

Lecture Notes in Computer Science 5982
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Hiroyuki Kitagawa Yoshiharu Ishikawa
Qing Li Chiemi Watanabe (Eds.)

Database Systems
for Advanced Applications

15th International Conference, DASFAA 2010
Tsukuba, Japan, April 1-4, 2010
Proceedings, Part II

13

Volume Editors

Hiroyuki Kitagawa
University of Tsukuba, Graduate School of Systems and Information Engineering
Tennohdai, Tsukuba, Ibaraki 305–8573, Japan
E-mail: kitagawa@cs.tsukuba.ac.jp

Yoshiharu Ishikawa
Nagoya University, Information Technology Center
Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
E-mail: ishikawa@itc.nagoya-u.ac.jp

Qing Li
City University of Hong Kong, Department of Computer Science
83 Tat Chee Avenue, Kowloon, Hong Kong, China
E-mail: itqli@cityu.edu.hk

Chiemi Watanabe
Ochanomizu University, Department of Information Science
2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
E-mail: chiemi@is.ocha.ac.jp

Library of Congress Control Number: 2010922033

CR Subject Classification (1998): H.2, H.3, H.4, H.5, C.2, J.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-12097-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-12097-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Message from the DASFAA 2010 Chairs

It is our great pleasure to welcome you to the proceedings of the 15th Interna-
tional Conference on Database Systems for Advanced Applications (DASFAA
2010). DASFAA is an international forum for academic exchange and technical
discussions among researchers, developers, and users of databases from academia,
business, and industry. DASFAA is a leading conference in the areas of databases,
large-scale data management, data mining, and the Web. We are delighted to
have held the 15th conference in Tsukuba during the cherry blossom season –
the very best season of the year.

The call for papers attracted 237 research submissions from 25 countries /
regions (based on the affiliation of the first author). Among them, 55 regular
papers and 16 short papers were selected for presentation after a thorough re-
view process by the Program Committee. The Industrial Committee, chaired by
Hideko S. Kunii and Umesh Dayal, selected 6 industrial papers for presentation
from 15 submissions and organized an industrial invited talk. The conference
program also included 22 demo presentations selected from 33 submissions by
the Demo Committee, chaired by Takahiro Hara and Kian-Lee Tan.

We are proud to have had two distinguished keynote speakers: Gerhard
Weikum (Max-Planck Institute for Informatics) and Raghu Ramakrishnan
(Yahoo! Research). Their lectures were the highlight of this conference. Tu-
torial Co-chairs, Kazutoshi Sumiya and Wookey Lee organized three tutorials
by leading experts: Mining Moving Objects, Trajectory and Traffic Data (by
Jiawei Han, Zhenhui Li, and Lu An Tang), Querying Large Graph Databases (by
Yiping Ke, James Cheng, and Jeffrey Xu Yu), and Introduction to Social Com-
puting (by Irwin King). A stimulating panel was organized by Panel Co-chairs
Yasushi Kiyoki and Virach Sornlertlamvanich. This rich and attractive confer-
ence program boasts conference proceedings that span two volumes in Springer’s
Lecture Notes in Computer Science series.

Beyond the main conference, Masatoshi Yoshikawa and Xiaofeng Meng, who
chaired the Workshop Committee, put together workshops that were of interest
to all. The workshop papers are included in a separate volume of proceedings
also published by Springer in its Lecture Notes in Computer Science series.

DASFAA 2010 was jointly organized by the University of Tsukuba and the
Database Society of Japan (DBSJ). It received in-cooperation sponsorship from
the KIISE Database Society of Korea, the China Computer Federation Database
Technical Committee, ARC Research Network in Enterprise Information In-
frastructure, Asian Institute of Technology (AIT), “New IT Infrastructure for
the Information-explosion Era,” MEXT Grant-in-Aid for Scientific Research on
Priority Areas, Japan, Information Processing Society of Japan (IPSJ), the
Institute of Electronics, Information, and Communication Engineers (IEICE),
Japan PostgreSQL Users Group, MySQL Nippon Association, and the Japanese

VI Message from the DASFAA 2010 Chairs

Firebird Users Group. We are grateful to the sponsors who contributed gener-
ously to making DASFAA 2010 successful. They are Beacon Information Tech-
nology Inc., Mitsubishi Electric Corporation, National Institute for Materials
Science (NIMS), KDDI R&D Laboratories Inc., National Institute of Advanced
Industrial Science and Technology (AIST), Ricoh Co., Ltd., NTT DATA Cor-
poration, Hitachi, Ltd., Ricoh IT Solutions Co., Ltd., SRA OSS, Inc., Japan,
and Nippon Telegraph and Telephone Corporation. We also appreciate financial
support from the Telecommunications Advancement Foundation and Kayamori
Foundation of Informational Science Advancement.

The conference would not have been possible without the support of many
colleagues. We would like to express our special thanks to Honorary Conference
Chair Yoshifumi Masunaga for his valuable advice on all aspects of organiz-
ing the conference. We thank Organizing Committee Chair Masaru Kitsuregawa
and Vice Chair Miyuki Nakano, DBSJ Liaison Haruo Yokota, Publicity Co-chairs
Jun Miyazaki and Hyoil Han, Local Arrangements Committee Chair Toshiyuki
Amagasa, Finance Chair Atsuyuki Morishima, Publication Chair Chiemi
Watanabe, and Web Chair Hideyuki Kawashima. We are grateful for the strong
support from the DASFAA 2010 Geographical Area Chairs: Bonghee Hong
(Korea), Li-Zhu Zhou (China), Jeffrey Xu Yu (Hong Kong), Ming-Syan Chen
(Taiwan), Stéphane Bressan (Singapore), Vilas Wuwongse (Thailand), Krithi
Ramamritham (India), James Bailey (Australia), Chen Li (America), and Peer
Kröger (Europe). Our thanks go to all the committee members and other indi-
viduals involved in putting it all together.

Finally, we thank the DASFAA Steering Committee, especially the immediate
past Chair, Kyu-Young Whang, and current Chair, Katsumi Tanaka, for their
leaderships and encouragement.

April 2010 Hiroyuki Kitagawa
Yoshiharu Ishikawa

Qing Li

Organization

Honorary Conference Chair

Yoshifumi Masunaga Aoyama Gakuin University, Japan

General Conference Chair

Hiroyuki Kitagawa University of Tsukuba, Japan

Organizing Committee Chair

Masaru Kitsuregawa The University of Tokyo, Japan

Organizing Committee Vice Chair

Miyuki Nakano The University of Tokyo, Japan

DBSJ Liaison

Haruo Yokota Tokyo Institute of Technology, Japan

Program Committee Co-chairs

Yoshiharu Ishikawa Nagoya University, Japan
Qing Li City University of Hong Kong, China

Industrial Committee Co-chairs

Hideko S. Kunii Ricoh IT Solutions Co., Ltd., Japan
Umesh Dayal HP Labs, USA

Tutorial Co-chairs

Kazutoshi Sumiya University of Hyogo, Japan
Wookey Lee Inha University, Korea

Panel Co-chairs

Yasushi Kiyoki Keio University, Japan
Virach Sornlertlamvanich NECTEC, Thailand

VIII Organization

Demo Committee Co-chairs

Takahiro Hara Osaka University, Japan
Kian-Lee Tan National University of Singapore, Singapore

Workshop Committee Co-chairs

Masatoshi Yoshikawa Kyoto University, Japan
Xiaofeng Meng Renmin University, China

Publicity Co-chairs

Jun Miyazaki Nara Institute of Science and Technology, Japan
Hyoil Han LeMoyne-Owen College, USA

Local Arrangements Committee Chair

Toshiyuki Amagasa University of Tsukuba, Japan

Finance Chair

Atsuyuki Morishima University of Tsukuba, Japan

Publication Chair

Chiemi Watanabe Ochanomizu University, Japan

Web Chair

Hideyuki Kawashima University of Tsukuba, Japan

Geographical Area Chairs

Korea: Bonghee Hong Pusan National University, Korea
China: Li-Zhu Zhou Tsinghua University, China
Hong Kong: Jeffrey Xu Yu Chinese University of Hong Kong, China
Taiwan: Ming-Syan Chen National Taiwan University, Taiwan
Singapore: Stéphane Bressan National University of Singapore, Singapore
Thailand: Vilas Wuwongse Asian Institute of Technology, Thailand
India: Krithi Ramamritham Indian Institute of Technology at Bombay,

India
Australia: James Bailey The University of Melbourne, Australia

Organization IX

America: Chen Li University of California, Irvine and BiMaple,
USA

Europe: Peer Kröger Ludwig-Maximilians-Universität München,
Germany

Best Paper Committee Co-chairs

Katsumi Tanaka Kyoto University, Japan
Kyu-Young Whang Korea Advanced Institute of Science and

Technology (KAIST), Korea
Jianzhong Li Harbin Institute of Technology, China

DASFAA Awards Committee

Tok Wang Ling (Chair) National University of Singapore, Singapore
Kyu-Young Whang Korea Advanced Institute of Science and

Technology (KAIST), Korea
Katsumi Tanaka Kyoto University, Japan
Kirthi Ramamirtham Indian Institute of Technology at Bombay, India
Jianzhong Li Harbin Institute of Technology, China
Dik Lun Lee Hong Kong University of Science & Technology,

China
Arbee L.P. Chen National Chengchi University, Taiwan

Steering Committee

Katsumi Tanaka (Chair) Kyoto University, Japan
Ramamohanarao University of Melbourne, Australia
Kotagiri (Vice Chair)
Kyu-Young Whang Korea Advanced Institute of Science

(Advisor) and Technology (KAIST), Korea
Yoshihiko Imai Matsushita Electric Industrial Co., Ltd., Japan

(Treasurer)
Kian-Lee Tan (Secretary) National University of Singapore, Singapore
Yoon Joon Lee Korea Advanced Institute of Science

and Technology (KAIST), Korea
Qing Li City University of Hong Kong, China
Krithi Ramamritham Indian Institute of Technology at Bombay, India
Ming-Syan Chen National Taiwan University, Taiwan
Eui Kyeong Hong Univerity of Seoul, Korea
Hiroyuki Kitagawa University of Tsukuba, Japan
Li-Zhu Zhou Tsinghua University, China
Jianzhong Li Harbin Institute of Technology, China
BongHee Hong Pusan National University, Korea

X Organization

Organizing Committee

Shuji Harashima Toshiba Corporation, Japan
Atsushi Iizawa Ricoh IT Solutions Co., Ltd., Japan
Minoru Inui Beacon IT Inc., Japan
Tatsuo Ishii SRA OSS, Japan
Hiroshi Ishikawa Shizuoka University, Japan
Kyoji Kawagoe Ritsumeikan University, Japan
Yutaka Kidawara National Institute of Information and

Communications Technology (NICT), Japan
Hajime Kitakami Hiroshima City University, Japan
Isao Kojima National Institute of Advanced Industrial Science

and Technology (AIST), Japan
Kazunori Matsumoto KDDI Lab., Japan
Masataka Matsuura Fujitsu Ltd., Japan
Hirofumi Matsuzawa IBM Japan, Japan
Shojiro Nishio Osaka University, Japan
Makoto Okamato Academic Resource Guide, Japan
Tetsuji Satoh University of Tsukuba, Japan
Jun Sekine NTT DATA Corporation, Japan
Shigenobu Takayama Mitsubishi Electric Cooporation, Japan
Takaaki Tasaka SGI Japan, Ltd., Japan
Yoshito Tobe Tokyo Denki University, Japan
Masashi Tsuchida Hitachi, Ltd., Japan
Masashi Yamamuro NTT Corporation, Japan
Kazumasa Yokota Okayama Prefectural University, Japan

Program Committee

Toshiyuki Amagasa University of Tsukuba, Japan
Masayoshi Aritsugi Kumamoto University, Japan
James Bailey University of Melbourne, Australia
Ladjel Bellatreche Poitiers University, France
Boualem Benatallah University of New South Wales, Australia
Sourav Bhowmick Nanyang Technological University, Singapore
Athman Bouguettaya CSIRO, Australia
Chee Yong Chan National University of Singapore, Singapore
Lei Chen Hong Kong University of Science and Technology,

China
Ming-Syan Chen National Taiwan University, Taiwan
Reynold Cheng University of Hong Kong, China
Gao Cong Aalborg University, Denmark
Bin Cui Peking University, China
Alfredo Cuzzocrea ICAR-CNR / University of Calabria, Italy
Zhiming Ding Chinese Academy of Sciences, China
Gill Dobbie University of Auckland, New Zealand

Organization XI

Guozhu Dong Wright State University, USA
Jianhua Feng Tsinghua University, China
Ling Feng Tsinghua University, China
Sumit Ganguly Indian Institute of Technology Kanpur, India
Yunjun Gao Zhejiang University, China
Lukasz Golab AT&T Labs, USA
Vivekanand Gopalkrishnan Nanyang Technological University, Singapore
Stéphane Grumbach INRIA, France
Wook-Shin Han Kyungpook National University, Korea
Takahiro Hara Osaka University, Japan
Kenji Hatano Doshisha University, Japan
Wynne Hsu National University of Singapore, Singapore
Haibo Hu Hong Kong Baptist University, China
Seung-won Hwang POSTECH, Korea
Mizuho Iwaihara Waseda University, Japan
Ramesh C. Joshi Indian Institute of Technology Roorkee, India
Jaewoo Kang Korea University, Korea
Norio Katayama National Institute of Informatics, Japan
Yutaka Kidawara National Institute of Information and

Communications Technology, Japan
Myoung Ho Kim Korea Advanced Institute of Science and

Technology (KAIST), Korea
Markus Kirchberg Institute for Infocomm Research, A*STAR,

Singapore
Hajime Kitakami Hiroshima City University, Japan
Jae-Gil Lee IBM Almaden Research Center, USA
Mong Li Lee National University of Singapore, Singapore
Sang-goo Lee Seoul National University, Korea
Sang-Won Lee Sungkyunkwan University, Korea
Wang-Chien Lee Pennsylvania State University, USA
Cuiping Li Renmin University, China
Jianzhong Li Harbin Institute of Technology, China
Ee-Peng Lim Singapore Management University, Singapore
Xuemin Lin University of New South Wales, Australia
Chengfei Liu Swinburne University of Technology, Australia
Jiaheng Lu Renmin University, China
Sanjay Madria University of Missouri-Rolla, USA
Nikos Mamoulis University of Hong Kong, China
Weiyi Meng Binghamton University, USA
Xiaofeng Meng Renmin University, China
Jun Miyazaki Nara Institute of Science and Technology, Japan
Yang-Sae Moon Kangwon National University, Korea
Yasuhiko Morimoto Hiroshima University, Japan
Miyuki Nakano University of Tokyo, Japan
Wolfgang Nejdl L3S / University of Hannover, Germany

XII Organization

Masato Oguchi Ochanomizu University, Japan
Tadashi Ohmori University of Electro-Communications, Japan
Makoto Onizuka NTT Cyber Space Laboratories, NTT

Corporation, Japan
Satoshi Oyama Hokkaido University, Japan
HweeHwa Pang Singapore Management University, Singapore
Jian Pei Simon Fraser University, Canada
Wen-Chih Peng National Chiao Tung University, Taiwan
Evaggelia Pitoura University of Ioannina, Greece
Sunil Prabhakar Purdue University, USA
Tieyun Qian Wuhan University, China
Krithi Ramamritham Indian Institute of Technology Bombay, India
Uwe Röhm University of Sydney, Australia
Shourya Roy Xerox India Innovation Hub, India
Yasushi Sakurai NTT Communication Science Laboratories, NTT

Corporation, Japan
Simonas Saltenis Aalborg University, Denmark
Monica Scannapieco University of Rome, Italy
Markus Schneider University of Florida, USA
Heng Tao Shen University of Queensland, Australia
Hyoseop Shin Konkuk University, Korea
Atsuhiro Takasu National Institute of Informatics, Japan
Kian-Lee Tan National University of Singapore, Singapore
David Taniar Monash University, Australia
Egemen Tanin University of Melbourne, Australia
Jie Tang Tsinghua University, China
Yufei Tao Chinese University of Hong Kong, China
Vincent S. Tseng National Cheng Kung University, Taiwan
Anthony K.H. Tung National University of Singapore, Singapore
Vasilis Vassalos Athens University of Economics and Business,

Greece
Guoren Wang Northeastern University, China
Jianyong Wang Tsinghua University, China
Jiying Wang City University of Hong Kong, China
Wei Wang University of New South Wales, Australia
Raymond Chi-Wing Wong Hong Kong University of Science and Technology,

China
Vilas Wuwongse Asian Institute of Technology, Thailand
Jianliang Xu Hong Kong Baptist University, China
Haruo Yokota Tokyo Institute of Technology, Japan
Ge Yu Northeastern University, China
Jeffrey Xu Yu Chinese University of Hong Kong, China
Rui Zhang University of Melbourne, Australia
Aidong Zhang University at Buffalo, SUNY, USA
Yanchun Zhang Victoria University, Australia
Aoying Zhou East China Normal University, China

Organization XIII

Industrial Committee

Rafi Ahmed Oracle, USA
Edward Chang Google, China and University of California Santa

Barbara, USA
Dimitrios Georgakopoulos CSIRO, Australia
Naoko Kosugi NTT Corporation, Japan
Kunio Matsui Nifty Corporation, Japan
Mukesh Mohania IBM Research, India
Yasushi Ogawa Ricoh Co. Ltd., Japan
Makoto Okamoto Academic Resource Guide, Japan
Takahiko Shintani Hitachi, Ltd., Japan

Demo Committee

Lin Dan Missouri University of Science and Technology,
USA

Feifei Li Florida State University, USA
Sanjay Kumar Madria Missouri University of Science and Technology,

USA
Pedro Jose Marron University of Bonn, Germany
Sebastian Michel Max-Planck-Institut für Informatik, Germany
Makoto Onizuka NTT CyberSpace Laboratories, NTT Corporation,

Japan
Chedy Raissi National University of Singapore, Singapore
Lakshmish Ramaswamy The University of Georgia, Athens, USA
Lidan Shou Zhejiang University, China
Lei Shu Osaka University, Japan
Tomoki Yoshihisa Osaka University, Japan
Koji Zettsu National Institute of Information and

Communications Technology, Japan
Xuan Zhou CSIRO, Australia

Workshop Committee

Qiang Ma Kyoto University, Japan
Lifeng Sun Tsinghua University, China
Takayuki Yumoto University of Hyogo, Japan

Local Arrangements Committee

Kazutaka Furuse University of Tsukuba, Japan
Takako Hashimoto Chiba University of Commerce, Japan
Yoshihide Hosokawa Gunma University, Japan
Sayaka Imai Sagami Women’s University, Japan

XIV Organization

Kaoru Katayama Tokyo Metropolitan University, Japan
Shingo Otsuka National Institute for Materials Science, Japan
Akira Sato University of Tsukuba, Japan
Tsuyoshi Takayama Iwate Prefectural University, Japan
Hiroyuki Toda NTT Corporation, Japan
Chen Han Xiong University of Tsukuba, Japan

External Reviewers

Sukhyun Ahn
Muhammed Eunus Ali
Mohammad Allaho
Parvin Asadzadeh
Seyed Mehdi

Reza Beheshti
Stéphane Bressan
Xin Cao
Ding Chen
Keke Chen
Shiping Chen
Yi-Ling Chen
Hong Cheng
Van Munin Chhieng
Taewon Cho
Jaehoon Choi
Tangjian Deng
Pham Min Duc
Takeharu Eda
Yuan Fang
Chuancong Gao
Shen Ge
Nikos Giatrakos
Kazuo Goda
Jian Gong
Yu Gu
Adnene Guabtni
Rajeev Gupta
Tanzima Hashem
Jenhao Hsiao
Meiqun Hu
Guangyan Huang
Oshin Hung
Rohit Jain
Bin Jiang
Lili Jiang

Qingsong Jin
Kaoru Katayama
Yoshihiko Kato
Hideyuki Kawashima
Hea-Suk Kim
Kyoung-Sook Kim
Georgia Koloniari
Susumu Kuroki
Injoon Lee
Jinseung Lee
Jongwuk Lee
Ki Yong Lee
Ki-Hoon Lee
Sanghoon Lee
Sunwon Lee
Yutaka I. Leon-Suematsu
Kenneth Leung
Guoliang Li
Jianxin Li
Jing Li
Lin Li
Xian Li
Yu Li
Bingrong Lin
Xin Lin
Yimin Lin
Xingjie Liu
Yifei Liu
Haibing Lu
Min Luo
Jiangang Ma
Chris Mayfield
Debapriyay

Mukhopadhyay
Tiezheng Nie
Sarana Nutanong

Ardian Kristanto
Poernomo

Yinian Qi
Meena Rajani
Harshana Randeni
Gook-Pil Roh
Jong-Won Roh
Seung Ryu
Sherif Sakr
Jie Shao
Zhitao Shen
Wanita Sherchan
Reza Sherkat
Liangcai Shu
Chihwan Song
Kazunari Sugiyama
Keiichi Tamura
Takayuki Tamura
Masashi Toyoda
Mayumi Ueda
Muhammad Umer
Daling Wang
Yousuke Watanabe
Ling-Yin Wei
Jemma Wu
Hairuo Xie
Kefeng Xuan
Masashi Yamamuro
Zenglu Yang
Jie (Jessie) Yin
Peifeng Yin
Tomoki Yoshihisa
Naoki Yoshinaga
Weiren Yu
Kun Yue
Dana Zhang

Organization XV

Rong Zhang
Shiming Zhang
Wenjie Zhang
Geng Zhao

Xiaohui Zhao
Bin Zhou
Rui Zhou
Xiangmin Zhou

Xuan Zhou
Gaoping Zhu
Ke Zhu
Qijun Zhu

Organizers

University of Tsukuba The Database Society of Japan (DBSJ)

In Cooperation with

KIISE Database Society of Korea
The China Computer Federation Database Technical Committee
ARC Research Network in Enterprise Information Infrastructure
Asian Institute of Technology (AIT)
“New IT Infrastructure for the Information-explosion Era”, MEXT (Ministry of

Education, Culture, Sports, Science and Technology) Grant-in-Aid for
Scientific Research on Priority Areas, Japan

Information Processing Society of Japan (IPSJ)
The Institute of Electronics, Information, and Communication Engineers

(IEICE)
Japan PostgreSQL Users Group
MySQL Nippon Association
The Japanese Firebird Users Group

XVI Organization

Sponsoring Institutions

Platinum Sponsors

BeaconIT, Japan MITSUBISHI ELECTRIC
CORPORATION, Japan

Gold Sponsors

National Institute for
Materials Science (NIMS),
Japan

KDDI R&D Laboratories
Inc., Japan

National Institute of
Advanced Industrial
Science and Technology
(AIST), Japan

Silver Sponsors

Ricoh Co., Ltd., Japan NTT DATA
CORPORATION, Japan

Hitachi, Ltd., Japan

Bronze Sponsors

Ricoh IT Solutions Co.,
Ltd., Japan

SRA OSS, Inc., Japan

Table of Contents – Part II

Trajectories and Moving Objects

Bs-tree: A Self-tuning Index of Moving Objects . 1
Nan Chen, Lidan Shou, Gang Chen, Ke Chen, and Yunjun Gao

Privacy-Preserving Location Publishing under Road-Network
Constraints . 17

Dan Lin, Sashi Gurung, Wei Jiang, and Ali Hurson

Incremental Clustering for Trajectories . 32
Zhenhui Li, Jae-Gil Lee, Xiaolei Li, and Jiawei Han

NNCluster: An Efficient Clustering Algorithm for Road Network
Trajectories . 47

Gook-Pil Roh and Seung-won Hwang

Skyline Queries

Dynamic Skyline Queries in Large Graphs . 62
Lei Zou, Lei Chen, M. Tamer Özsu, and Dongyan Zhao

Top-k Combinatorial Skyline Queries . 79
I-Fang Su, Yu-Chi Chung, and Chiang Lee

Extract Interesting Skyline Points in High Dimension 94
Gabriel Pui Cheong Fung, Wei Lu, Jing Yang, Xiaoyong Du, and
Xiaofang Zhou

Transitivity-Preserving Skylines for Partially Ordered Domains 109
Henning Köhler, Kai Zheng, Jing Yang, and Xiaofang Zhou

Finding the Most Desirable Skyline Objects . 116
Yunjun Gao, Junfeng Hu, Gencai Chen, and Chun Chen

Privacy and Security

Multiple Sensitive Association Protection in the Outsourced
Database . 123

Xiao Jiang, Jun Gao, Tengjiao Wang, and Dongqing Yang

A Semantic Information Loss Metric for Privacy Preserving
Publication . 138

Yu Liu, Ting Wang, and Jianhua Feng

XVIII Table of Contents – Part II

On t-Closeness with KL-Divergence and Semantic Privacy 153
Chaofeng Sha, Yi Li, and Aoying Zhou

Competitive Privacy: Secure Analysis on Integrated Sequence Data 168
Raymond Chi-Wing Wong and Eric Lo

Privacy-Preserving Publishing Data with Full Functional
Dependencies . 176

Hui (Wendy) Wang and Ruilin Liu

Data Streams

Scalable Splitting of Massive Data Streams . 184
Erik Zeitler and Tore Risch

Constraint-Aware Complex Event Pattern Detection over Streams 199
Ming Li, Murali Mani, Elke A. Rundensteiner, and Tao Lin

Attribute Outlier Detection over Data Streams . 216
Hui Cao, Yongluan Zhou, Lidan Shou, and Gang Chen

Similarity Search and Event Processing

ISIS: A New Approach for Efficient Similarity Search in Sparse
Databases . 231

Bin Cui, Jiakui Zhao, and Gao Cong

Highly Scalable Multiprocessing Algorithms for Preference-Based
Database Retrieval . 246

Joachim Selke, Christoph Lofi, and Wolf-Tilo Balke

IO3: Interval-Based Out-of-Order Event Processing in Pervasive
Computing . 261

Chunjie Zhou and Xiaofeng Meng

Peer-to-Peer Similarity Search Based on M-Tree Indexing 269
Akrivi Vlachou, Christos Doulkeridis, and Yannis Kotidis

Storage and Advanced Topics

Update Migration: An Efficient B+ Tree for Flash Storage 276
Chang Xu, Lidan Shou, Gang Chen, Cheng Yan, and Tianlei Hu

Optimizing Write Performance for Read Optimized Databases 291
Jens Krueger, Martin Grund, Christian Tinnefeld, Hasso Plattner,
Alexander Zeier, and Franz Faerber

Table of Contents – Part II XIX

Towards an Algebraic Framework for Querying Inductive Databases 306
Hong-Cheu Liu, Aditya Ghose, and John Zeleznikow

Efficient Aggregate Licenses Validation in DRM . 313
Amit Sachan, Sabu Emmanuel, and Mohan S. Kankanhalli

Industrial

Development Procedure of the Cloud-Based Applications 320
Masayoshi Hagiwara

Rapid Development of Web Applications by Introducing Database
Systems with Web APIs . 327

Takeru Inoue, Hiroshi Asakura, Yukio Uematsu, Hiroshi Sato, and
Noriyuki Takahashi

A General Maturity Model and Reference Architecture for SaaS
Service . 337

Seungseok Kang, Jaeseok Myung, Jongheum Yeon, Seong-wook Ha,
Taehyung Cho, Ji-man Chung, and Sang-goo Lee

Lazy View Maintenance for Social Networking Applications 347
Keita Mikami, Shinji Morishita, and Makoto Onizuka

Birds Bring Flues? Mining Frequent and High Weighted Cliques from
Birds Migration Networks . 359

MingJie Tang, Weihang Wang, Yexi Jiang, Yuanchun Zhou,
Jinyan Li, Peng Cui, Ying Liu, and Baoping Yan

Performance Improvement of OpenJPA by Query Dependency
Analysis . 370

Miki Enoki, Yosuke Ozawa, and Tamiya Onodera

Chimera: Stream-Oriented XML Filtering/Querying Engine 380
Tatsuya Asai, Shin-ichiro Tago, Hiroya Inakoshi,
Seishi Okamoto, and Masayuki Takeda

Demo

Privacy and Anonymization as a Service: PASS . 392
Ghasem Heyrani-Nobari, Omar Boucelma, and Stéphane Bressan

Visual Evaluation of Outlier Detection Models . 396
Elke Achtert, Hans-Peter Kriegel, Lisa Reichert, Erich Schubert,
Remigius Wojdanowski, and Arthur Zimek

XX Table of Contents – Part II

ADERIS: Adaptively Integrating RDF Data from SPARQL
Endpoints . 400

Steven Lynden, Isao Kojima, Akiyoshi Matono, and
Yusuke Tanimura

Outline of Community-Type Content Based on Wikipedia 404
Akiyo Nadamoto, Eiji Aramaki, Takeshi Abekawa, and
Yohei Murakami

BISCAY: Extracting Riding Context from Bike Ride Data 408
Keiji Sugo, Manabu Miyazaki, Shin’ichi Konomi,
Masayuki Iwai, and Yoshito Tobe

SERPWatcher: A SERP Mining Tool as a Novel Social Survey Method
in Sociology . 412

Yoshifumi Masunaga, Naoko Oyama, Chiemi Watanabe,
Kazunari Ito, Kaoru Tachi, and Yoichi Miyama

Corona: Energy-Efficient Multi-query Processing in Wireless Sensor
Networks . 416

Raymes Khoury, Tim Dawborn, Bulat Gafurov, Glen Pink,
Edmund Tse, Quincy Tse, K. Almi’Ani, Mohamed Gaber,
Uwe Röhm, and Bernhard Scholz

Aquiba: An Energy-Efficient Mobile Sensing System for Collaborative
Human Probes . 420

Niwat Thepvilojanapong, Shin’ichi Konomi, Jun’ichi Yura,
Takeshi Iwamoto, Susanna Pirttikangas, Yasuyuki Ishida,
Masayuki Iwai, Yoshito Tobe, Hiroyuki Yokoyama,
Jin Nakazawa, and Hideyuki Tokuda

A Shoes-Integrated Sensing System for Context-Aware Human
Probes . 424

Kazumasa Oshima, Yasuyuki Ishida, Shin’ichi Konomi,
Niwat Thepvilojanapong, and Yoshito Tobe

DigestJoin: Expediting Joins on Solid-State Drives 428
Shen Gao, Yu Li, Jianliang Xu, Byron Choi, and Haibo Hu

A Large Scale Key-Value Store Based on Range-Key Skip Graph and
Its Applications . 432

Susumu Takeuchi, Jun Shinomiya, Toru Shiraki, Yoshimasa Ishi,
Yuuichi Teranishi, Mikio Yoshida, and Shinji Shimojo

Answering Range-Aggregate Queries over Objects Generating Data
Streams . 436

Marcin Gorawski and Rafal Malczok

Table of Contents – Part II XXI

Real-Time Log Analysis Using Hitachi uCosminexus Stream Data
Platform . 440

Yoshiyuki Hayashida, Nobuhiro Ioki, Naomi Arai, and
Itaru Nishizawa

Anddy: A System for Author Name Disambiguation in Digital
Library . 444

Jia Zhu, Gabriel Pui Cheong Fung, and Xiaofang Zhou

A System for Keyword Search on Hybrid XML-Relational Databases
Using XRjoin . 448

Liru Zhang, Tadashi Ohmori, and Mamoru Hoshi

MediaMatrix: A Video Stream Retrieval System with Mechanisms for
Mining Contexts of Query Examples . 452

Shuichi Kurabayashi and Yasushi Kiyoki

Application Developments in Mashup Framework for Selective
Browsing . 456

Takakazu Nagamine and Tomio Kamada

Retrieving System of Presentation Contents Based on User’s Operations
and Semantic Contexts . 460

Daisuke Kitayama and Kazutoshi Sumiya

Fuzzy Keyword Search on Spatial Data . 464
Sattam Alsubaiee and Chen Li

Adaptive Recommendation for Preferred Information and Browsing
Action Based on Web-Browsing Behavior . 468

Kosuke Takano and Kin Fun Li

BIDEL: An XML-Based System for Effective Fast Change Detection of
Genomic and Proteomic Data . 472

Song Yang and Sourav S. Bhowmick

DISTRO: A System for Detecting Global Outliers from Distributed
Data Streams with Privacy Protection . 477

Ji Zhang, Stijn Dekeyser, Hua Wang, and Yanfeng Shu

Tutorials and Panels

Introduction to Social Computing . 482
Irwin King

Mining Moving Object, Trajectory and Traffic Data 485
Jiawei Han, Zhenhui Li, and Lu An Tang

XXII Table of Contents – Part II

Querying Large Graph Databases . 487
Yiping Ke, James Cheng, and Jeffrey Xu Yu

Future Directions of Innovative Integration between Multimedia
Information Services and Ubiquitous Computing Technologies 489

Yasushi Kiyoki and Virach Sornlertlamvanich

Author Index . 491

Bs-tree: A Self-tuning Index of Moving Objects

Nan Chen, Lidan Shou, Gang Chen, Ke Chen, and Yunjun Gao

College of Computer Science, Zhejiang University, China
{cnasd715,should,cg,chenk,gaoyj}@cs.zju.edu.cn

Abstract. Self-tuning database is a general paradigm for the future development
of database systems. However, in moving object database, a vibrant and dynamic
research area of the database community, the need for self-tuning has so far been
overlooked. None of the existing spatio-temporal indexes can maintain high per-
formance if the proportion of query and update operations varies significantly
in the applications. We study the self-tuning indexing techniques which balance
the query and update performances for optimal overall performance in moving
object databases. In this paper, we propose a self-tuning framework which relies
on a novel moving object index named Bs-tree. This framework is able to op-
timize its own overall performance by adapting to the workload online without
interrupting the indexing service. We present various algorithms for the Bs-tree
and the tuning techniques. Our extensive experiments show that the framework
is effective, and the Bs-tree outperforms the existing indexes under different cir-
cumstances.

Keywords: spatio-temporal database, moving object, index, self-tuning.

1 Introduction

With the rapid progress in hardware and software technologies, the database systems
and applications are becoming increasingly more complex and dynamic, however at
lower costs than ever. As a result, the traditional solution of employing database ad-
ministrators to maintain and fine-tune the DBMS for higher performance has appeared
to be inefficient and uneconomical. The self-tuning functionality of databases is ex-
pected to be the substitute for DBAs. Intuitively, a self-tuning database provides practi-
cal solutions to adjust itself automatically for optimal performance with minimal human
intervention. In the past years, a lot works (e.g., [3]) have been done to extend the self-
tuning capabilities of database systems. However, the existing works so far are mainly
restricted to traditional static databases.

1.1 Motivation

The recent emergence of numerous moving object database applications, such as traf-
fic control, meteorology monitoring, mobile location computing and so on, has called
on for self-tuning techniques in the moving object databases as well. In the numerous
techniques proposed for managing moving object databases, index design appears to be
the spotlight. Therefore, we shall look at the self-tuning techniques for moving object
indexes. The problem that we consider for tuning is the update and query performance.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 1–16, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 N. Chen et al.

We observe that the update and query performances of moving object indexes dis-
play interesting patterns if we classify the existing indexes into two major categories
regarding the data representations that they use [5]. The first class includes R/R*-tree-
based indexes, such as the TPR-tree [9] and the TPR*-tree [11]. This class is character-
ized by good query performance but expensive update costs. The second class includes
techniques that employ space partitioning and data/query transformations to index ob-
ject positions, such as the Bx-tree [8]. As it is based on the B+-tree, the Bx-tree has
good update performance. However, it does not achieve satisfactory query efficiency, as
shown in [13]. In addition, the second class has better concurrency performance than
the first, because, as shown in [8,6], the concurrency control in a R/R*-tree-based index
is more complex and time-consuming than that in a B+-tree-based index.

The above observation leads to the implication that the current moving-object index-
ing techniques encounter difficulty when handling variable needs in the proportion of
query and update operations. Given some examples of these applications, an aviation
monitoring system may need more query operations, and oppositely make fewer up-
dates to the database. While an animal position tracking system may require far more
updates than queries. In addition, there are also applications which require variable ratio
of updates and queries at different time. For example, in a traffic monitoring system of
a city, the proportions of updates and queries may vary widely by time. It may receive
increased updates during the rush hour, and process more queries at the report time.

To solve the problem with these dynamic applications, we need a self-tunable in-
dex structure which is able to strike a balance between the performance of queries
and updates, thereby achieving good overall performance for different proportion of
updates and queries. In addition, the self-tuning of the index should not interrupt the
index service. Based on the discussion in the above, none of the existing moving ob-
ject indexes can satisfy such requirements readily. They suffer from either poor query
performance or large update costs, and does not have the ability of self-tuning. In fact,
the performance of queries and that of updates usually affect each other, and are often
anti-correlated in most of the existing indexes. Therefore, they are not appropriate for
these environments. We believe this problem has so far been overlooked.

1.2 Overview of the Proposed Techniques

In this paper, we propose an online self-tuning framework for indexing moving-objects
based on a novel data structure called Bs-tree. The Bs-tree provides the functionality of
self-tuning, and can adaptively handle both queries and updates efficiently. Our frame-
work uses an update parameter α and a query parameter β to tune the performance
of the Bs-tree. Figure 1 shows the components of the proposed self-tuning framework.
When an update arrives, the Key Generator Module (KGM) computes the index keys
according to the update parameter α of the index, inserts them into the Bs-tree and re-
ports the update cost to the Online Tuning Module (OTM). On the other hand, when a
query arrives, the Query Executor Module (QEM) processes the query according to the
query parameter β of the index and reports the query cost to OTM. OTM monitors the
performance and controls the tuning.

The proposed Bs-tree has many desirable features. It can provide self-tuning for op-
timal overall performance without interrupting the indexing service. When the query

Bs-tree: A Self-tuning Index of Moving Objects 3

Query

Executor

Key

Generator

Online

Tuning
α

β

Timer

sB

tree

−

Update

Query Result

Manual

Setting

Fig. 1. Online Self-tuning Framework

cost dominates the overall performance, the Bs-tree achieves considerably higher per-
formance of queries, at the expense of slightly more update costs. In contrast, if the
update cost dominates the overall performance, the Bs-tree will sacrifice some query
performance to obtain lower update costs. Our extensive experiments show that the Bs-
tree outperforms the existing indexes in different environments. Another advantage of
the Bs-tree is that it is based on the classical B+-tree. Therefore it can be easily imple-
mented in the existing DBMSs and is expected to have good concurrency performance.
Table 1 summarizes the properties of the Bs-tree compared to the previous indexes.

Table 1. Comparison of predictive indexes of moving objects.

Query Cost Update Cost DBMS integration Self-Tuning Concurrency
Bx HIGH LOW EASY NO HIGH
TPR* LOW HIGH HARD NO LOW
Bs LOW LOW EASY YES HIGH

The rest of the paper is organized as follows. Section 2 reviews related work. Section
3 describes the structure of the Bs-tree, and presents the associated query and update
operations. Section 4 analyzes the I/O cost of the Bs-tree, and introduces how the online
self-tuning framework works. Section 5 presents the results of the experiments. Section
6 conludes the paper and discusses possible future work.

2 Related Work

Lots of index structures have been proposed to index the current and predicted future
positions of moving objects. According to [5], these indexes can be classified into two
major categories depending on the trees they are based on. The first category is the
R/R*-tree-based indexes which base on the R-tree [7] and the R*-tree [1], such as the
Time-Parameterized R-tree (TPR-tree) [9] and its variant, the TPR*-tree [11]. A node
in the TPR-tree is represented as a MOving Rectangle (MOR), including a Minimum

4 N. Chen et al.

Bounding Rectangle (MBR) and a velocity Bounding Rectangle (VBR). The extent of
a MBR grows according to its VBR and it never shrinks, although it is generally larger
than strictly needed. This guarantees that every MBR always bounds the objects that
belong to it at all times considered. The update algorithm of the TPR-tree is exactly
the same as those of the R*-tree, by simply replacing the four penalty metrics of the
R*-tree with their integral counterparts. Based on the same structure, the TPR*-tree
provides a new set of insertion and deletion algorithms aiming at minimizing a certain
cost function. In the TPR-tree and the TPR*-tree, predictive query for a future time
t is processed by visiting MBRs expanded to t. The TPR-tree and the TPR*-tree are
deployed to solve a large number of spatio-temporal query problems (e.g., [2] for KNN
queries). However, they have a major weakness: the update costs are expensive.

The second category of indexes relies on space partitioning and data/query transfor-
mations, such as the B+-tree based indexes [8] [5] [13]. The Bx-tree [8] is the first effort
to adapt the B+-tree to index moving objects. It partitions the time axis into equal inter-
vals, called phases, and partitions the data space into uniform cells. An index partition
of the B+-tree is reserved for each phase. When an insertion operation of a moving
object arrives, the Bx-tree computes the position of this object at the end timestamp of
the next phase, and transforms this position to a value of the space-filling curve, such as
the Hilbert-curve and Z-curve. This value is then indexed in the corresponding partition
of the B+-tree. To process a range query, the Bx-tree checks each existing partition for
qualifying objects. Specifically, in one partition, the Bx-tree enlarges the query window
to the end timestamp of the corresponding phase. It first enlarges the query window ac-
cording to the minimum and maximum velocities of all moving objects, and then makes
the enlargement exacter using the space velocity histogram which records the minimum
and maximum velocities of the space cells. Then the Bx-tree scans all multiple ranges
of index keys which fall within the enlarged query window, and checks the correspond-
ing moving objects to finds the ones satisfying the query. Since each partition of the
B+-tree has to be checked, the query processing of the Bx-tree is not efficient, as shown
by both the experiment results of [13] and those of ours.

The Bdual-tree in [13] also uses a B+-tree to index moving objects. However, it in-
dexes objects in a dual space instead, considering both location and velocity information
to generate index keys. The Bdual-tree maintains a set of MORs for each internal entry,
and uses R-tree-like query algorithms as in the TPR/TPR*-tree. A range query searches
the subtree of an internal entry only if any of its MORs intersects with the query region.
By partitioning the velocity space, the Bdual-tree improves the query performance of
the Bx-tree. However, maintaining the MORs introduces high computation workload,
which slows down the fast update and high concurrency of the B+-Tree. It has worse
update performance than the Bx-tree, and worse query performance than the TPR*-tree.
In addition, by modifying the update and query algorithms of the B+-tree, the Bdual-tree
can no longer be readily integrated into existing DBMSs.

Besides the query and update performance, there are some other issues with the mov-
ing object indexes. [4] proposes a series of B+-tree-based indexes structures to handle
the problem of doubtful positive. When the update durations of moving objects are highly
variable, the result of a predictive query may contain frequently updated objects whose
states would be updated much earlier than the future query timestamp. These result

Bs-tree: A Self-tuning Index of Moving Objects 5

objects are apparently doubtful and are called doubtful positives. The work in [4] in-
troduces the concept of prediction life period for every moving object to handle predic-
tive queries with no doubtful positive. In addition, different indexes in [4] have different
balance of update performance and query performance. However, these indexes have no
ability of self-tuning. The DBA has to decide to choose which index to satisfy the appli-
cation. And, when the requirement of the application changes, the DBA has to stop the
index service, delete the current index, choose and rebuild another index. The S T 2B-tree
[5] is a self-tuning index of moving objects, based on the B+-tree. However, the problem
it addresses is the varying distribution of moving objects over time and space, while our
work focuses on the change of the proportion of query and update operations.

3 The Bs-tree

3.1 Index Structure

The Bs-tree is built on the B+-tree without any change to the underlying B+-tree struc-
ture and insertion/deletion algorithms, thus is readily implementable in existing DBMS.
In order to support B-link concurrency control, each internal node contains a pointer to
its right sibling. A moving object is transformed to one or more 1D keys and indexed
by the Bs-tree. We now introduce how the transformation works.

As [4], in order to handle the problem of doubtful positive, we also define a predic-
tion life period, tper for each moving object, as the interval from its last update times-
tamp to the next update timestamp. It is the future within which the current information
of this moving object is predicted to be right, and it can be updated. Similar to all the
above existing works of moving object indexes, moving objects in the Bs-tree are mod-
eled as linear functions of time. Therefore, the position of a moving object at time t is
given by O = (x, v, tre f , tper) = x(t) = (x1(t), x2(t), ..., xd(t)), where tre f < t < tre f + tper.
Here, x and v is the location and velocity of the moving object at the reference time
tre f . Thus, x(t) = x + v ∗ (t − tre f). For each query, the query interval indicates how
far the query “looks“ into the future. If the query interval of a query exceeds tper of a
moving object, this object is considered as a doubtful positive and will not appear in the
result.

We partition the time axis into intervals of duration Tm, and then sub-partition each Tm

into n equal-length sub-intervals of duration, each at length of Tsam, called phases. We
label each phase with a timestamp tlab which is the end time point of this phase. Unlike
the Bx-tree which samples a moving object exact once, the Bs-tree samples a moving
object one or more times. We introduce an update parameter α for the Bs-tree, where
1 ≤ α ≤ n + 1. When an insertion of a moving object arrives, the Bs-tree computes the
positions at tlab of every α phases located between tlab = [tre f]l and tlab = [tre f + tper]l,
where [t]l means the nearest future tlab of t. For each sampling, the Bs-tree maps the
position to a signal-dimensional value, called KEYsam, using the Hilbert curve. This value
is concatenated with the phase number of its tlab, called KEYlab, to generate the index
key values Bvalue, which is then inserted to a B+-tree. The relationship and computation
methods are as follow:

6 N. Chen et al.

0 0

t

(a) (b)

Fig. 2. An example of Insertion and Query in the Bs-tree

Bvalue = KEYlab ⊕ KEYsam,

KEYlab = (tlab/(Tm/n)) mod (n + 1),

KEYsam = Curve(x(tlab)).

In figure 2, the solid lines with arrowheads show an insertion case of the Bs-tree
when α = 1 and α = 2. We can see how a moving object is sampled, according to
its prediction life period tper and the update parameter α. The Bs-tree contains data
belonging to n + 1 phases, and thus it includes n + 1 sub-trees, or partitions. As time
passes, repeatedly the oldest partition expires, and a new one is appended. Therefore,
the index rolls over. An update of a moving object deletes its old sampled values and
inserts new ones. Except maintaining the space velocity histogram Hs as the Bx-tree,
the Bs-tree also maintain a partition velocity histogram Hp, which stores the maximum
and minimum velocities of the moving objects that inserted into each partition.

3.2 Query Algorithms

A range query Qr(R, tq) retrieves all moving objects which intersect the query region
R at the query time tq, which does not precede the current time. We introduce a query

Algorithm Range Query Qr(R, tq)
Input: R is the query window and tq is the query time.
Output: All objects in R at tq within their tper s
1. tlab ← [tq]l

2. For k ← 1 to β
3. R′ = ExpandWindow(R, tq, tlab,Hp,Hs)
4. For each key range in R′

5. For each moving object in the key range
6. Compute its position at tq

7. If it is in R at tqwithin its tper

8. Add it to the result set
9. Find the next key range
10. If not found
11. Break
12. tlab ← [tq]l − Tsam/n
13.Return result set

Fig. 3. Range Query Algorithm

Bs-tree: A Self-tuning Index of Moving Objects 7

parameter β for the Bs-tree. Unlike the Bx-tree which expands query windows to each
partition, the Bs-tree only expands query windows β times to the phase which tq belongs
to and the β − 1 ones before. In figure 2, the dashed lines with arrowheads show the
phases which a query window is expanded to when β = 1 and β = 2. We will discuss
the relationship between α and β in section 4.2.

Figure 3 shows the range query algorithm of the Bs-tree. The algorithm searches the
partition which the query time belongs to and the β − 1 ones before (Line 2). For each
partition, it expands the query window from the query time tq to the end timestamp tlab

of the corresponding phase (Line 3). Here, Hp indicts the partition velocity histogram
and Hs indicts the space velocity histogram. The enlargement first expand the window
according to the maximum and minimum velocities of the corresponding phases in Hp

to get a preliminary window Rpre, and then finds the minimum and maximum veloci-
ties in the cells that Rpre intersects, using Hs, to get the exacter expanded window R′.
After the enlargement, the algorithm can get several key ranges in R′, which are one-
dimensional intervals of index values falling within the expanded query window R′. For
each key range, a range query of the B+-tree is executed (Line 4). For each object found
in the key range, the algorithm checks whether it is in R at tq within its tper . If so, the
object satisfies the query and is added to the result set (Line 5-8).

A KNN query QKNN (p, tq, k) retrieves k moving objects for which no other moving
objects are nearer to o at tq. As in the Bx-tree, a KNN query of the Bs-tree is handled
as incremental range queries Qr(R, tq) until exact k nearest neighbors are found. The
initial search range is a region centered at pt with extension r = Dk/k, where pt is the
position of p at tq. If the KNNs are not found in this region, it extends the search radius
by r as in [12]. Dk is estimated by the equation as in [8] [5]:

Dk =
2√
π

[1 −
√

1 − √k/N].

Note that, during the incremental range queries, the query window of a range query will
contain the former one. Therefore, for the KNN queries of the Bs-tree, we record the
expanded window of a range query for each partition. When processing the next range
query, the area covered by the former expanded window does not need to be checked.

4 Self-tuning of the Bs-tree

In this section, we first analyze the update and query I/O cost of the Bs-tree. And then
basing on the analysis, we introduce the online self-tuning framework of the Bs-tree.

4.1 Update and Query Performance Analysis

First, let us focus on the update performance of the Bs-tree. For a B+-based-tree, the
height of the tree is usually significantly important for the update performance. Assum-
ing that the Bs-tree maintains N values, has the fan-out of F, and its nodes are filled
with at least F/2 values. So the height is H = logF/2 N + 1 at the most. Since sampling
a moving object for one or more times, the Bs-tree may ask for a bigger N than the
Bx-tree. However, with a big F which is usually in the hundreds, such a bigger N will

8 N. Chen et al.

seldom affect H. As most indexes of moving objects, update of a moving object in the
Bs-tree is a deletion operation followed by an insertion operarion. Therefore, the total
update I/O cost of the Bs-tree is the sum of the deletion and insertion cost:

IOupd = IOdel + IOins =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
[
tre f + tper

]
l
−
[
tre f

]
l

Tsam ∗ α

⎤⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎣
[
t′re f + t′per

]
l
−
[
t′re f

]
l

Tsam ∗ α′
⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∗ H.

Here, [a] means the smallest integer which is no smaller than a. Note that, for a moving
object, among different updates, the prediction life period tper and the update parameter
α can change. We can see that the I/O cost of an update is only several times the tree
height. Since H and Tsam are fixed, and tre f and tper are depended on the moving object
itself, the update parameter α is the most important issue of the update cost. The update
performance increases with α. We can tunes the update performance by tuning α.

Second, let us turn to the query performance of the Bs-tree. The Bs-tree handles
range queries using the method of query window enlargement. It expands the query
window for β times and traverses β partitions of the tree. Therefore, the total query I/O
cost is the sum of the cost of the β partition traverses:

IOupd =

β∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
m∑

j=1

(
H − 1 + R j

)⎞⎟⎟⎟⎟⎟⎟⎠.
Here, for each partition traverse, m is the number of key ranges falling in the expanded
window. For each key range, there is a unique search followed by a range search in the
B+-tree. Specially, the I/O cost of a unique search is H − 1 internal nodes of the index,
while the I/O cost of the range search is R j leaf nodes of the index. Figure 4 gives an
range query example of the figure 2 (b) where α = β = 2. O is the position of the
moving object o at the reference time. B1 is its first key value sampled in the Bs-tree,
while B2 is not visible in figure 4. The shadowed rectangle is the original query window.
It is expanded twice, one to the phase tq belongs to and one for the phase before. In the
first enlargement, there are two key ranges without containing any sampling value of o.
While, in the second enlargement, after two unique-range scans of the B+-tree, it finds
B1. There are totally two enlargement and four unique-range scans for this range query.

The total cost of a range query is decided by the number of partition traverses: β.
While, for each partition traverse, the cost is decided by the number and length of the

1B

1B

O

(a) (b)

Fig. 4. An example of Query Analysis

Bs-tree: A Self-tuning Index of Moving Objects 9

key ranges. The larger the query window is expanded, the more and longer the key
ranges it contains. The enlargement velocities and the enlargement time interval are the
two issues of the query window enlargement. For the first issue, except the space veloc-
ity histogram used by the Bx-tree, the Bs-tree also uses the partition velocity histogram
to make the enlargement velocities exacter. As for the second issue, the enlargement
time interval set S eti of the β enlargement is estimated as follow:

S eti = {
∣∣∣tq − [tq]l

∣∣∣ , Tsam −
∣∣∣tq − [tq]l

∣∣∣ , ..., (β − 1) ∗ Tsam −
∣∣∣tq − [tq]l

∣∣∣}.
Here,

∣∣∣tq − [tq]l

∣∣∣ is the enlargement time interval of the phase which tq belongs to, while
the k ∗ Tsam −

∣∣∣tq − [tq]l

∣∣∣ is the enlargement time interval of the kth phase of the β − 1
phases before. Therefore, the biggest enlargement time interval is MAX(

∣∣∣tq − [tq]l

∣∣∣ , (β−
1) ∗ Tsam −

∣∣∣tq − [tq]l

∣∣∣). The enlargement time interval increases with β. The bigger β
is, the larger a query window is expanded, and the higher the partition traverse cost is.
In summary, we can see that the query parameter β is the most important issue of the
range query costs. It not only decides the times of query window enlargement, but also
effects how large a query window is expanded to.

As for KNN queries of the Bs-tree, since a KNN query is handled as incremental
range queries, the I/O cost can be approximately estimated as the I/O cost of the last
range query. However, it will be a little bigger. This is because, although the range
queries in a KNN query of the Bs-tree do not check the same key values repeatedly,
a continuous key range within the expanded window of the last range query may be
divided by different range queries. Some additional unique scans are asked for, and
some leaf nodes shared by different range queries are accessed several times. However,
for the cost of KNN queries, the query parameter β is still the most important issue. To
sum up, we can tunes the query performance of the Bs-tree by tuning β.

In addition, from the above analysis, we can also observe that since Tsam = Tm/n,
n effects both update performance and query performance. A larger n results in more
partitions and may require more update costs in the Bs-tree. While a smaller n results
in larger query window enlargement, which increases the query cost. In this paper we
choose n = 3, as the previous experiments of B+-based-tree of moving objects in [4]
show that it is an appropriate balance value.

4.2 Self-tuning Framework

From the above analysis, we find that the update and query performance of the Bs-tree
can be tuned by the update parameter α and the query parameter β. However, α and β
can not be changed arbitrarily. We should guarantee the correctness of the queries.

Theorem 1. As long as β is no less than all α of all moving objects, the query correct-
ness of the Bs-tree can be guaranteed. That is, given a query, the Bs-tree can find all
moving objects which satisfy the query in their tper s.

Proof: For a moving object o(tre f , tper, αo), where αo is its current update parameter, it
will be sampled at following time:

{[tre f]l, [tre f]l + αo ∗ Tsam, [tre f]l + αo ∗ 2 ∗ Tsam, ..., [tre f]l + αo ∗ m ∗ Tsam}.

10 N. Chen et al.

Here, [tre f]l +αo ∗m ∗Tsam is the biggest tlab which is not bigger than tre f + tper. Given a
future query Q(tq) where tre f ≤ [tq]l ≤ tre f + tper, assuming that o satisfies Q at tq and the
query parameter β < αo, if [tq]l = [tre f]l+ (αo ∗ i+ j)∗Tsam where i < m and β ≤ j < αo,
the Bs-tree will not search any partition which o is sampled to, therefore will not find o
and the result is not correct. In reverse, if β is no less than all α of all moving objects,
the Bs-tree will not omit any partition which any result object is sampled to. As long as
the partition is traversed, the method of query window enlargement guarantees that any
moving object which satisfies the query in this partition will be found. Proved. ■

Note that, if α of the Bs-tree changes, the moving objects which are already in the in-
dex have the old α, while a new insertion or update is according to the new α. Therefore,
in the index, the moving objects may have different α. According to Theorem 1, β of
the Bs-tree should be equal to the biggest α of all moving objects to guarantee the query
correctness. Bigger β is meaningless, as it increases query costs. If all moving objects
in the Bs-tree have the same α, we call the Bs-tree is in a steady state, and β = α. Also
note that, there is some restriction for the longest update interval of a moving object. In
the Bs-tree, the time interval Tm should be larger than most tper s of all moving objects
in the system. In addition, similarly to [8] [5], for those rare moving objects who are
not updated in the last Tm, they are ”flushed” to new partitions. The new positions are
estimated using their last updated positions and velocities. Their new tper s are the rest
tper s. However, their α could be changed. Thus, the longest update or flush interval of a
moving object is restricted to Tm.

Now we introduce how the online self-tuning framework works. In the framework,
the cost we focus on is the I/O cost, since it is usually more important than the CPU
cost. Recall that, as shown in figure 1, OTM is the key module which monitors the
performance of the Bs-tree and controls the tuning. OTM works in a “self-learning
and self-tuning“ way. And it has three tasks. First, it maintains a histogram Hrec =

{m, n,Cupd,Cque} which includes the number and average cost of updates and queries
during the recent period of time Trec, represented as m, n,Cupd,Cque. Trec is the “self-
learning“ time window. It should be a multiple of Tsam, Trec = l ∗ Tsam. Specially, in
order to get Hrec, OTM maintains the number and total cost of updates and queries of
the l most recent Tsam. Thus, Hrec can be easily carried out at the end timestamp of each
Tsam. Trec can be set according to different applications, and it can be reset at any time
without breaking the index service. In this paper, we set Trec = 2 ∗ Tsam = 2 ∗ n ∗ Tm.

Second, OTM also maintains a set S base which includes the average cost of updates
and queries for each steady state of the Bs-tree, ranging α = β from 1 to n + 1.

S base = {C1
upd ,C

1
que,C

2
upd ,C

2
que, ...,C

n+1
upd ,C

n+1
que }

For initialization, we give predictive values for the elements in S base. Then, when in a
steady state, the corresponding elements of the current α = β are updated by Cupd ,Cque

in Hrec at the end timestamp of each Tsam. The initialized predictive values in S base can
be given by experiments. We give the guide line of setting the initialized S base in the
experiment department.

Third, OTM adjusts the Bs-tree in a self-tuning way. As shown in figure 1, there is
a Timer trigger for OTM. At the end timestamp of each Tsam, OTM not only updates
Hrec and S base, but also starts a checking procedure. It decides weather to tune the update

Bs-tree: A Self-tuning Index of Moving Objects 11

parameter α and query parameter β of the index. The overall performance is the average
performance of each operation. It is estimated by the following equation:

Call =
m ∗ Cαupd + n ∗ Cβque

m + n
.

Here, m is the number of updates and n is the number of queries. OTM uses the current
m and n in Hrec, and different Cαupd and Cβque in S base for each α = β to compute Call.
Then, it chooses α = β which gets the lowest Call. In order to avoiding thrash, if this
Call is 15% lower than the Call with the current α = β, OTM will decide to tune α and β,
and enter a tuning procedure. Note that, the checking procedure is efficient, since there
are only a little computation and comparison during the checking procedure.

For the tuning procedure, the current update parameter and query parameter are rep-
resented as αcur and βcur, while the target update parameter and query parameter which
OTM decides to tune to is represented as αtar and βtar. In addition, αtun and βtun are the
update parameter and query parameter during the tuning procedure. Since the current
and target states both are steady states, we have αcur = βcur andαtar = βtar . If αtar < αcur,
at the beginning of the tuning procedure, OTM sets αtun = αtar and βtun = αcur. During
the tuning procedure, the Bs-tree will include different moving objects with αcur or αtar .
Thus, βtun has to be equal to the biggest update parameter of all available partitions,
αcur, to guarantee the query correctness. Note that, a moving object will be updated or
flushed at least once during the last Tm. Therefore, after time period of Tm, the update
parameter of all moving object will be the new one αtar, the Bs-tree will reach a steady
state, and OTM tunes the query parameter to βtar = αtar. While, on the other hand, if
αtar > αcur , at the beginning of the tuning procedure, OTM sets αtun = βtun = αtar. After
time period of Tm, the Bs-tree reaches a steady state, with no need to reset the query
parameter. The length of the tuning procedure is Tm. During the tuning procedure, OTM
does not update Hrec and S base, and does not enter the checking procedure. When the
tuning procedure finishes, OTM resets Hrec to empty and continues its work. Note that,
the index service is not broken.

Although OTM has the ability of self-tuning, it allows for manual configuration.
This enhances the flexibility and usability of the Bs-tree. The administrator can set
αtar = βtar at any time. OTM will then enter the tuning procedure at the end timestamp
of the current Tsam. On the other hand, the administrator can also “freeze” the Bs-tree
to avoid too frequent tuning. As a result, OTM will not enter the checking and tuning
procedures. In addition, the initial value of α = β when creating the Bs-tree, is also
customizable and should be set according to specific applications.

5 Experiments

In this section, we experimentally compare the Bs-tree with the Bx-tree [8] and the
TPR*-tree [11], which are the most representative B+-tree and R-tree based indexes for
moving objects. All experiments are implemented in the C++ language, and conducted
on a 2.6GHz Pentium 4 Personal Computer with 1GB memory, running Windows XP
Professional. The page size and index node size are both set to 4 KB.

12 N. Chen et al.

We use a data generator similar to the one used by the Bx-tree [8]. The objects move
in the space domain of 1000∗1000. The initial object positions are generated randomly,
so are the moving directions. The moving speed in each dimension is selected randomly
from −3 to 3. The update frequencies (indicated by tper) of the moving objects are
variable among various moving objects. 35% of the moving objects have tper s ranging
from 0 to 1/3Tm, while another 35% are in range (1/3Tm, 2/3Tm]. And the remaining
30% moving objects are in (2/3Tm, Tm]. As the experiments in [8], Tm is set to 120 time
units. For the Bx-tree and the Bs-tree, we choose n = 3 and use the Hilbert-curve as
the space-filling curve. For the TPR*-tree, the horizon H (how far the queries can “see“
in the future) is set to 60 time units. For each dataset, we execute same 100 predictive
queries and evaluate their average cost. The query time qt ranges from 1 to H. For range
queries, the side length of query windows is chosen from 10 to 50.

5.1 Basic Performance

In this set of experiments, we study the basic query and update performance of the Bs-
tree, the Bx-tree and the TPR*-tree. Figure 5 (a)− (d) show the average number of I/Os
and CPU time for each range query and update at various dataset sizes, ranging from
100K to 500K. For a more clear view, we represent the query and update performance
of the Bs-tree for different steady states. Bs-tree(j) indicts the Bs-tree in the steady state
with α = β = j, from 1 to n+1 = 4. As expected, when α = β = 4, the query and update
performance of the Bs-tree is very similar with that of the Bx-tree. This is because both
the Bs-tree(4) and the Bx-tree sample once for an update and expand query windows
n + 1 = 4 times for a range query. Therefore, in these figures, we omit the query and
update performance result of the Bs-tree(4), using that of the Bx-tree instead. From
these experiments, we can observe that the Bx-tree has better update performance than
the TPR*-tree, while the TPR*-tree has better query performance than the Bx-tree. The
Bs-tree has the ability to tune the query and update performance by different α and β. It

Fig. 5. Basic Query and Update Performance

Bs-tree: A Self-tuning Index of Moving Objects 13

can have almost the same query and update performance as the Bx-tree when update cost
is the major part of the overall cost, while in other cases, it can pay slightly more update
cost to achieve considerably higher performance of queries. Therefore, it “dominates“
the Bx-tree. In addition, when α = β = 2 or α = β = 3, the Bs-tree has both better query
performance and update performance than the TPR*-tree. It “dominates“ the TPR*-
tree. We can also see that the cost of queries increases with the date cardinality for all
the three kinds of indexes. However, for the Bx-tree and the Bs-tree, the update cost is
not apparently affected by the dataset size. In addition, for all the three kinds of indexes,
the update cost is much lower than the query cost. In the rest experiments, the default
dataset size is 100K. Figure 5 (e) and (f) shows the average number of I/Os and CPU
time per KNN query while varying K from 5 to 50. Observe that the effect of k is not
very significant. The relationship of the performance of the three indexes is similar with
that of the range query performance.

5.2 Overall Performance

In this experiment, we study the overall performance of the three trees by combining
both update and query operations in the same workload. For the query operations, the
range queries and KNN queries are mixed with the proportion of 5 : 1, considering that
the range queries are more common. We vary the ratio of the number of queries over
the number of updates from 1 : 1000 to 100 : 1. Figure 6 shows the average overall
I/Os and CPU time for each operation. For the Bs-tree, S base of OTM is initialized us-
ing the results in subsection 5.1. The overall performance of the Bs-tree with different
proportion of updates and queries was recorded when the Bs-tree reached the steady
states. From this experiment, we can observe that the Bs-tree adjust its performance
in a self-tuning way. When the total update cost is much higher than the total query
cost, it automatically pays some more query cost to achieve lower update cost. While,
oppositely, when the total query cost is much higher than the total update cost, it au-
tomatically pays some more update cost to achieve better query performance. In this
way, the Bs-tree keeps good and smooth overall performance despite the change of the
workload. It can be seen that in almost all cases, the Bs-tree outperforms the TPR*-tree
and the Bx-tree in overall performance.

Fig. 6. Overall Performance

5.3 Self-tuning Performance

The above experiments show that the Bs-tree has good performance when it reaches the
steady states. However, if the performance degrades markedly when the Bs-tree is in the

14 N. Chen et al.

tuning procedures, it is still not appropriate for real use. In this experiment, we study
the self-tuning performance of the Bs-tree. We vary the proportion of the number of
queries over the number of updates from 1 : 100 to 100 : 1, and then return to 1 : 100.
Correspondingly, α = β of the Bs-tree tunes from initial value 4 to 1, and then return to
4. Note that as shown in section 5.2, since the query cost is much higher than the update
cost, the overall cost will increase with the ratio of queries, though it is much slighter for
the Bs-tree than for the TPR*-tree and the Bx-tree. Figure 7 shows the average overall
I/Os and CPU time for each operation. Here T indicts the performance when the Bs-tree
is in the tuning procedures, while S indicts the performance when the Bs-tree reaches
the steady states. We can see that the self-tuning cost of the Bs-tree is slight. During
the tuning procedures, the Bs-tree pays only a little more cost than that of reaching the
steady state later. And note that the length of a tuning procedure is only Tm. In addition,
we can see that the extra tuning cost of the Bs-tree from a higher α = β to a lower α = β
is slighter than that from a lower α = β to a higher α = β, since the methods of tuning
procedure are different. In conclusion, The Bs-tree can provide non-break index service
with good and smooth performance.

Fig. 7. Tuning Performance

5.4 Concurrency Performance

Finally, we study the concurrency performance, using a multi-thread program to simu-
late multi-user environments. To highlight the difference between the two B+-tree based
indexes, we do not show the result for the TPR*-tree since it has been shown to be inef-
ficient in a concurrent environment in [8] and [6]. The B-link technique [10] is used as
the concurrency control technique for the Bx-tree and the Bs-tree. We use a workload
varying the proportion of the number of query operations over the number of update
operations from 1 : 100 to 100 : 1, and then return to 1 : 100, with initial α = β = 4.
Figure 8 shows the average throughput and response time of the whole workload, while
varying the number of threads from 1 to 6. Throughput is the rate at which operations
could be served by the system and response time is the time interval between issuing
an operation and getting the response from the system when the task is successfully
completed. As expected, the Bs-tree outperforms the Bx-tree, basing the same B+-tree
structure and the same concurrency control technique. This is because when the update
operations dominate the overall performance, the Bs-tree with α = β = 4 has almost
the same update and query performance. While, in other cases, the Bs-tree with smaller
α = β pay slight more update cost to achieve significantly higher query performance,
which results much better overall performance than the Bx-tree.

Bs-tree: A Self-tuning Index of Moving Objects 15

Fig. 8. Concurrent Performance

6 Conclusion

With the development of moving object databases, requirements to handle the appli-
cations, where the ratio of update and query operations varies widely with time, are
becoming essential. In this paper, we propose a moving object index structure, namely
Bs-tree. The Bs-tree has the ability of adapting its update and query performance to
meet different requirements. We implement various algorithms for the Bs-tree. In addi-
tion, we present an online self-tuning framework which provides self-tuning for optimal
overall performance without interrupting the indexing service. Our experiment studies
show that, the Bs-tree achieves good and smooth overall performance with efficient self-
tuning procedures. Therefore, the proposed Bs-tree is efficient and suitable for dynamic
applications in which the proportion of query and update operations varies significantly
by time. For future work, we would study other self-tuning techniques for moving ob-
ject databases.

Acknowledgement

This work was supported in part by the National Science Foundation of China (NSFC
Grant No. 60803003, 60970124) and by Chang-Jiang Scholars and Innovative Research
Grant (IRT0652) at Zhejiang University.

References

1. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-Tree: An Efficient and Ro-
bust Access Method for Points and Rectangles. In: SIGMOD Conference, Atlantic City, NJ,
May 1990, pp. 322–331 (1990)

2. Benetis, R., Jensen, C.S., Karciauskas, G., Saltenis, S.: Nearest Neighbor and Reverse Near-
est Neighbor Queries for Moving Objects. VLDB J. 15(3), 229–249 (2006)

3. Chaudhuri, S., Narasayya, V.R.: An Efficient Cost-Driven Index Selection Tool for Microsoft
SQL Server. In: VLDB, Athens, Greece, August 1997, pp. 146–155 (1997)

4. Chen, N., Shou, L.-D., Chen, G., Dong, J.-X.: Adaptive Indexing of Moving Objects
with Highly Variable Update Frequencies. Journal of Computer Science and Technology
(JCST) 23(6), 998–1014 (2008)

5. Chen, S., Ooi, B.C., Tan, K.-L., Nascimento, M.A.: S2TB-Tree: A Self-Tunable Spatio-
Temporal B+-Tree Index for Moving Objects. In: SIGMOD Conference, Vancouver, BC,
Canada, June 2008, pp. 29–42 (2008)

16 N. Chen et al.

6. Guo, S., Huang, Z., Jagadish, H.V., Ooi, B.C., Zhang, Z.: Relaxed Space Bounding for Mov-
ing Objects: A Case for the Buddy Tree. SIGMOD Record (SIGMOD) 35(4), 24–29 (2006)

7. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD Con-
ference, Boston, Massachusetts, June 1984, pp. 47–57 (1984)

8. Jensen, C.S., Lin, D., Ooi, B.C.: Query and Update Efficient B+-Tree Based Indexing of
Moving Objects. In: VLDB, Toronto, Ontario, Canada, August 2004, pp. 768–779 (2004)

9. Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the Positions of Con-
tinuously Moving Objects. In: SIGMOD Conference, Dallas, Texas, USA, May 2000, pp.
331–342 (2000)

10. Srinivasan, V., Michael, Carey, J.: Performance of B-Tree Concurrency Algorithmss. In: SIG-
MOD Conference, Denver, Colorado, May 1991, pp. 416–425 (1991)

11. Tao, Y., Papadias, D., Sun, J.: The TPR*-Tree: An Optimized Spatio-Temporal Access
Method for Predictive Queries. In: VLDB, Berlin, Germany, September 2003, pp. 790–801
(2003)

12. Tao, Y., Zhang, J., Papadias, D., Mamoulis, N.: An Efficient Cost Model for Optimization
of Nearest Neighbor Search in Low and Medium Dimensional Spaces. IEEE Trans. Knowl.
Data Eng. (TKDE) 16(10), 1169–1184 (2004)

13. Yiu, M.L., Tao, Y., Mamoulis, N.: The Bdual-Tree: indexing moving objects by space filling
curves in the dual space. VLDB J. (VLDB) 17(3), 379–400 (2008)

Privacy-Preserving Location Publishing under
Road-Network Constraints

Dan Lin, Sashi Gurung, Wei Jiang, and Ali Hurson

Missouri University of Science and Technology
{lindan,sgy99,wjiang,hurson}@mst.edu

Abstract. We are experiencing the expanding use of location-based services such
as AT&T TeleNav GPS Navigator and Intel’s Thing Finder. Existing location-
based services have collected a large amount of location data, which have great po-
tential for statistical usage in applications like traffic flow analysis, infrastructure
planning and advertisement dissemination. The key challenge is how to wisely
use the data without violating each user’s location privacy concerns. In this pa-
per, we first identify a new privacy problem, namely inference route problem, and
then present our anonymization algorithms for privacy-preserving trajectory pub-
lishing. The experimental results have shown that our approach outperforms the
latest related work in terms of both efficiency and effectiveness.

1 Introduction

The extensive use of location-based services, such as AT&T TeleNav GPS Navigator,
Sprint’s Family Locator, and Intel’s Thing Finder, have collected a large amount of
location data. If information like vehicle IDs and moving directions on roads can be
published, people in many fields will benefit from it. With respect to the public sector,
traffic flow information can be extracted from published IDs and moving directions.
Such information will play an important role in infrastructure construction and traffic
light control. With respect to the business domain, traffic information can help decide
the location of company branches, and also advertisements can be customized and dis-
seminated at the most advantageous locations. With respect to our daily lives, traffic
information is certainly useful for detecting and predicting traffic jam, and calculating
better routes in an emergency (e.g., for ambulances). However, in the meantime, loca-
tion privacy concerns [11,16] may hinder the development of such attractive usage of
traffic information. It is well known that using a pseudonym is not sufficient to prevent
the linkage of a published location to a real ID [5]. The key challenge is how to wisely
use the location data without violating each user’s privacy concerns. This problem is
termed as privacy preserving historical location data publishing.

Historical location data forms a sequence of locations in chronological order, termed
as trajectory. In general, one’s trajectory consists of roads he has visited. For instance,
in Figure 1, user u1’s trajectory can be represented as IABC and user u4’s trajectory
is ABD. Such road-network based trajectories are valuable in aforementioned applica-
tions. In privacy-preserving location publishing, the goal is to prevent adversaries from
mapping published locations to a specific individual.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 17–31, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

18 D. Lin et al.

u4

R 2R
BA

C

I

J

K
u3

u1

u2

D

u1,u2,u3, u4 u1,u2,u3

1

Fig. 1. An Example of Inference Route

One may think that a trajectory resembles a conventional sequential pattern. Hence,
a naturally raised question is that if we can directly employ privacy preserving data
publishing approaches [3,4,13,20] developed in non-spatial-temporal databases? The
answer is negative, and the main reason is that a trajectory distinguishes itself from the
conventional sequential patterns due to additional constraints (e.g., road-network infor-
mation) which do not exist in the traditional sequences. More specifically, elements in
traditional sequences are usually independent of one another, while the relationship of
elements in the trajectory sequence is fixed under a particular road-network informa-
tion. Therefore, we cannot use traditional algorithms to arbitrarily remove or replace
elements in the sequences because such operations will create unrealistic trajectories
consisting of non-connected road segments.

There have been several recent efforts [2,7,12,17] on anonymizing trajectories. Some
work [17] considers trajectories as a sequence of landmarks, e.g., stores and muse-
ums, which ignore the paths connecting these places. Others [2,7,12] consider trajec-
tories as a sequence of coordinates in Euclidean space but ignore the road-network
constraints. Very few works considered the road-network constraint. The most recent
one is by Pensa et al. [14], who anonymize road-network-based trajectories based on
k-anonymity [15]. However, their approach may not preserve trajectory information as
much as possible. This can be demonstrated by the example given below.

In [14], trajectories are stored and anonymized by using a prefix tree which may not
be an appropriate structure to model the road-network. For instance, consider four users
who leave their homes (I , J , K , D) and head for work. When k is 3 and the input to
their algorithm is the following four trajectories: u1(IABC), u2(JABC), u3(KABC)
and u4(ABD)1, their anonymization result will be an empty set since the prefix tree
treats trajectories with different starting points independently. Such result obviously
lost too much useful information. To achieve better information utility, an alternative
way is to directly take partial trajectories as input, i.e., consider only busy roads with
more than k users. In this case, the input becomes u1(ABC), u2(ABC), u3(ABC) and
u4(AB), and the new anonymization result is : u′

1(ABC), u′
2(ABC), u′

3(ABC) and
u′

4(AB), which is more meaningful than the previous empty set.
In addition, since road maps can be found everywhere, in the domain of privacy-

preserving location publishing, it is reasonable to assume road-network information
is available to any adversary. Thus, cautions are very much needed when publishing

1 u1, u2, u3 and u4 can be thought as either a trajectory ID or a person’s symbolic ID.

Privacy-Preserving Location Publishing under Road-Network Constraints 19

anonymized trajectories. For instance, let us continue from the previous example and
assume that the road-network in Figure 1 is accessible to an adversary Bob. When u′

1,
u′

2,u′
3 and u′

4 are published, using the road-network, Bob can infer that u′
4 was also trav-

elled on the road segment BD. Also, if Bob knows that Alice usually travels on BD,
then he can link u′

4 to Alice and consequently track Alice remaining trajectories in the
published dataset. This inference route problem is caused by the fact that an adversary
can infer someone’s unpublished infrequent trajectories from the published location
dataset. Because the inferred trajectories are infrequent, with high probability, these
trajectories, combined with certain external knowledge, can be used to identify a par-
ticular individual’s trajectory information in the published dataset. In general, given a
threshold k, if the attacker can link any anonymous ID to Alice with probability greater
than 1

k by using the above method, then we say there is an inference route problem.
In this paper, we address the problem of privacy-preserving location data publishing

under the assumption that road-network data are public information. Our approach has
three main properties: (1) it guarantees k-anonymity of published data, (2) it avoids
the inference route problem, and (3) the anonymization results follow the road-network
constraints. The basic idea is to employ a clustering-based anonymization algorithm to
group similar trajectories and minimize the data distortion caused by anonymization
through a careful selection of representative trajectories. We propose a C-Tree (Cluster-
Tree) to speed up the clustering process and develop methods to incrementally calculat-
ing error rates. The rest of the paper is organized as follows: Section 2 reviews related
work, Section 3 presents our proposed approach, Section 4 reports experimental results,
and Section 5 concludes the paper with lessons learned and future research directions.

2 Related Work

Privacy-preserving location publishing is a relatively young area in which little research
has been carried out. In [7,12], the spatial-temporal cloaking technique is applied to
generate cloaking regions covering segments of trajectories. In [2], Abul et al. consider
a trajectory as a cylindrical volume where the radius represents the location impreci-
sion. Then they perturb and cluster trajectories with overlapping volumes to ensure that
each released trajectory volume encloses at least k − 1 other trajectories. Unlike the
previous work which is based on the similarity of trajectories, Yarovoy et al. [19] group
trajectories based on so-called quasi-identifiers which is hard to be selected in practice.
None of the approaches considers the impacts of road network constraints and hence,
their anonymization results are vulnerable to attack when the malicious party knows the
road map or holds some other background knowledge. E.g., if a cloaking region covers
only one road, the corresponding trajectory can be easily mapped to the road.

In [17], Terrovitis and Mamoulis assume that the adversaries know partial trajectory
information of some individuals. They use it as part of input to their anonymization al-
gorithm. Such usage limits the generality and feasibility of their approach. In [1], Abul
et al. used a coarsening strategy which removes one or more spatial points in a tra-
jectory to achieve anonymization. An anonymized trajectory may contain disconnected
paths. This is different from our approach which preserves continuous trajectories based
on road-network information. Two other related works used time confusion and path

20 D. Lin et al.

confusion respectively. The time confusion approach [9] mixes location samples of dif-
ferent trajectories, and the path confusion approach [8] crosses paths in areas where at
least two users meet. The main problem of the two approaches is that traffic flows are
no longer preserved.

The most related work is by Pensa et al. [14]. They proposed a prefix-tree based
anonymization algorithm which guarantees k-anonymity of the published trajectories
in a way that no trajectories with support less than k will be published. They defined
the support of a trajectory Trj as the number of trajectories containing Trj, which
however causes the inference route problem. Here, we can see that how the concept of
k-anonymity is applied will affect the quality of the anonymization result.

3 Problem Statement

In general, raw data collected by location-based applications contains user (object) in-
formation as a four-tuple 〈ID, loc, vel, t〉, where ID is the object ID, loc and vel are
object location and velocity at timestamp t respectively. The anonymized dataset con-
tains object information in the form of 〈aid, rid, dir〉, where aid is an anonymized
object ID, rid is a road ID and dir is the object’s moving direction. Here, for privacy
concerns, we replace specific locations and velocities by road ID and moving direction.
Such representation is sufficient to derive trajectories or traffic flow information.

The road network is modeled as a directed graph, where each edge corresponds to
a road and each node represents an intersection. Specifically, an edge is represented as
ninj , where ni and nj denote nodes. We then proceed to define the frequent road and
inference route problem.

Definition 1. Let W be a time interval, and let k be a threshold. We say a road is a
frequent road if the number of moving objects moving along one direction on this road
is no less than k within time W . We call the number of moving objects the frequency of
the road.

Definition 2. Let Υ be an intersection of roads r1, ..., rm, and let U+
i , U−

i be the sets of
objects moving toward and outward Υ on road ri (1 ≤ i ≤ m) during W , respectively.
If ∃ U+

i , U−
j , |U+

i | ≥ k, |U−
j | ≥ k, and (0< |U+

i − U−
j | < k or 0< |U−

j − U+
i | < k),

then we say Υ has an inference route problem.

To have a better understanding of the above definition, let us revisit the example in
Figure 1. Node B is an intersection of three roads. On road AB, U+

AB = {u1,u2,u3,
u4}; on road BC , U−

BC={u1,u2,u3}. Since U+
AB − U−

BC = {u4}, |U+
AB − U−

BC | =
1< k, node B has an inference route problem.

Next, we present how to evaluate the quality of the anonymized dataset or trajectories.
Intuitively, the less difference between the anonymized dataset and the original dataset,
the better quality the anonymized dataset is. Therefore, we use two common metrics:
average error rate and standard deviation. Suppose there are N roads (or edges in a road-
network graph) and ri represents road i. Let originalri and anonymizedri denote ri’s
original frequency and frequency after the trajectories have been anonymized. Then in
Equation 1, the error function E is defined as the average difference between originalri

Privacy-Preserving Location Publishing under Road-Network Constraints 21

and anonymizedri (i.e., Ei), and σ is the standard deviation of the error rates. A low
standard deviation indicates that the anonymization quality of each road is similar and
close to the average error rate.

E =
1
N

N∑
i=1

Ei =
1
N

N∑
i=1

|originalri − anonymizedri|
originalri

(1)

σ =

√√√√ 1
N

N∑
i=1

(Ei − E)2 (2)

4 Our Approach

In this section, we present our anonymization algorithm. It consists of two main steps.
First, from the raw dataset D, we remove records associated with infrequent roads, i.e.,
roads with less than k objects within a given time interval. We denote the obtained
dataset as D′. In D′, we construct partial trajectories for the remaining objects based on
moving directions. Note that one user may have several disconnected partial trajectories
because he may visit some infrequent roads. Each partial trajectory will be assigned an
anonymous ID. For the rest of the paper, the word “trajectory” and “partial trajectory”
are interchangeable.

The second step is the core of the anonymization process. We propose a clustering-
based anonymization algorithm which guarantees that by achieving strict k-anonymity
(defined in Section 4.1) among partial trajectories, our anonymization result is free of
the inference route problem. Compared to traditional k-anonymization approaches, our
approach not only needs to minimize errors caused by anonymization but also needs to
satisfy some unique requirements. Road-network constraints should be enforced during
the entire anonymization process, especially when computing the representative trajec-
tories. The first step is relatively straightforward. Therefore, the following discussion
focuses on the anonymization step.

4.1 Clustering-Based Anonymization

The essential idea of clustering-based anonymization algorithm is to find clusters of
similar trajectories and anonymize them by using a representative trajectory. The details
are the following.

First, we need to select a proper way to represent trajectories. Trajectories are ini-
tially represented as a sequence of timestamped locations. In our anonymized dataset,
we do not disclose exact locations because detailed information increases attackers’
chances to link published location to specific individuals. Instead, we report only infor-
mation about which object passing by which road. There are two options: (i) represent-
ing a trajectory by road IDs; or (ii) representing a trajectory by node IDs. As illustrated
in Figure 2, trajectories Trj1, Trj2 and Trj3 can be represented as r4r2, r1r3, and
r1r5 respectively following the first option. Using the second option, trajectories Trj1,
Trj2 and Trj3 can be represented as n5n2n3, n1n2n4, and n1n2n6 respectively. Both

22 D. Lin et al.

5 n6

n3

n1

r 5

r 2

r 4

n2
r 3

n4
r 1

1Trj

Trj
3

2Trj

n

Fig. 2. Trajectory Representation

types of representations well capture the similarity between trajectories Trj2 and Trj3
which share one common road. However, the first option treats Trj1 and Trj2 as two
irrelevant trajectories even though they intersect. To better reflect relationships among
trajectories, we adopt the second option and represent a trajectory by a sequence of
node IDs.

The second issue is to define the distance between trajectories. We employ the edit
distance [18]. The edit distance between two trajectories is given by the minimum num-
ber of operations needed to transform one trajectory into the other, where an operation
is an insertion, deletion, or substitution of a node. For example, the edit distance be-
tween Trj1(n5n2n3) and Trj2(n1n2n4) is 4, while the distance between Trj2 and
Trj3(n1n2n6) is 2.

Now we are ready to present our clustering-based anonymization algorithm. An out-
line is given in Figure 3. First, we group same trajectories and count its support. Support
is defined as the number of users who have the same trajectories (Definition 3).

Definition 3. Let u be a user’s anonymous ID and Trju denote his trajectory in D′.
We have the support of trajectory Trj as follows: Support(Trj) = |{u|Trju = Trj, for
every u}|.

Distinct trajectories are arranged in a descending order of their supports. If a trajec-
tory’s support is more than the anonymization threshold k, the trajectory itself forms a
cluster. For the remaining trajectories, say Trj, we compare it with existing clusters.
If there exists a suitable cluster, we insert the new trajectory into that cluster and up-
date the cluster’s information. Otherwise, a new cluster will be created for Trj. After
all trajectories have been checked, we translate representative trajectories together with
their supports into output format, which contains object anonymious IDs, road IDs, and
objects’ moving directions. For example, we obtain the following intermediate result
after anonymizing the trajectories shown in Figure 1: u′

1(ABC), u′
2(ABC), u′

3(ABC)
and u′

4(ABC), where k = 3. The published dataset will look like this: (u′
1, R1, AB),

(u′
1, R2, BC), (u′

2, R1, AB), (u′
2, R2, BC), ..., (u′

4, R2, BC). The detailed algorithms
for finding candidate clusters, calculation of error rates and selection of representative
trajectories will be elaborated in the rest of the section.

Our approach ensures strict k-anonymity (Definition 4) over all trajectories in dataset
D′. It is called “strict” because the calculation of trajectory supports is based on an exact
match of entire trajectories. In this way, we guarantee that the anonymization result will
not contain any inference route. Our proof can be found in [10].

Privacy-Preserving Location Publishing under Road-Network Constraints 23

Clustering-based Anonymization (TRJ , k)
Input: TRJ is a set of trajectories to be k-anonymized

1. Group same trajectories and form TRJ ′

2. Sort trajectories in TRJ ′ in a descending order of supports
3. for each Trj in TRJ ′ do
4. if Trj.support ≥ k then
5. create a new cluster for Trj
6. else
7. check existing clusters
8. if Find Cluster(Trj,C) then
9. insert Trj to cluster C
10. Select Representative Trajectory(C,Trjr)
11. update C’s error rate
12. update C − tree
13. else
14. create a new cluster for Trj
15. for each cluster C in group of clusters
16. if C.Total TRJ ≥ k/2 then set C.Total TRJ = k
17. else remove C from group of clusters
18. Translate representative trajectories into output format

Fig. 3. An Outline of Clustering-based Anonymization Algorithm

Definition 4. (Strict k-anonymity over trajectories): Let Trj be a trajectory. We say
Trj satisfies strict k-anonymity if Support(Trj) is no less than k.

4.2 Finding Candidate Clusters

In this subsection, we present how to find a candidate cluster for a new trajectory during
the clustering-based anonymization. The first step is to check whether a new trajectory
can be absorbed by an existing cluster according to the distance metric. As the number
of clusters increases, comparing Trj with all clusters becomes very costly. Therefore,
we employ an in-memory index structure, C-tree (Cluster-tree), to prune unnecessary
comparisons. In particular, each node in the C-tree contains multiple entries and each
entry in a node has two fields: a pointer ptr and a set of road IDs (denoted as RID). In
leaf nodes, each entry has a pointer to a cluster and the IDs of roads occurring in that
cluster. In internal nodes, each entry has a pointer to a child node and the union of roads
IDs in its child node. Figure 4 shows an example C-tree.

Given a new trajectory Trj, starting from the root of the C-tree, we calculate the
similarity between Trj and every entry’s RID in the node by using the following
similarity function.

Simc(Trj, RID) =
|S(Trj) ∩RID|
|S(Trj)| (3)

Simc computes the percentage of common roads included in Trj and RID, where
S(Trj) denotes the set of road IDs in trajectory Trj. If Simc is above a threshold ρ,

24 D. Lin et al.

9r5r3

r8r9r5r3r1

r

r13r11r10r62

8r

7

r1 r5r2 rrr6 7 10 r11r13r6{ }

N1

N2 N3

r

C3

{ }

C2 C4 C1

{ } { }

{ }r

{ }

Fig. 4. An Example C-tree

we continue to visit the child node of this entry. This process is repeated until we find
all entries in the leaf nodes with Simc above the threshold. All the clusters belonging to
these entries will be considered as candidate clusters. For example, suppose that a new
trajectory contains roads r2, r8 and r9, and the threshold ρ is set to 60%. The similarity
Simc between the new trajectory and the first and second entries in the root node N1 are
100% and 0% respectively. The tree below the second entry is pruned and thus we do
not need to visit node N3. We continue to visit the child node N2 pointed by the first en-
try. The Simc between the trajectory and the first and second entries in N2 are 33% and
67% respectively. Since the second entry has the similarity score above the threshold, its
corresponding cluster C3 becomes the candidate cluster for the further consideration.

Among candidate clusters, we further calculate the edit distance between the new tra-
jectory and their representative trajectories. For all clusters which have the shortest edit
distance with Trj, we examine the quality of anonymization result (i.e. error rate (E))
by assuming inserting Trj to a cluster. For a cluster Ci, its error rate Eci is computed
based on the roads in this cluster. We select the cluster that satisfies two conditions: (i)

Find Cluster (Trj,C)
Input: Trj is a trajectory
Output: C is a cluster

1. NODE ← {C-tree.root}
2. while (NODE is not empty) do
3. for each node N in NODE do
4. for each entry en in N do
5. if Simc(Trj, en.RID) > ρ then
6. if N is not a leaf node then
7. add en’s child node to NODE
8. else add en’s cluster to candidate list Lc

9. for all clusters in Lc do
10. find clusters with shortest edit distance with Trj
11. if more than one clusters found then
12. find the cluster with the smallest error rate
13. if error rate after adding Trj does not exceed threshold then
14. return the cluster found

Fig. 5. Algorithm of Finding Clusters

Privacy-Preserving Location Publishing under Road-Network Constraints 25

Original

r1

r2

r3

r

C1
+
−
+

+

+
n

−

−

−

... ...
...

33

15 15

35 35

80 85

...

...
...

...

...

...
...
...

53

50 51

57

30
r1+ ...

Cx

Road ID

r6−

r10−r3−

...r15−r7−

Anonymized

Fig. 6. Anonymization Table

it yields the smallest error rate after inserting Trj; (ii) its new error rate is below the
global threshold Err. Figure 5 summarizes the procedure of finding candidate clusters.

To efficiently and incrementally calculate error rates during clustering, we employ
a global data structure, i.e. anonymization table. Anonymization table has three fields:
roadID, original and anonymized, where “original” is the number of objects before
anonymization, and “anonymized” records the latest number of objects on road roa-
dID during anonymization. Each cluster only needs to maintain a set of road IDs with
pointers referring to the anonymization table. Figure 6 illustrates the data structure.

When actually inserting Trj to Ci, there are three steps: (i) update the representative
trajectory; (ii) update the error rate in the anonymization table; and (iii) update the C-
tree. The algorithm for selecting the representative trajectory is presented in Section 4.3.
Once the representative trajectory is chosen, we recompute the error rate and modify the
corresponding field in the anonymization table. Finally, we check whether the node in
the C-tree with respect to current cluster needs to be updated. If current cluster contains
road IDs which are not included in the road ID list of the corresponding C-tree entry,
we will append the new road IDs to the road ID list. This change will be propagated
to higher levels of the C-tree until an entry containing all road IDs in current cluster is
reached. Consider the C-tree in Figure 4 and suppose that a new trajectory that consists
of roads r2, r8 and r9 will be inserted into cluster C3. We check the road list of C3’s
entry in the C-tree, which is {r3r5r8r9} and does not contain r2. We then add r2 to the
road list. Now the second entry in the C-tree becomes {r2r3r5r8r9}. Next, we check its
parent entry, the first entry in N1. Since r2 is included in the first entry in N1, the tree
update operation completes.

If no cluster is similar enough to Trj, we create a new cluster for Trj and follow
the three similar steps discussed in the previous paragraph. The main difference is that
we need to insert a new entry for this new cluster to the C-tree (the insertion algorithm
is in Section 4.4).

4.3 Selecting Representative Trajectory

There are two key requirements when selecting a representative trajectory. First, the
error rate should be minimized. Second, the representative trajectory must satisfy the
road-network constraint. By keeping these in mind, we design the following algorithm.

26 D. Lin et al.

In a cluster, we find the trajectory with the highest support and then trim the trajectory
from both ends to obtain the final representative trajectory. To illustrate it, we use the
example in Figure 7. The cluster contains three types of trajectories: Trj1, Trj2 and
Trj3. Each trajectory is associated with a number of support, e.g., support(Trj1) =
10. Numbers on the last line indicates the original numbers of users on each road, e.g.,
original(n1n2)=15. Since Trj1 has the highest support, let us have a further look at
it. We compute the error rate E by treating Trj1 as the representative trajectory. The
support of the representative trajectory is the sum of all trajectories in the cluster. The
reason behind is to maintain the same amount of trajectories after anonymization. In
this example, if we use Trj1 as the representative trajectory, we will have E = 58%.

Trj1 (10): n1—– n2—– n4—– n7—– n8—– n9

Trj2 (5): n1—– n2—– n4—– n7

Trj3 (6): n2—– n4—– n7—– n8

original: 15 21 21 16 10

Fig. 7. An Example of Selecting Representative Trajectory

E = (En1n2 + En2n4+En4n7+En7n8+En8n9)/5

=
(21−15

15 + 21−21
21 + 21−21

21 + 21−16
16 + 21−10

10)
5

= 58%

Observe that En8n9 is higher than 100%. If the road n8n9 is excluded from the rep-
resentative trajectory Trj1, the overall error can be reduced to 34%. Based on this
observation, the second step is to trim the trajectory until the overall error rate can-
not be further reduced. Due to the road-network constraint, we can not arbitrarily re-
move nodes from a trajectory. Our strategy is to remove nodes starting from both ends
of the selected trajectory if the road r satisfies the following condition: originalr <
support(Trj1) − originalr, i.e., its individual error rate larger than 100%. The pro-
cess continues until we cannot find such a road at either end of the trajectory. The final
representative trajectory for the example case is n1n2n4n7n8. The algorithm is sum-
marized in Figure 8.

4.4 Construction of the C-tree

In Section 4.2, we have discussed the search and update operations in the C-tree. We
now proceed to introduce how to insert a new entry into the C-tree, which occurs when
a new cluster is created. Recall that each entry in the node of the C-tree has two fields:
(i) a set of road IDs and (ii) a pointer. The maximum number of entries in each node
is the same. All insertions start at a leaf node which is identified during the process of
finding candidate clusters. We insert the new entry into that node (denoted as N) with
the following steps:

1. If the node N contains fewer than the maximum legal number of entries, then there
is room for the new entry. Insert the new entry in the node.

Privacy-Preserving Location Publishing under Road-Network Constraints 27

Select Representative Trajectory (C,Trjr)
Input: C is a cluster
Output: Trjr is the representative trajectory

1. support(Trjr)← 0
2. for each Trj in C do
3. if support(Trj) >support(Trjr) then
4. Trjr ← Trj
5. support(Trjr)← support(Trj)
6. i← 1; j ← length(Trjr)-1
7. continue← 1
8. while (i < j and continue) do
9. continue← 0
10. if original(ri) <support(Trjr)-original(ri) then
11. i← i + 1; continue← 1
12. if original(rj) <support(Trjr)-original(rj) then
13. j ← j − 1; continue← 1
14. Trjr ←(ri...rj)
15. return Trjr

Fig. 8. Algorithm of Selecting Representative Trajectory

2. Otherwise N is full, and we evenly split it into two nodes. In particular, we ran-
domly select an entry as seed. Then we compute Simc (Equation 3) between other
entries and the seed. The average of all Simc serves as a separation value. Entries
with Simc above the average are put in the node N , and the remaining entries are
put in the new right node N ′.

3. Next, we update the entry pointing to N . The road ID set in the parent is updated
to include all roads occur in N . The update may be propagated to the upper levels
of the tree. Moreover, if there is a split in the previous step, we need to insert a new
entry which includes road IDs in the new node N ′ to the parent level. This may
cause the tree to be split, and so on. If current node has no parent (i.e., the node is
the root), a new root will be created above this one.

5 Experimental Study

All the experiments were run on a PC with 2.6G Pentium IV CPU and 3GB RAM. We
use both synthetic and real road networks to generate moving objects. In the synthetic
datasets, objects are moving on a randomly generated road map which has about 700
roads. Objects can have different speeds which are controlled by the parameter “aver-
age trajectory length”. As for the real datasets, we use the generator by Brinkhoff [6].
Objects are moving on real road networks. A road consists of multiple segments and
each segment is a straight line. An object is initially placed on a randomly selected road
segment and then moves along this segment in a randomly selected direction. When the
object reaches the end of the segment, an update is issued and a connected segment is
selected. Object speeds are varied within a given speed range.

28 D. Lin et al.

We compare our Clustering-Based Anonymization (CBA) algorithm with the latest
work (denoted as Prefix [14]) by Pensa et al. In particular, we examine the existence
of the inference route, the error rate, standard deviation and the running time. Unless
noted otherwise we use the dataset containing 50,000 moving objects and set k to 30.

5.1 Experimental Results in Synthetic Datasets

Effect of Data Sizes. In the first set of experiments, we study the effect of data sizes by
varying the number of moving objects (i.e. number of trajectories) from 5K to 100K.
Figure 9(a) shows the average error rate of the anonymization results obtained from Pre-
fix algorithm and our CBA algorithm. We can observe that the CBA algorithm yields
much less error rate than the Prefix algorithm in all cases. When the dataset is small
(e.g. 5K), the anonymization results obtained from both algorithms have relatively high
error rates. This is because the number of objects on each road is few and even a small
change of an object trajectory by the anonymization process will have a big impact on
the error rate. With the increase of the data sizes, the error rate caused by the CBA al-
gorithm keeps decreasing and it is more than 5 times less compared to that of the Prefix
algorithm for 100K dataset. The reason of such behavior is that CBA effectively groups
similar trajectories and carefully selects representative trajectories which minimize the
overall error rate. Figure 9(b) shows the standard deviation, where we can see that our
standard deviation is much lower than that obtained from the Prefix algorithm. This
confirms that our anonymization result on each road has similarly good quality.

Figure 10(a) shows the number of nodes having the inference route problem. It is not
surprising to see that the anonymization result produced by our CBA algorithm contains
0 inference route. However, the anonymized result obtained from the Prefix algorithm
has many road intersections (denoted as node) with the inference route problem caused
by their definition of the trajectory support.

We also compare the running time of both approaches. As shown in Figure 10, our
CBA algorithm is up to 5 times faster than the Prefix algorithm. This can be attributed
to the C-tree that helps prune the clusters to be compared with each new trajectory and
hence avoids many unnecessary calculation. The total time is inclusive of the construc-
tion and update cost of the C-tree which is almost neglectable compared to the benefits
brought by the C-tree.

(a) Error rate (b) Standard deviation

Fig. 9. Quality of the Anonymized Results

Privacy-Preserving Location Publishing under Road-Network Constraints 29

(a) Inference route problem (b) Processing time

Fig. 10. Effect of Data Size

Effect of Parameter k. This set of experiments aims to evaluate the performance of
both algorithms regarding different values of k. As shown in Figure 11(a), the error
rate increases drastically with k by using the Prefix algorithm, while k has only minor
effect on our CBA approach. Such behavior can be explained as follows. The Prefix
algorithm removes all infrequent trajectories and add their supports to most similar
frequent trajectories. When k is large, there are more infrequent trajectories, which thus
causes more error. The standard deviation has also demonstrated the similar pattern as
the error rate, and the Prefix algorithm again suffers from the inference route problem.
Due to the space limit, we do not include the figures here. Regarding processing time
(in Figure 11(b)), our CBA approach has a consistent performance while the Prefix
approach requires less time for larger k. This is because the Prefix approach needs to
deal with less frequent trajectories for a larger k. Note that this results in higher error
rates.

(a) Error rate (b) Processing time

Fig. 11. Varying Parameter k

Effect of the Average Trajectory Length. We also investigated the effect of trajec-
tory lengths by testing it up to 50 roads per trajectory. Within the same time interval, a
longer trajectory indicates that the object has a faster speed. Our CBA algorithm out-
performs the Prefix algorithm in all cases. Please refer to our technical report [?] for
figures.

30 D. Lin et al.

5.2 Experimental Results in Real Datasets

In this set of experiments, the datasets are generated based on the road map of Phelps
County (Missouri, USA) using the generator [6]. The value of k is 10. From Figure 12,
we can observe similar performance patterns as that using synthetic datasets.

(a) Error rate (b) Standard deviation

(c) Inference route problem (d) Processing time

Fig. 12. Performance in Real Road-network

6 Conclusion

Privacy preserving location data publishing has received increasing interest nowadays.
In this paper, we address this newly emerging problem by taking into account an impor-
tant factor, the road network constraint, which has been overlooked by many existing
works. We identified and defined a new privacy problem (i.e. the inference route prob-
lem), and proposed an efficient and effective clustering-based anonymization algorithm.
The clustering-based algorithm guarantees strict k-anonymity of the published dataset
and avoids the inference route problem. We compared our approach with the most re-
cent work and the experimental results demonstrate the superiority of our approach.

Acknowledgement
We thank authors of “Pattern-Preserving k-Anonymization of Sequences and its Appli-
cation to Mobility Data Mining” who share their source code with us. This work was
supported in part by the National Science Foundation under the contract IIS-0324835
and UM Research Board under the project ”Preserving Location Privacy in Pervasive
Environments”.

Privacy-Preserving Location Publishing under Road-Network Constraints 31

References

1. Abul, O., Atzori, M., Bonchi, F., Giannotti, F.: Hiding sensitive trajectory patterns. In: Proc.
of ICDM Workshop, pp. 693–698 (2007)

2. Abul, O., Bonchi, F., Nanni, M.: Never walk alone: Uncertainty for anonymity in moving
objects databases. In: Proc. of the International Conference on Data Engineering, pp. 376–
385 (2008)

3. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proc. of the ACM SIGMOD
International Conference on Management of Data, pp. 439–450 (2000)

4. Atzori, M., Bonchi, F., Giannotti, F., Pedreschi, D.: Anonymity preserving pattern discovery.
The VLDB Journal 17(4), 703–727 (2008)

5. Bettini, C., Wang, X.S., Jajodia, S.: Protecting Privacy Against Location-Based Personal
Identification. In: Jonker, W., Petković, M. (eds.) SDM 2005. LNCS, vol. 3674, pp. 185–
199. Springer, Heidelberg (2005)

6. Brinkhoff, T.: A framework for generating network-based moving objects (2004), http://
www.fh-oow.de/institute/iapg/personen/brinkhoff/generator

7. Gidofalvi, G., Huang, X., Pedersen, T.B.: Privacy-preserving data mining on moving object
trajectories. In: Proc. of the International Conference on Data Engineering, pp. 60–68 (2007)

8. Hoh, B., Gruteser, M.: Protecting location privacy through path confusion. In: Proc. of Se-
cureComm., pp. 194–205 (2005)

9. Hoh, B., Gruteser, M., Xiong, H., Alrabady, A.: Preserving privacy in gps traces via
uncertainty-aware path cloaking. In: Proc. of the ACM conference on Computer and Com-
munications Security, pp. 161–171 (2007)

10. Lin, D., Gurung, S., Jiang, W., Hurson, A.: Privacy-preserving location publishing under
road-network constraints. Technical Report,
http://web.mst.edu/˜lindan/others/trajectory.pdf

11. Mokbel, M.F.: Privacy in location-based services: State-of-the-art and research directions.
In: Proc. of the International Conference on Mobile Data Management, p. 228 (2007)

12. Nergiz, M.E., Atzori, M., Saygin, Y., Guc, B.: Towards trajectory anonymization: a
generalization-based approach. Transactions on Data Privacy 2(1), 47–75 (2009)

13. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Min-
ing sequential patterns by pattern-growth: The prefixspan approach. IEEE Transactions on
Knowledge & Data Engineering 16(1), 1424–1440 (2004)

14. Pensa, R.G., Monreale, A., Pinelli, F., Pedreschi, D.: Pattern-preserving k-anonymization of
sequences and its application to mobility data mining. In: Proc. of the International Workshop
on Privacy in Location-Based Applications (2008)

15. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppres-
sion. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10(5),
571–588 (2002)

16. Tanner, J.C.: In search of lbs accountability. In: Telecom Asia (2008)
17. Terrovitis, M., Mamoulis, N.: Privacy preservation in the publication of trajectories. In: Proc.

of the International Conference on Mobile Data Management, pp. 65–72 (2008)
18. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of the

ACM 21(1), 168–173 (1974)
19. Yarovoy, R., Bonchi, F., Lakshmanan, L.V.S., Wang, W.H.: Anonymizing moving objects:

how to hide a mob in a crowd? In: Proc. of the International Conference on Extending
Database Technology, pp. 72–83 (2009)

20. Zaki, M.J.: Spade: An efficient algorithm for mining frequent sequences. Machine Learn-
ing 42(1/2), 31–60 (2001)

http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator
http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator
http://web.mst.edu/~lindan/others/trajectory.pdf

Incremental Clustering for Trajectories�

Zhenhui Li1, Jae-Gil Lee2, Xiaolei Li3, and Jiawei Han1

1 Univ. of Illinois at Urbana-Champaign
{zli28,hanj}@illinois.edu

2 IBM Almaden Research Center
leegj@us.ibm.com

3 Microsoft
xiaoleil@microsoft.com

Abstract. Trajectory clustering has played a crucial role in data analysis since
it reveals underlying trends of moving objects. Due to their sequential nature,
trajectory data are often received incrementally, e.g., continuous new points re-
ported by GPS system. However, since existing trajectory clustering algorithms
are developed for static datasets, they are not suitable for incremental clustering
with the following two requirements. First, clustering should be processed effi-
ciently since it can be frequently requested. Second, huge amounts of trajectory
data must be accommodated, as they will accumulate constantly.

An incremental clustering framework for trajectories is proposed in this paper.
It contains two parts: online micro-cluster maintenance and offline macro-cluster
creation. For online part, when a new bunch of trajectories arrives, each trajec-
tory is simplified into a set of directed line segments in order to find clusters of
trajectory subparts. Micro-clusters are used to store compact summaries of simi-
lar trajectory line segments, which take much smaller space than raw trajectories.
When new data are added, micro-clusters are updated incrementally to reflect the
changes. For offline part, when a user requests to see current clustering result,
macro-clustering is performed on the set of micro-clusters rather than on all tra-
jectories over the whole time span. Since the number of micro-clusters is smaller
than that of original trajectories, macro-clusters are generated efficiently to show
clustering result of trajectories. Experimental results on both synthetic and real
data sets show that our framework achieves high efficiency as well as high clus-
tering quality.

1 Introduction

In recent years, the collection of trajectory data has become increasingly common. GPS
chips implanted in animals have enabled scientists to track their study objects as they
travel. RFID technology installed in vehicles has enabled traffic officers to track road
traffic in real-time. With such data, trajectory clustering is a very useful task. It discovers
movement patterns that help analysts see overall trends in the trajectories. For example,

� The work was supported in part by the U.S. National Science Foundation grants IIS-08-42769
and IIS-09-05215, and a grant from the Boeing company. Any opinions, findings, and conclu-
sions expressed here are those of the authors and do not necessarily reflect the views of the
funding agencies.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 32–46, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Incremental Clustering for Trajectories 33

analysis of bird feeding and nesting habits is an important task. With the help of GPS,
scientists can tag and track birds as they fly around. Such tracking devices report the
trajectories of animals on a continual basis (e.g., every minute, every hour). With such
data, scientists can study the movement habits (i.e., trajectory clusters) of birds.

One important property with tracking application is the incremental nature of the
data. The data will grow to be in huge size as time goes by. Consider the following real
case of moving vehicle data which is used in experiment evaluation.

Example 1. A taxi tracking system tracks the real-time locations of more than 5,000
taxis in San Francisco. With the sensor installed on each taxi, the system is able to
receive information about current location(longitude and latitude) of each taxi with a
precise timestamp. The system accumulates the updated data every minute. After a
single day, the system will collect totally 7.2 million points with 1,440 points for each
taxi. After a week, the number of points will be accumulated to 50.4 million points.

For static data sets, there are many existing trajectory clustering algorithms developed.
However, to the best of our knowledge, none of them targeted at solving clustering
problem for incremental huge trajectory data as pointed out in Example 1. Facing
continuous data, previous methods will take long time to retrieve all the data and re-
compute the trajectory cluster over the whole huge data set. If the users want to track
real-time clusters every hour, it is almost impossible to finish computation within the
time period threshold, especially considering the data size still keeps growing every
minute. Therefore, trajectory data must be accommodated incrementally.

An important point to notice is that new data will only affect local shifts. It will
not have big influence on clusters in the areas which are far away from the local area
of new data. So, a more sensible approach to accommodate huge amount of data is
to maintain and adjust micro-clusters of the trajectory data. Micro-clusters are tight
clusters over small local regions. Due to their small sizes, they are more flexible to
changes in the data source. Yet they still achieve the desired space savings of clusters by
summarizing extremely similar input trajectories. These properties make them suitable
for incremental clustering.

