
Bs-tree: A Self-tuning Index of Moving Objects

Nan Chen, Lidan Shou, Gang Chen, Ke Chen, and Yunjun Gao

College of Computer Science, Zhejiang University, China
{cnasd715,should,cg,chenk,gaoyj}@cs.zju.edu.cn

Abstract. Self-tuning database is a general paradigm for the future development
of database systems. However, in moving object database, a vibrant and dynamic
research area of the database community, the need for self-tuning has so far been
overlooked. None of the existing spatio-temporal indexes can maintain high per-
formance if the proportion of query and update operations varies significantly
in the applications. We study the self-tuning indexing techniques which balance
the query and update performances for optimal overall performance in moving
object databases. In this paper, we propose a self-tuning framework which relies
on a novel moving object index named Bs-tree. This framework is able to op-
timize its own overall performance by adapting to the workload online without
interrupting the indexing service. We present various algorithms for the Bs-tree
and the tuning techniques. Our extensive experiments show that the framework
is effective, and the Bs-tree outperforms the existing indexes under different cir-
cumstances.

Keywords: spatio-temporal database, moving object, index, self-tuning.

1 Introduction

With the rapid progress in hardware and software technologies, the database systems
and applications are becoming increasingly more complex and dynamic, however at
lower costs than ever. As a result, the traditional solution of employing database ad-
ministrators to maintain and fine-tune the DBMS for higher performance has appeared
to be inefficient and uneconomical. The self-tuning functionality of databases is ex-
pected to be the substitute for DBAs. Intuitively, a self-tuning database provides practi-
cal solutions to adjust itself automatically for optimal performance with minimal human
intervention. In the past years, a lot works (e.g., [3]) have been done to extend the self-
tuning capabilities of database systems. However, the existing works so far are mainly
restricted to traditional static databases.

1.1 Motivation

The recent emergence of numerous moving object database applications, such as traf-
fic control, meteorology monitoring, mobile location computing and so on, has called
on for self-tuning techniques in the moving object databases as well. In the numerous
techniques proposed for managing moving object databases, index design appears to be
the spotlight. Therefore, we shall look at the self-tuning techniques for moving object
indexes. The problem that we consider for tuning is the update and query performance.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 1–16, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 N. Chen et al.

We observe that the update and query performances of moving object indexes dis-
play interesting patterns if we classify the existing indexes into two major categories
regarding the data representations that they use [5]. The first class includes R/R*-tree-
based indexes, such as the TPR-tree [9] and the TPR*-tree [11]. This class is character-
ized by good query performance but expensive update costs. The second class includes
techniques that employ space partitioning and data/query transformations to index ob-
ject positions, such as the Bx-tree [8]. As it is based on the B+-tree, the Bx-tree has
good update performance. However, it does not achieve satisfactory query efficiency, as
shown in [13]. In addition, the second class has better concurrency performance than
the first, because, as shown in [8,6], the concurrency control in a R/R*-tree-based index
is more complex and time-consuming than that in a B+-tree-based index.

The above observation leads to the implication that the current moving-object index-
ing techniques encounter difficulty when handling variable needs in the proportion of
query and update operations. Given some examples of these applications, an aviation
monitoring system may need more query operations, and oppositely make fewer up-
dates to the database. While an animal position tracking system may require far more
updates than queries. In addition, there are also applications which require variable ratio
of updates and queries at different time. For example, in a traffic monitoring system of
a city, the proportions of updates and queries may vary widely by time. It may receive
increased updates during the rush hour, and process more queries at the report time.

To solve the problem with these dynamic applications, we need a self-tunable in-
dex structure which is able to strike a balance between the performance of queries
and updates, thereby achieving good overall performance for different proportion of
updates and queries. In addition, the self-tuning of the index should not interrupt the
index service. Based on the discussion in the above, none of the existing moving ob-
ject indexes can satisfy such requirements readily. They suffer from either poor query
performance or large update costs, and does not have the ability of self-tuning. In fact,
the performance of queries and that of updates usually affect each other, and are often
anti-correlated in most of the existing indexes. Therefore, they are not appropriate for
these environments. We believe this problem has so far been overlooked.

1.2 Overview of the Proposed Techniques

In this paper, we propose an online self-tuning framework for indexing moving-objects
based on a novel data structure called Bs-tree. The Bs-tree provides the functionality of
self-tuning, and can adaptively handle both queries and updates efficiently. Our frame-
work uses an update parameter α and a query parameter β to tune the performance
of the Bs-tree. Figure 1 shows the components of the proposed self-tuning framework.
When an update arrives, the Key Generator Module (KGM) computes the index keys
according to the update parameter α of the index, inserts them into the Bs-tree and re-
ports the update cost to the Online Tuning Module (OTM). On the other hand, when a
query arrives, the Query Executor Module (QEM) processes the query according to the
query parameter β of the index and reports the query cost to OTM. OTM monitors the
performance and controls the tuning.

