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Abstract. A genetic algorithm is used to learn a non-deterministic Petri net-
based model of non-linear gene interactions, or statistical epistasis. Petri nets 
are computational models of concurrent processes. However, often certain 
global assumptions (e.g. transition priorities) are required in order to convert a 
non-deterministic Petri net into a simpler deterministic model for easier analysis 
and evaluation. We show, by converting a Petri net into a set of state trees, that 
it is possible to both retain Petri net non-determinism (i.e. allowing local inter-
actions only, thereby making the model more realistic), whilst also learning use-
ful Petri nets with practical applications. Our Petri nets produce predictions of 
genetic disease risk assessments derived from clinical data that match with over 
92% accuracy. 

Keywords: Petri net, genetic algorithm, epistasis, concurrency, systemic schle-
rosis, digital ulcers. 

1   Introduction 

Petri nets [13] are widely used abstract computational models of concurrent proc-
esses. Recently, they have found application as useful modeling tools in biochemistry, 
genetics and medicine (e.g. [2,6]). 

They are best described as executable graphs with two different types of node: 
places and transitions. In a biochemical modeling situation, a place usually represents a 
substance and a transition stands for a reaction or process in which one or more input 
substances are transformed over time into one or more output substances. Petri nets 
have potential to realistically model what could be happening in real world situations 
because they are inherently concurrent. For example, in a net, two pathways of multi-
ple transitions may fire simultaneously, thus simulating two concurrent processes. 

Figure 1 depicts a simple Petri net with three places and two transitions. The 
places, P0, P1 and P2, represent three different chemical substances, and the transi-
tions, T0 and T1, represent two different reactions that can occur between them. Petri 
nets represent the concentration of a substance at a particular point in time by “mark-
ing” each place with an integer number of tokens. These tokens move around the net 
as the transitions fire. 
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For example, suppose in Figure 1 that there are 10 
tokens at P0, and no tokens at P1 and P2. The overall 
marking of the entire net is the vector <10,0,0>. The 
arcs indicate either transition inputs or outputs, de-
pending on the directionality. They are labeled with a 
quantity of tokens consumed or produced. T0, for ex-
ample, represents a chemical process in which P0 is 
being converted into P2, with one unit of P0 being con-
sumed for every three units of P2 being produced. If T0 

fires once, the marking of the net will become <9,0,3>. If it fires twice, it will become 
<8,0,6>. T1, on the other hand, represents an entirely different reaction with P0 and P2 
as inputs, and P1 as output. Because T1 requires three units of P2 as an input, it cannot 
fire until T0 has fired at least once. If this happens, the marking will change from 
<10,0,0> to <9,0,3> (after T0 fires) and then to <7,5,0> (after T1 fires). 

Transitions can only fire if there are sufficient input tokens available (i.e. the num-
ber of tokens at an input place cannot fall below zero), and if they are not inhibited. 
An example of an inhibitor in Figure 1 is the arc from P1 to T0: if ever P1 has a non-
zero quantity of tokens present, then T0 is effectively turned off. 

The only other time that a transition cannot fire is if one of its output places has in-
sufficient capacity. For example, suppose the maximum capacity of all places in Fig-
ure 1 is 10 tokens, and the current marking is <7,6,9>. Although T1 has sufficient 
inputs available at P0 and P2, there is insufficient capacity at the output place P2, so T1 
cannot fire. 

It should be evident by now that Petri nets are concurrent and non-deterministic 
models. Transitions may fire in any order, and if they do not share common inputs or 
outputs, they can fire concurrently. 

Non-determinism does have some issues when models are to be executed on serial 
computers. If there are two or more transitions enabled, which one should fire first? 
The simplest answer to this question is to enforce an arbitrary priority amongst the 
transitions [13]. For example, in Figure 1, T0 may have a higher priority and therefore 
always fire before T1, if they are both enabled at the same time. This strategy simpli-
fies a non-deterministic Petri net into a deterministic model. 

An alternative answer is to make the transitions fire stochastically. Of those that 
are enabled, one of them is selected to fire at random; and sometimes, in order to give 
all enabled transitions a fair chance of firing, those that have recently fired are not 
permitted to fire again until a certain amount of time has elapsed. 