This work proposes an incremental Trajectory Clustering using Micro- and Macro-
clustering framework called TCMM. It makes the following contributions towards an
incremental trajectory clustering solution. First, trajectories are simplified by partition-
ing into line segments to find the clusters of sub-trajectories. Second, micro-clusters of
the partitioned trajectories are computed and maintained incrementally. Micro-clusters
hold and summarize similar trajectory partitions at very fine granularity levels. They
use very little space and can be updated efficiently. And finally, micro-clusters are used
to generate the macro-clusters(i.e., final trajectory clusters).

The TCMM framework is truly incremental in the sense that micro-clusters are in-
crementally maintained as more and more data are received. Because their granularity
level is low, they can adjust to all types of change in the input data. The number of
micro-clusters is much smaller than that of the original input data. When the user wants
to compute the full trajectory clusters, micro-clusters are combined together to form the
macro-clusters in higher granularity level.

The rest of this paper is organized as follows. Section 2 formally defines the prob-
lem and gives an outline of the TCMM framework. Sections 3.1 and 3.2 discuss the

34 Z. Li et al.

micro-clusters and the macro-clusters, respectively. Experiments are shown in Section
4. Related work is analyzed in Section 5. Finally, the paper concludes in Section 6.

2 General Framework

2.1 Problem Statement

The data to be studied in this work will be in the context of an incremental data source.
That is, new batches of trajectory data will continuously be fed into the clustering al-
gorithm (e.g., from new data recordings). The goal is to process such data and produce
clusters incrementally and not have to re-compute from scratch every time.

Let the input data be represented by a sequence of time-stamped trajectory data sets:
〈It1 , It2 , . . .〉 where each Iti is a set of trajectories being presented at time ti. Each
Iti = {TR1, TR2, . . . , TRnTR} where each TRj is a trajectory. A single trajectory
TRj is often represented as a polyline, which is a sequence of connected line segments.
It can be denoted as TRj = p1p2 . . . plenj , where each point pi is a time-stamped point.
TRj can be further simplified to derive a new polyline with fewer points while its devi-
ation from the original polyline is below some threshold. The simplification techniques
have been studied extensively in previous work [11,5] . In this paper, we use the sim-
plification technique in our previous paper [11]. Simplified trajectory is represented as
TRsimplified

j = L1L2 . . . Ln, where Li and Li+1 are connected directed line segments
(i.e., trajectory partitions).

Given such input data, the goal is to produce a set of clusters O = {C1, C2, . . . ,
CnC}. A cluster is a set of directed trajectory line segments Ci = {L1, L2, . . . , Lln},
where Lk is a directed line segment from certain simplified trajectory TRsimplified

j at
certain time stamp ti. Because we do clustering on line segments rather than whole tra-
jectories, the clusters we find are actually sub-trajectory clusters, which are the popular
paths visited by many moving objects.

2.2 TCMM Framework

Figure 1 shows the general data flow of TCMM. The x-axis represents the progress
of time and the y-axis shows the progress of data processing. As the figure illustrates,
input data are received continuously.

The first step is micro-clustering. Because there is an infinite data source, it is im-
possible to store all the preprocessed input data and compute clusters from them on
request. To solve this problem, this work introduces the concept of trajectory micro-
clusters. The term “micro” refers to the extreme tightness of the clusters. The idea is to
only cluster at very fine granularity. Hence, the number of micro-clusters is much larger
than that of final trajectory clusters. Figure 1 shows the micro-clusters in the second
row. Section 3.1 will discuss them in detail.

The second step is macro-clustering, which will be discussed in detail in Section 3.2.
Compared to the micro-clustering step, which are updated constantly as new data is
received, the macro-clustering step is only evoked after receiving the user’s request of
trajectory clusters. This step will then use the micro-clusters as input.

Incremental Clustering for Trajectories 35

Time

Micro−
Clustering

Macro−
Clustering

Trajectories
Simplified

Data Flow

Fig. 1. The Framework

3 Trajectory Clustering Using Micro- and Macro-clustering

3.1 Trajectory Micro-Clustering

As newly arrived trajectories will only affect local clustering result, trajectory micro-
clusters (or just micro-clusters) are introduced here to maintain a fine-granularity clus-
tering. Micro-clusters (defined in Section 3.1) are much more restrictive than the final
clusters in the sense that each micro-cluster is meant to only hold and summarize the
information of local partitioned trajectories. Micro-clustering will enable more efficient
computation of final clusters comparing with computation from original line segments.

Algorithm 1. Trajectory Micro-Clustering
1: Input:New trajectories Itcurrent = {TR1, TR2, · · · , TRnTR} and existing micro-clusters

MC = {MC1, MC2, . . . , MCnMC }.
2: Parameter: dmax

3: Output: Updated MC with new trajectories inserted.
4: Algorithm:
5: for every TRi ∈ Itcurrent do
6: for every Lj ∈ TRi do
7: Find the closest MCk to line segment Lj /* Section 3.1 */
8: if distance(Lj , MCk) ≤ dmax then
9: Add Lj into MCk and update MCk accordingly

10: else
11: Create a new micro-cluster MCnew for Lj ;
12: if size of MC exceeds memory constraint then
13: Merge micro-clusters in MC /* Section 3.1 */

Algorithm 1 shows the general work flow of generating and maintaining micro-
clusters. It proceeds as follows. After a batch of new trajectories arrive, we compute the
closest micro-cluster MCk for each line segment Li in every trajectory. If the distance
between Li and MCk is less than a distance threshold (dmax), Li will be inserted into

36 Z. Li et al.

MCk. Otherwise, a new micro-cluster MCnew will be created for Li. If the creation of
the new micro-cluster results in the overload of the total number of micro-clusters, some
micro-clusters will be merged. The rest of this section discuss these steps in detail.

Micro-Cluster Definitions. Each trajectory micro-cluster will hold and summarize a
set of partitioned trajectories, which are essentially line segments.

Definition 1 (Micro-Cluster). A trajectory micro-cluster (or micro-cluster) for a set
of directed line segments L1, L2, · · · , LN is defined as the tuple: (N , LScenter, LSθ,
LSlength, SScenter , SSθ, SSlength), where N is the number of line segments in the
micro-cluster, LScenter, LSθ, and LSlength are the linear sums of the line segments’
center points, angles and lengths respectively, SScenter, SSθ, and SSlength are the
squared sums of the line segments’ center points, angles and lengths respectively.

The definition of trajectory micro-cluster is an extension of the cluster feature vector in
BIRCH [14]. The linear sum LS represents the basic summarized information of line
segments(i.e., center point, angle and length). The square sum SS will be used to calcu-
late the tightness of micro-cluster which will be discussed in Section 3.1. The additive
nature of the definition makes it easy to add new line segments into the micro-cluster
and merge two micro-clusters. Meanwhile, the definition is designed to be consistent
with the distance measure of line segments in Section 3.1.

Also, every trajectory micro-cluster will have a representative line segment. As the
name suggests, this line segment is the representative line segment of the cluster. It is
an “average” of sorts.

Definition 2 (Representative Line Segment). The representative line segment of a
micro-cluster is represented by the starting point s and ending point e. s and e can be
computed from the micro-cluster features.

s = (centerx −
cos θ

2
len, centery −

sin θ

2
len)

e = (centerx +
cos θ

2
len, centery +

sin θ

2
len)

where centerx = LScenterx/N , centery = LScentery/N , len = LSlength/N , and
θ = LSθ/N .

Figure 2 shows an example. There are four line segments in the micro-cluster, which
are drawn in thin lines. The representative line segment of the micro-cluster is drawn in
a thick line.

Creating and Updating Micro-Clusters. When a new line segment Li is received,
the first task is to find the closest micro-cluster MCk that can absorb Li (i.e., Line 7 in
Algorithm 1). If the distance between Li and MCk is less than the distance threshold
dmax, Li is then added to MCk and MCk is updated accordingly; if not, a new micro-
cluster is created (i.e., Line 8 to 11 in Algorithm 1). This section will discuss how these
steps are performed in detail.

Incremental Clustering for Trajectories 37

Input Line Segment
Representative Line Segment

Fig. 2. Representative Line Segment Fig. 3. Line Segments Distance

Before proceeding, the distance between a line segment and a micro-cluster is de-
fined. Since a micro-cluster has its representative line segment, the distance is in fact
defined between two line segments, which is composed of three components: the center
point distance (dcenter), the angle distance (dθ) and the parallel distance (d‖) . The dis-
tance is adapted from a similarity measure used in the area of pattern recognition [10],
which is a modified line segment Hausdorff distance. The similar distance measure is
also used in [11]. Different from [11], we use component dcenter instead of d⊥. The
reason to choose dcenter is because it is a more balanced measure between dθ and d‖
and it is easier to adapt the concept of extent, which will be introduced in Section 3.1.

Let si and ei be the starting and ending points of Li; similarly for sj and ej with Lj .
Without loss of generality, the longer line segment is assigned to Li, and the shorter one
to Lj . Figure 3 gives an intuitive illustration of the distance function.

Definition 3. The distance function is defined as the sum of three components:

dist(Li, Lj) = dcenter(Li, Lj) + dθ(Li, Lj) + d‖(Li, Lj)

The center distance:

dcenter(Li, Lj) =‖ centeri − centerj ‖ ,

where ‖ centeri− centerj ‖ is the Euclidean distance between center points of Li and
Lj .
The angle distance:

dθ(Li, Lj) =
{
‖ Lj ‖ × sin(θ), 0o ≤ θ < 90o

‖ Lj ‖, 90o ≤ θ ≤ 180o ,

where ‖ Lj ‖ denote length of Lj , θ(0o ≤ θ ≤ 180o) denote the smaller intersecting
angle between Li and Lj . Note that the range of θ is not [0o, 360o) because θ is the
value of smaller intersecting angle without considering the direction.
The parallel distance:

d‖(Li, Lj) = min(l‖1, l‖2),

where l‖1 is the Euclidean distances of ps to si and l‖2 is that of pe to ei. ps and pe are
the projection points of the points sj and ej onto Li respectively.

After finding the closest micro-cluster MCk, if the distance from Li is less than dmax,
Li is inserted into it, and the linear and square sums in MCk are updated accordingly.

38 Z. Li et al.

Because they are just sums, the additivity property applies and the update is efficient.
If the distance between the nearest micro-cluster and Li is bigger than dmax, a new
micro-cluster will be created for Li. The initial measures in the new micro-cluster is
simply derived from line segment Li (i.e., center point, theta, and length).

Merging Micro-Clusters. In real world applications, storage space is always a con-
straint. The TCMM framework faces this problem with its micro-clusters as shown in
Line 12 to 13 of Algorithm 1. If the total space used by micro-clusters exceeds a given
space constraint, some micro-clusters have to be merged to satisfy the space constraint.
Meanwhile, if the number of micro-clusters keeps increasing, it will affect the efficiency
of algorithm because the most time-consuming part is finding the nearest micro-cluster.
And what is most important, it may be unnecessary to keep all the micro-clusters since
some of the micro-clusters may become closer after several rounds of updates. There-
fore, the algorithm demands merging close micro-clusters when necessary to speed up
efficiency and save storage. Obviously, pairs of micro-clusters that contain similar line
segments are better candidates for merging because the merge results in less informa-
tion loss.

One way to compute the similarity between two micro-clusters is to calculate the
distance between the representative line segments of the micro-clusters. Though intu-
itive, this method fails to consider the tightness of the micro-clusters. Figure 4 shows
an example that how tightness might effect distance between two micro-clusters. Fig-
ure 4(a) shows two tight micro-clusters and the micro-cluster after merging them. Fig-
ure 4(b) shows the case for two comparatively loose micro-clusters. We can see that
micro-cluster A and micro-cluster C have same representative line segments, and so do
micro-clusters B and D. Thus the distance between micro-cluster A and B should be
the same as that between micro-clusters C and D if we measure the distance only using
representative line segments. In this case, the chance to merge micro-clusters A and B
is equal to that of merging micro-clusters C and D. However, we actually prefer merg-
ing micro-clusters C and D. There are two reasons: on one hand, if both micro-clusters
are very tight, they may not be good candidates for merging because it would break that
tightness after the merge. On the other hand, if they are both loose, it may not do much
harm to merge them even if their representative line segments are somewhat far apart.

Merge

Tight micro−cluster A

Tight micro−cluster B

(a) Merging tight micro-clusters
Loose micro−cluster D

Merge

Loose micro−cluster C

(b) Merging loose micro-clusters

Fig. 4. Merging micro-clusters

Incremental Clustering for Trajectories 39

Hence, a better approach would be to consider the extent of the micro-clusters and use
that information in computing the distance between micro-cluster.

In the following parts, we will first introduce the way to compute micro-cluster ex-
tent, then give definitions of the distance between micro-clusters with extent informa-
tion. Lastly, we will discuss how to merge two micro-clusters.

Micro-Cluster Extent. The extent of a micro-cluster is an indication of its tightness.
Recall that micro-clusters are represented by tuples of the form: (N , LScenter, LSθ,
LSlength, SScenter, SSθ, SSlength), which maintain linear and square sums of center,
angle and length. The extent of the micro-cluster also includes three part extentcenter,
extentθ and extentlength to measure the tightness of three basic facts of a trajectory
micro-cluster. The extents are the standard deviation that calculated from its corre-
sponding LS and SS. We have the following lemma from [14].

Lemma 1. Given a set of distance values, D =(d1, d2, ..., dn). Let LS =
∑

i=1..n di,

and SS =
∑

i=1..n(di)2. The standard deviation of the distances is σ=
√

n×SS−(LS)2
n2 .

Using Lemma 1, we give a formal definition for extent of a micro-cluster:

extentα =
√

(N × SSα − LS2
α)/N2

where symbol α represents center, θ, or length and N is the number of line segments
in the micro-cluster.

centerextentinput line segment
representative line segment

(a) Center extent

θextent

(b) θ extent

lenextent

(c) Length extent

Fig. 5. Micro-Cluster Extent

To give an intuition of extent concept, Figure 5 shows an example of extentcenter,
extentθ and extentlength. Figure 5(a) states that “most” center points of the line seg-
ments stored in this micro-cluster are within the circle of radius extentcenter. Fig-
ure 5(b) illustrates that “most” angles vary within a range of extentθ and Figure 5(c)
reflects the uncertainty of length.

Micro-Cluster Distance with Extent. With the extents properly defined, we can now
incorporate them into the distance function. Recall that the intention of extent was to
adjust the distance function based on the tightness of micro-clusters. For instance, let
d1,2 be the distance between micro-clusters MC1 and MC2 according to the distance
function defined previously. If these two micro-clusters are both “tight” (i.e., having
zero or very small extent), then d1,2 indeed represents the distance between them. How-
ever, if these two micro-clusters are both “loose” (i.e., having large extent), then their

40 Z. Li et al.

“true” inter-cluster distance should actually be less than d1,2. This is because the line
segments at the borders of the two micro-clusters are likely to be much closer than d1,2.
With respect to merging micro-clusters, this allows loose micro-clusters to be more
easily merged and vice-versa. The adjustment of the distance function using extent is
relatively simple. Whenever possible, extent is used to reduce the distance between the
representative line segments of micro-clusters.

(a) Center distance with extent (b) Parallel distance with extent

(c) Angle distance with extent

Fig. 6. Line Segments Distance with Extent

To measure the distance between micro-cluster i and micro-cluster j, it is equivalent
to measure the distance d∗(L∗

i , L
∗
j) between the representative line segments L∗

i with
extenti and L∗

j with extentj . Figure 6 shows an intuitive example of distance measure
with extent. For example, in Figure 6(a), the distance between the centers is the distance
between representative line segments minus the center extents of two micro-clusters.
The formal definition is given as follows based on the modification of distance measure
between line segments (i.e., Definition 3). To avoid the redundancy in presentation, the
symbols explained in Definition 3 are not repeated in Definition 4.

Definition 4. The distance between L∗
i and L∗

j contains three parts: center distance
d∗center , angle distance d∗θ and parallel distance d∗‖.

dist(L∗
i , L

∗
j) = dcenter(L∗

i , L
∗
j) + dθ(L∗

i , L
∗
j) + d‖(L∗

i , L
∗
j)

The center distance:

d∗center(L
∗
i , L

∗
j) = max

(
0, ‖centeri − centerj‖ − extenticenter − extentjcenter

)
The angle distance:

θ∗ = θ − (extentiθ + extentjθ)

d∗θ(L
∗
i , L

∗
j) =

{
‖ L∗

j ‖ × sin(θ∗), 0o ≤ θ∗ < 90o

‖ L∗
j ‖, 90o ≤ θ∗ ≤ 180o

Incremental Clustering for Trajectories 41

The parallel distance:

d∗‖(L
∗
i , L

∗
j) = max

(
0, min(l‖1, l‖2)− (extentilength + extentjlength)/2

)
,

where extentjlength is the projection of extentjlength onto L∗
i .

Note that the distances defined between two representative line segments with extent are
smaller than those defined between two original ones. And the distance may be equal
to zero when there is an overlap between representative line segments with extent.

Merging Algorithm. The final algorithm of merging micro-clusters is as follows. Given
M micro-clusters, the distance between any two micro-clusters is calculated. They are
then sorted from the most similar to the least similar. The most similar pairs are the best
candidate for merging since merging them result in the least amount of information loss.
They are merged until the number of micro-clusters satisfy the given space constraints.

3.2 Trajectory Macro-clustering

The last step in the TCMM framework produces the overall trajectory clusters. While
micro-clustering is processed with a new batch of data comes in, macro-clustering is
evoked only when it is called upon by the user.

Since the distance between micro-clusters is defined in Definition 4, it is easy to
adapt any clustering method on spatial points. We simply need to replace the distancce
between spatial points with the distance between micro-clusters. In our framework, we
use density-based clustering [7], which is also used in TRACLUS [11]. The clustering
technique in macro-clustering step is the same as the clustering algorithm in TRACLUS.
The only difference is that macro-clustering in TCMM is performed on the set of micro-
clusters rather than the set of trajectory partitions as in TRACLUS. The micro-clusters
are clustered through a density-based algorithm which discovers maximally “density-
connected” components, each of which forms a macro-cluster.

4 Experiments

This section tests the efficiency and effectiveness of the proposed framework under
a variety of conditions with different datasets. The TCMM framework and the TRA-
CLUS [11] framework are both implemented using C++ and compiled with gcc. All
tests were performed on a Intel 2.4GHz PC with 2GB of RAM.

4.1 Synthetic Data

As a simple way to quickly test the “accuracy” of TCMM, synthetic trajectory data
is generated. Objects are generated to move along pre-determined paths with small
perturbations (< 10% relative distance from pre-determined points). 15% trajectories
are random noises added to the data. Figure 7 shows the result of incremental micro-
clustering at two different snapshots. Figure 7(a) shows raw trajectories in gray; one can
clearly see the trajectory clusters. The extracted micro-clusters are drawn with red/bold
lines; they match the intuitive clusters. Figure 7(b) shows the trajectories and extraction
results for a later snapshot. Again, they match the intuitive clusters.

42 Z. Li et al.

(a) Micro-clusters at snapshot 1 (b) Micro-clusters at snapshot 2

Fig. 7. Micro-clusters from synthetic data

4.2 Real Animal Data in Free Space

Next, clusters are computed from deer movement data 1 in Year 1995. This data set
contains 32 trajectories with about 20, 000 points in total. The dataset size of animal
is considerably small due to the high expense and technological difficulties to track
animals. But it is worth studying animal data because the trajectories are in free space
rather than on restricted road network. In Section 4.3, a further evaluation on a much
larger vehicle dataset containing over 7, 000 trajectories will be conducted.

To the best of our knowledge, there is no any other incremental trajectory clustering
algorithm. So the results of TCMM will be compared with TRACLUS [11], which does
trajectory clustering over the whole data set. Since micro-clusters in TCMM summarize
original line segments information with some information loss, the clustering result on
micro-clusters might not be as real as TRACLUS. So the cluster result from TRACLUS
is used as a standard to test the accuracy of TCMM. Meanwhile, it is important to show
the efficiency against TRACLUS while both results are similar.

We adapt performance measure, sum of square distance (SSQ), from CluStream [1]
to test the quality of clustering results. Assume that there are a total of n line segments
at the current timestamp. For each line segment Li, we find the centroid (i.e., represen-
tative line segment) CLi of its closest macro-cluster, and compute d(Li, CLi) between
Li and CLi . The SSQ at timestamp is equal to the sum of d2(Li, CLi) and the average
SSQ is SSQ/n.

 5000

 4000

 3000

 2000

 1000

 0
 20064 16029 11718 6900

A
ve

ra
ge

 S
S

Q

Number of Trajectory Points Loaded

TCMM
TRACLUS

Fig. 8. Effectiveness Comparison (Deer)

 50

 10

 0.5

 0.1
 20064 16029 11718 6900

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of Trajectory Points Loaded

TCMM
TRACLUS

Fig. 9. Efficiency Comparison (Deer)

1 http://www.fs.fed.us/pnw/starkey/data/tables/

Incremental Clustering for Trajectories 43

As shown in Algorithm 1, there is only one parameter dmax in micro-clustering step
and we set it to 10. The parameter sensitivity is analyzed and discussed in Section 4.4.
For macro-clustering and TRACLUS, they use the same parameters ε and MinLns.
Here, ε is set to 50 and MinLns is set to 8.

Figure 8 shows the quality of clustering results. Comparing with TRACLUS, the
average SSQ of TCMM is slightly higher. In the worst case, the average SSQ of TCMM
is 2% higher than TRACLUS. But the processing time of TCMM is significantly faster
than TRACLUS. To process all the 20, 000 points, TCMM only takes 0.7 seconds while
TRACLUS takes 43 seconds. The reason is that it is much faster to do clustering over
micro-clusters rather than over all the trajectory partitions. With the deer dataset, at
last, the number of trajectory partitions (3390) is much more than the number of micro-
clusters (324) in total.

4.3 Real Traffic Data in Road Network

Real world GPS recorded data from a taxi company in San Francisco is used to test
the performance of TCMM. The data set is huge and keeps growing as time goes by.
It contains 7,727 trajectories(100, 000 points) of taxis as they travel around the city
picking up and dropping off passengers.

Figure 10 shows the visual clustering result of taxi data. First row and second row
show the micro-clusters (dmax set to 800) and macro-clusters (ε set to 50 and MinLns
set to 8). Last row shows cluster result from TRACLUS. Time 0, 1, and 2 correspond
to the timestamps respectively when 52317, 74896, and 98002 trajectory points have
been loaded. As we can see from Figure 10, the results from TCMM and TRACLUS
are similar except very few differences. The similar clustering performance is further
proved in Figure 11, where the average SSQ of TCMM is only slightly higher than that
of TRACLUS (2% higher in worst case and 1.4% higher on average).

Micro Clusters

Macro Clusters

TRACLUS
Time 0 Time 1 Time 2

Fig. 10. Taxi Experiment

44 Z. Li et al.

 5000

 4000

 3000

 2000

 1000

 0
 98002 74896 52317 24210

A
ve

ra
ge

 S
S

Q

Number of Trajectory Points Loaded

TCMM
TRACLUS

Fig. 11. Effectiveness Comparison(Taxi)

 10000

 1000

 100
 98002 74896 52317 24210

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of Trajectory Points Loaded

TCMM
TRACLUS

Fig. 12. Efficiency Comparison(Taxi)

Regarding to efficiency issue, Figure 12 shows the time needed to process the data
in 4 increments with TCMM and TRACLUS. Compared to previous data sets, TRA-
CLUS is substantially slower this time due to the larger data set size. To process all
the data, TRACLUS takes about 4.6 hours while TCMM only takes about 7 minutes
to finish. This is because the number of trajectory partitions (52,600) is much larger
than the number of micro-clusters (2,013). It means that TCMM is much more efficient
than TRACLUS as data set is getting bigger, while at the same time, the effectiveness
remains the same as TRACLUS.

4.4 Parameter Sensitivity

The micro-clustering step of TCMM has the nice property that it only requires one
parameter: dmax. A large dmax builds micro-clusters that are large in individual size
but small in overall quantity, whereas a small dmax has the opposite effect. If we set
dmax = 0, TCMM is actually TRACLUS because each line segment will form a micro-
cluster itself. Then the macro-clustering applied on micro-clusters is exactly the one
applied on original line segments. Therefore, the smaller the dmax is, the better the
quality of clustering should be but the longer processing time is needed. At the same
time, if we set dmax larger, the algorithm runs faster but loses more information in
micro-clustering. Hence there is a trade-off between effectiveness and efficiency.

We use taxi datasets to study the parameter sensitivity of our algorithm. Figure 13
and Figure 14 show the performance of TCMM with different dmax. We can see that
when dmax = 600, the average SSQ is closer to that of TRACLUS, which shows
that it has more similar performance as TRACLUS. But it also takes longer time to do

 5000

 4000

 3000

 2000

 1000

 0
 98002 74896 52317 24210

A
ve

ra
ge

 S
S

Q

Number of Trajectory Points Loaded

TCMM(d_max=600)
TCMM(d_max=800)

TCMM(d_max=1000)
TRACLUS

Fig. 13. Effectiveness with dmax

 10000

 1000

 100
 98002 74896 52317 24210

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of Trajectory Points Loaded

TCMM(d_max = 600)
TCMM(d_max = 800)

TCMM(d_max = 1000)
TRACLUS

Fig. 14. Efficiency with dmax

Incremental Clustering for Trajectories 45

clustering when dmax = 600. However, comparing with TRACLUS, the time spent on
incremental clustering is still significantly shorter.

5 Related Work

Clustering has been studied extensively in machine learning and data mining. A number
of approaches have been proposed to process point data in various conditions , such as
k-means [12], BIRCH [14,3] and OPTICS [2]. The micro-clustering step in TCMM
share the idea of micro-clustering in BIRCH [14]. However, BIRCH [14] cannot han-
dle trajectory clustering. The clustering feature in TCMM has been extended to exactly
describe a line-segment cluster by including three kinds of information. The data bub-
ble [3] is an extension of the BIRCH framework and introduces the idea of the extent.
TCMM also uses the extent in its micro-cluster, but the definition has been changed to
accommodate trajectories.

Trajectory clustering has been studied in various contexts. Gaffney et al. [9,4,8] pro-
poses several algorithms for model-based trajectory clustering. TRACLUS [11] is a
trajectory clustering algorithm which performs density-based clustering over the entire
set of sub-trajectories. However, all of these algorithms cannot efficiently handle incre-
mental data. They are not suitable for incremental data since clusters are re-calculated
from scratch every time.

CluStream [1] studies clustering dynamic data streams. Our method adapts its micro-
/macro-clustering framework for trajectory data. However, our method so far handles
only incremental data but not trajectory streams. This is because sub-trajectory micro-
clustering has to wait for nontrivial number of new points accumulated to form sub-
trajectories, which needs addition buffer space and waiting time. Moreover, the process-
ing of sub-trajectories is more expensive and additional processing power is needed for
real time stream processing. Thus, the extension of our framework for trajectory stream-
ing left for future research.

Ester et al. [6] proposes the Incremental DBSCAN algorithm, which is an extension
of DBSCAN for incremental data. Here, the final clusters are directly updated based
on new data. We believe our two-step process is more flexible since any clustering al-
gorithm can be employed for macro-clustering, whereas IncrementalDBSCAN is dedi-
cated to DBSCAN. More recently, Sacharidis et al. [13] discusses the problem of online
discovering hot motion. The basic idea is to delegate part of the path extraction process
to objects, by assigning to them adaptive lightweight filters that dynamically suppress
unnecessary location updates. Their problem is different from ours in two ways: first,
they are trying to find recent hot paths whereas our clusters target at whole time span;
and second, they require the objects in a moving cluster to be close enough to each
other at any time instant during a sliding window of W time units but we are more from
geometric point of view to measure the distance between trajectories.

6 Conclusions

In this work, we have proposed the TCMM framework for incremental clustering of
trajectory data. It uses a two-step process to handle incremental datasets. The first

46 Z. Li et al.

step maintains a flexible set of micro-clusters that is updated continuously with the
input data. Micro-clusters compress the infinite data source to a finite manageable size
while still recording much of the trajectory information. The second step, which is on-
demand, produces the final macro-clusters of the trajectories using the micro-clusters
as input. Compared to previous static approaches, the TCMM framework is much more
flexible since it does not require all of the input data at once. The micro-clusters provide
a summary of the trajectory data that can be updated easily with any new information.
This makes it more suitable for many real world application scenarios.

References

1. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data
streams. In: VLDB 2003 (2003)

2. Ankerst, M., Breunig, M., Kriegel, H.-P., Sander, J.: OPTICS: Ordering points to identify the
clustering structure. In: SIGMOD 1999 (1999)

3. Breunig, M.M., Kriegel, H.-P., Kröger, P., Sander, J.: Data bubbles: Quality preserving per-
formance boosting for hierarchical clustering. In: SIGMOD 2001 (2001)

4. Cadez, I.V., Gaffney, S., Smyth, P.: A general probabilistic framework for clustering individ-
uals and objects. In: KDD 2000 (2000)

5. Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to
represent a line or its character. In: The Ameican Cartographer (1973)

6. Ester, M., Kriegel, H.P., Sander, J., Wimmer, M., Xu, X.: Incremental clustering for mining
in data warehousing environment. In: VLDB 1998 (1998)

7. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clus-
ters in large spatial databases. In: KDD 1996 (1996)

8. Gaffney, S., Robertson, A., Smyth, P., Camargo, S., Ghil, M.: Probabilistic clustering of
extratropical cyclones using regression mixture models. Technical Report UCI-ICS 06-02,
University of California, Irvine (January 2006)

9. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: KDD
1999 (1999)

10. Chen, M.K.L.J., Gao, Y.: Noisy logo recognition using line segment hausdorff distance. Pat-
tern Recognition (2002)

11. Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: A partition-and-group framework.
In: SIGMOD 2007 (2007)

12. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In:
Proc. 5th Berkeley Symp. Math. Statist., Prob., vol. 1, pp. 281–297 (1967)

13. Sacharidis, D., Patroumpas, K., Terrovitis, M., Kantere, V., Potamias, M., Mouratidis, K.,
Sellis, T.: On-line discovery of hot motion paths. In: EDBT 2008 (2008)

14. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very
large databases. In: SIGMOD 1996 (1996)

NNCluster: An Efficient Clustering Algorithm
for Road Network Trajectories�

Gook-Pil Roh and Seung-won Hwang

Department of Computer Science & Engineering,
Pohang University of Science and Technology (POSTECH),

Pohang, Republic of Korea
{noh9pil,swhwang}@postech.ac.kr

Abstract. With the advent of ubiquitous computing, we can easily ac-
quire the locations of moving objects. This paper studies clustering prob-
lems for trajectory data that is constrained by the road network. While
many trajectory clustering algorithms have been proposed, they do not
consider the spatial proximity of objects across the road network. For
this kind of data, we propose a new distance measure that reflects the
spatial proximity of vehicle trajectories on the road network, and an
efficient clustering method that reduces the number of distance compu-
tations during the clustering process. Experimental results demonstrate
that our proposed method correctly identifies clusters using real-life tra-
jectory data yet reduces the distance computations by up to 80% against
the baseline algorithm.

1 Introduction

Due to the evolution of positioning and sensor technologies such as GPS and
RFID, we can now easily record the movements or trajectories of moving objects.
Some examples of this include vehicle locations, object tracking data, and animal
movement data.

Recently, a massive amount of collected trajectory information has been pub-
lished and shared in websites or in web communities [1,2,3]. While these sites
simply visualize the relevant trajectories, advanced data analysis techniques,
such as clustering, can be used for recommending interesting travel sequences
based on the common trajectories of users [28] or finding users with similar life
experiences based on their trajectories [22].

This paper studies how to develop an efficient clustering algorithm for tra-
jectory data. Clustering trajectories can be used to identify distinct groups in
which trajectories have more similar moving patterns than those in other groups.
Specifically, this paper focuses on clustering the vehicle trajectories of users on

� This work was supported by Microsoft Research Asia and Engineering Research
Center of Excellence Program of Korea Ministry of Education, Science and Technol-
ogy (MEST) / Korea Science and Engineering Foundation (KOSEF), grant number
R11-2008-007-03003-0.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 47–61, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

48 G.-P. Roh and S.-w. Hwang

TA

TB

TC

Fig. 1. Spatial proximity on road networks

road networks, which we will call the network trajectory from this point on.
While there has been prior research work done on clustering trajectories, none
of them considered the movement constraints imposed by the underlying road
networks– Two locations that are close based on Euclidean distance may not be
reachable over road networks, if no road exists between the two locations.

To achieve the goal, we first identify desirable properties that the distance
measure should satisfy. For instance, the distance measure should reflect the
spatial proximity from the viewpoint of the road network (will be referred to
road-network proximity). To illustrate, Figure 1 presents three trajectories on
road networks. When the distance measure used does not consider the underlying
road network, e.g., Euclidean distance, the trajectory TB is more similar to TC

than TA. However, on the road network, TB is more similar to TA than TC , as
no route exists between between TB and TC . A desirable distance measure D
should thus take into account that D(TA, TB) < D(TA, TC).

We then need to define a cost model and devise an algorithm to minimize
the cost. Specifically, to devise a cost model, we focus on online clustering, as
many recent web-based services use trajectories for the post-processing of search
results, e.g., clustering search results based on spatial proximity. In such cases, it
is not feasible to (1) assume an index structure for the search results determined
at a query time or (2) build an index at a query time. We thus consider clustering
algorithms without the prior existence of index structures and use the number
of distance computations as a cost model, because it dominates the overall cost
of clustering trajectories– Computing the distance between two trajectories is
expensive, as each trajectory typically consists of potentially thousands of sam-
pling points (see Section 6.1).

To address this problem, we first propose a baseline algorithm which applies
agglomerative hierarchical clustering to our clustering problem. We then devise
an improved algorithm which reduces the distance computations by up to 80%
against the baseline algorithm.

We can summarize the contributions of our paper as follows:

– We studied clustering problems for trajectories constrained by road net-
works.

– We identified road-network proximity which is satisfied by a clustering algo-
rithm for network-trajectories.

– We proposed a distance measure which satisfies road-network proximity.
– We presented an efficient clustering algorithm.

NNCluster: An Efficient Clustering Algorithm for Road Network Trajectories 49

– We extensively validated the efficiency and the quality of our proposed clus-
tering algorithm using real-life trajectory data.

The rest of the paper is organized as follows. Section 2 presents some prior
research work. In Section 3, we present our definition of the problem. Section 4
and Section 5 describe our proposed the distance measure and the clustering
algorithm, respectively. Section 6 reports our experimental results. Section 7
concludes the paper.

2 Related Work

In this section, we survey prior research efforts on trajectory clustering algo-
rithms and distance measures for trajectory data.

2.1 Clustering Algorithm

As good examples of clustering methods for trajectories, we can looks at two
representative clustering algorithms as proposed in [14] and [20]. Gaffney et
al. [14] proposed a trajectory clustering algorithm, which mainly focused on
grouping similar trajectories as a whole. They approach was to model a set of
trajectories using a regression mixture model and then use an EM (Expectation-
Maximization) algorithm to determine the cluster memberships. However, due
to the slow convergence of the EM algorithm, applying this algorithm to our
problem is not appropriate as an instant online clustering response is needed.

TRACLUS [20] was developed to cluster common sub-trajectories. It uses a
partition-and-group framework which divides trajectories into line segments and
then merges similar line segments. Specifically, TRACLUS uses the minimum
description length (MDL) principle to represent trajectories in a partition phase
and a density-based clustering algorithm, i.e., DBSCAN [13], to cluster trajec-
tory partitions in a group phase. A known drawback of density-based clustering
algorithms is their assumption that trajectories in the same cluster have a rather
homogeneous density. However, as we will observe from real-life trajectories in
Section, 6.1 densities in the same cluster can vary significantly, which discour-
aged us from applying TRACLUS for our proposed problem.

2.2 Distance Measure for Trajectory Data

We can categorize the distance measures proposed for trajectories into two
groups– order-dependent distance measures and order-independent distance
measures.

Order-dependent distance measures [21,7,26,10,9,17] build upon trajectories
which are represented as a sequence of points in two or three dimensional space.
Then they compare how closely the two sequences align with each other. LCSS [26]
is rather robust to noise by quantizing the distance between a pair of elements as
either 0 or 1. However, it is well known that LCSS could be inaccurate because it

50 G.-P. Roh and S.-w. Hwang

neglect to consider the gap g between similar subsequences. To address this prob-
lem, Lei Chen et al. [10] proposed EDR which considers the gap penalty between
the two matching subsequences. ERP [9] is a variant of EDR, which does not quan-
tize the distance between elements.

Order-independent distance measures [24,18,15,5,8,20,23] build upon trajec-
tories which are represented as a set of points or line segments. In this line of
research, the time information of trajectories is ignored and the distance be-
tween trajectories is measured with respect to the shape of the trajectory. For
this purpose, Hausdorff distance has been used to measure the distance between
two trajectories in [24,18,15,5,8]. Lin et al. proposed the distance measure shown
in [23] based on a modified Hausdorff distance [12].

However, no measure discussed above fully reflects road-network proximity
and thus cannot be applied to our problem “as is”.

3 Problem Definition

We assume that the road network can be represented as a graph where a vertex
is the intersection of the road network and the edge is a road segment. We can
thus give a formal definition of the road network as follows.

Definition 1 (Road network). A road network RN is defined as a graph
GRN = (V, E), where V is a set of intersections of the road network, and E is
a set of road segments Ri ∈ E such that

Ri = (ri,s, ri,e),

where ri,s, ri,e ∈ V and there exists an road between ri,s and ri,e.

We assume that a trajectory is given as a connected sequence of road segments,
which is obtained using a map matching algorithm [6], in such a way that each
road segment of a trajectory should be connected to the next road segment in
the sequence, i.e., the ending position of each segment is the starting position
of the next segment in the sequence.

Definition 2 (Trajectory). Given a road network GRN = (V, E) and a set of
trajectory T , a trajectory of length l is defined as

TRi =
[
ti1, . . . , t

i
l

]
,

where tij ∈ E, 1 ≤ j ≤ l, and tij and tij+1 are connected.

For a given set of trajectories T = {TR1, · · · , TRn} on a road network RN ,
our clustering algorithm employs a set of clusters C = {C1, . . . , Ck}, which are
defined as follows.

Definition 3 (Cluster). Given input trajectories T , a cluster Ci ∈ C is a set
of trajectories in T such that
1. Ci
= ∅, i = 1, . . . , k;
2.
⋃k

i=1 = C;
3. Ci ∩ Ci = ∅, i, j = 1, . . . , k and i
= j.

NNCluster: An Efficient Clustering Algorithm for Road Network Trajectories 51

4 Distance Measure

This section presents a novel distance measure for network trajectories. To gen-
erally support both order-dependent and order-independent measures, we focus
on devising an order-independent measure as a lower bound for both distance
measures. To illustrate the differences, Figure 2 illustrates two trajectories that
move along the same route but in opposite directions. Assume that the two tra-
jectories have the same sampling points (t0, · · · , t5). TA moves from t5 to t0 and
TB moves from t0 to t5. When the distance measure becomes sensitive to the
order of sampling points, i.e., an order-dependent measure, TA is thought to be
totally different from TB. In contrast, when using order-independent measures,
the two trajectories are considered as being identical.

This suggests that ranking pairwise distances by order-independent measure
“underestimates” the order-dependent distances. We can thus obtain a ranking
of order-dependent distances by using order-independent metrics (if required
by an application), by simply adding a post-filtering step to discard the “false
positives”. We can thus focus on order-independent metrics.

The underlying idea of our distance measure is that we determine the distance
between two trajectories as the longest distance that an adversary can force you
to travel from one road segment to another.

t1t0 t2 t3 t4
t5

TA

TB

Fig. 2. Effects on the order-dependence of distance measure

4.1 Road Segment Distance

First, we define the distance d(Ri, Rj) between two road segments Ri and Rj

and based on this, we will define the distance between the trajectories later on.
The road segment distance between Ri and Rj , is therefore defined as follows:

Definition 4 (Road segment distance)

d(Ri, Rj) = max
{−→

d (Ri, Rj),
−→
d (Rj , Ri)

}
, (1)

where
−→
d (Ri, Rj) is a one-way road segment distance from Ri to Rj.

The one-way road segment distance
−→
d (Ri, Rj) is defined as follows:

Definition 5 (One-way road segment distance)

−→
d (Ri, Rj) = max

{
min {‖ri,s, rj,s‖, ‖ri,s, rj,e‖} ,
min {‖ri,e, rj,s‖, ‖ri,e, rj,e‖}

}
, (2)

where ‖a, b‖ is the length of the shortest path between a and b.

52 G.-P. Roh and S.-w. Hwang

4.2 Trajectory Distance

Based on the road segment distance defined in the previous section, we now
move on to define the distance measure between two trajectories.

Definition 6 (Trajectory distance). Given two trajectories TRi=
[
ti1, . . . , t

i
n

]
and TRj =

[
tj1, . . . , t

j
m

]
, the distance between them is defined as follows:

D(TRi, TRj) = max
{−→

D(TRi, TRj),
−→
D(TRj, TRi)

}
, (3)

where
−→
D(TRi, TRj) is the one-way trajectory distance from TRi to TRj.

Definition 7 (One-way trajectory distance). Given two trajectories TRi

and TRj, the one-way trajectory distance is defined by

−→
D(TRi, TRj) = max

ti
a∈TRi

min
tj
b
∈TRj

d(tia, tjb) (4)

The One-way trajectory distance finds the road segment tia that is the farthest
from road segments of TRj, and calculates the distance from tia to its nearest
road segment in TRj.

While this notion of Hausdorff distance was used in prior work [24,18,15,5,8],
they used Euclidean distance to quantify the distance between point pairs. In
a clear contrast, we consider network constraints when quantifying the distance
between point pairs, as the longest path from each road segment to its closest
road segment on another trajectory. To illustrate this idea, consider two tra-
jectories A and B in Figure 3. The two trajectories share the same movement
until the point where A keeps moving straight while B makes a right turn. This
suggests the distance between A and B is 0, until the two objects take different
paths. Afterwards, the travel distance for A to reach B, or vice versa, is now
either the distance of A making a U-turn to B, as represented as a dashed line
in the figure, or B making a U-turn to A. As the former distance is longer, we
use the length of the dashed line as the distance between the two trajectories.

A

B

Fig. 3. Meaning of trajectory distance

Theorem 1. Our proposed trajectory distance is a metric.

Proof. Due to space limitation, we omit the proof here but it is in the extended
version [25].

NNCluster: An Efficient Clustering Algorithm for Road Network Trajectories 53

5 Clustering Algorithm

In this section, we present the clustering algorithm for trajectory data. We first
present the baseline algorithm which employs the agglomerative hierarchical
clustering algorithm. Then we propose our clustering method which is more
efficient than the baseline algorithm.

5.1 Baseline Algorithm

This section presents the baseline algorithm which adopts agglomerative hier-
archical clustering (HC) method to our clustering problem. Each trajectory is
regarded as a singleton cluster and then the clusters are merged until all the
trajectories are eventually assigned to a single cluster.

More specifically, we first compute a distance matrix (DM) that contains
the distances between all pairs of clusters. DMij contains the distance between
the two clusters. At each particular step, we merge two clusters that have the
minimum distance value in DM . Assume that TRi and TRj are merged into
a new cluster. Whenever a new cluster is generated, we then update DM by
re-calculating the distances of the new cluster against all of the existing clusters
(except TRi and TRj). For this update, we need to define the distance between
two clusters, which we will discuss later in Section 5.2. This algorithm terminates
when all of the trajectories are merged into a single cluster.

However, this baseline algorithm requires a large number of distance compu-
tations which significantly degrades the performance of the clustering algorithm.
More specifically, building a distance matrix for any N number of trajectories
requires N×(N−1)

2 distance computations. As mentioned in Section 1, computing
the distance between two trajectories is expensive. While there are many HC
techniques [27] that address the high computational costs of the classical HC
algorithm, they generally introduce a data structure for efficiency, which cannot
be used for our target problem of online clustering.

We therefore devise a technique to reduce distance computations not requiring
an index structure, without much loss in the quality of clustering results.

5.2 NNCluster

This section proposes an efficient method for clustering trajectories. The un-
derlying principle of our clustering method is that trajectories belong to the
same cluster if they share common nearest neighbors. This is inspired by the
distance relationship in which inter-cluster trajectories have a higher proximity
than intra-cluster trajectories.

Conceptually, clustering trajectories into a group that share common nearest
neighbors can be viewed in the same way as clustering data points in a Voronoi
cell defined by the common nearest neighbor as shared by all points in the cell.
Even though applying the Voronoi diagram for clustering has been studied in
[19], applying this to our problem requires the actual materialization of the
Voronoi diagram on the trajectory data. However, building Voronoi diagrams of

54 G.-P. Roh and S.-w. Hwang

TR1 TR2 TR4TR3

TR1 TR2 TR3 TR41TR ...;d=0 ;d=3 ;d=7;d=1

distance

0 1 3 7

(a) Exact sorted list for TR1

TR4TR3 TR2 TR1

TR2 TR1 TR3 TR4 ...;d=0
;2<=d<=4

;d=1
;6<=d<=8

TR4 TR3 TR2 TR1

...;d=0
;2<=d<=4

;d=3

...;d=0
;4<=d<=10

;4<=d<=10

;6<=d<=8
;d=7

2

TR3

TR4

TR

(b) Derived sorted lists

Fig. 4. Example of approximating sorted list (TR1 is a seed trajectory)

network trajectories would incur a prohibitive computational cost, as it needed
exponential cost over the number of trajectories [4].

We will thus develop an algorithm that incrementally and approximately ma-
terializes the cells, which consists of the following two steps: construction of
initial cluster and expansion of initial clusters.

Construction of initial cluster: To efficiently construct an initial cluster, we
compare k-nearest neighbors of each trajectory with those of another trajectory.
The two trajectories are then merged into a cluster if the ratio between the
common nearest neighbors is greater than a user-defined threshold value.

More specifically, we repeat the following processes until no further merging
is possible. To reduce the distance computation, at each iteration, we randomly
select a seed trajectory TRseed among trajectories that have yet to be assigned
to any initial cluster and compute a sorted list for TRseed, which contains the
distances between TRseed and all of the other trajectories in an ascending order.
Figure 4(a) shows an example of such a sorted list for TRseed, when TR1 is
selected as a seed trajectory. From the top trajectory in the list, e.g., TR2 in
Figure 4(a), we proceed to test whether the ratio of common nearest neighbors
of TR2 and TRseed is greater than the user-defined threshold value. To find the
nearest neighbors of TR2, we need to compute a sorted list for TR2 as TRseed. By
building exact sorted lists only for seed trajectories, we can avoid the prohibitive
cost of building exact lists for every trajectory.

For the remaining “non-seed” trajectories, instead of building exact sorted
lists, we generate approximate lists that are based on the exact lists of seed
trajectories. This suggests that once we compute the exact sorted list for a
seed trajectory, we can then estimate the sorted lists of the remaining non-seed
ones by approximating the distance based on the exact sorted lists on the seed
trajectories. Hereafter we call an approximated sorted list a derived sorted list.
For derived sorted lists, each element of the list has a lower bound distance and
an upper bound distance. Trajectories are sorted first by the lower bound and
the ties in lower bound (if they exist) are broken by upper bounds.

For example, we can illustrate how to approximate the distance between TR2
and TR3, when we already have the sorted lists for TR1 as illustrated in Fig-
ure 4(a). Figure 4(b) shows derived sorted lists for TR2, TR3, and TR4 after we
compute the exact sorted list for the trajectory TR1.

NNCluster: An Efficient Clustering Algorithm for Road Network Trajectories 55

As our distance measure satisfies the property of triangle inequality, the fol-
lowing two inequalities are also satisfied.

D(TR2, TR3) ≤ D(TR1, TR2) + D(TR1, TR3) (5)
D(TR1, TR3) ≤ D(TR1, TR2) + D(TR2, TR3) (6)

By using the above two inequalities, we can compute the lower and upper bound
of D(TR2, TR3) as follows:

D(TR1, TR3)−D(TR1, TR2)
≤ D(TR2, TR3)
≤ D(TR1, TR2) + D(TR1, TR3).

(7)

After a derived sorted list is established for a non-seed trajectory TRi, we can
compare k-nearest trajectories of TRi with those of TRseed. If the ratio of the
common trajectories to the union of the two sets of k-nearest neighbors is greater
than the user-defined threshold, we can merge TRi with TRseed.

Expansion of initial cluster: During construction of initial clusters, some
clusters can be divided into multiple initial clusters. Therefore, in this step, we
need to merge initial clusters, if two clusters are closer than the user-specified
threshold.

There are two challenges in this step: First we need to define the distance
measure between clusters. Second, a stop condition is required to determine
when the expansion of the initial cluster terminates.

To address the fist challenge, we define the distance between clusters as fol-
lows:

Definition 8 (Distance between clusters). Given two clusters, ci and cj,
the distance between them is defined by

Dc(ci, cj) = D(rt(ci), rt(cj)), (8)

where rt(·) is the representative trajectory of a cluster and D(·, ·) is the trajectory
distance (Equation 3).

As a representative trajectory, we choose the trajectory that minimizes the av-
erage distance between the trajectories in a cluster.

Definition 9 (Representative trajectory)

Given cluster ci = {TR1, . . . , TRl}, a representative trajectory, rt(ci), is defined
by

rt(Ci) = arg min
TRi∈Ci

1
l

l∑
m=1

D(TRi, TRm). (9)

For the second challenge, i.e., a stop condition, we first introduce quality mea-
sures which have been used to validate the clustering results. Then we present

56 G.-P. Roh and S.-w. Hwang

a method to exploit the quality measure as a stop condition for our clustering
method.

Many quality measures (e.g., Dunn Index, Silhouette Index, and Davies-
Bouldin (DB) Index) have been introduced previously to address issues of this
type1.

These quality measures were originally developed to validate clustering results
after a clustering process terminates. Therefore, the cost for computing a quality
measure has not been considered in the context of their application. However,
to apply these measures in order to invoke a termination condition, we need to
consider the computational overhead. We thus choose the DB Index [11] from
the range of quality measures available, as this measure can be computed based
on the distances computed during clustering and does not require additional
computation on the values. The DB index is defined as:

DBm =
1
m

m∑
i=1

Ri,

where Ri = maxj=1,...,mj �=i
si+sj

dij
, i = 1, . . . , m. dij is the distance between

cluster Ci and cluster Cj , and si is the variance of cluster Ci. The DB index
approaches zero value if the clusters are more compact and well-separated.

We store the value of the DB index at each step when merging clusters. Then,
we report the clustering result which minimizes the DB index. Note that we
ignore the last step, because the DB index becomes 0 if all of the trajectories
are assigned to a single cluster.

6 Experimental Evaluation

In this section, we will validate the efficiency and the effectiveness of our proposed
clustering method with real-life trajectory data. More specifically, we will first
describe the details of the real-life trajectory dataset used for our experiments in
Section 6.1. We will then report on the efficiency of our evaluation results, using
response time as metrics in Section 6.2. Next, We will validate the quality of the
clustering results in Section 6.3. Lastly, we dicuss the effect of the parameter k
on the performance of the proposed method and the quality of the results.

6.1 Experimental Settings

As our experimental dataset, we used a real-life trajectory dataset2 that con-
tained 214 trajectories collected as a sequence of positions from GPS receivers
in two counties of Illinois, i.e., Cook and DuPage county. The length of the
trajectory ranged from 18 to 1486.

1 The interested readers may find an exhaustive study of clustering validation in [16].
2 http://cs.uic.edu/~boxu/mp2p/gps_data.html

http://cs.uic.edu/~boxu/mp2p/gps_data.html

NNCluster: An Efficient Clustering Algorithm for Road Network Trajectories 57

(a) Group I
Avg:184, Min:30, Max:1486

(b) Group II
Avg:174, Min:18, Max:488

(c) Group III
Avg:901, Min:580, Max:1200

Fig. 5. Three groups of the real-life trajectories

To get “ground truth” clustering results, we manually classified the real tra-
jectory data into three groups according to their movement patterns. Figure 5
visualizes the trajectories of each group on the road network and also shows
statistics such as average, minimum, and maximum values of the trajectory
length for each group. In group I, there were 97 trajectories restricted within
a small region of Cook county (see Figure 5(a)) Figure 5(b) illustrates the 23
trajectories of group II, which were located within DuPage county. Group III
included the trajectories of those traveling from one county to another, covering
93 trajectories in the dataset.

We can observe from this real-life dataset that trajectories in the same cluster
can vary in “density” within the group. To illustrate, the trajectories in group
III are identical to each other except for two trajectories that are missing road
segments. This suggests that the density of the identical trajectories is high,
while that of the remaining two is much lower.

As density-based clustering algorithms are known to fail when clusters have
“heterogeneous” densities within the group, applying the algorithms to this set
is not desirable. In contrast, this section shows how our proposed algorithm
identifies highly accurate clusters for real-life data.

All experiments were conducted on a machine with a Pentium-4 (3.2GHz)
CPU and 1 GBytes for its main memory, running a version of the Linux operating
system. We implemented our proposed algorithms using the C programming
language.

6.2 Efficiency

In this section, we will validate the efficiency of proposed method using a response
time. To observe the performance of our algorithm with changing cardinality, we
evaluated sample trajectories from the real-life dataset discussed above, of size
50, 100, 150, and 200. To ensure the representativeness of these samples, we
made sure that each sample set maintained the same distribution over three
categories. In other words, we sampled to make sure that the ratio of categories
in each of three categories remained unchanged both in the original dataset and
sample sets.

As shown in Figure 6(a), our proposed clustering algorithm outperformed the
baseline algorithm in all of the experimental settings in this section. Overall, our
proposed algorithm was 4 or 5 times faster than the baseline algorithm.

58 G.-P. Roh and S.-w. Hwang

 0

 50

 100

 150

 200

 250

 300

 50 100 150 200

R
es

po
ns

e
tim

e
(s

)

Cardinality

HAC
NNcluster

(a) Response time

 0

 4000

 8000

 12000

 16000

 20000

50 100 150 200

D
is

ta
nc

e
co

m
pu

ta
tio

ns

Cardinality

HAC
NNCluster

(b) Distance computations

Fig. 6. Efficiency test for different cardinalities

Figure 6(b) shows the number of distance computations, performed by our
proposed algorithm and the baseline algorithm. It is clear that our proposed
algorithm reduces the number of distance computations by four times as much,
as similarly observed trend for the response time in Figure 6(a). These results
suggest that our proposed algorithm can efficiently cluster trajectories by reduc-
ing the number of distance computations, which directly influences the overall
performance of clustering algorithms.

6.3 Quality of the Clustering Result

In this section, we will validate the quality of the clustering results, produced
by NNCluster, by comparing the clusters of NNCluster with the original class
of trajectories. To visualize the clustering results with the dendrograms in this
section, we focus on the smallest sample set of 50 trajectories used in Section 6.2.
Table 1 presents the sample trajectory data with a list of trajectory IDs extracted
from each “ground truth” group.

Table 1. Sample trajectory data

Group Size Trajectory IDs
I 22 121 ∼ 142
II 6 1 11 100 112 ∼ 114
III 22 0 10 13 14 15 17 18 101 ∼ 111 117 ∼ 120

We now validate the quality, by comparing clusters generated by our algo-
rithm, with the those of the ground-truth clustering (of the three groups of
trajectories discussed in Figure 5). Recall that, NNCluster starts with a set of
initial clusters and then merges them in a bottom-up fashion, which can be
represented as a cluster hierarchy. We summarized the initial clusters in Fig-
ure 7(a), and then represented their clustering hierarchy in Figure 7(b) with a
dendrogram.

It is clear that, initially, there were 16 clusters identified by NNCluster. Fig-
ure 7(a) lists the initial clusters with their representative trajectory marked with

NNCluster: An Efficient Clustering Algorithm for Road Network Trajectories 59

cluster id member(s)
C1 128∗ 139 129 141 140
C2 127∗
C3 142∗ 131 132
C4 102∗
C5 108∗ 107
C6 17∗
C7 14∗
C8 119∗
C9 137∗ 124 130 122 121 136
C10 109∗ 118 18 120 103 101
C11 0∗
C12 125∗ 126
C13 100∗ 112 11 1 114 113
C14 133∗ 123 134 138 135
C15 105∗ 111 10
C16 110∗ 104 106 13 15 117

(a) Initial clusters of NNCluster

C7
C6

C16

C8
C5

C15
C10

C14

C9
C2
C12

C3
C1

C13

C4
C11

Group II

Group III

Group I

(b) Dendrogram

Fig. 7. Clustering results of NNCluster

an asterisk. The quality of initial clusters can be validated by the fact that every
initial cluster belongs to the same cluster group.

After merging the initial clusters, i.e., at the second step of NNCluster,
NNCluster finally produces three clusters as shown in Figure7(b). It is appar-
ent that the three clusters produced by NNCluster are equivalent to the three
ground-truth cluster groups. This observation suggests that NNCluster correctly
partitions the sample trajectory data.

6.4 Effects on Parameter k

In this section, we discuss the effect of the user parameter k, when deciding the
number of neighbors to consider, on the performance of NNCluster.

Intuitively, as observed above, k determines the trade-off between the perfor-
mance and the quality of NNCluster. For a smaller k, NNCluster identifies more
initial clusters of smaller sizes, and eventually, when k = 1, our algorithm degen-
erates to the baseline algorithm. For a larger k, NNCluster identifies a smaller
number of bigger initial clusters and terminates earlier, but starting with large
initial clusters may negatively affect the output cluster quality. In an extreme
case when k = n, NNCluster will identify a single cluster containing all of the
objects.

It is thus important for NNCluster to tune k to the right value. To find the
right value of k, we conducted extensive experiments by varying the value of k over
the four sample dataset as described in Section 6.2. Figure 8 shows the decreasing
quality (in Figure 8(a)) and response time (in Figure 8(b)) for larger k.

It is clear that, as k increases, the quality is not affected up to a certain point
and that the performance of NNCluster improves. Based on this observation,
we suggest that the value of k is set to the largest possible value that does
not degenerate the quality. In all of the sample dataset, NNCluster shows best

60 G.-P. Roh and S.-w. Hwang

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 2 4 6 8 10 12 14 16 18 20

D
B

 in
de

x

k

50
100
150
200

(a) DB index for varying k and
cardinality

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 2 4 6 8 10 12 14 16 18 20

R
es

po
ns

e
tim

e
(s

)

k

50
100
150
200

(b) Response time for varying k
and cardinality

Fig. 8. Effects on the parameter k

performance and a reasonable quality when k is set to an amount of 7 percent
of sample dataset.

7 Conclusion

In this paper, we studied how to cluster network trajectories in an on-line en-
vironment. To work towards this goal, we first investigated the proximity for
network trajectories, i.e., road-network proximity, and then devised a distance
measure, which fulfilled the required properties. With the proposed distance mea-
sure, we presented an efficient clustering algorithm NNCluster, which is based
on an intuitive notion of common nearest neighbors.

We validated the efficiency and the quality of the clustering results using
real-life road network trajectories. To validate the efficiency of NNCluster, we
conducted experiments on sample trajectory data varying the cardinality of the
trajectories. NNCluster outperformed the baseline approach in all samples. We
then validated the quality of the clustering results of NNCluster. NNCluster
correctly partitioned the trajectory data, which made it equivalent to the result
from ground-truth clustering. Our results demonstrate that NNCluster identi-
fies identical clusters to ground-truth clustering but incurs only the 20% of the
baseline computation cost.

References

1. Bikely, http://www.bikely.com/
2. Gps route sharing, http://www.sharemyroutes.com/
3. Gps track route exchange, http://www.gpsxchange.com/
4. Bereg, S., Buchin, K., Buchin, M., Gavrilova, M.L., Zhu, B.: Voronoi diagram of

polygonal chains under the discrete fréchet distance. In: Hu, X., Wang, J. (eds.)
COCOON 2008. LNCS, vol. 5092, pp. 352–362. Springer, Heidelberg (2008)

5. Biliotti, D., Antonini, G., Thiran, J.P.: Multi-layer hierarchical clustering of pedes-
trian trajectories for automatic counting of people in video sequences. In: Proc.
WACV/MOTION, pp. 50–57 (2005)

http://www.bikely.com/
http://www.sharemyroutes.com/
http://www.gpsxchange.com/

NNCluster: An Efficient Clustering Algorithm for Road Network Trajectories 61

6. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking
data. In: Proc. VLDB, pp. 853–864 (2005)

7. Cai, Y., Ng, R.T.: Indexing spatio-temporal trajectories with chebyshev polyno-
mials. In: Proc. SIGMOD, pp. 599–610 (2004)

8. Cao, H., Wolfson, O.: Nonmaterialized motion information in transport networks.
In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 173–188. Springer,
Heidelberg (2004)

9. Chen, L., Ng, R.T.: On the marriage of lp-norms and edit distance. In: Proc. VLDB,
pp. 792–803 (2004)

10. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object
trajectories. In: Proc. SIGMOD, pp. 491–502 (2005)

11. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on
Pattern Analysis and Machine Intelligence 1(2), 224–227 (1979)

12. Dubuisson, M.P., Jain, A.: A modified hausdorff distance for object matching. In:
Proc. ICPR, pp. 566–568 (1994)

13. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proc. KDD, pp. 226–231
(1996)

14. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models.
In: Proc. KDD, pp. 63–72 (1999)

15. Gudmundsson, J., van Kreveld, M.J., Speckmann, B.: Efficient detection of motion
patterns in spatio-temporal data sets. In: GIS, pp. 250–257 (2004)

16. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques.
Int. J. Intell. Inf. Syst. 17(2-3), 107–145 (2001)

17. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in
trajectory databases. PVLDB 1(1), 1068–1080 (2008)

18. Junejo, I.N., Javed, O., Shah, M.: Multi feature path modeling for video surveil-
lance. In: Proc. ICPR, pp. 716–719 (2004)

19. Koivistoinen, H., Ruuska, M., Elomaa, T.: A voronoi diagram approach to au-
tonomous clustering. In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds.) DS 2006.
LNCS (LNAI), vol. 4265, pp. 149–160. Springer, Heidelberg (2006)

20. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group
framework. In: Proc. SIGMOD, pp. 593–604 (2007)

21. Lee, S.L., Chun, S.J., Kim, D.H., Lee, J.H., Chung, C.W.: Similarity search for
multidimensional data sequences. In: Proc. ICDE, pp. 599–608 (2000)

22. Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., Ma, W.Y.: Mining user similarity
based on location history. In: Proc. GIS, pp. 1–10 (2008)

23. Lin, B., Su, J.: One way distance: For shape based similarity search of moving
object trajectories. Geoinformatica 12(2), 117–142 (2008)

24. Lou, J., Liu, Q., Tan, T., Hu, W.: Semantic interpretation of object activities in a
surveillance system. In: Proc. ICPR, pp. 777–780 (2002)

25. Roh, G., Hwang, S.: Nncluster: An efficient clustering algorithm for road network
trajectories, http://ids.postech.ac.kr/nnClusterExtended.pdf

26. Vlachos, M., Gunopulos, D., Kollios, G.: Discovering similar multidimensional tra-
jectories. In: Proc. ICDE, pp. 673–684 (2002)

27. Xu, R., Wunsch, D.I.: Survey of clustering algorithms. IEEE Transactions on Neu-
ral Networks 16(3), 645–678 (2005)

28. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel
sequences from gps trajectories. In: Proc. WWW, pp. 791–800 (2009)

http://ids.postech.ac.kr/nnClusterExtended.pdf

Dynamic Skyline Queries in Large Graphs

Lei Zou1, Lei Chen2, M. Tamer Özsu3, and Dongyan Zhao1,4,�

1 Institute of Computer Science and Technology, Peking University, Beijing, China
{zoulei,zdy}@icst.pku.edu.cn

2 Hong Kong of Science and Technology, Hong Kong, China
leichen@cse.ust.hk

3 University of Waterloo, Waterloo, Canada
tozsu@cs.uwaterloo.ca

4 Key Laboratory of Computational Linguistics (PKU), Ministry of Education, China

Abstract. Given a set of query points, a dynamic skyline query reports all data
points that are not dominated by other data points according to the distances
between data points and query points. In this paper, we study dynamic skyline
queries in a large graph (DSG-query for short). Although dynamic skylines have
been studied in Euclidean space [14], road network [5], and metric space [3,6],
there is no previous work on dynamic skylines over large graphs. We employ
a filter-and-refine framework to speed up the query processing that can answer
DSG-query efficiently. We propose a novel pruning rule based on graph properties
to derive the candidates for DSG-query, that are guaranteed not to introduce false
negatives. In the refinement step, with a carefully-designed index structure, we
compute short path distances between vertices in O(H), where H is the number
of maximal hops between any two vertices. Extensive experiments demonstrate
that our methods outperform existing algorithms by orders of magnitude.

1 Introduction

As a popular multi-criteria decision making and business planning operator, skyline has
attracted considerable attention. Given a record set D of n dimensions, a skyline query
over D returns a set of records that are not dominated by any other record in D [1]. A
record r is said to dominate another record r′, if and only if the value of r is no larger
than that of r′ in each dimension, and the value of r is smaller than that of r′ in at
least one dimension. Fig. 1 shows a simple skyline query example. Given a record set
D with 8 records, only 001 and 003 are reported as skyline records, since they are not
dominated by any other record in D. The others are all dominated by 001 or 003. For
example, 002 is dominated by 001, since 2 < 3 in dimension x and 3 < 4 in dimension
y. Based on the skyline definition, given a record set D, the skylines of D are fixed,
thus, we refer to the skylines following the original definition as static skylines [3].

� Lei Zou and Dongyan Zhao were supported by the National High Technology Research and
Development Program(“863”Program) of China (No. 2009AA01Z408). Lei Chen was sup-
ported by NSFC/RGC joint research scheme under project no. N HKUST612/09. M. Tamer
Özsu’s research has been supported by Natural Sciences and Engineering Research Council
(NSERC) of Canada.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 62–78, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Dynamic Skyline Queries in Large Graphs 63

In some cases, the values of records are computed at run time based on the values
of query points, even for the same record set D, given different query points, we might
obtain different skylines. We refer to these as dynamic skylines. These have been studied
in various contexts. For example, “spatial” skylines have been proposed in Euclidean
space [14]. Specifically, given a set of query points Q = {qi} (i = 1...n), for each
record r ∈ D, we compute a new vector rd of dimension n, where rd’s i-th dimension
is computed as Euclidean Distance between r and qi. The spatial skylines refer to all
vectors rd whose values are not dominated by other r′d in the record set D. A similar
query, called multi-source skyline query in road networks, is studied by Deng et al. [5],
where the values of records are defined as the shortest path lengths on road networks
from data points to query points.

ID X Y

001 2 3

002 3 4

003 4 2

004 4 5

005 6 7

006 6 3

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Skyline

Records

001

003

00

2

004

005

006

Record Set D

X

Y

007 7 6

008 5 4

008

006

007

v0 v1

v2v3v4

1(,)iDist v q 2(,)iDist v q

1 1

ID

v0

q1

q2

2 1v3

3 2v4

(b) Running Example (a) Static Skylines

Fig. 1. (a)Static Skyline Query and (b) Running Example

Compared to static skylines, dynamic skylines offer users more flexibility in speci-
fying their search criteria. In other words, different users can specify different sets of
query points. Meanwhile, the flexibility of dynamic skyline queries brings new chal-
lenges for efficient query processing. A naive solution computes all the new vectors
according to the query points, and then searches the skylines over the generated vec-
tors. This approach is clearly inefficient, since it requires scanning the whole record set
D to compute the new vectors.

In this paper, we study the problem of dynamic skyline queries over graph data,
which is formally defined as follows:

Definition 1. Dominate. Given a large undirected and edge-weighted graph G and a
set of query vertices Q = {qi}, i = 1...n, in graph G, for two data vertices v′ and v
in G (v and v′ are not query vertices), we say that v′ dominates v, if and only if the
following holds: (∀i, Dist(v′, qi) ≤ Dist(v, qi)) ∧ (∃j, Dist(v′, qj) < Dist(v, qj) , where
Dist(v, qi) is the shortest path distance between v and qi in graph G.

Definition 2. Problem Definition. Given a large undirected and edge-weighted graph
G and a set Q of query vertices Q = {qi}, i = 1...n, in graph G, a dynamic skyline
query in graph (DSG-query) reports all data vertices v in graph G (v
= qi) where each
v is not dominated by any other vertex v′ in G. All skyline vertices of query Q in graph
G are denoted as Skyline(G, Q).

Example 1 (Running Example). Consider a graph G and two query vertices q1 and q2
(denoted as shaded vertices) in Fig. 1b. The number in the vertex is the vertex ID. For

64 L. Zou et al.

simplicity, we assume that all edges have the same weight 1. Obviously, in this example,
there is only one skyline vertex, that is v0.

Similar to the cases in the Euclidean space, dynamic skylines over graph data are
quite useful. For example, given a social network modeled as a large graph, where each
vertex corresponds to an individual, and each edge denotes the friendship between two
corresponding individuals, we can use shortest path distance to define the relationship
score between two individuals in a social network [16]. Assuming that there are two
important latent customers (two query vertices), a company may look for a salesman
who has “closer” relationship to these customers than any other salesmen. In fact, the
company is looking for the skyline salesmen with respect to the two given potential
customers c1 and c2. A salesman r is a skyline if and only if there exists no other
salesman r′, such that Dist(r′, c1) < Dist(r, c1) and Dist(r′, c2) < Dist(r, c2),
where Dist(r, ci) denotes the shortest path distance between r and ci. Finally, consider
a Peer-to-Peer (P2P) network with a number of peers that are interested in some movies.
In order to reduce the communication cost, we can put replicas of the movies on a node
that is near these peers. Obviously, dynamic skylines with respect to these peers in the
topology map (a graph) of this P2P network can provide some candidate nodes for
storing the replicas.

Although efficient solutions have been proposed for dynamic skylines over Euclidean
space [14], these cannot be applied to graphs. In a graph, the shortest path distance is
often used as a measure between two vertices, rather than Euclidean distance. Thus, it
is impossible to utilize existing pruning rules, such as MBR and Voronoi Diagrams that
have been used in Euclidean space [14].

The most related work is multi-source skyline query processing in road networks [5],
which also uses shortest path distance as the measure. Three different algorithms have
been proposed to find dynamic skylines in road networks. Two of the algorithms (EDC
and LBC) [5] utilize Euclidean distance as the lower bound of shortest path distance in
a road network to perform pruning. However, for a general graph G, we cannot define
Euclidean distances to bound the shortest path distances between any two vertices in
G, since there is no coordinate associated with each vertex. Therefore, EDC and LBC
algorithms cannot be applied to DSG-Query. The third algorithm (CE) is not efficient.
It expands each query point towards all directions, which may generate too many can-
didate objects and cause unnecessary shortest path distance computation, as confirmed
by our experiments (Section 4).

Dist(v, qi) in DSG-query is a metric distance. Thus, the approaches that address
skyline queries in metric space (e.g. [3]) are of interest. However, these solutions are
only designed for the general metric space, and the methods are not optimized for large
graphs. Experiments in Section 4 show that our methods outperform these general ap-
proaches by orders of magnitude. For a DSG-query, there exist two challenges: 1) Huge
Search Space: each vertex in graph G (except for query vertices) is a candidate for
DSG-query; and 2) Expensive Shortest Path Computation: In order to find final sky-
line vertices, we need to compute Dist(v, qi) (see Definitions 1 and 2). However, the
expansion process in shortest path algorithms (e.g. Dijkstra’s Algorithm [4]) is very
time-consuming, especially in very large graphs.

Dynamic Skyline Queries in Large Graphs 65

In order to address the above challenges, we adopt the “filter-and-refine” framework.
During the filtering process, we prune most false positives (the vertices that cannot be
skyline vertices) to generate a set of candidate vertices. We compute Dist(v, qi) for
each candidate vertex during refinement using an index structure. Furthermore, we can
compute Dist(v, qi) in O(H) where H is the number of maximal hops between any
two vertices in the graph, without expensive expansions that are employed in previous
solutions. In summary, we make the following contributions:

1. We propose shared-shortest-paths (SSP) pruning for DSG-query, that considers
graph properties, and that filters out most false positive vertices. We also give a
theoretical analysis of the pruning power of SSP-pruning.

2. During offline processing of DSG-query, we build carefully-designed index struc-
tures that support both filtering and verification processes in online DSG-query.

3. Based on novel pruning rules and index structures, we propose the SSP query algo-
rithm (see Algorithm 3) for DSG-query.

4. We show by extensive experiments that our methods have good pruning power and
fast query response time.

The remainder of this paper is organized as follows. Some background knowledge is
discussed in Section 2. A novel pruning rule is proposed in Section 3. The index struc-
tures and SSP-query algorithm are also presented in Section 3. We evaluate the ef-
ficiency of our methods with extensive experiments in Section 4. We discuss related
work in Section 5 in detail. Finally, we conclude the paper in Section 6.

2 Preliminaries

Definition 3. Shortest Path Tree. (SP -Tree for short) Given a large graph G and a
vertex v, we perform a single-source shortest path algorithm (such as Dijkstra algo-
rithm [4]) from vertex v to get a tree SP (v). The root of SP (v) is v, and all paths from
v to another node v′ in SP (v) is the shortest path from v to v′ in graph G.

v0

v1 v2

v3

v4

v1

v0 v2

v3

v4

v2

v0 v1 v3

v4

v3

v4 v2

v0 v1

v2

v0 v1

v3

v4

SP(v0) SP(v1) SP(v2) SP(v3) SP(v4)

Fig. 2. Shortest Path Trees

Fig. 2 shows all SP -Trees for graph G of Example 1. We can perform Dijkstra’s
algorithm [4] offline to obtain the SP -Tree. Note that, for a vertex v in a large graph G,
there may exist more than one SP -Tree rooted at v. Actually, for a vertex v in G, we
can select any SP -Tree rooted at v without affecting the correctness of our methods.
We will prove this claim in Section 3 (see Lemma 4). We utilize SP-Tree in our SSP
query algorithm (see Section 3).

66 L. Zou et al.

Definition 4. Minimum Common Ancestor. Given a SP -Tree SP (v) in a large graph
G and a set of nodes {v1, ..., vn} in SP (v), a node v′ is the minimum common ancestor
of {v1, ..., vn} (denoted as MCA(v1...vn, SP (v))) if and only if
1) v′ is the ancestor of all nodes v1, ..., vn; and
2) there exists no other node v′′, where v′′ is the ancestor of all nodes v1, ..., vn, and v′

is the ancestor of v′′.

Take SP (v3) in Fig. 2, for example, MCA(v0, v1, SP (v3)) = v2.

3 Shared Shortest Path Algorithm

3.1 SSP Pruning Algorithm

We first note an interesting property of graphs: many pairwise shortest paths in a graph
have shared parts. We propose a pruning strategy (SSP Pruning) that exploits these
shared paths. We also give a theoretical analysis of pruning power of SSP pruning.
Theoretical analysis and experiments confirm the effectiveness of SSP pruning. Fur-
thermore, the indexing structures proposed for SSP can be used to support the efficient
computation of Dist(v, qi) (discussed in Section 3.2).

q1

qn

'v v

to be pruned V0

V1 V2

V3

V4

V2

V0 V1

V3

V4

SP(V0)

q1 q2

SP(V4)

q1

q2

(a) (b)

Fig. 3. (a)Shared Shortest Path Pruning and (b) Lemma 2

Pruning Rule 1: Shared Shortest Path (SSP) Pruning. Given a large graph G and a
set of query vertices Q = {qi}, i = 1...n, for a data vertex v, if there exists at least
one joint (common) vertex v′ among all shortest paths between v and qi (denoted as
vqi)(v
= v′, i = 1...n), v can be pruned safely for DSG-query.

Lemma 1. SSP pruning will not lead to false negatives.

Proof. Since vertex v′ is in the shortest path vqi (as shown in Fig. 3a), it is straightfor-
ward to see that Dist(v′, qi) < Dist(v, qi), i = 1...n . According to Definition 1, vertex
v′ dominates v. Therefore, v cannot be a skyline vertex, without causing false negatives.

Definition 5. Strictly Dominate, Candidate Skyline Vertex. Given a large graph G and
a set Q of query vertices Q = {qi}, i = 1...n, for a vertex v, if there exists a joint vertex
v′ (v
= v′) in all shortest paths vqi, vertex v′ strictly dominates vertex v.

For a vertex v in graph G, if there exists no other vertex v′ that strictly dominates v,
the vertex v is a candidate skyline vertex.

Dynamic Skyline Queries in Large Graphs 67

Theorem 1. Given a large graph G and a set Q of query vertices Q = {qi}, i = 1...n,
the following formula holds:Skyline(G, Q) ⊆ Can Skyline(G, Q), where Skyline
(G) (or CanSkyline(G)) is the set of skyline vertices (or candidate skyline vertices)
in graph G.

Proof. SSP-pruning will not lead to false negatives, therefore, Skyline(G, Q) ⊆ Can
Skyline(G, Q)
Obviously, CanSkyline(G, Q) can be regarded as a candidate set for Skyline(G, Q).
In Example 1, we enumerate all SP -Trees in graph G, as shown in Fig. 2.

Lemma 2. Given a large graph G, a set Q of query vertices Q = {qi}, i = 1...n, and
a SP -Tree SP (v) and v′ = MCA(q1...qn, SP (v)), v is a candidate skyline vertex if
and only if v = v′.

Proof. Proof is based on Definition 5. Due to space limit, we omit the details.

We show two shortest path trees SP (v0) and SP (v4) in Fig. 3b. In these trees, MCA(q1,

q2, SP (v4)) = v3 	= v4 , therefore,v4 /∈ CanSkyline(G, Q). However, MCA(q1, q2,
SP (v0)) = v0, thus, v0 ∈ CanSkyline(G, Q).

Using Lemma 2, we propose a conceptually simple framework for SSP-pruning.
During offline processing, we enumerate all SP -Trees in graph G. Given a set Q of
query vertices Q = {qi}, i = 1...n, in each SP (v), if v′ = MCA(q1... qn, SP (v)) and
v′ = v, v will be inserted into candidate set CL. Otherwise, v can be pruned safely. We
can find CanSkyline(G, Q) by sequentially scanning all SP -Trees.

However, due to large space cost, it is impractical to store all SP -Trees of a large
graph G. The space cost of each SP -Tree is O(|V (G)|), where |V (G)| is the number
of vertices in G. Therefore, we would need O(|V (G)|2) space to store all SP -Trees in
graph G. For example, if G has 10K vertices, the total space cost is O(108). To alleviate
this space cost, in this work, we only store 1-hop SP -Trees.

Definition 6. 1−Hop Shortest Path Tree Given a large graph G and a vertex v in G, 1-
Hop Shortest Path Tree from v (denoted as SP (v, 1)) is obtained by extracting vertex v
and vertices that are directly reachable from v in SP (v). Each leaf node f in SP (v, 1)
also has a set des of vertices (denoted as f.des), that corresponds to all descendants of
the leaf node f in SP (v). We call f.des the node area of f .

v0

v1 v2

SP(v0)

v2.des = {v3,v4}v1.des =

Fig. 4. 1−Hop Shortest-Distance-Path Tree

Fig. 4 shows SP (v0, 1) in Example 1, that is obtained by extracting vertices v1 and v2
that are directly reachable from v0 in SP (v0) to form SP (v0, 1). Since vertices v3 and
v4 are descendants of v2 in SP (v0), v2.des = {v3, v4}.

68 L. Zou et al.

Theorem 2. Given a set of query vertices Q = {qi}, i = 1...n, and 1-hop SP-Tree
SP (v, 1), if there exists a leaf node f in SP (v, 1) and f.des contains all query vertices,
vertex v cannot be a skyline vertex.

Proof. Proof is based on Definition 5. Due to space limit, we omit the details.

Based on Theorem 2, we propose Algorithm 1. For a vertex v, we only need to check
whether all query vertices are in the same leaf node area f.des. If so, v can be pruned.
Furthermore, Lemma 3 shows that using 1-hop shortest path tree does not affect the
pruning power of Pruning Rule 1.

Lemma 3. Given a large graph G and a set of query vertices Q = {qi}, i = 1...n, for
a data vertex v in G, if v is strictly dominated by another vertex v′, then there must exist
a leaf node f in SP (v, 1) and f.des contains all query vertices.

Proof. Since v′ strictly dominates v, all query vertices are descendent of v′ in SP (v).
According to Definition 6, it is straightforward to know all query vertices are in one leaf
node area f.des.

Algorithm 1. Prune False Positives by SSP pruning

SSP-pruning(G,Q,S)
Require: Input: A large graph G and a set Q of query vertices Q = {qi}, all 1-hop SP Trees,

and a set S of vertices
Output: Candidate Set CL

1: for each vertex v in S do
2: if all query vertices qi are in only one leaf node n.des of SP (v, 1) then
3: continue (Pruned by Theorem 2)
4: else
5: insert v into candidate set CL.
6: report CL

Lemma 4. Given a vertex v that has more than one SP -Tree rooted at v (SP1(v), ...,
SPb(v)), choosing any SP-Tree rooted at v for SSP pruning does not lead to false
negatives.

Proof. No matter which SPj(v) is selected, if all query vertices are contained in f.des
of SPj(v), f strictly dominates v. Therefore, Lemma 4 holds.

However, the space cost of the set f.des in each leaf node f is still a problem. The
number of vertices in f.des is always large. In order to reduce the space cost, we build
hierarchical clusters on vertices in G. If f.des contains all vertices in a cluster P , we
can use P ′s ID instead of the vertices in P in f.des. For example, Fig. 5a shows a
hierarchical cluster of Example 1. Cluster P2 has two vertices: v3 and v4. Fig. 5b shows
that v3 and v4 are both in v2.des of SP (v0, 1). Therefore, we only need to insert P2
instead of v3 and v4 in v2.des of SP (v0, 1), as shown in Fig. 5c. Intuitively, if some
vertices often occur together in f.des, they should be grouped together. Based on this
intuition, we propose distance definitions (Definitions 7 and 8) that account for clustered

Dynamic Skyline Queries in Large Graphs 69

vertices. In Example 1, vertices v3 and v4 should be grouped into one cluster, since they
occur together in three 1-hop SP -Trees (i.e. SP (v0, 1), SP (v1, 1) and SP (v2, 1)).
Similarly, v1 and v2 should be clustered together. Essentially, the coherence of vertices
in 1-hop SP-Tree is derived from their shared shortest paths of SP -Trees.

P

P0 P2

v1 v2 v3 v4v0

Hierachical Cluster Tree

P1

SP(v0,1)

v0

v1 v2

v2.Des={P2}

dst src lef
P2 v0 v2

...

TAB_1SPT

v0

v1 v2

SP(v0,1)

v2.Des={v3,v4}

(a) (b) (c) (d)

Fig. 5. Hierarchical Cluster Tree and 1-Hop SP -Tree

In order to build a hierarchical cluster on vertices, we propose the following distance
functions, which are used to measure the probability that two vertices appear together.

Definition 7. Vertex Distance. Given three vertices v, v1 and v2, if there exists a leaf
node f in SP (v, 1) and f.des contains both v1 and v2, we say that v1 and v2 occur
together in SP (v, 1). Let the number of vertices v in which v1 and v2 occur together in
SP (v, 1) be T . Then, vertex distance between v1 and v2 (denoted as V exDis(v1, v2))
is defined as:

V exDis(v1, v2) =
T

|V (G)|

Definition 8. Cluster Distance. Given two clusters P1 and P2 and a vertex v, if there
exists a leaf node f in SP (v, 1) and f.des contains all vertices in P1 and P2, we say
that P1 and P2 occur together in SP (v, 1). Let the number of vertices v in which P1
and P2 occur together in SP (v, 1) be D. Then, cluster distance between P1 and P2
(denoted as CluDis(P1, P2)) is defined as:

CluDis(P1, P2) =
D

|V (G)|

We employ bottom-up clustering to build the hierarchical clusters. First, based on vertex
distances (Definition 7), we utilize clustering algorithms to find clusters on vertices.
Then, based on cluster distance (Definition 8), small clusters are grouped into larger
ones. We can recursively build a hierarchical cluster tree HT on vertices in graph G, as
shown in Fig. 5a.

In practice, we store 1-hop SP-Tree in tables using a commercial RDBMS. The table
format is shown in Fig. 5d, where ‘dst’ denotes a destination vertex (or a destination
cluster),‘src’ denotes a source vertex, and ‘lef ’ denotes that the leaf node f whose
node area f.des contains the destination dst in SP (src, 1). We illustrate the methods
using Fig. 5. Since the cluster P2 is in v2.des of SP (v0, 1), there is a row ‘P2, v0, v2’
in table TAB 1SPT , which means that v2.dst contains P2 in SP (v0, 1).

70 L. Zou et al.

Pruning Power of SSP Pruning. We discuss the pruning power of SSP pruning. To
facilitate analysis, we assume that all query vertices are selected independently. First,
in Lemma 5, we discuss the probability that one vertex v can be pruned in DSG-query
with n query vertices.

Lemma 5. Given a vertex v in graph G, there are C leaf nodes in SP (v, 1). The num-
ber of vertices in each leaf node area fc.des is denoted as |fc.des|, c = 1...C. Given
a query set of Q = {qi}, i = 1...n, the probability Pr(v) that v is pruned can be
evaluated by the following formula.

Pr(v) =
1

|V (G)|n
C∑

i=1

|fi.des|n (1)

Proof. If all query vertices are in one leaf node area fc.des of SP (v, 1), fc strictly
dominates v (Definition 5). Therefore, according to Algorithm 1 and SSP pruning, v
can be filtered out safely. The probability that one query vertex qi is in node area fc.des

is |fc.des|
|V (G)| . Since all query vertices are selected independently, the probability that all

query vertices are in the same node area fc.des is (|fc.des|
|V (G)|)

n. Since there are C leaf
nodes in SP (v, 1), we obtain:

Pr(v) =
1

|V (G)|n
C∑

i=1

|fi.des|n

Theorem 3. Given a large graph G with |V (G)| vertices, and a query set of Q = {qi},
i = 1...n, the expected number of pruned vertices can be evaluated by the following
formula.

|V (G)|∑
i=1

Pr(vi) (2)

where Pr(vi) is evaluated by Equation 1.

In the above analysis, we assume that all query vertices are selected independently. We
evaluate Equation 2 in experiments (see Section 4) and show that the simple model can
provide a good approximation of SSP’s pruning power.

3.2 Computing Shortest Path Distance

As stated in Section 1, given a DSG query, we adopt filter-and-refine framework to
find the answers. In the refinement phase, in order to avoid the expensive expansion
in shortest-path algorithms, we can compute Dist(vj , qi) directly based on 1-hop SP -
Trees. The recursive algorithm (DisQ algorithm) shows the computation of Dist(v, q).
DisQ is a recursive function. If the destination vertex q is in SP (v, 1), we can report
Dist(v, q) directly (Lines 2-3). Otherwise, if the leaf node area f.des in SP (v, 1) con-
tains q, we recursively call DisQ(f, q) to compute Dist(f, q) (Line 5). Finally, we
report Dist(v, q) = Dist(v, f) + Dist(f, q) (Line 6).

Dynamic Skyline Queries in Large Graphs 71

Algorithm 2. Shortest-Distance Query

DisQ(v, q)
Require: Input: v and q: two vertices in graph G; SP (v): all 1-Hop SP-Trees

Output: Dist(v, q): the shortest distance between the two vertices v and q.
1: if vertex q is a leaf node in SP (v, 1) then
2: Return Dist(v, q)
3: else
4: There is leaf node f in SP (v, 1), and f.des contains q.
5: Call DisQ(f, q) to compute Dist(f, q)
6: Return Dist(v, f)+Dist(f, q).

Theorem 4. The time complexity of DisQ(v, q) Algorithm (see Algorithm 2) in the
worst case is O(H), where H is the number of maximal hops between any two vertices
in graph G.

Proof. Algorithm 2 is a recursive algorithm. Since the number of maximal hops be-
tween any two vertices is H , we recursively call DisQ(v, q) at most H times. In each
iteration, the time complexity is O(1). Therefore, the time complexity of Algorithm 2
is O(H).

3.3 Putting It All Together: SSP Query Algorithm

We propose SSP-query algorithm in Algorithm 3, which calls SSP pruning algorithm
(Algorithm 1) to obtain candidates in CL (Line 1). After that, Algorithm 2 is executed
to compute Dist(v, q) (Line 4). Skyline vertices are obtained by BNL algorithm [1]
(Line 5). Finally, we report the final results RS (Line 6).

Algorithm 3. SSP Query Algorithm

Require: Input: G: a large graph; Q: a set of query vertices Q = {qi} Output: RS: the final
skyline vertices.

1: call SSP Prune(G, Q) (Algorithm 1) to obtain candidate set CL.
2: for each candidate vertex v in CL do
3: for each query vertex qi do
4: call DisQ(v, q) (Algorithm 2) to compute Dist(v, q).
5: perform BNL algorithm to find skyline vertices, and insert them into answer set RS.
6: Report RS.

4 Experiments

In this section, we evaluate our methods over both real data sets and synthetic data sets.
Although several efficient dynamic algorithms have been proposed, such as B2S2 and
VS2 [14] in spatial data and EDC and LBC algorithm [5] in road network, they cannot
be applied to general graph data as discussed in Section 1. The two algorithms (EDC and

72 L. Zou et al.

LBC algorithms) proposed in [5] are not applicable to a DSG-query, since they employ
Euclidean distances as lower bounds of shortest path distances in a road network. There
is no coordinate associated with each vertex, thus, it is impossible to employ Euclidean
distances as lower bounds of shortest path distances in general graphs. Therefore, we
exclude them from comparisons. We compare our methods with MSQ algorithm [3],
since MSQ can work on any metric space and the distance function Dist(v, q) in a
graph is also a metric function. We also compare our algorithm with CE algorithm
[14]. Although CE algorithm is proposed for skyline queries in road networks, it does
not utilize special properties of road networks, suggesting that CE can handle dynamic
skyline queries in general graphs. CE runs Dijkstra’s algorithm from each query vertex
in parallel until that at least one vertex is done by all query vertices. All un-visited
vertices can be pruned safely. Furthermore, in the experiments, we also run linear scan
for a DSG query as the straightforward approach, denoted as LS algorithm. Specifically,
we first perform Dijkstra’s algorithm [4] from each query vertex qi to obtain Dist(v, qi)
for each vertex v in graph G. After that, we perform BNL algorithm [1] to find results
from all vertices in graph G. All experiments are implemented using standard C++ and
conducted on a P4 1.7GHz machine with 1G RAM running Windows XP.

Data Sets: a) S.cerevisiae Dataset: This dataset (http://dip.doe-mbi.ucla.edu) is an
undirected graph G in which each vertex represents a protein and each edge represents
interactions between two proteins. There are 4934 vertices and 17346 edges in G. In
experiments, we set all edge weights to be “1”.
b) DBLP Dataset: This dataset is the well-known publication data from DBLP (dblp.
uni-trier.de/xml/). We construct a co-author network G: every author is denoted as a
vertex in G; and an edge is introduced when the corresponding two authors have at
least one co-authored paper. We consider 100 important conferences in different areas
to construct G. On the whole, there are about 100K vertices and about 400K edges in
G. We also set all edge weights to be “1”.
c) Synthetic Dataset: We use the graph generator gengraph win (www.cs.sunysb.
edu/∼algorith/implement/ viger/distrib/). In experiments, we generate a large graph G
with 10K vertices satisfying power-law distribution. The edge weights in G satisfy ran-
dom distribution between [1, 1000]. We denote the synthetic data set as Powerlaw10K .

We generate query sets by similar methods to those employed in previous stud-
ies [14,3]. We first randomly choose a vertex o in graph G, then retrieve Max{λ ×
|V (G)|, n} vertices in G that are the closest to o, and finally randomly select n vertices

986 1972 2958 3944 4934

10
1

10
2

10
3

A
ve

ra
ge

 C
an

di
da

te
 S

iz
e

The Number of Vertices in Graph G

SSP
MSQ
CE
AnswerSet

(a) S.cerevisiae

2000 4000 6000 8000 10000
10

1

10
2

10
3

10
4

A
ve

ra
ge

 C
an

di
da

te
 S

iz
e

The Number of Vertices in Graph G

SSP
MSQ
CE
AnswerSet

(b) Powerlaw10K

20K 40K 60K 80K 100K

10
2

10
3

10
4

A
ve

ra
ge

 C
an

di
da

te
 S

iz
e

The Number of Vertices in Graph G

SSP
MSQ
CE
AnswerSet

(c) DBLP
i 6 did i i

Fig. 6. Candidate Size vs. Data Size

Dynamic Skyline Queries in Large Graphs 73

986 1972 2958 3944 4934
0

1000

2000

3000

4000

5000

6000

T
he

 N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

The Number of Vertices in Graph G

SSP
MSQ
CE
LS

(a) S.cerevisiae

2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

T
he

 N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

The Number of Vertices in Graph G

SSP
MSQ
CE
LS

(b) Powerlaw10K

20K 40K 60K 80K 100K

10
4

10
5

T
he

 N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

The Number of Vertices in Graph G

SSP
MSQ
CE
LS

(c) DBLP

Fig. 7. Number of Dominance Checks vs. Data Size

986 1972 2958 3944 4934

10
−2

10
−1

R
es

po
ns

e
T

im
e

(in
 S

ec
on

ds
)

The Number of Vertices in Graph G

SSP
MSQ
CE
LS

(a) S.cerevisiae

2000 4000 6000 8000 10000

10
−2

10
−1

R
es

po
ns

e
T

im
e

(in
 S

ec
on

ds
)

The Number of Vertices in Graph G

SSP
MSQ
CE
LS

(b) Powerlaw10K

20K 40K 60K 80K 100K

10
−1

10
0

R
es

po
ns

e
T

im
e

(in
 S

ec
on

ds
)

The Number of Vertices in Graph G

SSP
MSQ
CE
LS

(c) DBLP

Fig. 8. Response Time vs. Data Size

from them as query vertices. λ is a parameter within (0,1), |V (G)| is the number of
vertices in G, and n is the number of query vertices. Intuitively, large λ leads to a large
diameter of query vertices in G. We evaluate query performance under different λ in
Section 4.

Query Performance vs. Data Sizes. In this subsection, we test our algorithm (denoted
as SSP) under different data sizes, and compare it with MSQ and LS over both real
datasets and synthetic datasets. In this set of experiments, we set n = 5, and λ = 0.003.

Fig. 6 shows the pruning power of different methods. SSP has the highest pruning
power. Furthermore, the pruning power of SSP is stable in all datasets, and scales well
with increasing data sizes. MSQ does not work well, especially in large graphs. This
is because the pivots in graph G cannot provide the tight bound for the shortest-path
distance Dist(v, q). The candidate size in CE algorithm is larger than that in SSP-
algorithm. In CE, we need to expand each query point in ascending order of their short-
est path distance to this query point (in parallel). The expansion process stops when
there exists at least one vertex that is visited by all query points. Therefore, as men-
tioned in [5], CE may result in many candidates and cause unnecessary shortest-path
distance computation.

Fig. 7 illustrates the number of dominance checks in different methods during DSG-
query. With increasing data size, the number of dominance checks also increases in all
algorithms. SSP requires fewer dominance checks than other algorithms by orders of
magnitude, which again confirms the superior efficiency of SSP.

Fig. 8 shows the total response time in different methods. MSQ, CE and LS all need
to perform Dijkstra’s algorithm [4] from each query vertex qi. The time complexity
of Dijkstra’s algorithm is O(|V (G)|2). In CE algorithm, we also need to expand each

74 L. Zou et al.

query vertex by Dijkstra’s algorithm. The cost of running Dijkstra’s algorithm consti-
tutes the major portion of the response time. Figure 6 shows that |CL| is about 1

10 of
|V (G)|. Thus, SSP’s total response time outperforms MSQ, CE and LS by orders of
magnitude, as observed in Figure 8.

Query Performance vs. Query Size. In this set of experiments, we evaluate SSP under
different query sizes. Specifically, we set the number of query vertices n = 2, 3, 5, 8, 10,
and λ = 0.003. As in traditional skylines, with increasing dimensions (i.e. the number
of query vertices), the number of skyline vertices as well as the number of candidates
grow. Fig. 9 shows that SSP still has the highest pruning power under different query
sizes, consequently, the number of dominance checks is smaller than in other methods
(Fig. 10). Figure 11 further shows that the total response time of SSP is the smallest
among all methods under various query sizes.

2 3 5 8 10
10

1

10
2

10
3

A
ve

ra
ge

 C
an

di
da

te
 S

iz
e

The Numer of Query Vertices

SSP
MSQ
CE
AnswerSet

(a) S.cerevisiae

2 3 5 8 10

10
2

10
3

10
4

A
ve

ra
ge

 C
an

di
da

te
 S

iz
e

The Number of Query Vertices

SSP
MSQ
CE
AnswerSet

(b) Powerlaw10K

2 3 5 8 10

10
2

10
3

10
4

A
ve

ra
ge

 C
an

di
da

te
 S

iz
e

The Numer of Query Vertices

SSP
MSQ
CE
AnswerSet

(c) DBLP

Fig. 9. Candidate Size vs. Query Size

2 3 5 8 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

T
he

 N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

The Number of Query Vertices

SSP
MSQ
CE
LS

(a) S.cerevisiae

2 3 5 8 10
0

1

2

3

4

5

6

7
x 10

4

T
he

 N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

The Number of Query Vertices

SSP
MSQ
CE
LS

(b) Powerlaw10K

2 3 5 8 10

10
4

10
5

10
6

T
he

 N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

The Number of Query Vertices

SSP
MSQ
CE
LS

(c) DBLP

Fig. 10. Number of Dominance Checks vs. Query Size

2 3 5 8 10
0

0.2

0.4

0.6

0.8

1

1.2

R
es

po
ns

e
T

im
e

(in
 S

ec
on

ds
)

The Number of Query Size

SSP
MSQ
CE
LS

(a) S.cerevisiae

2 3 5 8 10
0

0.5

1

1.5

2

2.5

R
es

po
ns

e
T

im
e

(in
 S

ec
on

ds
)

The Number of Query Size

SSP
MSQ
CE
LS

(b) Powerlaw10K

2 3 5 8 10
0

1

2

3

4

5

R
es

po
ns

e
T

im
e

(in
 S

ec
on

ds
)

The Number of Query Size

SSP
MSQ
CE
LS

(c) DBLP

Fig. 11. Total Response Time vs. Query Size

Dynamic Skyline Queries in Large Graphs 75

Query Performance vs. Query Distribution. In this subsection, we test SSP under
different query vertex distributions. Obviously, large λ means a large diameter of query
vertices in G. In this set of experiments, we set λ = 0.001, 0.002, 0.003, 0.004, 0.005,
and the number of query vertices n = 5. Fig. 12 shows that, with increasing query di-
ameter, the cardinality of candidates in SSP also increases. This means that the pruning
power of SSP decreases. The reason can be explained as follows: When query diame-
ter is large, the probability that all query vertices are in one node area f.des is small.
Actually, MSQ’s and CE’s pruning powers also decrease when query diameter is large.
However, the decrease in SSP’s pruning power is smaller than MSQ’s and CE’s, as
shown in Fig. 12. Fig. 13 and 14 show that the number of dominance checks and total
response times increase with increasing of query diameter in both SSP and MSQ. This
can be explained by the decreasing pruning power in Fig. 12.

0.001 0.002 0.003 0.004 0.005

10
2

10
3

A
ve

ra
ge

 C
an

di
da

te
 S

iz
e

λ

SSP
MSQ
CE
AnswerSet

(a) S.cerevisiae

0.001 0.002 0.003 0.004 0.005

10
2

10
3

10
4

A
ve

ra
ge

 C
an

di
da

te
 S

iz
e

λ

SSP
MSQ
CE
AnswerSet

(b) Powerlaw10K

0.001 0.002 0.003 0.004 0.005

10
2

10
3

10
4

A
ve

ra
ge

 C
an

di
da

te
 S

iz
e

λ

SSP
MSQ
CE
AnswerSet

(c) DBLP

Fig. 12. Candidate Size vs. λ

0.001 0.002 0.003 0.004 0.005
0

1000

2000

3000

4000

5000

6000

T
he

 N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

λ

SSP
MSQ
CE
LS

(a) S.cerevisiae

0.001 0.002 0.003 0.004 0.005
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

T
he

 N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

λ

SSP
MSQ
CE
LS

(b) Powerlaw10K

0.001 0.002 0.003 0.004 0.005

10
4

10
5

T
he

 N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

λ

SSP
MSQ
LS

(c) DBLP

Fig. 13. Number of Dominance Checks vs. λ

0.001 0.002 0.003 0.004 0.005
10

−2

10
−1

R
es

po
ns

e
T

im
e

(in
 S

ec
on

ds
)

λ

SSP
MSQ
CE
LS

(a) S.cerevisiae

0.001 0.002 0.003 0.004 0.005

10
−1

R
es

po
ns

e
T

im
e

(in
 S

ec
on

ds
)

λ

SSP
MSQ
CE
LS

(b) Powerlaw10K

0.001 0.002 0.003 0.004 0.005

10
0

R
es

po
ns

e
T

im
e

(in
 S

ec
on

ds
)

λ

SSP
MSQ
CE
LS

(c) DBLP

Fig. 14. Total Response Time vs. λ

76 L. Zou et al.

Evaluating Pruning Power Analysis. We evaluate the pruning power analysis in Theo-
rem 3 in Fig. 15. We use Equation 2 to compute the cardinality of pruned space (Pruned)
under different query sizes. The theoretical candidate size is |V (G)|−Pruned. Fig. 15
shows that the theoretical candidate set size is a good approximation of the real candi-
date set size in SSP pruning, which confirms the effectiveness of our analysis about SSP
pruning power in Theorem 3.

2 3 5 8 10
0

100

200

300

400

500

600

700

800

900

A
ve

ra
ge

 C
an

di
da

te
 S

iz
e

The Numer of Query Vertices

SSP−λ=0.003
SSP−λ=0.001
SSP−λ=0.005
Analysis

(a) S.cerevisiae

2 3 5 8 10
0

500

1000

1500

A
ve

ra
ge

 C
an

di
da

te
 S

iz
e

The Numer of Query Vertices

SSP−λ=0.003
SSP−λ=0.001
SSP−λ=0.005
Analysis

(b) Powerlaw10K

2 3 5 8 10
0

1000

2000

3000

4000

5000

6000

7000

A
ve

ra
ge

 C
an

di
da

te
 S

iz
e

The Numer of Query Vertices

SSP−λ=0.003
SSP−λ=0.001
SSP−λ=0.005
Analysis

(c) DBLP

Fig. 15. Evaluating Pruning Power Analysis in Equation 2

5 Related Work

Borzsonyi et al. have introduced the skyline operator [1], and have proposed block
nested loops (BNL) and divide-and-conquer (D&C) algorithms [1] to execute them.
Tan et al. [15] propose Bitmap and Index skyline processing algorithms. Kossmann et
al. propose Nearest Neighbor (NN) method to process skyline queries progressively
[9]. Papadias et al. introduce another efficient progressive algorithm named Branch-
and-Bound Skyline (BBS) [11]. Recently, Lee et al. [10] propose a new method to
answer skyline queries. The most related works to ours are dynamic skyline [11], spa-
tial skyline [14], multi-source skyline on the road networks [5], and dynamic skyline
queries in metric space [3]. Papadias et al. [11] first introduce dynamic skyline prob-
lems. Recently, Chen and Xiang have proposed MSQ algorithms for dynamic skyline
problems [3], where the dimension functions can be any metric function. Although the
shortest path distances in graphs that we use in our work is also a metric function,
their methods are not optimized for large graphs. As the experimental results show,
our methods outperform MSQ algorithm by orders of magnitude, in terms of both the
number of dominance checks and online response time. Sharifzadeh and Shahabi [14]
propose spatial skylines, where only Euclidean distances are considered as dimension
functions. Thus, their pruning strategies cannot be applied into graph problems. Deng
et al. [5] consider dynamic skylines in road networks, where Dist(o, qi) is defined as
the shortest-path distance between o and qi in the road network. However, their prob-
lem definition is different than ours, since each vertex in the graphs that they consider
has a coordinate. Euclidean distance is used as lower bounds of shortest-path distances
in a road network. Obviously, it is impossible to utilize the bounds in general graphs.
Therefore, their pruning strategies cannot be applied to DSG-query.

Dijkstra’s algorithm [4] is a classical single-source shortest-path algorithm, which
extends graph G from source q until all vertices are reached, if graph G is connected.
Given two vertices q and d, in order to answer shortest-path query (SP query for short),

Dynamic Skyline Queries in Large Graphs 77

we can perform Dijkstra’s algorithm from vertex q until vertex d is visited. However,
it is inefficient to employ Dijkstra’s algorithm to answer SP query in a large graph,
since we have to visit a large number of vertices before we reach the desired destination
vertex d. Therefore, materialization techniques should be applied to speed up online
query. Lim and Chan [2] propose DiskSP algorithm to answer SP queries. Based on
graph partitions, they propose super-graph. Jing et al in [7] propose Hierarchical En-
coding Path View (HEPV) for SP query. Another hierarchical graph model called HiTi
is proposed by Jung and Pramanik [8]. Actually, any efficient SP -query algorithm can
be utilized in the refinement process of DSG-query, which is orthogonal to our prun-
ing strategies. There are a lot of work on spatial networks [13,12]. Generally speak-
ing, these methods always utilize some spatial properties for processing. For example,
Samet et al. [13] propose a best-first algorithm to find the k nearest neighbors in a spatial
network. Data objects are indexed by quadtrees, which is a spatial indexing structure.
For general graph problems, it is impossible to employ these spatial properties, such as
spatial indexing, spatial coherence, Voronoi Diagrams and Euclidean distances, since
vertices in general graphs have no coordinate. The main contributions of our work are
that we only employ graph properties to develop pruning rules and process DSG-query.

6 Conclusions

In this paper, we propose dynamic skyline queries in graphs (DSG-query for short).
For DSG-query, we propose a novel pruning strategy, that is shared shortest path (SSP)
pruning. Based on SSP Pruning, we build careful-designed indexing structures. Exten-
sive experiments confirm the effectiveness of our methods.

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE (2001)
2. Chan, E.P.F., Lim, H.: Optimization and evaluation of shortest path queries. VLDB J. 16(3)

(2007)
3. Chen, L., Lian, X.: Dynamic skyline queries in metric spaces. In: EDBT (2008)
4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. MIT Press,

Cambridge (2001)
5. Deng, K., Zhou, X., Shen, H.T.: Multi-source skyline query processing in road networks. In:

ICDE (2007)
6. Fuhry, D., Jin, R., Zhang, D.: Efficient skyline computation in metric space. TR-KSU-CS-

2008-02, Department of Computer Science Kent State University (2008)
7. Jing, N., Huang, Y.-W., Rundensteiner, E.A.: Hierarchical encoded path views for path query

processing: An optimal model and its performance evaluation. IEEE Trans. Knowl. Data
Eng. 10(3) (1998)

8. Jung, S., Pramanik, S.: An efficient path computation model for hierarchically structured
topographical road maps. IEEE Trans. Knowl. Data Eng. 14(5) (2002)

9. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm for sky-
line queries. In: VLDB (2002)

10. Lee, K.C.K., Zheng, B., Li, H., Lee, W.-C.: Approaching the skyline in z order. In: VLDB
(2007)

78 L. Zou et al.

11. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline
queries. In: SIGMOD (2003)

12. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network
databases. In: VLDB (2003)

13. Samet, H., Alborzi, J.S.H.: Scalable network distance browsing in spatial databases. In: SIG-
MOD (2008)

14. Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: VLDB (2006)
15. Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient progressive skyline computation. In: VLDB

(2001)
16. Tong, H., Faloutsos, C.: Center-piece subgraphs: Problem definition and fast solutions. In:

SIGKDD (2006)

Top-k Combinatorial Skyline Queries�

I-Fang Su1, Yu-Chi Chung2, and Chiang Lee1

1 Department of Computer Science and Information Engineering, National
Cheng-Kung University, Tainan, Taiwan, R.O.C.

emily@dblab.csie.ncku.edu.tw, leec@mail.ncku.edu.tw
2 Department of Computer Science and Information Engineering, Chang Jung

Christian University, Tainan, Taiwan, R.O.C.
justim@mail.cjcu.edu.tw

Abstract. The problem of top-k skyline computation has attracted con-
siderable research attention in the past few years. Given a dataset, a
top-k skyline returns k “most interesting” skyline tuples based on some
kind of preference specified by the user. We extend the concept of top-
k skyline to a so-called top-k combinatorial skyline query (k-CSQ). In
contrast to the existing top-k skyline query (which is mainly to find the
interesting skyline tuples), a k-CSQ is to find the interesting skyline tu-
ples from various kinds of combinations of the given tuples. The k-CSQ
is an important tool for areas such as decision making, market analysis,
business planning, and quantitative economics research. In this paper,
we will formally define this new problem, propose an intelligent method
to resolve this problem, and also conduct a set of experiments to show
the effectiveness and efficiency of the proposed algorithm.

1 Introduction

In this paper, we propose a novel variant of a skyline query called the top-k
combinatorial skyline query. This type of query deals with data that are combi-
nations of raw data. An example is in the field of stock investment. Figure 1 gives
some stocks with the risk of investing in these stocks and their return. It is very
likely that an investor will not invest all his money in just one stock, but in a
combination of stocks which allows the investor to obtain a higher return and/or
a lower risk. For example, investment in t1 (i.e., Legg Mason) will render the
highest return. However, this investment is also very risky. Are there any other
stocks or combinations of stocks which allow us to have a higher return and/or
a lower risk? These answers are often referred to as the investment portfolio [1]
How to efficiently find such an investment portfolio is the issue studied in this
paper.