The proposed Bs-tree has many desirable features. It can provide self-tuning for op-
timal overall performance without interrupting the indexing service. When the query

Bs-tree: A Self-tuning Index of Moving Objects 3

Query

Executor

Key

Generator

Online

Tuning
α

β

Timer

sB

tree

−

Update

Query Result

Manual

Setting

Fig. 1. Online Self-tuning Framework

cost dominates the overall performance, the Bs-tree achieves considerably higher per-
formance of queries, at the expense of slightly more update costs. In contrast, if the
update cost dominates the overall performance, the Bs-tree will sacrifice some query
performance to obtain lower update costs. Our extensive experiments show that the Bs-
tree outperforms the existing indexes in different environments. Another advantage of
the Bs-tree is that it is based on the classical B+-tree. Therefore it can be easily imple-
mented in the existing DBMSs and is expected to have good concurrency performance.
Table 1 summarizes the properties of the Bs-tree compared to the previous indexes.

Table 1. Comparison of predictive indexes of moving objects.

Query Cost Update Cost DBMS integration Self-Tuning Concurrency
Bx HIGH LOW EASY NO HIGH
TPR* LOW HIGH HARD NO LOW
Bs LOW LOW EASY YES HIGH

The rest of the paper is organized as follows. Section 2 reviews related work. Section
3 describes the structure of the Bs-tree, and presents the associated query and update
operations. Section 4 analyzes the I/O cost of the Bs-tree, and introduces how the online
self-tuning framework works. Section 5 presents the results of the experiments. Section
6 conludes the paper and discusses possible future work.

2 Related Work

Lots of index structures have been proposed to index the current and predicted future
positions of moving objects. According to [5], these indexes can be classified into two
major categories depending on the trees they are based on. The first category is the
R/R*-tree-based indexes which base on the R-tree [7] and the R*-tree [1], such as the
Time-Parameterized R-tree (TPR-tree) [9] and its variant, the TPR*-tree [11]. A node
in the TPR-tree is represented as a MOving Rectangle (MOR), including a Minimum

4 N. Chen et al.

Bounding Rectangle (MBR) and a velocity Bounding Rectangle (VBR). The extent of
a MBR grows according to its VBR and it never shrinks, although it is generally larger
than strictly needed. This guarantees that every MBR always bounds the objects that
belong to it at all times considered. The update algorithm of the TPR-tree is exactly
the same as those of the R*-tree, by simply replacing the four penalty metrics of the
R*-tree with their integral counterparts. Based on the same structure, the TPR*-tree
provides a new set of insertion and deletion algorithms aiming at minimizing a certain
cost function. In the TPR-tree and the TPR*-tree, predictive query for a future time
t is processed by visiting MBRs expanded to t. The TPR-tree and the TPR*-tree are
deployed to solve a large number of spatio-temporal query problems (e.g., [2] for KNN
queries). However, they have a major weakness: the update costs are expensive.

The second category of indexes relies on space partitioning and data/query transfor-
mations, such as the B+-tree based indexes [8] [5] [13]. The Bx-tree [8] is the first effort
to adapt the B+-tree to index moving objects. It partitions the time axis into equal inter-
vals, called phases, and partitions the data space into uniform cells. An index partition
of the B+-tree is reserved for each phase. When an insertion operation of a moving
object arrives, the Bx-tree computes the position of this object at the end timestamp of
the next phase, and transforms this position to a value of the space-filling curve, such as
the Hilbert-curve and Z-curve. This value is then indexed in the corresponding partition
of the B+-tree. To process a range query, the Bx-tree checks each existing partition for
qualifying objects. Specifically, in one partition, the Bx-tree enlarges the query window
to the end timestamp of the corresponding phase. It first enlarges the query window ac-
cording to the minimum and maximum velocities of all moving objects, and then makes
the enlargement exacter using the space velocity histogram which records the minimum
and maximum velocities of the space cells. Then the Bx-tree scans all multiple ranges
of index keys which fall within the enlarged query window, and checks the correspond-
ing moving objects to finds the ones satisfying the query. Since each partition of the
B+-tree has to be checked, the query processing of the Bx-tree is not efficient, as shown
by both the experiment results of [13] and those of ours.

The Bdual-tree in [13] also uses a B+-tree to index moving objects. However, it in-
dexes objects in a dual space instead, considering both location and velocity information
to generate index keys. The Bdual-tree maintains a set of MORs for each internal entry,
and uses R-tree-like query algorithms as in the TPR/TPR*-tree. A range query searches
the subtree of an internal entry only if any of its MORs intersects with the query region.
By partitioning the velocity space, the Bdual-tree improves the query performance of
the Bx-tree. However, maintaining the MORs introduces high computation workload,
which slows down the fast update and high concurrency of the B+-Tree. It has worse
update performance than the Bx-tree, and worse query performance than the TPR*-tree.
In addition, by modifying the update and query algorithms of the B+-tree, the Bdual-tree
can no longer be readily integrated into existing DBMSs.

