacks based on some knowledge on the relevance of each feature in the
classifier’s decision function, it can be useful to prevent the learning algorithm to
overemphasize or underemphasize features. In the case of linear classifiers this
strategy can be implemented by forcing the feature weights to be as uniform
as possible. In this paper we investigate whether this effect can be obtained
by some known MCS construction methods. We focus in particular on the well
known bagging and RSM. In RSM, base classifiers are trained on randomly cho-
sen feature subsets. Thus each feature may not be used by some base classifiers.
In the particular case of linear classifiers, we can say that the most discriminant
1 Reported analytical results turned out to be wrong (see the Erratum at the end of

these proceedings).
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features (on the training set) have a zero weight when they are not used, so their
average weight across base classifiers could be lower than in a classifier trained
on the whole feature set. Analogously, the average weight of less discriminant
features could be higher in average, since their importance can be higher if they
are used in base classifiers where the most discriminant features do not appear.
When bagging is used, the training set of each base classifier is a bootstrap
replicate of the original training set. Therefore, each training sample could not
appear in some bootstrap replicates. One of the possible effects could be a re-
duction of the average weight of most discriminant features and an increase of
the average weights of less discriminant ones. As mentioned above, our goal is
to experimentally investigate whether and how this happens, and whether this
results in a higher robustness with respect to an individual classifier, against at-
tacks based on some knowledge on the feature discriminant capability. We focus
in particular on a linear combination of linear classifiers, which can be easily
analysed. Indeed the discriminant function of such a linearly combined set of
classifiers can be written as:

g(x) =
1
K

K∑
k=1

(
n∑

i=1

wk
i xi + wk

0

)
=

n∑
i=1

wavg
i xi + wavg

0 (1)

which is still a linear discriminant function in feature space, where K is the
number of base classifiers, n the number of features of each base classifier and
wavg

0 . . .wavg
n are the weights assigned by the MCS to the input features, each

one computed by averaging the correspondent K weights of the base classifiers.
Therefore, our goal is to understand whether the weights wavg

0 . . . wavg
n obtained

by bagging and by RSM are more uniform than the weights of a single linear
classifier trained on the whole feature set and on all the available training sam-
ples, and whether this results in a higher robustness under attack with respect
to an individual classifier.

4 Experimental Setup

We first describe the method used in this paper to evaluate the robustness of a
classifier, and then the data set and the classifiers used in the experiments.

4.1 A Method to Assess the Robustness of Classifiers under Attack

Ideally, the robustness of a classifier against a given attack should be evaluated on
samples corresponding to such attack. However training samples cannot contain
attacks devised against the classifier which is being designed, as pointed out
in [7], and it could be very difficult to construct real attacks. Accordingly, we
are currently developing a methodology to evaluate classifier’s robustness, whose
basic idea is to evaluate the accuracy of a classifier on artificial samples obtained
by modifying the feature vectors of the available malicious testing samples with
the aim of simulating the effect of a given attack of interest. Our methodology
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is an extension of the method used in [7] to evaluate the proposed strategies to
improve robustness (see Sect. 2).

The modifications to feature vectors of testing samples can be made with dif-
ferent criteria, depending on the specific application, the classifier and the attack
to simulate. Nevertheless, in general it is useful to evaluate robustness under at-
tacks of different strength [17,6,7]. The attack strength on a given sample can be
measured as the distance in the feature space between the original sample and the
one camouflaged by the attacker. We point out that the distance in feature space
was used in [5,18] to measure the adversary’s effort in modifying a given sample.
The underlying rationale is that the more modifications an adversary makes to a
sample, the more is the required effort. In particular, in the case of binary features
a straightforward distance measure is the Hamming distance, which amounts to
the number of features modified to “camouflage” a malicious sample.

One of the conditions under which it can be interesting to evaluate robustness
is a “worst case” attack, in which the adversary is assumed to exactly know
the classifier’s decision function. Let us denote with A(x) the modification of a
feature vector x, with m the maximum distance in the feature space between
the original and modified feature vector x′ according to a given metric d(·, ·)
(namely, the maximum attack strength), and with g(x) the discriminant function
of the considered classifier, with the convention that the decision function is
f(x) = sign g(x) ∈ {−1, +1}, and that +1 and −1 are the labels respectively of
the malicious and legitimate class. For any given malicious pattern x, the worst
case attack is the one which modifies x to the pattern x′ which decreases most
the value of the discriminant function g(x′), under the constraint d(x,x′) ≤ m.
This can be written as the solution of a constrained optimization problem:

A(x) = argminx′g(x′), s.t. d(x,x′) ≤ m . (2)

In the case when the features are Boolean (and thus m corresponds to the
maximum number of features which can be modified), d(·, ·) is the Hamming
distance and the discriminant function is linear (g(x) =

∑n
i=1 wixi + w0), it is

easy to see that the solution can be found as follows. First the absolute values of
the weights |w1|, . . . , |wn| must be sorted in decreasing order. Then the features
must be considered in that order, and the values of up to m of them must be
switched either from 1 to 0, if the corresponding weight is positive, or from 0 to
1, if the weight is negative.

4.2 Data Set and Base Classifiers

Our experiments were carried out on a spam filtering task. We used the TREC
2007 e-mail corpus,publicly available athttp://plg.uwaterloo.ca/~gvcormac/
treccorpus07 and made up of 75,419 real e-mails (25,220 legitimate and 50,199
spam messages). We considered the first, second and third sequence of 10,000 e-
mails (in chronological order) denoted in the following as D1, D2 and D3, to build
the training and testing sets as describedbelow.Theperformancemeasure adopted
to evaluate accuracy and robustness is the portion of the area under the ROC

http://plg.uwaterloo.ca/~gvcormac/treccorpus07
http://plg.uwaterloo.ca/~gvcormac/treccorpus07
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curve corresponding to false positive (FP) error rates between 0 and 10%, denoted
as AUC10%. Since the area under the whole ROC curve takes on values in [0, 1],
AUC10% takes on values in [0, 0.1]. This measure was suggested in [7], to take into
account the fact that in adversarial classification tasks (and especially in security
applications) FP errors are typically much more harmful than false negative ones,
and thus the classifier’s operating point is required to have a low FP rate. We car-
ried out two sets of experiments, with two different linear classifiers used in spam
filtering tasks.

Experiment 1. In the first set of experiments we used two text classification algo-
rithms proposed in the spam filtering literature, namely, support vector machine
(SVM) [19] and logistic regression (LR) [7]. The e-mails in D1 and D2 were used
to build respectively the training and testing set. We used the bag of words feature
model, which is a common choice in text classification and spam filtering tasks.
We first constructed a vocabulary, namely the set of distinct terms appearing in
training e-mails (to this aim we used the anti-spam filter SpamAssassin [10], see
below), which turned out to be 366,709. Each training and testing e-mail was then
represented as a feature vector of the same size, in which each component was asso-
ciated to a vocabulary term, and was set to 1 if that term occurred in the e-mail, to
zero otherwise. The LR classifier was trained by maximising the classification ac-
curacy through a gradient descent algorithm. Since the original feature set was too
large for SVMs, we selected 20,000 features from training e-mails using the infor-
mation gain criteria. The C parameter of the SVM learning algorithm was chosen
among the values {0.001, 0.01, 0.1, 1, 10, 100}by maximising the AUC10% through
a 5-fold cross validation on the training set. In the experiments we compared a sin-
gle classifier built using LR and SVM, and MCSs built using bagging and RSM, for
different ensemble sizes (3, 5 and 10), different fractions of randomly selected fea-
tures from the original feature set for RSM (20%, 50%, 80%), and different training
set sizes for bagging (20% and 100% of the original one). The robustness was then
evaluated using the method described in Sect. 4.1 on the testing set.

Experiment 2. The second set of experiments was carried out using the popular
and widespread open source anti-spam filter SpamAssassin [10] (version 3.2.5).
It is made up of some hundred Boolean “tests” on the e-mail content, each
one aimed at detecting a particular characteristic of spam or legitimate e-mails
(for instance the presence of a typical spam word, or a known e-mail’s header
malformation indicating that it has been forged by an automatic software, as
typically done by spammers [20]). Denoting with x = (x1, . . . , xn) ∈ {0, 1}n

the tests’ outputs, the decision function of the whole filter can be written as
f(x) = sign (

∑n
i=1 wixi + w0) where {w0, . . . , wn} ∈ R

n+1 is a set of weight
values, and sign(t) = +1 if t ≥ 0, −1 elsewhere. An e-mail is classified as
spam (legitimate) if f(x) = +1 (f(x) = −1). In our experiments, we used
only the tests whose value was not zero for at least one e-mail of the data set,
which turned out to be 549. Default weight values w0, . . . , wn are provided by
SpamAssassin developers2. These values were derived by manually adjusting the

2 http://spamassassin.apache.org/tests_3_2_x.html

http://spamassassin.apache.org/tests_3_2_x.html
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values obtained by a perceptron trained over a huge amount of data, with the
aim of increasing the robustness of the spam filter. Note that default weights
of tests associated to characteristics of spam (legitimate) e-mails are positive
(negative). We used SpamAssassin as a linear classifier, and carried out the
same experiments described above for text classifiers. Namely, we computed the
weight values using an individual LR and SVM classifier, and a MCS obtained
using bagging and RSM, on the same base classifiers. These classifiers were also
compared to the individual classifier with the default weight values, namely the
standard SpamAssassin. We point out that some SpamAssassin tests (features)
are based on the outputs of a text classifier, which must be previously trained.
We trained it using the D1 e-mail subset. To compute the weights with the LR
and SVM classifiers we used the e-mails of the D2 subset as training set. The
LR an SVM classifiers were trained as in the previous experiments. Robustness
was evaluated on the e-mails in D3. Results are reported in Sect. 5.

5 Experimental Results

The results of our experiments are reported in terms of AUC10% as a function of
the attack strength m. Since the features are Boolean, we measured the attack
strength m as the maximum number of features which can be modified. Accord-
ing to this measure, a classifier is more robust than another if it exhibits a higher
AUC10% value for the same value of m. Note that the true positive (TP) classifi-
cation rate of a classifier decreases as the attack strength m increases, and so does
the AUC10% value. As a limit case, beyond some m value all the modified mali-
cious testing samples are labelled as legitimate. Consequently, the TP rate equals
zero for any FP value and the corresponding AUC10% equals zero as well. We also
report a measure of the evenness of the feature weights assigned by the classifiers,
which was proposed in [7], defined as the ratio of the sum of the top K absolute
weight values to the sum of all the n absolute weight values, for K = 1, . . . , n:

F (K) =

(
K∑

i=1

|w(i)|
)

/

(
n∑

i=1

|w(i)|
)

(3)

where |w(1)|, . . . , |w(n)| are the absolute weight values sorted in decreasing order.
The weight w0 is disregarded since it does not affect the AUC10% value. When all
weights are equal, F (K) = K, while as the weight distribution become uneven,
F (K) approaches 1 for any K value.

Experiment 1. The results obtained with text classifiers are shown in Fig. 1. We
found that the robustness of MCSs significantly increased for increasing ensemble
size with RSM (especially for a low feature subset size), while no significant
changes were observed with bagging. This result provides some support the one
reported by the authors in [14]. Due to lack of space, only the results for the
largest considered ensemble size (10) are reported. Similarly, the robustness of
the RSM method significantly increased as the size of feature subsets increased,
while no significant difference was observed with bagging for different training set
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Fig. 1. AUC10%(m) (left) and F (K) (right) for single LR and SVM classifiers, and for
bagging and RSM with LR and SVM as base classifiers. Top: text classifiers (exp. 1);
bottom: SpamAssassin (exp. 2). For the latter, results obtained with default and uni-
form weights are also reported. The AUC10% value at m = 0 is reported also in the
legend. Results for the MCSs are averaged over 5 runs (standard deviation is not re-
ported since it is negligible). Note that the AUC10% drops to zero when the attack
strength becomes so high that all the modified malicious testing samples are labelled
as legitimate, and thus the TP rate equals zero for any FP value.

sizes. Due to lack of space, only results corresponding to the highest considered
feature subset size in RSM (80%) and training set size in bagging (100%) are
reported. Let us compare bagging and RSM with a single classifier. First, Fig. 1
shows for m = 0 (namely, on the original testing set) the AUC10% value of
bagging and RSM was nearly the same as the one of the corresponding individual
classifiers trained on the original training set. This means that bagging and
RSM did not improve the performance of the individual classifiers. However, for
m > 0 (namely, when the classifiers are under attack) both bagging and RSM
allowed to obtain more even weight distributions with respect to the individual
classifiers, and also exhibited a higher robustness. This result supports our main
hypothesis, namely that bagging and RSM result in more uniform weight values
than a single classifier (Sect. 3). This result is interesting also because it shows
that although MCSs did not improve classification accuracy with respect to
individual classifiers, they nevertheless allowed to improve robustness. It can
also be noted that in this case using a MCS did not increase the computational
cost at classification phase, since the discriminant function of the MCS was linear
as the one of the single classifier.



82 B. Biggio, G. Fumera, and F. Roli

Experiment 2. The results obtained with the SpamAssassin filter as a lin-
ear classifier are reported in Fig. 1. On the basis of the results of the previous
experiments, we considered only ensembles of 10 base classifiers, and feature
subsets of 80% of the whole feature set for RSM. We also report the results ob-
tained by SpamAssassin as a single classifier, both using its default weight values
and using uniform weight values, equal to either +1 (for features associated to
characteristics of spam e-mails, see above) or to −1. As expected, SpamAssas-
sin with uniform weights attains the highest robustness (see Fig. 1, bottom).
However, it does not exploit any information about the discriminant capability
of the features, and therefore it exhibits the worst performance on the origi-
nal testing set without attacks (AUC10% for m = 0). An interesting result is
that weights obtained by the LR and SVM classifiers slightly outperformed the
default SpamAssassin weights for m = 0, while the default values exhibited a
higher robustness for m > 0, namely when the classifiers were under attack. This
provides evidence that the default weights, which were manually set by SpamAs-
sassin developers, are actually capable to improve its robustness under attack.
In particular, we observed that the LR and SVM learning algorithms assigned
higher weights to the most discriminant features (on training samples), which
turned out to be the ones related to the text classifier included in SpamAssassin.
This guaranteed to achieve higher performances when the filter was not under
attack, but also undermined its robustness under attack. The corresponding de-
fault weight values were indeed lower than the ones assigned by the LR and
SVM classifiers. As in the previous experiments, Fig. 1 also shows that the use
of MCSs did not improve the classification accuracy when the classifiers were not
under attack, but it allowed to improve the robustness when the classifiers were
under attack, with the only exception of bagging with the SVM base classifier. It
is interesting to note that the default SpamAssassin weights exhibited a higher
robustness than bagging and RSM, besides than single classifiers.

6 Conclusions

While MCSs are mainly used to improve classification accuracy, inspired by [6,7]
we argued that methods like bagging and RSM could also result in improv-
ing robustness in adversarial classification tasks against attacks based on some
knowledge of the classifier’s discriminant function, due to a potential side effect
consisting in giving more uniform weights to the features with respect to a single
classifier. Reported experiments performed on a real spam filtering task, using
text classifiers and a real spam filter, provided evidence that this intuition is
correct. In particular, our experiments showed that, even in cases when bagging
and RSM did not improve the performance of a single classifier when they are
not under attack, they turned out to be significantly more robust under attack.
These results provide a first sound motivation to the application of MCSs in
adversarial classification tasks, other than the intuitive and qualitative consid-
erations that have motivated their use so far, and thus open a new and relevant
area of research for MCSs.
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Via Claudio, 21 I-80125 Napoli, Italy

{francesco.grg,carlosan}@unina.it

Abstract. Pattern recognition techniques are often used in environments (called
adversarial environments) where adversaries can consciously act to limit or pre-
vent accurate recognition performance. This can be obtained, for example, by
changing labels of training data in a malicious way.

While Multiple Classifier Systems (MCS) are currently used in several se-
curity applications, like intrusion detection in computer networks and spam fil-
tering, there are very few MCS proposals that explicitly address the problem of
learning in adversarial environments. In this paper we propose a general algo-
rithm based on a multiple classifier approach to find out and clean mislabeled
training samples. We will report several experiments to verify the robustness of
the proposed approach to the presence of possible mislabeled samples. In partic-
ular, we will show that the performance obtained with a simple classifier trained
on the training set “cleaned” by our algorithm is comparable and even better than
those obtained by some state-of-the-art MCS trained on the original datasets.

1 Introduction

Pattern recognition techniques are often used in environments where adversaries can
consciously act to limit or prevent accurate performance from a classification point of
view (adversarial environments). A classical example is spam filtering where spammers
tailor messages to avoid the most recent spam detection techniques. Further examples
of adversarial environments arise in the field of computer security where there is an
escalating competition between detection and evasion techniques for various types of
attacks. In general, in fact, one can expect that whenever pattern recognition technique
is used to provide protection from illegal activities, adversaries will deliberately attempt
to circumvent these defences.

An interesting paper in the context of adversarial learning is the one by Barreno et al.
[2]. One of the open questions posed by the authors is about what defenses exist against
adversaries manipulating (attacking) learning systems. In this paper we try to give an
answer by means of a multiple classifier approach. Multiple Classifier Systems (MCS)
are currently used in several security applications like intrusion detection in computer
networks [6] and spam filtering [3,9,11]. However, there are very few MCS proposals
that explicitly address the problem of learning in adversarial environments. One of this
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can be found in the papers by Biggio et al. [4,5]. Although they afford the adversarial
classification in a quite general way, the proposed solutions seem tailored to the spam
filtering problem.

In adversarial environments mislabeled samples can be forced by malicious users
that are able to perform a corruption of the training data labels (this kind of attack is
also known as poisoning attack [1]). An example arises in the problem of identification
of HTTP traffic flowing through port TCP 80. In this case the ground truth of the training
data is typically only based on the port number [10]. So, it is possible that some training
labels are incorrect since a malicious user can have performed a sort of port-spoofing
attack, changing the actual port number of a flow.

In this paper we propose a general MCS approach to find out and clean mislabeled
training samples. The proposed algorithm, by suitably combining the output of an en-
semble of base classifiers whose weights are dynamically updated, iteratively changes
the labels assigned to training samples and considers the training set cleaned when the
amount of changes becomes stable across successive iterations.

We will describe several experiments to verify the robustness of the proposed ap-
proach to the label corruption problem. In particular, we will show that the performance
obtained with a simple classifier trained with the “cleaned” training set is comparable
and even better than those obtained by some state-of-the-art MCS trained on the original
(i.e., corrupted) datasets.

The rest of the paper is organized as follows: in Section 2 some related work are
reviewed. In Section 3 the proposed approach is presented, while experimental results
are described in Section 4. Finally, some conclusions are drawn in Section 5.

2 Related Work

As stated in the Introduction, there are very few proposals in the open literature about
the use of an MCS approach to deal with adversarial learning problems. On the other
hand, the more general problem of learning when some samples were randomly as-
signed the wrong class label (also known as label noise problem) has been afforded in
the past in the MCS context.

AdaBoost [8] has shown to often improve the base learner accuracy. Since its intro-
duction, it has been successfully applied to many problems. Although its wide-spread
success, it is susceptible to overfitting when noisy samples are present, as pointed out
by Dietterich [7]. In fact, when training samples are noisy and therefore difficult to
fit, AdaBoost increases the weights of those samples and overfit them because many
consecutive base models may not learn them properly. Oza [14] proposed an approach,
called AveBoost2, to overcome this problem that can be seen as a relaxed version of
AdaBoost. The AveBoost2 averaging mechanism does not allow the weights of noisy
samples to increase rapidly, thereby mitigating the overfitting problem. An experimen-
tal comparison of AveBoost2 with AdaBoost on some UCI datasets with a 10% of label
noise added to the original data demonstrated the better robustness of the former algo-
rithm to label noise.
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Melville and Mooney [13] introduced a new kind of MCS, called DECORATE, to
take into account the label noise problem. DECORATE (Diverse Ensemble Creation
by Oppositional Relabelling of Artificial Training samples) uses an existing “strong”
learner to build an effective diverse committee in a fairly simple, straightforward man-
ner. This is accomplished by adding different randomly constructed samples to the train-
ing set when building new committee members. These artificially constructed samples
are given labels that disagree with the current decision of the committee, thereby easily
and directly increasing diversity when a new classifier is trained on the augmented data
and added to the committee.

Thiel [17] made a comparison between single classifiers and an ensemble when noisy
labels are present in the training data. Another point addressed in this paper is if clas-
sifiers trained on soft labels are more resilient to label noise than those trained on hard
labels. Several MCS schemes were considered: Minimum, Median, Average, Dempster-
Shafer, orthogonal sum rule, Decision Templates, simple probabilistic product, and an
optimal least squares solution calculated using the pseudoinverse. The main finding of
this study is that the ensemble typically improves the overall accuracy in presence of
label noise, but the right MCS architecture has to be properly selected. Moreover, by
comparing classifiers trained on soft versus hard labeled data, it turned out that the soft
approach is more resistant to label noise.

3 The Proposed Approach

SOCIAL is the acronym of Self-Organizing ClassIfier ensemble for Adversarial
Learning. It is specifically designed to deal with training sets having corrupted labels
as the ones that occur in adversarial leaning problems. The principle behind it is that a
community through a democratic approach can remove most of its own initial mistakes
and then can improve its behavior.

SOCIAL is based on a multiple classifier approach with a parallel topology. In partic-
ular, by looking at the results provided by the ensemble, SOCIAL evaluates and dynam-
ically updates a reliability for each base classifier. By suitably combining the outputs
of the base classifiers using these reliability values, it is possible to detect and clean
mislabeled data in the training set. The algorithm, in fact, after an iterative evolution,
returns a cleaned training set. This result is obtained by iteratively changing the labels
assigned to the samples and considering the training set cleaned when the amount of
changes becomes stable according to a suitably defined criterion.

3.1 The SOCIAL Algorithm

The main parameter used by SOCIAL is the Degree of Truth, hereinafter denoted with
DoT1. A DoT value, ranging in [0, 1], is assigned to each sample; it represents the
probability that the label assigned to the sample is correct.

1 The concept of DoT is often used in the context of fuzzy theory [15]. In this case statements are
described in terms of membership functions, that are continuous and have values belonging
to the range [0, 1]. For example, given the measured value of a parameter, the membership
function gives the degree of truth that the parameter is “high” or “low”.
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The algorithm is composed by two phases: a bootstrap step (t = 1) and an iterative
evolution (t > 1). In the bootstrap step the DoT distribution requires to be initialized.
Making the assumption that the noise distribution is unknown, a possible criteria is to
assign a value equal to 1 to the DoT of each sample. This means that we initially trust
the labels assigned to the training set samples.

Since the second phase of the algorithm provides for an iterative evolution, another
parameter to be considered is δdB , that is the value used for the terminal condition of
the algorithm. This value is calculated as the ratio (in decibel) between the number of
the samples that change their label across two consecutive steps of the algorithm.

Fig. 1 shows the pseudocode of the algorithm. SOCIAL has as input the training
set T = (x1, y1(1), . . . , (xN , yN (1)), the base model learning algorithms L1, . . . , LB

and a threshold value τ for the terminal condition. So, yi(1) represents the initial label
(possibly corrupted) of the sample xi.

The algorithm, for each step t, maintains a distribution DoT (t), where each ele-
ment DoTi(t) is associated to the sample xi. This distribution gives the probability
that the sample xi really belongs to the class yi. As stated earlier, in the bootstrap step
DoTi(1) = 1 ∀i ∈ 1, 2, . . . , N .

For each step t, as first operation SOCIAL builds, through a k-fold cross validation
approach, a function hb(t) that associates a predicted class ŷb

i (t) to each sample xi, for
each base classifier b (b ∈ 1, . . . , B). More in details, the training set T is randomly
partitioned into F disjoint subsets V1, . . . , VF (called folds) of equal size. The samples
of each Vj are then classified using T −Vj as the training set, so obtaining the predicted
class labels ŷb

i (t).
Starting from ŷb

i (t), SOCIAL evaluates the WCM (see Tab. 1), where each entry is
calculated as shown in Eq. 1. Here Ni represents the number of samples belonging to
class Ci. Note that WCM differs from a standard confusion matrix since each classified
(correctly or not) sample xk is weighted by its DoTk.

Table 1. Weighted Confusion Matrix (WCM) for M -classes classification

Predicted Class
True Class Ĉ1 Ĉ2 . . . ĈM

C1 e11 e12 . . . e1M

C2 e21 e22 . . . e2M

...
...

...
. . .

...
CM eM1 eM2 . . . eMM

eb
ij(t) =

∑N
k=1:yk(t)=Ci and ŷb

k(t)=Cj
DoTk(t)

Ni
(1)

Successively, the algorithm evaluates the Classifier Reliability Rb(t) for each base clas-
sifier b. This is a vector whose values Rb(Ci, t) provide, for each predicted class Ci, a
degree of belief on the correctness of the classifier’s guess. These values are obtained
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by comparing the response of the classifier to the output of the ensemble. In particular,
they are calculated starting from the WCM in this way:

Rb(Ci, t) = eb
ii(t) (2)

After the Classifier Reliability evaluation, the algorithm combines the output of the base
classifiers by means of a Weighted Majority Voting approach. In this way it is possible
to update the label yi(t) of each training set sample as well as the DoT (t) distribution:

yi(t + 1) = argmax j

∑B
k=1:ŷk

i (t)=Cj
Rk(ŷk

i (t))

B

DoTi(t + 1) = max
j

∑B
k=1:ŷk

i (t)=Cj
Rk(ŷk

i (t))

B

This provides a label for each sample (possibly different from the one obtained in the
previous step) with the associated DoT . At this point SOCIAL evaluates the number of
samples that change their label:

changes(t) =
N∑

i=1

Δi, Δi =

{
1, if yi(t − 1) �= yi(t)
0, otherwise

(3)

Finally, the terminal condition is evaluated, i.e. if

10 ∗ log10
changes(t − 1)

change(t)
< τ.

When such a condition is reached, SOCIAL ends and returns the cleaned training set
(x1 , y1 (t)), . . . , (xN , yN (t)).

4 Experimental Results

In order to assess the algorithm performance, we will show the results obtained on data
produced by some synthetic distributions in which label noise is added according to a
model described in the following.

In order to set-up the SOCIAL architecture we have considered three base classifiers:
a Decision Tree (DT), a Probabilistic Neural Network [16] (PNN) and a K-Nearest
Neighbors (KNN) with K = 3. We chose these classifiers since they are very different
each other and this can favour the diversity among them. It was in fact experimentally
demonstrated that the diversity of the base classifiers is very important to increase the
overall performance of a Multiple Classifier System [12].

In all the tests we will compare the accuracy obtained by the worst base classifier
trained with the training set cleaned by SOCIAL and the accuracy obtained by all the
base classifiers and by some state-of-the-art Multiple Classifier Systems on the original
(i.e. corrupted) training set. As comparing systems, we chose four well-known MCS
architectures, i.e. Bagging, AdaBoost, MultiBoost, and DECORATE.
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SOCIAL((x1 , y1 (1 )), . . . , (xN , yN (1 )),L1 , . . . ,LB , τ )

� N is the number of samples, B is the number of base classifiers,
� τ is terminal condition threshold, M is the number of the classes.

Initialize DoTi(1) = 1 ∀i ∈ 1, 2, . . . N .
Initialize t = 0
Initialize δ = +∞

do
t = t + 1
for b = 1, 2, . . . , B,

� Classifier performance evaluation through a K-fold Cross Validation Approach:
h

b(t) = Lb((x1, y1(t)), . . . , (xM , yM (t)))
for i = 1, 2, . . . , M ,

for j = 1, 2, . . . , M ,
� WCM entries calculation

eb
ij(t) =

N

k=1:yk(t)=Ci and ŷb
k
(t)=Cj

DoTk(t)

Ni

� Classifier Reliability calculation:
Rb(Ci, t) = eb

ii(t)
for i = 1, 2, . . . , N ,

� Label updating for each sample:

yi(t + 1) = argmax j

B

k=1:ŷk
i
(t)=Cj

Rk(ŷk
i (t))

B

� DoT updating for each sample:

DoTi(t + 1) = maxj

B

k=1:ŷk
i
(t)=Cj

Rk(ŷk
i (t))

B

� Label changes evaluation:

changes(t) = N
i=1 Δi, Δi =

1, if yi(t − 1) = yi(t)
0, otherwise

� Terminal condition evaluation:
if t > 1,

δ = 10 ∗ log10
changes(t−1)

changes(t)

while δ > τ
return The cleaned training set (x1 , y1 (t)), . . . , (xN , yN (t)).

Fig. 1. The SOCIAL Algorithm

To experimentally determine the impact of label noise on classification accuracy, we
need to artificially add noise according to a certain model. In our case, when only two
classes are present, a given portion of the training is randomly selected and the asso-
ciated labels are changed. This method can be easily extended to the multi-class case,
with new labels chosen once again in a random manner among the other classes.

Since we are considering synthetically generated data, all the results reported in the
following have been obtained by averaging ten different runs on data generated ac-
cording to the distributions reported in table 2. Training labels were instead corrupted
according to the above described noise model.
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Table 2. The three considered datasets

Distribution Training Set Samples Test Set Samples Classes

Gaussian 4000 1000 2
Mixture of Three Gaussians 4000 1000 2
Rotated Check Board (45◦) 4000 1000 2

The first test was made by using the three synthetic distributions described in table 2
by considering a 30% of label noise.

Table 3. Results obtained with a 30% of label noise on the training set

Gaussian Mixture of Gaussians Rotated Check Board
Multiple Classifiers Systems

AdaBoost 95.70% 80.60% 74.10%
MultiBoost 95.70% 78.60% 72.30%

DECORATE 96.60% 82.00% 84.20%
Bagging 96.40% 79.60% 89.40%

Base Classifiers
DT 80.40% 68.40% 70.00%

KNN 86.30% 71.00% 71.00%
PNN 92.60% 75.80% 75.80%

DT trained with the cleaned training set
DT 97, 10% 82, 40% 91, 00%

In table 3 the first four rows report the accuracy obtained with Multiple Classifier
Systems trained with the original training set corrupted by a 30% of label noise. The
following three rows report the accuracy obtained with the three base classifiers of
the SOCIAL algorithm trained on the original training set and, finally, the last row
reports the accuracy obtained by the worst base classifier (DT, in this case), trained
with the training set cleaned by SOCIAL. It is worth noting that SOCIAL makes the
classification problem simpler than the original one, and even the worst classifier trained
on the cleaned training set becomes better, in terms of accuracy, with respect to all the
base classifiers and all the other MCSs approaches.

In figure 2 it is shown how SOCIAL modifies the training set, and how the δ pa-
rameter changes, in case of the Rotated Check Board dataset. In particular, the graph
on the left of the first row represents the behavior of the accuracy across the different
steps of the algorithm. It can be seen that after the first steps in which the accuracy
improves (this corresponds to an effective cleaning of the training set), there is a second
phase in which the accuracy decreases. This corresponds to an excessive smoothing of
the original distribution. It is possible to find similar information in the graph on the
right of the first row, in which the different values of δdB across the steps are plotted.
In this case we are monitoring the variation of the number of label changes between
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Classification Accuracy δdB

Noiseless Noisy 5th Step – Output

Fig. 2. Classification accuracies and δdB as a function of the step t of the algorithm, on the Rotated
Check Board dataset with a 30% of label noise (first row). Noiseless data, the noisy training set
and the output of the algorithm (second row).

Fig. 3. Comparison of different MCSs trained on corrupted data and a Decision Tree (DT*)
trained on cleaned data, as the % of noise varies.
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two consecutive steps. The value is in dB, so if there are no variations between two
consecutive steps we have a δ value equal to 0. We experimentally noticed that if we do
not want to alter the initial distribution, a good value for the threshold τ is 1dB. In this
graph the dotted line represents an interpolation along three consecutive points of the
δdB line (i.e the continuous one). The threshold τ is indeed applied to the dotted line in
order to better absorb the variations of the original values of δ between two successive
steps. This allows us to choose the right iteration for stopping the SOCIAL algorithm.

In order to evaluate the robustness of the SOCIAL approach to the noise level added
to training set labels, we have considered different percentages of label noise and have
evaluated the accuracy of the DT and the other MCS approaches under test, as reported
in Figure 3. For the sake of brevity, we present results on the Rotated Check Board
dataset only. Anyway, similar results have been obtained on the other datasets. The DT
trained with the dataset cleaned by SOCIAL performs always significantly better than
the DT trained with the original data. Moreover, as it can be noted from Figure 3, start-
ing from a noise level of 30%, the DT trained with the dataset cleaned by SOCIAL
exhibits the best performance among all the considered systems, giving rise to signifi-
cant improvements in classification accuracy.

5 Conclusion

In this paper we proposed an algorithm named SOCIAL that tries to clean a training
set from label noise by using a MCS approach. The algorithm is designed to work in
an adversarial learning context, in which a malicious user tries to camouflage training
samples to limit the performance of the classification system.

The proposed approach demonstrated its effectiveness on several synthetic datasets.
The performance obtained with a simple classifier trained by using data “cleaned” by
SOCIAL is comparable and even better than some state-of-the-art MCS trained on the
original (i.e., corrupted) datasets.

As regards future works, we want to study the convergence of the algorithm as well as
the influence of different base classifiers on its performance. Finally, we are interested
in applying SOCIAL in real adversarial learning contexts.
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Abstract. The aim of this work is the development of an unsupervised
method for the detection of the changes that occurred in multitempo-
ral digital images of the fundus of the human retina, in terms of white
and red spots. The images are acquired from the same patient at dif-
ferent times by a fundus camera. The proposed method is an unsuper-
vised multiple classifier approach, based on a minimum-error threshold-
ing technique. This technique is applied to separate the “change” and the
“no-change” areas in a suitably defined difference image. In particular,
the thresholding approach is applied to selected sub-images: the outputs
of the different windows are combined with a majority vote approach, in
order to cope with local illumination differences. A quantitative assess-
ment of the change detection performances suggests that the proposed
method is able to provide accurate change maps, although possibly af-
fected by misregistration errors or calibration/acquisition artifacts. The
comparison between the results obtained using the implemented multi-
ple classifier approach and a standard one points out that the proposed
algorithm provides an accurate detection of the temporal changes.

Keywords: Multiple Classifiers, Change Detection, Bioimaging.

1 Introduction

The analysis of images of the human retina is an important diagnostic tool in
ophthalmology [1]. Fundus images may be used to diagnose many diseases that
affect the vascular system by revealing the changes that have occurred during
the period between two consecutive visits. In the last years, an intensified effort
has been undertaken in developing tools to assist in the diagnosis of diabetic
retinopathy, which is the most common cause of blindness in the working-age
population of developed countries [2,3,4,5,6].

Hipwell et al. adapted a technique, which was originally developed for fluores-
cein angiograms, and applied it to microaneurysm detection in digitally acquired
red-free retinal images [7]. The system was tested on a large sample of images
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c© Springer-Verlag Berlin Heidelberg 2010



Unsupervised Change-Detection in Retinal Images 95

designed to mimic a screening scenario. Usher et al. developed a system to detect
microaneurysm, haemorrhages and exudates in color retinal images [6]. The pri-
mary aim of their system was to detect any diabetic retinopathy in images from
a diabetic screening population with the secondary aim at detecting all patients
with sight threatening disease. The system was evaluated on a large sample of
unselected digitally acquired low-resolution images from an existing Diabetic
Retinopathy screening programme. Walter et al. proposed an algorithm focus-
ing only on the detection of exudates with an approach based on morphological
techniques [8]. Exudates are found by detecting high grey level variations, and
the removal of the optic disc is indispensable to this approach. Their algorithm
can be divided into two parts: First, they find candidate regions that possibly
contain exudates; then, they apply morphological techniques in order to find the
exact contours of these exudates.

The purpose of this work is the use of a multiple classifier approach for the
automatic detection of changes in pathologies such as microaneurysm, hard ex-
udates, cotton wool spots, hemorrhages, and edema in terms of white and red
spots in color fundus images. The white spots represent hard and soft exudates,
whereas the red spots represent hemorrhages or aneurysmata.

An automatic change detection technique is proposed for color fundus images,
which is based on the unsupervised thresholding method proposed by Kittler and
Illingworth (K&I) [9] and originally developed for computer vision purposes. The
key idea of the method is to model the “change” and “no-change” pixels of a
pair of multitemporal images (i.e., images taken of the same patient at differ-
ent times, which capture temporal changes) by two Gaussian-distributed classes
and to discriminate between such classes by applying a thresholding technique
to a suitably defined “difference image.” In particular, the K&I method allows
the threshold-selection task to be formalized in an unsupervised framework as
the minimization of a criterion function defined according to the Bayes decision
theory. However, a direct application of K&I to the whole image may be severely
affected by the spatial behavior of the overall illumination field at the two obser-
vation dates. In order to compensate for non-uniform illumination across each
acquisition and variation of illumination between the two acquisitions to be com-
pared, a multiple classifier voting approach is used, performing a fusion of label
outputs computed on different windows. The K&I method is applied to sub-
images, which are centered in randomly generated and uniformly distributed
pixels. Each window corresponds to a classifier and the generated output is
weighted. By combining multiple classifiers we are aiming at a more accurate
classification decision even though that comes at the expense of increased com-
plexity and computational cost [10].

2 Methodology

Given two color fundus images I1 and I2 of the human retina, acquired at times
t1 and t2 respectively, (t1 < t2), the purpose of a change detection algorithm is
to identify the meaningful differences (i.e., the ”changes”) between I1 and I2. The
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proposed algorithm also aims at drawing conclusions about what kind of change
has occurred at a change pixel by distinguishing the changes due to white spots
from the ones given by red spots. Hence, an output image expressing the change
occurred at each pixel and its typology is generated. The impact of “perturbat-
ing” factors, such as sensor noise, differences in field angle or in patient position,
might be partially reduced through the selection of appropriate data. For instance,
problems arising from field angle differences can be dealt with by selecting data
acquired at the same angle level set by the ophthalmologist.

Here, an unsupervised approach is chosen due to the lack of a priori infor-
mation about the shapes and the statistics of the change areas. After a prepro-
cessing step, which includes the correction for non-uniform illumination, the two
co-registered and radiometrically corrected images to be analyzed are converted
in a gray level image by computing the ratios of their green and red channels
(see Section 2.3). These new gray-level images are compared, in order to generate
two further images (“difference images”) obtained by a pixel-by-pixel subtrac-
tion of I1 from I2, and viceversa. The difference image is computed in such a
way that pixels associated with retinal changes present gray-level values that are
significantly different from those of pixels associated with unchanged areas.

The K&I algorithm is applied in order to automatically detect the change
pixels by applying a decision threshold to the histogram of the difference im-
age [11]. The selection of the decision threshold is of major importance, as the
accuracy of the final change map strongly depends on this choice. This last step
is highly critical in the development of completely automatic and unsupervised
techniques for the detection of retinal changes.

In the proposed method the K&I algorithm is applied not to the whole image
but to a set of sub-images, which are situated in random positions. For each
window a change map is obtained. Subsequently, for each pixel of the image,
a fusion of label outputs is performed, where each window map corresponds to
a different classifier. This approach compensates for non-uniform illumination
across the image.

Subsequently, the change map obtained from the previous step is further clas-
sified into different categories (we denote this second stage by subclassification),
corresponding to the different typologies of change that occurred (red vs white
spots). To this end, each pixel is described by some features. Our feature space
consists of the green/red ratio and the green channel for both images. We as-
sign the “white spot” and the “red spot” labels based on the intensities of these
features, which are compared to corresponding thresholds. The thresholds are
selected by using an interactive approach, starting from the average values of the
corresponding features, which are calculated on the entire image excluding the
dark background. We use a trial-and-error approach by varying the threshold,
starting from the average value, with an excursion of 30% of the average value,
in order to optimize the results from a visual point of view.

In order to evaluate the multiple classifier approach, the resultant change
maps are compared with the results obtained by applying the K&I algorithm to
the entire image, without correcting for non-uniform illumination.
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2.1 Preprocessing of Retinal Images

Before applying an unsupervised approach to detect changes in two different
retinal images, a preprocessing step is usually necessary to make the two images
comparable in both the spatial and spectral domains. Concerning the former, the
registration has been manually performed by selecting control points, which are
located between blood vessel bifurcations, and by applying a 2nd-order polyno-
mial image transformation [12]. With regard to the spectral domain, changes in
light, in field angle and in the absorption of the mydriatic drop between the two
acquisition times may be potential sources of errors. This problem is mitigated
by performing first a radiometric calibration of the images.

Then the optic disc, which appears in color fundus images as a bright yellowish
or white region, has to be identified and removed from the two acquisitions. It
is important to remove the optic disc for accurate change detection because it
has similar attributes to the exudates in terms of brightness, color and contrast.
Moreover, its detection is essential for the subsequent illumination correction
algorithm. Here, the location of the optic disc is estimated by identifying the
area with the highest variation in intensity of adjacent pixels [13]. In fact, the
appearance of the optic disc region is characterized by a relatively rapid variation
in intensity, because the “dark” blood vessels are beside the “bright” nerve fibres.
The variance of intensity of adjacent pixels is used for the localization of the optic
disc.

Consequently, the non-uniform illumination is corrected by using a homomor-
phic filtering technique [14]. For Lambertian surfaces, an observed image I can
be modeled as a composition of a luminance component, �L, and a reflectance
component, R (i.e., I = L · R). This imaging model holds for retinal images
due to the diffusive characteristics of the fundus. An exception for this model is
the optic disc, which has to be excluded from the computation. The luminance
component can be assumed to vary slowly over space, whereas the reflectance
component contains also medium and high frequency details. By first applying
the logarithm, we transform the multiplicative relation between I, L and R in
an additive one, i.e.:

log(I) = log(L) + log(R). (1)

After applying the logarithm, the image is low-pass filtered, by using a Gaus-
sian filter, and, then, subtracted from the logarithmic original, yielding a high-
pass component (i.e., log(R)). Exponentiation of both high-pass and low-pass
components approximately separates the image into luminance and reflectance
components. Next processing steps are applied to the latter component.

2.2 Multiple Classifiers Approach Using Random Windows

In order to compensate for the problems due to different angles of illumination in
the two acquisitions, which causes local illumination variation not compensated
by the homomorphic filtering, an approach based on multiple classifiers is used.
A thresholding approach for the detection of temporal changes is not applied
to the whole image but to a set of randomly selected sub-images, which can
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be considered as single classifiers. The windows are generated in a random way:
They are centered in randomly generated pixels, which are uniformly distributed
in all the image but the dark background. As a result, the windows partially
overlap. This random distribution is preferable to the case in which the centers
of the windows are equally spaced, because there is a higher variation in the
statistics. The dimension of the windows is an important parameter to set: Here,
the window areas are about 10% of the area of the original image. Another
parameter to set is the number of windows to be used, which influences the
average number of votes per pixel. As the number of votes for each pixel increases,
the performance of the method improves, until reaching a certain value. From
experimental results, the performance of the method improves as the number
of the windows increases, until reaching about 30 votes per pixel. Here, 400
windows were generated, which give us about 40 votes per pixel on the average.

In the adopted multiple classifier voting approach, each window corresponds
to a single classifier: The thresholding approach (described in Section 2.4) is
applied to each sub-image and a change sub-map is obtained. The information
stored in each change sub-map needs to be combined in a global change map.
For each pixel of the image, all the corresponding classifiers vote for “change”
or “no-change” and the classification decision is taken using a weighted sum of
the votes. Here, we chose to use a majority vote (i.e., we sum the vote of each
classifier with the same weight).

This method compensates for the differences in illumination between the two
images to be compared and improves the accuracy of the change detection,
especially in the external regions of the image.

2.3 Feature Transformation

The three RGB channels of fundus images contain different information: The
red channel is usually the brightest channel but exhibits a very narrow dynamic
range; the green channel has the best contrast (the edge of retinal features such
as exudates, optic disc, and blood vessels are brighter than in the other channels);
the blue channel is non-zero mostly in the areas of the optic disk or of the white
spots.

Given an RGB fundus image I = {umn ∈ R
3 : m = 0, 1, . . . , M, n =

0, 1, . . . , N} of size M × N , a band ratioing between green G and red R chan-
nels is applied pixel by pixel. By ratioing these two bands, a new gray-level
image is obtained, in which the features of interest are emphasized. In fact, after
the application of this operator, vessels and blood regions are darker than the
background while white spots are brighter.

2.4 A Thresholding Method for Change Detection in Color Fundus
Images

In order to automatically detect temporal changes in each selected sub-image (see
Section 2.2), a threshold selection task is addressed by adopting an automatic
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change-detection technique, which integrates the image-ratioing approach de-
scribed in Section 2.3 with a generalization of the K&I’s unsupervised minimum-
error thresholding algorithm [9] applied to “difference images”.

A thresholding approach is a simple classification procedure involving only
one input feature, namely, the grey histogram level of a scalar image. Here, such
operator is applied to two “difference images” obtained by subtracting pixel-by-
pixel the G/R ratio at the second acquisition date by the one at the first date
and viceversa. Adopting this approach, the key issue is to choose the threshold
in order to keep the number of misclassified pixels as low as possible. We operate
in an unsupervised fashion, and therefore the prior probabilities P1 and P2 and
the parameters of the conditional probability density functions (pdfs) p1 and
p2 of the classes ω1 = “no-change” and ω2 = “change” cannot be estimated
through a training set. As a consequence, in place of the global grey level pdf of
the difference feature z,

pz(Z) = P1p1(Z) + P2p2(Z), Z ∈ R, (2)

the histogram {h(Z)}L−1
Z=0 of the considered difference image is used (L denotes

the number of levels in the difference image). The selection of an appropri-
ate threshold τ on [0; L − 1] is based on the optimization of a given predefined
criterion function J(τ) which averages a cost function c(·, τ) over the feature his-
togram h(·) [15]. Kittler and Illingworth proposed a thresholding algorithm [9,15]
whose cost function is based on the Bayes decision theory. In particular, they
adopted the classification rule for minimum error, under the Gaussian assump-
tion for the class-conditional pdfs (i.e. pi(·) = N(mi, σ

2
i ), where mi and σ2

i are
the ωi-conditional mean and variance, respectively; i = 1, 2). Under this hypoth-
esis, the only parameters to be estimated are the class prior probabilities P1 and
P2, the class means m1 and m2, and the class variances σ2

1 and σ2
2 .

According to the “maximum a posteriori probability” rule, we would like to
maximize P (ωi|Z) (i = 1, 2). This task is formulated by the K&I method in
terms of the threshold τ , by introducing the following cost function [9]:

c(Z, τ) =
[Z − m̂i(τ)]2

2σ̂i
2(τ)

− 2 ln
P̂i(τ)
σ̂i(τ)

, (3)

with i = 1 for z ≤ τ and i = 2 for z > τ . P̂i(τ), m̂i(τ) and σ̂i
2(τ) are histogram-

based estimates of the class parameters, which depend on τ (i = 1, 2) [9]. The
resulting criterion function is:

J(τ) = 1 + 2
2∑

i=1

P̂i(τ) ln
σ̂i(τ)
P̂i(τ)

. (4)

The optimal threshold τ∗ is chosen as to minimize J(·), which corresponds to an
estimate of the minimum-error threshold. The behavior of the criterion function
is strongly related to the scene characteristics, which are represented by the his-
togram. Typically, only one minimum in the interval [0, L−1] implies histogram
bimodality, which reflects the presence of two natural classes (e.g., “change” and
“no-change”) in the scene.
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3 Experimental Results

The proposed algorithm has been tested on seven multitemporal fundus images
that have been captured by using a ZEISS FF 450plus IR Fundus Camera,
connected to a JVC digital camera. The output generated by the camera is an
8-bit RGB color image. In our testing phases no data on age and ethnicity,
duration or type of retinopathy were available. In order to compare the results
obtained by the algorithm with the performance of a human grader, a test map
was created for each data set with the support of a specialist. The images are
entirely analyzed, with the exception of a background external region. The results
obtained by using the proposed approach based on multiple classifiers (MC)
are compared with the change map obtained by applying the K&I thresholding
technique to the entire image (KEI). The quantitative evaluation of the results
obtained by KEI and MC are shown in Table 1.

The Sensitivity (Sn) is the percentage of pixels which are correctly labeled as
“change” in the change map over the number of actual “change” pixels in the
test map, as determined by a human observer (i.e., it is an estimate of the de-
tection probability [16]). The Specificity (Sp) is the percentage of pixels which
are correctly labeled as “no-change” in the change map (i.e., it is an estimate
of (1 − PF ), where PF is the false-alarm probability [16]). The User’s Accuracy
for “change” (UAch) is the percentage of pixels which are correctly assigned to
“change” over the total number of pixels labeled as “change” in the change map.
A similar definition holds for the User’s Accuracy for “no-change” (UAnc) as well.
The performance of the method can also be evaluated in terms of correctly identi-
fied “change” and “no-change” regions, instead of considering the number of cor-
rectly labeled pixels. In particular, the Region-wise Specificity (R − Sn) is the
percentage of areas which are correctly labeled as “change” in the change map
over the number of actual “change” areas in the test map, and the Region-wise
User’s Accuracy for “no-change” (R−UAch) is the percentage of areas which are
correctly assigned to “change” over the total number of areas labeled as “change”
in the change map. Sp and UAnc obtained by applying both KEI and MC are
generally very high also because the number of true negatives is always high. On
the other hand, Sn is more variable because it strictly depends on the quality and
similarities in luminance of the input images and is thus affected by sharp differ-
ences in the image dynamics at the two dates. The averagevalue of Sn produced by
the proposed MC method is in accordance with the British Diabetic Association
guidelines that recommend a minimum standard of 80% for Sn and 95% for Sp
in the detection of the features which characterize retinopathy [17]. For the user’s
accuracies, very good values of UAnc were obtained for all data sets, whereas poor
values of UAch were given by the MC method, due to the presence of false-alarm
pixels. From this viewpoint, a “minimum-risk” approach could be integrated in
the K&I framework (instead of the “minimum-error” approach), in order to gain
the capability to explicitly control the tradeoff between false and missed alarms
through the use of a cost matrix [16]. However, the application of the MC approach
improves the performance in terms of UAch if compared to the values obtained by
using the KEI technique. In fact, the use of multiple classifiers avoids the presence
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Table 1. Performances of KEI ans MC applied to seven image pairs, in terms of Sn, Sp,
UAch, UAnc, R − Sn, and R − UAch

Method Parameter 1st pair 2nd pair 3rd pair 4th pair 5th pair 6th pair 7th pair Average
KEI Sn 67,7% 39,8% 37,3% 64,2% 4,4% 88,7% 99,6% 57,39%
KEI Sp 87% 96,8% 97,3% 95,5% 99,9% 97,9% 85,4% 94,26%
KEI UAch 5,6% 7% 1,5% 0,6% 8% 8,3% 4,1% 5,01%
KEI UAnc 99,6% 99,6% 99,9% 99,9% 99,9% 99,9% 100% 99,79%
KEI R − Sn 84,8% 75% 83,3% 84,6% 17,6% 100% 95,4% 77,24%
KEI R − UAch 54,9% 31,3% 5,7% 18,6% 50% 38% 75% 39,07%
MC Sn 76,5% 72% 97,1% 97,7% 86,1% 85,6% 45,8% 80,11%
MC Sp 96,6% 96,9% 98,3% 99,6% 98,1% 99% 99,6% 98,3%
MC UAch 21,5% 12,5% 6,2% 10,2% 8% 15% 44% 16,77%
MC UAnc 99,7% 99,8% 100% 100% 99,9% 99,9% 99,6% 99,84%
MC R-Sn 94,7% 96,3% 100% 100% 88,2% 94,1% 56,2% 89,93%
MC R-UAch 37% 19,5% 2,3% 23% 15,9% 27,1% 100% 32,11%

(a) First Image (c) Test Map 1 (e) KEI map 1 (g) MC map 1

(b) Second Image (d) Test map 2 (f) KEI map 2 (h) MC map 2

Fig. 1. First data set: Registered input images acquired from the same eye in June 4,
2003 (a) and in January 24, 2005 (b). Test maps (c) and (d), change maps generated by
KEI (e) and (f), and change maps generated by MC (g) and (h). In order to visualize the
different change typologies, for each method two change maps are shown, transparently
superposed to the first image. Map legend: White in map 1 = new white spots, black
in map 1 = old red spots, white in map 2 = old white spots, black in map 2 = new red
spots, background = “no-change”.

of wide false alarm areas, otherwise caused by differences in luminance. The values
of UAch, as those of Sn, are higher in the evaluation in terms of regions. In fact,
the presence and the position of most “change” areas are correctly detected, even
when their shape is not perfectly reconstructed. // The change maps generated by
KEI and by proposed multiple classifier approachwhen applied to the first data set
(Figs. 1(a) and (b)) are shown in Figs. 1(e)-(f) and in Figs. 1(g)-(h), respectively.
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Several typologies of change are present in this data set, including new and old
spots of both types: The related test maps are shown in Fig. 1(c) and (d). A lower
value of Sn is obtained in this case (about 76.5%), due to several missed alarms
where edges between “change” and “no-change” are present. Anyway, the detec-
tion of the changes and their classification among the different typologies, which is
our aim (representing clinically relevant information), are achieved, as shown by
the higher value of R − Sn in terms of identified regions (about 94.7%).

4 Conclusions

A method able to detect temporal changes in color fundus images using multiple
classifiers has been proposed. Seven different data sets (comprising one pair
of images), including changes of different sizes and typologies, were taken into
account in order to test the performances of the proposed method. The multiple
classifier approach for change detection (based on the Kittler & Illingworth’s
thresholding algorithm) provided quite accurate results. The results are good and
in accordance with the performance specifications recommended by the British
Retinopathy guidelines.

Moreover, thresholding is a very fast approach: No iterations are needed, but
only the calculation of a criterion function, which is defined for L values (e.g.,
L = 256). Given the histogram, the computation time is also independent of the
image size.

The use of the multiple classifier approach increases the computational time
of the method (from about 1 minute per image pair up to 5 minutes) but at
the same time makes it more robust; as a result, the accuracy of the method
increases.

Very good accuracies have been obtained for the analyzed images, for which
the preprocessing phase effectively corrected the geometrical and radiometrical
discrepancies between the two acquisition dates. The main drawback is the pos-
sible sensitivity to the presence of undesired modes such as artifacts and glares.

The development and the implementation of a method for automatically iden-
tifying ungradable images may be an important next step of this research. A
further future development could involve the application of an algorithm to au-
tomatically register images, in order to make this pre-processing fully automatic.
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Abstract. This article introduces a double pruning algorithm that can
be used to reduce the storage requirements, speed-up the classification
process and improve the performance of parallel ensembles. A key el-
ement in the design of the algorithm is the estimation of the class la-
bel that the ensemble assigns to a given test instance by polling only
a fraction of its classifiers. Instead of applying this form of dynamical
(instance-based) pruning to the original ensemble, we propose to apply
it to a subset of classifiers selected using standard ensemble pruning
techniques. The pruned subensemble is built by first modifying the or-
der in which classifiers are aggregated in the ensemble and then selecting
the first classifiers in the ordered sequence. Experiments in benchmark
problems illustrate the improvements that can be obtained with this
technique. Specifically, using a bagging ensemble of 101 CART trees as a
starting point, only the 21 trees of the pruned ordered ensemble need to
be stored in memory. Depending on the classification task, on average,
only 5 to 12 of these 21 classifiers are queried to compute the predic-
tions. The generalization performance achieved by this double pruning
algorithm is similar to pruned ordered bagging and significantly better
than standard bagging.

Keywords: ensemble pruning, instance-based pruning, ensemble learn-
ing, decision trees.

1 Introduction

There is extensive empirical evidence that combining the predictions of comple-
mentary classifiers is a successful strategy to build robust classification systems
with good generalization performance [1,2,3]. The main disadvantages of en-
semble methods are the difficulties in the interpretation of the decisions of the
ensemble and their large computational requirements. In particular, the train-
ing cost, the storage needs and the time of prediction increase linearly with the
number of classifiers that are included in the ensemble. If the errors of the clas-
sifiers in the ensemble were uncorrelated, averaging over larger ensembles should
improve the accuracy of the predictions, because the errors of a given classi-
fier would be compensated by the correct predictions of other classifiers in the
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ensemble. In practice, the ensemble members tend to make errors in the same
examples. Nonetheless, in a wide range of classification problems, the accuracy
of parallel ensembles, such as bagging, improves with the number of classifiers
that are included in the ensemble. However, larger ensembles have larger storage
needs and longer times of prediction. To alleviate these shortcomings, differ-
ent ensemble pruning methods can be used [4,5,6,7,8,9,10,11,12,13]. The goal of
these methods is to reduce the memory requirements and to speed-up the classi-
fication process while maintaining or, if possible, improving the level of accuracy
of the original ensemble. Most ensemble pruning methods replace the original
ensemble by a representative subset of predictors. Besides needing less storage
space and predicting faster, pruned subensembles can actually outperform the
original classification ensembles from which they are extracted [5,6,7,8,10].

Using a different approach, the time needed for prediction using a parallel
ensemble, such as bagging [14], can be reduced by a dynamical pruning method
called instance-based (IB) pruning [11]. In IB pruning the number of classifiers
that need to be queried to estimate the final ensemble prediction is determined
for each instance separately. Assuming that simple majority voting is used, it is
possible to estimate the final decision by querying only a subset of the classifiers
in the ensemble. Given a test instance that needs to be classified, the aggregation
of the outputs of the ensemble members is halted when the probability that
the remaining predictions do not change the current majority class is above a
specified confidence level α. Since the overhead needed to determine whether the
aggregation process should be halted is negligible, the reduction in the number
of queries directly translates in a speed-up of the classification process. This
method does not reduce the storage requirements, because all the classifiers
in the original ensemble need to be available for potential queries. Since the
differences in prediction are below the threshold 1 − α, the differences between
the errors of the dynamically pruned ensemble and of the original ensemble are
also necessarily below 1 − α. Therefore, the generalization performance of the
ensemble is only slightly modified by IB-pruning.

The theoretical analysis of majority voting on which IB-pruning is grounded
relies on the fact that in parallel ensembles the individual classifiers are gener-
ated under the same conditions and independently of each other. The goal of this
investigation is to determine whether IB-pruning can be also used in sequential
ensembles. When the ensemble is sequential, the classifier that is added at one
point in the sequence depends on the classifiers that have been included in the
ensemble up to that point. As a result, one introduces correlations among classi-
fiers, which can result in biases in the estimation of the final ensemble prediction
on the basis of the outputs of the initial classifiers in the sequence. The results of
experiments on benchmark classification problems carried out in this investiga-
tion show that the biases introduced by IB-pruning can cause some distortions
in the estimation of the error rate of the complete ensemble when ordered aggre-
gation is used. By contrast, IB-pruning is remarkably effective when it is used
to halt the aggregation process not in the complete ordered ensemble, but in
the subensemble that is obtained by selecting the first ≈ 20% classifiers in the
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reordered sequence. We conjecture that the reason for this different behavior is
related to the properties of ordered bagging. The curves that trace the depen-
dence of the error rate on the size of the ordered ensemble exhibit a minimum
at intermediate ensemble sizes. This means that the first and the last classifiers
included in the ordered bagging ensemble have rather different properties. As a
matter of fact, the last classifiers that are included in the ordered sequence cause
a deterioration instead of an improvement of the error rate. In consequence, es-
timations based on the first classifiers in the ensemble can be very different from
the final decision, which takes into account all the classifiers in the ensemble.
By contrast, in the second case, the test error rate monotonically decreases with
the size of the ensemble, which implies that the trends detected in the output of
the first classifiers tend to be reinforced by the subsequent predictions.

In summary, we propose a double pruning algorithm, in which dynamical IB-
pruning is applied to a pruned bagging ensemble built with ordered aggregation.
The method combines the advantages of pruning by ordered aggregation and
instance-based pruning; namely the generalization performance of the ensemble
is improved, the storage requirements are reduced, because only the classifiers
in the pruned ensemble need to be stored in memory, and, finally, the efficiency
of the classification process is significantly ameliorated, not only because the
number of classifiers of the pruned ensemble is smaller, but also because IB-
pruning speeds up the prediction of the class label for individual instances.