Let us consider the combinations of two stocks only. We first define the new
risk and new return of a combination of two stocks. One of the most oftenly
used function in the estimation of profit gain is the average function [1, 2]. For

� This work is supported by National Science Council of Taiwan (ROC) under Grants
NSC98-2221-E-006-148 and NSC98-2221-E-006-150.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 79–93, 2010.
© Springer-Verlag Berlin Heidelberg 2010

80 I-F. Su, Y.-C. Chung, and C. Lee

Investment Stocks Risk(%) Return (%)
t1 Legg mason (LM) 18.02 9.59
t2 Bank of New York 6.71 6.2
t3 Alleghany 42.08 7.71
t4 McDonalds 3.30 4.80
t5 Deutsche Bank 31.01 6.8

Fig. 1. Details of Stocks

example, Figure 2 gives all the combinations of two stocks in Figure 1. The
risk and return of g1 (which is combined from t1 and t2 as shown in the fig-
ure) are obtained from the average of those of t1 and t2, i.e., 18.02+6.71

2 =12.37
and 9.59+6.2

2 =7.89, respectively. If c stocks are used to form a combination (in-
stead of two stocks), then risk and return can be generalized to risk(gi) =
(risk(t1)+risk(t2)+· · ·+risk(tc))/c and return(gi) = (return(t1)+return(t2)+
· · · + return(tc))/c, where gi is a combination of stocks t1, t2, · · · , tc. A major
property of such a function that is proper for defining the new risk and return
is that the function should be monotone for proportion reasons [3, 4, 5]. Sum
and average, for instances, are monotone functions and therefore oftenly used in
these applications.

For convenience when there is no worry of confusion, we refer to a combination
of stocks (such as each row in Figure 2) as a tuple too, just as referring to a
single stock in Figure 1 as a tuple. We say that tuple A dominates tuple B if the
values of the concerned attributes (such as risk and return) of A are not worse
than those of B and at least one of them is better [3, 6, 7, 8, 9]. The problem
of finding the portfolio is quite complicated because we need to search all single
stocks, all combinations of two stocks, all combinations of three stocks, up to
all combinations of, say, c stocks for the dominating tuples so as to form the
portfolio, where c is given by the user. We call such a query the Combinatorial
Skyline Query (CSQ). If only the top-k dominating tuples are returned to the
user where the sorting is based on a preference order P specified by the user,
then the query is a Top-K Combinatorial Skyline Query (k − CSQ).

For a table of n tuples, the number of possible combinations where each has a

cardinality of c (i.e., each combination is composed of c stocks) would be
c∑

i=1

(
n
i

)
.

If the number of stocks n is 1000 and the user wants to find the portfolio with a
cardinality not greater than 5, the search space of a combinatorial skyline would

consist
5∑

i=1

(1000
i

)
≈ 1012 combinations. This number increases exponentially with

the number of stocks and the cardinality. An extremely high computation cost
is incurred unavoidably in resolving such a query.

In this paper, we propose an algorithm named the Restricted Construction
Algorithm (RCA) to resolve the top-k combinatorial skyline query problem.
RCA progressively composes the combinations and prunes the combinations that
are impossible to be the combinatorial skyline result, and then uses a filtering

Top-k Combinatorial Skyline Queries 81

Stocks Return (%)

7.89

8.65

7.19

8.19

6.95

5.50

6.50

6.25

7.25

5.80

Investment

g1 (t1 & t2)

g2 (t1 & t3)

g3 (t1 & t4)

g4 (t1 & t5)

g5 (t2 & t3)

g6 (t2 & t4)

g7 (t2 & t5)

g8 (t3 & t4)

g9 (t3 & t5)

g10 (t4 & t5)

Alleghany & McDonalds

McDonalds & Deutsche Bank

Legg Mason (LM) & Bank of New York

Legg Mason (LM) & Alleghany

Legg Mason (LM) & McDonalds

Legg Mason (LM) & Deutsche Bank

Bank of New York & Alleghany

Bank of New York & McDonalds

Bank of New York & Deutsche Bank

Alleghany & Deutsche Bank

 Risk (%)

12.37

30.05

10.66

24.51

24.40

5.01

18.86

22.69

36.54

17.15

(a) Details of investment portfolios.

g1

g8

g10

g9

g5

g7

g2

g4

g3

g6

(b) Skyline of investment portfolios.

Fig. 2. An example of an investment portfolio

mechanism to retrieve the top-k combinatorial skyline tuples without enumerat-
ing all combinations. Major contributions of this work include (1) a new problem,
the combinatorial skyline query, is identified and investigated, (2) an efficient al-
gorithm is proposed for processing a top-k combinatorial skyline query, (3) the
correctness of the answer is guaranteed, (4) experimental result shows that the
proposed method is very promising.

The rest of the paper is organized as follows. First, the problem is formulated in
Section 2. The core techniques comprising our solution are presented in Section 3.
Section 4 presents our experimental evaluation of the proposed solution. Finally,
we conclude the article and describe directions for future work in Section 5.

2 Problem Formulation

Let D be a d-dimensional dataset and ti be the i-th tuple of D. We use ti.sk

to denote the k-th dimensional value of ti such that ti can be represented as
ti =< ti.s1, ti.s2, · · · , ti.sd >. Without loss of generality, we consider the MAX
function [9, 10] as the skyline operator throughout this paper.

82 I-F. Su, Y.-C. Chung, and C. Lee

Definition 1. ti dominates tj
A tuple ti is said to dominate another tuple tj if and only if ti.sk ≥ tj .sk for
1 ≤ k ≤ d and there exists at least one dimension 	 (1 ≤ 	 ≤ d) such that
ti.s� > tj .s�. We use ti � tj to represent that ti dominates tj.

Definition 2. Skyline
A tuple ti is a skyline of D if and only if there does not exist a tuple tj (tj ∈ D)
such that tj � ti.

In the following, we first introduce the concept of a combination, and then use
it to define a combinatorial skyline.

Definition 3. Combination gp

Given a tuple set p = {tp1, tp2, · · · , tpk} and combinatorial functions F={f1, f2,
· · · , fd}, where tpi is the i-th element of the tuple set p and fi is a combinatorial
function in F (1 ≤ i ≤ d). fi maps multiple parameters tp1.si, tp2.si, · · · , tpk.si to
a scaler. A combination, denoted as gp, is expressed as gp = [tp1, tp2, · · · , tpk] =
� f1(tp1.s1, tp2.s1, · · · , tpk.s1), f2(tp1.s2, tp2.s2, · · · , tpk.s2), · · · , fd(tp1.sd, tp2.sd,
· · · , tpk.sd) � where [tp1, tp2, · · · , tpk] means that the combination is obtained
from tuples tp1, tp2, · · · , tpk. fi(tp1.si, tp2.si, · · · , tpk.si) is a scalar which is the
i-th attribute value of the combination gp. |gp| is the cardinality of gp.

Notice that conceptually gp is itself a d-dimensional tuple, although it is ob-
tained from a transformation of several other d-dimensional tuples. In order to
distinguish a combination from a lower level tuple, we use the notation �� to
represent a combination and <> to represent a tuple. For convenience, we also
call fi(tp1.si, tp2.si, · · · , tpk.si) the i-th attribute of combination gp and refer to
fi(tp1.si, tp2.si, · · · , tpk.si) as gp.fi(si) for better readability. Thus, can be rewrit-
ten as gp =� f1(tp1.s1, tp2.s1, · · · , tpk.s1), f2(tp1.s2, tp2.s2, · · · , tpk.s2), · · · ,
fd(tp1.sd, tp2.sd, · · · , tpk.sd)� =� gp.f1(s1), gp.f2(s2), · · · , gp.fd(sd)�.

Following our example in Figure 2(a), let g10 = [t4, t5] be a combination,
and F = {AV G, AV G}. Note that, t4 =< 3.30, 4.80 > and t5 =< 31.01, 6.8 >
respectively. Then, we have g10 = [t4, t5] =� f1(t4.s1, t5.s1), f2(t4.s2, t5.s2) �
= � AV G(3.30, 31.01), AV G(4.80, 6.8)�=� 17.15, 5.80�.

As a combination is itself a d-dimensional tuple, the notion of dominance can
be unaffectedly applied to it.

Definition 4. Combinatorial skyline
A combination gp is a combinatorial skyline tuple if and only if there does not
exist another combination gq such that gq � gp.

Definition 5. Rank of a Combinatorial Skyline
Let S = {s1, s2, · · · , sd} be the set of dimensions such that si is more preferred by
the user than sj if i < j. Also let gp and gq be two combinatorial skyline tuples. gp

has a higher rank than gq (denoted as gp � gq), if (1)gp.f1(s1) > gq.f1(s1) or (2)
gp.fi(si) = gq.fi(si), for i = 1, 2, · · · , l (l < d) and gp.fl+1(sl+1) > gq.fl+1(sl+1).

Note that if gp � gq, then gq cannot dominate gp. The reason is that we are
sure ∃i such that gp.fi(si) > gq.fi(si).

Top-k Combinatorial Skyline Queries 83

Definition 6. top-k Combinatorial Skyline Query k-CSQ(D,F , c,P)
Let k-CSQ(D,F , c,P) be a top-k combinatorial skyline query, where D is a d-
dimensional database, F is a set of combinatorial functions, c ∈ Z+, k is given
by the user which specifies the first k combinatorial skyline tuples that satisfy the
query, and P is the preference order of attributes that is also given by the user.
The result of k-CSQ(D,F , c,P) is a set G = {g1, g2, · · · , gk} of combinatorial
skyline tuples such that gi � gj if i < j (where 1 < i, j < k).

In the above example, suppose that t1, t2, t4, g1, g3, and g6 are combinatorial
skyline tuples, and the user preference order is P = {s2, s1}. Then, t1 � g1 �
g3 � t2 � g6 � t4. Therefore, t1 is the top-1 combinatorial skyline.

3 Top-k Combinatorial Skyline Query Processing

k = 1 is a special case of this type of queries. Its answer is easy to find. For exam-
ple in Figure 3, assume that the query is to find the top-1 combinatorial skyline.
Let c = 3, F = {SUM, SUM}, and P = {s1, s2}. We sort tuples in Figure 3
according to P and retrieve the top three tuples (i.e., t1, t2, t3) to construct a
combination (i.e., [t1, t2, t3]). [t1, t2, t3] is definitely the top-1 combinatorial sky-
line tuple, because the values of the user preferred attribute of t1, t2, and t3 are
the top three among all tuples. Hence, the answer of a top-1 CSQ is obvious.
However, if the number of k is greater than 1, the search of the answer will
be nontrivial. We also use Figure 3 to explain the complication of the problem.

ID s1 s2

t1 10 6
t2 9 11
t3 8 9
t4 7 7
t5 4 18

Fig. 3. The data set
of a running example

Assume that the query is simply to find the top-2 combi-
natorial skyline tuples and other conditions remain the
same. [t1, t2, t3] is still ranked first in all combinatorial
skyline tuples. One might think that [t1, t2, t4] should be
the second combinatorial skyline tuple since t4 is next
to t3. But in fact [t1, t2, t4]=� 26, 24 � is dominated
by [t1, t2, t3]=� 27, 26 �. Hence, [t1, t2, t4] cannot even
be a combinatorial skyline tuple, let alone to become a
top-2 combinatorial skyline tuple. The next to consider
is [t1, t2, t5]. [t1, t2, t5] =� 23, 35 � is not dominated by

[t1, t2, t3] =� 27, 26�. However, it is too early to say that it is the second com-
binatorial skyline tuple, because there may be other combinations better than
it, e.g., [t2, t3, t4]. In this example, [t2, t3, t4] =� 24, 27 � is more preferred
than [t1, t2, t5] =� 23, 35 � as the order in s1 is more important than in s2.
Hence, [t2, t3, t4] will be ranked the second place in the combinatorial skyline
tuples. This example indicates the complication factors of the problem. In fact,
the number of combinations to compare increases exponentially with k. Hence,
numerous computation will be required.

3.1 The Brute-Force Method

The brute-force method is to process a k-CSQ (k ≥ 2) in a most straightforward
manner. First, we compose all possible combinations from tuples in D. Then,

84 I-F. Su, Y.-C. Chung, and C. Lee

we retrieve a set of combinatorial skyline tuples from all combinations and sort
the combinatorial skyline tuples according to P . Finally, the top-k combinatorial
skyline tuples with the highest user preference are returned to the user. As the
idea is simple and clear, we omit the details.

3.2 Restricted Construction Algorithm (RCA)

We first take a look in concept how to generate all possible combinations. This
can be achieved by utilizing the concept of binomial coefficients

(
n
c

)
[11], where(

n
c

)
is the number of ways that c tuples can be chosen from among n objects

regardless of the order and 1 ≤ c ≤ n. This property is often described recur-
sively as

(
n
c

)
=
(
n−1

c

)
+
(
n−1
c−1

)
. We refer to c-combination as a combination of

a cardinality of c, and CT (n, c) as the set that contains all c-combinations of a
dataset with n tuples {t1, t2, · · · , tn}. For example, {t1, t2, t3, t4} is a dataset of
four tuples, and CT (4, 2) = {[t1, t2], [t1, t3], [t1, t4], [t2, t3], [t2, t4], and [t3, t4]}.
Also we define ⊕ as an adding operator such that S ⊕ ti means to add ti to each
element of the set S. For example, {[t1, t2], [t1, t3]} ⊕ t5 = {[t1, t2, t5], [t1, t3, t5]}.
For another example, CT (4, 1)⊕ t5 = {[t1, t5], [t2, t5], [t3, t5], [t4, t5]}.

By applying this to the binomial coefficients mentioned above, we have

CT (n, c) = CT (n− 1, c) ∪ (CT (n− 1, c− 1)⊕ tn), (1)

where 1 ≤ c ≤ n and ∪ is the set union operator. CT (n, c) is an empty set if c = 0
or c > n. Equation 1 gives all c-combinations of dataset D = {t1, t2, · · · , tn},
where each of the combinations is either a combination that contains tn (i.e.,
CT (n− 1, c− 1)⊕ tn) or one that does not (i.e., CT (n− 1, c)).

Equation 1 tells us that if CT (n − 1, c) and CT (n − 1, c − 1) are derived,
then we can utilize them to construct CT (n, c). This can, in turn, be applied to
obtaining CT (n− 1, c− 1) if CT (n− 2, c− 2) and CT (n− 2, c− 1) are known.
Following this, the whole problem can be divided into a number of subproblems
and the result of each subproblem can be applied to resolving the subproblem of
the next stage. We use a table T , called the solution table, to store the solution
of each subproblem. Figure 4 shows the solution table while processing CT (5, 3).
T can be thought of as a data structure of a two-dimensional array, consisting
of n rows and (c+1) columns if there are n tuples in D and the cardinality is c.
In Figure 4, T has 5 rows and 4 columns. An arrow pointing from CT (h, k) to
CT (i, j) means that the solution of CT (h, k) is used to construct the solution
of CT (i, j). For instance, CT (3, 2) = CT (2, 2) ∪ (CT (2, 1) ⊕ t3). Hence, there
are arrows pointing from CT (2, 2) and CT (2, 1) to CT (3, 2). Note that Col 0 is
also listed in Figure 4. Although all the entries in this column (i.e., CT (i, 0))
are empty sets, they can be combined with CT (i, 1) to generate meaningful
combinations (i.e., CT (i+1, 1)). Hence, they cannot be excluded from the table.
Also note that there are three shadowed cells in the solution table. Each of them
is also an empty set because c > n makes CT (n, c) meaningless. The complete
solution table of this particular example is shown in Figure 5.

Top-k Combinatorial Skyline Queries 85

CT(1,1)

CT(2,2)

CT(3,3)CT(3,1)

CT(2,3)

CT(3,2)

CT(2,1)

CT(1,3)CT(1,2)

CT(4,1) CT(4,2) CT(4,3)

CT(5,1) CT(5,2) CT(5,3)

Col 1 Col 2 Col 3

Row 5

Row 4

Row 3

Row 2

Row 1 CT(1,0)

CT(3,0)

CT(2,0)

CT(4,0)

CT(5,0)

Col 0

Fig. 4. The solution table of
CT (5, 3)

Col 1 Col 2 Col 3

{[t1]}

{[t1], [t2]}

{[t1], [t2], [t3]}

{[t1, t2]}

{[t1, t2, t3]}

{[t1, t2, t3], [t1, t2, t4],
 [t1, t3, t4], [t2, t3, t4]}

Row 1

Row 5

Row 4

Row 2

Row 3 {[t1, t2], [t1, t3], [t2, t3]}

{[t1], [t2],
 [t3], [t4]}

{[t1, t2], [t1, t3], [t2, t3],
 [t1, t4], [t2, t4], [t3, t4]}

{[t1], [t2], [t3],
 [t4], [t5]}

{[t1, t2], [t1, t3], [t2, t3],
 [t1, t4], [t2, t4], [t3, t4],
 [t1, t5], [t2, t5], [t3, t5], [t4, t5]}

{[t1, t2, t3], [t1, t2, t4], [t1, t3, t4],
 [t2, t3, t4], [t1, t2, t5], [t1, t3, t5],
 [t2, t3, t5], [t1, t4, t5], [t2, t4, t5], [t3, t4, t5]}

Col 0

∅

∅

∅

∅

∅

Fig. 5. The final solution table T

The combinations shown in a solution table include all possible combinations
of CT (n, c). In the following, we propose a mechanism to find the top-k combina-
torial skyline without enumerating all these combinations. We will use a concept,
called descendant, in the process of pruning the unnecessary comparisons on the
combinations. Given a combination g′p, we say that g′p is a descendant of gp if
g′p is (1) gp itself or (2) obtained by combining gp with other tuple(s). Assume
that gq is a combination and gq � g′p, which means gq is more preferred than
g′p. This indicates that ∃i such that g′p.fi(si) < gq.fi(si) (i.e., the i-th attribute
value of g′p is less than that of gp), and therefore g′p cannot “dominate” gq.

Now, we use an example to illustrate the process of our method. Assume that
there are six tuples in D (referring to Figure 6). A user needs to find the top-3
combinatorial skyline tuples with c = 2 and user preference P = {s1, s2}. Our
method is to first sort the tuples in D according to P . Thus, the order is t1, t2,
t3, t4, t5, and t6, as shown in Figure 6. In Figure 7, the first step (Row 1) is
to pick t1 to construct the solutions in row 1. Thus, we have two combinations,
φ and [t1]. Next, we do the dominance test to find the current combinatorial
skyline in this row. We find that [t1] is the only combinatorial skyline tuple in
this row. Since the user is looking for top-3 combinatorial skyline tuples, the
number of currently found top combinatorial skyline tuples is less than three.
We proceed to the next row.

In Row 2, t2 is added to construct the solutions in this row, meaning that four
combinations φ, [t1], [t2], and [t1, t2] should be considered. We do the dominance
test to find the combinatorial skyline in this row. [t1, t2] is the only combinatorial
skyline tuple found in this row. Since the number of combinatorial skyline tuples
found up to now is still less than required, we proceed to the next row.

In Row 3, t3 is added to construct the solutions. This time, six combinations,
φ, [t1], [t2], [t3], [t1, t2], [t1, t3], and [t2, t3] are generated. We also do the domi-
nance test and find that [t1, t2], [t1, t3], and [t2, t3] are the top-3 combinatorial
skyline tuples, in which [t2, t3] is in the third place of the top-3 combinatorial sky-
line tuples. The next thing is to check whether the current top-3 combinatorial
skyline tuples are the final results. In other words, we need to be sure that
the current top-3 combinatorial skyline tuples will not be dominated by or less

86 I-F. Su, Y.-C. Chung, and C. Lee

ID s1 s2

t1 10 10
t2 8 11
t3 7 14
t4 6 16
t5 5 4
t6 4 10

Fig. 6. The data set of a
running example

Col 1 Col 2

{[t1]}

{[t1], [t2]}

{[t1], [t2], [t3]}

{[t1, t2]}

Row 1

Row 2

Row 3
{[t1, t2], [t1, t3], [t2, t3]}

Col 0

∅

∅

∅
descendants of [t1, t2]:
[t1, t2] = <<18, 21>>

MPD of [t1]:
[t1, t5] = <<15, 14>>
MPD of [t2]:
[t2, t5] = <<13, 15>>
MPD of [t3]:
[t3 t5] = <<12, 18>>

MPD of ∅:
[t5, t6] = << 9, 14>>

t1

ti means a tuple ti is combined into Row iRow i

The current
combinatorial

skyline

[t1] = <<10, 10>>

[t1, t2] = <<18, 21>>

descendants of [t1]:
 [t1] = <<10, 10>>
[t1, t4] = <<16, 26>>
[t1, t5] = <<15, 14>>
[t1, t6] = <<14, 20>>

descendants of ∅:
∅
[t4] = <<6, 16>>
[t5] = <<5, 4>>
[t6] = <<4, 10>>
[t4, t5] = <<11, 20>>
[t4, t6] = <<10, 26>>
[t5, t6] = << 9, 14>>

descendants of [t2]:
 [t2] = <<8, 11>>
[t2, t4] = <<14, 27>>
[t2, t5] = <<13, 15>>
[t2, t6] = <<12, 21>>

t2

t3 [t1, t2] = <<18, 21>>
[t1, t3] = <<17, 24>>
[t2, t3] = <<15, 25>>

([t2, t3] is the top-3
combinatorial skyline
 in row 3)

descendants of [t1, t3]:
[t1, t3] = <<17, 24>>

descendants of [t2, t3]:
[t2 t3] = <<15, 25>>

descendants of [t3]:
 [t3] = <<7, 14>>
[t3, t4] = <<13, 30>>
[t3, t5] = <<12, 18>>
[t3, t6] = <<11, 24>>

Row 4t4 ∅ {[t1], [t2], [t3], [t4]}} {[t1, t2], [t1, t3], [t2, t3],
 [t1, t4], [t2, t4], [t3, t4], } [t1, t2] = <<18, 21>>

[t1, t3] = <<17, 24>>
[t1, t4] = <<16, 26>>

([t1, t4] is the top-3
combinatorial skyline
 in row 4)

MPD of [t1, t2]:
[t1, t2] = <<18, 21>>
MPD of [t1, t3]:
[t1, t3] = <<17, 24>>
MPD of [t2, t3]:
[t2, t3] = <<15, 25>>
MPD of [t1, t4]:
[t1, t4] = <<16, 26>>
MPD of [t2, t4]:
[t2 t4] = <<14, 27>>
MPD of [t3, t4]:
[t3, t4] = <<13, 30>>

Fig. 7. The example of how we use MPD in the method

preferred than any other combination that is formed in future steps. Now our
method is to construct the descendants of each combination in this row. For ex-
ample in Col 1 Row 3, the descendants of [t1] are (1) [t1] itself, (2) [t1] combined
with one of the remaining tuples in D which means [t1, t4], [t1, t5], and [t1, t6].
Note that the remaining tuples here are tuples left in D for further processing in
the following rows. For example in terms of Row 1, the remaining tuples in D are
t2, t3, t4, t5, and t6. And in terms of Row 2, the remaining tuples in D are t3, t4,
t5, and t6. The descendants of φ in row 3 are (1) φ itself, (2) φ combined with one
of the remaining tuples in D which gives [t4], [t5], and [t6], and (3) φ combined
with two of the remaining tuples in D which are [t4, t5], [t4, t6], and [t5, t6]. Then,
we compare the preference of the k-th (i.e., third in this example) combinatorial
skyline, [t2, t3], with that of each of these descendants. We find that [t1, t4] �
[t2, t3] (� 16, 26� � � 15, 25�). This means that one combination which is
to be constructed in a future row will dominate [t2, t3]. Hence, the current top-3
combinatorial skyline tuples cannot be the final result. Therefore, the process
should continue.

Now, the problem is “can this process stop as early as possible so that we do
not need figure out all descendants of each combination?” We find an elegant

Top-k Combinatorial Skyline Queries 87

and efficient way to accelerate the processing of finding the top-k combinato-
rial skyline tuples. Instead of comparing the k-th combinatorial skyline to each
descendant, we compare the k-th combinatorial skyline to the most preferred
descendant (MPD) of each combination. The MPD of a combination gp (de-
noted as MPD(gp)) is a descendant of gp and MPD(gp) has the highest user
preference among all gp’s descendants. In other words, the user preference of
any gp’s descendant is always equal to or lower than that of the MPD(gp). Let
us go back to Row 3 of the example in Figure 7. Since [t1, t4] has the highest
user preference among all descendants of [t1], MPD([t1]) is [t1, t4]. Following
this idea, we can find the MPD of each combination (i.e., MPD(φ) = [t4, t5],
MPD([t1]) = [t1, t4], MPD([t2]) = [t2, t4], MPD([t3]) = [t3, t4],, MPD([t1, t2]) =
[t1, t2], MPD([t1, t3]) = [t1, t3], and MPD([t2, t3]) = [t2, t3]). Then, we compare
the preference of the k-th combinatorial skyline ([t2, t3]) with the preference of
these MPDs. In this example, since the preference of MPD([t1]) is higher than
that of [t2, t3] (i.e., � 16, 26� � � 15, 25�, we know that the current top-k
combinatorial skyline tuples are not the final results. The algorithm will proceed
to the next row.

As the number of MPDs is much less than the number of all descendants,
comparing the k-th combinatorial skyline tuple with these MPDs is therefore
much faster and more efficient than comparing with the descendants. However,
locating the MPD of gp requires to construct all descendants of gp, which is
still a very costly process. In the following, we propose a method to find the
MPD of a combination without having to enumerate all its descendants. Given
a combination gp, where |gp| = u ≤ c, and a set of remaining tuples D′ =
{tj, tj+1, · · · , tn}. D′ is sorted according to the user preference P which means
that tj � tj+1, j = 1, 2, · · · , |D′| − 1. Let gu+i

p be a descendant of gp that is
obtained by combining gp with the first i tuples in D′, where i =0, 1, · · · , (c−u).
gu+i

p has the following interesting properties: (1) gu+i
p is a descendant of gp, (2)

the cardinality of gu+i
p is u + i, and (3) gu+i

p is the most preferred combination
among the descendants of gp whose cardinality is u + i (the third property is
to be proved in Lemma 1). The following equation can be used to determine
MPD(gp).

MPD(gp) = MAX(gu+0
p , gu+1

p , · · · , gu+(c−u)
p). (2)

For example in Row 3 of Figure 7, the remaining tuples which are sorted according
to P are t4, t5, and t6, respectively. The MPD([t1]) is MAX([t1]1+0,[t1]1+(2−1)).
Then we can have MPD([t1]) = MAX([t1],[t1, t4]). Since [t1, t4]=� 16, 26 � is
greater than [t1]=� 10, 10 �, MPD([t1]) = [t1, t4]. Note that Equation 2 is also
applicable to empty set φ to find its MPD. For example in Col 0 and in Row 3 of
Figure 7, gp = φ. We have gu+0

p , gu+1
p , and gu+2

p and they are φ, [t4], and [t4, t5],
respectively. By Equation 2, the MPD(φ) = MAX(φ, [t4], [t4, t5]) = [t4, t5].

Notice that using Equation 2, the MPD of any combination can be determined
by using only one computation. Constructing all descendants of this combination
is no longer required. This dramatically reduces the computation time of finding
the top-k combinatorial skyline tuples.

88 I-F. Su, Y.-C. Chung, and C. Lee

Lemma 1. Let ti and tj be two tuples in D. gp = [tp1, tp2, · · · , tpc] is a com-
bination that do not contain ti and tj (i.e., ti, tj
= tpx for x = 1, 2, · · · , c). If
ti � tj, then the user preference of gp combined with ti is higher than that of gp

combined with tj. That is, ti � tj ⇒ [tp1, tp2, · · · , tpc, ti] � [tp1, tp2, · · · , tpc, tj].

Theorem 1. If g′p is a combination that is derived from Equation 2, then g′p is
the MPD of combination gp (i.e., MPD(gp) = g′p). That is, there does not exist
a descendant g′′p of gp such that g′′p � g′p.

Based on Lemma 1 and Theorem 1, we learn that none of the descendants of
combination gp has a higher preference than that of MPD(gp).

Theorem 2. Let gp and gq be two combinations. If gq � MPD(gp), none of the
descendants of gp can dominate gq.

To save some space, we omit the proofs of these theorems. Readers may refer
to [12] for the details.

Algorithm 1. The pseudo code of the RCA algorithm (for k-CSQ).

GIVEN: A top-k combinatorial skyline query k-CSQ(D,F , c,P).
FIND : Top-k combinatorial skyline tuples.
/* T is a 2 ×c array. Each entry of T is the solution of a subproblem. */
/* t0 is the first element of D */
T [0][0]← t0 ;1

for col← 1 to c− 1 do /* Initial the first row of T . */2

T [0][col] ← φ ;3

for row← 1 to |D| − 1 do4

for col← 0 to c− 1 do5

CT (row− 1, col − 1)← T [(row − 1)%2][col − 1]⊕ trow ;6

CT (row− 1, col)← T [(row − 1)%2][col] ;7

T [row%2][col] ← CT (row− 1, col) ∪ CT (row− 1, col − 1);8

Results← extract all combinatorial skyline tuples in T ;9

if there are at least k combinatorial skyline tuples in Results then10

Sorting Result according to P ;11

gkth ← extract the k-th combinatorial skyline tuple from Result;12

Finding MPD for each combination in T ;13

if the preference of gkth is higher than that of the MPD of each combination14

then
return the first k combinatorial skyline tuples in Result;15

/* The following codes deals with the case that the number of combinatorial
skyline tuples is less than k. All combinatorial skyline tuples will be returned.
*/

Results← extract all combinatorial skyline(T , row, c);16

Sorting Result according to P ;17

return Results;18

Top-k Combinatorial Skyline Queries 89

Recall the previous example in Figure 7. We will see what would happen if
we apply the theorems regarding MPD to the process. We have found that
in Row 3 [t2, t3] is invalidated to be the third combinatorial skyline tuple.
Hence, the algorithm proceeds to the next row. In Row 4, t4 is added to con-
struct the solutions in this row. The constructed combinations are φ, [t1], [t2],
[t3], [t4], [t1, t2], [t1, t3], [t2, t3], [t1, t4], [t2, t4], and [t3, t4]. We do the domi-
nance test to find the combinatorial skyline in this row and find that [t1, t2],
[t1, t3], and [t1, t4] are the top-3 combinatorial skyline tuples in Row 4, and
[t1, t4] is the third among the top combinatorial skyline tuples. Next, we con-
struct the MPD of each combination by applying Equation 2 to these combi-
nations. Then, we compare [t1, t4] with these MPDs, i.e., MPD(φ), MPD([t1]),
MPD([t2]), MPD([t3]), MPD([t4]), MPD([t1, t2]), MPD([t1, t3]), MPD([t2, t3]),
MPD([t1, t4]), MPD([t2, t4]), and MPD([t3, t4]). As the preference of [t1, t4] is
higher than that of the MPD of each combination, we know from the above the-
orems that none of the descendants of each combination can dominate [t1, t4].
Hence, the algorithm terminates at Row 4 and [t1, t2], [t1, t3], and [t1, t4] are the
final results to the user. Note that by applying Equation 2 and the theorems,
numerous computations and comparisons can be saved and the process can be
completed much faster than without having these theorems.

We call our algorithm the Restricted Construction Algorithm (RCA). The
pseudo code of the RCA algorithm is shown in Algorithm 1.

4 Performance Evaluation

We conducted a set of experiments to evaluate the effectiveness of the pro-
posed algorithm. The uniform data distribution and the anti-correlated data
distribution are used to generate the datasets [3, 6, 8, 9]. These two datasets
are commonly used in skyline research. We normalize all dimension values into
[0, 100].The generation of the datasets of these two different distributions is based
on the paper in the literature [6]. We divide our experiments into two categories:
the performance evaluation over (1) a small and (2) a large scale datasets. In the
first category, a set of small-scale datasets is used so as to restrict the running
time of the Brute-Force method to a measurable period of time. In the second
category, a set of large-scale datasets are adopted to show the scalability of RCA.

The parameters and their varying ranges are summarized in Figure 8, in which
default values are marked in boldface. All experiments are run on a PC with Intel
Core2 CPU 2.4GHz and 2 GB main memory. The programs are compiled with
Java v6 in Windows Vista system.
(A) Effect of Dataset Size: The performance results are shown in Figure 9.
We use the dataset with the dimensionality 6 and vary the size of the dataset
from 50 to 200 tuples. The result shows that RCA significantly outperforms
the Brute-Force method. The query time of RCA is very small, only a fraction
of a millisecond. However, the performance of Brute-Force degrades rapidly as
the size of the dataset increases, especially when the data distribution is anti-
correlated (note that only a small portion of the Brute-Force method can be

90 I-F. Su, Y.-C. Chung, and C. Lee

Parameter Range or value
Data size for small-scale datasets 50, 100, 150, 200
Data size for large-scale datasets 200, 1K, 20K, 40K, 60K, 80K, 100K

Dimensionality (d) 4, 6, 8, 10
Top-k size (k) 10, 20, 30, 40, 50
Cardinality (c) 2, 3, 4, 5, 6

Combinatorial Function (F) SUM

Fig. 8. Configuration Parameters

shown in the figure because the query time is too high). This implies that RCA
can successfully reduce the computation cost by using the concept of the MPD,
which eliminates unnecessary comparisons on combinations.

In the next experiment, we adopt large size datasets which vary from 200 to
100K. The query time of RCA is shown in Figure 9(b) and note that this time is
in millisecond. The result of Brute-Force is not shown because its performance
is over the scale of this figure. The result shows that the size of the dataset
has a small impact on RCA. RCA achieves a satisfactory running time (i.e.,
within 1 sec.) even when the dataset size is so large. The result also shows that
even when data is anti-correlated, its impact on RCA is limited. Its performance
is only slightly worse than the performance of uniformly distributed data. The
increase in computation cost for anti-correlated datasets is mainly due to the fact
that the number of combinatorial skyline tuples in an anti-correlated dataset is
greater than that in a uniformly distributed dataset.
(B) Effect of Dimensionality (d): The datasets with dimensionality d vary-
ing from 4 to 10 and data size = 100 are used in the experiment. Figure 10(a)
shows the query times of both algorithms. It is clear that the performance of
the Brute-Force method is much worse than that of RCA under all datasets. Its
computation cost increases very rapidly with dimension.

In another experiment, we study the performance of RCA under various d
over large-scale datasets. The result is shown in Figure 10(b). The result ex-
hibits an interesting phenomenon that the query time of RCA decreases as the
dimensionality rises. The reason is as follows. In the beginning, RCA iteratively
constructs the solution table, and checks each combination in the current row
to find the top-k combinatorial skyline tuples. In this sense, the performance of
RCA is dependent on how fast the temporary set of top-k combinatorial skyline
tuples is found. Since the number of combinatorial skyline tuples increases with
the increasing dimensionality, RCA can acquire the temporary top-k combina-
torial skyline tuples much faster in a high dimensional dataset, which allows
RCA to find MPDS of the combinations earlier and therefore finish the whole
process faster. Note that this feature of RCA is very unique in skyline query
processing methods, as most methods performs worse when the dimensionality
of data is high. RCA, however, provides an excellent idea for processing large
and high-dimensional datasets.

Top-k Combinatorial Skyline Queries 91

 0
 150
 300
 450
 600
 750
 900

 1050
 1200
 1350
 1500
 1650
 1800
 1950

20015010050

tim
e

(s
ec

.)

data size

Small-scale datasets

RCA (Anti)
RCA (Uniform)

Brute-Force (Anti)
Brute-Force (Uniform)

(a) Query time under various data sizes
over small-scale datasets.

 0

 70

 140

 210

 280

100K80K60K40K20K1K200

t
i
m
e

(
m
s
e
c
.
)

data size

Large-scale datasets

RCA (Anti)
RCA (Uniform)

(b) Query time under various data sizes
over large-scale datasets.

Fig. 9. Effect of data set size

 0

 200

 400

 600

 800

 1000

 1200

 1400

10864

t
i
m
e

(
s
e
c
.
)

dimensionality (d)

Small-scale datasets

RCA (Anti)
RCA (Uniform)

Brute-Force (Anti)
Brute-Force (Uniform)

(a) Query time under various d over
small-scale datasets.

 30

 130

 230

 330

 430

 530

 630

 730

 830

 930

10864

t
i
m
e

(
m
s
e
c
.
)

dimensionality (d)

Large-scale datasets

RCA (Anti)
RCA (Uniform)

(b) Query time under various d over
large-scale datasets.

Fig. 10. Effect of dimensionality

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

65432

t
i
m
e

(
m
s
e
c
.
)

cardinality (c)

Large-scale datasets

RCA (Anti)
RCA (Uniform)

(a) Query time under various c over
large-scale datasets.

 200

 400

 600

 800

 1000

 1200

 1400

5040302010

t
i
m
e

(
m
s
e
c
.
)

k value

Large-scale datasets

RCA (Anti)
RCA (Uniform)

(b) Query time under various k values
over large-scale datasets.

Fig. 11. Effect of c and k

92 I-F. Su, Y.-C. Chung, and C. Lee

(C) Effect of Cardinality (c) and k: As the performance of Brute-Force is
very poor, it is excluded from the discussion. Figure 11(a) studies the effect of
c, the cardinality of a kCSQ. We fix the data size at 100 tuples and vary the
cardinality from two to six. RCA scales gracefully with c, despite the exponential
increase in the total number of combinations. Also, RCA performs better under
uniformly distributed datasets. The reason is the same as that in effect of dataset
size.

The impact of k is shown in Figure 11(b). Datasize, c and d at 100, 4, and 6,
respectively, and increase k from 10 to 50. The performance of RCA indicates
that the use of MPD helps RCA to finish the search process quite early so that
the execution time even when k = 50 is still less than 1.5 sec.

5 Conclusion

Different from the previous work, our study introduces a new and useful type of
skyline query, the combinatorial skyline query, and discusses the difficulties in
retrieving the top-k combinatorial skylines. The existing techniques cannot be
applied to resolve a top-k combinational skyline query. We proposed an algorithm
to resolve the problem. Extensive experiments confirm that RCA is useful and
is highly efficient for handling top-k combinatorial skyline queries. In our future
work, we plan to further improve the performance of RCA by removing the
dominated combinations from the solution table and propose other variations of
this method.

References

[1] Reilly, F.K., Brown, K.C.: Investment Analysis & Portfolio Management, 7e.
Thomson (2003)

[2] Markowitz, H.: Portfolio selection. Journal of Finance 7(1), 77–91 (1952)
[3] Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in

database systems. ACM Transactions on Database Systems 30(1), 41–82 (2005)
[4] Chomicki, J., Godfrey, R., Gryz, J., Liang, D.: Skyline with presorting. In: Pro-

ceedings of the 19th International Conference on Data Engineering, ICDE 2003,
pp. 717–719. IEEE Computer Society, Los Alamitos (2003)

[5] Gautam, D., Dimitrios, G., Nick, K., Dimitris, T.: Answering top-k queries using
views. In: VLDB 2006: Proceedings of the 32nd international conference on Very
large data bases, September 2006, pp. 451–462 (2006)

[6] Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings
of the 17th International Conference on Data Engineering, pp. 421–430. IEEE
Computer Society, Los Alamitos (2001)

[7] Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in large data sets.
In: Proceedings of the 31st International Conference on Very Large Data Bases,
August 2005, pp. 229–240 (2005)

[8] Li, C., Ooi, B.C., Tung, A.K.H., Wang, S.: Dada: a data cube for dominant rela-
tionship analysis. In: SIGMOD Conference, June 2006, pp. 659–670 (2006)

Top-k Combinatorial Skyline Queries 93

[9] Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline computation. In:
Proceedings of the 27th International Conference on Very Large Data Bases,
September 2001, pp. 301–310 (2001)

[10] Michael, M., Patel, J.M., Jagadish, H.V.: Efficient skyline computation over low-
cardinality domains. In: Proceedings of the 33rd international conference on Very
large data bases, September 2007, pp. 267–278 (2007)

[11] Anderson, I.: A First Course in Discrete Mathematics. Springer, Heidelberg (2000)
[12] Su, I.F., Chung, Y.C., Lee, C.: Top-k combinatorial skyline queries. Technical

report, Department of Computer Science and Information Engineering, National
Cheng Kung University (2009),
http://dblab.csie.ncku.edu.tw/~emily/techreportgroupskyline2009.pdf

http://dblab.csie.ncku.edu.tw/~emily/techreportgroupskyline2009.pdf

Extract Interesting Skyline Points in High Dimension

Gabriel Pui Cheong Fung1, Wei Lu2,3, Jing Yang3, Xiaoyong Du2,3,
and Xiaofang Zhou1

1 School of ITEE, The University of Queensland, Australia
{g.fung,zxf}@uq.edu.au

2 Key Labs of Data Engineering and Knowledge Engineering, Ministry of Education, China
3 School of Information, Renmin University of China, China

{uqwlu,jyang,duyong}@ruc.edu.cn�

Abstract. When the dimensionality of dataset increases slightly, the number
of skyline points increases dramatically as it is usually unlikely for a point to
perform equally good in all dimensions. When the dimensionality is very high,
almost all points are skyline points. Extract interesting skyline points in high di-
mensional space automatically is therefore necessary. From our experiences, in
order to decide whether a point is an interesting one or not, we seldom base our
decision on only comparing two points pairwisely (as in the situation of skyline
identification) but further study how good a point can perform in each dimension.
For example, in scholarship assignment problem, the students who are selected
for scholarships should never be those who simply perform better than the weak-
est subjects of some other students (as in the situation of skyline). We should
select students whose performance on some subjects are better than a reasonable
number of students. In the extreme case, even though a student performs outstand-
ing in just one subject, we may still give her scholarship if she can demonstrate
she is extraordinary in that area. In this paper, we formalize this idea and propose
a novel concept called k-dominate p-core skyline (Ck

p). Ck
p is a subset of skyline.

In order to identify Ck
p efficiently, we propose an effective tree structure called

Linked Multiple B’-tree (LMB). With LMB, we can identify Ck
p within a few

seconds from a dataset containing 100,000 points and 15 dimensions.

1 Introduction

Given a set of points X in an N dimensional space, a point xi ∈ X dominates another
point x j ∈ X if xi performs better than x j in at least one dimension and performs not
worse than x j in all other dimensions [1]. A point which cannot be dominated by any
other point is called a skyline point. A collection of skyline points formulates a skyline.
By definition, we cannot compare skyline points with each other without an appropriate
preference function [2,3] because each skyline point must have at least one dimension
performs better than any other skyline point. If the dimensionality is very high, almost
all points are skyline points [4], extracting interesting skyline points in high dimensional
space is therefore necessary [5,6].

� Wei Lu’s and Xiaoyong Du’s research is partially supported by National Natural Science Foun-
dation of China under Grant 60873017.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 94–108, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Extract Interesting Skyline Points in High Dimension 95

Table 1. Academic results of some students

Names Subjects
Language Music Math Sport Art

Amy A A A A C
Billy A- A- A- C C+
Cathy A A B C A

Dorothy B B B B C
George F F F C+ C+

For the sake of discussion, Table 1 shows a simply toy example about the academic
results of five students. The first three students perform good but the last student per-
forms very poor. Unfortunately, under the definition of skyline, the skyline points are:
Amy, Billy, Cathy and George (Dorothy is dominated by Amy). This means these four
students are indistinguishable in terms of their academic achievements. This does not
make too much sense – we will never consider George’s performance is good. George is
a skyline point because he performs slightly better than the weakest subject of any given
student, despite of he performs significantly poorer than all students in most subjects.1

1.1 Preliminaries

[5] extract interesting skyline points as follows: a point xi is said to k-dominate another
point x j if xi performs better than x j in at least one dimension and not worse than x j in k
dimensions. A point that cannot be k-dominated by any other point is a k-dominant sky-
line point. Quite obvious, k-dominant skyline is a subset of skyline but its size is much
smaller especially when k is small. In Table 1, Amy and Cathy both k-dominate George
if k≤ 3. Hence, George, a non-interesting point, will not be included in the k-dominant
skyline. k-dominant skyline is proven to be very effective in extracting interesting sky-
line points. Yet, the k-dominance relationship is not transitive. Furthermore, they do not
consider vertical relationship of each dimension (as we will discuss it later). [7] pro-
poses a concept called skyline frequency to extract interesting skyline points. It ranks
all points according to the number of subspaces that they will be regarded as skyline
points and returns the points at the top ranking. This approach is smart, but have two
major issues: (1) Some points that are intuitively more superior may sometimes have the
same ranking (or lower ranking) as the inferior points. (2) There are 2N − 1 subspaces
in an N dimensional space, which is too expensive to compute in practice. For the first
issue, let us consider Table 1 again. Billy obviously outperforms George. Unfortunately,
they have the same ranking (they are skyline point in 8 out of 31 subspaces). For the
second issue, [7] proposes an approximation algorithm to solve it but it cannot answer
dynamic queries [8]. [9] proposes an idea called δ-subspace to identify a set of interest-
ing skyline points. δ-subspace is a subspace of the whole dataspace such that its skyline
contains less than δ points. The union of the skyline points in all the δ-subspace are

1 Note: One may argue that the problem in Table 1 is just a matter of scaling. However, we would
like to stress that Table 1 is a simply example to demonstrate the potential problem of skyline
in high dimensional space. Readers can refer to other examples from some existing work [5,6]
if they are confused about the potential problem of skyline in high dimensional space.

96 G.P.C. Fung et al.

called strong skyline points. This algorithm depends on δ heavily. If δ too large, most
of the skyline points will be removed, and vice versa. Setting δ is difficult for a normal
user or without analyzing the dataset throughly. In addition, the physical meaning of this
approach is not intuitive, which further discourage it to be used in practice. [10] pro-
poses a skyline operator called top-K representative skyline query. In this operator, K
skyline points will be selected such that the number of points which can be dominated
by them will be maximized. Our problem is different from them. Firstly, they do not
have vertical comparison among dimension. Secondly, superior points may frequently
dominate less number of points than those inferior points. Thirdly, their aim is to rank
the skyline points. Another related concept to our problem is K-skyband [8,11,12,13],
which is a set of points that are dominated by at most K points. Yet, K-skyband does not
aim at minimizing the number of skyline points which is different from our motivation.
We do not attempt the elaborate them further due to the limited space.

1.2 Motivation and Objective

Let us take a simple example to illustrate our motivation. In scholarship assignment
problem, scholarships are usually given to students based on two steps: (1) Identify
some potential candidates from all students; (2) Assign scholarships to some of these
potential candidates after some discussions. Ideally, potential candidates can be
regarded as skyline because no student should perform better than any of them. In
practice, if we identify the potential candidates by traditional skyline, the number of
potential candidates will be too many when the number of subjects is many (i.e. di-
mensionality is high). We need to have a mechanism to reduce the size of skyline. For
example, George in Table 1 should not be considered as a potential candidate. Logi-
cally, a potential candidate should not be a student who simply performs better than the
weakest subject of any other student (like George). A potential candidate should has
some subjects that she can perform better than a reasonable number of students in those
subjects. In the extreme case, even though a student performs outstanding in one sub-
ject, she may still award scholarship if she can demonstrate she is extraordinary in that
area. Based on this idea, we claim that when we extract interesting points from a large
dataset, we should not only make horizontal pairwise comparisons like the concept of
skyline. We should further study how many points that a given point can dominate ac-
cording to a given dimension (i.e. vertical pairwise comparison). For example, suppose
there are n students perform better than a student called Smith in a subject. If Smith
wants to claim he is one of the potential candidates for awarding scholarship, then it
is reasonable to ask him to identify another subject that he can perform better than all
these n students. In Table 1, George cannot fulfill this criterion.

In this paper, we formalize this motivation and propose a novel concept called core
skyline. A core skyline contains a set of interesting points extracted from a skyline. This
work is different from the existing works as we further consider the vertical relation-
ships among points. Up to our knowledge, we are the first mover in this area.

Given a point xi and a dimension dm let M(xi,dm) be a set of points performs better
than xi in dm. xi is said to dominate-back M(xi,dm) if xi performs better than all points
in M(xi,dm) in some other dimensions. xi is a core skyline point if it can dominate-back
M(xi,dm) for all different dm in a dataset. Based on this concept, we further propose

Extract Interesting Skyline Points in High Dimension 97

Table 2. Some sample datasets

ID d1 d2 d3 d4

x1 1 7 3 5
x2 3 2 7 7
x3 5 4 2 3
x4 4 5 6 6
x5 7 1 1 1
x6 6 3 4 2
x7 2 6 5 4

Rank d1 d2 d3 d4

1 x1 x5 x5 x5
2 x7 x2 x3 x6
3 x2 x6 x1 x3

4 x4 x3 x6 x7

5 x3 x4 x7 x1
6 x6 x7 x4 x4

7 x5 x1 x2 x2

Insertion Points Dimensions
order d1 d2 d3

1 x1 7 10 8
2 x2 7 10 11
3 x3 16 10 17
4 x4 18 15 1
5 x5 12 10 20
6 x6 7 10 8

A. Dataset 1 B. Dataset 1 C. Dataset 2
(Order by ID) (Order by ranking)

a more robust concept called k-dominant p-core skyline (Ck
p). k denotes the number

of dimensions that xi has to dominate-back and p denotes the fraction of points in a
dimension that xi has to dominate-back. Details of this formulation will be described
in Section 2. We propose an indexing algorithm in Section 3 called Linked Multiple
B’-tree (LMB)2 to help us identify Ck

p dynamically and progressively.

2 Problem Definition

Let D = {d1,d2, . . . ,dN} be an N-dimensional space and X = {x1,x2, . . .} be a set of
points in D. We use xi.dm to denote the value of xi in dm. There is a total order relation-
ship in each dimension such that a smaller value is more preferable. Let us review two
existing definitions [14]:

Definition 1. (Dominate,≺) xi is said to dominate x j (xi≺ x j) iff these conditions hold:
(1) ∀dm ∈ D,xi.dm ≤ x j.dm; and (2) ∃dm ∈ D,xi.dm < x j.dm.

Definition 2. (Skyline, S) Let S ⊆ X. xi is a skyline point (xi ∈ S) if and only if ∀x j ∈
X ,x j cannot dominate xi.

We now formally define core skyline and use Table 2A and 2B as a running example.
Table 2A contains a dataset with seven points and four dimensions. Table 2B ranks these
points according to their values in each dimension. For example, x1 is ranked highest in
d1 because it has the smallest value in d1. Note that all points in Table 2A and 2B are
skyline points. Before we can define core skyline, we need to define the following:

Definition 3. (Dominant set, M(xi,dm)) Let M(xi,dm) ⊂ X. M(xi, dm) contains points
that perform better than or equal to xi in dm, i.e. x j ∈M(xi,dm) iff x j.dm ≤ xi.dm.

Definition 4. (Dominate-back,≺b) Let M ⊂ X. A point xi is said to dominate-back M
(xi ≺b M) iff M = /0 or ∃dn such that ∀x j ∈M,xi.dn ≤ x j.dn.

In Table 2A, M(x1,d1) = /0 because no point has a value less than x1.d1. Similarly,
M(x1,d2) = {x2,x3,x4,x5,x6,x7}, M(x1, d3) = {x3,x5} and M(x1,d4) = {x3, x5,x6,x7}.
Given xi, if xi ∈ S and xi ≺b M(xi,dm),∀dm ∈ D, then xi is a core skyline point:

2 “B’-tree” is pronounced as “B-pie-tree”.

98 G.P.C. Fung et al.

Definition 5. (Core skyline, C) Let C ⊆ S. A point xi is a core skyline point (xi ∈C) iff
xi ∈ S and ∀dm ∈ D,xi ≺b M(xi, dm).

In Table 2A, C = {x1,x5}. All other points do not belong to core skyline. For example,
let us consider x4. In order for x4 to be a core skyline point, x4 must be able to dominate-
back M(x4,d1), M(x4,d2), M(x4,d3) and M(x4,d4). Now, let us consider M(x4,d1) =
{x1,x2,x7}. In order for x4 ≺b M(x4,d1), there must exists a dn such that x4.dn ≤ x1.dn,
x4.dn≤ x2.dn and x4.dn≤ x7.dn. Unfortunately, x4.d2 > x2.d2 (i.e. d2 fails), x4.d3 > x1.d3

(i.e. d3 fails) and x4.d4 > x1.d4 (i.e. d4 fails). Since x4 ⊀b M(x4,d1), x4 /∈C. When the
dimensionality, N, is very high, it will be very difficult for a point to become a core
skyline point because it is difficult for a point to dominate-back all N dominant-sets.
Hence, k-dominant core skyline is proposed. k denotes the number of dominant-sets
that a point has to dominate-back. Formally:

Definition 6. (k-dominant core skyline, Ck) Let Ck ⊆ S. A point xi is a k-dominant core
skyline point (xi ∈Ck) iff xi ∈ S and ∃D′ ⊆ D, |D′|= k, ∀dm ∈ D′, xi ≺b M(xi, dm).

Based on Definition 6, C4 = {x1,x5}, C3 = {x1,x3,x5,x7}, C2 = {x1,x2, x3,x5,x6,x7}
and C1 = {x1,x2,x3,x5,x6,x7}. Note that x4 is a skyline point but is not a k-dominant
core skyline point. Also, Ck ⊆Ck′ for k < k′. When there are many points in a dataset,
it will be very difficult for a point xi to dominate-back all points in M(xi,dm). As such,
one may consider xi is important if it can dominate-back a reasonable number of points
in M(xi,dm). As a result, a relation called p-dominate-back is defined:

Definition 7. (p-dominate-back, ≺pb) Let M ⊂ X and 0 ≤ p ≤ 1. A point xi is said
to p-dominate-back M (xi ≺pb M) iff ∃M′ ⊆ M, |M′| ≥ p× |M| such that M′ = /0 or
∃dn,∀x j ∈M′,xi.dn ≤ x j.dn.

Yet, we cannot have the concept of p-dominate-back in k-dominant core skyline by
simply replacing≺b to≺pb because it is possible that some non-interesting points might
be able to p-dominate-back a large number of its dominant-sets while some interesting
points cannot (we obmit this proof due to limited space). So we have a new definition:

Definition 8. (k-dominant p-core skyline, Ck
p) Let Ck

p ⊆ S. A point xi is a k-dominant
p-core skyline point (xi ∈Ck

p) if and only if xi ∈ S and ∃D′ ⊆D, |D′|= k,∀dm ∈D′ both
these two conditions hold: (1) xi ≺pb M(xi,dm); (2) ∀x j ∈M(xi,dm),xi ≺pb M(x j,dm).

In Definition 8, Condition (1) is trivial but will lead to the aforementioned pitfall. So
Condition (2) is imposed. xi can be a k-dominant p-core skyline point only if it can
p-dominate-back M(x j,dm) for all x j ∈M(xi,dm). Note that Ck

0 = C0
p = C0

0 = S. Since
core skyline (C) and k-dominant core skyline (Ck) are special cases of Ck

p (C = CN
1 and

Ck = Ck
1), we will focus on studying Ck

p. The problems that we want to solve are:

1. Given k and p, extract Ck
p dynamically and progressively.

2. Given δ, identify the smallest k′ such that |Ck′
p | ≤ δ and 0≤ k′ ≤N. If no k′ satisfies

this condition, then k′ = N.

Problem 1 is trivial. For Problem 2, from a user’s point of view, it is convenience be-
cause a user only needs to specify the maximum number of points that she wants to
obtain but does not need to understand the distribution of data.

Extract Interesting Skyline Points in High Dimension 99

10

10 10 10 10

157 16

16 18127

77

1 8 11

1 17

17 20

7 8 8

10

x1

x1

x1

x2x2

x2

x3 x3 x3x4

x4

x4 x5x5x5

x6

x6

x6

T1 T3T2

Fig. 1. General structure of the Linked Multiple B’-tree (LMB)

7 16previous pointer

an entry

left pointer

next pointer

right pointer

a key

Fig. 2. A node in a B’-tree

3 Proposed Work: LMB

In this section, we describe how to extract Ck
p efficiently by using a novel tree structure

called LMB. Note that we do not need to identify skyline before we extract Ck
p. This is

important as most skyline points may not belong to Ck
p when p and k are of reasonable

values. We can then minimize the computational cost.
Figure 1 shows the structure of LMB by using the dataset in Table 2C . There are

three B’-tree, T1,T2 and T3, linked together. T1,T2 and T3 are responsible for indexing
the data in d1,d2 and d3, respectively. Each node in a B’-tree contains some entries, a
previous pointer and a next pointer (Figure 2). The next pointer points to a succeeding
sibling node (if any) and the previous pointer points to a preceding sibling node (if any).
Each entry in a node contains a key and two pointers. The left pointer either points to a
record or points to a node. The right pointer either points to an entry in another B’-tree
that refers to the same point or points to null. In real implementation, each node is a
page in disk so a node should have more entries rather than three. The nodes that are
shaded are called overflow nodes. Overflow nodes are not regarded as leave nodes. So
the heights of T1, T2 and T3 are respectively two, one and two. In a B’-tree, records are
stored at leave nodes and overflow nodes. Each overflow node contains points sharing
the same key. For example, T1 contains one overflow node (key 7) with three entries.
This indicates there are three points having the value 7 in d1.

Points in an overflow node are ordered according to their values in some other di-
mensions. For example, given two points xi and x j, where xi.dm = x j.dm, there are two
possibilities for their values in the other dimensions: (1) ∀dn ∈ D,xi.dn = x j.dn (i.e. xi

and x j are identical), and (2) ∃dn ∈ D,xi.dn
= x j.dn. For Case (1), xi and x j will be
ordered in an overflow node according to their reverse order of insertion. E.g. x1 and
x6 in Table 2C are identical, so their orders in T1, T2 and T3 are all x6 → x1 (x6 is on
the left of x1) as x6 is inserted after x1. For Case (2), B’-tree will continue to compare

100 G.P.C. Fung et al.

Algorithm 1. insert(xi,Tm)
input : A point xi and a B’-tree Tm

ν← xi.dm;1

if ∃ν in Tm then2

if overflow node for the key ν does not exist then3

node← a new overflow node;4

identify entry where entry.key = ν and entry is in leave node;5

insert x j into node where x j = entry.left;6

entry.left← node; entry.right← null;7

else8

node← first overflow node of ν;9

insert(xi,dm,node);10

else11

insert xi into Tm just like a traditional B+tree;12

the values of xi and x j in the immediate next dimension, until their values are differ-
ent. E.g. in d2, x1.d2 = x2.d2 = x3.d2 = x5.d2 = x6.d2 = 10. To order these points in
T2, we compare their values in the immediate next dimension of d2, which is d3. In
d3, x1.d3 = 8, x2.d3 = 11, x3.d3 = 17, x5.d3 = 20, x6.d3 = 8. So their ordering in T2

is (x1,x6)→ x2 → x3 → x5. To order x1 and x6 in T2, we compare their values in the
immediately next dimension, which is d1. Since x1 and x6 are identical, we order them
according to the reverse order of their insertion, which is x6 → x1. Eventually, the or-
dering is x6 → x1 → x2 → x3 → x5.

3.1 Implementation

Algorithm 1 outlines the insertion process. Suppose we now insert a new point, xi, into
Tm. First, we check whether there is any point has the same value as xi in dm (line 2).
If not, the insertion process will be the same as a B+tree [15] (line 13). Otherwise, we
check whether an overflow node exists (line 3). If not, we will create a new overflow
node (line 4), identify the entry at leave node where its key is xi.dm (line 5), insert
x j (x j.dm = xi.dm) into the overflow node (line 6) and attach the overflow node to the
correct position in Tm (line 7). xi will be inserted into the overflow node by calling the
function insert (line 11).

Algorithm 2 outlines the process of inserting xi into an overflow node. We iterate
each point x j in an overflow node to see which position should we insert xi. Let dm′

be the immediate next dimension of dm (line 4). If xi.dm′ < x j.dm′ (line 5), then xi will
be inserted before x j (line 6). We can do this because all existing points in an overflow
node must already be ordered properly based on dm′ when they are inserted by calling
this function previously. If x j.dm′ = xi.dm′ (line 6), then we will compare the values of
xi and x j in their immediate next dimension continuously until they are different (line
7 – 11). If ∀dm′ ,xi.dm′ = x j.dm′ (i.e. xi and x j are identical), then xi will be inserted
before x j (line 12) because we have to order the identical points in their reverse order
of insertion. Line 14 – 18 is used to iterate all points in an overflow node. Finally, if

Extract Interesting Skyline Points in High Dimension 101

Algorithm 2. insert(xi,dm,node)
input : A point, xi, a dimension, dm, an overflow node, node
i← 1;1

repeat2

x j ← the point at entry i in node;3

if m
= N then m′ ← m+1; else m′ ← 1;4

if xi.dm′ < x j.dm′ then insert xi before x j; return;5

else if x j.dm′ = xi.dm′ then6

for i← 1 to N−1 do7

if m′
= N then m′ ← m′+1; else m′ ← 1;8

if xi.dm′ < x j.dm′ then insert xi before x j; return;9

else if xi.dm′ > x j.dm′ then insert xi after x j; return;10

insert xi before x j; return;11

i← i+1;12

if entry i is empty then insert xi in entry i; return;13

else if i > number of entries in node then14

i← 1; node← node.next;15

until node is null ;16

node← a new overflow node;17

insert xi in the first entry of node;18

attach node to the last overflow node;19

∀x j,xi.dm′ > x j.dm′ , then xi be inserted into the last entry of an overflow node (line 15).
If the entries are full, then xi will be inserted into a new overflow node(line 20 – 22).
For each entry, its right pointer will point to an entry in the immediate next B’-tree that
points to the same record. This process is trivial and can be performed in any stage
during the insertion process. For deletion, its steps are similar to a B+tree, except that
when an overflow node contains only one entry, then this entry will be propagated back
to its parent node and the overflow node will be deleted. As this process is trivial, we
do not present a detailed algorithm due to the limited space in this paper.

3.2 Extraction

Once LMB has indexed all points, we can extract Ck
p dynamically and progressively ac-

cording to a reference point, r (e.g. r is the origin). Given a point xi and a dimension dm,
suppose all points in M(xi,dm) are ordered according to dn (dn
= dm) in an descending
order. Let x∗ be the point at position �p×|M(xi,dm)|� in M(xi,dm). If xi.dn < x∗.dn, then
xi obviously must be able to p-dominate-back M(xi,dm) by using dn. Hence, Condition
(1) of Definition 8 can be verified quickly if x∗ can be identified efficiently. Now, assume
there is a point x j ∈M(xi,dm). In order for xi p-dominate-back M(x j,dm) using dn, xi.dn

must be less than or equal to x∗j .dn where x∗j is the point at position �p× |M(x j,dn)|�
(remember M(x j, dm) is sorted based on dn). Hence, to verify Condition (2) of Defini-
tion 8 quickly, what we need to do is to check whether ∃dn,xi.dn ≤min j x∗j .dn where x∗j
is the point at position �p× |M(x j,dn)|�. Once we can verify Condition (1) and Con-
dition (2) of Definition 8 quickly, we can extract Ck

p efficiently. Hence, the major issue

102 G.P.C. Fung et al.

Algorithm 3. extract(p,k,r)
input : two user defined threshold, p and k, and a reference point, r
output: k-dominant p-core skyline, Ck

p

for m← 1 to N do1

xm ← the point closest to r in dm; // e.g. r is the origin2

Bmn ← /0,n = 1,2, . . . ,N; // Bmn is a BTree3

Ck
p ← /0; H ← /0;4

for i← 1 to |X | do5

for m← 1 to N do6

added← false;7

for n← 1 to N,n
= m do8

if Bmn = /0 or |xm.dn− rm.dn|< Bmn.last then9

insert |xm.dn− rm.dn| into Bmn;10

if addded = false and �x ∈H,x≺ xm then11

Ck
p ←Ck

p∪ update(H,k,xm);12

added = true;13

if �p× i� > |Bmn| then14

remove last element from Bmn;15

xm ← the point closest to xm (besides itself) in dm;16

i← i+1;17

return Ck
p;18

we need to deal with is how to identify x∗ and x∗j with respect to dm quickly. We extract

Ck
p based on this idea.
Algorithm 3 outlines the steps for extracting Ck

p. Line 1 – 5 initialize some parame-
ters. In line 2, if there are more than one point closest to the reference point r in dm, then
xm will be initialized to the one which is the first occurrence in an overflow node. With
LMB, we can identify xm very quickly. This process is similar to a B+tree. Bmn (line 3) is
a BTree. It helps us to determine whether a point can p-dominant-back a dominant-set.
If xi can p-dominate-back M(xi,dm) by using dn, then xi will be stored in Bmn. We may
not always need to store xi permanently in Bmn. We want to keep Bmn as small as possi-
ble so as to reduce memory consumption and computational time. We explain this step
by step below. Let ν = |xm.dn− rm.dn|. We can identify xm.dn quickly by using LMB
without accessing the record directly. Whenever Bmn is empty or ν is less than the last
value in Bmn (i.e. the largest value in Bmn), then ν will be inserted into Bmn (line 10 and
11). Let i be the ith point closest to the reference point r. Whenever |Bmn|< �p× i�, then
the last value in Bmn will be removed (line 16 – 18). By doing so, we can keep the size
of Bmn always not exceed �p×|M(xm,dm)|�. We can do so because we extract xm one
by one according to the ascending distance to r (line 21). Furthermore, note that the last
value in Bmn is in fact min{x∗.dn,x∗j .dn} with respect to dm. If xm < min{x∗.dn,x∗j .dn},
it implies xm satisfies Condition 1 and Condition 2 of Definition 8. So xm will be added
into H (line 12 – 15). In line 12, the condition �x ∈ H,x ≺ xm guarantees x must be a
skyline. The rest of Algorithm 3 should be self-explained. Finally, H (line 6) is a hash

Extract Interesting Skyline Points in High Dimension 103

Algorithm 4. update(H,k,x,v)
input : A hashtable, H, a parameter, k, a point, x, a value, v ∈ {0,1}
output: A k-dominant p-core skyline point, x, or /0
if H does not contain element with key x then1

put (x,V) into H; // x is the key and V (a set) is the element2

add v into V ; // V is the element with key x3

k′ ← number of v in V equals 1;4

if k′ ≥ k and x is not yet returned then5

return x;6

return /0;7

table. It stores how many dominant-sets that a point can p-dominant-back. The function
update (line 24 and 26) is used to update the information stored in H so as to extract
Ck

p. It is outlined in Algorithm 4. In Algorithm 4, V (e.g. line 2) is a set that stores the
“p-dominate-back result” of x. If x can p-dominate-back a specified dominant-set, then
1 will be added into V ; otherwise, 0 will be added (line 4). If the number of 1 in V is
greater than or equals to k (k is a user-defined parameter to extract Ck

p), then x will be
added into Ck

p (line 5 – 8). Note that x is added into Ck
p progressively so we can return

results to users immediately and progressively.

3.3 Further Analysis

Algorithm 3 tries to solve Problem 1 which is raised in Section 2. For Problem 2, we
can solve it by: (1) Remove line 4 to line 8 in Algorithm 4; (2) The appropriate k′ could
be obtained easily by checking the number of v = 1 in each V in H after Algorithm 3 is
completed. For example, when N = 3 (i.e. |V |= 3), suppose after completing Algorithm
3, there are five V having three v = 1, seven V having two v = 1 and ten V having one
v = 1. Then, |C3

p|= 5, |C2
p|= 12, |C1

p|= 22. If δ = 20 (maximum number of core skyline
points returned is 20), then k′ = 2.

Furthermore, we can extend our algorithm to answer some complex queries easily.
We give some examples here to illustrate how this can be done. If we want to return
Ck

p for a particular range of k, then we simply change line 6 of Algorithm 4 to the
appropriate range. For example, if we want to return Ck

p when k = 2 but exclude those
points in Ck

p when k = 4, then we change line 6 to: “If 2≤ k′< 4 and x is not yet returned
then”. To deal with constraint skyline queries [16], we only need to pay attention to line
2 and line 33 of Algorithm 3. If the xm returned is not within the constrained region, then
we can immediately ignore that dimension dm and do no need to conduct any further
computation.

4 Experiment

All experiments are conducted using an Intel XEON 2.5GHz CPU in Microsoft Win-
dows Server 2003 R2 Enterprise x64 Edition. All programs are written in Java. We use

104 G.P.C. Fung et al.

 0

 2

 4

 6

 8

 10

 12

 14

100K 150K 200K 250K 300K

T
im

e
(s

ec
on

d)

Cardinality

correlated
independent

anti-correlated

(a) CPU vs. Cardinality

 0

 100

 200

 300

 400

 500

100K 150K 200K 250K 300K

S
iz

e
of

 C
or

e
S

ky
lin

e

Cardinality

correlated
independent

anti-correlated

(b) |Ck
p| vs. Cardinality

 0

 500

 1000

 1500

 2000

 2500

 3000

100K 150K 200K 250K 300K

M
em

or
y

(x
 4

K
B

)

Cardinality

correlated
independent

anti-correlated

(c) Memory vs. Cardinality

Fig. 3. Cardinality

 0

 5

 10

 15

 20

15 20 25 30 35

T
im

e
(s

ec
on

d)

Dimensionality

correlated
independent

anti-correlated

(a) CPU vs. Dim.

 0

 100

 200

 300

 400

 500

15 20 25 30 35

S
iz

e
of

 C
or

e
S

ky
lin

e

Dimensionality

correlated
independent

anti-correlated

(b) |Ck
p| vs. Dim.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

15 20 25 30 35

M
em

or
y

(x
 4

K
B

)

Dimensionality

correlated
independent

anti-correlated

(c) Memory vs. Dim.

Fig. 4. Dim.

 0

 1

 2

 3

 4

 5

 6

 7

 8

3691215

T
im

e
(s

ec
on

d)

k

correlated
independent

anti-correlated

(a) CPU vs. k

 0

 100

 200

 300

 400

 500

3691215

S
iz

e
of

 C
or

e
S

ky
lin

e

k

correlated
independent

anti-correlated

(b) |Ck
p| vs. k

 0

 500

 1000

 1500

 2000

3691215

M
em

or
y

(x
 4

K
B

)

k

correlated
independent

anti-correlated

(c) Memory vs. k

Fig. 5. Effect of k

 1

 10

 100

 1000

.996.997.998.9991

T
im

e
(s

ec
on

d)

p

correlated
independent

anti-correlated

(a) CPU vs. p

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

.996.997.998.9991

S
iz

e
of

 C
or

e
S

ky
lin

e

p

correlated
independent

anti-correlated

(b) |Ck
p| vs. p

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000

.996.997.998.9991

M
em

or
y

(x
 4

K
B

)

p

correlated
independent

anti-correlated

(c) Memory vs. p

Fig. 6. Effect of p

a page size of 4KB for each node of LMB. Following [5,16], we generate several inde-
pendent, correlated and anti-correlated datasets. In order to evaluate the quality of Ck

p,
we use two real life datasets.

4.1 Effect of Cardinality

We set |X | (number of points) = {100000, 150000, 200000,250000, 300000}, N = 15,
k = 15 and p = 1. Figure 3 (a) shows the CPU time versus cardinality in different
datasets. In the figure, there are three lines. They denote the results against indepen-
dent dataset, correlated dataset and anti-correlated dataset. With LMB, we only need to
spend less than 3 seconds to identify Ck

p from a dataset with 15 dimensions and 100,000
points and spend around 11 seconds to identify Ck

p from a dataset with 15 dimensions
and 300,000 points. In general, the CPU time increases linearly when the dimensional-
ity increases linearly. For a reference, BBS [8] (the most efficient algorithm to identify
skyline) takes more than 1,000 seconds to identify skyline from an independent dataset
with 15 dimensions and 100,000 points and takes more than 2,200 seconds to identify
skyline from an anti-correlated dataset with the same setting. Figure 3 (b) shows the
size of Ck

p versus cardinality. For the independent dataset, |Ck
p| increases linearly. For

the correlated dataset, |Ck
p| almost constant (less than 5). For the anti-correlat-ed dataset,

|Ck
p| increases slowly when |X |> 250K. For the same |X |, the size of Ck

p in an indepen-
dent dataset is always larger than the size of Ck

p in an anti-correlated dataset. Figure
3 (c) shows the memory consumption versus cardinality. The trend of is highly related
to the size of Ck

p because we always need to keep a fix amount of information (Bmn and

Extract Interesting Skyline Points in High Dimension 105

H in Algorithm 3) in the main memory. For each B’-Tree, Bmn is more or less constant
(|Bmn| is usually around p× |M(xi,dm)|,∀n) but |H| is highly related to the number of
skyline points in the dataset.

4.2 Effect of Dimensionality

We set N (dimensionality) = {15,20,25,30, 35}, |X | = 100,000, p = 1 and k = 1.
Figure 4 (a), 4 (b) and 4 (c) respectively show the CPU time, the size of Ck

p and the max.
memory consumption in different datasets. We can identify k-dominant p-core skyline
points within 15 seconds for all datasets even when k = 35. The computational time
roughly increases linearly. When the dimensionality increases, |Ck

p| does not vary much
in the anti-correlated and the correlated datasets. Note that more than 95% of points are
skyline points when |X | = 100,000 and N = 35 in the anti-correlated dataset. For the
independent datasets, |Ck

p| increases linearly. Nevertheless, more than 90% of points are
skyline points when N = 35, but the number of core skyline points is just less than 400.
We can reduce the number of skyline points dramatically. For the memory consumption,
when we compare Figure 3 (c) and Figure 4 (c), Figure 3 (c) is more flat because when
the dimensionality increases, we need to store more p-dominate-back information (i.e.
Bmn in Algorithm 3) for each B’-Tree.

4.3 Effect of k

We set k (number of dominant-sets a point has to p-dominate-back) = {15,12,9,6,
3}, |X | = 100,000 N = 15 and p = 1. Figure 5 (a), 5 (b) and 5 (c) respectively show
the CPU time, the size of Ck

p and the maximum memory consumption against k in
different datasets. For the CPU time, all lines are roughly constant (or having a slightly
decreasing trend) regardless of the choice of k. Technically, when k is small, we have
less comparisons before we can decide whether a point should be returned. In practice,
it seems that the computational time differences between a small k and a large k is
negligible. For the size of Ck

p, the rate of increase of the anti-correlated dataset is much
faster than the independent dataset. For the memory consumption, it is constant.

4.4 Effect of p

We set p = {1,0.999, 0.998,0.997, 0.996}, |X | = 100,000, N = 15 and k = 1. Figure
6 shows the results. It is quite obvious that p has a significant impact on Ck

p (especially
the anti-correlated dataset). In Figure 6 (a), the time requires to identify Ck

p from an anti-
correlated dataset increases exponentially. Fortunately, having a small p in our problem
is unreasonable as our objective is to extract a small set of interesting skyline points.
When the value of p decreases, the size of Ck

p increases dramatically. This is shown
in Figure 6 (b). When p = 1, |Ck

p| is less than 100 in the anti-correlated dataset; when
p = 0.996, |Ck

p| is around 900. For the memory consumption (Figure 6 (c)), the memory
needed for correlated dataset and independent dataset do not vary much. However, the
anti-correlated dataset does require a large amount of memory when p decreases.

106 G.P.C. Fung et al.

Table 3. Players extracted by Ck
p

k p Players
11 1 Alvin Robertson 1985, Dennis Rodman 1991, Hakeem Olajuwon 1989, John Stockton

1990, Latrell Sprewell 1993, Michael Jordan 1986, Moses Malone 1979, Ray Allen
2005 (8 records, 8 players)

5 1 Allen Iverson 2002, Alvin Robertson 1985, Antoine Walker (2000, 2001), Charles
Barkley 1988, Dennis Rodman 1991, Gary Payton 1999, George Mccloud 1995,
Gilbert Arenas 2005, Hakeem Olajuwon (1988, 1989, 1992), Isiah Thomas 1984, Jason
Richardson 2007, John Stockton (1988, 1990, 1991), Karl Malone 1989, Kevin Gar-
nett (2002, 2003), Kevin Willis 1991, Kobe Bryant 2005, Latrell Sprewell 1993, Magic
Johnson 1986, Mark Eaton 1984, Michael Jordan (1986, 1987, 1988, 1989), Micheal-
ray Richardson 1979, Moses Malone (1979, 1981, 1982), Predrag Stojakovic 2003, Ray
Allen 2005, Shaquille O’neal 1999 (36 records, 25 players)

11 0.94 Adrian Dantley 1980, Allen Iverson (2002, 2007), Alvin Robertson (1985, 1986), An-
thony Mason 1995, Antoine Walker 2001, Dennis Rodman 1991, Dennis Scott 1995,
Gary Payton 1999, George Mccloud 1995, Gilbert Arenas 2005, Hakeem Olajuwon
(1988, 1989), Jason Richardson 2007, John Stockton (1987, 1988, 1990, 1991), Kevin
Garnett (2002, 2003, 2004), Kobe Bryant 2005, Latrell Sprewell 1993, Magic Johnson
(1981, 1982), Michael Finley 1999, Michael Jordan (1986, 1987, 1988), Michealray
Richardson 1979, Mitch Richmond 1995, Mookie Blaylock (1993, 1995), Moses Mal-
one (1979, 1981,1982), Predrag Stojakovic 2003, Ray Allen 2005, Reggie Miller 1996,
Shaquille O’neal 1999, Steve Nash (2006, 2007), Tim Hardaway 1991 (44 records, 29
players)

4.5 Quality of Result

We evaluate the quality of Ck
p using two real life datasets. One is called NBA dataset and

the other one is called MovieLens. 3. The NBA dataset has 11,301 records. It includes
all NBA players from 1979 to 2007. Each record denotes the average performance of
a player in a year. The MovieLens dataset has 3,952 movies. The schema for NBA
dataset is: minutes played, points obtained, offensive rebound obtained, defensive re-
bound obtained, total rebound obtained, assistant made, steal made, block made, three
points made, free throw made and field goal made. The schema for MovieLens dataset
is: Female rating, Male rating, Female under, Male under, Female 19 - 25, Male 19 - 25,
Female 26 - 35, Male 26 - 35, Female 36 - 45, Male 36 - 45, Female 46 - 50, Male 46
- 50, Female 51 - 55, Male 51 - 55, Female 56 or above, Male 56 or above and Overall
rating. Due to the limited space, we only report some of the most interesting findings.
Readers can download all results online. We implement the k-dominant skyline algo-
rithm [5] for comparison. This algorithm is proved to be very effective in extracting
interesting points from a large set of skyline points. We do not compare this algorithm
in the previous experiments because we are neither an extension of it nor targeting to
obtain the same result.

Table 3 shows the players extracted by Ck
p. All players are sorted by their first names.

5 We report C11
1 , C5

1 and C11
0.95. We choose them because: (1) C11

1 is the most tight con-
straint; (2) C5

1 implies a player should p-dominate-back around half of dimensions in the

3 www.databasebasketball.com and www.grouplens.org

www.databasebasketball.com
www.grouplens.org

Extract Interesting Skyline Points in High Dimension 107

Table 4. Players extracted by k-dominant skyline [5]

K Players
9 Alton Lister 1986, Charles Barkley (1985, 1986, 1987, 1988), Charles Oakley 1986, David

Robinson (1990, 1992, 1993, 1994, 1995), Dennis Rodman (1991, 1993), Dikembe Mutombo
(1995, 1999), Dirk Nowitzki 2002, Dwight Howard 2007, Elvin Hayes 1979, Gary Payton
1999, Hakeem Olajuwon (1988, 1989, 1992, 1993, 1994), James Donaldson 1986, Julius
Erving 1980, Karl Malone (1989, 1990, 1991, 1992, 1993), Kevin Garnett (1999, 2000, 2001,
2002, 2003, 2004, 2006), Larry Bird (1983,1986), Mark West 1989, Michael Jordan (1986,
1987, 1988, 1989), Moses Malone (1979, 1980, 1981, 1982), Patrick Ewing (1989, 1990),
Samuel Dalembert 2006, Shaquille O’neal (1992, 1993, 1999), Shawn Marion 2002, Tim
Duncan (2001, 2002) (58 records, 24 players)

dataset. This make sense in the basketball situation; (3) The number of skyline points
returned by C5

0.94 in this dataset is similar to the number of skyline points returned by
C5

1 . We can compare the results returned by C5
0.94 and C5

1 .
One frequently asked question is that “why X is not included? I think he plays equally

well with Y!” Yet, this type of question is subjective. Furthermore, one cannot deny the
fact that the players in Table 3 are all famous. In addition, there are more than 1,000 sky-
line points in the dataset. Some skyline points belong to some not-so-famous players.
If we randomly extract some skyline points from the dataset, it is very likely to extract
the not-so-famous players. When we compare C5

0.94 and C5
1 , although most names are

similar, some names appear in C5
1 but not in C5

0.95, such as Charles Barkley (another
great NBA players). If we change C5

0.95 to C5
0.90, then Charles Barkley re-appears again.

This shows that both k and p are useful in extraction. Finally, when k = 1 and p = 1,
there are 132 records (67 players) extracted. When we apply [5], it extracts one record,
Moses Malone, when 6 ≤ K ≤ 7 (according to [5], it is meaningless to set K ≤ N/2,
so we do not test these cases), extracts 17 records when K = 8, extracts 58 records
when K = 9, extracts 279 records when K = 10. The number of records increases ex-
ponentially when K increases linearly. We cannot have much control over the number
of records to be extracted. However, in Ck

p we can set different value of p so that we
can have more control about the number of records to be extracted. E.g. when k = 11
and p = 0.99, we can extract 19 records in Ck

p. In addition, Table 4 shows the records
extracted by K-dominant skyline when K = 9. The records extracted by K-dominant
skyline approach are not similar to ours. It extracts fewer players but more records. For
example, Allen Iverson and Kobe Bryant, two very great NBA players, do not appear
in K-dominant skyline when K ≤ 10. This is because both players are shooters and
do not perform very outstanding in rebound and block. It is very difficult for them to
K-dominate other players for whatever K. This is why they cannot be extracted in K-
dominant skyline. However, for our proposed work, we consider vertical relationships
rather than only horizontal relationships.

5 Summary and Conclusion

We propose a novel concept called k-dominant p-core skyline for extracting interest-
ing points from a skyline. k denotes the number of dimensions that a point has to

108 G.P.C. Fung et al.

dominate-back and p denotes the fraction of points in a given dimension that a point has
to dominate-back. This work is different from the existing work as we further consider
the vertical relationships among points. To the best of our knowledge, we are the first
mover in this area.

References

1. Fung, G.P.C., Lu, W., Du, X.: Dominant and k nearest probabilistic skylines. In: Proceed-
ings of the 14th International Conference on Database Systems for Advanced Applications,
DASFAA 2009 (2009)

2. Agrawal, R., Wimmers, E.L.: A framework for expressing and combining preferences. In:
Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data,
SIGMOD 2000 (2000)

3. KieBling, W.: Foundations of preferences in database systems. In: Proceedings of the 28th
International Conference on Very Large Data Bases, VLDB 2002 (2002)

4. Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient computation of the skyline
cube. In: Proceedings of the 31st International Conference on Very Large Data Bases, VLDB
2005 (2002)

5. Chan, C.Y., Jagadish, H.V., Tan, K.L., Tung, A.K., Zhang, Z.: Finding k-dominant skylines
in high dimensional space. In: Proceedings of the 2006 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2006 (2006)

6. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline
queries. In: Proceedings of the 28th Very Large Database Conference, VLDB 2002 (2002)

7. Chan, C.Y., Jagadish, H.V., Tan, K.L., Tung, A.K., Zhang, Z.: On high dimensional skylines.
In: Proceedings of the 10th International Conference on Extending Database Technology,
EDBT 2006 (2006)

8. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database sys-
tems. ACM Transactions on Database Systems (TODS) 30(1), 41–82 (2005)

9. Zhang, Z., Guo, X., Lu, H., Tung, A.K.H., Wang, N.: Discovering strong skyline points
in high dimensional spaces. In: Proceedings of the 14th ACM International Conference on
Information and Knowledge Management, CIKM 2003 (2005)

10. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: The k most representative skyline
operator. In: Proceedings of the 23rd International Conference on Data Engineering, ICDE
2007 (2007)

11. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring of top-k queries over slid-
ing. In: Proceedings of the 2006 ACM SIGMOD international conference on Management
of Data, SIGMOD 2006 (2006)

12. Das, G., Gunopulos, D., Koudas, N., Sarkas, N.: Ad-hoc top-k query answering for data
streams. In: Proceedings of the 33rd International Conference on Very Large Data Bases,
VLDB 2007 (2007)

13. Bohm, C., Ooi, B.C., Plant, C., Yan, Y.: Efficiently processing continuous k-nn queries on
data streams. In: Proceedings of the 23rd International Conference on Data Engineering,
ICDE 2007 (2007)

14. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th
International Conference on Data Engineering, ICDE 2001 (2001)

15. Ramakrishnan, R., Gehrke, J.: DatabaseManagement Systems, 3rd edn. McGraw-Hill, New
York (2003)

16. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline
queries. In: Proceedings of the 2003 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2003 (2003)

Transitivity-Preserving Skylines
for Partially Ordered Domains

Henning Köhler, Kai Zheng, Jing Yang, and Xiaofang Zhou

The University of Queensland, Brisbane, Australia
{henning,kevin,jingyang,zxf}@itee.uq.edu.au

Abstract. The skyline of a set P of multi-dimensional points (tuples)
consists of those points in P for which no clearly better point in P exists,
using component-wise comparison on domains of interest. The guiding
idea is to prune large data sets to a more manageable size, while ensuring
that points of interest are preserved. However, when domains are only
partially ordered, it easily happens that the skyline is nearly as large as
the original set (or at least of the same order of magnitude), since most
of the time points are incomparable in at least some dimension.

To obtain a smaller, more useful skyline set which better reflects actual
user preferences, we propose a richer notion of dominance, based on
two assumptions: that preference specifications are often incomplete, and
that actual preferences are transitive.

1 Introduction

There are many applications where a user is interested in viewing the ‘best’
objects chosen from a large collection, based on multiple criteria, e.g. price and
milage for used cars. There are multiple ways to approach this problem. Top-k
queries [5] require a user to define a ranking function over the object collection,
and return the k top-ranked objects. In contrast, skylines [4] only require users
to express their preferences for each domain, e.g. price and milage should both
be low. They then return all objects for which no object exists that is “clearly
better”: at least as good on every domain and strictly better in at least one.

The resulting skyline can provide a user with a better understanding of the
trade-offs involved, without requiring any precise ranking functions to be speci-
fied. However, skyline sets can grow very large, for different reasons:

– large and/or anti-correlated data sets
– too many domains
– preferences are only partial

As a result the user is overwhelmed with information, which is particularly ag-
gravating if only a small portion of the skyline is of actual interest to the user.

In the case of large and/or anti-correlated data sets, we can expect that many
skyline points are really interesting, but often very similar. Here sampling and
clustering approaches [11] can provide an overview. In [10] points are chosen to
maximize the number of points dominated.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 109–115, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

110 H. Köhler et al.

When skylines grow large because many domains are considered or because
preferences are partial, the expectation is that only a small portion of the skyline
points will really be interesting. Thus the usefulness of any filtering method must
be judged by how well it manages to eliminate ‘bad’ points without eliminating
‘good’ points as well. Here the classic notion of Pareto dominance often fairs
poorly, since it is too restrictive.

A number of approaches have been suggested for dealing with large numbers
of domains. k-dominance [6] only requires that a point is better than or equal to
another in at least k dimensions. The ε-skyline [12] allows a dominating point
to be worse in some dimensions as well, though only by a small pre-defined ε
value. Approximately dominating representatives [9] allow dominance by being
no worse than a factor 1 + ε in any dimension, and the objective is to find
small sets which approximately dominate all points. In [8] user-defined prefer-
ence rankings between domains allow dominance by being better on preferred
domains. User-defined preference comparisons between instances on subspaces
are considered in [1]. The strong skyline [14] combines skyline points from sub-
spaces where the skyline is small. Skyline frequency [7] ranks skyline points by
how often they appear as skyline points in subspaces, while top-k-skyline [13]
ranks them by the number of points they dominate in the given data set.

For partially ordered domains, Balke et. al. [3] proposed a new notion of
dominance, called weak Pareto dominance, which treats incomparability on a
domain as equality. While this idea is easy to understand, and results in a much
smaller skyline, it suffers from cyclicity and intransitivity (as do k-dominance
and ε-skyline). As already pointed out in [2], such properties are undesirable.
They contradict the intuition that preferences are intrinsically transitive, and
can lead to unexpected behavior. To avoid this, we will propose a new notion of
dominance for partially ordered domains, based on the assumptions that

– preference specifications may be incomplete, but
– actual (hidden) preferences are transitive

Theoretical arguments as well as experimental evaluation (which had to be omit-
ted due to space constraints) suggest that this leads to more useful skyline sets,
i.e., that our new dominance notion reflects user preferences more closely than
classic or weak Pareto dominance. As a nice side-effect, transitivity of dominance
allows us to employ efficient algorithms for computing it.

2 Dominance

At the heart of the skyline problem lies the notion of dominance, indicating that
a tuple A = (a1, . . . , an) is strictly better than a tuple B = (b1, . . . , bn). Here
the traditional definition, called Pareto dominance, is that ai ≤i bi for all i and
aj <j bj for some j. We will use a different but equivalent formalization, which
will make later comparison of dominance notions more elegant.

Transitivity-Preserving Skylines for Partially Ordered Domains 111

Definition 1 (Pareto Dominance).

The Pareto ordering is defined as

A ≤P B :⇔ ai ≤i bi for all i ∈ [1, n]

with the reduction
A <P B :⇔ A ≤P B ∧B �P A

We say that A dominates B if A <P B.

To reduce the size of the skyline set when domains are only partially ordered,
Balke et. al. [3] proposed the notion of weak Pareto dominance.

Definition 2 (Weak Pareto Dominance).

The weak Pareto relation is defined as

A ≤WP B :⇔ ai
>i bi for all i ∈ [1, n]

with the reduction

A <WP B :⇔ A ≤WP B ∧B �WP A

We say that A weakly dominates B if A <WP B.

To better distinguish the two notions, we will sometimes refer to Pareto domi-
nance as strong Pareto dominance. Strong and weak Pareto dominance coincide
for totally ordered (also called linear ordered) domains, but for domains with
only partial orders weak Pareto dominance allows elements to be incomparable
as well, resulting in a much smaller skyline set.

In essence, the two approaches differ in how they view incomparable elements.
Strong Pareto dominance takes the stance that when in doubt (i.e., if two points
are incomparable in some dimension), return both points. On the other hand,
weak Pareto dominance simply ignores dimensions where elements are incom-
parable (treating incomparable elements as equivalent). In particular, when a
domain has no preferences specified at all, strong Pareto dominance handles this
as ‘comparable values must be identical on that domain’, whereas weak Pareto
dominance treats it as ‘we don’t care about this domain’ and returns the skyline
w.r.t. the remaining domains only. We believe that the latter interpretation is
more suitable in many situations.

However, while weak Pareto dominance is an intuitive way for comparing
tuples, it suffers from two significant problems:

– lack of transitivity: from A <WP B and B <WP C it does not follow that
A <WP C.

– cycles: it can happen that A <WP B <WP C <WP A.

In addition to the algorithmic challenges that non-transitivity brings, skylines
w.r.t. weak Pareto dominance (or any other intransitive, cyclic dominance no-
tion) have unexpected properties. In particular, the addition of new points can
lead to the removal of points from the skyline, without any of the new points
getting added. The skyline set can even be empty.

112 H. Köhler et al.

Example 1. Consider a database which stores information on cars: make (M),
color (C) and transmission type (T). For each domain, a user provides us with
some partial order relation expressing his preferences:

≤M := {BMW < Kia, Mercedes < Daewoo}
≤C := {white < grey < black}
≤T := {automatic < manual}

Each domain may contain further elements as well which don’t occur in the
preferences. Consider the following sample database:

Mercedes red manual
BMW grey automatic
Daewoo white semi− auto
Daewoo grey manual
Kia black semi− auto
Ford black automatic

Using strong Pareto dominance, every point is a skyline point, since no point
dominates any other. With weak Pareto dominance, we obtain the following
dominance relationship, abbreviating values by their initial characters:

(M, r, m) ��

��

(B, g, a)��

������������

�� ������������
(D, w, s)��

���������������������

������������

��
(D, g, m) 		 (K, b, s) (F, b, a)

Here every point is dominated by at least one other, due to the cycle between
the first three tuples, resulting in an empty skyline set. Clearly, both approaches
are problematic. A more reasonable skyline set might be the following:

{(M, r, m), (B, g, a), (D, w, s)}

Intuitively, the tuples above must be in the skyline since Mercedes and BMW
are preferred makes, and white is the preferred color. The remaining three tuples
should be considered worse than the grey BMW automatic (and possibly others
as well), and thus not appear in the skyline set.

To further illustrate the unexpected behavior of weak Pareto skylines caused
by intransitivity, even if no cycles are present, consider the sub-relation contain-
ing only (M, r, m) and (F, b, a). Its weak Pareto skyline is the entire relation. If
we now add the tuple (D, w, s), the tuple (F, b, a) disappears from the skyline,
without the new tuple getting added. Also, it seems odd that the new skyline,
consisting only of (M, r, m), does not dominate every point in the original set.

In the following we will propose a new notion of dominance which is transitive,
and consequently also acyclic. Our notion lies between strong and weak Pareto
dominance, and produces a more suitable skyline set than the two extremes, in
the sense that it captures user preferences more accurately.

Transitivity-Preserving Skylines for Partially Ordered Domains 113

2.1 Transitivity-Preserving Extensions

In order to define our dominance notions, we will introduce the concept of
transitivity-preserving extension. This is first done for arbitrary relations, and
will then be applied to the partial orders on the domains. We work with quasi-
orderings (also called pre-orderings) rather than partial orders since they are
more flexible and arise naturally: the transitivity-preserving extension of a par-
tial order is only a quasi-ordering.

Definition 3 (quasi-ordering). A relation ≤ is a quasi-ordering if it is re-
flexive and transitive.

In the following let U be our universe, and r ⊆ U × U a relation over U .

Definition 4 (transitivity-preserving extension). The ancestors and de-
scendants1 of an element a ∈ U w.r.t. r are

ancr(a) := {x ∈ U | (x, a) ∈ r ∧ (a, x) /∈ r}
descr(a) := {x ∈ U | (a, x) ∈ r ∧ (x, a) /∈ r}

Furthermore we define the transitivity-preserving extension of r as

TX(r) := {(a, b) ∈ U × U | ancr(a) ⊆ ancr(b) ∧ descr(b) ⊆ descr(a)}

The guiding idea behind Definition 4 is the following: If we are to consider a to
be smaller than b, then every value smaller than a had better be smaller than b
as well. Similarly, every value larger than b must also be larger than a.

Figure 1 shows transitive relations r1, r2 and their transitivity-preserving ex-
tensions. Note that we omitted loops in the TX(r1/2)-graphs for readability.

a

�
��

��
��

�

��

b

d c

r1

a 		

�
��

��
��

�

��

b

������
��

��
�

d 		 c��
TX(r1)

a

�
��

��
��

�

��

b

d 		 c
r2

a 		

�
��

��
��

�

��

b

��
d 		 c
TX(r2)

Fig. 1. transitive relations and transitivity-preserving extensions

If we interpret arcs as ‘better than’ relationships, we get the following intuition
for TX(r1): a is better than b since in r1 it is better than c and d, while b is
better than c and d since in r1 these are both worse than a. Finally c and d are
equally good, since in r1 they are both worse than a. Similar for TX(r2).

The transitivity-preserving extensions of the domain orderings from Exam-
ple 1 can be found in Example 2. We named the relation TX(r) transitivity-
preserving extension, since it is transitive and extends transitive relations r:
1 For intransitive relations the names ‘ancestor’ and ‘descendent’ may be misleading.

However, the preference relations we use are assumed to be transitive, so terms like
‘predecessor’ and ‘successor’ may be even more misleading here.

114 H. Köhler et al.

Theorem 1. TX(r) is a quasi-ordering (for arbitrary relations r). If r is transi-
tive then r ⊆ TX(r) and r< ⊆ TX(r)<, where r< (respectively TX(r)<) denotes
the reduction r< := {(a, b) ∈ r | (b, a) /∈ r}.
Note that transitivity of r is necessary for TX(r) to extend r (hence the name
transitivity preserving extension). E.g. for r = {(a, b), (b, c)} on {a, b, c} we get
TX(r) = {(a, a), (b, b), (c, c)}, which does not contain r.

2.2 TX-dominance

We can now define our new dominance notion as follows:

Definition 5 (TX-dominance). The TX-ordering is the Pareto ordering over
the transitivity-preserving extensions of the domain orderings:

≤TX := P (TX(≤1), . . . , TX(≤n))

We say that A TX-dominates B if A <TX B.

We get the following relationship between strong, weak and TX-dominance:

Theorem 2. ≤P ⊆ ≤TX ⊆ ≤WP

The three skyline notions differ in how they interpret values which are incom-
parable w.r.t. preference specifications. For each such pair a, b ∈ D we have
four options for comparing them: a < b, a > b, a ≡ b and incomparability a||b.
Strong Pareto dominance always interprets them as truly incomparable (a||b),
while weak Pareto dominance always treats them as equivalent (a ≡ b). For TX-
dominance any of the four interpretations is possible, and the choice depends on
how a and b compare to other values.

Example 2. Consider the setup from Example 1. Domain elements not occur-
ring in the preference specification (e.g. Ford) are always equivalent in the
transitivity-preserving extension, so we denote them all by ‘∗’. This gives us
the quasi-orderings

TX(≤M) =
{

(BMW ||Mercedes) < ∗ < (Kia||Daewoo)
}

TX(≤C) =
{

white < (grey||∗) < black
}

TX(≤T) = { automatic < ∗ < manual }

resulting in the following TX-dominance relationship:

(M, r, m) (B, g, a)

������������

�� ������������
(D, w, s)

���������������������

(D, g, m) (K, b, s) (F, b, a)��

This in turn leads to the skyline

{(M, r, m), (B, g, a), (D, w, s)}

which we argued to be a more reasonable answer earlier.

Transitivity-Preserving Skylines for Partially Ordered Domains 115

3 Conclusion

We have motivated why often neither strong Pareto nor weak Pareto dominance
are suitable for generating good skylines when some domains are only partially
ordered. Strong Pareto dominance returns too many points, while weak Pareto
dominance misses too many points of interest, effectively generating the skyline
on numerical domains only. To remedy this situation, we introduced the notion
of TX-dominance, based on the intuitions that preference specifications may be
incomplete, and that actual preferences are transitive.

References

1. Balke, W.-T., Güntzer, U., Lofi, C.: Eliciting matters - controlling skyline sizes
by incremental integration of user preferences. In: Kotagiri, R., Radha Krishna,
P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp.
551–562. Springer, Heidelberg (2007)

2. Balke, W.-T., Güntzer, U., Siberski, W.: Exploiting indifference for customization
of partial order skylines. In: IDEAS, pp. 80–88 (2006)

3. Balke, W.-T., Siberski, W., Güntzer, U.: Getting prime cuts from skylines over
partially ordered domains. In: BTW, pp. 64–81 (2007)

4. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp.
421–430 (2001)

5. Carey, M.J., Kossmann, D.: On saying “enough already!” in sql. In: SIGMOD, pp.
219–230 (1997)

6. Chan, C.Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: Finding k-
dominant skylines in high dimensional space. In: SIGMOD, pp. 503–514 (2006)

7. Chan, C.Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: On high di-
mensional skylines. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F.,
Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006.
LNCS, vol. 3896, pp. 478–495. Springer, Heidelberg (2006)

8. Georgiadis, P., Kapantaidakis, I., Christophides, V., Nguer, E.M., Spyratos, N.: Ef-
ficient rewriting algorithms for preference queries. In: ICDE, pp. 1101–1110 (2008)

9. Koltun, V., Papadimitriou, C.H.: Approximately dominating representatives. In:
Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 204–214. Springer,
Heidelberg (2005)

10. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: The k most representative
skyline operator. In: ICDE, pp. 86–95 (2007)

11. Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-based representative skyline. In: ICDE,
pp. 892–903 (2009)

12. Xia, T., Zhang, D., Tao, Y.: On skylining with flexible dominance relation. In:
ICDE, pp. 1397–1399 (2008)

13. Yiu, M.L., Mamoulis, N.: Efficient processing of top-k dominating queries on multi-
dimensional data. In: VLDB, pp. 483–494 (2007)

14. Zhang, Z., Guo, X., Lu, H., Tung, A.K.H., Wang, N.: Discovering strong skyline
points in high dimensional spaces. In: CIKM, pp. 247–248 (2005)

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 116–122, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Finding the Most Desirable Skyline Objects

Yunjun Gao1, Junfeng Hu2, Gencai Chen1, and Chun Chen1

1 College of Computer Science and Technology, Zhejiang University
{gaoyj,chengc,chenc}@zju.edu.cn

2 School of Computing, National University of Singapore
hujunfeng@comp.nus.edu.sg

Abstract. This paper introduces a new operator, namely the most desirable sky-
line object (MDSO) query, to identify manageable size of truly interesting sky-
line objects. Given a set of multi-dimensional objects and an integer k, a MDSO
query retrieves the most preferable k skyline objects, based on the newly de-
fined ranking criterion that considers, for each skyline object s, the number of
objects dominated by s and their accumulated (potential) weight. We present
the ranking criterion, formalize the MDSO query, and develop two algorithms
for processing MDSO queries assuming that the dataset is indexed by a tradi-
tional data-partitioning index. Extensive experiments demonstrate the perform-
ance of the proposed algorithms.

1 Introduction

Given a set P of multi-dimensional data objects, a skyline query returns all the data
objects from P, called skyline objects, which are not dominated by any other objects
in P. Here, an object p dominates another object p′ iff p is not worse than p′ in all
dimensions and strictly better than p′ in at least one dimension. The skyline query is
useful in many real-life applications. Consider, for instance, a classical example of
hotel reservation system. Figure 1 illustrates this case in a 2-dimensional space, where
each point corresponds to a hotel record. The room price of a hotel is represented as
the x-axis, and the y-axis captures its distance to the beach. Hotel p2 dominates p5
since the former is cheaper and closer to the beach. As hotels p1, p2, p3, and p4 are not
dominated by any other hotel, they form the skyline of dataset P = {p1, p2, …, p8}.

Since the skyline operator was first introduced to the database community in [2], it
has received considerable attention. A large number of algorithms [2, 6, 9, 11] have
been proposed for the efficient traditional skyline computation. Other versions in-
clude subspace skyline retrieval [10], reverse skyline query [5], etc. However, the
skyline query may output an overwhelming number of skyline objects, and thus no
longer offer any interesting insights, especially in high dimensional spaces. To ad-
dress this, several efforts have been proposed in the literature. In particular, they con-
trol the size of skyline objects either by relaxing the dominance relationship [3, 4, 8,
12] or by integrating user-specific preference [7]. In this paper, we introduce a new
operator, namely, the most desirable skyline object (MDSO) query, to identify man-
ageable size of truly interesting skyline objects.

 Finding the Most Desirable Skyline Objects 117

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

p1

p2

p3

p4

p5

p6

p7

p8

price

distance
y

x0

non-skyline point

skyline point

Fig. 1. Example of dataset and skyline

Given a set of multi-dimensional objects and an integer k, a MDSO query retrieves
the most preferable k skyline objects, based on the ranking criterion (defined in Defi-
nition 6) that considers, for each skyline object s, the number of objects dominated by
s and their accumulated (potential) weight. The MDSO query operator is different
from those studied in [3, 4, 7, 8, 12]. Hence, the existing techniques are not directly
applicable to tackle the MDSO query efficiently. Motivated by this, in this paper, we
develop two efficient algorithms, namely Cell Based Algorithm (CB) and Sweep
Based Algorithm (SB), to obtain the most desirable k skyline objects. Our methods are
based on a conventional data-partitioning index (i.e., R*-tree [1]) and do not require
any preprocessing. Extensive experiments demonstrate that our proposed algorithms
are efficient and scalable.

2 Problem Statement

Let P be a set of data objects in an n-dimensional space D = (d1, d2, …, dn), where di
(i ∈ [1, n]) is the domain of number. For any object p ∈ P, we use p.di to denote the i-
th dimensional value of p. Assume that there exists a total order relationship, either
‘<’ or ‘>’, on each dimension. Without loss of generality, in this paper, we consider ‘<’
relation, i.e., smaller values are more preferable.

Definition 1 (Dominance). For any two objects p, p' ∈ P, p is said to dominate p',

denoted by p ≺p', iff (i) ∀ di ∈ D, p.di ≤ p'.di, and (ii) ∃ dj ∈ D, p.dj < p'.dj.

Definition 2 (Skyline Object, Skyline, and Non-skyline Object). An object p ∈ P is

a skyline object s iff p is not dominated by any other object p' (≠ p) ∈ P, i.e., ∄ p' ∈ P

− {p}, p' ≺p. The skyline of P is the set S of skyline objects on dataset P in space D.

An object p'' is a non-skyline object ns iff there exists an object p' (≠ p'') ∈ P dominat-

ing p'', i.e., ∃ p' ∈ P − {p''}, p' ≺p''.

Definition 3 (Dominating Score). Let S be the skyline of P, for a skyline object s ∈ S,
the dominating score of s, denoted by μ(s), could be defined as:

118 Y. Gao et al.

μ(s) = |{ns ∈ P − S | s ≺ns}| (1)

In words, the score μ(s) is the number of non-skyline objects dominated by a skyline
object s. The higher the μ(s) is, the more interesting the skyline object is, as pointed
out in [8]. In Figure 1, for instance, p3 is more desirable than p1 as μ(p3) = 3 and μ(p1)
= 1. Thus, we can derive a natural ordering of skyline objects, according to dominat-
ing score. Nevertheless, when two skyline objects share the same dominating score,
the tie needs to be broken. Towards this, one possible approach is to request users to
provide some weight assignments for their preferred attributes. Unfortunately, provid-
ing such weight assignment is not always easy without any initial knowledge about
the data. On the other hand, as stated in [2], the aim of providing the skyline to the
users is to help them determine the weight assignment. Another possible work-around
is to take the potential weight of every non-skyline object into consideration, by com-
puting the number of objects dominated by it. However, this method incurs expensive
computational cost, as it has to count the number of objects that are dominated by
each non-skyline object.

Definition 4 (Dominated Score). Let S be the skyline of P, for a non-skyline object ns
∈ P − S, the dominated score of ns, denoted by ω(ns), could be defined as:

ω(ns) =
1

{ | }s S s ns∈ p
 (2)

In fact, the dominated score of a non-skyline object considers the number of skyline
objects dominating it. Intuitively, a non-skyline object might have larger weight if it
is dominated by as few skyline objects as possible, indicating that it may dominate
more other non-skyline objects. As an example, in Figure 1, the weight of p5 is
greater than that of p8, since ω(p5) = 1 and ω(p8) = 1/4. Therefore, we define the
preference score of a skyline object based on the intuition: a skyline object is more
interesting if it dominates as many non-skyline objects with higher dominated scores
as possible.

Definition 5 (Preference Score). Let S be the skyline of P, for a skyline object s ∈ S,
the preference score of s, denoted by τ(s), is defined as:

τ(s) = ()
{ | }

ns'
ns' ns P S s ns

ω
∈ ∈ −

∑
p

(3)

For example, in Figure 1, p2 is more preferred than p4 as τ(p2) = 5/4 and τ(p4) = 3/4,
although μ(p2) = μ(p4) = 2. Actually, the preference score of a skyline object takes
into account the accumulated (potential) weight of all non-skyline objects dominated
by it. A skyline object s having a higher score τ(s) might be more preferable for
users. Based on equations (1), (2), and (3), the ranking criterion is formalized as
follows:

Definition 6 (Ranking Criterion). Let S be the skyline of P, for two skyline objects s,

s' ∈ S, s is more desirable than s', denoted by s ⊢ s', iff

 Finding the Most Desirable Skyline Objects 119

s ⊢ s' ⇔
() ()

() () () ()

s s'

s s' s s'

μ μ
μ μ τ τ

>⎧
⎨ = ∧ >⎩

 (4)

We now present the formal definition of the MDSO query.

Definition 7 (Most Desirable Skyline Object Query). Given a set P of data objects,
an integer k (≥ 1), and let S be the skyline of P, the most desirable skyline object
(MDSO) query retrieves the set Res of skyline objects, such that (i) Res contains k
skyline objects, i.e., |Res| = k; and (ii) none of object p' ∈ S − Res is superior to any
result object p ∈ Res according to the ranking criterion (Definition 6), i.e., ∀ p ∈ Res
and p' ∈ S − Res, μ(p) > μ(p') or μ(p) = μ(p') ∧ τ(p) > τ(p'). Note that when |S| ≤ k, S
is the result set.

Take Figure 1 as an example again. The MDSO query on the data of Figure 1 returns
p3 (with μ(p3) = 3 and τ(p3) = 7/4) and p2 (with μ(p2) = 2 and τ(p2) = 5/4) as the most
preferable 2 skyline objects.

3 Algorithms for MDSO Queries

In this section, we propose two algorithms for processing MDSO queries. For the
following presentation, a running example, as shown in Figure 2, is employed, where
the two-dimensional (2D) data point set of Figure 2(a) is organized in the R-tree of
Figure 2(b) with node capacity set to three. Assume that the number k of required
skyline objects is 2 (i.e., k = 2). The query result contains points p9 and p2.

3.1 Cell Based Algorithm

Once the skyline S of a specified data set P is obtained, the region dominated by all
skyline objects in S can be divided into a lot of cells. For simplicity, we consider the
partition of cells in a 2D space (x, y). The presented concepts, however, can be easily
extended to high dimensional spaces.

Suppose S = {s1, s2, …, sm} is the skyline of a given data set P in a 2D space. The
region dominated by skyline objects in S can be partitioned into m ⋅ (m + 1) / 2 cells
{Cab | 1 ≤ a ≤ b ≤ m}. The lower-left corner and the upper-right corner of every cell
Cab are (sb.x, sa.y) and (sb+1.x, sa−1.y), respectively. Note that, when a = 1 (b = m), s0.y
(sm+1.x) is defined as the maximal value of y (x) coordinate in the data space. As de-
picted in Figure 2(a), for instance, the shadowed region dominated by {p1, p2, p6, p9,
p10} is divided into 15 cells.

Data objects that are within a single cell, but not on the boundaries of the cell, have
the same (potential) weight. For example, in Figure 2(a), points p11 and p12 contained
in an R-tree node N6 are dominated by the same skyline points p9 and p10 since they
are located inside cell C45. Nevertheless, when an R-tree node intersects multiple
cells, the data objects included in the R-tree node may be dominated by different sky-
line objects. Take Figure 2(a) as an example again. As the R-tree node N2 crosses four
cells, point p4 in N2 are only dominated by skyline points p2 and p6, whereas point p5
in N2 is dominated by skyline points p2, p6, p9, and p10.