Besides the query and update performance, there are some other issues with the mov-
ing object indexes. [4] proposes a series of B+-tree-based indexes structures to handle
the problem of doubtful positive. When the update durations of moving objects are highly
variable, the result of a predictive query may contain frequently updated objects whose
states would be updated much earlier than the future query timestamp. These result

Bs-tree: A Self-tuning Index of Moving Objects 5

objects are apparently doubtful and are called doubtful positives. The work in [4] in-
troduces the concept of prediction life period for every moving object to handle predic-
tive queries with no doubtful positive. In addition, different indexes in [4] have different
balance of update performance and query performance. However, these indexes have no
ability of self-tuning. The DBA has to decide to choose which index to satisfy the appli-
cation. And, when the requirement of the application changes, the DBA has to stop the
index service, delete the current index, choose and rebuild another index. The S T 2B-tree
[5] is a self-tuning index of moving objects, based on the B+-tree. However, the problem
it addresses is the varying distribution of moving objects over time and space, while our
work focuses on the change of the proportion of query and update operations.

3 The Bs-tree

3.1 Index Structure

The Bs-tree is built on the B+-tree without any change to the underlying B+-tree struc-
ture and insertion/deletion algorithms, thus is readily implementable in existing DBMS.
In order to support B-link concurrency control, each internal node contains a pointer to
its right sibling. A moving object is transformed to one or more 1D keys and indexed
by the Bs-tree. We now introduce how the transformation works.

As [4], in order to handle the problem of doubtful positive, we also define a predic-
tion life period, tper for each moving object, as the interval from its last update times-
tamp to the next update timestamp. It is the future within which the current information
of this moving object is predicted to be right, and it can be updated. Similar to all the
above existing works of moving object indexes, moving objects in the Bs-tree are mod-
eled as linear functions of time. Therefore, the position of a moving object at time t is
given by O = (x, v, tre f , tper) = x(t) = (x1(t), x2(t), ..., xd(t)), where tre f < t < tre f + tper.
Here, x and v is the location and velocity of the moving object at the reference time
tre f . Thus, x(t) = x + v ∗ (t − tre f). For each query, the query interval indicates how
far the query “looks“ into the future. If the query interval of a query exceeds tper of a
moving object, this object is considered as a doubtful positive and will not appear in the
result.

We partition the time axis into intervals of duration Tm, and then sub-partition each Tm

into n equal-length sub-intervals of duration, each at length of Tsam, called phases. We
label each phase with a timestamp tlab which is the end time point of this phase. Unlike
the Bx-tree which samples a moving object exact once, the Bs-tree samples a moving
object one or more times. We introduce an update parameter α for the Bs-tree, where
1 ≤ α ≤ n + 1. When an insertion of a moving object arrives, the Bs-tree computes the
positions at tlab of every α phases located between tlab = [tre f]l and tlab = [tre f + tper]l,
where [t]l means the nearest future tlab of t. For each sampling, the Bs-tree maps the
position to a signal-dimensional value, called KEYsam, using the Hilbert curve. This value
is concatenated with the phase number of its tlab, called KEYlab, to generate the index
key values Bvalue, which is then inserted to a B+-tree. The relationship and computation
methods are as follow:

6 N. Chen et al.

0 0

t

(a) (b)

Fig. 2. An example of Insertion and Query in the Bs-tree

Bvalue = KEYlab ⊕ KEYsam,

KEYlab = (tlab/(Tm/n)) mod (n + 1),

KEYsam = Curve(x(tlab)).

In figure 2, the solid lines with arrowheads show an insertion case of the Bs-tree
when α = 1 and α = 2. We can see how a moving object is sampled, according to
its prediction life period tper and the update parameter α. The Bs-tree contains data
belonging to n + 1 phases, and thus it includes n + 1 sub-trees, or partitions. As time
passes, repeatedly the oldest partition expires, and a new one is appended. Therefore,
the index rolls over. An update of a moving object deletes its old sampled values and
inserts new ones. Except maintaining the space velocity histogram Hs as the Bx-tree,
the Bs-tree also maintain a partition velocity histogram Hp, which stores the maximum
and minimum velocities of the moving objects that inserted into each partition.

3.2 Query Algorithms

A range query Qr(R, tq) retrieves all moving objects which intersect the query region
R at the query time tq, which does not precede the current time. We introduce a query

Algorithm Range Query Qr(R, tq)
Input: R is the query window and tq is the query time.
Output: All objects in R at tq within their tper s
1. tlab ← [tq]l

2. For k ← 1 to β
3. R′ = ExpandWindow(R, tq, tlab,Hp,Hs)
4. For each key range in R′

5. For each moving object in the key range
6. Compute its position at tq

7. If it is in R at tqwithin its tper

8. Add it to the result set
9. Find the next key range
10. If not found
11. Break
12. tlab ← [tq]l − Tsam/n
13.Return result set

Fig. 3. Range Query Algorithm

Bs-tree: A Self-tuning Index of Moving Objects 7

parameter β for the Bs-tree. Unlike the Bx-tree which expands query windows to each
partition, the Bs-tree only expands query windows β times to the phase which tq belongs
to and the β − 1 ones before. In figure 2, the dashed lines with arrowheads show the
phases which a query window is expanded to when β = 1 and β = 2. We will discuss
the relationship between α and β in section 4.2.