The paper is organized as follows: Section 2 provides a review of ordered ag-
gregation. The dynamical pruning algorithm IB-pruning is described in Section
3. Section 4 summarizes the results of experiments on benchmark classification
tasks that demonstrate the effectiveness of the double pruning algorithm pro-
posed. Finally, the conclusions of this work are exposed in Section 5.

2 Ensemble Pruning Based on Ordered Aggregation

A possible approach to ensemble pruning is to select from the original ensemble
a subset of representative classifiers whose combined performance is equivalent
or better than the complete ensemble. There are two sources of difficulties in the
realization of this goal. The first handicap is that the selection of classifiers has to
be based on estimates on the training data. However, the objective is to identify a
subensemble that has good generalization performance. Even if we can compute
accurate estimates of the generalization accuracy on the basis of the training data
only, finding the optimal subensemble is a computationally expensive problem
that involves comparing all the possible 2T − 1 non-empty subensembles that
can be extracted from the original ensemble. A feasible approach is to use a
greedy strategy based on modifying the order in which classifiers are aggregated
in the ensemble [6,15,10]. Starting from an initial pool of classifiers, in which
no particular ordering for combination is specified, ordered aggregation builds
a nested sequence of ensembles of increasing size by incorporating at each step
the classifier that improves the performance of the enlarged ensemble the most.
The first classifier in the sequence is generally the one with the lowest training
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error. From the subensemble St−1 of size t − 1, the subensemble of size St is
constructed by incorporating a single classifier from the remaining pool of clas-
sifiers. This classifier is selected by maximizing a measure that is expected to be
correlated with the generalization performance of the ensemble. The measures
that are effective for this selection take into account the complementarity of
the classifiers selected, not only their individual accuracy or their diversity. In
this article we use boosting-based ordered bagging [15], which uses the weighted
training error defined in boosting to direct the ordering process. The algorithm
proceeds iteratively by updating the training example weights as in boosting:
the weights of training examples correctly (incorrectly) classified by the last
classifier incorporated into the ensemble are decreased (increased) according the
AdaBoost prescription [16]. The classifier that minimizes the weighted training
error is then incorporated into the ensemble. The results of extensive experimen-
tal evaluation using bagging to generate the initial pool of classifiers show that
early stopping in the aggregation process allows to identify pruned ensembles,
whose size is ≈ 20% of the complete ensemble, which outperform bagging and
retain baggings resilience to noise in the class labels of the examples.

3 Instance-Based Pruning

Consider a binary classification problem. Assume that we have built a paral-
lel ensemble composed of T classifiers built independently of each other. Each
classifier is induced from the same learning data by repeated applications of a
learning algorithm that involves some form of randomization. Consider an arbi-
trary instance x that needs to be classified. Assume that only t classifiers have
been queried, and that the current (partial) vote count is t1 for class 1 and t2 for
class 2 (t1+t2 = t). Without loss of generality we can assume that t1 ≥ t2. Using
the fact that the classifiers in a parallel ensemble are generated independently
of each other, the probability that the class labels predicted by the subensemble
of size t < T and by the complete ensemble of size T coincide is [11]

P̃(t1, t, T ) =
T−t2∑

T1=max{t1,1+	T/2
}

(T − t)!
(T1 − t1)!(T2 − t2)!

(t1 + 1)T1−t1(t2 + 1)T2−t2

(t + 2)T−t

(1)
where T1+T2 = T , and (a)n = a(a+1) · · · (a+n−1) is the Pocchammer symbol,
or rising factorial, with a and n nonnegative integers. If it is acceptable that,
with a small probability 1 − α, the predictions of the partially polled ensem-
ble and of the complete ensemble disagree, the voting process can be stopped
when the probability (1) exceeds the specified confidence level α. The final clas-
sification is estimated as the combined decision of the polled classifiers only.
In particular, the querying process can be halted after t classifiers have been
queried, if the vector of class predictions of the current subensemble t�1(t; T, α)
is such that P̃(t�1, t, T ) ≥ α. For an ensemble of T = 101 classifiers and a con-
fidence level α = 99% the first few values of t�1(t; T = 101, α = 0.99)/t are
6/6, 7/7, 8/8, 8/9, 9/10, 10/11, 10/12, 11/13, . . .
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4 Experiments

In this section we perform experiments to determine whether IB-pruning can
be used in combination with ordered bagging. In the first set of experiments
IB-pruning is applied to a standard (randomly ordered) bagging ensemble. As
expected, the results of these experiments confirm the effectiveness of IB-pruning
in parallel ensembles. A second batch of experiments show that IB-pruning is
not effective when applied to ordered bagging because of the differences between
the classifiers that appear in the first positions in the ordered ensemble and
those that appear in the last positions. Finally, IB-pruning applied to a pruned
ensemble that is obtained by selecting the first ≈ 20% classifiers in the ordered
bagging ensemble. This last series of experiments illustrates the effectiveness of
IB-pruning on the pruned ensemble in the problems investigated.

All the experiments are performed on twelve binary classification problems
from the UCI repository [17]. The same learning setup is used to make compar-
isons possible. In all cases the results reported are averages over 10 independent
10-fold cross validation estimates. The protocol followed in each execution for
a partition of the data into training and test is as follows: (i) Build a bagging
ensemble composed of T = 101 CART trees [18] using the training set. The
standard settings for the generation of the decision trees are used. The order-
ing of the initial ensemble is determined by the order of generation, which is
random in bagging. (ii) Estimate the generalization error in the test set for the
whole ensemble and for the first 21 trees in the randomly ordered ensemble.
Apply IB-pruning to the complete ensemble using α = 99% recording the test
error and the average number of trees used to classify the instances. (iii) Modify
the sequence of aggregation of the trees in the ensemble using boosting-based
ordering [15]. This method is similar to boosting. However, instead of gener-
ating new classifiers at each step, one selects the classifier from the original
ensemble that minimizes a weighted error on the training set. The weights of
the instances in the formula for the weighted error are specified according to
the prescription given by boosting. The test error for the ordered bagging us-
ing the first 21 trees of the ensemble. This value for the number of selected
trees produces consistently good results in a wide range of datasets [10]. Apply
IB-pruning to ordered bagging ensemble of T = 101 using α = 99%. Compute
the average test error and the average number of classifiers used to classify the
instances. (iv) Finally, apply IB-pruning to the first 21 trees of the ordered en-
semble (T = 21 and α = 99%) recording the number of trees and classification
error.

The results of applying IB-pruning to bagging are summarized in Table 1. For
each dataset, the table shows the average test error for bagging (BAG101), bag-
ging using the first 21 randomly generated classifiers (BAG21) and IB-pruning
applied to the full bagging ensemble (IB-BAG101). The average number of trees
used to classify each instance in IB-BAG101 is shown in the last column of the
table. The corresponding standard deviations are displayed after the ± sign.
These experiments confirm the results reported in [11]. Table 1 shows that the
generalization error of a bagging ensemble with 101 trees is generally better than
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Fig. 1. Test error curves with respect to the number of classifiers for bagging and
bagging ordered using boosting based ordering

Table 1. Results for bagging (best methods are highlighted in boldface)

Test error # trees IB
Problem BAG101 BAG21 IB-BAG101 (α = 99%)
australian 14.5±3.8 14.5±3.8 14.5±3.8 7.4±1.0
breast 4.8±2.8 4.8±2.6 4.8±2.8 8.6±1.3
diabetes 24.9±3.9 24.9±4.0 24.9±3.9 14.3±2.3
german 25.6±3.1 25.9±3.5 25.7±3.1 18.0±2.6
heart 19.6±8.0 19.9±8.0 19.4±7.8 18.5±4.8
horse-colic 17.8±6.3 17.9±6.0 17.7±6.2 9.9±3.0
ionosphere 9.7±4.6 9.8±4.5 9.7±4.5 8.6±1.9
labor 13.4±12.8 14.1±12.9 13.7±12.6 17.7±8.7
liver 31.1±6.2 31.9±6.9 31.1±6.2 21.1±5.2
sonar 25.1±9.7 25.1±9.2 25.0±9.7 19.4±5.4
tic-tac-toe 1.6±1.3 2.2±1.5 1.6±1.3 10.1±1.3
votes 4.4±3.0 4.4±3.0 4.4±3.0 6.1±0.3

a bagging ensemble composed of 21 classifiers. This also confirms the observa-
tion that increasing the size of parallel ensembles in which the generation of the
individual classifiers involves some form of randomization generally improves the
generalization performance of the ensemble [19]. In contrast, when IB-pruning is
used to determine when to stop querying for the classification of new instances,
a performance comparable to BAG101 is achieved in the studied datasets using
on average a fairly small fraction of the classifiers. In particular, the average
number of trees that need to be queried in IB-BAG101 ranges from 6.1 for Votes
to 21.1 for Liver.

Table 2 compiles the results of the application of IB-pruning to ordered bag-
ging ensembles. The column labeled BAG101 displays the average and, after the
± symbol, the standard deviation of the test error rate obtained by a bagging
ensemble composed of 101 trees. The second column presents the results of IB-
pruning when applied to the complete ordered bagging ensemble (IB-OB101).
The average number of trees used by IB-OB101 is given in the fifth column.
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Table 2. Results for ordered bagging (best methods are highlighted in boldface)

Test error # trees IB (α = 99%)
Problem BAG101 IB-OB101 OB21 IB-OB21 IB-OB101 IB-OB21
australian 14.5±3.8 14.3±3.9 13.7±3.9 13.7±4.0 11.3±1.7 7.0±0.5
breast 4.8±2.8 4.5±2.6 4.1±2.6 4.0±2.6 8.7±1.2 5.9±0.3
diabetes 24.9±3.9 24.7±4.0 24.3±3.9 24.3±3.9 17.2±2.3 8.7±0.6
german 25.6±3.1 25.2±3.3 24.8±3.7 24.7±3.8 21.1±2.5 9.3±0.6
heart 19.6±8.0 18.9±7.6 18.6±7.2 18.6±7.1 20.2±4.0 9.4±1.0
horse-colic 17.8±6.3 17.5±6.2 16.3±6.6 16.3±6.5 9.8±2.1 6.6±0.7
ionosphere 9.7±4.6 8.5±4.4 7.5±4.2 7.5±4.1 10.9±2.0 6.7±0.6
labor 13.4±12.8 10.0±11.3 8.3±10.0 8.5±10.0 14.8±7.5 7.9±1.9
liver 31.1±6.2 29.5±6.2 28.2±6.5 28.4±6.7 28.0±4.6 11.8±0.9
sonar 25.1±9.7 23.6±9.5 20.2±10.7 20.2±10.7 26.1±5.3 11.2±1.3
tic-tac-toe 1.6±1.3 1.4±1.2 1.4±1.2 1.5±1.2 9.4±1.0 6.5±0.4
votes 4.4±3.0 4.4±3.1 4.7±3.2 4.6±3.2 7.0±0.8 5.6±0.3

The results for a pruned ensemble composed of the first 21 trees of the or-
dered bagging ensemble are given in the column labeled OB21. These results
show that the performance of ordered bagging with 21 classifiers is better than
that of full bagging for all the datasets investigated except for Votes. Ordered
bagging has two advantages over bagging: faster classification, because only a
small fraction (≈ 20%) of the original classifiers is used, and, in general, bet-
ter accuracy in the test set. Instead of using a fixed number of classifiers, IB-
pruning individually determines the number of classifiers that are needed to
estimate the complete ensemble prediction for each particular instance. When
IB-pruning is used in conjunction with ordered bagging (column IB-OB101 in
Table 2), the number of queried classifiers is generally lower than the 21 trees
used in pruned bagging (OB21). However, it is over the number of elements
queried by IB-pruning for randomly ordered bagging (right most column of
Table 1). In addition, the accuracy improvement with respect to bagging is
not as ample as the improvement of OB21 over BAG101. This poorer perfor-
mance is a consequence of the fact that IB-OB101 is making inference about the
predictions of the complete ensemble on the basis of the predictions of only
the first classifiers in the ordered sequence. These classifiers follow a distri-
bution that is different from the overall distribution of classifiers in bagging.
These results can be understood analyzing the plots displayed in Fig. 1. The
curves depicted trace the dependence of the test error with the size of the en-
semble using bagging and ordered bagging for the classification tasks German
and Sonar. This figure shows that by stopping the aggregation of classifiers
at ≈ 20 − 30% of the total number of elements in the ensemble, a significant
reduction in the classification error is obtained. These error curves are represen-
tative of the general behavior of bagging and ordered bagging in all the datasets
investigated.
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Fig. 2. Comparison of the different methods using the Nemenyi test. Classification
systems whose performance are not significantly different according to this test (p-
value < 0.05) are connected by a line segment in the diagram.

In the final batch of experiments IB-pruning is applied to a pruned ensemble
composed of the first 21 classifiers in ordered bagging. The results of these exper-
iments are displayed in the fourth column of Table 2 (IB-OB21). The last column
shows the average number of trees used by IB-OB21. These results, show that
the generalization error of IB-pruning applied to OB-21 is equivalent to that of
OB21 in the problems analyzed. Small variations of one or two tenths of a percent
point both positive and negative can be observed for some datasets. Therefore,
the improvements obtained by IB-OB21 over complete bagging (BAG101) are
of the same magnitude as the improvements obtained by the pruned ensemble
obtained by early stopping in ordered aggregation (OB21). The number of trees
that need to be stored in memory is also reduced from 101 to 21 trees. Finally,
the average number of trees that need to be queried is further reduced by the
application of IB-pruning to the pruned ensemble OB21. Specifically, IB-OB21
employs an average number of trees that ranges from 5.6 (Votes) to 11.8 (Liver).
In summary, the application of IB-pruning to the pruned ensemble obtained from
ordered aggregation (OB21) improves the accuracy and reduces the memory re-
quirements of bagging as much as OB21 does. It has the additional advantage
that it predicts even faster than OB21.

The overall generalization performance of the different ensemble methods in
the classification tasks analyzed is compared using the methodology proposed
by Demšar [20]. Fig. 2 displays the rank of each method averaged over the re-
sults in the different classification tasks. In this diagram, the differences between
methods connected with a horizontal line are not significant according to a Ne-
menyi test (p-value< 0.05). The critical difference (CD=2.2 for 6 methods, 12
dataset and p-value< 0.05) is shown for reference. The best overall performance
corresponds to OB21 and IB-OB21. The performance of these two methods is
equivalent in the classifications tasks investigated. According to this test the
performance of OB21 and IB-OB21 in terms of average rank is significantly bet-
ter than standard bagging. The performances of the remaining methods are not
significantly different from bagging.
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5 Conclusions

In this article we propose to combine two existing pruning strategies to reduce
the computational costs associated with the use of ensembles of classifiers for
prediction and to improve their generalization performance. The first strategy
selects a subset of complementary classifiers from the original ensemble to re-
duce the storage requirements, speed-up the classification process and improve
the generalization performance. The algorithm is based on modifying the order
of aggregation of the classifiers in the ensemble: a nested sequence of ensembles
of increasing size is built by incorporating at each step the classifier that is ex-
pected to improve the classification error the most. The pruned subensemble is
obtained by early stopping in the ordered aggregation process. In this article,
the weighted error function used in boosting is used to guide the ordered aggre-
gation. Nonetheless, other criteria based on the complementarity of the classi-
fiers incorporated in the ensemble can also be used. Experiments in benchmark
classification problems have shown that this strategy can improve the general-
ization error of bagging ensembles by keeping only 20−30% of the classifiers, the
first ones in the ordered sequence. The second strategy, instance-based pruning
(IB-pruning), does not require any manipulation of the ensemble. It is applied
dynamically when a new instance is classified. Using the fact that the classifiers
in a parallel ensemble, such as bagging, are generated independently of each
other, it is possible to compute the probability that the majority class obtained
after having queried t classifiers will not change when the output the remaining
classifiers becomes known. If this probability is above a specified confidence level
α. The application of this method does not reduce the storage requirements (all
the classifiers need to be stored in memory for potential queries), but it leads to
a significant reduction in the average number of queries of ensemble classifiers
without a significant modification of the accuracy of the ensemble.

In the problems investigated, IB-pruning applied to the original (randomly
ordered) bagging ensemble obtains error rates similar to the complete ensemble
and reduces the average number of queries more than the pruned ensemble that
is built by selecting the first 21 classifiers in the ordered ensemble. However, its
accuracy is lower than the pruned ensemble. When IB-pruning is applied to the
complete ordered ensemble its generalization accuracy is better than the com-
plete ensemble. Nevertheless, this accuracy is still inferior to the pruned ordered
ensemble. This is due to the fact that the distribution of the predictions of classi-
fiers that appear first in the ordered ensemble is different from the last classifiers
included. Therefore, one of the basic assumptions of IB does not hold, leading
to suboptimal performance. Finally, when IB-pruning is applied to the pruned
ordered ensemble itself, a significant speed-up is achieved with a performance
that is similar to the pruned ensemble and much better than bagging. The re-
sult is a double pruning algorithm that significantly improves the performance of
bagging, achieving similar accuracy as pruned ordered bagging. Furthermore, it
reduces the memory requirements, because only the classifiers that are selected
in the pruned ordered ensemble need to be accessible for potential queries, and
predicts much faster than standard bagging.
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pruning techniques based on ordered aggregation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 31(2), 245–259 (2009)
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Estimation of the Number of Clusters Using
Multiple Clustering Validity Indices

Krzysztof Kryszczuk and Paul Hurley

IBM Zurich Research Laboratory, Switzerland

Abstract. One of the challenges in unsupervised machine learning is
finding the number of clusters in a dataset. Clustering Validity Indices
(CVI) are popular tools used to address this problem. A large number
of CVIs have been proposed, and reports that compare different CVIs
suggest that no single CVI can always outperform others. Following sug-
gestions found in prior art, in this paper we formalize the concept of
using multiple CVIs for cluster number estimation in the framework of
multi-classifier fusion. Using a large number of datasets, we show that
decision-level fusion of multiple CVIs can lead to significant gains in
accuracy in estimating the number of clusters, in particular for high-
dimensional datasets with large number of clusters.

Keywords: clustering, clustering validity indices, multiple classifier.

1 Introduction

Clustering algorithms are unsupervised machine learning techniques seeking to
discover structure in unlabeled data sets. They analyze the similarities between
the data and group it into similarity clusters [1,2]. One of the properties of
interest when analyzing unknown data is the number of such clusters. Discovering
the number of clusters inherently present in the data has important practical
applications, including computational biology [3], web text mining [4], etc.

To date no theoretically optimal method for finding the number of clusters
inherently present in the data has been proposed. Existing algorithms include
stability-based methods [5,6], model-fitting-based algorithms [7], and methods
based on Clustering Validity Indices (CVI) [1]. A CVI is a measure derived from
the obtained clustering solution, which quantifies such properties of a clustering
solution as compactness, separation between clusters, etc. The principal usage
of CVIs is comparison of alternative clustering solutions. CVIs can be used for
the task of cluster number estimation, if the compared clustering solutions use
different number of clusters [8].

A recurring problem with the use of CVIs is that each CVI is designed to
capture a specific aspect of the clustering solution that suggests how adequate
that solution is. At the same time, other aspects can be inadequately represented
or ignored altogether. For instance, a CVI that verifies how compact the obtained
clusters are will frequently report that elongated clusters are not compact at all,
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although such clusters may correctly represent the data. No CVI can a-priori be
assumed better than its alternatives [8].

In this paper, we propose to overcome this problem by estimating the number
of clusters by a fusion of multiple CVIs in order to estimate the number of clusters
in the data. We notice an analogy between using multiple CVIs and constructing
multiple classifier ensembles [9]. The motivation of our work is that although no
single CVI can capture correctly the validity of any clustering solution, a proper
conciliation of multiple CVIs should be able to cope with the task. In this work we
treat the yield of each considered CVI as a feature that characterizes the quality
of a clustering solution. We hypothesize that an ensemble of CVI features is a
better predictor of clustering quality than any of the CVIs taken separately. To
the best of our knowledge, the only attempt to combine validity indices into
a compound index was reported in [10]. However, fusion of CVIs for cluster
number estimation is not the main topic of [10]. Consequently, only simple score
averaging of CVIs were used, and no comparison with other possible solutions
was presented. In this paper, we compare score-, and decision fusion strategies of
combining multiple CVIs using a large number of synthetic datasets. The results
of our experiments suggest that decision-based multiple CVI fusion techniques
offer highest accuracy in detecting the correct number of clusters in a dataset,
provided that all used CVIs are individually competent. The result of this paper
are particularly relevant to high-dimensional data analysis with multiple clusters,
when visual inspection of the clustering solution is impractical or impossible.

The rest of the paper is structured as follows. Section 2 gives an overview of the
CVIs used in this work. In Section 3 we provide the framework of cluster number
estimation using multiple CVIs. The applied experimental methodology and the
experimental results are described in Section 4. Section 5 gives a discussion of
the results and concludes the paper.

2 Internal Clustering Validity Indices

In this work, we used three popular, internal clustering validity indices, the
Davies-Bouldin, Calinski-Harabasz and Dunn indices, as in [11]. The choice of
the CVIs was dictated by the fact that they are well-known measures, frequently
used for the task of choosing the best clustering solution. The Davies-Bouldin
and the Calinski-Harabasz indices were reported as performing well for the task
of comparing clustering solutions [12].

Davies-Bouldin index is computed as

sDB =
1
k

k∑
i=1

maxj=1,...k;i�=k(
di + dj

d(ci, cj)
), (1)

where k denotes the number of clusters. If i, j are cluster labels, then di and dj

are average distances of all patterns in clusters i and j to their respective cluster
centroids, and d(ci, cj) is the distance between these centroids [13]. Smaller value
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of sDB indicates a ”better” clustering solution. In order to be consistent with
other two clustering validity indices considered in this work, we used 1− sDB to
have a maximum as an indicator of the preferred clustering solution.

Calinski-Harabasz index is computed by

sCH =
trace(SB)
trace(SW )

· np − 1
np − k

, (2)

where SB is the between-cluster scatter matrix, SW the within-cluster scatter
matrix, np the number of clustered points, and k the number of clusters [14].
When using the CH index to compare clustering solutions, maximal value of
sCH identifies the preferred candidate.

Dunn index is defined as
sDunn =

dmin

dmax
, (3)

where dmin is the minimum distance between two points belonging to different
clusters, and dmax is the maximum distance between any two points selected
from the same cluster [15]. The highest value of sDunn indicates the optimal
clustering solution among the considered candidates.

3 Using Multiple CVIs to Compare Clustering Solutions

3.1 Estimation of the Number of Clusters Using Internal CVI

The application of a CVI to determine the number of clusters of data is straight-
forward. Given a set of alternative clustering solutions, the preferred one is
found by comparing the CVIs calculated for several candidate clustering solu-
tions [8,16,17]. In order to find the number of clusters, a clustering algorithm is
used with the number of clusters equal to k ∈ Ω, where Ω is the ordered set
of candidate cluster numbers. The preferred clustering solution is obtained by
finding the value of kest that maximizes the function CV I(k) over all values from
Ω. Under the assumption that the chosen clustering algorithm is able to cluster
the data properly, then ktrue = argk∈Ω max(CV I(k)) is the sought number of
clusters.

There is no single theoretically optimal CVI that is guaranteed to work well
with all datasets. The reported empirical comparisons of CVI performance argue
in favor of different algorithms [12,18,17,11,19]. In the absence of theoretically
proven superiority of any CVI over the rest of the pack, we conclude that all
CVIs capture certain aspects of a clustering solution that helps in comparing it
to its alternatives, but none does it universally better than others.

The situation is strikingly similar to the dilemma of comparing and select-
ing best classifiers in pattern recognition, where the no free lunch theorem rules
that there is no universally best classifier [8]. Multi-classifier ensembles have been
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shown to offer a powerful alternative to single-classifier solutions [20] as a partic-
ularly effective option when the considered individual classifiers are diversified
and accurate [9].

In this paper we approach the problem of estimating the number of clusters
from a multi-classifier fusion perspective. From this angle, estimation of the
number of clusters is a classification problem, where each class corresponds to a
particular number of clusters in the considered dataset. We consider individual
CVI algorithms as feature extractors. Resulting features can be used individually
for cluster number estimation, as it is the common case; or can be used together
using a combining fusion classifier.

3.2 Fusion Methods for Clustering Validity Indices

The multi classifier fusion can be realized by means of trained or rule-based
combining classifiers. In general, trained fusion classifiers are considered to be
more flexible and powerful than their heuristic, rule-based counterparts, given
that an adequate training data corpus is available [21]. In the case of the CVI
combination, it is not evident how to construct such a training corpus, and
therefore heuristic fusion techniques are considered in this paper. In particular,
we consider score-, and decision- level fusion schemes [20].

Score fusion-based methods. A combined score sF is computed using i nor-
malized CVI scores [s1, s2, ..., si], as follows

– SF-A: sF = 1
i

∑i
m=1 sm,

– SF-G: sF = (Πi
m=1sm)

1
i ,

– SF-H: sF = i∑
i
m=1

1
sm

,

– SF-Med: sF = median({s1, s2, ..., si}).
In order to perform a meaningful score-based fusion it is necessary to normalize
the scores [s1, s2, ..., si] to a common range. We used a min-max normalization,
which scaled the scores to a 0 ≤ si ≤ 1 range. The normalization was performed
within each clustered dataset, across all candidate k ∈ Ω. We also evaluated
other score normalization schemes, including z-norm across k ∈ Ω, as in [10],
and global z-norm, where the mean and variance of si were estimated using a
large range of possible clustering solutions. We obtained the best results with the
min-max normalization and this scheme was used in the experiments reported.
An example of score-based fusion using the four considered strategies is shown
in Figure 1(b).

Decision fusion-based methods. Bezdek and Pal suggested the use of “some
voting scheme” for CVIs [18]. Let Ψ = {1, 2, ..., n} be a vector of class labels,
each corresponding to estimated cluster number from Ω. A set of class decisions
di ∈ Ψ , originating from i individual CVIs is obtained. If m ∈ Ψ is a class
label, then di = argm max(si(m)). Consequently, the decision fusion strategies
we considered were
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– DF-A: dF = round(1
i

∑i
m=1 dm),

– DF-G: dF = round((Πi
m=1dm)

1
i ),

– DF-Mod: dF = mode({d1, d2, ..., di}),
– DF-Med: dF = median({d1, d2, ..., di}).

At first, computing the mean of decision values may seem counterintuitive.
Indeed, in order for DF − A, DF − G and DF − Med to return meaning-
ful results, the ordered set Ω = {n1, n2, ..., nm} must be constructed so that
n1 < n2 < ... < nm. In this situation, the fusion algorithm will compensate
for over- and underestimated kest, given that enough single CVI decisions are
involved. In our experiments ni+1 − ni = 1 for all i, where i are indices of n
in Ω. An example where decision fusion returns meaningful results is shown in
Figure 1. In Figure 1(a), individual CVIs incorrectly return 9, 9 and 12 as the es-
timated number of clusters kest, respectively. In Figure 1(b), the decision fusion
strategies return DFA = DFG = 10 (correctly), and DFMod = DFMed = 9.
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Fig. 1. Normalized CVI scores (a) and, fused scores using considered score-based fusion
strategies (b), for ktrue = 10 clusters. In the example shown, all of the CVIs (a) and
fused scores (b) point out to the incorrect number of clusters kest = 9. In this example,
decision fusion strategies return DFA = 10 and DFG = 10, the correct number of
clusters.

Decision rank fusion-based methods In our experiments we compared a
number of decision rank fusion techniques. However, the results we obtained
proved to be not competitive in comparison to other reported fusion strategies
and we exclude them from this report due to space constraints.

4 Experimental Evaluation of CVI Fusion Techniques

Data generation and normalization. In order to evaluate the performance
of the compared CVI fusion schemes we produced a large number of randomly-
generated datasets. This choice allowed us to fully control the clustering tendency
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present in the clustered data, as well as the data properties such as dimension-
ality ndim, number of data clusters ktrue and number of data points per cluster
np. We also used a clustering algorithm that suits the shape of the actual data
clusters, in order to reduce the impact of incorrect clustering on the observed
CVI performance. This level of control is hard to achieve using scarce real data.

For each generated dataset, its ndim, ktrue and np were set. For each cluster a
centroid vector and a variance vector were generated from a uniform multivariate
distribution. Each mean vector was then scaled using a parameter p. So obtained,
randomly generated mixture model was accepted only if all distances between
the cluster centroids were greater than a threshold t (in this work t = 0.1). This
procedure ensured that two or more clusters are not randomly placed on top
of one another, making it hard or impossible to estimate the true number of
clusters. For each cluster, np data points were randomly generated from a Gaus-
sian distribution with variance and mean defined by the corresponding centroid
and variance vector. Finally, the data was scaled to fit into a unit hypercube
with dimensionality equal to the dimensionality of the generated dataset ndim.
Figure 2 shows an example of a generated 2-dimensional dataset.
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Fig. 2. Sample generated clustering problem for p = 5, ktrue = 12 (a), and correspond-
ing solution found by multiple k-means clustering with k = ktrue (b)

Evaluation method. In the experiments, we compared the accuracy of the
cluster number estimation procedures involving single CVIs with the procedures
involving considered multi-CVI fusion approaches described in Section 3.2. For
each fixed data dimensionality ndim and the number of clusters ktrue, we gener-
ated a batch of 100 datasets, as described in Section 4.

The normalized data from each set of the batch was clustered using the k-
means algorithm with Euclidian distance measure [8], with the candidate num-
ber of clusters k = [2, 3, ..., 20]. The clustering was repeated 10 times for each
value of k, each time using a random initialization of prototype cluster cen-
troid positions. The clustering solution with the least mean within-cluster sum
of point-to-centroid distances was selected as the best for the given k. Then, the
three CVIs (sDB , sCH and sDunn) were computed for each k. Consequently, for
each batch of data we obtained 19 sets of 3 CVI scores, which were normalized
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and fused using the methods described in Section 3.2. Finally, as the output for
each clustered dataset we obtained a set of estimates kest of the true number of
clusters, as described in Section 3.1.

In the assumed classification framework, we compared the performance of
the CVIs and CVI fusion methods by computing the accuracy of assigning a
correct class label to the obtained CVIs. Figure 3 shows an example of the re-
sults obtained from one data batch of 100 random datasets, with dimensionality
ndim = 10, for ktrue = 12. Each plot shows histograms of classification labels
(decisions) kest over 100 datasets, for single and fused CVIs. The histogram value
corresponding to kest = ktrue bin label is the recorded classification accuracy for
a given method of cluster number estimation.
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Fig. 3. Experimental results of a comparison of CVIs (a), and score- (b), and decision-
based (c) CVI fusion methods, for ktrue = 12 clusters, 19 classes (k = [2, 3, ..., 20]),
averaged over 100 randomly generated datasets

Experimental results. We analyzed the performance of single CVIs versus
CVI fusion-based methods for ktrue = [5, 6, ..., 15], ndim ∈ {2, 10, 20}, for con-
stant value of p = 5 and constant number of points per cluster np = 20. The
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Table 1. Results of the experimental evaluation of the compared CVIs and CVI fusion
strategies, for p = 5, np = 20, ndim = {2, 10, 20}, the actual number of cluster ktrue =
[5, 6, ..., 15], with 19 candidate number of clusters (classes), k = [2, 3, ..., 20]. Maximal
accuracy per ktrue is marked in bold font.

ktrue sDB sCH sDunn SF − A SF − G SF − H DF − A DF − G DF − Mod DF − Med
Dimensionality ndim = 2

5 0.41 0.32 0.32 0.4 0.26 0.3 0.21 0.32 0.34 0.42
6 0.23 0.44 0.15 0.2 0.23 0.42 0.24 0.24 0.16 0.26
7 0.29 0.41 0.17 0.26 0.2 0.41 0.22 0.23 0.24 0.3
8 0.2 0.41 0.14 0.23 0.12 0.39 0.15 0.19 0.2 0.27
9 0.14 0.45 0.06 0.14 0.11 0.43 0.15 0.14 0.12 0.18
10 0.14 0.28 0.09 0.13 0.06 0.27 0.2 0.11 0.11 0.17
11 0.11 0.25 0.05 0.11 0.04 0.24 0.13 0.05 0.06 0.13
12 0.08 0.21 0.04 0.08 0.05 0.19 0.12 0.13 0.05 0.09
13 0.19 0.16 0.04 0.13 0.05 0.22 0.08 0.06 0.08 0.21
14 0.09 0.14 0 0.05 0.02 0.13 0.04 0.04 0.03 0.11
15 0.12 0.16 0.03 0.05 0.04 0.16 0.07 0.06 0.04 0.16

Dimensionality ndim = 10
5 0.98 0.98 0.97 0.97 0.94 0.9 1 1 0.98 0.98
6 0.89 0.89 0.88 0.89 0.89 0.85 0.99 0.99 0.89 0.89
7 0.73 0.75 0.75 0.75 0.78 0.68 0.92 0.91 0.75 0.75
8 0.44 0.49 0.49 0.49 0.5 0.48 0.81 0.76 0.49 0.5
9 0.34 0.32 0.32 0.32 0.36 0.3 0.73 0.67 0.32 0.34
10 0.23 0.2 0.2 0.2 0.22 0.2 0.6 0.54 0.2 0.23
11 0.28 0.15 0.15 0.15 0.17 0.14 0.62 0.51 0.15 0.28
12 0.25 0.18 0.18 0.18 0.2 0.17 0.62 0.54 0.18 0.25
13 0.21 0.05 0.05 0.05 0.08 0.05 0.55 0.43 0.05 0.21
14 0.16 0.03 0.03 0.03 0.09 0.03 0.48 0.31 0.03 0.16
15 0.14 0.05 0.03 0.03 0.22 0.05 0.34 0.29 0.03 0.14

Dimensionality ndim = 20
5 0.96 0.96 0.96 0.96 0.96 0.91 1 1 0.96 0.96
6 0.8 0.8 0.8 0.8 0.82 0.77 0.97 0.97 0.8 0.8
7 0.71 0.71 0.71 0.71 0.77 0.7 0.93 0.91 0.71 0.71
8 0.46 0.46 0.46 0.46 0.51 0.44 0.87 0.87 0.46 0.46
9 0.36 0.33 0.32 0.32 0.45 0.33 0.85 0.75 0.32 0.36
10 0.22 0.16 0.16 0.16 0.22 0.16 0.71 0.66 0.16 0.22
11 0.24 0.15 0.16 0.16 0.19 0.15 0.78 0.74 0.16 0.24
12 0.18 0.08 0.08 0.08 0.08 0.08 0.64 0.54 0.08 0.18
13 0.17 0.03 0.03 0.03 0.06 0.03 0.61 0.51 0.03 0.17
14 0.17 0.05 0.04 0.04 0.09 0.05 0.47 0.38 0.04 0.17
15 0.18 0.06 0.02 0.02 0.15 0.05 0.45 0.45 0.05 0.18

number of classes was 19: candidate k = [2, 3, ..., 20]. The results of the experi-
ment are given in Table 1.

5 Discussion and Conclusions

The results of the experiments reported in Section 4 show that combining CVIs
is a viable way of increasing the robustness and accuracy of cluster number esti-
mation in comparison with using a single CVI. In the reported experiments, the
CVI fusion methods outperformed single CVIs in all cases, where all CVIs used
in fusion were similarly accurate. An underperforming CVI often compromised
the accuracy of the fusion results, as in Table 1 for ndim = 2. This effect is
due to the fact that the used heuristic fusion methods have no weighting mech-
anism that could identify and marginalize, or decrease the contribution of the
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underperforming CVI in the fusion process. The detrimental effect of using an
underperforming CVI was particularly pronounced in the case of the score fusion
techniques.

The decision-based fusion rules showed to be in general more robust and
yielded higher accuracy than the score-based fusion methods. It can be explained
by the fact that for all CVIs, the deviations from their corresponding maximal
value |si(kest)−si(k �= kest)| were of different scale and therefore not comparable
quantitatively. However, in the decision-based fusion this deviation is comparable
qualitatively: only the information of argk∈Ω max si(k) is preserved.

The overall best-performing scheme in the experiments reported was the
mean-rule decision fusion scheme DFA, closely followed by the DFG scheme.
This result can be attributed to the fact that the decision-based schemes are ca-
pable of compensating for CVIs that over- and underestimate kest, while being
insensitive to score normalization. This result shows that the individual CVIs
indeed make different errors and therefore are diversified enough to merit an ap-
plication of a multi-classifier fusion scheme. We anticipate that a larger number
of fused CVIs would reinforce this effect.

In our experiments, the benefits of using the CVI fusion techniques became
evident with the increase of the number of clusters within the hypercube, and
with the increase of the dimensionality of the clustered data. In fact, as Table
1 shows, for low ktrue (good class separation) the benefit of using fusion is
immaterial. At the same time, for high-dimensional data (ndim = 20) and high
value of ktrue, these benefits are significant, with the DFA and DF −G schemes
yielding more than double the accuracy of the best individual CVI.

The experiments reported in this paper include only a limited number of
examples to support the claim that using a fusion of multiple CVIs can result in
higher accuracy of cluster number estimation than using a single CVI. Obviously,
a single CVI that is well-selected for the problem at hand, can produce accuracy
competitive to, of higher than, the fusion result. This effect, well-known from
rule-based classifier fusion, is particularly relevant if other used CVIs yield low
accuracy. However, in many practical applications the shape and number of
clusters is unknown, making a-priori selection of a suitable single CVI impossible.
This is particularly the case if the data is of high dimensionality, cannot be
easily visualized, and contains many clusters with few members each. Our results
suggest that in such scenarios a fusion of CVIs for estimation of the number of
clusters can be successfully applied. In the future, we intend to validate our
findings using real datasets and using different clustering algorithms.
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Abstract. Although diversity in classifier ensembles is desirable, its
relationship with the ensemble accuracy is not straightforward. Here we
derive a decomposition of the majority vote error into three terms: av-
erage individual accuracy, “good” diversity and “bad diversity”. The
good diversity term is taken out of the individual error whereas the
bad diversity term is added to it. We relate the two diversity terms
to the majority vote limits defined previously (the patterns of success
and failure). A simulation study demonstrates how the proposed de-
composition can be used to gain insights about majority vote classifier
ensembles.

1 Introduction

The topic of ‘diversity’ has been a favourite buzzword in the multiple classifier
systems community for well over a decade [1, 2]. Numerous diversity measures
have been proposed, measured and maximised, all with the goal to increase
ensemble performance by balancing “individual accuracy” against “diversity”.
It is therefore ironic that after so much time and effort, we still have no uniquely
agreed definition for “diversity” [3,4].

In this work we adopt the perspective that a diversity measure should be
naturally defined as a consequence of two decisions in the design of the ensemble
learning problem: the choice of error function, and the choice of combiner func-
tion. When discussing ‘diversity’, we often overlook these, implicitly adopting
the zero-one loss (classification error) function, and the majority vote combiner.
The principle of combining multiple predictions can of course be applied in many
learning scenarios, such as regression [5], or unsupervised learning [6]. Depend-
ing on the situation, it may be appropriate to adopt other loss functions, such
as the cross-entropy, or the squared loss. We might also consider other combiner
functions, such as the average or product rule.

These two design decisions turn out to be very interesting for the diversity
debate. It turns out that, for particular choices of error/combiner function,
a definition of diversity naturally emerges. For a real-valued target y, if the
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ensemble is a linear combiner f̄ = 1
T

∑
t ft, and we assess it with the squared

loss function, it is well appreciated that

(f̄ − y)2 =
1
T

T∑
t=1

(ft − y)2 − 1
T

T∑
t=1

(ft − f̄)2. (1)

The decomposition [7] states that the squared loss of the ensemble is guaranteed
to be less than or equal to the average squared loss of the individuals. The dif-
ference is what we might call a ‘diversity’ term, measuring the average squared
loss of the individuals from the ensemble prediction. The decomposition only
holds when the ensemble combiner f̄ is the (weighted) arithmetic mean of the
individual predictions. In classification problems, it is common to minimize the
cross-entropy loss function, which is derived from a Kullback-Leibler divergence.
If we combine our multiple class probability estimates with a normalized geo-
metric mean1, then we have the decomposition,

DKL(y||f̄) =
1
T

T∑
t=1

DKL(y||ft) − 1
T

T∑
t=1

DKL(f̄ ||ft). (2)

The KL divergence of the ensemble from a target distribution, is guaranteed to
be less than or equal to the average divergence of the individual estimates [8].
The difference is again what we might appreciate as diversity, measuring the
average divergence of the individuals from the geometric mean.

In this paper we ask the question, can a similar decomposition hold for clas-
sification error and majority vote combiners? The answer turns out to be less
straightforward than the above, and results in two diversity terms, which can
both help and hinder the ensemble performance. In section 2 we present the
main result, and in section 3 relate it to the patterns of ‘success’ and ‘failure’
in classifier combining [9]. Section 4 presents a simulation study monitoring the
behaviour of the diversity terms in different situations.

2 Decomposition of the Majority Vote Error

Considers a two-class problem with class labels in the set {−1, +1}. Let Φ =
{φ1, φ2, . . . , φT } be a set of classifiers, where T is odd. Denote by ht(x) ∈
{−1, +1} the output of classifier φt for input x. Let y(x) ∈ {−1, +1} be the
true label of x. The zero-one loss of φt for x is

et(x) =
{

0, y(x) = ht(x)
1, y(x) �= ht(x) =

1
2

(1 − y(x) ht(x)) . (3)

If Φ is taken to be a classifier ensemble, the majority vote output for input x is

H(x) = sign

(
1
T

T∑
t=1

ht(x)

)
, (4)

1 Equivalent to the product rule.
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where H(x) ∈ {−1, +1}. The zero-one loss of the ensemble for input x is

emaj(x) =
1
2

(1 − y(x) H(x)) . (5)

Define also the disagreement between classifier φt and the ensemble as

δt(x) =
1
2

(1 − ht(x) H(x)) . (6)

Take the difference between the ensemble loss and the average individual loss,

Δ = emaj(x) − eind(x)

=
1
2

(1 − y(x) H(x)) − 1
T

T∑
t=1

1
2

(1 − y(x) ht(x)) (7)

=
1
2
− 1

2
y(x) H(x) − 1

2
+

1
2T

T∑
t=1

y(x) ht(x) (8)

= −y(x) H(x)
1
T

T∑
t=1

1
2

(
1 − ht(x)

H(x)

)
. (9)

Since H(x) ∈ {−1, +1}, we can write ht(x)
H(x) = ht(x)H(x), so we have:

Δ = −y(x) H(x)
1
T

T∑
t=1

1
2

(1 − ht(x) H(x)) (10)

= −y(x) H(x)
1
T

T∑
t=1

δt(x). (11)

This demonstrates that the difference between the majority voting loss and the
average individual loss can be directly expressed in terms of the average classifier
disagreement. In summary:

emaj = eind − y(x) H(x)
1
T

T∑
t=1

δt(x) (12)

Equation (12) is the zero-one loss of a majority vote on a single datapoint x. To
calculate the majority vote classification error, Emaj, we need to integrate with
respect to the probability density function p(x). In the following we also take
advantage of the fact that y(x)H(x) = +1 on datapoints where the ensemble is
correct, and y(x)H(x) = −1 where it is incorrect.

Emaj =
∫
x

eind(x) −
∫
x

y(x) H(x)
1
T

T∑
t=1

δt(x) (13)

=
∫
x

eind(x) −
∫
x+

1
T

T∑
t=1

δt(x)︸ ︷︷ ︸
good diversity

+
∫
x−

1
T

T∑
t=1

δt(x)︸ ︷︷ ︸
bad diversity

(14)
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Here the integral has been separated for two subspaces of the data: x+ where
the ensemble is correct, and x− where it is incorrect.

Equation (14) prompts the following interpretation. The majority vote error
has a direct relationship with two components of diversity, measured by the
disagreement between the classifier decision ht(x) and the ensemble decision
H(x). We label the two diversity components “good” and “bad” diversity. The
good diversity measures the disagreement on datapoints where the ensemble is
correct—and due to the negative sign, any disagreement on these points increases
the gain relative to the average individual error. The bad diversity measures the
disagreement on datapoints where the ensemble is incorrect—here, the diver-
sity term has a positive sign, so any disagreement reduces the gain relative to
individual error.

Another way to think of this is as the number of votes “wasted” by the en-
semble members. For an arbitrary datapoint x, assume the ensemble is already
correct. If there is little disagreement, then several votes have been ‘wasted’, since
the same correct decision would have been taken had some classifiers changed
their votes. This is the “good” diversity term, measuring disagreement where the
ensemble is already correct—more disagreement equates to fewer wasted votes.
The “bad” diversity term measures the opposite: disagreement where the ensem-
ble is incorrect—any disagreement equates to a wasted vote, as the individual
did not have any effect on the ensemble decision. Thus, increasing good diversity
and decreasing bad diversity is equivalent to reducing the number of ‘wasted’
votes.

We now provide alternative formulations of the good/bad diversity terms,
that will facilitate a link to the patterns of “success” and “failure” previously
used to study the limits of majority voting [9]. Let v be a T -dimensional binary
random variable such that vt = 1 means that classifier φt labels x correctly, and
vt = 0 means that the assigned label is incorrect. Construct a T -element vector
1 = [1, 1, . . . , 1]T . Then the scalar product vT 1 will be the number of correct
votes in v. The ensemble is correct when vT 1 ≥ T+1

2 . The “good diversity”
in this case is the number of incorrect votes, i.e., T − vT 1. When the ensemble
is incorrect, the “bad diversity” is the number of correct votes, i.e., vT 1. The
integral across the feature space can be replaced by a summation across all
possible values of v leading to

Emaj = Eind − 1
T

∑
vT 1 ≥ T+1

2

(T − vT 1) p(v)

︸ ︷︷ ︸
good diversity

+
1
T

∑
vT 1 < T+1

2

vT 1 p(v).

︸ ︷︷ ︸
bad diversity

(15)

In the following section we show these terms can be related to the patterns of
‘success’ and ‘failure’ [9] for voting ensembles.
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3 Patterns of Success and Failure

The pattern of success and the pattern of failure were introduced as special
cases illustrating the limits of the majority vote [9]. Given a set of classifiers
of the same individual accuracy p, the pattern of success is the most favorable
distribution of the correct votes, leading to the largest improvement on p. To
achieve this, we define a probability distribution over all possible combinations of
correct/incorrect votes. Each combination where exactly T+1

2 votes are correct,
appears with probability α. The only other combination of votes with non-zero
probability is when all votes are incorrect. In this pattern, there are no wasted
votes, as each vote is needed to ensure the smallest majority of correct votes.

For example, consider three classifiers, Φ = {φ1, φ2, φ3}, each of accuracy
p = 0.6. Denote again a correct vote by 1, and an incorrect vote by 0. The
pattern of success is constructed by assigning probability α to each of the three
combinations of votes 011, 101, 110, and probability 1 − 3α to 000. Since each
of the classifiers will be accurate in two of these combinations, to make up
the individual accuracy of 0.6, α must be 0.3. The majority vote error for this
example is 1 − 3α = 0.1 [9]. This calculation can now be easily demonstrated
using equation (15).

Emaj = Eind − 1
3
(3 × (3 − 2) × α) +

1
3
(0 × (1 − 3α))

= 0.4 − 1
3
× 3 × 0.3 = 0.4 − 0.3 = 0.1.

In the pattern of failure, the correct votes are distributed in such a way that they
are one shy of majority, so the largest quantity of correct votes are wasted. In the
example above, the pattern of failure is constructed by assigning probabilities β
to combination of votes 001, 010 and 100, and probability 1−3β to combination
111. Each of the three classifiers is accurate only in combination 111 (probability
1 − 3β) and one of the combinations with one correct vote (probability β). To
ensure that the individual accuracy is p = 0.6, we have 1 − 2β = 0.6, hence
β = 0.2. Using equation (15) again,

Emaj = Eind − 1
3
((3 − 3) × (1 − 3β)) +

1
3
(3 × 1 × β))

= 0.4 +
1
3
× 3 × 0.2 = 0.4 + 0.2 = 0.6.

In the general definition of the pattern of success, each of the possible
(

T
T+1

2

)
vote

combinations where the ensemble is correct appears with probability α, and the
combination where vT 1 = 0 appears with probability 1− (

T
T+1

2

)
α. All other vote

combinations have zero probability. Then, substituting these values into (15),
we have

Emaj = (1 − p) − 1
T

((
T

T+1
2

)
× T − 1

2
× α

)
(16)
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To ensure that the individual accuracy of all classifiers is p, α must satisfy

α =
p(T−1

T−1
2

) . (17)

Substituting (17) in (16) and applying simple algebraic manipulation, we recover
exactly the expression for the upper bound on majority vote accuracy, defined
in [9]

Emaj = max
{

0, Eind − T − 1
T + 1

(1 − Eind)
}

. (18)

In a similar way, substituting the appropriate figures for the pattern of failure,
(15) leads to the general expression for the lower bound on majority vote error:

Emaj = Eind

(
1 +

T − 1
T + 1

)
. (19)

Equation (15) gives a direct relationship between the majority vote error and
the patterns of success/failure, where the bad and the good diversity partly
“neutralise” one another.

4 Simulation Experiment

At this stage it is difficult to recommend a way to use the decomposition straight-
forwardly in a classifier ensemble algorithm. The simulation study illustrates how
the decomposition can help to gain insight into the internal workings of majority
vote classifier ensembles.

4.1 Data

The 2-class, 2-d data set is shown in Figure 1. The data is generated uniformly
in the unit square and the classes are labelled according to a rotated checker
board2. The problem has a Bayes error of 0.

4.2 Experimental Protocol

The ensemble was sampled from a pool of linear classifiers. Each classifier was
constructed by drawing a random line through a point in the unit square. The
two sides of the line were labelled in the two classes in the way that gave accuracy
greater than 0.5. Thus the classifiers were only slightly better than chance. The
following steps were carried out
2 Matlab code for N data points, uniform distribution, checkerboard with side a,

rotated by θ:
function[d,labd]=gendatcb(N,a,theta)
d=rand(N,2);
d_transformed=[d(:,1)*cos(theta)-d(:,2)*sin(theta),d(:,1)*sin(theta)+d(:,2)*cos(theta)];
s=ceil(d_transformed(:,1)/a)+floor(d_transformed(:,2)/a);labd=2-mod(s,2);

function [d,labd] = gendatcb(N,a,theta)
d = rand(N,2);
d_transformed = [d(:,1)*cos(theta)-d(:,2)*sin(theta),d(:,1)*sin(theta)+d(:,2)*cos(theta)];
s = ceil(d_transformed(:,1)/a)+floor(d_transformed(:,2)/a); labd = 2-mod(s,2);
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Fig. 1. Rotated checker board data and the boundaries of 20 random linear classifiers.
The checker board was generated with side a = 0.63 and rotation angle θ = 0.3.

1. Generate an initial pool Φ consisting of 2000 random linear classifiers.
2. The ensemble size T was varied as

T ∈ {1, 3, 5, 9, 13, 19, 31, 51, 71, 101, 201, 501, 1001}.
3. Generate and test fifty ensembles for each value of T :

(a) T classifiers were sampled without replacement from the pool Φ.
(b) A testing data set of 1000 2-d points was generated.
(c) The testing accuracy of the ensemble, the average individual accuracy,

and the two diversity terms were estimated and stored. The ensemble
labelled the data points through the majority vote.

4. The stored values were averaged across the 50 runs.

To evaluate the effect of the individual accuracy on the ensemble accuracy and
the diversity terms, the above protocol was repeated for a new “selected” pool
of classifiers, engineered so as to have individual accuracy significantly better
than random. The procedure was to first generate 8000 random classifiers, then
select the 2000 with highest accuracy.

4.3 Results

To evaluate the success of the ensemble with increasing T , the majority vote
errors for the random and the selected ensembles are plotted in Figure 2. As
expected, the error drops with T . The “Random” ensembles show better im-
provement on the individual error rate but the ensemble error does not reach
the one when sampling the ensemble from the selected set.



“Good” and “Bad” Diversity in Majority Vote Ensembles 131

Error

10
0

10
1

10
2

10
3

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

 

 

Random
Selected

Ensemble size T

Fig. 2. Majority vote error (solid lines) and average individual error (dotted lines)
versus the ensemble size T . “Random” corresponds to the original classifier pool, where
the individual classifiers are only slightly better than chance. “Selected” corresponds
to the selected pool, engineered to have higher accuracy.

Figure 3 shows the scatter plot of the Good diversity versus Bad diversity
terms. Three values of T were chosen for the illustration, 3, 31, and 1001, shown
with different markers. Each point represents one ensemble, thus there are 50
points for each marker, for each of the 50 trials. The diagonal line corresponds
to when good = bad diversity, in which case they cancel each other out, and
ensemble error is just equal to the individual error. Points above the diagonal
line show ensembles where good diversity is larger than bad diversity, therefore
the ensemble improves on the average individual error. The improvement of the
ensemble with respect to the average individual error can be read off the plot as
the vertical distance from the point to the diagonal line.

The ensembles in subplot (a) are more dispersed than those in plot (b). This
reveals that both good and bad diversities reach larger values for the random pool
than for the selected pool of classifiers for the same ensemble size T . This can
be explained with the fact that higher individual error rate allows for a “weak”
majority, where the ensemble is correct but there are many incorrect votes as
well. This effect is especially visible for T = 3. While the “random” scenario offers
a range of very good and very bad ensembles (scattered far above or below the
diagonal line), the “selected” pool has a modest range of ensembles. For larger
T , both ensemble pools produce compact clusters of points suggesting that the
good-bad diversity ratio stabilises with T . Even though the clusters for T = 1001
are compact, they are positioned differently with respect to the diagonal line.
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Fig. 3. Scatterplots of good diversity versus bad diversity terms for the “random” and
the “selected” pools of classifiers for 3 values of T

The ensembles sampled from the “random” pool are further up compared to
these sampled from the “selected” pool, which is mirrored in the larger versus
smaller improvement on the individual errors in the rightmost points in Figure
2. While the improvement on the individual error can be gauged from Figure 2,
the spread of the values of the good and bad diversity cannot.

Interestingly, the points for T = 3 and T = 31 are not shaped as coher-
ent clusters but are rather split into sub-clusters (more visible in subplot (b)).
The group of crosses far above the main cluster in subplot (b) corresponds to
ensembles with dramatic improvement on the individual error rates (close to
the pattern of success). This may give a lead towards creating ensembles that
magnify good diversity while keeping the bad diversity at bay.

5 Conclusions

In this paper we adopted the perspective that a diversity measure should be nat-
urally derived as a direct consequence of two factors: the loss function of interest,
and the combiner function. We presented a decomposition of the classification
error, using the majority vote combiner, into three terms: individual accuracy,
‘good’ diversity, and ‘bad’ diversity. A larger value of the good diversity reduces
the majority vote error, whereas a larger value of bad diversity increases the
error. We showed a direct relation of these concepts to the upper/lower limits
defined on majority voting error [9]. A simulation study illustrated that the di-
versity terms tend to exhibit a large variance in smaller ensembles, and stabilize
with very large ensembles.
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The decomposition lends direct support not only to the existing theory of
majority voting [9], but also to existing algorithms. The DECORATE algorithm
[10] uses artificially constructed data examples to induce a diversity in majority
voting by making the individuals disagree wherever possible with the ensemble.
The results of this paper suggests it may be possible to construct more targeted
algorithms, which directly magnify the “good” diversity while suppressing the
“bad” diversity.
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Abstract. Understanding ensemble diversity is one of the most impor-
tant fundamental issues in ensemble learning. Inspired by a recent work
trying to explain ensemble diversity from the information theoretic per-
spective, in this paper we study the ensemble diversity from the view
of multi-information. We show that from this view, the ensemble diver-
sity can be decomposed over the component classifiers constituting the
ensemble. Based on this formulation, an approximation is given for es-
timating the diversity in practice. Experimental results show that our
formulation and approximation are promising.

1 Introduction

It is well-known that in order to build a good ensemble, the component classifiers
should be accurate as well as diverse. There are effective processes for estimating
the accuracy of component classifiers, however, measuring diversity is not easy
since there is no generally accepted formal definition. During the past decade,
many diversity measures have been designed; to name a few, the Q-statistics [11],
the disagreement [9], the double-fault [7], the κ-statistic [5], etc. However, it has
been disclosed that existing diversity measures are suspect [10].

Recently, Brown [2] investigated the ensemble diversity from an information
theoretic perspective. He found that the ensemble mutual information can be
naturally expanded into ‘accuracy’ and ‘diversity’ terms, and the ensemble diver-
sity exists at multiple orders of correlation. We believe that this is an important
step towards the understanding of ensemble diversity. However, the expressions
of that information theoretic diversity and its terms, especially the involved in-
teraction information, are quite complicated, and there is no proposal of effective
process for estimating the multiple orders of correlation in practice.

Inspired by Brown’s work [2], in this paper we also study the ensemble diversity
from an information theoretic perspective. From the view of multi-information, we
propose a new formulation where the ensemble diversity and the related terms are
simpler. This formulation enables to decompose the diversity over the component
classifiers. Based on the formulation, we give an approximation for estimating the
ensemble diversity in practice. Experiments show that our formulation and ap-
proximation are promising.
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The rest of this paper is organized as follows. Section 2 briefly reviews some
basics of information theory and Brown’s study. Section 3 introduces our for-
mulation based on multi-information. Section 4 presents an approximation. Sec-
tion 5 reports on experiments. Finally, Section 6 concludes.

2 Background

The fundamental concept of information theory is the entropy, which is a measure
of uncertainty. For a variable X , its entropy H(X) is defined as

∑
x p(x) log(p(x)),

where x is the value of X , and p(x) is the probability distribution.
Based on the concept entropy, the dependence among multiple variables can

be measured by mutual information and its multivariate generalizations. Denote
n variables X1, · · · , Xn as X1:n and another variable as Y , then,

– Mutual information and conditional mutual information [4]:

I(X1; X2) =
∑

x1,x2
p(x1, x2) log

p(x1, x2)
p(x1)p(x2)

(1)

I(X1; X2 | Y ) =
∑

y,x1,x2
p(y)p(x1, x2 | y) log

p(x1, x2 | y)
p(x1 | y)p(x2 | y)

(2)

– Multi-information and conditional multi-information [15,14,13]:

I(X1:n) =
∑

x1:n
p(x1, · · · , xn) log

p(x1, · · · , xn)
p(x1)p(x2) · · · p(xn)

(3)

I(X1:n | Y ) =
∑

y,x1:n
p(y)p(x1:n | y) log

p(x1:n | y)
p(x1 | y) · · · p(xn | y)

(4)

– Interaction information [12]:

I({X1:n}) =
{

I(X1, X2) for n = 2
I({X1:n−1} | Xn) − I({X1:n−1}) for n ≥ 3 (5)

where p(x1:n) is the joint distribution of X1:n, p(x) and p(y) are the marginal
distributions, and p(· | ·)’s are the conditional distributions. 1

As described above, mutual information measures the mutual dependence of
two variables, while both multi-information and interaction information are its
multivariate generation which express the dependence among multiple variables.
Like mutual information, multi-information is nonnegative and equals zero if and
only if all the variables are independent. Interaction information, however, can
be negative; this has likely encumbered its wide application as an information
measure.