Our first approach, namely Cell Based Algorithm (CB), utilizes the above cell
properties. The basic idea of CB is to compute the skyline S using BBS algorithm [9],

120 Y. Gao et al.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

p1

p6

p10

p4

p3

p7

p8

y

x0

p2

p9

p11

p12

p5

N6

N7

N1

N2

N3

N4

N6

non-skyline point

most preferable
2 skyline points

1 4 5b = 2 3

1

2

4

=

a

3

5

sweep line cell

sweep direction

C45

N1 N2 N3 N4

N6 N7

p1 p2 p4 p5

R.root

p11 p12

R-tree R

p6 p7 p9 p10p3 p8

N5

N6 N7

N1 N2 N3 N4 N5

(a) The data point placement (b) The R-tree R

Fig. 2. A running example

and then, for each skyline object s ∈ S, calculate its dominating score μ(s) and prefer-
ence score τ(s) respectively, and return the top-k skyline objects in S according to our
proposed ranking criterion (Definition 6).

Back to the running example depicted in Figure 2. First, CB uses BBS algorithm to
compute skyline S = {〈p9, 0, 0〉, 〈p2, 0, 0〉, 〈p10, 0, 0〉, 〈p6, 0, 0〉, 〈p1, 0, 0〉}. Then, for
each skyline object s ∈ S, it calculates μ(s) and τ(s) by traversing the R-tree R, after
which S = {〈p9, 5, 61/30〉, 〈p2, 4, 61/30〉, 〈p10, 3, 6/5〉, 〈p6, 4, 23/15〉, 〈p1, 1, 1/5〉}. After
sorting, points p9 and p2 are output as the most desirable 2 skyline points.

3.2 Sweep Based Algorithm

CB may access some entries (R-tree nodes or data objects) two times. Hence, it is not
efficient in terms of the I/O cost (i.e., the number of node accesses) and CPU time,
especially in high dimensional spaces. Motivated by this, we present an alternative,
namely Sweep Based Algorithm (SB). The main idea of SB is to identify skyline ob-
jects and calculate their dominating scores and preference scores simultaneously, via
a single traversal of the R-tree R used to organize dataset P.

Again, back to our running example. First, point p1 is encountered by the sweep
line (blue dashed line in Figure 2(a)). Since the current skyline S is empty, p1 is added
to S = {〈p1, 0, 0〉} as the first skyline point. The second point accessed is p2. It is also
inserted into S = {〈p1, 0, 0〉, 〈p2, 0, 0〉}, as p2 is not dominated by p1. Then, SB visits p3
and updates S to {〈p1, 0, 0〉, 〈p2, 1, 1〉}. The algorithm proceeds in the same manner
until all data points are accessed, after which S = {〈p1, 1, 1/5〉, 〈p2, 4, 61/30〉, 〈p6, 4,
23/15〉, 〈p9, 5, 61/30〉, 〈p10, 3, 6/5〉}. Finally, SB reports points p9 and p2 as the final
query result after sorting S.

4 Experimental Evaluation

This section experimentally evaluates the performance of our proposed algorithms in
terms of both efficiency and scalability. Our experimentation used synthetic datasets.

 Finding the Most Desirable Skyline Objects 121

11000

11200

11400

11600

11800

12000

10 20 30 40 50
k

N
um

be
r

of
 n

od
e

ac
ce

ss
es

CB-IN
SB-IN

CB-AC
SB-AC

1e+0

1e+1

1e+2

10 20 30 40 50
k

C
PU

 ti
m

e
(s

ec
s)

CB-IN
SB-IN

CB-AC
SB-AC

1e+3

1e+4

1e+5

10 20 30 40 50
k

Sp
ac

e
(K

by
te

s) CB-IN
SB-IN

CB-AC
SB-AC

Dataset

(a) I/O cost on IN & AC (b) CPU time on IN & AC (c) Space on IN & AC

Fig. 3. Performance vs. k (dim = 3, CN = 1000K)

0

5000

10000

15000

20000

25000

30000

2 3 4 5
Dimensionality

N
um

be
r

of
 n

od
e

ac
ce

ss
es

CB-IN
SB-IN

CB-AC
SB-AC

1e+0

1e+1

1e+2

1e+3

1e+4

2 3 4 5
Dimensionality

C
PU

 ti
m

e
(s

ec
s)

CB-IN
SB-IN

CB-AC
SB-AC

1e+1

1e+2

1e+3

1e+4

1e+5

2 3 4 5
Dimensionality

Sp
ac

e
(K

by
te

s)

CB-IN
SB-IN

CB-AC
SB-AC

Dataset

(a) I/O cost on IN & AC (b) CPU time on IN & AC (c) Space on IN & AC

Fig. 4. Performance vs. dimensionality dim (k = 30, CN = 1000K)

0

10000

20000

30000

40000

50000

250K 500K 1000K 2000K4000K
Cardinality

N
um

be
r

of
 n

od
e

ac
ce

ss
es

CB-IN
SB-IN

CB-AC
SB-AC

1e+0

1e+1

1e+2

1e+3

250K 500K 1000K 2000K 4000K
Cardinality

C
PU

 ti
m

e
(s

ec
s)

CB-IN
SB-IN

CB-AC
SB-AC

1e+2

1e+3

1e+4

1e+5

1e+6

250K 500K 1000K 2000K 4000K
Cardinality

Sp
ac

e
(K

by
te

s)

CB-IN
SB-IN

CB-AC
SB-AC

Dataset

(a) I/O cost on IN & AC (b) CPU time on IN & AC (c) Space on IN & AC

Fig. 5. Performance vs. cardinality CN (k = 30, dim = 3)

Specifically, we created Independent (IN) and Anti-correlated (AC) datasets with
dimensionality varied from 2 to 5 and cardinality in the range [250K, 4000K]. Our
generation follows exactly the description in [2]. Every dataset is indexed by an R*-
tree [1] with a disk page size of 4096 bytes. The number of node/page accesses (i.e.,
I/O cost), CPU time, and the maximum space consumption are employed as the major
performance metrics. All algorithms were implemented in C++, and all experiments
were conducted on the PC with an Intel Core 2 Duo 2.13GHz CPU and 2GB RAM,
running Microsoft Windows XP Professional Edition.

122 Y. Gao et al.

We investigate the performance of our proposed algorithms under several factors,
including k, dimensionality dim, and cardinality CN. The results are plotted in Figures
3 through 5. To summarize, from these experimental results on synthetic datasets, we
can conclude that: (i) the I/O overhead of SB is always less than that of CB; (ii) in
terms of CPU time and space cost, CB is comparable to SB in a 2D space, while SB
clearly outperforms CB in high dimensions; and (iii) the space requirement of both
CB and SB is negligible compared to the dataset size.

5 Conclusion

The skyline of a dataset might have an overwhelming number of skyline objects.
Returning all of them may make it difficult for a user to make a good, quick selection.
In this paper, we introduce a new operator, namely, the most desirable skyline object
(MDSO) query, for finding manageable size of the most preferable/interesting skyline
objects. First, we formalize the ranking criterion and the MDSO query, respectively.
Then, two algorithms, i.e., CB and SB, are developed for efficiently processing
MDSO queries. Finally, extensive experimental evaluations using synthetic datasets
demonstrate that our proposed algorithms are efficient and scalable.

References

1. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: An Efficient and
Robust Access Method for Points and Rectangles. In: SIGMOD, pp. 322–331 (1990)

2. Borzsony, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE, pp. 421–430
(2001)

3. Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: Finding k-Dominant
Skylines in High Dimensional Space. In: SIGMOD, pp. 503–514 (2006)

4. Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: On High Dimensional
Skylines. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M.,
Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 478–
495. Springer, Heidelberg (2006)

5. Dellis, E., Seeger, B.: Efficient Computation of Reverse Skyline Queries. In: VLDB, pp.
291–302 (2007)

6. Kossmann, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: An Online Algorithm for
Skyline Queries. In: VLDB, pp. 275–286 (2002)

7. Lee, J., You, G.-W., Hwang, S.-W.: Personalized Top-k Skyline Queries in High-
Dimensional Space. Inf. Syst. 34(1), 45–61 (2009)

8. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting Stars: The k Most Representative Sky-
line Operator. In: ICDE, pp. 86–95 (2007)

9. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive Skyline Computation in Database
Systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)

10. Pei, J., Yuan, Y., Lin, X., Jin, W., Ester, M., Liu, Q., et al.: Towards Multidimensional
Subspace Skyline Analysis. ACM Trans. Database Syst. 31(4), 1335–1381 (2006)

11. Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient Progressive Skyline Computation. In: VLDB,
pp. 301–310 (2001)

12. Xia, T., Zhang, D., Tao, Y.: On Skylining with Flexible Dominance Relation. In: ICDE,
pp. 1397–1399 (2008)

Multiple Sensitive Association Protection in the
Outsourced Database�

Xiao Jiang, Jun Gao, Tengjiao Wang, and Dongqing Yang

Key Laboratory of High Confidence Software Technologies
Department of Computer Science, Peking University

Beijing, China, 100871
{jiangxiao,gaojun,tjwang,dqyang}@pku.edu.cn

Abstract. With the popularity of the outsourced database, protecting sensitive
associations in this environment is greatly desired and receives high attention.
Table decomposition based method, which is suited for the current query evalua-
tion of the database engine, provides an alternative to the conventional encryption
method. Although some work on table decomposition has been done to handle
single sensitive association in data publishing scenario or multiple associations
in multiple servers, fewer attempts have been made to deal with multiple associa-
tions in single outsourced database. In this paper, we first illustrate that the simple
extension of existing work will lead to new kinds of information leakages, and
then we propose a novel table decomposition method, which achieves l-diversity,
defeats the new information leakages, while at the same time, considers the query
efficiency over the decomposed sub-tables. The final experimental results validate
the effectiveness and efficiency of our method.

1 Introduction

With the popularity of the outsourced database [1,2], ensuring security of sensitive as-
sociations in this environment receives high attention. On the one hand, the outsourced
database provides scalable, stable, and low-priced services, as well as migrates the
database administration tasks from end users. All these merits lead to a wide appli-
cation of the outsourced database in various domains. On the other hand, the database
service provider might not be fully trusted. As a result, protecting sensitive information
from the service provider in addition to unauthorized users comes out to be a crucial
challenge.

The conventional way to cope with this problem is encryption. Specifically, all the
data are encrypted before being outsourced to the service provider. The encrypted data
prevents sensitive information leakages both to the unauthorized users and to the ser-
vice provider. In addition, the query evaluation over encrypted database has also been

� This work was supported by the National High Technology Research and Develop-
ment Program(“863”Program) of China under Grant No. 2009AA01Z150, 2007AA01Z191,
2006AA01Z230; the National Natural Science Foundation of China under Grant No.
60873062; the Peking University−Morgan Stanley Research Aid Program. Jun Gao is the
contact author for this paper.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 123–137, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

124 X. Jiang et al.

extensively studied[7,4,10]. However, the decryption of candidate results shifts much
of the burden back to the client, which defeats the goal of data outsourcing, making the
approach really expensive to be practical. Besides, the security level partially depends
on the key management service, as well as the strength of the cryptographic functions.

Table decomposition based method[3] is an alternative to the encryption method. The
basic idea is to partition the table across two (or more) logically independent servers,
in such a way that the sensitive associations cannot be reconstructed with the data in
any single server. However, it assumes that there is no communication between servers,
which is clearly a strong assumption and hard to achieve in real environment.

The table decomposition based approach is also studied in data publishing scenario.
The existing work[11] mainly focuses on a single sensitive association between quasi-
identifier and the sensitive attribute(donated as q − s association in the following). It
splits the original relation into a quasi-identifier table (QIT) and a sensitive table (ST)
with an extra group column to keep their correlation. In this way, the data owner can
publish his data and allow others to guess the correct association only under a control-
lable probability. However, the sensitive associations in real life applications are not
restricted to the q− s association, and there are always functional dependencies among
attributes. It is especially meaningful yet not trivial to make the current method feasi-
ble for multiple sensitive associations. As we can see in the following illustration, the
straightforward extension will lead to new kinds of information leakages if the sensitive
associations are also functional dependencies.

Example 1. Given an employee table as shown in Fig. 1(a) with the following sensitive
associations: from name to position, from position to salary, and from name to salary.
The result of simple decomposition method is illustrated in Fig. 1(b). We can observe
that three sensitive attributes are separated into three sub-tables, and each with an extra
gid attribute, which is used to join with other sub-tables. The tuples are divided into
2 groups, assigned with gid = 1 or 2. For simplicity, we call them g1 and g2 respec-
tively. Note that this decomposition satisfies 3-diversity, as for any sensitive association,
there are 3 distinct sensitive values involved for the dominant set, with a probability not
greater than 1/3. Specifically, for the association between position and salary, if we want
to locate the salary for position =“manager”, we can find that 3 distinct salarys in g1
are involved. They are 4000, 6000 and 3000. However, suppose the salary is determined
by the position as always the case in real life, the attacker can easily infer that the salary
of salesman is 3000, since salesman appears twice in g2 in the second sub-table, and
3000 is the only salary appears more than once in g2 in the third sub-table.

This paper attempts to address the protection of multiple sensitive associations in out-
sourced databases based on table decomposition. Besides making the decomposed sub-
tables satisfying l-diversity, this paper also studies how to counter the new kinds of
information leakages and to improve the precise query performance. Overall, our con-
tributions include:

– We show that the straightforward extension of the existing method will lead to
three new kinds of information leakages in the presence of functional dependencies,
namely, the inter-group leakage, intra-group leakage and non-sensitive association
transitive leakage.

Multiple Sensitive Association Protection in the Outsourced Database 125

3000salesman1381162233420female30Lily

3000salesman1341245200543male21Sam

1800cleaner1332245200987male22David

2000guarder1588228100976female29Kate

3000salesman1241223321212male31Rob

6000director1311245327612male22James

20000CEO1242245100087male30Bob

4000assistant1328228210210female22Alice

4000manager1231223100091male21Jim

salarypositiontelephonezipcodegenderagename

3000salesman138116223342030

3000salesman134124520054321

1800cleaner133224520098722

2000guarder158822810097629

3000salesman124122332121231

6000director131124532761222

20000CEO124224510008730

4000assistant132822821021022

4000manager10009121

(a) Sample data of employee
salesman1

salesman2

cleaner2

guarder2

salesman2

director1

CEO2

assistant2

manager1

positiongid

salesman1

salesman

cleaner2

guarder2

salesman2

director1

CEO

assistant

manager1

1233420female30

200543male21

2200987male22

2100976female29

2321212male31

1327612male22

2100087male30

2210210female22

1100091male21

gidzipcodegenderage

1233420female30

200543male21

2200987male22

2100976female29

2321212male31

1327612male22

100087male30

210210female22

1100091male21

30001

30002

18002

20002

30002

60001

200002

40002

40001

salarygid

30001

3000

18002

20002

30002

60001

20000

4000

40001

2

Lily

Sam

David

Kate

Rob

James

Bob

Alice

Jim

name

Lily

Sam

David

Kate

Rob

James

Bob

Alice

Jim

1381162

1341245

1332245

1588228

1241223

1311245

1242245

1328228

1231223

telephone

1381162

1341245

1332245

1588228

1241223

1311245

1242245

1328228

(b) Straightforward Decomposition Result

Fig. 1. Illustration of Example

– We design a new table decomposition method. The method has the following fea-
tures: First, the decomposed sub-tables meet the requirement of l-diversity for each
sensitive association. Second, the decomposed results can avoid the new informa-
tion leakages incurred by multiple sensitive associations. Third, we design two op-
timization strategies, including the multiple grouping strategy and the sub-table
merging strategy, to improve the query performance over the decomposed sub-
tables.

– We propose a query evaluation method over the decomposed sub-tables in the out-
sourced database and the meta data in the trusted database. The complete candidate
results are retrieved and we use the statistical data to determine the result filter
approach.

The remainder of the paper is organized as follows: First, Section 2 reviews preliminary
knowledge and shows the architecture of sensitive association protection. Then, Section
3 analyzes the new kinds of information leakages and presents a novel table decomposi-
tion method. Section 4 discusses the corresponding query evaluation strategy. Section 5
reports the experimental results. Finally, Section 6 reviews the related work and Section
7 concludes the whole paper with discussions for future work.

2 Preliminary Knowledge

In this section, we introduce basic notations of sensitive associations, and outline the
architecture of the sensitive association protection in the outsourced database.

2.1 Sensitive Association Rules

The associations to be protected in the outsourced database should not be restricted to
the q−s associations due to the general purpose of this model. Thus, the sensitive asso-
ciation in this paper takes the form of functional dependency rule and can be specified
by end users.

Definition 1. Sensitive Association. Given a table T with functional dependency set F
over T , any f ∈ F takes the form of α→ β, where α and β are two attribute sets. f is
called a sensitive association if the association between α and β needs to be protected.
α is the determinant attribute set and β is the dependent set.

126 X. Jiang et al.

The other dependencies that need not to be protected are called non-sensitive asso-
ciations. In order to distinguish them, we use α

p→ β and α → β to represent sensitive
and non-sensitive associations respectively. Another thing noticed is that sensitive asso-
ciations in this paper are specified over a single table, and our method can be extended
easily to handle sensitive associations across multiple tables.

2.2 Architecture of Sensitive Association Protection in Outsourced Databases

The protection of sensitive associations and support to the precise query evaluation
need the combination of the outsourced database and a trusted database, as described
in Fig. 2. At the running time, the end users specify the sensitive and non-sensitive
associations, and the table decomposition is implemented. When the end user submits
a query q, it is first rewritten into a new query qw against the sub-tables in the outsourced
database. The outsourced database executes qw and retrieves a set of candidate results.
The trusted database refines the results returned to pick out the precise results.

Table Decomposition Instance Projection
Map

Query Rewriting Result Recovery

Sensitive
Associations

Tables

Sensitive Association Protection

Query Result

Query Evaluation

Query Evaluation
Plan

Data
Originization

Trusted
Database

Candidate
Query Results

Non-Sensitive
Associations

Outsourced
Database

Meta

Map

Meta

Fig. 2. Architecture of Sensitive Association Protection in Outsourced Database

The architecture in this paper has the following features: First, end users or appli-
cations can access the sensitive or non-sensitive data with unified interface provided
by the trusted database. Second, the capability of trusted database is not as powerful
as that of the outsourced database. It only needs to carry out the query reformulation
and the result recovery in a pipeline fashion. Most of the existing databases in current
information system meet the requirement.

3 Table Decomposition for Sensitive Association Protection

In this section, we formulate the information leakages incurred by multiple sensitive as-
sociations, propose a basic table decomposition method, design two optimization strate-
gies with query performance considerations, and finally show the data placement across
the outsourced database and the trusted database.

3.1 Information Leakage Incurred by Multiple Associations

We discuss the new information leakages on the decomposed sub-tables which meet
the requirement of l-diversity. That is, for each sensitive association in the form of

Multiple Sensitive Association Protection in the Outsourced Database 127

α
p→ β, given a specific value of α in one sub-table, an adversary cannot identify the

corresponding value of β in another sub-table through the extra group ID column with
a confidence higher than 1/l. We can notice that the decomposition in Fig. 1(b) satisfies
3-diversity.

Due to the interactions of multiple sensitive associations, we observe three kinds of
information leakages on the results of l-diversity decomposition. The first two result
from the frequency of data values in the same group or different groups. The third one
comes from the transitive result of the functional dependencies.

The first kind of information leakage is called inter-group leakage. Refer back to
the motivating example, we can notice that salesman appears in both g1 and g2 in the
second sub-table in Fig. 1(b). Since there is functional dependency position → salary,
the salary of salesman must also occur in both g1 and g2. With this inference, the
potential salary of salesman can only be 3000 or 4000, with a probability of 1/2 each,
which is greater than 1/3, resulting in a breach of 3-diversity. This kind of information
leakage is referred to as inter-group leakage. The formal definition is given below:

Definition 2. Inter-Group Leakage. Consider α
p→ β over table T , where α is in

decomposed sub-table T1 and β in T2. Let g1 and g2 be two tuple groups, Vα1 be the
values of α in g1 and Vα2 be the values in g2.(Vβ1 and Vβ2 take similar meaning).
Inter-group leakage occurs if Vα1 ∩ Vα2
= ∅ and |Vβ1 ∩ Vβ2| < l.

The second kind of the information leakage is called intra-group leakage. Consider
again the sensitive association position

p→ salary, we can see salesman appears twice
in g1. As a result, the adversary can be convinced that the salary of salesman is 3000,
which is the only value with more than one occurrence. Formally, the intra-group leak-
age and its condition can be stated as follows.

Definition 3. Intra-Group Leakage. Given α
p→ β over table T , let vα(vβ) be a value

of α(β). Suppose the frequency of vα in group g is f(vα, g) and the frequency of vβ in g
is f(vβ , g). Let n be the number of values vβ ∈ β satisfying f(vβ , g) ≥ f(vα, g). Then,
the intra-group leakage occurs when n < l, resulting in a breach of l-diversity.

The third kind of the information leakage is on the scheme level, called non-sensitive as-
sociation transitive leakage. It results from the transitivity of non-sensitive associations.
Let name→position and position→salary be two non-sensitive associations stored in
two separated sub-tables T1 and T2 respectively. Suppose that name

p→salary is a sensi-
tive association, the join of T1 and T2 on position will disclose the relationship between
name and salary. Formally, it can be described as follows.

Definition 4. Non-Sensitive Association Transitive Leakage. Let α
p→ γ be a sensitive

association, α → β and β → γ be two non-sensitive associations. Then, non-sensitive
association transitive leakage takes place when there is a sub-table T1 containing α
and β, another sub-table T2 containing β and γ.

Notice that all the three kinds of information leakages do not occur in data publishing
scenario with single sensitive association[11]. There are only two decomposed sub-
tables, QIT and ST . Each value appears only once in QIT , which leads to no intra-
group or inter-group leakages. In addition, each attribute belongs to one sub-table only,
and there is no scheme level leakage either.

128 X. Jiang et al.

3.2 Basic Table Decomposition Method

Given sensitive and non-sensitive associations, this subsection aims at finding a decom-
position satisfying the following properties: 1)it is a l-diversity decomposition; 2)it can
counter the new information leakages established in the previous subsection; 3)it sup-
ports efficient query evaluation. To fulfill these goals, we first unify all associations into
a functional dependency tree.

Definition 5. Functional Dependency Tree. Given a table T and the functional depen-
dency set F over T , a functional dependency tree takes the form of fdt = (V, E, S, r),
where S ⊆ F is the sensitive association set, each v ∈ V represents an attribute set in
T , each e ∈ E represents a dependency relationship between two attribute sets, r ∈ V
is the identifier attributes.

The functional dependency tree can be constructed with the canonical cover of the func-
tional dependency set. In the definition above, we make a restriction that there are no
partial functional dependencies to the key. We can notice that this requirement is not
too rigorous for most of the tables in real life applications. Figure 3 shows an functional
dependency tree with the sensitive associations on the right.

name

age, gender, zipcode

position

salary

telephone

name telephone
p

name position
p

age, gender, zipcode telephone
p

position
p

age, gender, zipcode

name

position

salary
p

salary
p

Fig. 3. Example of Functional Dependency Tree

The basic table decomposition method is to build a sub-table for each node in the
functional dependency tree, and add extra group IDs into the sub-tables so as to link
with each other, and then assign the values of group IDs which guarantees the satisfac-
tion of l-diversity for each sensitive association. Since the first step is trivial, we mainly
focus on the latter two tasks, or called “grouping strategy”.

One method of grouping strategy is, informally, “one group ID per edge”. That is,
for each edge in the functional dependency tree, suppose it represents the association
α → β, we append a group ID column to the sub-table for α and the sub-table for β.
Take the root-leaf functional dependency list L = α1 → α2 → α3 as an example. Let
Ti be the sub-table for αi. We attach both T1 and T2 with G12 and attach T2 and T3 with
G23. Under this strategy, suppose a user issues a query which involves α1 and α3(e.g.,
select α1 from T where α3=v), we must refer to T2 to get the correlation of α1 and α3
for there is no direct link between them. Thus a lot of extra join cost is incurred.

To remedy this disadvantage, we take another grouping strategy in this paper, or
concisely “one group ID per root-leaf list”. Consider a more general root-leaf associ-
ation list L = α1 → . . . → αn in fdt, we add group ID G1−n on each sub-table

Multiple Sensitive Association Protection in the Outsourced Database 129

Ti(i = {1, . . . , n}). Therefore, we can link any two sub-tables Ti and Tj (0 < i, j ≤
n)on this list without referring to other sub-tables. On obtaining the sub-table scheme,
we take a bottom up fashion to assign the group ID for each sub-table. First, we make
the initial partition by iteratively selecting l different values of αn into a group until
the distinct values remained is less than l. The rest values are added into an existing
group. Then, for each value vαn of αn in a group g, we enumerate all possible value
v in αi(1 ≤ i ≤ n − 1) where v → vαn , and assign them with the same group ID
g. This strategy obviously achieves l-diversity decomposition, for each value v in a
group of αi(1 ≤ i ≤ n − 1), there are at least l different values in the same group of
αj(i < j ≤ n).

group id

position

group id

salary
name age, gender, zipcode

group id

Fig. 4. Grouping on a Root-leaf List in Functional Dependency Tree

Example 2. We make a more specific illustration with the functional dependency list
name→ {age,gender,zipcode}→ position→ salary as shown in Fig. 4. Suppose the di-
versity parameter L=3. We select 3 different values from salary and compose a group g.
Then, we assign the same group to all possible values in position, {age,gender,zipcode},
and name, which can be mapped to the values of salary in group g.

3.3 Optimization Strategy 1: Multiple Grouping Annotation

The basic table decomposition method fulfills the first two goals, and partially con-
siders the query performance with the grouping strategy at the granularity of root-
leaf list. However, we can notice that from the size of candidate results, it is still
too massive in some cases. Refer to Example 2, we will locate 3 distinct salary for
a given name, whereas the related position for a given name can be much more. Based
on this observation, we define a criteria, termed maximum-diversity, to gauge the
grouping.

Definition 6. Maximal Diversity. For a functional dependency list L = α1 → . . . →
αn, we employ divs(αi, αj) to represent the maximum number of values in αj , which
can be linked to a given value in αi. Then, the maximum diversity of L, donated as
md(L), can be defined as md(L)= max

0<i<j≤n
divs(αi, αj).

We take the multiple grouping annotation to overcome the large size of intermediate
results indicated by the large maximal diversity. Let L1 = α1 → . . . → αn be a func-
tional dependency list, G1−n be the group column added with the basic decomposition.
We implement another pass of grouping for L2 = α1 → . . . → αn−1 inside the tu-
ples in the same group under G1−n, and generate another group ID G1−(n−1) for each

130 X. Jiang et al.

sub-table in L2. This annotation continues until L(n−1) = α1 → α2. Then the maximal
diversity of L can be reduced approximately to l. For instance, we can optimize the
grouping strategy in Example 2 by implementing another pass of grouping for name→
{age,gender,zipcode}→ position, thus a finer group can be achieved inside the original
group of position, resulting in a reduction of divs(name,position).

3.4 Optimization Strategy 2: Merging of Sub-tables

The query evaluation over the decomposed sub-tables involves join operation in the
outsourced database. Besides, the larger size of candidate results comes with join op-
eration. In order to reduce the evaluation cost in the outsourced database as well as to
reduce the size of candidate results retrieved, we should minimize the number of the
decomposed sub-tables.

It can be seen from the example that some of the sub-tables can be merged into other
sub-tables without violating the privacy constraint, while some others can not. Based
on this observation, this optimization strategy is designed to merge the compatible sub-
tables without privacy breach. We define the following rules to determine whether two
sub-tables are compatible.

Definition 7. Compatible Sub-Tables. Given a table T with functional dependency set
F , and the sensitive association set S ⊆ F , let T .A be the attribute set of table T , two
sub-tables T0 and T1 are compatible with each other, when the following conditions are
satisfied:

(1) T0.A ∪ T1.A does not contain a sensitive association in S;
(2) T0.A ∪ T1.A does not contain a non-sensitive association r, with which the func-

tional dependency list α0 → . . . r . . . → αn can be built, where α0
p→ αn is a

sensitive association, and the attributes of αi and αi+1(0 ≤ i < n − 1) are in the
same sub-table;

(3) T0.A ∪ T1.A does not contain a non-sensitive association α → β, while there is
another sub-table T

′
containing γ → δ, and α

p→ γ and β
p→ δ are sensitive.

The first condition ensures that there is no direct information leakage for a sensitive
association. The second one thwarts the non-sensitive association transitive leakage.
The third requirement can avoid the intra-group leakage, since adding β with α may
result in multiple same values of β in one group. Taking the example in Fig. 3, the
sub-table for {name} and {age, gender, zipcode} can be merged without violating the
above requirements.

3.5 Data Organization across Outsourced Database and Trusted Database

The original table T is distributed across the outsourced database and the trusted
database after decomposition. The outsourced database holds the decomposed sub-
tables, while the trusted database keeps the meta data of the outsourced sub-tables as
well as the necessary information for correct results recovery.

Suppose the base table T is decomposed into a set of sub-tables (T0, . . . , Tn). For each
sub-table Ti in the outsourced database, the attributes include {E, Ti.vid, G0, . . . , Gk},

Multiple Sensitive Association Protection in the Outsourced Database 131

where E is the original attribute set in table T , Ti.vid is the extra unique ID for each tuple
in Ti, and G0, . . . , Gk are the group ID columns generated with the grouping strategy
above.

The trusted database maintains two kinds of information: one is meta data and the
other is map table. Specifically, the meta data describes the schema of the outsourced
sub-tables, which can be used to generate the query evaluation plan against the out-
sourced database when accepting a query. And, the map table records the tuple relation-
ship between sub-tables in the form of M = (T0.vid, . . . , Tn.vid), where (T0, . . . , Tn)
are all decomposed sub-tables.

T1.vid, G1, G2, G3, name, age, gender, zipcode

T3.vid, G2, G3 position

T4.vid, G2, salary

T2.vid, G1, telephone

T1

T2 T3

T4

Outsourced Database

Map Table in

Trusted Database

T1.vid, T2.vid, T3.vid, T4.vidmap

Fig. 5. Example of Data Organization

Figure 5 shows the data distribution across the outsourced database and trusted
database. The sub-tables for {name} and {age, gender, zipcode} are merged. Multi-
ple group IDs are assigned on sub-tables T1, T3 and T4. We can see that G2 is their first
common group ID and G3 is a finer group implemented on G2, which can only link T1
and T3.

4 Query Evaluation over Protected Sensitive Association

We support the simple selection-projection-join query, and simple aggregation query.
The query predicate takes the form of α op b, where α is an attribute, b is an explicit
value, and op is one of {<,≤, =, >,≥}. The target list can include attributes or aggre-
gation functions, such as max, min. Besides, our method naturally supports the join
operation among tables.

As discussed in Section 2, the query evaluation over decomposed sub-tables takes
place as follows: when accepting a query q, the trusted database exploits the meta data
to rewrite it into qw, which is appropriate to execute over the decomposed sub-tables.
The outsourced database executes qw and returns a set of candidate results. Then, the
trusted database figures out the correct results from the candidate ones with the map
table maintained. Since the outsourced database offers more significant computational
resource, we should alleviate the burden of trusted database by pushing as much work as
possible to the outsourced database. In what follows, we discuss the query plan rewrit-
ing and the precise results recovery.

132 X. Jiang et al.

4.1 Query Plan Rewriting

The query plan rewriting is based on the meta data produced during the table decom-
position. The meta data describes the scheme information of the sub-tables in the out-
sourced database, from which we can easily get all the tables containing a given attribute
or the common group ID columns for two specified sub-tables. The goal of this step is
to transform the original query into a new one which can be correctly executed in the
outsourced database and at the same time, minimize the size of the candidate results to
be returned. We use the following query as an example to illustrate the processing:

Example 3. For the decomposed sub-tables illustrated in Fig. 5, the end user submits
the following query:

select name, telephone, salary from employee where position= “manager”.

We first determine the minimal sub-table set which covers all the attributes involved
in the query q. The related attributes, donated q.A, include the attributes in selection
clause and the ones in where clause. For each attribute a ∈ q.A, we can locate a list
of sub-tables containing a with the meta data maintained. So, there might be several
sub-table sets containing all the attributes in q.A. As we can see, all the sub-tables
should be joined together on the group ID column to find the candidate results. In order
to reduce the evaluation cost, we calculate the linkcost, which is the number of join
operations needed to link all the sub-tables, for each candidate set, and choose the one
with minimal linkcost to be the final sub-table cover. As for the example, q.A={name,
salary, telephone, position }, thus all the sub-tables T1, T2, T3 and T4 are selected into
the sub-table cover.

We then identify the group IDs used to link sub-tables. Due to the multiple group-
ing strategy, there might be more than one group ID which can be used to join two
sub-tables. As we take a bottom-up fashion in the annotation step, the group ID latest
generated will be selected, for it minimizes the maximal diversity between the two sub-
tables, resulting in a smaller candidate result set. Revisiting Example 3, although both
G2 and G3 can be used as join condition for T1 and T3, we will select G3. Besides, we
select G1 to link T1 and T2, select G2 to link T1 and T4.

Now, we can rewrite the query using the information obtained. The new from clause
is made up by all the sub-tables in the sub-table cover. The new selection clause contains
all the target attributes of the original query, as well as the vid attributes of the related
sub-tables in the from clause, which are necessary for the trusted database to figure out
the correct results. Finally, we rewrite the where clause. The original predication in q is
preserved, and new conditions for the join of sub-tables are added. As for the example,
the final transformed query takes the form of:

select name, telephone, salary, T1.vid, T2.vid, T3.vid, T4.vid
from T1, T2, T3, T4 where position=“manager” and T1.G1 = T2.G1 and T1.G3
= T3.G3 and T1.G2 = T4.G2.

What’s more, we optionally add an order-by clause to speed up the result recovery.
The addition depends on the size of the candidate results, which can be predicted by
the statistical data stored in the trusted database. When the predicted size is massive,

Multiple Sensitive Association Protection in the Outsourced Database 133

sorting is recommended and when it is small, the clause is needless. We will detail this
in the following subsection.

4.2 Query Results Recovery

The candidate result set (donated as RSc) returned from the outsourced database is a
superset of the correct results, and needs to be refined with the map table stored in the
trusted database.

There exists multiple approaches to recover the precise results from the candidate
ones. When the statistical information indicates a small-size candidate result set, the
query has no order-by clause. The trusted database directly selects the tuples in the
map table with vid value on predicted attribute, donated as RSmap. Since the result on
predicted attribute is accurate, RSmap is the correct join relation of the precise results.
Then, it checks each candidate tuple with the vids attached, figures out the tuples with
vids contained in RSmap, and discards the ineligible ones.

When a large-size candidate result set is indicated by statistical data, the better way
is to implement the merge join operation between the candidate results and the map
table. During the query rewriting, an order-by clause is appended to qw. The outsourced
database executes qw, generating candidate results with the specified order list. And
meantime, the trusted database sorts the map table with the same vid list. Upon receiv-
ing the two sorted result sets, the trusted database performs a merge join to filter out the
correct results in a pipeline way.

We can see the query evaluation in our framework is correct. First, the table de-
composition in Section 3 and the rewriting processing guarantee the completeness of
the candidate result, namely, all correct results will be retrieved. Second, the recov-
ery method ensures that all and only the results matching the vids in map table will
be filtered out. Besides, it is clear that the one-way information flow during the whole
evaluation will not lead to information leakages.

5 Experiments

This section experimentally evaluates the efficiency and effectiveness of our table de-
composition technique. The experiments are carried out on two Dell computers running
Windows XP Professional operating system. The one with a 1.6GHz CPU and 1.5G
RAM performed as the trusted server, and the other with a 1.8GHz CPU and 16G RAM
acted as the outsourced service provider.

5.1 Experimental Setup

DataSet. Since there is no public dataset with specified functional dependencies, all
experiments are conducted on two synthetic employee datasets, with the same attributes
but different functional dependencies. There are 100k tuples in each dataset. Table 1
summarizes the 9 interval attributes, and Table 2 details the two datasets, donated as
EMP1 and EMP2 respectively, with their association set, as well as the corresponding
sub-table schemes.

134 X. Jiang et al.

Table 1. Summary of Attributes

attribute # of distinct values attribute # of distinct values attribute # of distinct values

eid 100k age 40 telephone 100k
birthday 700 gender 2 zipcode 100
companyid 800 position 120 salary 60

Competitor. We compare our method with encrypted database. For generalization,
we encrypt table in the granularity of column using AES algorithm, and employ the
bucket-based index in [7] to speed up the query evaluation. To be more comparative,
we keep the size of each bucket the same as the diversity parameter L used in our table
decomposition method. To offer the true information-theoretic privacy, the encoding
method must satisfy: 1)not equality preserving, 2)not order preserving, 3)encoded as
fixed-length. Taking all these factors into consideration, we encode a value v to get its
cipher data ve in the following way: ve = Ek(v||r), where r is a random value and Ek

is the AES encryption function with key k. What’s more, we use a greedy algorithm to
minimize the number of encrypted attributes on condition that the two parts of each rule
will not appear in the same table. For EMP1, the greedy algorithm chooses to encrypt
eid and salary. And for EMP2, it selects eid, companyid and position.

Table 2. Association Set and Decomposed Sub-table Scheme

Set Association set Decomposed sub tables

EMP1 eid
p→salary T0(salary, G1)

eid
p→telephone T1(companyid, position, G2, G3)

eid→(companyid,position) T2(telephone, G3)
(companyid,position)

p→salary T3(eid, birthday, gender, age, zipcode, G1, G2, G3)

EMP2 eid
p→companyid T0(salary, G1)

eid
p→salary,position T1(position, G1, G2)

companyid
p→position,salary T2(companyid, G1, G2, G3)

position
p→salary T3(eid,birthday,gender,age,zipcode,telephone,G1 ,G2,G3)

5.2 Experimental Results

Data Placement Cost. In the first set of experiments, we study the efficiency of our
table decomposition algorithm, by comparing the time used to place the data into the
outsourced database. The result is illustrated in Fig. 6(a). Notice that EEi means the re-
sults of Encrypted EMPi, and DEi presents the results from the Decomposed EMPi,
where i ∈ {1, 2}. From Fig. 6(a), we can see that the table construction time for de-
composed database is less than that of encryption. The advantage is more obvious on
EMP2, since one more attribute should be encrypted compared with EMP1. Also, we
can see that the time costs for both methods decrease slightly as L increases, since less
group time is needed.

Multiple Sensitive Association Protection in the Outsourced Database 135

3 6 9
0

30000

60000

90000

120000

150000

180000

210000

C
o

n
st

ru
ct

io
n

 T
im

e
(m

s)

L

 DE1 EE1
 DE2 EE2

(a) Construct Time

3 6 9
0

3000

6000

9000

12000

15000

18000

21000

24000

Q
u

er
y

T
im

e
(m

s)

L

 DE1 EE1
 DE2 EE2

(b) Equality Query Test

3 6 9
0

3000

6000

9000

12000

15000

18000

21000 EE2

EE2

DE2

DE2EE2

DE2

Q
u

er
y

T
im

e
(m

s)

L

 Parse
 Exec
 Recovery

(c) Detailed Time for EMP2

3 6 9
0

1000

2000

3000

4000

5000

Q
u

er
y

T
im

e
 (

m
s)

L

 DE1 EE1
 DE2 EE2

(d) Aggregation Query Test

3 6 9
0

1000

2000

3000

4000

5000

Q
u

er
y

T
im

e
(m

s)

L

 DE1
 EE1
 DE2
 EE2

(e) Join Query Test(1)

3 6 9
0

1000

2000

3000

4000

5000

Q
u

er
y

T
im

e(
m

s)

L

 DE1 EE1
 DE2 EE2

(f) Join Query Test(2)

Fig. 6. Experimental Results

Query Evaluation Time. Next, we conduct three kinds of query tests, basic equality
query, aggregation query, as well as join query, to analyze the efficiency of the two
different methods. In each test, we randomly generate 100 queries of specific type and
then evaluate on each dataset. All the processing time is measured in ms.

Figure 6(b) shows the results of the basic equality query test. We can see that the table
decomposition method outperforms encryption method on both datasets as expected. In
fact, the parse time of both methods is nearly the same. The main difference comes
from the execution step and the result recovery(or filtering) step.

In order to understand the underlying reason behind such a result in total cost,
we illustrated the detailed composing of the time costs for both methods on EMP2
with various L in Fig. 6(c). From the perspective of execution time, encryption per-
forms better than decomposition since we need to do some join operations on the out-
sourced database side. However, when it comes to the result filtering step, decomposi-
tion method is preponderant. We can see that result recovery is the dominating factor
of the total costs. As decryption takes most of the evaluation time for the encrypted
database, the query processing responsibility is mainly at the trusted database side,
which is not preferred since it mitigates most advantages of data outsourcing. Besides,
we observe the evaluation cost increases as L increases. This is due to the fact that the
candidate results become larger when the size of each group or bucket is enlarged. Thus,
more work should be done to seek out the exact results.

To further test our technique, we generated 100 simple aggregation queries, including
max, min etc., and evaluated on both datasets. Figure 6(d) shows the results. We can
see that the time cost of the decomposed database is nearly half that of the encrypted
database. Because in the decomposed database, we can get the max or min value of
each attribute directly while in an encrypted database which is not order-preserving, if
we want to get the max or min value of an encrypted column, we should first find out

136 X. Jiang et al.

the bucketid of which the max(or min) element belongs to, and then, fetch all the data
in that bucket, do the decryption to get the correct result. A large L yields a large set
of candidate results. That’s why the evaluation time for DEi keeps steady while that of
EEi increases with the increase of parameter L.

We finally analyze the cost for answering join queries. We generated another table
Company with scheme (companyid, name, foundyear, workforce). There are 800 dis-
tinct tuples in Company and it can join with Employee on companyid. For the decom-
posed database, it is easy to do the join, just as the normal database. On the contrary,
it is a big challenge for the encrypted database if the join condition is happened to be
encrypted. In the first case, if the companyid of Company is in plaintext, it is easy for
EMP1 to join with Company. However, the easiest way for the encrypted EMP2 to
join with Company is to fetch all the tuples of Company and Employee back to the
trusted database, and decrypt Employee before join, which is obviously too expensive
to be executed. In another case, if the attribute companyid in Company is encrypted,
it is difficult for both Employee sets to do the join. For EMP1, all the companyids
in Company must be decrypted, while for EMP2, both companyids in Company and
in EMP2 should be decrypted, due to the non-equality preserving property of the en-
coding method. Figure 6(e) shows the query costs when companyid in Company is in
plaintext and Fig. 6(f) shows the costs when it is encrypted. We can observe that the
decomposition offers much better performance.

To sum up, the decomposed database outperforms the encrypted database in both
aspects. First, it takes less time in data placement. Second, it supports more efficient
query evaluation in all query tests, especially when the join condition is located on an
encrypted attribute.

6 Related Work

Existing solutions to the privacy preserving problem in outsourced database is mainly
based on encryption. Many researches have been done on query processing over the
encrypted database[7,8], and various index schemes have been proposed in literature to
speed up query evaluation[4,10,5], or balance the confidentiality and efficiency[6]. The
main disadvantage of this method is that the decryption step burdens the local processor,
leading to a bottleneck on the client. An alternative approach is proposed in [3], which
suggests partitioning the relation over two non-communicating servers. However, the
encryption is still unavoidable. In this paper, different from previous works, we aim at
solving the problem without resorting to encryption.

The table decomposition method is also proposed in [11] to achieve l-diversity while
to improve the utility of the published data. However, it is not applicable in our context,
since it only considers single sensitive association and does not take into account the
functional dependencies among attributes. Moreover, it does not support the precise
query. In this paper, we address the privacy problem in the presence of multiple sensitive
associations, and provide efficient evaluation for precise query.

On another side of related work, the distributed query processing focuses on the
vertical table decomposition or the horizontal table decomposition, or the hybrid de-
composition. The semi-join algorithm is proposed to improve the query performance

Multiple Sensitive Association Protection in the Outsourced Database 137

in the distributed database [9]. Our paper also discusses the distributed query process-
ing across the trusted database and the outsourced database. However, the current dis-
tributed query processing methods cannot be used directly in our environment since the
outsourced database is not fully trusted. The candidate result set is generated first in the
outsourced database, and the interaction between two sides are forbidden in our context.

7 Conclusion and Future Work

In this paper, we learn from the privacy conscious data publishing, and propose a novel
privacy preserving method based on table decomposition to protect the multiple sensi-
tive associations in the outsourced database, in the presence of functional dependency.
The empirical study indicates that our method is superior to the encryption method.

The future work contains a list of interesting directions: First, this paper discusses
the sensitive associations expressed with the functional dependency. We can extend it
to support more complex associations such as probabilistic association. Second, our
method can also be adapted to data publishing scenario, whereas it remains open how
to implement the data analysis over decomposed sub-tables, without referring to the
trusted database.

References

1. Microsoft sql server data service, http://www.microsoft.com/azure/data.mspx
2. Simple database in amazon, http://aws.amazon.com/simpledb/
3. Aggarwal, G., Bawa, M., Ganesan, P., et al.: Two can keep a secret: A distributed architecture

for secure database services. In: Proc. of CIDR, pp. 186–199 (2005)
4. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for numeric data.

In: Proc. of SIGMOD, pp. 563–574 (2004)
5. Chung, S.S., Ozsoyoglu, G.: Processing Aggregation Queries over Encrypted Databases. In:

Proc. of ICDE (2006)
6. Damiani, E., Vimercati, S.D.C., Jajodia, S., et al.: Balancing confidentiality and efficiency in

untrusted relational DBMSs. In: Proc. of CCS, pp. 93–102 (2003)
7. Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over encrypted data in the

database-service-provider model. In: Proc. of SIGMOD, pp. 216–227 (2002)
8. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries. In: Proc.

of VLDB, pp. 720–731 (2004)
9. Kambayashi, Y., Yoshikawa, M., Yajima, S.: Query processing for distributed databases using

generalized semi-joins. In: Proc. of SIGMOD, pp. 151–160 (1982)
10. Li, J., Omiecinski, E.R.: Efficiency and security trade-off in supporting range queries on

encrypted databases. In: DBSec, pp. 69–83 (2005)
11. Xiao, X., Tao, Y.: Anatomy: Simple and effective privacy preservation. In: Proc. of VLDB,

pp. 139–150 (2006)

http://www.microsoft.com/azure/data.mspx
http://aws.amazon.com/simpledb/

A Semantic Information Loss Metric for Privacy
Preserving Publication�

Yu Liu, Ting Wang, and Jianhua Feng

Department of Computer Science and Technology
Tsinghua National Laboratory for Information Science and Technology

Tsinghua University, Beijing 100084, China
����������	
����������
����������
�������,

�������������
�������

Abstract. Data distortion is inevitable in privacy-preserving data publication and
a lot of quality metrics have been proposed to measure the quality of anonymous
data, where information loss metrics are popularly used. Most of existing infor-
mation loss metrics, however, are non-semantic and hence are limited in reflecting
the data distortion. Thus, the utility of anonymous data based on these metrics is
constrained. In this paper, we propose a novel semantic information loss met-
ric SILM, which takes into account the correlation among attributes. This new
metric can capture the distortion more precisely than the state of art information
loss metrics especially for the scenario where strong correlations exist among
attributes. We evaluated the e�ect of SILM on data quality in terms of the ac-
curacy of aggregate query answering and classification. Comprehensive experi-
ments demonstrate that SILM can help improve the quality of anonymous data
much more especially if integrated with proper anonymization algorithms.

Keywords: k-anonymity, information loss metric, data distortion, data utility.

1 Introduction

In recent years, large amount of personal data has been collected, stored, processed and
published for both scientific and business purposes. Such personal data, however, usu-
ally contains sensitive information of individuals, so sharing and publishing these data
pose a threat to individual privacy. To solve this problem, a large number of privacy-
preserving publishing models based on anonymity techniques have been proposed, such
as k-anonymity[1] and so on. In anonymization, generalization and suppression are two
widely employed anonymity techniques. Meanwhile, information loss is inevitable in
anonymization. Vague meanings caused by information loss usually decrease the qual-
ity of the data and a�ect data utility. Therefore, the contradiction between the privacy
and the data quality always exists.

� This work is partly supported by the National Natural Science Foundation of China under
Grant No. 60873065, the National High Technology Development 863 Program of China under
Grant No.2007AA01Z152 and 2009AA011906.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 138–152, 2010.
c� Springer-Verlag Berlin Heidelberg 2010

A Semantic Information Loss Metric for Privacy Preserving Publication 139

Given privacy constraints, most studies try to improve data quality through adopting
a more legitimate quality metric or by devising optimal algorithms and recoding meth-
ods if a quality metric has been designated. Methods for measuring data quality can be
categorized into two categories: task-independent and task-dependent.

Task-independent metrics evaluate data quality by measuring information loss, which
consists of generic metrics and distance-based metrics. These metrics are usually ap-
plied when data publishers do not know the ultimate use of the published data. Generic
metrics measure information loss by the size of QI group or the total number of gen-
eralization�suppression [1,2,3]. While distance-based metrics reflect data distortion by
the distance among distinct values [4].

Task-dependent metrics declare that the best way of measuring quality is based on
the ultimate application of the data. These metrics are proposed for the scenario where
anonymous data is released for particular analysis, such as data mining, aggregate
query and so on. Task-dependent metrics usually incorporate a target workload into
the anonymization process[5,6,7]).

Table 1. An Original Table T1

Age Gender Zip Hobby
t1 10 M 21008 H1

t2 10 M 21003 H1

t3 20 F 22002 H2

t4 30 M 20003 H2

t5 40 F 20016 H2

t6 60 F 21002 H3

t7 70 F 21029 H3

t8 50 F 21023 H1

t9 5 F 20013 H3

Table 2. An Original Table T2

Age Gender Zip Hobby
t1 10 F 21008 H1

t2 10 M 20003 H1

t3 20 F 22002 H2

t4 30 M 20003 H2

t5 40 F 20016 H2

t6 60 F 21002 H3

t7 70 F 21029 H3

Table 3. 3-anonymous table Y1

Age Gender Zip Hobby
t1 [10� 50] * 21000 H1

G1 t2 [10� 50] * 21000 H1

t8 [10� 50] * 21000 H1

t3 [20� 40] * 20000 H2

G2 t4 [20� 40] * 20000 H2

t5 [20� 40] * 20000 H2

t6 [5� 70] F 20000 H3

G3 t7 [5� 70] F 20000 H3

t9 [5� 70] F 20000 H3

Table 4. Another 3-anonymous table Y �

1

Age Gender Zip Hobby
t9 [5� 10] * 20000 H3

G1 t1 [5� 10] * 20000 H1

t2 [5� 10] * 20000 H1

t3 [20� 40] * 20000 H2

G2 t4 [20� 40] * 20000 H2

t5 [20� 40] * 20000 H2

t6 [50� 70] F 21000 H3

G3 t7 [50� 70] F 21000 H3

t8 [50� 70] F 21000 H1

Obviously, an anonymous table generated based on a specific metric may not perform
well when being evaluated by another metrics. A typical case is shown in Table 1.
The task here is to do 3-anonymization in T1 based on some classification-dependent

140 Y. Liu, T. Wang, and J. Feng

metrics. And the goal of classification is to predict the type of Hobby. Table 3 is a 3-
anonymous table generated from T1, and it shows that age 5 and 70, age 10 and 50 are
generalized together since they share the same hobby. Obviously, over generalization
occurred and the distortion is great when measured by distance-based metrics.

Table 5. 3-anonymous table Y2

Age Gender Zip Hobby
t1 [10,20] * 20000 H1

G1 t2 [10,20] * 20000 H1

t3 [10,20] * 20000 H2

t3 [30,40] * 20000 H2

G2 t5 [30,40] * 20000 H2

t6 [60,70] F 21000 H3

G3 t7 [60,70] F 21000 H3

Table 6. Another 3-anonymous table Y �

2

Age Gender Zip Hobby
G1 t1 [10,10] * 20000 H1

t2 [10,10] * 20000 H1

t3 [20,40] * 20000 H2

G2 t4 [20,40] * 20000 H2

t5 [20,40] * 20000 H2

t6 [60,70] F 21000 H3

G3 t7 [60,70] F 21000 H3

In comparison with task-dependent metrics, task-independent metrics especially those
distance-based metrics can intuitively reflect the data distortion caused by generaliza-
tion. Most of them, however,neither consider the application scenarios nor the corre-
lations between di�erent attributes in distance measuring. In other words, this kind of
distance metrics is non-semantic and only reflects the data distortion symbolically. Take
Table 2, Table 5 and Table 6 for an example, both Y2 and Y�

2 are 2-anonymous tables
of Y2. If measured by a conventional distance-based metric, the information loss of
[10� 20] is equal to that of [60� 70], which is 1�10. But it is obvious that people in age
10 and age 20 are much more di�erent in hobby than those of in age 60 and 70. For
classification purpose, it seems better to merge age 20 and 30 instead of merging age
10 and 20, just as shown in Y�

2.
To overcome these shortcomings of existing metrics, in this paper we define a new

semantic information loss metric-SILM. In a sum, the main contributions of this paper
are as follows:

– We propose a novel semantic information loss metric SILM for numeric attributes
and categorical attributes respectively, which can measure the information loss of
an anonymous data table more precisely.

– To evaluate the impact of SILM on data quality, we improved and implemented two
anonymizaiton algorithms by incorporating SILM.

– Extensive experiments are conducted under various settings, and results show that
SILM outperformed state-of-the-art task-independent and task-dependent metrics
in terms of both aggregate query answerability and classification accuracy no matter
what anonymity algorithms are used or what classifiers are built.

The rest of this paper is organized as follows. In Section 2, the related work is introduced
in brief. Basic preliminaries and conceptions are presented in Section 3. We review
previous quality metrics and propose SILM in Section 4. Two improved anonymization
algorithms based on SILM is devised in Section 5. At last we discuss experimental
results in Section 6 and conclude in Section 7.

A Semantic Information Loss Metric for Privacy Preserving Publication 141

2 Related Work

So far, literatures on privacy-preserving data publishing can be approximately classi-
fied into two categories. The first category aims at devising various anonymity princi-
ples w.r.t. di�erent kinds of attacks, such as k-anonymity[1]. Recently, plenty of new
principles are proposed for some special applications, such as personalized anonymity
proposed in [8] which can provide multi-level security for each tuple, and m-invariance
in [9] which e�ectively decreases the risk of privacy disclosure in re-publication with
insertions and deletions. Other works also suggest partition the data into “sensitive” and
QI tables, and then permute sensitive values[10].

The second category focuses on anonymization algorithms and recoding methods for
generalization. Various recoding approaches have been studied, such as global recod-
ing generalization [1,2,6], multidimensional recoding generalization[3], local recoding
generalization[4,11]. Global recoding and local recoding work on one attribute while
multidimensional recoding works on a set of QI attribute. Accompanied with recoding
methods, many optimization algorithms have been developed[6,12] to minimize given
quality metrics.

To measure data qualities, most of existing studies intended to employ some general-
purpose quality metrics without considering data utilities[2,4,13,14]. These metrics
usually evaluated data quality by measuring the information loss. In response to these
general-purpose quality metrics, much more researchers argued that the quality is best
judged w.r.t. the workload for which the anonymous data will be used [7,6,5]. However,
to the best of our knowledge, when defining quality metrics, all previous studies con-
cern neither the value distribution of each QI attribute nor correlations among di�erent
attributes.

3 Preliminaries

Next, we introduce some preliminaries and concepts to facilitate our following
discussion.

In this paper, we only focus on privacy-preserving data publishing where
generalization-based anonymization is employed, specifically, we conduct our studies
on k-anonymity publishing. Similar to previous works, we made an assumption that
data for publishing is usually stored and released in the form of relational tables. In
order to define anonymity on a relational table T , attributes in T usually can be classi-
fied into four types: (1) Identification attribute (IA): the identification attribute is an
attribute that can identify an individual uniquely. IA is usually removed entirely from
the published table. (2) Quasi-identifier(QI) attributes: quasi-identifier attributes are
a set of attributes which can potentially identify an individual when being linked to ex-
ternal data sources. (3) Sensitive attribute(SA):sensitive attribute is an attribute whose
values are not allowed to be uniquely associated with an unique individual. (4) Ordi-
nary attributes (OA):ordinary attributes refer to attributes which do not belong to any
of the above three types.

In an anonymous table Y, a group of tuples with identical quasi-identifier values
composes a quasi-identifier(QI) group. For example, in Table 3 where the QI attributes
consist of �Age�Gender� Zip�, G1�G2�G3 are three QI groups.

142 Y. Liu, T. Wang, and J. Feng

Definition 1. Information Loss
Given two values v and v� where v is the original value and v� is a generalized value of
v, the deviation of v� from v is the information loss, denoted by loss(v� v�).

The concept of information loss or data distortion often be used to reflect the data qual-
ity in privacy-preserving publishing. The data quality is also evaluated by classification
accuracy in this paper, some preliminaries related to classification will be introduced.

The attribute in a data table with nominal target class labels is called target attribute,
the set of discrete or continuous attributes used to predict the target attribute are called
predictor attributes. In the remaining of this paper, the QI attributes are assumed as
predictor attributes.

4 Measuring Data Quality

In this section, we will discuss several typical data quality metrics in detail. Without
loss of generality, let T (Q1� Q2� ���� Qd� S �C) be an original table, Qi(1 � i � d) is a
quasi-identifier attribute and used as predictor attribute, S is a sensitive attribute and C
is the target attribute. �T � denotes the size of table T and t � T . ti� j denotes the value of
the ith tuple in the attribute Q j. Y is a k-anonymous table of T consisting of m QI groups
�G1�G2� ����Gm�. G(y) refers to the QI group y belongs to where y � Y.

4.1 Traditional Data Quality Measurement

The most popular task-independent metrics are DM(Discernability Metric) and CAVG[2],
where the information loss is determined by the size of QI groups. Many work, however,
have pointed out that such generic metrics are mathematically sound but not intuitive
to reflect changes caused by anonymization[13]. Therefore, they are not necessarily
indicative of data distortion. To overcome this, Iyengar[14] defined a general loss met-
ric(LM) based on domain generalization hierarchies which are also called taxonomy
trees. In this metric, domain generalization hierarchies are predefined and used to build
mappings between specific and general values. LM is defined as follows.

Definition 2. (LM)
Let ��(yi� j) denotes the information loss of a generalized item yi� j in Y, ��(Y) de-
notes the total information loss of Y, then

��(yi� j) �

���������������

b � a
max j � min j

� Q j is a numeric attributes

�lea f (yi� j)� � 1

�Q j� � 1
� Q j is a categorical attributes

(1)

��(Y) �
�Y ��
i�1

d�
j�1

��(yi� j)

�Y � � d
(2)

A Semantic Information Loss Metric for Privacy Preserving Publication 143

Here, ti� j is generalized into yi� j which is denoted by an interval [a, b]. [min j�max j]
stands for the domain range of numerical attribute Q j. LM is a task-independent metric,
and it can capture the distortion caused by generalization more precisely than DM and
CAVG.

For task-dependent metrics, Iyengar[14] proposed an interesting cost metric CM
(classification metric) to produce an optimal k-anonymous table for building a clas-
sifier.

Definition 3. CM
Let y be a tuple of Y, the function cls(y) returns the class label of y, ma j(G) returns the
majority class label of a QI group G, then

	� �

�Y ��
i�1

pen(yi)��Y � (3)

here pen(yi) � 1 if cls(yi) � ma j(G(yi)); else pen(yi) � 0.

Iyengar has demonstrated that anonymous tables based on this metric can yield better
classification accuracy than those based on generic metrics. Furthermore, to improve
the data utility for particular data mining, some works have tried to incorporate data
mining models into anonymity algorithms [5,6].

4.2 Shortcomings of Traditional Data Quality Metric

We have following observations about previous data quality metrics.

Observation 1. Task-dependent metrics cannot reflect the data distortion for they ig-
nore QI attributes during anonymization.

Task-dependent metrics usually incorporate expressive workload characteristics into the
procedure of anonymization. For example, the algorithm of TDS and Median Mondrian[5]
partition QI groups based on information gain, which is reminiscent of decision tree con-
struction. Apparently, these task-aware metrics do not take into account QI attributes at
all, but focus on the impurity of target attribute in a QI group. According to the definition
of information loss, such metrics can not reflect the information loss at all.

Considering Table 3 and Table 4, Y1 is based on a classification conscious metric
while Y�

1 is based on a task-independent metric. Because information loss of Gender
and Zip are equal in two tables, only information loss for Age are computed as follows:
	�(Y1)� 0; 	�(Y�

1)� 2
9 ; ��(Y1)� 3.75; ��(Y�

1)� 1.35. Here, when evaluated by
CM, Y1 performs much better than Y�

1. But when measured by LM, the information
loss of Y1 is larger than that of Y�

1. It can be inferred that although Y1 could yield bet-
ter classification accuracy than Y�

1, it would not perform so well when used for other
applications such as aggregate query answering due to the great distortion. So, the in-
herent limitation of task-dependent metrics restricts the anonymous data to be widely
exploited.

Observation 2. Task-independent metrics are limited in reflecting the data distortion
caused by anonymization for they are non-semantic.

144 Y. Liu, T. Wang, and J. Feng

It is understandable that the ultimate usage of anonymous data is uncertain in most
cases. To enhance the data utility, the intuitive way is to preserve as more original infor-
mation as possible. Although existing distance-based task-independent metrics satisfy
such requirements to some extent, they are lack of semantics when measuring the infor-
mation loss. Take the definition of LM for an example. For numerical attribute N, when
two values v1 and v2 are generated into an interval [v1� v2], the distortion is measured by
Equation 1. The formula implies three layers of meanings. First, the domain values of N
conform to uniform distribution. Second, each value of N is only taken as non-semantic
number. Third, attribute N is irrelevant to other attributes. But this is not the case in real
world. If such correlations and their impacts on the value distribution of attributes are
not considered, more errors would occur in information loss measurement. Such errors
will directly decrease the utility of the anonymous data.

For categorical attributes, We have pointed that LM is not an advisable way to mea-
sure information loss[15].

In summary, these observations inspire us to search for better metric such as semantic
information loss metric SILM in this paper to help produce anonymous data with less
distortion and more utility.

4.3 SILM - The Semantic Information Loss Metric

SILM for Numerical Attributes. For simplicity, we only studied the case where only
one numerical QI attribute Qi has correlation with the target attribute C and the distri-
bution of Qi is a�ected by C. We also assume domain values of all numerical attributes
are discrete. suppose m � domain(Qi), n � domain(C), fi(m� n) denotes the number of
tuples satisfying t�Qi � m and t�C � n, cnti(m) denotes the number of tuples satisfying
t�Qi � m.

Definition 4. gi(m� n) is the distribution probability of n with respect to m, written as

gi(m� n) �
fi(m� n)
cnti(m)

In fact, gi(m� n) is the probability of t�C � n under the condition that t�Qi � m.

Definition 5. hi(m� n) is the distribution probability of n with respect to the neighbor-
hood of m, written as

hi(m� n) �

�m��
j�m fi(j� n)�m��
j�m cnti(j)

� refers to the range of neighborhood of m. In contrast to gi(m� n) which represents the
distribution around a single point, hi(m� n) is introduced to reflect the distribution of n
w.r.t. a small range around m. When � � 0, hi(m� n) equals gi(m� n). The value of � is
determined by �Qi�. If �Qi� is large, � � 0 may result in a singular point and a�ect the
accuracy of hi(m� n). So, � should be assigned with a proper value larger than zero.

Now we define Ri(m� n) to capture the change ratio of distribution of n � domain(C)
over the neighborhood of a specific m.

A Semantic Information Loss Metric for Privacy Preserving Publication 145

Definition 6. Ri(m) is the change ratio of distribution of the attribute C w.r.t. the neigh-
borhood of m, written as:

Ri(m) � max�� ln
hi(m � �� n j)

hi(m� n j)
� � ���hi(m� n j) � 0� n j � domain(C)� 0 � j � �C��

If hi(m� n j) � 0, then we think the item �ln
hi(m���nj)

hi(m�nj)
� � 0. � belongs to (0� 1) and is

introduced to avoid the case where Ri(X) is denominator and Ri(X) � 0. Here, if Ri(m)
equals �, it means the change ratio of values in the attribute C around m is zero.

Based on Definition 4 to 6, the novel semantic information loss for a numerical
attribute Qi is defined as follows:

Definition 7. S ILMN.
Suppose the domain of a numerical attribute Qi is [mini�maxi], v � domain(Qi) and is
generalized into an interval which is denoted by v�, lower(v�) and upper(v�) return the
lower and upper bounds of v� respectively. Then the information loss of v� is denoted as
follows:

���� �

�upper(v�)
j�lower(v�) Ri(j)�maxi

j�mini
Ri(j)

We can prove that in the case where a numerical attribute satisfies uniform distribution
w.r.t the target attribute, or the numerical attribute is unrelated to the target attribute, the
value of S ILMN equals to that of traditional LM metric.

Corollary 1. Let Qi be a numerical attribute, the value distribution of Qi is uniform
w.r.t. the target attribute C, then the value of
���� equals that of ��.

Corollary 2. Let Qi be a numerical attribute, Qi is independent on the target attribute
C, then the value of
���� equals that of ��.

Proof. Let pr(n) be the original distribution probability of n in domain(C). Note that
Qi satisfying the uniform distribution w.r.t. C equals Qi being independent with C, thus
�m � domain(Qi) and �n � domain(C) we have hi(m � �� n) � hi(m� n) � pr(n), so
Ri(x) � max�ln � gi(m�n)

hi(x�y) � � �� � max�ln 1 � �� � �, then we can induce

���� �

�upper(v�)
j�lower(v�) Ri(j)�maxi

j�mini
Ri(j)

�
upper(v�) � lower(v�)

maxi �mini

Obviously, according to the definition of LM, the proof of Corollary 1 and 2 is com-
pleted.

SILM for Categorical Attributes. To measure the information loss for categorical
attributes which are denoted by S ILMC , we adopt Dissimilarity Matrix introduced in
[15] to capture the semantic correlations between distinct values.

Definition 8. (Dissimilarity Matrix). If a categorical attribute A has n distinct values,
v1, v2, ..., vn, respectively, dissimilarity matrix D(A), is a matrix having the following
form where d(vi, v j) denotes the dissimilarity degree between vi and v j.

146 Y. Liu, T. Wang, and J. Feng

D(A) �

����������������	

0 d(v1� v2) � � � d(v1� vn)
d(v2� v1) 0 � � � d(v2� vn)

���
���

� � �
���

d(vn� v1) d(vn� v2) � � � 0

����������������
� d(vi� v j) � d(v j� vi)

Assume that a set of distinct categorical values are generalized together, denoted by v�

� �v1, v2, ..., vk�. Then the loss caused by the generalization can be evaluated as follows:

���� �

��v� �

p�q�1 d(vp� vq)2

��Qc�

p�q�1 d(vp� vq)2

We can verify that the formula is reasonable by two special cases. First, suppose k
similar values are generalized together, i.e., v�� �v1� v2� ���� vk�vi � v j� 1 � i� j � k�, then
according to the definition of Dissimilarity Matrix, d(vi,v j) � 0 for 1� i, j�k, thus we
have
���� � 0, which means no information loss. This result is in accordance with
actual semantic meaning. Second, suppose all the domain values are generalized into
one bucket, then �v�� � �Qc�, thus we have
���� � 1, that means the information loss
is 100%. Again, this result agrees with the actual semantic.

SILM for Anonymous Tables. In summary, we give a formal definition of the seman-
tic information loss for an anonymous table Y.

Definition 9. SILM
Let S ILM(yi� j) denotes the semantic information loss of each generalized item yi� j � Y,
S ILM(Y) denotes the total semantic information loss of Y, then we have:

���(yi� j) �

�������������������������

�upper(yi� j)
k�lower(yi� j)

R j(k)�maxj

k�minj
R j(k)

� Q j is a numeric attribute

��yi� j�

p�q�1 d(vp� vq)2

��Qj �

p�q�1 d(vp� vq)2
� Q j is a categorical attribute

(4)

���(Y) �
�Y ��
i�1

d�
j�1

���(ti� j) (5)

5 s-RAC and s-DataFly

To evaluate the performance of our new metric SILM, we modified two anoymizaition
algorithms, RAC(Random Clustering)[15] and D���F��[1], and replaced the original
information loss metrics LM in them with SILM. The resulted two variation algorithms
are called s-RAC and s-D���F�� respectively. The reason for why s-RAC and s-D���F��

A Semantic Information Loss Metric for Privacy Preserving Publication 147

are exploited here is because they are two typical algorithms in the field of anonymiza-
tion, specifically, s-RAC adopts clustering and local recoding techniques, and s-D���F��
is based on partitioning and global recoding techniques.

The implementation of s-RAC can refer to [15] and is omitted here. The main idea
of s-RAC is very similar to the k-means clustering algorithm. For each tuple, the al-
gorithm finds a suitable cluster to put the tuple into, where suitability is defined by
SILM. If no such cluster is available, it creates a new cluster. When a cluster satisfies
the k-anonymity principle, tuples in this cluster are generalized together and the cluster
becomes a QI group. After all QI groups are formed, left tuples are inserted into exist-
ing QI groups according to the suitability defined by SILM. Because D���F�� is one of
the earliest and most widely-known k-anonymization solutions, the detailed implemen-
tation of s-D���F�� is also omitted here.

6 Experiments

To evaluate various aspects of SLIM, we have conducted comprehensive experiments
on both synthetic and real datasets. For anonymous data tables generalized by various
metrics in the experiments, we compared their qualities in terms of accuracies of ag-
gregate query answering and classification. We also investigated relationships among
application accuracy, algorithms, and anonymization parameters(e.g., the anonymity
requirement, k).

6.1 Experimental Settings

For the synthetic dataset, StudentScore consisting of 5 attributes college major, study
hours, credit, score, score class was exploited, whose characters is shown in Table 7.
The first three attributes were considered as QI attributes as well as predictor attributes,
score was the sensitive attribute, and score class was the target attribute. To simulate
the scenario where attribute study hours is strongly correlated with the target attribute
score class, the values for score were generated according to Equation 6 and Equation 7.
Totally 20000 tuples were generated for StudentsScore.

Table 7. StudentScore Dataset

Attribute Distribution Type of Attribute
college major random one from set of � computer, math, physics, biology� categorical
study hours uniform integer in [0� 50] numerical

credit uniform integer in [0� 4] numerical
score uniform integer in [S l� S h] numerical

score class [0� 60), [60� 80), [80� 100] target

S l �

study hours � 50

100
� f actor(colledge ma jor) � 0�8� (6)

S h �

study hours � 50

100
� f actor(colledge ma jor)� (7)

148 Y. Liu, T. Wang, and J. Feng

f actor(x) �

�����������������

1� x � computer

0�9� x � mathematics

0�8� x � physics

0�8� x � biology

For the real dataset, Adult from the UCI Machine Learning Repository[16] was ex-
ploited, which consists of 30162 records after removing records with missing values.
In our experiments, only eight attributes age, education, martial status, race, gender,
hours per week, work class, salary are retained, among which age, education, martial
status, race, gender, hours per week, work class were considered as QI attributes as well
as predictor attributes, and salary was designated as the sensitive attribute. For classi-
fication, a new target attribute salary class was added by transforming the numerical
salary into a salary class (� 50K or � 50K).

In our experiments, we adopted k-anonymity as the anonymity principle. Besides
of algorithms s-RAC, s-D���F��, RAC and D���F��, we also implemented the Top-
Down Specialization (TDS) algorithm[6] which incorporates a single target classifica-
tion model to investigate the impact of a task-dependent metric. All of algorithms were
built in Eclipse 3.1.2 with JDK 5.0, and executed on a dual-processor Intel Pentium D
2.8 GHz machine with 1 GB main memory running Microsoft Windows Server 2003.

6.2 Aggregate Query Answering Accuracy

Aggregate query answering is one of the most significant applications of anonymous
datasets, so in this experiment we compared aggregate query answering accuracies of
anonymous datasets generated based on di�erent metrics to evaluate the performance
of SILM. We used StudentScore as the tesing dataset and designed the query S UM(Ai)
in the following form:

Select S UM(Ai) From Y Where A1 � a1 And A2 � a2

Here, Ai denote QI attribute. Relative error rate (e� ratio) was employed to measure
the quality of returned results of a query. Specifically, let est and act be the results of
a query q running over the anonymous table and an original table respectively, then
e � ratio �

�act�est�
act . The none�all principle was used to calculate est[15]. Suppose G�

represents a QI group that satisfying the query, the value of Ai of G� is generalized to
[Li, Hi], then we have est �

�
�G� �G�� � Hi.

Using di�erent five algorithms(i.e., s-RAC, RAC, s-D���F��, D���F�� and TDS),
StudentScore was generalized into 5 anonymous tables. We processed a workload of
10,000 queries on these tables, and used average error rate to evaluate their answering
ability. Figure 1 reports the result of the experiment. As shown in the figure, the query
accuracy of the TDS-based table is much lower than that of the other four tables for
di�erent k values. This phenomenon conforms to what we have discussed in Section 4.
When doing generalization, TDS does not consider the distortion of QI attributes at all
and only focuses on the information intuitively related to the task of classification, such
as information gain. Thus, compared to those task-independent metrics such as LM and
SILM, task-dependent metrics would bring about much more information loss which
furthermore a�ects the query answering accuracy.

A Semantic Information Loss Metric for Privacy Preserving Publication 149

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

4 10 30 50 80 100 200 400 500

er
ro

r
ra

te
(%

)

size of k
(a) StudentCore

original
s-RAC

s-DataFly
TDS

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

4 10 30 50 80 100 200 400 500

er
ro

r
ra

te
(%

)

size of k
(b) Adult

original
s-RAC

s-DataFly
TDS

Fig. 1. Aggregate Query Answering Accuracy

6.3 Classification Accuracy

Methodology. To evaluate data qualities of anonymous data generated using SILM and
other metrics, we also used the workload of classification. In comparison with works in
[7], here only classifiers built on anonymous data were exploited to classify the original
data. The original dataset was randomly partitioned into two equal sets, one for training
and the other one for testing. Note that the training set must be anonymized before
training. After then, the classifier built on anonymous training set was used to classify
the testing set consisting of original data. We repeated the classification 10 times and
shown average results in experimental figures.

To compare the classification accuracy of classifiers trained on anonymous data pro-
duced by di�erent anonymization algorithms with di�erent quality metrics, we also
conducted a series of experiments on both real datasets and synthetic datasets. For clas-
sification models, we used the libSVM library[17] and the Naive Bayes classifier from
Weka software package[18].

Comparison with previous task-independent metric. First, we evaluated e�ects of
SILM through comparison with a typical task-independent information loss metric, i.e.,
LM. Four k-anonymous datasets were generated using four algorithms (s-RAC, RAC,
s-D���F��, D���F��) based on the same training set. Then we compared classification
accuracies yielded by these four anonymous data sets. The classification accuracy over
the original data set was used as as the baseline, which is denoted as Orignal. The re-
sults are shown in Figure 2, Figure 3, Figure 4 and Figure 5. From the figures, we can
see that no matter which algorithm was adopted, classifiers trained on SILM-based data
set always outperformed than those classifiers trained on LM-based data set. Figure 2(a)
depicts that when k becomes larger, SILM performs better(about 1�5% on the average,
when k�80) than LM. Furthermore, when the dataset is synthetic, as shown in Fig-
ure 4, SILM almost achieve the same performance as baseline Original when k � 400.
This is not surprising because SILM can capture the real correlation between predictor
attributes and the target attribute.

As shown from Figure 2 to Figure 5, when employing the same data quality metric, s-
RAC always outperformed than s-D���F��. The superiority is more prominent when k �

10. This is because s-D���F�� is a partition-based algorithm and uses global recoding

150 Y. Liu, T. Wang, and J. Feng

while s-RAC is cluster-based and uses local recoding. As we known, partitioning is less
flexible and precise than clustering when grouping tuples according to their relationship.
So s-D���F�� is weak in producing high quality anonymous data.

From Figure 2 to Figure 5, all show that classification accuracies decreased while k
increases. This is reasonable because larger QI group means more tuples are generalized
together, more information loss is inevitable.

 69

 70

 71

 72

 73

 74

 75

 76

4 10 30 50 80 100 200 400 500

cl
as

si
fi

ca
tio

n
ac

cu
ra

cy
(%

)

size of k
(a) RAC algorithm

original
RAC

s-RAC
TDS

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

4 10 30 50 80 100 200 400 500

cl
as

si
fi

ca
tio

n
ac

cu
ra

cy
(%

)

size of k
(b) DataFly algorithm

original
DataFly

s-DataFly
TDS

Fig. 2. Classification Accuracy of Naive Bayes (Adult)

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

4 10 30 50 80 100 200 400 500

cl
as

si
fi

ca
tio

n
ac

cu
ra

cy
(%

)

size of k
(a) RAC algorithm

original
RAC

s-RAC
TDS

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

4 10 30 50 80 100 200 400 500

cl
as

si
fi

ca
tio

n
ac

cu
ra

cy
(%

)

size of k
(b) DataFly algorithm

original
DataFly

s-DataFly
TDS

Fig. 3. Classification Accuracy of SVM (Adult)

 74

 75

 76

 77

 78

 79

 80

 81

 82

4 10 30 50 80 100 200 400 500

cl
as

si
fi

ca
tio

n
ac

cu
ra

cy
(%

)

size of k
(a) RAC algorithm

original
RAC

s-RAC
TDS

 74

 75

 76

 77

 78

 79

 80

 81

 82

4 10 30 50 80 100 200 400 500

cl
as

si
fi

ca
tio

n
ac

cu
ra

cy
(%

)

size of k
(b) DataFly algorithm

original
DataFly

s-DataFly
TDS

Fig. 4. Classification Accuracy of Naive Bayes (StudentScore)

A Semantic Information Loss Metric for Privacy Preserving Publication 151

 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84

4 10 30 50 80 100 200 400 500

cl
as

si
fi

ca
tio

n
ac

cu
ra

cy
(%

)

size of k
(a) RAC algorithm

original
RAC

s-RAC
TDS

 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84

4 10 30 50 80 100 200 400 500

cl
as

si
fi

ca
tio

n
ac

cu
ra

cy
(%

)

size of k
(b) DataFly algorithm

original
DataFly

s-DataFly
TDS

Fig. 5. Classification Accuracy of SVM (StudentScore)

Finally, comparing Figure 4 (Figure 5) with Figure 2 (Figure 3), it is shown that the
e�ect of SILM on classification accuracy is more significant for the synthetic dataset
StudentScore than for the real dataset Adult. This is because we intentionally empha-
sized the correlation between score and studyhours when generating the table. In other
words, as a semantic metric, SILM is more sensitive to the dataset where strong cor-
relations among attributes exist, and certainly performs much better for such data set
especially in applications which aims to mine the correlations among attributes.

Comparison with previous task-dependent metric. Second, we compared SILM-
based and LM-based algorithms with TDS to gage the performance of SILM in term
of classification accuracy. Note that only TDS employs classification-conscious met-
ric when doing generalization. Look at Figure 2(b), Figure 4(b), Figure 3(b) and Fig-
ure 5(b). It is not surprising to see that s-D���F�� and D���F�� performed not so well as
TDS, because TDS is specially developed for classification and DataFly often causes
large information loss due to its inherent limitations. But when referring to Figure 2(a),
Figure 4(a), Figure 3(a) and Figure 5(a), it is unexpected that s-RAC almost always
yields much higher accuracy than TDS. This phenomenon gives us such an insight that
the superiority of task-dependent metric in generating task-specific anonymous data set
is not deterministic. For example, TDS tried to achieve higher accuracy in classifica-
tion at the expense of high information loss in anonymization and this even limited
its utility for other applications. We think that the utility of anonymous data is in fact
a�ected by multiple elements such as anonymization algorithms, recoding techniques,
information loss metrics, potential applications and so on. Proper choice of these ele-
ments would help improve the utility of anonymous data. For example, by exploiting
SILM and s-RAC algorithm, we can achieve better classification accuracy at the cost of
lower information loss.

7 Conclusion and Future Work

In this paper, we propose a novel semantic information loss metric (SILM), which takes
into account the correlations between QI attributes and target attribute when measuring

152 Y. Liu, T. Wang, and J. Feng

the information loss. Theoretical analysis reveals that our metric is sound in semantic
and is in accordance with the widely accepted LM metric in special cases. Extensive
experiments also confirm that our metric can produce more useful anonymous datasets
for more applications than previous metrics can.

Now we only consider the scenario that only one QI attribute is correlated with the
target attribute. In fact, in most cases, more than one QI attribute have correlations with
target attribute and the impact of these correlations on target attribute are various. In the
future, we will investigate how to model these correlations and impacts in information
loss metric.

References

1. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppres-
sion. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5),
571–588 (2002)

2. Roberto, J., Bayardo Jr., Agrawal, R.: Data privacy through optimal k-anonymization. In:
ICDE 2005, pp. 217–228 (2005)

3. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In:
ICDE 2006, p. 25 (2006)

4. Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Fu, A.W.C.: Utility-based anonymization using
local recoding. In: SIGKDD 2006, pp. 785–790 (2006)

5. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Workload-aware anonymization. In: SIGKDD
2006, pp. 277–286 (2006)

6. Fung, B.C.M., Wang, K., Yu, P.S.: Top-down specialization for information and privacy
preservation. In: ICDE 2005, pp. 205–216 (2005)

7. Inan, A., Kantarcioglu, M., Bertino, E.: Using anonymized data for classification. In: ICDE
2009, pp. 429–440 (2009)

8. Xiao, X., Tao, Y.: Personalized privacy preservation. In: SIGMOD 2006, pp. 229–240 (2006)
9. Xiao, X., Tao, Y.: M-invariance: towards privacy preserving re-publication of dynamic

datasets. In: SIGMOD 2007, pp. 689–700 (2007)
10. Xiao, X., Tao, Y.: Anatomy: Simple and e�ective privacy preservation. In: VLDB 2006, pp.

139–150 (2006)
11. Du, Y., Xia, T., Tao, Y., Zhang, D., Zhu, F.: On multidimensional k-anonymity with local

recoding generalization. In: ICDE 2007, pp. 1422–1424 (2007)
12. Aggarwal, G., Feder, T., Kenthapadi, K., Khuller, S., Panigrahy, R., Thomas, D., Zhu, A.:

Achieving anonymity via clustering. In: Proc. of the 25th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pp. 153–162 (2006)

13. Li, J., Wong, R.C.W., Fu, A.W.C., Pei, J.: Anonymization by local recoding in data with
attribute hierarchical taxonomies. IEEE Trans. Knowl. Data Eng. 20(9), 1181–1194 (2008)

14. Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: SIGKDD 2002, pp. 279–
288 (2002)

15. Liu, Y., Lv, D., Ye, Y., Feng, J., Hong, Q.: Set-expression based method for e�ective pri-
vacy preservation. In: Proc. of the Ninth International Conference on Web-Age Information
Management, pp. 325–332 (2008)

16. Newman, D., Hettich, S., Blake, C., Merz, C.: Uci repository of machine learning databases
(1998), �����			�����������������
����� ��!��!������

17. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines (2001),
�����			�������������	���������"�#�

18. Witten, I.H., Frank, E.: Datamining:Practiacal machine learning tolls and techniques, 2nd
edn. Prentice-Hall, Englewood Cli�s (2000)

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.csie.ntu.edu.tw/cjlin/libsvm

On t-Closeness with KL-Divergence and Semantic
Privacy

Chaofeng Sha1, Yi Li1, and Aoying Zhou2

1 School of Computer Science, Fudan University, China
{cfsha,liy}@fudan.edu.cn

2 Software Engineering Institute, East China Normal University, China
ayzhou@sei.ecnu.edu.cn

Abstract. In this paper, we study how to sanitize the publishing data with sen-
sitive attribute to achieve t-closeness and δ-disclosure privacy under Incognito
framework. t-closeness is a privacy measure proposed to account for skewness
attack and similarity attack, which are limitations of l-diversity. Under the t-
closeness model, the distance between the privacy attribute distribution and the
global one should be under the threshold t. Whereas semantic privacy (δ-disclosure
privacy) is used to measure the incremental information gain from the anonymized
tables. We use the Kullback-Leibler divergence to measure the distance between
distributions and discuss the properties of the semantic privacy. We also study
the relationship between t-closeness with KL-divergence and semantic privacy,
and show that t-closeness with KL-divergence and δ-disclosure privacy satisfy
the generalization property and the subset property, which entail us to use the
Incognito algorithm. Experiments demonstrate the efficiency and effectiveness of
our approaches.

1 Introduction

Many organizations and corporations publish data for information sharing and research.
It results in the issues of privacy protection. Researchers [16,18] showed that simple re-
moval of identifier attributes, such as name and social security number, can not protect
the privacy of individual sensitive information because a specific individual can be iden-
tified by joining several public data sets. In the point of view of data management, we
study how data could be sanitized to meet the wide requirements of privacy preser-
vation under the assumption that identifier attributes have been deleted and remainder
attributes including quasi-identifier and sensitive attributes.

Now there are already several privacy models or measures such as k-anonymity, l-
diversity, t-closeness and δ-disclosure privacy. k-anonymity requires that every record
is indistinguishable with at least k − 1 other records in the table, i.e., have the same
quasi-identifier attributes, which is called an equivalence class. Some common tech-
niques to achieve k-anonymity are generalization, suppression and clustering. While
k-anonymity is vulnerable to the homogeneous attack, which means an adversary can
infer exactly the individual’s sensitive value when the sensitive values in an equiva-
lence class are same. So l-diversity is proposed, which requires the sensitive values in
each equivalence class can not be too skew, for example, the entropy of sensitive at-
tribute distribution is larger than a threshold. Although l-diversity solved the problem

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 153–167, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

154 C. Sha, Y. Li, and A. Zhou

with k-anonymity, it can be attacked by skewness attack and similarity attack through
analyzing the semantic of sensitive attributes. The skewness attack is possible if there is
a significant difference between the sensitive attribute distribution of some equivalence
classes and global one. And similarity attack is possible if the sensitive attribute values
in an equivalence class are similar. And then adversary can infer the sensitive value of
some individuals.

Through analyzing the risk of privacy leakage in all previous methods, [11] proposed
t-closeness, which requires that the distance between the distribution of sensitive value
in every equivalence class and the global one is less than a threshold t. [11] uses Earth
Mover’s Distance to measure the distance between two distributions. Although it can
handle several attribute types, there is no explicit expression for general case and the
ground distance should be manually set for specific applications.

Our work is mainly based on works of [4,11] and the framework of Incognito
algorithm[9]. We propose the t-closeness with Kullback-Leibler divergence, which has
two necessary properties required by Incognito algorithm. Then we study semantic pri-
vacy (disclosure privacy), through analyzing its strength and properties. Furthermore,
the experiments demonstrate the efficiency of our algorithm and quality of anonymized
data.

The main contributions of this paper are as follows: 1). We use Kullback-Leibler
divergence to measure the distance between distributions of sensitive value, and prove
that Kullback-Leibler divergence has the generalization property and subset property re-
quired by Incognito algorithm. 2). We reexamine semantic privacy, named δ-disclosure
privacy proposed in [4], and furthermore discuss its properties, includes proving that
semantic privacy is stronger than t-closeness with KL-divergence. 3). We implement t-
closeness with KL-divergence and δ-disclosure privacy under the framework of Incog-
nito algorithm, and demonstrate the performance of our approach and verify the quality
of the anonymized data.

The rest of this paper is organized as follows. In Section 2 we introduce several pri-
vacy models and discuss their potential drawbacks, and focus on t-closeness with EMD.
In Section 3 we propose the t-closeness with KL-divergence, and study its properties.
We reexamine the δ-disclosure privacy, KL-divergence and their properties, study the
relationship between t-closeness with KL-divergence and δ-disclosure privacy. In Sec-
tion 5 we report experiments on real data sets and demonstrates the performance of our
methods and the quality of anonymized data. Section 6 summarizes the related work
and applications of KL-divergence. We conclude our work in Section 7.

2 Some Basic Models

This section is devoted to a brief review of several privacy preservation models. Given
a data table T = {t1, · · · , tn}, where a record ti represents an individual with sev-
eral attributes. Let A = {A1, · · · , Aa} be the attribute set and t[Ai] be the value of
attribute Ai of record t. The common model is adopted, where a table T consists of a
quasi-identifier attribute set, QI , such as Zip Code, gender, and age, which can be used
to identify individual, and a set S consists of the sensitive value such as disease. As
mentioned in previous section, an equivalence class consists of records with the same

On t-Closeness with KL-Divergence and Semantic Privacy 155

QI , namely if two records ti, tj satisfy ti[QI] = tj [QI], they belong to the same equiv-
alence class. We also adapt S in this paper to denote the set of all sensitive value, e.g.
a set of all diseases. And we only discuss the case with single sensitive attribute. These
concepts, the k-anonymity model and generalization will be introduced through a sim-
ple example. In Table 1a, name and the other information used for identification have
been deleted, quasi-identifier is {ZIP Code, Age, Sex}, sensitive attribute is Disease.
Even identity information has been removed, Cancer disease can still be inferred if a
male has the properties of ZIP code 47902 and age 50.

Due to the risk of privacy leakage, [16] introduced k-anonymity model. If an equiv-
alence class E in table T has at least k records, it satisfies k-anonymity. If all equiva-
lence classes satisfy k-anonymity, the table satisfies k-anonymity also. Generalization
and suppression techniques have been developed to achieve k-anonymity [17]. By gen-
eralization, the QI value is replaced by more general one, such as ZIP Code with 47612
and 47620 would be replaced as 476** and gender {Female,Male} would be replaced
as *. Generally, there is a hierarchical generalization tree defined on each attribute. So
we can define total order on generalization among attribute sets, where G2 is more gen-
eralized than G1 on attribute set A, denoted as G1 ≤ G2, if G1 is less generalized
than G2 for every attribute in A. For more information about hierarchical generaliza-
tion tree the readers can be referred to [9]. While through suppression we just delete a
quasi-identifier value or a whole record from a table.

Table 1. Original Data and Anonymized Table

ZIP Code Age Sex Disease
47612 25 Male Viral Infection
47620 28 Female Viral Infection
47901 45 Female Heart Disease
47902 50 Male Cancer

(a) Original Table

ZIP Code Age Sex Disease
476** 2* * Viral Infection
476** 2* * Viral Infection
4790* ≥ 40 * Heart Disease
4790* ≥ 40 * Cancer

(b) Anonymized Table: 2-anonymous

After generalization of data in Table 1a, we have the new data in Table 1b, where the
first two records and the last two records form an equivalence class respectively. It is
obvious that the table 1b is 2-anonymous. Now we can not infer the exact disease of the
male with ZIP Code 47902 and age 50. But k-anonymity still has a flaw. It produces a
group with the same sensitive value, where all sensitive attributes have the same value in
some equivalence classes. Using homogeneousattack, an adversary can still successfully
deduce the sensitive value. Looking at the first equivalence class in Table 1b, if we know
someone is in this equivalence class, we know that he has Viral Infection.

This flaw was first found in [13]. And l-diversity was proposed consequently. Before
the formal definition, several notations will be first introduced. pE(s) is the probabil-
ity of sensitive attribute s ∈ S in equivalence class E, namely pE(s) = fE(s)

|E| =
|{t∈E:t[S]=s}|

|E| , where fE(s) is the frequency of sensitive value s in E. Similarly, pT (s)

is the probability of sensitive attribute s ∈ S in table T , namely pT (s) = f(s)
|T | =

|{t∈T :t[S]=s}|
|T | , where fT (s) is the frequency of sensitive value s in T .

156 C. Sha, Y. Li, and A. Zhou

Definition 1 (Entropy l-diversity). A table is Entropy l-diverse if for each equivalence
class E: H(pE) = −

∑
s∈S

pE(s) log pE(s) ≥ log l.

Many works (e.g. [7,19]) devised some anonymization methods for l-diversity, which
also has flaws and suffers to some attacks like homogeneous attack to k-anonymity. Two
important attacks are skewness attack and similarity attack, where the sensitive attribute
of l different values is similar in an extent or naturally the same in some equivalence
classes for l-diversity. For example, in an anonymized salary table satisfying l-diversity,
all salary values are in the range of 1000-1500 in an equivalence class which are much
lower than the average salary 3000. So an adversary can infer that they are low in-
comes employee. The more skewness attack and similarity attack can be referred to
[11]. Consequently, [11] proposed t-closeness privacy measure. It strictly requires that
the distance between distribution of sensitive value of each equivalence class and the
global one is less than a threshold, which means that an adversary can only gain much
less posterior knowledge from anonymized data and hence enhances the privacy.

Definition 2 (t-closeness). An equivalence class E is said to have t-closeness if the
distance between the distribution of a sensitive attribute in this class, pE , and the dis-
tribution of the attribute in the whole table, pT , is no more than a threshold t. A table
is said to have t-closeness if all equivalence classes have t-closeness.

The parameter t in t-closeness enables one to trade off between utility and privacy. Now
the problem is to measure the distance between two probabilistic distributions. There
are a number of ways to define the distance between them, which can be variational
distance, Hellinger distance, Kullback-Leibler divergence, or Earth Mover’s Distance
(EMD) in [11]. The EMD is based on the minimal amount of work needed to transform
one distribution to another by moving distribution mass between each other. While the
original definition of EMD does not give a explicit expression of EMD distance between
any two distributions. Some explicit formulas were given in [11] for special cases with
numerical and categorical type. The readers can be referred to it further. And as pointed
out in [4], the EMD is an additive (as opposed to multiplicative) measure, and does
not translate directly into a bound on the adversary’s ability to learn sensitive attributes
associated with a given quasi-identifier.

3 t-Closeness with KL-Divergence

This paper focuses on anonymization problem of discrete (categorical) sensitive at-
tribute. We will study the properties of t-closeness with KL-divergence and semantic
privacy. Here we use KL-divergence for it is multiplicative, relatively efficient to calcu-
late and does not need to define ground distance. Then we can establish the relationship
between t-closeness with KL-divergence and semantic privacy.

Definition 3. Given two probability distributions p = (p1, ..., pN) and q = (q1, ..., qN),
the Kullback-Leibler (KL) divergence between p and q is defined as follows:

KL(p||q) =
N∑

i=1

pi log
pi

qi

On t-Closeness with KL-Divergence and Semantic Privacy 157

Here 0 log 0 = 0 by convention.

Now we consider the t-closeness with KL-divergence as distance. The t-closeness can
be reformulated as follows:

Definition 4 (t-closeness with KL-divergence). An equivalence class E has t-closeness
if the KL-divergence KL(pE ||pT), between the sensitive attribute distribution of class
E and the one of whole table T is less than a threshold t. A table T satisfies t-closeness
if all equivalence classes have t-closeness.

Consider the example in [11], which has the EMD distance 0.1 between two distribution
(0.01, 0.99) and (0.11, 0.89) and the EMD distance is also 0.1 between distribution
(0.4, 0.6) and (0.5, 0.5). For these two pairs, we have max

{∣∣log 0.11
0.01

∣∣ , ∣∣log 0.89
0.99

∣∣} =
3.4594 and max

{∣∣log 0.5
0.4

∣∣ , ∣∣log 0.5
0.6

∣∣} = 0.3219 respectively.
Obviously there is a remarkable difference between two pairs of distributions. Fur-

thermore, we can also demonstrate an application of KL-divergence to t-closeness
through another example with data set as Table 2 [13], where Disease is the sensitive
attribute.

Table 2. Anonymized Table

ZIP Code Age Nationality Disease
1 476** 2* * Heart Disease
2 476** 2* * Viral Infection
3 476** 2* * Cancer
4 476** 2* * Cancer
5 4790* ≥ 40 * Viral Infection
6 4790* ≥ 40 * Heart Disease
7 4790* ≥ 40 * Viral Infection
8 4790* ≥ 40 * Cancer
9 476** 3* * Cancer

10 476** 3* * Cancer
11 476** 3* * Viral Infection
12 476** 3* * Heart Disease

The distributions in Table 3 can be computed from Table 2, where E1, E2, E3 corre-
spond to 3 equivalence classes separated by horizontal line respectively. After sim-
ple calculation, the KL-divergences between sensitive attribute distribution of each
equivalence class and the global one are KL(pE1 , pT) = KL(pE3 , pT) = 0.0278
and KL(pE2 , pT) = 0.1082 respectively. Therefore the anonymized table has 0.1082-
closeness.

3.1 Properties of t-Closeness with KL-Divergence

In this subsection, we will show that t-closeness with KL-divergence holds several prop-
erties, such generalization subset and rollup. Then we can implement it in the Incognito
algorithm framework.

158 C. Sha, Y. Li, and A. Zhou

Table 3. Table of Probability Distribution

Cancer Heart Disease Viral Infection
pT 5/12 1/4 1/3
pE1 1/2 1/4 1/4
pE2 1/4 1/4 1/2
pE3 1/2 1/4 1/4

Lemma 1. Given two equivalence classes E1 and E2, the sensitive attribute distribu-
tions on E1, E2, and E1 ∪ E2 are denoted as P1, P2, and P respectively. We have:

KL(P ||pT) ≤ |E1|
|E1|+ |E2|

KL(P1||pT) +
|E2|

|E1|+ |E2|
KL(P2||pT)

Proof. By the condition in the lemma,

P (s) =
|E1|

|E1|+ |E2|
P1(s) +

|E2|
|E1|+ |E2|

P2(s)

KL-divergence is convex in terms of first variable [6]. That means for any three distri-
butions p1, p2 and q, we have that KL(λp1 + (1 − λ)p2||q) ≤ λKL(p1||q) + (1 −
λ)KL(p2||q), where 0 ≤ λ ≤ 1.

Combining the previous two facts, we prove the inequality in this lemma.

It follows that KL(P ||pT) ≤ max{KL(P1||pT), KL(P2||pT)}. This means that when
two equivalence classes are being merged, the maximum KL-divergence between any
sensitive attribute distribution of equivalence class from the overall distribution can
never increase.

With Lemma 1, we can prove that t-closeness with KL-divergence has two proper-
ties, which are required to use the Incognito generalization algorithm which has been
used in previous works to achieve k-anonymity, l-diversity or t-closeness.

Property 1 (Generalization Property). Let T be a table, and let G1 and G2 be two gen-
eralizations on T such that G2 is more general than G1 (G1 ≤ G2). If T satisfies
t-closeness using G1, then T also satisfies t-closeness using G2.

Proof. Assume that generalized by G1, T = E1,1∪E1,2∪· · ·∪E1,g1 , and T satisfies t-
closeness, i.e., for each equivalence class E1,j , (1 ≤ j ≤ g1) we have KL(pE1,j ||pT) ≤
t. Then by generalization G2, T = E2,1 ∪ E2,2 ∪ · · · ∪ E2,g2 . Due to the fact that
G1 ≤ G2, then we know that each equivalence class E2,i is a union of some equivalence
classes E1,js. It means that there exist E1,j1 , · · · , E1,jm such that E2,i = E1,j1 ∪ · · · ∪
E1,jm . Therefore,

KL(pE2,i ||pT) ≤ max{KL(pE1,j1
||pT), · · · , KL(pE1,jm

||pT)} ≤ t

namely equivalence classE2,i satisfies t-closeness. And then tableT satisfies t-closeness.

On t-Closeness with KL-Divergence and Semantic Privacy 159

Property 2 (Subset Property). Let T be a table and let A1 be a set of attributes in T . If
T satisfies t-closeness with respect to A1, then T also satisfies t-closeness with respect
to any set of attributes A2 such that A2 ⊆ A1.

Proof. The equivalence class with respect to attribute set A2 is a union of some equiv-
alence classes with respect to attribute set A1 in table T . If every equivalence class has
t-closeness with respect to A1, the equivalence class also has t-closeness with respect
to A2. It means table T has t-closeness with respect to A2.

During the generalization, we need the following auxiliary information of equivalence
class: the number of records and frequency of each sensitive value for computing prob-
ability. Therefore we need rollup property [9], which is similar to the operation along
dimension hierarchies in OLAP processing.

Property 3 (Rollup Property). Given a table T and two attribute sets A1 and A2 of
T with A1 ⊆ A2. If we have the frequency set f1 of T with respect to A1, then the
frequency set f2 of T with respect to A2 is a summation of item in frequency set f1
along the path of generalization from A1 to A2.

3.2 t-Closeness with JS-Divergence

In this subsection, we briefly discuss t-closeness with JS-divergence. Privacy leaks oc-
cur only when the adversary learns sensitive information beyond the overall distribution
pT (s). To measure the privacy loss, the following JS-divergence was introduced in [12]:

JS(p, q) =
1
2

(
KL

(
p||p + q

2

)
+ KL

(
q||p + q

2

))
.

This divergence measure avoids the illness of KL-divergence when there are zero prob-
abilities in the second distribution p. And we have the following property that the JS-
divergence is also convex.

Property 4 (Convexity of JS-divergence). For any three distributions p1, p2 and q, we
have:

JS(p, λq1 + (1 − λ)q2) ≤ λJS(p, q1) + (1− λ)JS(p, q2)

where 0 ≤ λ ≤ 1.

Therefore, we can also use the Incognito algorithm to implement the t-closeness with
JS-divergence as the discussion of t-closeness with KL-divergence in the above subsec-
tion. We omit the details due to the space limit.

3.3 Relationship with t-Closeness with EMD

To use t-closeness with EMD, we need to calculate the EMD between two distributions.
Although we can calculate EMD using min-cost flow algorithms, these algorithms do
not provide an explicit formula [11]. Therefore some explicit formula was provided
in [11] to compute the EMD between distribution. For categorical attributes, the equal

distance is as follows [11]: D[p, q] = 1
2

m∑
i=1
|pi − qi|.

By Pinsker’s inequality [6], we know that KL(p||q) ≥ 2D2[p, q]. Therefore, t-
closeness with KL divergence is 1

2

√
t-closeness with EMD.

160 C. Sha, Y. Li, and A. Zhou

3.4 Relationship with Entropy l-Diversity

According to the definition of KL-divergence, we have that

KL(pE||pT) =
N∑

i=1

pE(si) log
1

pT (si)
−H(pE).

Therefore, to achieve l-diversity and t-closeness with KL-divergence simultaneously
for some publishing data, the following condition should be satisfied for each equiva-

lence class E in the sanitized table:
N∑

i=1
pE(si) log 1

pT (si)
≤ t + l.

4 Semantic Privacy

As shown in [4], an adversary can still obtain the global sensitive value distribution,
namely ground distribution (pT (s1), · · · , pT (sN)), even if all microdata are published
by generalizing all quasi-identifier as the most general one. We hope that the published
table T ′, which is a sanitization of original table T , has the property that the distribution
of sensitive attribute is very close to ground distribution in each equivalence class [11].
In order to measure the incremental gain obtained by an adversary through sanitized
table T ′, [4] introduced the following definition.

Definition 5. (δ-DISCLOSURE PRIVACY). We say that an equivalence class E is δ-
disclosure private with respect to the sensitive attributes S if, for any s ∈ S which
appearing in E

DP (E, s) =
∣∣∣∣log

pE(s)
pT (s)

∣∣∣∣ ≤ δ

A table T is δ-disclosure private if any equivalence E is δ-disclosure private.

It is important to note that the above inequality should be satisfied for all sensitive values
s ∈ S according to the definition in [4]. This requirement is too strong. For example,
some equivalence class may not include all sensitive value. While the sensitive value
with small frequency pT (s) in a table may not occur in some equivalence class in the
case of t-closeness, which means pE(s) = 0. Here we only require that the sensitive
attribute values s which appear in some equivalence class satisfy that inequality.

In the rest of this subsection, S is a random variable of sensitive attribute, s is a
specific sensitive value, E is a random variable denoting equivalence class, and e is
a equivalence class instance, where p(s) = pT (s) and p(s|e) = pE(s). With these

notations, δ-disclosure privacy is reformulate as
∣∣∣log p(s|e)

p(s)

∣∣∣ ≤ δ. Firstly, we introduce

the following lemma established in [4].

Lemma 2. If table T satisfies δ-disclosure privacy, then we have H(S)−H(S|E) ≤ δ.

As noted in [4], this lemma shows that when a table satisfies δ-disclosure privacy, the
ability to build a predictor for sensitive attribute S based on the quasi-identifier QI is
bounded by δ. That means that the requirement of δ-disclosure privacy is stronger than

On t-Closeness with KL-Divergence and Semantic Privacy 161

the bound provided in the above lemma. Because in disclosure privacy definition, we
force the distributions {p(s) : s ∈ S} and {p(s|E) : s ∈ S} to be similar, not just have
the bounded difference between their entropy.

Even though t-closeness does not directly bound the gain in adversary’s knowledge,
it is similar in its spirit to semantic privacy; it, too, attempts to capture the difference
between the adversary’s baseline knowledge and the knowledge he gains from the quasi-
identifier of some equivalence classes in the sanitized table. As parameters (t and δ, re-
spectively) approach 0, both t-closeness and δ-disclosure privacy converge to statistical
independence of quasi-identifiers and sensitive attributes within the sanitized database
[4]. While compared to semantic privacy, t-closeness with KL-divergence in previous
section is relatively weaker. That we have the following result.

Lemma 3. If T satisfies δ-disclosure privacy, then it has δ-closeness. For any equiva-
lence class E in T , we have

KL(pE ||pT) ≤ δ.

Proof. By the fact that KL-divergence is nonnegative, we have

KL(pE ||pT) =
N∑

i=1

pE(si) log
pE(si)
pT (si)

=

∣∣∣∣∣
N∑

i=1

pE(si) log
pE(si)
pT (si)

∣∣∣∣∣
≤

N∑
i=1

pE(si)
∣∣∣∣log

pE(si)
pT (si)

∣∣∣∣
=

∑
i:pE(si) �=0

pE(si)
∣∣∣∣log

pE(si)
pT (si)

∣∣∣∣+ ∑
i:pE(si)=0

pE(si)
∣∣∣∣log

pE(si)
pT (si)

∣∣∣∣
By the fact that for any sensitive attribute si in the equivalence class E, we have

pE(si)
= 0, and
∣∣∣log pE(s)

pT (s)

∣∣∣ ≤ δ. While for any sensitive attribute si absent in E,

we have pE(si) = 0. And by the convention that 0 log 0 = 0, we have

KL(pE||pT) ≤
∑

i:pE(si) �=0

pE(si)
∣∣∣∣log

pE(si)
pT (si)

∣∣∣∣
≤

∑
i:pE(si) �=0

pE(si)δ ≤ δ

N∑
i=1

pE(si) = δ

Now we examine some properties of semantic privacy, which have not been developed
explicitly in the original work [4].

Lemma 4. Given two equivalence classes E1 and E2, let E be the union of E1 and
E2, then for any sensitive attribute s ∈ S we have

DP (E, s) ≤ max{DP (E1, s), DP (E2, s)}

162 C. Sha, Y. Li, and A. Zhou

Proof. The equivalence class E is the union of equivalence classes E1 and E2, means
that for any s ∈ S: p(s|E) = |E1|

|E1|+|E2|p(s|E1) + |E2|
|E1|+|E2|p(s|E2).

Thus, we have

DP (E, s) =
∣∣∣∣log

p(s|E)
p(s)

∣∣∣∣ =
∣∣∣∣∣∣log

|E1|
|E1|+|E2|p(s|E1) + |E2|

|E1|+|E2|p(s|E2)
|E1|

|E1|+|E2|p(s) + |E2|
|E1|+|E2|p(s)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣log max

⎧⎨
⎩

|E1|
|E1|+|E2|p(s|E1)

|E1|
|E1|+|E2|p(s)

,

|E2|
|E1|+|E2|p(s|E2)

|E2|
|E1|+|E2|p(s)

⎫⎬
⎭
∣∣∣∣∣∣

≤ max
{∣∣∣∣log

p(s|E1)
p(s)

∣∣∣∣ ,
∣∣∣∣log

p(s|E2)
p(s)

∣∣∣∣
}

= max{DP (E1, s), DP (E2, s)}

where the first inequality is due to the fact a+b
c+d ≤ max

{
a
c , b

d

}
for any a, b, c, d ≥ 0.

According to the Lemma 4, semantic privacy (δ-disclosure privacy) has two properties,
which are necessary to use Incognito framework to generalize microdata so that the
anonymized table satisfies k-anonymity, l-diversity or t-closeness.

Property 5 (Generalization Property). Given the table T , G1 and G2 are generaliza-
tions of T , and G1 ≤ G2, if T is δ-disclosure private with respect to G1, T is δ-
disclosure private with respect to G2.

Proof. With generalization G1, assume T = E1,1 ∪ E1,2 ∪ · · · ∪ E1,g1 , which is of δ-
disclosure privacy, So for every equivalence class E1,j , (1 ≤ j ≤ g1) and any sensitive
value s ∈ S, DP (E1,j , s) ≤ δ holds. While with generalization G2, there is T =
E2,1∪E2,2∪· · ·∪E2,g2 because of G1 ≤ G2, Because each equivalence class E2,i is a
union of some equivalence classes E1,js, which means that there are E1,j1 , · · · , E1,jm

such that E2,i = E1,j1 ∪ · · · ∪ E1,jm . Then we have:

DP (E2,i, s) ≤ max{DP (E1,j1 , s), · · · , DP (E1,jm , s)} ≤ δ.

It means that the equivalence class E2,i is δ-disclosure private. So the table T has δ-
disclosure private.

Property 6 (Subset Property). Given table T , A1 is a subset of attributes in T . If T is
δ-disclosure private with respect to A1, for any A2(A2 ⊆ A1), T is also δ-disclosure
private with respect to A2.

Proof. Since each equivalence class with respect to A2 is the union of some equivalence
classes with respect to A1 and each equivalence class with respect to A1 satisfies δ-
disclosure privacy, we conclude that each equivalence class with respect to A2 also
satisfies δ-disclosure privacy. Thus T satisfies δ-disclosure privacy with respect to A2.

With these two Properties and Rollup Property mentioned before, we can utilize the
Incognito algorithm. For more details of Incognito algorithm, the reader is refereed
to [9].

On t-Closeness with KL-Divergence and Semantic Privacy 163

5 Experimental Evaluation

In this section, we will demonstrate the performance of our method and verify the
quality of the anonymized data. We first show that our method is as efficient as the
other methods. Then we verify the data generated by anonymization algorithm, which
satisfies t-closeness or δ-disclosure privacy, has rather good quality. The implementa-
tion of Incognito algorithm is based on the Java source code implemented by database
group of Cornell University [1], which is modified to achieve t-closeness with KL-
divergence and semantic privacy. All experiments are running on a machine with In-
tel Pentium4 2.4GHz CPU, 2GB memory, and Microsoft Windows XP Professional
operating system.