Figure 3 shows the range query algorithm of the Bs-tree. The algorithm searches the
partition which the query time belongs to and the β − 1 ones before (Line 2). For each
partition, it expands the query window from the query time tq to the end timestamp tlab

of the corresponding phase (Line 3). Here, Hp indicts the partition velocity histogram
and Hs indicts the space velocity histogram. The enlargement first expand the window
according to the maximum and minimum velocities of the corresponding phases in Hp

to get a preliminary window Rpre, and then finds the minimum and maximum veloci-
ties in the cells that Rpre intersects, using Hs, to get the exacter expanded window R′.
After the enlargement, the algorithm can get several key ranges in R′, which are one-
dimensional intervals of index values falling within the expanded query window R′. For
each key range, a range query of the B+-tree is executed (Line 4). For each object found
in the key range, the algorithm checks whether it is in R at tq within its tper . If so, the
object satisfies the query and is added to the result set (Line 5-8).

A KNN query QKNN (p, tq, k) retrieves k moving objects for which no other moving
objects are nearer to o at tq. As in the Bx-tree, a KNN query of the Bs-tree is handled
as incremental range queries Qr(R, tq) until exact k nearest neighbors are found. The
initial search range is a region centered at pt with extension r = Dk/k, where pt is the
position of p at tq. If the KNNs are not found in this region, it extends the search radius
by r as in [12]. Dk is estimated by the equation as in [8] [5]:

Dk =
2√
π

[1 −
√

1 − √k/N].

Note that, during the incremental range queries, the query window of a range query will
contain the former one. Therefore, for the KNN queries of the Bs-tree, we record the
expanded window of a range query for each partition. When processing the next range
query, the area covered by the former expanded window does not need to be checked.

4 Self-tuning of the Bs-tree

In this section, we first analyze the update and query I/O cost of the Bs-tree. And then
basing on the analysis, we introduce the online self-tuning framework of the Bs-tree.

4.1 Update and Query Performance Analysis

First, let us focus on the update performance of the Bs-tree. For a B+-based-tree, the
height of the tree is usually significantly important for the update performance. Assum-
ing that the Bs-tree maintains N values, has the fan-out of F, and its nodes are filled
with at least F/2 values. So the height is H = logF/2 N + 1 at the most. Since sampling
a moving object for one or more times, the Bs-tree may ask for a bigger N than the
Bx-tree. However, with a big F which is usually in the hundreds, such a bigger N will

8 N. Chen et al.

seldom affect H. As most indexes of moving objects, update of a moving object in the
Bs-tree is a deletion operation followed by an insertion operarion. Therefore, the total
update I/O cost of the Bs-tree is the sum of the deletion and insertion cost:

IOupd = IOdel + IOins =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[
tre f + tper

]
l
−
[
tre f

]
l

Tsam ∗ α

⎤⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎣

[
t′re f + t′per

]
l
−
[
t′re f

]
l

Tsam ∗ α′
⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∗ H.

Here, [a] means the smallest integer which is no smaller than a. Note that, for a moving
object, among different updates, the prediction life period tper and the update parameter
α can change. We can see that the I/O cost of an update is only several times the tree
height. Since H and Tsam are fixed, and tre f and tper are depended on the moving object
itself, the update parameter α is the most important issue of the update cost. The update
performance increases with α. We can tunes the update performance by tuning α.

Second, let us turn to the query performance of the Bs-tree. The Bs-tree handles
range queries using the method of query window enlargement. It expands the query
window for β times and traverses β partitions of the tree. Therefore, the total query I/O
cost is the sum of the cost of the β partition traverses:

IOupd =

β∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
m∑

j=1

(
H − 1 + R j

)⎞⎟⎟⎟⎟⎟⎟⎠.

Here, for each partition traverse, m is the number of key ranges falling in the expanded
window. For each key range, there is a unique search followed by a range search in the
B+-tree. Specially, the I/O cost of a unique search is H − 1 internal nodes of the index,
while the I/O cost of the range search is R j leaf nodes of the index. Figure 4 gives an
range query example of the figure 2 (b) where α = β = 2. O is the position of the
moving object o at the reference time. B1 is its first key value sampled in the Bs-tree,
while B2 is not visible in figure 4. The shadowed rectangle is the original query window.
It is expanded twice, one to the phase tq belongs to and one for the phase before. In the
first enlargement, there are two key ranges without containing any sampling value of o.
While, in the second enlargement, after two unique-range scans of the B+-tree, it finds
B1. There are totally two enlargement and four unique-range scans for this range query.

The total cost of a range query is decided by the number of partition traverses: β.
While, for each partition traverse, the cost is decided by the number and length of the

1B

1B

O

(a) (b)

Fig. 4. An example of Query Analysis

Bs-tree: A Self-tuning Index of Moving Objects 9

key ranges. The larger the query window is expanded, the more and longer the key
ranges it contains. The enlargement velocities and the enlargement time interval are the
two issues of the query window enlargement. For the first issue, except the space veloc-
ity histogram used by the Bx-tree, the Bs-tree also uses the partition velocity histogram
to make the enlargement velocities exacter. As for the second issue, the enlargement
time interval set S eti of the β enlargement is estimated as follow:

S eti = {
∣∣∣tq − [tq]l

∣∣∣ , Tsam −
∣∣∣tq − [tq]l

∣∣∣ , ..., (β − 1) ∗ Tsam −
∣∣∣tq − [tq]l

∣∣∣}.