In ensemble learning, suppose there is a set of classifiers S = {X1, · · · , Xm}
and the target class is Y ; our objective is to find a combination function g

1 We will use p(·) to denote different distributions when the meaning is clear.
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that minimizes the probability of error prediction p (g (X1:m) �= Y ). Brown [2]
bounded the probability of error by two inequalities [6,8], that is,

H(Y ) − I(X1:m; Y ) − 1
log(|Y |) ≤ p (g (X1:m) �= Y ) ≤ H(Y ) − I(X1:m; Y )

2
. (6)

Thus, to minimize the prediction error, the mutual information I(X1:m; Y ) should
be maximized. Subsequently, an expansion of I(X1:m; Y ) was given based on [3,
Thm 1], and the information theoretic diversity, redundancy and conditional re-
dundancy were defined. Denote Tk as a set of size k. Then,

I(X1:m; Y ) =
∑m

i=1
I(Xi; Y )︸ ︷︷ ︸

relevancy

+
∑m

k=2

∑
Tk⊆S

I({Tk ∪ Y })︸ ︷︷ ︸
information theoretic diversity

(7)

=
∑m

i=1
I(Xi; Y ) +

∑m

k=2

∑
Tk⊆S

I({Tk}|Y )︸ ︷︷ ︸
conditional redundancy

−
∑m

k=2

∑
Tk⊆S

I({Tk})︸ ︷︷ ︸
redundancy

.

As shown above, the information theoretic diversity naturally emerges as an ex-
pression of the interaction information. It can also be found that the ensemble
diversity exists at multiple orders of correlation. Since computing high-order in-
teraction information is generally difficult, only pairwise interactions were mon-
itored in [2]. Such a pairwise diversity, however, can only capture the low-order
components of the multiple orders of correlation.

3 Multi-information Diversity

Lemma 1. The multi-information and conditional multi-information can be ex-
panded as a sum of mutual information and conditional mutual information
terms, respectively. That is,

I(X1:n) =
∑n

i=2
I(Xi; X1:i−1); (8)

I(X1:n | Y ) =
∑n

i=2
I(Xi; X1:i−1 | Y ). (9)

Proof. The multi-information can be written as [4,13]

I(X1:n) =
∑n

i=1
H(Xi) − H(X1:n)

=
∑n

i=1
H(Xi) −

[
H(X1) +

∑n

i=2
H(Xi | X1:i−1)

]
=
∑n

i=2
(H(Xi) − H(Xi | X1:i−1)) =

∑n

i=2
I(Xi; X1:i−1) ,

which is the result in Eq. 8.
For conditional multi-information, its definition in Eq. 4 can be written as∑

y,x1:n
p(x1:n, y)

[
log

p(x1:n, y)
p(x1) · · · p(xn)p(y)

− log
p(x1, y) · · · p(xn, y)
p(x1) · · · p(xn)p(y)n

]
.
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Then, by Eqs. 1 and 3, we have

I(X1:n | Y ) = I(X1:n, Y ) −
∑n

i=1
I(Xi; Y )

=
∑n

i=2
[H(Xi, Y ) + H(X1:i−1, Y ) − H(X1:i, Y ) − H(Y )]

=
∑n

i=2
I(Xi; X1:i−1 | Y ),

which completes the proof. ��

Theorem 1. For a set of m classifiers S = {X1, · · · , Xm} and the class label
Y , the mutual information I(X1:m; Y ) can be expanded as

I(X1:m; Y ) =
∑m

i=1
I(Xi; Y )︸ ︷︷ ︸

relevance

+ I(X1:m | Y ) − I(X1:m)︸ ︷︷ ︸
multi-information diversity

(10)

=
∑m

i=1
I(Xi; Y ) +

∑m

i=1
I(Xi; X1:i−1 | Y )︸ ︷︷ ︸

conditional redundancy

−
∑m

i=1
I(Xi; X1:i−1)︸ ︷︷ ︸

redundancy

.

Proof. Based on the properties of mutual information, we have

I(X1:m; Y ) = H(X1:m) + H(Y ) − H(X1:m, Y )

=
∑m

i=1
H(Xi) + H(Y ) − H(X1:m, Y ) + H(X1:m) −

∑m

i=1
H(Xi)

= I(X1:m, Y ) − I(X1:M )

By adding
∑m

i=1 I(Xi; Y )−∑m
i=1 I(Xi; Y ) to the right-hand side of above equa-

tion, it follows that

I(X1:m; Y ) =
∑m

i=1
I(Xi; Y ) + I(X1:m, Y ) −

∑m

i=1
I(Xi; Y ) − I(X1:m)

=
∑m

i=1
I(Xi; Y ) +

∑m

i=1
I(Xi; Xi−1, · · · , X1 | Y ) − I(X1:m).

From Eq. 8 in Lemma 1, I(X1:m) can be written as
∑m

i=1 I(Xi; X1:i−1). There-
fore, above equation becomes Eq. 10, which completes the proof. ��
Comparing with Eq. 7, the formulation of Eq. 10 is much simpler while the
meanings are easier to understand; that is, the redundancy and conditional
redundancy are multi-information and conditional multi-information, and the
multi-information diversity is just their difference.

Both the redundancy and conditional redundancy in Eq. 10 are in the form
of sum of I(Xi; X1:i−1)’s and I(Xi; X1:i−1 | Y )’s, respectively. One advantage of
our formulation is that they are decomposable over component classifiers.

Take redundancy for example, given an ensemble of size k, its redundancy is
I(X1:k) =

∑k
i=1 I(Xi; X1:i−1). Then, if a new classifier Xk+1 is added, the new

redundancy becomes I(X1:k+1) =
∑k+1

i=1 I(Xi; X1:i−1), and the only difference is
the mutual information I(Xk+1; X1:k). That is, during the ensemble construction
process, each classifier Xi can be characterized by the following measurements:
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– Relevance: I(Xi; Y ) which measures its relevance to the class label, and
bounds its prediction error;

– Redundancy: I(Xi; X1:i−1) which measures the dependency between cur-
rent classifier and existing classifiers;

– Conditional Redundancy: I(Xi; X1:i−1 | Y ) which measures the condi-
tional dependency between current classifier and existing classifiers given the
class label;

– Diversity: Which is the difference between the conditional redundancy and
redundancy, and measures its contribution to the ensemble diversity.

Next, we study the relationship between Eqs. 10 and 7; that is, the relation
between multi-information diversity and Brown’s result.

Lemma 2. Given a set of variables V = {X1, · · · , Xn}, it always holds that∑n

k=2

∑
Tk⊆V

I({Tk}) = I(X1:n). (11)

Proof. It has been shown in [1] that the interaction information can be expanded
as a sum of entropies, i.e.,

I({X1:n}) = −
∑

T⊆V
(−1)|V \T |H(T ), (12)

where V = {X1:n} and
∑

T⊆V denotes a sum over all possible subsets of V . Let

Γk =
∑

Tk⊆V
H(Tk) and Θk =

∑
Tk⊆V

I({Tk}) .

Substituting Eq. 12 into Θk, we can obtain Θ2 = C1
n−1 · Γ1 − Γ2 and Θ3 =

−C2
n−1 · Γ1 + C1

n−2 · Γ2 − Γ3, and in more general case,

Θk = (−1)k · Ck−1
n−1 · Γ1 + (−1)k−1 · Ck−2

n−2 · Γ2 + · · · + (−1) · Γk . (13)

Substituting Eq. 13 into
∑n

k=2 Θk which is the left-hand side of Eq. 11, it is easy
to find that the coefficient of Γi is

−
∑n−i

j=1
Cj

n−i(−1)j = −(1 − 1)n−i = 0, for i = 2, · · · , n − 1

and the coefficients of Γ1, Γn are 1 and −1, respectively. Consequently, it follows
that ∑n

k=2
Θk = Γ1 − Γn =

∑n

i=1
H(Xi) − H(X1:n) = I(X1:n) ,

which completes the proof. ��

Corollary 1. Eq. 7 and Eq. 10 are mathematically equivalent.
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Proof. It is obvious that the relevance terms in Eqs. 7 and 10 are the same.
Based on Lemma 2, we have I(X1:m) =

∑m
k=2

∑
Tk⊆S I({Tk}). Since I(X1:m; Y )

appears in the left-hand sides of both equations, it follows that I(X1:m | Y ) =∑m
k=2

∑
Tk⊆S I({Tk}|Y ). Consequently, we can reach the conclusion that two

equations are equivalent. ��
Hence, although our formulation is simpler, it is mathematically equivalent to
Brown’s formulation. Moreover, Brown’s formulation decomposes the ensemble
diversity over different orders of interaction, while our formulation decomposes
over the component classifiers. Based on our formulation we have an approxi-
mation for estimation, which will be presented in the next section.

4 Approximate Estimation

For estimating the multi-information diversity and its related terms, one straight-
forward approach is to estimate the joint probability. However, the exponential
number of possible variable values will make the estimation of joint distribution
infeasible in practice. So we take an approximation.

For redundancy, our task is reduced to estimate I(Xi; X1:i−1) for all i’s. Here,
rather than estimating the joint probabilities, we approximate I(Xi; X1:i−1) by

I(Xi; X1:i−1) ≈ maxΩk
I(Xi; Ωk) , (14)

where Ω = {Xi−1, · · · , X1}, and Ωk is a subset of size k.
As an illustrative example, Fig. 1 depicts a Venn diagram for four variables,

where the ellipses represent the entropies of different variables, while the mutual
information can be represented by the combination of regions in the diagram. As
shown in the right side of the figure, it can be found that the high-order compo-
nent I(X4; X3, X2, X1) shares a large intersection with the low-order component
I(X4; X2, X1), where the only difference is the region e. Note that if X1, X2
and X3 are strongly correlated, it is highly likely that the uncertainty of X3 is
covered by X1 and X2, that is, the regions c and e would be very small. Thus,
I(X4; X2, X1) provides an approximation to I(X4; X3, X2, X1). Such a scenario
often happens in ensemble construction since the component classifiers generally
have strong correlations.

With respect to the conditional redundancy and multi-information diversity,
we take similar strategies as follows.

I(Xi; X1:i−1 | Y ) ≈ maxΩk
I(Xi; Ωk | Y ) (15)

I(Xi; X1:i−1 | Y ) − I(Xi; X1:i−1) ≈ maxΩk
[I(Xi; Ωk | Y ) − I(Xi; Ωk)] (16)

To accomplish the approximation in Eqs. 14, 15 and 16, an enumeration over all
the Ωk’s is desired. In this way, however, for every i we need estimate I(Xi; Ωk)
and I(Xi; Ωk | Y ) for Ck

i−1 number of different Ωk’s. When k is near (i − 1)/2,
the number will be large, and the estimation of I(Xi; Ωk) and I(Xi; Ωk | Y ) will
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I(X4; X3, X2, X1) = e + h + k + l + m +
n + o,
I(X4; X2, X1) = h + k + l + m + n + o,
I(X4; X3, X1) = e + h + k + l + m + n,
I(X4; X3, X2) = e + h + k + m + n + o.

Fig. 1. Venn diagram of an illustrative example

become difficult. Therefore, we need to take a trade-off. In our experiments, we
restrict k to be one or two.

If considering only pairwise interactions, our method (MTI) and Brown’s
method [2] estimate

∑n
i=2 I(Xi; X1:i−1) by∑n

i=2
maxk<i I(Xi; Xk) and

∑n

i=2

∑i−1

j=1
I(Xi; Xj) ,

respectively. In other words, I(Xi; X1:i−1) is approximated by maxk<i I(Xi; Xk)
and

∑i−1
j=1 I(Xi; Xj), respectively, by our method and Brown’s method.

Take I(X4; X3, X2, X1) in Fig. 1 for example. It is easy to get that,

I(Xi; X1:i−1) − maxk<i I(Xi; Xk) = I(X4; X1:3) − maxk<4 I(X4; Xk)
= (e + h + k + l + m + n + o) − max{(h + k + l + n), (k + m + n + o),
(e + h + k + m)} = min{(e + m + o), (e + h + l), (l + n + o)} , (17)

∑i−1

j=1
I(Xi; Xj) − I(Xi; X1:i−1) =

∑3

j=1
I(X4; Xj) − I(X4; X1:3)

= (h + k + l + n) + (k + m + n + o) + (e + h + k + m) − (e + h + k +
l + m + n + o) = 2k + h + m + n . (18)

Note that the right-hand sides of both Eqs. 17 and 18 are nonnegative, which
implies that our approximation is a lower bound never larger than the true value,
while Brown’s estimation is an upper bound never smaller than the true value.
Moreover, it is easy to get that, at least when the following equation holds,

3k + h + m + n > e + l + o (19)

the right-hand side of Eq. 18 is larger than that of Eq. 17, which means that our
approximation is closer to the true value than Brown’s estimation. It is worth
noting in Eq. 19 that the region k represents the uncertainty shared by all the
four variables, the regions h, m and n represent those shared by three variables,
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while the regions e, l and o represent those shared by two variables. This dis-
closes that when the variables are highly correlated (such as when Eq. 19 holds),
our approximation is expected to be closer to the ground truth. In ensemble con-
struction, the component classifiers are generally highly correlated, so we expect
that our approach is better for estimating ensemble diversity and related terms
in practice. This will be empirically verified in the next section.

5 Experiments

5.1 Synthetic Data

To evaluate our proposed approach, experiments on synthetic data is performed
at first since we can get the ground-truth information.

The task is to estimate I(X1:n). The synthetic data is generated as follows.
Assume a and b are integers sampled from the interval [1, 100], the variables

X1 ≡ a (mod 2), X2 ≡ a + b (mod 2), X3 ≡ a − b (mod 2),
X4 ≡ a × b (mod 2), X5 ≡ a2 + b2 (mod 2)

are correlated. It is easy to get p(Xi)’s, p(Xi, Xj)’s, p(Xi, Xj , Xk)’s and p(X1:5),
based on which the ground-truth I(X1:5) can be obtained analytically.

We evaluate our method (MTI), where k is restricted to be 1 and 2, denoted by
MTI1 and MTI2, respectively. We also evaluate Brown’s method [2]. Since MTI1
and MTI2 consider the pairwise and three-order interactions, for a fair compar-
ison, in addition to the method reported in [2] which considers only pairwise
interactions, we extended Brown’s method to consider three-order interactions
by using Eq. 12 to help estimate the three-order interaction information. These
two versions are denoted by Brown1 and Brown2, respectively. The estimated
as well as the ground-truth multi-information are shown in Table 1, where the
relative error is the difference between the ground-truth value and the estimated
value divided by the ground-truth value.

From Table 1 we can find that Brown2 and MTI2 perform much better than
Brown1 and MTI1, and MTI2 reaches the ground-truth value. This is easy to
understand since Brown2 and MTI2 explore the three-order interactions while
Brown1 and MTI1 consider only the pairwise interactions. Comparing MTI1
(MTI2) with Brown1 (Brown2), it can be found that the estimation of MTI is
more closer to the ground-truth, although they consider the same pairwise (or
three-order) interactions. This verifies our argument that MTI is more accurate
if the variables are highly correlated.

Table 1. Evaluation on synthetic data

Ground-truth Brown1 Brown2 MTI1 MTI2

I(X1:5) 1.9485 2.9418 1.9946 1.6019 1.9485
Relative error — 50.98% 2.37% -17.79% 0.00%
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Fig. 2. Breast Cancer (1st row: Error rate; 2nd row: Relevance; 3rd row: Diversity)

5.2 Real Data

Next we apply our MTI approach and Brown’s method to study the behavior of
AdaBoost and Bagging on real data.

In the experiments we have used two types of base classifiers, i.e., decision
stump and C4.5 decision tree. The ensemble sizes are set to 3 to 21. For each con-
figuration, we execute 50 runs of hold-out tests on UCI data set Breast Cancer
and Heart Disease. In each run, two thirds data are used for training while the
remaining for testing. The relevance, multi-information diversity, redundancy
and conditional redundancy terms are estimated on the training data, and used
to explain the ensemble prediction error on test data. Here, MTI1, MTI2 and
Brown1 are evaluated.2 Note that the estimated relevance, redundancy and con-
ditional redundancy are monotonically increasing as the ensemble size increases.
2 In the experiments on synthetic data, the task is to estimate the interaction infor-

mation and we can use Eq. 12 to help estimate the three-order interaction infor-
mation for Brown2. On the real data, for estimating the diversity, Brown2 requires
to calculate three-order conditional interaction information, yet the calculation is
not straightforward. Moreover, Brown1 averages all the C2

n number of pairwise re-
dundancy (and conditional redundancy) terms, while Brown2 needs to deal with C2

n

pairwise terms and C3
n three-order terms (in our approach there are always only n

terms no matter what order is considered), and it is not clear whether the terms of
different orders should be averaged together or not. So, in the experiments on real
data we have not evaluated Brown2.
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Fig. 3. Heart Disease (1st row: Error rate; 2nd row: Relevance; 3rd row: Diversity)

In the following, the mean of maxΩk
I(Xi; Ωk)’s and I(Xi; Xj)’s are reported

for MTI and Brown1, respectively. The estimated values are averaged over 50
runs, and the mean values and standard deviations are reported. The results are
shown in Figs. 2 and 3, respectively.3

We can see that Adaboost decreases the relevancy of its classifiers while in-
creasing the diversity. Bagging has a very different behavior. It maintains almost
constant relevancy and diversity. This is accordance with the sequential and
parallel generation style of the component classifiers in AdaBoost and Bagging.
With respect to ensembles with different base classifiers, it is easy to find that
ensembles with decision stumps have lower relevance but higher diversity, while
ensembles with C4.5 decision trees have higher relevance but lower diversity.
This is easy to understand because decision stumps have lower accuracy and is
more sensitive to data samples than C4.5 decision trees.

Comparing MTI1, MTI2 and Brown1, it can be found that in general, all
the three methods make similar diversity estimations except that Brown1 is a
little bit divergence on AdaBoost; this suggests that all these methods are useful
for measuring ensemble diversity. Moreover, it can be found that the estimated
values of Brown1 is never smaller than that of MTI1; this is accordance with our
argument that MTI estimation lower bounds while Brown’s estimation upper
bounds the true value.

3 The redundancy and conditional redundancy are not shown due to space limitation.
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6 Conclusion

In this paper, we propose a formulation of ensemble diversity from the view of
multi-information. This formulation is mathematically equivalent to the previous
information theoretic diversity formulation [2], but is simpler and decomposable
over component classifiers. Based on the formulation, we present an approxima-
tion for estimation. Experimental results show that the approximation can be
used to study the behavior of ensemble methods to some extent in practice.
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1 École de Technologie Supérieure, 1100 Notre-dame ouest, Montreal(QC), Canada,
H3C-1K3

2 CENPARMI, Concordia University, 1455 de Maisonneuve Blvd West,
Montreal(QC), Canada, H3G-1M8

Abstract. In a multiple classifier system, dynamic selection (DS) has
been used successfully to choose only the best subset of classifiers to rec-
ognize the test samples. Dos Santos et al’s approach (DSA) looks very
promising in performing DS, since it presents a general solution for a
wide range of classifiers. Aiming to improve the performance of DSA,
we propose a context-based framework that exploits the internal sources
of knowledge embedded in this method. Named DSAc, the proposed ap-
proach takes advantage of the evidences provided by the base classifiers
to define the best set of ensembles of classifiers to recognize each test sam-
ples, by means of contextual information provided by the validation set.
In addition, we propose a switch mechanism to deal with tie-breaking and
low-margin decisions. Experiments on two handwriting recognition prob-
lems have demonstrated that the proposed approach generally presents
better results than DSA, showing the effectiveness of the proposed en-
hancements. In addition, we demonstrate that the proposed method can
be used, without changing the parameters of the base classifiers, in an
incremental learning (IL) scenario, suggesting that it is also a promising
general IL approach. And the use of a filtering method shows that we
can significantly reduce the complexity of DSAc in the same IL scenario
and even resulting in an increase in the final performance.

1 Introduction

Dynamic selection (DS) of classifiers is a very interesting domain for multiple
classifier systems (MCS). DS consists of selecting only the best members from the
pool of classifiers, denoted as C = {c1, c2, . . . , cN}, to recognize the test sample
xi,test. As a result, the best classification scheme is defined for each sample, so
that lower error rates are expected. Note that when more than one classifier
is selected, we can refer to this method as dynamic selection of ensembles of
classifiers (DSEoC).

A promising approach for DSEoC is Dos Santos et al’s approach (DSA) [1],
which is able to dynamically select ensembles of classifiers (EoCs) by using only
crisp label outputs, i.e. class votes, provided by the base classifiers. DSA is a
general DSEoC approach, since any type of classifier that outputs votes can be

N. El Gayar, J. Kittler, and F. Roli (Eds.): MCS 2010, LNCS 5997, pp. 145–154, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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used as a base classifier. A general approach is very desirable since it can be
easily adapted to different base classifiers, and it can be used with combinations
of different types of classifiers. This allows us, for example, to combine decisions
of neural networks and hidden Markov models, or a classifier with the decision
of a human expert.

Nonetheless, the structure of DSA is very rich, and many internal sources of
knowledge have not been fully exploited yet. For example, we could improve the
way we take advantage of the diversity presented by the members of the pool
of EoCs. Also, we could improve the way these EoCs are selected. For example,
we could select more than a single EoC to recognize xi,test. By improving the
way DSA uses these sources of knowledge, we believe that we can reach higher
recognition rates, resulting in an approach that is both general and robust. Con-
sequently, we propose a method that tries to use this knowledge in a better
way.

The proposed method, to which we refer as DSAc, includes the evidences
produced by the base classifiers to take advantage of a labeled dataset (e.g. a
source of contextual information) to indicate which is the best set of EoCs for
each test sample. In this case, it is not a single EoC that is selected to recognize
the test sample, but the best set that can comprise one or more EoCs. Such a
selection uses output profiles, which are represented by the outputs of the base
classifiers, to find the samples in the validation set that are those most similar
to the test sample. Afterwards, we compute the best set of EoCs to recognize
xi,test based on the evidences provided by those most similar validation samples.
Furthermore, we also add a switch mechanism to DSAc, aiming at choosing the
best source of knowledge to compute the final decision whenever the answer
provided by the dynamically selected EoC is not considered convincing enough.
Consequently, the switch works as a tie-breaking approach, which reduces the
chances of random decisions by using existing knowledge.

The remainder of this paper is organized as follows. In Section 2, we provide
a brief description of DSA. In Section 3, we describe the proposed approach
named DSAc. Next, in Section 4, we report and discuss the results of an experi-
mental evaluation performed on two handwriting recognition problems. Finally,
in Section 5, we present conclusions and point out future work.

2 Dos Santos et al’s Approach (DSA)

The overall architecture of DSA is depicted in Figure 1. The main objective of
this method is to dynamically find the best EoC, whose members are a subset of
C = {c1, c2, . . . , cN}, to recognize the test sample xi,test. This task is performed
by considering only the recognition outputs Oi = {oi,1, . . . , oi,N} computed from
C. Each output corresponds to a class from the set Ω = {ω1, . . . , ωM}.

DSA is divided into two phases: the design phase and the operational phase.
During the design phase, the architecture that supports the dynamic selection of
EoCs is created. In other words, the pool of EoCs C∗′ = {C′

1, . . . , C
′
W }, where

C′
j ⊂ C, 1 ≤ j ≤ W , is created during this phase and is a subset of all possible
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Fig. 1. Dos Santos et al’s approach (DSA). The pool of classifiers is organized into a
pool of EoCs during the design phase. During the operational phase, the EoC, which
is dynamically selected by λ, produces the final decision.

EoCs C∗. The pool C∗′ is generated by a search algorithm, which is a genetic
algorithm (GA) in this work. Each individual is represented by a binary vector
of N positions, where each bit represents whether or not a classifier is selected
to be a member of an EoC. The fitness function, which has to be minimized,
uses the error rate on the optimization set Opt, by applying the majority voting
method on the EoCs assigned by each individual. In order to avoid overfitting,
each individual is also evaluated on the validation set V al, and the best solutions
are saved into an archive whose size is W . The archive is then used as C∗′.

The operational phase is composed of the modules that conduct the dynamic
selection of the best EoC C′′

i, which includes one of the EoCs in C∗′, to recognize
xi,test. This task is undertaken by using a dynamic selection function (DSF), to
which we refer as λ. Afterwards, we compute the votes provided by all mem-
bers in C′′

i, and the class with the highest number of votes represents the final
decision di.

The DSF λ is related to one DSF, as described in [1], such as Ambiguity-
guided dynamic selection (ADS), Margin-based dynamic selection (MDS), and
Class-strength dynamic selection (CSDS). In this work, we simply assign DSA
to ADS for the sake of simplicity.

3 DSAc: Enhancing Dynamic Selection by Using
Contextual Information and a Switch Mechanism

In DSA, EoCs are dynamically selected by considering DSFs based on the extent
of consensus. Despite that the extent of consensus is a well studied concept in
literature [2], only the outputs of the most voted and the second most voted
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classes are used to select the ensemble. However, the information related to the
other classes is wasted, even though such information could help this task. In
addition, only one EoC is dynamically selected at a time. Finally, in many cases,
the final recognition might not be confident enough, and random guesses are
associated to the final result. In order to overcome these drawbacks, we propose
DSAc, depicted in Figure 2.

Fig. 2. An overview of the DSAc approach. This method uses the knowledge provided
by V al (converted into the set of output profiles V al′).

The main objective of DSAc is to use the validation database, transformed into
output profiles, to point out which EoCs are the most competent to recognize
the test sample xi,test. An output profile is computed by the transformation T
in Equation 1, where xi ∈ �D, x̃i ∈ ZN+, and N is the size of the pool of base
classifiers C. Given that we know which EoC correctly recognizes each validation
sample, the dynamically selected set of EoCs, denoted by C∗′′

i = {C′′
i,1, . . . , C

′′
iU
},

is composed by the EoCs that correctly classify the validation samples that are
the ones most similar to the test samples in considering the output profiles.

T : xi ⇒ x̃i, (1)

In greater detail, this approach works as follows. Consider the pool of EoCs C∗′,
generated during the design phase. For each test sample xi,test, we compute the
best set of EoCs C∗′′

i, composed of members from C∗′. Each EoCs from C∗′

may appear several times in C∗′′
i, resulting in an automatic weighting approach.

This task is achieved by considering the DSF λ, which is depicted in Figure 3.
The DSF λ works as follows. First, we apply T on xi,test, resulting in x̃i,test.

Next, we compare x̃i,test to each output profile in V al′, which is a database con-
taining the output profiles of all validation samples in V al, e.g. x̃j,val ∀xj,val ∈ V al,
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Fig. 3. The DSF λ. For each test sample, we find K validation samples with the
most similar output profiles, to form the set ψi. The EoCs that correctly classify the
validation samples in Ψi are used to compose the set C∗′′, which is then used to compute
the final decision of DSAc.

computed during the design phase. We compare these samples in terms of sim-
ilarity, and store the degree of similarity between x̃i,test and x̃j,val in δi,j . Note
that we use one of the similarity measures described in Section 3.1 to compute
δi,j . The K most similar output profiles x̃j,val, e.g. the validation samples re-
lated to the highest values of δi,j , are stored in Ψi. Next, the EoCs from C∗′

which correctly recognize each sample in Ψi are computed. These EoCs are then
included in C∗′′

i. As mentioned, an EoC appears in C∗′′
i as many times as the

number of samples that it correctly recognizes. Finally, C∗′′
i is submitted to the

remaining modules of DSAc.
The last step consists of submitting the outputs of C∗′′

i to the switch mecha-
nism, represented by the SW module in Figure 2. Here we employ the concept of
margin [2] to identify whether or not the answers provided by C∗′′

i are confident
enough, using a threshold θ. In considering the margin mi, for the test sample
xi,test, if mi > θ, then we use the most voted class indicated by C∗′′

i. Otherwise,
we use the label of the most similar validation sample from Ψi. The main goal of
this scheme is to use contextual information also in the switch mechanism. Note
that, hereafter, the margin is represented by the difference between the number
of votes of the most voted class and the second most voted one.

In the next section we present the similarity measures used to compute δi,j .

3.1 Similarity Measures (SMs)

Hereafter, we use the following additional notations: x̃i,test,k represents the out-
put of classifier k for xi,test, and x̃j,val,k represents the same for xj,val. In addi-
tion, for each xj,val, the set of flags CCj = {ccj,1, ccj,2, . . . , ccj,W }, where each
ccj,k is a binary value, represents whether C′

k has correctly classified xj,val or
not. In other words, ccj,k = 1 if C′

k correctly classifies xj,val, otherwise, ccj,k = 0.
In this work we consider three different SMs. Note that they are individually

used by λ. The three SMs are described below.
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Euclidean Distance (ED). The Euclidean distance between the output profile
of x̃i,test and each x̃j,val ∀j, represented by the following equation:

EDi,j =
N∑

k=1

|x̃i,test,k − x̃j,val,k| (2)

Template Matching (TM). The computation of the number of classifiers that
provide the same output. This SM is computed by maximizing Equation 3.

TMi,j =
∑N

k=1 αi,j,k

N
(3)

αi,j,k =
{

1, if x̃i,test,k = x̃j,val,k

0, otherwise (4)

Oracle-Based Template Matching (OTM). In considering that each x̃j,val

is related to the correct class label correctj,val, we compute the number of clas-
sifiers that produce the correct class label for x̃j,val and provide the same output
as x̃i,test. Equation 5, which has to be maximized, computes this SM mathemat-
ically.

OTMi,j =
∑N

k=1 βj,i,k∑N
k=1 γj,k

(5)

βi,j,k =
{

1, if x̃i,test,k = x̃j,val,k and x̃j,val,k = correctj,val

0, otherwise (6)

γj,k =
{

1, if x̃j,val,k = correctj,val

0, otherwise (7)

These SMs result in three different versions of DSAc:

1. DSAc
ED, where δi,j = 1 − EDi,j ;

2. DSAc
TM , where δi,j = TMi,j ;

3. DSAc
OTM , where δi,j = OTMi,j .

In the next section, we present an experimental evaluation of these methods.

4 Experiments

In this section we present a series of experiments whose main goals are: 1) to
evaluate whether dynamic methods are better than static ones; 2) to evaluate if
DSAc results in lower error rates than DSA;

The aforementioned evaluation is supported by considering these methods: the
original classifier with full representation space (all original features); the best
base classifier from C; the fusion of all base classifiers in C by using MV; fusion
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of all base classifiers in C by using decision templates (DT) [3], by considering
the three proposed SMs; the best EoC from C∗′.

All methods are evaluated on two handwriting recognition problems: digits
and uppercase letters, extracted from the NIST-SD19 database. For both prob-
lems, the original feature set is composed of 132 features, extracted from con-
cavities and contours [4]. In addition, two different test sets for digits are used
for evaluating digit recognition: NIST-digits-test1 and NIST-digits-test2. Table 1
presents a detailed description of each database.

Table 1. Experimental setup. (NC: number of classes; NF: number of features; NFE:
number of features in the subspace, after applying the RSS method; VM: validation
method;)

Problem NC Set Set Set Set NF NFE
Train Opt V al T est

Digits 10 5,000 10,000 10,000 t1 60,089 132 32
t2 58,646

Letters 26 43,160 3,980 7,960 12,092 132 32

For each dataset, 100 base classifiers, with 32 features, are generated from the
original 132 features based on the random subspaces (RSS) ensemble generation
method [5] for the number of features used for each problem). Two different base
classifiers are considered: k-nearest neighbors classifiers with k = 1 (1NN), and
C4.5 decision tree (DTree) classifiers.

To generate the pool of EoCs, GA is used to find an archive with the 25
best solutions on V al, representing C∗′, guided by the optimization set Opt.
The following parameters were used in this work: population size: 128; maxi-
mum number of generations: 1,000; probability of crossover: 0.8; probability of
mutation: 0.01; one-point crossover and bit-flip mutation [1]. The experiments
are replicated 30 times, where in each replication the archive provided by GA
is generally different. The results represent the mean error rates over the 30
replications.

To validate the results statistically, we use the Kruskal-Wallis nonparametric
statistical test. We test the equality among the mean values, using a confidence
level of 95%. Dunn-Sidak correction is applied to critical values.

4.1 Results and Discussion

The results in error rates are presented in Table 2. For both digits and letters,
DSAc with K = 30. Also, the parameter θ was set to zero after preliminary
evaluations.

These experiments show that the proposed approach DSAc has successfully
presented lower error rates than DSA in all problems. This proves that both the
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Table 2. Error rates using 1NN and DTree classifiers, at zero-level rejection. Results in
bold present the best approach among static MO, DSA, DT, and the proposed DSAc

with K set to 30. Underlined results represent the statistically-significant best method.
Highlighted by * are the proposed approaches. Between parentheses is the variance of
each approach (×10−2).

Classifier 1NN DTree
Method Digits Letters Digits Letters

test1 test2 test1 test2
Static selection

Oracle C 0.05 0.17 0.18 0.01 0.04 0.04
All features 6.66 9.76 7.82 11.07 18.20 13.50
Best from C 7.52 13.99 14.47 10.30 19.18 17.13
MV all C 3.72 8.10 6.60 2.92 6.67 6.06
Best from C∗′ 3.60 (3.83) 7.77 (7.74) 6.56 (6.73) 2.98 (4.98) 6.77 (1.12) 6.21 (7.82)
DTTM C 2.55 5.74 4.95 2.00 5.00 4.64
DTOT M C 4.74 9.74 7.56 2.70 6.03 7.15
DTED C 2.97 6.57 6.55 2.56 6.26 7.44

Dynamic selection
Oracle C∗′ 1.97 (0.02) 4.59 (1.14) 3.87 (4.42) 1.87 (1.03) 4.39 (4.36) 4.53 (2.49)
DSA 3.61 (0.08) 7.87 (0.17) 6.43 (0.48) 2.87 (0.06) 6.61 (0.29) 6.06 (0.41)
∗DSAc

T M 2.37 (0.02) 5.34 (0.04) 4.62 (0.16) 1.76 (0.02) 4.36 (0.04) 4.20 (0.05)
∗DSAc

OT M 2.63 (0.03) 5.88 (0.17) 4.10 (0.25) 2.16 (0.03) 4.96 (0.08) 3.89 (0.06)
∗DSAc

ED 2.43 (0.03) 5.43 (0.16) 4.39 (0.28) 1.83 (0.05) 4.64 (0.10) 4.32 (0.09)

use of contextual information to select multiple EoCs, as well as the switch mech-
anism, were able to better use the sources of knowledge embedded in DSA. Con-
sequently, these results demonstrate that dynamic selection outperforms static
selection.

One interesting result from letters with DTree, shows the effectiveness of the
switch method to decrease the dependency on the pool of EoCs. In that problem,
the final error rates are lower than the oracle of the pool of EoCs. It would be
impossible to reach this result without this mechanism.

Evaluation of DSAc in an incremental learning scenario. One by-product
of the proposed DSAc approach, is the ability to adapt the system to knowledge
acquired incrementally by simply adding more data to V al. As a result, we can
incrementally learn new data with no need to update the parameters of the base
classifiers. For this reason, we evaluate the impact of an increase in the size of
V al for DTree classifiers on NIST-digits-test1.

We simulated an incremental scenario by incrementally increasing the number
of samples in V al. We take advantage of the large set of digits available in
the NIST SD19 database, by increasing the size of V al from 10,000 to 180,000
samples. Those are the remaining samples in the hsf {1-3} series of the database.
In addition, we also evaluate a control mechanism to select only samples that
present the margin below a threshold ϑ, in considering the margin of the base
classifiers, e.g. mi < ϑ, where mi represents the difference of votes between
the two most voted classes. The main idea is to hold only samples that present
uncommon output profiles to reduce the size of V al. As a consequence, the final
complexity of DSAc is also reduced.
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(a) Performance (b) Complexity

Fig. 4. Incremental evaluation of DSAc (K = 30) with DTree classifiers on NIST-
digits-test1

Fig. 5. Impact of a rejection mechanism on NIST-digits-test1 with DTree classifiers

Figure 4(a) presents the results of these experiments. As shown, the incremen-
tal increase of V al is effective in reducing the error rates. By using all samples, the
final error rates are reduced from 1.75% to about 1.2%. Furthermore, the proposed
control mechanism is also effective in reducing the error rates. With ϑ = 40, the
final error rates are reduced to about 1.1%. In addition, we demonstrate in Fig-
ure 4(b) the effects of using the margin-based control mechanism. The best ap-
proach, represented by ϑ = 40, used only 25,948 samples for training. Comparing
with the use of all 180,000 training samples, we can reach better results by using
only around 15% of this set and drastically reduce the complexity of DSAc.

In addition, we also compare the performances of DSA and DSAc by con-
sidering a rejection mechanism on NIST-digits-test1 with DTree classifiers. The
reject uses the margin of the dynamically selected EoC for DSA, and the margin
of the dynamically selected set of EoCs for DSAc. As depicted in Figure 5, DSAc

rejected less samples than DSA to reach the same error rates (for example, with
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2.0 % of error, DSA rejects about 2% of samples, and DSAc rejects only 1.5%.).
When more samples are used for training, the DSAc rejects even less samples.
And, the performance of the approach using ϑ = 40 was better than the one that
uses all samples, even though the former was trained with much fewer samples.

5 Conclusion and Future Work

In this paper we proposed a novel methodology to improve a state-of-the-art
approach for DSEoC, e.g. Dos Santos et al’s approach (DSA). The proposed
approach, referred to as DSAc, uses the knowledge provided by output profiles
to dynamically select EoCs. Furthermore, a switch mechanism was included to
reduce the dependency on the pool of EoCs.

Experiments conducted on two handwriting recognition problems have con-
firmed that dynamic selection is really promising in improving the use of multiple
classifiers. In addition, DSAc has been effective to improve DSA. Also, the sim-
ulation of an incremental learning scenario showed us that we can improve the
performance of DSAc by increasing the size of the validation set only, without
changing the parameters of the base classifiers.

As future work, we can focus on reducing the overall complexity DSAc. We
can, for example, use some proposed ideas to reduce the complexity of 1NN
classifiers which work in a similar way. In addition, we must evaluate other
strategies towards reducing the error rates. This can be achieved using other
SMs, by filtering examples from V al, and so forth.
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Abstract. Selecting a set of good and diverse base classifiers is essential
for building multiple classifier systems. However, almost all commonly
used procedures for selecting such base classifiers cannot be directly ap-
plied to select structural base classifiers. The main reason is that struc-
tural data cannot be represented in a vector space.

For graph-based multiple classifier systems, only using subgraphs for
building structural base classifiers has been considered so far. However,
in theory, a full graph preserves more information than its subgraphs.
Therefore, in this work, we propose a different procedure which can trans-
form a labelled graph into a new set of unlabelled graphs and preserve
all the linkages at the same time. By embedding the label information
into edges, we can further ignore the labels. By assigning weights to
the edges according to the labels of their linked nodes, the strengths of
the connections are altered, but the topology of the graph as a whole is
preserved.

Since it is very difficult to embed graphs into a vector space, graphs
are usually classified based on pairwise graph distances. We adopt the
dissimilarity representation and build the structural base classifiers based
on labels in the dissimilarity space. By combining these structural base
classifiers, we can solve the labelled graph classification problem with a
multiple classifier system. The performance of using the subgraphs and
full graphs to build multiple classifier systems is compared in a number
of experiments.

1 Introduction

A multiple classifier system [6] is based on the idea to combine several classifiers
such that the combined system achieves better performance than the individual
ones. The base classifiers to be combined are required to be sufficiently diverse
[5,6]. Data resampling and feature subset selection [5] are two common ways for
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promoting the diversity of base classifiers. Data resampling methods, e.g. bagging
and boosting [15], select different training samples for different base classifiers.
In feature subset selection, base classifiers are trained using different subsets of
features and their solutions are usually very different. Therefore, feature subset
selection methods could yield better diversity than data resampling methods.
There is another reason besides diversity for feature subset selection, that is, the
curse of dimensionality problem. For a dataset with very high dimensionality, it
is possible that one single classifier could not find a good solution in this high
dimensional vector space. By feature subset selection, the problem can be solved
in lower dimensional spaces and there is a higher chance to find better solutions.

However, for structural pattern recognition problems, patterns are not repre-
sented with only numerical features and there is also no direct way to embed
graphs into a vector space, especially for the structural relationships within one
object. Because the space of structural data, e.g., strings, trees or graphs, has
not been properly vectorized yet, there are just a few attempts for building
multiple classifier systems based on structural representations [1,12,2,8]. Obvi-
ously, feature subset selection methods are not applicable to train base classifiers
for structural patterns as most other methods developed for statistical pattern
recognition problems. But then the question arises what is a good alternative
for increasing the diversity and maybe also avoiding the problem of high dimen-
sionality for structural multiple classifier systems?

One of the few examples for creating structural base classifiers is discussed in
[14]. The idea is to generate different graph-based classifiers by randomly remov-
ing nodes and their incident edges from the training graphs until a maximum
number of nodes is reached for all graphs. Because of the randomness, differ-
ent graph-based classifiers can be created and each becomes a base classifier in
the multiple classifier system. However, with this setting, we still need to com-
pute similarity/dissimilarity for labelled graphs using time-consuming techniques
such as the maximum common subgraph [2] or the graph edit distance [9] con-
sidering a labelled graph classification problem. Unlike graphs with unlabelled
nodes, graphs with labelled nodes usually need to be processed and described
with more complicated algorithms and structures. Also, classifying graphs with
labelled nodes is a more difficult task than classifying graphs with unlabelled
nodes. Therefore, a method was proposed in [8] to decompose labelled graphs
into sets of unlabelled subgraphs based on label information, and compare the
dissimilarity between all pairs of subgraphs in order to create base classifiers in
the dissimilarity space [10] for different labels.

Both existing methods described above for building structural multiple classi-
fier systems only consider subgraphs for training base classifiers. One is selecting
subgraphs randomly and the other is selecting subgraphs based on label infor-
mation. Does this mean that subgraph selection is the best way for increasing
the diversity of the base classifiers? Does subgraph selection somehow resemble
feature subset selection?

In [8], we observed a very interesting phenomenon that all the combiners
reaching the lowest error rate have at least one of the global structure base
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classifiers as the base classifiers. So it is clear that the global structures can
improve the classification performance. The global structure means that the
linkages of the given graph are fully preserved. Therefore instead of subgraphs,
the full graphs are used for creating structural base classifiers. This suggests that
full graphs are beneficial to the multiple classifier system. Therefore, instead of
selecting subgraphs for training base classifiers, we propose a method to alter
the full graphs and train base classifiers based on different versions of altered
full graphs. The goal for this work is to investigate the best way for building
diverse structural base classifiers, i.e., whether we should select the subgraphs,
alter the full graphs or adopt both.

To derive different full graphs from the same graph and transfer a labelled
graph into an unlabelled one, the label information is utilized by us to alter
the graph into different forms. The alteration is done by assigning weights to
the edges and the label information is also embedded in these weights. We can
further ignore the labels on the nodes once the label information is embedded
on the edges.

The rest of the paper is organized as follows. A multiple classifier system uti-
lizes the label information of graphs for altering full graphs in order to build
structural base classifiers is proposed in Section 2. In Section 3, we recap the
JoEig approach for comparing unlabelled graphs. Simulation results are pre-
sented in Section 4. Finally, a conclusion is given in Section 5.

2 Building a Multiple Classifier System Using Altered
Full Graphs

Before we introduce the altered full graphs for building structural base classifiers
for a multiple classifier system, some definitions and an introduction on graphs
are given as in the following.

A graph is a set of nodes connected by edges in its most general form. Consider
the undirected graph G = (V, E, W ) with the node set V = {v1, v2, . . . , vn}, the
edge set E = {e1, e2, . . . , em} ⊂ V × V , and the weight function W : E → (0, 1].
If the graph edges are weighted, the adjacency matrix A for the graph G is the
n × n matrix with elements

Aij =
{

W (vi, vj), if (vi, vj) ∈ E;
0, otherwise. (1)

Clearly since the graph is undirected, the matrix A is symmetric. The Laplacian
of the graph is defined by L = D − A, where D is the diagonal node degree
matrix whose elements Dii =

∑n
k=1 Aik. The Laplacian matrix of G is positive

semidefinite and singular, and it is more often adopted for spectral analysis than
the adjacency matrix because of its properties. We use the example graph shown
in Figure 1(a) through this section to explain our method. This example graph is
with 8 nodes and each node is labelled with one symbol. There are no attributes
on the edges and the elements of the adjacency matrix A given in Eq.(2) of this
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(a) (b)

Fig. 1. Examples of (a) a labelled graph; (b) possible linkage combinations in graphs
according to label A

graph are either 1 or 0 to indicate whether there is an edge between two nodes
or not.

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 1 1 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2)

2.1 Full Graph Alterations

Our goal is to solve the labelled graph classification problem by altering a labelled
graph into a set of unlabelled graphs that preserve all the linkage structures. The
alteration is given by assigning weights(�= 0) to the edges. In order to assign the
weights in such a way that the new set of altered full graphs are diverse, the
weights are given according to the node label information. For instance, if there
are three different labels, i.e., A, B and C, in a graph, we can define three kinds
of connection strengths according to label A as shown in Figure 1(b). Suppose
label A is considered as the master label, the edge connects two nodes with both
master label A will have the weight w1. The edge connects one node with master
label A and the other node which is not A will have the weight w2, and finally
the edge that connects two nodes that are both not master label will have the
weight w3. Without loss of generality, we assume that 1 ≥ w1 ≥ w2 ≥ w3 > 0.
By selecting different labels as the master label, the strengths of the connections
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(a) (b)

(c) (d)

Fig. 2. Examples of altered full graphs with weights assigned based on label (a) C,
(b) O and (c) H , respectively, from the graph in Figure 1(a), and (d) the unlabelled
version of altered full graph based on label H

in a graph will change but the linkage structure will remain the same because
the weights can not be equal to zero by assumption.

For the example in Figure 1(a), there are three different labels, i.e., C, H
and O. For each label, we will assign weights to the edges according to this
particular label. Let w1 = 1, w2 = 0.6 and w3 = 0.2, Figure 2(a), Figure 2(b)
and Figure 2(c) are with weights assigned according to label C, O, and H ,
respectively. Now that the label information is embedded to the edges with
different weights, it means that we can ignore the label within the graph as in
Figure 2(d) and fully describe this graph with a connection matrix (which is
composed of the weights of the edges). For the example graph in Figure 2(a), its
connection matrix AC will be

AC =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.2 0.6 0 0 0 0 0
0.2 0 0.6 0 0 0 0 0
0.6 0.6 0 0.6 0 0 0 0
0 0 0.6 0 0 0.6 0 0
0 0 0 0 0 0.6 0 0.2
0 0 0 0.6 0.6 0 0.6 0.6
0 0 0 0 0 0.6 0 0.2
0 0 0 0 0.2 0.6 0.2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

Notice that if w1, w2 an w3 are all set to 1, the connection matrix AC equals
the adjacency matrix.
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2.2 Dissimilarity and Base Classifiers

Given m graphs with n distinctive labels among the graphs, we want to create
n base classifiers with respect to the labels. So, for a certain label, we derive
an altered full graph and its connection matrix from each graph by assigning
different weights as described above. With these m altered full graphs, the dis-
similarities are calculated pairwise with the JoEig approach as described in the
next Section. As a result, we can obtain an m×m dissimilarity matrix for each
label. With this dissimilarity matrix, we can build a base classifier for this label
in the dissimilarity space [10]. In the end, we can construct n label base classi-
fiers by doing the same to each label. Dissimilarity space uses (selected) object
dissimilarities as axes and objects as points. That is, axis 1 is the dissimilarity to
object 1, axis 2 the dissimilarity to object 2 and so on. Object points are located
in this space by their dissimilarities to each (selected) objects. These selected
objects are also called the representation set. With this setting, we can project
the objects into a vector space and build a classifier in it.

3 JoEig: Graph Comparison in Joint Eigenspace

JoEig [7] projects each pair of two graphs into a joint eigenspace. This joint
eigenspace is expanded by both sets of eigenvectors.

Let G and H be weighted undirected graphs and LG and LH be their Lapla-
cian matrices, respectively. The eigendecomposition of LG and LH are performed
as LG = VGDGV T

G and LH = VHDHV T
H where VG and VH are orthonormal

matrices and DG and DH are diagonal matrices of the eigenvalues (in ascend-
ing order) of G and H , respectively. With the joint projection vector VGV T

H ,
both graphs G and H will be projected to their joint eigenspace as LGVGV T

H

and VGV T
H LH . The difference between two graphs using JoEig is defined as

‖VGDGV T
H − VGDHV T

H ‖2. The JoEig approach approximates a graph by relo-
cating its eigenvalues in the joint eigenspace constructed by the eigenvectors of
both graphs.

There are also three possibilities for setting the number of eigenvectors to
compare graphs with different sizes in JoEig. In this work, we choose to make
full use of the eigenvectors from the smaller graph and keep the same number
of eigenvectors and eigenvalues in the larger graph as in the smaller graph by
removing less important eigenvalues and eigenvectors from the larger graph.

4 Experiments

In this section, we compare the performance of the multiple classifier systems
built on the subgraphs and the altered full graphs, respectively. Linear discrimi-
nant classifier (ldc), quadratic discriminant classifier (qdc) and k-nearest neigh-
bor classifier (knnc) are adopted to build base classifiers in the dissimilarity space
[10], respectively. For knnc, the 3 nearest neighbors are considered. All the base
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classifiers and the classifier combiner are built with the PRTOOLS [4]. Two real-
world datasets, i.e., Mutagenicity and AIDS [13], are used in the experiments
where 60% of objects are randomly selected and used as the training and testing
datasets, 20% are used as the validation set for indicating the performance of
individual base classifiers, and the other 20% are used as the other validation
set for searching the best values for weights, i.e., w1,w2, and w3. We randomly
select 15% of training objects and use them as the representative objects to con-
struct the dissimilarity space for both datasets. Also, the eigenvalue diagonal
and eigenvector matrices are resized to the size of the smaller graph with the
JoEig approach. Moreover, all the results in the following are the average over
50 repetitions of experiments resulting in a very small standard deviation.

4.1 Experiment 1: Mutagenicity Dataset

Mutagenicity is one of the numerous adverse properties of a compound that ham-
pers its potential to become a marketable drug. The molecules are converted into
graphs in a straightforward manner by representing atoms as nodes and the cova-
lent bonds as edges. Nodes are labeled with the corresponding chemical symbol,
and there are 10 different symbols in total. The average number of nodes of a
graph is 30.3 ± 20.1, and the average number of edges is 30.7 ± 16.8. The Mu-
tagenicity dataset is divided into two classes, i.e., mutagen and nonmutagen.
There are in total 4,337 elements (2,401 mutagen elements and 1,936 nonmu-
tagen elements). In the experiments, 50% of objects are randomly selected and
used as the training dataset. In Figure 3 (a), we add the base classifiers (10
base classifiers from subgraphs or altered full graphs) one by one. At each step,
the base classifier performing best against the validation set will be selected as
the next base classifier to be added. The max combination rule is used for ldc
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Fig. 3. Compare subgraphs and full graphs for building base classifiers with (a) combi-
nation results of different number of base classifiers and (b) learning curves of combining
best 8 base classifiers for Mutagenicity dataset
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and qdc while the voting combination rule is used for knnc. For chemical com-
pounds, atoms ’C’ and ’H’ are very common elements among and within objects.
Especially for atom ’C’, the full graphs or subgraphs constructed based on label
’C’ can preserve most structures of the original graphs and therefore the base
classifier constructed on label ’C’ usually has the best individual performance.
At first, knnc has base classifiers that are significantly better than ldc and qdc,
which means the data distribution is rather nonlinear and knnc is more suit-
able for such a problem. But knnc is easily over-trained and also has unreliable
confidence and therefore its performance decreases dramatically when more and
more base classifiers are combined. If the max combination rule is used for knnc
instead of voting, the performance of knnc will decrease even faster. Neverthe-
less, combining the best 3 individual knnc base classifiers can reach the optimal
performance which is much better than all the combination results of ldc and
qdc. Therefore, it might be beneficial to use knnc as base classifiers but selecting
the best set of base classifiers is a crucial problem.

From Figure 3(a), we can see that base classifiers built on full graphs give
better combination results than base classifiers built on subgraphs when more
base classifiers are combined. However, with a few base classifiers, subgraphs
perform better than full graphs with ldc and knnc. This means full graphs give
more information about the structure of the original graph when more different
labels are considered. On the other hand, the base classifiers built on subgraphs
are more diverse in the beginning. We can also observe from Figure 3(a) that
for ldc and qdc, the performance increases when there are more and more base
classifiers combined. Because adding base classifiers is like adding features, when
there is a sufficient number of objects, combining different base classifiers yields
higher possibilities of having better performance than individual classifiers.

To fairly investigate the limitations and capabilities of subgraphs and full
graphs, the learning curves of combining the best 8 base classifiers for both
methods are drawn in Figure 3(b). Clearly, we can see that the subgraphs work
better with small sample sizes and the full graphs on the other hand are bet-
ter with medium and large sample sizes for ldc. Since graphs are usually with
complex structures, it is possible to overfit when the number of objects is not
sufficiently large. With subgraph selection, the structures are decomposed into
simpler format and this problem might be avoided. In Figure 3(a), we can see that
when the number of base classifiers is 8, using full graphs for qdc is worse than
using subgraphs and therefore, we can also expect the same from Figure 3(b).

4.2 Experiment 2: AIDS Dataset

The AIDS dataset consists of graphs representing molecular compounds. The
graphs are constructed from the AIDS Antiviral Screen Database of Active Com-
pounds (molecules). This dataset consists of two classes, active and inactive, to
indicate molecules with activity against HIV or not. The molecules are con-
verted into graphs in a straightforward manner by representing atoms as nodes
and the covalent bonds as edges. Nodes are labeled with the corresponding chem-
ical symbol, and there are 26 labels in total. The average number of nodes of
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Fig. 4. Compare subgraphs and full graphs for building base classifiers with (a) combi-
nation results of different number of base classifiers and (b) learning curves of combining
best 5 base classifiers for AIDS dataset

a graph is 15.6 ± 13.1, and the average number of edges is 16.1 ± 15.0. There
are 2,000 elements in total (1,600 inactive elements and 400 active elements). In
the experiments, 50% of objects are randomly selected and used as the training
dataset.

In Figure 4(a), the base classifiers (26 base classifiers from subgraphs or al-
tered full graphs) are added one by one using the same technique as described
above. The AIDS dataset is a much easier dataset to classify compared to the
Mutagenicity dataset, and the best individual ldc classifiers built on subgraphs
and full graphs, respectively, already reach very small error rates which makes
it difficult for the combiner to improve the individual performance. There is not
much difference for both methods in combining different numbers of ldc clas-
sifiers. The qdc and knnc classifiers preform significantly much worse than the
ldc classifier with this dataset. The learning curves of combining the best 5 base
classifiers for both methods are drawn in Figure 4(b). We can see that the full
graphs perform better than the subgraphs with a larger number of objects for
knnc but the difference is rather small for ldc.

5 Discussions and Conclusions

We solve the labelled graph classification problem with the multiple classifier
system by decomposing labelled graphs into unlabelled full graphs based on their
labels and building base classifiers from the full graphs. The full graphs preserve
the topology from the original graph and therefore carry more information than
subgraphs. Therefore using full graphs is beneficial when there is a sufficient
number of objects. On the other hand, because of the complex structure of
graphs, it is possible to encounter the problem of high dimensionality. Adopting
subgraphs is a better solution in this case.
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For highly nonlinear problems, knnc is probably a good solution and it is
actually commonly adopted in graph classification problems. Therefore, how to
select a proper set of knnc classifiers to combine for graph classification problems
could be a direction for future study.
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Abstract. The Support Kernel Machine (SKM) and the Relevance Ker-
nel Machine (RKM) are two principles for selectively combining object-
representation modalities of different kinds by means of incorporating
supervised selectivity into the classical kernel-based SVM. The former
principle consists in rigidly selecting a subset of presumably informa-
tive support kernels and excluding the others, whereas the latter one
assigns positive weights to all of them. The RKM algorithm was fully
elaborated in previous publications; however the previous algorithm im-
plementing the SKM principle of selectivity supervision is applicable only
to real-valued features. The present paper fills in this gap by harnessing
the framework of subdifferential calculus for computationally solving the
problem of constrained nondifferentiable convex optimization that oc-
curs in the SKM training criterion applicable to arbitrary kernel-based
modalities of object representation.

1 Introduction

In pattern recognition, the term ”modality” is employed when speaking about
a specific kind of mathematical computer-perceptible object representation. In
terms of the measured modality, the hypothetical set of ”all” real-world ob-
jects of interest ω ∈ Ω is represented by the outputs of the respective sensor
as generalized features x(ω) ∈ X in some sensor-specific scale X. In the sim-
plest case, when the scale is the set of real numbers X = R, the objects are
represented by values of a real numerical feature. Multimodal pattern recogni-
tion systems utilize several distinct feature modalities, often with different scales(
xi(ω)∈Xi, i ∈ I = {1, ..., n}), to represent specific phenomena [1].

Feature scales Xi may be quite complicated, so that frequently the only way
of treating real-world objects ω∈Ω is via pair-wise comparison of their features(
xi(ω′), xi(ω′′)

)
using modality-specific functions Ki(x′

i, x
′′
i ) defined in the re-

spective scales Xi×Xi → R. A function K(x′, x′′) is said to be a kernel if it
forms a semidefinite matrix for any finite collection of objects. It is well known

N. El Gayar, J. Kittler, and F. Roli (Eds.): MCS 2010, LNCS 5997, pp. 165–174, 2010.
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that a kernel embeds the scale of the respective feature Xi into a hypothetical
linear space X̃i ⊇ Xi in which it plays the role of inner product.

In particular, when xi(ω) ∈ Xi = R, the natural kernel will be the prod-
uct Ki(x′

i, x
′′
i ) = x′

ix
′′
i . Support Vector Machines (SVMs), originally designed

for two-class pattern recognition learning in R
n, actually combine real-valued

modalities by employing a joint kernel K(x′, x′′) =
∑n

i=1 x′
ix

′′
i . This analogy

is exploited by multi-kernel SVMs when more sophisticated kernel-represented
modalities are to be combined [3,4,5].

When fusing several modalities of object representation, the necessity to mod-
erate the inevitable overfitting threat makes it absolutely necessary to combine
modality-specific features in a selective mode. We consider here the general case
of kernel-induced feature scales

{
X̃1, ..., X̃n

}
treated as hypothetical linear clo-

sures X̃i ⊇ Xi of arbitrary scales
{
X1, , ..., Xn

}
with respective kernels defined

over each of them
{
Ki(x′

i, x
′′
i ), x′

i, x
′′
i ∈ Xi

}
. The kernel-based approach removes

the mathematical distinction between different kinds of feature scales X̃i, so that
the kernel selection will boil down to the usual feature selection in the particular
case of natively real-valued features X̃i = Xi = R.

There exist many feature (kernel) selection techniques classed in the literature
as filters, which are applied to the feature set independently of classification
technique, and wrappers, which consider feature selection in conjunction with
classification [2].

It is the latter way of combining multiple kernels we keep to in this paper.
More specifically, we further elaborate the methodology of selectivity supervision
by a priori assigning the desired level of selectivity, ranging from the complete
absence of selection to the adoption of only singular features. In our previous
papers [6,7], a way of achieving this range of behaviours was roughly outlined
as the idea of incorporating selectivity into the two-class kernel-based Support
Vector Machine.

Two principles of incorporating selectivity into the SVM proposed in [6] were
called Support Kernel Machine (SKM) and Relevance Kernel Machine (RKM).
The former principle consists in rigidly selecting a subset of presumably infor-
mative support kernels and excluding the others, whereas the latter one assigns
positive weights to all of them.

An algorithm for implementing the RKM principle of selectivity supervision is
elaborated in [6] and tested in [7] on the practical problem of signature verifica-
tion by kernel-based fusing on-line and off-line modalities of signature represen-
tation. However, the algorithm described in [6] is applicable only to real-valued
features xi∈Xi =R.