In all experiments, we also use the Adult data set from UCI machine learning reposi-
tory, which is composed of 45222 records. After removal of records with some missing
value, there are still 30162 records. We run experiments on 8 attributes of the data set
with the same generalization in [11]. Table 4 lists attributes used, the number of dif-
ferent value of each attribute, the type of generalization and the height of hierarchical
generalization tree of each attribute.

Table 4. UCI Adult Data Set

Attribute Values Generalization Height
Age 74 numeric 5

Workclass 7 categorical 3
Education 16 categorical 4
Country 41 categorical 3

Martial Status 7 categorical 3
Race 5 categorical 3
Sex 2 categorical 2

Salary 2 sensitive 2
Occupation 14 sensitive 3

5.1 Performance

The time complexity of Incognito algorithm and the others, is an exponential function
of the number of quasi-identifiers. But in practice, the real running time is acceptable.
We have compared the time performance of 4 privacy measures: k-anonymity without t-
closeness, entropy l-diversity, t-closeness with KL-divergence and δ-disclosure privacy,
where the setting of specific parameters is given in the figures of experiments.

For Adult data set, Occupation is set as the sensitive attribute and the set of quasi-
identifier varies from 2 to 7 attributes. If the size of QI is i, the first i attributes
are taken as quasi-identifier. Similar to the experiments in [11], we set k = 5, l =
5, t = 1.4, δ = 1.4 to k-anonymity, entropy l-diversity, t-closeness, δ-disclosure pri-
vacy, respectively. As can be seen from the figures, the time of generalization for δ-
disclosure privacy and t-closeness is longer than it for k-anonymity without t-closeness

164 C. Sha, Y. Li, and A. Zhou

Fig. 1. Varied QI Size for k = 5, l = 5

and entropy l-diversity. But it is still acceptable. And the time curve of k-anonymity and
entropy l-diversity respectively is nearly the same as the result given by experiments in
[13].

We now fix the number of quasi-identifier as the first 4 of 7 attributes and vary
the parameters k, l, t, δ. And we get the result shown in Figure 1. As shown in figure,
entropy l-diversity spends least time for generalization, this maybe due to the pruning
process will be executed much earlier while l increasing during the generalization. For
generalization of t-closeness with KL-divergence, t has no notable effect on running
time over Adult data set.

5.2 Data Quality

We take first 4 of 7 attributes in table as quasi-identifier and Occupation as sensitive at-
tribute, which is the same as setting in [11]. Discernibility[3] and Minimal Average Size
[9] are taken to measure the quality of data generated by anonymization with 4 privacy
models. The discernibility metric measures the number of tuples that are indistinguish-
able from each other. Each tuple in an equivalence class E incurs a cost |E| and each
tuple that is completely suppressed incurs a cost |D| (where D is the original dataset).
Since we did not perform any tuple suppression, the discernibility metric is equivalent
to the sum of the squares of the sizes of the equivalence classes. The average size of the
equivalence classes generated by the anonymization algorithm. To evaluate the average
size of equivalence classes generated by anonymization algorithm, [13] even discussed
the effects of data skewness to these metrics.

With different value of parameter k, l, t, δ, we get results in Figure 2 for Discerni-
bility metric. It is observed that the value of metric is relative small of δ-disclosure pri-
vacy and t-closeness. Whereas the quality is worse than others even entropy l-diversity
has less generalization time. For δ-disclosure privacy and t-closeness, the quality of
anonymized data is improved with decreasing parameter value but with longer general-
ization time.

With the concern of minimized average size metric, Figure 2 shows that the quality
of anonymized data is relatively stable and is acceptable with δ-disclosure privacy and
t-closeness and with k-anonymity and entropy l-diversity respectively.

On t-Closeness with KL-Divergence and Semantic Privacy 165

Fig. 2. Value of Discernibility with Different Configurations of Parameters

6 Related Work

When public data are published, how to preserve privacy of individual, which means
that the identity and the sensitive information should be kept secret to others, has at-
tracted attention from the research area of database management and statistics. The first
privacy preservation model called k-anonymity was proposed in [16,18], where gen-
eralization and suppression techniques are developed to guarantee the k-anonymity of
published data.

In the model of generalization and suppression, it is NP-hard to implement
k-anonymity when k > 2 [14]. [14] designed an approximation algorithm with ap-
proximation ratio O(k log k) to minimized number of suppression. Recently the ratio
is improved to O(k) [2] and O(log k) [15]. A dynamic programming algorithm, Incog-
nito [9] provides k-anonymity through full-domain recoding. Any metric can be im-
plemented in this framework with generalization property and subset Property, such as
t-closeness[11] and l-diversity.

[13] showed the possibility of privacy leakage. If the most or all of the records
have the same sensitive value in an equivalence class, adversaries can infer individ-
ual sensitive information with high probability. So [13] solve it incompletely by in-
troducing l-diversity. [7,19] proposed several approaches to l-diversity. Anatomy [19]
splits the original table into two tables as a table with quasi-identifiers and a table
with sensitive attributes and they can be joined according to group information. The
work was expanded to transactional data [7]. But l-diversity can not prevent privacy
leakage if there are many records leading to the same individual [20]. In l-diversity
model, we restricts the knowledge owned by adversaries. While if adversaries have the
information on the global distribution of sensitive value, they may obtain some pri-
vacy information. Consequently [11] proposed t-closeness model as an extension of
l-diversity.

[10] provides algorithms for incorporating a class of target workloads, consisting
of classification or regression models, as well as selection predicates, when generat-
ing an anonymous data recoding. m-invariance [21,22] addresses both record inser-
tions and deletions in continuous data publish model, which ensures the intersection of
sensitive values over all quasi-identifier group of generalized data does not reduce the
set of sensitive values compared to each quasi-identifier group. [5] further relaxes the

166 C. Sha, Y. Li, and A. Zhou

privacy preservation scenario and assumes that quasi-identifier and sensitive values of
a record owner could change in sequential releasing. [5] showed that knowledge of the
mechanism or algorithm of anonymization for data publication can also lead to extra
information that assists the adversary and jeopardizes individual privacy. In particular,
all known mechanisms try to minimize information loss and such an attempt provides a
loophole for attacks, which was called minimality attack.

Whether data set has been sanitized for privacy protection or not, the data qual-
ity should be a very important measure of published data. We could improve data
quality by reducing the number of generalization and suppression, reducing the av-
erage number of quasi-identifier [13], and keeping marginal distribution [8]. [4] con-
sidered whether the quality of data generated with generalization and suppression of
quasi-identifier is better than generated by simply separating quasi-identifiers from sen-
sitive attributes and demonstrated experimentally that even for little privacy require-
ment, operations on data sets for privacy preservation could result in worse data qual-
ity. [4] also proposed semantic privacy which gives a semantic definition of sensi-
tive attribute disclosure. It captures the gain in the adversary’s knowledge due to his
observations of the sanitized dataset. A methodology for measuring the tradeoff be-
tween the loss of privacy and the gain of utility is also proposed in [4]. While the
most recent work [12] show that it is inappropriate to directly compare privacy with
utility, after analyzing three fundamental characteristics of privacy and utility. Based
on these characteristics, they also present a methodology for evaluating
privacy-utility tradeoff.

7 Conclusion and Future Work

In this paper, we propose t-closeness with KL-divergence, and study its properties.
We also reexamine the semantic privacy (namely δ-disclosure privacy), and discuss
the relationship between t-closeness with KL-divergence and δ-disclosure privacy. We
also implement an algorithm under the framework of Incognito algorithm to handle δ-
disclosure privacy and t-closeness with KL-divergence. Furthermore, we measure the
performance of generalization algorithm with different models and verify the quality of
anonymized data.

An important question is how to design microdata sanitization algorithms that pro-
vide both privacy and utility [4,12]. We will study the relationship between these pro-
posed privacy measures and data quality in the future, for example, the quality of pat-
terns mined from generalized data set.

Acknowledgements

This work is supported by National Natural Science Foundation of China under grant
No. 60903014, and National Hi-Tech 863 program under grant No. 2009AA01Z429.
We like to thank Dao Tao for the help in implementations.

On t-Closeness with KL-Divergence and Semantic Privacy 167

References

1. http://www.cs.cornell.edu/database/privacy/code/l-diversity/
incognito-ldiversity.tgz

2. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu, A.:
Approximation algorithms for k-anonymity. Journal of Privacy Technology (2005)

3. Bayardo, R., Agrawal, R.: Data privacy through optimal k-anonymization. In: ICDE 2005
(2005)

4. Brickell, J., Shmatikov, V.: The cost of privacy: Destruction of data-mining utility in
anonymized data publishing. In: KDD 2008 (2008)

5. Bu, Y., Fu, A., Wong, R., Chen, L., Li, J.: Privacy preserving serial data publishing by role
composition. In: VLDB 2008 (2008)

6. Cover, T., Thomas, J.: Elements of Information Theory. Wiley Interscience, Hoboken (1991)
7. Ghinita, G., Karras, P., Kalnis, P., Mamoulis, N.: Fast data anonymization with low informa-

tion loss. In: VLDB 2007 (2007)
8. Kifer, D., Gehrke, J.: Injecting utility into anonymized datasets. In: SIGMOD (2006)
9. LeFevre, K., DeWitt, D., Ramakrishnan, R.: Incognito: Efficient full-domain k-anonymity.

In: SIGMOD (2005)
10. LeFevre, K., DeWitt, D., Ramakrishnan, R.: Workload-aware anonymization. In: KDD 2006

(2006)
11. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-

diversity. In: ICDE 2007 (2007)
12. Li, T., Li, N.: On the tradeoff between privacy and utility in data publishing. In: KDD 2009

(2009)
13. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: Privacy

beyond k-anonymity. In: ICDE 2006 (2006)
14. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: PODS 2004

(2004)
15. Park, H., Shim, K.: Approximate algorithms for k-anonymity. In: SIGMOD 2007 (2007)
16. Samarati, P.: Protecting respondents identities in microdata release. IEEE Transactions on

Knowledge and Data Engineering 13, 1010–1027 (2001)
17. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppres-

sion. Int. Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10 (2002)
18. Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on Uncer-

tainty, Fuzziness and Knowledge-based Systems 10 (2002)
19. Xiao, X., Tao, Y.: Anatomy: Simple and effective privacy preservation. In: VLDB 2006

(2006)
20. Xiao, X., Tao, Y.: Personalized privacy preservation. In: SIGMOD 2006 (2006)
21. Xiao, X., Tao, Y.: m-invariance: Towards privacy preserving re-publication of dynamic

datasets. In: SIGMOD 2007 (2007)
22. Xiao, X., Tao, Y.: Dynamic anonymization: Accurate statistical analysis with privacy preser-

vation. In: SIGMOD 2008 (2008)

http://www.cs.cornell.edu/database/privacy/code/l-diversity/incognito-ldiversity.tgz
http://www.cs.cornell.edu/database/privacy/code/l-diversity/incognito-ldiversity.tgz

Competitive Privacy: Secure Analysis on Integrated
Sequence Data

Raymond Chi-Wing Wong1 and Eric Lo2

1 Hong Kong University of Science and Technology
2 Hong Kong Polytechnic University

Abstract. Sequence data analysis has been extensively studied in the literature.
However, most previous work focuses on analyzing sequence data from a single
source or party. In many applications such as logistics and network traffic analy-
sis, sequence data comes from more than one source or party. When multiple au-
tonomous organizations collaborate and integrate their sequence data to perform
analysis, sensitive business information of individual parties can be easily leaked
to the other parties. In this paper, we propose the notion of competitive privacy
to model the privacy that should be protected when carrying out data analysis
on integrated sequence data. We propose a query restriction algorithm that can
reject malicious queries with low auditing overhead. Experimental results show
that our proposed method guarantees the protection of competitive privacy with
only a significantly small portion of queries being restricted.

1 Introduction

Sequence data analysis has been studied extensively in the literature [4,6,2]. Most
previous work focuses on analyzing sequence data collected from a single source or
party. However, in applications such as logistics and network traffic analysis, some au-
tonomous enterprises may want to integrate their sequence data in order to carry out
joint data analysis. As a motivating example, consider the collaboration between a bus
company B and a metro company M in a city that has implemented RFID-based elec-
tronic transportation payment systems (e.g., Washington DC’s SmarTrip system). Each
passenger has an RFID-card that can be used as a form of e-money for the fare of var-
ious transportations. Each transportation company participates in the e-transport net-
work records a huge volume of passenger transactions every day. In this example, we
can view each passenger traveling history as a data sequence. In Figure 1a, if a passen-
ger traveled from “Airport Bus Stop” to “Downtown Bus Stop” by bus, transferred from
“Downtown Bus Stop” to “Downtown Station” (via a transfer terminal in “Downtown”)
and finally traveled from “Downtown Station” to “Uptown Station” by metro, her trav-
eling history can be represented as a data sequence (“Airport Bus Stop”, “Downtown
Bus Stop”, “Downtown Station”, “Uptown Station”).

Suppose that B and M collaborate and offer discounts to passengers who traveled
from the airport to uptown using a combination of bus and metro (transited at Down-
town). One interesting query is to ask the number of passengers who traveled from
“Airport Bus Stop” to “Uptown Station” via the transfer terminal in “Downtown”. Fur-
thermore, during data analysis, queries are often refined to different abstraction levels

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 168–175, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Competitive Privacy: Secure Analysis on Integrated Sequence Data 169

Airport Bus Stop

Downtown Bus Stop

Downtown StationUptown Station

Bay Bus Stop

Bay Station

King Bus Stop
Downtown
District

Downtown
Bus Stop

B M M B Mstop

district

territory

location(all)

Downtown
Station

Uptown
Station

Airport
Bus Stop

Domestic
Bus Stop

B B

Bay
Bus Stop

Bay
Station

Bay
District

Uptown
District

Airport
District

Urban
Region

Rural
Region

City

(a) A transportation network (b) A concept hierarchy

Fig. 1. Motivating Example

by the data analysts interactively. For example, if a concept hierarchy is defined for
stations/stops like the one in Figure 1b, then the above query may be “rolled-up” by
the user to ask for the number of passengers who traveled from “Airport District” to
“Uptown District” via the transfer terminal in “Downtown”. All these operations can
be handled by sequence analytical systems such as [2] and [4] efficiently. One way to
evaluate the analytical queries above is to have bus and metro to integrate their passen-
ger data, which are originally owned and stored separately. Let DM be the data owned
by M and DB be the data owned by B. DM and DB are integrated to form a new
dataset DI . In practice, however, both M and B actually do not want to disclose their
data to their competitors, if possible. For instance, assume that there are two services
operated by M and B separately from “Downtown District” to “Bay District”. Specif-
ically, M operates a service sM from “Downtown Station” to “Bay Station” while B
operates a service sB from “Downtown Bus Stop” to “Bay Bus Stop”. If passengers
want to travel from “Downtown District” to “Bay District”, they may choose either sM

or sB . Thus, these two services sM and sB are competitive. Suppose that M poses a
query and observes that the total number of passengers using service sB (operated by
B) is extremely large compared with its own service sM . M may then offer discounts
to customers who use its service sM in order to attract the customers originally using
service sB . It is easy to see that, once there are discounts for service sM , the original
service sB operated by B is definitely affected. Thus, the statistical information about
the total number of passengers using service sB can be regarded as the “competitive
privacy” of party B and that should get protected during data analysis.

The objective of this paper is to support data analysis, in particular, OLAP, on an
integrated sequence data set without compromising competitive privacy. Informally, let
Q(sB, f) be an aggregate sequence query [2] that specifies an aggregate function f on
all the sequences in the integrated data set DI that match sB and the data values in sB

are all owned by (or originated from) party B (formal definitions are given in Section 2),
we say that there is a breach of competitive privacy if given a real number e, other parties
(except B) can infer a value f̃ such that |f̃ − f(sB)| ≤ e, where f(sB) denotes the
answer of query Q. In this paper, we present a query restriction strategy to support data
analysis on an integrated sequence data set without breaching the competitive privacy of
any party. The strategy rejects a query Q if its answer can lead to a breach of competitive
privacy. Existing query restriction strategies like [1], [5] and [3] focus on the protection
of individual privacy or data privacy on a relational data set owned by a single party.
The query restriction strategy in this paper focuses on the protection of competitive
privacy on a sequence data set integrated from multiple autonomous parties.

170 R.C.-W. Wong and E. Lo

2 Preliminary

We are given a set V of values that are associated with a concept hierarchy. Figure 1b
shows a concept hierarchy. Nodes at the leaf level correspond to the values recorded in
the data. A node N is said to be ground if it is at the leaf level or non-ground if it is not.

Each value in V corresponds to a node in the concept hierarchy. Without ambiguity,
in the following, the terms “nodes” and “values” are used interchangeably. Each leaf
node N is associated with an ownership, denoted by N.T . For example, since “Down-
town Station” and “Uptown Station” are values originated from the metro company M ’s
data, the ownership of these nodes are M . In Figure 1b, the ownership of a leaf node
is next to itself. The non-leaf nodes such as “Downtown District” and “Urban Region”
are used for data analysis and they do not have any ownership.

Suppose there are m datasets D = {D1, D2, ..., Dm} owned by m parties P1, P2,
..., Pm, respectively. Each data set contains a number of sequences. A sequence s is
represented in the form of (N1, N2, ..., Nk) where Nl is a ground or non-ground value
in V for l ∈ [1, k]. We say that this sequence s is of length k. Implicitly, each value Ni

in s is associated with a timestamp, denoted by Ni.ts, such that if i < j, Ni.ts < Nj .ts
for any i, j ∈ [1, k]. Each sequence s in dataset Di is associated with a unique identifier,
denoted by s.id (e.g., the card id of an RFID card).

An integrated dataset DI can be obtained by integrating the set of databases D ac-
cording to the timestamp of the values. Specifically, let C be the set of sequence iden-
tifiers in D. For each x ∈ C, we obtain a set S of sequences from all datasets in D
such that S = {s ∈ D|s.id = x}. Let N be the multi-set containing the values
of all sequences in S. We generate a new sequence s′ of length |N | in the form of
(N1, N2, ...N|N |), such that if i < j, Ni.ts < Nj .ts for any i, j ∈ [1, |N |]. The new
sequence s′ will be inserted into the integrated dataset DI .

In this paper, we focus on aggregate sequence queries [2]. If such a query Q(s, f),
or simply Q if the context is clear, is posed on a sequence data set DI , it applies an ag-
gregate function f on all the sequences in DI that MATCH s, and returns a scalar value,
denoted as f(s), to a user. We remark that MATCH can be any pattern matching func-
tion. For example, it can be a sub-string matching function (i.e., if s is a sub-string of
a sequence s′ in DI , MATCH returns true) or a sub-sequence matching function (i.e.,
if s is a sub-sequence of s′ in DI , MATCH returns true). The technique in this paper
is applicable to all kinds of aggregate sequence queries discussed in [2]. Nonetheless,
for the sake of illustration, the following discussion mainly centers around the COUNT
aggregation function and the sub-string matching function. Therefore in the following,
unless stated otherwise, we assume a query Q(s, f) on DI means that for each se-
quence in DI which contains s as substring (despite the number of occurrences of s in
a sequence) increments the value of f(s) by one. A query Q(s, f) is of length k if the
length of sequence s specified in Q is k. We denote that by |Q|. As the data is actually
integrated from multiple parties, we assume that all queries are of length at least two.

As in traditional OLAP environments, users may interactively refine their queries.
For instance, a user (of party Pi) may first issue a query to obtain the number of cus-
tomers who traveled from “Airport Bus Stop” to “Uptown Bus Stop” and then refine
her query Q by a “pattern roll-up” operation [2] in order to obtain the number of

Competitive Privacy: Secure Analysis on Integrated Sequence Data 171

passengers who traveled from “Airport District” to “Uptown District”. These concepts
can be formalized as follows.

Assume party Pi issues her first query Q1 at time t = 1, second query Q2 at time
t = 2 and so on. Let KPi(t) be the knowledge of party Pi at time t. Thus, the initial
knowledge of party Pi before she issues any query on the integrated data set DI , de-
noted as KPi(1

−), contains all aggregate values f(s) for all s in Di. Further, let t− and
t+ be the time immediately before and after time t, i.e., t− is any time between time
t−1 and time t, and t+ be any time between time t and time t+1. Thus, for any t > 1,
KPi(t−) = KPi((t − 1)+). After party Pi issues a query Qt at time t, if Qt is not
rejected, Pi’s knowledgeKPi(t+) is immediately updated to KPi(t−)∪ {f(s)} (where
f(s) is the answer of Qt); otherwise, Pi’s knowledgeKPi(t+) remains as KPi(t−).

3 Competitive Privacy

In this section, we present the concept of competitve privacy, which is the key element
that we should consider when supporting data analysis on a sequence data set that is in-
tegrated from multiple autonomous parties. We assume that the integrated data set DI

is located at trusted party T and the involved parties send their queries to T . The RFID
transport payment company can be regarded as the trusted parties for the motivating ex-
ample. Although a trusted party is involved, the privacy issue has not been resolved yet.
Specifically, in the following, we are going that formalize the concept of competitive
privacy and show that if a party P can pose any queries without any restriction, that will
breach competitive privacy of some party. Let us begin with the definition of conflicting
node set. Given a ground node N , the conflicting node set of N , denoted by C(N), is a
set of ground nodes such that for each node N ′ ∈ C(N), N ′.T
= N.T . The conflicting
node set is specified or given by the multiple autonomous parties and the trusted party.

In our running example, if the metro company offers a service from “Downtown
Station” to “Bay Station” and the bus company offers a service from “Downtown Bus
Stop” to “Bay Bus Stop”, then the manager of the metro may specify that the conflicting
node set of “Downtown Station” as {“Downtown Bus Stop”}. Similarly, the manager
is likely to specify that the conflicting node set of “Bay Station” as {“Bay Bus Stop”}.
We remark that we assume the notion of conflicting node set is symmetric in this paper.
As a result, if C(“Downtown Station”)={“Downtown Bus Stop”}, then C(“Downtown
Bus Stop’”)={“Downtown Station”}.

Given a sequence si in Di in the form of (Np, Nq) and another sequence sj of
Dj in the form of (Nr, Ns), sj is a competitive sequence of si, if Nr ∈ C(Np) and
Ns ∈ C(Nq). The set of competitive sequences of si is denoted by C(si). For exam-
ple, let sM =(“Downtown Station”, “Bay Station”) in DM and sB=(“Downtown Bus
Stop”, “Bay Bus Stop”) in DB . Following the example above, as “Downtown Station”
∈ C(“Downtown Bus Stop”) and “Bay Station” ∈ C(“Bay Bus Stop”), sM is a com-
petitive sequence of sB (and vice versa because of the symmetric property). Note that
instead of asking the managers (which are the target users of OLAP systems) to specify
the (query) views that needed to be protected as in [3], we intentionally introduce the no-
tion of conflicting node such that it is more non-technical people friendly. For example,
rather than directly specifying sM and sB as competitive sequences, it would be more

172 R.C.-W. Wong and E. Lo

intuitive for those business people, say, the operation manager of party M to directly
specify “Downtown Station” and “Downtown Bus Stop” as “conflicting”. Nonetheless,
of course, it is also possible for users to directly specify competitive sequences as well.
Now, we can define the competitive privacy of a party P as follows.

Definition 1 (Competitive Privacy). The competitive privacy CP of a party Pi is
defined as the statistical information of all competitive sequences in Di, i.e., CP =
{f(s)|∀s ∈ Di and there exists s′ ∈ Dj such that j
= i and s′ ∈ C(s)}. !"

Similar to what we discussed in Section 1, the statistical information of each competi-
tive sequences, namely CP, are regarded as the “competitive privacy” of a party. Thus,
without any query restriction, a party can directly obtain the statistical information of
the competitive sequence of the other party easily and can do something bad to the other
party.

We now show that party M can infer a value for COUNT(sB), through query infer-
ences, even though it only obtains the statistical information other than the value of
COUNT(sB).

Example 1 (Query Inferences). In our motivating example, both the bus (party B) and
the metro (party M) offer services from Downtown district to Bay district. Assume that
each of the parties provide only one service from Downtown district to Bay district.

Initially, KM (1−) = {COUNT(sM)}. Suppose at time 1, M issues a query Q1
(ŝ, COUNT), where ŝ=(“Downtown District”, “Bay District”) (where the concept hier-
archy is the one in Figure 1b). Without any query restriction, Q1 can be posed on DI

and thus the knowledge of M can be updated to KM (1+) = {COUNT(sM), COUNT(ŝ)}.
Assume COUNT(sM) = 10, 000 and COUNT(ŝ) = 90, 000, Party M can infer a value for
f(sB) as COUNT(ŝ)− COUNT(sM) = 80, 000 !"

Definition 2 (Competitive Privacy Breach). Given two competitive sequences si and
sj obtained from Di and Dj respectively. At time t, we say that there is a competitive
privacy breach with respect to party Pj by party Pi if, given a real number e, Pi can
infer a value f̃(sj |KPi(t−)) for f(sj) such that |f̃(sj |KPi(t−))− f(sj)| ≤ e based on
knowledge KPi(t−). !"

4 Query Restriction

In this section, we will give a high-level description of the proposed algorithm called
CCF (conservative competition-free) to avoid any competitive privacy breach. Details
of this algorithm can be found in [7]. Intuitively, we reject some queries which may
breach competitive privacy. Consider a query Q which has sequence s. We reject query
Q if one of the following two conditions holds. Condition 1: There exists a competitive
sequence which is a sub-sequence of s. Condition 2: There exists a generalized version
of competitive sequence which is a sub-sequence of s. We say that sequence si =
(N1, N2, ..., Nl) is a generalized version of another sequence sj = (M1, M2, ..., Ml) if
Nx is equal to Mx or is an ancestor node of Mx (in the concept hierarchy) for all x ∈
[1, l]. In [7], we prove that our query restriction algorithm can avoid any competitive
privacy breach.

Competitive Privacy: Secure Analysis on Integrated Sequence Data 173

5 Empirical Study

We have conducted extensive experiments on a Pentium IV 2.4GHz PC with 1GB mem-
ory, on a Linux platform. The programs were implemented in C++. We evaluated our
algorithm, CCF, on both synthetic and real datasets, in terms of four measurements:
(1) average auditing time, (2) ratio of restricted queries, and (3) storage. The average
auditing time corresponds to the average time to check whether a query is rejected by
our proposed algorithm CCF. The ratio of restricted queries is equal to the total number
of restricted queries by CCF over the total number of issued random queries. The stor-
age corresponds to the memory usage to hold all competitive sequences of all parties,
namely CS. All experiments were conducted 100 times and we took the average for the
results. In our experiments, we generate 10,000 batches of queries. Each batch contains
20 queries. We randomly generate a query Q1 with sequence s = (N1, N2, .., N|Q1|)
as follows. For each Ni where i ∈ [1, |Q1|], we randomly select a value in the concept
hierarchy. Then, we refine query Q1 and generate another new query Q2. We adopt the
refinement operations from [2]: Append, De-tail, Pre-pend, De-head, Pattern-roll-up
and Pattern-drill-down. We randomly select one of the operations and generate query
Q2. Similarly, we repeatedly generate query Qi from Qi−1 until i = 20.

Synthetic Dataset: The synthetic dataset is generated by a dataset generator. This gen-
erator creates sequences with 4 parameters, namely n, p, c and l, where n is the total
number of (integrated) sequences, p is the total number of parties, c is the percentage
of ground competitive sequences in each party’s dataset, and l is the average length
of the data sequences. The data sequence is generated as the same way as [2] and we
randomly assign c% of sequences as competitive. We generate a generalization hierar-
chy of height 3. We partition the ground nodes into different groups such that different
ground nodes, say v and v′, where v ∈ C(v′) (or v′ ∈ C(v)) forms the same group.
For each group of ground nodes, we create an internal node N . Finally, we create a
root node N ′ such that the parent of all internal nodes constructed is N ′. Thus, the final
hierarchy has height equal to 3. The default values of n (num. of tuples), p (num. of
parties), c (the ratio of ground competitive sequences) and l (average sequence length)
are 500K, 4, 0.05, and 20, respectively. In the experiments, we study the effect of the
total number of tuples and the length of the query.

In Figure 2(a), the average audit time remains nearly unchanged when the dataset size
changes. The auditing time of our proposed algorithm mainly depends on the size of CS
(Details can be found in [7]). Since the size of CS is fixed (Figure 2(c)), the change in
the dataset size does not affect the auditing time too much. Besides, we can observe
that the average auditing time increases with |Q|, the length of the query. Figure 2(b)
shows that the number of restricted queries is nearly the same with different dataset size.
Similarly, since the percentage of competitive sequences remains unchanged when the
dataset size changes, the ratio of restricted queries also remains unchanged. When |Q|
increases, it is trivial that the ratio increases. Figure 2(c) shows the storage of algorithm
CCF keeps unchanged when the dataset size increases. This is because the storage for
set CS is independent of the dataset size.

Real Dataset: The real dataset is obtained from a local transportation organization
called MTR in Hong Kong. It consists of passenger transactions of 5-working-day, all

174 R.C.-W. Wong and E. Lo

 0

 0.005

 0.01

 0.015

 0.02

 250 500 750 1000

A
ve

ra
g

e
 a

u
d

it
tim

e
 (

s)

no. of tuples (in thousand)

|q| = 2
|q| = 4
|q| = 6

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016
 0.018

 250 500 750 1000

R
a

tio
 o

f
re

st
ri
ct

e
d

 q
u

e
ri
e

s

no. of tuples (in thousand)

|q| = 2
|q| = 4
|q| = 6

 0
 20
 40
 60
 80

 100
 120
 140
 160

250 500 750 1000

S
to

ra
g

e
 (

K
B

)

no. of tuples (in thousand)

(a) (b) (c)

Fig. 2. Effect of the total number of tuples

 0
 5e-05

 0.0001
 0.00015
 0.0002

 0.00025
 0.0003

 0.00035
 0.0004

 0.00045

 250 500 750 1000 1250 1500

A
ve

ra
g

e
 a

u
d

it
tim

e
 (

s)

no. of tuples (in thousand)

|q| = 2
|q| = 4
|q| = 6

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 250 500 750 1000 1250 1500

R
a

tio
 o

f
re

st
ri
ct

e
d

 q
u

e
ri
e

s

no. of tuples (in thousand)

|q| = 2
|q| = 4
|q| = 6

 0

 20

 40

 60

 80

 100

250 500 750 1000 1387

S
to

ra
g

e
 (

b
yt

e
s)

no. of tuples (in thousand)

(a) (b) (c)

Fig. 3. Effect of the total number of tuples (real dataset)

recorded by an RFID-based electronic payment system. The passenger transactions are
consolidated from 4 different in-city railway lanes. Each lane corresponds to a party.
There are 63 stations in total and 6 of them are transfer terminals. In particular, 5
transfer terminals allow passengers to switch to another lane, and 1 transfer terminal
is a hub that allow passengers to switch to two other lanes. An example record is like
(N1, N2, N3, N4), which denotes that there was a passenger entered the railway net-
work at station N1, got off at station N2, transferred to another lane at station N3 and
finally left the railway network at station N4. All pairs of transfer terminals as defined
as conflicting. That is, in this example, C(N2) = {N3}. All together we have 1,387,831
sequence records. The average sequence length of a record is 2.9 stations. According to
the locations of stations, we divide the stations into different regions such that there are
63 leaf values and 31 non-leaf values in the concept hierarchy of height 4.

We carry out experiments that are similar to the results for synthetic datasets. Fig-
ure 3 shows that the experimental results are similar to those on the synthetic data. In
order to conduct the experiments with the variation of the number of tuples, we ran-
domly sample a subset of tuples. The average audit time, the ratio of restricted queries
and storage remain nearly unchanged when we vary the total number of tuples.

6 Conclusion

Most previous works focus on privacy issues over data from a single source. This pa-
per formulates a problem called competitive privacy which considers privacy issues
when sequence data is integrated from more than one source. Our proposed algorithm
CCF rejects queries efficiently and guarantees no competitive privacy breach. In all

Competitive Privacy: Secure Analysis on Integrated Sequence Data 175

experiments, the auditing step can be achieved within 0.04s and the ratio of the to-
tal number of restricted queries over the total number of queries is also small (within
0.15).

Acknowledgements. The research of Raymond Chi-Wing Wong is supported by
HKRGC GRF 621309 and Direct Allocation Grant DAG08/09.EG01. The research
of Eric Lo is supported by Hong Kong Research Grants Council GRF grant PolyU
525009E and PolyU internal grant 1-ZV5R.

References

1. Dobkin, D.P., et al.: Secure databases: Protection against user influence. ACM Trans. Database
Syst. 4(1), 97–106 (1979)

2. Lo, E., et al.: OLAP on sequence data. In: SIGMOD Conference (2008)
3. Miklau, G., et al.: A formal analysis of information disclosure in data exchange. J. Comput.

Syst. Sci. 73(3), 507–534 (2007)
4. Seshadri, P., et al.: Sequence query processing. In: SIGMOD (1994)
5. Motwani, R., et al.: Auditing SQL Queries. In: ICDE (2008)
6. Ramakrishnan, R., et al.: SRQL: Sorted Relational Query Language. In: Rafanelli, M., Svens-

son, P., Klensin, J.C. (eds.) SSDBM 1988. LNCS, vol. 339. Springer, Heidelberg (1989)
7. Wong, R.C.-W., Lo, E.: Analyzing integrated sequence data in a competitive environment

(2009),
http://www.cse.ust.hk/∼raywong/paper/
analyzingIntegratedSequence-tech.pdf

http://www.cse.ust.hk/$\sim $raywong/paper/analyzingIntegratedSequence-tech.pdf
http://www.cse.ust.hk/$\sim $raywong/paper/analyzingIntegratedSequence-tech.pdf

Privacy-Preserving Publishing Data with Full
Functional Dependencies

Hui (Wendy) Wang and Ruilin Liu

Stevens Institute of Technology
Hoboken, NJ, USA

{hwang,rliu3}@cs.stevens.edu

Abstract. We study the privacy threat by publishing data that contains full func-
tional dependencies (FFDs). We show that the cross-attribute correlations by
FFDs can bring potential vulnerability to privacy. Unfortunately, none of the ex-
isting anonymization principles can effectively prevent against the FFD-based
privacy attack. In this paper, we formalize the FFD-based privacy attack, define
the privacy model (d, �)-inference to combat the FFD-based attack, and design
robust anonymization algorithm that achieves (d, �)-inference. The efficiency and
effectiveness of our approach are demonstrated by the empirical study.

1 Introduction

How to publish data that contains sensitive information of individuals has received con-
siderable attention in recent years. It has been shown that simply removing explicit
identifiers (IDs), e.g., name and SSN, from the released data is insufficient to protect
privacy [9]. The existence of a set of non-ID attributes (called quasi-identifiers(QI)),
e.g., the combination of zipcode, gender and date of birth, that can uniquely identify in-
dividuals, can be joined with information obtained from diverse external sources (e.g.,
public voting registration data) to re-identify the individuals in the released data. This
is called the record linkage attack.

Table 1. Anonymized microdata before&after FD inference

ID QI Sensitive
Name Sex Zip Phone Disease
Alice F 07921 1111111 Ovarian cancer
Bob M 07920 2222222 Bronchitis
Calvin M 07902 3333333 Diabetes
Doris F 07901 1000001 Ovarian cancer
Eve F 07902 3333333 Bronchitis
Flora F 07903 2000001 Pneumonia

QI Sensitive
Sex Zip Phone Disease
* 079** 1111111 Ovarian cancer
* 079** 2222222 Bronchitis
* 079** 3333333 Diabetes
F 0790* 1000001 Ovarian cancer
F 0790* 3333333 Bronchitis
F 0790* 2000001 Pneumonia

QI Sensitive
Sex Zip Phone Disease
* 079** 1111111 Ovarian cancer
* 079** 2222222 Bronchitis
* 0790* 3333333 Diabetes
F 0790* 1000001 Ovarian cancer
F 0790* 3333333 Bronchitis
F 0790* 2000001 Pneumonia

(a) The Original Microdata (b) The 3-diversity table (c) The table after FD inference

Various privacy principles have been proposed recently to defend against the record
linkage attack (e.g., k-anonymity [9,7] and 	-diversity [4]). However, by applying FDs
on the released data that has met some aforementioned privacy principles, the attacker
may be able to breach privacy. For example, assume the microdata in Table 1 (a) con-
tains the functional dependency F : Phone → Zip, which states that any two same

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 176–183, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Privacy-Preserving Publishing Data with Full Functional Dependencies 177

phone numbers must correspond to the same zipcode. Assume that the attacker pos-
sesses the knowledge of F . Then by applying F on the 3-diversity table (i.e., every
group that has the same QI-values contains at least three unique sensitive values) in
Table 1 (b) , he/she can modify the zipcode value of the third tuple from “079**” to
“0790*”, since the second group contains the phone number “3333333” with zipcode
“0790*”. The anonymized table after the FD-based inference is shown in Table 1 (c).
The third tuple only satisfies 1-diversity privacy guarantee.

The example shows that using FDs as adversary knowledge may bring privacy breach.
Given the fact that it is not difficult for the attacker to obtain these functional dependen-
cies from either the common sense or other sources, it is necessary to develop robust
privacy criterion of publishing data when functional dependencies are available and are
used as part of the adversary knowledge.

In this paper, we focus on full functional dependencies (FFDs). We have the follow-
ing contributions.

– Formally define the FFD-based attack.
– Define the (d,)-inference model to defend against the FFD-based attack.
– Propose novel grouping stradegy to archive (d,)-inference .
– Design an efficient anonymization algorithm to produce anonymized microdata.
– Demonstrate the efficacy of our algorithm by an extensive set of experiments.

The rest of the paper is organized as follows. Section 2 discusses the related work.
Section 3 introduces the preliminaries. Section 4 defines our privacy model. Section
5 proposes the intersection-grouping strategy. Section 6 presents the details of our
anonymization algorithm. Section 7 presents the experimental results. We conclude the
paper in Section 8.

2 Related Work

Privacy-preserving data publishing has received considerable attention in recent years.
The k-anonymity model requires that in the published data, every individual is related
with no less than k tuples [9,7]. The 	-diversity [4] model further requires that every QI-
group contains at least 	 sensitive values that have roughly the same frequency. Other
variants of k-anonymity and 	-diversity, e.g., t-closeness [3] and (α, k)-anonymity [11],
(c, k)-safety [5], are defined to address different privacy requirements. Unfortunately,
none of them can defend against our defined FFD-based privacy attack.

Martin et al. [5] and Rastogi et al. [6] are the first to consider the adversary who
knows arbitrary correlations between tuples. They show that if such correlations are
available, then there exists privacy leakage on the published dataset that is of “meaning-
ful” utility. Both of them focus on tuple correlations but do not consider FDs. Kifer [2]
shows that the attacker may induce correlations from the sanitized dataset; such inferred
correlations can enable potential vulnerabilities on the sanitized dataset. However, [2]
does not provide any solution to defend against the FD-based attack. Tao et al. [10]
study the correlation hiding problem of data publishing. They use i-masking operation
to ensure the attributes of correlation which needs to hide are independent. Their work
presents a different goal from ours.

178 H. Wang and R. Liu

3 Preliminaries

Functional Dependency. Given two attributes X and Y , a database instance D satisfies
the functional dependency FD F : X → Y if for every two tuples t1, t2 ∈ D, if t1.X
= t2.X , then t1.Y = t2.Y . We call X the determinant attributes and Y the dependent
attributes, and their values the determinant values and dependent values. In this paper,
we only consider FFDs, i.e., the FDs X → Y that hold for all values of X and Y .

Anonymization Framework. There are three types of attributes in the microdata: iden-
tifiers (ID), quasi-identifiersQI, whose combination can play as the key and uniquely
identify any individual, and sensitive attributes S. There may exist multiple sensitive
attributes. We can consider them as a super attribute. For simplicity, we consider single
sensitive attribute in the remaining of the paper.

In this paper, we consider generalization [8, 9], a popular anonymization technique.
By generalization, numerical QI-values are recoded as an interval (e.g., age 20 is
recorded as [20, 40]), while the categorical QI-values are replaced with higher level do-
main values in the taxonomy tree (e.g., city “Hoboken” is replaced with “New Jersey”).
In this paper, we only consider numerical QI-values. The purpose of generalization is
to hide each individual tuple into a group, which is called the QI-group where all tuples
inside have the same QI-values after generalization.

It is important to measure the incurred information loss by generalization. In this
paper, we consider the generalized loss metric [1], which measures the information loss
as a ratio. The definition of the metric is given below.

Definition 1 (Information Loss). For a data value v, if it is suppressed from the re-
leased dataset, its information loss equals ILv = 1. Otherwise if it is generalized to
an interval [Li, Ui], let Min and Max be the minimum and maximum values of the
attribute A. The information loss of v is: ILv = (Ui − Li)/(Max−Min).
The information loss ILt of a tuple t is defined as ILt = (

∑
vi∈t ILvi)/n, where n is

the number of non-ID attributes.
The information loss of the microdata D is defined as ILD = (

∑
t∈D ILt)/|D|. !"

4 Privacy Model

In this section, first, we define the FFD-based attack. Then we formally define the (d,)-
inference model that combats the FFD-based attack.

4.1 FFD-Based Attack

To analyze the impact of FFDs to privacy, we consider a popular privacy model, 	-
diversity [4]. It requires that each QI-group must consist of at least 	 “well-represented”
distinct values that are of close frequency. We define d-closeness to address the re-
quirement of close frequency. The definition of d-closeness is a simplified version of
“well-represented” in [3].

Definition 2 (d-closeness). Given two sensitive values s1 and s2, let f1 and f2 be their
frequency, then s1 and s2 are considered as d-close if |f1 − f2| ≤ d. Given a QI-group

Privacy-Preserving Publishing Data with Full Functional Dependencies 179

G that consists of a set of distinct sensitive values, G is d-close if ∀ sensitive values
si, sj ∈ G, si and sj are d-close. !"
Based on the definition of d-closeness, we give a simplified version of 	-diversity.

Definition 3 (-diversity). Given a microdata D, let D∗ be its anonymized version.
Then D∗ is 	-diverse if ∀ sensitive attribute S of D, each QI-group G ∈ D∗ consists of
at least 	 distinct sensitive values on S that are d-close. !"
Next, we explain the details of FFD-based attack. In the anonymized dataset, it is pos-
sible that different QI-groups share the same sensitive or QI-values. This enables the
possibility of the FFD-based attack. Intuitively, assume both QI-groups G1 and G2 in-
clude the value a, where a is a determinant value of the FD F : A → B. Let b be the
corresponding dependent value of a in the original microdata. Even though b can be
generalized to different values b∗1 and b∗2 in G1 and G2, due to the presence of FFDs,
the attacker still can infer that b∗1 and b∗2 must correspond to the same original value.
Thus he/she can “intersect” b∗1 and b∗2. It is such intersection that enables the FFD-based
attack. In the next, first, we formally define b∗1 ∩ b∗2, the intersection operation on gen-
eralized values. To distinguish from the conventional intersection operation ∩, we use
∩∗ to denote the intersection operation on generalized data values.

Definition 4 (Intersection of Generalized values). Given two generalized values b∗1
and b∗2, which are two intervals [l1, u1] and [l2, u2], if these two intervals overlap, then
b∗1 ∩∗ b∗2 = [max(l1, l2), min(u1, u2)], otherwise b∗1 ∩∗ b∗2 = NULL. !"
For example, given two generalized Age values b∗1 = [20, 40] and b∗2 = [30, 50], b∗1 ∩∗

b∗2 = [30, 40].
As aforementioned, due to FFDs, the attacker can conclude that generalized depen-

dent values b∗1 and b∗2 in the tuples in G1 and G2 that contain the same determinant
values indeed correspond to the same original value. Then he/she can replace both b∗1
and b∗2 in these tuples with b∗1 ∩∗ b∗2. Such replacement separates the tuples in QI-group
G1 (G2, resp.) into two sets, the one of the values b∗1 (b∗2, resp.), and the one of the values
b∗1∩∗ b∗2. We formally define these two sets below. To distinguish from the conventional
set intersection/difference(∩/−) operation, we use G1 ∩F G2 and G1−F G2 to denote
the set intersection/difference operations of G1 and G2 based on the reasoning of FFD
F . We use t[A] to denote the values of attributesA of the tuple t.

Definition 5 (FFD-based Intersection/Difference of QI-groups). Given the FFD F :
A → B of the microdata D and two QI-groups G1, G2, let G12 = {t|t ∈ G1, ∃t′ ∈ G2
s.t. t[A]=t′[A]}. Then G1 ∩F G2 is a set of tuples J s.t. ∀t ∈ G12, ∃t′ ∈ J s.t.
(1) ∀ attribute A ∈ A, t′[A] = t[A],
(2) ∀ attribute B ∈ B,

t′[B] =
{

t[B] if t[B] is not generalized
G1[B] ∩∗ G2[B] if t[B] is generalized

Furthermore, G1 −F G2 = G1 −G12. !"

For example, for the two QI-groups G1 and G2 in Table 1 (a) with FFD F : Phone→
Zip, G1 ∩F G2 ={*, 0790*, 3333333, Diabetes}, and G1 −F G2 returns the first two
tuples in G1.

Now we are ready to define FFD-based privacy attack.

180 H. Wang and R. Liu

Definition 6 (FFD-based Privacy Attack). Given a microdata D, let D∗ be its gener-
alized version that satisfies 	-diversity. Then the full functional dependency F : A→ B
(A, B ⊆ QI ∪ S) enables the FFD-based privacy attack if there exist two QI-groups
G1, G2 ∈ D∗ such that at least one of followings is non-empty and does not satisfy
	-diversity: (1) G1∩F G2, (2) G2∩F G1, (3) G1−F G2, and (4) G2−F G1. Otherwise,
we say D∗ is safe at the presence of F . !"
We have shown an example of FFD-based privacy attack in Section 1.

Although FFDs may threat privacy, not all FFDs can enable the FFD-based attack.
Based on this, we define safe and unsafe FFDs.

Definition 7 (Safe/Unsafe FFDs). A functional dependency F is safe if for any mi-
crodata D that satisfies F , all of its possible generalized versions D∗ are safe at the
presence of F . Otherwise, we say F is unsafe. !"
Based on the definition, we distinguish the “safe” FFDs from the “unsafe” ones. We
have:

Theorem 1 ((Un)safe FFDs). Given the microdata D that contains the QI attributes
QI and sensitive attributes S, let F : A → B (A,B ⊆ QI ∪ S) be one of its FFDs.
then F is safe iff A ⊆ QI. Otherwise, F is unsafe. !"
Due to space limit, we skip the proof. Next, we define the (d,)-inference model to
defend against the privacy attack by unsafe FDs.

Definition 8 ((d,)-inference). Given microdata D, let D∗ be its anonymized version
that consists of the QI-groups G{G1, . . . , Gn}. Let Si be the set of distinct sensitive
values of the QI-group Gi (1 ≤ i ≤ n). Then D∗ satisfies (d,)-inference if
(1) d-close: ∀G ∈ G, all sensitive value sets in G are d-close,
(2) 	-overlapping: ∀Gi, . . . , Gj ∈ G, if |Si ∩ · · · ∩ Sj |
= 0, then |Si ∩ · · · ∩ Sj | ≥ 	,
i.e., there are at least 	 shared distinct values in Si ∩ · · · ∩ Sj ,
(3) 	-non-overlapping: ∀Gi, Gj ∈ G, |Si − Sj | ≥ 	, i.e., there are at least 	 non-
overlapping distinct values in Si − Sj . !"

Both 	-overlapping and 	-non-overlapping conditions consider the worst case, i.e., the
“smallest” results of intersection and set difference. Thus 	-overlapping considers inter-
actions of multiple QI-groups (maybe more than 2), while 	-non-overlapping considers
the difference of two QI-groups. Note that the (d,)-inference model is not based on the
reasoning of the generalized datasets anymore. Instead, it only reasons on the sensitive
values and can be applied on the original microdata directly.

5 Intersection-Grouping (IG)

The key to achieve (d,)-inference is to appropriately group the sensitive values so
that all these groups meet the three conditions of (d,)-inference. To address this, we
propose the intersection-grouping strategy. It puts the sensitive values into groups that
intersect (but not contain) in a chain. To avoid considering intersection of arbitrary
number of groups, we do not allow the intersection of more than two groups. Further-
more, we require that all overlapped groups construct a chain, i.e., given a set of groups
G1, . . . , Gm, Gi only intersects with Gi+1 and Gi−1, but not the others.

Privacy-Preserving Publishing Data with Full Functional Dependencies 181

(b) with phase−1 partition

G1 G2 G3 G4 G5 G6 G7 G8 G9 G4 G5 G6 G7 G8 G9G1 G2 G3

Segment 2 Segment 3Segment 1
(a) No phase−1 partition

Fig. 1. Without & with Phase-1 Partition

The intersection-grouping approach consists of two steps: (1) bucket construction
to construct d-close, 	-diverse, disjoint buckets and (2)intersected groups construction
to construct intersected groups from the buckets. Due to the space limit, we omit the
details. Instead, we use an example to show how our grouping strategy works.

Example 1. Given the sensitive values {s1, s2, s3, s4, s5, s6, s7, s8, s9} of frequency (1,
7, 9, 10, 26, 30, 40, 45, 50), assume d = 3 and 	 = 2. By Step 1, we construct the
buckets B1{s2, s3, s4} of frequency (7, 9, 10), B2{s5, s6} of frequency (26, 29), and
B3{s7, s8, s9} of frequency (40, 43, 43). There are 1 tuple containing s1, 1 tuple con-
taining s6, 2 tuples containing s8, and 7 tuples containing s9 that will be removed. In
Step 2, we construct the following groups: G1 (s2, s3, s4, s5, s6) of frequency (7, 9, 10,
10, 10), G2: (s5, s6, s7, s8, s9) of frequency (16, 19, 19, 19, 19), and G3: (s7, s8, s9) of
frequency (21, 24, 24). There are 1+ 1 + 2 + 7 = 11 tuples in total that are removed. !"

6 Anonymization Algorithm

In this section, we explain the details of the algorithm that constructs the QI-groups for
anonymization. The purpose of the QI-group is two-fold: (1) achieve (d,)-inference
privacy guarantee, and (2) minimize information loss, including both by tuple suppres-
sion and by generalization. Our anonymization algorithm has two phases, phase-1 that
minimizes the information loss by tuple suppression, and phase-2 that minimizes the
information loss by tuple generalization. In particular, phase-1 partitions the tuples by
their sensitive values, so that each group satisfies (d,)-inference, while the phase-2
constructs QI-groups of minimized information loss by generalization from the con-
structed phase-1 partitions.
Phase-1 Partition. We split the sensitive values into smaller disjoint segments, and
apply IG on these segments. Figure 1 illustrates the effect of the partition. We prove
that finding an optimal partition is a NP-hard problem, and propose two heuristic parti-
tioning approaches, namely top-down and bottom-up. Both heuristics are designed in a
greedy fashion. Due to the limit space, we omit the details.
Phase-2 QI-Group Construction. To further reduce the information loss, we split each
partition into smaller groups of same sensitive values. Since the partition P satisfies
(d,)-inference, it is straightforward all QI-groups from P must satisfy (d,)-inference.

7 Experiments

We have done an extensive set of experiments to evaluate both the effectiveness and
efficiency of our anonymization algorithm. Due to space limit, in this section, we briefly
describe our experiment design and results.

182 H. Wang and R. Liu

We use a workstation machine of 2.4GHz Intel core and 3GB of RAM. We imple-
ment the algorithms in C++. We use both synthetic datasets in the experiments. To mea-
sure the impact of frequency distribution of sensitive values to anonymization, we gen-
erated two types of synthetic datasets, the one of sensitive values of close-to-uniform,
and the one of sensitive values of skewed distribution. We call these two datasets the
U -dis dataset and S-dis dataset. We designed the functional dependency salary-class→
work-class for the synthetic dataset.

(a) U-dis set. � = 5 (b) S-dis set. � = 5

Fig. 2. Time Performance Comparison (TD: Top-down, BU: Bottom-up)

Time Performance. First, we focus on the top-down and bottom-up approaches and
measure the impact of the d value to the performance of anonymization. Figure 2 (a)
& (b) show that for both U -dis and S-dis datasets, the performance of the bottom-up
approach is relatively stable with changing d value. However, the time performance
of top-down gets worse with larger d, as larger d results in more partitions. We also
measure the performance of the phase-1 partition of both top-down and bottom-up ap-
proaches. The experiment result shows that it is around 0.016 second for both U -dis
and S-dis datasets. Thus it is negligible compared with the total time of anonymization
(shown in Figure 2 (a) & (b)). Due to space limit, we omit the result.

Information Loss. We use the metric in Section 3 to measure the information loss.
Intuitively, the smaller the ratio is, the better is the data utility. From our experiment re-
sults, we observe that our information loss is at most 0.31. This proves the effectiveness
of our approach.

8 Conclusion

In this paper, we studied the problem of privacy-preserving publishing of data that
contains full functional dependencies. We formally defined the privacy model, (d,)-
inference, and developed robust and efficient algorithms that anonymize the data with
minimized information loss. Our empirical studies using both synthetic and real datasets
demonstrated the efficiency and effectiveness of our algorithm.

For the future work, we will consider multiple FFDs. Furthermore, we will move to
CFDs, i.e., the FDs X → Y that do not hold for all values of X and Y . It turns out that
the CFD-based analysis is far more intriguing than FFDs, and the (d,)-inference model
fails to effectively defend against its consequent privacy attack. Thus in the future, we
plan to strengthen the (d,)-inference model to defend against the CFD-based attack.

Privacy-Preserving Publishing Data with Full Functional Dependencies 183

References

1. Iyengar, V.S.: Transforming Data to Satisfy Privacy Constraints. In: SIGKDD (2002)
2. Kifer, D.: Attacks on Privacy and deFinetti’s Theorem. In: SIGMOD 2009 (2009)
3. Li, N., Li, T.: t-Closeness: Privacy Beyond K-anonymity and l-diversity. In: ICDE 2007.

Datasets, SIGMOD 2006 (2007)
4. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-Diversity: Privacy

Beyond k-Anonymity. In: ICDE 2006 (2006)
5. Martin, D.J., Kifer, D., Machanavajjhala, A., Gehrke, J., Halpern, J.Y.: Worst-Case Back-

ground Knowledge for Privacy-Preserving Data Publishing. In: ICDE 2007 (2007)
6. Rastogi, V., Suciu, D., Hong, S.: The boundary between privacy and utility in data publishing.

In: VLDB 2007 (2007)
7. Samarati, P., Sweeney, L.: Generalizing Data to Provide Anonymity when Disclosing Infor-

mation. In: PODS (1998)
8. Samarati, P.: Protecting Respondents’ Identities in Microdata Release. In: TKDE (2001)
9. Sweeney, L.: K-anonymity: A Model for Protecting Privacy. International Journal on Uncer-

tainty, Fuzziness and Knowledge-based Systems 10(5), 557570 (2002)
10. Tao, Y., Pei, J., Li, J., Xiao, X., Yi, K., Xing, Z.: Hiding Correlation by Independence Mask-

ing. In: ICDE 2010 (2010)
11. Wong, R.C., Li, J., Fu, A.W., Wang, K.: (α, k)-Anonymity: An Enhanced k-Anonymity

Model for Privacy-Preserving Data Publishing. In: SIGKDD (2006)

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 184–198, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Scalable Splitting of Massive Data Streams

Erik Zeitler and Tore Risch

Department of Information Technology
Uppsala University

Sweden
erik.zeitler@it.uu.se, tore.risch@it.uu.se

Abstract. Scalable execution of continuous queries over massive data streams
often requires splitting input streams into parallel sub-streams over which query
operators are executed in parallel. Automatic stream splitting is in general very
difficult, as the optimal parallelization may depend on application semantics.
To enable application specific stream splitting, we introduce splitstream func-
tions where the user specifies non-procedural stream partitioning and replica-
tion. For high-volume streams, the stream splitting itself becomes a perform-
ance bottleneck. A cost model is introduced that estimates the performance of
splitstream functions with respect to throughput and CPU usage. We implement
parallel splitstream functions, and relate experimental results to cost model es-
timates. Based on the results, a splitstream function called autosplit is proposed,
which scales well for high degrees of parallelism, and is robust for varying pro-
portions of stream partitioning and replication. We show how user defined par-
allelization using autosplit provides substantially improved scalability (L = 64)
over previously published results for the Linear Road Benchmark.

Keywords: Distributed stream systems, parallelization, query optimization.

1 Introduction

Data Stream Management Systems (DSMS) are becoming commonplace for a wide
range of scientific and industrial applications, with high-volume data streams and
queries that involve complex computations. Scalable execution in such applications
requires parallelization. The parallelization of a query is called the parallelization
strategy. In general, it is very difficult to automate the parallelization strategy, since
the optimal parallelization may depend on application semantics. Our approach is to
extend the query language with second-order functions to enable the user to specify
non-procedural parallelization strategies. These functions split an input stream into
large collections of parallel streams over which queries produce collections of result
streams. Depending on the application, this collection of result streams can be
merged, aggregated or further partitioned.

Splitstream functions partition and/or replicate input streams into a collection of
streams. For each tuple in the input stream, splitstream decides whether the tuple
should be sent to one specific DSMS node (partitioning) or many DSMS nodes (repli-
cation). Partitioning a stream is necessary when executing expensive queries. Replica-
tion is required, e.g., when aggregates are computed over data distributed over many

 Scalable Splitting of Massive Data Streams 185

local DSMS nodes. A splitstream function is compiled and optimized into a split-
stream plan. We show how to automatically generate an optimized splitstream plan
with high throughput and low CPU cost given a non-procedural splitstream specifica-
tion. A generic splitstream function autosplit is defined that generates an optimized
parallel splitstream plan based on a simple decision rule. To investigate the scalability
of splitstream functions, we have parallelized an implementation of the Linear Road
Benchmark (LRB), which is called scsq-plr. We focus on the performance bottleneck
in the parallelization strategy of scsq-plr, which is splitting the stream of position re-
ports and account balance queries. In summary, we present the following results:

• Splitstream functions are introduced, which enable non-procedural user defined
specification of parallelization strategies.

• A cost model is introduced that estimates CPU utilization and throughput of split-
stream plans.

• A theoretically optimal tree shaped splitstream plan is devised that has maximum
throughput according to the cost model. This plan is compared with other split-
stream plans.

• A generic splitstream function autosplit automatically generates tree shaped split-
stream plans. Autosplit is shown to improve the scalability of LRB substantially.

2 Splitstream Functions

A stream function, Q(S, …) So is a parameterized query that transforms one or
more input stream arguments S into one or more output streams So. A parallelization
function operates on collections of streams, and is used for specifying parallel execu-
tions of stream functions. Fig. 1 illustrates three basic classes of parallelization func-
tions; splitstream, mapstream, and mergestream. splitstream splits an input stream
into two or more output streams. The number of output streams of a splitsteam is
called its width. mapstream applies a stream function on each stream in a collection of
streams, while mergestream merges or joins a collection of streams into a single out-
put stream. Examples of mergestream functions are stream union and windowed
stream join. Although all parallelization functions are used in the final evaluation ex-
periment, the focus of this paper is to optimize splitstream functions since they are
shown to be a performance bottleneck.

Fig. 1. Splitstream, mapstreams, and mergestream

A splitstream function has the basic signature splitstream(stream s, integer w, func-
tion rfn, function bfn) vector of stream sv. The input stream s is split into w output
streams in the vector sv. The first functional argument rfn is the routing function, hav-
ing signature rfn(object tpl, integer w) integer, which returns the output stream
number (between 0 and w – 1) for each tuple that should be routed to a single output

186 E. Zeitler and T. Risch

stream. The functional argument bfn(object tpl) boolean is the broadcast function,
which returns true for tuples to be broadcasted to all output streams. bfn and rfn return
nil for tuples that should neither be broadcasted nor routed. rfn and bfn are defined
declaratively in the query language by the user.

2.1 Parallelizing LRB

LRB [1] simulates a traffic system of expressways with variable tolling that depends
on the utilization of the roads and the presence of accidents. Vehicles undertake jour-
neys in the expressway system consisting of L expressways while emitting stream of
position reports. An implementation must respond correctly to the continuous and his-
torical queries of the benchmark within the allowed maximum response time (MRT).
The number of expressways that an implementation is able to handle is called the L-
rating of the implementation. An LRB implementation can be seen as a stream func-
tion LR(S) So. The LRB input stream S consists of four kinds of tuples; P, A, D,
and E (event type 0, 2, 3, and 4, respectively), of which 99% are position reports P.
The rest of the tuples are account balance queries A (0.5%), daily expenditure queries
D (0.1%), and estimated travel time queries E (0.4%). Currently, E tuples are ignored
[1]. The D tuples are computed over historical data, their frequency is very low, and
the allowed MRT is 10 sec, so any DBMS can respond to D tuples within the required
time. Allowed MRT for P and A tuples are five seconds. Since these tuples are very
frequent, they have to be processed efficiently. The input stream rate increases con-
tinuously during the 180 minutes of the simulation. The result stream So contains toll
and accident alerts (event type 0 and 1), and query responses (event type 2 and 3).
Some position reports do not result in toll alerts, so the rate of So is less than that of S.

Our single node LRB implementation scsq-lr [17], spent most of its CPU time
computing segment statistics. This processing is local to each expressway, i.e., events
on one expressway are independent of events on other expressways. Thus, the key to
efficient parallelization is to partition the input stream into L parallel streams, and
execute one instance of LR() for each expressway, as is employed in scsq-plr. The A
tuples require account balance information. In scsq-plr, a local account table is main-
tained on each LR(), so that vehicles accumulate account balance locally on each
expressway. Then, account balance queries must aggregate account data from all ex-
pressways. Therefore, all A tuples are broadcasted to all DSMS nodes running LR().

Fig. 2 illustrates this parallelization strategy for L = 4. The input stream is first split
by splitstreamD, whose routing function rfnD(e,w) is defined as:

create function rfnD(Event e, Integer w) Integer as

select i from integer i where

(eventtype(e)<3 and i=0) or (eventtype(e)=3 and i=1);

In splitstreamX, the body of rfnX(e,w) is select expressway(e) where
eventtype(e)=0, while bfnX(e) is defined as select eventtype(e)=2.
Each stream from splitstreamX is processed by an lr node (executing LR()), whose re-
sult stream is split by splitstreamO using rfnO(e,w) defined as select event-
type(e). splitstreamO and splitstreamD do not broadcast, so they have no bfn. All

 Scalable Splitting of Massive Data Streams 187

Fig. 2. The parallelization strategy in scsq-plr. L = 4

toll and accident alert result streams are merged with union-all. Account balance an-
swers from each splitstreamO are joined on query id and added together.

2.2 Single Process Splitstream

A splitstream function is naïvely implemented by a single process splitstream operator
fsplit, its modules being shown in Fig. 3. The input stream S is read and de-marshalled
by the consume module. In the process module, rfn and bfn are called for each tuple.
Each emit module marshals and emits tuples to its output stream Soi, i=0…w–1.

Fig. 3. Modules of fsplit

The rate Φ of a stream is defined as the number of tuples per second. The CPU cost
C for executing fsplit in Fig. 3 is computed as

())()(bwrcebwrocpccC ⋅++⋅+++Φ= . (1)

In Equation 1, the consume cost cc measures reading and de-marshalling one input
tuple, the process cost cp measures the execution of rfn and bfn per input tuple, and
the emit cost ce measures emitting a tuple. b is the broadcast percentage, which is the
proportion of tuples in the input stream to be emitted to all w output streams accord-
ing to bfn. Notice that b is multiplied by w. r is the routing percentage, i.e. the propor-
tion of tuples to be routed according to rfn, while o is the omit percentage, which is
the proportion of tuples that are not emitted at all. As a tuple is either broadcasted,
routed, or omitted, r + b + o = 1. Thus, the cost C decreases if o increases because of

188 E. Zeitler and T. Risch

smaller emit cost. Assuming rfn routes each tuple with equal probability for all output
streams So0…Sow–1, the rate of each output stream is Φoi = Φ ⋅ (b + r / w) for all i.

For scsq-plr, Table 1 shows percentages o, b, and r, widths w, and output stream
rates Φ of splitstreamD, splitstreamX, and splitstreamO, respectively. E (0.4%) tuples
are dropped by splitstreamD. P (99%) and A (0.5%) tuples are routed to splitstreamX,
and D (0.1%) tuples are routed to dailyexp(). splitstreamX broadcasts A tuples to all
lr() nodes and routes P tuples of expressway j = 0…L–1 to the corresponding lr().
Thus, splitstreamX has b = 0.5% / 99.5% ≈ 0.5%, and r = 99% / 99.5% ≈ 99.5%. Each
splitstreamO routes the low rate result stream Φri from one lr() node.

According to Equation 1, the cost of fsplit increases when w is increasing if b > 0.
Therefore, the cost of splitstreamX increases when scaling L, turning splitstreamX into
the bottleneck when executing scsq-plr with high L. Stream replication is a scalability
problem for large w, even if b is very close to zero, as in LRB.

Table 1. Tuple percentages, widths, and output stream rates of splitstream functions in LRB

 o b r w Φ
D 0.4% 0% 99.6% 2 ΦX = 99.5% ⋅ Φ ΦD = 0.1% ⋅ Φ
X 0% 0.5% 99.5% L Φi = ΦX ⋅ (0.5% + 99.5% / L)
O 0% 0% 100% 3 Φri < Φi

3 Splitstream Trees

To alleviate the bottleneck in splitstreamX when scaling w, we propose a hierarchical
splitstream plan, called a splitstream tree. Each level l in a splitstream tree is num-
bered, starting from 1 at the root to the depth d. Each node in the tree executes fsplit,
and the width of the nodes on level l is called the fanout fl of level l. A hierarchical
hash function defined in this section enables any user defined rfn to be executed in a
splitstream tree. Furthermore, we introduce a cost model for splitstream trees. Using
this cost model, a splitstream tree with maximum throughput can be generated if r and
b are known. We compare its performance to a practical splitstream tree, which does
not require knowledge of r and b.

3.1 Multi-level Hash Function

Since each level l in a splitstream tree has fanout fl, the result of rfn on level l must be
an integer in range [0, fl –1]. In addition, a splitstream tree must result in the same set
of output streams as that of fsplit. To fulfill these requirements, the hierarchical hash
function defined in Equation 2 is applied on the result of the routing function rfn(t) at
each level l and tuple t.

.mod
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎥
⎢
⎣

⎢
=

−
l

l
l ,f

rfn(t)
(rfn(t))h

λ
 (2)

 Scalable Splitting of Massive Data Streams 189

The denominator λl-1 of Equation 2 is the cumulative fanout of level l – 1, i.e., the
fanout that the tuple has undergone in the tree levels above level l. The cumulative

fanout at the root is λ0 = f0 = 1, and the cumulative fanout λl is

.∏
≤

=
l

l
k

kfλ (3)

The output streams of a node at level l are denoted So(l)
i, i = 0…fl – 1. For example, if

splitstreamX in Fig. 2 is executed as a splitstream tree with f1 = 2 and f2 = L/2, then
h1(rfn) routes position reports of even-numbered expressways to output stream So(1)

0
and position reports of odd-numbered expressways to So(1)

1, according to Equation 2.
On level 2, h2(rfn) routes tuples of expressway number x to So(2)

i, i = ⎣x/2⎦. bfn is the
same in all nodes, so that one copy of each broadcast tuple arrives at each leaf.

3.2 A Cost Model for Splitstream Trees

In the following discussion, we assume that then omit percentage o = 0, as in our
splitstreamX example. If b > 0 (and thus r < 1), the routing percentage decreases at
each level. This is because the number of tuples to broadcast stay the same in all out-
put streams, whereas the number of tuples to be routed decreases per level. Equation 4
defines the routing and broadcasting percentages rl and bl at level l.

1

1

1

;
−

−

− ⋅+
⋅

=
⋅+

=
l

l
l

l
l λ

λ
λ br

b
b

br

r
r . (4)

The rate of one of the output streams at level l is Φo(l).

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅=

l

l

λ
r

bΦΦo)(. (5)

The cost Cl of executing a node at level l in a splitstream tree depends on the output
stream rate from level l – 1 according to Equation 5.

() ()()lll
l

l bfrcecpccΦoC)(⋅+⋅++⋅= −1 . (6)

The emit capacity E of a node executing the fsplit operator is defined as its maximum
stream rate. The throughput Φmax of a splitstream tree is limited by E and by the level
in the splitstream tree with the highest cost.

()ll
C

E

maxmax =Φ . (7)

Finally, the total cost of a splitstream tree of depth d can be estimated by adding the
splitstream costs for all nodes at each level. The number of nodes at level l is λl -1.

∑
=

− ⋅=
d

CC
1

1
l

llλ . (8)

190 E. Zeitler and T. Risch

3.3 Maxtree and Exptree Splitstream Trees

Assuming that the percentages r and b are known and constant, it is possible to con-
struct an optimal splitstream tree that maximizes the throughput according to the cost
model. We call this splitstream tree maxtree, which maximizes the throughput while
minimizing the total cost. The cost at level l = 1 is minimized by choosing f1 = 2, so

that C1 = Φ ⋅ (cc + (r + 2b) ⋅ (cp + ce)). Levels are added until λd ≥ w. By choosing a
fanout fl of each level l > 1 such that Cl ≤ C1, we ensure that no downstream level in
the splitstream tree will be a bottleneck. The total cost in Equation 8 is minimized by
minimizing the number of splitstream tree levels. The number of levels are minimized
by maximizing fl on all levels l > 1, while keeping Cl ≤ C1. Solving fl for Cl = C1 us-
ing Equation 6 obtains the following formula for the optimal fanout fl at level l (see
[17] for details).

.
1

112
1 ⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

++=
−l

l λcecp

cc

b

r
f (9)

The ratio between the costs a = cc/(cp+ce) depends on the costs of rfn and bfn and on
the properties of the computing and network environments. In general, these parame-
ters are unknown, so the formula in Equation 9 cannot be determined. Therefore,
maxtree can only be used for comparison in controlled experiments where a is known.
We determined a = 1.08 for splitstreamX in a preliminary experiment. To simplify the
theoretical discussion of maxtree, a was rounded to 1.

Equation 9 shows that optimal fanout fl increases quickly for small l > 1 if r > 0.
Based on this observation, we introduce a splitstream tree called exptree, which in-
creases its fanout for each level with a constant factor. exptree was set to generate
trees with f1 = 2, and fl = 2 ⋅ fl -1 for all l > 1. We show that the performance of exptree
will be almost as good as that of maxtree, without the need to know a, r, and b.

3.4 Theoretical Evaluation

Throughput and total CPU cost were estimated for the splitstream plans using Equa-
tions 7 and 8, assuming cc = 1 and a = 1. In a scale-up evaluation, w was scaled from
2 to 256 while keeping b = 0.5%, as in splitstreamX. In a robustness evaluation, b was
scaled from 0 to 1 while keeping w = 64. Fig. 4 shows the estimated performance.

In the scale-up evaluation, the estimated throughput was plotted in Fig. 4 (a) as the
percentage of emit capacity E. The estimated total CPU cost was plotted in Fig. 4 (b).
As expected, the single-process fsplit degrades when w increases. On the other hand,
fsplit also consumes the least total CPU. The CPU cost of exptree increases when a
new tree level is added, e.g. when increasing w from 8 to 16. For such small values of
b = 0.5% as in LRB, maxtree generates a shallower tree and thus consumes less CPU
resources than exptree.

When scaling b in the robustness evaluation, Fig. 4 (d) shows that the CPU cost of
maxtree increases sharply when b increases. If b ≈ 1 in to Equation 9, fl = 2 on all
maxtree levels, resulting in a binary tree. A splitstream tree with so many nodes con-
sumes a lot of CPU. Fig. 4 (c) shows that all splitstream functions have the same

 Scalable Splitting of Massive Data Streams 191

(a)

0

10

20

30

40

50

60

2 4 8 16 32 64 128 256
Width w

Th
ro

ug
hp

ut
 [%

 o
f E

]

fsplit
maxtree
exptree

(b)

0

2

4

6

8

10

12

2 4 8 16 32 64 128 256
Width w

C
PU

 c
os

t u
ni

ts

fsplit
maxtree
exptree

(c)

0

10

20

30

40

50

60

0 0.5 1 5 10 50 100
Broadcast percentage b

Th
ro

ug
hp

ut
 [%

 o
f E

]

fsplit
maxtree
exptree

(d)

0
20
40
60
80
100
120
140
160
180
200

0 0.5 1 5 10 50 100
Broadcast percentage b

C
PU

 c
os

t u
ni

ts

fsplit
maxtree
exptree

Fig. 4. (a) Estimated throughput and (b) total CPU cost, b = 0.5%. (c) Estimated throughput and
(d) total CPU cost, w = 64.

throughput for b = 0, but the throughput of fsplit drops quickly when b increases. For
moderate values of b (up to 10%), the estimated throughput of exptree is the same as
that of maxtree. For higher values of b, the estimated throughput of exptree is lower,
however much better than fsplit.

4 Experimental Setup

The splitstream functions were implemented using our prototype DSMS SCSQ [21].
Queries and views are expressed in terms of typed functions in SCSQ’s functional
query language SCSQL, resulting in one of three collection types stream, bag, and
vector. A stream is an object that represents ordered (possibly unbounded) sequences
of objects, a bag represents relations, and a vector represents bounded sequences of
objects. For example, vectors are used to represent stream windows, and vectors of
streams are used to represent ordered collections of streams.

Queries are specified using SCSQL in a client manager. The distributed execution
plan of a query forms a directed acyclic graph of stream processes (SPs), each emit-
ting tuples on one or more streams. Continuous query definitions are shipped to a co-
ordinator. Unless otherwise hinted, the coordinator dynamically starts new SPs in a
round robin fashion over all its compute nodes, so that the load is balanced across the
cluster. The coordinator returns a handle of each newly started SP.

192 E. Zeitler and T. Risch

In the SPs, a cost-based query optimizer transforms each query to a local stream
query execution plan (SQEP), by utilizing the query optimizer of Amos II [9]. A
SQEP reads data from its input streams and delivers data on one or more of its output
streams. Stream drivers for several communication protocols are implemented using
non-blocking I/O and carefully tuned buffers. A timer flushes the output stream buff-
ers at regular time intervals to ensure that no tuples will remain for too long. The
SCSQ kernel is implemented in C, where SQEPs are interpreted. SQEPS may call the
Java VM to access DBMSs over JDBC. Thus, an SP may be stateful in that it stores,
indexes, and retrieves data using internal main memory tables or external databases.
In scsq-plr, local main memory tables are used to store account balance data, and
MySQL is used to store daily expenditure data.

In our experiments, each SP is a UNIX process on a cluster of compute nodes fea-
turing two quad-core Intel® Xeon® E5430 CPUs @ 2.66GHz and 6144 KB L2
cache. Six such compute nodes (48 cores in total) were available for the experiments.
For large splitstream trees, there were fewer CPUs than SPs. Then, some SPs were co-
located on the same CPU. For inter-node communication, TCP/IP was used over gi-
gabit Ethernet. Intra node communication used TCP/IP over the loopback interface.
Throughput is computed by measuring the execution time of SCSQ over a finite
stream. The CPU usage of each SP is determined using a profiler in SCSQ that meas-
ures the time spent in each function by interrupt driven sampling.

5 Preliminary Experiments

Two preliminary experiments were performed. The purpose of the first one is two-
fold: We show that the emit capacity for moderately sized tuples is bound by the CPU
and not by the network. We also show that the emit capacity E for an SP, and thus the
cost, is the same for moderately sized tuples no matter if streaming inter or intra node.
Since the cost is the same, the scheduling of SPs is greatly simplified.

One SP was streaming tuples of specified size to another SP, which counted them.
Intra node streaming was performed with the SPs on the same compute node, while
they were on different nodes for inter node streaming. The emit capacity is shown in
Fig. 5 (a), with less than 3.5% relative standard deviation. For tuples of moderate size,
the emit capacity is the same for inter and intra node streaming. LRB input stream tu-
ples have 15 attributes, occupying 83 bytes including header. The network bandwidth
consumption is 143 Mbit/s for these tuples, which is significantly less than the capac-
ity of a gigabit Ethernet interface. Streaming moderately sized tuples as in LRB is
CPU bound, because of the overhead of marshalling and (de)allocating many small
objects. For tuples of size greater than 512 bytes, the intra node throughput is better.
Usually however, tuples are smaller.

The purpose of the second preliminary experiment is to measure consume, process,
and emit costs (cc, cp, and ce) splitstreamX in our environment, as required by max-
tree. We do that by executing splitstreamX as an fsplit with w = 1. One SP generated a
stream of 3 million tuples. A second SP applied fsplit with w = 1 on the stream from
the first SP, using the rfn and bfn of splitstreamX. A third SP counted the number of
tuples in the single output stream from fsplit.

 Scalable Splitting of Massive Data Streams 193

(a)

0

500

1000

1500

2000

27 31 39 55 83 128 256 512 1025 2049

Tpl size [bytes]

T
hr

ou
g

hp
ut

 [M
bp

s]

inter node streaming

intra node streaming

(b)

0
2
4
6
8

10
12
14
16

cc cp ce

cost

C
P

U
 ti

m
e

[s
]

Fig. 5. (a) Inter and intra node emit capacity, (b) CPU time breakdown for fsplit with w = 1

The CPU times obtained from the fsplit SP are shown in Fig. 5 (b). Using these
CPU times, a = cc / (cp + ce) ≈ 1.08, which is used in all maxtree experiments. Fur-
thermore, the throughput of this simple splitstream was Φmax = 109 ⋅ 103 tuples per
second (relative standard deviation 0.6%). In LRB, the maximum input stream rate is
1670 tuples per second and expressway, so this throughput corresponds to 65
(109000/1670) expressways in LRB. No splitstream tree can be expected to have
higher throughput than fsplit with w = 1. Thus, no splitstream tree will be able to split
the input stream of LRB for L > 65.

6 Experimental Evaluation

The goal with the experimental evaluation is to investigate the properties of the split-
stream plans in a practical setting. Throughput and total CPU consumption were stud-
ied in a scale-up experiment and a robustness experiment, set up in the same way as
in the analytical evaluation. In order to establish statistical significance, each experi-
ment was performed five times and the average is plotted in the graphs.

Fig. 6 shows the throughput and CPU usage of the splitstream trees. Error bars
(barely visible) show one standard deviation. All experimental results agree perfectly
with the theoretical estimates in Fig. 4 with one exception: The measured throughput
of maxtree shown in Fig. 6 (c) was significantly lower for large values of b than esti-
mated. This is because the total CPU usage exceeds the CPU resources available for
our experiments. If resources were abundant, maxtree should have been feasible for
splitting streams with a high broadcast percentage. If resources are limited, exptree is
shown to achieve the same throughput as maxtree at a smaller CPU cost. The experi-
ments confirm that our cost model is realistic.

6.1 Autosplit

We observe that exptree achieves the same scale-up as maxtree. Furthermore, the ro-
bustness of exptree is the same as that of maxtree when resources are not abundant.
Based on these results, we implement autosplit using the following decision rule: If
bfn is present, generate an exptree. If only rfn is present and thus b = 0, generate a
single fsplit, since a single fsplit has the same throughput as the splitstream trees for
b = 0, but consumes less CPU.

194 E. Zeitler and T. Risch

(a)

0

20000

40000

60000

80000

100000

120000

2 4 8 16 32 64 128 256

w

T
h

ro
u

g
h

p
u

t [
tp

l/s
]

fsplit

maxtree

exptree

(b)

0

20

40

60

80

100

120

2 4 8 16 32 64 128 256

w

C
P

U
 ti

m
e

[s
]

fsplit

maxtree

exptree

(c)

0

20000

40000

60000

80000

100000

120000

0 0.5 1 5 10 50 100
Broadcast percentage b

T
h

ro
u

g
h

p
u

t [
tp

l/s
]

fsplit

maxtree

exptree

(d)

0

500

1000

1500

2000

2500

0 0.5 1 5 10 50 100
Broadcast percentage b

T
o

ta
l C

P
U

 ti
m

e
[s

]

fsplit

maxtree

exptree

Fig. 6. (a) Measured throughput and (b) measured total CPU cost for b = 0.5%. (c) Measured
throughput and (d) measured total CPU cost for w = 64.

6.2 LRB Performance

To verify the high scalability of autosplit, it was used as the splitstream function in
scsq-plr as shown in Fig. 2. autosplit generated an exptree for splitstreamX and fsplit
for splitstreamD and splitstreamO since they had no bfn. The performance of LRB us-
ing autosplit is compared to LRB using fsplit in all splitstream functions. To simplify
the experiments, the dailyexp() node was disabled since the daily expenditure process-
ing has no bearing on scalability of LRB stream processing in scsq-plr.

When using the round robin scheduler of the coordinator described in Section 0,
scsq-plr with autosplit achieved L = 52. The limiting factor was that the first node of
the plan was not granted enough CPU resources, because too many SPs were assigned
to the same multi-core compute node. By adding a hint to the coordinator to limit the
number of SPs on the first compute node, the L-rating for autosplit improved to
L = 64, as illustrated by Fig. 7. The y-axis is the MRT, and the x-axis is the number of
minutes into the simulation. fsplit keeps up until minute 125, when response time ac-
cumulates and exceeds the allowed MRT at 129 minutes. When b = 0.5% as in split-
streamX, the maximum throughput of fsplit with w = 64 is 100000 tpl/sec according to
the results in Fig. 6(c). At 125 minutes, the stream rate for L = 64 is getting close to
100000 tpl/sec. Thus, fsplit is unable to keep up with the increasing input stream rate.
Since the maximum throughput of exptree is higher, autosplit achieves the higher L-
rating of L = 64. The bumps in the curves are because of cron jobs executing on the
compute nodes beyond our control.

In conclusion, we have shown that fsplit cannot achieve L = 64 in LRB, and that
smart scheduling is necessary to take full advantage of autosplit. fsplit with smart

 Scalable Splitting of Massive Data Streams 195

0
1
2
3
4
5

6
7
8
9
10

0 30 60 90 120 150 180

Time [minute]
M

ax
im

um
 R

es
p

on
se

 T
im

e
[s

]

fsplit
auto

Fig. 7. Maximum response time for L = 64

scheduling was measured to achieve L = 52. Notice that in standard LRB, the im-
provement with autosplit could not be expected to be very large. However, as indi-
cated theoretically by Fig. 4 (a) and experimentally in Fig. 6 (c), the gain will be big-
ger if the broadcast percentage b is greater.

7 Related Work

This paper complements other work on parallel DSMS implementations [4, 8, 12, 15,
19], by allowing the user to specify non procedural stream splitting, and by paralleliz-
ing the execution of stream splitting. This allows parallel execution of expensive que-
ries over massive data streams.

In previous work [22], we introduced stream processes, allowing the user to manu-
ally specify parallel stream processing. The stream splitting proved to be very effi-
cient for online spatio-temporal optimization of trip grouping [7], based on static or
dynamic routing decisions. Similarly, GSDM [12] distributed its stream computations
by selecting and composing distribution templates from a library, in which some basic
templates were defined including both splitting and joining. By contrast, the stream
splitting in this paper is specified through declarative second order splitstream func-
tions, allowing optimizable stream splitting insensitive to the percentages of tuples to
broadcast or route.

Gigascope [4] was extended with automatic query dependent data partitioning in
[14] for queries that monitored network streams. The query execution was automati-
cally parallelized by inferring partitioning sets based on aggregation and join
attributes in the queries. The stream splitting was performed in special hardware,
which provided high throughput. By contrast, we have developed a method to split
streams involving both routing and broadcasting by generating efficient hierarchical
splitstream plans executing on standard PCs. Furthermore, splitstream functions allow
the user to declaratively specify splitstream strategies, which allows parallelization of
queries that cannot be parallelized automatically.

Efficient locking techniques were developed in [5] to parallelize aggregation op-
erators using threads. Since SCSQ uses processes instead of threads for paralleliza-
tion, locking is not an issue.

Partitioning a query plan by statically distributing the execution of its operators
proved to be a bottleneck in [13]. In [2], query plans were partitioned by dynamically
migrating operators between processors. However, expensive operators are still

196 E. Zeitler and T. Risch

bottlenecks. In our work, the bottleneck was overcome by splitting the input stream
into several parallel streams, and further reduced by parallelizing the stream splitting
itself. Furthermore, allowing both routing and broadcasting provide a powerful
method to parallelize queries, as shown by scsq-plr.

The Flux operator [18] dynamically repartitions stateful operators in running
streams by adaptively splitting the input stream based on changes in load. By contrast,
we have studied user defined stream splitting. Dynamic scheduling of distributed op-
erators in continuous queries has been studied in [19] and [23]. A dynamic distributed
scheduling is introduced in [19] based on knowledge about anti-correlations in load
between different independent operators in a plan. In [23], stream operators are dy-
namically migrated between compute nodes based on the current load of the nodes.
By contrast, this paper concentrates stream splitting for parallel processing down-
stream. However, scheduling proved to be important, and future work should investi-
gate the effectiveness of these approaches when used with parallelization functions.

Dryad [10] generalizes Map-Reduce [6] by implementing an explicit process graph
building language where edges represent communication channels between vertices
representing processes. By contrast, SCSQ users specify parallelization strategies over
streams on a higher level using declarative second order parallelization functions.
These parallelization functions are automatically translated into parallel execution
plans (process graphs) depending on the arguments to the parallelization functions.

SCOPE [3] and Map-Reduce-Merge [20] are more specialized than Dryad, provid-
ing an SQL-like query language over large distributed files. The queries are optimized
into parallel execution plans. Dryad, Map-Reduce-Merge, and SCOPE operate on sets
rather than streams. None of these provide parallelization functions.

Out of the existing implementations of LRB, IBM’s Stream Processing Core (SPC)
is the only attempt to parallelize the execution [13]. The SPC implementation of LRB
was partitioned into 15 building blocks, each of which performed a part of the imple-
mentation. One processing element computed all segment statistics on a single CPU,
which proved to be a bottleneck. With the SCSQ implementation and autosplit, we
achieved over 25 times the L-rating of the SPC implementation by user defined paral-
lelization. The performance difference between SCSQ and SPC illustrates (i) the im-
portance of how the execution is parallelized; and (ii) the usefulness of splitstream
functions where the user provides application knowledge for the parallelization de-
claratively by specifying rfn and bfn.

For streams, rfn and bfn are analogous to fragmentation and replication schemes for
distributed databases [16]. However, for distributed databases the emphasis is mainly
on distributing data without skew. In our case, there are orders of magnitude higher
response time demands on stream splitting and replication than on disk data fragmenta-
tion and replication. Therefore, the performance of stream splitting is critical.

8 Conclusions and Future Work

We investigated the performance of splitstream functions, which are parallelization
functions that provide both partitioning and replication of an input stream into a col-
lection of streams. A splitstream function is compiled into a splitstream plan. We first
defined a theoretical cost model to estimate the resource utilization of different

 Scalable Splitting of Massive Data Streams 197

splitstream plans, and then investigated the performance of these splitstream plans
experimentally using the SCSQ DSMS. Based on both theoretical and experimental
evaluations, we devised the splitstream function autosplit, which splits an input
stream, given the degree of parallelism, and two functions specifying how to distrib-
ute and partition the input stream. The routing function returns the output stream
number for each input tuple that should be routed to a single output stream. The
broadcast function selects the tuples that should be broadcasted to all output streams.
autosplit was shown to generate a robust and scalable execution plan with perform-
ance close to what is theoretically optimal for a tree shaped execution plan. autosplit
was used to parallelize the Linear Road DSMS Benchmark (LRB), and shown to
achieve an order of magnitude higher L-rating than other published implementations.

A simple scheduler was used in the experiments, which balanced the load evenly
between the compute nodes for all splitstream plans. This scheduler achieved L = 52
in the LRB experiment. By hinting the scheduler not to overload the first node of the
execution plan, the L-rating improved to 64, which is close to the theoretically maxi-
mum throughput for scsq-plr in our cluster environment.

As splitstream has shown to be sensitive to the cost of rfn and bfn, future work in-
cludes optimizing splitstream for a wider class of rfn and bfn. By devising a cost
model like in [24], the scheduling of SPs can be further improved. The robustness of
dynamic re-scheduling and SP migration should be investigated. It should be investi-
gated whether other, non-tree shaped splitstream plans can improve performance fur-
ther. Furthermore, other application scenarios are being studied within the iStreams
project [11].

Acknowledgments. This project is supported by VINNOVA in the iStreams project.
The experiments were performed using UPPMAX resources. We greatly appreciate
the insightful comments by the anonymous reviewers.

References

1. Arasu, A., et al.: Linear Road: A Stream Data Management Benchmark. In: VLDB (2004)
2. Balazinska, M., Balakrishnan, H., Stonebraker, M.: Contract-Based Load Management in

Federated Distributed Systems. In: NSDI (2004)
3. Chaiken, R., et al.: SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets.

In: VLDB (2008)
4. Cranor, C., Johnson, T., Spataschek, O., Shkapenyuk, V.: Gigascope: A Stream Database

for Network Applications. In: SIGMOD (2003)
5. Das, S., Antony, S., Agrawal, D., El Abbadi, A.: Thread Cooperation in Multicore Archi-

tectures for Frequency Counting over Multiple Data Streams. In: VLDB (2009)
6. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:

OSDI (2004)
7. Gidofalvi, G., Pedersen, T.B., Risch, T., Zeitler, E.: Highly scalable trip grouping for

large-scale collective transportation systems. In: EDBT (2008)
8. Girod, L., Mei, Y., Newton, R., Rost, S., Thiagarajan, A., Balakrishnan, H., Madden, S.:

XStream: A Signal-Oriented Data Stream Management System. In: ICDE (2008)

198 E. Zeitler and T. Risch

9. Risch, T., Josifovski, V., Katchaounov, T.: Functional Data Integration in a Distributed
Mediator System. In: Gray, P.M.D., Kerschberg, L., King, P.J.H., Poulovassilis, A. (eds.)
The Functional Approach to Data Management (2004)

10. Isard, M., et al.: Dryad: Distributed Data-Parallel Programs from Sequential Building
Blocks. ACM SIGOPS Operating Systems Review 41, 59–72 (2007)

11. iStreams homepage,
 http://www.it.uu.se/resnearch/group/udbl/html/iStreams.html

12. Ivanova, M., Risch, T.: Customizable Parallel Execution of Scientific Stream Queries. In:
VLDB (2005)

13. Jain, N., et al.: Design, Implementation, and Evaluation of the Linear Road Benchmark on
the Stream Processing Core. In: SIGMOD (2006)

14. Johnson, S., Muthukrishnan, Shkapenyuk, V., Spatscheck, O.: Query-Aware Partitioning
for Monitoring Massive Network Data Streams. In: SIGMOD (2008)

15. Liu, B., Zhu, Y., Rundensteiner, E.A.: Run-Time Operator State Spilling for Memory In-
tensive Long-Running Queries. In: SIGMOD (2006)

16. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn. Prentice-
Hall, Englewood Cliffs (1999)

17. SCSQ-LR homepage, http://user.it.uu.se/~udbl/lr.html
18. Shah, M.A., Hellerstein, J.M., Chandrasekaran, S., Franklin, M.J.: Flux: An Adaptive Par-

titioning Operator for Continuous Query Systems. In: ICDE (2002)
19. Xing, Y., Zdonik, S., Hwang, J.-H.: Dynamic Load Distribution in the Borealis Stream

Processor. In: ICDE (2005)
20. Yang, H., Dasdan, A., Hsiao, R.-L., Parker, D.S.: Map-reduce-merge: simplified relational

data processing on large clusters. In: SIGMOD (2007)
21. Zeitler, E., Risch, T.: Processing high-volume stream queries on a supercomputer. In:

ICDE Workshops (2006)
22. Zeitler, E., Risch, T.: Using stream queries to measure communication performance of a

parallel computing environment. In: ICDCS Workshops (2007)
23. Zhou, Y., Ooi, B.C., Tan, K.-L.: Efficient Dynamic Operator Placement in a Locally Dis-

tributed Continuous Query System. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS,
vol. 4275, pp. 54–71. Springer, Heidelberg (2006)

24. Zhou, Y., Aberer, K., Tan, K.-L.: Toward massive query optimization in large-scale dis-
tributed stream systems. In: Middleware (2009)

Constraint-Aware Complex Event Pattern
Detection over Streams�

Ming Li1,3, Murali Mani1, Elke A. Rundensteiner1, and Tao Lin2

1 C.S. Dept., Worcester Polytechnic Inst., Worcester, Massachusetts USA
2 Research and Development, Amitive Inc., Redwood City, California USA

3 Silicon Valley Laboratory, IBM Corp., San Jose, California USA
mingli3@us.ibm.com, {mmani,rundenst}@cs.wpi.edu, taolin@amitive.com

Abstract. In this paper, we propose a framework for constraint-aware
pattern detection over event streams. Given the constraint of the input
streams, our proposed framework on the fly checks the query satisfiabil-
ity / unsatisfiability using a lightweight reasoning mechanism. Based on
the constraint specified in the input stream, we are able to adjust the
processing strategy dynamically, by producing early feedbacks, releas-
ing unnecessary system resources and terminating corresponding pat-
tern monitor, thus effectively decreasing the resource consumption and
expediting the system response on certain situations. Our experimental
study illustrates the significant performance improvement achieved by
the constraint-aware pattern detection framework with little overhead.

1 Introduction

Event stream processing (ESP) [17][3][9][14] technologies enable enterprise appli-
cations such as algorithmic trading, RFID data processing, fraud detection and
location-based services in telecommunications. The key applications of the ESP
technologies rely on the detection of certain event patterns (usually correspond-
ing to the exceptional cases in the application domain). Alerts will be raised
after the target pattern has been detected in the form of system notifications or
triggers. Such functionality is sometimes referred to as the situation alert, which
corresponds to many key tasks in enterprises computing.

In many practical cases business events are generated based on pre-defined
business logics, shown by the following two scenarios:

Supply Chain Management. Business Activity Monitoring (BAM) has been
described by Gartner [1] as a technology that “allows business users real-time
access to, and analysis of, important business indicators”. One major BAM appli-
cation is in supply chain management (SCM). The business events corresponding
to the stream-line logistics flow in SCM follow a pre-defined procedure.

Network Anomalies Detection. Assume a firewall server monitoring the net-
work packets between inside and outside machines. The server can maintain the
� This work has been partially supported by NSF under Grant No. NSF IIS-0414567.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 199–215, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

200 M. Li et al.

statistics of all the network traffic flows. Anomalies are detected from statisti-
cal data sent as event streams [3], which are generated by workflow engines or
simply customized programs following pre-defined schema.

In real-life event-based systems, constraints such as workflows often hold
among the event data. For pattern detection over such event data streams, rea-
soning using the constraints enables us to (1) identify queries which are guar-
anteed to not lead to successful matches at the earliest, thereby helping us to
terminate these long running pattern detection processes and release the corre-
sponding CPU and buffer resources; (2) identify queries which can be guaranteed
to surely lead to a future alert at the earliest (even though the matched result
has not yet happened), thereby helping us to get prepared for upcoming situ-
ations. The above two are referred to as detection of query unsatisfiability and
detection of query satisfiability separately.

Consider the following event query [17][3] in SCM, which monitors whether
an item has passed several process steps of certain location in a certain order:

SEQ(SUPPLIER WAREHOUSE, LABEL CTR, SHELTER)

Without given constraint knowledge of the input events, the earliest we can say
that the expected pattern cannot be matched over the event trace is after the
whole event trace has been completely received and still no match has been
found. Similarly, the earliest a situation alert could be triggered is after a match
of the expected pattern corresponding to the alert has been fully received. As-
sume we are given the event constraint as the product transportation workflow
shown in Figure 1. By such semantics of the input stream, if the item’s arrival at
the logistics center is notified, we can guarantee that no match can be found for
the expected pattern in a future, since no shelter (which is a required pattern in
the query) could appear in the coming trace. Thus the pattern monitor can be
terminated at this moment. Similarly, if the item’s arrival at the retail warehouse
is notified, we can guarantee that the current event trace can surely lead to a
future match for the expected pattern, since a coming label center followed by
a shelter is indicated by the workflow. Thus an early alert can be triggered for
helping the corresponding party get prepared for upcoming situations.

Fig. 1. Example Workflow in SCM

Constraint-Aware Complex Event Pattern Detection over Streams 201

We propose a framework for constraint-aware pattern detection over event
streams. and we have implemented our proposed framework in a prototype sys-
tem called E-Tec (constraint-aware query Engine for pattern deTection over
event streams) [13]. Given the constraint of the input event stream, E-Tec on the
fly checks the query satisfiability / unsatisfiability using a lightweight reasoning
framework. Based on such runtime constraint, E-Tec can adjust the processing
strategy dynamically, by producing early feedbacks, releasing unnecessary re-
sources (CPU and buffer) and terminating corresponding pattern monitor, thus
effectively decreasing the resource consumption and expediting the system re-
sponse on certain situation alerts. Our contributions include:

1. Lightweight Constraint Checking. Given the constraint of the input
event stream at compile time, the query satisfiability / unsatisfiability is ef-
ficiently observed on the fly by E-Tec’s constraint engine using our proposed
checking algorithm. The process is made to be lightweight through decreas-
ing the cost of runtime checking using our proposed automaton encoding
algorithm for pre-computation. (Section 3)

2. Execution Strategy. We propose a query execution strategy following the
Event-Condition-Action (ECA) rule-based framework. Real-time streaming
event data input serves as the events. The constraint engine described earlier
uses the checking algorithm to determine whether a set of specific conditions
are satisfied at runtime. Based on the checking results, corresponding actions
are taken on the fly such as monitor termination, buffer releasing and early
situation alerts. (Section 4)

3. System Integration and Experimental Studies. Our constraint-aware
pattern detection framework can be easily integrated with an automaton-
based ESP engine by combing automaton applied for constraint checking
with the automaton applied for pattern detection. Our prototype system
E-Tec is implemented following such design patter. Based on E-Tec, we con-
duct experimental studies to demonstrate that our proposed techniques bring
significant performance gains in memory and CPU usage. (Section 5)

State-of-the-Art. Recently the emergence of stream data processing had been
extended to complex event processing on event streams [17][3][8]. Wu [17] pro-
poses an expressive yet easy-to-understand language to support pattern detec-
tion over event streams, but constraint knowledge is not within the consideration
of its query evaluation. In [3], a plan-based technique is used to perform stream-
ing complex event detection across distributed sources. Its focus is mainly on
handling pattern detection over event streams in a distributed environment. A
rule-based ESP solution is provided in [8]. However, it only considers a limited
number of rules instead of utilizing the complete input event constraint.

Roadmap. In Section 2 we give the preliminary for this paper. Section 3 pro-
vides our query satisfiability / unsatisfiability checking algorithms. Execution
strategy is studied in Section 4. Our experimental results are presented in Sec-
tion 5, followed by related work in Section 6 and conclusion in Section 7.

202 M. Li et al.

2 Preliminary

2.1 Event Data Model

Event Instance. An event instance is an occurrence of interest in a system,
which can be either primitive or composite as further introduced below.

Event Type. Similar event instances can be grouped into an event type. That
is, each event type E corresponds to a class of event instances which share set
of common attributes. We use capitalized letters for event types such as E. and
we use lower-case letters such as e to represent instances of event type E.

Event Stream and Event Trace. An event stream is heterogeneously pop-
ulated with event instances of different event types. In most event processing
scenarios, it is assumed that the input to the system is a potentially infinite
stream which contains all events that might be of interest [17]. Such real-time
input is referred to as an event trace (usually denoted as h), which evolves on
the fly by receiving new instances as input. For an event trace h and an event
type E, E[h] denotes the set of all the event instances of E in h.

Temporal Aspects of Events. An event is associated with a unique times-
tamp, indicating the discrete ordering in the time domain. An event instance
that happens instantaneously at a time point is called a point event. An event
instance that occurs over a time interval is called a interval event. As a general
representation for both the point and interval temporal semantics, for any event
instance ei, we use ei.ts and ei.te to denote the start and the end timestamp of
the event instance ei, respectively. The start and the end timestamps of a point
event e are the same, which is simplified as ei.t (i.e., ei.ts = ei.te = ei.t). For an
event instance e, we use a pair of numbers as et1|t2 adjacent to it to represent
the timestamp of e (denoting both the start and end time). For the point-based
events, the representation is simplified as et, where the t adjacent to e denotes
the time point when e happens. For easier understanding, we assume events to
be point-based (thus event e’s timestamp will be represented as e.t) in the rest of
the paper. However our proposed constraint-aware pattern detection framework
works with general interval event streams as well.

2.2 Event Query Model

Complex event pattern detection languages are studied in a number of existing
works [3][17][7]. In this work we adopt the query language defined in [17] as
follows to specify an event pattern query:

<Query>::= EVENT <pattern expression>

[WHERE <equality conditions>]

The EVENT clause specifies temporal and logical relationships among events.
As its algebraic translation, we use a standard set of event composite opera-
tors [17], which are AND, OR, SEQ and NEGATION. The sequence operator
SEQ is used by the examples of this paper thus its definition is given below.

Constraint-Aware Complex Event Pattern Detection over Streams 203

[Sequence Operator]. The sequence operator SEQ specifies a particular order
in which the event instances of interest should occur and these event instances
form a composite event instance. It takes a list of n (n > 1) event types as its
parameters and outputs composite events e′ = <e1, e2, ..., en> defined as:

SEQ(E1, E2, ..., En)[h] = { < e1, e2, ..., en > | (e1.t < e2.t... < en.t)
∧ (< e1, ..., en >∈ E1[h]× ...× En[h]) }.

(1)

Example 1. The following example illustrates the computation of SEQ(A, B)
given the event trace h = { a1, b2, e5, a6, e7 }. Remind that the small number
adjacent to an event instance denotes the timestamp of the event. We have
A[h]={ a1, a6 }, B[h] = { b2 } and A[h] × B[h] = { < a1, b2 >, <a6, b2> }.
The sequence result <a1, b2> satisfies the condition a1.t < b2.t (i.e., 1 < 2).
However, <a6, b2> is not a correct result for a6.t > b2.t (i.e., 6 ≥ 2).

Most applications require real-time filtering, where users are interested in com-
plex event patterns that impose additional constraints on the event instances [3].
Such parameterized constraints between event attributes and specific values can
be specified in the optional WHERE clause [17].

Window-based processing is widely applied in data stream processing sys-
tems [4]. Our proposed framework could be extended with window-based func-
tionalities thus to support event pattern queries with sliding windows. Due to
space limitation, we skip the discussion on this subject in the paper.

3 Query Satisfiability and Unsatisfiability

3.1 Event Constraint

As discussed earlier, in many practical cases events are generated based on pre-
defined constraint. In this work, we consider an event constraint C which can be
expressed using a regular expression. For instance, C can be given as the event
workflow of the input stream. L(C) denotes the language defined by C.

For any event trace h, if h is the prefix of a sequence k ∈ L(C), we call h being
consistent with C. Trace(C) denotes the set which contains all the event traces
that are consistent with C. Thus given a trace h, h ∈ Trace(C) iff ∃ sequence k:
hk ∈ L(C). Obviously, L(C) ⊆ Trace(C).

Example 2. Regular expression A+K∗B+KC+ represents a given event con-
straint Cexp2, where consecutive A event instances, B event instances and C
event instances are divided by a K event instances but the K’s between the A’s
and B’s is optional. Event trace h1 = { a1, k2, b4, b7, k8, c9 } and h2 = { a1,
b4, b7, k8, c9 } are both in Trace(Cexp2).

3.2 Satisfiability and Unsatisfiability Checking

An event trace is said to match event query Q if the evaluation of Q over h
produces at least one matched pattern. For a pattern query Q, L(Q) denotes the
set which contains all the event traces that match Q.

204 M. Li et al.

Example 3. Consider event trace h1, h2 given in Example 2 and event pattern
query Qexp3 = SEQ(A, K, K, C), which looks for event patterns with at least
two K event instances appearing between an A instance and a B instance. Trace
h1 matches Qexp3 since in the trace there exist a complex event pattern instance
<a1, k2, k8 c9> matching the target pattern <a, k, k, c>. However, trace h2
does not match Qexp3 since no instance of the target pattern could be found.

Given a pattern query Q, an event constraint C and an event trace h ∈ Trace(C),
we want to determine whether a query match may exist for h while h keeps evolv-
ing at runtime. This problem is regarding the checking of the query satisfiability
/ unsatisfiability, of which we give the formal definitions below.

Query Satisfiability. Given Q, C and h ∈ Trace(C), Q is satisfiable iff ∀ k:
hk∈L(C) → hk∈L(Q). This is denoted as Satisfiable(Q, C, h) = true.

Query Unsatisfiability. Given Q, C and h ∈ Trace(C), Q is unsatisfiable iff

∃ k: hk∈L(C) ∧ hk∈L(Q). This is denoted as Unsatisfiable(Q, C, h) = true.

The key functionalities of event stream processing applications rely on the de-
tection of certain event patterns (usually corresponding to the exceptional cases
in the application domain). Alerts (such as system notification or triggers) are
usually raised after the target pattern has been detected. Under the context of
such situation alerts, checking the query satisfiability / unsatisfiability is equiv-
alent to determining whether situation alerts will be raised in the future while a
given event trace evolves on the fly. Given Q, C and h ∈ Trace(C), Q either could
be determined as satisfiable (i.e., Satisfiable(Q, C, h) holds true) or unsatisfiable
(i.e., Unsatisfiable(Q, C, h) holds true), or could not yet be determined (i.e., both
Satisfiable(Q, C, h) andUnsatisfiable(Q, C, h) are false, which means that whether
a matched pattern may exist for Q while h evolves could not be decided yet).

Example 4. Consider Qexp3, Cexp2 given earlier and event trace h3 = { a1, k2
}, h4 = { a1, b4 } and h5 = { a1, a2 }. We have satisfiable(Qexp3, Cexp2, h3)
as true. This is because Cexp2 guarantees one or more K instances will appear
(i.e., the K’s appearing before and after the consecutive B’s) and then C events
will appear after that. Thus, no matter how h3 evolves, matched result(s) will
surely appear in the future. For instance, a match is formed after h3 evolving to
h1. Similarly, we knows that unsatisfiable(Qexp3, Cexp2, h4) is true, since Cexp2
indicates that only one K instance (i.e., the K appearing after the consecutive
B’s) will appear. We could also see that both satisfiable(Qexp3, Cexp2, h5) and
unsatisfiable(Qexp3, Cexp2, h5) are false, since whether a match may exist could
not yet be decided at the moment. How to determine satisfiability / unsatisfia-
bility using algorithms for this example will be given later in Example 6.
A query could be statically determined as satisfiable / unsatisfiable before re-
ceiving any event input, i.e., the event trace h being an empty sequence. These
two extreme cases are referred to as static query satisfiability / unsatisfiability.

Example 5. Consider Cexp2 given earlier and Qexp5−a=SEQ(A, K, C), Qexp5−b

= SEQ(A, K, D). Obviously we can guarantee the static query satisfiability of

Constraint-Aware Complex Event Pattern Detection over Streams 205

Qexp5−a because Cexp2 indicates the existence of instances such as <a, k, c>.
Similarly, the static unsatisfiability of Qexp5−b is guaranteed.

For an event constraint C, we let τC denote the minimized DFA for the language
L(C). Similarly, for a pattern query Q, we let τQ denote the minimized DFA for
the language L(Q). Construction of τC and τQ is described in [12]. For a given
DFA τ , We use s̊τ to represent τ ’s start state. The state transition function of
τ used for processing a sequence input is denoted as δ̂τ . δ̂τ(s, seq) denotes the
state reached after finishing the transition of seq, beginning from a given state
s in τ . δ̂τ(s, seq) = ∅ if the transition falls out of τ . We use Dτ(s) to denote the
derivative of a state s in τ , which is equivalent to the language accepted by τ
starting from state s.

We give two theorems as below before showing our algorithm on query satis-
fiability / unsatisfiability checking, given query Q, constriant C and trace h. We
have DFA τC , τQ defined earlier and we use τ∩ to denote the minimized DFA
equivalent to τC ∩ τQ. For efficient algorithms of constructing τ∩ and computing
automaton derivatives, please refer to [12].

Theorem 1. Unsatisfiable(Q, C, h) holds true iff δ̂τ∩ (̊sτ∩, h) = ∅.
Theorem 2. Assuming δ̂τ∩ (̊sτ∩, h) = p and δ̂τC (̊sτC , h) = q, Satisfiable(Q, C,
t) holds true iff Dτ∩(p) is equivalent to DτC(q).
Due to space limitation, proofs are skipped in this paper. Based on the theorems,
we design our query satisfiability / unsatisfiability checking algorithm shown in
Algorithm 1. Line 6 to 13 give the static checking process. Q can be statically
guaranteed as unsatisfiable if τ∩ accepting only empty language (by Theorem 1)
and Q can be statically guaranteed as satisfiable if τ∩ is equivalent to τC (by
Theorem 2). Line 17 to 47 give the runtime checking process. Once an input
event from the evolving trace seq triggers a state change in either τ∩ or τC ,
derivative of the current state (pre-computed in Line 17) of τ∩ and τC will be
compared. If they are equivalent, the satisfiability of Q can be guaranteed (by
Theorem 2). If the transition falls out of τ∩ (note that it could never fall out of
τC because the input sequence is consistent with C), the unsatisfiability of Q
can be guaranteed (by Theorem 1).

Example 6. Consider Qexp3 and Cexp2 given earlier. Figure 2 shows three au-
tomaton respectively: (1) τCexp2 , (2) an equivalent NFA of τQexp3 (instead of
showing τQexp3 for easier understanding) and (3) the minimized DFA τ∩ equiv-
alent to τCexp2 ∩ τQexp3 . Let us first look at trace h3 (given in Example 4).
When the first event a1 is processed, both τCexp2 and τ∩ transit to state s1
and the derivatives for these two states are A∗K∗B+KC+ and A∗K+B+KC+

respectively, which are obviously not equivalent. When the second event k2 is
processed, both τCexp2 and τ∩ transit to state s2 and the derivatives turn to
be equivalent as K∗B+KC+. Thus we can guarantee the satisfiability of Qexp3.
We then look at trace h4 (given in Example 4) which is an example of query
unsatisfiability. The transition falls out of τ∩ when the second event b4 is pro-
cessed and unsatisfiability of Qexp3 can be guaranteed at this moment.