Here,
∣∣∣tq − [tq]l

∣∣∣ is the enlargement time interval of the phase which tq belongs to, while
the k ∗ Tsam −

∣∣∣tq − [tq]l

∣∣∣ is the enlargement time interval of the kth phase of the β − 1
phases before. Therefore, the biggest enlargement time interval is MAX(

∣∣∣tq − [tq]l

∣∣∣ , (β−
1) ∗ Tsam −

∣∣∣tq − [tq]l

∣∣∣). The enlargement time interval increases with β. The bigger β
is, the larger a query window is expanded, and the higher the partition traverse cost is.
In summary, we can see that the query parameter β is the most important issue of the
range query costs. It not only decides the times of query window enlargement, but also
effects how large a query window is expanded to.

As for KNN queries of the Bs-tree, since a KNN query is handled as incremental
range queries, the I/O cost can be approximately estimated as the I/O cost of the last
range query. However, it will be a little bigger. This is because, although the range
queries in a KNN query of the Bs-tree do not check the same key values repeatedly,
a continuous key range within the expanded window of the last range query may be
divided by different range queries. Some additional unique scans are asked for, and
some leaf nodes shared by different range queries are accessed several times. However,
for the cost of KNN queries, the query parameter β is still the most important issue. To
sum up, we can tunes the query performance of the Bs-tree by tuning β.

In addition, from the above analysis, we can also observe that since Tsam = Tm/n,
n effects both update performance and query performance. A larger n results in more
partitions and may require more update costs in the Bs-tree. While a smaller n results
in larger query window enlargement, which increases the query cost. In this paper we
choose n = 3, as the previous experiments of B+-based-tree of moving objects in [4]
show that it is an appropriate balance value.

4.2 Self-tuning Framework

From the above analysis, we find that the update and query performance of the Bs-tree
can be tuned by the update parameter α and the query parameter β. However, α and β
can not be changed arbitrarily. We should guarantee the correctness of the queries.

Theorem 1. As long as β is no less than all α of all moving objects, the query correct-
ness of the Bs-tree can be guaranteed. That is, given a query, the Bs-tree can find all
moving objects which satisfy the query in their tper s.

Proof: For a moving object o(tre f , tper, αo), where αo is its current update parameter, it
will be sampled at following time:

{[tre f]l, [tre f]l + αo ∗ Tsam, [tre f]l + αo ∗ 2 ∗ Tsam, ..., [tre f]l + αo ∗ m ∗ Tsam}.

10 N. Chen et al.

Here, [tre f]l +αo ∗m ∗Tsam is the biggest tlab which is not bigger than tre f + tper. Given a
future query Q(tq) where tre f ≤ [tq]l ≤ tre f + tper, assuming that o satisfies Q at tq and the
query parameter β < αo, if [tq]l = [tre f]l+ (αo ∗ i+ j)∗Tsam where i < m and β ≤ j < αo,
the Bs-tree will not search any partition which o is sampled to, therefore will not find o
and the result is not correct. In reverse, if β is no less than all α of all moving objects,
the Bs-tree will not omit any partition which any result object is sampled to. As long as
the partition is traversed, the method of query window enlargement guarantees that any
moving object which satisfies the query in this partition will be found. Proved. ■

Note that, if α of the Bs-tree changes, the moving objects which are already in the in-
dex have the old α, while a new insertion or update is according to the new α. Therefore,
in the index, the moving objects may have different α. According to Theorem 1, β of
the Bs-tree should be equal to the biggest α of all moving objects to guarantee the query
correctness. Bigger β is meaningless, as it increases query costs. If all moving objects
in the Bs-tree have the same α, we call the Bs-tree is in a steady state, and β = α. Also
note that, there is some restriction for the longest update interval of a moving object. In
the Bs-tree, the time interval Tm should be larger than most tper s of all moving objects
in the system. In addition, similarly to [8] [5], for those rare moving objects who are
not updated in the last Tm, they are ”flushed” to new partitions. The new positions are
estimated using their last updated positions and velocities. Their new tper s are the rest
tper s. However, their α could be changed. Thus, the longest update or flush interval of a
moving object is restricted to Tm.

Now we introduce how the online self-tuning framework works. In the framework,
the cost we focus on is the I/O cost, since it is usually more important than the CPU
cost. Recall that, as shown in figure 1, OTM is the key module which monitors the
performance of the Bs-tree and controls the tuning. OTM works in a “self-learning
and self-tuning“ way. And it has three tasks. First, it maintains a histogram Hrec =

{m, n,Cupd,Cque} which includes the number and average cost of updates and queries
during the recent period of time Trec, represented as m, n,Cupd,Cque. Trec is the “self-
learning“ time window. It should be a multiple of Tsam, Trec = l ∗ Tsam. Specially, in
order to get Hrec, OTM maintains the number and total cost of updates and queries of
the l most recent Tsam. Thus, Hrec can be easily carried out at the end timestamp of each
Tsam. Trec can be set according to different applications, and it can be reset at any time
without breaking the index service. In this paper, we set Trec = 2 ∗ Tsam = 2 ∗ n ∗ Tm.