A significant issue with both of these solutions is that they require global coordina-
tion. In other words, in order to select the next transition to fire, all transitions must  
be examined globally. Nature, however, is unlikely to employ this level of global 
coordination; natural systems are more likely to evolve gradually with many local, 
concurrent interactions. The issue is therefore how to relax the requirement of global 
coordination from our Petri net models in order to make them more realistic and 
therefore more interesting. 

In this paper, we address this specific problem in the context of modeling disease-
causing epistatic interactions between genes. Our solution is to convert the Petri net  
 

 

 

Fig. 1. Example of a Petri Net 



168 M. Mayo and L. Beretta 

model into an alternative representation called a set of state trees, which represents all 
possible orderings in which the transitions can fire. The leaves of these trees therefore 
represent all possible final outcomes. 

We show that it is possible to evolve a Petri net using a genetic algorithm whose 
state tree outcomes match clinical observations in over 92% of the outcomes. Fur-
thermore, it is also possible to limit the depth and size of the trees so that the tree 
remains relatively small, thereby permitting inspection. 

This new approach eliminates the need for global coordination of the transition fir-
ings in the Petri net. Instead, transitions can fire in any order, and the Petri net there-
fore exhibits only more realistic local interactions. 

2   Method 

We describe firstly our Petri net models of non-linear gene interaction, and then dis-
cuss the conversion of a Petri net to a multiple state trees. Finally we describe the 
specific genetic algorithm that we employed to learn our Petri net-based models. 

2.1   Petri Net Models of Epistasis 

Epistasis [11] refers to the phenomenon of non-linear gene interaction. In the context 
of genetic disease, it manifests when no single genetic cause for a disease can be 
isolated; instead, scientists determine that it is the curious interaction between multi-
ple genes that causes the disease. The main question is how this interaction could be 
happening, and Petri nets are useful as a means of hinting at a hypothesis explaining 
the interaction. 

In biological reality, each gene is actually a sequence comprising hundreds of 
thousands of nucleotides. Mutations to these sequences may occur in many ways, but 
one of the most common is a change to a single nucleotide, known as a Single Nu-
cleotide Polymorphism (SNP). A single SNP may completely alter the behavior of a 
gene. In this paper, we will refer to the value of an SNP as A (the original, wild-type) 
or a (its mutant form). In an individual, nucleotides come in unordered pairs (alleles); 
so therefore an individual has three possible genotypes per SNP: AA, Aa, or aa1. 

For modeling purpose, the nucleotide level of detail is far too complex. We there-
fore model entire genes as “gene units” within our Petri nets. Each gene unit is as-
sumed to vary only by a single SNP; that is, all nucleotides ex-
cept for one are assumed constant. This representation is depicted 
in Figure 2.  

As Figure 2 illustrates, a gene is modeled as two places and a 
transition. The first place is called the “activating place” (AP) 
and represents the substance that activates or turns on the gene; 
the second substance is the “product place” (PP), and represents 
the output of the gene. There is also an optional “inhibitory 
place” (I) that can turn the gene unit off completely. The key  
 
                                                           
1 This is a convention we use in this paper for readability by non-geneticists.  To be technically 

correct, we should use nucleotide notation, e.g. CC/CG/GG. 

 

Fig. 2. A gene unit 
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point is that the rate of production of the gene unit, the value g, is controlled by a 
genotype varying only by a single SNP. 

Following biological investigations [3,5,12], it is assumed that the SNP’s mutant 
form a causes an over-production of the gene’s output substance at some fixed ratio. 
The values of g in Figure 2, therefore, have been set to 3 for genotype AA; 6 for geno-
type Aa; and 9 for genotype aa.  

Figure 3 shows an overall Petri net-based ar-
chitecture comprising several gene units. It 
should evident that whenever n genes are being 
modeled, there must be up to 3n different geno-
types involved. 

There are two additional places in this archi-
tecture: P0 and P1. P0 denotes the initial source 
of tokens in the network, or from a biological 
point of view, it is the trigger event that initi-
ates the chain of reactions leading up to the 
disease. P1 represents the output of this process; 
it is the toxic disease-causing substance. Fol-
lowing previous studies [1,7,9], we use a 
threshold to determine whether the toxic sub-
stance is in such abundance as to cause a high 
risk of the disease. In all of our simulations, 
this threshold is set to 50% of the maximum 
capacity of P1. Thus, if the threshold at P1 is 

reached or exceeded, it is assumed that the current genotype leads to a high risk of 
disease; otherwise, there is only a low risk. 