206 M. Li et al.

Algorithm 1. Query Satisfiability / Unsatisfiability Checking

1: Procedure: SatUnsatChecking
2: Input: (1) constraint C, (2) query Q, (3) real-time evolving sequence seq (must be consistent

with C) as “e1 e2, e3...” received incrementally, with the End of Stream (EOS) message
arriving at the very end if input termination is indicated

3: Output: static or runtime notification of query satisfiability / unsatisfiability
4:
5: ———————————————— Static Checking ———————————————

6: construct τC , τ∩ and pre-compute Dτ∩(̊sτ∩) and DτC (̊sτC)
7: if τ∩’s accepted language L(τ∩) = ∅ (i.e., τ∩ being an empty automaton) then
8: notify unsatisfiable and return
9: else
10: if τC ’s accepted language L(τC) is equivalent to L(τ∩) (i.e., Dτ∩(̊sτ∩) = DτC (̊sτC))

then
11: notify satisfiable and return
12: end if
13: end if
14: ———————————————————————————————————————
15:
16: ——————————————— Runtime Checking ——————————————
17: calculate the derivatives for all the states τC and τ∩ except s̊τ∩ and s̊τC
18: var p ← s̊τ∩
19: var q ← s̊τC

20: var p′, q′
21: var checkFlag ← false
22: var e ← poll(seq)
23: while e != EOS do
24: p′ ← δ̂τ∩(p, e)
25: q′ ← δ̂τC(q, e)
26: checkFlag ← false
27: if p′ = ∅ then
28: notify unsatisfiable and return
29: else
30: if p != p′ then
31: if Dτ∩(p′) is equivalent to DτC(q′) then
32: notify satisfiable and return
33: end if
34: checkFlag ← true
35: p ← p′
36: end if
37: if q != q′ then
38: if !checkFlag then
39: if Dτ∩(p′) is equivalent to DτC(q′) then
40: notify satisfiable and return
41: end if
42: end if
43: q ← q′
44: end if
45: end if
46: e ← poll(seq)
47: end while
48: ———————————————————————————————————————

A K B C A K B C* * * * *

K B K

B

A
0 1 3 42

C

(1)

K KA
0 1 325

K BA
1 320

C

(2)

4
K C

4

(3)

5

Fig. 2. Example Automaton

Constraint-Aware Complex Event Pattern Detection over Streams 207

3.3 Lightweight Constraint Checking

Checking the derivative equivalency between the states of τ∩ and τC (polynomial
time complexity) introduces runtime costs in Algorithm 1. It is conducted every
time an input event instance triggers state transition(s) on either τ∩ or τC , which
could bring in big overhead for such runtime process. Besides that, Algorithm 1
requires two automaton state look-up at runtime for each input event, i.e., the
state lookup at τ∩ and τC .

Below we introduce an optimized query satisfiability / unsatisfiability checking
algorithm to decrease the runtime cost in Algorithm 1. Let us first look at a
theorem given as following, where τ∩’s state set is denoted as Sτ∩ and τC ’s
state set is denoted as SτC .

Theorem 3. For any p in Sτ∩, there exists q in SτC : for any sequence seq,
δ̂τ∩(̊sτ∩, seq) = p → δ̂τC (̊sτC , seq) = q.

The proof for Theorem 3 is skipped due to space limitation. From the theorem we
can see that each state in τ∩ has one and only one mapping state in τC . This fact
guarantees the correctness of a runtime constraint checking mechanism given in
the following Algorithm 2.

Algorithm 2. Lightweight Query Satisfiability / Unsatisfiability Checking
1: Procedure: LightweightSatUnsatChecking
2: Input / Output: Same as Algorithm 1 (Line 2 to 3)
3:
4: ———————————————— Static Checking ———————————————

5: Same as Algorithm 1 (Line 6 to 13)
6: ———————————————————————————————————————
7:
8: ——————————————— Runtime Checking ——————————————
9: perform pre-computation by running Algorithm 3 as AutomatonEncoding(τ∩, τC)
10: var p ← s̊τ∩
11: var p′
12: var e ← poll(seq)
13: while e != EOS do
14: p′ ← δ̂τ∩(p, e)
15: if p′ = ∅ then
16: notify unsatisfiable and return
17: else
18: if p != p′ then
19: if p.encoding = DER EQUIVALENT then
20: notify satisfiable and return
21: end if
22: p ← p′
23: end if
24: end if
25: e ← poll(seq)
26: end while
27: ———————————————————————————————————————

Different from Algorithm 1, Algorithm 2 achieves lightweightness in constraint
checking by applying the automaton encoding before the runtime checking pro-
cess. For each state p in τ∩, its mapping state q in τC is found and derivative
equivalency of p and q is checked. Then the corresponding checking result is
encoded with p (Line 9 in Algorithm 2). Algorithm 3 depicts such automaton

208 M. Li et al.

encoding process. The process has two components: the traverser and the applier.
Each state in τ∩ is associated with a variable encoding which is used to record
the encoded information. By default the encoding value is set to be N/A for each
state. The traverser traverses τ∩ and directs the applier to each of its states. For
a given state p, the applier calculates p’s mapping state q in τC and performs the
derivative comparison between p and q. If these two are equivalent, p.encoding
will be encoded as DER EQUIVALENT. By using such encoded result on τ∩,
runtime cost in the runtime process is greatly decreased. Runtime checking of
the derivative equivalency is completely replaced by a simple checking on the en-
coding value of the reached state in τ∩ (Line 20 in Algorithm 2). The query can
be determined to be satisfiable while the encoding value is DER EQUIVALENT.
Besides that, running τC alongside with τ∩ is no longer needed thus only one
automaton look up at τ∩ is required for each input event.

Example 7. Consider the same scenario as in Example 6 but applying the
lightweight constraint checking algorithm. The state s2 to s5 of τ∩ are all en-
coded as DER EQUIVALENT after applying Algorithm 3. For trace h3, when
the second event instance k2 is processed, τ∩ transits to state s2. Thus we are
guaranteed the satisfiability of Qexp3 at this moment.

Algorithm 3. Automaton Encoding
1: Procedure: AutomatonEncoding
2: Input / Output: (1) DFA τ∩, (2) DFA τC

3: Output: τ∩ with encoded information on derivative equivalency checking
4:
5: calculate the derivatives for all the states τC and τ∩ except s̊τ∩ and s̊τC

6: for all p ∈ Sτ∩ except s̊τ∩ do
7: find p’s mapping state q in τC

8: if Dτ∩(p) is equivalent to DτC(q) then
9: p.encoding ← DER EQUIVALENT
10: end if
11: end for

3.4 Handling Predicate-Based Filtering

As earlier discussion, most applications require real-time filtering, where users
are interested in complex event patterns that impose additional constraints on
the event instances. Our constraint-aware pattern detection framework sup-
ports predicate-based filtering on event streams using the same automaton-based
mechanism introduced earlier. We skip the formal description in this paper due
to space limitation. Instead we simply show an example as following.

Example 8. Consider constraint Cexp8 = A+B+A+C+, and query Qexp8 =
SEQ(A, B, C) WHERE A.id = “3”. In order to fit into the automaton-based
framework, we rewrite Cexp8 into C′

exp8 = (A[id! = 3]|A[id == 3])+B+(A[id! =
3]|A[id == 3])+C+. Minimized DFA τC′

exp8
and τ ′

∩ (equivalent to τC′
exp8

∩
τQexp8) are given in Figure 3 (1) and (2) respectively. Take trace h6 = { a1[id =
2], b3 } and h7 = { a1[id = 3], b3 } as example. For h6, unsatisfiability of Qexp8
can be guaranteed. For h7, satisfiability of Qexp8 can be guaranteed instead.

Constraint-Aware Complex Event Pattern Detection over Streams 209

B C
A id == 3

B C

A id == 3
A id != 3

A id == 3
A id != 3

A id == 3
A id != 3

A id == 3
A id != 3

A id == 3
A id != 3

A id == 3
A id != 3

A id == 3
A id != 3 B C B

A id != 3

C

A id == 3

A id != 3

0 2 3 0 2 3 41

1

54

(1) (2)

Fig. 3. Automaton for Example Query with Predicate-Based Filtering

4 Query Execution

Pattern monitoring is a long running process for event pattern detection. In
an execution strategy without considering constraint knowledge, the monitoring
process could be stopped only when the event trace is terminated. Corresponding
CPU and buffer resources could not be released earlier. During the monitoring
process, situation alert will be raised while target event patterns has been de-
tected. Algorithm 4 given below sketches such basic execution strategy.

Algorithm 4. Basic Execution Strategy
1: Procedure: BasicExecution
2: Input: real-time evolving sequence seq as “e1 e2, e3...”, with the End of Stream (EOS)

message arriving at the very end if input termination is indicated
3: Output: situation alerts and matched result patterns
4:
5: var e ← poll(seq)
6: while e != EOS do
7: process e:
8: perform necessary data buffering, raise situation alerts and produce results if possible
9: e ← poll(seq)
10: end while
11: terminate the pattern monitor for the current event trace

As earlier discussion, observation of the query satisfiability / unsatisfiability
could be utilized in two aspects. First, it enables us to identify queries which
are guaranteed to not lead to successful matches at the earliest, thereby helping
us to terminate such long running pattern detection processes and release the
corresponding CPU and buffer resources earlier. All the buffer taken for this
trace can be released and no more CPU and memory footprint is required in the
future on this trace. We call this process early monitor termination. Second, it
enables us to identify queries which can be guaranteed to surely lead to a future
alert at the earliest (even though the matched result has not yet happened),
thereby helping us to get prepared for upcoming situations. We call this process
early situation alert.

We thus propose a constraint-aware execution strategy for complex event pat-
tern detection over streams in Algorithm 5, by which the query satisfiability / un-
satisfiability will be notified at the earliest possible moment during the execution
to achieve both early monitor termination and early situation alert. The execu-
tion strategy follows the Event Condition Action (ECA) rule-based framework.

210 M. Li et al.

It applies a constraint checker M using the checking algorithm (Algorithm 1
or 2) to notify the query satisfiability / unsatisfiability on the fly. Through the
ECA framework, the real-time streaming event input serves as the events. The
checking results from M serve as the conditions and the corresponding steps
taken based on the checking result are seen as the actions.

To be specific, following benefits could be obtained through the early monitor
termination and early situation alert by our proposed execution strategy:

1. Early Buffer Release. By the early monitor termination, buffered elements
can be released earlier.

2. Further Buffer Avoidance. By the early monitor termination, no further
event buffering is required for the current event trace.

3. Further Monitor Avoidance. By the early monitor termination, no fur-
ther pattern detection process is needed for the trace.

4. Taking Precaution Action for Upcoming Situations. By the early
situation alert, we can get prepared for upcoming situations at the earliest.

Algorithm 5. Constraint-Aware Execution Strategy
1: Procedure: ConstraintAwareExecution
2: Input: (1) real-time evolving sequence seq as “e1 e2, e3...”, with the End of Stream (EOS)

message arriving at the very end if input termination is indicated, (2) procedure M for
lightweight satisfiability / unsatisfiability monitor given in Algorithm 1 or 2

3: Output: situation alerts, matched result patterns and early situation alerts, with the early
monitor termination functionality

4:
5: invoke M ’s static checking process
6: if M raises unsatisfiable then
7: terminate the pattern monitor determination for the current event trace
8: return
9: else
10: if M raises satisfiable then
11: raise early situation alert
12: end if
13: end if
14: invoke M ’s runtime checking process
15: var e ← poll(seq)
16: while e != EOS do
17: pass e to M
18: if M raises unsatisfiable then
19: release buffer, perform early monitor determination for the current event trace
20: pass EOS to M
21: return
22: else
23: if M raises satisfiable then
24: raise early situation alert
25: end if
26: end if
27: process e:
28: perform necessary data buffering, raise situation alerts and produce results if possible
29: e ← poll(seq)
30: end while
31: terminate the pattern monitor for the current event trace
32: pass EOS to M

Example 9. Consider the same scenario as in Example 6. Let us first look at
trace h3. When the second event k2 is processed, the constraint checker raises
satisfiable. Thus, an early situation alert will be thrown at this moment for

Constraint-Aware Complex Event Pattern Detection over Streams 211

helping the corresponding parties to get prepared for upcoming situations at the
earliest, even though the whole <a, k, k, c> pattern has not yet been formed.
For trace h4, the constraint checker raises unsatisfiable when the transition
falls out of τ∩ at the second event b4. Thus a1 (the first event in h4) which was
received and buffered earlier can be purged and no further buffering is required
under this trace. Also, the pattern monitor can be terminated at this point in
order to release corresponding CPU resources. Consider h4 evolving to h2 (given
in Example 2). Pattern detection and buffering for extracting and keeping k8
can be avoided through the early monitor termination.

5 Performance Evaluation

5.1 System Implementation

E-Tec is implemented using Java 5. Figure 4 shows the system architecture.
The Query Plan Generator parses and translates a given event query into
an execution plan, which includes a pre-computed encoding. The Query Ex-

ecutor takes in events from input streams and constructs results on the fly.
The Constraint Engine utilizes automaton-based technique to perform run-
time constraint monitoring. The Execution Controller receives feedbacks from
the constraint engine and triggers the query executor to perform corresponding
runtime actions.

Fig. 4. E-Tec System Architecture

The automaton-based model is commonly used by the state-of-the-art ESP
engines. Our provided query satisfiability / unsatisfiability checking framework
can be easily integrated with the automaton-based ESP engines by combing the
monitoring automaton (τ∩) with the automaton applied for pattern detection.

212 M. Li et al.

5.2 Experimental Setting

Experiments are run on two Pentium 4 3.0GHz machines, both with 1.98G of
RAM. One machine sends the event stream to the second machine, i.e., the query
engine. In Section 5.3 and 5.4 we will report the performance of our constraint-
aware techniques on a 5G data input based the supply chain data model given
in [10], which contains multiple real life use cases on SCM. From its workflow,
we can see that the data can be highly irregular, with 60% of the event types
that can be optional or exclusive choices (used for constroling query selectivity).

We run two sets of experiments. One is on event pattern queries with only
pattern-based filtering, where we vary the pattern-based selectivity, which con-
trols the percentage of patterns being filtered out through the query structure-
related factors (Qexp3 as an example) from zero to 100% through changing the
query complexity (state number of the query automaton in our case). The other
set of experiments is on queries with only predicate-based filtering (Qexp8 as an
example). In this test the pattern-based selectivity is 100%. However we vary
the predicate-based selectivity from zero to 100% through changing the predicate
type and predicate position. As our future work, we plan to perform experiments
on an on-line auction data, which conforms to the schema used in XMark [15].

5.3 Queries with Only Pattern-Based Filtering

Memory Consumption. Our constraint-based pattern detection technique
should be able to minimize the amount of data that is buffered: with a smaller se-
lectivity (less results being produced), more unnecessary data buffering could be
avoided. The results shown in the right chart of Figure 5 provides the verification.
X axis shows 6 groups of queries categorized by their pattern-based selectivities.
Y axis shows the accumulative memory consumption for each query. We can
see that the basic constraint checking (Algorithm 1) has the same buffer perfor-
mance as the lightweight constraint checking (Algorithm 2) since they have the
same effect on cutting memory consumption.
CPU Performance. The left chart of Figure 5 shows the query execution
time. We can see that in most cases constraint-aware approaches outperform the

0% 20% 40% 60% 80% 100%

3000

2500

2000

1500

1000

500

Pattern-based Selectivity

E
xe

cu
ti

on
 T

im
e

(s
)

Naive

Basic Checking

Lightweight
Checking

0% 20% 40% 60% 80% 100%

Pattern-based Selectivity

30000

25000

20000

15000

10000

5000

M
em

o
ry

 C
o

n
su

m
pt

io
n

 (e
ve

n
t i

n
st

an
ce

s)

Fig. 5. Exp. Results for Queries with Only Pattern-Based Filtering

Constraint-Aware Complex Event Pattern Detection over Streams 213

naive approach without considering constraints: with a smaller selectivity, more
unnecessary CPU computation could be avoided. However, when the selectivity
is very high, constraint-aware approaches have poor performance because their
overheads on runtime constraint checking become higher than the CPU saving
through early monitor termination. Y axis here shows the execution time for
each query. In the best case (i.e., the query for which selectivity is 0%), plans
optimized with constraint-based processing reduce the execution time of the
original plan by 76%. We can also observe that the basic constraint checking
does not perform as well as the lightweight constraint checking since its costly
runtime process introduces higher overhead.

5.4 Queries with Only Predicate-Based Filtering

Experiments on memory and CPU consumption are also run for queries with only
predicate-based filtering. Eexperimental results with similar characteristics as in
Section 5.3 are reported, which are shown in Figure 6. Due to space limitation,
we skip further description for this set of experiments in the paper.

0% 20% 40% 60% 80% 100%

3000

2500

2000

1500

1000

500

Predicate-based Selectivity

E
xe

cu
ti

on
 T

im
e

(s
)

Naive

Basic Checking

Lightweight
Checking

0% 20% 40% 60% 80% 100%

Predicate-based Selectivity

30000

25000

20000

15000

10000

5000

M
em

o
ry

 C
o

n
su

m
p

ti
o

n
 (e

ve
n

t i
n

st
an

ce
s)

Fig. 6. Exp. Results for Queries with Only Predicate-Based Filtering

5.5 Conclusion of the Experimental Study

Above experimental results reveal that the proposed constraint-aware pattern
detection framework is practical in two senses: (1) the technique can surely re-
duce the system memory consumption; (2) savings on CPU performance brought
by the technique can be significant in most cases.

6 Related Work

The constraint-aware query processing has been studied extensively in tradi-
tional databases, which does not meet the requirement of event stream process-
ing application because they do not provide real-time solution for event process-
ing. Some work on XML stream processing engines [16][11]have looked at the

214 M. Li et al.

schema-based optimization opportunity focusing on reducing CPU and mem-
ory footprint in XML data processing. Such techniques for handling of semi-
structured data cannot be applied in event stream processing which is handling
high volume of real-time stream input in the format of heterogenous events.
Event-specific ESP technology, which has an event-specific system design and
evaluation mechanism, is shown to be superior to generic stream processing so-
lutions [5][2][6] because it is being specifically designed for handling sequence
queries over streaming event. An expressive yet easy-to-understand language is
proposed in [17] to support pattern queries on such sequential streams and pro-
poses customized algebra operators for the efficient processing of such sequence
queries with sliding windows. Constraint knowledge is not within the consid-
eration of its query evaluation. A plan-based technique to perform streaming
complex event detection across distributed sources is discussed in [3]. Its focus
is mainly on handling pattern detection over event streams in a distributed en-
vironment. A constraint-aware ESP solution is provided in [8]. However, it only
considers a limited number of event constraint types instead of completely uti-
lizing the whole input constraint. Even though a compile time pre-computation
mechanism is given to improve the runtime constraint inferencing, this process
still requires multiple state checking for every input event. Besides that, the
abductive inference which is required at their compile time pre-computation is
NP-complete.

7 Conclusion

In many practical cases business events are generated based on pre-defined busi-
ness logics. Hence, constraints often hold among event data. For pattern detec-
tion over event streams, reasoning using such known constraints enables us to
identify the unsatisfiability and the satisfiability for a query at the earliest pos-
sible moment, thereby helping us to get prepared for upcoming situations at the
earliest. thus helping us to effectively decrease the resource consumption and ex-
pedite the system response on certain situation alerts. We propose a framework
for constraint-aware pattern detection over event streams. Given the constraint
of the input event stream at compile time, the query satisfiability / unsatisfia-
bility is efficiently monitored on the fly using our lightweight runtime checking
algorithm. Following an ECA-based query execution strategy, we are able to ad-
just the processing strategy dynamically, by producing early feedbacks, releasing
unnecessary resources and terminating corresponding pattern monitor. We have
implemented our proposed framework in the E-Tec prototype system, which is
efficiently augmented by our optimization module to use finite automaton for
runtime pattern detection and constraint checking. Our experimental studies il-
lustrate that the proposed techniques bring significant performance improvement
in both memory and CPU usage with little overhead.

Constraint-Aware Complex Event Pattern Detection over Streams 215

References

1. Gartner Inc., http://www.gartner.com
2. Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-

braker, M., Tatbul, N., Zdonik, S.: Aurora: A new model and architecture for data
stream management. VLDB Journal 12(2), 120–139 (2003)

3. Akdere, M., Cetintemel, U., Tatbul, N.: Plan-based complex event detection across
distributed sources. PVLDB 1(1), 66–77 (2008)

4. Babcock, B., Babu, S., Motwani, R., Widom, J.: Models and issues in data streams.
In: PODS, June 2002, pp. 1–16 (2002)

5. Babu, S., Widom, J.: Continuous queries over data streams. In: ACM SIGMOD
(September 2001)

6. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M., Hellerstein, J.,
Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.: Tele-
graphCQ: Continuous dataflow processing for an uncertain world. In: CIDR, pp.
269–280 (2003)

7. Demers, A.J., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., White, W.M.:
Cayuga: A general purpose event monitoring system. In: CIDR, pp. 412–422 (2007)

8. Ding, L., Chen, S., Rundensteiner, E.A., Tatemura, J., Hsiung, W.-P., Candan,
K.S.: Runtime semantic query optimization for event stream processing. In: ICDE,
pp. 676–685 (2008)

9. Etzion, O.: Semantic approach to event processing. In: DEBS, p. 139 (2007)
10. Harris, C., Gass, S.: Encyclopedia of MS/OR (2000)
11. Koch, C., Scherzinger, S., Schweikardt, N., Stegmaier, B.: Schema-based scheduling

of event processors and buffer minimization for queries on structured data streams.
In: VLDB, pp. 228–239 (2004)

12. Kozen, D.: Automata and computability. W. H. Freeman and Company, New York
(2003)

13. Li, M., Mani, M., Rundensteiner, E.A., Lin, T.: E-tec: A constraint-aware query
engine for pattern detection over event streams. In: ICSC, pp. 565–566 (2009)

14. Liu, M., Li, M., Golovnya, D., Rundensteiner, E.A., Claypool, K.T.: Sequence
pattern query processing over out-of-order event streams. In: ICDE, pp. 784–795
(2009)

15. Schmidt, A., Wass, F.: XMark: a benchmark for XML data management. In:
VLDB, pp. 974–985 (2002)

16. Su, H., Rundensteiner, E.A., Mani, M.: Semantic Query Optimization for XQuery
over XML Streams. In: VLDB, pp. 1293–1296 (2005)

17. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: SIGMOD, pp. 407–418 (2006)

http://www.gartner.com

Attribute Outlier Detection over Data Streams

Hui Cao1, Yongluan Zhou2, Lidan Shou1, and Gang Chen1

1 College of Computer Science, Zhejiang University, China
2 Department of Mathematics and Computer science,

University of Southern Denmark, Denmark
chaserzju@gmail.com, zhou@imada.sdu.dk, {should,cg}@cs.zju.edu.cn

Abstract. Outlier detection is widely used in many data stream application, such
as network intrusion detection, fraud detection, etc. However, most existing algo-
rithms focused on detecting class outliers and there is little work on detecting
attribute outliers, which considers the correlation or relevance among the data
items. In this paper we study the problem of detecting attribute outliers within
the sliding windows over data streams. An efficient algorithm is proposed to per-
form exact outlier detection. The algorithm relies on an efficient data structure,
which stores only the necessary information and can perform updates incurred by
data arrival and expiration with minimum cost. To address the problem of lim-
ited memory, we also present an approximate algorithm, which selectively drops
data within the current window and at the same time maintains a maximum error
bound. Extensive experiments are conducted and the results show that our algo-
rithms are efficient and effective.

Keywords: attribute outlier, date stream.

1 Introduction

Outlier detection has been widely studied in the literature. Hawkins [6] gave a well-
known definition to outlier as “an observation that deviates so much from other obser-
vations as to arouse suspicion that it was generated by a different mechanism”. On one
hand, outlier detection may be useful for removing noises from massive datasets. On
the other hand, outliers detection can also be used in applications looking for abnormal
signals, such as network security threats, bank frauds etc.

In general, outliers could be classified into two types, namely class outliers and at-
tribute outliers [12,16]. Class outliers are those data items that deviate significantly
from the rest with a user-given metric, such as distance and density. Attribute outliers
are the data items that have some abnormal attributes compared to other “similar” tu-
ples. Intuitively, we can firstly partition the whole dataset into several subsets with re-
spect to the similarity of their attributes. Then, the class outliers of each subset can be
regarded as attribute outliers. We will illustrate the differences between class outliers
and attribute outliers using an example.

Table 1 shows a snippet of two-week stock trading history starting from July 1 2008.
According to the definition of conventional class outliers, tuples with ID 2,3,9,10 are ob-
viously class outliers, as they deviate considerably from other tuples in both open/close

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 216–230, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Attribute Outlier Detection over Data Streams 217

Table 1. Trading Information of Stock in Two Weeks

Tuple ID Ticker Open($) Close($) Volume Data

1 ACS 53.25 52.84 8992 2008-6-30
2∗ ZMH 70.66 69.93 16075 2008-6-30
3∗ XRAY 26.32 26.1 14110 2008-6-30
4 ACS 52.77 53.28 8573 2008-7-1
5 ACS 53.39 53.60 7976 2008-7-2
6 ACS 53.54 53.84 7680 2008-7-3
7 ACS 53.79 53.91 7758 2008-7-4
8 ACS 53.90 54.02 9021 2008-7-7
9∗ ZMH 72.34 72.18 17893 2008-7-7

10∗ XRAY 25.12 24.87 13549 2008-7-7
11 ACS 54.02 53.94 9820 2008-7-8

12� ACS 53.99 54.35 17028 2008-7-9
13 ACS 54.40 54.48 9726 2008-7-10

14� ACS 54.43 54.99 18920 2008-7-11

prices and trading volumes. But, in fact, the values of these tuples are normal. For ex-
ample, tuple 2 and 9 represent the trading information of the stock whose ticker name
is ’ZMH’. Although these are the only two ’ZMH’ tuples in the table, their rarity does
not mean any abnormality, as it is meaningless to compare trading information across
different ticker names. Therefore, tuple 2 and 9 should not be regarded as outliers. The
same observation can be made for tuple 3 and 10. In such cases, computing class outliers
fails to find the true abnormality, and attribute outlier could be a more useful alternative.
In Table 1, tuple 12 and 14, both marked by a �, are the actual abnormal records which
may be of interest to the users. The reason is that all tuples in the table with the trading
records of ‘ACS’ have similar open/close price and trading volume except tuple 12 and
14. These two tuples are characterized by very high trading volumes, which are nearly
twice the average number of the other ’ACS’ tuples. Therefore, tuple 12 and 14 are the
true (attribute) outliers in the table.

Many applications require outlier detection over data streams, for example video
surveillance, network intrusion detection and so on. Due to the dynamic and unbounded
characteristics of data streams, outlier detection over streams is a challenging problem
and hence has attracted much attention in recent years [2,13]. However, almost all these
studies focused on finding class outliers. The problem of detecting attribute outlier over
data streams has not been studied. In comparison with the class outlier detection, at-
tribute outlier detection over data streams has its unique challenges and a new non-
trivial solution is needed.

First, one may intuitively propose a two-phase approach, which uses stream clus-
tering algorithms to continuously maintain clusterings on sliding windows and then
performs outlier detections within each cluster in each window. However, such an ap-
proach is inefficient as the outlier detection has to be executed once for each slide of the
window. A more efficient approach should continuously maintain a data structure that
stores the necessary information for outlier detection within each cluster. As memory is
limited and data is of high arrival rate in typical data stream applications, both the size
and the update cost of such a data structure should be kept minimum. Furthermore, the
clustering will evolve over time and hence clusters may have to be merged from time to

218 H. Cao et al.

time. The data structure should also support efficient outlier re-calculation incurred by
cluster merging.

Second, to keep up with fast data rate, the algorithm should selectively drop some
tuples in order to maintain the memory constraints. Such approximation adds extra
complexity to the outlier re-calculation incurred by cluster merging. As some tuples
may have been dropped, useful neighborhood information may be lost, and the outlier
re-calculation becomes less accurate in comparing to the case without tuple shedding.
An approximate estimation of the lost information has to be developed.

To address these challenges, we propose a new approach, called AOMA (Attribute
Outlier Monitoring Algorithm), to support continuous detection of attribute outliers
over data streams. In summary, we have made the following major contributions in this
paper:

– We define the problem of attribute outlier detection over data streams and to the
best of our knowledge, this is the first paper to study this problem. Different from
traditional class outlier detection, we focus on finding outliers by considering the
correlation among the data items.

– We propose a new approach to efficiently monitor attribute outliers over data streams.
In this approach, data within a window are partitioned into clusters based on their
similarity and outliers are detected on each individual cluster. The algorithm contin-
uously maintains a data structure, namely OSQ (Outlier Searching Queue), which
stores the necessary information for updating the outliers when window is slided.
Efficient updating operations over OSQ are developed.

– We also propose an approximate algorithm, which strikes a balance between the
accuracy of the outlier detection and the computing/memory costs. The algorithm
selectively drops some “less important” tuples and hence saves the storage cost
and computing cost. The problem of precision losing in re-calculation after cluster
merging is addressed by using an approximate estimation approach as a partial
remedy. We prove that this approach can provide a guarantee on the maximum
error bound for the output.

– Finally, we have conducted extensive experimental studies on the proposed algo-
rithms with both real and synthetic datasets. The results verify the efficiency and
accuracy of our proposed algorithms.

The rest of the paper is organized as follows. Section 2 reviews existing work on outlier
detection and clusterings. Section 3 introduces the background and presents the problem
statement. Section 4 and 5 describe the details of the exact and approximate outlier
detection algorithms in AOMA. The experimental results and analysis are presented in
Section 6. Section 7 concludes this paper.

2 Related Works

The problem of outlier detection has been extensively studied. Below we will review
four major categories of outlier.

Attribute Outlier Detection over Data Streams 219

Traditional statistical methods try to build some best-fit distribution models for the
given dataset, and then those objects that do not fit the model well are considered
distribution-based outlier [3]. However, in many applications, it is hard to find a
proper distribution model especially for high dimensional data.

Clustering-based outlier [8] could be regarded as a by-product of clustering. The
clustering-based approach partitions the dataset into several clusters, and regards the
objects in the tiny clusters as outliers. Although it also involves a clustering procedure, it
still detect outliers over the whole dataset, which is different from our attribute outliers.
Furthermore, the proposed approach is essentially a clustering algorithm over static
dataset and hence cannot address our challenges that are mentioned above.

The method proposed by Breunig et al. [4] first used Local Outlier Factor to measure
the deviation of objects from their local neighbors and then returned the density-based
outliers according to its neighborhood information. Although this approach could find
the hidden local outliers, it needs to maintain the K-NN neighborhood for each object,
which is especially time-consuming in data stream with large amount of update.

Distance-based outlier is first introduced by E.M.Knorr and R.T.Ng [9,10]. An ob-
ject o in dataset S is a distance-based outlier if at least a fraction p of the objects in S
have a distance from object o greater than r. This definition gives a straight-forward and
intuitive criterion to find outliers from a dataset. One problem of this approach is that
the quality of results depends on suitable parameters p and r. In this paper, we focus on
detecting distance-based outliers.

Most existing algorithms mainly focus on detecting outliers over static data, but data
stream processing has recently attracted more and more attention. Angiulli and Fas-
setti [2] proposed a continuous outlier detection algorithm over sliding windows, which
can efficiently return the distance-based outliers. To reduce the memory cost, they also
introduced an approximate algorithm which can maintains a provable error bound.

Koh et al. [12,11] is perhaps the first one to study attribute outliers detections. Their
approach can find outliers in correlated subsets where objects have the same value in
several attributes. However, this approach is not suitable for applications where data
are not naturally partitioned by exact value matches. In contrast, our method detects
attribute outliers with respect to the similarity of attributes instead of exact matches,
which could be required by some applications. Moreover, our algorithm is capable of
handling streaming data and can produce approximate results when the memory space
is limited.

As AOMA has to perform clusterings within each sliding window, our work is also
related to data stream clustering [7,14]. In particular, Aggarwal et al. [1] introduce the
temporal property into cluster and propose the algorithm CluStream to address stream
clustering. In this paper, we extend this approach to handle sliding windows, which is
not considered in the original paper [1].

3 Preliminary

In this section, we first introduce the background and then present the formal statement
of the problem of monitoring attribute outliers over data streams.

220 H. Cao et al.

3.1 Background

In this paper, we focus on distance-based outliers. We refer to such outliers as DB-
outlier (Distance-Based outlier).

Definition 1. DB(k,R,D)-outlier. For the given positive parameters: k and R, an object
o in data set D is a DB(k,R,D)-outlier if the number of objects which lie within the
distance of R from o is less than k.

In this above definition, the distance between a pair of data tuples is calculated by a
user-given function dist. Those objects lie within R distance from object o are called
neighbors of o.

In our algorithms, before finding attribute outliers, we need partition the data into
several clusters. Zhang et.al. [14] introduce the concept of Cluster Feature Vector,
which uses some statistical information to represent each cluster. We adopt their defini-
tions as follows.

Definition 2. CF(CF1,CF2, n). Given a cluster in a dataset D with d dimensions that
contains data tuples p1 · · · pn, it can be represented as a (d + 2) vector, CF(CF1,CF2
, n), where n is the number of the data tuples in the cluster, and CF1 is the linear sum
of the n tuples, i.e., CF1 =

∑n
i=1 pi, and CF2 is the square sum of the n tuples, i.e.,

CF2 =
∑n

i=1 (pi · pi).

As stated in [14], the cluster feature CF’s additivity can help incrementally maintain
the synopses of the cluster and merge two different clusters. Consider two cluster with
CF, CFa(CF1a,CF2a, na) and CFb(CF1b,CF2b, nb), then CFa + CFb = (CF1a +

CF1b,CF2a +CF2b, na + nb). Based on the property of CF, the center of the cluster pc

and the radius r are both easily computed from the CF vector. We refer the interested
readers to [14] for details.

Clustering over data stream is quite different from static dataset, it is assumed that
each data tuple in a data stream is associated with a timestamp which defines its life
span. The cluster would also need a temporal property to determine its life-cycle, so
that, when all the information maintained in the cluster become obsolete, this cluster
and its synopsis CF vector should also be ignored. A temporal extension of CF, called
Temporal Cluster Feature (TCF) is introduced in [1,15] to address the problem.

Definition 3. TCF(CF1,CF2, t, n). For a cluster C with d- dimensional data tuples
p1...pn associated with timestamps t1...tn, TCF is a (d + 3)-dimensional vector which
brings the time factor into consider, (CF1,CF2, t, n), t is timestamp of the most recent
data tuples in the cluster from data stream, i.e., t = ti (pi is the last tuple came into the
cluster). The other values of TCF are the same as CF.

3.2 Problem Statement

Our algorithms aim to continuously monitor attribute outliers over sliding window. Dif-
ferent from [12], which only addresses the problem over static dataset and needs to
examine all the subspaces of the dataset which is intolerable in data stream environ-
ment, we propose a new cluster-based definition for attribute outliers over data streams,
which is Cluster-based Attribute Outlier (CAO).

Attribute Outlier Detection over Data Streams 221

Definition 4. CAO(k,R,C, t). Given sliding window with tuples p1...pW, which are
clustered into m clusters C1...Cm, each containing some tuples similar to each other,
and a tuple pi with timestamp ti that falls into the current window and belongs to the
cluster C j, then pi is called a CAO(k,R,C j, ti) outlier if there are no more than k tuples
in C j lie within distance R from pi.

Given the definition of the cluster-based attribute outlier, now we can present the de-
scription of the problem addressed in this paper.

Definition 5. Continuous query of attribute outliers over data stream. Given a sliding
window with size W over data stream and the user-defined parameters k and R, contin-
uously return all the CAO(k,R,C, t) outliers in the latest window.

4 The AOMA Algorithm

4.1 Data Structure

To support data expiration, we propose a data structure, called Linear Histogram of
Cluster Feature (LHCF). Each LHCF for a cluster contains several buckets, and each
bucket contains a TCF vector. The TCF vectors in each LHCF are organized into a
queue, which are ordered by their latest timestamp t. We assign the fixed size b for each
bucket, so that each TCF vector will involve the information of b data tuples at most.
The LHCF help keep track of the evolving data stream. If a TCF’s timestamp t falls
outside of the W records of sliding window, then this bucket can be removed from the
queue. Furthermore, the newly arrived data of the cluster will be added to the last bucket
of the queue and the timestamp of the TCF will be updated with the timestamp of the
new data. Suppose a cluster has B buckets, due to the additivity of CF, the center and
the radius of the cluster can be simply calculated from the LHCF vector, i.e., the center

pc =

∑B
i=1 CF1i∑B

i=1 ni

and the radius r =

√∑B
i=1 CF2i∑B

i=1 ni

− pc · pc; and the LHCF structure

contains B buckets which are TCF(CF11,CF21, t1, n1) · · · TCF(CF1B,CF2B, tB, nB).
Moreover, as described before, to find the attribute outliers, we need to do the outlier

detection over the clusters which are online partitioned from the current sliding window.
To efficiently maintain the neighborhood information of each data tuple in its cluster,
an OSQ (Outlier Search Queue) node will be created for each tuple. An OSQ node
consists of the following items: data, which denotes the data tuple in the cluster; time,
the timestamp of the data tuple; preNL, an sorted array of the timestamps of the most
recent k neighbors that precedes the current tuple; sucNC, the count of the succeeding
neighbors of the current tuple.

Note that, preNL only need to keep the timestamps of the most recent k preceding
neighbors. That is because an outlier may have at most k neighbors. Furthermore, this
array need not be updated when a preceding tuple is expired. Instead, one can easily
count the number of unexpired preceding neighbors by looking up the location of the
oldest timestamp that is still within the scope of the current window by using a binary
search. For the succeeding neighbor, we only need to maintain a count. That is because

222 H. Cao et al.

the current tuple will not expire before the tuple. If sucNC of this tuple exceeds the
number k, the data tuple will never become an outlier, in other words, this tuple is a safe
inlier.

Definition 6. Safe Inlier. If the sum of the numbers of preceding and succeding neigh-
bors of a tuple exceeds k, then this tuple is an inlier. If its succeeding neighbors exceeds
k, then it is a safe inlier.

Each cluster is associated with a queue of OSQ nodes, one for each tuple in the cluster,
which are sorted by their timestamps. This OSQ queue should be continuously updated
as the window slides. When a new data tuple p comes into cluster c, a new OSQ node
q is created for the tuple. A neighbor search is necessary to create the entry of prevNL.
Given the user-defined parameter R, the neighbor search query returns all the neighbor
nodes which lie within R distance from p. We denote the set of the returned nodes
as q.prev. The most recent k preceding neighbors are chosen from q.prev and their
timestamps are stored in the array p.preNL in sorted order. Meanwhile, for each node
in q.prev, the count sucNC is incremented. Moreover, along with the window slides,
we will simply remove the expired node from the OSQ queue.

4.2 Cluster Maintenance Module

There are two tasks in this module. First, we have to maintain the clustering informa-
tion, i.e. LHCF, in the current sliding window, so that the clustering could be updated
according to the new tuple arrival and old tuple expiration. Necessary re-clustering has
to be performed. Second, we have to maintain the neighboring information, i.e. the OSQ
queue, within the clusters to facilitate the outlier detection module.

Assume that the numbers of the clusters that should be built in the window is m.
In general, m is far smaller than the size of sliding window W. The clusters could be
denoted as C1...Cm. Each cluster is associated with a LHCF vector and an OSQ (Outlier
Search Queue), which is a list of all the points in the cluster with additional information
about neighborhood. OSQ will be useful in outlier query module.

Initially, with the W tuples in the current window, we could use the k-means algo-
rithm to create m clusters, and then instantiate the LHCF vector and generate the OSQ
queue of each cluster.

Whenever a new data tuple p arrives at time t, we should update clusters for the effect
contributed by the new tuple. Every new tuple need to be assigned to a cluster. First we
should find a nearest cluster C to absorb this tuple. The distance between cluster C and
p, denoted as dist(p,C), can be calculated as the distance between the data tuple p and
the centroid of C. As described in the last section, both the center and radius can be
easily calculated from LHCF of the cluster.

As mentioned in [1], p does not naturally belong to the closest cluster. p may be still
too far away from C in related to the radius r of C. So each cluster has a maximum
boundary which can be denoted as λ · r(λ >= 1). The maximum boundary of a cluster
containing only one tuple is defined as the distance from that tuple to the another cluster
that is closest to it. We use the maximum boundary to decide whether the cluster should
absorbed the tuple. If dist(p,C) < λ·r, p will be assigned to C. Otherwise, a new cluster
containing only p will to be created.

Attribute Outlier Detection over Data Streams 223

But when there are already m clusters, we should reduce the number of the clusters
to avoid exceeding the limited total number of clusters. Then two closest clusters are
chosen to merge. With the additivity of LHCF, the merging of two LHCF is easy to
perform. Furthermore, we have to merge the two OSQ queues, which will be handled
as follows. First, the two OSQ queues has to be merged to maintain its sorted order on
timestamps. Then for each node, we need to find the those neighbors that are in the other
merging cluster in order to update the array preNL and the count sucNC. Moreover, as
the number of neighbors of a node after the merge can only become lager, a safe inlier
will still be safe in the new merged queue. Therefore, the neighborhood of safe inliners
is not updated to save the merging cost.

At last the algorithm also should eliminate the expired data tuples. At time t, all the
OSQ nodes with timestamps older than t − W + 1 and the TCF older than t − W + 1
from the cluster should be discarded. And when there is no more TCF in the LHCF of
the cluster, this cluster should also be removed.

4.3 Outlier Query Module

As the above module maintains the necessary information, the actual outlier detection
procedure is very simple and induce minimum cost. More specifically, the outlier query
module uses the OSQ queue of each cluster to find the outliers. The OSQ queue of each
cluster is scanned to get the count of the neighbors of each data tuple in the cluster.
For each OSQ node, a simple binary search within O(log k) time over the array preNL
can return the oldest non-expired preceding neighbor in the current sliding window.
Since our array stores the OSQ nodes’ timestamps in sorted order, the count of non-
expired preceding neighbors can be derived by the array index of the oldest non-expired
preceding neighbor. We denote this count as count pre. Then we could get the sum of
neighbors by adding up the two count sucNC and count pre. If the sum is less than k,
then we can report it as an attribute outlier to the user.

Note that there may exist some tiny clusters, which have fewer than k data tuples.
Such tiny clusters are not considered in outlier detection. Otherwise, all their tuples
would be outliers, which is meaningless in practice.

5 The Approximate AOMA Algorithm

The algorithm introduced above needs to store all the data tuples in the current sliding
window. However, in a streaming environment, the memory space is often limited in
comparing to the fast data rate and storing all the data tuples might be prohibited. In
this section, we will improve the algorithm and give the approximate AOMA that can
monitor the attribute outliers under limited memory space with a provable error bound.

To reduce the memory cost of the algorithm, it is necessary to shed some data tuples
to keep the memory consumption under the system restriction. The central problem
of data shedding is to decide which data to drop. There are three kinds of tuples in
each cluster: outliers, safe inliers and unsafe inliers. Outliers surely cannot be dropped
since they are the results to return. For the unsafe inliers, they may become outliers
when some of their preceding neighbors expire when the window slides. Therefore,

224 H. Cao et al.

both outliers and unsafe inliers are preferred to be kept in the memory to make sure
that the algorithm can get a high recall of the outliers. In another word, safe inliers are
preferred to be shed. As mentioned in the last section, safe inliers will never be outliers
until they expire and hence we can be sure that dropping them will not drop the real
outliers. Another more important reason to drop safe inliers is that, as shown in the
previous studies [1], they are usually the majority of the whole data set in the current
window. Hence, we focus on the shedding of safe inliners in this paper, which is the
most critical problem.

Although the safe inliers can never be outliers, the algorithm cannot drop all of them.
This is because they may be neighbors of the other data tuples and dropping too many
safe inliers would introduce inaccuracy to the calculation of the neighborhood of the
incoming data. Given a cluster c with n data tuples, we start to drop safe inliers when
their number exceeds μn(1 > μ > 0), where μ is determined by the available memory
size and the number of data tuples in a window. Those dropped safe inliers are chosen
randomly within all the safe inliners.

With the dropping of tuples, the attribute preNL of an OSQ node can no longer
accurately estimate the number of preceding neighbors, as some of them may have
been dropped before preNL is generated. Furthermore, preNL is memory consuming.
Therefore, we replace the attribute preNL with two new attributes that have smaller
sizes. The first one is pid, which is an sequential id of the node. The pid of a new
OSQ node is assigned as the pid of its previous node incremented by 1. In addition,
we maintain an attribute of the whole OSQ queue, namely pidexp, which is the pid of
latest expired node. The second new attribute is preRatio, which is the ratio between the
number of the node’s preceding neighbors that are safe inliers and the total amount of
safe inliers in the current OSQ queue. This ratio is calculated when the node is created.

With the two new attributes, the number of preceding neighbors can be easily esti-
mated as follows. For a cluster with n data tuples and a given node q in this cluster, by
assuming that the neighbors of each node are uniformly distributed over their arrival
time, we can estimate the number of preceding neighbors of node q as:

Np ≈ N/n · (q.pid − pidexp)

where N is the number of neighbors that are not dropped when this node first arrives.
As the neighbors of the node is uniformly distributed, N/n is an estimation of density
of the node’s neighbors in the queue, and q.pid − pidexp is the number of the preceding
nodes of q in the current window.

As most data nodes are safe inliers, we can use the number of safe inliers to approx-
imate to the number of data nodes. With the definition of the attribute preRatio of an
OSQ node, we can estimate N/n as follows:

N/n ≈ q.preRatio

Hence, the number of preceding neighbors of q at time t can be calculated solely from
its own attributes:

Np ≈ q.preRatio · (q.pid − pidexp)

Attribute Outlier Detection over Data Streams 225

Algorithm 1. The Approximate AOMA Algorithm
Require: m initial clusters created by k-means algorithm, C1...Cm. Current time t. User-given

parameter R,k, µ. The number of data tuples in cluster c is nc.
Ensure: All the attribute outliers in the sliding window at time t.
1: sa f e inlies = 0, pid inc = 0.
2: for each newcomer data tuplep do
3: Call cluster maintenance module update cluster info.
4: sa f e pre = 0.
5: Create new OSQ node q for p and append to the queue of its cluster.
6: Scan OSQ and return all nodes lie within R from q.
7: for each returned node qpre do
8: if + + qpre.sucNC > k then
9: sa f e inlies + +, sa f e pre + +.

10: Mark qpre as safe inlier.
11: if sa f e inliers > μnc then
12: Randomly choose a safe inlier to remove .
13: q.preRatio = sa f e pre/sa f e inlies
14: for each cluster c in current window do
15: for each node q in the OSQ queue of c do
16: if q.sucNC < k then
17: count pre = q.preRatio · (q.pid − pidexp)
18: if count pre + q.sucNC <= k then
19: return the node q as a CAO regard to c.

Given the estimated number of preceding neighbors, the total number of neighbors
can be computed by adding up Tt and q.sucNC. Algorithm 1 shows the approximate
AOMA algorithm.

As mentioned earlier, two clusters may need to be merged when the number of clus-
ters exceeds the given value. Unlike the exact algorithm, which can re-calculate the
various attributes of an OSQ node accurately, the approximate algorithm has to approx-
imately estimate the attributes values of an OSQ node, such as the values of sucNC and
preRatio.

The merging process is illustrated by the following example. Suppose two clusters,
c1 and c2, have to be merged and we need to create a new OSQ node q in the new cluster
for a particular node from c1, it is necessary to calculate the preceding and succeeding
neighbors of this node in both two cluster c1 and c2. Assume that this node’s preceding
and succeeding neighbors in cluster c1 and c2 are Np1,Np2, Ns1, andNs2 respectively.
Then, according to the definition of the OSQ node, Np1 and Ns1 could be derived as:

Np1 ≈ q.preRatio · (q.pid − c1.pidexp)

Ns1 = q.sucNC

To compute the neighbors of q in cluster c2 need to retrieve the OSQ queue of c2.
The first step is to decide which position q could stay in the queue, it can be simply
obtained since the OSQ queue is is maintained by temporal order. Next we will examine
the distance between q and all the nodes in the queue. Then the count of preceding
neighbors and succeeding ones of q in c2 could be evaluated, which are denoted as Mp

226 H. Cao et al.

and Ms. However, these two count can not be recognized as precise count of neighbors
of the node q, since the approximate approach may throw many nodes in the queue.
Hence, we need to re-estimate the two counts approximately from existing information.
Suppose in OSQ queue of c2 the temporal preceding OSQ node next to q is qp, and
the succeeding one is qs. We also use ql to represent the latest node in c2, the count of
all temporal preceding OSQ node of q is denoted by np. At last, we will get following
equation:

Np2 ≈ Mp

np
· (qp.pid − c2.pidexp)

Ns2 ≈ Ms

c2.n − np
· (ql.pid − qs.pid)

Finally, we get the count of the neighbors of the node q in both two clusters. For the
new merged cluster c′, a new OSQ node q′ will be created for q, preRatio and sucNC
will be estimated as follows

q′.preRatio =
Np1 + Np2

q′.pid − c′.pidexp

q′.sucNC = Ns1 + Ns2

While the approximate algorithm can significantly reduce the memory cost, it intro-
duces inaccuracy into the estimated number of preceding neighbors of a particular tu-
ple. Fortunately, we can prove that such an error has a statistical upper bound as given
by the following theorem.

Theorem 1. For a given tuple that is in a cluster with size n, suppose the estimated
number and the actual number of its preceding neighbors are N′ and N respectively.
The probability that |N′−N| ≤ ε is larger than or equal to δ (0 < δ < 1), i.e. Pr[|N′−N| �
ε] � δ, where

ε = n ·
√

1
4μn

(
φ−1

(
1 + δ

2

))2
and φ(x) is the cumulative probability function of the standard normal distribution

N(0, 1), i.e. φ(x) = 1√
2π

∫ x

−∞ e−
x2

2 dx(−∞ < x < ∞).

The proof of the above theorem is omitted due to space limit. It is mainly based to the
De Moivre-Laplace theorem and the detail proof is available in the full version of this
paper[5].

6 Experimental Evaluation

6.1 Experiment Environment and Data Sets

In the experiments we use both synthetic and real-world datasets to generate data
streams. The synthetic datasets generated to fit in 10 different clusters, and the points

Attribute Outlier Detection over Data Streams 227

in each cluster follow the Gaussion distribution. Besides, we also experiment on the
KDD-CUP’98 Charitable Donation dataset, which has been used to evaluate many data
mining algorithms.

All experiments are conducted on a Laptop with Intel Core Duo 2.2 GHz and 2
GB memory, running Microsoft Windows 7. For comparison, we propose two simpler
algorithms. Since there have not been any existing approaches to solve our problem,
these two methods will be used as the base case of the efficiency and accuracy. The
first algorithm is implemented by a nest loop method to find outliers in each cluster of
a window, called Naive Attribute Outlise Monitoring algorithm(NAOM). The second
algorithm improves the naive one by incrementally maintaining the count of neighbors
of the data tuples. When a new tuple arrives or old tuple expires, we update the neigh-
bor counts of the relevant tuples. Such approach avoids the recalculation of the whole
neighborhood among all the data. We call it as Intuitive Attribute Outlise Monitoring
algorithm(IAOM). All the algorithms are implemented with C.

6.2 Experiment Analysis

In the experiments, the following parameters are set based on our experiments to ensure
a suitable number of outliers are returned and their values do not affect the conclusion
of the performance study: the default number of clusters is fixed to be 10, which results
in clusters with moderate sizes; the neighbor distance R for the real and synthetic data
set are set to 75 and 100 respectively; the value of the absorb coefficient λ is fixed to
2. Furthermore, we employ the time-based sliding window model and, at each slide of
the window, there are 500 new data arrive and the same number of data expire. In the
following, we refer to NAOM algorithm as “Naive”, IAOM algorithm as “Intuitive”,
the exact AOMA algorithm as “Exact”, and the approximate AOMA algorithm with
parameter μ = 0.1 as “Appr0.1”, and so on.

(a) CPU time with
KDD-CUP’98
dataset

(b) Memory cost with
KDD-CUP’98 dataset

(c) CPU time with
Synthetic dataset

(d) Memory cost with
Synthetic dataset

Fig. 1. Performance with outlier judge parameter k

Sensitivity to the outlier threshold k. Within the AOMA algorithms, the value of k
decides the number of neighbors need to find for each tuple in order to see if it is an
outlier. Hence, the query performance would be affected by k. In this experiment, we
fix the size of window to contain 10000 tuples.

Figure 1(a) and 1(c) report the average CPU time spend to update a new window
with different k values with both two datasets. While both Naive and Intuitive perform

228 H. Cao et al.

much worse than the AOMA algorithms, it is insensitive to the value of k. That is
because they will always check the neighborhood among all the data in the cluster and
hence their performance is independent on the value of k. Furthermore, as k increases,
the CPU costs of both the exact and approximate algorithms increases slowly. As k
should generally be very small, the AOMA algorithms can significantly reduce the CPU
consumption in comparing to Naive and Intuitive.

Figure 1(b) and 1(d) illustrate the memory consumption with various k values. We
can see that Naive and Intuitive have lower memory consumption than the exact AOMA
algorithm and hence they might be suitable for the situation with abundant CPU re-
sources and moderate memory space. On the contrary the exact AOMA is suitable for
the case with moderate CPU resources and abundant memory space. Finally, the ap-
proximate AOMA algorithm can address both problem of limited CPU and memory
space with a suitable μ parameter.

(a) CPU time with
KDD-CUP’98
dataset

(b) Memory cost with
KDD-CUP’98 dataset

(c) CPU time with
Synthetic dataset

(d) Memory cost with
Synthetic dataset

Fig. 2. Performance with sliding window size W

Sensitivity to window size W. In this experiment, the examine the scalability of the
algorithms, we vary the number of tuples in each sliding window size by varying the
timespan of the sliding window. Figures 2(a) and 2(d) show the CPU cost of different
algorithms. Naive algorithm performs the worst and its cost grows geometrically as the
W increases. On the contrary, the costs of all the other algorithms only grow linear
growth with window sizes. Furthermore, the AOMA algorithm perform more than 2
times faster than Intuitive. Finally, the approximate AOMA algorithm can further reduce
the CPU cost. For example Appr0.1, it is nearly 4 times faster than the exact algorithm.

Figures 2(b) and 2(d) depict the results about the memory cost. As we did not in-
clude the space occupied by the data points into consider, the naive algorithm use little
memory since it does not rely on additional data structure. The exact algorithm grows
linearly as W increases and approximate approach grows much slower. Similar to the
above experiment, the AOMA algorithm, especially with approximation, can be scaled
to different window size according to the available memory and CPU resources.

Sensitivity to the number dimension d. In this experiment, we present the CPU cost
with different numbers of dimensions. The number of dimensions of the synthetic
dataset is varied form 2 to 10 dimensions. Figure 3 shows the experimental result. It
can be observed that the AOMA algorithms are much faster than Naive and Intuive. For
example, for the dataset with 5 dimensions, Naive spends 4 sec to perform an update of

Attribute Outlier Detection over Data Streams 229

Fig. 3. CPU time with dimensionality Fig. 4. The accuracy of approximate AOMA

a new window while AOMA only spends 0.44 sec, almost 10 times faster. The approx-
imate algorithm can further reduces the processing time, which is only 0.09 sec when
μ = 0.1.

Accuracy analysis. We report the accuracy experiment on both the KDD and synthetic
datasets. For comparison, the results reported by the exact AOMA algorithm will be
regarded as the true outliers. In this experiment, the window size W and outlier threshold
k are set as follows: W = 10000, k = 5. We evaluate the approximate algorithm with
regard to the exact algorithm and we use two widely used metrics, namely precision and
recall, to measure the accuracy of the approximate results. Suppose the number of the
true positive points, false positive points and false negative points in the results returned
by the approximate algorithm are tp, f p and f n respectively. Then precision and recall

can be calculated as: precision =
tp

tp + f p
, recall =

tp
tp + f n

.

Figure 4 presents the results. We can find that both experiments have similar results.
While it is obvious that a lower μ value will produce a lower precision, it keeps a high
value (70%) even when μ = 0.1. This means the approximate approach only reports a
small number of false positive results. From Figure 4 we can also observe that the recall
is high, which exceeds 85% for all the tested μ values. This means the approximate
algorithm can return most of the outliers.

7 Conclusion

In this paper, we introduce the problem of finding attribute outliers over data streams.
Attribute outlier detection differs from traditional outlier detection in a way that the
targeted mining set is the data subsets that are generated by partitioning the whole
dataset based on the data similarity. We propose a cluster-based algorithm to perform
continuous window-based attribute outliers detection, called AOMA. AOMA partitions
the current sliding window into several clusters, then uses distance-based approach to
find those attribute outliers. Furthermore, to address the problem with limited memory
space, an approximate technique is employed to improve the AOMA algorithm. By
dropping the safe outliers, it significantly reduces memory consumption and largely
speeds up the query processing. We prove that the approximate algorithm can ensure
a statistical error bound on the query results. Finally, extensive experimental results
show that the AOMA algorithm is scalable and robust to various parameter settings and
produces results with high precision and recall.

230 H. Cao et al.

Acknowledgement

This work was supported in part by the National Science Foundation of China (NSFC
Grant No. 60803003, 60970124) and by Chang-Jiang Scholars and Innovative Research
Grant (IRT0652) at Zhejiang University. The second author is partially supported by the
Danish Council for Independent Research for Natural Sciences.

References

1. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data
streams. In: VLDB 2003: Proceedings of the 29th international conference on Very large
data bases, pp. 81–92. VLDB Endowment (2003)

2. Angiulli, F., Fassetti, F.: Detecting distance-based outliers in streams of data. In: CIKM 2007:
Proceedings of the sixteenth ACM conference on Conference on information and knowledge
management, pp. 811–820. ACM, New York (2007)

3. Barnett, V., Lewis, T.: Outliers in statistical data (1984)
4. Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local out-

liers. SIGMOD Rec. 29(2), 93–104 (2000)
5. Cao, H., Zhou, Y., Shou, L., Chen, G.: Attribute outlier detection over data streams, 9 (2009),
http://db.zju.edu.cn/wiki/index.php/Hui_Cao

6. Hawkins, D.: Identification of outliers. Chapman and Hall, Reading (1980)
7. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams:

Theory and practice. IEEE Trans. Knowl. Data Eng. 15(3), 515–528 (2003)
8. Jiang, M.-F., Tseng, S.-S., Su, C.-M.: Two-phase clustering process for outliers detection.

Pattern Recognition Letters 22(6/7), 691–700 (2001)
9. Knorr, E.M., Ng, R.T.: A unified notion of outliers: Properties and computation. In: KDD,

pp. 219–222 (1997)
10. Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large datasets. In:

VLDB 1998: Proceedings of the 24th International Conference on Very Large Data Bases,
pp. 392–403. Morgan Kaufmann Publishers Inc., San Francisco (1998)

11. Koh, J.L.Y., Lee, M.-L., Hsu, W., Ang, W.T.: Correlation-based attribute outlier detection in
XML. In: ICDE 2008: Proceedings of the 24th International Conference on Data Engineer-
ing, pp. 1522–1524 (2008)

12. Koh, J.L.Y., Lee, M.-L., Hsu, W., Lam, K.-T.: Correlation-based detection of attribute out-
liers. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA
2007. LNCS, vol. 4443, pp. 164–175. Springer, Heidelberg (2007)

13. Zhang, J., Gao, Q., Wang, H.: Spot: A system for detecting projected outliers from high-
dimensional data streams. In: ICDE 2008: Proceedings of the 24th International Conference
on Data Engineering, pp. 1628–1631. IEEE, Los Alamitos (2008)

14. Zhang, T., Ramakrishnan, R., Livny, M.: Birch: an efficient data clustering method for very
large databases. In: SIGMOD 1996: Proceedings of the 1996 ACM SIGMOD international
conference on Management of data, pp. 103–114. ACM, New York (1996)

15. Zhou, A., Cao, F., Qian, W., Jin, C.: Tracking clusters in evolving data streams over sliding
windows. Knowl. Inf. Syst. 15(2), 181–214 (2008)

16. Zhu, X., Wu, X.: Class noise vs. attribute noise: A quantitative study. Artif. Intell. Rev. 22(3),
177–210 (2004)

http://db.zju.edu.cn/wiki/index.php/Hui_Cao

ISIS: A New Approach for Efficient Similarity Search in
Sparse Databases

Bin Cui1, Jiakui Zhao2, and Gao Cong3

1 Department of Computer Science & Key Laboratory of High Confidence Software
Technologies (Ministry of Education), Peking University

bin.cui@pku.edu.cn
2 China Electric Power Research Institute, China

jkzhao@pku.edu.cn
3 Aalborg University, Denmark

gaocong@cs.aau.dk

Abstract. High-dimensional sparse data is prevalent in many real-life applica-
tions. In this paper, we propose a novel index structure for accelerating similar-
ity search in high-dimensional sparse databases, named ISIS, which stands for
Indexing Sparse databases using Inverted fileS. ISIS clusters a dataset and con-
verts the original high-dimensional space into a new space where each dimension
represents a cluster; furthermore, the key values in the new space are used by
Inverted-files indexes. We also propose an extension of ISIS, named ISIS+, which
partitions the data space into lower dimensional subspaces and clusters the data
within each subspace. Extensive experimental study demonstrates the superiority
of our approaches in high-dimensional sparse databases.

1 Introduction

Recently, sparse data with high-dimensionality arises in a variety of database applica-
tions, such as e-commerce [2,4] and bioinformatics. In these applications, the sparse
dataset has two main characteristics: 1) High dimensionality. The dimensionality of
feature vectors can be very high, i.e. the number of all possible attributes is huge (up
to thousands). For example, in some e-commerce databases, each participant may de-
clare their own idiosyncratic attributes for products and work orders, which can result
in datasets that have thousands of attributes [2]. 2) Sparsity. Each data object may have
only a small subset of the attributes, called active dimensions. In addition, different en-
tities may have different active dimensions. For example, some e-commerce datasets
may have thousands of dimensions, but most of them are null and only a few of them
apply to a particular product. The high-dimensional sparse data poses significant chal-
lenges to existing high-dimensional indexing techniques [5], and a direct application of
any existing technique may suffer from heavy computational and disk I/O cost due to
the aforementioned characteristics.

In this paper, we propose a novel index structure to support efficient similarity search
over high-dimensional sparse datasets which contain at least hundreds of dimensions.
The index structure is named ISIS, which stands for Indexing Sparse databases using
Inverted fileS. ISIS is motivated by the following observations. First, due to dimension-
ality curse, index schemes may need to access the whole dataset to answer a query, and

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 231–245, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

232 B. Cui, J. Zhao, and G. Cong

thus reducing the index size is essential for improving the query performance. Second,
efficient filter-and-refine approach is preferred for reducing the computational cost, as
it can avoid the computing of the distance over the whole dataset. Third, since each data
object may have only a small number of active dimensions, we can apply the inverted-
files[11]: the first layer is a B+-tree which is very efficient in terms of space; moreover,
it can avoid expensive distance computation during the filtering stage.

The basic idea of ISIS is to convert the data into a new space using clustering tech-
niques. Each cluster corresponds to a dimension in the new space, and the cluster which
contains the data is the active dimension of certain object in the transformed space. We
embed distance information into the indexing keys of inverted-files. Therefore, we only
access inverted-files to locate the clusters containing the query point to generate an-
swer candidates, and refine the results by examining the candidates. Note that while the
inverted-files structure can be applied directly by indexing the active dimensions in the
original space, it may not be efficient since all the objects that share any active dimen-
sion with the query object need to be searched, which may result in expensive disk I/O
and computational cost.

To achieve better performance by exploiting the property of sparse data, we propose
ISIS+, an extension of ISIS. In ISIS+, a new mechanism is designed to split the data
space into multiple low dimensional subspaces. We then vertically partition the dataset
and cluster the data in each subspace, where each cluster in a subspace corresponds a
dimension in the new space. All the clusters contained the object, i.e. the active dimen-
sions in the new space, are used as indexable terms for ISIS+. With this enhancement,
we can represent the original data more precisely and provide better query performance.

Distinguished from previous approaches, our new indexing scheme has the some
advantages: 1) Compactness. ISIS adopts a code representation instead of storing the
actual feature values, and thus can significantly reduce the storage cost and effectively
decrease the number of disk accesses. 2) Effectiveness. In ISIS, similar objects are
clustered and share the same key in inverted-files. In the filter stage, we are able to
only access the objects which have very high probability of belonging to the result, thus
improve the pruning effectiveness. 3) Efficiency. ISIS gets the candidate list based on
code comparison instead of expensive distance computation.

We conducted extensive experiments to evaluate our proposed indexes, and compare
them against some existing indexes. The results show that our proposed approaches can
handle similarity search, such as KNN queries, more efficient over sparse datasets. The
ISIS scheme provides a substantial performance improvement for similarity queries in
high-dimensional sparse databases.

The remainder of this paper is organized as follows. In the next section, we review
related work. In Section 3, we introduce our ISIS schemes, including index structure
construction and query algorithms. Section 4 reports the experimental results, followed
by our conclusion in Section 5.

2 Related Work

Many indexing techniques have been proposed for accelerating similarity search in
high-dimensional databases [5,12,3]. However, with the increase of dimensionality,

ISIS: A New Approach for Efficient Similarity Search in Sparse Databases 233

the indexing techniques fail to outperform sequential scan [14] due to the well known
“dimensionality curse” problem. To tackle this phenomenon, recent proposals adopt
one of the three approaches, i.e. dimensionality reduction, one dimensional transfor-
mation, and data approximation. The dimensionality reduction approaches [6,8] map
the original high-dimensional space into a low-dimensional space which can be in-
dexed efficiently using existing indexing techniques. However, dimensionality reduc-
tion incurs information loss, and may not be effective to find important dimensions in
high-dimensional space [1]. The one dimensional transformation approaches, e.g. the
iDistance [15] suffer, however, from the fact that any meaningful search operation
involves assessing distances between the full high-dimensional representation of the
data points; thus, pruning during search becomes problematic as the dimensionality
increases. Additionally, mapping to single-dimensional space results in high informa-
tion loss. Data approximation methods, such as VA-file [14], represent the original data
points by much smaller vectors. It can reduce disk accesses compared with sequential
scan. However, it will not reduce computational cost as it need to access approximation
of each record and compute the approximate distance respectively.

An alternative way to deal with dimensionality curse is to conduct approximate sim-
ilarity search for applications where trading a small percentage of recall for faster
response is acceptable [10,9]. In [10], the authors presented a new similarity-search
method, named Clindex. In Clindex, the dataset is first partitioned into “similar” clus-
ters. To improve the I/O performance, each cluster is then stored in a sequential file,
and a mapping table is built for indexing the clusters. The Clindex splits the whole data
space into cells, and uses a bottom-up approach that groups objects adjacent in the space
into a cluster. When the dimensionality is high, it incurs a huge number of cells, which
make the use of mapping table and clustering impractical. More recently, the LDC
method [9] was proposed, which exploits bit representation for each dimension. Pruning
during LDC KNN search is performed by dynamically selecting a subset of the bitmap
based on which subsequent comparisons are performed. In [13], an R-tree based struc-
ture, the xS-tree, was proposed for similarity search in very high-dimensional sparse
databases. Unlike the R-tree which uses rectangles as bounding regions, the xS-tree
uses xSquares. An xSquare is a cross product of high-dimensional squares. In order to
guarantee a reasonable minimum fan-out, lossy compression is applied to xSquares.

3 The New Approach: ISIS

In this section, we present a new index structure, named ISIS, to facilitate efficient
similarity search over high-dimensional sparse datasets. The ISIS structure deploys the
inverted-files structure [11] for similarity search in sparse databases. The inverted-files
structure applies the multiple layer architecture. The first tier of the index is a B+-tree
which is used to index the dimension NO., i.e. each dimension represents a key. In the
leaf level, each dimension has an inverted list. Within the list, each item has two fields:
one is the identifier (ID) of the object whose active dimensions include the dimension;
the other is the key value which is used to calculate the similarity between the query
object and the data object.

The similarity queries on the inverted-files are more like ranked queries than boolean
queries, in that similarity score is calculated between the query object and each data

234 B. Cui, J. Zhao, and G. Cong

object. Processing a similarity query then consists of the following steps. First, an array
of accumulators, one per object, is initialized to zero. Then, for each active dimension
of the query object, the corresponding inverted list is fetched and processed. Processing
a list consists of stepping through it, and, for each object ID, retrieving the value of the
active dimension, and adding this similarity contribution to the appropriate accumulator.
Finally, when all the active dimensions have been processed, the accumulator values are
sorted and the top-K objects are returned.

The method of directly adapting inverted-files to support similarity queries in sparse
databases suffers from two limitations. First, unlike simple boolean queries, to support
similarity search, distance computation is essential. Second, while keeping the array for
the whole dataset is not necessary, the size for array of accumulators could be huge as
we have to store the objects which even have only one same active dimension with the
query object.

3.1 Dimension Transformation

In this section, we introduce our solution to address above two limitations. To deal with
the first limitation, we reserve distance information in the indexed items, and use simple
comparison operation to get the candidate answers for filtering. The basic principle
behind it is dimension transformation which converts the raw sparse dataset into a new
space, where the same active dimension of two objects can represent certain similarity
between them. Even with this enhancement, the second limitation remains: the inverted-
files structure has to examine a long array. Thus, our solution also tries to reduce the
number of active dimensions for sparse data objects.

Our approach for dimension transformation is to apply clustering, i.e. organize the
individual objects into clusters. Clearly, the objects in the same cluster have higher
potential to be close to each other. We employ the K-means clustering scheme [7] to
generate k clusters for the objects in the original high-dimensional space. We generate
new data space of k dimensions using the k clusters as follows: (a) let the number of
dimensions be the number of clusters, and cluster i corresponds to dimension i, (b) the
ith dimension for an object is active only if the object falls into cluster i.

Table 1. Example of sparse dataset

D1 D2 D3 D4 D5 D6 D7 D8
Object 1 3 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
Object 2 1 3 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
Object 3 3 1 2 ⊥ ⊥ ⊥ ⊥ ⊥
Object 4 1 1 ⊥ 3 ⊥ ⊥ ⊥ ⊥
Object 5 ⊥ ⊥ 1 4 ⊥ ⊥ ⊥ ⊥
Object 6 ⊥ 1 ⊥ 4 ⊥ ⊥ ⊥ ⊥
Object 7 ⊥ ⊥ ⊥ ⊥ 2 2 ⊥ ⊥
Object 8 ⊥ ⊥ ⊥ ⊥ 1 3 ⊥ ⊥
Object 9 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 1 1
Object 10 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 2 3

ISIS: A New Approach for Efficient Similarity Search in Sparse Databases 235

A simple example is given to show the effect of dimension transformation in Table 1.
The dataset contains 10 8-dimensional objects. Suppose after clustering, three clusters
are generated: cluster 1 contains objects (1, 2, 3), cluster 2 contains objects (4, 5, 6), and
cluster 3 contains objects (7, 8, 9, 10). We will have a 3-dimensional new space, where
object 1 can be represented by [1, 0, 0] since it falls into cluster 1. For a query point [1,
2, 0, 0, 0, 0, 0, 0], we also convert it into the new space, and its new representation is
[1,0,0] (it can have more than 1 active dimension). Therefore, we only need to check the
objects (1, 2, 3) which are contained by the same cluster. Compared with the original
inverted-files scheme, we have to check 5 objects, i.e. 1, 2, 3, 4 and 6, as they all have
the same active dimensions with the query object.

The number of the clusters is predefined as an optimization parameter. Each cluster
will correspond a dimension in the new space. The larger is this number, the larger
the required storage. On the other hand, a small number will not provide sufficient
discrimination. Note that the new space is used for indexing and query processing.

3.2 Algorithms for ISIS

We first present the algorithm for generating the ISIS index structure in the new space
generated by clustering, and then present the algorithm for query processing. Fig. 1
shows the algorithm for constructing the ISIS index. We first generate k clusters for the
dataset and keep the information of each cluster, i.e. (IDi, Centeri, radiusi) (Line 1).
The original space is converted into a new space: if the object is nearest to the center of
a certain cluster, the cluster ID is the active dimension for the object in the new space
(Lines 3-4). Finally, index based on the inverted-file structure is constructed (Line 5).

Algorithm Construction()
Input: The sparse dataset, the number of clusters k
Output: The ISIS structure
1. generate k clusters for the dataset, and record (IDi, Centeri, radiusi) for each cluster i;
2. for each object
3. find the cluster whose center is nearest to the object;
4. assign the cluster ID to the object;
5. generate Inverted-files for the new dataset;

Fig. 1. The algorithm for ISIS construction

The ISIS index reduces the dimensions of the original dataset while reserving dis-
tance information between data objects. Given a query, we apply ISIS index to filter
the distant objects, and focus on promising candidates to refine query results. To ac-
complish this process, the query is first converted into the new space where the ith
dimension is set active if the distance between the query and Centeri is smaller than
radiusi. The new key values are then used for searching in the inverted-files. Any data
objects which are far away from the query object can be eliminated and the remainder
is returned as the candidates which will be checked.

The similarity search includes both range queries and KNN queries. Since similarity
range search can be treated as a window search with a fixed radius and is simpler than
KNN search in terms of algorithm complexity, in this study, we concentrate on the KNN

236 B. Cui, J. Zhao, and G. Cong

Algorithm Search()
Input: Query q, the ISIS structure
Output: KNN answer
1. convert the query q into the new space;
2. for each active dimension of q
3. get a list;
4. merge with the existing list;
5. sort the list;
6. access the dataset for exact distance evaluation;
7. return the answers;

Fig. 2. The search algorithm of ISIS

queries only. To facilitate KNN search, we employ the filter-and-refine strategy in the ISIS
scheme. The algorithm is outlined in Fig. 2. First, the query is transformed into the new
space: 1) for each cluster IDi we check the distance between the query q and Centeri; 2)
if the distance is smaller than radiusi, we set the corresponding dimension i active. Note
that, in index construction, oneobject has a single activedimension, while thequery object
can have multiple active dimensions as clusters may overlap. This is to find all the clusters
containing the query object to reduce false negatives. If no cluster contains the query
object, we select the nearest cluster. After the transformation, we access the inverted-
files for each active dimension of the query object (lines 2-5). After obtaining a list of
candidates, they will be merged with the existing lists which are from other previously
examined active dimensions. In addition, the lists are sorted according to the number of
active dimensions meeting the query. Note that, one same active dimension means that
the query and data fall into the same cluster in the original space. Therefore, the object
that shares a large number of active dimensions has a higher probability to be near to the
query object. This helps us to generate candidates of high quality. Finally, we access the
raw dataset and compute the exact distance to refine the query answers (lines 6-7).

3.3 An Enhanced Approach

ISIS index may have the following two problems: First, its effectiveness depends on
how well a dataset is globally clustered, i.e., effective clusters can be generated as
a transformed space. For real datasets that are typically not globally clustered, more
clusters may have to be searched. This can lead to more expensive query processing.
Second, in high-dimensional space, a query object may belong to multiple clusters. In
the worst case, the complete data space has to be examined for a query.

On the other hand, in such high-dimensional feature spaces, most clustering
algorithms would break down in terms of efficiency and accuracy because usually many
features are irrelevant or correlated. In addition, different subgroups of features may be
irrelevant or correlated according to varying subgroups of data objects. Thus, global di-
mensionality reduction techniques such as PCA cannot be applied to such datasets to
improve the effectiveness of clustering, because they cannot account for local trends in
the datasets.

Since the high-dimensional sparse data has a special property, i.e. each data instance
may have only a small subset of attributes (active dimensions), this motivates us to
cluster the sparse data differently in varying lower dimensional subspaces.

ISIS: A New Approach for Efficient Similarity Search in Sparse Databases 237

The Subspace Determination. A sparse object typically has only tens of active di-
mensions, and similar objects tend to share active dimensions. For example, in recom-
mendation systems and target marketing, it is important to find homogeneous groups of
users with similar ratings in subsets of the attributes. In addition, it is interesting to find
groups of users with correlated affinities, which can help companies to predict customer
behavior and thus develop future marketing plans. Therefore, a better way is to find the
subspaces which are shared by similar data groups, and generate the clusters within
the subspaces, and the approach is named ISIS+. Compared with ISIS, ISIS+ has two
advantages. First, it generates more precise clusters in lower dimensional space to rep-
resent sparse data. Second, there are less overlapping between clusters, which may lead
efficient filtering effects.

In ISIS+, we find correlated dimensions and divide the original space into non-
overlapping subspaces. We propose an efficient and effective method to find correlated
dimensions, which represent the subspaces in sparse databases. Suppose that the sparse
data is D-dimensional, and has N tuples, we generate a D*D table to represent the rela-
tion of inter-dimensions of the raw dataset.

Definition 1. Relation table: The relation table represents the correlation of dimen-
sions in a sparse database, which is a D*D table. An entry R[i,j], where i and j are
in [1,...,D], counts for the times that dimensions i and j appear as active dimension
concurrently in the sparse dataset.

Table 2. The relation table of sample dataset

D1 D2 D3 D4 D5 D6 D7 D8
D1 4 4 1 1 0 0 0 0
D2 4 5 1 2 0 0 0 0
D3 1 1 2 1 0 0 0 0
D4 1 2 1 3 0 0 0 0
D5 0 0 0 0 2 2 0 0
D6 0 0 0 0 2 2 0 0
D7 0 0 0 0 0 0 2 2
D8 0 0 0 0 0 0 2 2

Given the dataset in Table 1, we can generate the relation table as shown in Table 2.
For example, R[1][1] equals to 4, which means that dimension 1 is active in four tuples;
R[1][3] equals to 1, which means that dimensions 1 and 3 appear as active dimensions
concurrently once. To generate the relation table of the sparse dataset, we first initialize
the table R, where each entry is set to 0 from the beginning. After that, the sparse
dataset is scanned and each object can be processed one by one. For each tuple, we
convert it into an array of length D. In this array, the value of a certain entry is 1 if the
corresponding dimension is active; otherwise, the value is 0. With this array, we can
accumulate the information into the relation table R. For each active dimension i, we
access the row i of relation table, scan the array, and increase R[i][j] by 1 if dimensions
i and j are both active. The algorithm is very efficient since the dataset is scanned only
once and no distance computation is involved.

According to the information presented in this table, the full high-dimensional sparse
data space can be partitioned into several subspaces. A perfect subspace partition should

238 B. Cui, J. Zhao, and G. Cong

enjoy two properties, i.e. all the dimensions are correlated intra-subspace, while unre-
lated inter-subspaces. However, due to the distribution of sparse data and the restriction
on the number of subspaces, perfect subspaces typically do not exist. Given the num-
ber of clusters, our algorithm is to find the near-optimal subspaces in an efficient way
for sparse databases, where the dimensions within a subspace are more correlated. The
correlation is defined as follows.
Definition 2. Correlated degree CD: the CD defines the correlation between two di-
mensions in a sparse database, CD[i, j] = R[i,j]

max(R[i,i],R[j,j]) .

Algorithm Gen subspace()
Input: Relation table, number of subspace K
Output: Subspaces
1. while there exists any unclassified dimension
2. find a dimension d with the highest value;
3. generate a new subspace s;
4. for each correlated unclassified dimension j
5. if CD[j, d] is large than CD[j, d′];

/* where d′ is any unrelated unclassified dimension.*/
6. include j into the subspace;
7. while the number of subspaces is less than K;
8. find a subspace S′ with the highest dimensionality;
9. find a dimension d′′ is least correlated with k d;
10. generate a new subspace S′′;
11. for each dimension in S′

12. if it is more correlated to k d of S′′ than S′

13. move to S′′;
14. while the number of subspaces is less than K;
15. check the relation between all k ds;
16. merge the most correlated subspaces;

Fig. 3. The algorithm to generate subspaces

The algorithm for subspace generation is shown in Fig. 3. If there are dimensions un-
classified, i.e. not included in any subspace, we pick the dimension d with the highest
value, which is the most active dimension left in the raw dataset. When there is a tie,
we select the dimension with the smallest order. We generate a new subspace s, and set
d as the key dimension k d of s. In lines 4-6, we examine all correlated unclassified
dimensions. If a dimension j is more correlated to d than any unrelated unclassified
dimension, j is added into subspace s. If the number of subspaces equals to the user
defined parameter K, the subspace generation is done; otherwise, we need to either
split subspaces (lines 7-13) or merge the subspaces (lines 14-16). To split subspaces, a
subspace with highest dimensionality is found firstly, because the clustering in a high-
dimensional space is inefficient and ineffective. By examining the CDs with the key
dimension d′, the dimension d′′ with the lowest correlated degree is picked up, and a
new subspace S′′ with key dimension d′′ is generated. For all the rest dimensions in S′,
if it is more correlated to d′′ than d′, we move it to the new subspace S′′. To merge the
subspaces, we find the most correlated subspaces, and combine two subspaces into a
single space. If there is a tie, we merge the subspaces with the lowest dimensions.

ISIS: A New Approach for Efficient Similarity Search in Sparse Databases 239

Given the dataset as shown in Table 1, we are able to partition the original 8-
dimensional space into multiple subspaces. At the beginning, we select D2 as the key
dimension of subspace 1, because D2 has the maximum value 5, and add D1, D3, and
D4 into the subspace. After that we can use the same strategy to generate another two
subspaces, i.e. [D5, D6] and [D7, D8]. Thus in the first stage of the algorithm, we
generate 3 subspaces. If the user sets the number of the subspaces as 4, we need to
select a subspace to split. Subspace 1 is picked, and D3 is selected as the key dimen-
sion for subspace 4. Now we can compare the difference between full dimensionality
and subspaces. For simplicity, we do not further cluster the data in each subspace. As
in section 3.1, we partition the data into 3 subspaces, i.e. the transformed new space
is 3-dimensional, where for example object 1 can be represented by [1, 0, 0]. If the
query point is [0, 0, 0, 0, 1, 2, 0, 0], the representation is [0, 1, 0] in transformed space.
Therefore, we only need to retrieve objects 7 and 8 as candidates for distance compu-
tation. Compared with the global clustering scheme, this query has to access 4 objects,
i.e. 7, 8, 9 and 10. It is worth to note that since the sparse data typically are very high-
dimensional, and only a small percentage of dimensions are active, the pruning effect
can be more significant. Additionally, the clustering within the lower dimensional sub-
spaces can further discriminate similar/nonsimilar objects efficiently.

Algorithms on ISIS+. Now, we can present the ISIS+ algorithms with minor revi-
sion from those of ISIS. To construct an ISIS+ index structure, we first split the whole
space into multiple subspaces. The subspace generation mechanism is as described in
section 3.3. After that, the data is partitioned into clusters in each subspace. The sum
of all clusters is the dimensionality of the new space. Thus each cluster is defined by
(ID, subspace, cluster center, radius), and data is converted from the original space into
new space. The query algorithm of ISIS+ follows that of ISIS except that we consider
subspace information.

4 Experimental Study

In this section, we present an experimental study to evaluate the proposed ISIS schemes
for similarity query in sparse databases. The experiments have been conducted on a
computer with P4 CPU (2.5GHz), 512 MB RAM, and running Windows XP Profes-
sional Operating System. To study performance characteristics over a wide range of
search function, we generate the similar dataset using the synthetic data generator [2].
This allows us to vary the following parameters: the dimensionality of sparse database,
the cardinality, percentage of active dimensions (degree of sparsity), and the number
of distinct values in each dimension. Table 3 shows the parameters of data and experi-
ments, and the values in the bracket are the default values.

The experimental study includes two parts. The first experimental study investigates
the index behavior under tuning. We test the performance on two variants for ISIS
scheme: ISIS globally clusters the raw sparse data; and ISIS+ partitions the original
space into multiple subspaces and generates clusters afterward. Second, we compare
them with some existing techniques for KNN search. We use four referenced techniques
for the comparison: VA-file [14], inverted-files, LDC [9], and xS-tree [13].

240 B. Cui, J. Zhao, and G. Cong

Table 3. Experiment Parameters

Degree of Sparsity 1% - 10% (5%)
Datasize 100K - 500K (100K)
Dimensionality 500 - 1000 (1000)
Number of clusters 5 - 100 (50)
Number of subspaces 1 - 50 (30)
Disk page size 4K bytes

The performance of schemes is measured by efficiency and approximation qual-
ity. In terms of efficiency, we examine the average disk access and response time for
10-NN search over 100 different queries. Another performance metric is approxima-
tion quality, as ISIS approach may introduce false dismissals, e.g. an exact KNN may
not fall in any same cluster with the query point. Computing the number of false dis-
missals, is enough to capture the traditional error metric, which we will refer to as the
ratio of false dismissals (RFD). Let NNi, where i ∈ [1, K], be the ith nearest
neighbor (NN) in the accurate result set, ANNi be the ith NN in the approximate result
set, Q be the query point, and Distance K be the Kth nearest neighbor distance of
accurate result. The ratio of false dismissals can be defined as follows:

RFD =
1
K

K∑
1

{
1 distance(ANNi, Q) >Distance K
0 otherwise

(1)

Furthermore, we also employ a metric which takes into account the quality of the an-
swers with respect to closeness to the query. We refer to it as the ratio of distance
errors (RDE) which can be defined as follows:

RDE = 1−
∑K

1 distance(NNi, Q)∑K
1 distance(ANNi, Q)

(2)

4.1 Parameter Tuning

We conduct an extensive study to tune the proposed schemes for optimality, specifically
on two main parameters, i.e. number of subspaces (for ISIS+) and clusters (for both
ISIS variants). We set the rest parameters as default values in the experiments.

Effect on Subspace. In the first experiment, we vary the number of subspace from 1 to
50. Note that, the ISIS+ is exactly same as ISIS when the number of subspaces equals
to 1. Fig. 4 shows the KNN search performance of our new structures for different num-
bers of subspaces. When the number of subspaces is small (< 20), the dimensionality
of subspaces is high, the effectiveness of cluster in each subspace is worse. Because the
expected distance between any two objects in high-dimensional space is large, and the
cluster radius could be very large as well, thus residing in same cluster does not mean
two objects are neighbors. As a result, more clusters will have to be accessed. We ob-
serve that as the number of subspaces increases, the number of disk I/O decreases. The
performance becomes optimal when number of subspaces is around 30. However, as the

ISIS: A New Approach for Efficient Similarity Search in Sparse Databases 241

0

10

20

30

40

50

0 10 20 30 40 50

D
is

k
I/

O
 (

10
00

 p
ag

es
)

Number of subspaces

ISIS+

(a) Disk I/O

0

10

20

30

0 10 20 30 40 50

R
FD

 (
%

)

Number of subspaces

ISIS+

(b) RFD

Fig. 4. Performance on different numbers of subspaces

number of subspaces reaches beyond a certain point (> 30), the performance starts to
degenerate gradually again. This is because too large a number of subspaces results in
that more objects may split into multiple subspaces, i.e. we have to access more entries
in the ISIS+. Therefore, the total disk I/O increases accordingly. The optimal number
of subspaces (around 30) is a compromise of these factors.

For the approximation quality, we find that the RFD remains quite stable in all the
cases, which only increases from 4% to 6% with respect to the number of subspaces
from 1 to 50. Although it incurs much more disk accesses for a small number of sub-
spaces, the improvement on approximation quality is not significant, less than 2%. As
we mentioned previously, the clustering is not effective for high-dimensional data due
to a small number of subspaces. Overall, the large number of subspaces is preferred as
it needs much less disk I/O, but provides a satisfactory approximation quality.

Effect on Clustering. In this experiment, we vary the numbers of clusters from 5
to 100. Fig. 5 shows the KNN search performance of our new structures for different
numbers of clusters. The performance of Sequential Scan is shown as a baseline.

We observe that as the number of clusters increases, the number of disk accesses de-
creases. When the number of clusters is small, the cluster radius can be large. Although
the query point may only fall in fewer clusters, the space covered by the clusters could
be large. In other words, since each cluster contains more data points, the number of
disk access is large as the ISIS scheme has to examine these clusters. On the contrary,
when the number of clusters is large, the covered space of a single cluster is smaller.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

D
is

k
I/

O
 (

10
00

 p
ag

es
)

Number of clusters

ISIS
ISIS+

Sequential Scan

(a) Disk I/O

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
(s

)

Number of clusters

ISIS
ISIS+

Sequential Scan

(b) Response time

Fig. 5. Performance on different numbers of clusters

242 B. Cui, J. Zhao, and G. Cong

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100

R
FD

 (
%

)

Number of clusters

ISIS
ISIS+

Sequential Scan

(a) RFD

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90 100

R
D

E
 (

%
)

Number of clusters

ISIS
ISIS+

Sequential Scan

(b) RDE

Fig. 6. Performance on approximation quality

Although the query point can be contained in more clusters, the overall space is less.
Take 50 as the number of clusters, the dimensionalities of transformed space are 50 and
1500 for ISIS and ISIS+ respectively, as we select 30 subspaces for ISIS+ approach.
Note that the dimensionality here represents the number of clusters generated. Com-
pared with ISIS, the ISIS+ is more promising as it requires much fewer disk accesses.
Due to the high dimensionality of sparse data, the global clusters of ISIS cannot capture
the local information of near neighbors effectively.

Fig. 6 shows the approximation quality by varying the numbers of clusters, i.e. RFD
and RDE. For Sequential Scan, both metrics equal to 0 as it can return all exact KNN.
The approximation quality of the ISIS and ISIS+ degrades as the number of clusters
increases, e.g. the RFD increases from 0.5% to 8%, and RDE from 0.1% to 1%. The
reason is that when the query point is near the margin of a certain cluster, some near
points may not be in any cluster which contains the query point. The ISIS shows a
bit better performance than ISIS+ with five times less disk and time cost. Overall, the
enhanced ISIS+ scheme is more optimal, as the query cost is much smaller than ISIS.
Additionally, the approximation quality is almost as good as the ISIS, with RFD less
than 5% and RDE less than 0.4% when the number of clusters equals to 50.

Since ISIS+ performs better than ISIS, we shall restrict our discussion to ISIS+ in
the following experiments, and use the optimal parameters determined above, i.e. we
set the number of subspaces as 30 and the number of clusters as 50.

4.2 Comparison with Other Methods

In this section, we compare the ISIS+ with some existing methods over different
datasets, such as the VA-file [14], inverted-files, xS-tree [13] and LDC [9]. In the
inverted-files, we index all the active dimensions of objects in the original data space. To
simplify the comparison, we set default parameter for other approaches, e.g. in VA-file,
each dimension is uniformly represented by 5 bits.

Effect on Degree of Sparsity. In many applications, sparse data comes often with var-
ious densities. In the first comparison, we evaluate the performance over datasets with
various sparse degrees from 1% to 10%, where the degree represents the percentage of
active dimensions, and the results are shown in Fig. 7.

ISIS: A New Approach for Efficient Similarity Search in Sparse Databases 243

0

10

20

30

40

50

0 2 4 6 8 10

D
is

k
I/

O
 (

10
00

 p
ag

es
)

Sparse degree

ISIS+
Inverted file

VA-file
LDC

xS-tree

(a) Disk I/O

0

2

4

6

8

10

0 2 4 6 8 10

R
es

po
ns

e
tim

e
(s

)

Sparse degree

ISIS+
Inverted file

VA-file
LDC

xS-tree

(b) Response time

Fig. 7. Performance on different degrees of sparsity

With the increase of degree of sparsity, the VA-file and LDC schemes yield similar
performance on Disk I/O. The VA-file fixes the bit representation, which is 5 bits for
each dimension. The LDC uses 1 bit for each dimension and retrieves top 3% candidates
for exact distance evaluation. The inverted-files yields worst performance and incurs
more disk accesses for large degree of sparsity, because it has to retrieve all the objects
which has same active dimension with the query point. The xS-tree performs better
than the inverted-files, but worse than other approaches. Because it is R-tree based,
and uses MBRs in the index nodes which significantly reduces the fan-out of the tree
and introduces heavy overlaps due to the high dimensionality. Clearly the proposed
ISIS+ provides the best performance for all the datasets. We partition the original high-
dimensional space into multiple lower dimensional subspace, thus the clusters within
the subspace can capture the local information of the similar objects efficiently. By only
accessing the objects in the clusters which contain the query object, the ISIS+ can prune
most far-away objects, and effectively reduce the disk accesses.

The results about response time in Fig. 7 (b) show similar performance change ten-
dency compared with disk access, because the main cost of query processing is disk
access and computational cost, and typically we need to calculate the similarity on ma-
jority of the data retrieved from disk. We found two main differences compared with
Fig. 7 (a): First, the gap is widened between VA-file and ISIS+, as we need to compute
distance for every data approximate of VA-file. The full dimensional distance com-
putation is very expensive in a very high dimensional space. Second, the gap between

0

5

10

15

20

25

0 2 4 6 8 10

R
FD

 (
%

)

Sparse degree

ISIS+
Inverted file

VA-file
LDC

xS-tree

(a) RFD

0

5

10

15

0 2 4 6 8 10

R
D

E
 (

%
)

Sparse degree

ISIS+
Inverted file

VA-file
LDC

xS-tree

(b) RDE

Fig. 8. Approximation quality on different degrees of sparsity

244 B. Cui, J. Zhao, and G. Cong

inverted-files and xS-tree is narrowed, since we need to access compressed MBRs in the
xS-tree which introduces more overhead costs. As the performance of query response
time is almost proportional to that of disk access, we will only show the results of disk
access in the following experiments.

Fig. 8 shows the performance on approximation quality. In terms of quality, the VA-
file, inverted-files and xS-tree can get 100% accurate answers, as they get all the poten-
tial answers for exact distance calculation. The performances of the LDC and ISIS+ are
comparable, which are around 5% for RFD, and less than 1% for RDE. Both schemes
introduce some false negatives due to the information loss during the dimension quanti-
zation and transformation. The ISIS+ is promising as the average disk cost is only around
20% of these three methods. Furthermore, since our technique can permit the immedi-
ate generation of results with high quality, this advantage enables the ISIS+ to support
online query answering: an important facility for interactive querying and data analysis.

Effect on Dimensionality. In this experiment, we evaluate the various schemes by
varying the dimensionality of the sparse data. Fig. 9 shows the disk cost for different
dimensionalities from 500 to 1000. The precisions of these methods are similar to the
above experiments, and we omit them due to the space constraints.

0

5

10

15

20

25

500 600 700 800 900 1000

D
is

k
I/

O
 (

10
00

 p
ag

es
)

Dimensionality

ISIS+
Inverted file

VA-file
LDC

xS-tree

Fig. 9. Performance on different dimensionalities

As the dimensionality increases, the performances of all methods degrade. The index
sizes of VA-file and LDC increase proportionally to the dimensionality, as they use 5
bits and 1 bit to represent each dimension. The MBRs of xS-tree also need more space
due to the increase of dimensionality. For the inverted-files, since we fix the degree
of sparsity in this experiment, the query has to access more inverted list to get all the
candidates. ISIS+ still performs better than other methods, i.e. 40% better than LDC
which is best among four competitors. The degeneration of ISIS+ is due to more active
dimensions, as it has to access the clusters in more subspaces.

5 Conclusion

In this paper, we have addressed the problem of similarity query in high-dimensional
sparse databases. We presented an efficient and novel indexing technique for KNN
search, called ISIS, which integrates the distance information into the inverted-files.

ISIS: A New Approach for Efficient Similarity Search in Sparse Databases 245

We also proposed an extension, called ISIS+, which employs subspace clustering, di-
mension transformation, and inverted-files indexing. With the pre-computed distance
information and efficient filter-and-refine strategy, the search process can be accelerated
by reducing computational cost and disk access. We conducted extensive experiments
to evaluate our proposed techniques against several known techniques, and the results
showed that our techniques are superior in most cases.

Acknowledgement

This research was supported by the National Natural Science foundation of China under
Grant No.60603045 and 60873063.

References

1. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of
high dimensional data for data mining applications. In: Proc. ACM SIGMOD Conference,
pp. 94–105 (1998)

2. Agrawal, R., Somani, A., Xu, Y.: Storage and querying of e-commerce data. In: Proc. 27th
VLDB Conference, pp. 149–158 (2001)

3. Athitsos, V., Potamias, M., Papapetrou, P., Kollios, G.: Nearest neighbor retrieval using
distance-based hashing. In: Proc. of ICDE Conference, pp. 327–336 (2008)

4. Beckmann, J.L., Halverson, A., Krishnamurthy, R., Naughton, J.F.: Extending rdbmss to
support sparse datasets using an interpreted attribute storage format. In: Proc. 22nd ICDE
Conference, p. 58 (2006)

5. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: Index structures
for improving the performance of multimedia databases. ACM Comput. Surv. 33(3), 322–
373 (2001)

6. Cui, B., Ooi, B.C., Su, J.W., Tan, K.L.: Contorting high dimensional data for efficient main
memory processing. In: Proc. ACM SIGMOD Conference, pp. 479–490 (2003)

7. Hartigan, J., Wong, M.: A K-means clustering algorithm. Applied Statistics 28(1), 100–108
(1979)

8. Hui, J., Ooi, B.C., Shen, H., Yu, C., Zhou, A.: An adaptive and efficient dimensionality
reduction algorithm for high-dimensional indexing. In: Proc. 19th ICDE Conference, p. 87
(2003)

9. Koudas, N., Ooi, B.C., Shen, H.T., Tung, A.K.H.: Ldc: Enabling search by partial distance
in a hyper-dimensional space. In: Proc. 20th ICDE Conference, pp. 6–17 (2004)

10. Li, C., Chang, E.Y., Garcia-Molina, H., Wiederhold, G.: Clustering for approximate similar-
ity search in high-dimensional spaces. IEEE Trans. Knowl. Data Eng. 14(4), 792–808 (2002)

11. Moffat, A., Zobel, J.: Self-indexing inverted files for fast text retrieval. ACM Trans. Infor-
mation Systems 14(4), 349–379 (1996)

12. Tao, Y., Ye, K., Sheng, C., Kalnis, P.: Quality and efficiency in high-dimensional nearest
neighbor search. In: Proc. ACM SIGMOD Conference, pp. 563–576 (2009)

13. Wang, C., Wang, X.S.: Indexing very high-dimensional sparse and quasi-sparse vectors for
similarity searches. VLDB J. 9(4), 344–361 (2001)

14. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. In: Proc. 24th VLDB Conference,
pp. 194–205 (1998)

15. Yu, C., Ooi, B.C., Tan, K.L., Jagadish, H.V.: Indexing the distance: An efficient method to
KNN processing. In: Proc. 27th VLDB Conference, pp. 421–430 (2001)

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 246–260, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Highly Scalable Multiprocessing Algorithms for
Preference-Based Database Retrieval

Joachim Selke, Christoph Lofi, and Wolf-Tilo Balke

Institut für Informationssysteme, Technische Universität Braunschweig
Mühlenpfordtstraße 23, Braunschweig, Germany

{selke,lofi,balke}@ifis.cs.tu-bs.de

Abstract. Until recently algorithms continuously gained free performance im-
provements due to ever increasing processor speeds. Unfortunately, this devel-
opment has reached its limit. Nowadays, new generations of CPUs focus on in-
creasing the number of processing cores instead of simply increasing the per-
formance of a single core. Thus, sequential algorithms will be excluded from
future technological advances. Instead, highly scalable parallel algorithms are
needed to fully tap new hardware potentials. In this paper we establish a design
space for parallel algorithms in the domain of personalized database retrieval,
taking skyline algorithms as a representative example. We will investigate the
spectrum of base operations of different retrieval algorithms and various paral-
lelization techniques to develop a set of highly scalable and high-performing
skyline algorithms for different retrieval scenarios. Finally, we extensively eva-
luate these algorithms to showcase their superior characteristics.

1 Introduction

Retrieval algorithms are at the heart of every database system and the search for ever
more efficient algorithms in terms of scalability and runtimes has propelled research.
The basic way of showing an algorithm’s superiority is to implement it together with
its competitors within the same framework and then evaluate how it behaves in differ-
ent retrieval scenarios, usually exploring different problem instances, database sizes,
and data distributions. It is interesting to note that this experimental evaluation is
usually not depending on the hardware used (except for absolute run-time measure-
ments, where however all competitors are affected by the hardware in a similar man-
ner). Thus, any algorithm outperforming its competitors will do so on every platform
and due to Moore’s law will even get faster in absolute terms over time.

Moore’s law states that the density of transistors on a CPU about doubles every
two years and held for the last decades. Until recently it basically meant that also
algorithms’ performance doubles every two years, because increased transistor densi-
ty was employed to increase clock rates and to support more complex CPU opera-
tions. But now processor designers have hit a ceiling as the benefits of even more
transistors on a circuit cannot be harvested by traditional optimization techniques due
to thermal problems. Chip manufacturers now opt to use the additional potential for
replicating parallel processing cores. Quad-core machines are commonplace today,

 Highly Scalable Multiprocessing Algorithms for Preference-Based Database Retrieval 247

with 6-core processors projected for early 2010 and 80-core chips already existing as
research prototype in Intel’s Tera-scale project1.

However, such additional cores do not necessarily result in increased performance,
since most applications are build using sequential algorithms. Thus, taking advantage
of this new potential depends on the aptitude of the application developer: the poten-
tial for parallel performance increase is best described by Amdahl’s law. Amdahl’s
law stipulates that the speedup of any algorithm using multiple processors is strictly
limited by the time needed to run its sequential fraction. For example, a program
having a sequential fraction of as little as 10% can achieve a speedup factor of at most
10, no matter how many CPUs are available. On the other hand, the speedup factor
achievable for its parallel portion is only capped by the actual number of processors.
Thus, only highly parallel algorithms can benefit from future hardware improvements.

Actually, this problem already raised considerable attention. In its 2008 report on
the IT landscape 2008–2012 Gartner Research ranks the need for multicore software
architectures among the 10 most disruptive technologies. Making effective use of this
technology will therefore need considerable changes in today’s software develop-
ment: “Running advanced multicore machines with today’s software is like putting a
Ferrari engine in a go-cart”2. The fact is illustrated in Fig. 1: with the advent of the
multi-core era, the performance potential between parallel and sequential algorithms
is continuously diverging.

Fig. 1. The need for parallelism for algorithms’ performance3

Of course, these developments also affect the field of databases which now needs
to adapt their retrieval algorithms to the changing hardware landscape, too. In the
course of this paper we will argue that for designing efficient and highly scalable
multiprocessor retrieval algorithms even the development cycle has to be rethought.
Instead of developing new algorithms only based on the drawbacks and shortcomings
of the most current top-performers, algorithm designers have to take a closer look at
the entire palette of possible base algorithms and exploit parallelizable features whe-
rever possible. Only in this way the sequential part of the algorithm can be effectively

1 http://techresearch.intel.com/articles/Tera-Scale/1421.htm
2 “The Impact of Multicore Architectures on Server Scaling”, Gartner, 2008.
3 Image from “An Overview of the Parallelization Implementation Methods in Intel C++ Com-

pilers”, Intel Corporation, 2008.

248 J. Selke, C. Lofi, and W.-T. Balke

minimized. For this it is also mandatory to deeply understand the basic operations
needed for each algorithm. Our paper’s contribution thus is threefold:

─ Using the example of skyline queries we show how to use the variety of algo-
rithms to set up the design space for parallel retrieval algorithms.

─ We investigate which current techniques in parallelization can be used to effi-
ciently implement modular operations.

─ We apply our design process to BNL, one of the most prominent algorithms for
skyline queries, and show that it leads to parallel implementations showing an
almost linear scalability behavior in multi-core architectures.

2 The Parallelization Design Space for Retrieval Algorithms

It is interesting to note that most database retrieval algorithms are using a rather
limited set of basic operations. Thus, the actual efficiency and the fine-tuning for
specific scenarios is mainly achieved by innovative control flows and additional op-
timizations like e.g., using specialized index structures. For instance in the area of
ranked query processing it was recently shown that is indeed possible to break down
algorithms for retrieval tasks as different as skyline queries, top-k queries, and k-
dominance queries to only three basic operations [23]. The idea is that such basic
operations can be efficiently implemented within the database core and then offer
interfaces for retrieval algorithms. Given the new hardware challenges it now be-
comes necessary to optimize those base operations for parallelization in order to bene-
fit from future performance improvements by Moore’s law.

In the following we will demonstrate by the example of skylining algorithms how
such operations (in particular object comparisons in a nested-loop) can be parallelized
with great effect by abstaining almost completely from sequential parts. The design
space for improved algorithms is spanned on the one hand by the different evaluation
approaches and their basic operations, on other hand by the novel parallelization tech-
niques for these operations. The ‘right’ mixture of both will enable us to derive high-
performing algorithms as we will see later in the experimental section.

2.1 The Design Space for Skyline Query Evaluation

Taking a closer look at recent algorithms for skyline query evaluation, we found that
the algorithms can be classified into several distinguishable groups. In the following,
we will cover the most important ones: block-nested-loops algorithms, divide-and-
conquer algorithms, and multi-scan algorithms.

Algorithms of the block-nested-loop class (BNL) [3, 12, 13] are probably the most
prominent algorithms for computing skylines. In fact the basic operation of collecting
maxima during a single scan of the input data can be found at the core of several
state-of-the-art skyline algorithms [5, 8, 9, 10, 11] and is illustrated in Figure 2. The
“block” in its name refers to the fact that it linearly scans over the data set and con-
tinuously maintains a block (or window) of data elements containing the maximal
elements with respect to the data read so far. For each data record that BNL
processes, the function BNL-STEP is called, which eliminates all records in being
dominated by , and adds to , if is not dominated. The major advantage of BNL
is its simplicity and suitability for solving general comparison-based preference

 Highly Scalable Multiprocessing Algorithms for Preference-Based Database Retrieval 249

queries [4, 13] (i.e., BNL can also be used to compute the maxima of arbitrary partial
orders). Furthermore, a multitude of optimization techniques is applicable to BNL
algorithms like e.g. dynamic sorting or indexing [5].

A second class of algorithms for skyline evaluation is based on a straightforward
divide-and-conquer strategy, as shown in Fig. 3. Given a data set , it first checks the
cardinality of . In case | | 1 the algorithm simply returns . Otherwise, is split
into two sets and and the algorithm applies itself recursively on both of them.
The two results and are subsequently cleaned from local maxima by compar-
ing each element of to each element of and removing all dominated elements
during this process. The set of ’s maxima is constructed by joining the reduced sets

 and . Although the algorithm has excellent theoretical properties [3, 17], there
is no efficient implementation of this recursive process [5]. The main problem pre-
venting an efficient implementation seems to be that the algorithm either requires
massive disk IO, or needs to keep a large amount of intermediate results in main
memory. However, when abstaining from recursion, its basic split-and-merge scheme
is definitely applicable in a parallel scenario.

The third class of skyline algorithms is based on multiple scans of the database in-
stance and includes algorithms like Best or sskyline [14, 15, 16]. They can especially

Fig. 2. Block-Nested-Loop (BNL) algorithm Fig. 3. Divide & Conquer algorithm

Fig. 4. The Best/sskyline algorithm

250 J. Selke, C. Lofi, and W.-T. Balke

provide highly efficient cache-conscious implementations. The complete algorithm is
shown in Fig. 3. After creating an in-memory copy of , an arbitrary element is selected as maximum candidate. After removing from , the whole set

 is scanned, and dominated elements are removed from it. If some element is found
in that dominates the current candidate , it is removed from and used as the
new candidate; then, the scan of is restarted. If no element of dominates the
current candidate, then it is a maximum. The whole process is repeated until is
empty. In our experiments, we found Best/sskyline to make around half the number of
comparisons as BNL due to the early elimination of maxima. But to reach its perfor-
mance, Best/sskyline must scan (and even modify) the data set numerous times. This
can only be done efficiently, if the whole input data set fits in main memory; a
requirement not desirable for general skyline algorithms. Nevertheless, as we will see
in Section 0 Best/sskyline can form a useful building block in a parallel algorithm.

2.2 The Design Space for Parallelization of Basic Operations

For parallelizing the skyline problem, different strategies are at hand: The first is
classical distribution, i.e. splitting data into multiple work packages which are distri-
buted among the worker threads. Such threads can work independently of each other
and finally, their results are combined. This strategy adapts the split-and-merge con-
cept found within algorithms of the divide-and-conquer class. The advantage of this
style of algorithm is that the threads do not need shared memory and thus could also
be deployed to different machines (e.g. computer clusters). However, it is necessary
to combine the results of the threads which introduces some overhead in terms of the
program’s sequential part and may lead to suboptimal scalability. In summary, skyline
algorithms following the split-and-merge approach show good performance when
only few threads can be used, since the overhead introduced increases with a higher
degree of parallelism.

The second strategy is to employ algorithms working on a shared data structure,
i.e., each thread can read and modify the same dataset. This style of algorithm has just
recently become viable due to the advent of tightly coupled multicore processors.
Still, the main problem of shared-memory algorithms remains at hand: One has to
ensure that no data is read or written which has just been accessed by another thread
(dirty reads or writes) in order to avoid data inconsistency. When considering for
example a block-nested loops algorithm two major critical situations can be identi-
fied: a) overtaking threads: in this case, the overtaking thread will lose a comparison
with the current element of the slower thread b) deleting/appending: the list structure
may corrupt, if two threads try to delete or append the same nodes simultaneously due
to the resulting inconsistent linkage of node.

Like in transaction systems, these problems can be tackled by synchronization and
locking protocols. However, there is a variety of different approaches to secure a
shared data structure, each showing individual runtime performance. We will briefly
introduce these common approaches also used in our following algorithms:

• Full Synchronization: this simple protocol locks the whole data structure for every
access. Obviously, this will not allow any parallelism and is, although secure, un-
suitable for performance-oriented algorithms.

 Highly Scalable Multiprocessing Algorithms for Preference-Based Database Retrieval 251

• Continuous Locking: the data structure is locked at node level for every access and
is a straight-forward semi-naïve approach to the problem. However, locking still
carries an expensive overhead despite recent hard- and software progress. Thus,
this technique suffers severely from the overhead induced by acquiring and releas-
ing such a high number of locks.