The purpose of the present paper is to fill in this gap. The idea consists in har-
nessing the framework of subdifferential calculus [10] for computationally solving
the problem of constrained nondifferentiable convex optimization that occurs in
the SKM training criterion applicable to arbitrary kernel-based modalities of
object representation. This approach allows us to explicitly show the mechanism
of selecting the support kernels and excluding the redundant ones relative to the
given training set.
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2 The Support Kernel and the Relevance Kernel
Machines

Let
{
xj =(x1j, ..., xnj), yj , j=1, ..., N

}
be the training set of real-world objects{

ωj ∈Ω, j =1, ..., N
}

each of which is represented by the class-membership index
yj = y(ωj) ∈ {−1, 1} and the values of n modality-specific features measured
in the respective scales xij = xi(ωj) ∈ Xi with kernel functions Ki(x′

i, x
′′
i ) :

Xi×Xi→R defined in them. A broad construction of the SVM was proposed in
[5,6,7] as an instrument for making the Bayesian decision on the discriminant
hyperplane

∑n
i=1 Ki(ai, xi)+b ≷ 0 in the Cartesian product of the kernel-induced

hypothetical linear space a = (a1, ..., an) ∈ X̃1× ...×X̃n, b ∈ R, with an arbitrary
a priori density of orientation distribution Ψ(a) = Ψ(a1, . . . , an).

It was shown that, under some natural assumptions on the pair of class-specific
a priori distribution densities ϕ

(
x|y =±1, (a, b)

)
defined by the same discrimi-

nant hyperplane in the combined linear feature space x=(x1, ..., xn) ∈ X̃1 × X̃n

(see [5,6,7] for details), the Bayesian estimate of the hyperplane parameters
(a, b)=(a1, ..., an, b) is the solution of the following optimization problem:⎧⎪⎪⎨⎪⎪⎩

− lnΨ(a1, ..., an)+c
N∑

j=1
δj → min

(
ai∈X̃i, b∈R, δj ∈R

)
,

yj

(
n∑

i=1
aixij +b

)
� 1−δj, δj � 0, j = 1, ..., N.

(1)

It is only the penalty −ln Ψ(a1, ..., an) that distinguishes this generalized training
criterion from the classical SVM

∑n
i=1a

2
i + C

∑N
j=1 δj → min

(
a = (a1, ..., an) ∈

R
n, b∈R, δ1, ..., δn∈R

)
for real-valued feature vectors xj =(x1j , ..., xnj)∈R

n.
Two parametric families of a priori densities Ψ(a1, . . . , an |μ) were proposed

in [6] as two different means of endowing the training criterion (1) with the
ability to emphasize informative object-representation modalities and suppress
redundant ones under the desired selectivity level which grows with increasing
parameter μ�0, starting from the full absence of selectivity (ie retaining all the
original modalities when μ=0).

These two parametric families had led in [6] to different modality-selective
training criteria named the Relevance Kernel Machine (RKM) with supervised
selectivity⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

JRKM(a1, r1, ..., an, rn, b, δ1, ..., δN |μ) =
n∑

i=1

[(
1/ri

)(
Ki(ai, ai) + 1/μ

)
+
(
1/μ + 1 + μ

)
ln ri

]
+

C
N∑

j=1
δj → min

(
ai∈X̃i, ri ∈ R, b∈R, δj ∈R

)
,

yj

(
n∑

i=1
Ki(ai, xij) + b

)
�1−δj, δj �0, j=1,..., N, ri �ε>0, i = 1, ..., n,

(2)

and the Support Kernel Machine (SKM) with supervised selectivity
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JSKM(a1, ..., an, b, δ1, ..., δN |μ) =
n∑

i=1
q(ai |μ)+ C

N∑
j=1

δj → min
(
ai∈X̃i, b∈R, δj ∈R

)
,

q(ai |μ) =

{
2μ
√

Ki(ai, ai) if
√

Ki(ai, ai) � μ,

μ2 + Ki(ai, ai) if
√

Ki(ai, ai) > μ,

yj

(
n∑

i=1
Ki(ai, xij) +b

)
�1−δj, δj�0, j=1, ..., N.

(3)

We consider here only these two training criteria themselves and omit the
Bayesian reasoning resulting from their respective a priori assumptions. The
statistical justification is to be found in [6].

The Relevance Kernel Machine (2) and the Support Kernel Machine (3) are
generalized versions of the classical SVM which implement two different princi-
ples of kernel-based modality selection.

The RKM emphasizes some modalities and relatively suppresses the others
by assigning continuous positive weights ri >0 to the respective kernels i ∈ I =
{1, ..., n} in the resulting discriminant hyperplane∑

j: λj>0
yjλj

∑
i∈I

riKi(xij , xi) + b ≷ 0 (4)

applicable to any new object x(ω)=
(
xi(ω)∈Xi, i = 1, ..., n

)
.

Contrary to this, the SKM displays a pronounced inclination toward complete
exclusion of a fraction of kernels. It partitions the entire set of modality-specific
kernels into two subsets, that of support kernels Isupp = {i : ri > 0} ⊆ I, which
occur in the resulting discriminant hyperplane, and that of excluded ones I \
Isupp = {i : ri =0}.

3 A Smooth Dual Formulation of the Nondifferentiable
SKM Training Problem

For any training set
{
(xij , i ∈ I), yj , j = 1, ..., N

}
, where I = {1, ..., n} is the

set of all modalities, the objective function JSKM (ai, i ∈ I, b, δj, j = 1, ...N | μ)
in (3) is convex in its range of definition X̃1× X̃n× R × R

N , and the inequality
constraints carve out a convex region in it. Thus, the SKM problem is that of
convex optimization.

We denote as λj � 0 and πj � 0 the Lagrange multipliers at the inequality
constraints, respectively, yj

(∑n
i=1 Ki(ai, xij) + b

) − 1 + δj � 0 and δj � 0. The
convex problem (3) can be shown to be a regular one [10], and, so, it is equivalent
to that of finding the saddle point of its Lagrangian

L(ai, i∈I, b, δj , λj , πj , j=1, ...N |μ) =
1
2
JSKM (a1, ..., an, b, δ1, ..., δN |μ)−

−
N∑

j=1
πjδj −

N∑
j=1

λj

[
yj

(∑
i∈I

Ki(ai, xij) + b

)
− 1 + δj

]
→

→
{

min
(
ai∈X̃i, i∈I, b∈R, δj ∈R, j =1, ..., N

)
,

max
(
πj �0, λj �0, j = 1, ..., N

)
.

(5)
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If
[(

ãi, i∈I, b̃, δ̃j , , j =1, ...N
)
;
(
λ̃j , π̃j , j =1, ...N

)]
is a saddle point, its left part(

ãi, i∈I, b̃, δ̃j , , j=1, ...N
)

is a solution of the SKM problem (3), and vice versa,
each of its solutions

(
ãi, i∈I, b̃, δ̃j, , j =1, ...N

)
is the left part of a saddle point

of the Lagrangian (5).
Expanding the objective function in (5) in accordance with (3) gives the de-

tailed expression of the Lagrangian:

L(ai, i∈I, b, δj , λj , πj , j=1, ...N |μ) =
1
2

(∑
i∈I

q(ai |μ)+C
N∑

j=1
δj

)
−

N∑
j=1

πjδj−
N∑

j=1
λj

[
yj

(∑
i∈I

Ki(ai, xij)+b

)
−1+δj

]
.

(6)

It is convenient to introduce special notations for each sum of constituents that
depend on the ith modality-specific element ai of the entire direction vector
a=(a1, ..., an):

Li(ai, λj , j = 1, ..., N |μ) =
1
2
q(ai |μ) − Ki

(
ai,

N∑
j=1

yjλjxij

)
. (7)

In these terms, the Lagrangian (5) or (6) will have the form

L(ai, i∈I, b, δj , λj , πj , j =1, ...N |μ) =∑
i∈I

Li(ai, λj , j = 1, ..., N |μ) +
N∑

j=1

(
C

2
− πj − λj)

)
δj −

−
(

N∑
j=1

yjλj

)
b +

N∑
j=1

λj .

(8)

Finding the saddle point of the Lagrangian is equivalent to maximizing the dual
function of the Lagrange multipliers

W (λj , πj , j=1, ..., N |μ) =
N∑

j=1
λj + min

ai∈X̃i, b∈R, δj∈R

L(ai, i∈I, b, δj , λj , πj , j=1, ...N |μ) .
(9)

However, the minimum value of the second term in (8) exists only if the Lagrange
multipliers satisfy the inequalities C/2 − πj − λj = 0, or, with the restrictions
πj � 0,

0 � λj � C

2
, j = 1, ..., N. (10)

Analogously, the third term of (8) has the minimum only if

N∑
j=1

yjλj = 0. (11)
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Thus, the dual function

W (λj , j=1, ..., N |μ) =
N∑

j=1
λj +

∑
i∈I

min
ai∈X̃i

Li(ai, λj , j = 1, ..., N |μ) (12)

is to be maximized under constraints (10) and (11).
To accomplish the formulation of the dual problem, it is required to deter-

mine how the minimum values of the functions Li(ai, λj , j = 1, ..., N | μ) (7)
with respect to ai depend on the Lagrange multipliers λi for each of the modali-
ties i ∈ I. But these functions contain, in their turn, nondifferentiable functions
q(ai |μ) (3), which makes it necessary to use the notions of subgradient and sub-
differential, instead of the usual gradient, to formulate the minimum condition
of a convex function [10].

Definition 1. Vector d ∈ X̃ in a linear space X̃ with inner product K(x′, x′′)
is called a subgradient of the convex function f : X̃ → R at point a ∈ X̃ if the
inequality f(x) − f(a) � K(d, x−a) holds for all x∈X̃.

Definition 2. The set of all subgradients of convex function f : X̃→R at point
a∈X̃ is called the subdifferential ∂f(a) ⊆ X̃ at this point.

Property. The condition that the subdifferential at point a∈X̃ contains the null
element φ∈∂f(a) ⊆ X̃ is necessary and sufficient for this point to be a minimum
point of convex function f .
The latter property creates a mathematical basis for a closed form of the smooth
optimization problem (12) dual to the original nondifferentiable SKM prob-
lem (3). This is a problem of maximizing a linear function of N + n variables,
namely, N Lagrange multipliers λj and n auxiliary variables ξi, under quadratic
and linear constraints.

Theorem 1. The problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

W (ξi, i∈I, λj , j=1, ..., N) =
1
2
∑
i∈I

ξi + C
N∑

j=1
λj → max,

ξi � μ2−
N∑

j=1

N∑
l=1

yjylKi(xij , xil)λjλl, ξi � 0, i ∈ I,

N∑
j=1

yjλj = 0; 0 � λj � C

2
, j = 1, ..., N,

(13)

is dual to the SKM training problem (3).

The proof depends upon the following lemma which is a result of immediate ap-
plication of the prevoiusly formulated property of an arbitrary nondifferentiable
convex function to the functions Li(ai, λj , j = 1, ..., N |μ) in (12).
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Lemma 1. The minimum of function Li(ai, λj , j = 1, ..., N |μ) (7) with respect
to variable ai∈X̃i is reached at the points⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ãi =ηi

N∑
j=1

yjλjxij , ri =1, if Ki

(
N∑

j=1
yjλjxij ,

N∑
j=1

yjλjxij

)
>μ2,

ãi =ηi

N∑
j=1

yjλjxij , 0�ri �1, if Ki

(
N∑

j=1
yjλjxij ,

N∑
j=1

yjλjxij

)
=μ2,

ãi =φi, if Ki

(
N∑

j=1
yjλjxij ,

N∑
j=1

yjλjxij

)
<μ2,

(14)

defined in terms of the linear operations and the null element induced by the
respective kernel Ki(x′, x′′) in the hypothetical linear space X̃i. At each such
point,

min
ai∈X̃i

Li(ai, λj , j = 1, ..., N |μ) = Li(ãi, λj , j = 1, ..., N |μ) =

1
2

min

{
0; μ2 − Ki

(
N∑

j=1
yjλjxij ,

N∑
j=1

yjλjxij

)}
.

(15)

4 The Resulting Discriminant Hyperplane and Support
Kernels

Assume the dual optimization problem (13) has been solved. Only the Lagrange
multipliers λ1�0, ..., λN�0 are of interest, so the auxiliary values π1�0, ..., πn �0
may be dropped. In accordance with (14), the discovered solution partitions the
set of all kernels I = {1, ..., n} into three subsets:

I+ =

{
i∈I :

N∑
j=1

N∑
l=1

yjylKi(xij , xil)λjλ l > μ2

}
,

I0 =

{
i∈I :

N∑
j=1

N∑
l=1

yjylKi(xij , xil)λjλ l = μ2

}
,

I−=

{
i∈I :

N∑
j=1

N∑
l=1

yjylKi(xij , xil)λjλ l < μ2

}
.

(16)

Theorem 2. The optimal discriminant hyperplane defined by the solution of the
SKM training problem (3) has the form∑

j:λj>0

yjλj

(∑
i∈I+

Ki(xij , xi) +
∑
i∈I0

riKi(xij , xi)

)
+ b ≷ 0, (17)

where the numerical parameters {0�ri �1, i∈I0; b} are solutions of the linear
programming problem
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2μ2∑

i∈I0
ri + C

n∑
j=1

δj → min(ri, i ∈ I0; b; δ1, . . . , δN ),

∑
i∈I0

(
N∑

l=1
yjylKi(xij , xil)λ l

)
ri+yjb +δj � 1−∑

i∈I+

N∑
l=1

yjylKi(xij , xil)λ l,

δj � 0, j = 1, . . . , N, 0 � ri � 1, i ∈ I0.

(18)

5 The Subset of Support Kernels

The solution (r̂i, i ∈ I0; b̂; δ̂1, . . . , δ̂N) of the linear programming problem (18) is
completely defined by the training set X =

{
xj =(x1j , ..., xnj), yj , j=1, ..., N

} ∈
X1× ... ×Xn ⊆ X̃1× ... ×X̃n. As is seen from criterion (18), some of coefficients
(r̂i, i∈ I0) may equal zero if the respective constraints 0 � ri are active at the
solution point.

However, it can be shown that, if all the linear spaces X̃i are finite-dimensional,
the subset of such configurations {X} is of zero Lebesgue measure in the linear
space X̃1×...×X̃n. Thus, if the training set is considered as random points defined
by a continuous probability distribution, the inequalities r̂i > 0 are met almost
certainly for all i∈I0.

This means that without any loss of generality the constraints {0 � ri �
1, i ∈ I0} may be omitted in (18), and, yet, all kernels i ∈ I0 will occur in
the discriminant hyperplane (17) with nonzero weights. It is natural to call the
subset Isupp =I+∪ I0 ⊆ I the set of support kernels .

The structure of the subsets of kernels (16) explicitly reveals how the subset of
support kernels Isupp is affected by the parameter μ in the training criterion (3).

If μ = 0, the set of evident support kernels I+⊆I coincides with the entire set
I = {1, . . . , n}. In this particular case, the function q(ai | μ) in (3) is quadratic
q(ai |μ) = const + Ki(ai, ai) for all ai ∈ X̃i, and the training criterion does not
differ from the usual SVM without selectivity properties; all the initial kernels
are support ones because they all occur in the resulting decision rule.

As μ grows, more and more kernels appear in the set I− of evident nonsupport
kernels (16), and, correspondingly, the set of support kernels Isupp =I+∪ I0 gets
smaller.

Unlimited growth of the selectivity parameter μ →∞ drives, finally, all the
kernels into I−, so that no support kernels remain at all: Isupp = ∅.

6 Adjusting the Selectivity Parameter

The selectivity parameter 0 � μ < ∞ is a structural parameter of the SKM
training criterion. It determines a sequence of nested classes of training-set mod-
els whose dimensionality diminishes as μ grows, starting from the usual SVM
model if μ = 0. As it is not determined a priori, at present, the most effective
method for choosing the value of a structural parameter is Cross-Validation that
is based on directly estimating the generalization performance of the training
method.
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pRKM
CV (μ) — RKM

pSKM
CV (μ) — SKM

↓

↑

μ

Error rate

Fig. 1. The result of cross-validation on the lung cancer data set for increasing values
of selectivity level μ

7 Experiments on Real-World Data
For the real data experiment, we used the lung cancer data set from the UCI
repository [11]. The data set contains feature vectors of N = 32 patients parti-
tioned into two subsets N+1 = 9 and N−1 = 23, respectively, those diagnosed
and those not diagnosed with pathological lung cancer. Each vector consists of
n=56 features (a number exceeding the size of the available training set).

As the data set does not contain a test set, the relationship between the gener-
alization performance of the algorithms and the selectivity level μ was estimated
by the cross-validation method. The results of the experimental evaluation are
shown in Fig. 1.

For small values of μ, both techniques are equivalent to the usual SVM applied
to all n=56 variables, so that, the respective error rates have the same value 0.38.

The minimum achievable error rate for the RKM is 0.187, whereas for the
SKM it equals 0.219. For the optimal levels of selectivity μ, both techniques
decrease their error rates by a factor of 2, but the weights estimated by RKM
appreciably differ from zero at 4 features out of 56, whereas SKM retains only 2
of them. This extra feature dimensionality appears to be advantageous for the
RKM over the SKM, with a minimum error rate of 0.187 against 0.219.

Finally, when μ becomes too large, both RKM and SKM remove all features,
and the error rate of recognition tends towards an asymptotic level of 0.281
determined by the ratio N1/N−1 between the numbers of representatives of the
classes in the training set.

8 Conclusions

The Support Kernel Machine (SKM) and the Relevance Kernel Machine (RKM)
are two different methods for selectively combining kernel-based modalities of
arbitrary kind in multimodal pattern recognition. The former consists in rigidly
selecting a subset of presumably informative support kernels and excluding the
others, whereas the latter assigns positive weights to all the kernels.

The names Support Kernel Machine and Relevance Kernel Machine arise from
an analogy with the distinction between the Support Vector Machine (SVM) [8]
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and the Relevance Vector Machine (RVM) [9], which differ from each other by
the binary verses weighted modelling of the occurance of the training-set objects
in the linear decision rule.

The experimental evaluation indicates that the SKM and RKM methods dis-
play quite similar generalization performance albeit with a slight quantitative
superiority attributable to the RKM. However, the SKM appears to produce
this performance with a greater parsimony of modalities.
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3. Sonnenburg, S., Rätsch, G., Schäfer, C.: A general and efficient multiple kernel
learning algorithm. In: Proceedings of the 19th Annual Conference on Neural In-
formation Processing Systems, Vancouver, Canada, December 5-8 (2005)

4. Sulimova, V., Mottl, V., Tatarchuk, A.: Multi-kernel approach to on-line signature
verification. In: Proceedings of the 8th IASTED International Conference on Signal
and Image Processing, Honolulu, Hawaii, USA, August 14-16 (2006)

5. Mottl, V., Tatarchuk, A., Sulimova, V., Krasotkina, O., Seredin, O.: Combining
pattern recognition modalities at the sensor level via kernel fusion. In: Haindl,
M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 1–12. Springer,
Heidelberg (2007)

6. Tatarchuk, A., Mottl, V., Eliseyev, A., Windridge, D.: Selectivity supervision in
combining pattern-recognition modalities by feature- and kernel-selective Support
Vector Machines. In: Proceedings of the 19th International Conference on Pattern
Recognition, Tampa, USA, December 8-11 (2008)

7. Tatarchuk, A., Sulimova, V., Windridge, D., Mottl, V., Lange, M.: Supervised selec-
tive combining pattern recognition modalities and its application to signature verifi-
cation by fusing on-line and off-line kernels. In: Benediktsson, J.A., Kittler, J., Roli,
F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 324–334. Springer, Heidelberg (2009)

8. Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, Inc., Chichester (1998)
9. Bishop, C.M., Tipping, M.E.: Variational relevance vector machines. In: Bishop,

C.M., Tipping, M.E. (eds.) Proceedings of the 16th Conference on Uncertainty in
Artificial Intelligence, pp. 46–53. Morgan Kaufmann, San Francisco (2000)

10. Hiriart-Urruty, J.-B., Lemarechal, C.: Fundamentals of Convex Analysis. Springer,
Heidelberg (2001)

11. UCI Machine Learning Repository: Lung Cancer Data Set,
http://archive.ics.uci.edu/ml/datasets/Lung+Cancer

http://archive.ics.uci.edu/ml/datasets/Lung+Cancer


Combining Multiple Kernels by Augmenting
the Kernel Matrix

Fei Yan, Krystian Mikolajczyk, Josef Kittler, and Muhammad Atif Tahir

Centre for Vision, Speech, and Signal Processing
University of Surrey

Guildford, Surrey, GU2 7XH, UK
{f.yan,k.mikolajczyk,j.kittler,m.tahir}@surrey.ac.uk

Abstract. In this paper we present a novel approach to combining mul-
tiple kernels where the kernels are computed from different information
channels. In contrast to traditional methods that learn a linear combina-
tion of n kernels of size m×m, resulting in m coefficients in the trained
classifier, we propose a method that can learn n×m coefficients. This al-
lows to assign different importance to the information channel per exam-
ple rather than per kernel. We analyse the proposed kernel combination
in empirical feature space and provide its geometrical interpretation. We
validate the approach on both UCI datasets and an object recognition
dataset, and demonstrate that it leads to classification improvements.

1 Introduction

Since their introduction in the mid-1990s, kernel methods [1,2] have proven
successful for many machine learning problems, e.g., classification, regression,
dimensionality reduction, clustering. Representative methods such as support
vector machine (SVM) [3,2], kernel Fisher discriminant analysis (kernel FDA)
[4,5], kernel principal component analysis (kernel PCA) [6] have been reported to
produce the state-of-the-art performance in numerous applications. In a kernel
method, the choice of kernel is critically important, since the kernel completely
determines the embedding of the data in the feature space. In many problems,
multiple kernels capturing different “views” of the problem are available. In such
a situation, one naturally wants to use these kernels in an “optimal” way.

Multiple kernel learning (MKL) was pioneered by Lancriet et al. in [7], where
the key idea is to learn a linear combination of a given set of base kernels by
maximising the (soft) margin between two classes or by maximising the “align-
ment” of the base kernels. In [7], the kernel weights are regularised with an �1
norm. Following this seminal work, MKL has become one of the most active
areas in the machine learning community in the past few years. Various exten-
sions have been made to [7]. For example, the efficiency of MKL is significantly
improved in [8,9,10]; a multiclass version and a multilabel version are proposed
in [11] and [12] respectively; in [13,14,15], the ratio of the inter- and intra- class
scatters of FDA is maximised instead of the margin and kernel alignment; while
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in [16,17,18,15], �2 norm and even a general �p norm regularisation is considered
instead of the �1 norm.

Despite the improvements achieved with these extensions both in terms of ef-
ficiency and accuracy, all these MKL methods share one limitation. To see this,
let us consider an object categorisation problem as an example. Suppose the
number of training samples is m and n training kernels of size m×m are avail-
able. Let these n kernels capture various aspects of the classification problem by
using different features such as colour, texture, shape. Since all the MKL meth-
ods discussed above learn a linear combination of the base kernels, the learnt
composite kernel also has a size m×m. As a result, the learnt decision function
has m coefficients, one for each training sample1. This means the contribution of
a particular feature channel is fixed for all training samples. This is an unneces-
sarily strong constraint that does not allow to fully exploit the information from
every sample. For example, one particular sample may carry more shape infor-
mation than colour information, and vice versa for another sample. In a linear
combination scheme, however, the shape information will be equally weighted
in both training samples. Relaxing this constraint will allow to assign different
weights to different samples depending on their importance in particular infor-
mation channel. This effectively means that two different features extracted from
the same sample are treated as two different samples of the same class.

In this paper, we present a learning approach that uses multiple kernels but,
in contrast to existing MKL approaches, allows training samples to have different
contributions in a particular feature channel. Instead of linear combination of
the base kernels, we construct an (n × m) × (n × m) training kernel matrix.
This leads to n × m coefficients in the trained decision function, in contrast
to m coefficients in the linear combination scheme. As a result, the training
samples contribute differently and the decision function is more flexible. We give
the geometrical interpretation of our augmented kernel matrix (AKM) scheme
and make comparison to that of the linear combination scheme. We show on
several UCI datasets and an object recognition dataset that the AKM scheme
can outperform linear combination of kernels.

The rest of this paper is organised as follows. We first introduce the concept of
empirical feature space in Section 2 as it is important for understanding various
kernel combination schemes. In Section 3 we briefly review the linear combination
scheme. We then present our AKM scheme in Section 4 and discuss its connection
to linear combination both algebraically and geometrically. Experimental results
are provided in 5, which validate this new scheme. Finally conclusions are given
in 6.

2 Empirical Feature Space

This section introduces the concept of empirical feature space that will be then
used to discuss different methods for kernel combination. Let us for the moment

1 More precisely, the decision function has m + 1 coefficients including a bias term b.
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consider a single kernel case. We are given a symmetric, positive semi-definite
(PSD) m × m training kernel matrix K and a corresponding m × l test ker-
nel matrix K̇, where K contains the pairwise dot products of the m training
samples in some feature space, and K̇ contains the pairwise dot products of the
m training samples and the l test samples in the feature space. Note that this
feature space usually has a very high or even infinite dimension and thus not
directly tractable. However, it is shown in [19] that there exists an empirical
feature space in which the intrinsic geometry of the data is identical to that in
the true feature space, and for many machine learning problems, it suffices to
study this empirical feature space.

To compute from K and K̇ the training and test samples in the empirical
feature space, consider the eigen decomposition of K:

K = V ΛV T (1)

where Λ is the r × r diagonal matrix containing the r (r ≤ m) non-zero eigen
values of K, and V is the m×r matrix containing the r associated eigen vectors.
Note that since K is PSD, all the r non-negative eigenvalues of K are positive,
and r is also the rank of K. It directly follows that

K = V Λ1/2(Λ1/2)T V T = ((V Λ1/2)T )T (V Λ1/2)T := XT X (2)

where the r × m matrix X is defined as

X = (V Λ1/2)T (3)

and its ith column is the ith training sample in the empirical feature space. Now
let Ẋ be the r× l matrix whose ith column is the ith test sample in the empirical
space. Ẋ is given by solving the following linear equation:

XT Ẋ = K̇ (4)

We have shown in (3) and (4) given K and K̇ how to find the training and
test samples in the empirical feature space R

r. In many practical situations, for
example, in the case of Radial Basis Function (RBF) kernel, K is full rank, i.e.
r = m. As a result, the m training samples X and l test samples Ẋ live in an m
dimensional empirical feature space R

m.

3 Linear Combination of Kernels

Now we turn to the case of multiple kernels. Assume we are given n training
kernels K1, · · · , Kn of size m × m and n corresponding test kernels K̇1, · · · , K̇n

of size m×l. In this section, we consider a linear combination of the base kernels:

K =
n∑

j=1

βjKj, βj ≥ 0 (5)
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Using the results from the previous section, each of these n kernels is associated
with an empirical feature space:

Kj = XT
j Xj

K̇j = XT
j Ẋj (6)

where Xj and Ẋj are the training and test samples in the empirical feature
space associated with the jth kernel, respectively, and Xj ∈ R

rj , Ẋj ∈ R
rj for

j = 1, · · · , n where rj is the rank of Kj.
From the definition of dot product, it directly follows that taking the un-

weighted sum of the n base kernels is equivalent to taking the Cartesian product
of the empirical feature spaces associated with the base kernels. On the other
hand, taking the weighted sum of the base kernels as in Eq. 5 is equivalent to
taking the Cartesian product of the base empirical feature spaces after scaling
these spaces with

√
β1, · · · ,

√
βn. In this light, the goal of all MKL methods in

[7,8,9,10,11,12,13,14,15,16,17,18] is to learn an optimal scaling such that some
class separation criterion is maximised.

We illustrate the geometrical interpretation of taking the unweighted sum of
two kernels in Fig. 1. Note that for the sake of visualisation we assume in Fig. 1
that the empirical feature spaces of both K1 and K2 are 1-dimensional, i.e., the
ranks of both K1 and K2 are 1. In practice, however, both spaces can be up to
m dimensional.

Fig. 1. Geometrical interpretation of taking the sum of two kernels. Left: the empirical
feature space of K1. Middle: the empirical feature space of K2. Right: the empirical
feature space of K1 + K2.

4 Kernel Combination with Augmented Kernel Matrix

Despite various ways of learning the optimal kernel weights, a linear combination
of kernels leads to a composite kernel matrix K =

∑n
j=1 βjKj which has a size

m×m. If SVM or kernel FDA is used as a classifier in the subsequent step, the
decision function is in the form of:

f(x) =
m∑

i=1

αiK(x,xi) + b (7)
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where K(x,xi) is the dot product between a new test sample and the ith train-
ing sample in the composite empirical feature space, α = (α1, · · · , αm) and b
are learnt by maximising the margin (SVM) or by maximising the ratio between
inter- and intra- class scatters (FDA). In both cases, there are m learnt coeffi-
cients α if we ignore the bias term b, one for each training sample. This implies
that the contribution of a given base kernel (thus a feature channel) is fixed for
all training samples, which may be an unnecessarily strong constraint. For ex-
ample, in an object recognition problem, one particular sample may carry more
shape information than colour information and vice versa for another sample.

Instead of linear combination of kernels, we consider a different kernel com-
bination scheme. We define an operation on two symmetric PSD training kernel
matrices K1 and K2, K1 ⊕ K2, as constructing an augmented block diagonal
matrix K such that:

K = K1 ⊕ K2 =
(

K1 0
0 K2

)
(8)

The zeros on the off diagonal reflect the fact that we do not have any knowledge
about the cross terms between the two kernel matrices.

Let the eigen decomposition of K1 and K2 be:

K1 = V1Λ1V
T
1 (9)

K2 = V2Λ2V
T
2 (10)

where Λ1 and Λ2 are the diagonal matrices containing the r1 and r2 non-zero
eigen values of K1 and K2 respectively, and V1 and V2 are the m×r1 and m×r2
matrices containing the r1 and r2 associated eigen vectors, respectively:

V1 = {v1
1,v

1
2, · · · ,v1

r1
} (11)

V2 = {v2
1,v

2
2, · · · ,v2

r2
} (12)

where the m dimensional vector vj
s is the sth eigen vector of kernel Kj.

On the other hand, let the eigen decomposition of K = K1 ⊕ K2 be:

K = V ΛV T (13)

Since K is a block diagonal matrix with K1 and K2 on its diagonal, Λ is a
diagonal matrix containing the r1 + r2 eigen values of K, and these are simply
the union of the r1 eigen values of K1 and the r2 eigen values of K2. Without
loss of generality, we order Λ such that its first r1 diagonal elements are the
eigen values of K1, and the last r2 are those of K2. Moreover, we order the
2m × (r1 + r2) eigen vector matrix V accordingly:

V = {ṽ1
1, ṽ

1
2, · · · , ṽ1

r1
, ṽ2

1, ṽ
2
2, · · · , ṽ2

r2
} (14)

Using again the property of block diagonal matrix, the columns of V are simply
the eigen vectors of K1 and K2 padded with m zeros:

ṽ1
s = (v1

s
T
, 0, · · · , 0)T s = 1, · · · , r1 (15)

ṽ2
s = (0, · · · , 0,v2

s
T
)T s = 1, · · · , r2 (16)
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Now the training vectors in the empirical feature spaces associated with K1, K2
and K, i.e., X1, X2 and X , can be computed using Eq. 3. Exploiting the relation
between Λ1, Λ2 and Λ, and that between V1, V2 and V , it directly follows that
X is an (r1 + r2) × 2m block diagonal matrix with X1 and X2 on its diagonal:

X =
(

X1 0
0 X2

)
(17)

where the r1 × m matrix X1 and r2 × m matrix X2 are the training vectors in
the empirical feature spaces associated with K1 and K2, respectively.

The geometrical interpretation of this AKM scheme for kernel combination is
illustrated in Fig. 2, where for the sake of visualisation we assume that the em-
pirical feature spaces of both K1 and K2 are 1-dimensional. In practice, however,
both spaces can be up to m dimensional. It is clear in Fig. 2 that by combining
two kernels using the AKM scheme we have 2m training samples. This results
in 2m coefficients in the decision function trained using the augmented kernel
matrix, and as a result it allows training samples to have different contribution
through the feature channels. We will show the benefit of this experimentally in
the next section.

Fig. 2. Geometrical interpretation of augmenting the kernel matrix using Eq. 8. Left:
the empirical feature space of K1. Middle: the empirical feature space of K2. Right:
the empirical feature space of K1 ⊕ K2.

For test kernels, the ⊕ operation is defined as:

K̇ = K̇1 ⊕ K̇2 =
(

K̇1

K̇2

)
(18)

As a result the composite test kernel K̇ has a size 2m × l. By applying the
decision function, which has 2m coefficients, on K̇, we obtain one score for each
test sample.

5 Experiments

In this section, we validate the usefulness of the proposed AKM kernel combina-
tion scheme on both UCI datasets and an object recognition dataset. SVM and
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kernel FDA are the two most popular kernel based classification methods. It has
been shown [20,4] that SVM and kernel FDA have strong connections. In fact,
the only difference between them is that SVM uses a hinge loss for computing
the empirical loss while FDA uses a squared loss. In our experiments we choose
kernel FDA as classifier to compare several kernel combination schemes: the �1
multiple kernel FDA (MK-FDA) of [14], the �2 MK-FDA of [15], �∞ MK-FDA
where all the base kernels get equal weights, and the AKM scheme proposed in
this paper.

5.1 UCI Datasets

We show in this section results on four datasets from the UCI machine learning
repository [21], namely, sonar, heart, iris and wine. Among these datasets, the
first two are binary problems while the last two are multiclass problems. For
each dataset, we first normalise each feature in the input space to between -1
and 1. We then construct 10 RBF kernels using the normalised features with
the following kernel function KRBF (xi,xj) = exp−||xi−xj ||2/σ2

, where σ is set
to {10−1/2, 10−1/3, 10−1/6, 100, 101/6, 101/3, 101/2, 102/3, 105/6, 101}. All the ker-
nels are then centred in their empirical feature spaces[6]. For each dataset, we
randomly split all samples (or equivalently the kernel matrix) into a training set
and a test set using a ratio of 8 : 2. We repeat experiments 1000 times using
1000 random splits and report the mean error rate and standard deviation.

The first three methods under comparison all use linear combination of ker-
nels. In �1 MK-FDA and �2 MK-FDA, the optimal kernel weights are learnt;
while in �∞ MK-FDA the kernel weights are ones for all kernels. Once the ker-
nel weights are obtained, the composite training kernel and test kernel can be
computed. For the proposed AKM scheme, augmented training kernel and test
kernel are constructed using Eq. 8 and Eq. 18, respectively.

Once the training and test kernels have been obtained using the four methods,
we apply FDA to find the optimal projection and compute the classification error
rate. In our experiments, the spectral regression based FDA implementation in
[22] is employed for its efficiency. In this implementation, a γ parameter controls
the trade-off between empirical error and generalisation of the decision function.
For each dataset and each of the 1000 splits, we repeat 11 times using 11 γ
values: {0, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 100, 10+1}.

We report the error rate and standard deviation of the four kernel combination
methods in Table 1 and Table 2. For each γ value, we compute the mean error
rate of the 1000 runs, and report in Table 1 the smallest error rate and the
associated standard deviation for each method. We also select the optimal γ for
each of the 1000 runs and report the error rate and standard deviation in Table
2. Briefly speaking, results in Table 1 and Table 2 are obtained with γ optimised
over the mean of all 1000 runs and over each individual run, respectively.

From both tables we can see that MK-FDAs with different regularisation
norms can be advantageous on different datasets. This is because different norm
tend to produce kernel weights with different levels of sparsity: the smaller the
norm, the higher the sparsity. As a result, MK-FDA with different norms are
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suitable for kernel sets with various levels of intrinsic sparsity. On the other
hand, the proposed AKM scheme outperforms all versions of MK-FDA, which
are already the state-of-the-art classifiers, on two out of four datasets, and is
comparable on the other two.

Table 1. Mean error rate. γ optimised over the mean of 1000 runs.

�1 MK-FDA �2 MK-FDA �∞ MK-FDA AKM FDA

sonar 13.5±5.0 14.2±5.2 13.9±5.1 11.9 ± 4.6

heart 17.5±4.7 17.0 ± 4.6 17.2±4.6 17.9±4.7

iris 5.1±3.8 4.7±3.5 4.6±3.6 4.1 ± 3.2

wine 5.6±9.7 1.5 ± 2.0 1.5 ± 2.0 2.5±2.6

Table 2. Mean error rate. γ optimised over each individual run.

�1 MK-FDA �2 MK-FDA �∞ MK-FDA AKM FDA

sonar 11.9±4.6 12.9±4.7 12.9±4.7 9.9 ± 4.0

heart 16.5±4.5 16.1 ± 4.4 16.3±4.4 16.6±4.4

iris 4.3±3.4 4.1±3.2 4.0±3.3 2.9 ± 2.7

wine 4.9±9.5 1.2±1.7 1.1 ± 1.7 1.9±2.3

5.2 Pascal VOC08 Dataset

The Pascal visual object classes (VOC) challenge provides a yearly benchmark
for comparison of object recognition methods, with one of the most challenging
datasets in the object recognition / image classification community [23]. The
VOC 2008 development dataset consists of 4332 images of 20 object classes such
as aeroplane, cat, person, etc. The set is divided into a pre-defined training set
with 2111 images and a validation set with 2221 images. In our experiments, the
training set is used for training and the validation set for testing.

The classification of the 20 object classes is treated as 20 independent binary
problems. Average precision (AP) [24] is used to measure the performance of
each binary classifier. The mean of the APs of the 20 classes, MAP, is used as a
measure of the overall performance.

SIFT descriptor [25] and codebook technique [26] are used to generate kernels.
The combination of two sampling techniques (dense and Harris-Laplace), five
colour variants of SIFT descriptors [27], and three ways of dividing an image
into spatial location grids results in 2 × 5 × 3 = 30 base kernels.

We show in Table 3 the MAPs of the four kernel combination methods. The γ
parameter is set to 0, with which optimal MAPs are achieved for all four meth-
ods. The poor performance of �1 MK-FDA indicates that the base kernels carry
complementary information. In such a case, non-sparse kernel selection result is
favoured since it does not lead to information loss. The proposed AKM scheme
outperforms �2 and �∞ MK-FDAs by seemingly small margins. However, it is
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Table 3. MAPs of the four kernel combination methods with 30 base kernels

�1 MK-FDA �2 MK-FDA �∞ MK-FDA AKM FDA

MAP 45.1 46.3 46.2 46.4

worth noting that a difference of 0.1 in MAP is more significant than it may
appear to be. For example, the leading methods in PASCAL VOC classification
competitions typically differ only by a few tenths of a percent in MAP. More-
over, uniform FDA was used by the method that produced the highest MAP in
PASCAL VOC 2008 classification challenge [23]. This means the proposed AKM
scheme improves over the state-of-the-art classifier for object recognition.

In both the experiments on UCI datasets and on VOC08 dataset, �1 and �2
MK-FDAs are implemented in Matlab and the associated optimisation problems
are solved with the Mosek optimisation software 2. The stopping threshold ε in
�1 and �2 MK-FDAs is set to 5 × 10−4.

6 Conclusions

In this paper we have presented a novel approach to combining multiple kernels
where the kernels are computed from different information channels. In contrast
to traditional methods that learn a linear combination of n kernels of size m×m,
resulting in m coefficients in the trained classifier, we propose a method that can
learn n×m coefficients. This allows to assign different importance to the informa-
tion channel per example rather than per kernel. We analyse the proposed kernel
combination in empirical feature space and provide its geometrical interpreta-
tion. We validate the approach on both UCI datasets and an object recognition
dataset, and demonstrate that it leads to classification improvements.
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Abstract. A method for applying weighted decoding to error-correcting
output code ensembles of binary classifiers is presented. This method is
sensitive to the target class in that a separate weight is computed for
each base classifier and target class combination. Experiments on 11 UCI
datasets show that the method tends to improve classification accuracy
when using neural network or support vector machine base classifiers. It
is further shown that weighted decoding combines well with the technique
of bootstrapping to improve classification accuracy still further.

1 Introduction

The use of error-correcting output code (ECOC) ensembles [5,8] has proved to
be highly successful in solving multi-class classification problems. In this ap-
proach the multi-class problem is decomposed into a series of 2-class problems,
or dichotomies, and a separate base classifier trained to solve each one. These
2-class problems are constructed by repeatedly partitioning the set of target
classes into pairs of super-classes so that, given a large enough number of such
partitions, each target class can be uniquely represented as the intersection of
the super-classes to which it belongs. The classification of a previously unseen
pattern is then performed by applying each of the base classifiers so as to make
decisions about the super-class membership of the pattern. Redundancy can be
introduced into the scheme by using more than the minimum number of base
classifiers and this allows errors made by some of the classifiers to be corrected
by the ensemble as a whole.

The operation of the ECOC algorithm can be broken down into two distinct
stages - the coding stage and the decoding stage. The coding stage consists of
applying the base classifiers to the input pattern x so as to construct vector
of base classifier outputs s (x); the decoding stage consists of applying some
decoding rule to this vector so as to make an estimate of the class label that
should be assigned to the input pattern.

A commonly used decoding method is to base the classification decision on the
minimum distance between s (x) and the vector of target outputs for each of the
classes, using a distance metric such as Hamming or L1. This, however, treats all
base classifiers as equal, and takes no account of variations in their reliability. In
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this paper we describe a method for weighting the base classifier outputs so as
to obtain improved ensemble accuracy. The weighting coefficients are computed
from a statistic, known as the class-separability statistic. This algorithm assigns
different weights to each base classifier and target class combination. Class-
separability weighting (CSEP) was shown in [12] to be useful in the field of
face-expression recognition. Here we show that it can also be beneficial when
applied to general classification problems, as exemplified by 11 UCI datasets [9].

One of the advantages of the ECOC approach is that it makes it possible
to perform multi-class classification by using base classifier algorithms that are
more suited to solving 2-class problems. In this paper we investigate experimen-
tally three types of base classifier, namely multi-layer perceptron (MLP) neural
networks [1], Gaussian kernel support vector machines (SVMs) and polynomial
kernel SVMs [3]. It is useful to regard each of these base classifier types as being
controlled by two main parameters which respectively determine the capacity
and the training strength of the learning algorithm. The term capacity [3] refers
to the ability of an algorithm to learn a training set with low or zero training
error. By training strength we mean the amount of effort that is put into training
the classifier to learn the details of a given training set. For the three types of
base classifier considered, the capacity parameter is, respectively, the number of
hidden nodes, the Gaussian gamma parameter and the polynomial degree pa-
rameter. The training strength parameter is the number of training epochs for
MLPs and the cost parameter for both types of SVMs.

A generally desirable property of multiple classifier systems, of which ECOC
is an example, is that there should be diversity among the individual classifiers
in the ensemble [2,11]. By this is meant that the errors made by component
classifiers should, as far as possible, be uncorrelated so that the error correcting
properties of the ensemble can have maximum effect. One way of encouraging
this is to apply bootstrapping [7] to the training set so that each base classifier
is trained on a unique bootstrap replicate. These are obtained from the original
training set by repeated sampling with replacement. This creates a training set
which has, on average, 63% of the patterns in the original set but with some
patterns repeated to form a training set of the same size. Previous work [10]
has shown that bootstrapping often reduces ensemble error and, in particular,
it tends to avoid the problem of overfitting the data at high training strength
values. A further potential benefit of bootstrapping is that each base classifier
is trained on only a subset of the available training data and this leaves the
remaining data, known as the out-of-bootstrap (OOB) set, to be used for other
purposes such as parameter tuning. Note, however, that the OOB set is unique
to each base classifier.

The remainder of this paper is structured as follows. The technique of applying
class-separability weighting to the decoding of outputs from ECOC ensembles
is described in detail in section 2. An experimental investigation of the effect
of using this weighting scheme, with and without bootstrapping, is presented in
section 3. Finally, section 4 summarises the conclusions to be drawn from this
work.
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2 ECOC Weighted Decoding

The ECOC method consists of repeatedly partitioning the full set of N classes
Ω into L super-class pairs. The choice of partitions is represented by an N × L
binary coding matrix Z. The rows Zi are unique codewords that are associated
with the individual target classes ωi and the columns Zj represent the different
super-class partitions. Denoting the jth super-class pair by Sj and Sj , element
Zij of the coding matrix is set to 1 or 01 depending on whether class ωi has been
put into Sj or its complement. A separate base classifier is trained to solve each
of these 2-class problems.

Given an input pattern vector x whose true class y (x) ∈ Ω is unknown, let the
soft output from the jth base classifier be sj (x) ∈ [0, 1]. The set of outputs from
all the classifiers can be assembled into a vector s(x) = [s1(x), . . . , sL(x)]T ∈
[0, 1]L called the output code for x. Instead of working with the soft base classifier
outputs, we may also first harden them, by rounding to 0 or 1, to obtain the
binary vector h(x) = [h1(x), . . . , hL(x)]T ∈ {0, 1}L. The principle of the ECOC
technique is to obtain an estimate ŷ (x) ∈ Ω of the class label for x from a
knowledge of the output code s(x) or h(x).

In its general form, a weighted decoding procedure makes use of an N × L
weights matrix W that assigns a different weight to each target class and base
classifier combination. The class decision, based on the L1 metric, is made as
follows:

ŷ (x) = argmin
ωi

L∑
j=1

Wij |sj (x) − Zij| , (1)

where it is assumed that the rows of W are normalized so that
∑L

j=1 Wij =
1 for i = 1 . . .N . If the base classifier outputs sj (x) in eqn. 1 are replaced
by hardened values hj (x) then this describes the weighted Hamming decoding
procedure.

The values of W may be chosen in different ways. For example, if Wij = 1
L

for all i, j then the decoding procedure of eqn. 1 is equivalent to the standard
unweighted L1 or Hamming decoding scheme. In this paper we make use of the
class separability measure [11,12] to obtain weight values that express the ability
of each base classifier to distinguish members of a given class from those of any
other class.

In order to describe the class-separability weighting scheme, the concept of a
correctness function must first be introduced: given a pattern x which is known
to belong to class ωi, the correctness function for the j’th base classifier takes
the value 1 if the base classifier makes a correct prediction for x and 0 otherwise:

Cj (x) =

{
1 if hj (x) = Zij

0 if hj (x) �= Zij

. (2)

We also consider the complement of the correctness function Cj (x) = 1−Cj (x)
which takes the value 1 for an incorrect prediction and 0 otherwise.
1 Alternatively, the values +1 and -1 are often used.
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For a given class index i and base classifier index j, the class-separability
weight measures the difference between the positive and negative correlations of
base classifier predictions, ignoring any base classifiers for which this difference
is negative:

Wij = max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0,

1
Ki

⎡⎢⎢⎢⎢⎢⎣
∑

p ∈ ωi

q /∈ ωi

Cj (p)Cj (q) −
∑

p ∈ ωi

q /∈ ωi

Cj (p)Cj (q)

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (3)

where patterns p and q are taken from a fixed training set T and Ki is a
normalization constant that ensures that the i’th row of W sums to 1. The
algorithm for computing W is summarised in fig. 1.

Inputs: matrix of training patterns T ∈ R
P×M , binary coding matrix Z ∈

{0, 1}N×L, trained ECOC coding function E : R
M 	→ [0, 1]L .

Outputs: weight matrix W ∈ [0, 1]N×L where
∑L

j=1 Wij = 1, for i = 1 . . . N .
Apply E to each row of T and round to give prediction matrix H ∈ {0, 1}P×L.
Initialise W to 0.
for c = 1 to N

for i = indices of training patterns belonging to class c
for j = indices of training patterns not belonging to class c

let d be the true class of the pattern Tj .
for k = 1 to L

if Hik = Zck and Hjk = Zdk, add 1 to Wck

as the predictions for both patterns Ti and Tj are correct.
if Hik �= Zck and Hjk �= Zdk, subtract 1 fromWck

as the predictions for both patterns Ti and Tj are incorrect.
end

end
end

end
Reset all negative entries in W to 0.
Normalize W so that each row sums to 1.

Fig. 1. Pseudo-code for computing the class-separability weight matrix for ECOC

3 Experiments

In this section we present the results of performing classification experiments
on 11 multi-class datasets obtained from the publicly available UCI repository
[9]. The characteristics of these datasets in terms of size, number of classes and
number of features are given in table 1.
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Table 1. Experimental datasets showing the number of patterns, classes, continuous
and categorical features

Dataset Num. Num. Cont. Cat.
Patterns Classes Features Features

dermatology 366 6 1 33
ecoli 336 8 5 2
glass 214 6 9 0
iris 150 3 4 0

segment 2310 7 19 0
soybean 683 19 0 35
thyroid 7200 3 6 15
vehicle 846 4 18 0
vowel 990 11 10 1

waveform 5000 3 40 0
yeast 1484 10 7 1

For each dataset, ECOC ensembles of size 200 were constructed using each of
three base classifier types and a range of capacity and training strength param-
eters. Each such combination was repeated 10 times with and without CSEP
weighting and with and without bootstrapping. Each run used a different ran-
domly chosen stratified training set and a different randomly generated ECOC
coding matrix; for neural network base classifiers another source of random vari-
ation was the initial network weights. When bootstrapping was used, each base
classifier was trained on a separate bootstrap replicate drawn from the complete
training set for that run. The CSEP weight matrix was, in all cases, computed
from the full training set. In each run the data was normalized so that the
training set had zero mean and unit variance. The ECOC code matrices were
constructed in such a way as to have balanced numbers of 1s and 0s in each
column. Training sets were based on a 20/80 training/test set split.

The base classifier types employed were single-hidden layer MLP neural net-
works using the Levenberg-Marquardt training algorithm, SVMs with Gaussian
kernel and SVMs with polynomial kernel. The MLPs were constructed as a sin-
gle hidden layer of perceptrons, with the number of hidden nodes ranging from
2 to 16 and the number of training epochs from 2 to 1024. For Gaussian SVMs
the width parameter gamma was varied between 1 and 8, whilst for polynomial
SVMs degrees of 1,2,3 and 4 were used. The cost parameter of SVMs was varied
between 10−3 and 103. In all cases, apart from polynomial degrees, the base
classifier parameters were varied in geometric progression.

Table 2 compares the effect, on ensemble generalisation accuracy, of using
CSEP weighted decoding and bootstrapping in different combinations. For each
such combination and each base-classifier algorithm it shows the number of
datasets for which rank 1 accuracy was achieved. It also shows the mean rank-
ing, taken over the 11 datasets, achieved by each combination together with
the mean best-case ensemble error and the percentage reduction in this
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error2. The evidence of this table is that both bootstrapping and CSEP weight-
ing on their own do tend to produce some improvement in classifier accuracy,
with the latter algorithm being somewhat more effective than the former. This is
shown by higher rank 1 counts, lower mean rank values and lower test errors. It
is striking, however, that the greatest benefit is obtained when both techniques
are used, indicating that their effects are mutually complementary so that they
can be combined to good effect. It is also noticeable that, perhaps due to its
more stochastic nature, the MLP base classifier shows the greatest reduction in
mean test error, with the deterministic SVM classifiers benefitting to a lesser
degree.

Table 2. Comparison of the best ensemble test error rates obtained from four com-
binations of algorithms; these were: standard ECOC, ECOC with bootstrapping
(BS), ECOC with CSEP weighted decoding and ECOC with both bootstrapping and
weighted decoding

Standard BS CSEP BS+CSEP
Rank 1 count (out of 11)

MLP 0 1 3 7
Gaussian SVM 1 2 3 7

Polynomial SVM 1 1 3 6
Mean rank

MLP 3.18 2.82 2.36 1.64
Gaussian SVM 3.09 2.91 2.18 1.55

Polynomial SVM 3.18 2.55 2.55 1.73
Mean best-case ensemble test error (%)
MLP 16.54 16.23 16.16 15.78

Gaussian SVM 15.84 15.88 15.77 15.65
Polynomial SVM 16.98 16.81 16.88 16.63

Relative decrease in mean test error (%)
MLP - 1.87 2.30 4.59

Gaussian SVM - -0.25 0.44 1.20
Polynomial SVM - 1.00 0.59 2.06

Further evidence for these findings can be seen in Fig. 2. This shows the mean
ensemble test error, taken over all datasets, at the optimal base classifier capac-
ity and over a range of training strength values. It is immediately apparent,
from an inspection of this figure, that the best results tend to be obtained us-
ing CSEP weighted decoding and bootstrapping in combination. Bootstrapping
alone tends to reduce ensemble error and also makes the ensemble less susceptible
to overtraining at high values of the training strength parameter. When CSEP
weighting is added to bootstrapping there is a further consistent reduction in en-
semble error over the range of training strength values. This improvement tends

2 Calculated as 100 x (original error - new error)/original error.
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Fig. 2. The effects of class-separability weighting and bootstrapping on ensemble test
error over a range of training strength values. These graphs show the mean error rate,
taken over all datasets, at optimal base classifier capacity. The capacity parameters
were set to: (a) 8 hidden nodes, (b) gamma = 4, (c) degree = 2.

to be most pronounced at low values of training strength, but is still observ-
able at higher values of this parameter. In the absence of bootstrapping, CSEP
weighting still leads to a reduction in ensemble error but the effect is more clas-
sifier dependent, with MLPs gaining the greatest benefit and polynomial SVMs
the least. Again, the error reduction achieved by CSEP weighting is greatest at
low values of training strength.
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Table 3. Comparison of lowest ensemble error attained using standard ECOC and
bootstrapped ECOC with weighted decoding (BS+CSEP). All values are expressed as
percentages.

MLP Gaussian SVM Polynomial SVM
Data Set Std. BS + relative Std. BS + relative Std. BS + relative

ECOC CSEP decrease ECOC CSEP decrease ECOC CSEP decrease
dermatology 4.86 3.07 36.83 2.97 2.90 2.35 3.21 2.97 7.56

ecoli 17.48 15.08 13.73 14.66 14.00 4.50 15.68 14.44 7.89
glass 37.16 36.64 1.40 35.76 35.69 0.22 38.57 37.71 2.22
iris 5.25 5.00 4.76 5.83 5.08 12.86 5.58 5.75 -2.99

segment 3.92 3.94 -0.51 5.64 5.59 0.96 6.08 5.69 6.50
soybean 9.39 9.04 3.73 7.90 8.06 -2.10 8.24 8.25 -0.02
thyroid 2.57 1.95 24.12 2.77 2.69 2.94 3.39 2.90 14.54
vehicle 22.22 20.76 6.57 22.38 22.04 1.52 23.66 23.08 2.44
vowel 21.14 22.42 -6.05 20.83 20.86 -0.12 25.85 25.86 -0.05

waveform 16.70 14.75 11.68 14.48 14.41 0.45 14.59 14.45 0.97
yeast 41.22 40.97 0.61 41.02 40.85 0.41 41.90 41.83 0.18
mean 16.54 15.78 8.81 15.84 15.65 2.18 16.98 16.63 3.57

Table 4. Optimal numbers of hidden nodes for MLP base classifiers with and without
bootstrapping plus weighted decoding. The rank 1 count shows the number of datasets
for which each method required the smallest number of hidden nodes. Also shown is
the mean optimal number of nodes across all 11 datasets.

Standard BS CSEP BS+CSEP
Rank 1 count (out of 11) 3 5 6 8
Mean number of nodes 9.5 9.1 8.4 7.1

To explain the behaviour shown in Fig. 2 we must consider separately the
effects of bootstrapping and CSEP weighting. Bootstrapping operates during
the ECOC coding stage and, by subsetting the training data, acts so as to
reduce the degree to which each base classifier learns the distribution of this data.
Whilst this may reduce base classifier accuracy, it nevertheless increases ensemble
diversity and this can lead to an improvement in ensemble accuracy. This is
particularly true at high training strengths where, without bootstrapping, there
is a tendency to over-fit the data. By contrast, CSEP weighting operates during
the ECOC decoding stage and serves to compensate for base classifier inaccuracy
by individually weighting the base classifiers (on a per-class basis) so as to attach
greater importance to the decisions of those classifiers that proved to be more
accurate on the training set. Whilst this does tend to improve ensemble accuracy,
it does nothing to solve the problem of overtraining at high training strengths.
When bootstrapping is combined with CSEP weighting the benefits, we believe,
are two-fold. Firstly, because the effects of the two techniques are essentially
orthogonal, the advantages gained from using each method individually still
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apply. A second consideration is that the CSEP weights matrix is more reliable
by virtue of the fact that it is calculated on the full training set and this includes
some data (the OOB set) which is independent of that used for base classifier
training.

In the remainder of this section we look in more detail at the effects of applying
bootstrapping and CSEP weighted decoding in combination. Table 3 shows the
error levels measured on each of the test sets for each of the base classifier types
when the base classifier parameters were optimised so as to minimise ensemble
test error. Also shown is the percentage relative reduction in error achieved by
bootstrapping plus CSEP weighting.

It can be seen from this table that, in the majority of cases (26/33), boot-
strapping plus CSEP weighting did lead to a reduction in ensemble error. The
size of this reduction was greatest when using an MLP base classifier but was
nevertheless observable for the SVM base classifiers.

There is also evidence that, for MLP base classifiers, bootstrapping plus CSEP
weighted decoding has the desirable property that it tends to require simpler
classifiers with fewer hidden nodes than standard ECOC. Table 4 compares the
number of hidden nodes required to minimise test error and it can be seen that
bootstrapping and CSEP weighting individually lead to some improvement in
these figures. As with ensemble error, however, the largest gain occurs when
both techniques are used in combination.

4 Discussion and Conclusions

In this paper we have shown, by performing experiments on 11 multi-class
datasets, that the techniques of bootstrapping and class-separability (CSEP)
weighting each tend to reduce ECOC ensemble error. Bootstrapping affects the
coding stage; it tends to increase diversity and to make the ensemble resistant to
overfitting, especially at high values of the training strength parameter. CSEP
weighting affects the decoding stage by taking account of the different perfor-
mances of the base classifiers with respect to each target class.

It has been shown that these two algorithms complement each other and thus
combine together well to produce a greater reduction in ensemble error than
either of them individually. One reason for this may be related to the fact that
a side-effect of bootstrapping is to reduce the training set of each base classifier
to a subset of the available training set. It seems likely that this benefits CSEP
weighting because the weight matrix, which is calculated using the full training
set, will tend to be more representative because some of the training patterns
(i.e. the OOB set) will not have been used for base classifier training. In effect
this is similar to using a hold-out set for CSEP training.

The greatest benefit from CSEP weighting plus bootstrapping was observed
when using MLPs as base classifiers. In this context it was also observed that
the method has the desirable property that it tends to lead to simpler MLPs,
requiring fewer hidden nodes for optimal performance. When deterministic base
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classifier algorithms such as SVMs were used, CSEP weighting plus bootstrap-
ping was still found to be of benefit but to a lesser degree.

Future work will focus on characterizing how CSEP weighting improves per-
formance in terms of a bias-variance decomposition of error.
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Abstract. Geometry-based ensembles is a newly proposed algorithm
based on the concept of characterizing boundary points. These points are
found from the geometry of the data set and belong to the optimal bound-
ary between classes under a certain notion of robustness. The characteriz-
ing boundary points can be used to build a classifier. Based on these points,
a set of locally robust linear classifiers is defined and assembled in an ad-
ditive model to create a final decision rule. As a result a strong classifier
able to compete with nowadays state-of-the-art classifiers is obtained. The
main drawback of the original proposal comes from the fact that the com-
plexity of the created model can be arbitrarily high and depends on the
data set. Moreover, outliers and noise may increase this number. In this ar-
ticle, small complexity models with strong generalization capability are ex-
plored. Two incremental non-parametric additive building algorithms are
considered: boosting and least squared residual fitting approaches. More-
over, the last method is extended to deal with incremental L2 penalized
solutions (which implicitly combines the advantages of sparse models and
smooth ones due to the complexity limit). The validation of the approach
on the UCI database achieves very promising results assessing the validity
of CBP based classifiers ensembles.

1 Introduction

The new challenges in the machine learning community such as online learning,
adaptation to changing environments [7] or large scale learning [6] have increased
the interest for adapting the state-of-the-art techniques as well as developing new
techniques for dealing with these new scenarios.