Second, OTM also maintains a set S base which includes the average cost of updates
and queries for each steady state of the Bs-tree, ranging α = β from 1 to n + 1.

S base = {C1
upd ,C

1
que,C

2
upd ,C

2
que, ...,C

n+1
upd ,C

n+1
que }

For initialization, we give predictive values for the elements in S base. Then, when in a
steady state, the corresponding elements of the current α = β are updated by Cupd ,Cque

in Hrec at the end timestamp of each Tsam. The initialized predictive values in S base can
be given by experiments. We give the guide line of setting the initialized S base in the
experiment department.

Third, OTM adjusts the Bs-tree in a self-tuning way. As shown in figure 1, there is
a Timer trigger for OTM. At the end timestamp of each Tsam, OTM not only updates
Hrec and S base, but also starts a checking procedure. It decides weather to tune the update

Bs-tree: A Self-tuning Index of Moving Objects 11

parameter α and query parameter β of the index. The overall performance is the average
performance of each operation. It is estimated by the following equation:

Call =
m ∗ Cαupd + n ∗ Cβque

m + n
.

Here, m is the number of updates and n is the number of queries. OTM uses the current
m and n in Hrec, and different Cαupd and Cβque in S base for each α = β to compute Call.
Then, it chooses α = β which gets the lowest Call. In order to avoiding thrash, if this
Call is 15% lower than the Call with the current α = β, OTM will decide to tune α and β,
and enter a tuning procedure. Note that, the checking procedure is efficient, since there
are only a little computation and comparison during the checking procedure.

For the tuning procedure, the current update parameter and query parameter are rep-
resented as αcur and βcur, while the target update parameter and query parameter which
OTM decides to tune to is represented as αtar and βtar. In addition, αtun and βtun are the
update parameter and query parameter during the tuning procedure. Since the current
and target states both are steady states, we have αcur = βcur andαtar = βtar . If αtar < αcur,
at the beginning of the tuning procedure, OTM sets αtun = αtar and βtun = αcur. During
the tuning procedure, the Bs-tree will include different moving objects with αcur or αtar .
Thus, βtun has to be equal to the biggest update parameter of all available partitions,
αcur, to guarantee the query correctness. Note that, a moving object will be updated or
flushed at least once during the last Tm. Therefore, after time period of Tm, the update
parameter of all moving object will be the new one αtar, the Bs-tree will reach a steady
state, and OTM tunes the query parameter to βtar = αtar. While, on the other hand, if
αtar > αcur , at the beginning of the tuning procedure, OTM sets αtun = βtun = αtar. After
time period of Tm, the Bs-tree reaches a steady state, with no need to reset the query
parameter. The length of the tuning procedure is Tm. During the tuning procedure, OTM
does not update Hrec and S base, and does not enter the checking procedure. When the
tuning procedure finishes, OTM resets Hrec to empty and continues its work. Note that,
the index service is not broken.

Although OTM has the ability of self-tuning, it allows for manual configuration.
This enhances the flexibility and usability of the Bs-tree. The administrator can set
αtar = βtar at any time. OTM will then enter the tuning procedure at the end timestamp
of the current Tsam. On the other hand, the administrator can also “freeze” the Bs-tree
to avoid too frequent tuning. As a result, OTM will not enter the checking and tuning
procedures. In addition, the initial value of α = β when creating the Bs-tree, is also
customizable and should be set according to specific applications.

5 Experiments

In this section, we experimentally compare the Bs-tree with the Bx-tree [8] and the
TPR*-tree [11], which are the most representative B+-tree and R-tree based indexes for
moving objects. All experiments are implemented in the C++ language, and conducted
on a 2.6GHz Pentium 4 Personal Computer with 1GB memory, running Windows XP
Professional. The page size and index node size are both set to 4 KB.

12 N. Chen et al.

We use a data generator similar to the one used by the Bx-tree [8]. The objects move
in the space domain of 1000∗1000. The initial object positions are generated randomly,
so are the moving directions. The moving speed in each dimension is selected randomly
from −3 to 3. The update frequencies (indicated by tper) of the moving objects are
variable among various moving objects. 35% of the moving objects have tper s ranging
from 0 to 1/3Tm, while another 35% are in range (1/3Tm, 2/3Tm]. And the remaining
30% moving objects are in (2/3Tm, Tm]. As the experiments in [8], Tm is set to 120 time
units. For the Bx-tree and the Bs-tree, we choose n = 3 and use the Hilbert-curve as
the space-filling curve. For the TPR*-tree, the horizon H (how far the queries can “see“
in the future) is set to 60 time units. For each dataset, we execute same 100 predictive
queries and evaluate their average cost. The query time qt ranges from 1 to H. For range
queries, the side length of query windows is chosen from 10 to 50.