• Lazy Locking: this approach is similar to continuous locking. However, it aims at
using as few locks as possible. Locks are only acquired when they are really
needed, i.e. when deleting or inserting nodes. Unfortunately, this approach leads to
more complex algorithms which are harder to design and debug. For example, it is
necessary to identify all critical situations and provide according safeguards. Also,
in case of our implementations, additional security mechanisms (like using flags)
are necessary to ensure the data structure’s consistency. But from a performance
point of view lazy locking algorithms are definitely superior to the previous two
locking protocols in highly parallel scenarios. Still, for cases using very few
threads (e.g. two threads) split-and-merge algorithms may be a better choice.

• Lock Free Synchronization: this technique completely abstains from using locks.
Instead, a special hardware instruction within the CPU core is used to implement
an optimistic protocol. The base idea is to perform changes to the data structure
and check later whether any concurrent modifications had occurred. When a con-
flict occurs, all modifications are undone and repeated. The performance of lock
free protocols scale with the probability of conflicts: the more likely conflicts oc-
cur; the worse is the algorithm’s expected performance.
Interestingly, we observed in our experiments a similar or slightly lower perfor-
mance of lock free synchronization compared to the lazy locking variants. Howev-
er, the performance ratio of those two techniques is depending on the hardware ef-
ficiency of locking compared to the instructions used in lock free synchronization;
thus performance may change when using different CPU architectures or operation
systems and both algorithm styles seem viable alternatives.

3 Parallel Skyline Computing

In this section, we will utilize our design space for designing parallel algorithms with
the mentioned techniques. Up to now, all parallel skyline algorithms proposed in
literature directly rely on the basic divide-and-conquer scheme. Following our design
considerations, these algorithms already cover an important application scenario and
thus will serve as our baseline in the later experiments. In addition, for the multi-core
shared-memory scenario we will design novel algorithms and show that they indeed
outperform their current parallel competitors.

3.1 Algorithms Using Split-and-Merge Parallelization

The multi-processor scenario without shared memory directly calls for algorithms
based on the split-and-merge parallelization scheme used by the divide-and-conquer
class. Basically, the input data set is first split into parts , … , . Then, in paral-
lel, the skyline of each part is computed (using any sequential algorithm for each
part). Finally, the resulting local skylines , … , are merged to produce the
global skyline. To foster parallelization, it is sensible to split in at least as many
parts as there are processors.

252 J. Selke, C. Lofi, and W.-T. Balke

In particular, the following distributed merging method has been applied in a dis-
tributed scenario without shared memory [24]: First, assign the -th local skyline
to node and make the union of all other local skylines accessible to this node. Then, node compares each element of
to all elements in , removing all dominated elements from . After this step,
only contains elements of ’s global skyline. Finally, the set of all global maxima is constructed at some central node. This algorithm will be
referred to as Distributed in the following. It is interesting to note that the Distributed
algorithm does not rely on shared-memory at any point, thus it particularly applies to
cluster-style distributed scenarios. However, its performance suffers from the compli-
cated merge step.

Focusing on scenarios with shared memory this shortcoming is remedied by the
pskyline method proposed in [16], which also applies the split-and-merge scheme.
After splitting the dataset similar to the Distributed algorithm, pskyline uses a main
memory algorithm (Best/sskyline) for the computation of the local skylines. But by
deciding for an efficient main memory implementation, it cannot process all parts of

 in parallel on large data sets. Instead, if cores are available, the total number of
chunks is chosen such that chunks jointly fit into main memory. After all local
skylines have been computed (and written to disk), an improved merge scheme rely-
ing on shared memory is used: in deep-left-tree style, local skylines are merged suc-
cessively, two at a time. In this shared memory merging step, all cores can be used
simultaneously. The experimental evaluation in [1] indicates that the psykline algo-
rithm is indeed highly scalable in cases where the skyline is large relative to the num-
ber of database tuples. However, scalability degrades rapidly for smaller skyline sizes.
For example, a speedup of just about 4 is reported for 8 cores and a skyline size of
about 20% of the database size.

3.2 Continuously Locked Parallel BNL

Exploiting our algorithmic design space, we now explore algorithms for a shared-
memory multi-core scenario departing from split-and-merge techniques. As we have
seen the aim is true parallelization with a minimum of sequential overhead. Since
algorithms of the BNL class only need a single pass over the input data, the basic idea
of the following algorithms is to extend the BNL algorithm in such a way that mul-
tiple worker threads can simultaneously share and modify BNL’s window. In the
following, the window is represented by a linked list data structure.

Of course entering the shared memory part of the design space means that we have
to care for the thread safety, i.e., concurrent access to data must be guarded by using
an adequate locking scheme or conflict resolution. The simplest viable locking
scheme is to continuously lock each node being accessed. Thus, each thread travers-
ing the linked list releases a node’s lock only after acquiring the lock for its successor.
In particular, this strategy prevents that threads can pass each other. Passing might
result in an unnoticed removal of a node by some other thread. This technique of
always holding two locks per thread and adhering to the lock/unlock order is known
as lock coupling (or hand-over-hand locking) [19]. Within BNL’s outer loop, each
thread continuously requests a new data record from the central data manager. For
each data record, the list is traversed and each node is compared to the current data
record, performing deletions of nodes, if needed. In case no node dominated the

 Highly Scalable Multiprocessing Algorithms for Preference-Based Database Retrieval 253

current record, it is appended to the list. Although this approach is a valid parallel
implementation of the BNL algorithm, its way of locking significantly limits its per-
formance. If two threads access neighboring nodes, they will continuously interfere
with each other while traversing the list. Furthermore, the omnipresent locking and
unlocking operations introduce a large computational overhead.

3.3 Lazy List Parallel BNL

Actually—and in contrast to the continuously locking scheme—the autonomy of
threads only has to be constrained when a node has to be modified. This means that
for each addition or deletion of a node in the list, a modification lock has to be ob-
tained, whereas simple comparison operations do not require explicit locks. This idea
of modification locks can be implemented using a novel concurrent data structure
called the Lazy List [20]. We adjusted the basic structure for the use in skyline com-
putation and show the resulting code in Figure 5.

Fig. 5. The parallel BNL Lazy List algorithm

Fig. 6. The lock-free parallel BNL algorithm
using a linked list

254 J. Selke, C. Lofi, and W.-T. Balke

In particular, our algorithm uses a binary flag to guarantee that no adja-
cent nodes are modified concurrently, which might otherwise result in violating the
pointer integrity. Before a node can be deleted, locks for the current node and its pre-
decessor have to be acquired. The removal of the current node then is always a
two-step process: First, . is set to true, indicating ’s logical removal
(and thus locking it effectively for modifications by its successor), and second, the
predecessor’s pointer . has to be set to . , thus unlinking the cur-
rent node. By calling the function it is checked whether and
have been deleted in the meantime or some node has been inserted in-between.

Depending on the result, either the current node can be deleted, or there had been
some concurrent modification of this list, from which the algorithm recovers by res-
tarting the iteration from the beginning of the window. Appending a new node works
similar. First, a lock is obtained (locking is sufficient in this case), second, the
algorithm checks for concurrent modifications, and then either appends the node
physically or restarts the iteration.

3.4 Lock-Free Parallel BNL

Most approaches falling into our parallelization design space are using locking proto-
cols, e.g., as our previous algorithm. The alternative is to completely abstain from
locking and to implement a non-blocking optimistic protocol. This goal is supported
by a special hardware operation called compare-and-swap (). The operation
atomically compares a variable to some given value and, if both are the same, sets the
first variable to some given new value. In our algorithm shown in Figure 6, it is de-
noted as , : it atomically compares the variable to the value and, in
case , sets to the value . The function returns if the operation suc-
ceeded, otherwise it returns . In our case, we will always use compare-and-swap
to guard the node pointer and the deletion flag .

Our approach to lock-free lists is inspired by the Harris-Michael algorithm [43,
44]. The linked list is traversed as in the sequential BNL algorithm, except for the
following: first, an additional pointer variable is used to store the successor of
the current node, and second, in each traversal step, the flag of the current
node is checked in order to physically remove nodes that have previously been
marked for deletion. If the flag is set to , the algorithm tries to unlink the current
node using a operation. In case of failure, a concurrent modification has occurred
and the list traversal is restarted.

Dominated nodes are removed by first marking the current node as deleted using
 (line 21). If this operations succeeds, the algorithms tries to physically delete the

node (line 24, the star indicates that the current value of . does not mat-
ter); otherwise, the traversal is restarted. It does not matter, whether the physical re-
moval succeeds or not, since logically deleted nodes will be cleaned up anyway by
other threads during their list traversal as previously described (line 10).

Finally, new nodes are appended to the list also by a instruction (line 38). In
case of failure, the list traversal is restarted from the beginning. Although we do not
use any locking mechanism in this algorithm, checking the status flag of all (critical)

 operations allows us to detect all concurrent list modifications and respond
accordingly.

 Highly Scalable Multiprocessing Algorithms for Preference-Based Database Retrieval 255

4 Experiments

In the previous sections we explored our design space from an algorithmic point of
view and derived several algorithms for shared-memory skyline computation. But
similar to physical tuning methods, only thorough experimentation will reveal the
real-world performance of the outlined techniques. In order to investigate the full
variety of performance characteristics in an unbiased fashion, the following evalua-
tions will be executed on synthetic datasets. To create these datasets, we used the
Independent data generator commonly used in skyline research [3]. We also applied
all evaluations to the Anticorrelated, and Correlated data generators. However, all
results show the same trends as those seen in the Independent evaluations and were
thus omitted for brevity. Of course, data sets of varying size (100 , 1 , 10)
and varying dimensionality (5, 6, 7, 8, 9) have been used.

All our experiments have been conducted on a single node of a 12-node cluster
running SUSE Linux Enterprise 10. The node we used is equipped with two Intel
Xeon E5472 3.0 GHz quad-core processors, thus providing a total of 8 cores at each
node. Our algorithms have been implemented using the Java programming language
version 6.0. We only used the built-in mechanisms for locking, compare-and-swap
operations, and thread management. The experiments are executed on a Sun Java
6.0u13 64Bit server JVM in HotSpot mixed mode.

We will compare the following algorithms: (i) pskyline (ii) the continuously-
locked parallel BNL (referred to as Locked in the following), (iii) the Lazy List
parallel BNL (Lazy List), (iv) the lock-free parallel BNL (Lock-Free), and (v) the
distributed merging method from Section 0 (Distributed; to provide a fair comparison
here, we used BNL as underlying sequential algorithm). Unless stated otherwise, all
experiments have been performed on one up to eight CPU cores.

4.1 Memory Usage and the Role of pskyline

As discussed in Section 0, pskyline relies on the sskyline algorithm for computing
local skylines, which subsequently are merged by a parallel merging scheme. As
sskyline requires data to be present in main memory, this imposes further restrictions
on pskyline as well. Investigating this issue in detail is particularly interesting since
pskyline has been reported to perform extremely well if the whole database can be
loaded into main memory [16]. Since such a scenario is hardly realistic in database
retrieval. In the following, we investigated the performance of pskyline under main
memory restrictions.

We evaluated pskyline exemplarily on the Independent dataset with 1 and 6 using a fixed number of 8 CPU cores, resulting in a skyline size of 5577 in average. We restricted the main memory available to pskyline relative
to the skyline size . In particular, we tested pskyline’s performance with memory
sizes 1.5 , 2 , 5 , 10 , and 20 . Finally, in order to allow the algorithm to per-
form with its maximal performance, we allow it to load the full database into main
memory. We also abstained from writing unused working sets to the hard disk as
proposed in the original work on pskyline [16], thus giving pskyline a significant
performance boost. Our results are presented in Figure 14, showing the computation
time in milliseconds for different main memory sizes.

256 J. Selke, C. Lofi, and W.-T. Balke

As a comparison baseline, we also evaluated Lazy List on the same dataset (indi-
cated by the dotted line in Figure 14). In fact, Lazy List only requires as much main
memory as necessary to hold the result set. It can be observed that the performance of
pskyline suffers severely under main memory restrictions. However, if no memory re-
strictions are applied, pskyline shows competitive and even slightly better perfor-
mance to Lazy List. These general observations also hold for other scenarios, e.g.
using the Correlated or Anticorrelated data. To summarize, pskyline performs very
well in main memory database scenarios, but on the whole is memory inefficient. Due
to this fact, we will exclude it from the following evaluations. In contrast, the mem-
ory consumption of Locked, Lazy List, and Lock-Free had always been around the
number 1.5 , thus being close the optimum of . The Distributed algorithm requires
roughly 2 of main memory.

4.2 Speed-Up and Scaling

In this section, we evaluate and compare the multiprocessing scalability and overall
performance of the remaining four algorithms. For pure scalability observations, we

Fig. 7. Speed-Up of Locked (Independent,
= 1M)

Fig. 8. Speed-Up of Lock-Free (Independent,
 = 1M)

Fig. 9. Speed-Up of Lazy List (Independent,
 = 1M)

Fig. 10. Speed-Up of Distributed (Indepen-
dent, = 1M)

 Highly Scalable Multiprocessing Algorithms for Preference-Based Database Retrieval 257

Fig. 11. Runtime comparison (Independent,
=100k, = 7)

Fig. 12. Runtime comparison (Independent,
 = 10M, = 5)

Fig. 13. Runtime comparison (Independent,
= 1M, = 7)

Fig. 14. Runtime of pskyline (Independent,
 = 1M, = 7)

will use the Independent data set, where = 1M and = 5−8. Setting to higher
values gives unrealistically large result sets (50K). Each algorithm has been
executed on 1, … , 8 cores. The respective results are presented in Figures 7−10.
For the Locked algorithm, only a small speed-up can be observed due to high lock
contention thrashing. The speedup factor grows with , and peaks in our test with a
value of 3.3 for 8 cores and 8. It is also interesting to note that the algorithm
performs better using just one core than using two of them. This can be explained by
the Java VM being able to detect the needlessness of locking, if there are no concur-
rent accesses, thus dynamically disabling the use of locks.

In contrast, Lazy List (Fig. 9) and Lock-Free (Fig. 8) show significantly better
speed-up behavior compared to the Locked version. While showing similar perfor-
mance to each other, Lazy List performs slightly better overall. It can be observed that
both algorithms show nearly linear scaling up to four cores. Starting with the fifth
core, the performance gain moderately ceases for both algorithms and data sets
with 5 and 8, but only slightly degenerates for the other cases. This
phenomenon may be explained with decreasing cache locality and increasing

258 J. Selke, C. Lofi, and W.-T. Balke

communication overhead as our test system uses two quad-core processors. Starting
with the fifth core, the second processor must constantly communicate with the first
one over the slower Front Side Bus (compared to communication among cores within
a single processor). However, we also expect a nearly linear speed-up for true 8-core-
processors, which will be available in the near future. For both Lazy List and Lock-
Free, we measured maximum speed-ups of 7.9 (in case 7) and 5.8 (in case 8) using 8 cores.

Finally, the Distributed algorithm (Fig. 10) shows almost no speedup. Peak scaling
was measured with a speed-up factor of 1.74 for 8 cores and = 7.

For assessing the runtime performance of the algorithms in absolute numbers, we
measured the computation time for 100 , 1M and 7 as well as for 10M and 5. These cases have been selected according to their representa-
tiveness regarding practical cases in preference-based retrieval. All results can be
found in Figures 11−13. During this evaluation, it turned out that for the 8-core cases,
Lazy List shows the highest performance (1992 ms for 1M), followed by Lock-
Free (3052 ms for 1M), Distributed (7802 ms for 1M), and, finally,
Locked (18,375 ms for 1M). Please note that Locked has been left out in Fig. 13
due to its extremely poor performance.

In summary, we have shown that Lazy List as well as the Lock Free algorithm
show very good scaling behavior and overall performance, while ensuring near op-
timal memory efficiency due to their block-nested-loops lineage.

Source Code and Repeatability: In order to provide a reliable and referencable
foundation for further algorithm development, all our presented algorithms can be
accessed and downloaded at http://www. ifis.cs.tu-bs.de/javalib/skysim.zip.

5 Conclusion and Outlook

In this paper, we established a design space for parallel database retrieval algorithms,
in particular focusing on skyline algorithms as a representative example. Identifying
basic operations of those algorithms, we investigated their respective potential for
parallelization using different techniques. Finally, we designed exemplarily two inno-
vative and highly scalable algorithms based on the popular block-nested-loops class
for the scenario of shared-memory multi-processor systems. In our extensive evalua-
tions, we showcased the superior characteristics and scalability of these algorithms in
different settings. Although we did not exploit any special skyline-specific optimiza-
tion techniques, we were able to outperform state-of-the-art approaches to skyline
computation on multiprocessor systems in these scenarios. Especially our lazy list
algorithm and lock-free BNL algorithm showed excellent overall performance with
nearly linear scaling.

The design considerations and implementation techniques presented in this paper
pave the way for also tapping the parallel potential of state-of-the art algorithms also
for other retrieval scenarios. Moreover, future work will adapt our techniques to fur-
ther optimizations for skyline algorithms like tree-based indexing or dynamic sorting.

 Highly Scalable Multiprocessing Algorithms for Preference-Based Database Retrieval 259

References

1. Vitter, J.S.: Algorithms and data structures for external memory. Foundations and Trends
in Theoretical Computer Science 2(4), 305–474 (2006)

2. Larus, J.: Spending Moore’s dividend. Communications of the ACM 52(5), 62–69 (2009)
3. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline operator. In: Proceedings of the

17th International Conference on Data Engineering (ICDE 2001), pp. 421–430. IEEE
Computer Society, Los Alamitos (2001)

4. Chomicki, J.: Preference formulas in relational queries. ACM Transactions on Database
Systems 28(4), 427–466 (2003)

5. Godfrey, P., Shipley, R., Gryz, J.: Algorithms and analyses for maximal vector computa-
tion. The VLDB Journal 16(1), 5–28 (2007)

6. Morse, M., Patel, J.M., Jagadish, H.V.: Efficient skyline computation over low-cardinality
domains. In: Proceedings of the 33rd International Conference on Very Large Data Bases
(VLDB 2007), pp. 267–278. ACM Press, New York (2007)

7. Preisinger, T., Kießling, W.: The Hexagon algorithm for Pareto preference queries. In:
Proceedings of the 3rd Multidisciplinary Workshop on Advances in Preference Handling,
M-PREF 2007 (2007)

8. Eng, P.-K., Ooi, B.C., Tan, K.-L.: Indexing for progressive skyline computation. Data 4
Knowledge Engineering 46(2), 169–201 (2003)

9. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: Dayal, U., Ra-
mamritham, K., Vijayaraman, T.M. (eds.) Proceedings of the 19th International Confe-
rence on Data Engineering (ICDE 2003), pp. 717–719. IEEE Computer Society, Los Ala-
mitos (2003)

10. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database sys-
tems. ACM Transactions on Database Systems 30(1), 41–82 (2005)

11. Bartolini, I., Ciaccia, P., Patella, M.: Efficient sort-based skyline evaluation. ACM Trans-
actions on Database Systems 33(4) (2008)

12. Bentley, J.L., Clarkson, K.L., Levine, D.B.: Fast linear expected-time algorithms for com-
puting maxima and convex hulls. Algorithmica 9(2), 168–183 (1993)

13. Daskalakis, C., Karp, R.M., Mossel, E., Riesenfeld, S., Verbin, E.: Sorting and selection in
posets. In: Mathieu, C. (ed.) Proceedings of the 20th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2009), pp. 392–401. SIAM, Philadelphia (2009)

14. Torlone, R., Ciaccia, P.: Finding the best when it’s a matter of preference. In: Ciaccia, P.,
Rabitti, F., Soda, G. (eds.) Proceedings of the 10th Italian Symposium on Advanced Data-
base Systems (SEBD 2002), pp. 347–360 (2002)

15. Boldi, P., Chierichetti, F., Vigna, S.: Pictures from Mongolia: Extracting the top elements
from a partially ordered set. Theory of Computing Systems 44(2), 269–288 (2009)

16. Park, S., Kim, T., Park, J., Kim, J., Im, H.: Parallel skyline computation on multicore ar-
chitectures. In: Proceedings of the 25th International Conference on Data Engineering
(ICDE 2009), pp. 760–771. IEEE Computer Society, Los Alamitos (2009)

17. Bentley, J.L., Kung, H.-T., Schkolnick, M., Thompson, C.D.: On the average number of
maxima in a set of vectors and applications. Journal of the ACM 25(4), 536–543 (1978)

18. Sun, M.: A primogenitary linked quad tree data structure and its application to discrete
multiple criteria optimization. Annals of Operations Research 147(1), 87–107 (2006)

19. Bayer, R., Schkolnick, M.: Concurrency of operations on B-trees. Acta Informatica 9(1),
1–21 (1977)

260 J. Selke, C. Lofi, and W.-T. Balke

20. Heller, S., Herlihy, M., Luchang co, V., Moir, M., Scherer III, W.N., Shavit, N.: A lazy
concurrent list-based set algorithm. Parallel Processing Letters 17(4), 411–424 (2007)

21. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Welch, J.L.
(ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001)

22. Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets. In:
Proceedings of the 14th Annual ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA 2002), pp. 73–82. ACM Press, New York (2002)

23. Levandoski, J., Mokbel, M., Khalefa, M.: FlexPref: A Framework for Extensible Prefe-
rence Evaluation in Database Systems. In: International Conference on Data Engineering
(ICDE), Long Beach, CA, USA (2010)

24. Cosgaya-Lozano, A., Rau-Chaplin, A., Zeh, N.: Parallel computation of skyline queries.
In: Proceedings of the 21st International Symposium on High Performance Computing
Systems and Applications (HPCS 2007). IEEE Computer Society, Los Alamitos (2007)

IO3: Interval-Based Out-of-Order Event Processing in
Pervasive Computing

Chunjie Zhou� and Xiaofeng Meng

School of Information, Renmin University of China, Beijing, China
{lucyzcj,xfmeng}@ruc.edu.cn

Abstract. In pervasive computing environments, complex event processing has
become increasingly important in modern applications. A key aspect of complex
event processing is to extract patterns from event streams to make informed de-
cisions in real-time. However, network latencies and machine failures may cause
events to arrive out-of-order. In addition, existing literatures assume that events
do not have any duration, but events in many real world application have dura-
tions, and the relationships among these events are often complex. In this work,
we first analyze the preliminaries of time semantics and propose a model of it. A
hybrid solution including time-interval to solve out-of-order events is also intro-
duced, which can switch from one level of output correctness to another based on
real time. The experimental study demonstrates the effectiveness of our approach.

Keywords: pervasive computing, complex event, out-of-order, time interval.

1 Introduction

In pervasive computing environments, event processing has raised increased interest
in the past few years [1,4,3]. A growing numbers of applications nowadays take the
form of time ordered or out-of-ordered series, and every event has time duration. All
these factors about time are very important in extracting patterns from atomic events
in pervasive computing. However, the present literatures about time management in
pervasive computing usually refer to only one aspect of the problem.

Existing research works [1] almost focus on instantaneous events. However, purely
sequential queries on instantaneous events are not enough to express many real world
patterns. For example, it has been observed that in many diabetic patients, the presence
of hyperglycemia1 overlaps with the absence of glycosuria [10]. This insight has led to
the development of effective diabetic testing kits. Clearly, there is a need for an efficient
algorithm that can solve events with duration.

Meanwhile, the real-time processing in time order of event streams generated from
distributed devices is a primary challenge in pervasive computing environments. How-
ever, most systems [2]assume a total ordering among event arrivals. It has been illus-
trated that the existing technology would fail in such circumstances, either missing

� This research was partially supported by the grants from the Natural Science Foundation of
China under Grant No. 60833005; National High-Tech Research and Development Plan
of China under Grant No. 2007AA01Z155, 2009AA011904; the Ph.D. Programs Foundation
of Ministry of Education of China No.200800020002

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 261–268, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

262 C. Zhou and X. Meng

resulting matches or incorrectly producing incorrect matches. Let us consider a popular
application for tracking books in a bookstore [3] where RFID tags are attached to each
book and RFID readers are placed at strategic locations throughout the store, such as
book shelves, checkout counters and the store exit. If a book shelf and a store exit sensed
the same book but none of the checkout counters sensed it in between the occurrence of
the first two events, then we can conclude that this book is being shoplifted. If events of
sensing at the checkout counters arrive out-of-order, we cannot ever output any results
if we want to assure correctness of results. Otherwise, if we focus on real-time alarm,
we may output the wrong results. Clearly, it is imperative to deal with both in-order as
well as out-of-order arrivals efficiently and in real-time.

The contributions and the rest of this work are organized as follows: Section 2 gives
the related works. Section 3 provides some preliminaries, including the time seman-
tics and the model of interval-based out-of-order events. Section 4 describes a hybrid
solution. Section 5 gives the experiment results and we conclude in Section 6.

2 Related Works

About the out-of-order problem, from the aspect of different scenarios, the literatures
can be divided into two types, one focus on real time,another pay more attention to
correctness. Since the input event stream to the query engine is unordered, it is reason-
able to produce unordered output events. So [6] permits unordered sequence output and
proposes the aggressive strategy.

If ordered output is needed, additional semantic information such as K-Slack factor
or punctuation is needed to ”unblock” the on-hold candidate sequences from being out-
put. A native approach [2] is using K-Slack as a priori bound on the out-of-order of the
input streams. The biggest drawback of K-slack is rigidity of the K that cannot adapt
to the variance in the network latencies that exists in a heterogeneous RFID reader net-
work. Another solution is applying punctuations, namely, assertions inserted directly in
the data stream confirming that for instance a certain value or time stamp will no longer
appear in the future input streams [6]. [6] use this technique and propose a solution
called conservative method. However, such techniques, while interesting, require for
some service to first be creating and appropriately inserting such assertions.

About the interval-based events, there has been a stream of research [7,8,9,10]. Kam
et. al. [7] designs an algorithm that uses the hierarchical representation to discover
frequent temporal patterns. However, the hierarchical representation is ambiguous and
many spurious patterns are found. Papapetrou et. al. [8] proposes the H-DFS algorithm
to mine frequent arrangements of temporal intervals.This approach does not scale well
when the temporal pattern length increases. Wu et. al. [9] devises an algorithm called
TPrefix for mining non-ambiguous temporal pattern from interval-based events. TPre-
fixSpan has several inherent limitations: multiple scans of the database are needed and
the algorithm does not employ any pruning strategy to reduce the search space. In or-
der to overcome the above drawbacks, [10] gives a lossless representation to preserve
the underlying temporal structure of the events, and proposes an algorithm to discover
frequent temporal patterns from interval-based events. However, they only use this rep-
resentation for classification but don’t consider out-of-order problems.

IO3: Interval-Based Out-of-Order Event Processing in Pervasive Computing 263

3 Preliminaries

Each event is denoted as (ID,Vs,Ve,Os,Oe,Ss,Se,K). Here Vs and Ve respectively denote
valid start and end time; Os and Oe respectively denote occurrence start and end time;
Ss corresponds to the system server clock time upon event arrival; K corresponds to an
initial insert and all associated retractions, each of which reduce the Se compared to the
previous matching entry in the table.

Definition 1 (time interval) Suppose T1 ⊆ . . . ⊆ Tn is a linear hierarchy H of time
units. For instance, H = minute⊆ hour⊆ day⊆month⊆ year. A time interval Ti in H
is an n-tuple (ti1 , . . . ,tin) such that for all 1≤ i≤ n, tii is a time-interval in the time-value
set of Ti [5].

Definition 2 (out-of-order event) Consider an event stream S : e1,e2, ...,en, where
e1.ats < e2.ats < ... < en.ats. For any two events ei and e j (1 ≤ i, j ≤ n) from S, if
ei.ts < e j.ts and ei.ats < e j.ats, we say the stream is an ordered event stream. If however
e j.ts < ei.ts and e j.ats > ei.ats, then e j is flagged as an out-of-order event.

Fig. 1. out-of-order event

In the example shown in Figure 1, the timestamp of events e1 ∼ e4 are listed in order.
But we can see that the earlier event e2 received later than event e3, which is called
out-of-order.

In the following query format, Event Pattern connects events together via different
event operators; the WHERE clause defines the context for event pattern by imposing
predicates on events; the WITHIN clause describes the time range during which events
that match the pattern must occur. Real-time Factor specifies the real-time requirement
intensity of different users.

<Query>::=EVENT <event pattern>
[WHERE <value constraints>]
[WITHIN <time constraints>]
[Real-time Factor {0,1}]
<event pattern>::=SEQ/PAL((Ei(relationship)Ej)

(!Ek)(relationship)El))(1≤i,j,k,l≤n)
relationship::=overlap,before,after
<time constraints>::= Time Window length W

In pattern queries among interval-based events, the state transition not only depends on
the event type, but also the relationships and the predicates among events. So in this
paper, we use tree-based query plans for query patterns.

264 C. Zhou and X. Meng

4 Interval-Based Out-of-Order Solution

Our method framework is shown in Figure 2, which includes three components. ”Ter-
minal Layer” is the sources of events. ”Event Buffer” stores the received events from
”Terminal Layer”, and handles some query processing. ”Database Management” con-
serves historical records, event relationships and some knowledge base rules, as we
have introduced in [11].

Fig. 2. Interval-based out-of-order solution framework

Besides the framework, specific query expression is also a challenge problem. The
expression of interval-based queries may be ambiguous. For example, the same ex-
pression query (A (overlap) B (overlap) C) may have different meanings, as shown in
Figure 3. In order to overcome this problem, the hierarchical representation with addi-
tional information is needed [10]. Then 5 variables is proposed, namely, contain count
c, finish by count f , meet count m, overlap count o, and start count s to differentiate
all the possible cases. The representation for a composite event E to include the count
variable is shown as follows:

E = (. . . (E1 R1[c, f ,m,o,s] E2) R2[c, f ,m,o,s] E3) . . . Rn−1[c, f ,m,o,s] En) (1)

Thus, the temporal patterns in Figure 3 are represented as:
(A Overlap [0,0,0,1,0] B) Overlap [0,0,0,1,0] C
(A Overlap [0,0,0,1,0] B) Overlap [0,0,0,2,0] C
(A Overlap [0,0,0,1,0] B) Overlap [0,0,1,1,0] C

Fig. 3. Interpretation of pattern (A (Overlap) B) (Overlap) C

IO3: Interval-Based Out-of-Order Event Processing in Pervasive Computing 265

In real world, different applications have different requirements for consistency.
Some applications require a strict notion of correctness, while others are more con-
cerned with real-time output. So we add an additional attribute (”Real-time Factor”)
into every query, as shown in section 3. If the users focus on real-time output, the
”Real-time Factor” is set to ”1”; Otherwise, it is valued as ”0”. Due to users’ different
requirements of consistency, there are two different methods, which are introduced as
follows.

4.1 Real-Time Based Method

If the ”Real-time Factor” of a query is set to ”1”, the goal is to send out results with as
small latency as possible. When users submit queries to ”Events Buffer”, which handles
the query processing and outputs the corresponding results directly. Once out-of-order
data arrival occurs, we provide a mechanism to correct the results that have already been
erroneously output. This method is similar to, but better than the method in [6] because
of the tree-plan expression, which can reduce the compensation time and frequency, as
shown in section 3.

For example, the query is (A(overlap)B(!D)(be f ore)C) within 10 mins. A unique
time series expression of this query{OSa,OSb,OEa,OEb,OSc,OEc} can be gotten based
on the above interval expression method. For the event stream in Figure 4, when an out-
of-order seq/pal event OSb(6) is received, a new correct result {OSa(3),OSb(6),OEa(7),
OEb(9),OSc(11),OEc(12)} is constructed and output as<+,{OSa(3),OSb(6),OEa(7),
OEb(9),OSc(11),OEc(12)}>. When an out-of-order negative event OSd(15) is received,
a wrong output result {OSa(13),OSb(16),OEa(17),OEb(20),OSc(22)} is found and
send out a compensation <−,OSa(13),OSb(16),OEa(17),OEb(20),OSc(22) >.

Fig. 4. Input events

4.2 Correct Based Method

If the ”Real-time Factor” of a query is set to ”0”, the goal is to send out every correct
result with less concern about the latency. When the user submit a query to ”Events
Buffer”, we first extract the corresponding event type. Based on the event model intro-
duced in section 3, we can get the event sequence by a backward and forward depth first
search in the DAG. Meanwhile, we can transform the query into a certain time series
based on the above 5 variables, which make the representation of relationships among
events unique. Compared with the time series of the query, the set of event sequence
can be further filtered.

The buffer in the ”Database Management” is proposed for event buffer and purg-
ing using the interval-based K-ISlack semantics. It means that both the start time and
the end time of the out-of-order event arrivals is within a range of K time units. A
CLOCK value which equals to the largest end time seen so far for the received events is
maintained. The CLOCK value is updated constantly. According to the sliding window

266 C. Zhou and X. Meng

semantics, for any event instance ei kept in the buffer, it can be purged from the stack
if (ei.starttime +W) < CLOCK. Thus, under the out-of-order assumption, the above
condition will be (ei.starttime+W +K) < CLOCK. This is because after waiting for K
time units, no out-of-order event with start time less than (ei.starttime+W) can arrive.
Thus ei can no longer contribute to forming a new candidate sequence.

5 Experiments

Our experiment involves two parts: one is the event generator; another is the event
process engine. The event generator is used for generating different types of events
continuously. The event process engine includes two units: the receiver unit and the
query unit.

The experiments are run on two machines, which CPU is 2.0GHz and RAM is 2.0G
and 3.0G respectively. PC1 is used for running the Event Generator programs and PC2
for the Event Process Engine. In order to make the experimental results more credible,
we run the program for 300 times, and take average value of all results. In the following,
we will examine key performance metrics. Pio3 is varied from 0% to 45%, and in order
to be simple, the effects of window buffer size will be considered in our future work.

Fig. 5. Trend of Average Latency Fig. 6. Trend of Rate-of-Compensation

Figure 5 shows that the average event latency of both methods increases with the
increase of out-of-order percentage, and the average latency of Correct Based Method
increases faster than Realtime Based Method.

Figure 6 is only in connection with Realtime Based Method, which has compensation
operations. The rate of compensation is determined by (NoC/NoR). From the figure, we
can see the increasing out-of-order percentage leads to more compensation operations
to be generated, which reduce the efficiency of algorithm.

We also experiment accuracy of results. In Figure 7, we can see the result accuracy
of Correct Based Method is independent of out-of-order percentage, while the result
accuracy of Realtime Based Method drops with the increase of out-of-order percentage.

We examine the average excution time in Figure 8, which denotes the summation of
operator execution times. From the figure, two observations can be found: 1) the av-
erage excution time increased as the out-of-order event percentage increases for more

IO3: Interval-Based Out-of-Order Event Processing in Pervasive Computing 267

Fig. 7. Accuracy of Methods Fig. 8. Trend of Average Execution-Time

recomputing is needed; 2) the average execution time of Correct Based Method is larger
than Realtime Based Method at beginning, while with the increase of out-of-order per-
centage, they will trend to the same.

6 Conclusion and Future Work

The goal of this work is to solve query processing of interval-based out-of-order events
in pervasive computing. We analyze the preliminaries, propose a model of interval-
based out-of-order events, and a hybrid solution including time-interval is also intro-
duced. In the future work, we will consider other influence factors, including the size
of buffer, the out-of-order percentage, the average step-length of out-of-order events, in
order to find the balance point.

Acknowledgement

We would like to thank Pengfei Dai of Beijing University of Posts and Telecommuni-
cations for his helpful comments in the experiments.

References

1. Pei, J., Han, J., Mortazavi, B., Pinto, H., Chen, Q.: Prefixspan: Mining Sequential Patterns
Efficiently by Prefix-projected Pattern Growth. In: Proceedings of the 17th International Con-
ference on Data Engineering (ICDE), pp. 215–226 (2001)

2. Babu, S., et al.: Exploiting K-constraints to Reduce Memory Overhead in Continuous
Queries over Data Streams. ACM Transaction on Database Systems 29(3), 545–580 (2004)

3. Wu, E., Diao, Y., Rizvi, S.: High Performance Complex Event Processing over Streams.
In: Proceedings of the 32nd SIGMOD International Conference on Management of Data
(SIGMOD), pp. 407–418 (2006)

4. Mei, Y., Madden, S.: ZStream: a Cost-based Query Processor for Adaptively Detecting Com-
posite Events. In: Proceedings of the 35th SIGMOD International Conference on Manage-
ment of Data (SIGMOD), pp. 193–206 (2009)

268 C. Zhou and X. Meng

5. Alex, D., Robert, R., Subrahmanian, V.S.: Probabilistic Temporal Databases. ACM Transac-
tion on Database Systems 26(1), 41–95 (2001)

6. Liu, M., Li, M., Golovnya, D., Rundenstriner, E.A., Claypool, K.: Sequence Pattern Query
Processing over Out-of-Order Event Streams. In: Proceedings of the 25th International Con-
ference on Data Engineering (ICDE), pp. 274–295 (2009)

7. Kam, P.S., Fu, A.W.: Discovering Temporal Patterns for Interval-based Events. In: Kam-
bayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, pp. 317–326.
Springer, Heidelberg (2000)

8. Papapetrou, P., Kollios, G., Sclaroff, S., Gunopulos, D.: Discovering Frequent Arrangements
of Temporal Intervals. In: Proceedings of the 5th IEEE International Conference on Data
Mining, ICDM (2005)

9. Wu, S., Chen, Y.: Mining Nonambiguous Temporal Patterns for Interval-based Events. IEEE
Transactions on Knowledge and Data Engineering 19(6), 742–758 (2007)

10. Patel, D., Hsu, W., Lee, M.L.: Mining Relationships among Interval-based Events for Clas-
sification. In: Proceedings of the 34th SIGMOD International Conference on Management
of Data (SIGMOD), pp. 393–404 (2008)

11. Zhou, C.J., Meng, X.F.: A Framework of Complex Event Detection and Operation in Perva-
sive Computing. In: The PhD Workshop on Innovative Database Research, IDAR (2009)

Peer-to-Peer Similarity Search Based on M-Tree
Indexing

Akrivi Vlachou1,�, Christos Doulkeridis1,�, and Yannis Kotidis2

1 Dept.of Computer and Information Science, Norwegian University of Science and Technology
2 Dept.of Informatics, Athens University of Economics and Business
{vlachou,cdoulk}@idi.ntnu.no, kotidis@aueb.gr

Abstract. Similarity search in metric spaces has several important applications
both in centralized and distributed environments. In centralized applications, such
as similarity-based image retrieval, usually a server indexes its data with a state-
of-the-art centralized metric indexing technique, such as the M-Tree. In this paper,
we propose a framework for distributed similarity search, where each participating
peer stores its own data autonomously, under the assumption that data is indexed
locally by peers using M-Trees. In order to support scalability and efficiency of
search, we adopt a super-peer architecture, where super-peers are responsible for
query routing. We propose the construction of metric routing indices suitable for
distributed similarity search in metric spaces. We study the performance of the
proposed framework using both synthetic and real data.

1 Introduction

Similarity search in metric spaces has received significant attention in centralized set-
tings [1,6], but also recently in decentralized environments [3,5,8]. A prominent appli-
cation is distributed search for multimedia content, such as images, video or plain text.
Existing approaches for P2P metric-based similarity search mainly rely on a structured
P2P overlay, which is used to intentionally store objects to peers [5,8]. The aim is to
achieve high parallelism and share the high processing cost over a set of cooperative
computers. In contrast, in this paper we focus on the scenario of autonomous peers
that store multimedia content and collaborate in order to process similarity queries over
distributed data. A P2P architecture for image retrieval was proposed in [9]. In more
details, content providers are simple peers that keep multimedia content, usually gener-
ated on their own. Each peer joins the collaborative search engine, by connecting to one
of the information brokers that act as super-peers, using the basic bootstrapping pro-
tocol. In this scenario the super-peers are responsible for the execution of the queries.
In such a distributed search engine, the objective is to find all objects that are similar
to a given query object, such as a digital image or a text document. Objects are repre-
sented in a high dimensional feature space and a metric distance function defines the
similarity of two objects. One of the most commonly used centralized indexing tech-
niques for searching in metric spaces is the M-Tree [2] that consists of a hierarchy of
hyper-spheres.

� This work was carried out during the tenure of an ERCIM ”Alain Bensoussan” Fellowship
Programme.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 269–275, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

270 A. Vlachou, C. Doulkeridis, and Y. Kotidis

In this paper, we propose a distributed search mechanism that relies on a super-peer
architecture, assuming that cooperative peers store and index their data using an M-Tree
in an autonomous manner. Each peer connects to a super-peer and publishes the set of
hyper-spheres stored at the root of its M-Tree to its super-peer, as a summarization
of the stored data. The super-peers store the collected hyper-spheres using an M-Tree
index, in order to direct queries only to relevant peers efficiently, thus establishing a
peer selection mechanism. Capitalizing on their local metric index structures, super-
peers exchange summary information to construct metric-based routing indices, which
improve the performance of query routing significantly. Then, given a range query, this
super-peer selection mechanism enables efficient query routing only to that subset of
super-peers that are responsible for peers with relevant query results.

Following the same spirit, in SIMPEER [3], P2P metric-based indexing is supported
using the iDistance [7] technique. An extension of SIMPEER for recall-based range
queries is presented in [4]. In contrast, this paper provides an alternative technique for
similarity search in metric spaces, based on a popular metric index (M-Tree) for data
access both on peers and super-peers.

2 Preliminaries

We assume an unstructured P2P network that consists of Np peers. Some peers have
special roles, due to their enhanced features, such as availability, stability, storage ca-
pability and bandwidth capacity. These peers are called super-peers SPi (i = 1..Nsp),
and they constitute only a small fraction of the peers in the network, i.e. Nsp << Np.
Peers that join the network connect to one of the super-peers directly. Each super-peer
maintains links to peers, based on the value of its degree parameter DEGp, which is
the number of peers that it is connected to. In addition, a super-peer is connected to a
limited set of at most DEGsp other super-peers (DEGsp < DEGp). In our system,
peers that join the network autonomously store their own data. Each peer Pi holds ni

d-dimensional points, denoted as a set Si (1 ≤ i ≤ Np). Assuming horizontal data dis-

tribution to the Np peers, the size of the complete set of points is n =
∑Np

i=1 ni and the
dataset S is the union of all peers’ datasets Si (S = ∪Si). Each peer maintains its own
data objects, while the d-dimensional points are features extracted from the objects.

Similarity search in metric spaces focuses on supporting queries that retrieve objects
similar to a query point, when a metric distance function dist measures the objects’
(dis)similarity. More formally, a metric space is a pair M = (Δ, dist), where Δ is a
domain of feature values and dist is a distance function with the following properties:
1) dist(p, q) > 0, q
= p and dist(p, p) = 0 (non negativity), 2) dist(p, q) = dist(q, p)
(symmetry), and 3) dist(p, q) ≤ dist(p, o)+ dist(o, q) (triangle inequality). Similarity
search in metric spaces involves two different types of queries, namely range and near-
est neighbor queries. In this paper, we focus on range queries since k-NN queries can
be transformed to range queries, if the distance of the k-th nearest neighbor is known.
Radius estimation techniques for distributed nearest neighbor search have been studied
in [3].

The M-Tree [2] is a distance-based indexing method, suitable for disk-based im-
plementation. An M-Tree can be seen as a hierarchy of metric regions, also known

Peer-to-Peer Similarity Search Based on M-Tree Indexing 271

as hyper-spheres or balls. More precisely, all the objects being indexed are referenced
in the leaf nodes, while an entry in a non-leaf node stores a pointer to a node at the
next lower level along with summary information about the objects in the subtree be-
ing pointed at. The objects in the internal nodes are database objects that are chosen
(during the insertion) as representative points. For a non-leaf node N , the entries are
quad-tuples {(p, r(p)), D, T }, where p is an representative object, r(p) is the corre-
sponding covering radius, D is a distance value, and T is a reference to a child node
of N . The basic property is that for all objects o in the subtree rooted at T , we have
dist(p, o) ≤ r(p). For each non-root node N , let object p′ be the parent object, i.e.
the object in the entry pointing to N . The distance value stored in D is the distance
dist(p, p′) between p and the parent object p′ of N . These parent distances allow more
efficient pruning during search than would otherwise be possible. Similarly, for a leaf
node N , the entries consist of pairs of the form (o, D), where o is a data object and D
is the distance between o and the parent object of N .

3 Metric-Based Routing Indices

In our framework, each peer Pi that connects to a super-peer SPj publishes a summary
of its data, in order to make its content searchable by other peers. In our framework,
we take advantage of the existing M-Tree index and each peer Pi publishes to its re-
sponsible super-peer SPj , the hyper-spheres contained in the root of the M-Tree, as a
summary of the stored data. This set of hyper-spheres covers all data objects stored at
Pi, thus SPj is able to determine if Pi stores data relevant to a potential range query, by
searching for hyper-spheres that overlap with the query. SPj needs to support efficient
retrieval of peer hyper-spheres, and consequently selection of the peers that store rele-
vant data to a similarity query. For this purpose, SPj inserts the collected hyper-spheres
into a local M-Tree, also mentioned as super-peer M-Tree.

The remaining challenge is to construct routing indices for processing similarity
queries over the entire super-peer network. For this purpose, each super-peer maintains
an M-Tree, also called routing M-Tree, to store hyper-spheres (collected from other
super-peers) that describe the data accessible through each neighbor in the super-peer
topology. A super-peer SPi sends the descriptions of the hyper-spheres contained in
the root of the super-peer M-Tree to its neighbors. This message has the following for-
mat: (msgId, {(pi, r(pi))}), where msgId is an identifier that is unique for each SPi,
and {(pi, r(pi))} represents the set of SPi’s hyper-spheres corresponding to the root of
SPi’s M-Tree. Each hyper-sphere is defined by a representative object pi and the cor-
responding covering radius r(pi). Each neighboring super-peer SPj that receives a set
of hyper-spheres for the first time performs two operations. First, SPj stores locally the
hyper-spheres in the routing M-Tree and attaches to them the identifier of the neighbor-
ing super-peer SPi, from which the hyper-spheres were received. Second, SPj prop-
agates the hyper-spheres to all its neighbors, except for the one it received them from
(SPi). Any super-peer SPk that is contacted by SPj performs the same operations.
However, notice that SPk stores in its routing M-Tree the identifier of its neighbor SPj

together with the hyper-spheres, and not the identifier of the owner super-peer SPi.

272 A. Vlachou, C. Doulkeridis, and Y. Kotidis

This construction protocol works also for network topologies that contain cycles.
Since hyper-spheres of any super-peer SPi are accompanied by a unique msgId, each
recipient super-peer SPk can perform duplicate elimination, in case SPi’s hyper-spheres
are also received from a different network path. Notice that the granularity of the routing
information stored at any super-peer is at the level of its neighbors O(DEGsp) and not at
the level of the network O(Nsp). Therefore, the constructed routing indices are scalable
with network size.

We now elaborate more on the internal structure of nodes in the routing M-Tree.
For internal nodes, the routing M-Tree entry is {(p, r(p)), D, T }, where (p, r(p)) is
the representative object p and its covering radius r(p), D is the distance to the parent
object and T is a reference to a subtree. For leaf nodes, the routing M-Tree entry is
{(p, r(p), SP (p)), D}, where (p, r(p), SP (p)) consists of the representative object p,
its covering radius r(p), and SP (p) is the neighbor super-peer responsible for the hyper-
sphere, whereas D is the distance to the parent object.

4 Metric-Based Similarity Search

Our framework creates routing M-Trees on each super-peer and supports efficient query
processing, in terms of local computation costs, communication costs and overall re-
sponse time. A query may be posed by any peer Pq and is propagated to the associated
super-peer SPq, which becomes responsible for local query processing and query rout-
ing, and finally returns the result set to Pq .

4.1 Super-Peer Local Query Processing

Given a range query R(q, r), query processing at SPi is performed by exploiting the
summary information stored in the super-peer M-Tree. The aim is to retrieve the subset
of local peers that need to be contacted. The peers that store data enclosed in the range
query R(q, r) have to be contacted, since these results are necessary to be retrieved and
reported back to SPq , in order to form the exact and complete result set. Therefore,
SPi uses its super-peer M-Tree to identify hyper-spheres of peers that intersect with the
query. Recall that the retrieved hyper-spheres contain the peer identifier of the owner
peer. Thus, the subset of peers that can contribute to the query result is determined
and the range query is forwarded to the corresponding peers. This enables efficient
similarity search over all data stored by peers associated to SPi, since the query is
posed only to peers having data that may appear in the result set, essentially forming
an effective peer selection mechanism at a super-peer. Each recipient peer processes the
query using its local M-Tree, in the traditional way of processing range queries in M-
Trees. Consequently, each peer reports its results to SPi, which in turn is responsible
for returning the results to SPq.

4.2 Query Routing

After having described the local query processing on each super-peer, we proceed to
present the details on query routing at super-peer level. Henceforth, we assume that each

Peer-to-Peer Similarity Search Based on M-Tree Indexing 273

 0

 200

 400

 600

 800

 1000

 8 16 24 32

N
um

be
r

of
 M

es
sa

ge
s

Dimensionality (d)

Qsel=50
Qsel=100
Qsel=150
Qsel=200

(a) Number of messages

 0

 50

 100

 150

 200

 8 16 24 32

N
um

be
r

of
 C

on
ta

ct
ed

 P
ee

rs

Dimensionality (d)

Qsel=50
Qsel=100
Qsel=150
Qsel=200

(b) Contacted peers

 0

 50

 100

 150

 200

 8 16 24 32

N
um

be
r

of
 C

on
ta

ct
ed

 S
up

er
-P

ee
rs

Dimensionality (d)

Qsel=50
Qsel=100
Qsel=150
Qsel=200

(c) Contacted super-peers

Fig. 1. Scalability with dimensionality for clustered dataset

super-peer that receives the query also performs local query processing, as described
above. Given a range query R(q, r), the querying super-peer SPq needs to selectively
propagate the query to a fraction of its neighboring super-peers and each intermediate
super-peer SPi that receives the query repeats the same process. The routing algorithm
on any super-peer SPi is based on its routing M-Tree. When a super-peer SPr receives
a range query R(q, r), SPr uses the routing M-Tree to efficiently retrieve all hyper-
spheres that have an overlap with the query. Then, the set of neighbor super-peers is
determined and the query is forwarded to them only. This forms the super-peer selection
mechanism that enables routing of queries at super-peer level. Afterwards, the relevant
data is collected and sent back to the neighboring super-peer from which the query was
received. Finally, SPq collects all results of its neighboring super-peers and sends the
result set back to the peer Pq that posed the query.

5 Experimental Evaluation

In order to evaluate the performance of our approach, we implemented a simulator pro-
totype in Java. For the P2P network topology, we used the GT-ITM topology generator1

to create well-connected random graphs of Nsp peers with a user-specified average con-
nectivity (DEGsp). We used synthetic data collections, in order to study the scalability
of our approach. The uniform and clustered datasets are generated as described in [3]
and they are horizontally partitioned evenly among the peers by keeping n/Np=1000
in all setups. Additionally, we employed a real data collection (VEC), which consists
of 1M 45-dimensional vectors of color image features. In all cases, we generate 100
queries uniformly distributed and we show the average values. For each query, a peer
initiator is randomly selected. Although different metric distance functions can be sup-
ported, in this set of experiments we used the Euclidean distance function. We measure
the: (i) number of messages, (ii) volume of transferred data, (iii) number of transferred
objects, (iv) maximum hop count, (v) number of contacted peers, (vi) number of con-
tacted super-peers, and (vii) response time.

Initially, we focus on the case of clustered dataset. We use a default setup of: Nsp=
200, Np=4000, DEGsp=4, n=4M, and the selectivity of range queries ranges from 50
to 200 objects. We study the effect of increasing dimensionality d to our approach. In

1 Available at: http://www.cc.gatech.edu/projects/gtitm/

274 A. Vlachou, C. Doulkeridis, and Y. Kotidis

 0

 2

 4

 6

 8

 10

 12

 200 400 600 800 1000

M
ax

im
um

 H
op

 C
ou

nt

Number of Super-Peers (Nsp)

Qsel=50
Qsel=100
Qsel=150
Qsel=200

(a) Scalability with Nsp

 0

 50

 100

 150

 200

 250

 300

 4000 8000 12000 16000 20000

N
um

be
r

of
 C

on
ta

ct
ed

 P
ee

rs

Number of Peers (Np)

Qsel=50
Qsel=100
Qsel=150
Qsel=200

(b) Scalability with Np

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 8 16 24 32

V
ol

um
e

(B
yt

es
)

Dimensionality (d)

Qsel=50
Qsel=100
Qsel=150
Qsel=200

(c) Uniform data

Fig. 2. Scalability for clustered and uniform dataset

Fig. 1(a), the number of messages required for searching increases when the dimen-
sionality increases. Then, in Fig. 1(b) and 1(c), we measure the number of contacted
peers and super-peers respectively. Although the number of super-peers that process
the query is between 120 and 150, the number of peers is much lower, ranging from 60
to 100 peers.

In the following, we study the scalability of our approach with respect to the network
parameters, by fixing d=8. For this purpose, we increase the number of super-peers Nsp

(Fig. 2(a)) and peers Np (Fig. 2(b)). We observe that the maximum hop count increases
only slightly, always remaining below 12, when the number of super-peers is increased
by a factor of 5. On the other hand, in Fig. 2(b), the increasing number of peers only
affects the number of contacted peers, however the increase is only marginal compared
to the network size.

In Fig. 2(c), we examine the case of uniform data. Clearly, this is a hard case for our
approach, as a query may in worst case have to contact all peers, in order to retrieve the
correct results. This actually occurs in our experiments, causing also a large number of
messages to be sent. We show the volume of transferred data in Fig. 2(c). Compared to
the case of the clustered dataset, the total volume transferred increases by a factor of
3-4. However, when the maximum hop count is measured, this value is small (equal to
6, for d=8-32), even smaller than in the case of clustered dataset, since the probability
of finding the results in smaller distance increases.

In addition, we evaluate our approach using the real dataset (VEC). We used a net-
work of 200 super-peers and 1000 peers, thus each peer stores 1000 data points. In
Fig. 3(a), the number of contacted peers and super-peers are depicted for increasing
query selectivity from 50 to 200 points. The results are comparable to the case of the
clustered dataset, but slightly worse, as the VEC dataset is not clustered. However, no-
tice that the absolute numbers are comparable to the results obtained using the synthetic
dataset, which is a strong argument in favor of the feasibility of our approach.

Finally, we study the comparative performance of the proposed framework to SIM-
PEER [3]. We performed a set of experiments using both approaches, assuming a mod-
est 4KB/sec as network transfer rate. In the case of the uniform dataset, our framework
outperforms SIMPEER in terms of response time, as depicted in Fig. 3(b). In contrast,
when a clustered dataset is used, SIMPEER is marginally better than our framework,
as shown in Fig. 3(c). For the clustered dataset, SIMPEER is able to accurately dis-
cover the underlying clusters in the data, resulting in better performance. When the
data distribution is uniform, our framework based on M-Trees is more efficient than

Peer-to-Peer Similarity Search Based on M-Tree Indexing 275

 0

 50

 100

 150

 200

 50 100 150 200

C
on

ta
ct

ed
 P

ee
rs

/S
up

er
-P

ee
rs

Query selectivity

SP
P

(a) Real data

 0

 1

 2

 3

 4

 5

 6

 7

 8

 50 100 150 200

R
es

po
ns

e
T

im
e

(s
ec

)

Query Selectivity

M-Tree
SIMPEER

(b) Uniform data

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200

R
es

po
ns

e
T

im
e

(s
ec

)

Query Selectivity

M-Tree
SIMPEER

(c) Clustered data

Fig. 3. Real data and comparison to SIMPEER in terms of response time

SIMPEER, since the performance of our metric-based routing indices is not influenced
by the absence of a clustering structure in the data.

6 Conclusions

Similarity search in metric spaces has several applications, such as image retrieval. In
such applications that require similarity search in metric spaces, usually a server indexes
its data with a state-of-the-art centralized metric indexing technique, such as the M-
Tree. In this paper, we study the challenging problem of supporting efficient similarity
queries over distributed data in a P2P system. The experimental results show that our
approach performs efficiently in all cases, while the performance of our framework
scales with all network and dataset parameters.

References

1. Chavez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.L.: Searching in metric spaces. ACM
Computing Surveys (CSUR) 33(3), 273–321 (2001)

2. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in
metric spaces. In: Proc. of VLDB, pp. 426–435 (1997)

3. Doulkeridis, C., Vlachou, A., Kotidis, Y., Vazirgiannis, M.: Peer-to-peer similarity search in
metric spaces. In: Proc. of VLDB, pp. 986–997 (2007)

4. Doulkeridis, C., Vlachou, A., Kotidis, Y., Vazirgiannis, M.: Efficient range query processing
in metric spaces over highly distributed data. Distributed and Parallel Databases 26(2-3), 155–
180 (2009)

5. Falchi, F., Gennaro, C., Zezula, P.: A content-addressable network for similarity search in
metric spaces. In: Moro, G., Bergamaschi, S., Joseph, S., Morin, J.-H., Ouksel, A.M. (eds.)
DBISP2P 2005 and DBISP2P 2006. LNCS, vol. 4125, pp. 98–110. Springer, Heidelberg
(2007)

6. Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric spaces. ACM Transactions
on Database Systems (TODS) 28(4), 517–580 (2003)

7. Jagadish, H.V., Ooi, B.C., Tan, K.-L., Yu, C., Zhang, R.: iDistance: An adaptive B+-tree
based indexing method for nearest neighbor search. ACM Transactions on Database Systems
(TODS) 30(2), 364–397 (2005)

8. Novak, D., Zezula, P.: M-Chord: a scalable distributed similarity search structure. In: Proc. of
InfoScale, p. 19 (2006)

9. Vlachou, A., Doulkeridis, C., Mavroeidis, D., Vazirgiannis, M.: Designing a peer-to-peer ar-
chitecture for distributed image retrieval. In: Boujemaa, N., Detyniecki, M., Nürnberger, A.
(eds.) AMR 2007. LNCS, vol. 4918, pp. 182–195. Springer, Heidelberg (2008)

Update Migration: An Efficient B+ Tree for
Flash Storage�

Chang Xu, Lidan Shou, Gang Chen, Cheng Yan, and Tianlei Hu

College of Computer Science department, Zhe Jiang University
Hang zhou, China

chinawraith@163.com,

{should,cg,yancheng,htl}@zju.edu.cn

Abstract. More and more evidence indicates that flash storage is a po-
tential substitute for magnetic disk in the foreseeable future. Due to the
high-speed random reads, flash storage could improve the performance
of DBMS significantly in OLTP applications. However, previous research
has shown that small-to-moderate random overwrites on flash are par-
ticularly expensive, which implies that the conventional DBMS is not
ready to run on the flash storage. In this paper, we propose the design of
a variant of B+ tree for flash storage, namely the Update-Migration B+
tree. In the UM-B+ tree, small quantity of updates will be migrated,
rather than being executed directly, to its parent node in the form of
update records when a dirty node is evicted from main memory. Fur-
ther accesses to the child node will cause the update records stored in
the parent node to be executed when reading the child node from the
permanent storage (flash). We propose the detailed structure and opera-
tions of UM-B+ tree. We also discuss expanding the UM-B+ tree to the
transaction system based on the Aries/IM. Experiments confirm that
our proposed UM-B+ tree significantly reduces the random overwrites
of B+ tree in a typical OLTP workloads, therefore securing a significant
performance improvement on flash storage.

1 Introduction

In the past years, the continuous increase in the capacity of flash memory has
been driving flash storage devices to a wide spectrum of applications. This trend
is likely to continue in the next few years [1] [2]. The advantages of flash stor-
age include fast random-read, low energy consumption, shock resistance, and
silent working. These make the flash-type disk, also known as the solid state
disk (SSD), a promising alternative to the magnetic hard disk. As a natural
consequence, the database community has been considering the possibility of
building flash-based database management systems in recent years.

� This work was supported in part by the National Science Foundation of China (NSFC
Grant No. 60803003, 60970124) and by Chang-Jiang Scholars and Innovative Re-
search Grant (IRT0652) at Zhejiang University.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 276–290, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Update Migration: An Efficient B+ Tree for Flash Storage 277

When tackling flash storage, the most obvious issue to address is the expense
of overwrites, as an overwrite needs to erase a large consistent area on the flash
in the first place. While the erase operation is extremely slow (as shown in Table
1), the total number of erases on a flash chip determines its life expectancy as
well. Though some mapping techniques like Flash Translation Layer (FTL) have
been consolidated in flash storage devices to relieve this situation, recent studies
[3,4] have revealed that small-to-moderate random overwrites in a large area
would cause performance degradation and should be avoided.

Table 1. Operation Costs of Samsung K9XXG08UXM flash chip

Read Write Erase
25us 200us 1.5ms

Nevertheless, random overwrites are frequent operations in the transaction
processing workload of a conventional DBMS. In particular, considering a most
common index, the B+ tree, the updates to the index cause random overwrites
whenever a node is evicted from the memory buffer of the index. As a result, the
updates to a flash-based implementation of a conventional B+ tree are charac-
terized by a large number of slow random overwrites.

Pecentage of Overwrites

99.86%

0.14%

Leaf Nodes

Internal Nodes

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Percentage of Nodes

P
e
r
c
e
n
t
a
g
e

o
f

O
v
e
r
w
r
i
t
e
s

(a) (b)

Fig. 1. Overwrite statistics of TPC-C on Mysql

In this paper, we propose the design of a purely flash-based B+ tree indexing
scheme, namely the UM-B+ tree, for OLTP workloads. Our work is motivated by
the following observations from the conventional B+ tree: First, we observe that
most internal nodes are memory-resident and most updates to a B+ tree happen
at individual leaf nodes. Second, updates to the index has locality. Nodes tend to
be repetitively updated. To verify these two observations, we conduct an experi-
ment using the TPC-C benchmark on the MySql DBMS with innoDB engine.1

1 The scale of the data is 10 warehouses and the buffer size is 1/10 of the physical data.

278 C. Xu et al.

Figure 1.(a) indicates that 99.86% of the write operations to the B+ tree indexes
are on their leaf nodes, while Figure 1.(b) indicates that about 80% of the write
operations concentrate on 20% of the nodes. Third, as an obvious fact, a child node
is always located from the parent during the traversal of the B+ tree. This moti-
vates the idea of “saving” the updates on the leaf nodes to their ancestor nodes in
the tree. In the UM-B+ tree, each internal node provides some space for storing
the update records of its child nodes. When a child node is evicted from the main
memory buffer, we try to “migrate” the new updates on the child node to its parent
node. In contrast, when a child node is read into memory, these migrated updates
execute to the memory copy of the child node during the locating. In this way,
small number of updates are cached in the memory and commited to the flash-
resident node efficiently. The most desirable property of the UM-B+ tree is that
it has nearly the same topology as a conventional B+ tree and no additional main
memory data structures need to be employed. Therefore, all existing algorithms
with B+ tree such as SMO and concurrency control algorithms can be reused on
the UM-B+ tree at no extra cost.

The rest of the paper is organized as follows. Section 2 introduces the related
work about indexes in flash storage. We describe our UM-B+ tree structure in
Section 3 and 4.2 and discuss the high availability issues in Section 5. Section 6
presents our experimental results.

2 Related Work

The past years have witnessed a handful of studies on the indexes for flash
storage. For example, ISBF [6], BFTL [5] and RBFTL [7] all use a reservation
buffer to store recent updates and flush them into the flash storage in a batch.
The LA-tree [10] uses cascaded buffers instead of a central one according to
the tree structure and tune the buffer adaptively to get the best performance.
Unfortunately, the extra buffer(s) significantly increase the complexity of the
system, as we need to manage the updates in the buffers independently, and it
is especially difficult to do so in a highly concurrent environment. The in-page
logging(IPL) technique [3][9] divides an erase block to two parts – one page is
used to log the updates of the other pages. But this approach is not suitable for
tree structures as it manages the updates in a physically consistent scale. The
FD-tree proposed in [8] has evolved from the LSM tree[11]. It divides the tree
into two parts: a memory-resident small one to store new updates and a disk-
resident large one to hold persistent records. After the memory-resident tree
overflows, it is merged into the disk-resident one in a bulk process. The FD-tree
exploits the high-speed sequential operation on SSD. However, it is inflexible as,
for example, a merge operation may block all the other users until it completes.

Compared with the previous work, our approach has the following advantages:

– First, as the update records on a leaf node are saved in its ancestor, we do
not need to maintain any extra buffers. Saving update records in an ancestor
node has the performance benefit that in case a leaf node is to be accessed,

Update Migration: An Efficient B+ Tree for Flash Storage 279

its migrated update records must have already been accessed during the
top-down traversal of the B+ tree.

– Second, the UM-B+ tree is fully compliant with the B+ tree. This indicates
that the transactional protocol of B+ tree could be reused at trivial cost.
Therefore, high availability of the UM-B+ tree index can be guaranteed.

– Third, as many of the previous works partially optimizes for large mount
of updates on flash storage, our proposed UM-B+ tree could achieve good
performance in both update-intensive and search-intensive workloads. This
indicates that UM-B+ tree fits to typical OLTP workloads, in which many
read-only transactions and a few update transactions work concurrently.

3 Overview

In this section we shall give a brief overview to the proposed UM-B+ tree scheme.

3.1 Preliminaries

First we describe the preliminaries for the rest of this paper. Consider a con-
ventional B+ tree implemented for a flash storage, each internal node of the
tree contains index entries as an ordered list of < key, pointer > tuples. En-
tries in a subtree under pointer have key values within the range defined by
key and its subsequent key next key. A leaf node contains entries of a key and
its corresponding record id(rid). Two neighboring leaf nodes are connected by a
bi-direction pointer. There are two major access types. A point search locates a
unique leaf entry from the root node downwards, while a Range search visits the
consecutive items on the leaf nodes, via the connecters between them. Generally,
all the nodes of the B+ tree are persistent in the flash storage. Generally we can
assume the existence of a relatively small buffer in the main memory to store
the tree nodes. In addition, as the fan-out of the B+ tree is typically large, we
can make a reasonable assumption that all internal nodes can be loaded into the
main memory, though this is not a requirement for both the conventional B+
tree and our proposed UM-B+ tree.

3.2 How Update Migration Works

The structure of the UM-B+ tree is same as the standard B+ tree, except that
each node in the UM-B+ tree should allocate a part of its space for accommo-
dating “update records”. A leaf node needs to keep the update operations on
itself in its own data area, while an internal nodes need to keep those that are
migrated from its children. Once a leaf node is updated and then evicted from
the buffer, the updates migrate to its parent.

Figure 2 illustrates an example of how updates in UM-B+ tree work. Suppose
that leaf node A is read into the buffer and then inserted by an entry 8∗. An
update record Insert(8∗) will be saved in A. As Figure 2(b) illustrates, this
update record will migrate to A’s parent node I when A is evicted from the

280 C. Xu et al.

Main Memory

A

Main Memory

Flash Storage

I

A B
7 9 10 107 108

A B

Insert 8
Delete 108

Flash Storage

I

B
7 8 9 107

A B

10

A B
7 9 10 107 108

(a) A is read into memory and inserted
with key 8, B is read into memory and

deleted key 108.

108Insert

(b) after A&B are evicted from main
memory, the updates migrate to the parent

node I

Delete

Fig. 2. An example of update migration in a UM-B+ tree

buffer. Node A in the flash storage is an outdated version, which we call the
flash version. If node A is read into the memory buffer again, the update record
Insert(8∗) will return to it, restoring A to its latest version, namely the memory
version, containing entry 8∗. Intuitively, the restoring process is efficient as A
is always located via node I during the traversal. A similar update migration
process can be seen for leaf node B, where entry 108∗ is deleted and an update
record Delete(108∗) is added. It can be seen that the above update migration
saves two node overwrites into the flash storage, one for node A and the other
for node B.

4 The UM-B+ Tree

4.1 Node Structure

As mentioned in the previous section, updates on the nodes of UM-B+ tree are
recorded as update records(UR). There are two types of update records, namely
primary update records and migrated update records. A primary URprimary =<
UT, pos > contains the update type UT , and the position(index) pos of the
data entry the update occurs, while a migrated update record URmigrated =<
UT, pos, (entry) > contains the content of the entry being updated as well. The
leaf nodes contain primary URs only, while the internal nodes contain migrated
URs. When inserting/deleting an entry into/from a leaf node, a primary update
record is added to the node. When a primary update record is being migrated, a
migrated update record is created and added to the parent node. If the primary
update is an insertion, the content of the entry needs to be contained, as it would
be lost when the leaf node is evicted from the buffer.

In the UM-B+ tree, each node space is divided into two parts: the Entry Area
which stores the entries and the U -Area which stores the update records. In
each leaf node, the U -Area is only used to accommodate the primary URs of

Update Migration: An Efficient B+ Tree for Flash Storage 281

the “delta” updates between its flash version and memory version. We define an
upper bound τu as the maximum number of “delta” updates on a single leaf, so
that the size of U -Area on leaf nodes is fixed to 2 ∗ τu bytes, which consumes
small space. When the number of “delta” updates accumulates to be more than
τu, the node is overwritten into the flash storage when being evicted. In this
case we say a merge happens. We also define a lower bound τl as the minimum
number of “delta” updates. That is to say, if the number of “delta” updates on
a leaf node is less than τl, the node is not allowed to be merged.

L

7 8 9 10

I,2 D,4

L

I, 2, 8 D,4
Internal NodeLeaf Node

Entry Area

U-Area

Migrated Ur
Primary Ur

Fig. 3. Node Structure of UM-B+ tree

In an internal node, larger U -Area needs to be allocated to accommodate
the migrated URs from its children. To improve the space utilization, we adopt
an adaptive strategy here. Specifically, the Entry Area grows forwards while
the U -Area grows backwards, and the bound between them is tuned adaptively.
Initially, we reserved about 1/4 of the internal node for U -Area when populating
the tree. This will not increase the space consumption significantly as internal
nodes only comprise a very small part of the tree. When an internal node splits,
the new nodes will have a smaller Entry Area and a larger U -Area. Figure 3
illustrates the structure of one internal node and one leaf node.

4.2 Operations

We describe the operations of the UM-B+ tree in this subsection. For clearness,
we define three types of status for the nodes in buffer, which are Clean, Dirty
and Merged. A Clean node means the node is as same as the flash version. A
Dirty node means that the “delta” updates on the node is between 1 and τu,
while a Merged node means that the “delta” updates on the node are more than
τu. We abbreviate them to “C”, “D” and “M”.

Update. Update on UM-B+ tree is straightforward. Firstly we reach the proper
leaf node N via the locate routine. Then the update is executed on N and a
primary UR is inserted into its U -Area. If the U -Area overflows, then we mark
N as “M”. Otherwise, N is marked as “D”.

282 C. Xu et al.

Search. Search on UM-B+ tree includes range search and point search. We only
describe the former one for the point search could be seen as a special case of the
range search. A range search returns a series of entries whose key values satisfy
the specified range boundaries. Range search firstly locates the lower bound.
Then it traverses the entries on the leaves one by one until it reaches the upper
bound. When crossing to a new leaf N , we need to return the possible “delta”
updates if N is read from the flash storage. This could be done via the locate
routine. The pseudo-code of the RangeSearch is described in Algorithm 1.

Algorithm 1. RangeSearch(lowthreshold, upthreshold)

1: e,N ← locate(lowthreshold);
2: while e.key < upthreshold do
3: add e.recordid to Result;
4: if e is the last entry of N then
5: N ← next node of N ;
6: if N is read from flash storage then
7: e← first entry of N ; N ← Locate(e);
8: end if
9: e← first entry of N ;

10: else
11: e← next entry of N ;
12: end if
13: end while

The cost of crossing between the nodes is a little higher than in the standard
B+ tree, as we may need to access the ancestors. But in general cases the process
does not produce extra I/Os because the ancestors usually reside in the buffer.

Migrate. The migrate routine is triggered when a node N with status “D”
is evicted from the buffer. In most cases N is a leaf , then its primary URs
are transformed to the migrated type then migrate to parent node Np. If Np

overflows and there exists a child who migrates more than τl URs, then we
merge the child to release the U -Area. Otherwise Np splits.

If N is an internal node, the migrated URs also attempt to migrate to the
parent. The difference is that N is merged directly if there are no enough space.
The pseudo-code of migrate routine is described in Algorithm 2.

Locate. Given a key constraint, the locate routine starts from the root then
searches the proper path via the key comparison. On each node N , a binary
search is done in the Entry Area for locating a proper entry. If N is leaf, then
the entry is returned. If N is internal, then the child node is visited according to
the pointer of the entry. Before visiting a child node N ′, we need to return the
corresponding migrated URs to it. As an anti-process of migration, if N ′ is a leaf
node, the URs about N ′ are transformed into the primary type and executed
on N again. In this way, leaf N ′ is restored to the memory version.

Update Migration: An Efficient B+ Tree for Flash Storage 283

Algorithm 2. Migrate(N)

1: Np ← Fetch(N ’s parent);
2: move URs on N into the U -Area of Np, mark Np as ’D’;
3: if Np is overflow then
4: if N is internal node then
5: Return(URs, N), merge(N);
6: else
7: N ′ ← the child with most URs;
8: if the URs about N ′ is more than τl then
9: Return(UR, N ′), merge(N ′);

10: else
11: split(Np);
12: end if
13: end if
14: end if

Split. When an internal node splits in the UM-B+ tree, we move the rightmost
entries one by one into the new node, together with the relevant URs, if any.
Unlike B+ tree, we do not distribute the entries evenly but stop the process
when the new node is half-full. In this way, we cluster fewer volatile children
in one node and more stable ones in another. Because of the adaptive bound
between the Entry Area and U -Area, the possibility of further splits is reduced.

The split process of a leaf node is simple for we just need to distribute the
entries averagely. After the split, an entry about the new node is inserted into
the parent. All the reference nodes are mark as “M” when the split completes.

5 High Availability

In this section we expand the UM-B+ tree into the transaction system. Because
of its fully compliance with B+ tree, the mature protocols [12][13][14] [16] [18]
of the B+ tree could be transplanted to the UM-B+ tree at trivial cost. We will
describe how to adapt the Aries/IM method for our UM-B+ tree. Due to the
space limit, we only discuss the modifications on the UM-B+ tree. The details
of Aries/IM could be found in [14].

5.1 Concurrency Control

The mechanisms for concurrency control include the Latch and the Lock. The
lock scheme of Aries/IM could be transplanted directly because: (1) the entry
in the leaf node is same as the B+ tree, so that the rid -lock is available. (2)
whenever we latch a leaf node, it is the memory version and the entries in the
Entry Area are sorted by the key. Therefore, the next key lock scheme is available.

The latch-coupling logic in Aries/IM permits at most two nodes to be latched
simultaneously at any time. To avoid dead latch, parent node could be latched
while waiting for the latch of the child during the traversal, but the opposite

284 C. Xu et al.

case is forbidden. In UM-B+ tree, if we find some relevant migrated URs of the
child in the locate routine, the latch of the current node should be upgraded to
Exclusive before we latch the child. Then the URs could return safely. Addition-
ally, migration routine should release the leaf node before searching the parent
and re-latched it to examine whether it is still the tail of the LRU list. If not,
the buffer manager releases the parent and restarts from picking the new tail.

5.2 Recovery

In Aries [15], every node records the log sequence number (LSN) of the log
record that describes the most recent update to the node, which monotonically
increases over time. During recovery, by comparing the node LSN with the LSN
of a log record for that node, we can unambiguously determine whether the latest
version of the node contains that log record’s update. If not, the log needs to
redo. Compared with the standard B+ tree, the UM-B+ tree has a potential
danger for it migrates the updates outside the corresponding node. Because of
the “STEAL and NO FORCE” policy, these updates may be flushed into the
flash storage in other nodes. This will produce “lost” updates in the flash storage
if the database crashes.

t
Flash Storage

Main Memory

N1

N1
100

N2 L100

N1
150

N2 L100

L150

N3 L100

L150

N2 L100 N3 L100

L150

t1 t2 t3 t4 t5 t6 t7

Fig. 4. An example for crashing of UM-B+ tree

The Figure 4 illustrates an example of crash. At t1 the leaf node N1 is read
into buffer and an update occurs on it. The LSN of the corresponding log is
100. Then N1 is evicted and the UR migrate to the parent N2. At t2 N2 is
merged into the flash storage. At t3 N1 is read into buffer again(before that N2
must be read in and the UR return to N1, recovering N1 LSN to 100) and
another update with LSN 150 happens. At t4 N1 is evicted again and the two
URs migrate to N2. At t5 N2 splits and the two URs migrate to the new node
N3. Then N3 is merged at t6. Unfortunately the database crashes at t7. We can
see the flash version of N1 is still earlier than LSN 100, and there exists one
migrated UR(with LSN 100) in node N2 and two migrated URs(with LSN 150)

Update Migration: An Efficient B+ Tree for Flash Storage 285

in node N3. That is to say, the flash version of N1 is not the newest version,
because there are some newer updates “lost” in other nodes, which could cause
inconsistency after the system restarts.

We address this problem by modifying the migration and the recovery process.
Firstly, the migrate URs also contains the LSN of the correspond leaf node. That
is to say, the LSN of the leaf node migrates with the URs and returns to the node
when the URs execute again. Secondly, each migration (includes the migration in
an internal splitting) produces a special log, named migration log, which consists
of the original node id(ONid) and the goal node id(GNid). After the migration,
the LSN of the goal node is set to the LSN of the migration log.

If database crashes, the Aries protocol recovers the data via a 3-phrase pro-
cess: analysis, redo and undo. During the analysis phrase, we scan the log starting
from the record after last checkpoint and build a migration graph, which is built
from the migration logs. For each migration log, an directional edge from the
ONid to the GNid is added into the graph.

During the redo process, whenever a node N is read from flash storage, we
traverses the migration graph to check the nodes which are in the successors of
N . If there exists some migrated URs about N on them, then the one with the
newest(largest) LSN returns to N . The left migrated URs about N are erased,
then N is removed from the migration graph. We forbidden the migration during
the redo. Any modified nodes are merged into the flash storage when evicted. In
this way any node N could recover to the newest version correctly because:

1) In the flash storage, assume one node N ’s LSN is L1 and there exists some
migrated URs about N with LSN L2. If L1 < L2, then the URs with L2 must
consist of the “delta” updates starting from L1 to L2. This is an obvious con-
clusion because whenever N merges, it updates the flash version to the newest.

2) All “lost” updates could be traced from the migration graph. As mentioned
above, we set the LSN of the goal node to the LSN of the migration log after each
migration. Therefore, whenever the goal node is flushed into the flash storage,
the WAL(Write Ahead Log) protocol guarantees the corresponding migration
log to be flushed into the permanent storage first.

The undo process rollbacks all the updates which is done by an uncommitted
transaction. In Aries/IM undo is treated as normal process. Specifically an undo
action rollbacks the changes according to the log and produces a compensate
log. The undo process is totally logical. Therefore, the migration mechanism of
the UM-B+ tree is permitted and the whole system works as normal.

5.3 Checkpoint

To expedite the recovery, database executes checkpoint routine periodically to
flush the modified data into the permanent storage. Conventional checkpoint
flushes all the dirty nodes, which would produce large mount of random over-
writes in the flash storage. We propose an optimal checkpoint based on the
migration mechanism. The process could be described as follows:

1) Sort the nodes in the buffer according to (I)their levels in the tree, (II)
their key ranges in the level.

286 C. Xu et al.

2) Scan the nodes in the order. During the scan, the nodes with status “M”
are merged directly. The nodes with status “D” attempt to migrate the URs
upwards. An node N is merged only if : (I) the parent of N could not accomodate
the URs of N , or (II) N is internal node and the U -Area of N is over half-full.

Because we scan the nodes from bottom to root and in a unified direction for
each level, the updates in the leaves are merged in the form of migrated URs
in their ancestors as high as possible. Therefore, the checkpoint routine could
be completed in minimal I/Os. Figure 5 illustrates an example of checkpoint
routine.

D

D D D D D D D D

Fig. 5. Checkpoint routine of UM-B+ tree. The “D” nodes are scanned in the direction
from left to right and from bottom to top. After the migration, the 9 overwrites of “D”
nodes are clustered to 3 overwrites of the ancestors.

6 Experiments

In this section we evaluate the UM-B+ tree against the standard B+ tree, and
some other flash-oriented indices. For each scheme, we build a primary index
with two attributes with one integer(4 bytes) and one float(4 bytes). The default
node size of the all indexes is 4KB. The default τu is 16 and τl is 8. Initially
we populate about 100 million items into each index. In the main memory, we
preserve a buffer with the LRU policy. The default size of the buffer is 32MB.

We first evaluate the performance of the UM-B+ tree on a NAND flash chip
emulator, since we could not find a direct way to interface the flash chip. The
emulator is built on the DiskSim with SSD extension [17] and customized for the
Samsung’s K9XXG08UXM series NAND-flash part(see Table 1). Then we also
evaluate the performance of different indices on a enterprise Solid State Disk. The
workloads we used are synthetic, which consist of a sequence of updates and
searches. To weight the performance in different cases, we produce different work-
loads with a various ratio between Search Tasks and Update Tasks(STU). The
Update Tasks always consists of 60% insertions, 30% updates and 10% deletions.
The Search Task starts a range search in a scale between 1 to 60 keys. The default
number of the workload is 1M and the default STU is 200%. Our experiments are
conducted on a Dell PowerEdge R900 server running Windows Server 2003.

Update Migration: An Efficient B+ Tree for Flash Storage 287

6.1 On NAND Chip

Firstly we compare the performance of UM-B+ tree and standard B+ tree in the
NAND chip emulator. In Figure 6.(a), we can see the UM-B+ tree shows a better
response time and scalability than the standard B+ tree on various workloads
size. That’s because larger workload produces more overwrites, which will burden
the chip for more translations and reclamations. Figure 6.(b) indicates that B+
tree is not sensitive to the increment of the buffer when it is larger than a
threshold(32MB). Respectively, our UM-B+ tree performs better when the buffer
size increases. This is intuitively correct for more updates could be cached in the
buffer for the UM-B+ tree. Figure 6.(c) illustrates the performance on the various
STU, both B+ tree and UM-B+ tree show better performance when the ratio of
search comes up. But in any case, UM-B+ tree has a better performance than
standard B+ tree.

To further illustrate the effect of the migration mechanism, we tune the pa-
rameter τl of the UM-B+ tree. A larger τl means that we force more updates

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.25 0.5 1 2 4

R
es

po
ns

e
T

im
e(

us
)

Workload Size(M)

B+ tree
UM-B+ tree

(a) Response Time vs
Workload Size

 0

 200

 400

 600

 800

 1000

 1200

16 32 64 128 256

R
es

po
ns

e
T

im
e(

us
)

Buffer Size(MB)

B+ tree
UM-B+ tree

(b) Response Time vs
Buffer Size

 0

 200

 400

 600

 800

 1000

50 100 150 200 300 500 1000

R
es

po
ns

e
T

im
e(

us
)

STU

B+ tree
UM-B+ tree

(c) Response Time vs STU

Fig. 6. Mean Response time of UM-B+ tree and B+ tree on various (a).Workload Size,
(b).Buffer Size and (c).STU

 0

 100

 200

 300

 400

 500

 600

 700

 800

50 200 1000

R
es

po
ns

e
T

im
e(

us
)

STU

τl = 4
τl = 8

τl = 16

(a) Response Time vs τl

 0

 200

 400

 600

 800

 1000

1 4 8 16

R
es

po
ns

e
T

im
e(

us
)

Number of Concurrent Tasks

B+ tree
UM-B+ tree

(b) Response Time vs
Concurrent Tasks

 0

 100

 200

 300

 400

 500

16 32 64 128 256

R
es

po
ns

e
T

im
e(

us
)

Buffer Size(MB)

B+ tree
UM-B+ tree

(c) Response Time of
Checkpoint routine

Fig. 7. Mean Response time of UM-B+ tree and B+ tree on various (a).τl,
(b).Concurrent Tasks(b) and (c).Checkpoint routine

288 C. Xu et al.

Table 2. Comparison: Random overwrites and Erase Operations of UM-B+ tree and
B+ tree

Random OverWrite Erase Operation
STU=50 STU=200 STU=1000 STU=50 STU=200 STU=1000

B+ tree 833163 425098 118226 83798 40512 7416
UM-B+ tree 328039 110413 19322 29299 6296 0

migrate, at the cost that more splits occur and more internal nodes are pro-
duced. In Figure 7.(a), we can see a larger τl only benefits in a low STU, for
the reason of that in a high STU, the mean response time is determined by the
reads of Search Tasks. This indicates the τl parameter of UM-B+ tree could be
tuned according to the I/O characteristics of the system.

Figure 7.(b) indicates the performance of UM-B+ tree in concurrent environ-
ment. In this experiment we distribute the tasks to different number of threads.
The result indicates that the mean response time of both B+ tree and UM-B+
tree remains while more threads execute concurrently. Figure 7.(c) illustrates the
performance of checkpoint routine. We can see that with the enlargement of the
buffer, the checkpoint of B+ tree is more expensive for more dirty nodes need
to be merged. In the UM-B+ tree, we cluster the updates so that is completes
in a much shorter time.

To summarize, when comparing the UM-B+ tree and the standard B+ tree on
the flash chip, the result indicates that UM-B+ tree shows better performance
for it reduces significant random overwrites. The Table 2 compares the number
of random overwrites and erase operation of flash chips between UM-B+ tree
and B+ tree. We can see that UM-B+ tree could gain performance improvement
as it reduces the random overwrites and erases significantly via the migration
mechanism.

6.2 On Raw SSD Device

We also evaluate the performance of our UM-B+ tree on an Intel-25 Extremely
SSD. For comparison, we conduct the queries on some flash-oriented indices.
In Table 3, we can see the UM-B+ tree outperforms in all the homogeneous
indices of B+ tree(includes standard B+ tree, BFTL and IPL). The FD-tree
shows comparable performance in our experiments. The reason is that FD-tree

Table 3. Mean Response Time(us) of Different Indices on SSD

STU=50 STU=100 STU=150 STU=200 STU=500 STU=1000
B+ tree 836 735 673 625 510 455
BFTL 494 633 891 1042 1011 1139
IPL 1790 2092 2314 2101 1917 1642

UM-B+ tree 476 390 303 261 244 231
FD-tree 190 244 289 343 369 386

Update Migration: An Efficient B+ Tree for Flash Storage 289

transforms random overwrites to sequential writes, which is extremely suitable
to the SSD. The disadvantage is that FD-tree is heterogeneous to the B+ tree.
Therefore, it is difficult to inherit the merits like efficient range search or high
concurrency control. We notice that the performance of FD-tree degrades when
the ratio of Search Task increases. Among all the indices, only the UM-B+ tree
is fully compliant with B+ tree, while the other ones are mostly optimized for
populating data, as they show poor performance in search-intensive scene.

7 Conclusion

In this paper we propose a variant of the B+ tree, named UM-B+ tree, for
flash storages. In UM-B+ tree, the small mount of the updates migrate from
leaves to their parents to reduce random overwrites. As the locates in the UM-
B+ tree are always from parent to child, the migrated updates return to the
leaves efficiently. Because the UM-B+ tree is fully compliant to the B+ tree
in the physical structure, we also discuss about expanding the UM-B+ tree
to the transaction system, based on the Aries/IM protocol. The experiments
demonstrate that UM-B+ tree is an efficient substitute of B+ tree in OLTP
workloads.

References

1. Gray, J., Fitzgerald, B.: Flash disk opportunity for sever applications. ACM
Queue 6(4), 18–23 (2008)

2. Lai, S.K.: Flash memories: Successes and challenges. IBM Journal of Research and
Developmen 52(4-5), 529–535 (2008)

3. Lee, S.W., Moon, B.: Design of flash-based dbms: an in-page logging approach. In:
SIGMOD Conference, pp. 55–66 (2007)

4. Bouganim, L., Jónsson, B.T., Bonnet, P.: uFLIP: Understanding Flash IO Patterns.
In: CIDR (2009)

5. Wu, C.-H., Chang, L.-P., Kuo, T.-W.: An Efficient B-Tree Layer for Flash-Memory
Storage Systems. In: Chen, J., Hong, S. (eds.) RTCSA 2003. LNCS, vol. 2968, pp.
409–430. Springer, Heidelberg (2004)

6. Lee, H.-S., Park, S., Song, H.-J., Lee, D.-H.: An Efficient Buffer Management
Scheme for Implementing a B-Tree on NAND Flash memory. In: Lee, Y.-H., Kim,
H.-N., Kim, J., Park, Y.W., Yang, L.T., Kim, S.W. (eds.) ICESS 2007. LNCS,
vol. 4523, pp. 181–192. Springer, Heidelberg (2007)

7. Xiang, X., Yue, L., Liu, Z., Wei, P.: A reliable B-tree implementation over flash
memory. In: SAC, pp. 1487–1491 (2008)

8. Li, Y., He, B., Luo, Q., Yi, K.: Tree Indexing on Flash Disks. In: ICDE, pp. 1303–
1306 (2009)

9. Na, G.-J., Moon, B., Lee, S.-W.: In-Page Logging B-Tree for Flash Memory. In:
DASFAA, pp. 755–758 (2009)

10. Agrawal, D., Ganesan, D., Sitaraman, R., Diao, Y., Singh, S.: Lazy-Adaptive Tree:
An Optimized Index Structure for Flash Devices. PVLDB 2(1), 361–372 (2009)

11. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The Log-Structured Merge-Tree
(LSM-Tree). Acta Inf. 33(4), 351–385 (1996)

290 C. Xu et al.

12. Mohan, C.: Concurrency Control and Recovery Methods for B+-Tree Indexes:
ARIES/KVL and ARIES/IM. In: Performance of Concurrency Control Mecha-
nisms in Centralized Database Systems, pp. 248–306 (1996)

13. Kornacker, M., Mohan, C., Hellerstein, J.M.: Concurrency and Recovery in Gen-
eralized Search Trees. In: SIGMOD Conference, pp. 67–72 (1997)

14. Mohan, C., Levine, F.E.: ARIES/IM: An Efficient and High Concurrency Index
Management Method Using Write-Ahead Logging. In: SIGMOD Conference, pp.
371–380 (1992)

15. Mohan, C., Haderle, D.J., Lindsay, B.G., Pirahesh, H., Schwarz, P.M.: ARIES: A
Transaction Recovery Method Supporting Fine-Granularity Locking and Partial
Rollbacks Using Write-Ahead Logging. ACM Trans. Database Syst. 17(1), 94–162
(1992)

16. Lehman, P., Yao, S.: Efficient locking for concurrent operationson B-trees. ACM
Trans Database Sys. 6(4), 650–670 (1981)

17. Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J.D., Manasse, M.S., Panigrahy,
R.: Design Tradeoffs for SSD Performance. In: USENIX Annual Technical Confer-
ence, pp. 57–70 (2008)

18. Sagiv, Y.: Concurrent Operations on B-Trees with Overtaking. In: PODS, pp. 28–
37 (1985)

Optimizing Write Performance for Read
Optimized Databases

Jens Krueger1, Martin Grund1, Christian Tinnefeld1, Hasso Plattner1,
Alexander Zeier1, and Franz Faerber2

1 Hasso–Plattner–Institut
August–Bebel–Str. 88

14482 Potsdam, Germany
2 SAP AG

Dietmar-Hopp-Allee 16
69190 Walldorf

Abstract. Compression in column-oriented databases has been proven
to offer both performance enhancements and reductions in storage con-
sumption. This is especially true for read access as compressed data
can directly be processed for query execution.Nevertheless, compression
happens to be disadvantageous when it comes to write access due to un-
avoidable re-compression: write-access requires significantly more data
to be read than involved in the particular operation, more tuples may
have to be modified depending on the compression algorithm, and table-
level locks have to be acquired instead of row-level locks as long as no
second version of the data is stored. As an effect the duration of a single
modification — both insert and update — limits both throughput and
response time significantly. In this paper, we propose to use an addi-
tional write-optimized buffer to maintain the delta that in conjunction
with the compressed main store represents the current state of the data.
This buffer facilitates an uncompressed, column-oriented data structure.
To address the mentioned disadvantages of data compression, we trade
write-performance for query-performance and memory consumption by
using the buffer as an intermediate storage for several modifications
which are then populated as a bulk in a merge operation. Hereby, the
overhead created by one single re-compression is shared among all recent
modifications. We evaluated our implementation inside SAP’s in mem-
ory column store. We then analyze the different parameters influencing
the merge process, and make a complexity analysis. Finally, we show
optimizations regarding resource consumption and merge duration.

1 Introduction

Nowadays, enterprise data management database systems are classified being
optimized either for online transaction processing (OLTP) or online analytical
processing (OLAP). In fact, enterprise applications today are primarily focused
on the day-to-day transaction processing needed to run the business while the
analytical processing necessary to understand and manage the business is added

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 291–305, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

292 J. Krueger et al.

on after the fact. In contrast to this classification, single applications such as
Available-To-Promise (ATP) or Demand Planning exist, which cannot be exclu-
sively referred to one or the other workload category. These application initiate
a mixed workload in terms of that they process small sets of transactional data
at a time including write operations as well as complex, unpredictable mostly-
read queries on large sets of data. Having a mixed workload is nothing new -
the insight that it is originated by a single application is new. Given this and
the fact that databases are either build for OLTP or OLAP, it is evident that
there is no DBMS that adequately addresses the needed characteristics for these
complex enterprise applications. For example, within sales order processing sys-
tems, the decision of being able to deliver the product at the requested time
relies on the ATP check. The execution of this results in a confirmation for the
sales order containing information about the product quantity and the delivery
date. Consequently, the checking operation leads to a database request summing
up all available resources in the context of the specific product. Apparently,
materialized aggregates could be seen as one solution to tackle the expensive
operation of on-the-fly aggregation. However, they fail in processing real-time
order rescheduling due to incoming high priority orders leading to a reallocation
of all products. Considering this operation as essential part of the present ATP
application encompasses characteristics of analytical workloads with regards to
low selectivity and low projectivity as well as aggregation functionality is used
and read-only queries are executed. Along the afore mentioned check operation
the write operations to declare products as promised to customers work on fine-
granular transactional level. While looking at the characteristics of these write
operations it is obvious that they belong to the OLTP category. In contrast to
the analytic-style operations these write-queries are inherent of a high selectivity
and high projectivity. This simplified example of a complex enterprise applica-
tion shows workload characteristics, which match with those associated with
OLTP and OLAP. As a consequence, nowadays database management systems
cannot fulfill the requirements of specific enterprise applications since they are
optimized for one or the other category leading to a mismatch of enterprise ap-
plications regarding the underlying data management layer. To meet this issue,
enterprise applications have become increasingly complicated to make up for
shortcomings in the data management infrastructure.

Besides, enterprise applications have become more sophisticated, data set sizes
have increased, requirements on the freshness of input data have increased, and
the time allotted for completing business processes has been reduced. At the
same time hardware has evolved; for example the size of main memory has
been significantly increased and multi-core CPU’s allow calculation on-the-fly.
Column databases are a data management technology in which data is orga-
nized along columns, in contrast to conventional RDBMSs where it is organized
along rows. Column databases are particularly attractive for analytical queries
as described in [19] [3], which often require subsets of relations and aggregations
across columns. This is due to the fact that analytical applications are largely
attribute-focused rather than entity-focused [2], in the that sense only a small

Optimizing Write Performance for Read Optimized Databases 293

number of columns in a table might be of interest for a particular query. This al-
lows for a model where only the required columns have to be read while the rest
of the table can be ignored. This is in contrast to the row-oriented model, where
all columns of a table - even those that are not necessary for the result - must
be accessed due to their tuple-at-a-time processing paradigm. Reading only the
necessary columns exhibits a more cache-friendly I/O pattern, for both on-disk
and in-memory column store databases. In the case of an on-disk column store,
few disk seeks are needed to locate the page of a block that has the first field of
a particular column. From there, data can be read in large blocks. In the case
of an in-memory column store, sequentially laid out columns typically ensure
a good second-level cache hit ratio, since modern main memory controllers use
pre-fetching mechanisms which exploit spatial locality.

2 The Reason for Write-Optimized Storages

The most common light-weight compression technique for column stores is do-
main coding using a dictionary (see [3,19,12]) Using dictionary compression, fre-
quently appearing patterns and variable length symbols are replaced by smaller
fixed length symbols.

Depending on the data distribution this allows reduction of memory consump-
tion and on the other hand performance improvement for query execution. This
performance improvement comes with specific query plan operators that work
directly on compressed data and thus increase the available bandwidth regarding
to uncompressed data [21].

The consequence is that the performance of read operations is increased by
the cost of rebuilding the compression scheme as soon as a new value might
change the sort order of the used dictionary or breaks the currently used bit
encoding scheme.

Following this assumption, inserts and updates invoked by OLTP style appli-
cations cannot be executed in a timely manner since the re-compression might
delay each query more until a stable version of the data is reached, only valid
until the next bulk of modification operations arrives.

For transactional workloads it becomes unavoidable to find a solution to this
problem. A typical approach to this problem is to use a dedicated delta buffer for
write operations and later on move the data from the delta buffer to the main
storage [4,19]. While MonetDB X100 uses a chunk based approach for their
delta columns equal to the PAX approach, C-Store uses a LSM tree optimized
for disk access our approach proposes a memory only delta buffer with a disk
based delta log for transaction safety. Besides the delta buffer the point in time
and the way how the delta values are merged becomes important. Both of the
before mentioned approaches do not discuss this. Referring to the original use
cases of e.g. C-Store loading and updating delta values is typically done off-line.

To allow transactional workloads as described before and in the same system
allow analytic style queries loading, merging and querying must be performed
online.

294 J. Krueger et al.

3 SAP BWA as Read Optimized Column Store

SAPs Netweaver Business Warehouse Accelerator (BWA) is a main memory
column-store database system. All relational tables are completely loaded into
memory and stored column-wise. In order to save RAM and to improve access
rates, the in-memory structure are highly compressed. This is achieved by dif-
ferent variants of Light Weight Compression (LWC) techniques like run-length
encoding or multiple versions of fixed-length encoding.

3.1 Data Representation

In SAP Netweaver BWA the default compression mechanism is dictionary com-
pression with bitwise encoding of columns. Here, all distinct values of a column
are extracted, sorted and inserted into a dictionary. The column itself keeps only
references to the dictionary, where each reference value is stored using as many
bits as needed for fixed length encoding. Each value inside the encoded column
is associated with an implicit row number — the document ID. By default all
columns are sorted based on the sort order of the key column.

In addition to the default mode, SAP BWA offers a sparse mode for each
table that allows to choose the best sort column based on statistical data and
sort all other depending on the first one.

Internally each column is represented using two vectors. The first vector —
the dictionary — is a compressed list of all distinct values stored in the columns.
The second vector represents the row value inside the column. As values bit
encoded keys from the value vector are used. This configuration shows that by
default two lightweight compression methods are applied - domain coding and
bit encoding.

When it comes to modification operations this compressed data representation
is not suitable for modifications as shown in the following cases:

1. Update without new value - the changed value is already in the dictionary,
replace the old value with the new value from the dictionary

2. Update with new value - the changed value is not in the dictionary, new
value may change the sort order of the dictionary and force more values
to be changed than only the selected one. In case the cardinality of the
distinct values reaches 2n+1 with n is the old cardinality of distinct values
the complete document vector must be rewritten.

3. Append without new value - append a new entry to the document using an
existing value id from the dictionary

4. Append with new value - append new value, with same complexity as for
Update with new value

5. Delete without value change - Since the offset of the document vector is the
implicit row number, a delete may force a complete lock of the table until
all readers finished their queries. In case of long running OLAP queries this
can decrease the performance of a write operation dramatically.

6. Delete with value change - Combined complexity of an Update with new value
and a Delete without value change.

Optimizing Write Performance for Read Optimized Databases 295

Delta
Charlie
Beta
Alpha

2
3
2
1
0
0

0

2
3

1

2
3
2
1
0
0

Alpha Beta Charlie Delta

3

0 1 2 3

Main Delta

Fig. 1. Structure of Main and Delta Storage

Each of the operations has a different impact on the overall performance for
modification operations. To increase the speed for those operations SAP BWAof-
fers a delta buffer for modifications. Instead of using the same representation as
for the compressed main store, the delta buffer does not use a compressed sorted
list but a CBS+ Tree[16] to store the values. The CBS+ Tree allows high modi-
fication rates on the one hand and is optimized towards main memory systems.
All values stored in the value tree are not compressed but the document vec-
tor still applies bit encoding to save memory. Figure 1 shows the structure of a
sample attribute with a main storage and a delta buffer.

To conclude a relation stored in SAP BWAis a set of columns. Each column is
associated with a main storage column and if modifications exist a delta buffer
column. Furthermore it is required that all columns have the same length and
all inserts go directly to the delta buffer while updates are handled as a delete
operation with a proceeding insert operation on the same key. To make all oper-
ations immediately visible at runtime all operations have to be performed once
on the main store and once on the delta buffer of the requested attribute.

Since deletions cannot be performed immediately a valid row bit vector is
used to identify those rows that are no longer valid and must not be returned
during searches. Furthermore this bit vector is later used to identify those rows
that are not merged and possibly refer to values that are no longer needed.

4 The Merge Process

Merging delta and main index at some point in time is required to maintain the
performance of column-store in write intensive scenarios. The reasons for merging
are two-fold. On the one hand merging the delta store into the main relation
decreases the memory consumption since better compression techniques can be
applied. On the other hand merging the delta allows better search performance
due to the ordered value dictionary of the main store.

The main requirement of the merge process is that it runs in asynchronously,
has as less impact as possible on all other operations and does not affect the
transaction behavior. To achieve this goal the merge creates copies of the data
and only seldom acquires locks. During the merge, the process consumes addi-
tional resources (CPU and main memory).

296 J. Krueger et al.

Fig. 2. Merge Process as Petri Net

4.1 Detailed Description of the Merge Algorithm

The merge phase can be separated into three phases - prepare merge, attribute
merge and commit merge. During the prepare merge phase the following actions
are executed. At first the table is locked for all queries and a new empty delta
buffer structure is created called delta 2. All updates and inserts will be sent
to this new delta structure since the original delta and the main structure are
merged. In addition it creates a copy of the current valid document ids to identify
the snapshot of valid documents at merge start time. As soon as those actions
are finished, the table lock is released.

Now for every attribute (and key attributes before all other attributes) the
following process is executed. Since each of the attributed is compressed using
a dictionary (see 3) at first the dictionary of the main and the delta store must
be merged to create a consistent view of all available values. Due to possible
changes in value ids a mapping table is created to map the value ids from the old
main store and the delta store to the new value ids from the merged dictionary.
Applying the valid document list, the mapping table and the value ids from the
main store the value ids from the original main vector are copied and secondly
the value ids from the delta vector. The valid document list is hereby used to
identify the rows that where removed from the table. Since either updates of
rows or deletion can lead to a pint where a value is no longer referenced the new
document vector is searched for unreferenced values which are than removed
from the mapping list and left out during creation of the new dictionary.

As a last step in the attribute merge phase the new attribute is written to a
secondary storage for durability reasons in case of failures. Optimizations when
writing this file are possible but left out of the discussion for future research.
When the attribute merge is finished for this attribute the next attribute merge
starts or phase three starts.

Optimizing Write Performance for Read Optimized Databases 297

In phase three the relation is committed. The commit phase starts with ac-
quiring an exclusive table lock. When the lock is acquired the original valid
document id list fetched at the beginning of the merge process is compared to
the current valid document id list to identify additional deletions during merge.
Rows that were deleted during the merge will be marked invalid using the valid-
bit-vector and will remain invisible until they are removed in the next merge.

As a next step the compressed binary representation of all attributes are
replaced by the new ones, the old table and delta 1 are unloaded from memory,
and delta 2 is renamed to delta 1. When the unload step is finished the commit
phase finishes and the merge process is finished making the new compressed
version of the table available.

Queries and Lock Granularity. During merge runtime all queries are an-
swered from the storages of the main, delta 1, and delta 2. The complete merge
process only works with copies of the data and thus is totally independent of the
original data. Since all new modifications are reflected in delta 2, main and delta
1 can be safely merged. During merge runtime only at two points in time exclu-
sive locking is required: first during the prepare phase when delta 2 is created
and the valid document id list is copied and second during the commit phase.

Failure Case and Recovery. Each phase during the merge can fail indepen-
dently. During the prepare phase critical situation is the creation of delta 2 and
the locking of delta 1. The entry of the prepare phase and the end are logged in
the delta log. Recovery is performed with erasing the eventual existing delta 2
and freeing the lock. Afterwards the delta merge process can be re-started.

If an failure occurs during the attribute merge phase (e.g. power failure) re-
covery can be performed by reloading the table plus delta 1 and delta 2. All files
stored on disk are erased and the merge process starts from the beginning.

In the commit phase the recovery is handled as described before for the other
phases. Since a table lock is acquired during the commit phase the merge process
can easily erase and unload all partial merge data and restart the process.

In addition restarting capabilities of main memory systems become very im-
portant. Figure 3 shows a comparison. In this experiment we compare the reload
time of the fully compressed main table and the tree structured uncompressed
delta representation. From the graphs we can derive that it is always beneficial
to perform the merge instead of delaying it.

4.2 Complexity Analysis of the Merge Algorithm

This section aims to identify the complexity of the different merge steps and to
identify all parameters that possibly influence the merge. The expected influence
will be validated in the next section. The goal of this analysis is to answer the
question when is the best possible point in time to merge the delta values into the
main document vector. As described earlier the merge of an attribute consists
out of the following stages:

298 J. Krueger et al.

1. Create a value id mapping for all main and delta values

Simultaneously iterate once over both value vectors and create a global map-
ping of both value vectors.

O(|DictM |+ |DictD|)

The linear dependency for the delta values is achieved due to the linear
iteration costs for the CBS+ Tree.

2. Create the new document vector

Iterate over delta document vector to retrieve the highest document id; iter-
ate over the main document vector and copy the valid value ids to the new
main vector, iterate over the delta document vector and copy the values to
the new main vector.

O(2 · |DocD|+ |DocM |+ |BVvalid|)

3. Remove unreferenced values

Iterate over all documents in the new main vector to extract all referenced
values, then iterate over all referenced values and compare to the global
mapping of the original delta and main value vectors.

O(|Docnew M |+ |Dictnew M |)

4. Create the new dictionary

Creating the new dictionary is done in a similar way like merging the new
dictionary. It reuses the sorted list created during the mapping of the main
and delta values. Since this list is already sorted no additional for sorting
occur.

O(|DictM |+ |DictD|)
5. Adjust value ids

It is possible that due to changes of value ids from the remove unreferenced
values step, no longer used value ids are used. These must be adjusted and
set to the new values from the dictionary. In cooperation this step uses the
mapping from the first step and the new dictionary created one step before.

O(|Mvid|+ |Docnew M |)

Observation. The implementation of our merge process shows a very important
characteristic: All operations linearly depend on the size of the delta and main
storage. Even though the implementation of the value storage in for a delta
attribute is based on a tree representation the merge process benefits from the
linear iteration on all value items.

4.3 Evaluation

To verify the complexity of the given access patterns a test case has been devised
which varies the main arguments separately to show their contribution to the

Optimizing Write Performance for Read Optimized Databases 299

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

1000000 1500000 2000000 2500000 3000000 350000

T
im

e
in

 s

Total number of rows including 1M initial rows

Rows in Delta Buffer
Merged Rows in Main

Fig. 3. Time needed to fully load the table into memory compared between delta and
main

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 5 10 15 20 25 30 35 40 45 50

M
er

ge
 T

im
e

in
 s

Number of documents in main in 100k

(a) Variable Main Size

Merge with 100k delta docs
 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

M
er

ge
 T

im
e

in
 s

Number of documents in delta in 100k

(b) Variable Delta Size

Merge with 1M main docs

 2

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500 600 700 800 900 1000

M
er

ge
 T

im
e

in
 s

Distinct Values in 1k

(c) Variable Dictionary Size

Merge 1M main / 100k delta

Fig. 4. Evaluation Results

merge duration. The setup for the test case is as following: a single integer column
is created in SAP BWAwith 1M rows in the main document vector and 100k
rows in the delta document vector with one value in both the main and the delta
dictionary - thus all rows having the same identical value. In the following test
each of the parameters is varied over a specific range while the others remain at
their base value.

Document Vector Size. Varying main or delta document vector sizes results in a
linear increase of the merge duration - see figure 4. The observation proves that
main and delta document size have a linear contribution to the complexity of
the merge process.

Dictionary Size. Dictionary sizes have been varied from their base value of one
up to the maximum number of entries in the main or delta vector, so that the
value in the test column are 100% distinct entries. The results in Figure 4 show
an increase towards the fully distinct data set which validates the assumption of
a linear contribution to the merge time.

300 J. Krueger et al.

Merge

71.25

77.5

83.75

90

0 20 40 60 80 100 120 140 160 180 200

Merge Impact

O
LT

P
 Q

u
e
ry

ti
m

e
 [
m

ill
is

e
c
o

n
d

s
]

Time [seconds]

Fig. 5. Impact on OLTP Queries on Low System Load

Merge Impact to Running Queries. Due to the implementation of the
merge, the impact on the rest of the system is determined by resource com-
petition and lock granularity. As described earlier locking is performed in the
beginning and in the end using an exclusive table lock.

To measure the impact regarding resource competition we created a workload
that contains queries from two different kinds — OLTP and OLAP. The workload
is based on real customer data taken from a SAP financials and accounting
system and issues the following queries:

1. Primary key select based on accounting year, customer id, accounting area,
accounting entry id and accounting line

2. Primary key select on configuration tables
3. Select the sum of all open item grouped by customer

From the area of reporting we extracted a query from the SAP Business Ware-
house. This query calculates all open items of one customer based on business
area, postal code and accounting area and groups by a due date in a grid of 0-29,
30-59, 60-90 and greater than 90 days.

The main table containing the accounting entry line items consists out of 260
million tuples with 300 columns with a 250GB disk size and a compressed size
of 20GB in memory. The system used for execution is a 8 core (3.0Ghz) Intel
Xeon 5450 blade with 32GB RAM and SuSe Linux Enterprise Edition.