Besides the gene units and P0 and P1, we also assume the existence of an arbitrary 
additional number of places and transitions. These are places and transitions not form-
ing the parts of any specific gene unit, but they do have significant influence because 
they connect to the gene unit’s APs and PPs. 

In all of our simulations the maximum place capacity and arc weights are set to 10. 

2.2   From Petri Nets to Sets of State Trees 

Petri nets are inherently non-deterministic, concurrent computational models. That is, 
transitions that are co-enabled can fire in any order, as long as one of the transitions 
does not disable the other, and transitions that do not share common inputs and out-
puts may fire concurrently. In order to evaluate the behaviour of such a model it is 
necessary to “unroll” its non-deterministic aspects into a deterministic form that can 
be properly assessed. 

We propose a tree representation that we call a state tree as the deterministic form of 
a Petri net. A state tree is an alternative representation of a Petri net in which nodes 
represent markings, and arcs represent transitions. A path from the root of the state tree 
to a leaf represents, therefore, a single execution of the Petri net from start state to final 
state. Figure 4 depicts a state tree for the very simple Petri net depicted in Figure 1. 

 

 

Fig 3. A generalized Petri net archi-
tecture comprising n gene units 
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In Figure 4, the starting state is <10,0,0>, indicating 10 tokens at P0 and no tokens 
anywhere else. Only transition T0 is enabled initially, but after it fires once, both T0 
and T1 are thereafter enabled. The final states that are reached, which depend on the 
ordering of transition firings, are <7,0,9>, <6,5,3>, or <7,5,0>. 

Clearly, for a Petri net of significant size or com-
plexity, the state tree can be very large. Furthermore, if 
a state is visited more than once, then at that point the 
state tree can have effectively infinite depth. To resolve 
these problems, we limited the depth of our state trees 
to 10 and automatically excluded from consideration 
any Petri nets whose state tree exceeded this depth 
limit. We also limited the number of leaves per tree to 
100 or less, again excluding from consideration any 
trees that did not conform. Finally, we also made use of 
a domain-specific heuristic to further trim the tree. 
Since P1 only ever accumulates tokens and is never the 
input place for another transition, it is possible to stop 
growing the state tree as soon as the number of tokens 
at P1 exceeds the threshold of 50%, since the risk assessment will thereafter not 
change. 

These measures for the most part kept the size of the state trees manageable, whilst 
still being practical for solving the problem of non-linear gene modeling. 

As Figure 3 shows, there are n variables g0, g1, …, gn-1, that are genotype depend-
ent within each net. As each gene has 3 different possible values (AA/3, Aa/6 or aa/9), 
this means that there are 3n possible genotypes. Now, each genotype will produce a 
different Petri net execution dynamics, and therefore a different state tree must be 
constructed for each and every genotype. Thus, in our problem domain, every single 
Petri net is converted into not one but a set of 3n state trees. 

2.3   Evolving Petri Nets 

We propose the use of a genetic algorithm to learn a Petri net model of the observed 
non-linear gene interactions. Genetic algorithms [4] use random mutations and cross-
over operators to gradually optimize solutions to problems. In the specific field of gene 
interaction modeling, Moore and Hahn [9], Mayo [7], Mayo and Beretta [14], and 
Beretta et al. [1] all apply genetic algorithms to learn Petri nets. The key difference 
between those previous works and our current work presented here is that previously, 
deterministic Petri nets were used, whereas now we are concerned with relaxing  
the determinism criteria and instead learning Petri nets that may execute non-
deterministically (i.e. the transitions may fire in any order) whilst still remaining a 
highly accurate model of the interaction. 

In our case, we have a set of 3n genotypes, each genotype being labeled either 
“high risk” or “low risk”, and we want a Petri net that, after all transitions have fired, 
always reaches or exceeds the threshold at P1 for high risk genotypes, but never ex-
ceeds the threshold at P1 for low risk genotypes. Construction of a state tree for each 
genotype, therefore, is essential in order to assess all possible outcomes. The model 

 

Fig 4. A state tree for the 
Petri net depicted in Figure 1 
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should show how the genes activate, produce, and interact in all situations in order to 
produce the correct desired behavior. 