In this context, geometry-based ensembles [1] appear as a new and simple clas-
sification algorithm with strong intuitive geometrical meaning. It automatically
deals with the non-linear boundaries and its accuracy statistically outperforms
some of the most well-known machine learning strategies, being on-par with
kernel approaches. Geometry-based ensembles (GE) are built upon the notion
of characterizing boundary points (CBP) — points that belong to the optimal
boundary between classes following certain definitions of robustness and mar-
gin. Intuitively, an hyperspherical “area of influence” is laid around each data
point, characterizing the amount of noise that a point is able to handle without
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(a) (b)

Fig. 1. (a) Illustration of the definition of characteristic boundary points. xi,j
cp is a

CBP since there is no other point inside the hypersphere centered in it with radius
‖xi − xj‖/2. (b) Example of CBPs (crosses)

ambiguity. The spatial locations where those “areas of influence” from different
classes collide define the characteristic boundary points.

From these points a predefined set of classifiers can be obtained and assembled
into an additive model. The optimization of the weights of the ensemble is for-
mulated using a L2-penalized squared loss function constrained to non-negative
weights, and solved using Singular Value Decomposition with filter factors.

Although the method is compelling, its main drawback comes from the mod-
erate computational complexity, and the fact that there is no model complexity
control. Moreover, in presence of very noisy data the amount of created classifiers
can be very high with respect to those that are really useful.

In this article, incremental methods with explicit model complexity control
using the geometry-based ensemble architecture are explored. Two incremental
non-parametric additive building algorithms are considered: adaboost and least
squared residual fitting. The last method is extended to deal with incremental
L2 penalized solutions — which implicitly combines the advantages of sparse
models and smooth ones due to early stopping.

The layout of the paper is as follows: in section 2, Geometry-based ensembles
are briefly described. Section 3, provides the background of incremental function
approximation and its adaptation to geometry-based ensembles. Section 4 val-
idates the classification methods on fifteen data sets from the UCI repository.
And, section 5 concludes the paper.

2 Geometry-Based Ensembles

Given a labelled training set of M points S = {(xi, yi)}, where xi ∈ R
d belonging

to class yi ∈ {+1,−1}, i = 1 . . .M , a characteristic boundary point xi,j
cp ∈

R
d is defined between any two training points (xi, xj) that fulfill the following

conditions:
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– Necessary condition: Both points (xi, xj) are from different classes.
– Local optimality: There is no closer example to the candidate boundary

point xcp than the ones that define it, namely (xi, xj).
Given any point p : {p ∈ R

d|(p, l) ∈ S}, then,

‖xi − xcp‖ ≤ ‖p − xcp‖ (1)
‖xj − xcp‖ ≤ ‖p − xcp‖ (2)

– Robustness to noise: The candidate boundary point is located at the
maximum distance from both generating points (the middle point between
xi and xj).

xi,j
cp =

1
2
(xi + xj) (3)

Observing the CBPs one can easily see that by definition they are a set of points
that lay in the locus of the space where no other point influence is present, thus
they are good candidates for modelling the transition between classes. Figure
1(a) shows an illustration of the notion of CBP and Figure 1(b) depicts the
CBPs for a toy example.

The original proposal of geometry-based ensembles (GE) builds an additive
model using a linear combination of linear classifiers based on the CBPs. This
set of classifiers are simply obtained as a hyperplane in the following way:

πxi,j
cp

(x) = (x − xi,j
cp )nxi,j

cp
, nxi,j

cp
=

xi − xj

‖xi − xj‖ (4)

where xi : {(xi, yi) ∈ S|yi = +1} and xj : {(xj , yj) ∈ S|yj = −1} correspond to
the elements of class labelled as +1 and −1, respectively.

The ensemble is created by means of an additive model F : R
d → R of base

classifiers hk(x) = sign(πk(x)) related with the characterizing boundary points,

F (x) =
N∑

k=1

ρkhk(x) =
N∑

k=1

ρksign(πk(x)) (5)

where N is the number of CBP and sign stands for the signum function. The final
decision rule can be simply obtained by thresholding the ensemble combination,

ŷ = sign(F (x) − ρ0) (6)

where ŷ is the estimated label and ρ0 is the global threshold value.
The influence of each base classifier in the ensemble is governed by the weight-

ing vector ρ in Eq. 5. The optimization of the weighting vector is formulated as
an L2 regularized problem in matrix form as follows,

argmin
ρ

‖y − Aρ‖2 + λ2‖ρ‖2
2 s.t. ρ > 0 (7)

where A(k, i) = hk(xi) = sign(πk(xi)), k ∈ {1 . . .N}, i ∈ {1 . . .M} and y is the
label vector of the training set, λ controls the weight of the residual norm. The
non-negativity constraint ensures that the proces does not change the decision
rule of any particular local classifier. The optimization is performed by means
of Singular Value Decomposition and filter factors.
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3 Incremental Optimization

In this article we explore and adapt to the GE framework some incremental
model control techniques. In particular we explore the use of adaptive boost-
ing and matching pursuit or gradient boosting with squared loss function for
obtaining a controlled complexity ensemble.

3.1 AdaBoost Incremental Optimization

From the point of view of incremental optimization, Adaboost [5] and, in particu-
lar, its real version can be seen as a additive model fitting procedure that approxi-
mates the optimization of an exponential loss-function [4] L(y, Ft(x)) = e−yFt(x).

Initialize D1(i) = 1/M.1
for t = 1 . . . T : do

Train weak learner using distribution Dt2
Get weak hypothesis ht : X → {−1, +1} with error εt = Pri∼Dt [ht(xi) �= yi].3
Choose ρt = 1

2 ln
( 1−εt

εt

)
4

Update weight distribution: Dt+1(i) = Dt(i)e
−ρtyiht(xi)

Zt
where Zt is a normalization5

factor.
Update model:Ft(x) = Ft−1(x) + ρtht(x)6

end
Algorithm 1. Adaboost

The procedure is described in Algorithm 1. The adaptation of this process
using the classifiers obtained by the GE is straightforward since in step 3, one
simply has to select the one that attains minimum error from the set of predefined
classifiers. One important practical consideration regards the fact that for this
method to converge correctly, one must respect the original polarity of local
classifiers as defined in Eq. 4.

3.2 Gradient Boosting

In [2] a general framework for attacking the problem of step-wise approximation
building is presented. Let Ft−1(x) be the approximation at step t − 1 and y
the desired value. We want to approximate y according to some loss function
L(y, Ft(x))

In the general case, this strategy replaces a potentially difficult function opti-
mization problem (ρt; at) = argminρ,a

∑N
i=1 L(yi, Ft−1(xi)+ ρh(xi; a)) by a two

step process: first, learning the weak classifier using a least squares loss approx-
imation (Algorithm 2 line 3), followed by weight optimization (Algorithm 2 line
4) based on the general loss criterion.

In the particular case of geometry-based ensembles, the weak classifiers are
predefined and directly provided by the CBPs. Thus, as in the former case, the
weak hypothesis learning process is replaced by a simple selection process. This
allows to simplify the formulation since, instead of optimizing with respect to
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F0(x) = arg minρ

∑N
i=1 L(yi, ρ)1

for t = 1 to T : do
ŷi = −[ ∂L(yi,F (xi))

∂F (xi)

]
i = 1, M2

at = arg mina,ρ
∑M

i=1[ŷi − ρh(xi; a)]2 // Selection of the function in the family that3
best approximates the neg gradient
ρt = arg minρ

∑N
i=1 L(ŷi, Ft−1 + ρh(xi; at))4

Ft(x) = Ft−1(x) + ρth(x;at)5
end

Algorithm 2. General Gradient Boost

two sets of parameters – the classifier parameters and the weight of the ensemble
– we just have to select the candidate weak classifier and find the weight by
minimizing with respect to the general loss function.

L2-penalized least squares incremental residual fitting. The simplest ap-
proach to gradient boosting optimization comes from the residual minimization.
This approach is defined by using a least-squares loss function, L(y, Fm(x)) =
(y−F )2

2 . Due to the selection-optimization split in the case of Geometry based
ensembles we can find the optimum analytically. By reversing the order of lines
3 and 4 of Algorithm 2, one can first find the optimal weighting value for
each candidate classifier h(x; a), ∂((ŷ−ρT

a h(x;a))T (ŷi−ρT
a h(x;a)))

∂ρa
= 0 which leads

to ŷT h(x; a) = ρT
a h(x; a)T h(x; a) = ρT

a M , observe that since h(x; a) is {+1,−1},
the dot product h(x; a)T h(x; a) is simply the number of training examples M .
Once the optimal set of values is found, a simple selection of the classifier that
best approximates the negative gradient is performed. In the current formulation
parameter a represents a selection variable.

F0(x) = y1
for t = 1 to T : do

ŷi = yi − Ft−1(xi) i = 1, M2

ρ = ŷT A
M+λ // ρ is a vector, one value per classifier3

at = arg mina
∑M

i=1(ŷi − ρah(xi; a))24
Ft(x) = Ft−1(x) + ρth(x;at)5

end
Algorithm 3. L2-penalized Least squares GE boost.

Direct optimization of ill-posed problems usually yield to poor results. In
the original geometry-based ensembles paper, a penalized formulation was used.
Following the same guidelines, we can perform the same optimization incremen-
tally by formulating a penalized loss function in the same terms as Equation 7.
However, as we will see in the experimental results section, in this incremen-
tal approach we can allow the change of polarity of a weak hypothesis without
hindering the convergence of the process. Following the former case derivation,
it is simple to obtain the new weighting vector ρ = ŷT A

M+λ . Algorithm 3 shows
the regularized incremental geometry-based ensemble procedure. Observe that
by setting λ to zero we obtain the non-regularized algorithm
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4 Results

Data sets: Fifteen bi-class data sets from the UCI repository [3] have been used
to assess the performance of the different methods. Table 1 shows the details of
the data sets.

Table 1. UCI data sets used in the experiments with the number of examples and
dimensionality d

Database code Examples d Database code Examples d
Breast Winsc. (bcw) 699 10 Statlog Heart (shd) 270 13
Bupa liver (bld) 345 6 Tic Tac Toe (ttt) 958 9
Heart Clev. (hec) 920 13 Spect (spt) 267 22
Ionosphere (ion) 351 34 New thyroid (nth) 215 5
Breast (bre) 569 32 Pima indians (pid) 768 8
Voting records (vot) 435 16 Sonar (snr) 208 60
Monks complete (mon) 432 7 Statlog Au Credit (sac) 690 14
Credit (cre) 690 15

Methods: Four incremental geometry-based ensembles are used in the exper-
iments: Adaptive Boosted Geometry-based ensemble (BGE) and Regularized
Gradient Boosted Geometry-based ensembles (GBGE) with λ = 0, λ = 100 and
λ = 300. These methods are compared with Adaboost with decision stumps,
Support Vector Machines with Radial Basis Function kernel and the original
proposal of the Geometry-based Ensembles (OGE).

Parameters Settings: The values for C and σ from the SVM-RBF approach
and λ from the OGE are found using 5-fold cross validation on the training set.

Experimental Settings: Ten randomized runs of stratified ten-fold cross val-
idation (for a total of 100 experiments/database) are performed and the mean
accuracy is computed for ensembles ranging from 1 to 400 classifiers.

Figures 2 and 3 show the evolution of the test mean accuracy as the number of
classifiers in the ensemble increase. Dashed lines correspond to reference meth-
ods: horizontal black dashed line corresponds to OGE, horizontal gray dashed
line to SVM, and light gray dashed line to Adaboost. Dotted line shows the
performance of the GE optimized using Adaboost (BGE). Solid lines show the
evolution of the accuracy for the regularized approaches – the darker the line is,
the higher the lambda value is set.

At first glance, one observes that the incremental methods suffer from over-
fitting – including Adaboost – in six of the fifteen data sets. Summarizing the
plots, regularized versions of the incremental version of GE perform very well in
eleven out of the fifteen data sets. The worst performances are found in (ion),
(bre), (snr) and (vot). Observe that, in general, higher values of the regulariza-
tion parameter delay overfitting as well as achieve better results than smaller
values in most cases. It is worth commenting that the values of λ in the incre-
mental versions are much bigger than in OGE where the optimal value ranged
from 1 to 100, while in the regularized gradient boosted version it ranges from
100 to 500.



Boosted Geometry-Based Ensembles 201

(bcw) (bld)

0 100 200 300 400
0.92

0.93

0.94

0.95

0.96

0.97

0.98

Complexity

A
cc

ur
ac

y

0 100 200 300 400
0.6

0.62

0.64

0.66

0.68

0.7

0.72

Complexity

A
cc

ur
ac

y

(hec) (ion)

0 100 200 300 400
0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

Complexity

A
cc

ur
ac

y

0 100 200 300 400
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Complexity

A
cc

ur
ac

y

(bre) (pid)

0 100 200 300 400
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Complexity

A
cc

ur
ac

y

0 100 200 300 400
0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

Complexity

A
cc

ur
ac

y

(snr) (sac)

0 100 200 300 400
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Complexity

A
cc

ur
ac

y

0 100 200 300 400
0.84

0.85

0.86

0.87

0.88

0.89

Complexity

A
cc

ur
ac

y

Fig. 2. Test accuracy results with respect to the number of classifiers in the ensemble
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Fig. 3. Test accuracy results with respect to the number of classifiers in the ensemble
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Table 2. Comparison among the different methods in terms of (Wins/Draws/Loses).
One method is considered to win another if it displays a higher accuracy than the
maximum obtained by another in at least 25% of the search space.

Regularized GBGE BGE Adaboost SVM OGE
Regularized - 10/5/0 11/1/3 8/3/4 7/3/5 6/3/6

GBGE 0/5/10 - 5/6/4 7/2/6 2/4/9 4/1/10
BGE 3/1/11 4/6/5 - 6/2/7 3/0/12 5/0/10

In the following lines, the general performance of the methods with respect to
the reference methods is quantitatively compared. The notation (wins/draws/
loses) is used to show the approximate behavior of a method with respect to
another. One method is considered to outperform another if it displays a higher
accuracy than the maximum obtained by the other in at least 25% of the search
space. Table 2 shows the values for the methods considered in the experiment.
The regularized versions of the incremental version clearly outperfom the rest
of the proposed methods. With respect to the reference classifiers, regularized
versions are approximately on par with OGE and SVM, and improve Adaboost
performance. GBGE and BGE are clearly outperformed by OGE and SVM, but
are on par with Adaboost. There are no significant differences between BGE and
GBGE.

5 Discussion and Conclusion

In this article, incremental methods for controlling complexity of geometry-based
ensembles are explored. Adaboost and Least squares residual fitting are used as
base methods for selecting and combining CBP-based classifiers. Results show
that both methods, though on par with the performance of Adaboost with de-
cision stumps, display a poor behavior when compared with SVM and OGE.
Following the same idea than in the original geometry-based ensembles article, a
L2-penalization term is added to the formulation of the last method. As a result,
much better behavior with small complexity is obtained, being on par with SVM
and OGE. This result verifies the initial hypothesis of the article regarding the
validity of CBP-based classifiers ensembles with small complexity.

One interesting point that must be observed in the formulation of the current
methods is that incremental geometry-based ensembles are based on a predefined
set of classifiers, and the creation of the ensemble can be regarded as a forward
selection of the best classifier at a given time and the optimization of its weight in
the ensemble. Note that the creation of the set of classifiers and the incremental
optimization are decoupled, making the algorithm potentially useful for online
and parallel extensions.

Finally, observe that on few data sets the performance of the strategy is
clearly inferior to the rest of the methods. I conjecture that this is due to a lack
of classifiers for the selection process. This fact would also explain the overfitting
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tendency in some data sets. As a future research it may be useful to explore this
effect and ways to overcome it. One possible way to address this problem is to
change the notion of CBP. Up to this moment, the creation of the CBP rely on
the Gabriel graph. The Gabriel graph considers edges between points as long as
there is no other one inside the hypersphere with diameter the distance between
the creating points. However, this notion can be easily generalized if we allow
up to k points to be inside the hypersphere. This change effectively increase the
number of CBPs and define an incremental space of classifiers.
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Abstract. Oza’s Online Boosting algorithm provides a version of Ad-
aBoost which can be trained in an online way for stationary problems.
One perspective is that this enables the power of the boosting frame-
work to be applied to datasets which are too large to fit into memory.
The online boosting algorithm assumes the data distribution to be inde-
pendent and identically distributed (i.i.d.) and therefore has no provision
for concept drift. We present an algorithm called Online Non-Stationary
Boosting (ONSBoost) that, like Online Boosting, uses a static ensemble
size without generating new members each time new examples are pre-
sented, and also adapts to a changing data distribution. We evaluate the
new algorithm against Online Boosting, using the STAGGER dataset
and three challenging datasets derived from a learning problem inside a
parallelising virtual machine. We find that the new algorithm provides
equivalent performance on the STAGGER dataset and an improvement
of up to 3% on the parallelisation datasets.

1 Introduction

Many real-world problems change their characteristics over time. This is known
as learning in non-stationary environments, where the function which maps from
the inputs to the outputs changes over time [4,5,7,10]. This change is known as
concept drift. Ensemble frameworks provide a modular style where components
can be added, removed or modified which is particularly useful when tracking
changing concepts. The aim of this work is to demonstrate a novel online learning
algorithm, capable of being deployed in a real-time environment, requiring online
learning with thousands of examples per second. The domain we work with is
that of adaptive Java compilers, which dynamically optimise how Java code is
executed on modern multi-core computers.

We are investigating the application of ML techniques to automatic paralleli-
sation problems, running inside a Java virtual machine. Automatic parallelisa-
tion problems have several interesting characteristics that constrain the space of
applicable learning algorithms. Training data is taken from runtime analysis of
Java benchmarks, recording properties of the machine state at the start/end of
each method execution. The prediction task is, given the machine state, and the
source code for a new Java method, should this method be executed in parallel?
This is an important task, as parallel execution can potentially fail if it causes a

N. El Gayar, J. Kittler, and F. Roli (Eds.): MCS 2010, LNCS 5997, pp. 205–214, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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resource conflict with other currently running methods; and solving this problem
well can potentially halve the runtime of a piece of Java code.

Since decisions are taken at the start of every method execution, this results in
a dataset generating potentially millions of examples per second, rendering many
standard offline training algorithms infeasible. The exemplar of this is our Da-
Capo Bloat data [1], which generates 1, 273, 359 datapoints in 386 milliseconds
of runtime. Predictions required by the parallelisation system therefore need to
be generated on the order of microseconds otherwise the parallelisation oppor-
tunity is lost in the overhead created by the ML system. Additionally, a training
cycle must not ’lock’ the ML system preventing it from providing a prediction. A
further problem is that the data is not independent and identically distributed,
as decisions made by the parallelisation system using ML predictions will alter
the future behaviour of the system. In summary we require a ML system which:

– Learns in a ‘true’ online fashion1.
– Can adapt to a changing distribution.
– Can generate predictions quickly.
– Can be updated without preventing the generation of predictions.

We propose a system based Oza’s Online Boosting [8], with modifications to
enable the updating of ensemble members, adapting the system to changing data.
Online Boosting meets the requirements using simple base models which can
generate predictions quickly, and while each ensemble member is being trained,
the remainder of the ensemble members could be used to generate a prediction.

The layout of this paper is as follows: Section 2 provides a description of the
related literature. Section 3 provides a description of our algorithm and how it
relates to the literature. Section 4 provides our experimental setup and testing
results, and Section 5 contains the conclusions and future directions for our
algorithm.

2 Related Work

Learn++.NSE [2,7] provides an algorithm for generating a boosted classifier on
streaming data. It generates a series of classifiers using batches of examples,
by converting the online datastream into a series of chunks of a fixed size. At
each time step one new classifier is trained on a batch of new examples, using an
example weighting distribution similar to AdaBoost based upon the performance
of the current ensemble, then all the ensemble members are reweighted according
to their performance on the current batch of examples. After each classifier has
been trained it becomes immutable, though its weight in the majority vote may
change dependent on its current performance.

Knowledge-based Sampling Stream (KBS-Stream) [10] is a boosting algorithm
similar to Learn++.NSE, as it generates a series of classifiers by creating batches

1 By ‘true’ online, we mean a system which learns from and then discards each training
example one-by-one.
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of examples from an online datastream. A key difference from Learn++ is the
classifier weighting scheme, based on a probabilistic correlation measure. An-
other important difference is the way it makes use of new data: in Learn++, a
new classifier trained every K examples, whereas in KBS-Stream, a new classifier
is only trained if the data distribution is deemed to have drifted.

It is important to note that both Learn++.NSE and KBS-Stream assume that
data in each batch are independent and identically distributed. In our paralleli-
sation problem the distribution is unknown, and thus no such guarantee can be
made. This leads to a problem if we were to apply these algorithms to the par-
allelisation datasets described in Section 4.1, as each new example would hypo-
thetically require the generation of a new classifier. In contrast to such ‘batching’
algorithms are algorithms which update the classifiers on presentation of each
example, which we term ‘true’ online learning algorithms.

Online boosting developed by Oza [8] provides a boosting algorithm which
mimics the sampling with replacement variant of AdaBoost [3] when applied to
an online stream of examples. Each example is presented to an ensemble member
r times, where r is drawn from a Poisson(λ) where λ is a weight derived from
previous performance on that example. Effectively, if the example is misclassi-
fied by an earlier classifier it is presented more often to classifiers later on in
the ensemble. This assumes that the ensemble members are capable of learning
incrementally and that repeated training on the same example will have a cumu-
lative effect on the classifier. The ensemble is initialised with a fixed number of
members which remain throughout the training process. The algorithm is proven
to return the same ensemble as AdaBoost in the limit of infinite examples, when
using a Naive Bayes classifier as the weak learning algorithm. At each stage
the algorithm is approximating the performance of AdaBoost trained upon the
same examples, which limits the performance when the distribution is changing
because offline classification tasks are not subject to concept drift.

AdaBoost performs a greedy forward search in the space of classifiers. Alter-
native search methods which are less greedy can be fitted in the place of this
forward search. One such algorithm is FloatBoost [6] which incorporates a se-
quential forward floating search [9] in place of the greedy forward search. This
enables the removal of classifiers which are hindering the performance of the
ensemble or are made redundant by a combination of other ensemble members.
Like AdaBoost, it is an offline binary classification algorithm. The sequential for-
ward floating search increases the runtime of the algorithm significantly whilst
providing an increase in the accuracy.

The properties of the various online algorithms described in this section are
summarised in Table 1.

3 Non-stationary Boosting

We present an algorithm that, like Online Boosting, uses a static ensemble size
without generating new members each time new examples are presented, and
also adapts to a changing data distribution. It is based upon a combination of
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Table 1. Comparison of related algorithms and ONSBoost. By “True Online” we
mean that the algorithm can be trained on single examples, without chunking them
and assuming i.i.d. within the batch.

Algorithm “True” Online Fixed Ensemble Size Concept Drift

Learn++.NSE ✗ ✗ ✔

KBS-Stream ✗ ✗ ✔

Online Boosting ✔ ✔ ✗

ONSBoost ✔ ✔ ✔

FloatBoost [6] and Online Boosting [8] which we call Online Non-Stationary
Boosting, or ONSBoost. It incorporates a floating search into the Online Boost-
ing algorithm, which enables the addition of new classifiers and the removal
of poorly performing classifiers. This lets the algorithm follow a changing data
distribution.

The algorithm, ONSBoost, provides a simple extension of Online Boosting to
allow the resetting of outdated and inaccurate classifiers. The key parameters
are: K, determining how often the classifiers are checked to see if a reset is
necessary; W , the size of the window used to determine if a reset is necessary;
and P , a “protection” period, where a classifier cannot be reset. The protection
period is necessary to allow a classifier sufficient training examples to learn the
new concept.

The algorithm reduces to Oza’s Online Boosting in the case when K is greater
than the number of examples in the training dataset2. When K is less than the
number of examples N there are �N

K � classifier removal steps.

Window Size
In a true online environment the base assumption is that there is an infinite
stream of examples being generated for training and classification. This means
it is not feasible to store all the previous examples and use those to determine
performance. A common technique for evaluating online classifiers is to use a
window of the most recent examples to determine the current performance [4].
This can also improve the accuracy on data with concept drift as it forces the
classifier to adapt to the most recent data. In common with these other tech-
niques we use a window to determine the current performance of the ensemble
and to decide which, if any, members need replacing to improve the ensemble.

Update Period
A parameter is introduced to control how often a search is performed of the clas-
sifiers to check if the ensemble performance is being hindered. Ideally this step
would be performed after each example has been presented for training, how-
ever this introduces problems. The backwards search requires n× j evaluations,
where n is the window size and j is the number of classifiers which makes it very

2 Note that in our current implementation we have used a modified pseudo-count
method for error estimates.
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computationally intensive compared to training. Thus performing a search after
each example would greatly increase the time complexity of each training cycle.

This parameter effectively controls how quickly poorly performing classifiers
are replaced, and thus has an effect on the speed with which the algorithm adapts
to concept drift. The searches are then limited so they are only performed after
the algorithm has seen K new examples. For example, if the parameter is set to
50, then each time 50 examples have been processed then a backwards search
for poorly performing classifiers will be executed.

Protecting New Classifiers
One further parameter is added to the system, which is necessitated by the fact
that newly created classifiers will perform poorly until they have been trained
on a sufficient number of examples. They are “protected” from removal by the
backwards search until they have been sufficiently trained. This is not a problem
in an offline algorithm as each new classifier is trained on the whole dataset. It is
parameterised because the amount of time a classifier needs to train to a given
standard on a dataset is in general unknown.

How to place classifiers?
A subtle point in all boosting algorithms, but particularly in Oza’s Online Boost-
ing is that the classifier ordering matters whilst the system is being trained. In
Online Boosting each classifier is implicitly dependent on the output of all classi-
fiers before it, as they are trained in a fixed sequential order. The performance of a
previous classifier dictates the number of times that the current classifier is trained
on any given example. To modify Online Boosting to allow for the replacement of
classifiers thought needs to be given to the placement of the new classifier.

The current algorithm places the reset classifier at the end of the ensemble, and
the alternative is in place replacement, where the reset classifier directly replaces
the old one. The former makes the (i + 1)th classifier adapt to the distribution
of examples that the ith classifier was learning when the ith classifier is replaced.
In the latter the new ith classifier will initially have poor performance and thus
make all examples have higher weights for any classifiers which are sequentially
after the ith classifier. The choice between these two behaviours is interesting, but
not explored in this paper. The two different methods are shown in Figure 1.

Fig. 1. Classifier placement. If classifier B is replaced with a fresh classifier D, D can
be put in two different places.
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Algorithm 1. ONSBoost
Variables: H = the ensemble, h is an ensemble member, ε(H) is the ensemble error
on the window
Parameters: M = number of classifiers, K = update period, W = window size P =
number of examples to “protect” a new classifier
Initialisation: ∀m ∈ {1, 2, ..., M}, λsc

m = 0, λsw
m = 0, k = 0

ONSBoost (H, train,(x, y))
PHASE I: Oza’s Online Boosting
Set the current example’s “weight” λ = 1
Increment the example counter k = k + 1
for all hm, (m ∈ {1, 2, ..., M}) in H do

Set r sampled from Poisson(λ)
for i = 0, i < r do

hm ← train(hm, (x, y))
end for
if y = hm(x) then

λsc
m ← λsc

m + λ

εm ← λsw
m +1

λsc
m+λsw

m +1

λ ← λ( 1
2(1−εm)

)
else

λsw
m ← λsw

m + λ

εm ← λsw
m +1

λsc
m+λsw

m +1

λ ← λ( 1
2εm

)
end if

end for

PHASE II: ONSBoost modification
Move window along datastream
if k = K then

HP = all classifiers which have trained on at least P examples
h′ = arg maxh∈HP ε(H − h)
if ε(H − h′) < ε(H) then

Remove h′ from H , and add a new h to the end of H
Set λsc

h = 0, λsw
h = 0, εh = 0

end if
k ← 0

end if

return H(x) ← arg maxc∈Y

∑
m:hm(x)=c log 1−εm

εm

4 Experimental Results

An obvious question is “how should we fix the parameters K, W and P?” In this
section we empirically evaluate the proposed algorithm with particular emphasis
on characterising the parameter space.
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4.1 Datasets

We use 4 datasets in the presented experiments, STAGGER and 3 datasets
taken from an automatic parallelisation problem which have concept drift and
thousands or millions of examples.

The parallelisation datasets all use a set of features derived from an offline
inspection of Java bytecode. The Java applications are taken from the DaCapo
benchmarks suite [1]. The datasets are described in detail in [11]. Each dataset
comprises a set of method features, and if the method was successfully exe-
cuted in parallel with its parent method. The class concept is subject to concept
drift as the underlying virtual machine state is not fully captured in the fea-
ture set. This is a hidden context [4] which can be subject to gradual, cyclical,
and abrupt forms of concept drift. Abrupt and cyclical behaviour can be gener-
ated as the feature set does not include information on all currently executing
methods, and these can cause conflicts which cause the parallel execution to
fail. Gradual behaviour can be generated as variables in the application change
over time and cause different memory access patterns, which affect the parallel
execution.

The STAGGER dataset is described in [12]. A standard methodology with this
dataset is to generate 100 test examples sampled from the current distribution
which are used to test the performance of any given algorithm. This does not
reflect a true online learning scenario as there is not generally an opportunity
to sample a testing set from the same distribution As a result dataset size was
increased to 600 to improve the measure of accuracy, with 1/3 still taken from
each of the three concepts. The format and features of the datasets are described
in Table 2.

Table 2. Dataset Properties

Dataset Examples Features Feature Type Class Skew

bloat 1,273,359 38 Binary 7% +ve
antlr 169,578 38 Binary 22% +ve
pmd 38,994 38 Binary 48% +ve

STAGGER 600 3 Ternary 29% +ve

4.2 Comparison with Online Boosting

Due to the problems Learn++.NSE and KBS-Stream have with data which
is not i.i.d. at the example level, we compare the new algorithm with Online
Boosting (without priming). In all cases the base learner used is a categorical
Naive Bayes with pseudocounts. The number of classifiers was kept constant
at 30 when using both ONSBoost and Online Boosting. Each experiment was
repeated 10 times, to eliminate some of the randomness inherent in the Poisson
distribution used in both algorithms. Results on STAGGER are presented, with
additional results using datasets collected by our automatic parallelisation
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Table 3. Online accuracy comparison between ONSBoosting and Online Boosting

Dataset Online Boosting ONSBoost ONSBoost Parameters
antlr 80.89% ± 0.23 81.92% ± 0.05 K = 200, W = 50
bloat 89.32% ± 0.85 91.93% ± 0.03 K = 200, W = 50
pmd 76.19% ± 0.18 78.10% ± 0.18 K = 200, W = 50

STAGGER 95.97% ± 0.36 96.10% ± 0.36 K = 10, W = 10

framework. Each experiment tests the online accuracy of a classifier. Online
accuracy is the percentage of the training data that the classifier predicts cor-
rectly, before it has been trained on that example. The value are given with 95%
confidence intervals.

The parameters for the comparison with Online Boosting were chosen as these
give the best result across the most data. This can be seen in the parameter
exploration in Section 4.3. With the STAGGER dataset an Update Period of
200 examples means that the algorithm considers classifiers for removal based
upon a concept which changes with a hard boundary at the example imme-
diately afterwards. For this reason a small update period was chosen, with a
consequently smaller window size. In these experiments we perform better than
Online Boosting in the parallelisation datasets, and equivalently in the STAG-
GER dataset. Even small improvements in accuracy are important for our task,
as each incorrect prediction has associated costs, and a 1% improvement in
accuracy results in an extra 12,000 correctly classified examples in the bloat
dataset.

4.3 Exploration of Parameter Space

We now vary the parameters of ONSBoost to see how sensitive the performance is
to parameter choice. Results are presented in Figure 2 varying the update period
(K) and window size (W ) parameters of ONSBoost. The number of examples
to protect a new classifier (P ) was fixed at 100 for all experiments. Figure 2(b)
shows the accuracy for one line of the heat maps, fixing the window size to 50,
and varying the update period from 50 to 2000 in steps of 10. This shows how
the performance increases as this parameter increases before decreasing again
once past a data dependent threshold, and the performance will converge to the
performance of Online Boosting when the update period is equal to the size of
the dataset.

From the exploration of the parameter space it appears that small window
sizes and a relatively high number of steps before a backward search are the best
parameters, as these consistently provide the highest accuracies. Using a window
size which is much greater than the number of steps before a backwards search
causes a decrease in performance, as new classifiers are penalised by the window
as they have not been trained upon the examples it contains.
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(a) Antlr dataset (b) Antlr dataset 50 ≤ K ≤ 2000

(c) Pmd dataset (d) STAGGER dataset

Fig. 2. Online accuracy results for ONSBoosting

5 Conclusion and Future Work

We presented an algorithm capable of dealing with continuous concept drift in
a resource constrained environment over millions of examples. The algorithm
is motivated by the need to develop a fast online learning algorithm for an
automatic parallelisation problem, which imposes constraints on the types of
algorithms which can be used. The algorithm replaces classifiers based upon their
impact on the ensemble’s performance rather than simply removing the oldest
classifier in the ensemble, so it can cope with some measure of cyclic behaviour
in the concept drift. We compared this new algorithm to Online Boosting, and
found an improvement in performance on our automatic parallelisation problem,
and comparable performance on a standard problem. The key idea is to maintain
a fixed number of classifiers which are updated online, and to replace classifiers
if they are negatively impacting the performance of the ensemble.

Our algorithm is based upon Online Boosting but will not converge to offline
AdaBoost given the limit of infinite training examples. This is because the data
is assumed to be i.i.d. in AdaBoost. Concept drift data is not i.i.d. and thus
Online Boosting is a sub-optimal choice of learning algorithm in a concept drift
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environment. ONSBoost provides a way to cope with concept drift in streaming
data while maintaining the useful properties of Online Boosting, namely the
ability to deal with incremental learning of streaming data, and the fixed number
of classifiers, and thus fixed memory usage.

An area of further research is to develop a system to enable ONSBoost to
cope better with cyclical drift. Learn++.NSE can turn off classifiers based upon
their current performance, but keep them for reuse later. A way of mimicking
this ability in the ONSBoost system would be to select new ensemble members
from a pool which included all previously removed classifiers, and a new ensemble
member with no prior knowledge of the system. Other possible extensions include
using a variable number of classifiers to decrease the ensemble size when the data
is simple to classify and to increase the ensemble size when the data is difficult
to classify.
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Abstract. Keyword spotting refers to the process of retrieving all in-
stances of a given word in a document. It has received significant amounts
of attention recently as an attractive alternative to full text transcrip-
tion, and is particularly suited for tasks such as document searching
and browsing. In the present paper we propose a combination of several
keyword spotting systems for unconstrained handwritten text. The indi-
vidual systems are based on a novel type of neural network. Due to their
random initialization, a great variety in performance is observed among
the neural networks. We demonstrate that by using a combination of
several networks the best individual system can be outperformed.

1 Introduction

The automatic recognition of handwritten text – such as letters, manuscripts or
entire books – has been a focus of intensive research for several decades [1,2]. Yet
the problem is far from being solved. Particularly in the field of unconstrained,
writer independent handwriting recognition where the writing styles of various
writers must be dealt with, severe difficulties are encountered.

Making handwritten texts available for searching and browsing is of tremen-
dous value. For example, one might be interested in finding all occurrences of the
word “complain” in the letters sent to a company. As another example, libraries
all over the world store huge numbers of handwritten books that are of cru-
cial importance for preserving the world’s cultural heritage. Making these books
available for searching and browsing would greatly help researchers and the pub-
lic alike. Finally, it is worth mentioning that Google and Yahoo have announced
to make handwritten books accessible through their search engines [3].

Transcribing the entire text of a handwritten document for searching is not
only inefficient as far as computational costs are concerned, but it may also
result in poor performance, since misrecognized words cannot be found. There-
fore, techniques especially designed for the task of keyword spotting have been
developed.

Current approaches to word spotting can be split into two categories, viz.
query-by-example (QBE) and query-by string (QBS). With the former approach,
all instances of the search word in the training set are compared with all word
images in the test set. Among the most popular approaches in this category
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are dynamic time warping (DTW) [4,5,6] and classification using global fea-
tures [7,8]. Word shape methods using Gradient, Structural and Concavity fea-
tures (GSC) have been shown to outperform DTW in [9,10]. Algorithms based
on QBE suffer from the drawback that they can only find words appearing in
the training set. The latter approach of QBS models the key words according to
single characters in the training set and searches for sequences of these charac-
ters in the test set [11,12]. Recently, keyword spotting systems that are modified
versions of handwriting recognition systems have received increasing attention.
In [11,13,14], hidden Markov models are used to find the words to be searched.

To the knowledge of the authors, only single stand-alone keyword spotting
systems have been proposed, but no attempt for a combination has been pub-
lished yet. In this paper we propose to combine several systems using well-known
multiple classifier combination techniques. We demonstrate that combining sev-
eral keyword spotting systems is a convenient method to substantially increase
the performance.

In [15] a novel neural network based keyword spotting system is proposed that
performs very well. However, a potential problem with this system is the fact
that different neural networks vary in their performance due to their random
initialization. But an ensemble of well performing keyword spotting systems can
be created easily. This renders this technique ideal as a basis to investigate the
combination of keyword spotting systems.

The rest of the paper is structured as follows. In Section 2, the underlying
neural network based keyword spotting system is introduced. In Section 3, we
present the combination methods used for experimental evaluation. The exper-
iments and their results are given in Section 4 and conclusions are drawn in
Section 5.

2 The Base Keyword Spotting System

Keyword spotting refers to the process of retrieving all instances of a given
word in a document. In this paper, we focus on handwritten documents, such
as letters, memos, or manuscripts. Without transcribing the data, a user should
still be able to search for any possible word, just like using a search engine. How
the results of such a search may look like can be seen in Fig. 1. Note that the
base system just returns a likelihood of the word being found. Afterwards, this
likelihood can be compared to a threshold to decide whether or not this is a true
match.

2.1 Preprocessing

We consider complete text lines as input units for our keyword spotting system.
The texts used in the experiments come from the IAM database [16]. They are
extracted from pages of handwritten texts, which were scanned and segmented
into individual text lines. After binarizing the image with a threshold on the grey
scale value, the slant and skew of each textline are corrected and the width and
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(a) Returned log Likelihood: -1.7125

(b) Returned log Likelihood: -8.4097

(c) Returned log Likelihood: -11.0900

(d) Returned log Likelihood: -11.6082

Fig. 1. Search results for the word “found”

height are normalized. Then features are extracted using a horizontally sliding
window. A window with a width of one pixel is used to extract nine geometric
features at each position, three global and six local ones. The global features are
the 0th, 1st and 2nd moment of the black pixels’ distribution within the window.
The local features are the position of the top-most and that of the bottom-most
black pixel, the inclination of the top and bottom contour of the word at the
actual window position, the number of vertical black/white transitions, and the
average grey scale value between the top-most and bottom-most black pixel. For
details on these steps, we refer to [17].

2.2 BLSTM Neural Networks

The recognizer used in this paper is a recently developed recurrent neural network,
termed bidirectional long short-term memory (BLSTM) neural network [18]. In-
stead of simple nodes, the hidden layers are made up of so-called long short-term
memory blocks, specifically designed to address the the problem of exponential
increase or decay of information in recurrent neural networks.

The output layer contains one node for each possible character in the sequence
plus a special ε node, to indicate “no character”. At each position, the output
activations of the nodes are normalized so that they sum up to 1, and are treated
as a probability vector for each letter at this position. For more details about
BLSTM networks, we refer to [18,19].

The sequence of probability vectors returned by the neural network can be ef-
ficiently used for word and text line recognition as well as for word spotting [15],
where the Connectionist Temporal Classification (CTC) Token Passing algo-
rithm [18] is utilized for the latter task. In short, the probability sequence is
extended by an additional entry representing an any character (′∗′) and having
always the value 1. By adding a symbol, representing the any character, to the
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beginning and to the end of the word w to be spotted, the CTC algorithm finds
the best path that passes through the any character, then through the word w
and then again through the any character. This means that the path traverses
through the letters of the word w where it fits best while the rest of the text
line has no influence. Then, the product of all probability values along this path
is computed and divided by the keyword’s length (the number of letters in the
word). The result can be interpreted as the likelihood that this word is con-
tained in the considered text line. For more details about the keyword spotting
algorithm we refer to [15].

3 Combination Methods

The final decision whether or not a word appears in a given textline is made by
comparing the likelihood returned by the neural network to a global threshold. In
this paper, we propose to first combine all likelihoods from the different systems
and then compare the resulting value to a threshold. This way, the combination
method can make use of information returned by all individual systems. Addi-
tionally, it is possible to combine all kind of recognition methods, as long as they
return a likelihood value.

We investigated five different combination methods, Min, Max, Average, Me-
dian, and Product [20]. The Min combination method returns the minimum of
all values and reflects thereby a group of experts that always listen to their most
skeptical member. The Max combination method returns the maximum value
and acts like experts that are as confident as their most confident member. The
Average combination methods returns the average of the different values. Un-
der this combination rule, every expert is listened to equally well. The Median
combination method returns the median of the values and is therefore insensi-
tive to outliers. Finally, the Product combination method returns the product
of the values. Due to the nature of multiplication and the range of the values
(between 0 and 1), this combination method is more biased towards outliers
having a low value. In the group of experts analogy this would represent a group
where skeptical experts have a higher impact on the final decision than confident
experts.

Finally, we also implemented an Oracle combination method that returns the
Min value if the word is not contained in the text line and the Max value if
the word is contained. It serves as a theoretical upper limit on what could be
achieved given the values of the underlying systems. We further investigated the
diversity of the ensemble by means of the correlation coefficient. To formally
describe this measures, consider two systems S1 and S2 and the four possible
word spotting outputs: (a) both systems are correct, (b) S1 is wrong and S2 is
correct, (c) S1 is correct and S2 is wrong, and (d) both S1 and S2 are wrong.
With these values, correlation can be defined:

CorrelationS1,S2 =
ad − bc√

(a + b)(c + d)(a + c)(b + d)
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Note that correlation is a pairwise measure, i.e. it can be applied to two systems
only. To extend it to ensembles consisting of more than two members, the mean
of all pairwise values is taken.

4 Experimental Evaluation

4.1 Setup

For testing the proposed keyword spotting method, we used the IAM offline
database1. This database consists of 1,539 pages of handwritten English text,
written by 657 writers. From this database, we used 6,161 lines as a training
set, 920 lines as a writer independent validation set, and an additional 920 lines
as a test set. Using the training set, we trained 50 randomly initialized neural
networks and used the validation set to stop the back propagation iterations in
the training process; see [18] for details on the neural network training algorithm.
Then we selected the all 3,421 non-stop words2 among the 4,000 most frequent
words from all three sets and performed keyword spotting using these words.
(Note that by far not all keywords occur in every set.)

The applied threshold of a system regulates it sensitivity. With a lower thresh-
old, the results are noisier but the system misses less true positives. For vari-
ous thresholds, we computed the number of true positives (TP ), true negatives
(TN), false positives (FP ), and false negatives (FN). These number were then
used to plot a precision-recall scatter plot for each neural network. Precision
is defined as number of relevant objects found by the algorithm divided by the
number of all objects found TP

TP+FP , and recall is defined as the number of rel-
evant objects found divided by the number of all relevant objects in the test
set TP

TP+FN . A precision-recall plot therefore gives us an idea about the noise in
the returned results, given the percentage of how many true elements are found.
We considered for each system every single likelihood it returned as a possible
threshold. Note that such a threshold is used as a global threshold to accept
or reject lines (threshold based). Due to the high number of tested thresholds,
about 3.1 millions, the points in the scatter plot can be considered as continuous
curves.

Another evaluation commonly used for information retrieval tasks are precision-
recall values considering the first n ranks of all queries3 (rank based). Thus key-
words that don’t appear in the test set lower the precision value, while the systems
ability to reject all lines when no keyword is found as it would be using a global
threshold is not taken into account. Therefore, this is not an optimal measure for
our task, but we report the averaged interpolated precision values for the sake of
completeness.

1 http://www.iam.unibe.ch/fki/databases/iam-handwriting-database
2 We used the stop word list from the SMART project [21], which can be found at
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/

english.stop
3 As done using the trec eval program, http://trec.nist.gov/trec_eval/

http://www.iam.unibe.ch/fki/databases/iam-handwriting-database
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
http://trec.nist.gov/trec_eval/
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Fig. 2. The performance of the combination methods on the validation set during the
SFFS iterations. The selected ensemble sizes are average: 33, max : 13, median: 14,
min: 4, and multiply : 15.

There exist several ways to compare two curves. The most popular ones are
the precision at 50% recall, the point where precision and recall values are equal,
and the average precision over all recall values, which is the area under the curve.
We chose to consider the average precision over all recall values since it includes
information about the entire curve. Nevertheless, the improvement resulting from
combining several classifiers can be observed with any of these measures.

4.2 Results

The network combination has been optimized using the sequential floating for-
ward search (SFFS) [22] on the validation set to select the ensemble members.
The fitness function used in the SFFS algorithm is the average precision of the
precision-recall plot. In Fig. 2 the performance on the validation set can be seen
for all presented combination methods during the course of the SFFS iterations.
The average precision of the best single network can be seen as the dotted line at
0.83. Clearly, all combination techniques can outperform the best single network
on the validation set.

The ensembles that performed best on the validation set according to the
SFFS algorithm, using different combination rules, were then compared on the
test set with each other as well as with the network that performed best on the
validation set and the one that performed best on the test set. The following
table lists the average precision of all mentioned systems.
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av. precision interpolated av. precision
system (threshold based) (rank based)

Ø single systems 0.7576 0.2926
system performing best on val set 0.7823 0.2950
system performing best on test set 0.7902 0.2961

Min Combination 0.8222 0.3009
Max Combination 0.8307 0.3055

Product Combination 0.8615 0.3070
Median Combination 0.8637 0.3071
Average Combination 0.8751 0.3082
Oracle Combination 0.9951 0.3213

In Fig. 3 selected precision-recall curves for the global threshold approach
are shown, namely the curves of the best (Average) and worst (Min) combina-
tion as well as the best underlying system and the Oracle. (We do not show all
of the curves to improve readability.) An improvement of the average precision
can observed using any of the presented combination methods. The greatest im-
provement is achieved using the Average Combination. It increases the average
precision by 0.1175 compared to the mean of all single systems and 0.0849 com-
pared to the best single system considering the threshold based evaluation and
0.0156 resp. 0.0121 considered the rank based averaged interpolated precision.

The Oracle curve in Fig. 3 is close to that of a perfect keyword spotting system,
which would have a precision of 1 for all recall values in the treshold based and
0.3218 in the rank based framework. We conclude from this observation that
the ensemble has a tremendous potential, in principal, which is not yet fully
exploited by the combination rules applied in our current system.

4.3 Diversity Analysis

Comparing two systems in order to determine the values a, b, c, and d (see Sec-
tion 3) cannot be done by using the same threshold for both systems, since the
performance is independent of the absolute likelihood values the CTC algorithm
returns (only their relative distribution is important). Instead we compare two
systems at equal recall values. Given such a value, the corresponding threshold
was computed for each system separately. For a combination of more than two
systems, the mean of all pairwise diversity values is used. Using this approach,
the correlation of the underlying base systems as well as the precision increase
of a combination compared to the best underlying system can be plotted as a
function of the recall value. In Fig. 4 these two functions resulting from the Me-
dian combination, representative of all combination rules, are given. The curves
for the other combination schemes look very similar. One can see that using an
adequate combination method, the precision can be more than tripled for high
recall values. A clear symmetry between the correlation and improvement plots
can be observed in Fig. 4. The lower the correlation between the underlying
keyword spotting systems is, the higher is the relative improvement of the best
combination’s precision compared to the best individuals system’s precision. In
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other words, our expectation that the less the underlying systems correlate with
each other, the higher is the improvement gained by combining them has been
clearly experimentally verified.

5 Conclusion

A keyword spotting system returns, for a given keyword, all text segments (text
lines in our case) in which the keyword occurs. In this paper, we proposed to
combine different keyword spotting systems. To the knowledge of the authors this
is a novel application in the field of multiple classifier systems that has not been
proposed before. We used several neural networks as the base keyword spotting
systems. In our approach, the likelihood values for the considered keyword to
appear in the given text segment are combined prior to the comparison against
a threshold.

We demonstrated that, using an adequate combination method, it is possible
to construct a new system that is better at the task of keyword spotting than any
of their their underlying base systems. The increase in performance correlates
with the diversity of the base systems. The lower the base systems’ correlation
coefficient, the greater is the increase of the precision.

In the future, we will investigate the combination of structurally diverse key-
word spotting systems, based on DTW, hidden Markov models, and different
sets of features. Weighted combinations and trainable combination rules, such
as neural networks, are also along this line of research.
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Abstract. Semi-supervised learning reduces the cost of labeling the
training data of a supervised learning algorithm through using unlabeled
data together with labeled data to improve the performance. Co-Training
is a popular semi-supervised learning algorithm, that requires multiple re-
dundant and independent sets of features (views). In many real-world ap-
plication domains, this requirement can not be satisfied. In this paper, a
single-view variant of Co-Training, CoBC (Co-Training by Committee),
is proposed, which requires an ensemble of diverse classifiers instead of
the redundant and independent views. Then we introduce two new learn-
ing algorithms, QBC-then-CoBC and QBC-with-CoBC, which combines
the merits of committee-based semi-supervised learning and committee-
based active learning. An empirical study on handwritten digit recogni-
tion is conducted where the random subspace method (RSM) is used to
create ensembles of diverse C4.5 decision trees. Experiments show that
these two combinations outperform the other non committee-based ones.

1 Introduction

Supervised learning algorithms require a large amount of labeled data in order to
achieve high accuracy. However, labeling data is often tedious, time consuming
and expensive, as it requires the efforts of experienced human annotators such
as biologists, radiologists or physicians. In many real-world data mining appli-
cations, there is often an extremely large pool of data available. Semi-supervised
learning (SSL) and active learning (AL) both attempt to exploit the unlabeled
data to improve the recognition performance of supervised learning algorithms
and to minimize the cost of data labeling.

Self-Training (ST) [1] is a single-view SSL algorithm, in which a single classi-
fier is initially trained using a small amount of labeled data. Then it iteratively
classifies the unlabeled examples, rank the examples by confidence in their pre-
diction and adds permenantly the most confident examples with their predicted
labels into the training set. Then, the underlying classifier is retrained with the
augmented training set. A corresponding active learning algorithm is Uncer-
tainty Sampling (US), in which the least confident examples are selected to be
classified by a human expert before they are added into the training set.

N. El Gayar, J. Kittler, and F. Roli (Eds.): MCS 2010, LNCS 5997, pp. 225–234, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Co-Training (CT) is a widely applied multi-view SSL paradigm first intro-
duced by Blum and Mitchell [2], in which two classifiers are initially trained using
two redundant and independent sets of features (views). Then at each further
iteration, each classifier classifies the unlabeled examples, adds permenantly the
examples about which it is most confident into the training set. The aim is that
the most confident examples with respect to one classifier can be informative
with respect to the other and help to improve its accuracy. Although Nigam and
Ghani [1] showed that Co-Training is sensitive to the multi-view requirement,
it can not be fulfilled in most real-world application. In [3], a corresponding
multi-view active learning algorithm, Co-Testing, is proposed.

Query by Committee (QBC) [4] is a committee-based active learning
algorithm, in which an ensemble of diverse classifiers is constructed. Then the
ensemble members are applied to unlabeled examples. The most informative ex-
amples are the least confident ones on which the ensemble members are mostly
disagree. Then an expert is asked to assign labels to these examples and then
the committee is re-trained using the augmented training set.

Now, we can see that semi-supervised learning and active learning tackle the
same problem but from different directions. Semi-supervised learning exploits
what the underlying classifiers are most confident from the unlabeled data, and
active learning exploits the least confident ones. Although, there are some ap-
proaches that combine semi-supervised learning and active learning to integrate
the benefits of the two, such as [5,6,7], there is no work done to investigate the
combination of committee-based semi-supervised learning with active learning.
The main objective of this study is to relax the hard impractical requirement of
Co-Training through using a set of diverse classifiers instead of using indepen-
dent views. First, we propose a single-view variant of Co-Training, CoBC (Co-
Training by Committee). Second, two new learning algorithms are introduced for
combining active learning and semi-supervised learning with committees, which
are denoted by QBC-then-CoBC and QBC-with-CoBC.

The rest of the paper is organized as follows: the related work is given in
Section 2. Section 3 presents the proposed CoBC framework before the new
combinations of committee-based semi-supervised learning and committee-based
active learning are introduced in Section 4. The results of our experiments are
reported in Section 5. Finally, we conclude our work in Section 6.

2 Related Work

2.1 Single-View Committee-Based Co-Training

A full review of ensemble-based semi-supervised algorithms is out of the scope
of this paper; the reader might refer to [8] for a more extensive survey. We now
briefly review one of the recent studies [9] that investigated the applicability of
Co-Training without multiple views. Li and Zhou [9] proposed a Co-Training
style algorithm, called Co-Forest, in which an initial ensemble of random trees
is trained on bootstrap subsamples generated from the given labeled data set L.
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To select new training examples for each ensemble member hi (i = 1, . . . ,N)
from a given unlabeled data set U , a new ensemble Hi, called the concomitant
ensemble of hi, is defined that contains all the other classifiers except hi. At
each iteration t and for each ensemble member hi, first the error rate ε̂i,t of Hi

is estimated. If ε̂i,t is greater than ε̂i,t−1 (1th condition), Hi predicts the class
label of the unlabeled examples in U ′

i,t (random subsample of U). A set L′
i,t is

defined that contains the unlabeled examples in U ′
i,t where the confidence of Hi

about their prediction exceeds a predefined threshold (θ) and Wi,t is the sum
of the confidences of the examples in L′

i,t. Finally, if Wi,t is greater than Wi,t−1

(2nd condition) and ε̂i,tWi,t is less than ε̂i,t−1Wi,t−1 (3rd condition), the ith ran-
dom tree will be re-trained using the original labeled data set L and L′

i,t. The
algorithm will stop if there is not a classifier hi where the three conditions are
fulfilled. We have two concerns: First, the error rate ε̂i,t is estimated accurately
only at the first iteration as it depends on the out-of-bag error estimation, after-
ward the estimation tends to be an under-estimate as it depends on the training
set. Therefore, Co-Forest will stop when the training error of a classifier reaches
zero, for instance this is true for the Nearest Neighbor classifier. Second, setting
the value of θ is not straightforward especially for multi-class problems where the
confidence of the concomitant ensemble Hi is distributed among many classes.
If θ is high, the 2nd condition will not be fulfilled and the algorithm will stop.
If θ is low, the size of L′

i,t might be large and even equal to U ′
i,t which increases

the risk that hi will receive a lot of mislabeled examples.

2.2 Combining Active Learning and Semi-supervised Learning

In [5], two ways to combine QBC and semi-supervised EM are introduced and
applied for text classification. The results have shown that combining QBC and
semi-supervised EM outperform both of them. In [6], Co-Testing and Co-EM are
combined, called Co-EMT, to produce an active multi-view semi-supervised al-
gorithm. The experimental results on web page classification show that Co-EMT
outperforms other non-active multi-view algorithms (Co-Training and Co-EM)
without using more labeled data and that it is more robust to the violation of
the requirements of two independent and redundant views. In [7], the exper-
iments show that a combination of Co-Testing and Co-Training like schemes,
called SSAIR, can exploit the unlabeled images to improve the performance of
content-based image retrieval.

3 Co-Training by Committee

CoBC works as follows (see Algorithm 1): initially a committee of N diverse
accurate classifiers H(0) is constructed with EnsembleLearn and BaseLearn
using L. Then the following steps are repeated until a maximum number of
iterations T is reached or U becomes empty. For each iteration t and for each
classifier i, a set U ′

i,t of u examples drawn randomly from U without replacement.
It is computationally more efficient to use U ′

i,t instead of using the whole set U .
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Algorithm 1. The pseudo code of Co-Training by Committee framework
Require: set of labeled training examples (L), set of unlabeled training examples (U),

maximum number of iterations (T ), ensemble learning algorithm
(EnsembleLearn), base learning algorithm (BaseLearn), number of com-
mittee members (N), number of unlabeled examples in the pool (u), number
of nearest neighbors (k), sample size (n), number of classes (C) and an initial
committee (H(0))
Training Phase

1: Get the class prior probabilities, {Prc}C
c=1

2: Set the class growth rate, nc = n × Prc where c = 1, . . . , C
3: if H(0) is not given then
4: Construct an initial committee, H(0) = EnsembleLearn(L,BaseLearn,N)
5: end if
6: for t ∈ {1, . . . , T} do
7: L′

t ← φ
8: if U is empty then T ← t-1 and abort loop end if
9: for i ∈ {1, . . . , N} do

10: U ′
i,t ← RandomSubsample(U,u)

11: πi,t ← SelectCompetentExamples(i,U ′
i,t, H

(t−1)
i , k, {nc}C

c=1, C)
12: L′

t ← L′
t ∪ πi,t , U ′

i,t ← U ′
i,t \ πi,t and U ← U ∪ U ′

i,t

13: end for
14: if L′

t is empty then T ← t-1 and abort loop end if
{ Re-train the N classifiers using their augmented training sets}

15: for i ∈ {1, . . . , N} do Li ← Li ∪L′
t and h

(t)
i ← BaseLearn(Li) end for

16: end for
Prediction Phase

17: return H(T )(x) ← 1
N

∑N
i=1 h

(T )
i (x) for a given sample x

The method SelectCompetentExamples is applied to estimate the competence
of each unlabeled example in U ′

i,t given the companion committee H
(t−1)
i . A set

πi,t is created that contains the nc most competent examples assigned to class
ωc. Then πi,t is removed from U ′

i,t and inserted into the set L′
t that contains all

the examples labeled at iteration t. The remaining examples in U ′
i,t are returned

to U . We have two options: (1) if the underlying ensemble learner depends on
training set perturbation to promote diversity, then insert πi,t only into Li. (2)
otherwise, insert πi,t into the training sets of all classifiers as shown in step 15.
Then, the N classifiers are retrained using their updated training set Li.

3.1 Confidence Estimation Using Local Competence

An important factor that affects the performance of any Co-Training style algo-
rithm is how to measure its confidence about the labeling of an example which
determines its probability of being selected. An inaccurate confidence measure
can lead to adding mislabeled examples to the training set which leads to per-
formance degradation during the SSL process.
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Algorithm 2. The pseudo code of SelectCompetentExamples method
Require: pool of unlabeled examples (U ′

i,t), the companion committee of classifier
h

(t−1)
i (H(t−1)

i ), number of nearest neighbors k and growth rate ({nc}C
c=1)

1: πi,t ← φ
2: for each class ωc ∈ {ω1, . . . , ωC} do countc ← 0 end for
3: for each xu ∈ U ′

i,t do

4: H
(t−1)
i (xu) ← 1

N−1

∑
j=1,...,N,j �=i h

(t−1)
j (xu)

5: Get the class label assigned to xu by committee H
(t−1)
i ,

ωpred ← arg max1≤c≤C H
(t−1)
i (xu, ωc)

6: Get the neighborhood of xu, N(xu) ← {xn|xn ∈ Neighbors(xu, k, L) }
7: Calculate the local competence, Comp(xu, H

(t−1)
i ) as in eq. 2.

8: end for
9: Rank the examples in U ′

i,t by competence
{Select the nc examples with the maximum competence for class ωc}

10: for each xu ∈ U ′
i,t do

11: if Comp(xu, H
(t−1)
i ) > 0 and countpred < nc then

12: πi,t ← πi,t ∪ {(xu, ωpred)} and countpred ← countpred + 1
13: end if
14: end for
15: return πi,t

A labeling confidence can be assigned to each unlabeled example using its
class probability estimate (CPE) provided by companion committee.

Confidence(xu, H
(t−1)
i ) = max

1≤c≤C
H

(t−1)
i (xu, ωc) (1)

Unfortunately, in many cases the classifier does not provide an accurate CPE.
For instance, a decision tree provides piecewise constant probability estimates.
That is, all unlabeled examples xu which lie into a particular leaf, will have the
same CPEs because the exact value of xu is not used in determining its CPE.