5.1 Basic Performance

In this set of experiments, we study the basic query and update performance of the Bs-
tree, the Bx-tree and the TPR*-tree. Figure 5 (a)− (d) show the average number of I/Os
and CPU time for each range query and update at various dataset sizes, ranging from
100K to 500K. For a more clear view, we represent the query and update performance
of the Bs-tree for different steady states. Bs-tree(j) indicts the Bs-tree in the steady state
with α = β = j, from 1 to n+1 = 4. As expected, when α = β = 4, the query and update
performance of the Bs-tree is very similar with that of the Bx-tree. This is because both
the Bs-tree(4) and the Bx-tree sample once for an update and expand query windows
n + 1 = 4 times for a range query. Therefore, in these figures, we omit the query and
update performance result of the Bs-tree(4), using that of the Bx-tree instead. From
these experiments, we can observe that the Bx-tree has better update performance than
the TPR*-tree, while the TPR*-tree has better query performance than the Bx-tree. The
Bs-tree has the ability to tune the query and update performance by different α and β. It

Fig. 5. Basic Query and Update Performance

Bs-tree: A Self-tuning Index of Moving Objects 13

can have almost the same query and update performance as the Bx-tree when update cost
is the major part of the overall cost, while in other cases, it can pay slightly more update
cost to achieve considerably higher performance of queries. Therefore, it “dominates“
the Bx-tree. In addition, when α = β = 2 or α = β = 3, the Bs-tree has both better query
performance and update performance than the TPR*-tree. It “dominates“ the TPR*-
tree. We can also see that the cost of queries increases with the date cardinality for all
the three kinds of indexes. However, for the Bx-tree and the Bs-tree, the update cost is
not apparently affected by the dataset size. In addition, for all the three kinds of indexes,
the update cost is much lower than the query cost. In the rest experiments, the default
dataset size is 100K. Figure 5 (e) and (f) shows the average number of I/Os and CPU
time per KNN query while varying K from 5 to 50. Observe that the effect of k is not
very significant. The relationship of the performance of the three indexes is similar with
that of the range query performance.

5.2 Overall Performance

In this experiment, we study the overall performance of the three trees by combining
both update and query operations in the same workload. For the query operations, the
range queries and KNN queries are mixed with the proportion of 5 : 1, considering that
the range queries are more common. We vary the ratio of the number of queries over
the number of updates from 1 : 1000 to 100 : 1. Figure 6 shows the average overall
I/Os and CPU time for each operation. For the Bs-tree, S base of OTM is initialized us-
ing the results in subsection 5.1. The overall performance of the Bs-tree with different
proportion of updates and queries was recorded when the Bs-tree reached the steady
states. From this experiment, we can observe that the Bs-tree adjust its performance
in a self-tuning way. When the total update cost is much higher than the total query
cost, it automatically pays some more query cost to achieve lower update cost. While,
oppositely, when the total query cost is much higher than the total update cost, it au-
tomatically pays some more update cost to achieve better query performance. In this
way, the Bs-tree keeps good and smooth overall performance despite the change of the
workload. It can be seen that in almost all cases, the Bs-tree outperforms the TPR*-tree
and the Bx-tree in overall performance.

Fig. 6. Overall Performance

5.3 Self-tuning Performance

The above experiments show that the Bs-tree has good performance when it reaches the
steady states. However, if the performance degrades markedly when the Bs-tree is in the

14 N. Chen et al.

tuning procedures, it is still not appropriate for real use. In this experiment, we study
the self-tuning performance of the Bs-tree. We vary the proportion of the number of
queries over the number of updates from 1 : 100 to 100 : 1, and then return to 1 : 100.
Correspondingly, α = β of the Bs-tree tunes from initial value 4 to 1, and then return to
4. Note that as shown in section 5.2, since the query cost is much higher than the update
cost, the overall cost will increase with the ratio of queries, though it is much slighter for
the Bs-tree than for the TPR*-tree and the Bx-tree. Figure 7 shows the average overall
I/Os and CPU time for each operation. Here T indicts the performance when the Bs-tree
is in the tuning procedures, while S indicts the performance when the Bs-tree reaches
the steady states. We can see that the self-tuning cost of the Bs-tree is slight. During
the tuning procedures, the Bs-tree pays only a little more cost than that of reaching the
steady state later. And note that the length of a tuning procedure is only Tm. In addition,
we can see that the extra tuning cost of the Bs-tree from a higher α = β to a lower α = β
is slighter than that from a lower α = β to a higher α = β, since the methods of tuning
procedure are different. In conclusion, The Bs-tree can provide non-break index service
with good and smooth performance.

Fig. 7. Tuning Performance

5.4 Concurrency Performance

Finally, we study the concurrency performance, using a multi-thread program to simu-
late multi-user environments. To highlight the difference between the two B+-tree based
indexes, we do not show the result for the TPR*-tree since it has been shown to be inef-
ficient in a concurrent environment in [8] and [6]. The B-link technique [10] is used as
the concurrency control technique for the Bx-tree and the Bs-tree. We use a workload
varying the proportion of the number of query operations over the number of update
operations from 1 : 100 to 100 : 1, and then return to 1 : 100, with initial α = β = 4.
Figure 8 shows the average throughput and response time of the whole workload, while
varying the number of threads from 1 to 6. Throughput is the rate at which operations
could be served by the system and response time is the time interval between issuing
an operation and getting the response from the system when the task is successfully
completed. As expected, the Bs-tree outperforms the Bx-tree, basing the same B+-tree
structure and the same concurrency control technique. This is because when the update
operations dominate the overall performance, the Bs-tree with α = β = 4 has almost
the same update and query performance. While, in other cases, the Bs-tree with smaller
α = β pay slight more update cost to achieve significantly higher query performance,
which results much better overall performance than the Bx-tree.