Our representation of a Petri net for the genetic algorithm is as follows: we fix the 
number of places to 2n+2 and the number of transitions to n+10, where n is the num-
ber of genes, and model each net as a list of directed arcs. Arcs can be either weighted 
or inhibitory. Our genetic algorithm randomly constructs its initial Petri nets, putting a 
random arc with random weight between a place and transition with probability 0.2. 
Of those arcs, 10% of them are chosen randomly to be inhibitors. 

Our genetic algorithm has a population size of 2,000 individuals. From the random 
initial population and for each subsequent generation, the top 5% of individuals are 
retained for the following generation. The rest are created via either the mutation 
operator or the crossover operator. The mutation operator either (i) adds one, two or 
three random arcs to the net; or, (ii) deletes a random arc, or (iii) modifies an existing 
arc by changing its weight or type, with equal probability. The crossover operator 
merges the arc lists of two parent nets, while maintaining the criteria that there is no 
more than one arc between any pair of nodes. 

In our initial testing, we found that the mutation operator was far more effective 
than the crossover operator, and so set the probability of crossover to 5% and the 
probability of mutation to 95%. Parent nets are selected stochastically with probabil-
ity proportionate to fitness. The genetic algorithm continues to iterate until 2,000 
generations pass without any gains in fitness. At that point, the search is complete and 
the best net is returned. 

In our non-linear gene modeling scenario, there are 3n genotypes, and therefore 3n 
state trees per net. To compute the fitness of each net, we iterate over the genotypes 
and generate for each genotype its corresponding state tree. For example, if n=3, then 
the genotypes will be AA-AA-AA, AA-AA-Aa, AA-AA-aa, …, aa-aa-aa, where AA 
corresponds to arc weight 9, Aa to weight 6, and aa to weight 3. 

Since each genotype will have a risk assessment (either high or low), we examine 
the leaves of its state tree and compute the proportion of leaves with the correct pre-
dicted assessment. This is what we term the accuracy of the state tree. The overall 
fitness is then the average accuracy across all genotypes, with a small bias against net 
size subtracted. During testing, we also found that squaring this fitness value tended 
to give marginally better results than not squaring it, and so the final result is squared. 
In mathematical terms, the fitness function is given by the equation below, where r is 
a genotype. 

fitness(net) =
accuracy(net,r)

r= 0

3n −1

∑
3n − 0.01× size(net)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

2

 

The fitness function ranges in value between 0.0 and 1.0, with a greater value indi-
cating a better solution. The size component of the function is determined by dividing 
the actual number of arcs by the maximum possible number. 
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Figure 5 illustrates the computation of the fitness value for the very simple Petri 
net from Figure 1, assuming that the P0-T0-P2 portion of the net is now a single gene 
unit. Since g can take three possible values, specifically 3,6 or 9, there are three pos-
sible state trees. If the AA genotype is low risk (P1 must be less than 50% of maxi-
mum capacity) whilst the Aa and aa genotypes are high risk (P1 must be greater than 
or equal to 50% capacity, which is 5 tokens), then Figure 5 shows that this net is only 
33.3% accurate when g=3, but 100% accurate when g=6 or 9. Overall, then, the fit-
ness of this net is (0.33+1.0+1.0)/3.0-0.01(6/6)≈0.77. 

 

 

 

Fig. 5. (a) A Petri net with a single gene unit and (b) its corresponding state trees for g=3, 6 and 
9 respectively 

3   Evaluation 

3.1   Non-linear Gene Interaction Model of Digital Ulcers 

A recently discovered disease-causing non-linear gene interaction is used as a test-bed 
for our method [1]. This model, depicted in Figure 6, describes the risk of developing 
digital ulcers in a population of 200 Italian systemic sclerosis patients and was built 
using the Multifactor Dimensionality Reduction (MDR) kernel [10]. The model con-
cerns two SNPs (IL-2 C-330G SNP and IL-6 G-174C SNP, hereafter referred to as 
IL2 and IL6), and one non-SNP mutation (HLA-B35, hereafter referred to B35). Due 
to the complexity of B35, only the presence or absence of a particular mutant allele 
(HLA-B*3501) is recorded; we refer to the absence of this allele as AA, and its pres-
ence as Aa/aa. 

In each cell of Figure 6, there are two bars. The left bars indicate the frequency of 
patients (cases) with digital ulcers, and the right bars indicate the frequency of pa-
tients without digital ulcers (the controls). If the ratio of cases to controls exceeds a 
certain threshold, patients are labeled as high risk (which are the dark-shaded cells), 
otherwise they are low risk (the light-shaded cells).  