To measure confidence (see Algorithm 2), we estimate the companion com-
mittee accuracy in the neighborhood of an unlabeled example xu, that is defined
with respect to the initially labeled training set. The neighborhood could also be
determined using a separate validation set, but it may be impractical to spend
a part from the small-sized labeled data for validation. To avoid the inaccu-
rate estimation of local accuracy that may result due to overfitting problem, the
newly-labeled training examples πi,t will not be involved in the estimation. The
local competency of an unlabeled example xu given H

(t−1)
i is defined as follows:

Comp(xu, H
(t−1)
i ) =

∑
xn∈N(xu),xn∈ωpred

Wn.H
(t−1)
i (xn, ωpred)

||xn − xu||2 + ε
(2)

where ωpred is the class label assigned to xu by H
(t−1)
i and ε is a constant added

to avoid zero denominator.
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4 Combining QBC and CoBC

4.1 QBC Then CoBC

The most straightforward method of combining QBC and CoBC is to run CoBC
after QBC. The objective is that active learning can help CoBC through pro-
viding it with a better starting point instead of randomly selecting examples
to label for the starting point. QBC selects the training examples that CoBC
cannot reliably label on its own. Hence, we expect that QBC-then-CoBC will
outperform both stand-alone QBC and stand-alone CoBC. In addition, we ex-
pect that QBC-then-CoBC will outperform other possible combinations of non
committee-based active learning and semi-supervised learning algorithms.

4.2 QBC with CoBC

A more interesting approach is to interleave CoBC with QBC, so that CoBC not
only runs on the results of active learning, but CoBC also helps active learn-
ing. To do this, at each QBC round, we run CoBC for a predefined number of
iterations (TCoBC). The objective is improve the performance of the committee
members through updating them with the most competent examples selected
by CoBC. With more accurate committee members, QBC should select more
informative examples to label. Hence, we expect that QBC-with-CoBC will out-
perform both stand-alone QBC and stand-alone CoBC. In addition, we expect
that QBC-with-CoBC will outperform QBC-then-CoBC. The reason is that in
QBC-then-CoBC, QBC does not benefit from CoBC. On the other hand, in
QBC-with-CoBC, both algorithms are benefiting from each other.

5 Experimental Evaluation

The experiments are conducted on four feature sets describing handwritten digits
and publicly available at UCI Repository [10]. The digits were extracted from a
collection of Dutch utility maps. A total 2,000 patterns (200 patterns per class)
have been digitized in binary images (see Table 1 and Figure 1).

5.1 Methodology

In all experiments, the pruned C4.5 decision tree with Laplace Correction (J48)
was used as the base learning algorithm and the RSM [11] was used to construct

Table 1. Description of the four sets of features used for handwritten digits recognition

Name Description
mfeat-pix 240 pixel averages in 2 x 3 windows
mfeat-kar 64 Karhunen-Love coefficients
mfeat-fac 216 profile correlations
mfeat-fou 76 Fourier coefficients of the character shapes
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Fig. 1. Sample of the handwritten digits

decision forests of size ten (N = 10) where each tree uses only half of the available
features that were randomly selected. For classification, average is employed to
combine the decisions of the individual trees. All algorithms are implemented
using WEKA library [12]. All the features are normalized to have zero mean
and unit variance. For each experiment, 4 runs of 10-fold cross-validation have
been performed. That is, for each data set, 10% (200 patterns) are used as test
set, while the remaining 90% (1800 patterns) are used as training examples.
For comparsion, paired t-test with 0.05 significance level is used as significance
test where significance is marked with bullet(•). For SSL algorithms, 10% of
the training examples (180 patterns) are randomly selected as the initial labeled
data set L while the remaining 90% are used as unlabeled data set U . The
number of iterations T is chosen such that the algorithm stops when the number
of labeled examples in L reaches 60% (1080 patterns). For AL algorithms, only
5% of the training examples (|L| = 90 patterns) are randomly selected as L and
the algorithms stops when the number of labeled examples in L reaches 10% (|L|
= 180 patterns). We set the pool size u to 100, the sample size n to one and the
number of nearest neighbors used to estimate local competence k is 10.

5.2 Results

Comparison between forests and trees. The RSM forests significantly out-
perform the single C4.5 decision trees for all datasets using 5%, 10% and 100%
of training data set (see Table 2(a)). These results are considered as a basic
requirement to continue our experiments.

Comparison between CoBC and Self-Training. For fair comparison, both al-
gorithms are given the same L and U and allowed to label the same amount of
unlabeled data. That is, both are initialized with 10% of the training data that
are randomly selected and work until the size of L reaches 60% of the train-
ing data (|L| = 1080 patterns) which implies 90 iterations for Self-Training and
only 9 iterations for CoBC. Table 2(b) presents the average error at iteration
0 (initial) trained on the initially labeled data set L, after the final SSL itera-
tion of exploiting the unlabeled data set U (final) and the relative improvement
percentage (improv = initial−final

initial × 100). The final test error of CoBC is signifi-
cantly better than its initial error on all the data sets except for mfear-fac where
the difference is not significant. In addition, the final test error after CoBC is
significantly better than the final error after Self-Training on all the data sets.

Comparison between CPE and local competence confidence measures.
Table 2(b) and 2(c) show that the average error of random-then-ST and random-
then-CoBC using CPE increases by 0.23% and 6.84% respectively, while
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Table 2. Average test error rates of the compared algorithms applied to the handwrit-
ten digits (Part 1)

(a) Passive Supervised Learning (random sampling)
Data set |L| mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.
J48 5% 30.99(4.60) 42.04(3.62) 32.63(4.80) 41.74(4.74) 36.85
RSM(J48) 5% 22.78(4.17)• 31.53(4.41)• 23.23(4.82)• 35.10(3.95)• 28.16
J48 10% 25.48(3.45) 34.51(4.01) 25.03(2.79) 36.80(4.82) 30.45
RSM(J48) 10% 16.69(2.82)• 21.30(2.96)• 15.71(2.52)• 29.29(3.50)• 20.75
J48 100% 11.23(1.96) 17.54(2.10) 11.66(2.53) 23.71(2.63) 16.03
RSM(J48) 100% 5.10(1.61)• 7.90(1.52)• 5.33(1.71)• 17.69(2.42)• 9.00
(b) Passive SSL using Competence (Starting with 10% random sampling and Until 60%)
Data set mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.

random-then-ST
initial 25.48(3.45) 34.51(4.01) 25.03(2.79) 36.80(4.82) 30.45
final 22.50(2.81)• 29.20(4.16)• 21.50(3.30)• 34.15(3.76)• 26.84

improv 11.70 15.39 14.10 7.20 11.86

random-then-CoBC
initial 16.69(2.82) 21.30(2.96) 15.71(2.52) 29.29(3.50) 20.75
final 13.18(3.58)• 15.10(2.20)• 14.24(3.33) 25.65(3.03)• 17.04

improv 21.03 29.11 9.36 12.43 17.88
(c) Passive SSL using CPE (Starting with 10% random sampling)

Data set mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.

random-then-ST
initial 25.48(3.45) 34.51(4.01) 25.03(2.79) 36.80(4.82) 30.45
final 25.01(3.50) 34.40(3.76) 25.14(3.52) 37.54(4.73) 30.52

improv 1.84 0.32 -0.44 -2.01 -0.23

random-then-CoBC
initial 16.69(2.82) 21.30(2.96) 15.71(2.52) 29.29(3.50) 20.75
final 19.24(3.02) 21.13(3.63) 19.00(3.91) 29.31(3.80) 22.17

improv -15.28 0.80 -20.94 -0.07 -6.84

Co-Forest (θ = 0.75)
initial 14.51(3.05) 21.83(3.39) 14.11(2.59)• 29.35(3.18) 19.95
final 16.01(3.59) 21.83(3.39) 17.18(3.01) 29.24(3.42) 21.06

improv -10.33 0.0 -21.75 0.37 -5.56

it decreases by 11.86% and 17.88% using local competence estimates. This em-
phasizes that inaccurate confidence measure leads to performance degradation.

Comparison between CoBC and Co-Forest. For fair comparison with CoBC,
Co-Forest will be applied using the random subspace method and C4.5 decision
trees as CoBC. However, the initial test error of Co-Forest is different from
the initial error of CoBC because the Co-Forest’s initial C4.5 decision trees are
not only trained using different random feature subsets but also trained using
different bootstrap samples from L and majority voting is employed to produce
the final decision of a forest. From Table 2(c), one can see that Co-Forest failed
to improve the classification accuracy using unlabeled data. We can attribute
the poor performance of Co-Forest to the irrelevant setting of θ (we get similar
results for θ = 0.75 and 0.6 ).

Comparison between QBC and Uncertainty Sampling. For fair comparison,
both algorithms are given the same L and U and allowed to label the same
amount of unlabeled data. That is, both are initialized with 5% of the training
data (|L| = 90 patterns) that are randomly selected and work until the size of L
reaches 10% of the training data (|L| = 180 patterns) which implies 9 iterations
for both. Table 3(a) indicates that the final test error after QBC is significantly
better than the final error after US on all the data sets.

QBC-then-CoBC and QBC-with-CoBC. Table 3(b) and Table 3(c) show
that both QBC-then-CoBC and QBC-with-CoBC significantly outperform
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Table 3. Average test error rates of the compared algorithms applied to the handwrit-
ten digits (Part 2)

(a) Active Learning (Starting with 5% random sampling and Until 10%)
Data set mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.

UncertaintySamping
initial 30.99(4.60) 42.04(3.62) 32.63(4.80) 41.74(4.74) 36.85
final 25.08(3.73)• 34.53(4.36)• 24.53(4.06)• 36.10(4.22)• 30.06

improv 19.07 17.86 24.82 13.51 18.43

QBC
initial 22.78(4.17) 31.53(4.41) 23.23(4.82) 35.10(3.95) 28.16
final 13.48(2.61)• 19.13(2.77)• 12.26(3.41)• 28.30(2.59)• 18.29

improv 40.83 39.33 47.22 19.37 35.05
(b) Active SSL (Starting with 5% random sampling plus 5% selective sampling and Until 60%)
Data set mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.

US-then-ST
initial 30.99(4.60) 42.04(3.62) 32.63(4.80) 41.74(4.74) 36.85
final 20.86(4.31)• 28.04(3.56)• 19.41(3.76)• 33.42(4.09) 25.43

improv 32.69 33.30 40.51 19.93 30.99

US-then-CoBC
initial 30.99(4.60) 42.04(3.62) 32.63(4.80) 41.74(4.74) 36.85
final 12.21(3.00) 14.49(2.76) 12.88(2.95) 25.99(3.42) 16.39

improv 60.60 65.53 60.53 37.73 55.52

QBC-then-ST
initial 22.78(4.17) 31.53(4.41) 23.23(4.82) 35.10(3.95) 28.16
final 19.84(3.38) 28.55(3.63) 18.66(3.48) 32.29(2.97) 24.83

improv 12.91 9.45 19.67 8.01 11.83

QBC-then-CoBC
initial 22.78(4.17) 31.53(4.41) 23.23(4.82) 35.10(3.95) 28.16
final 11.04(2.11)• 14.71(2.26)• 11.95(2.65) 25.10(2.69)• 15.70

improv 51.54 53.35 48.56 28.49 44.25
(c) Interleaving AL and SSL (Starting with 5% random sampling and Until 60%)

Data set mfeat-pix mfeat-kar mfeat-fac mfeat-fou ave.

QBC-with-CoBC
initial 22.78(4.17) 31.53(4.41) 23.23(4.82) 35.10(3.95) 28.16
final 9.11(1.93)• 13.45(2.47)• 10.11(2.45)• 24.38(2.46)• 14.26

improv 60.01 57.34 56.48 30.54 49.36

stand-alone QBC on all the data sets except for mfeat-fac where the improve-
ment is not significant. In addition, QBC-then-CoBC insignificantly outperforms
random-then-CoBC for all data sets while QBC-with-CoBC significantly outper-
forms random-then-CoBC for two data sets mfeat-pix and mfeat-fac. QBC-with-
CoBC performs better than QBC-then-CoBC on all data sets but the improve-
ment is significant only for mfeat-pix data set.

For comparison, we implemented three alternative combinations of active and
semi-supervised learning algorithms: US-then-ST, US-then-CoBC and QBC-then-
ST. If we sort all the algorithms based on average of the final test error for all
data sets, we get (1) QBC-with-CoBC (14.26%), (2) QBC-then-CoBC (15.70%),
(3) US-then-CoBC (16.39%), (4) random-then-CoBC (17.04%), (5) QBC-then-
ST (24.83%), (6) US-then-ST (25.43%) and (7) random-then-ST (26.84%). This
shows that combining committe-based active learning with committee-based SSL
algorithm is superior to combining the non-committee ones.

6 Conclusions

In this paper, we introduced a single-view committee-based Co-Training style al-
gorithm for semi-supervised learning, CoBC, for applications in which the data
is not represented by multiple redundant and independent views. In addition,
we proposed two new algorithms, QBC-then-CoBC and QBC-with-CoBC, that
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combine the merits of CoBC and QBC. Experiments were conducted on four data
sets for handwritten digits recognition, where the random subspace method and
C4.5 decision tree are used as ensemble learner and base learner, respectively.
The experiments on handwritten digits recognition show that CoBC exploits
the unlabel data to improve the recognition accuracy. This improvement can be
attribute to the local competence based confidence estimate that compensate
the inaccurate class probability estimates of decision trees. In addition, both
QBC-with-CoBC and QBC-then-CoBC outperform QBC and CoBC.
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Abstract. The first observation concerning Arabian manuscript reveals the 
complexity of the task, especially for the used classifiers ensemble. One of the 
most important steps in the design of a multi-classifier system (MCS), is the its 
components choice  (classifiers). This step is very important to the overall MCS 
performance since the combination of a set of identical classifiers will not out-
perform the individual members. To select the best classifier set from a pool of 
classifiers, the classifier diversity is the most important property to be consid-
ered. The aim of this paper is to study Arabic handwriting recognition using 
MCS optimization based on diversity measures. The first approach selects the 
best classifier subset from large classifiers set taking into account different di-
versity measures. The second one chooses among the classifier set the one with 
the best performance and adds it to the selected classifiers subset. The perform-
ance in our approach is calculated using three diversity measures based on cor-
relation between errors. On two database sets using 9 different classifiers, we 
then test the effect of using the criterion to be optimized (diversity measures,), 
and fusion methods (voting, weighted voting and Behavior Knowledge Space). 
The experimental results presented are encouraging and open other perspectives 
in the classifiers selection field especially speaking for Arabic Handwritten 
word recognition. 

Keywords: Combining classifiers, Arabic Handwritten word, classifier subset 
selection, diversity measures, voting, weighted voting, BKS. 

1   Introduction 

For almost any real world pattern recognition problem a series of approaches and 
procedures may be used to solve it. After more than 20 years of continuous and inten-
sive effort devoted to solving the challenges of handwriting recognition, progress in 
recent years has been very promising [1]. Research on Arabic handwritten word and 
text recognition is still of great interest during the past few years [2], [3]. The multiple 
classifier system has been shown to be useful for improving recognition rates [4]. In 
the literature, the use of MCS has been widely used for several pattern recognition 
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tasks [5], [6], [7], [8], [9]. One of the most important task in optimizing a multiple 
classifier system is to select a group of adequate classifiers from a pool of classifiers. 
These methods choose a small subset from a large set of candidate models. Since 
there are 2L-1 possible subsets of L models [10], it is not possible to try all the possi-
bilities unless the subset L is small [11]. Subset classifier selection methods also differ 
in the criterion they optimize. Additional to methods which directly optimize ensem-
ble accuracy, diversity measures play an important role in selecting and explaining 
this classifiers subset choice.  

Diversity should therefore be regarded in a more general context than as a way of 
finding the best classifiers combination for a specific combination method. Optimally 
it should produce a classifiers set member that are different from each other in a way 
that is beneficial for classifier combining in general, regardless of the actual combina-
tion method [12], [13]. We can resume that there are three major topics associated 
with subset classifier selection: set creation, set selection and classifier combination. 

In this paper we propose two new approaches for Arabic handwritten recognition 
based on diversity measures for selecting the best classifier subset from a proposed 
classifier ensemble. The first investigates the effect of several diversity measures and 
fusion methods in handwritten recognition system. The second proposes a progressive 
algorithm combining accuracy and diversity in classifier selection. Three combination 
methods are tested in the two proposed approaches (voting, weighted voting, and 
BKS (Behavior Knowledge Space)). 

This paper is organized as follows: In the Section 2, we illustrate the main Arabic 
handwriting properties.  Pre processing and the different families of the used features 
are presented in Section 3. In the section 4, we debate adopted classifier combinations 
methods. The Section 5 retails the two proposed approaches after presentation of the 
used diversity measures. The databases used for the validation of the approaches and 
the experimental results are summarized in section 6.  

2    Arabic Handwritten Properties  

More than 300 million people speak the language, and over 1 billion people use it in 
several religion-related activities. The Arabic alphabet consists of 28 characters. Ten 
of them have one dot, three have two dots, and two have three dots. Dots can be 
above or below. The shape of the character is context sensitive, depending on its loca-
tion within a word [14], [15], [16].The following image (Fig. 1) illustrates the diver-
sity of Handwritten Arab properties causing problems during recognition.   

 

Fig. 1. Arabic Text Characteristics 
 



 Using Diversity in Classifier Set Selection for Arabic Handwritten Recognition 237 

 

3   Features Extraction 

The choice of features to represent the patterns affects several aspects of the pattern 
recognition problem such as: accuracy required, learning time, and the necessary 
number of samples. In our case, the processing of Arabic handwritten writing, with its 
quoted morphology problems detailed in section 2, a cooperation of several types of 
primitives could be imposed according to the wide variability of the word shapes. 
Among the different feature types, we adopted two classes:  

3.1   The Structural Features  

In this system, we considered the following global structural features (Fig. 2) which 
are detailed in [8], [18], [19]: 

- The number of : Connected components (using contour tracing), Descendants, 
Ascendants, unique dot below the baseline, unique dot above the baseline, Two dots 
below the baseline, Two dots bound above the baseline, Three bound dots, “Hamzas” 
(zigzags), Stroke (Loop), “Tasnine” (by calculation of the middle intersection number 
in the median zone) , and  Concavity features with the four configurations [17]. 

 

Fig. 2. Structural Features 

3.2   The Statistical Features 

The statistical features, in our approach are the density measures or Zoning [34]. For 
this study, the following subdivisions are used (Fig. 3): For every zone, two statistical 
measures are calculated that are the black pixels density and the variance (to localize 
the position of the black pixels in every zone selected). The statistical features number 
is then : 35*2+36*2 = 142. 
 
 

  

Fig. 3. Example of the used Zoning 
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4   Combination of Classifiers  

Given a classifiers set, the easiest way to calculate the overall output is by taking a 
sum, which corresponds to taking a vote. There are other fixed rules, i.e., median, 
product, minimum, or maximum [2]. Alkoot and Kittler [21] investigated fixed rules 
and concluded that the sum and the median rules are more robust to noise. Concerning 
the MCS combination method which has heterogeneous outputs, we must adopt 
methods based on the class label and not on the score of all output classes. Among 
these methods, we have used the voting, the weighted voting and the BKS (Behav-
iour-Knowledge Space Method) [22], [23], [24], [25], [26].  

Behaviour-Knowledge Space Method. It provides a knowledge space by collecting  
the decisions of all classifiers for each learned sample. 

If the decision fusion problem is defined as a mapping of K classifiers:  e1 ,..., eK 
into M classes: c1 ,..., cM , the method operates on the K – dimensional space. Each 
dimension corresponds to an individual classifier, which can produce M+1 crisp deci-
sions, M class labels and one rejection decision. A unit of BKS is an intersection of 
decisions of every single classifier. Each BKS unit contains three types of data: the 
total number of incoming samples: T e1 ,..., eK , the best representative class: R e1 ,..., eK , 
and the total number of incoming samples for each class: n e1 ,..., eK (m) [26],[27] .  

5   Architecture of the Two Proposed Set Classifier Selection 
Approaches 

Different works have been done in the field of AOCR (Arabic Optical Character Rec-
ognition) [27], [28], [29], [8], [9], [15]. 

To select the set of classifiers having the best individual performances doesn't im-
ply a better recognition rate in any case in the global system. It is justified by the 
classifiers nature [29], [30]. In this section, we present the adopted diversity measures 
followed by the two proposed approaches details.  

5.1   Measure of Diversity between Classifiers  

The diversity measure is calculated in term of the output value through all classifiers 
[30]. In this work, we used six well known diversity measures to construct the best 
classifier subset:  

Correlation Between Errors: It is interesting to examine that the independence be-
tween the committed errors is beneficial for the MCS; the correlation between the 
classifiers errors is a natural choice to compare the classifier subsets [31]: 

 
(1) 

 
a
ev and b

ev   are binary vectors of the a and b classifiers errors. The best set is selected 

while choosing the one having the minimum average of these pairs of measures. 

][][

],[
,

b
e

a
e

b
e

a
e

ba
vVarvVar

vvCov
=ρ



 Using Diversity in Classifier Set Selection for Arabic Handwritten Recognition 239 

 

Q Average: The Q average Or Q statistic aims to calculate the similarity between two 
classifiers [12]. It is defined for two classifiers a, b as:          
 

(2) 
 

Where 11N  is the number of time where the two classifiers are correct, 00N  the 

number of time where the two classifiers are incorrect, 01N  and 10N  represent the 
number of time where just the first or the second are either correct.  

Disagreement Measure: This measure represents the ratio between the number of 
observations where one classifier is correct and the other is incorrect with respect to 
the total number of observations [31]: 

 
(3) 

Report Between  Different and  Same errors: The worst case of a classifiers set in a 
MCS is when these last present the same incorrect results; that will be less degradable 
if the labels of classes are different [3]: 

                                                                                     
(4) 

Kohavi-Wolpert (KW) Variance:  Let l(xj) be the number of classifiers that cor-
rectly recognize the features vector xj. From the formula for the variance [32] the 
diversity measure becomes:  

(5) 

Exponential of the errors numbers: It is remarkable that if the classifiers agree on 
the bad result, the performance of the system decreases meaningfully [3]. These errors 
can be calculated and weighted by the number of classifiers detecting the errors (bad 
result) in an exponential manner.  

 

(6) 
 

5.2   Our Approach Based on Diversity Measure for Set Classifier Selection  

Being given a set of L classifiers already designed and tested, and being given a set of 
diversity measures; we want through this approach to study the following parameters 
which are necessary to the classifier subsets selection: 

• Which size will have the selected subset? 
• What is the diversity measurement that is the most adapted for the S.E.S? 
• Once the subset selected, which fusion functions can be applied? 
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To achieve these goals, the approach steps suggested are summarized as follows: 

1.  The subset size to be selected (M) starting from (L) the existing classifiers must be 
fixed at the beginning. 

2.  During the training, and for each entry sample, for each classifier we safeguard his 
good and bad responses. 

3.  After the six diversity measurements application discussed above, for each one of 
these measurements we can retain, the most powerful subset taking into account on 
the diversity and not on recognition rate. Let us note that the diversity calculation 
of a subset of M classifiers for pairwise measure is the average of all the combina-
tions of the set couples. 

4.  For the combination function and as the classifier outputs are heterogeneous, we 
can apply the three combination methods noted in section 4, using the class label 
not on the class probability generated. 

5.3   Approach Based on a Progressive Algorithm for Classifiers Set Selection  

Although the first approach results published in [9], it suffers from some limits which 
we can summaries in the following points: 
 

• Cost in time and memory capacity during the diversity measurements calculation for 
all the possible m classifiers combinations. 
• As the majority of the subset selection approaches of classifiers based on diversity, 
neglect the individual criterion to classify accuracy. This last is a very important factor 
in the Multi classifiers systems design. 
• Indeed, a subset selected by the diversity measurement application can not contain el 
the most powerful classifier (with great recognition rate) or even more serious than that, 
can contain that the M weak classifiers which represent the most diversified ones. What 
inevitably degrades the total system recognition rate.  
• From this we used the idea which tries to combine two criteria ACCURACY and 
DIVERSITY for a classifier subset, selection while avoiding the lasting test of all 
calculation of the possible combinations and of measurement diversity: 
 
Our proposed approach chooses a fixed m out of all L base classifiers. 
 

1)  It starts with a set containing 1 classifier which is the best classifier ( based on  
accuracy) during the test phase; 
2)  At each iteration, it chooses among all possible classifiers the one that best  
improves the global system performance when added to the current ensemble. The 
performance is calculated using evaluation criterion (the three diversity measure as 
we will discuss next). 

Methods based on output labels classes as, voting, weight voting, and BKS detailed in 
section 4 will be used in our study.  
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6   Experimental Results and Discussion  

6.1   Used Data Base 

We used two different databases in order to validate the two proposed approaches: the 
first base is containing the 48 wilayas (Town) of Algeria, containing 10000 words, 
The second used database is The IFN/ENIT [33], database for Arabic handwritten 
words containing 26459 Arabic words handwritten consisting of the 946 Tunisian 
town/village names. 

6.2   Used Classifier  

The single classifier members used for the selection are: 

- 02 SVM (Support Vector Machine), with the strategy "one against all ", elabo-
rated under the library lisb SVM, version 2.7 [3]. The inputs on this SVM system are 
the structural features. We have used polynomial and Gaussian kernel function. 

- 03 KPPV (k - Nearer Neighbor with K=2, 3, 5) [8].   
- 03 NN (Neuronal Network with different number of the hidden layer neurons and 

different inputs corresponding in features families detailed in section 3 [8], [18]. 
 - 02  HMM ( discret and Continuous with modified viterbi algorithm) [19], [28].  

6.3   Approaches Result 

Classifiers are indexed from 01 to10. Their individual performances using the two 
databases are resumed in (Table 1). 

Table 1. Individual classifier accuracy 

Classifier index Member  
classifier 

Accuracy  
(database 01) 

Accuracy  
(database 02) 

01 SVM(1) 86.88 87.03
02 SVM(2) 87.12 87.69 
03 KNN(1) 82.45 82.78 
04 KNN(2) 83.41 83.42 
05 KNN(3) 85.02 84.96 
06 NN(1) 86.69 87.12 
07 NN(2) 87.08 87.46 
08 NN(3) 86.23 87.05 
09 HMM(1) 88.23 88.78 
10 HMM(2) 89.15 89.23 

Approach Results: In this study, we have fixed M at 4 for set classifier  size. Six 
diversity measures are applied for training, and the best combinations of subset classi-
fiers of each measure is given in Table 2. 

The obtained results have shown that diversity is very important in selecting mem-
ber classifiers. We noted that “exponential” and “correlation” measures generate the 
most powerful set, better than combining best individual classifiers. The results using 
BKS are better than the one using a weighted vote as a combination method. This 
encourages taking this research path for average size databases. 
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Table 2. Best subset classifiers with the obtained performances (global accuracy) 

  Data base 01 Data base 02 
Diversity  
measures 

Subset 
classifier 

Voting W/ vote BKS Voting W/vote BKS 

Correlation / errors 1,7,9,10 90.12 92.41 92.86 90.45 93.14 93.64 
Q Average 2,9,5,8 85.23 86.25 87.33 85.89 86.63 86.41 
Ratio / errors 2,8,9,10 89.36 90.02 91.12 90.74 90.85 91.74 
Disagreement 
measure 

4,5,6,8 85.45 86.99 86.06 85.82 87.65 86.36 

Kohavi-Wolpert 
(KW) variance 

1,6,7,10 89.36 90.32 90.49 90.12 91.10 91.14 

Exponential  
numbers of the errors 

2,7,9,10 91.56 93.25 93.75 91.74 93.94 93.79 

Best Individual Classif 1,2,9,10 89.12 90.68 91.16 90.45 91.68 91.56 

Progressive Algorithm results: Experimental results after execution of our progres-
sive algorithm are resumed in table 3. 

Table 3. Best subset classifiers with the obtained performances (global accuracy) 

  Data base 01 Data base  02 
Diversity measures Subset 

classifier 
Voting Weight 

voting 
BKS Voting Weight 

voting 
BKS 

Correlation / errors 10,1,8,9 91.18 92.56 92.91 91.74 93.26 94.89 
Q Average 10,2,7,8 91.15 91.78 92.25 91.74 92.14 93.08 
Disagreement measure 10,1,7,9 91.56 93.16 93.96 91.66 93.45 93.81 
Best  individual classifiers 1,2,9,10 89.12 90.68 91.16 90.45 91.68 91.56 

It is noticed that the obtained results using the progressive algorithm is better than 
the first approach; specially by applying the diversity measurement “QStatistic”; 
indeed the subset generated by the latter does not contain the best individual classifier 
(classifier # 10). 

For the disagreement measurement, it can be well noted that it generates a subset 
of the more or less weak classifiers in the first approach; what justifies the weak per-
formance of system MCS; but as soon as we introduced the strong classifiers (classi-
fier #10), the subset generated by this measurement was completely changed, and 
gives a powerful results of the MCS. 

In any case, it is now clear that MCS performance strongly depends on careful 
classifiers selection to be combined. The effectiveness of various classifier fusion 
methods depends again on the selections made within classifiers. 

7   Conclusion 

Two newly applied methods based on MCS for AOCR have been investigated in this 
paper. The Diversity notion may be obtained either by finding the most diversified 
subset of classifiers among the existing combinations. In order to reach a decent ob-
jective, two independent systems were designed. In the first proposed approach, six 
well known diversity measures were used in order to select the 04 most diversified 
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classifiers. The “exponential” measure offers the best MCS subset in terms of per-
formances. For combination methods, BKS is very reliable and outperform   weight 
voting and vote approaches for the IFN/INIT base. 

With the optimizing aim, the first approach which tests all classifiers combinations 
in order to generate the best diversified subset, and which does not take into account 
individual classifier accuracy during the selection, the progressive algorithm was 
proposed; its goal is creating a subset containing at the beginning the best individual 
classifier (based on accuracy) and adds after each iteration the best classifier which 
returns the subset more diversified. 

The obtained results are encouraging especially in the second approach when com-
pared to prior works realized on Arabic handwritten recognition. 

We must note that several classification errors are due to a bad detection of the 
baseline, the diacritics and the presence of ligatures.   
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Abstract. Time-series forecasting is an important research and application area. 
Much effort has been devoted over the past  decades to develop and improve 
the time series forecasting models based on statistical and machine learning 
techniques. Forecast combination is a well-established and well-tested approach 
for improving forecasting accuracy. Many time series may contain some struc-
tural breaks that may affect the performance of forecasting due to the varying 
nature of the dynamics with time. In this study we investigate the performance 
of using forecast combination in handling these breaks, and in mitigating the ef-
fects of discontinuities in  time series. 

Keywords: Time series forecasting, MLP, GPR, Exponential smoothing, Fore-
cast combination, Structural breaks. 

1   Introduction 

Machine learning models have been prevalently used for time series forecasting. Ex-
amples of successful models are neural networks, support vector machines, Gaussian 
process-regression, regression trees [1]. The prevalent approach has been to use all 
the history of the time series as a training set for designing the forecasting model [2] 
[3] [4]. The problem, however, is that the dynamics of the time series often vary over 
time. The variations of the dynamics are usually caused by a gradual change in the 
effects of external factors, or by sudden events. Events or breaks in the time series are 
characterized by periods that differ significantly from some underlying baseline [5].  

Structural changes or “breaks” appear to affect many different types of time series, 
such as economic and financial time series. The occurrence of breaks could reflect 
legislative, institutional or technological changes, shifts in economic policy, or could 
even be due to large macroeconomic shocks such as the doubling or quadrupling of 
oil prices experienced over the past decades [6]. For example, a structural break oc-
curring due to the September 11, 2001 terrorist incident affected airline passenger 
travel time series data. A key question that arises in the context of time-series fore-
casting is how future values of the variables of interest might be affected by breaks. 
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In traditional time series forecasting models an important step before applying a 
forecasting model is to identify the break positions, isolate the relevant part of the time 
series, and use this part only for training. For this purpose, many tests for structural 
breaks have been proposed. Davis et al. (2006) proposed the Auto-PARM procedure 
which adopted the minimum description length (MDL) principle [7]. F-tests for struc-
tural breaks with a known break point are widely used in the literature. Brown, Durbin 
and Evans (1975) derived Cusum and Cusum Squared tests that are also applicable 
when the time of the break is unknown. More recently, contributions by Ploberger, 
Kramer and Kontrus (1989), Hansen (1992), Andrews (1993), Inclan and Tiao (1994), 
Andrews and Ploberger (1996) and Chu, Stinchcombe and White (1996) have extended 
tests for the presence of breaks to account for heteroskedasticity and dynamics. Meth-
ods for estimating the size and timing of multiple break points have also been devel-
oped, see Bai and Perron (1998, 2003) and Altissimo and Corradi (2003) [6]. 

The problem with these approaches is that finding the number and the timing of the 
breaks and the duration of each is a very difficult problem, and often false alarms in-
dicate spurious breaks, while missing the real breaks. The ramifications of a poorly 
estimated break can be grave, for example leading to wrongly dispensing of a large 
portion of the training set. In this study we attempted to overcome the difficulties of 
finding and testing for structural breaks in time series by making use of the power of 
the forecast combination concept. Forecast combination, where a number of models 
are designed and their forecasts are combined, has established itself as a potent con-
cept that mostly leads to improved forecast accuracy [9]. In this work we propose to 
train forecasting models on chunks of the time series with varying training set sizes 
and then combine the forecasts. This means that we apply the training and the fore-
casting on multiple historical portions of the time series with varying length. Subse-
quently we use well-tested strategies for selecting the best few and combining their 
forecasts. 

The outline of the paper is as follows. Section 2 briefly describes the model used 
and a quick overview on some combination functions used and introduces the proposed 
new training setups. Section 3 explains the experimental and implementation setup – 
Data sets, benchmarks and results. Section 4 states the conclusion from the study. 

2   Proposed Approach  

2.1   The Proposed Method 

Our proposed method is based on dividing the time series into multiple training peri-
ods. For each training period we train a forecasting model, and at the end combine the 
results. The main motivation behind this idea is that older parts of the training set 
might not be very relevant, or some time series could have some structural breaks. It 
might therefore be better to choose a training set size suitable to each time series so 
that we avoid using too large a training set (which will tend to use older irrelevant 
data) and too small a training set data (which results in the forecasts having large sta-
tistical error). 

Our proposed training setup is based on training the model on the time series start-
ing from T to the last actual point then going back starting from T-k, T-2k ... till the 
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starting point of the time series (As shown in Fig. 1). Thus, there will be about T/k 
training sets, each starting from T-ik and ending at the last point of the series, where i 
is some integer. 

k

First Actual point Last Actual Point T-k T  

Fig. 1. Proposed Training Setups 

We apply five new different strategies combining the forecasts after the training. In 
the first strategy the final forecast is the combination of ALL the forecasts for all 
models using average rule (using simple average, see Section 2.3). But in the second 
strategy, the final forecasts are determined by taking the first two models based on the 
validation data set over the training periods and combine them only if the error differ-
ence is within a given threshold else select the best model. And the third, the final 
forecasts are determined by taking the first three models and combine them only if the 
error difference between them all is within a threshold else select the best model. The 
fourth strategy is the same as the third but we always combine the best three models 
using the rank based weighting (see Section 2.3). Finally the fifth one is select the 
best model over all the models. 

2.2   Time Series Forecasting Models 

In a recent study [12] a large scale empirical comparison of eight different computa-
tional intelligence models for time series prediction was conducted. The study  
revealed that the standard multilayer perceptron neural network (MLP) and the  
Gaussian process regression (GPR) are the best models to consider. In addition the 
combination of MLP/GPR led to top ranks in two recent time series forecasting com-
petitions [13], [9]. So we used these models as forecasting methods. In addition, we 
used exponential smoothing, as it has established itself as a leading method in the 
statistical literature. The description of the models is given below, with more empha-
sis on GPR because it is a relatively new and unknown method in the time series fore-
casting field. 

2.2.1   Multi-layer Perceptron  
The multilayer perceptron is based on a layered architecture whereby a weighted sum 
operation is followed by application of a nonlinear squashing function. Specifically, 
the MLP output is given as follows: 

∑
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Where x′  is the input vector x augmented with 1, i.e. x′  = (1; xT )T , wi is the weight 

vector for jth hidden node, v0; v1; v2:::vNH are the weights for the output node, and ŷ is 
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the network output. The function g represents the hidden node output, and it is given 
in terms of a squashing function, in our study for example we use the logistic func-

tion: 
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2.2.2   Gaussian Processes Regression 
Gaussian process regression (GPR) has many desirable properties, such as ease of 
obtaining and expressing uncertainty in predictions, the ability to capture a wide vari-
ety of behavior through a simple parameterization, and a natural Bayesian interpreta-
tion. Because of this, GPR has been suggested as replacements for supervised neural 
networks in non-linear regression, and have been extended to handle classification 
tasks[8]. .The ability in GPR to fit arbitrary functions or surfaces is its nonparametric 
flexibility. Gaussian process regression models are constructed from classical statisti-
cal models by replacing latent functions of parametric form (e.g. linear functions, 
truncated Fourier or Wavelet expansions, multi-layer perceptrons) by random proc-
esses with Gaussian prior. The posterior distribution of a to-be-predicted function 
value can then be obtained using the assumed prior distribution –normal distribution- 
by applying simple probability manipulations.  

Let xi be the input vector for training data point i, with corresponding observed re-
sponse (or target output) yi. Arrange the vectors xi in a matrix X, and arrange the yi’s 
in a vector y. The observed response yi equals the underlying function value fi plus 
some random error term ǫi (assume it is zero-mean normal with variance equal to 
σ2

n). The function values fi are smoothed versions of the observed responses yi and are 
the inherent function values to be estimated. Also arrange the fi’s in a vector f. 

Some multivariate normal prior is attached to the vector � to enforce smoothness: 

f ∼ N(0, V(X,X))                                                       (2) 

Where V (X,X) denotes the covariance matrix between the function values of the dif-
ferent training data points, with the (i, j)th element of V (X,X) being V (xi, xj), the co-
variance between the function values of training data points i and j. To guarantee 
smoothness, the covariance function is taken as a monotonically decreasing function  
g of the distance between xi and xj: 

V(xi, xj) = g(||xi − xj||)                                                   (3) 

The role of the prior is to impose smoothness of the solution (very smooth solutions 
are favored by the selected prior). Then, the observed responses are factored in, to 

obtain the posterior estimate of the function values. Given an input vector x∗, the pre-

diction y∗ can be derived using some Bayes rule manipulations as: 

ỷ∗ = V (x∗,X)[V (X,X) + σ2
n I]

−1 y                                     (4) 

For Gaussian process regression we have three key parameters that control the func-
tion smoothness: σn (the standard deviation of the error terms ǫi), σf and the α (the 
parameters that pertain to the covariance function)[9]. 
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2.2.3   Exponential Smoothing Regression  
Exponential smoothing is a procedure for continually revising a forecast in the light of 
more recent experience. The Holt’s exponential smoothing model is an exponential 
smoothing model with a trend forecasting. It is based on estimating smoothed ver-
sions of the level and the trend of the time series. Then, the level plus the trend is ex-
trapolated forward to obtain the forecast. We apply the version of Holt’s exponential 
smoothing based on maximum likelihood that is proposed by Andrawis and Atiya 
[10]. In this approach, both level and trend smoothing constants, and initial level and 
initial trend are obtained using the maximum likelihood approach [11]. 

2.3   Combination Functions 

Suppose we have N models and xi is the forecast output of model i. There are several 
possible forecast combination methods. We use the following two methods: the sim-
ple average or equal weights, defined such that the final combined output is given by:  

                           ∑
=
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1ŷ ixN                                                  (5) 

The second one is the rank based weighting. In the rank based weighting the weights 
are proportional to the inverse of its performance rank (e.g. the forecast performance 
in some validation time period). This method is expected to be more robust and less 
sensitive to outliers [11].  The output of each model is weighted by wi

 such that: 
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Ri is the rank of model(i). 

3   Implementation  

3.1   Data Sets 

We considered the problem of forecasting inbound tourism demand for Egypt. Spe-
cifically, we consider the monthly tourist numbers originating from 36 major source 
countries and the number of nights the tourists spent in Egypt during the period from 
1993 to 2007, in addition to the aggregated tourism numbers/nights (aggregated over 
all source countries). So, we have 74 time series spanning the period starting from 
1993. Tourism is one of major economic sectors in Egypt, and it is the fastest growing 
sector. Decision makers need to have an accurate estimate of future tourism demand. 

The forecast horizon is 6 months, and we used a two year validation period. The 
validation period is used for model selection and some parameter tuning. In addition, 
the validation data set is used as a basis for selecting the best two or three models as 
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used in the proposed forecast combination strategies. We used two different snapshots 
of the data sets. In one of them the last actual data point is November 2008. In the 
other snapshot the last data point is June 2009. We applied some preprocessing, such 
as a deseasonalization step and a log transformation. After the forecasting is per-
formed, we unwind these preprocessing steps to obtain the final forecast. 

The rationale for applying the proposed strategies on these data sets is that tourism 
numbers can suffer from structural breaks. For example, the economic downturn of 
late 2008 affected tourism considerably. Terrorism attacks produce a significant break 
in the time series. Changing preferences, such as novel tourist source countries 
change the dynamics of the time series. For example, Russia and eastern block coun-
tries increased their contribution to inbound tourism  for Egypt in the last 5 to 10 
years. 

3.2   Benchmark 

We compare the new five strategies with a benchmark system that has only two train-
ing periods – From Jan 1993 till the end and from Jan 1998 till the end, whereby the 
best is selected (among the model trained on 1993 till end and 1998 till end). The 
same forecasting models are used for the new strategy, as well as for the benchmark. 
The models are the following four: MLP, GPR, MLP/GPR ensemble and exponential 
smoothing. The same preprocessing and postprocessing has been applied on the two 
as well. After training and validation, a selection and forecast combination step is 
applied for the benchmark. The selection and combination rule states “select the best 
two models according to the validation set and combine them using the simple aver-
age if the error difference between them is within a threshold else select the best 
model.”  The rationale for using this model as a benchmark for comparison is that in 
previous work this is the combination that yielded best results for the tourism fore-
casting problem. Our goal is now to improve upon this previously optimized strategy. 

3.3   Results 

We use the Symmetric Mean Absolute Percentage Error, SMAPE as the error meas-
ure, as described by the equation   

∑
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(ym is the target output and ŷm is the prediction). SMAPE has several advantages in 
that it is a relative measure (its range is from 0 to 200%). We used 2 years (24 points) 
of validation data set. We compute the average SMAPE for each time series using a 
six-month rolling forecast covering the period of one year (12 points), as an out of 
sample test set. Then the average SMAPE is taken over the all 74 time series. We 
compare the performance of the five strategies over the performance of the bench-
mark system. Table 1 compares the error percentage between the new strategies and 
the benchmark. 



 Forecast Combination Strategies for Handling Structural Breaks 251 

 

Table 1. SMAPE (%) for different strategies compared to Benchmark 

 November 2008 June 2009 

First Strategy 23.04 22.44 

Second Strategy 19.86 20.46 

Third Strategy 19.96 20.53 

Fourth Strategy 19.86 20.46 

Fifth Strategy 19.85 20.50 

Benchmark 20.23 20.79 

3.4   Discussion 

By observing Table 1, one can see that the second strategy, the fourth strategy and the 
fifth strategy are the best strategies, giving almost identical performance. Following 
these comes the third strategy, with minor differences from the top three strategies. 
All four strategies considerably beat the benchmark and the first strategy. One can 
summarize the findings in the following: 

1. Selecting and combining the top one, two, or three models is considerable 
better than combining all models. Thus "selective combination" works better 
than "combining all". 

2. Selecting models based on best training set sizes is considerably better than 
taking the whole historical data as training set. This suggests that at least for 
these type of data sets the time series dynamics changes with time or they 
possess some breaks. 

3. For many time series applications, especially economic time series, it is rec-
ommended to carefully analyze the data set and use selective subset(s) for 
training. 

By observing the best models that Strategies 2, 4, and 5 selected, we can have an idea 
about whether and where structural breaks occur (if any). We observed the following: 
The best training set periods started for most countries during the times 1993-1999. 
There is a large number that starts in 1998-1999. This can be explained as follows; in 
November 1997 a major brutal terrorist attack occurred in Luxor, Egypt (a number of 
scattered other attacks occurred also during the period from  1993 to 1997), This se-
vere terrorist attack  in 1997 had a significant dampening effect on tourism to Egypt. 
Only, one or two years later tourism somewhat recovered. It is not surprising that the 
model selected the training set to start past this  break in 1997.  

As an example of how the selection of the training set period affects the perform-
ance, refer to Figure 2. It shows the SMAPE error measure as a function of the start 
year of the training set for one of the time series (France, number of tourist nights).  
The SMAPE here is measured on the two-year validation period. One can see that the 
best starting year is 1998. This is consistent with the break that occurred in 1997 due 
to the Luxor terrorist attack 
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Fig. 2. The validation period SMAPE error measure as a function of the start year of the train-
ing set for the France number of tourist nights time series 

4   Conclusion 

In this paper we presented ideas of using forecast combination to handle time varying 
conditions and breaks in time series. This is to overcome the difficulties of detecting 
structural breaks for time series forecasting application. The application we focused 
on is forecasting tourist demands in Egypt. We observed that this strategy has merit 
and leads to improved results compared to the benchmark. 
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Abstract. Rapid advances in remote sensing sensor technology have made it 
recently possible to collect new dense 3D data like Light Detection And Rang-
ing (LIDAR). One of the challenging issues about LIDAR data is classification 
of these data for identification of different objects in urban area like building, 
road, and tree. Regarding to complexities of objects in urban area and disability 
of LIDAR data to collect the radiometric information of surface, traditional 
classifiers have low level of performance in classification of LIDAR data. 
Combining classifiers is an established concept that it used for improvement of 
classification results. In this paper we propose a classifier fusion system scheme 
based on Support Vector Machine (SVM) for classification of LIDAR data. 
Different SVMs are trained on the best different subset of features that are 
proper for object extraction in LIDAR data and chosen by RANSAC as feature 
selection method. In this article, two multiclass SVM methods known as one-
against-one and one-against-all are investigated for classification of LIDAR 
data and then final decision is achieved by Majority Voting method. The results 
confirm that established method on LIDAR data has improved accuracy of clas-
sification. It is also demonstrated that one-against-all results better accuracy 
comparing to one-against-one although it is much more time consuming. 

Keywords: LIDAR data, SVM, Classification, Classifier Fusion, Urban Area. 

1   Introduction 

Remotely sensed data has been widely used to land cover classification and object 
extraction [1, 2]. Light Detection And Ranging (LIDAR) is one of the recent remote 
sensing technologies that is widely used for Digital Terrain Model (DTM) data collec-
tion and also for other studies including 3D extraction, urban management, atmos-
pheric studies, and so on [2, 3]. Comparing to other remote sensing data sources,  
LIDAR has its advantages such as acquisition of very dense data in a short period of 
time. LIDAR data contains plenty of scene information, from which most ground fea-
tures such as roads, buildings and trees are discernible. More recently, advancements in 
LIDAR enabled the acquisition of dense point clouds. Major benefits of this technique 
are its high level of automation during data capturing and its spatial resolution. With 
point densities of up to several points per square meter, LIDAR data has become a 
valuable additional source for the reconstruction of different urban objects [2]. 
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Automatic extraction of objects such as building, tree and road from LIDAR in 
complex area is a challenging research topic in pattern recognition and remote sensing 
studies [2, 3]. This topic is still very limited in the extraction of urban objects due to 
the complexity of urbane scene and due to producing similar information by LIDAR 
for different objects.  

Several urban classification methods have been proposed for object extraction from 
LIDAR data [4]. These methods are usually based on a feature extraction step followed 
by a classification algorithm. Because of high complexity of LIDAR data, single clas-
sification methods couldn’t achieve more accurate results. As a consequence, the 
newer concept proposed to use several approaches and try to take advantages of the 
strengths of each classifier. This concept is known as Decision Fusion. Decision fusion 
can be defined as the process of fusing information from several individual data 
sources after each data source has undergone a preliminary classification. 

Multiple Classifier System (MCS) is an established method for fusion of different 
decisions that making by a group of classifiers. Nowadays, classifier fusion is used in 
pattern recognition and object extraction in the hope of increasing the overall accu-
racy [5]. The performance of classifier fusion essentially depends on the accuracy and 
power of single classifiers. One of the state-of-the-art classification methods which 
has been widely used in remote sensing is Support Vector Machine (SVM) [6]. Re-
cently, SVM is used in groups of research in pattern recognition like object extraction, 
medical research like cancer diagnosis and handwriting recognition [8, 9]. 

SVM by itself is a binary classification but in some researches like remote sensing 
or pattern recognition, we usually have more than two classes. Multi-class SVM is the 
solution for this problem which is has been utilized in some researches [7, 10, and 12]. 

In this paper, we introduce a classifier fusion method for classification of LIDAR 
data in an urban area. The key idea in this paper relies on multi-class SVM classifiers 
that are trained on different subsets of features selected by RANSAC as feature selec-
tion method. In the last step, final decision is obtained by fusing the results of SVM 
classifiers using weighted majority voting. 

2   Multi-class SVM Based Classifier Fusion 

The ultimate goal of most traditional methods in pattern recognition is to achieve the 
best possible classification performance for recognition of different objects. This 
objective traditionally led to the development of newer concept. The idea is not to rely 
on a single decision making scheme. Instead, all the designs, or their subset, are used 
for decision making by combining their individual opinions to derive a consensus 
decision [5]. Combining classifiers is an established research area shared between 
statistical pattern recognition and machine learning. It is variously known as commit-
tees of learners, mixtures of experts, classifier ensembles, multiple classifier systems, 
consensus theory, etc [5, 11]. The performance of classifier fusion essentially depends 
on the accuracy and power of single classifiers. As in this paper SVM is used as base 
classifier in our classifier fusion scheme, we provide a short introduction about this 
concept here. 
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SVM belong to the general category of kernel methods. A kernel method is an al-
gorithm that depends on the data only through dot-products. SVM finds an optimal 
separating hyperplane in the feature space and uses a regularization parameter to 
control its model complexity and training error.  SVMs are an example of a linear 
two-class classifier and it can only take two values: 1± . For a remote sensing applica-
tion, several classes are usually of interest. One solution for this difficulty is to split 
the problem into a set of binary classification before combining them. The one-
against-one and the one-against-all are the two most popular strategies in this cate-
gory [10, 11]. 

One-against-one is the method that calculates each possible pair of classes of a bi-
nary classifier. Each classifier is trained on a subset of training examples of the two 
involved classes. In this method, all N (N-1)/2 binary classifications are combined to 
estimate the final output. Final output is then created by a majority voting scheme. 
This approach is suitable for problem with larg amount of data [10, 12]. 

The most important problem caused by this method is the existence of unclassifi-
able regions which is able to be solved using one-against-all technique. For an N-class 
problem, the one-against-all method constructs N SVM models (one SVM per class), 
which is trained to distinguish the samples of one class from samples of all remaining 
classes [12]. In this method, the ith SVM is trained using all the learning examples in 
the ith class with positive labels and the others with negative labels and finally, N 
hyperplanes are obtained. If ith conventional decision function that classify class i and 
the remaining class be  

i
t
ii bXwXD +=)(                                     (1) 

The vector w is known as the weight vector, b is called the bias and Dِ is rhe hyper-
plane that divids the space into two regions. The hyperplane 0)( =xDi forms the opti-

mal separating hyperplane and if the training data are linearly separable, the support 
vectors belonging to class i, satisfy 1)( =xDi and those belonging to the remaining 

classes satisfy 1)( −=xDi . For the conventional SVM, if for the input vector X, the 

below equation 

0)( fXDi
                                                           (2) 

is satisfied for one i, X is then classified into class i. Since only the sign of )(xDi is 

used, this decision is discrete. If (2) is satisfied for plural i, or there will be no i to 
satisfy this relation, X will be unclassifiable region. To avoid this, datum X is classi-
fied into a class which is determined by equation (3): 

)(maxarg XDii                                                       (3) 

In this method, the continuous value of the decision function determines classification 
and as is seen, this decision is continuous.  

The use of SVMs as component classifiers in classifier fusion or ensemble is re-
ported to improve the results of classification in some researches. In the field of clas-
sifier ensemble, AdaBoost with SVM as component classifiers is introduced to 
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achieve better results by Li and his colleagues who have utilized SVMs with RBF 
kernel as a component classifier in AdaBoost algorithm [13].  Lienemann has intro-
duced an ensemble classification system based on SVM and used this algorithm in 
pharmacology. In his report, final classification results are obtained by voting [14]. 

Kotez and Morsdort have used SVM based classifier fusion on LIDAR and 
spectrometer images. Single SVM are applied on two types of data and then the 
outputs of SVMs are fused. This method is used in land cover classification in the 
context of forest fire management [15]. Reiter and Rigoll have implemented SVM 
as base classifier in classifier fusion for segmentation and classification of meeting 
events [16]. Min and Hong have discussed potential of SVM based classifier fu-
sion for improvement of fingerprint classification. The results in this research 
exhibit the feasibility and validity of fingerprints classification are increased. This 
method is also reported to overcome the problem of ambiguous fingerprints. They 
have used one-against-all SVMs as base classifiers and results are then fused by 
Decision Template [17].  

3   Proposed Method  

In this paper a Multi-class SVM based classifier fusion is applied on LIDAR data. 
The classification process is initiated by feature extraction operation and then two 
one-against-one and one-against-all SVM methods are implemented on the dataset. 
Fig1, illustrates the general structure of proposed methodology which contains four 
main steps. 

 

Fig. 1. Proposed method for SVM-based classifier fusion 

Feature Extraction. The first step in every classification process is to extract proper 
features from data set. These features must contain useful information to discriminate 
between different regions of the surface. In our experiment, we have used different 
features extracted from two types of LIDAR data (Range data and Intensity data). The 
normalized difference of the first and last pulse range images (NDI) is usually used as 
a major feature band for discrimination of the vegetation pixels from the others [18 ].  
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The morphological Opening operator is also utilized to filter elevation space. This 
operator with a flat structuring element eliminates the trend surface of the terrain [19]. 
The Opening operation is defined by: 

 

BBABA ⊕Θ= )(o                                                         (4) 
 

where  is the morphological Dilation and  is the morphological Erosion of 
set A with structure element B. All types of features used in this research are intro-
duced in Table 1. 

Table 1. Different features that used on LIDAR data 

Name Formulation 
First Pulse Intensity FPI 
Last Pulse Intensity LPI 
First Pulse Range FPR 
Last Pulse Range LPR 
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In features of Table 1, N is the number of grey levels and P is the normalized 

symmetric co-occurrence matrix of dimension N x N. V is the normalized grey level 
difference vector of dimension N. 

SVM classification. In our proposed method, we choose four subsets of these 
features to produce different classifiers. We have applied both one-against-one and 
one-against-all methods on these feature subsets. Consequently 8 SVM classifiers are 
prepared to be used in classifier fusion step. All of these classifiers are trained on the 
same training dataset.  

Feature subset Selection. We have used RANSAC (RANdom SAmple Consensus) 
method for our subset feature selection. It is an iterative method to estimate parame-
ters of a mathematical model from a set of observed data which contains outliers. We 
have used this random selection technique for choosing best subsets of features [20]. 

Classifier fusion. The final decision in our research is achieved by weighted Majority 
Voting that it applied on a collection of single SVM classification results. Single SVMs 
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are then compared to the results of fusion in terms of accuracy achieved by them. Over-
all accuracy of each classifier is used as its weight in weighted Voting method. 

4   Accuracy Assessment  

We have used error matrices of classification results as main evaluation method of 
interpretation the quality of each classification method. Each column in this matrix 
indicates the instances in a predicted class and each row represents the instances in an 
actual class. All the diagonal variants refer to the correct interpreted numbers of dif-
ferent classes found in reality. Some measures can be derived from the error matrix, 
such as producer accuracy, user accuracy and overall accuracy [21]. Producer Accu-
racy (PA) is the probability that a sampled unit in the image is in that particular class. 
User Accuracy (UA) is the probability that a certain reference class has also been 
labeled that class. Producer accuracy and user accuracy measures of each class indi-
cate the interpretability of each feature class. We can see the producer accuracy and 
user accuracy of all the classes in the measures of “producer overall accuracy” and 
“user overall accuracy”. 
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Where 

jiN , : (i, j)th entry in confusion matrix 

..iN : the sum of all columns for row i 

jN . : the sum of all rows for column i 
 

“Overall accuracy” considers all the producer accuracy and user accuracy of all the 
feature classes. Overall accuracy yields one number of the whole error matrix. It‘s the 
sum of correctly classified samples divided by the total sample number from user set 
and reference set [21]. 
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5   Experiment and Results 

5.1   Data Set 

The LIDAR remote sensing data with four popular bands, first pulse intensity, last 
pulse intensity, first pulse range and last pulse range is classified by our proposed 
method based on SVMs. This sample of LIDAR data is an urban area recorded from 
city of Castrop-Rauxel which is located in the west of Germany. 
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              a                b                  c 

   
                d                 e                  f 

Fig. 2. Data set consist of a) First pulse intensity, b) Last pulse intensity, c) First pulse range, d) 
Last Pulse range, e) Image, f) Train and test data from selected area for Tree (green), Building 
(red) and Ground (yellow). Dashed lines demonstrate test data and continuous ones demon-
strate training data selected from dataset. 

This dataset has enough complexity in urban area for evaluating our proposed 
method. The LIDAR data is classified into three main classes in urban areas: building, 
tree and ground. Table.2 illustrates the number of training and test samples selected 
for each class. 

Table 2. Information of training and test sample of each class 

Class Number of training sample Number of test sample 

Tree 510 420 

Building 1426 672 

Ground 672 564 
 

5.2   Results 

In the first step of experiment, we need to produce different SVMs for fusion. For  
this purpose, we apply one-against-one and one-against-all SVM methods on the four 
different subsets of features selected by RANSAC. Consequently, we apply two SVM 
methods on our four subsets of features to produce 8 classifiers. Error matrix  
and overall accuracy of each classifier (SVM1-1(A), SVM1-1(B), SVM1-1(C),  
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SVM1-1(D), SVM1-all(A), SVM1-all(B), SVM1-all(C), SVM1-all(D)) are provided 
in table 3. In this table, A, B, C and D are the best subsets of selected features selected 
by RANSAC method from all the subsets of features.  

 

Table 3. Confusion matrix and overall accuracy of 8 single SVM 
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Fig. 3. Comparison of overall accuracy and time between one-against-one and one-against-all 

In addition, table 3 indicates that in our utilized dataset, one-against-all method 
yields better overall accuracy comparing to one-against-one. Figure 3 simply demon-
strates our mentioned conclusion. The overall accuracies of eight classifiers are com-
pared here. In addition, in this figure, the times needed for each of the methods are 
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compared. In this chart, we can observe one-against-one is much faster than one-
against all method. Considering this fact, in applications using large amount of data 
like remote sensing, one-against-one method is preferred. In the last step of our ex-
periment, we fuse the results of 8 SVM classifiers to obtain better classification re-
sults. Table 4 shows confusion matrix and overall accuracy of our utilized classifier 
fusion technique. 

Table 4. Confusion matrix and overall accuracy of classifier fusion result 

Reference Data 
 Tree Building Ground 

Tree 292 0 0 
Building 124 672 1 
Ground 4 15 563 

F
us
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n 

R
es

ul
ts

 

Overall accuracy=0.9166 

 
In table 4 it can be seen our utilized fusion algorithm outperforms each of the sin-

gle classifiers mentioned previously. 