Bs-tree: A Self-tuning Index of Moving Objects 15

Fig. 8. Concurrent Performance

6 Conclusion

With the development of moving object databases, requirements to handle the appli-
cations, where the ratio of update and query operations varies widely with time, are
becoming essential. In this paper, we propose a moving object index structure, namely
Bs-tree. The Bs-tree has the ability of adapting its update and query performance to
meet different requirements. We implement various algorithms for the Bs-tree. In addi-
tion, we present an online self-tuning framework which provides self-tuning for optimal
overall performance without interrupting the indexing service. Our experiment studies
show that, the Bs-tree achieves good and smooth overall performance with efficient self-
tuning procedures. Therefore, the proposed Bs-tree is efficient and suitable for dynamic
applications in which the proportion of query and update operations varies significantly
by time. For future work, we would study other self-tuning techniques for moving ob-
ject databases.

Acknowledgement

This work was supported in part by the National Science Foundation of China (NSFC
Grant No. 60803003, 60970124) and by Chang-Jiang Scholars and Innovative Research
Grant (IRT0652) at Zhejiang University.

References

1. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-Tree: An Efficient and Ro-
bust Access Method for Points and Rectangles. In: SIGMOD Conference, Atlantic City, NJ,
May 1990, pp. 322–331 (1990)

2. Benetis, R., Jensen, C.S., Karciauskas, G., Saltenis, S.: Nearest Neighbor and Reverse Near-
est Neighbor Queries for Moving Objects. VLDB J. 15(3), 229–249 (2006)

3. Chaudhuri, S., Narasayya, V.R.: An Efficient Cost-Driven Index Selection Tool for Microsoft
SQL Server. In: VLDB, Athens, Greece, August 1997, pp. 146–155 (1997)

4. Chen, N., Shou, L.-D., Chen, G., Dong, J.-X.: Adaptive Indexing of Moving Objects
with Highly Variable Update Frequencies. Journal of Computer Science and Technology
(JCST) 23(6), 998–1014 (2008)

5. Chen, S., Ooi, B.C., Tan, K.-L., Nascimento, M.A.: S2TB-Tree: A Self-Tunable Spatio-
Temporal B+-Tree Index for Moving Objects. In: SIGMOD Conference, Vancouver, BC,
Canada, June 2008, pp. 29–42 (2008)

16 N. Chen et al.

6. Guo, S., Huang, Z., Jagadish, H.V., Ooi, B.C., Zhang, Z.: Relaxed Space Bounding for Mov-
ing Objects: A Case for the Buddy Tree. SIGMOD Record (SIGMOD) 35(4), 24–29 (2006)

7. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD Con-
ference, Boston, Massachusetts, June 1984, pp. 47–57 (1984)

8. Jensen, C.S., Lin, D., Ooi, B.C.: Query and Update Efficient B+-Tree Based Indexing of
Moving Objects. In: VLDB, Toronto, Ontario, Canada, August 2004, pp. 768–779 (2004)

9. Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the Positions of Con-
tinuously Moving Objects. In: SIGMOD Conference, Dallas, Texas, USA, May 2000, pp.
331–342 (2000)

10. Srinivasan, V., Michael, Carey, J.: Performance of B-Tree Concurrency Algorithmss. In: SIG-
MOD Conference, Denver, Colorado, May 1991, pp. 416–425 (1991)

11. Tao, Y., Papadias, D., Sun, J.: The TPR*-Tree: An Optimized Spatio-Temporal Access
Method for Predictive Queries. In: VLDB, Berlin, Germany, September 2003, pp. 790–801
(2003)

12. Tao, Y., Zhang, J., Papadias, D., Mamoulis, N.: An Efficient Cost Model for Optimization
of Nearest Neighbor Search in Low and Medium Dimensional Spaces. IEEE Trans. Knowl.
Data Eng. (TKDE) 16(10), 1169–1184 (2004)

13. Yiu, M.L., Tao, Y., Mamoulis, N.: The Bdual-Tree: indexing moving objects by space filling
curves in the dual space. VLDB J. (VLDB) 17(3), 379–400 (2008)

	Bs-tree: A Self-tuning Index of Moving Objects
	Introduction
	Motivation
	Overview of the Proposed Techniques

	Related Work
	The Bs-tree
	Index Structure
	Query Algorithms

	Self-tuning of the Bs-tree
	Update and Query Performance Analysis
	Self-tuning Framework

	Experiments
	Basic Performance
	Overall Performance
	Self-tuning Performance
	Concurrency Performance

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