We want to use our genetic algorithm to learn a Petri net model corresponding to 
the architecture in Figure 3 that shows how the various genotypes could lead to either 
a high risk or low risk of the disease, for each of the 18 genotypes in the matrix.  
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Fig. 6. Multifactor dimensionality reduction (MDR) model of non-linear gene-gene interaction. 
Key: For IL2 and IL6, cell indices 0, 1 and 2 denote genotypes AA, Aa and aa respectively. For 
B35, cell index 1 indicates Aa/aa and index 0 indicates genotype AA. 

3.2   Results and Analysis 

We performed 32 runs of our genetic algorithm. The maximum fitness value after a 
run obtained was 0.85, and the minimum was 0.64. The mean best fitness value was 
0.70. We examined the Petri net, depicted in Figure 7, with the maximum fitness of 
0.85. This net required 5,558 generations to learn, and it has 40 arcs. Rather than 
showing the net graphically, which would be difficult to interpret, we present it in-
stead as a list of transitions. 
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Fig. 7. Best Petri net obtained with our genetic algorithm. In the figure, P0 is the initial token 
source for the net, and P1 is the toxic output that is thresholded to determine the risk assess-
ment. The LHS of each transition is a list of inputs and weights (or i if the input is an inhibitor), 
and the RHS is a list of outputs and weights. APk and PPk are the activating and product places 
of gene k, and gk denotes the genotype-controlled weight for gene k.  

We generated all 18 state trees (each state tree being derived from one genotype, as 
described in Section 2), and calculated the number of different outcomes (leaf nodes) 
for each tree. Of those, the number that gave the correct risk assessment (high or low 
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according to the model in Figure 6) 
were computed for each geno-
type. This enabled us to compute 
an overall average accuracy 
across all of the genotypes of 
92.6% for this net. The results of 
the genotype-by-genotype analy-
sis are given in Table 1. As can be 
observed, the net performs well 
for all but one of the genotypes. 

Finally, we also examined the 
significance of each individual 
transition in the network. Taking 
the Petri net depicted in Figure 7, 
and iteratively deleting each tran-
sition and all arcs incident on it 
achieved this. We then recom-
puted the value of the network 
without the transition, before 
replacing the transition and its 
arcs. The recomputed values give 

an indication of each transition’s significance, and can be compared to the original 
value of 0.85. Table 2 lists, for each transition, these recomputed values. The lower 
the value of the transition, the greater its significance 
on the Petri net’s dynamics. 

As can be observed in Table 2, transitions TB35, TIL6 
and T9 are the most significant: remove them, and the 
network fails almost completely. This is clearly be-
cause the source of the initial tokens (P0) is only acces-
sible via T9, which feeds into B35 and IL6 gene units. 
All of the remaining transitions except for the final 
three have different degrees of significance. Interest-
ingly, the final three transitions, T4, T8, and T11, have 
almost no significant impact on the Petri net’s behav-
iour. They could, therefore, be entirely removed, 
thereby reducing the size of the net from 40 arcs to 31 
arcs. This transition analysis could be employed during 
the genetic algorithm search process itself in order to 
reduce the size of Petri nets without relying on the 
random mutation operator. 

4   Conclusion 

We have shown how to construct a Petri net-based model of a set of concurrent proc-
esses. Unlike previous approaches to Petri net learning that require global coordina-
tion (in the form of transition priorities or randomised transition firing), our approach 

Table 1. Analysis by genotype of each state tree 
derived from the Petri net depicted in Figure 7 

B35 IL2 IL6 Correct Total % 
AA AA AA 4 4 100.0 
AA AA Aa 50 54 92.6 
AA AA aa 36 39 92.3 
AA Aa AA 4 4 100.0 
AA Aa Aa 95 99 96.0 
AA Aa aa 57 61 93.4 
AA aa AA 4 4 100.0 
AA aa Aa 68 68 100.0 
AA aa aa 56 60 93.3 
Aa/aa AA AA 2 2 100.0 
Aa/aa AA Aa 2 2 100.0 
Aa/aa AA aa 0 2 0.0 
Aa/aa Aa AA 2 2 100.0 
Aa/aa Aa Aa 2 2 100.0 
Aa/aa Aa aa 2 2 100.0 
Aa/aa aa AA 2 2 100.0 
Aa/aa aa Aa 2 2 100.0 
Aa/aa aa aa 2 2 100.0  