6   Conclusion 

In this paper we have proposed Multi-class SVM based classifier fusion for classifica-
tion of LIDAR data in an urban area. We have extracted some standard features from 
this dataset such as morphological opening, NDDI, Homogeneity, Entropy, … and 
then selected the best subsets of these features. This selection is done using RANdom 
SAmple Consensus (RANSAC) which is a random selection technique. Different 
subsets of features are used in both one-against-one and one-against-all SVM meth-
ods, which are two multiclass SVM techniques. We then evaluated and compared 
these two SVM methods in terms of accuracy and time spent for each one.  
Experimental results demonstrate one-against-all outperforms one-against-one in 
accuracy but on the other hand one-against-all is much more time consuming than 
one-against-all. Based on the mentioned results, one-against-one is preferred to other 
one for handling larger datasets. In the last step of our research, we tried to improve 
the classification results by using a classifier fusion scheme. We applied Weighted 
Majority Voting for the purpose of fusing single SVMs results. It was observed that 
higher accuracy and performance is achieved by the utilized fusion algorithm compar-
ing to each of the single SVM classifiers.  
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Abstract. Although widely used to reduce error rates of difficult pat-
tern recognition problems, multiple classifier systems are not in wide-
spread use in off-line signature verification. In this paper, a two-stage
off-line signature verification system based on dissimilarity representa-
tion is proposed. In the first stage, a set of discrete HMMs trained with
different number of states and/or different codebook sizes is used to cal-
culate similarity measures that populate new feature vectors. In the sec-
ond stage, these vectors are employed to train a SVM (or an ensemble of
SVMs) that provides the final classification. Experiments performed by
using a real-world signature verification database (with random, simple
and skilled forgeries) indicate that the proposed system can significantly
reduce the overall error rates, when compared to a traditional feature-
based system using HMMs. Moreover, the use of ensemble of SVMs in
the second stage can reduce individual error rates in up to 10%.

1 Introduction

Signature verification (SV) systems seek to authenticate the identity of an in-
dividual, based on the analysis of his or her signature, through a process that
discriminates a genuine signature from a forgery [13]. SV systems are relevant
in many situations where handwritten signatures are currently used, such as
cashing checks, transactions with credit cards, and authenticating documents.
In off-line SV, signatures are available on sheets of paper, which are later scanned
in order to obtain a digital representation. Given a digitized signature, an off-line
SV system will perform preprocessing, feature extraction and classification (also
called verification) [3].

The utilization of multiple classifier systems (MCS) has been shown to reduce
error rates of many challenging pattern recognition problems. However, MCS
have received relatively little attention in the off-line SV community [1,4,6,15].
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By using just the best classifier, it is possible to loose valuable information con-
tained in the other suboptimal classifiers. Moreover, it has been shown that, when
a set of R classifiers is averaged, the variance contribution in the bias-variance
decomposition decreases by 1/R, resulting in a smaller expected classification
error [16]. Classifiers may be combined in parallel by changing (i) the training
set, (ii) the input features and (iii) the parameters/architecture of the classifier.
Multi-stage approaches, where each classification level receives the results of the
previous one, is another way to use multiple classifiers to reduce the complexity
of the problem.

Among several well-known classification methods used in off-line SV, the dis-
crete Hidden Markov Model (HMM) [14] – a finite stochastic automata used to
model sequences of observations – is known to adapt easily to the dynamic char-
acteristics of the western handwriting [10]. The traditional approach consists in
training a HMM only with genuine signatures. Therefore, the decision boundary
between the impostor and genuine classes is defined later, by using a validation
set that contains samples from both classes. Hence, an input pattern is assigned
to the genuine class if its likelihood is greater than the decision threshold.

In contrast to this traditional system, Bicego [5] proposed a classification
strategy (applied to the problem of 2D shape recognition) where both the gen-
uine subspace, w1, and the impostor’s subspace, w2, are modeled. Based on the
dissimilarity representation (DR) approach – in which an input pattern is de-
scribed by its distances with respect to a predetermined set of prototypes [12]
–, the strategy consists in using a set of HMMs not as classifiers, but as a way
to calculate similarity measures that define a new input feature space. The fact
that two sequences Oi and Oj present similar degrees of similarity with respect
to several HMMs enforces the hypothesis that Oi and Oj belong to the same
class [5].

In this paper, a two-stage off-line SV system inspired by Bicego’s DR concept
[5] is proposed. Given a set of discrete HMMs trained with different number
of states and/or different codebook1 sizes, a greedy algorithm is employed to
select the most representative ones that will be part of the first stage of the
system. These HMMs can be viewed as feature extractors used to obtain the
vectors of similarities. In the second stage, the vectors of similarities are used
to train a SVM (or an ensemble of SVMs) whose objective is to provide the
final decision. To analyze the system’s performance, an overall ROC curve that
takes into account user-specific thresholds is constructed. This curve also allows
the system to dynamically select the most suitable solution for a given input
pattern. This property can be useful in banking applications, for example, where
the decision to use a specific operating point (threshold) may be associated with
the value of a check.

Experiments performed with the Brazilian SV database [4] (with random,
simple and skilled forgeries), indicate that the proposed system can significantly

1 A codebook contains a set of symbols, each one associated with a cluster of feature
vectors, used to generate sequences of discrete observations in discrete HMM-based
systems.
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reduce the overall error rates, when compared to a traditional feature-based
system that uses a single HMM per writer. The paper is organized as follows.
The next section presents the proposed approach. Then, Section 3 describes the
experimental methodology and Section 4 presents and discusses the experiments.

2 Proposed System

In this section, a two-stage off-line SV system inspired by Bicego’s DR concept [5]
is proposed. In the first stage, a set of representative HMMs are used as feature
extractors in order to obtain similarity measures (likelihoods) that populate new
feature vectors. This idea is formally defined as follows.

Let w1 = {λ(C1)
1 , ..., λ

(C1)
R } be the set of R representative models of the genuine

class C1; w2 = {λ(C2)
1 , ..., λ

(C2)
S } be the set of S representative models of the

impostor’s class C2; and M be the vector containing the representative models of
both classes, that is, M = [w1 ∪w2]. Given a training sequence Otrn ∈ {C1|C2},
its feature vector D (Otrn,M) is composed of the likelihoods computed between
Otrn and every model in M, that is,

D (Otrn,M) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P (Otrn/λ
(C1)
1 )

...

P (Otrn/λ
(C1)
R )

P (Otrn/λ
(C2)
1 )

...

P (Otrn/λ
(C2)
S )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
After applying the same process to all training signatures from C1 and C2, the
obtained feature vectors are used to train an ensemble of user-specific classi-
fiers2 (SVMs) in the second stage. During the test phase, the feature vector
D (Otst,M) is calculated for a given input sequence Otst, and then sent to the
ensemble of SVMs, which takes the final decision by majority vote. Figure 1
illustrates the proposed system, where three HMMs per subspace are used.

Observe that, if Otst belongs to class C1, the feature vector D (Otst,M) should
contain bigger values in the first R positions and smaller values in the remaining
S positions (the inverse if Otst belongs to class C2), which allows to discriminate
between the classes C1 and C2. In a feature-based approach, Otst would be
assigned to the class of the most similar model. However, this approach does not
use all the information contained in a space of dissimilarities [5].

In order to obtain the most representative models to compose the subspaces w1
and w2, a greedy algorithm is used. Starting with an empty subspace, the models
are incrementally added until a convergence criterion is reached. Basically, a
model λ is chosen if its addition to the subspace minimizes the average error rate
(AER) provided by a 1-NN classifier (with Euclidean distance) on the validation
set. Algorithm 1 presents more details of this strategy.
2 In this paper, the term user-specific classifier is used to differentiate from systems

where a same global classifier is shared by all users.
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Fig. 1. Diagram of the proposed system

3 Experimental Methodology

The Brazilian SV database [4] is used for proof-of-concept computer simulations.
It contains 7920 samples of signatures that were digitized as 8-bit greyscale im-
ages over 400X1000 pixels, at resolution of 600 dpi. The signatures were provided
by 168 writers and are organized in two sets: the development database (DBdev)
and the exploitation database (DBexp). DBdev is composed of 4320 genuine sam-
ples supplied by 108 individuals, and it is used for designing codebooks and to
train the HMMs that will compose the impostor’s subspace, w2.

DBexp contains 60 writers, each one with 40 samples of genuine signatures, 10
samples of simple forgery and 10 samples of skilled forgery. 20 genuine samples
are used for training, 10 genuine samples for validation, and 30 samples for test
(10 genuine samples, 10 simple forgeries and 10 skilled forgeries). Moreover, 10
genuine samples are randomly selected from the other 59 writers and used as
random forgeries to test the current user-specific classifier. Each writer in DBexp

will, therefore, be associated to a genuine subspace, w1.
The signature images are represented by means of density of pixels, extracted

through a grid composed of cells of 16x40 pixels [2]. In order to generate the
sequences of observations, a codebook with 35 symbols, denoted as CB35, is
employed (for more details regarding CB35 construction, see ref. [2]). For each
writer from both DBdev and DBexp, a set of HMMs is trained by using the left-to-
right topology [14] with 20 genuine samples and different number of states; where
the maximum number of states is given by the smallest sequence of observations
used for training. Therefore, to compose w1, there are a variable number of
available HMMs that depends on the writer’s signature size. On the other hand,
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Algorithm 1. Selection of representative models.
Inputs:
(i) the validation set V composed of genuine signatures (C1) and random forgeries (C2)
(ii) the sets of available models Φ1 and Φ2, representing, respectively, C1 and C2

Outputs: the vector of representative models, M
for each class Ci, i = 1, 2 do

set wi ← [ ];
set j ← 0; //j represents the number of positions of vector wi

repeat
j ← j + 1;
find the model λk in Φi that, when added to wi(j), provides the smallest AER
of a 1-NN classifier using the validation set V;
remove λk from the list of available models Φi;

until AER reaches a minimum value
end for

append, vertically, each wi(1..j); that is, M =
[

w1

w2

]

to compose w2, there are always 3296 available HMMs, taken from the 108
writers in DBdev.

It is assumed that the overall system’s performance is measured by an aver-
aged ROC curve obtained from a set of user-specific ROC curves. The chosen
averaging method [9] generates an overall ROC curve taking into account user-
specific thresholds. At first, the cumulative histogram of random forgery scores
of each user i is computed. Then, the similarity scores (thresholds) providing a
same value of cumulative frequency, γ, are used to compute the operating points
{TPRi(γ), FPRi(γ)}. Finally, the operating points associated with a same γ
are averaged. Note that γ can be viewed as the true negative rate (TNR) and
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Fig. 2. Cumulative histogram of random forgery scores regarding two different users



A MCS for Off-Line Signature Verification Based on Dissimilarity Representation 269

that it may be associated with different thresholds. Figure 2 shows an example
where the thresholds associated with γ = 0.3 are different for users 1 and 2, that
is tuser1(0.3) ∼= −5.6 and tuser2(0.3) ∼= −6.4.

To measure the system’s performance during test, false negative rates (FNR)
and false positive rates (FPR) are calculated by using the user-specific thresh-
olds associated to different operating points γ of the averaged ROC curve. The
average error rate (AER), also computed for different γ, indicates the total er-
ror of the system, where FNR and FPR are averaged taking into account the
a priori probabilities.

4 Simulation Results

This section presents two sets of experiments performed with the Brazilian SV
database [4]. In the first one, the proposed DR-based system is compared to a
traditional feature-based system that uses a single HMM per writer. In this case,
only one SVM per writer is employed in the second stage of the proposed system.
In the second set of experiments, the impact of using ensembles of SVMs in the
second stage is investigated.

4.1 DR-Based Approach vs. Feature-Based Approach

Given the HMMs trained such as explained in Section 3 and the validation set
– which contains 10 genuine signatures taken from DBexp versus 1080 (108x10)
random forgeries taken from DBdev–, Algorithm 1 was applied to select the most
representative models. This process was performed individually for each writer
in DBexp, and, on average, 2 models were selected for representing w1, and 3
models, for representing w2. Then, still using the validation set, the gridsearch
technique with 10-fold cross-validation was employed in order to find the best
parameters {c, �} of the two-class SVMs (CSV C) with RBF kernel [8]. Finally,
the selected parameters were used to train a single SVM per writer, with 20
genuine signatures taken from DBexp versus 2160 (108x20) random forgeries
taken from DBdev.

The averaged ROC curve representing the proposed system (obtained from
the validation set) is indicated by the square-dashed line in Figure 3. The
circle-dashed curve corresponds to a traditional (feature-based) HMM-based
system designed such as described in Introduction. This baseline system uses
only density of pixels as features and a single HMM per writer as classifier,
where the number of states is selected through the cross-validation procedure
described in [10]. Table 1 (a) and (b) present the error rates on test for both
systems regarding different operating points (γ). Note that the proposed sys-
tem provided a reduction in AER from 2.5%, for γ = 1, up to 9.87%, for
γ = 0.95.

Table 2 shows the results provided by other systems that use the Brazilian SV
database [4] and pixel density features. Except in [4], where DR is employed to
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Fig. 3. Averaged ROC curves of baseline and proposed systems

design a global classifier, the refered articles propose feature-based approaches.
Note that our system provides the smallest AER (see Table 1 (b), γ = 1).

4.2 DR-Based Approach Using an Ensemble of SVMs

The experiment presented in this section consisted in analyzing the impact of
employing and combining different SVMs per writer in the proposed DR-based
system. In order to generate the candidate classifiers, a different user-specific
SVM is trained each time that a new model is selected by Algorithm 1. For
example, given that w1 is represented by models (a, b, c) and w2, by (d, e), six
candidate SVMs can be produced by using w1 ∪ w2, that is, (a, d); (a, d, e);
(a, b, d); (a, b, d, e); (a, b, c, d) and (a, b, c, d, e).

Once the set of candidate classifiers is obtained, the algorithm ICON [17]
is applied in order to incrementally construct the ensemble of SVMs. Like as
Algorithm 1, ICON consists in a greedy process that, at each iteration, chooses
the classifier that best improves system’s performance (on validation data) when
added to the current ensemble.

A measure called CI (from Chebishev’s inequality) [7,11] is employed to eval-
uate the ensemble. It is computed as CI = σ(τ)/μ(τ)2 , where σ and μ denote
the variance and the average of the set of margins τ provided by the samples in
the validation set, respectively. Given a sample xi from class C1, its margin τi

is given by the difference between the number of votes assigned to the true class
C1, minus the number of votes assigned to class C2. The ensemble providing the
smallest CI value contains the strongest and less correlated classifiers [11].

The overall error rates obtained on test by using majority vote are shown by
Table 1 (c). Note that, except for γ = 1, the improvements were mostly related
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Table 1. Overall error rates (%) of baseline and proposed systems on the test data

(a) Baseline system
γ FNR FPRrandom FPRsimple FPRskilled AER

0.95 0.50 6.83 12.83 68.00 22.04
0.96 0.50 6.00 10.83 64.83 20.54
0.97 0.83 5.67 9.00 60.17 18.92
0.98 1.17 4.00 5.67 52.50 15.83
0.99 2.33 2.67 4.00 42.67 12.92
1 12.67 0.33 1.17 19.83 8.50

(b) Proposed DR-based system with single SVMs
γ FNR FPRrandom FPRsimple FPRskilled AER

0.95 2.17 3.83 5.17 37.50 12.17
0.96 2.17 3.17 4.83 36.67 11.71
0.97 2.17 2.50 4.50 36.50 11.42
0.98 2.33 2.00 4.00 36.33 11.17
0.99 2.50 1.33 3.33 34.67 10.46
1 16.17 0.00 0.17 7.67 6.00

(c) Proposed DR-based system with ensembles of SVMs
γ FNR FPRrandom FPRsimple FPRskilled AER

0.95 2.83 2.33 4.50 33.33 10.75
0.96 3.00 1.67 3.67 33.67 10.50
0.97 2.83 1.33 3.67 33.67 10.37
0.98 2.83 1.00 3.50 34.17 10.37
0.99 3.00 1.00 3.50 32.67 10.04
1 13.50 0.00 0.17 8.33 5.50

to FPRs. Figure 4 (a) presents the 60 individual AERs for γ = 0.95. According
to this graph, 48.33% of the writers had their AERs on test reduced (in up to
10%) with the use of ensembles – which may indicate a considerable amount
of users in a real world application –, while 15% performed better with single
SVMs. For the remaining 36.67%, both versions of the system performed equally.

Regarding γ = 1, only 34 writers were associated to ensembles by algorithm
ICON. The remaining 26 writers kept using a single SVM with all models selected
by Algorithm 1. In Figure 4 (b), observe that the AER was reduced in 7.5% for
writers 4 and 10, in 10% for writer 9, and in 2.5% for writers 21, 26 and 38.
Whereas for writer 20, the use of ensembles increased the AER in 2.5%.

Table 2. Error rates (%) provided by other off-line SV systems

Reference FNR FPRrandom FPRsimple FPRskilled AER

Batista et al. [2] 9.83 0 1.00 20.33 7.79
Bertolini et al.[4] 25.32 3.8 4.48 7.8 10.35
Justino et al. [10] 2.17 1.23 3.17 36.57 7.87
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Fig. 4. Individual AERs obtained on test for γ = 0.95 (a) and γ = 1 (b), before
and after using ensemble of SVMs. In (a), note that the writers that had their AERs
reduced by using ensemble of SVMs are located below the dotted line.

5 Conclusions

In this paper, a two-stage off-line SV system based on DR [5] was proposed. In
the first stage, a set of representative HMMs – trained with different number of
states – was used to produce similarity measures to form new feature vectors.
In the second stage, these vectors were input to one or more SVMs in order to
provide the final classification.

When compared to a baseline system that uses a single HMM per writer,
the proposed system provides a reduction in AER from 2.5%, for γ = 1, up to
9.87%, for γ = 0.95. One of the reasons for this improvement is the fact that both
genuine and forger subspaces are modeled, which does not occur with traditional
(feature-based) systems using HMMs. Moreover, feature-based approaches do
not use all the information contained in a similarity space [5]. Finally, the use of
ensemble of SVMs can reduce individual error rates in up to 10%.

The proposed approach may require greater computational complexity (train-
ing time and memory consumption) than a traditional approach due to the gen-
eration of the candidate HMMs and to the selection of the most representative
ones. However, once the most representative HMMs are obtained (about 5 per
writer in the experiments), all sub-optimal solutions can be discarded. As fu-
ture work, we intend to employ different codebook sizes and different number of
states to generate the set of candidate HMMs.
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Abstract. In the presence of huge high dimensional datasets, it is important to 
investigate and visualize the connectivity of patterns in huge arbitrary shaped 
clusters. While density or distance-relatedness based clustering algorithms are 
used to efficiently discover clusters of arbitrary shapes and densities, classical 
(yet less efficient) clustering algorithms can be used to analyze the internal 
cluster structure and visualize it. In this work, a sequential ensemble, that uses 
an efficient distance-relatedness based clustering, “Mitosis”, followed by the 
centre-based K-means algorithm, is proposed. K-means is used to segment the 
clusters obtained by Mitosis into a number of subclusters. The ensemble is used 
to reveal the gradual change of patterns when applied to gene expression sets. 

Keywords: Clustering, Sequential Ensemble, Multi-Objective Clustering, Den-
sity based, Distance-relatedness based, Arbitrary Shaped Clusters, Gene  
Expression Analysis. 

1   Introduction 

Ensembles of clustering algorithms have been repeatedly introduced in the literature 
(a subset of the work done is [1],[2],[3],[4],[5],[6] and others). The aim of combining 
clustering solutions obtained by different algorithms is to arrive at a consensus clus-
tering using an appropriate voting scheme. However, cluster ensembles’ models take 
several shapes as combining solutions obtained at different parameter settings for the 
same algorithm, combining solutions obtained from subsets of data, or combining 
clustering algorithms that use different approaches. The model is selected according 
to the problem in hand, as handling different parameter settings, large data sets or 
exploiting variant clustering objectives to arrive at a better clustering solution.  

Previous attempts used voting to combine solutions that can be obtained in parallel 
(independent from each other). These can be termed as parallel ensembles. It is im-
portant to distinguish such methods from sequential ensembles, as presented here, 
where clustering obtained by one algorithm is further analyzed by another algorithm 
in a sequential fashion to arrive at a better cluster analysis. These are much simpler 
than parallel ones and the presented work does not pose into the consensus problem 
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where weighting and voting schemes are the main challenges. However, their impor-
tance lies in presenting a multilevel analysis to the same dataset. 

The main motivation of the proposed sequential ensemble is to target huge high 
dimensional datasets that contain large clusters which need further interpretation and 
analysis. While hierarchical clustering algorithms were previously used to cluster data 
at different levels of abstraction, yet, they cannot uncover the natural shapes and den-
sities of clusters compared to more recent density and distance-relatedness based al-
gorithms. Besides, using a sequential ensemble would be more efficient for huge 
datasets, where hierarchical algorithms (at least quadratic in the number of patterns) 
are prohibitive to use.   

Another motivation for the presented work is the issue of the curse of dimensional-
ity, which poses a great challenge in the data analysis process. Visualization of the 
clustered data is hindered in the presence of very large dimensions. Even the use of 
PCA (Principal Component Analysis) or SVD (Singular Value Decomposition) [7] to 
visualize the data in lower dimensions would fail in very high dimensions. 

Multiple clustering objectives/criteria can be used in parallel ensembles as an at-
tempt to obtain more valid clustering solutions. Sequential use of different clustering 
objectives, however, aims at providing a more detailed structure of the clusters ob-
tained, in order to interpret the gradual pattern change in a cluster. These are impor-
tant especially in the presence of arbitrary shaped clusters, and in general to compare 
different clusters’ structures and outputs of different algorithms. 

The work presented here proposes to use a sequential ensemble of density-based or 
distance-relatedness based clustering algorithm as Mitosis [8],[9] followed by a parti-
tioning algorithm as K-means [10] to segment the obtained clusters into a number of 
subclusters/segments. This proposes the use of two different clustering objec-
tives/criteria: the first aims at tracking natural shapes of clusters by utilizing a density 
(can be measured by distance characteristics) criterion, and the second aims at forcing 
segmentation/partitioning of each cluster using a center-based objective. Challenging 
issues include the selection of the number of segments/subclusters and obtaining an 
ordering of the segments/subclusters together with the use of an appropriate visualiza-
tion to arrive at the required objective.  

The paper is organized as follows: section 2 gives the background, section 3 pre-
sents the proposed work, section 4 gives the experimental results and section5 con-
cludes the paper. 

2   Background 

Clustering algorithms are based on diverse approaches e.g. partitioning as K-means 
[10], hierarchical as single, average and complete linkage [10], density-based as 
DBScan [11], grid-based as DenClue [12], graph-based as Chameleon [13] and 
ROCK [14] and distance-relatedness based as Mitosis [8], [9]. Of the mentioned algo-
rithms, those which impose a specific cluster structure as globular or spherical shaped 
clusters and others which use more efficient criteria to uncover the natural cluster 
shapes, sizes and densities. It is important to focus on the general clustering problem,  
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assuming the presence of arbitrary shapes, sizes and densities, with the presence of 
outliers as well. Clustering algorithms as DBScan, Chameleon, and Mitosis, with  
different clustering criteria, time performance and resulting clustering solutions, have 
realized the general problem and addressed specific issues of cluster structure varia-
tion. Figure 1 shows the difference between the use of density or distance-relatedness 
based algorithms and center-based or partitioning algorithms as K-means. 

   
(a)                                                           (b)       

Fig. 1. a) Arbitrary shaped clusters as discovered by density or distance-relatedness based algo-
rithms (as DBScan, Mitosis), (b) Inability of K-means to discover the natural cluster shapes 

Huge and high dimensional gene expression data presents a challenging task for 
unsupervised learning. The target is to discover gene relations and possible gene 
markers in a gene expression set. A gene expression pattern refers to the behaviour 
(expression) of gene along a number of tumor samples/conditions (these are the di-
mensions), or along different time points (as in time series gene expression). Mitosis 
was previously applied to gene expression data, in [9], [15], [16] and [17], as breast 
cancer, leukaemia and serum datasets. It has also been combined with outlier and core 
pattern analysis (as in [16] and [17]) for efficient exploration of gene clusters and 
gene relations. The importance of using Mitosis with gene expression lies in its ability 
to discover connectedness of expression patterns which corresponds to the problem of 
finding arbitrary shaped clusters of different densities. 

Visualization of high dimensional data becomes inefficient in many cases, espe-
cially in the presence of huge datasets. Visualization can be done using PCA or SVD, 
where the coefficients of components corresponding to the highest ranked eigen  
values are selected and plotted, resulting in 2-D and 3-D plots. However, these may 
produce visually unacceptable results for huge datasets. Thus, the use of efficient 
clustering analysis followed by segmenting huge clusters, as proposed here, provides 
an integrated framework for exploring the data. 

3   Proposed Methodology 

While density-based (e.g. DBScan) or distance relatedness based (e.g. Mitosis) algo-
rithms track patterns connectivity to form clusters, algorithms as K-means partition 
data around centers, forcing clusters to take globular or hyper-spherical shapes. How-
ever, despite the inability of center-based algorithms to discover the true clusters, 
those algorithms still have their own benefit. The work presented here illustrates how 
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less efficient partitioning algorithms can be important to investigate the internal struc-
ture of arbitrary shaped clusters to understand how connectivity between patterns is 
formed. Figure 2 shows a generalized sequential clustering ensemble where any algo-
rithm A is used to cluster the data, and any algorithm B is used to segment each clus-
ter into a number of segments/subclusters. 

 
Algorithm SequentialClusteringEnsemble 
Input: dataset P 
Output: Clusters and segments of each cluster 
Begin 
   Execute algorithm A to get a set of clusters S* 
   For each cluster i in S, such that size(i)>threshold 
          Execute algorithm B to segment the cluster into c segments/subclusters 
          Order the segments/subclusters 
          Output/visualize the segmented clusters 
   EndFor 
End 

*outliers are properly handled as described later. 

Fig. 2. Sequential Clustering Ensemble Method 

Mitosis is used to obtain the initial clusters (Algorithm A). It initially retrieves the 
dynamic range neighbours for all the patterns (a metric tree is used for a logarithmic 
search time complexity). It then uses a merging criterion that merges patterns based 
on the consistency of their neighbourhood distances, and merges clusters based on the 
consistency of their distance characteristics. Mitosis uses two parameters f and k, 
where f defines a dynamic neighbourhood range for each pattern and k defines a dy-
namic thresholding criterion for cluster merging. The selection of parameters is based 
on a distance-relatedness internal validity measure proposed in [8] and [18], where 
different sequential parameter settings (for both f and k) are used to obtain clusters, 
and local minima when changing k for a specific f value are used to locate the best k 
value for each f. The clustering solutions obtained at all best k values are compared 
using the validity measure in [18] to locate the best f and k values. Clusters above a 
certain threshold (for example 5% from the total data set) are selected for the segmen-
tation step. This threshold is important to remove the effect of any outlier clusters. 
Also, patterns that are not allocated to clusters above this threshold are also consid-
ered outliers and removed before applying the next step. Those patterns can then be 
allocated to major clusters later on to have a complete clustering solution. 

 K-means, used for cluster segmentation (algorithm B) needs the specification of 
the number of clusters c, and depends on the initial selection of the cluster centers (or 
initialization of the membership matrix). For the first problem, a number of issues are 
important to consider, as discussed below. To solve the second problem, multiple ran-
dom initializations of centers (or memberships) are used and the solution yielding the 
best objective value is selected, where the objective function minimizes the distances 
between patterns in a cluster and their cluster center [10].  
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Number of segments/subclusters 
The selection of the number of subclusters (segments) can be done using a proper 
validity index as Dunn’s index [19], where the number of subclusters can be varied 
between a lower and an upper range values, and K-means run at each setting. The 
setting that yields the highest Dunn’s value is selected. However, this solution might 
not yield the best visualization quality, and over-clustering might be more appropriate 
in this case to serve the primary goal of the proposed methodology. Therefore, a pro-
posed method in this case is to increase the number of clusters gradually and locate 
the number of clusters at which local maxima of Dunn’s index are obtained (shown in 
the experimental results). This can also be user-dependent, however such heuristic can 
help the user select the number of segments. 

 
Multilevel segmentation 
Similar to the concept of hierarchical clustering, a multi-level segmentation of each 
initial cluster can be obtained, however there is no restriction on the number of sub-
clusters/segments to start with at each level.  
 

Ordering segments and Visualization 
In order to be able to visualize the cluster segments, they have to be ordered to reflect 
the gradual change of patterns inside a cluster, and thus reflect patterns’ relations. 
This is achieved by arranging the patterns of segments on the 2-D plot of the coeffi-
cients of highest ranked two SVD components (as will be shown in the results).  

 
Effect of Outliers 
Outliers have been known to greatly affect algorithms as K-means, as moving a clus-
ter’s center away from its appropriate position, and thus leading to wrong partitioning. 
The presence of outliers will also affect the visualization process. Fortunately, using 
Mitosis  remove outliers during the clustering process, and it allocates them after clus-
tering to the appropriate clusters according to a merging criteria proposed in [8]. This 
facilitates excluding outliers when running K-means which can be used before the 
outlier allocation process.  

4   Experimental Results 

Two gene expression data sets are used to experiment with the proposed methodol-
ogy: a small serum dataset with 512 genes and 12 time points [20], and a larger breast 
cancer dataset of 7129 genes and 49 samples [21],[22]. The SVD based visualization 
(2-D plot of the coefficients of the two SVD components corresponding to the highest 
eigenvalues) of the clusters in these sets is shown in figures 3 and 5. (Note that the 
clustering is done on the original high dimensional data, and the SVD plots are only 
used for visualization). The connectedness of patterns in the obtained clusters is dis-
covered using the sequential ensemble together with the aid of visualization. In gene 
expression, connectedness of expression patterns is important to investigate, in order 
to discover functional relations among genes, where genes affect one another.   
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In each case, the number of subclusters (for K-means) was decided using local 
maxima of Dunn’s index values obtained when changing the number of clusters. The 
range of segments considered was 2 to 10 segments. The segments are visualized us-
ing both the expression vs. condition/time points plot and the 2-D SVD based visuali-
zation. Note that in each case, only one selected cluster obtained by Mitosis is used to 
illustrate the proposed method (for serum, there is one main cluster, while for breast 
cancer the cluster investigated is one of two clusters). 

Mitosis is executed at parameters f=1.25 and k=1.4 for the serum dataset. The re-
sulting segments are visualized by plotting all time series patterns of the same seg-
ment. The use of multilevel segmentation is also shown, where hidden continuity of 
expression patterns when using 5 segments (figure 4.a) is uncovered when segment-
ing 3 initial segments into another 8 segments (figure 4.b). The segments in figure 4 
show that relatively high expression patterns during the first half of time points seem 
to be translated to relatively high expression patterns in the second half of the time 
points, giving a possibility of a regulatory relation between genes expressing in the 
first half and those expressing in the second half. It can be interpreted as a shift in 
high expression along the time course of the experiment. 

 

Fig. 3. Clusters of connected patterns obtained by Mitosis for the serum dataset 

For the breast cancer dataset, Mitosis parameters were set at f=1.2, and k=1.2.  
Figure 5.a shows the two clusters obtained, and the higher density cluster (outer pe-
riphery) is selected for segmentation. Dunn’s local maxima returned 4, 6 and 9  
subclusters.   

While the choice of 4 subclusters hid the gradual change of expression patterns, the 
choice of 9 subclusters uncovered the gradual change of patterns, with the repetition 
of one segment. The segments were presented by their means for avoiding plotting a 
huge number of patterns. Figure 6 shows six of the segments for the outer cluster 
(shown in the leftmost figure of figure 5.a), where the major changes involved in the 
connectedness of patterns is apparent in changing samples/conditions 15 and 18 along 
the periphery. Sample 15 is related to gene over-expression on the left hemisphere 
and to gene under-expression on the right hemisphere. Sample 18 is related to gene 
under-expression in the bottom right corner and to over-expression in the upper  
left corner. This is not discovered if the main cluster is plotted, as all patterns will 
intermingle with no specific behaviour. Thus, segmentation using K-means with a  
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Fig. 4. Segments of the main cluster of serum dataset using pattern visualization and coeffi-
cients of SVD components, (a) five segments, (b) eight segments obtained at an extra level of 
segmentation from an initial set of 3 subclusters 
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Fig. 5.  Clustering results for breast cancer set using a) Mitosis (left most: outer higher density 
cluster, middle: inner lower density cluster, and rightmost: combined clusters), b) K-means (left 
most figure, at c=2) and DBScan single cluster at different parameters (middle and rightmost 
figures) 

center-based objective solves this problem for interpreting and understanding pattern 
connectedness in the cluster. 

The connectedness of patterns reveals possible regulatory relations between the 
genes where over-expression at sample 15 in some genes can result in under-
expression in related genes. Also, the high over-expression and under-expression at 
two specific samples (15 and 18) and the alternation between them reveals informa-
tion of the presence of possible gene markers that are related to such behavior, and 
directs attention to further investigate those samples. 

Comparing the results obtained from Mitosis to those obtained from other algo-
rithms, figure 5.b shows the clusters resulting from K-means at c=2 and the single 
cluster resulting from DBScan at two different parameters. Neither of these clustering 
solutions differentiated the lower and higher density clusters of connected patterns 
obtained by Mitosis. However, the proposed methodology can be applied to DBScan 
results to interpret the connectivity of its cluster. It is worth to note that the globular 
clusters as those obtained by K-means as an initial level of clusters would not capture 
the connectivity of patterns obtained by Mitosis.    It is also important to mention that 
clusters resulting from hierarchical clustering algorithms as average and complete 
linkage, tend to be of globular shapes as those obtained by K-means, while single 
linkage clustering is  sensitive to outliers and cannot separate clusters of variable den-
sities. Besides, the high computational complexity of hierarchical clustering hinders 
its use in huge high dimensional datasets.  

In comparison to assessing the significance of clustering in the presence  of multi-
ple cluster structure as in [23], validity measures as those developed in [18] for arbi-
trary shaped clusters, and those developed for center-based ones [19] are used for 
evaluating the set of clusters obtained at each level. The validity measure proposed in 
[18] is suitable for evaluating clusters of arbitrary shapes and densities by minimizing 
standard deviation of distances and maximizing density separateness. 
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Fig. 6. Segmentation (at 9 segments, showing 6 out of 9 here) of the outer (higher density) clus-
ter of the breast cancer dataset, showing the gradual change (along the dashed circle) of patterns 
with major changes in samples number 15 and 18 

5   Conclusion 

A sequential ensemble composed of two clustering algorithms, one with a distance-
relatedness based criterion and another with a center-based objective, is introduced. 
The importance of the ensemble is shown in its ability to analyze huge high dimen-
sional arbitrary shaped clusters of arbitrary densities. The ensemble is used to seg-
ment the huge clusters to be able to interpret the connectedness of patterns. The seg-
mentation can be done at multiple levels using classical partitioning algorithms. The 
results on gene expression sets illustrate the discovery of gradual change among  
expression patterns.  
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Abstract. The field of high-throughput applications in biomedicine is an always
enlarging field. This kind of applications, providing a huge amount of data, re-
quires necessarily semi-automated or fully automated analysis systems. Such
systems are typically represented by classifiers capable of discerning from the dif-
ferent types of data obtained (i.e. classes). In this work we present a methodology
to improve classification accuracy in the field of 3D confocal microscopy. A set of
3D cellular images (z-stacks) were taken, each depicting HeLa cells with different
mutations of the UCE protein ([Mannose-6-Phosphate] UnCovering Enzyme).
This dataset was classified to obtain the mutation class from the z-stacks. 3D and
2D features were extracted, and classifications were carried out with cell by cell
and z-stack by z-stack approaches, with 2D or 3D features. Also, a classification
approach that combines 2D and 3D features is proposed, which showed interest-
ing improvements in the classification accuracy.

1 Introduction

Nowadays the field of high-throughput biomedical applications is increasing, and ma-
chines and methods high-throughput-capable are being employed more and more.

Such applications, as the name could suggest, furnish as output a huge quantity of
data; for example, a study on screens for RNAi in Drosophila cells can generate from
400.000 up to millions of images per time, each containing tens to hundreds of cells
[19]. Such huge amount of data must of course be analyzed; being a human analysis too
much demanding and time consuming, fully automated analysis methods are required.

A class of applications into this field are the technologies that allow us to obtain
three-dimensional fluorescence microscopy images, with techniques such as confocal
microscopy or multiphoton microscopy [14,17]. Indeed, many biological research ac-
tivities require the observation and measurement of 3D, 4D1 and even 5D2 cell behavior
rather than the common 2D images obtained by classical microscopy.

Therefore it is becoming important to implement algorithms that can successfully and
automatically analyze also 3D data (as is nowadays common with 2D images) retrieved
from three-dimensional microscopy. Such algorithms should be able, typically, i) to

1 I.e. 3D+time.
2 3D+time, multichannel.

N. El Gayar, J. Kittler, and F. Roli (Eds.): MCS 2010, LNCS 5997, pp. 284–293, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Sample of a z-stack. (a) Cytoplasm channel; (b) DNA channel; (c) UCE channel; (d)
Related segmentation; different cells are shown in different colors.

recognize objects of interest in the analyzed images or volumes (2D or 3D segmen-
tation) and ii) to perform further analysis on the segmented objects to achieve features
such as proteins locations (i.e. location proteomics), cell shape or distribution, cell kind
identification, and so on. This second step in the analysis process is typically a classifi-
cation problem.

One classical interesting study is location proteomics, i.e. to identify the position of
a protein into the cell [12]; such an information about which organelle or cell structure
the protein is in or near is often very useful or sometimes essential to identify the protein
function [2].

The aim of the present paper is to classify the z-stacks (i.e. 3D images) in a dataset ac-
cording to the mutations they were depicting. This is a topic of great interest as demon-
strated by many recent studies devoted to the automated analysis of sub-cellular patterns
[12] and, more generally, bio-molecular imaging [1]. In particular, the work presented
in this paper turned out to be an implicit location proteomics study.

The protein taken into consideration was the Uncovering Enzyme (UCE) in HeLa
cells (see section 2.1). This protein’s C-terminus contains multiple signals for traffick-
ing it between lysosomes, the plasma membrane, and the trans-Golgi network (TGN)
[9]. In this work we considered the mutations of the enzyme’s C-terminus depicted
in [11], which could alter the subcellular location pattern of the UCE. Stated this, it
is obvious that a location proteomics study can be carried out to identify the protein
mutants. Classifying the UCE mutants could work in the following way: firstly execut-
ing a location proteomics study, to see the cell location of the mutants in the z-stacks.
Then, knowing the behavior and the location each mutant travels near or is stuck into,
we could assign the mutant class to each z-stack comparing those informations and the
results of the location proteomics study.

In this paper, utilizing the same methods employed in location proteomics, the z-
stacks (or the cells themselves) are assigned to different classes directly from the fluo-
rescence data; this is why we used the term implicit.

Location proteomics from 2D and 3D data is not a new field; [16] showed that 3D
location proteomics allows a higher accuracy with respect to 2D, and that it can even
reach a precision superior to an human observer, in particular for proteins located in
different positions of the same cellular compartment3 [2]. In those works the classifi-
cation, though starting from single-cell analysis, is realized image by image or stack by
stack for the 3D case.

3 For example proteins located in the cis-Golgi and the trans-Golgi.
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Table 1. Classes and number of samples for each class
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One of the contributions of the present paper is mutant classification through implicit
location proteomics; moreover, differently from previous approaches, the classification
was performed for each single cell (i.e. cell by cell) instead of image by image or stack
by stack. Finally, we propose a new classification approach, involving a combination
of 2D and 3D features, that demonstrated better performance with respect to the use of
only 2D or 3D feature sets.

The rest of the paper is organized as follows: in Section 2 the materials and methods
utilized will be explained; the results obtained with the different classifications realized
will be illustrated in Section 3 and some conclusion will be drawn in Section 4.

2 Materials and Methods

2.1 Dataset

The considered data was the 3D UCE HeLa dataset4, a collection of z-stacks from [11]
created by Dr. Jack Rohrer’s group, consisting of fluorescence microscope images of
cells expressing GFP-tagged constructs of the mannose-6-phosphate uncovering en-
zyme (UCE5). The z-stacks were collected using laser-scanning confocal microscopy,
and they were composed by three different fluorescence channels: a cytoplasm channel
(LRSC labeling), a DNA channel (DAPI labeling) and of course an UCE channel (Fig.
1 a-c). The z-stacks show HeLa cells with different mutants of the UCE; a full func-
tioning one, a truncated one (stopped at amino acid no. 502) and others with different
ending amino acid sequence, all truncated at 502. The mutants were created in order to
study the behavior of the protein with the purpose to identify the motif for its transporta-
tion; of course for each mutant a location proteomics study was carried out, depicting
if the considered mutants traveled in an unchanged manner from the trans-Golgi to the
plasma membrane with a fast return or resulted to be stuck somewhere in the cell.

2.2 Segmentation

The z-stacks were firstly segmented with the enhanced 3D Interaction Model proposed
in [3] in order to extract the single cells from the z-stacks. This segmentation method is
the 3D extension of the Interaction Model proposed in [19], as well with some improve-
ments. It is very suitable for the segmentation of touching and clustered cells, which is
the case for many z-stacks of the considered dataset.

4 http://murphylab.web.cmu.edu/data/#3DUCE
5 Called also N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase

(NAGPA),
http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=607985

http://murphylab.web.cmu.edu/data/#3DUCE
http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=607985
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The enhanced 3D Interaction Model works with three mechanisms: i) Competition,
ii) Repulsion and iii) Connectedness. The first one has the purpose to discriminate if a
voxel v belongs to the background or a cell, and in this case which. The second one
takes into consideration the fact that cells do not intersect each other; they may be
tightly clustered, but not compenetrating. The third one manages the fact that living
cells always remain compact, i.e. they can never have detached pieces of themselves.

This model is formulated as:

E = ECOMP + EREP + ECONN

= λ0

M∑
i=1

∫
Ω

|Z − ci|2· (1 − H(Ψi(x, y, z))) dxdydz

+ λb

∫
Ω

|Z − cb|2·
M∏
i=1

H(Ψi(x, y, z)) dxdydz

+ μ

M∑
i=1

∫
Ω

g(Z)|∇Ψi(x, y, z)|· δ(Ψi(x, y, z)) dxdydz

+ ω
M∑
i=1

M∑
j=1, j �=i

∫
Ω

(1 − H(Ψi(x, y, z)))· (1 − H(Ψj(x, y, z))) dxdydz

+ η

M∑
i=1

∫
Ω

(1 − ξi) dxdydz

(1)

where Z is the z-stack, Ω is the whole observation volume domain, H and δ are the
Heaviside function and the delta of Dirac:

H(x) =
{

0, x ≤ 0
1, x > 0 and δ(x) = d

dxH(x). So, if we indicate the segmenting surfaces

as Si, inside(Si) = 1 − H(Ψi) and outside(Si) = H(Ψi).
ci and cb are the intensity mean of the segmented objects and the background re-

spectively, λ0, λb, μ, ω, η are weighting parameters. The segmenting surfaces Si are
not represented by snakes as in classical approaches, but with four dimensional Level
Set Function (Ψi) where the Si are represented by their zero-set level. g is a crescent
sigmoid function defined as

g(x) =
(
1 + e( x−β

α )
)−1

and ξi is derived from the following consideration: let us consider two points P0 and
P1 which both belong to Q = 1 − H(Ψi) i.e. the segmented volume, and consider the
function f : I → Ω being a path connecting P0 and P1 (i.e. f(0) = P0 and f(1) = P1)
where I is the unit interval [0, 1] and Ω is the whole stack domain.

Therefore we introduce the function ξi which is formulated as:

ξi =
{

1, iff(x) ∈ Q, ∀P0, P1, x
0, else

(2)

where x ∈ I and P0, P1 ∈ Q.
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In other terms, if Q is (path-)connected ξi will be 1 on its whole domain; otherwise,
it will be 0.

A segmentation example is shown in Fig. 1 (d).

2.3 Feature Extraction

3D Features. The feature extraction process is obliged before a classification. Three
kind of features were chosen to be extracted and processed: i) Haralick texture features
[6], ii) 3D invariant moments [13,5] and iii) volumes.

Haralick texture features are defined for 2D; they are orientation dependent because
they must be computed comparing a pixel to its neighbor. To achieve a degree of rota-
tional invariance they are usually computed using a set of offsets sweeping through 180
degrees (i.e. 0, 45, 90, and 135 degrees) at the same distance.

In the 3D case this is no more true because of the extra dimension, so it was decided
to cover a 180 square degrees solid angle. To achieve this, the 0-45-90-135 degrees
orientations were calculated four times, on a 0, 45, 90 and 135 degrees inclined plane,
for a total of 3 × 4 + 1 = 13 orientations (45, 90 and 135 degrees were calculated on
all four plane orientations, stating that 0 degrees was the same for all the planes). The
13 Haralick features were calculated, each one per channel. So we had: 13 orientations
× 13 features × 3 channels = 507 Haralick features in total. Those features were also
optimized for a faster calculation as described in [10].

The 3D invariant moments J1, J2 and J3, which are numerical shape descriptors,
were calculated on the segmentations, and the volumes were calculated for the cells and
the UCE quantity, for a total of 512 features total. All the features were calculated for
each segmented cell individually, and normalized in [0, 1] on a 128 × 128 × slicesno.
resized version of the z-stacks.

2D Features. A 2D feature extraction was also carried out. To do this, for each z-stack
the most representative slice was chosen, and then used as a 2D image. The features
were the same for the three-dimensional case, of course adapted for the two dimensions:
i) Haralick texture features, ii) Hu invariant moments [7] and iii) areas.
The most significant slice was chosen to be the one in which the whole z-stack Center
Of Fluorescence (COF) was located [16]. The needed segmentations were obtained by
extracting the correspondent slice from the 3D segmentations.

2.4 Classification

The classification was carried out by using a Support Vector Machine (SVM) with poly-
nomial kernel [15].

As said earlier, the chosen classes were the same as the protein mutants. The cells
were extracted from each z-stack, for a total of 3270 samples (Table 1).

Different classifications were carried out with different criteria and aggregation
methods: i) a 2D cell by cell classification, ii) a 2D image by image classification,
where each image was classified by means of a majority voting among the cells in
it. Differently from the previous case, cells coming from the same image were used in
the training set or in the test set but not in both, iii) a 3D cell by cell classification, iv) a
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Table 2. 3D stack by stack classification with all features; classification of the cells belonging to
the unclassified z-stacks. Rows show the real classes, columns the classification.
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YQ-A 0 0 0 3 0 0 0 0 3 0 0

YQEMN-A 0 0 0 0 0 0 0 0 0 3 3

3D stack by stack classification where each z-stack was classified by means of the cells
in it; once again cells coming from the same z-stack were used in the training set or in
the test set but not in both, and finally v) a combination of 2D and 3D classifications
(image by image + stack by stack - see details below).

Also, several classifications were carried out with different features subsets.
The validation technique used was a 10-fold cross-validation: the results reported in

the next Section are then computed calculating the average of all the ten validations.

Combining 2D and 3D Classification. As stated before, single z-stacks (in 3D) or
single images (in 2D) were classified starting from their contained cells classification.
Each z-stack (respectively, image) contained only a single protein mutation, so each
one of the cells from the same z-stack (image) belongs to the same class. Therefore,
referring to the majority class of the cells in a z-stack (image), we can easily assign the
z-stack (image) to the relative class.

For combining 3D and 2D classification we proposed to use a Weighted Majority
Voting Rule (WMV rule). If we denote as Dk(x) (Dk for short) the weight assigned to
the vote Vk of the k − th classifier (i.e., the assignment of the cell x to a class by the
2D or the 3D classifier), the sum of the weighted votes for class Ci on the whole image
is given by:

W i =
∑

k

Dk · V i
k (3)

Note that each classifier votes m times if the z-stack (image) is composed by m cells.
The output provided by the WMV rule is then:

Y = arg max
i

W i (4)

In order to evaluate Dk, i.e. the reliability of the vote given related by the k − th clas-
sifier, the most common choice is to use the confusion matrix Ek [18]. The generic
element ek

i,j (1 ≤ i, j ≤ n, where n is the number of the classes) of Ek represents
the number of samples of the class Ci assigned to the class Cj . More formally, let us
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Table 3. 2D+3D stack by stack combined classification confusion matrix. This is referred to
classification based only on the Haralick texture features. Rows show the real classes, columns
the classification.
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YQ-A 0 0 0 0 0 0 0 0 12 0 1 0 13 92.30%

YQE-A 0 0 0 2 0 2 0 0 0 35 0 0 39 89.74%
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denote by Yk(x) the output of the k − th classifier when the cell x is submitted to it. A
reasonable definition of Dk based on Ek is:

Dk =
ek

i,i∑
j ek

j,i

(5)

given Yk = i. In fact, ek
i,i is the number of cells of Ci which have been correctly classified

by the k − th classifier, and
∑

j ek
j,i is the total number of cells of any class assigned to

Ci. It follows that ek
i,i/

∑
j ek

j,i is an estimate of the probability that a sample has been
correctly classified if it has been assigned to Ci. Thus, Eq. 5 expresses the a posteriori
probability that the k − th classifier gives the correct answer.

3 Experimental Results

3.1 2D

2D Cell By Cell. This dataset is composed by 3270 cells. The elaborations on the 2D
cell by cell were done in two different ways: i) the COF was calculated on the DNA
channel and ii) the COF was calculated on the UCE channel. The classification was
carried out with the whole feature set.

Channel Recognition Rate
DNA COF 88.99%
UCE COF 89.97%

As in [16] the higher recognition rate was obtained by selecting the COF from the
protein channel.
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2D Image By Image. The 2D image by image dataset was composed by 293 entries.

Features Recognition Rate Rejection Rate
All Features 73.28% 0.02%
2D Haralicks 73.28% 0.02%

This represents a more realistic case with respect to the cell by cell classification;
in fact new cells to be classified will come entirely from brand new images, while
cells from different images would have likely been used for the classifier training. This
justifies the decreasing in classifier performance.

The rejection rate derives from the fact that for some images there was not the ma-
jority of cells classified as belonging to a specific class, i.e. a tie occurs between two (or
even more) classes.

3.2 3D

3D Cell By Cell. Like the 2D dataset, of course, the 3D dataset was composed by 3270
individual cells.

Features Recognition Rate
All Features 98.29%
3D Haralicks 97.37%

As predictable, the biggest amount of information is given to the classifier by the 3D
Haralick texture features. Anyway, combining it with the invariant moments and the
volumes subsets increases the accuracy of about 1%. Respectfully to the previous 2D
classification, an increase in accuracy is notable when turning to 3D, as stated in [2].

3D Stack By Stack. The dataset was composed by 293 z-stacks.

Features Recognition Rate Rejection Rate
All Features 82.87% 0.02%
3D Haralicks 83.90% 0.01%

Once again, the decreasing of the performance with respect to the previous case is
due to the fact that new cells to be classified will come entirely from brand new z-stacks.

As in the 2D case, some images were not classified. The classes of the cells belonging
to the unclassified images in the full feature classification are shown in Table 2.

It is worth noting that in this case the use of the whole feature set does not improve
the recognition rate with respect to the use of Haralick feature alone.

3.3 Combining 2D and 3D Classification

This classification has been carried out considering only the Haralick feature subset for
both 2D and 3D.

Features Recognition Rate Rejection Rate
2D + 3D Haralicks 88.05% 0.02%

The confusion matrix is shown in Table 3. This approach seems to be particularly
promising, because it shows more than a 4% accuracy improvement with respect to
the best results obtained by using only 3D features.
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4 Conclusions and Future Works

In this paper a set of 3D images (z-stacks) obtained by confocal microscopy was taken.
In this set HeLa cells with different mutations of a protein called UCE ([Mannose-6-
Phosphate] UnCovering Enzyme) were depicted. A classification study has then been
carried out; i.e. trying to take the z-stacks and classify them according to their UCE
mutation (thus realizing an implicit location proteomics study). The z-stacks were seg-
mented with the enhanced 3D Interaction Model to isolate single cells, and the features
to be passed to the classifier were extracted: 3D Haralick texture features, 3D invariant
moments and volumes. Also, the counterparts 2D features (2D Haralicks, Hu moments
and areas) where extracted from the most significant slice in each z-stack (COF criteria).

By using a Support Vector Machine with polynomial kernel, images were classified
by using 2D features, 3D features, and a 2D+3D combination.

Results showed a significant improvement in the accuracy of the 3D classification
respectfully to the 2D classification. Anyway, 2D+3D showed even better results, de-
picting the fact that 2D feature also carry extra significant informations that can be used
to improve the classification of such dataset. This may be due to the fact that while a
3D analysis is generally more accurate, for a minority of the z-stacks the classifier may
not be able to effectively exploit information coming from the extra dimension. A 2D
classification support — stated that 2D itself, even if with lower performance than 3D,
also gives rise to very good results — overcomes this by bringing extra information
used to refine the classification of those z-stacks in a doubtful state of class attribution.

Finally, it has to be remarked that there are other papers [4,8] proposing the use of
classifier combination in location proteomics or closely related fields. In these papers,
however, each multiple classifier system uses only 2D features or only 3D features.

Future work will be devoted to assess the performance of the proposed 2D+3D clas-
sification approach on other datasets such as the one used in [16].
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Abstract. The computational genome-wide annotation of gene func-
tions requires the prediction of hierarchically structured functional
classes and can be formalized as a multiclass, multilabel, multipath hier-
archical classification problem, characterized by very unbalanced classes.
We recently proposed two hierarchical protein function prediction meth-
ods: the Hierarchical Bayes (hbayes) and True Path Rule (tpr) ensemble
methods, both able to reconcile the prediction of component classifiers
trained locally at each term of the ontology and to control the overall
precision-recall trade-off. In this contribution, we focus on the experi-
mental comparison of the hbayes and tpr hierarchical gene function
prediction methods and their cost-sensitive variants, using the model or-
ganism S. cerevisiae and the FunCat taxonomy. The results show that
cost-sensitive variants of these methods achieve comparable results, and
significantly outperform both flat and their non cost-sensitive hierar-
chical counterparts.

1 Introduction

The hierarchical prediction of protein function annotations, such as terms in
the Gene Ontology (GO), is a complex computational problem, characterized by
several items: the number of functional classes is large, and a gene may belong
to multiple classes; functional classes are structured according to a hierarchy;
classes are usually unbalanced, with more negative than positive examples [1].
The simplest approach makes predictions for each term independently and, con-
sequently, the predictor may assign to a single protein a set of terms that are
inconsistent with one another. A possible solution for this problem is to train a
classifier for each term of the reference ontology, to produce a set of prediction
at each term and, finally, to reconcile the predictions by tacking into account
the structure of the ontology. Many recent published works clearly demonstrated
that this approach ensures an increment in precision, but this comes at expenses
of the overall recall [2, 3].

Different research lines have been proposed for the hierarchical prediction
of gene functions, ranging from structured-output methods, based on the joint
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kernelization of both input variables and output labels [4, 5], to ensemble meth-
ods, where different classifiers are trained to learn each class, and then com-
bined to take into account the hierarchical relationships between functional
classes [6, 3, 7].

Our work goes along this latter line of research. Our main contribution to
this research area is represented by two methods, the hbayes and tpr hier-
archical ensemble-based gene function predictors [8, 16]. Both the methods are
based on the concept of per-term predictions “reconciliation” which exploits
information derived from the hierarchical relationships between the terms com-
posing the considered functional ontology [6]. In this approach the first step is
constituted by the prediction of protein functions (that is, the Functional Cata-
logue (FunCat) [10] or the Gene Ontology (GO) [11] terms) on a per-term basis.
The obtained predictions are then combined in a post processing stage. The
combination step can be realized using many methods and depends on the in-
dividual predictions performed by the component classifiers at each term of the
ontology.

As observed in [6], many reconciliation methods yield reconciled probabilities
with significantly lower precision than the original, unreconciled estimates. This
problem can be solved by introducing one or more parameters able to modulate
the overall precision but this approach is often associated with a corresponding
loss in sensitivity that decrease the practical relevance of the prediction method.
In order to ensure the applicability of the hbayes and tpr ensemble methods
in real world problems we recently proposed variants able to control the overall
precision-recall trade-off. In this contribution we compare the hierarchical gene
function prediction performances of the hbayes and tpr ensemble methods,
both in their respective “vanilla” and cost-sensitive versions, in order to highlight
differences in their ability to reconcile base learners predictions and to preserve
the overall precision and recall.

2 Methods

2.1 Concepts and Notation

Genome-wide gene function prediction can be modeled as a hierarchical, multi-
class and multilabel classification problem. Indeed a gene/gene product x can be
assigned to one or more functional classes of the set Ω = {ω1, ω2, . . . , ωm}. The
assignments can be coded through a vector of multilabels y =< y1, y2, . . . , ym >∈
{0, 1}m, by which if x belongs to class ωi, then yi = 1, otherwise yi = 0, where
the variable i, 1 ≤ i ≤ m, refers to the indices corresponding to the m classes
belonging to the set Ω.

In both the Gene Ontology (GO) and FunCat taxonomies the functional
classes are structured according to a hierarchy and can be represented by a
directed graph, where nodes correspond to classes, and arcs to relationships
between classes. Hence the node corresponding to the class ωi can be simply
denoted by i. We represent the set of children nodes of i by child(i), and the
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set of its parents by par(i). Moreover ychild(i) denotes the labels of the children
classes of node i and analogously ypar(i) denotes the labels of the parent classes of
i. Note that in FunCat only one parent is permitted, since the overall hierarchy is
a tree forest, while in the GO, more parents are allowed, because the relationships
are structured according to a directed acyclic graph.

Hierarchical ensemble methods train a calibrated classifier at each node of the
taxonomy T . This is used to derive estimates p̂i(x) of the probabilities pi(x) =
Pr
(
Vi = 1 | Vpar(i) = 1, x

)
for all x and i, where (V1, . . . , VN ) ∈ {0, 1}N is the

vector random variable modeling the multilabel of a gene x and par(i) is the
unique parent of node i in T . In order to enforce that only multilabels V that
respect T should have nonzero probability, the base learner at node i is only
trained on the subset of the training set including all examples (x, y) such that
ypar(i) = 1.

All the experiments presented in this work are performed using FunCat as
reference functional ontology.

2.2 The Hierarchical Bayes (HBAYES) Ensemble

The hbayes ensemble method is a general technique for solving hierarchical
classification problems on generic taxonomies [12, 13]. In the evaluation phase,
hbayes predicts the Bayes-optimal multilabel ŷ ∈ {0, 1}N for a gene x based
on the estimates p̂i(x) for i = 1, . . . , N . Namely, ŷ = argminy E

[
�H(y, V ) | x

]
,

where the expectation is w.r.t. the distribution of V . Here �H(y, V ) denotes the
H-loss [12, 13], measuring a notion of discrepancy between the multilabels y and
V . Given fixed cost coefficients c1, . . . , cN > 0, �H(ŷ, v) is computed as follows:
all paths in the taxonomy T from the root 0 down to each leaf are examined
and, whenever a node i ∈ {1, . . . , N} is encountered such that ŷi �= yi, then ci is
added to the loss, while all the other loss contributions from the subtree rooted
at i are discarded. As shown in [13], ŷ can be computed via a simple bottom-up
message-passing procedure whose only parameters are the probabilities p̂i(x). In
the rest of the paper if there is no ambiguity we denote p̂i(x) simply by p̂i.

2.3 Cost-Sensitive Variant of HBAYES

A simple cost-sensitive variant, hbayes-cs, of hbayes, described in [8] is suitable
for learning datasets whose multilabels are sparse. This variant introduces a
parameter α that is used to trade-off the cost of false positive (FP) and false
negative (FN) mistakes. We start from an equivalent reformulation of the hbayes
prediction rule:

ŷi = argmin
y∈{0,1}

⎛⎝c−i p̂i(1 − y) + c+
i (1 − p̂i)y + p̂i{y = 1}

∑
j∈child(i)

Hj

⎞⎠ (1)

where Hj = c−j p̂j(1 − ŷj) + c+
j (1 − p̂j)ŷj +

∑
k∈child(j) Hk is recursively defined

over the nodes j in the subtree rooted at i with each ŷj set according to (1),
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and {A } is the indicator function of event A. Furthermore, c−i = c+
i = ci/2 are

the costs associated to a FN (resp., FP) mistake. In order to vary the relative
costs of FP and FN, in [8] we introduce a factor α ≥ 0 such that c−i = αc+

i while
keeping c+

i + c−i = 2ci. Then (1) can be rewritten as

ŷi = 1 ⇐⇒ p̂i

⎛⎝2ci −
∑

j∈child(i)

Hj

⎞⎠ ≥ 2ci

1 + α
. (2)

This is the rule used by hbayes-cs in our experiments.

2.4 The True Path Rule (TPR) Ensemble

The True Path Rule (tpr) ensemble method [16] not only explicitly takes into
account the hierarchical relationships between functional classes, but is also di-
rectly inspired by the true path rule that can be summarized as follows [14]:
“An annotation for a class in the hierarchy is automatically transferred to its
ancestors, while genes unannotated for a class cannot be annotated for its de-
scendants”. According to this rule, that governs the annotations of both GO
and FunCat taxonomies, the proposed ensemble method is characterized by a
two-way asymmetric flow of information that traverses the graph-structured en-
semble: positive predictions for a node influence in a recursive way its ancestors,
while negative predictions influence its offsprings. The resulting ensemble em-
beds the functional relationships between functional classes that characterize
the hierarchical taxonomy. In other words, if a gene is annotated with a specific
functional term (functional class), then it is annotated with all the ”parent”
classes, and with all its ancestors in a recursive way.

The base classifiers estimate local probabilities p̄i(x) that a given example x
belongs to class ωi, but the core of the algorithm is represented by the evaluation
phase, where the ensemble provides an estimate of the “consensus” global prob-
ability pi(x). Let us consider the set φi(x) of the children of node i for which we
have a positive prediction for a given example x:

φi(x) = {j|j ∈ child(i), ŷj(x) = 1} (3)

The global consensus probability p̂i(x) of the ensemble depends both on the
local prediction p̄i(x) and on the prediction of the nodes belonging to φi(x):

p̂i(x) =
1

1 + |φi(x)|

⎛⎝p̄i(x) +
∑

j∈φi(x)

p̂j(x)

⎞⎠ (4)

The decision ŷi(x) at node/class i is set to 1 if p̂i(x) > t, and to 0 otherwise (a
natural choice for t is 0.5). Note that the restriction to nodes belonging to φi(x)
in the summation of eq. 4 depends on the true path rule: indeed only children
nodes for which we have a positive prediction can influence their parent. In the
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leaf nodes the sum of eq. 4 disappears and eq. 4 reduces to p̂i(x) = p̄i(x). In
this way positive predictions propagate from bottom to top. On the contrary if
for a given node ŷi(x) = 0, then this decision is propagated to its subtree.

2.5 The Weighted TPR (TPR-W) Method

In the tpr algorithm there is no way to explicitly balance the local prediction
p̄i(x) at node i with the positive predictions coming from its offsprings (eq. 4).
By balancing the local predictions with the positive predictions coming from the
ensemble, we can explicitly modulate the interplay between local and descendant
predictors. To this end we introduced a weight w, 0 ≤ w ≤ 1, such that if
w = 1 the decision at node i depends only by the local predictor, otherwise the
prediction is shared proportionally to w and 1−w between respectively the local
parent predictor and the set of its children [15]:

p̂i(x) = w · p̄i(x) +
1 − w

|φi(x)|
∑

j∈φi(x)

p̂j(x) (5)

3 Experimental Setup

In order to compare the capabilities of the hbayes and tpr methods in hi-
erarchical gene function prediction, we predicted the functions of genes of the
unicellular eukaryote S. cerevisiae at genome and ontology-wide level using the
FunCat taxonomy [10], and the data sets described below.

Data sets: In our experiments we used 7 bio molecular data sets, whose char-
acteristics are summarized in Tab. 1. In order to get a not too small set of
positive examples for training, for each data set we selected only the FunCat-
annotated genes and the classes with at least 20 positive examples. As nega-
tive examples we selected for each node/class all genes not annotated to that
node/class, but annotated to its parent class. From the data sets we also removed
uninformative features (e.g., features with the same value for all the available
examples).

Table 1. Data sets

Data set Description n. examples n. feat. n.classes
Pfam-1 protein domain binary data from Pfam 3529 4950 211
Pfam-2 protein domain log E data from Pfam 3529 5724 211
Phylo phylogenetic data 2445 24 187
Expr gene expression data 4532 250 230
PPI-BG PPI data from BioGRID 4531 5367 232
PPI-VM PPI data from von Mering experiments 2338 2559 177
SP-sim Sequence pairwise similarity data 3527 6349 211
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Cross validated comparison of ensemble methods: For each ensem-
ble we used gaussian SVMs as base learners. The probabilistic output of the
SVMs composing the ensembles has been computed using the sigmoid fitting
proposed in [17]. Given a set p̂1, . . . , p̂N of trained estimates, we compared on
these estimates the results of the hbayes and TPR ensembles with their cor-
responding cost-sensitive versions: hbayes-cs and tpr-w. Both the cost factor
α for hbayes-cs and the w parameter in tpr-w ensembles have been set by
internal cross-validation of the F-measure with training data. The threshold t
of tpr ensembles has been set to 0.5 in all the experiments. The performance
of the ensembles have been compared using external 5-fold cross-validation
techniques.

Performances evaluation: Considering the unbalance between positive and
negative examples, we could adopt the classical F-score to jointly take into ac-
count the precision and recall of the ensemble for each class of the hierarchy.
Nevertheless, the classical precision and recall measures, conceived for unstruc-
tured classification problems, appear to be inadequate to fully address the hier-
archical nature of functional annotation. To this end we used the Hierarchical
F-measure. This measure is based on the estimation of how much the predicted
classification paths correspond to the correct paths. More precisely, given a gen-
eral taxonomy G representing the graph of the functional classes, for a given
gene/gene product x consider the graph P (x) ⊂ G of the predicted classes and
the graph C(x) of the correct classes associated to x, and let be l(P ) the set
of the leaves (nodes without children) of the graph P . Given a leaf p ∈ P (x),
let be ↑ p the set of ancestors of the node p that belong to P (x), and given a
leaf c ∈ C(x), let be ↑ c the set of ancestors of the node c that belong to C(x).
Starting from the definitions of Hierarchical Precision (HP), Hierarchical Recall
(HR) and Hierarchical F-score (HF) provided in [18], it is easy to demonstrate
that in the case of the FunCat taxonomy, since it is structured as a tree, we can
simplify HP , HR and HF as follows:

HP =
1

|l(P (x))|
∑

p∈l(P (x))

|C(x) ∩ ↑p|
| ↑p|

HR =
1

|l(C(x))|
∑

c∈l(C(x))

| ↑c ∩ P (x)|
| ↑c|

HF =
2 · HP · HR

HP + HR
(6)

The hierarchical F-measure expresses the correctness of the structured prediction
of the functional classes, taking into account also partially correct paths in the
overall hierarchical taxonomy, thus providing in a synthetic way the effectiveness
of the hierarchical prediction.



300 M. Re and G. Valentini

4 Results

4.1 Hierarchical F-Measure Results

As explained in the experimental set-up (Sect. 3), the hierarchical F-measure is
a more appropriate performance metric for the hierarchical classification of gene
functions. We compared the performances of the considered “vanilla” and cost-
sensitive probability reconciliation methods using the Hierarchical F-measure
and gaussian SVMs as component classifiers. The results collected in this test
are reported in Tab. 2. flat ensembles corresponds to predictions directly made
by the base learners without any ”reconciliation” of the local predictions. Ac-
cording to the Wilcoxon signed-ranks test [19], both hbayes-cs and tpr-w
outperform at 0.01 significance level flat, hbayes and tpr ensemble. No sig-
nificant difference between hbayes-cs and tpr-w can be detected (p-value
� 0.24).

Table 2. Hierarchical F-measures comparison between “vanilla” and cost-sensitive hi-
erarchical methods. tpr: True Path Rule hierarchical ensembles; hb-cs: Hierarchical
Bayesian bottom-up Cost Sensitive ensembles; tpr-w True Path Rule weighted hier-
archical ensembles. Base learners: gaussian SVMs

Data set flat hbayes tpr hb-cs tpr-w

Pfam-1 0.1624 0.3359 0.3113 0.4518 0.4188
Pfam-2 0.0402 0.0476 0.1929 0.2030 0.1892
Phylo 0.1196 0.0694 0.2557 0.2682 0.2780
Expr 0.1153 0.0639 0.2390 0.2555 0.2638
PPI-BG 0.0836 0.0847 0.2709 0.2920 0.2315
PPI-VM 0.1720 0.3468 0.3983 0.4329 0.4381
SP-sim 0.1432 0.3246 0.2502 0.4542 0.4501
Average 0.1194 0.1818 0.2732 0.3368 0.3242

4.2 Tuning Precision and Recall in HBAYES-CS and TPR-W
Ensembles

In order to compare the capabilities of both the hbayes and TPR ensemble
methods in the modulation of the precision-recall trade-off we tested their per-
formances by varying the values of alpha and the parent weight w hyper param-
eters. Results of this test are reported in (Fig. 1).

The precision/recall characteristics of hbayes-cs ensemble can be tuned via
a single global parameter, the cost factor α = c−i /c+

i (Sect. 2). By setting α = 1
we obtain the original version of the hierarchical Bayesian ensemble and by incre-
menting α we introduce progressively lower costs for positive predictions, thus
encouraging the ensemble to make positive predictions. Indeed, by increasing
the cost factor, the recall of the ensemble tends to increase (Fig. 1 (a) and (c)).
The behavior of the precision is more complex: it tends to increase and then to
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Fig. 1. Precision, Recall and F-measure as a function of the parent weight in tpr-
w ensembles and of the global α parameter in hbayes-cs. PPI BioGRID data: (a)
hbayes-cs (b) tpr-w; Pairwise sequence similarity data: (c) hbayes-cs (d) tpr-w.

decrease after achieving a maximum. Quite interestingly, the maximum of the
hierarchical F-measure is achieved for values of α between 2 and 5 not only for
the two data sets reported in Figure 1, but also for all the considered data sets
(data not shown).

As seen for hbayes-cs also the tpr-w ensembles is capable of tuning precision
and recall rates, through a single global parameter: the weight w (eq. 5). Fig. 1
(graphs (b) and (d) ) shows the hierarchical precision, recall and F-measure
as functions of the parameter w. For small values of w (w can vary from 0
to 1) the weight of the decision of the parent local predictor is small, and the
ensemble decision depends mainly by the positive predictions of the offsprings
nodes (classifiers): as a consequence we obtain a higher hierarchical recall for
the tpr-w ensemble. On the contrary higher values of w correspond to a higher
weight of the parent predictor, with a resulting higher precision. The opposite
trends of precision and recall are quite clear in graphs (b) and (d) of Fig. 1.
The best F-score is achieved for “middle” or relatively high values of the w
parameter: in practice in most of the analyzed data sets the best F-measure is
achieved for w between 0.5 and 0.8, but if we need higher recall rates (at the
expense of the precision) we can choose lower w values, and higher values of w
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are needed if precision is our first aim. Comparable results were obtained for all
the considered data sets (data not shown).

5 Conclusions

In this work we compared the performances of two recently proposed hierarchi-
cal gene function prediction methods, the hbayes and tpr-w ensemble systems.
Looking at the results summarized in Tab. 1 it is clear that the usage of hier-
archical prediction methods results in a consistent increment in performances
if compared with methods that does not take into account the structure of the
reference ontology. Also the application of hierarchical methods unable to finely
modulate the precision-recall trade-off is suboptimal because the hierarchical
F-measure is consistently lowered by the loss in sensitivity associated to the
increment in precision due to the reconciliation of the local predictions.

With respect to the comparison of the ability of the cost-sensitive variants of
both the hbayes and tpr methods in the modulation of the overall precision-
recall trade-off, the observed results do not allow to define a clear winner. Indeed
the performances of the compared methods are quite similar, even if small dif-
ferences can be found in the performances achieved in the evaluation of different
datasets. Both methods share the same top-down strategy to set negative nodes
belonging to the subtree rooted at a node predicted as negative by the ensemble,
but they pursue very different strategies in the bottom-up computation of the
ensemble probabilities. Indeed hbayes approximates the Bayesian-optimal pre-
dictor w.r.t. the H-loss, while tpr is based on a heuristic borrowed from the true
path rule. Interestingly enough, these different methods lead to similar results,
and their cost-sensitive counterparts significantly outperform flat and ”vanilla”
hierarchical ensembles. The hierarchical algorithms are general enough to be ap-
plied to problems other then gene function prediction. Indeed, the cost-sensitive
hbayes and tpr methods, even if conceived for gene function problems, can be
applied to other hierarchical classification problems where the descendant classes
can be interpreted as parts or subclasses of their corresponding ancestors.
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Abstract. Facial Action Coding System consists of 44 action units (AUs) and 
more than 7000 combinations. Hidden Markov models (HMMs) classifier has 
been used successfully to recognize facial action units (AUs) and expressions 
due to its ability to deal with AU dynamics. However, a separate HMM is  
necessary for each single AU and each AU combination. Since combinations of 
AU numbering in thousands, a more efficient method will be needed. In this 
paper an accurate real-time sequence-based system for representation and  
recognition of facial AUs is presented. Our system has the following characte-
ristics: 1) employing a mixture of HMMs and neural network, we develop a 
novel accurate classifier, which can deal with AU dynamics, recognize subtle 
changes, and it is also robust to intensity variations, 2) although we use an 
HMM for each single AU only, by employing a neural network we can recog-
nize each single and combination AU, and 3) using both geometric and appear-
ance-based features, and applying efficient dimension reduction techniques, our 
system is robust to illumination changes and it can represent the temporal  
information involved in formation of the facial expressions. Extensive experi-
ments on Cohn-Kanade database show the superiority of the proposed method, 
in comparison with other classifiers.  

Keywords: classifier design and evaluation, data fusion, facial action units 
(AUs), hidden Markov models (HMMs), neural network (NN).  

1   Introduction 

Human face-to-face communication is a standard of perfection for developing a natu-
ral, robust, effective and flexible multi modal/media human-computer interface due to 
multimodality and multiplicity of its communication channels. In this type of com-
munication, the facial expressions constitute the main modality [1]. In this regard, 
automatic facial expression analysis can use the facial signals as a new modality and 
it causes the interaction between human and computer more robust and flexible. 
Moreover, automatic facial expression analysis can be used in other areas such as lie 
detection, neurology, intelligent environments and clinical psychology.  

Facial expression analysis includes both measurement of facial motion (e.g. mouth 
stretch or outer brow raiser) and recognition of expression (e.g. surprise or anger). 
Real-time fully automatic facial expression analysis is a challenging complex topic in 
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computer vision due to pose variations, illumination variations, different age, gender, 
ethnicity, facial hair, occlusion, head motions, and lower intensity of expressions. 
Two survey papers summarized the work of facial expression analysis before year 
1999 [2, 3]. Regardless of the face detection stage, a typical automatic facial expres-
sion analysis system consists of facial expression data extraction and facial expression 
classification stages. Facial feature processing may happen either holistically, where 
the face is processed as a whole, or locally. Holistic feature extraction methods are 
good at determining prevalent facial expressions, whereas local methods are able to 
detect subtle changes in small areas.  

There are mainly two approaches for facial data extraction: geometric-based me-
thods and appearance-based methods. The geometric facial features present the shape 
and locations of facial components. With appearance-based methods, image filters, 
e.g. Gabor wavelets, are applied to either the whole face or specific regions in a face 
image to extract a feature vector [4].  

The sequence-based recognition method uses the temporal information of the se-
quences (typically from natural face towards the frame with maximum intensity) to 
recognize the expressions. To use the temporal information, the techniques such as 
hidden Markov models (HMMs) [5], recurrent neural networks [6] and rule-based 
classifier [7] were applied. 

The facial action coding system (FACS) is a system developed by Ekman and Frie-
sen [8] to detect subtle changes in facial features. The FACS is composed of 44 facial 
action units (AUs). 30 AUs of them are related to movement of a specific set of facial 
muscles: 12 for upper face and 18 for lower face (see Table 1). 

Table 1. Some upper face and lower face action units (for more details see [8, 9]) 

Upper face AU Description Lower face AU Description 
AU 1 Inner brow raiser AU 12 Lip corner puller 
AU 2 Outer brow raiser AU 15 Lip corner depressor 
AU 4 Brow lowerer AU 17 Chin raiser 
AU 5 Upper lid raiser AU 20 Lip stretcher 
AU 6 Cheek raiser AU 23 Lip tightener 
AU 7 Lid tightener AU 24 Lip pressor 

Lower face AU Description AU 25 Lip parts 
AU 9 Nose wrinkle AU 26 Jaw drop 

AU 10 Upper lip raiser AU 27 Mouth stretch 
 

    
Facial action units can occur in combinations and vary in intensity. Although the 

number of single action units is relatively small, more than 7000 different AU combi-
nations have been observed. They may be additive, in which the combination does not 
change the appearance of the constituent single AUs, or nonadditive, in which the 
appearance of the constituent single AUs does change. To capture such subtlety of 
human emotion paralinguistic communication, automated recognition of fine-grained 
changes in facial expression is required (for more details see [8, 9]). 

In this paper an accurate real-time sequence-based system for representation and 
recognition of facial action units is presented. We summarize the advantages of our 
system as follows:  
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1) We developed a classification scheme based on a mixture of HMMs and neural 
network, which can deal with AU dynamics, recognize subtle changes, and it is also 
robust to intensity variations.  
2) HMMs classifier can deal with AU dynamics properly. But, it is impossible to use 
a separate HMM for each AU combination since the combinations numbering in 
thousands. We use an HMM for each single AU only. However, by employing a 
neural network we can recognize each single AU and each combination AU. Also, we 
use an accurate method for training the HMMs by considering the intensity of AUs. 
3) Recent work suggests that spontaneous and deliberate facial expressions may be 
discriminated in term of timing parameters. Employing temporal information instead 
of using only the last frame, we can represent these parameters properly. Also, using 
both geometric and appearance features, we can increase the recognition rate and 
make the system robust against illumination changes. 
4) By employing rule-based classifiers, we can automatically extract human interpret-
able classification rules to interpret each expression using continues values of AU 
intensity. 
5) Due to the relatively low computational cost in the test phase, the proposed system 
is suitable for real-time applications.   

The rest of the paper has been organized as follows:  In section 2, we describe the 
approach which is used for facial data extraction and representation using both geo-
metric and appearance features. Then, we discuss the proposed scheme for recogni-
tion of facial action units in section 3. Section 4 reports our experimental results, and 
section 5 presents conclusions and a discussion. 

2   Facial Data Extraction and Representation 

2.1   Geometric-Based Facial Feature Extraction Using Optical Flow 

In order to extract geometric features, the points of a 113-point grid, which is called 
Wincandide-3, are placed on the first frame manually. Automatic registering of the 
grid with the face has been addressed in many literatures (e.g. see [10]). For upper 
face and lower face action units a particular subset of points are selected (see Fig. 1a). 
The pyramidal optical flow tracker [11] is employed to track the points of the model 
in the successive frames towards the last frame (see Fig. 1b). The loss of the tracked 
points is handled through a model deformation procedure (for details see [12]). For 
each frame, the displacements of the points in two directions with respect to the first 
frame are calculated to form a feature vector. Assume the last frames of the sequences 
in the training set, have the maximum intensity. Also, define: intensity f sumdistances fsumdistances  (1)

where sumdistances  is the sum of the Euclidian distances between point of the 
Wincandide-3 grid in fth frame of the sequence and their positions in the first frame (a 
subset of points for upper face and lower face action units are used). Similarly, sumdistances  is the sum of the Euclidean distances between points of the model in 
the last frame of the sequence and their positions in the first frame; e.g. if the  
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sequence contains t frames, then intensity t 1, and intensity 1 0. The frames 
of each sequence in the training set are divided into three subsets, i.e. three states, 
based on their intensity: 0 intensity f 0.33, 0.33 intensity f 0.66, and 0.66 intensity f 1  

(For some of the single AUs we use five subsets (states)). Then, we apply principal 
component analysis (PCA) algorithm [13], separately to the feature vectors of these 
subsets to form the final geometric feature vectors of each state.  

 

 

Fig. 1. a. Selected points for upper face and lower face action units. b. Geometric-based facial 
feature extraction using feature point tracking. 

2.2   Appearance-Based Facial Feature Extraction Using Gabor Wavelets 

In order to extract the appearance-based facial features from each frame, we use a set 
of Gabor wavelets. They allow detecting line endings and edge borders of each frame 
over multiple scales and with different orientations. Gabor wavelets remove also most 
of the variability in images that occur due to lighting changes [4]. Each frame is con-
volved with p wavelets to form the Gabor representation of the t frames (Fig. 2).  

 
AU 17+AU 23+AU 24 AU 1+AU 2+AU 5 

Fig. 2. Examples of the image sequences and their representation using Gabor wavelets  

 

The frames of each sequence in the training set are divided into three or five  
subsets (states), based on grouping that we discussed in the previous subsection. In 
order to embed facial features in a low-dimensionality space and deal with curse of dimen-
sionality dilemma, we should use a dimension reduction method. We apply 2D principal 
component analysis (2DPCA) algorithm [14] to each feature matrices of each subset 
separately. Then, we concatenate the vectorized representation of the reduced feature 
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matrices of each frame, and apply a 1DPCA [13] to them. The resulted feature vectors 
from each frame, are used for classification. 

3   Facial Action Unit Recognition  

The flow diagram of the proposed system is shown in Fig. 3. We will assume that sth s 1,2, … , M  HMM is characterized by the following set of parameters (M is the 
number of HMMs, i.e. the number of single AUs): 

 

Fig. 3. Flow diagram of the proposed system 
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1) N , the number of the states of sth HMM (we use three or five-state left to right 
HMM for each single AU). 
2) The probability densities p x | j   j  1,2, . . . , N , describing the distribution of 
the observations emitted from state j (we use three Gaussians for each state, the mean 
and variance of the Gaussians are computed using training data and maximum like-
lihood estimation method). 
3) The transition probabilities P i | j    i, j  1,2, . . . , N , among the various states 
(the transition probabilities, which have not been depicted in left to right HMMs of 
Fig. 3, are zero, for others we use equal transition probabilities). 
4) The probabilities P i   i  1,2, . . . , N , of the initial state (P 1 1 and P j 0 
for j 1 because each sequence is started from natural face). 
The training phase contains two steps: In the first step, we find probability density 
functions. Then, having observed sequence of feature vectors X  x , . . . , x , (t is 
number of frames) in the respective sequence of states Ω : ω , … , ω , the quantity: 

P X|Ω max P X|Ω max  P ω p x |ω P ω |ω p x |ω  (2)

is computed for each of the M reference models. Its efficient computation can be 
achieved via Viterbi algorithm. In the second step of the training phase, we train the 
neural network by the values P X|Ω  s 1, … , M   as the inputs and using back 
propagation algorithm. We trained the neural network with an output unit for each 
single AU and by allowing multiple output units to fire when the input sequence con-
sists of AU combinations. The sth value of the target vector is 1 if sth single AU oc-
curs in the corresponding image sequence, otherwise it would be 0). Moreover, we 
can use continuous values between 0 and 1 for sequences with different intensity of 
expression, as target value of the feature vectors. We also use some sequences several 
times with different intensities, i.e. by using intermediate frames as the last frame and 
removing the frames which come after it. Applying this method, we can properly 
recognize lower intensity and combinations of AUs. We model each single AU two 
times, using geometric and appearance features separately. In test phase, having ob-
served sequence of feature vectors X  x , . . . , x , in the sequence of 
states Ω : ω , … , ω , the quantities P X|Ω  s 1, … , M  are first computed. 
Then, the outputs of the neural network are passed through a threshold (we set it 0.5). 
When several outputs are on, it signals that a combination of AUs has been occurred.  
   Although we can use a SVMs for classification of six basic facial expressions (by 
feature vectors directly or AU intensity values), employing rule-based classifiers such 
as JRIP [15], we can automatically extract human interpretable classification rules to 
interpret each expression. Thus, novel accurate AU-to-expression converters by con-
tinues values of the AU intensity can be created. These converters would be useful in 
animation, cognitive sciences, and behavioral sciences areas. 

4   Experimental Results 

To evaluate the performance of the proposed system and other methods like support 
vector machines (SVMs) [12], mixture of HMMs and SVMs, and neural network (NN) 
classifiers, we test them on Cohn-Kanade database [16]. The database includes 490 
frontal view image sequences from over 97 subjects. The final frame of each image 
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sequence has been coded using Facial Action Coding System which describes subject's 
expression in terms of action units. For action units that vary in intensity, a 5-point 
ordinal scale has been used to measure the degree of muscle contraction. In order to 
test the algorithm in lower intensity situation, we used each sequence five times with 
different intensities, i.e. by using intermediate frames as the last frame. Of theses, 1500 
sequences were used as the training set. Also, for upper face and lower face AUs, 240 
and 280 sequences were used as the test set respectively. None of the test subjects 
appeared in training data set. Some of the sequences contained limited head motion.    

Image sequences from neutral towards the frame with maximum intensity, were 
cropped into 57 102 and 52 157 pixel arrays for lower face and upper face action 
units respectively. To extract appearance features we applied 16 Gabor kernels to each 
frame. After applying the dimension reduction techniques, depending on the single AU 
that we want to model it, the geometric and appearance feature vectors were of dimen-
sion 6 to 10 and 40 to 60 respectively. The best performance was obtained by three and 
five states HMMs depend on the corresponding single AU. Table 2 and Table 3 show the 
upper face and lower face action unit recognition results respectively. In the proposed 
method, an average recognition rate of 90.0 and 96.1 percent were achieved for upper 
face and lower face action units respectively. Also, an average false alarm rate of 5.8 and 
2.5 percent were achieved for upper face and lower face action units respectively.  

 
Table 2. Upper face action unit recognition results (R=recognition rate, F=false alarm) 

 
Proposed method (HMMs+NN) 

AUs 
 

Sequences Recognized AUs 
True Missing or extra  False 

1 20 18 1(1+2+4), 1(1+2) 0 
2 10 8 2(1+2) 0 
4 20 19 1(1+2+4) 0 
5 20 20 0 0 
6 20 19 0 1(7) 
7 10 9 0 1(6) 

1+2 40 37 2(2), 1(1+2+4) 0 
1+2+4 20 18 1(1), 1(2) 0 
1+2+5 10 8 2(1+2) 0 

1+4 10 8 2(1+2+4) 0 
1+6 10 8 1(1+6+7) 1(7) 
4+5 20 18 1(4), 1(5) 0 
6+7 30 27 2(1+6+7), 1(7) 0 

Total 240 217 20 3 
R 90.0% 
F 5.8% 

 

HMMs+SVMs 
AUs 

 
Sequences Recognized AUs 

True Missing or extra False 
1 20 17 2(1+2+4), 1(1+2) 0 
2 10 6 2(1+2+4), 1(1+2) 1(1) 
4 20 18 1(1+2+4) 1(2) 
5 20 20 0 0 
6 20 18 1(1+6) 1(7) 
7 10 7 3(6+7) 0 

1+2 40 38 1(1+2+4) 1(4) 
1+2+4 20 18 1(2), 1(1+2) 0 
1+2+5 10 7 3(1+2) 0 

1+4 10 5 3(1+2+4) 2(5) 
1+6 10 6 2(1+6+7) 2(7) 
4+5 20 15 2(4), 1(5) 2(2) 
6+7 30 25 3(1+6+7), 2(7) 0 

Total 240 200 30 10 
R 83.3% 
F 12.5% 

  
SVMs 

AUs 
 

Sequences Recognized AUs 
True Missing or Extra False 

1 20 15 2(1+2+4), 1(1+2) 2(2) 
2 10 6 2(1+2+4) 2(1) 
4 20 18 1(1+2+4) 1(2) 
5 20 20 0 0 
6 20 19 1(1+6) 0 
7 10 7 0 3(6) 

1+2 40 35 1(2), 2(1+2+4) 2(4) 
1+2+4 20 15 2(1), 2(2) 1(5) 
1+2+5 10 6 2(1+5) 2(4) 

1+4 10 4 3(1+2+4) 3(5) 
1+6 10 6 3(1+6+7) 1(7) 
4+5 20 15 2(1+2+5) 3(2) 
6+7 30 24 2(1+6+7), 2(7) 2(1) 

Total 240 190 28 22 
R 79.2% 
F 17.1% 

 

NN [17] 
AUs 

 
Sequences Recognized AUs 

True Missing or Extra False 
1 20 14 3(1+2+4) 3(2) 
2 10 5 4(1+2+4) 1(1) 
4 20 18 1(1+2+4) 1(2) 
5 20 18 1(4+5) 1(5) 
6 20 18 2(1+6) 0 
7 10 6 2(6+7) 2(6) 

1+2 40 36 2(2), 2(1+2+4) 0 
1+2+4 20 16 2(1), 2(2) 0 
1+2+5 10 7 2(1+2) 1(4) 

1+4 10 5 4(1+2+4) 1(5) 
1+6 10 6 2(1+6+7) 2(7) 
4+5 20 16 3(4) 1(1) 
6+7 30 24 3(1+6+7), 3(7) 0 

Total 240 189 38 13 
R 78.8% 
F 15.4% 
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In HMMs+SVMs method, for each single AU an HMM was trained. Then we clas-
sify the quantities P X|Ω  s 1, … , M   using M two-class (occurred or not) SMVs 
classifiers [12] with Gaussian kernel. 
 

Table 3. Lower facial action unit recognition results (R=recognition rate, F=false alarm) 
 

Proposed method (HMMs+NN) 
AUs 

 
Sequences Recognized AUs 

True Missing or 
extra 

False 

9 8 8 0 0 
10 12 12 0 0 
12 12 12 0 0 
15 8 8 0 0 
17 16 16 0 0 
20 12 12 0 0 
25 48 48 0 0 
26 24 18 4(25+26) 2(25) 
27 24 24 0 0 

9+17 24 24 0 0 
9+17+23+24 4 3 1(19+17+24) 0 

9+25 4 4 0 0 
10+17 8 5 2(17), 1(10) 0 

10+15+17 4 4 0 0 
10+25 8 8 0 0 
12+25 16 16 0 0 
12+26 8 7 1 (12+25) 0 
15+17 16 16 0 0 

17+23+24 8 8 0 0 
20+25 16 16 0 0 
Total 280 269 9 2 

R 96.1% 
F 2.5% 

 

HMMs+SVMs 
AUs 

 
Sequences Recognized AUs 

True Missing or 
extra 

False 

9 8 8 0 0 
10 12 12 0 0 
12 12 12 0 0 
15 8 6 2(15+17) 0 
17 16 16 0 0 
20 12 12 0 0 
25 48 45 1(25+26) 2(26) 
26 24 19 3(25+26) 2(25) 
27 24 24 0 0 

9+17 24 22 2(9) 0 
9+17+23+24 4 2 2(19+17+24) 0 

9+25 4 4 0 0 
10+17 8 3 2(10+12) 3(12) 

10+15+17 4 2 2(15+17) 0 
10+25 8 5 3(25) 0 
12+25 16 16 0 0 
12+26 8 5 2(12+25) 1(25) 
15+17 16 16 0 0 

17+23+24 8 7 1(17+23) 0 
20+25 16 13 3(20+26) 0 
Total 280 249 23 8 

R 88.9% 
F 7.5% 

  
SVMs 

AUs 
 

Sequences Recognized AUs 
True Missing or 

extra 
False 

9 8 8 0 0 
10 12 8 2(10+7) 2(17) 
12 12 12 0 0 
15 8 6 2(15+17) 0 
17 16 14 2(10+17) 0 
20 12 12 0 0 
25 48 43 2(25+26) 3(26) 
26 24 18 3(25+26) 3(25) 
27 24 24 0 0 

9+17 24 22 2(9) 0 
9+17+23+24 4 1 3(9+17+24) 0 

9+25 4 4 0 0 
10+17 8 2 4(10+12) 2(12) 

10+15+17 4 2 2(15+17) 0 
10+25 8 7 1(25) 0 
12+25 16 16 0 0 
12+26 8 3 3(12+25) 2(25) 
15+17 16 16 0 0 

17+23+24 8 6 2(17+24) 0 
20+25 16 11 3(20+26) 2(26) 
Total 280 235 31 14 

R 83.9% 
F 12.5% 

 

NN [17] 
AUs 

 
Sequences Recognized AUs 

True Missing or 
extra 

False 

9 8 7 1(9+17) 0 
10 12 8 2(10+7) 2(17) 
12 12 11 1(12+25) 0 
15 8 6 2(15+17) 0 
17 16 13 2(10+17) 1(10) 
20 12 12 0 0 
25 48 42 3(25+26) 3(26) 
26 24 19 2(25+26) 3(25) 
27 24 23 1(27+25) 0 

9+17 24 22 2(9) 0 
9+17+23+24 4 1 3(9+17+24) 0 

9+25 4 4 0 0 
10+17 8 4 2(10+12) 2(12) 

10+15+17 4 2 2(15+17) 0 
10+25 8 7 1(25) 0 
12+25 16 16 0 0 
12+26 8 3 3(12+25) 2(25) 
15+17 16 16 0 0 

17+23+24 8 6 2(17+24) 0 
20+25 16 12 3(20+26) 1(26) 
Total 280 234 32 14 

R 83.6% 
F 12.9% 

 
Although this method can deal with AU dynamics properly, due to use of crisp 

value for targets, this method suffers from intensity variations. In SVMs method, we 
first concatenated the reduced geometric and appearance feature vectors for each 
single AU. Then, we classify them using M two-class (occurred or not) SMVs clas-
sifiers with Gaussian kernel. This method cannot deal with AU dynamics. Moreover, 
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due to use of crisp value for targets, it suffers from intensity variations. Finally, in NN 
methods we trained a neural network (NN) with an output unit for each single AU and 
by allowing multiple output units to fire when the input sequence consists of AU 
combinations (like [17]). The best performance was obtained by one hidden layer. 
Although this method can deal with intensity variations, by using continues values for 
target of feature vectors, it suffers from trapping in local minima due to large number 
of inputs, i.e. feature vectors. Table 4 shows the facial expression recognition results 
using JRIP [15] classifier. We used several classifiers such as SVMs for classification 
of six basic facial expressions, but the results were almost the same. By applying each 
rule-based classifier we can develop an AU-to-expression converter. 

Table 4. Facial expression recognition results using JRIP [15] classifier (S=surprise, 
G=gloomy, F=fear, H=happy, A=angry, D=disgust) 

Confusion matrix for JRIP classifier (total number of samples=2916, correctly 
classified samples=2675 (91.74%), incorrectly classified samples=241 (8.26%)): 

 
 

The resulted tree for converting the AU intensities to 
expressions using JRIP classifier (the value of each 

AU is between 0 and 1): 
 
(AU9 >= 0.268941) and (AU24 == 0) and (AU12 == 0) 
=> class=D (257.0/18.0) 
(AU24 >= 0.5) and (AU23 >= 0.5) => class=A (198.0/0.0) 
(AU1 == 0) and (AU12 == 0) and (AU15 == 0) and 
(AU20 == 0) and (AU26 <= 0.310026) and (AU27 == 0) 
and (AU7 >= 0.268941) => class=A (30.0/0.0) 
(AU1 == 0) and (AU12 == 0) and (AU15 == 0) and 
(AU20 == 0) and (AU26 <= 0.083173) and (AU27 == 0) 
and (AU25 >= 0.064969) => class=A (233.0/78.0) 
(AU20 >= 0.5) and (AU4 >= 0.5) => class=F (263.0/0.0) 
(AU20 >= 0.390682) and (AU12 == 0) and (AU27 == 0) 
=> class=F (133.0/0.0) 
(AU23 >= 0.715669) and (AU16 >= 0.715669) => class=F 
(6.0/0.0) 
(AU15 >= 0.017986) and (AU4 <= 0.907687) and (AU5 
== 0) => class=G (301.0/1.0) 
(AU4 >= 0.5) and (AU2 == 0) => class=G (162.0/17.0) 
(AU25 == 0) and (AU1 >= 0.758204) and (AU2 <= 
0.847391) => class=G (8.0/0.0) 
(AU4 >= 0.929) and (AU5 == 0) => class=G (20.0/5.0) 
(AU27 >= 0.064969) => class=S (456.0/6.0) 
(AU12 == 0) and (AU26 >= 0.152609) => class=S 
(183.0/57.0) 
(AU1 >= 0.898605) and (AU24 == 0) => class=S 
(14.0/1.0) 
 => class=H (652.0/34.0) 

Classified 
 as → 

S G F H A D 

S 581 8 4 1 6 0 
G 8 446 0 2 30 0 
F 21 8 393 1 51 0 
H 0 0 0 618 0 0 
A 28 17 0 1 398 18 
D 6 2 0 1 28 239 

 
Detailed accuracy by class for JRIP classifier: 

 
 

True 
positive rate  

False 
positive rate 

Precision ROC area Class 

0.968 0.027 0.902 0.985 Surprise 
0.918 0.014 0.927 0.991 Gloomy 
0.829 0.002 0.990 0.980 Fear 
1.000 0.003 0.990 1.000 Happy 
0.861 0.047 0.776 0.958 Angry 
0.866 0.007 0.930 0.982 Disgust 

5   Discussion and Conclusions 

We proposed an accurate sequence-based system for representation and recognition of 
single and combinations of facial action units, which is robust to intensity and illumi-
nation variations. As an accurate tool, this system can be applied to many areas such 
as recognition of spontaneous and deliberate facial expressions, multi modal/media 
human computer interaction and lie detection efforts. 

Although the computational cost of the proposed method can be high in the train-
ing phase, when the neural network were trained, it needs only some matrix products 
to reduce the dimensionality of the geometric and appearance features in the test 
phase. Employing a 3 3 Gabor kernel and a grid with low number of vertices, we 
can construct the Gabor representation of the input image sequence and also track the 
grid in less than two seconds with moderate computing power. As a result, the pro-
posed system is suitable for real-time applications. Future research direction is to 
consider variations on face pose in the tracking algorithm. 
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Some Thoughts at the Interface of
Ensemble Methods and Feature Selection

Gavin Brown

We are in a very exciting time for Machine Learning. The field is making its first
steps toward true industrial-strength technology, slowly transitioning from a dis-
parate collection of techniques, to a mature science. Multiple Classifier Systems
in particular, are showing repeated successes at the most competitive of levels:
winning the Netflix challenge, forming the backbone of cutting edge real-time
computer vision, and most recently steering Google’s interests in quantum algo-
rithms. It is thus becoming more and more difficult to generate truly meaningful
contributions with our research. In the context of multiple classifier systems,
we must ask ourselves, “how can we generate new MCS research that is truly
meaningful?”

One answer to this is to reach out and apply the principles of classifier fusion
in other areas, and see what those areas can provide in return. This talk will
review how a perspective gained from working on problems in multiple classifier
systems helped to solve a prominent question from feature selection—and, how
in return, this is now providing interesting new directions for MCS. If we treat
the classifier outputs as abstract random variables, irrespective of the algorithm
which produced them, then information theory becomes a very natural language
to work with. Parallels can be drawn between the definitions of feature “rele-
vancy” and “redundancy” in feature selection, to the accuracy-diversity trade-off
for classifier ensembles. This leads to a principled framework that unifies numer-
ous feature selection criteria published since 1990; and, for MCS suggests a new
way to characterize the ensemble “diversity” question. I will describe the per-
spectives and mathematical tools that lead up to this, and point out possible
new directions in applying those tools to other aspects of the MCS field.

N. El Gayar, J. Kittler, and F. Roli (Eds.): MCS 2010, LNCS 5997, p. 314, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Abstract. Research in the area of human-computer interaction (HCI)
increasingly addressed the aspect of integrating some type of emotional
intelligence in the system. Such systems must be able to recognize, in-
terprete and create emotions. Although, human emotions are expressed
through different modalities such as speech, facial expressions, hand or
body gestures, most of the research in affective computing has been done
in unimodal emotion recognition. Basically, a multimodal approach to
emotion recognition should be more accurate and robust against missing
or noisy data. We consider multiple classifier systems in this study for the
classification of facial expressions, and additionally present a prototype
of an audio-visual laughter detection system. Finally, a novel implemen-
tation of a Java process engine for pattern recognition and information
fusion is described.

1 Introduction

Research in affective computing aim to provide simpler and more natural inter-
faces for human-computer interaction applications. In this kind of applications
detecting and recognizing the emotional status of an user is important in order to
develop efficient and productive human-computer interaction interfaces [5]. Anal-
ysis of human emotions and processing recorded data, for instance the speech,
facial expressions, hand gestures, body movements, etc is a multi-disciplinary
field that has been emerging as a rich area of research in recent times [6,14,19].

In this paper we focus on the pattern recognition approach of emotion recogni-
tion. Subsequently, we briefly describe two applications that have been developed
in our lab recently. In Section 2 the classification of human emotions from fa-
cial expressions utilizing the hidden Markov model approach is discussed. Here
we present results for various unimodal multiple classifer systems which have
been applied to four different facial regions using three different input features.
The Cohn-Kanade database was used for the numerical evaluation. Audio-visual
laughter detection is the topic of Section 3. Audio features from the modulation
spectrum and visual features derived from body and face movement were com-
puted. These feature vectors serve as inputs to recurrent echo state networks
which were trained to detect laughters. In the final section we present a novel
Java process engine for information fusion and pattern recognition tasks which

N. El Gayar, J. Kittler, and F. Roli (Eds.): MCS 2010, LNCS 5997, pp. 315–324, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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has been developed in the Institute of Neural Information Processing at the
University of Ulm.

2 Hidden Markov Models for Facial Expression
Recognition

A hidden Markov model (HMM) λ = (Z, V, π, A, E) is a statistical model de-
scribed through two random processes [15]. The first process is a Markov chain
consisting of a finite number of states Z = (z1, ..zn) and corresponding state
transition probabilities given by a socalled transition matrix A = (aij). We sim-
ply used left-right-models in our work with aij = 0 for i > j and j > i + 1, i.e.
only forward connections were defined. The initial state probabilities are denoted
as π. The second random process describes possible observations V = (v1...vm)
and the observation matrix E = {ej(k)} where ej(k) is the probability of an
observation vk being produced in state zj. Typically, in this type of application
are applied Gaussian mixture model (GMM) to estimate these emission proba-
bilities. As HMMs were utilized for classification, one HMM λi, i = 1, ..., n for
each emotion class was trained by using all collected data of a particular class.
The probabilities P (O | λi) of the i-th HMM for an unclassified observation O
are estimated using the socalled forward algorithm. The the most likely class
is determined through a simple maximum detection among the probabilities
P (O | λi).

2.1 Classifier Fusion

Combining classifiers is a promising approach to improve classifier performance.
Such a team of classifiers should be accurate and diverse [12]. While the re-
quirement to the classifiers to be as accurate as possible is obvious, diversity
roughly means that classifiers should not agree on the set of missclassified data.
In this paper different feature views of the data are utilized in order to produce
diversity.

Voting: The results of the classifiers at best lead all to the same class, but
normally they are different. To nullify this problem, the first fusion method
vote the results of selected classifiers.

Probabilistic-fusion: The other fusion approach did not combine the results
but the probabilities P (O | λi) of selected classifiers. To combine several
classifiers, the class-wise products are computed. Only then is the maximum
determined to obtain the most likely class. This implies statistic indepen-
dence of the models which is unfortunately not fully given, since the features
were generated from the same sequence.

2.2 Data Collection

The Cohn-Kanade dataset is a collection of image sequences with emotional con-
tent [4], which is available for research purposes. It contains 432 image sequences
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which were recorded in a resolution of 640×480 pixels with a temporal resolu-
tion of 33 frames per second. Every sequence is played by an amateur actor who
is filmed from a frontal view. The sequences always start with a neutral facial
expression and end with the full blown emotion which is one of the six categories
“joy”, “anger”, “surprise”, “disgust”, “sadness” or “fear”.

To acquire a suitable label, the sequences were presented to 15 human labelers
(13 male and two female). The sequences were presented as a video and the
test persons were asked to select a label. Thus, a label for every sequence was
determined through majority vote. The resulting data collection showed to be
highly imbalanced: the class “joy” (105 samples) occurred four times more often
than the class “fear” (25 samples) while “anger” (49 samples), “surprise” (91
samples), “disgust” and “sadness” (both 81 samples) are caught in between.

In all automatic facial expression recognition systems first some relevant fea-
tures are extracted from the facial image and these feature vectors are utilized to
train some type of classifier to recognize the facial expression. Finding the most
relevant features is definitely the most important step in designing a recognition
system. In our approach prominent facial regions such as the eyes, including
the eyebrows, the mouth and for comparison the full facial region have been
considered. For these four regions orientation histograms, principal components
and optical flow features have been computed. Principal components (eigenfaces
approach) are very well know in face recognition [25] and orientation histograms
were successfully applied for the recognition of hand gestures and faces [22]. In
order to extract the facial motion in these regions optical flow1 features from
pairs of consecutive images have been computed.

Table 1. Correlation between the number of states, the corresponding number of
mixtures per state and the detection rate for all twelve models

no. feature region no. st/mix det. rate

1 PCA face 9 / 2 0.764
2 PCA mouth 8 / 2 0.685
3 PCA right eye 7 / 2 0.456
4 PCA left eye 3 / 2 0.451
5 Orientation histograms face 4 / 2 0.704
6 Orientation histograms mouth 4 / 3 0.729
7 Orientation histograms right eye 4 / 2 0.500
8 Orientation histograms left eye 9 / 2 0.479
9 Optical flow face 8 / 2 0.639

10 Optical flow mouth 9 / 2 0.607
11 Optical flow right eye 7 / 3 0.442
12 Optical flow left eye 8 / 4 0.491

1 We were using a biologically inspired optical flow estimator, which was developed
by the Vision and Perception Science Lab at the University of Ulm [1].
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2.3 Experiments and Results

Numerical test runs were conducted with 10-fold cross-validation to adjust the
number of Gaussian components, GMM components and HMM states. The re-
sults of this process are shown in Table 1. For a better overview the individual
models were coded with the number of the row. The best single model with a
total detection rate of 76.4 % was the model number 1 with PCA-features in the
region face.

There was no model which was optimal for all emotions. For instance, model 1
recognized the emotion “joy” with 97.1 %, while it reached less than 25 % for
the emotion “anger”. On the other hand, model 12 showed different results: for
emotion “anger” a detection rate of 63.3 % was obtained, but the detection rate
for “joy” was lower than with model 1. To combine the advantages of these
models and neutralize the disadvantages as possible, the decisions of the models
were fused. In the following the results of the two fusion approaches will be
presented:

Voting: A simple fusion approach is to vote the detected emotions of all twelve
classifiers. If a test sequence is classified incorrectly from one model but the
other eleven models detect it correctly, it will be outvoted. After the training
of the individual classifiers, we investigated whether the classification rate
could be improved, if not all twelve models would be combined. Therefore,
all 212 − 1 model combinations were computed. The results of the top ten
combinations are shown in Table 2. The appearance of the models 1 and 6
in all displayed combinations is originated from their good individual recog-
nition performance. Models using the eye regions occur only sporadically in
this list. This shows that these models reduced the classification rate because
of their minor accuracy. The combination of all face and mouth regions led
to a detection rate of 81.7 %. This means that, compared to the best single
model, this combination has the ability to recognize 23 sequences more.

Probabilistic-fusion: This approach combines the posterior probabilities
which are obtained from the six HMMs of each model. In many cases, when
a sample was misclassified, the probability of the incorrect emotion was just
slightly higher than the one of the correct emotion. The class-wise multi-
plication of the posterior probabilities has the potential to overcome the
limitations of the early hardening in the vote-fusion. The results are also
shown in Table 2. Again, the face and mouth regions played an important
role. The result showing the highest classification rate of 86.1 % (372 out of
432) consisted of all models using the features of the regions face and mouth
and the models 7 and 11. This was the highest achieved recognition rate in
this study. Thus the probability-fusion could recognize 19 sequences more
than the vote-fusion.

3 Audio-Visual Laughter Detection

Nonverbal discourse elements such as gestures, laughs, moans and other forms
of back channeling, are elements of human to human interaction, which are
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Table 2. Top ten combinations with vote-fusion and probability-fusion of the developed
twelve single models. The coding of the models corresponds to the first column in
Table 1.

voting probabilistic-fusion

comb. no. of models det. rate no. of models det. rate

1 1 2 5 6 9 10 0.817 1 2 5 6 7 9 10 11 0.861
2 1 2 5 6 9 0.815 1 2 3 5 6 9 10 12 0.859
3 1 2 6 8 9 10 0.815 1 2 3 5 6 9 10 12 0.859
4 1 2 6 9 10 11 0.815 1 2 5 6 7 9 10 12 0.859
5 1 2 4 5 6 9 10 0.815 1 5 6 9 0.857
6 1 2 6 7 9 10 0.813 2 5 6 9 10 12 0.857
7 1 5 6 9 10 12 0.813 1 2 4 5 6 7 9 0.857
8 1 2 6 9 12 0.810 1 2 4 5 6 9 11 0.857
9 1 2 5 6 8 9 10 0.810 1 5 6 9 10 0.854
10 1 2 5 6 10 11 12 0.810 1 2 4 5 6 10 12 0.854

almost as important as direct verbal communication using speech. They convey
essential information such as agreement, disagreement or simply confirmation
of active listening in an efficient and natural way [2]. Furthermore, laughs are
a great indicator of the positive perception of an ongoing conversation, or a
symptom of uncertainty considering nervous or social laughter [3]. All in all
laughs are a universal and frequent form of communicating with other humans
[16,18,10,13]. Healthy and lively communication including nonverbal elements
are important in face to face communication, and are therefore also crucial for
the acceptance and believability of artificial agents, such as robots, or expert
systems, with human like communication modalities, e.g. gestures, and speech
[23]. Additionally, laughter is acoustically highly variable. It may be expressed in
the form of giggles, exhaled or inhaled laughs, or snorted sounds, and thus, the
spotting of laughs in continuous speech poses a challenging problem to pattern
recognition [3,24].

3.1 Echo State Network Approach

In order to detect laughs in natural conversations a relatively novel kind of re-
current neural networks (RNN) is used, the so called Echo state network (ESN)
[9]. ESN learning outperforms classical approaches such as RNN learning with
its robustness towards noisy inputs [17] and its efficiency to adapt its weights
[8]. Using the direct pseudo inverse adaptation method the ESN is trained in
a very efficient way. The detailed training steps are described in the following
paragraphs and can be further deepened by consulting the papers cited at the
corresponding text passages. The ESN incorporates temporal dynamics for de-
ciding whether or not laughter is present and also renders it a fitting candidate
for the task to spot laughs in continuous conversations.
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An ESN input layer K is fully connected to the dynamic reservoir M , and
M is fully connected to the output layer L. ESNs are characterized by their
dynamic memory that is realized by a sparsely (about 2% of the connections are
set) interconnected reservoir M which is initialized randomly and comprises the
recurrent connections. Loosely connected small cliques of neurons are sensitive
to a certain dynamic within the data received through the input. A connection
wij between neuron mi and neuron mj is represented by a weight wij �= 0 in the
connection matrix W . Due to the feedback and the recursive connections within
the reservoir, not only the input is taken into account, but also the current state
of each of the neurons and the history of all the inputs. Therefore, ESNs are
an ideal candidate for encoding dynamic processes such as movement patterns
or nonverbal utterances [17,18,11]. A spectral norm with a width parameter
α < 1 is applied to the randomly initialized connection matrix to guarantee
that the activity within the reservoir decays to zero if no input is received.
To train the ESN, the output weights W out needs to be adapted towards the
target signal T which may be done using the direct pseudo inverse method.
The optimal values for the weights from the reservoir M to the output layer
L can be computed by solving the linear equation system W out = (S+T )t,
where t indicates the transpose operation and S indicates a state collection
matrix further described in the paragraphs below. The method minimizes the
distance between the predicted output of the ESN and the target signal T . A
detailed description for the calculation of the activation in the ESN is given in
the following paragraphs:

Now we consider an ESN network with |K| inputs, |M | internal neurons and
|L| output neurons. Activations of input neurons at time step n are U(n) =
(u1(n), . . . , u|K|(n)), of internal units are X(n) = (x1(n), . . . , x|M|(n)), and of
output neurons are Y (n) = (y1(n), . . . , y|L|(n)). Weights for the input connection
in a (|M | × |K|) matrix are W in = (win

ij ), for the internal connection in a
(|M |×|M |) matrix are W = (wij), and for the connection to the output neurons
in an |L| × |M | matrix are W out = (wout

ij ).
The activation of internal and output units is updated according to:

X(n + 1) = f(W inU(n + 1) + WX(n)),

where f = (f1, . . . , f|M|) are the internal neurons output sigmoid functions. The
outputs are computed according to:

Y (n + 1) = fout(W outX(n + 1)),

where fout = (fout
1 , . . . , fout

|L| ) are the output neurons output sigmoid functions.
A detailed description of the offline learning procedure is given in the

following:

1. Given I/O training sequence (U(n), D(n))
2. Generate randomly the matrices (W in, W, W out), scaling the weight matrix

W such that it’s maximum eingenvalue |λmax| ≤ 1.
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3. Drive the network using the training I/O training data, by computing

X(n + 1) = f(W inU(n + 1) + WX(n))

4. Collect at each time the state X(n) as a new row into a state collection
matrix S, and collect similarly at each time the sigmoid-inverted teacher
output tanh−1D(n) into a teacher collection matrix T .

5. Compute the pseudo inverse S+ of S and put

W out = (S+T )t

3.2 Utilized Features and Data

The data used in the experiments is comprised of two different modalities, namely
audio and video. A conversation between four people sitting around a table
recorded with an unobtrusive 360 degree camera and a centrally placed micro-
phone served as the basis of the experiments. Suitable features for the laugh
detection task were extracted from both modalities. In the following two short
paragraphs the extraction procedures are explained in some detail.

From the audio channel modulation spectrum features (MODSPEC), which
also found their application in several other tasks including emotion recognition,
were extracted [7]. They are computed using standard methods like Mel filter-
ing and fast Fourier transformations (FFT). In short they represent the rate of
change of frequency, since they are based on a two level Fourier transformation.
Furthermore, they are biologically inspired since the data is split up into per-
ceptually scaled bands using a common Mel filter bank. The perception ability
of the human auditory system is optimized for the slow temporal modulations
of speech. Earlier studies reported that the MODSPEC components from the
range between 2 and 16 Hz, with dominant component at around 4 Hz, contain
important linguistic information. Dominant components represent strong rate of
change of the vocal tract shape in the corresponding MODSPEC frequency.

From the video relatively coarse features were extracted from the 360 degree
recordings of the centrally placed camera. The face tracking using the well estab-
lished Viola Jones approach provided data comprising coordinates of the faces
at each frame. However, since these coordinates are highly dependent on the
distance of the person to the camera and relative movement, data of the face
and upper torso including arm movement were taken as input to the classifier.
The body related features were easy to extract, since people were seated around
a table and the assumption that bodies are usually below faces seemed sound.
The coordinates were normalized to movement data of a mean value of 0 and a
standard deviation of 1. Therefore, the movement ranged from -1 to 1 for each
tracked face and body individually.

3.3 Experimental Results

Trying to take advantage of the sequential dynamic characteristics of the fea-
tures as well as the nature of the conversation, ESNs are utilized to conduct the
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experiments. The ESNs are composed by a dynamic reservoir of 1500 neurons,
sparsely interconnected with each other. The probability for a connection be-
tween neuron mi and mj in the reservoir as well as the recursive connections is
set to 2%, which empirically proofed to be the optimal connectivity. The spectral
width α is crucial for the behavior of the network, since it strongly influences the
dynamics of the reservoir. It has been evaluated that the spectral width α = 0.15
performs best for the given problem. The ESNs are trained to return an output
of 1 if a laugh is present and -1 if not.

As mentioned before features from two modalities are used in the experiments.
Since the two modalities are sampled at different rates (50 Hz audio features;
10 Hz video features) a decision fusion architecture was chosen. Two separate
ESNs, one for each modality, are used to spot laughter in their respective modal-
ity and the decisions are merged by simply adding the outputs. A final decision if
a laugh is present or not for each frame is done by comparing the merged output
to a threshold. Using this multimodal approach a recognition rate of 91% was
achieved in comparison to the unimodal approaches, which were outperformed
clearly (audio only: 87%; video only: 82%). In two control experiments GMM
super vector approach and a simple GMM approach were conducted for com-
parison. Both control architectures were outperformed by the multimodal ESN
approach, which may be explained by the fact that in contrast to the ESNs they
do not take the dynamics of the features into account. Their error rates are 28%
for the GMM super vectors and 16% for the GMM approach. For a more detailed
discussion it is recommended to sift through [18].

4 Implementation of Multiple Classifier Systems

In many of the aforementioned applications such as the detection or spotting
of laughs in continuous conversations it is crucial to be able to utilize the re-
sources of multiple machines and cores in order to fusion and incorporate data
from multiple sensors in real-time. Therefore, a novel process engine for pattern
recognition and information fusion tasks, namely the pepr framework, has been
introduced recently [20,21] and is available online under the Apache license at:
www.pepr-framework.org. The process engine enables the development of appli-
cations for real-time tasks on an abstraction level above common programming
languages, and thus reducing the time and costs necessary for the implementa-
tion of such solutions, allowing and encouraging the use of established and well
tested components. The highly expandable framework allows easy adaptations
for many unique challenges and is equipped with a user interface for the creation
of solutions in a graph model. This graphical representation of the processes
serves rapid prototyping and a better overview in complicated applications.

A sample application could again be the multimodal detection of laughs of two
or more people talking via several machines with each other using an enhanced
video conference application as introduced in [20]. In this task, all machines
process video and audio in real-time and join the data of the other machines via
timestamps using external libraries integrated in the framework. For example,

www.pepr-framework.org
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OpenCV, libsvm, and even Matlab, are integrated and render the framework a
powerful tool for multi-machine/multi-sensor applications. The technical details
of the framework, however, would exceed the scope of the current paper and
therefore the reader is advised to review details in forthcoming publications and
user manuals listed on www.pepr-framework.org.
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In the above mentioned paper we reported in a plot (Fig. 3) the classification cost
and the robustness to evasion of a single classifier and different MCSs obtained
according to Eqs. (3)-(8). The classification cost was measured as FP + FN/C
(y-axis) for several C values (1,2,10,100). The robustness (x-axis) was measured
as the expected value of the minimum number of (Boolean) features which have
to be modified on malicious samples to evade a classifier. We compared a linear
classifier (with identical weights) trained on n = 300 i.i.d. features with four
MCSs obtained by performing a logical OR on the class labels outputted by N
linear classifiers trained on n/N features, with N from 2 to 5. In Fig. 3, the single
classifier was shown to be more accurate than the MCSs at any given operating
point, when the classifiers were not under attack, but it was also easier to evade.
Moreover, while the MCS accuracy decreased for increasing ensemble sizes, the
robustness to evasion increased. However Fig. 3 was wrong, due to an error on
computing the values of Eq. 8. In Fig. 1 the correct plot is shown. It can be seen
that the MCSs exhibit both lower accuracy and lower robustness than the single
classifier. We point out, however, that the experimental results were correct: the
MCS considered in the experiments turned out to be more robust than the single
classifier.
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Mikolajczyk, Krystian 11, 175
Moser, Gabriele 94
Mottl, Vadim 165
Muhlbaier, Michael D. 33

Paduano, Vincenzo 284
Plumpton, Catrin O. 54
Pocock, Adam 205
Polikar, Robi 33
Pujol, Oriol 195

Ramzi, Pouria 254
Re, Matteo 294
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Segúı, Santi 1
Sellami, Mokhtar 235
Serpico, Sebastiano Bruno 94
Singer, Jeremy 205
Smith, R.S. 185
Soto, Vı́ctor 104
Stefánsson, Einar 94
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