Table 2. Recomputed values 
of the Petri Net by transition 

Transition Value 
TB35 0.25 
TIL6 0.25 
T9 0.25 
TIL2 0.42 
T7 0.56 
T3 0.58 
T6 0.66 
T10 0.67 
T5 0.67 
T12 0.76 
T4 0.84 
T8 0.84 
T11 0.84 
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“unrolls” the non-determinism by converting a Petri net into a set of state trees, and 
evaluates the trees rather than the net. This gives an indication of the net’s behavior 
when the transitions are allowed to fire concurrently or in any order whatsoever – a 
situation most suitable for modeling real world processes. 

We have applied this approach to the modeling of non-linear gene interactions, and 
shown that not only is this approach computationally feasible for a practical applica-
tion, but also that the analysis of the Petri net’s learned using this method may lead to 
useful insight into the problem being modeled. 

References 

1. Beretta, L., Santaniello, A., Mayo, M., Cappiello, F., Marchini, M., Scorza, R.: Genetic 
and Biological Models of Epistasis to Predict Digital Ulcer Occurrence in Italian Systemic 
Sclerosis Patients. Article In Submission to Annals of Human Genetics (2009) 

2. Cheng, S., Yeh, H., Lin, Y., Lin, S., Soo, V.: Inferring Gene Regulatory Networks from 
Microarray Data Based on Transcription Factor Analysis and Conditional Independency. 
In: BIOCOMP 2007, pp. 65–71 (2007) 

3. Fishman, D., Faulds, G., Jeffery, R., et al.: The effect of novel polymorphisms in the inter-
leukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with 
systemic-onset juvenile chronic arthritis. J. Clin. Invest. 102, 1369–1376 (1998) 

4. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addi-
son-Wesley, Reading (1989) 

5. Hoffmann, S.C., Stanley, E.M., Darrin Cox, E., et al.: Association of cytokine polymorphic 
inheritance and in vitro cytokine production in anti-CD3/CD28-stimulated peripheral 
blood lymphocytes. Transplantation 72, 1444–1450 (2001) 

6. Lin, Y., Yeh, H., Cheng, S., Soo, V.: Comparing Cancer and Normal Gene Regulatory 
Networks Based on Microarray Data and Transcription Factor Analysis. In: Proc. of the 
7th IEEE International Conference on Bioinformatics and Bioengineering, BIBE 2007, pp. 
151–157 (2007) 

7. Mayo, M.: Learning Petri net models of non-linear gene interactions. BioSystems 82(1), 
74–82 (2005) 

8. McGarry, K., Loutfi, M., Moscardini, A.: Stochastic Simulation of the Regulatory Path-
ways involved in Diabetes using Petri-nets. In: Proc. of the International Conference on 
Computer Theory and Applications (ICCTA 2007), Alexandria, Egypt (2007) 

9. Moore, J., Hahn, L.: Petri net modelling of high-order genetic systems using grammatical 
evolution. BioSystems 72, 177–186 (2003) 

10. Moore, J.: Computational analysis of gene-gene interactions using multifactor dimension-
ality reduction. Expert Review of Molecular Diagnostics 4(6), 795–803 (2004) 

11. Phillips, P.: Epistasis–the essential role of gene interactions in the structure and evolution 
of genetic systems. Nat. Rev. Genet. 9, 855–867 (2008) 

12. Pociot, F., Molvig, J., Wogensen, L., Worsaae, H., Nerup, J.: A TaqI polymorphism in the 
human interleukin-1β (IL-1β) gene correlates with IL-1β secretion in vitro. Eur. J. Clin. 
Invest. 22, 396–402 (1995) 

13. Reisig, W.: Petri nets: an introduction. In: EATCS Monographs on Theoretical Computer 
Science. Springer, Heidelberg (1985) 

14. Mayo, M., Beretta, L.: Modelling Epistasis in Genetic Disease using Petri Nets, Evolution-
ary Computation and Frequent Itemset Mining. Submission, Expert Systems with Applica-
tions: An International Journal (2009) 


	Evolving Concurrent Petri Net Models of Epistasis
	Introduction
	Method
	Petri Net Models of Epistasis
	From Petri Nets to Sets of State Trees
	Evolving Petri Nets

	Evaluation
	Non-linear Gene Interaction Model of Digital Ulcers
	Results and Analysis

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