Figure 5 shows the query execution time over a given time span basically
executed against a single table with a low system utilization. During the time
of merge the overall response time is slowed down by ≈ 6%. When running the
system in a high load scenario (see Figure 6) this degradation becomes almost
invisible.

We could show the same behavior for OLAP queries as well — see Figures 7
and 8. Our observation leads to the conclusion that as long as enough resources
are available the query execution is not affected by the merge process.

As a result we can construct two major cases where executing the merge
process may result in system failure. In our observation we used system loads up
to 600% by starting up to 6 server processes and querying them simultaneously.
Figure 9 shows the distribution of the load during our tests. Our assumption is

Optimizing Write Performance for Read Optimized Databases 301

Merge

0

25

50

75

100

0 20 40 60 80 100 120 140 160

O
LT

P
 Q

u
e
ry

ti
m

e
 [
m

ill
is

e
c
o

n
d

s
]

Time [seconds]

Fig. 6. Impact on OLTP Queries on High System Load

Merge
1800

1925

2050

2175

2300

0 20 40 60 80 100 120 140 160 180 200 220 240 260

O
L
A

P
 Q

u
e
ry

ti
m

e
 [
m

ill
is

e
c
o

n
d

s
]

Time [seconds]

Fig. 7. Impact on OLAP Queries on Low System Load

that as long as one CPU has enough free resources to perform the merge this
process will create big negative impact on the other running queries.

The other major obstacle is the memory consumption during the merge pro-
cess. Currently the complete new main storage is kept inside memory until the
merge is finished. In the last step when the merge process acquires an exclusive
table lock the old data is unloaded and freed. Until this point double the amount
of the main plus delta storage is required.

5 Optimizations and Future Work

Based on our implementation and evaluation the current merge process has a
great advantage: Due to its simplistic nature it is easy to calculate when it is
best to execute the merge and how long it will take. On the other hand this
does not take into account how applications are build and does not leverage
current hardware trends towards multi-core systems with more than 32 cores.
To address this issue we started to analyze customer systems to identify how
much data characteristics could help to improve the merge process.

Exemplarily we show two results from a customer system of the consumer
packaged goods industry and its main tables from the financials and accounting
system. Figure 10 shows the result from the distinct value analysis for one cal-
endar year of the accounting document entries table BKPF. The picture shows

302 J. Krueger et al.

0

12500

25000

37500

50000

0 20 40 60 80 100 120 140 160 180 200

O
L
A

P
 Q

u
e
ry

ti
m

e
 [
m

ill
is

e
c
o

n
d

s
]

Time [seconds]

Merge

Fig. 8. Impact on OLAP Queries on High System Load

0

150

300

450

600

1 2 3 4 5 6

CPU Load

C
P

U
 L

o
a
d

Indexserver

0

100

200

300

400

1 2 3 4 5 6

Load per Indexserver

C
P

U
 L

o
a
d

Indexserver

Fig. 9. System Load Distribution

Fig. 10. Distinct Value Analysis for Accounting Document Entries

only the distinct values from the first 50 of 99 and only the first 10 attributes
have lots of distinct values. Based on source code analysis and interviews we saw
that the rest of the values typically is either a default value or a null value. In
addition most of the expected values are known in advance [14]. Here, the merge
process should leverage this knowledge.

The most common compression scheme used is domain coding, but typically
the database has no common interpretation of what the domain acutally is,
besides the datatype used. This becomes even worse since applications tend to

Optimizing Write Performance for Read Optimized Databases 303

Fig. 11. Dictionary Fill Level per Attribute over Time

use very generic datatypes to be as flexible or compatible as possible. To prove
our assumption we analyzed the total distinct values used by the application and
processed all change documents created by the system to arrange the dictionary
status in a timely manner — change documents are used by SAP applications
to record changes for legal reasons. Figure 11 shows the result of this analysis.
The result is that for many different attributes already after a few month it
is possible to define the complete dictionary without the need to recreate this
dictionary again during the merge.

6 Related Work

Pure vertical partitioning into a “column-store” has been a recent topic of in-
terest in the literature. Copeland and Khoshafian [7] introduced the concept of
a Decomposition Storage Model (DSM) as a complete vertical, attribute-wise
partitioned schema. This work has been the foundation for multiple commer-
cial and non-commercial column store implementations. Popular examples are
MonetDB/X100 [4], C-Store [19] or Sybase IQ [8]. Recent research has shown
their ability to outperform conventional databases in read-only OLAP scenarios
with low selectivity. SybaseIQ and C-store are pure disk based approaches to
a column-store implementation. Since updates must be propagated to multiple
files on disk, they are inappropriate for OLTP workloads, because updates and
inserts are spread across different disk locations. Data compression also lim-
its their applicability to OLTP scenarios with frequent updates. As described
in [4], MonetDB/X100 implements dedicated delta structures to improve the
performance of updates. The MonetDB/X100 storage manager treats vertical
fragments as immutable objects, using a separate list for deleted tuples and un-
compressed delta columns for appended data. A combination of both is used for
updates. In contrast to our research, the merge process it self is not considered
any further.

Another existing part of research focuses on mixed workloads based on con-
ventional RDBMSs. [5] [13] assume that certain queries will be longer running
than others and allocate resources so that class-based SLAs can be met. Our

304 J. Krueger et al.

target applications require that all queries execute rapidly. [9] modifies a row
store to better support analytics, which favors the transactional workload. Our
approach modifies a column store to support transactions, which favors the an-
alytical workload.

[15] handles a mixed workload by placing a row store and a column store
side-by-side in the same system. One copy of the data is stored in row format
while the other is stored in column format. The row and column representations
are interleaved across the two database instances to better distribute the load as
queries are routed regarding their access pattern towards the optimal physical
data representation. Column compression and merging were not implemented,
however they should be present in a production system. The merge optimizations
we propose could be applied in that case to improve the performance of the
column store.

The authors of [1,20,6] describe how effective database compression based on
lightweight compression techniques by attribute-level can be and furthermore
be leveraged for query precessing in read-optimized application scenarios. Due
to recent improvements in CPU speed which have outpaced main memory and
disk access rates by orders of magnitude, the use of data compression techniques
are more and more attractive to improve the performance of database systems.
Those techniques are used in our research and lead to our concept of dividing the
storages since we focus on a mixed workload. Other work, such as [10] and [11]
study read optimized databases to improve the performance of database systems
in read-intensive environments.

Furthermore, there has been substantial research on delta-indexing [17,18].
The concept of maintaining differential files was particularly considered for very
large databases where both the delta and the main index where queried in order
to provide latest results. As in our scenario, in-place updates are too expensive
and thus collected and scheduled as a batch job.

7 Conclusion

In this paper we showed an implementation strategy for merging values from
a delta buffer that is optimized for modification operations into a compressed
read-optimized version. Furthermore we showed for each of the steps that the
participating data stores — main, delta and dictionary — have a linear contri-
bution to the overall merge costs.

We validated our concept with an implementation used in the read-optimized
database SAP BWA. In the end we showed potential improvements for the merge
process and how important it is to observe real world customer data to improve
this process.

References

1. Abadi, D., Madden, S., Ferreira, M.: Integrating compression and execution in
column-oriented database systems. In: SIGMOD 2006, pp. 671–682. ACM, New
York (2006)

Optimizing Write Performance for Read Optimized Databases 305

2. Abadi, D.J.: Query Execution in Column-Oriented Database Systems. PhD thesis
3. Boncz, P.A., Manegold, S., Kersten, M.L.: Database architecture optimized for the

new bottleneck: Memory access. In: VLDB, pp. 54–65 (1999)
4. Boncz, P.A., Zukowski, M., Nes, N.: Monetdb/x100: Hyper-pipelining query exe-

cution. In: CIDR, pp. 225–237 (2005)
5. Brown, K.P., Mehta, M., Carey, M.J., Livny, M.: Towards automated performance

tuning for complex workloads. In: VLDB, pp. 72–84 (1994)
6. Chen, Z., Gehrke, J., Korn, F.: Query optimization in compressed database sys-

tems. In: SIGMOD 2001, pp. 271–282. ACM, New York (2001)
7. Copeland, G.P., Khoshafian, S.: A decomposition storage model. In: SIGMOD

Conference, pp. 268–279 (1985)
8. French, C.D.: “one size fits all” database architectures do not work for DDS. In:

SIGMOD Conference, pp. 449–450 (1995)
9. French, C.D.: Teaching an OLTP database kernel advanced data warehousing tech-

niques. In: ICDE, pp. 194–198 (1997)
10. Harizopoulos, S., Liang, V., Abadi, D.J., Madden, S.: Performance tradeoffs in

read-optimized databases. In: VLDB, pp. 487–498 (2006)
11. Holloway, A.L., DeWitt, D.J.: Read-optimized databases, in depth. PVLDB 1(1),

502–513 (2008)
12. Legler, T., Lehner, W., Ross, A.: Data mining with the SAP NetWeaver BI accel-

erator. In: VLDB 2006, pp. 1059–1068. VLDB Endowment (2006)
13. Pang, H., Carey, M.J., Livny, M.: Multiclass query scheduling in real-time database

systems. IEEE Trans. Knowl. Data Eng. 7(4), 533–551 (1995)
14. Plattner, H.: A common database approach for OLTP and OLAP using an in-

memory column database. In: SIGMOD Conference, pp. 1–2 (2009)
15. Ramamurthy, R., DeWitt, D.J., Su, Q.: A case for fractured mirrors. In: VLDB,

pp. 430–441 (2002)
16. Rao, J., Ross, K.A.: Making b+-trees cache conscious in main memory. In: SIG-

MOD Conference, pp. 475–486 (2000)
17. Rappaport, R.L.: File structure design to facilitate on-line instantaneous updating.

In: SIGMOD 1975, pp. 1–14. ACM, New York (1975)
18. Severance, D.G., Lohman, G.M.: Differential files: their application to the mainte-

nance of large databases. ACM Trans. Database Syst. 1(3), 256–267 (1976)
19. Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M.,

Lau, E., Lin, A., Madden, S., O’Neil, E.J., O’Neil, P.E., Rasin, A., Tran, N., Zdonik,
S.B.: C-store: A column-oriented dbms. In: VLDB, pp. 553–564 (2005)

20. Westmann, T., Kossmann, D., Helmer, S., Moerkotte, G.: The implementation and
performance of compressed databases. SIGMOD Rec. 29(3), 55–67 (2000)

21. Willhalm, T., Popovici, N., Boshmaf, Y., Plattner, H., Zeier, A., Schaffner, J.:
Simd-scan: Ultra fast in-memory table scan using on-chip vector processing units.
PVLDB 2(1), 385–394 (2009)

Towards an Algebraic Framework for Querying
Inductive Databases

Hong-Cheu Liu1, Aditya Ghose2, and John Zeleznikow3

1 Department of Computer Science and Mutimedia Design,
Diwan University,

Madou, Tainan County, 72153 Taiwan
hongcheu.liu@gmail.com

2 School of Computer Science and Software Engineering,
University of Wollongong,

Wollongong, NSW 2522 Australia
aditya ghose@uow.edu.au

3 School of Information Systems,
Victoria University,

Melbourne, Vic. Australia
John.Zeleznikow@vu.edu.au

Abstract. In this paper, we present a theoretical foundation for query-
ing inductive databases, which can accommodate disparate mining tasks.
We present a data mining algebra including some essential operations for
manipulating data and patterns and illustrate the use of a fix-point oper-
ator in a logic-based mining language. We show that the mining algebra
has equivalent expressive power as the logic-based paradigm with a fix-
point operator.

1 Introduction

While knowledge discovery from large databases has gained great success and
popularity, there is conspicuously lack of a unifying theory and a generally ac-
cepted framework for data mining. The integration of data mining with the
underlying database systems has been formalised in the concept of inductive
databases which is a very active area in the past decade. The key ideas of in-
ductive database systems are that data and patterns (or models) are first class
citizen.

The one of crucial criteria for the promising success of inductive databases
is reasoning about query evaluation and optimisation. Currently, research on
inductive query languages has not led to significant commercial deployments
due to performance concern and practical limitations. By contrast, relational
database technology was based on algebraic and logical frameworks and then
followed on both theoretical and system fronts, leading to an extremely successful
technology and science. Therefore a theoretical framework that unifies different
data mining tasks as well as different data mining approaches is necessary and
would help the field and provide a basis for future research [1,2].

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 306–312, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Towards an Algebraic Framework for Querying Inductive Databases 307

In this article, we present an algebraic framework based on a complex value
data model. Compared to the model presented in [3,4], we believe that it is more
appropriate to adopt a complex value data model as data and mining results
are normally represented as complex values. Some natural and dominant data
mining computations can be expressed as compositions and/or combinations of
known mining tasks. For example, an analyst might find a collection of frequent
item-sets bought. He or she may further analyses these sets using a decision tree
to predict under what conditions customers are classified for credit rating and
such frequent co-purchases are made by this category of customers. This kind of
problems can be easily expressed as an expression by using the proposed data
mining algebra operators. The algebraic framework also provides a promising
approach for query optimisation.

Constraints play a central role in data mining and constraint-based data min-
ing is now a recognised research topic. The area of inductive databases, induc-
tive queries and constraint-based data mining has become a unifying theory.
Declarative query language acts an important role in the next generation of
Web database systems with data mining functionality.

One of important properties of declarative query languages is closure. The
result of a query is always a relation which can be available for further querying.
This closure property is also an essential feature of inductive query languages.

The inductive query languages proposed in the literature require users to
only provide high-level declarative queries specifying their mining goals. The
underlying inductive database systems need sophisticated optimiser with aim to
selecting suitable algorithms and query execution strategies in order to perform
mining tasks. Another tight-coupling approach using SQL implementation gives
unrealistic heavy-burden on the users to write complicated SQL queries. So it is
reasonable to explore alternative methods that make inductive databases realis-
able with current technology. In this paper, we also consider a logical framework
for querying inductive databases.

2 An Algebraic Framework for Data Mining

In this section, we present an algebraic framework for data mining. The frame-
work is based on a complex value data model.

2.1 A Data Mining Algebra

Let Ω = {R1, ..., Rn} be a signature, where Ri, 1 ≤ i ≤ n, are database relations.
The data mining algebra over Ω is denoted as DMA(Ω). A family of core opera-
tors of the algebra is presented as follows. Set operations: Union (∪), Cartesian
product (×), and difference (-) are binary set operations. Tuple operations:

Selection (σ) and projection (π) are defined in the natural manner. Power-

set: powerset(r) is a relation of sort {τ} where powerset(r) = {ν | ν ⊆ r}.
Tuple Creation: If A1, ..., An are distinct attributes, tup createA1,...,An(r1, ...,
rn) is of sort < A1 : τ1, ..., An : τn >, and tup createA1,...,An(r1, ..., rn) =
{< A1 : ν1, ..., An : νn >| ∀i(νi ∈ ri)}. Set Creation: set create(r) is of

308 H.-C. Liu, A. Ghose, and J. Zeleznikow

sort {τ}, and set create(r) = {r}. Tuple Destroy: If r is of sort < A : τ
′

>,
tup destroy(r) is a relation of sort τ

′
and tup destroy(r) = {ν |< A : ν >∈ r}.

Set Destroy:If τ = {τ ′}, then set destroy(r) is a relation of sort τ
′

and
set destroy(r) = ∪r = {w | ∃ν ∈ r, w ∈ ν}. Aggregation: The standard set of
aggregate functions SUM, COUNT, AVG, MIN, MAX are defined in the usual
manner. For example, if r is of sort < A : τ1, B : τ2 >, Gfunction

<A> (r) is the
relation over < A, S >. Gfunction

<A> (r) = {< a, s >| ∃ < a, v >∈ r∧s = Σ{t <
B >| t ∈ r, t < A, B >=< a, b >}, where Σ is one of the allowed aggregate
operator.

Definition 1. If r is a relation of l-tuples, then the append operator, Δδ(i1,...,ik)(r)
is a set of l + 1 tuples, k ≤ l, where δ is an arithmetic operator on the components
i1, ..., ik. The last component of each tuple is the value of δ(i1, ..., ik).

Example 1. Let the sort of a relation r be R : {< X : dom, Y : dom >}. A
value of this sort is {< X : 2, Y : 3 >, < X : 5, Y : 4 >}. Then ΔX+Y =Z(r) =
{< X : 2, Y : 3, Z : 5 >, < X : 5, Y : 4, Z : 9 >}.

Definition 2. [5] Let us consider two relations with the same sort {Item, Count}.
r �sub,k s = {t | ∃u ∈ r, v ∈ s such that u[Item] ⊆ v[Item] ∧∃t′ such that
(u[Item] ⊆ t

′ ⊆ v[Item] ∧ |t′ | = k), t =< t
′
, v[Count] >}

Here, we treat the result of r �sub,k s as multi-set meaning.

Example 2. Consider the sort {< Item : {dom}, Count : dom >} and two rela-
tions r = {< {a}, 0 >, < {b, f}, 0 >} and s = {< {a, b, c}, 3 >, < {b, c, f}, 4 >}
of that sort. The result of r �sub,2 s is {< {a, b}, 3 >, < {a, c}, 3 >, < {b, f},
4 >}.

Definition 3. Let X be a set. The map(f) operator applies a function f to every
member of the set X, i.e., map(f) : X → {f(x) | x ∈ X}.

2.2 Frequent Item-Set Computation

Given a database D = (Item, Support) and support threshold δ, the following
fix-point algorithm computes frequent item-set of D.

Let fk be a function which applies to a set T and results in the set of degree-k
subset of T . For any two sets S and s, s is said to be a degree-k subset of S if
s ⊂ S and |s| = k.
Algorithm Fix-point
Input: An object-relational database D and support threshold δ.
Output: L, the frequent item-sets in D.
Method:

begin

L1 := σSupport≥δ(ItemGsum(Support)map(f1)(D)))
for (k = 2; T
= ∅; k + +) {
S := sub join(Lk−1, D)

Towards an Algebraic Framework for Querying Inductive Databases 309

T := σSupport≥δ(ItemGsum(Support)(S)
Lk := Lk−1 ∪ T }
return Lk;

end

procedure sub join
(T: frequent k-itemset; D: database)
for each itemset l1 ∈ T ,
for each itemset l2 ∈ D,
c = l1 �sub,k l2
if has infrequent subset (c, T)
then delete c else add c to S;
return S;

procedure has infrequent subset
(c: k-itemset, T: frequent (k-1)-
itemsets);
for each (k-1)-subset s of c
if s not ∈ T then return TRUE;
return FALSE;

2.3 Decision Tree Induction

In this subsection, we give an algebraic expression for constructing a decision
tree in DMA. The process is based on the well-known C4.5 algorithm [6] for
tree induction.

We assume that the algorithm is called with three parameters: D, attribute list,
and Attribute selection method. We refer to D as a data partition. Initially, it
is the complete set of training tuples and their associated class labels. The
parameter attribute list is a list of attributes describing the tuples, i.e., D =
(A1, A2, ..., An, Class). Attribute selection method specifies a heuristic procedure
for selecting the attribute that best discriminates the given tuples according
to class. The procedure employs the attribute selection measure - information
gain. The complete algebraic expression is formulated by Algorithm Gener-
ate decision tree as shown below.

The output of the algorithm will be a complex value relation T which holds
the set of inequalities on the edges from the root to one leaf, together with their
labels.
Algorithm: Generate decision tree
input

– Data partition, D, which is a set of training tuples and their associated class
labels;

– attribute list, the set of candidate attributes;
– Attribute selection method, a procedure to determine the splitting criterion.

Output: A complex value relation which holds the set of all inequalities on the
edges from the root to leaves together with their labels.
Method

1. T := {};
2. Split := {}
3. if Count(πClass(D)) = 1 then

4. T := T ∪ set create(tuple create(Split, πClass(D))).

310 H.-C. Liu, A. Ghose, and J. Zeleznikow

5. If attribute list = {} then

6. T := T ∪ πClassσCount=Max(GCount<R−Class>
Class)

7. apply Attribute selection method(D, attribute list) to find the best split-
ting attribute

8. Split := Split ∪ {splitting attribute}
9. if splitting attribute is discrete-valued and multi-way splits allowed then

10. attribute list← attribute list− splitting attribute;
11. for each outcome j of splitting criterion
12. Dj = σj(D)
13. if Dj = ∅ then

14. T := T ∪ πClassσCount=Max(GCount<R−Class>
Class)

15. else Generate decision tree(Dj , attribute list);
16. endfor

17. return T

The tree starts as an empty relation. If the tuples in D are all of the same class,
the resulting output relation contains only one class value. Note that steps 5 and
6 are terminating conditions. Otherwise, the algorithm calls Attribute selection
method to determine the splitting criterion. A branch is grown from the current
tuple for Dj for each of the outcomes of the splitting criterion.

Similarly, the procedure Attribute selection method(D, attribute list) can
also be specified as an algebraic expression in DMA.

Example 3. As described in Introduction, an analyst might find a collection of
frequent item-sets bought. He or she may further analyses these sets using a
decision tree to determine the circumstances (e.g., class for credit rating) under
which such frequent co-purchases are made by this category of customers.

This query is easily to be expressed in DMA. It is formulated as
Generate decision tree(Fix-point(D), (age, ...), Attribute selection method).

3 A Logical Framework for Data Mining

In this section, we give some basic data mining concepts based on logic. Induc-
tive database queries can be formalised in a higher order logic satisfying some
constraints.

Definition 4. Given an inductive database I and a pattern class P, a pattern
discovery task can be specified as a query q such that q(I) = {t ∈ P | I |= ϕ(t)},
where ϕ is a higher-order formula.

Definition 5. A constraint is a predicate on the powerset of the set of items I,
i.e., C : 2I %→ {true, false}. An itemset X satisfies a constraint C if C(X) is
true.

Definition 6. Let I be an instance of an inductive databases with a pattern class
P and a complex value relational schema R = (A1, ..., An). An association rule

Towards an Algebraic Framework for Querying Inductive Databases 311

is an element of the set L = {A =⇒ B | A, B ∈ {A1, ..., An} such that < A =⇒
B >∈ q(I) if and only if freq(A∪B, r) ≥ s and freq(A∪B, r)/freq(A, r) ≥ c.
Where freq(X, r) is the frequency of X in the set of r, s is the support threshold
and c is the confidence threshold.

Definition 7. Given an inductive database I, an inductive clause is an expres-
sion of the form P (u) ← R(u1), ..., R(un), where n ≥ 1, Ri are relation names
and u, ui are free tuple of appropriate arity.

Example 4. Let a transaction relation be T = (ID, Items) and each item in
the transaction database has an attribute value (such as profit). The constraint
Cavg ≡ avg(S) ≥ 25 requires that for each item-set S, the average of the profits
of the items in S must be equal or greater than 25. The frequent pattern mining
task is to find all frequent item-sets such that the above constraint holds. We
express it as inductive clauses as follows.

freq pattern(support, < Items >) ← T (ID, Items),
support = freq < Items > /Count(T),
support ≥ s

F pattern(Items, AV G) ← freq pattern(support, Items),
V alue(Item, value), item ∈ Items,
AV G = SUM(value)/SUM(Items)

Ans(Items) ← F pattern(Items, AV G), AV G ≥ 25

It is simple to specify Naive Bayesian classification by means of a deductive
database program. The detailed program can be found in [5].

We present a deductive program performing the partitioning-based clustering
task, as follows. P (Y, Ci) ← r(X), 1 ≤ i ≤ k, Yi = X ; Cluster(Y, Ci, mi) ←
P (Y, Ci), mi = mean{Y }Where mean is a function used to calculate the cluster
mean value; distance is a similarity function. The following two rules show the
clustering process. An operational semantics for the following datalog program
is fix-point semantics.

Example 5. The clustering process can be expressed as follows.

new cluster(X, C) ← r(X), Cluster(Y, C, m), Cluster(Y, C
′
, m

′
),

c
= c
′
, distance(X, m) < distance(X, m

′
),

Cluster(X, C, m) ← new cluster(X, C), m = mean{new cluster.X}

Theorem 1. Any data mining queries expressible in DMA with while loop can
be specified as inductive clauses in Datalogcv,¬.

Proof Sketch. DMA is equivalent to CALCcv. A query is expressible in
Datalogcv,¬ with stratified negation if and only if it is expressible in complex
value calculus CALCcv. CALCcv is equivalent to CALCcv + fixpoint. So DMA
+ while loop is equivalent to CALCcv + fix-point. Any data mining queries
expressible in DMA with while loop can be specified as inductive clauses in
Datalogcv,¬.

312 H.-C. Liu, A. Ghose, and J. Zeleznikow

4 Query Optimisation Issue

An important step towards efficient query evaluation for inductive databases
is to identify a suitable algebra in which query plans can be formulated. The
algebraic framework presented in Section 2 provides a promising foundation for
query optimisation. However, there exist many challenges for optimisation issues.
For example, it is difficult to establish a cost model for mining operations; to
formally enumerate all the valid query plans for an inductive query and then
choose the optimal one is not straightforward.

We argue that if SQL would allow expressing our sub-join, �sub,k, in an in-
tuitive manner and algorithms implementing this operator were available in a
DBMS, this would greatly facilitate the processing of fix-point queries for fre-
quent itemset discovery.

A Datalog expression mapping to our fix-point operator has more intuitive
than SQL expressions. In our opinion, a fix-point operator is more appropriate
exploited in the deductive paradigm which is a promising approach for inductive
database systems.

We may improve performance by exploiting relational optimisation techniques,
for example, optimizing subset queries, index support, algebraic equivalences for
nested relational operators [7]. In the deductive paradigm, we may also apply prun-
ing techniques by using the ’anti-monotonicity’.

5 Conclusion

We have presented an algebraic framework for querying inductive databases.
The framework would be helpful for understanding querying aspect of inductive
databases.

We have also presented a logic programming inductive query language. The
results provide theoretical foundations for inductive database research and could
be useful for query language design in inductive database systems.

References

1. Dzeroski, S.: Towards a general framework for data mining. In: Džeroski, S., Struyf,
J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 259–300. Springer, Heidelberg (2007)

2. Calders, T., Lakshmanan, L., Ng, R., Paredaens, J.: Expressive power of an algebra
for data mining. ACM Transactions on Database Systems 31(4), 1169–1214 (2006)

3. Blockeel, H., Calders, T., Fromont, l., Goethals, B., Prado, A., Robardet,C.: An induc-
tive database prototype based on virtual mining views. In: ACM Proc. of KDD (2008)

4. Richter, L., Wicker, J., Kessler, K., Kramer, S.: An inductive database and query lan-
guage in the relational model. In: Proc. of EDBT, pp. 740–744. ACM, New York (2008)

5. Liu, H.C., Yu, J., Zeleznikow, J., Guan, Y.: A logic-based approach to mining in-
ductive databases. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.)
ICCS 2007. LNCS, vol. 4487, pp. 270–277. Springer, Heidelberg (2007)

6. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Fran-
cisco (1993)

7. Liu, H.C., Yu, J.: Algebraic equivalences of nested relational operators. Information
Systems 30(3), 167–204 (2005)

Efficient Aggregate Licenses Validation in DRM

Amit Sachan1, Sabu Emmanuel1, and Mohan S. Kankanhalli2

1 School of Computer Engineering, Nanyang Technological University, Singapore
2 School of Computing, National University of Singapore, Singapore

amit0009@ntu.edu.sg, asemmanuel@ntu.edu.sg, mohan@comp.nus.edu.sg

Abstract. DRM systems involve multiple parties such as owner, distrib-
utors and consumers. The owner issues redistribution licenses to its dis-
tributors. Distributors in turn using their received redistribution licenses
can issue new redistribution licenses to other distributors and usage li-
censes to consumers. For rights violation detection, all newly generated
licenses must be validated against the redistribution license used to gen-
erate them. The validation becomes complex when there exist multiple
redistribution licenses for a media. In such cases, it requires evaluation of
an exponential number of validation equations with up to an exponential
number of summation terms. To overcome this, we propose a prefix tree
based method to do the validation efficiently. Experimental results show
that our proposed method can reduce the validation time significantly.

1 Introduction

Digital rights management(DRM)systems generally [4][5] involve multiple par-
ties such as owner, distributors and consumers. The owner gives the rights for
redistribution of contents to distributors by issuing redistribution license. The
distributors in turn use their received redistribution license to generate and issue
new different types of redistribution licenses to their sub-distributors and usage
licenses to consumers. A redistribution license allows a distributor to redistribute
the content as per the permissions and constraints [6] specified in it. Thus, as
part of the rights violation detection, it is necessary to validate these newly gen-
erated licenses against the received redistribution licenses with distributor. A
validation authority does the validation of all the newly generated licenses.

Both redistribution(LD) and usage licenses(LU) for a content K are of the
form: {K; P ; I1, I2, ..., IM ; A}, where P represents permissions (e.g. play, copy,
etc. [5]), Ii represents ith (1≤ i ≤M) instance based constraint and A represents
aggregate constraint. Instance based constraints in redistribution licenses are in
the form of ranges such as region allowed for distribution, etc. Instance based
constraints in usage licenses such as expiry date, region allowed etc. may be in
the form of a single value or range[5]. The range/value of an instance based
constraint in the further generated redistribution and usage licenses using a
redistribution license must be within the respective instance based constraint
range in the redistribution license [5]. Aggregate constraint decides the number
of counts that can be distributed or consumed using a redistribution or usage

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 313–319, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

314 A. Sachan, S. Emmanuel, and M.S. Kankanhalli

license respectively. The sum of counts in all the licenses generated using a
redistribution license must not exceed the aggregate constraint counts(A) in it.

For business flexibility, distributors may need to acquire multiple redistribu-
tion licenses for the same content[5]. In this case, if all instance based constraints’
ranges/values in an issued license are within the respective constraint range in
at least one redistribution license then the issued license is said to be instance
based validated[5]. The problem of aggregate validation becomes harder in case
a license can be instance based validated using more than one redistribution
licenses(say a set S). This is because the validation authority needs to select
a redistribution license from the set S for aggregate validation. Selecting a re-
distribution license randomly may cause potential loss to the distributors as
shown in Sec. 2. Thus, we propose a better aggregate validation approach using
validation equations in Sec. 2. But, the approach requires validation using ex-
ponential number of validation equations, containing up to exponential number
of summation terms. This necessitates an efficient validation mechanism. So,
we propose an efficient aggregate validation method using the prefix tree based
structure[1][2][3]. The experiments show that our approach reduces the valida-
tion time and memory requirement significantly. To the best of our knowledge,
the work presented in this paper is the first for the efficient aggregate licenses
validation in DRM.

Rest of this paper is organized as follows. Section 2 discusses problem defini-
tion. Section 3 describes our proposed validation method. Section 4 presents the
performance analysis. Finally, Section 5 concludes the paper.

2 Problem Definition

In case of multiple licenses, a newly generated license can be instance based
validated using more than one redistribution license. For aggregate validation,
selecting one redistribution license randomly out of multiple redistribution li-
censes may cause potential loss to the distributors as illustrated in example 1.

Example 1. Consider three redistribution licenses acquired by a distribu-
tor to distribute the play permissions according to two instance based con-
straints(validity period T , and region allowed R) and aggregate constraint A.
L1

D = {K; Play; I1
D : T = [10/03/09, 20/03/09], R = [X, Y]; A1

D = 2000}
L2

D = {K; Play; I2
D : T = [15/03/09, 25/03/09], R = [X]; A2

D = 1000}
L3

D = {K; Play; I3
D : T = [15/03/09, 30/03/09], R = [Y]; A3

D = 3000}
Now, the distributor generates the usage license L1

U = {K; Play; I1
U : T =

[15/03/09, 19/03/09], R = [X]; A1
U = 800}. L1

U can be instance based validated
using L1

D and L2
D[5]. Let the validation authority randomly picks L2

D for aggre-
gate validation then remaining counts in L2

D will be 200(i.e. 1000-800). Next, let
the distributor generates L2

U = {K; Play; I2
U : T = [21/03/09, 24/03/09], R =

[X]; A2
U = 400}. L2

U can only be instance based validated using L2
D. The vali-

dation authority will now consider L2
U as invalid as L2

D now cannot be used to
generate more than remaining 200 counts. In this case, a better solution would
be to validate L1

U using L1
D, and L2

U using L2
D. This will result in both L1

U and

Efficient Aggregate Licenses Validation in DRM 315

L2
U as valid licenses. Thus, the challenge is to do the aggregate validation such

that the distributors can use their redistribution licenses in an intelligent way.
We present a method to do the aggregate validation using validation equations.

A Method for Aggregate Validation: Let a distributor has N received
redistribution licenses for a content and the set of redistribution licenses be
represented as SN = [L1

D, L2
D, ..., LN

D]. Let SBr[S] denotes the rth subset of the
set S of redistribution licenses. Thus if a set S contains k received redistribution
licenses then r ≤ 2k − 1. An issued license is said to belong to a set S if it can
be instance based validated using all licenses in the set. E.g. L1

U in example 1
belongs to the set [L1

D, L2
D].

Let C[S] denotes the sum of permission counts in all previously issued licenses
that belongs to the set S of redistribution licenses. Let Ei[S] be the ith redis-
tribution license in the set S and A(x) be the aggregate count in the received
redistribution license x. For deriving the first equation, we use the fact that
the aggregate of the permission counts in all previously issued licenses must
not exceed the sum of the allowed permission counts in all the redistribution
licenses with the distributor. Further, each valid issued license belongs to only
one set of redistribution licenses out of the total 2N − 1 possible sets(due to N
redistribution licenses). Therefore, in equation form we can write it as:

2N−1∑
r=1

C[SBr[SN]] ≤
N∑

i=1

A(Ei[SN]) (1)

The LHS of equation 1 represents the sum of counts in the issued licenses that
belongs to the set formed by any possible combination of all N licenses(each
possible combination can be represented by a subset of the set SN). The RHS
denotes the summation of maximum allowed permission counts in all the redis-
tribution licenses with the distributor(as SN is the set of all N licenses).

Although equation 1 can limit the counts issued in total using all the redis-
tribution licenses but it cannot prevent the violation of individual licenses or set
of licenses, which are proper subset of the set SN , as shown in example 2 below.

Example 2. Consider the redistribution licenses in example 1. The above
inequality ensures only the sum of all the play counts in the licenses issued must
be less than 6000 i.e. CPlay [L1

D] + CPlay [L2
D] + CPlay[L3

D] + CPlay[L1
D, L2

D] +
CPlay [L1

D, L3
D]+CPlay [L2

D, L3
D]+CPlay [L1

D, L2
D, L3

D] ≤ 6000. But, it may not be
able to prevent the violation due to issuing of excess counts for other combination
of licenses. Equation 1 can be satisfied even if aggregate of the counts generated
for play permission using only L1

Dbecomes more than 2000 i.e. CPlay [L1
D] > 2000,

or using only L1
D and L3

D becomes more than 5000 i.e. CPlay [L1
D]+CPlay[L3

D]+
CPlay [L1

D, L3
D] > 5000 , but both these conditions are invalid. Thus, if there are

N redistribution licenses then violation can happen in 2N − 2 ways(all proper
subsets of SN). So, we require an inequality for each subset of SN . For rth subset
of set SN , SBr[SN], the validation equation is given as:

2m−1∑
l=1

C[SBl[SBr[SN]]] ≤
m∑

i=1

A(Ei[SBr[SN]]) (2)

316 A. Sachan, S. Emmanuel, and M.S. Kankanhalli

where, m = |SBr[SN]| is the cardinality of the set SBr[SN]. Equation 2 can be
interpreted similar to equation 1 by replacing SN by SBr[SN]. These inequalities
ensure that in case of violation at least one inequality will not be satisfied.

Requirement of Efficient Aggregate Validation: If a newly generated
license can be instance based validated using k number of redistribution licenses
then the set formed due to k licenses will be present in 2N − 2(N−k) validation
equations. Validation using such a large number of validation equations every
time a new license is issued is computationally intensive. So, instead of doing
validation online, we collect the logs of the sets of redistribution licenses(which
issued licenses belong) and permission counts in issued licenses. We refer each
entry corresponding to an issued license as a record. During the offline aggre-
gate validation firstly different set counts can be aggregated and secondly the
aggregated set counts can be applied to the validation equations. If M number
of records are present, the time complexities for the first and second step would
be O(M ∗2N) and O(3N) respectively. The time complexities for both set counts
aggregation and validation may be quite high for practical purposes. Thus, an
efficient method is required to reduce the total validation time required.

3 Proposed Efficient Aggregate Validation Method

In this section, we present validation tree, a prefix tree based structure to do the
validation of validation equations(equations 1 and 2) efficiently. The proposed
structure and validation algorithm is based on the observation that validation
equation for a set S aggregates the set counts of all the sets that are subset of the
set S. The structure can compactly represent the log records for offline validation
and use properties of prefix tree structure to do the validation efficiently.

Generation of Validation Tree: Initially, a root node is created. The tree
is then expanded using the log records. Each node stores the following fields:
name of a redistribution license(L), a count value(C), and links to the child
nodes. The count value C determines the count associated with the set formed
by the redistribution license in the node and all its prefix nodes(nodes in the
path from the root node to current node). Redistribution licenses are indexed in
the order they were acquired by distributor i.e. if Lj

D is acquired before Lk
D then

j < k and a redistribution license can act as a prefix only to the redistribution
licenses having index greater than the index of redistribution license, as shown
in Fig. 1. Child nodes of a node are ordered in increasing order of their indexes.

Records Insertion: Let the set of redistribution licenses in the record that
needs to be inserted be given by:R=[r, R′]and the permission count value be
given by count, where, r is the first redistribution license and R′ is the set of
remaining redistribution licenses. Initially root node is allocated to T . Algorithm
Insert(T , R, count) is used to insert the records in the validation tree. Fig. 1
shows the validation tree designed based on the Alg. 1 for the records in Fig. 3.

Validation using Validation Tree: To do the validation efficiently, we use
the fact that if a set S1 is not a subset of another set S then any superset S2 of
S1 also cannot be a subset of the set S. Thus, in a prefix tree based structure, if

Efficient Aggregate Licenses Validation in DRM 317

Algorithm 1. Insert(T , R=[r, R′], count)
1. If T has a child T ′ such that T ′.L=r then no action is taken.
2. Else add a node T ′ such that T ′.L=r and T ′.C=0 as the child node of T .
3. If R′=null set then T ′.C= T ′.C+count. Else, call Insert(T ′, R′, count).

root

8:1
DL

4:2
DL

0:3
DL

21:5
DL13:3

DL

7:4
DL0:2

DL

0:3
DL

14:5
DL

Fig. 1. Generation of validation
tree

Serial Number Set of redistribution licenses Count
1 [L1

D] 8
2 [L1

D, L2
D] 4

3 [L2
D, L3

D, L5
D] 14

4 [L1
D, L3

D] 13
5 [L3

D, L5
D] 9

6 [L4
D] 7

7 [L3
D, L5

D] 12

Fig. 2. Table of log records

the set of redistribution licenses formed by the redistribution license at a node
N1 and all its prefix nodes is not a subset of a set S then any other node having
the node N1 as a prefix node cannot be a subset of the set S. Thus, we need
not to travel the child nodes of the node N1. Another fact we use is that a set
containing n licenses cannot be a subset of a set containing less than n licenses.

For N redistribution licenses, we can map each set of redistribution licenses
corresponding to a validation equation into an N bits bit-vector. The bits from
LSB to MSB correspond to a particular license with index from lower to higher.
If a redistribution license is present in a set then the bit corresponding to it is 1
else it is 0. E.g. If N=10 then the bit-vector for the set [L1

D, L3
D, L9

D, L10
D] will

be 1100000101. So, if we consider bit-vectors in integer format then all possible
sets can be represented using the values from 1 to 2N − 1.

Algorithm 2. Validation(T)
Temporary Variables:Av=0, Cv=0
for i=1 to 2N − 1 do

licNumber=0.
for j=1 to N do

if (1<< (j − 1) AND i) �= 0
<<: left shift operator
then

Av=Av+ A(j).
licNumber=licNumber+1;

Call Cv=VaLHS(T , i, licNum).
if Cv ≤ Av then

Print(Valid Equation).
else

Print(Invalid Equation).

Algorithm 3. VaLHS (T ,B,licNum)
Subroutine: Process(T ,B,licNum) {
while (licNum > 0) do

foreach child of T do
Let the current child be T ′.
Temporary variables: i and j.
i=index of license in node T ′

j=1<<(i − 1).
if (B AND j �= 0) then

Cv=Cv+T ′.C.
licNum=licNum-1.
if (licNum > 1) then

Call Process(T ′, B, licNum).

} Return(Cv).

The validation tree is used to compute the LHS of the equations 1 and 2. RHS(let
A) is calculated directly using redistribution licenses E.g. the RHS(A) for the set
[L1

D,L3
D,L9

D,L10
D] is given by: A=A(L1

D)+A(L3
D)+A(L9

D)+A(L10
D). Let T repre-

sents the root node initially, and B represents the bit-vector for the set of

318 A. Sachan, S. Emmanuel, and M.S. Kankanhalli

redistribution licenses for validation equation. The algorithm Validation(T)
evokes the validation process for all possible validation equations. First, it calcu-
lates the RHS of each validation equation. Second, it calls VaLHS (T ,B,licNum)to
calculate the LHS. Finally, it compares the RHS and LHS to validate the equa-
tion. The algorithm VaLHS (T ,B,licNum) traverse the validation tree for the set
of redistribution license determined by the bit-vector B. licNum is the number
of redistribution licenses in the set corresponding to the current validation equa-
tion. For illustration, consider the validation using validation equation for the set
[L1

D,L2
D,L4

D] for validation tree in Fig. 1. B and licNum for this set will be 01011
and 3 respectively. Let Cv denotes the LHS of the current validation equation for
the set [L1

D, L2
D, L4

D], it is initialized to 0 for every validation equation. The al-
gorithm traverses the nodes root, root→ L1

D, root→ L2
D, root→ L4

D and root→
L1

D → L2
D. The final value of Cv for this case is 19.

4 Performance Analysis

We performed experiments on on Intel(R) core(2) 2.40 GHZ CPU with 2 GB
RAM. To perform the experiments, first we created a number of redistribution
licenses and issued licenses. The set of redistribution licenses to which each issued
license can be instance based validated along with the permission counts is saved
in the log records. For experiments, each redistribution license is assumed to
contain aggregate permission counts in between 5000 and 15000. Each issued
license is assumed to contain permission counts in between 10 and 30.

We evaluate our proposal against the direct approach and a modified ap-
proach. In the direct approach, we scan the log records to find the subsets for
the set corresponding to each validation equation and then aggregate their set
counts. Whereas, in modified approach, we preprocess the log records to first
aggregate the set counts for the sets containing the same redistribution licenses.
Since, in practice many issued licenses may belong to the same set of redistribu-
tion licenses therefore scanning the modified log records would take lesser time.
Table 1 summarizes the validation time performance. The experiments show that
our proposed algorithm enhances the performance at least by 500 times and 10
times as compared to the direct and modified approach respectively. The large
performance enhancement as compared to the direct method is mainly due the
compact data representation in validation tree. However, in modified approach,
the main reason for performance enhancement is the efficiency of our proposed
subset search algorithm in the validation tree. Thus, it can be concluded that the
validation tree gains efficiency both by compactly representing the log records
and efficiently searching the subsets. Fig. 3 compares the performance in terms
of memory requirement. The memory requirements for our approach is much
less as the records can be stored in a much compact form in the validation tree.

5 Conclusion

Rights violation detection is an important security issue in DRM systems. In this
paper, we presented a violation detection mechanism for distributors using the

Efficient Aggregate Licenses Validation in DRM 319

Table 1. Comparison of validation time required(in milliseconds)

n 1 2 3 4 5 6 7 8 9 10

Direct .02 .05 .23 .80 2.12 5.80 15 39.33 93 188
Modified 0 .00031 .00094 .0034 .0122 .04 .11 .30 .74 1.64
Proposed 0 .00016 .00031 .0011 .0035 .01 .03 .06 .14 .33
n 11 12 13 14 15 16 17 18 19 20

Direct 422 890 1953 4047 9078 21188 47906 108281 239953 524641
Modified 3.828 8.8 21.6 43.5 95 203 438 937 2063 4485
Proposed .687 1.44 3.07 6.4 17 31 47 110 250 500
n 21 22 23 24 25 26 27 28 29 30

Direct 1.2*106 2.6*106 5.4*106 1.2*107 2.6*107 5.6*107 1.3*108 2.9*108 6.1*108

Modified 9640 20922 43844 95640 195953 399281 840109 1761812 3810765 7648375
Proposed 1063 2219 4515 9563 19406 39422 79531 162938 328672 669360

0 5 10 15 20 25 30
0

5

10

15

20

25

Number of redistribution licenses (n)

M
em

or
y

re
qu

ire
m

en
t i

n
K

B

Our proposed Approach
Modified Approach
Direct Approach/100

Fig. 3. Comparison of memory requirement

aggregate validation of licenses. However, large number of validation equations
make the task difficult. Thus, we proposed ’validation tree’, a prefix tree based
data structure to do the validation efficiently. The experiments show that valida-
tion tree performs better than the direct and a modified approach of validation
in terms of validation time and memory requirements.

Acknowledgement. This work is supported by A*STAR Singapore, under
project No: 0721010022, title:’Digital Rights Violation Detection for Digital
Asset Management’.

References

1. Eavis, T., Zheng, X.: Multi-level frequent pattern mining. In: Database Systems for
Advanced Applications (DASFAA), pp. 369–383 (2009)

2. Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using FP-trees.
IEEE Transactions on Knowledge and Data Engineering 17(10), 1347–1362 (2005)

3. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Mining and Knowledge Discov-
ery 8(1), 53–87 (2004)

4. Hwang, S.O., Yoon, K.S., Jun, K.P., Lee, K.H.: Modeling and implementation of
digital rights. The Journal of Systems and Software 73(3), 533–549 (2004)

5. Sachan, A., Emmanuel, S., Kankanhalli, M.S.: Efficient license validation in MPML
DRM architecture. In: Proceedings of the 9th ACM workshop on digital rights man-
agement, Chicago, pp. 73–82 (2009)

6. Safavi-Naini, R., Sheppard, N.P., Uehara, T.: Import/export in digital rights man-
agement. In: Proceedings of the 4th ACM workshop on digital rights management,
pp. 99–110 (2004)

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 320–326, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Development Procedure of the Cloud-Based Applications

Masayoshi Hagiwara

Microsoft Company, Limited, Developer & Platform Evangelism, Tokyo Opera City Tower
3-20-2 Nishi-Shinjuku, Tokyo, 163-1445, Japan

masayh@microsoft.com

Abstract. The cloud-based applications are developed based on the loosely
coupled, scale-out design, often accessing a key-value store. They work in
parallel and asynchronously communicate between the nodes in the cloud, and
between the nodes and its clients. By leveraging Service Oriented Architecture
using Web or REST services, the queuing service and the service bus enable
loosely coupled communications. Combined with this SOA, the object oriented
technology, component oriented development and the relational data design can
realize the scale-out design and the development of the cloud-based applica-
tions. However, the whole development procedure becomes so complicated. In
this paper, we will show the development procedure and the analysis method of
the cloud-based applications in a phased manner.

Keywords: Cloud computing, scale-out design, key-value store, development
method.

1 Constraints of Developing the Cloud-Based Applications

There are 4 typical constraints in the development of cloud-based applications which
the mechanism of the cloud causes.

1. Asynchronous communication

To survive partial failures of the system, cloud-based applications do not work in
synchronous communications which halt the overall system because of the lifetime
synchronization among the transaction participants. While we need to decompose data
or transactions for scalability, we should deal with the consistency between decom-
posed data or sub-transactions by using synchronous communications. However since
we cannot practically use synchronous communications in view of partial failures, we
need to weaken the consistency conditions of the applications.

2. Constant availability

The cloud-based applications should always accept update requests of data and at the
same time cannot block the updates even while they read the same data for scalability
reasons. This means the cloud-based applications may not read up-to-date data.

3. CAP (Consistency, Availability, Partition tolerance) theorem

The CAP theorem shows that a cloud can provide availability and partition tolerance by
the sacrifice of consistency. Thus, we need the different way of obtaining consistency from

 Development Procedure of the Cloud-Based Applications 321

existing ACID (Atomicity, Consistency, Isolation, Durability) transactions. Eventual (not
immediate) consistency is one way of such weaker consistency requirements.

4. Key-value store

Instead of on-premise mainstream RDBs, the basic data service of the cloud is a key-
value store. A key-value store requires different data design, transaction implementa-
tions, and data management. It scatters each row of the key-value store on each node
in the cloud, and provides only a row-level ACID transaction without supporting a
distributed transaction. This leads to the scale-out design.

2 Development Procedure of the Cloud-Based Applications

This is an overview of the development procedure of the cloud-based applications
based on scale-out design with data partitioning.

Fig. 1. The development procedure of the cloud-based applications based on the scale-out
design with data partitioning

1. Functional decomposition

To avoid bottlenecks in the data layer by means of a key-value store, we need to de-
compose the functions of an application to decide what workload or transaction pat-
tern to de-normalize the data for the optimal data access if we adopt the scale-out
design with data partitioning.

2. Data architecture

In parallel with 1, we will design the data architecture independent of the application
requirements. In doing so, we should identify master and transaction data by category
identification of concept. At this point, what matters most is to logically manage mas-
ter data in one place and transaction data should reference master data unidirection-
ally. This procedure is basically followed by a data-centric approach.

3. Application architecture

We should adopt the reference application architecture with asynchronous
communications and maximizing transaction throughput while we make much of
the availability and maintenance. To succeed at the scale-out design with data

322 M. Hagiwara

partitioning, we will decompose master data, and replicate the part of master data to
transaction data if necessary. Next we will de-normalize transaction data following the
workloads of an application. Then, we will horizontally partition the de-normalized
data into rows to deploy them onto the different nodes in the cloud since a key-value
store puts the separate rows on different nodes to access them in parallel. For addi-
tional scalability, we will sometimes decompose one transaction into sub-transactions.
On the other hand, we need to give consistency between the decomposed data, sub-
transactions considering the trade-off between scalability and consistency.

4. Multi-paradigm design

We will design an application on a component-oriented basis using the application ar-
chitecture constructed in 3 and adopt the multi-paradigm design for the change (vari-
ability) of application requirements. The multi-paradigm design is a flexible design
methodology by choosing the most appropriate paradigm for a domain or a concern in
the design phase or in the implementation phase. One example is to use the combination
of the object oriented paradigm for the variability of data structures or logic implemen-
tations, the functional paradigm for the distributed batch processing, the component
oriented paradigm for the deployment of change-sets of the artifacts, and the service
oriented paradigm for providing the external reusable functions of an application.

2.1 Analysis Method of the Cloud-Based Applications

To derive the application architecture in 3 from the data architecture in 2, the follow-
ing analysis method will be effective. Here we will focus on the relationships of
─ Data-data
─ Data-transaction
─ Transaction-transaction

Fig. 2. A transaction here indicates the application requirements to specify the consis-
tency requirements

 Development Procedure of the Cloud-Based Applications 323

We think that we can model the consistency requirements of an application as the
transactions of an application. A transaction, which does not mean an ACID transac-
tion here, indicates the application requirements on consistency. This is kind of a non-
functional requirement while a use case indicates functional requirements from busi-
ness viewpoint. The conventional object oriented analysis and design method only
adopts a use case to define the application functional requirements. Though we need
to specify the consistency requirements as the part of application requirements for the
cloud-based applications because we must follow CAP theorem by which the cloud
supports the scalability and availability in the sacrifice of the consistency, a use case
does not specify the application requirements sufficiently in this sense. This is one of
the differences in developing the cloud-based applications from developing usual
applications using the object oriented method. This transaction, however, does not yet
decide how to implement components and classes. So the transaction is more abstract
than the implementation.

The analysis follows the order indicated:

1. Define the logical data from the conceptual models.

2. Normalize the logical data by the functional dependencies.

3. Independent of 1 and 2, define the transaction(s) from a use case.

4. Identify CRUD (Create/Read/Update/Delete) operations of a transaction.

5. De-normalize the normalized data defined in 2 based on the operations of the
transaction.

6. Divide the reference use cases (transactions) form the update ones.

7. Specify the consistency requirement of the transaction, and estimate de-
normalized data in access frequency.

8. Identify the concurrent, commutative conditions between transactions.

9. Decide the responsibility of the classes implementing the transaction (in case of
object-orientation).

10. Define the component(s) implementing the transaction in terms of its mainte-
nance and deployment.

11. Make the source code testable for TDD (Test Driven Development).

For example, the e-commerce site of reviewing the movies has the movie titles, the
review data, and the user data in 1. The use cases of the site are to add the user’s re-
view to the movie, to query the reviews of the particular movie and to query the re-
views of the particular user in 3. The site is mostly for queries. This characteristic
workload requires the data to be the optimal design for queries. Thus, we should have
both movie-review and user-review de-normalized data to improve two kinds of query
use cases in 5. This can be done by duplicating the review data for the movie and the
user. As the side effects, when adding the user’s review to the movie, we need to add
the same review both to the movie-review and user-review data in 7. This will de-
grade the performance of add operations. However, this degradation is justified by the
improvement of queries. This example shows that 3 kinds of relationships in Fig. 2
are complexly intertwined.

324 M. Hagiwara

The cloud-based applications cannot rely on immediate consistency due to CAP
theorem. This implies that an application may not read up-to-date data even after it
updates the same data. For this reason, it is preferable to divide the reference/read use
cases from the update/write ones. This is also known as a “command query separa-
tion” design pattern. In the abstract, the separation of the fact from its recognition is
one of the most important design philosophies in software. Similarly there are the
separation of the expressions from the meaning, and the separation of the views from
the content/model, which we can see in Model-View-Controller architecture style. In
principle, the "write" use cases record the fact of events such as - order entry, cus-
tomer call, the price changed, and the payment. The "read" use cases reference the
facts of the "read" use cases and recognize/judge the facts to make some decisions.
For example, a decision maker takes an action for the order entry in the form of the
sales report after batch processing of the daily orders. In most business cases, delayed
business processes using batch processing, or following the business rules are al-
lowed. Thus, weaker consistency requirements on which eventual consistency and
other consistency models impose do not prevent business applications from being
used on the cloud. The problems are excessive expectation for reliability which an
ACID transaction is supposed to give, and the lack of capability of treating weaker
consistency models by the frameworks and development environments based on an
ACID transaction. In comparison, eventual consistency tolerates partial failures well
and improves the concurrent access capability since an ACID transaction blocks the
concurrent transactions.

On the other hand, for distributed transactions, we should devise application-level
distributed update procedures instead assuming a key-value store does not support
distributed transactions in terms of scalability and availability. One way of distributed
update procedures is to take advantage of the unique key constraint provided by a
key-value store. The unique key constraint enables us to insert a transaction request
having the unique identifier only once. This is equivalent to the exact once semantic
of the message exchange. And distributed update procedures are possible by updating
distributed data among the transaction participants exactly once based on the inserted
transaction requests instead of distributed transactions. More formal specification is
available when we specify the update procedures by the protocol machine defined by
state charts.

2.2 Design Problems Regarding the Use Case

The use cases of a cloud-based application are related with many design problems.
Below are 5 big problems of them:

1. The use cases decide the design of de-normalized and horizontally partitioned
data.

2. The use cases are classified into reference and update ones to enable eventual
consistency.

3. One use case is built by boundary and domain logical models. The boundary
model provides a service interface and the domain model provides common core
business logics.

 Development Procedure of the Cloud-Based Applications 325

4. One use case is executed on the front-end and back-end physical programming
models. The front-end model plays roles of Web applications or Web services
and the back-end model plays roles of other business logic executors in terms of
the programming models which a particular cloud provides. These models are
implementation-specific of the cloud.

5. One use case is deployed on two transaction systems, one in the cloud, the other
on-premise.

1 and 2 are specified external to the system, and 3, 4 and 5 are specified internal to the
system.

2.3 Requirements of Consistency and Its Implementation

The consistency requirement for which one transaction is responsible is specified by
the consistency model. The consistency model covers the range of requirements that
an application has. The spectrum of the consistency requirements forms a variety of
consistency models from weak to strong requirement models. One of the consistency
models is eventual consistency.

The concurrency model, on the other hand, is a means of implementing consistency
requirements, that is, consistency models. An ACID transaction is one kind of concur-
rency models. The other examples of concurrency models are transactional replica-
tion, queuing, and reader/writer lock. The concurrency model is chosen suitably by
the design of application architecture to satisfy the consistency models that the cloud-
based applications require.

The implementation of the concurrency models are illustrated by the examples
from the concurrency control provided by data stores, for instance, a row-level ACID
transaction by a key-value store, to a reader/writer lock design pattern inside the Web
service implementation, and the queuing by which Web service requests are serialized
at a Web service interface. And a cloud-based application client as the Web service
consumer, runs the pipeline of functions which work concurrently and in parallel to
consume the Web services provided by the cloud. This example is the hierarchy of the
concurrency models in the cloud-based application architecture which affects the
decision of an overall scalability design.

3 Conclusion

We face the complication of composing a lot of software technologies and develop-
ment practices in developing the cloud-based applications. Data-centric approach for
data design, service orientation for domain and functional decomposition, object
orientation for logic design, component orientation for maintenance and deployment,
and use cases to drive the overall development process. In addition, we must consider
functional paradigm for parallel executions and asynchronous communications, and
multi-paradigm design for the variability of application requirements. Here among
others, we should see asynchronism and inconsistency that global large-scale
distributed systems inherently have. These natural “features” make synchronous
communications and ACID transactions ideal assumptions to simplify the system
design. The development of the cloud-based applications breaks these assumptions.

326 M. Hagiwara

The development procedure in this paper is one of the realistic methods which do not
assume these ideal situations.

References

1. Hagiwara, M.: An aesthetic sense of the architects. Shoeisha (2009) (in Japanese)
2. Hagiwara, M.: Architecture and Development methodology using Windows Azure in a

cloud era. System Development Journal 10 (2009) (in Japanese)
3. Helland, P.: Life Beyond Distributed Transactions (2007)
4. Pritchett, D.: BASE An ACID Alternative. ACM Queue 6(3) (2008)
5. Stonebraker, M., et al.: The End of an Architectural Era (It’s Time for a Complete Rewrite)

Rapid Development of Web Applications by
Introducing Database Systems with Web APIs

Takeru Inoue1, Hiroshi Asakura2, Yukio Uematsu2, Hiroshi Sato1,
and Noriyuki Takahashi1

1 NTT Network Innovation Laboratories
takeru.inoue@ieee.org

2 Innovative IP Architecture Center, NTT Communications Corporation

Abstract. Web APIs are offered in many Web sites for Ajax and mashup,
but they have been developed independently since there is no reusable
database component matched to Web applications. In this paper, we pro-
pose WapDB, a novel database management system for rapid develop-
ment of Web applications. WapDB is designed on Atom, a set of Web API
standards, and provides several features required for Web applications, in-
cluding efficient access control, an easy extension mechanism, and search
and statistics capabilities. By introducing WapDB, developers are freed
from the need to implement these features as well as Web API process-
ing. In addition, the design totally follows the REST architectural style,
which gives uniformity and scalability to applications. We develop a proof-
of-concept application with WapDB, and find that it offers great cost ef-
fectiveness with no significant impact on performance; in our experiments,
the development cost is reduced to less than half with the overhead (in use)
of just a few msec in response times. WapDB is being used to develop new
services in NTT Communications.

1 Introduction

Web APIs are a set of interfaces designed to support interoperable machine-to-
machine interaction over HTTP. They have been developed for Ajax as well as
mashup-based Web applications. Ajax improves the user’s perception of inter-
activity by enabling clients (typically, JavaScript codes) to retrieve data from a
server’s API without blocking the user’s interaction. Mashup-based applications
combine data retrieved from multiple Web APIs to create a new service. Mashup
has become popular in the last few years by virtue of its rapid integration.

In the early 2000’s, developers had to design their own Web APIs. These
APIs permitted similar CRUD operations against Web resources, but they dif-
fered from each other because of the lack of standards. In the middle of the
2000’s, IETF released a set of standards called Atom [1,2], which offers a unified
approach to Web APIs for the CRUD operations. Recently, several Web APIs
have been designed around Atom.

Unfortunately, developers are still forced to develop their own data store.
Some data stores equipped with Atom have been developed (e.g. mod atom [3]

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 327–336, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

328 T. Inoue et al.

and AtomServer [4]), but they provide neither efficient access control nor easy
extension methods. The lack of access control yields inefficient filtering of outside
data stores against search results, and the lack of an extension method prevents
developers from adding extra functionalities. As a result, Atom stores are rarely
used, thereby increasing the development cost of applications with Web APIs.
We believe that this continued reinvention of the wheel should (and can) be
avoided.

In this paper, we propose a novel database management system called WapDB
for the rapid development of Web applications with APIs. Since applications are
allowed to interact with WapDB directly via a Web API (an extended Atom pro-
tocol), there is no need to translate the API into SQL; developers are released
from the need to re-implement the API processes. Moreover, WapDB has the fea-
tures essential for Web application development including an efficient access con-
trol model, an easy extension mechanism, and search and statistics capabilities. It
is designed following the REST style [5], which gives uniformity and scalability to
applications. We implement this new database management system and develop a
proof-of-concept application, a photo-sharing service, with it. Experiments reveal
that it offers great cost effectiveness with no significant impact on performance.

The design concept of WapDB is largely oriented towards applications like
social networking and photo-sharing services, since they often offer Web APIs.
We, however, believe that it will be adopted by a wide variety of other services
because of its generality. We focus on applications in which data is accessed
mostly through Web APIs. Such an architecture brings design simplicity as well
as better interactivity [6].

2 Background

2.1 Web Application Architectures

Figure 1(a) depicts an example of traditional Web sites that follow the multi-tier
architecture. Client requests are processed by a logical tier component (e.g. an
application server), which makes responses by retrieving resources from a data
tier component (e.g. a RDBMS). While the logic tier component implements its
own business logic that depends on service, the data tier component provides
common CRUD operations through well-defined interfaces (e.g. SQL). The data
tier component can be reused, thereby reducing the development cost.

Web applications that provide APIs have a different architecture, as shown
in Fig. 1(b). While the whole server-side works as a data tier, business logic is
moved to the client-side. Clients (typically, JavaScript codes running on a Web
browser) are allowed to dynamically update pages by requesting for resources
through the API. Unfortunately, application servers are not reusable despite
their similarity.

2.2 Atom Format and Protocol

Atom is often called a RESTful Web API, since it follows the REpresentational
State Transfer (REST) architectural style [5]. In RESTful APIs, operations are

Rapid Development of Web Applications by Introducing Database Systems 329

(a) Traditional Web sites

(b) Web API applications

HTML SQL

Logic tier Data tier

RDBMSApp. serverClient

Logic tier

Logic

Client
SQL

RDBMSApp. server

Data tier

XML

Web API API

Access Ctrl. Resources

Users

Resources

Users

Service dependent component

Reusable component

Processing

Data

User Mng.

User Mng.Logic

Logic tier

SQL

Resources

RDBMSApp. server

Data tier

XML

Web API

WAPDB

API

Web API

XML/JSON
Access Ctrl.

UsersUser Mng.

Client

Logic

(c) Web API applications with WAPDB

Fig. 1. Examples of Web site architectures. (a) The traditional architecture places
business logic in the server-side logic tier. (b) The architecture for Web API applications
moves business logic to the client-side, and the application server handles access control
and API processing. (c) The architecture of WapDB (discussed in 4) makes access
control and API processing reusable, thereby reducing the development cost for the
application server.

simply specified by pairs of an HTTP method and a URI. Servers are not allowed
to keep any state for clients for parallel processing. RESTful Web APIs have been
gaining popularity because of their simplicity, interoperability, and scalability.

Atom is the only RESTful standard for which a protocol as well as a format
has been published. The CRUD protocol is called Atom Publishing Protocol
(AtomPub) [2], and the format is referred to as Atom XML [1]. Atom is highly
extensible, because it is designed as a basic instruction set for building other Web
APIs; its extensions include Google Data APIs (GData) and Windows Azure
REST API. Figure 2(a) presents the abstract resource model in Atom; data
called members are organized in containers called collections. They are linked as
shown in Fig. 2(b); the service document has links to collection feeds, which link
to members in the same collection. For member creation, only a media resource
is transferred from a client to the server, which generates the associated media
link entry automatically. It is not allowed to create, update, or delete multiple
members at a time.

3 Requirements

Before presenting the requirements for WapDB, we briefly discuss the data
model and ACID properties in the REST style. Web resources follow a hier-
archical model, not the relational model, as Atom follows a fixed hierarchical
model (i.e. collection and member). Atomicity (A of ACID) is limited to trans-
actions of a single operation, because RESTful servers are not allowed to keep
state between operations.

The following are the requirements faced by WapDB.

330 T. Inoue et al.

Service
 document

Media
 resources

Media link
 entries

Entry
 resources

Feeds

(a) Abstract model (b) Link structure

Binary data collection Text data collection

XML doc.

Data

Link

Collection

Member

Fig. 2. Resource model in Atom. (a) Members are organized in collections in the ab-
stract resource model. (b) The service document links to collection feeds, which link
to members in the same collection. Each member consists of a media resource (data
itself) and a media link entry (metadata written in Atom XML), as depicted in the
left-side collection. If the data is a text resource like HTML, it can be embedded in a
content element in Atom XML, as shown in the right-side collection.

Reusability. Improving this property is the main force motivating this paper,
since it reduces the development cost. As shown in Fig. 1, WapDB is required
to offer Web API processing and access control mechanisms. In order to reuse
WapDB in actual services, their own requirements such as advertising, search,
and statistics, are allowed to be incorporated.

Efficient access control. WapDB cannot be used for account management
because of the limitations placed on transactions. This implies that user ac-
counts are managed in a traditional RDBMS, while Web resources are stored
in WapDB. Since access control requires account information as well as Web
resources, distributed join operations are inevitable between the RDBMS and
WapDB. Efficient join operations need a query execution plan that minimizes
communication costs (e.g. traffic and round trips) [7, Chap. 7–9]. In addition, the
access control model should take advantage of user relationships (e.g. friends).

Easy extension. WapDB is required to provide an easy function extension
mechanism. Extension should be possible without source code. Moreover, no
restrictions should be placed on the programming languages used to develop
extensions. In this paper, we assume that WapDB would be extended mainly for
resource modifications in CRUD operations, such as advertising and metadata
addition.

Search and statistics. Search and statistics are essential functions in most Web
applications. They should be built-in since they require additional indexes and
tables, even though WapDB should have an extension mechanism. Furthermore,
it is preferable that they be simple and suit Web resources.

Rapid Development of Web Applications by Introducing Database Systems 331

POST /photo/joe
X-WapDB-User: joe

GET /photo?q=...
X-WapDB-User: kate
X-WapDB-Friends: joe,meg,tom

App. server Controller Index

Create by Joe.

Search by Kate.

INSERT INTO resource (uri, friend, ...)
 VALUES (/photo/joe/son.jpg, joe, ...)

WAPDB

Add Kate and her friends for filtering.

Add Joe for user colulmn.

Authenticate the request.

Authenticate the request.
Find Kate’s friends whose visibility is "friends".

SELECT * FROM resource
 WHERE ... AND friend IN (kate,joe,meg,tom,everyone)

POST /photo/joe

(b) Sequence diagram for access control

Controller Index/Storage
WAPDB

Action server

Generate media link entry.
Evaluate trigger events.

Media resource

Media resource
 + Media link entry

Execute
 actions.

Write resources.

Media resource
 + Media link entry

(c) Trigger sequence diagram

Media resource
 + Media link entry

API

Access Ctrl.

Storage

Controller
Index

WAPDB

Web API
Resources

Resources

(a) Overview

GET /photo?q=...
Resource table

/photo/joe/son.jpg joe ...
uri friend ...

Fig. 3. Design of WapDB. (a) WapDB consists of a controller that handles access
control and API processing, and a full-text index and storage that together manage
Web resources. (b) Our access control model, which efficiently executes distributed
join operations; Joe sets “friends” visibility to his resources, which allows Kate (Joe’s
friend) to access them in this example. (c) Trigger-like extension mechanism, in which
the posted resource is transferred to the action server that provides extensions if the
request matches the corresponding event.

4 Design

4.1 Architecture for Reusability

WapDB prevents application servers from handling Web APIs, thereby reduc-
ing the development cost. As shown in Fig. 1(c), WapDB is placed behind
the application server. Upon receiving a request for Web resources in WapDB,
the application server authenticates the request if needed, and forwards it to
WapDB with additional headers for access control as described in Sect. 4.2.

Figure 3(a) shows the configuration of WapDB. The controller is an HTTP
server that executes access control and API processing. The full-text index (a
search engine) and storage are used to manage Web resources. They can be a
single component or distributed among multiple machines (fragmentation of the
index and/or storage is beyond the scope of this paper). For a write query, the

332 T. Inoue et al.

(1)

WAPDBApp. server

R’ =result = R’ R’

user friend ... key uri friend body
joe {kate}

kate {joe,meg,tom}

1 /photo/joe/son.jpg joe

...

...

User table @ RDBMS Resource table @ WAPDB

friend user=kate

(2)

R’’ = key,friend

...

R’’

R’’’ = friend user=kate R’’’

result = R

key

keyresult

(3)
U’ = Π user=katefriend

U’

result
result = friend

σ: selection operator

Π: projection operator

: join operator

U: user table (relation)

R: resource table (relation)σ U

σ UR’’

σ

R’’’

σ U
U’

q: search query

Π

q R

q R

σ

Π

σq R

Fig. 4. Three possible execution plans of distributed join operations for access control
in the example of Kate’s finding her friends’ resources. The operations are managed
by the application server between the user table in the RDBMS and the resource table
in WapDB (the tables are not normalized due to space limitations). (1)st plan creates
excessive traffic R’. (2)nd plan requires an extra round trip. (3)rd plan reduces the
traffic and requires no extra round trip.

controller updates the index and saves the posted resource into the storage. For
a search query, the controller searches the index and retrieves the corresponding
resources from the storage.

This architecture (Fig. 1(c) with Fig. 3(a)) degrades latency, since messages
must pass through more machines. The impact of this is evaluated in the exper-
iments in Sect. 5.

4.2 Efficient Access Control Model

Assuming that users are allowed to access the resources of their friends, we first
discuss a query execution plan for distributed join operations. Account informa-
tion is managed in a RDBMS, while Web resources are stored in WapDB. A
write query poses no significant difficulty, since it involves just a single resource.
On the other hand, a search query can involve a large amount of resources, and
so an efficient plan is imperative for minimizing the cost of the distributed join
operation. Figure 4 shows three possible plans.

1. The first plan is sending the entire set of matched resources to the application
server from WapDB, and filtering them at the server. Unfortunately, this
creates excessive traffic, R’, between the server and WapDB.

2. The second plan utilizes semi-join; it returns only the primary key and friend
columns; filtering is done at the server followed by retrieving the body of the
desired resources from WapDB. This plan reduces the traffic unlike the first
plan, but does require an extra round trip.

Rapid Development of Web Applications by Introducing Database Systems 333

3. The third plan is sending user’s account information (e.g. friend list) to
WapDB and filtering resources in the search process. The account informa-
tion, U’, is much smaller than search results, R’, and no extra round trip is
required. Moreover, complicated joins do not need to be implemented in the
application server.

We choose the third plan, since it yields low communication cost for most queries.
The existing Atom stores, such as mod atom and AtomServer, cannot execute
our plan since it requires the join operation shown in Fig. 4(3).

Next, we discuss the detailed behavior of our access control model in Fig.
3(b). In the model, a user has the privilege of setting the visibility of all his/her
resources. The visibility has a three-grade scale, “only me”, “friends”, or “ev-
eryone”. The visibility is stored in the RDBMS with account information. For a
write query, the application server authenticates the query, and forwards it with
the X-WapDB-User header containing the authenticated user name. WapDB
finally stores the resource into the resource table; the friend column contains
the reserved term indicating “everyone”, otherwise the user name. For a search
query, the server authenticates the query, and forwards it with the X-WapDB-
User and the X-WapDB-Friends headers. The latter includes the user’s friends
whose visibility is “friends”. Finally, WapDB executes a search over resources
whose friend column contains the user name, one of his/her friends, or the re-
served term for “everyone”, by adding a filtering predicate to the original query
(friend IN (...) in Fig. 3(b)).

Our model follows the REST style, since it introduces no state management.

4.3 Trigger-Like Easy Extension

WapDB provides easy extension through a trigger-like mechanism. Triggers are
commonly supported in RDBMSs; SQL actions are executed in response to cer-
tain events if given conditions are met. They are often used to log changes and
execute business rules. Since WapDB follows the REST style, our triggers are
provided in the RESTful way; events are specified by a pair of HTTP method
and URI, and actions are implemented as HTTP servers. For simplicity, con-
ditions are not specified. Triggers of WapDB are row triggers, not statement
triggers, since it is not allowed to edit multiple resources (rows) at a time.

Figure 3(c) is an example of trigger processing upon receipt of a request for
creating a new resource. WapDB controller evaluates the posted resource, and
generates an associated media link entry if needed. The resources are forwarded
to all action servers whose events are matched to the request. The action servers
process the resources, which are returned to the controller. The controller finally
saves the returned resources into the index and storage.

Since WapDB and action servers are loosely coupled through HTTP, the
programming languages used are not restricted. Trigger overheads, extra round-
trips and other XML parsing operations, are evaluated in the experiments.

334 T. Inoue et al.

Table 1. Key query parameters in GData

Name Description
q Full-text query string.
/-/<category> Category filter.
author Entry author.
updated-min, updated-max Bounds on the entry update date.
start-index 1-based index of the first result to be retrieved.
max-results Maximum number of results to be retrieved.

4.4 Search Queries and Frequency Distribution

WapDB uses the GData query model because it has a proven track record,
has been operational for several years in Google, as well as being simple and
Atom-friendly. Table 1 presents some of the GData query parameters (they are
expressed as HTTP URIs). Clients are allowed to select resources with full-text
search and range queries for key Atom elements. Results are sorted in descending
order of last modified time. If the number of results per page is limited, a link
to the next page is given with the start-index parameter in the results.

WapDB also provides frequency distribution of categories for every collection.
Frequency Distribution is a basic statistic; it is often used to create rankings and
tag clouds. The distributions are shown in the service document.

5 Experiments

5.1 Implementation

We implemented a prototype of WapDB on the LAMP (Linux, Apache, MySQL,
Perl) stack with the search engine named infobee/evangelist [8]. MySQL was used
as the storage engine. We also developed a proof-of-concept application, a photo-
sharing service (Fig. 5(a)). WapDB manages photos (media resources) and their
metadata (media link entries). Two triggers are fired on creating and updating
resources. One is for advertising; it inserts an ad matched to the photo’s category
into the media link entry. The other trigger extracts the location from the photo’s
Exif data, and adds it to the associated media link entry. The application works
well with the Atom client named Windows Live Writer.

The server-side consists of three machines; each of them runs an application
server with the RDBMS, three components of WapDB, and two action servers.
All machines have a quad-core processor (Intel Xeon 2.13 GHz), and are con-
nected by Gigabit Ethernet.

5.2 Evaluation

We developed the application with and without WapDB, which are based on
architectures of Fig. 1(c) and Fig. 1(b), to evaluate the cost effectiveness and per-
formance overhead of our proposal. Figure 5(b) shows the lines of code needed to

Rapid Development of Web Applications by Introducing Database Systems 335

 0

 1000

 2000

 3000

Without WAPDB With WAPDB

2480

1157

 0

 100

 200

 300

With WAPDB
With WAPDB*

Without WAPDB

 0

 10

 20

 30

 40

With WAPDBWithout WAPDB

(1) Create (2) Search

(b) Lines of code

(c) Response time [msec.]

(a) Browser view

Advertisement

Location

Tag Cloud

Fig. 5. Experimental results. (a) An image of the proof-of-concept application. Photos
and tag cloud are drawn by Ajax through Web API. An advertisement matched to
the photo categories and the location at which the photo was taken, are added by
triggers. (b) Lines of code for the proof-of-concept application, developed with and
without WapDB. (c) Response time in the application with and without WapDB (1st,
50th, and 99th percentiles are plotted). (c-1) Response time for resource creation. (c-2)
Response time for a category query.

create the application. The number of lines was reduced to less than half by intro-
ducing WapDB in our experiments. This is mainly because WapDB eliminates
the need to implement Atom processing, access control, search, and statistics. We
implemented only business logic at the client, account management and header
manipulations for access control at the application server. Actual development
period was reduced by roughly half. We found no difficulty in developing the
action servers thanks to recent advances in Web application frameworks (e.g.
Ruby on Rails and Catalyst); it required only 168 lines of code.

Next, we observed the response time for evaluating performance overhead. The
response time was measured at the client for creating a resource and searching
for the resources of a specified category (i.e. /-/<category> in Table 1). While
the posted resources were photos with average size of 120 KB, the associated
media link entries were 4.0 KB in size on average. The client received top 10
entries at most for each category query. We repeated the measurements 1000
times and determined the 1st, 50th, and 99th percentiles.

In addition to implementing the application twice (i.e. with/without WapDB),
we introduced another implementation named WapDB* in order to distinguish
between the overhead of the new architecture and that of triggers. In this im-
plementation, the application was developed with WapDB based on the archi-
tecture of Fig. 1(c), but triggers were not used (advertising and Exif extractor

336 T. Inoue et al.

were implemented in the application server). For resource creation, new architec-
ture overhead is the difference between response time of “without WapDB” and
that of “with WapDB*”, while trigger overhead is the difference between “with
WapDB*” and “with WapDB”. In terms of searching, new architecture overhead
is the difference between “without WapDB” and “with WapDB”.

Figure 5(c) depicts the response time for each implementation. The figure
shows that the overhead of WapDB is not significant; on average, new archi-
tecture overhead is 7.5 and 6.7 msec for creation and search, respectively, while
trigger overhead is 22.0 msec. The impact of searching can be considered even
smaller in practice, because some results would be retrieved from cache servers.
Although trigger overhead is slightly larger, it does not matter because write
queries are much less common than read ones.

6 Conclusions

This paper introduced WapDB, a novel database management system with Web
APIs for the rapid development of Web applications. We designed WapDB as a
highly reusable database component for reducing the development cost. WapDB
removes from developers the need to reinvent Web API processes. In addition,
WapDB provides common features in Web applications, such as efficient ac-
cess control, an extension mechanism, and search and statistics capabilities. We
developed a photo-sharing service by using WapDB. Experiments revealed the
great cost effectiveness provided by WapDB; the number of lines was reduced
to less than half. In addition, the performance overhead was no more than ten
msec for searching, and several tens of msec for creating a resource even if trig-
gers were used. We are currently developing new services with WapDB at NTT
Communications. Finally, we would like to thank Dr. Onizuka, Mr. Okabe, and
Mr. Sawamura for their kind support.

References

1. Nottingham, M., Sayre, R.: The Atom Syndication Format. RFC 4287 (2005)
2. Gregorio, J., de hOra, B.: The atom publishing protocol. RFC 5023 (2007)
3. Bray, T.: mod atom. ongoing (2007),

http://www.tbray.org/ongoing/When/200x/2007/06/25/mod_atom
4. Jacob, B., Berry, C.: AtomServer – the power of publishing for data distribution.

InfoQ (2008), http://www.infoq.com/articles/atomserver
5. Fielding, R.T., Taylor, R.N.: Principled design of the modern Web architecture.

ACM Trans. Internet Technol. 2(2), 115–150 (2002)
6. Kuuskeri, J., Mikkonen, T.: Partitioning Web applications between the server and

the client. In: Proceedings of the 2009 ACM symposium on Applied Computing, pp.
647–652 (2009)

7. Özsu, M., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn.
Prentice-Hall, Englewood Cliffs (1999)

8. Inagaki, H., Mori, D., Sugizaki, M., Takeno, H.: Japanese Internet portal-site
www.goo.ne.jp powered by InfoBee technology. In: Proceedings of the International
Conference on Digital Libraries: Research and Practice, pp. 197–202 (2000)

http://www.tbray.org/ongoing/When/200x/2007/06/25/mod_atom
http://www.infoq.com/articles/atomserver

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 337–346, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A General Maturity Model and
Reference Architecture for SaaS Service

Seungseok Kang1, Jaeseok Myung1, Jongheum Yeon1,
Seong-wook Ha2, Taehyung Cho2, Ji-man Chung2, and Sang-goo Lee1

1 Department of Computer Science and Engineering, Seoul National Univ., Seoul, Korea
{pyxis81,jsmyung,jonghm,sglee}@europa.snu.ac.kr

2 Q.N.SOLV Corporation, Seoul, Korea
{suha,thcho,comgen27}@qnsolv.com

Abstract. In today’s dynamic IT environment with increased global competi-
tion, enterprises must achieve greater business agility and decrease the TCO
(Total Cost of Ownership) of their system for service. As the need for innova-
tive software circulation process emerges, SaaS (Software as a Service) is in-
troduced for integrating software service framework. But most of current ASP
(Application Service Provider) Players have difficulties to migrate their systems
to SaaS Platform for the lack of maturity model and process. In this paper, we
have surveyed several cases of SaaS service, and we identified the common key
functions of SaaS service. We contend that the practical maturity model is a key
enabler for achieving migration to innovative SaaS service platform. To assist
in building our SaaS maturity model, we defined two important axes of maturity
model and introduced the detailed components of each phase with the reference
architecture which contains the essential activities according to the common
functions of SaaS service.

Keywords: SaaS Service, ASP, Maturity Model, Software Business.

1 Introduction

The economical, social, and technological development in the computing environment
triggers big changes in the software business. The emergence of Web and its infra-
structure has become an integral part of enterprise computing and continues to give
both new opportunities and challenges to the software providing vendors. Intuitively,
the development of IT technology and business environment gives a significant influ-
ence on software business as well as software itself. Traditional business paradigm on
software is evolved due to the rapid change of IT technology, and it also brings the
change of the type of service and technology. This paradigm shift in software busi-
ness is categorized into four key parts of core service component such as data, system,
service, and business.

The emerging of SaaS is one of the results which are derived by paradigm shift.
Based on the changes of software business environment, a number of current ASP
players have tried to advance to new paradigm with SaaS service component.
However, there are still some challenging issues due to the lack of adequate growth

338 S. Kang et al.

strategy and proper guideline for adapting the characteristics of SaaS service in their
current service model. In this respect, we believe that a SaaS service architecture
based on a general SaaS maturity model is an enabler of a myriad of current ASP
players who want to adapt the concept of SaaS service.

In this paper, we survey several cases of current SaaS service, and identify the
common key functions of SaaS service to build successful SaaS service from their
service model. Second, we define our general SaaS maturity model and the detailed
components of each phase of our model with two important axes. Finally, we propose
the SaaS service architecture which contains the essential activities according to the
common functions of SaaS service.

2 Related Work

It’s a common experience among software companies today with increasing cost
pressure, high customer expectation, and global competition all placing new demands
on development and delivery processes. SaaS is a software delivery model where
instead of purchasing the software and implementing, users can rent the software on a
monthly cost-per-user or usage basis and can scale up or down as needed [1]. There
are some representative SaaS vendors including Microsoft, Google, Salesforce.com,
and Amazon which provide successful service cases. They have different strategies to
catch up the paradigm shift toward SaaS respectively.

However, nowadays, it seems that software vendors have reached a consensus that
SaaS model can be achieved in an incremental way. Several research groups have
reported characteristics and maturity model for SaaS service platform. Microsoft
characterizes configurability, multi-tenancy, scalability as key criteria of SaaS matur-
ity model [2]. Forrester group also presented 6 levels of maturity model from tradi-
tional ASP to SaaS service model [3]. In addition, SaaS has been intensively studied
with the academic point of view. A number of academic researchers have analyzed
principal aspects of SaaS model, and also, have reported several features and advan-
tages with both customer’s and enterprise’s perspectives [4-6]. Actually, SaaS is a
complex business model which has many role players such as customer, developer,
vendors, and so on. Therefore, some researches argued processes and interactions
between them [7-8], and also, some researchers introduced lesson learned of imple-
menting SaaS [9-11]. There also have been discussions about the maturity of SaaS
model [12].

The rest of this paper is organized as follow. In section 3, we examine current SaaS
service cases and identify common features of SaaS service according to the research
methodology to find out key enablers for SaaS service model. In section 4, current
SaaS maturity models are introduced and compared with our maturity model. A detail
activities and architecture based on the maturity model is presented in section 5, and
finally we draw our conclusion in section 6.

2.1 Research Methodology

Our research methodology consists of three steps - Deriving SaaS Service Functions,
Defining SaaS Maturity Model, and Establishing SaaS Service Architecture.

 A General Maturity Model and Reference Architecture for SaaS Service 339

Generally SaaS service consists of core functions which represent the properties of
SaaS service. In this phase, we derived some common key functions of SaaS service
through the survey of several cases of SaaS vendors. Moreover, we have analyzed the
current maturity model for SaaS service such as Microsoft’s and Forrester’s model.
Considering these approaches, we defined the important axis and our maturity model
based on these axes according to the incremental development phase. The last step is
establishing SaaS Service Architecture according to maturity model. In order to make
practical methodology to build SaaS Service, we categorized the technical activities
which constitute the role of each layer on the maturity levels.

3 An Analysis of SaaS Service

Since definition of SaaS is shown as various meanings according to researchers, we
adapted the meaning of SaaS service through the Gartner Group as follows: “software
that is owned, delivered and managed remotely by one or more providers. The pro-
vider delivers an application based on a single set of common code and data defini-
tions, which are consumed in a one-to-many model by all contracted customers, at
anytime on a pay-for-use basis, or as a subscription based on usage metrics.” [8]. In
other words, SaaS is a service-oriented framework with high deployment efficiency
and supportable platform where ASP focused on architecture-oriented solutions with
low deployment efficiency relatively. In this section, we discuss several cases of cur-
rent large SaaS vendors which have their own characteristics of functionalities of
SaaS service, and derive the essential common functions to build successful SaaS
service.

3.1 Case Study: In Case of Current SaaS Service Vendors

Nowadays, the marketplace of SaaS service is mostly lead by international large soft-
ware vendors and traditional solution provider for enterprise. We selected four major
vendors as the successful cases of current SaaS service and surveyed the characteris-
tics based on our conceptual SaaS service characteristics. Table 1 shows a summa-
rized result of present condition of four SaaS service vendors.

3.1.1 Amazon: Service Infrastructure
Amazon provides SaaS service in terms of Amazon Web Services. It mainly focus on
providing computing resources to users rather than a separated web-based application
so that it gives customers various business application on their service infrastructure
that is based on cloud computing paradigm. The goal of Amazon’s SaaS service can
be summarized by these terms: Cost-effective, Dependable, Flexible, and
Comprehensive. In order to achieve the goals of Amazon Web Services, they settled
various service types from business infrastructure to Web search and on-demand
workforce. A distinct characteristic of Amazon Web Service is to give the opportunity
to ISVs (Independent Software Provider), where the main targeted user of other
vendors is end-users themselves who use the applications on the SaaS framework.

340 S. Kang et al.

3.1.2 Salesforce.com: Platform as a Service
The SaaS service of Salesforce.com can be summarized as Force.com platform. It is a
multi-tenant on-demand business platform which consists of service component and
process. The biggest difference of the strategic directions of salesforce.com is to be a
solution provider to enterprise with multi-tenant support platform. The whole service
process of Force.com service aimed to achieving the next level of current SaaS, which
is called PaaS (Platform as a Service). It means that PaaS should be able to provide
the tools for developing on-demand applications easily on the Web-based infrastruc-
ture as well as using and distributing the solutions.

3.1.3 Microsoft: Software+Service
The main target users of Microsoft are customers who have used Microsoft’s package
software such as Windows and Microsoft Office. They try to add the service strategy
based on the web to existing software in comparison with the other vendors who pro-
vide their service through network by using Web browser. This strategy is called
Software+Service. The strategic directions of Microsoft are categorized into four
parts: Unified Experience, Server and Cloud, Tightly Coupled System, and Multiple
Business Model. By adapting these strategies, Microsoft tries to get flexibility and
availability on service process from building service with software to software
distribution.

3.1.4 Google: Service on the Web
Google provide SaaS service as the set of Google application named GoogleApps. It
provides communicate and connect service through Web browser, and they are inter-
linked by collaboration process of Google Application such as Google Docs and
Google Sites. In order to use their infrastructure and ability to search on the Web,
Google tries to organize user’s service via Web application development environment
named Google Apps Engine. Most of Google SaaS service is supposed in the form of
distributed APIs to guarantee effectiveness, flexibility, and easiness of application
usage.

Table 1. Summarization of SaaS Service Vendors

Vendor Service Description Business Model Origin Strategy

Amazon
Computing

Resource Providing
Amazon

Web Services
Web Service

Service
Infrastructure

Salesforce Web-based CRM Force.com
Web service /

CRM
Platform

as a Service

Microsoft
Personal /

 Office Tools
Microsoft

Office Live
Package
Software

Software
+Service

Google Web Office Tools Google Apps
Web-based

Service
Service

on the Web

3.2 Common Functions of SaaS Service

By surveying representative cases of current SaaS service, the common functions are
established which could be used for building standardized SaaS platform. We classi-
fied each function into technical and business functions as follows.

 A General Maturity Model and Reference Architecture for SaaS Service 341

Table 2. The Common Functions of SaaS Service

3.2.1 Technical Functions
It means a set of functions which are related to technical issues of SaaS service such
as database management, configurable user interface and business workflow, and
integration technology. We expand the concept of the feature in their maturity level
with Standard Support, Integration, and Security based on the features of Microsoft’s
maturity model such as Multi-Tenant Support, Configuration, and Scalability.

3.2.2 Business Functions
Business function is another important issue because software vendors should provide
proper business model to customers and guarantee the continuity of business activity
on their service platform with performance. We divide the business functions into
four categories such as Market, Scalability, Development, and Communication area.
Each category also contains list of detailed functions, which can support availability
of core business competency.

4 SaaS Maturity Model

The strategic positioning of current SaaS services are promoted in different ways
according to platform openness to partnership and their original service type such as
packaged software or Web-based service. Nevertheless, current maturity models have
not been able to present concrete procedures due to ambiguous definition of maturity
levels. In this section, we introduce two maturity models from Microsoft and Forres-
ter research group as examples of current maturity model for SaaS service.

Business Function
Open Marketplace
Application Selling

Business Model
SLA Adaptation

 and Support

Market

Service Billing Policy
Guaranteed Performance

Scalability Monitoring Tools for
Availability and Performance

Development Toolkit
Providing

Application
Release Process Development

Integrated Development
Platform

Supporting Community
for Users Communica-

tion
Partnership Policy

Technical Function
Shared Database and Service

Predefined Database Extension
Multi-tenant

Support
Distributed Database Schema

User Interface
Workflow and Business Rule

Customizable Data Model
Configuration

Metadata Set
Scaling The Application Scalability

Scaling The Data
Standard Business Data Model

Business Standard Platform
Standard
Support Standard Development API Set

Mash-up API
Web Service

Service Connector
Integration

Multi-Platform Support
Authentication
Authorization
Security Proof

Security

Tailored Security Policy

342 S. Kang et al.

Microsoft’s maturity model is a sort of incremental development model through in-
tegration between functional features of SaaS. There are four level of maturity level
such as Ad hoc/custom, Configurable, Multi-Tenant, and Scalable. Ad hoc level
represents traditional ASP model with customizing to each individual users. At con-
figurable level, users do not need to modify the application in the code level where
multi-tenant architecture and tenant load balancer support the adaptation of various
customers’ requirements. Despite of the well-defined incremental structure, it is still
ambiguous to measure ASP vendors’ availability due to the lack of detailed concepts.

Forrester’s model is similar to Microsoft’s maturity model, but it contains six de-
grees of incremental development. At level 0 and 1, it can be mapped into current
ASP players who handle their business manually with single or similar application to
multi clients. At level 2 and 3, it can be called SaaS service because most of the ven-
dors provide configured solutions with multi-tenant environment via packaged or
Web-based distributed application. Level 5 and 6 contains custom extensions and
dynamic composition so that service provider can compose user-specific applications
with custom extensions in a multi-tenant environment. However, it also does not
suggest the detailed incremental process of evaluation.

4.1 The Axis of Maturity Model

We decide the axis of maturity model as the core criteria for measuring the degrees of
evaluation; service component axis and maturity level axis. We defined the service
component as the core features of structuring software business, where each compo-
nent corresponds to higher or lower layers of components. Moreover, we categorized
our maturity levels which stand for the current situation of availability for ensuring
SaaS service into four levels. In general, each level represents the fundamental foun-
dation which is needed to evolve to next level in the model. Fig. 1 shows the sum-
mary of our service component and maturity level axis.

Fig. 1. The two axes of maturity model: Service Component and Maturity Level

4.2 Maturity Model

Combining with two axes we discussed above, we build a general SaaS maturity
model in Fig. 2 as a set of keywords that represent the core requirements. In detail, the
components on the maturity model have technical activities which consist of the

 A General Maturity Model and Reference Architecture for SaaS Service 343

structure of service component. The following sections describe the concrete figures
which are mainly discussed as essential component of our SaaS maturity model.

4.2.1 Ad Hoc Level
Ad hoc level is similar to current Ad hoc system with simple ASP business model. In
this level, most of ASP players are concentrating on dedicated database and schema in
data layer and schema without respect to content sharing and multi-tenant environ-
ment. System layer also consist of Ad hoc multi instances which use different applica-
tions by users. The service layer has separated system integration on Web interface
mainly, where the detailed functions of the services are materialized by various re-
quirements of customers. Finally, the business process such as SLA on Ad hoc level
mostly depends on the simple contraction that reflects the necessity of separated users
without any concrete policies. Many service providers have failed to find the proper
ways to build SaaS service model and still have stayed in this level.

4.2.2 Standardization Level
Standardization level aims to provide shared service with the discrete instances of
user’s application and configurability. We define other features of data and business
layer as sharing contents and standardized service policy. In this phase, customers use
shared and publicized database with dedicated data schema. System layer support
configurable single instance and single tenant so that users build their service model
within predefined instance that is given by service provider. With respect to custom-
ize applications, service layer also has configurable options in service software. In
addition, the standardized methods are needed in the last business level of our matur-
ity model. Despite of the conspicuous features which show the typical characteristics
of SaaS service, it still does not support multi-tenant environment, one of the most
important issues of SaaS platform.

4.2.3 Integration Level
The third level of our model is integration. It contains the entire feature of former two
levels while it focuses on actualizing multi-tenant environment. In other words,
database schema is shared as well as database itself in the data layer in order to ac-
commodate multi tenant simultaneously. In the system layer, multi tenant supporting
platform is provided with single instance. It means that user’s systems should use
predefined common instance with simple configurable options where the various user
functions are achieved by service combination such as Web service and mash-up.
Lastly, business layer focuses on realizing measurable SLA adaptation with standard-
ized scheme. In general, most of current SaaS vendors concentrate their ability to
build multi tenant service process with service connection as the key factors of
successful SaaS service we described above.

4.2.4 Virtualization Level
We believe that the ideal approach to reach real SaaS service is virtualization. For
achieving virtualization on the data layer, entire database and its schema should be
constructed upon distributed computing power such as cloud computing. It aims

344 S. Kang et al.

to realize optimized multi-tenant environment through well-defined set of metadata.
In the system layer, the system space is transformed into virtual concept with
load-balancing system. With the measurement of a quantity of service used, service
providers can allocate the computing power dynamically to the users’ systems on the
virtual space. Similar to integration level, a set of function is given by interlinked
service combination whereas business process covers the requirements of users in-
stead of customization in code levels. It is generally considered that the service archi-
tecture on full-SOA can achieve the goals of service layer on virtualization level.
Finally, business layer on this level is represented by optimized SLA adaptation. Ser-
vice provider can use flexible and dynamic methods for measuring the amount of
service used so that they ensure the optimization of SLA policy to their customers. In
conclusion, virtualization level mainly focuses on maximization of practical use of
resources via service modulation and encapsulation.

Fig. 2. General SaaS Maturity Model

5 SaaS Service Architecture

Considering the gap between the ideal figure of SaaS service and general business
model of ASP players, referenceable SaaS service architecture is able to help service
providers decide the service model and its development process in practical ways. We
will present our SaaS service architecture roughly in terms of general service process
and the major activities of SaaS service.

5.1 Major Activities of Maturity Model

Assuming the role of SaaS maturity model, the abstract definition of each level is
converted into technical activities with hierarchical structure which constitute the
structure of service architecture. As the same ways, second level activities can be
described with lower level activities. Table 3 summarizes a part of the major activities
on our maturity model.

 A General Maturity Model and Reference Architecture for SaaS Service 345

Table 3. A Part of Major Activities on SaaS Maturity Model

 Data System

Virtualization
Metadata Management
Data Structure Optimization

System Provisioning
Resource Optimization

Integration
Data Structure Management
Data Model Management

Resource Management
Resource Measurement

Standardization
Database Performance Management
Database Security Management

System Composition Management

 Service Business

Virtualization
Service Optimization
On-Demand based Business Process

SLA KPI Optimization

Integration
Standard Service Distribution
Service Reuse Measurement

SLA KPI Measurement

Standardization
Software Quality Management
User Requirement Management

Standard SLA template production

5.2 Reference Architecture

Based on the service activities described above, we design SaaS service architecture
and its service process. Our service architecture is a middleware between service
users and service vendors, where the SaaS service platform in the architecture consist
of three parts such as data, system, and service. Each part of service platform guaran-
tees the core competencies of SaaS service. Fig. 3 describes a big picture of SaaS
service architecture with the flow of business process.

Fig. 3. SaaS service architecture

6 Conclusion and Future Work

This paper reviewed the SaaS service model and offered a practical SaaS maturity
model and the service architecture with core functionalities of SaaS service. From our
analysis described in previous sections, we concluded that the challenging issues of
migrating current ASP service to SaaS can be solved incrementally by adapting the
concept of our maturity model with two important axes.

Our maturity model only considers 2-dimension axes such as service component
and maturity level. We believe that expanding the maturity model with n-dimension
axes according to the organizations or characteristics of enterprise can contribute for
designing future SaaS platform. In addition, we also aim at implementing real SaaS
service platform with our maturity model and architecture with service process.

346 S. Kang et al.

It is essential for enterprises to provide a strong and steady vision of SaaS service.
However, existing approaches are still too general to design the detailed business
process. We believe that the maturity model should give a concrete way of construct-
ing a strategy to build practical SaaS service. Based on this research, we will begin
organizing the nature of SaaS service and refining our maturity model with core com-
petencies and more detailed requirements considering the current situation of industry
as a whole. We also expect that our research will contribute to spread the concept of
SaaS service within the service architecture as well as unique strategies within some
practical semantic technology in the near future.

Acknowledgments. This research was supported by the MKE(The Ministry of
Knowledge Economy), Korea, under the ITRC(Information Technology Research
Center) support program supervised by the NIPA(National IT Industry Promotion
Agency). (grant number NIPA-2009-C1090-0902-0031).

References

1. Upadhyay, S.: Software as a Service (SaaS). Oracle (2008)
2. Chong, F., Carraro, G.: Architecture Strategies for Catching the Long Tail, MSDN Li-

brary. Microsoft Corporation (2006)
3. Ried, S., Rymer, J.R., Iqbal, R.: Forrester’s SaaS Maturity Model. Forrester Research

(2008)
4. Ma, D.: The Business Model of Software-As-A-Service. In: IEEE International Confer-

ence on Services Computing (SCC 2007), pp. 701–702 (2007)
5. Waters, B.: Software as a service: A look at the customer benefits. Journal of Digital Asset

Management 1(1), 32–39 (2005)
6. Xin, M., Levina, N.: Software-as-a-Service Model: Elaborating Client-Side Adoption Fac-

tors. In: 29th International Conference on Information Systems, Paris, France (2008)
7. Sääksjärvi, M., et al.: Evaluating the Software as a Service Business Model: From CPU

Time-Sharing to Online Innovation Sharing. In: IADIS International Conference e-Society,
Qawra, Malta, pp. 177–186 (2005)

8. Choudhary, V.: Software as a Service: Implications for Investment in Software Develop-
ment. In: 40th Annual Hawaii International Conference on System Sciences, HICSS 2007
(2007)

9. Greschler, D., Mangan, T.: Networking lessons in delivering ‘Software as a Service’ - part
I. International Journal of Network Management 12(5), 317–321 (2007)

10. Guo, C.J., et al.: A Framework for Native Multi-Tenancy Application Development and
Management. In: 9th IEEE International Conference on E-Commerce Technology and
(CEC 2007), Tokyo, Japan (2007)

11. Chou, D.C., et al.: Analysis of a new information systems outsourcing practice: software-
as-a-service business model. International Journal of Information Systems and Change
Management 2(4), 392–405 (2007)

12. Goth, G.: Software-as-a-Service: The Spark That Will Change Software Engineering?
IEEE Distributed Systems Online 9(7), Art.No. 0807-o7003 (2008)

Lazy View Maintenance for Social Networking
Applications

Keita Mikami, Shinji Morishita, and Makoto Onizuka

NTT CyberSpace Laboratories, NTT Corporation, 1-1 Hikari-no-oka Yokosuka,
239-0847 Japan

{mikami.keita,morishita.shinji,onizuka.makoto}@lab.ntt.co.jp

Abstract. We introduce CAMEL, a lazy view maintenance system for
social networking applications on a database server with a distributed
memory cache. System administrators can control the throughput of the
system by tuning the level of freshness of materialized views. CAMEL
employs the existing view maintenance techniques of incremental main-
tenance, lazy maintenance, and control table. In addition, CAMEL op-
timizes view maintenance performance by pushing the top-k operation
down to before join operations and by constructing a reverse index. We
evaluate CAMEL using real data from a mini-blog service. The results
show that CAMEL is 6.13 and 11.2 times faster than the method of eager
view maintenance while keeping the freshness of materialized views at
66.2% and 38.0%, respectively.

1 Introduction

Many social networking websites have been emerged and they are becoming
very popular on the Internet, such as MySpace, Facebook, and Twitter. Accord-
ing to article [1], MySpace became the most popular social networking site in
the United States in June 2006 and was the destination of 4.46% of US visits.
Facebook is also a popular social networking website and there are more than
250 million active users in 2009 [2]. Twitter has 200 thousand active users per
week [3]. Those social networking websites not only share some common features
with web applications but also have additional features that are typical to social
network applications.

First, we consider the common features of web applications: 1) high read
throughput is required, and 2) durability is necessary. To obtain high read
throughput, a distributed memory cache is widely used for web applications. A
distributed memory cache is installed on multiple machines and they are placed
between the application server and the database server. The distributed memory
cache achieves high read throughput by caching frequently accessed data on the
database server; applications can access the cached data without accessing the
database server. Durability is achieved by sending write operations directly to
the database server, at the same time cached data is invalidated by the write
operations to ensure rigid consistency. However, if we consider the features of
social networking applications, the above approach to distributed memory is

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 347–358, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

348 K. Mikami, S. Morishita, and M. Onizuka

not effective. The features of social networking applications are: 3) high write
(append) throughput is required, and 4) eventual consistency is enough, rigid
consistency is not required, since it is acceptable for users to read data with
certain level of staleness. Indeed, according to Facebook statistics [2], more than
1 billion pieces of content (web links, news stories, blog posts, notes, photos,
etc.) are shared each week. Speculation about Twitter [3] shows that there are 3
million new messages per day. Therefore, those systems must provide high write
throughput. The high write throughput invalidates the cache so frequently that
cache effectiveness decreases. Fig.11 shows a result of preliminary experiment
that examined how cache hit rate is affected by the write/read ratio of query
workload. Cache hit rate is decreased to around 60% when the ratio is 1 and
this raises the number of accesses to database server by a factor four compared
to the case when the cache hit rate is 90% (write/read ratio is 0.05).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.5 1 1.5 2

ca
ch

e
hi

t r
at

e

write/read ratio

Fig. 1. Cache hit rate

Against this problem, we propose
CAMEL, a view maintenance system
that efficiently maintains materialized
views stored in distributed memory
cache, given that users accept cer-
tain level of staleness of views, there-
fore staleness of query results. There
is a tradeoff between the staleness or
freshness of materialized views and
write/read throughput of the system;
if users need more fresh data to be
returned, the throughput decreases.
Therefore, CAMEL provides system administrators a function to set the level
of freshness of materialized views. We focus on social networking applications
in which each user appends a new message and reads the latest k messages of
his/her friends. This query is expressed with joining message table and friend
table so as to locate all messages of the user’s friends and then perform the top-k
operation over the located messages sorted by publication date.

CAMEL consists of three major techniques as follows. First, as described
above, it provides system administrators a function to set the level of freshness
of materialized views, so that he/she can control the throughput of the system.
As long as freshness is being satisfied, CAMEL lazily maintains views stored in
distributed memory cache, so the the overhead of view maintenance is reduced
by packing multiple maintenance tasks into one task. Second, we employ incre-
mental view maintenance [4] for efficient cache maintenance, since the views for
the above query are in the equivalent class of select-projection-join(-sort) views.
There are two types of update operations that trigger the incremental view main-
tenance, 1) update of base tables of the views, such as an user appends a new
message or a new friend, and 2) update of control table of views [5]. A control
table is a table that controls which records of the views should be dynamically
materialized. Cache replacement policies are used for the dynamic update of the

1 Fig.1 used the mixed workload of message posting and friend timeline in Section 4.

Lazy View Maintenance for Social Networking Applications 349

control tables for keeping the cache hit rate high. According to [5], we could get
90% of the benefit of the materialized view by materializing only 0.5% of the
rows and this reduces both the overhead of view maintenance and storage space.
Third, CAMEL improves view maintenance performance by pushing the top-k
operation down to before join operations and by constructing a reverse index.
A reverse index is an index that improves the performance of view maintenance
whose plan is executed in reverse join order of the view/query processing.

We evaluated CAMEL using real data from a mini-blog service. The results
show that CAMEL is 6.13 and 11.2 times faster than the method of eager view
maintenance while keeping the freshness values of materialized views at 66.2%
and 38.0%, respectively.

2 Preliminary

Incremental view maintenance: Incremental maintenance for views in select-
projection-join class is based on the differentiation step [4]. Consider the follow-
ing example of a join operation among two tables. Let ΔR, ΔS be inserted
records for base tables R,S and R′,S′ be the after images of R,S to which
ΔR, ΔS have been applied, respectively. The following equation can be obtained
by applying the differentiation step:

R′ �� S′ = R �� S ∪R �� ΔS ∪ΔR �� S ∪ΔR �� ΔS (1)
= R �� S ∪R′ �� ΔS ∪ΔR �� S′ −ΔR �� ΔS (2)

= R �� S ∪R′ �� ΔS ∪ΔR �� S′ ∪ΔR �� ΔS (3)

Since the first term, R �� S, in Equation (1) or (2) is assumed to be materialized
already, the reminder part of the equation needs to be processed for incremental
view maintenance. Except for the first term, notice that Equation (1) refers only
to the before images of the tables, whereas (2) refers only to the after images of
the tables. We will return to these equations in Section 3.3.

State bug problem: Either equation is applicable to eager view maintenance,
however Equation (1) is not applicable to lazy view maintenance. Since views are
maintained lazily, update operations are made to the base tables, so the before
images of the two tables, R,S, do not exist anymore. The state bug problem [6],
which produces an incorrect result, is caused by applying the equation of before
images to the after images of tables as Equation (3) shows.

3 CAMEL

3.1 Architecture

Fig.2 depicts a system architecture on which CAMEL is implemented. It con-
sists of an application server, a distributed memory cache running on multiple
machines, and a database server. The view maintenance algorithm, CAMEL, is

350 K. Mikami, S. Morishita, and M. Onizuka

Distributed memory cacheApplication server Database server

User-defined function

Stored procedure

libmemcached

libmemcached

read

read

write

maintain

Fig. 2. System Architecture

implemented by stored procedures with user-defined functions working on top
of the database server.

A query is processed as follows. It is submitted from the application server
to a certain partition of the distributed memory cache that may store the corre-
sponding materialized view of the query. The partition is located by hashing the
record key used in the WHERE clause in the query. If the materialized view is
stored there, the query is processed without accessing the database server. Oth-
erwise, the query is sent to the database server and the result is returned and is
copied in the memory cache. The materialized view is lazily and incrementally
maintained for the update of the base tables or control table (See 3.3 for details).

3.2 Application

In typical social networking applications, each user uploads messages and shares
them with his/her friends. friend timeline denotes the user’s view that lists the
latest k (10 or 20 in general) messages of his/her friends. friend timeline is
usually shown in the top page of every user in social networking applications, so
it requires high throughput and fast response time. In terms of schema design,
there need two tables, 1) message(id, user, date, body) table to store users’
messages, and 2) friend(user, friend) table to store friend relation of users:
friend is a friend of user’s. The friend timeline of user u is expressed in relational
algebra as follows:

timeline(u) = topkdate(πfriend(σuser=u(friend)) ��friend=user message) (4)

where topkatr(R) is an unary operation and the result is defined as first k records
sorted in descending order by attribute atr in relation R. For efficient processing
of the above query, we materialize the result of the above view (query) only for
users that are in relation hotspot(hotuser), which is a control table. The idea
of the control table [5] is that we can reduce the overhead of view maintenance
and the storage space by materializing only frequent view records referred from
queries. The view is defined by letting user u in the above query be any record
in hotspot as follows:

∀u ∈ hotspot.timeline(u). (5)

Lazy View Maintenance for Social Networking Applications 351

The distributed memory cache partitions the materialized view by the partition
key obtained by hashing the record key in the view. In the above view definition,
hotuser attribute of hotspot table is used as the input to the hash function.

The features of social networking applications are 1) users frequently append
messages, 2) most users have around 100 friends on average2, and 3) users accept
a certain level of data staleness; we assume that they do not care so much if the
delay in updating their friends’ messages is around several minutes, because
social networking applications are not real-time applications.

3.3 Technical Advantages

Incremental view maintenance: Since the top-k operation can be interpreted
as a combination of sort and selection operations, the view defined above is in the
class of select-projection-join(-sort) views. Thus, it can be incrementally main-
tained by existing techniques [4], which is more efficient than being maintained
from scratch. There are two types of update operations that trigger incremental
view maintenance, 1) update of base tables of views, such as a user appending a
new message or a new friend, and 2) update of control table of views. We explain
how CAMEL incrementally maintains views with reference to Alg.1, which is the
pseudo-code of incremental view maintenance of CAMEL.

First, we investigate the maintenance of base tables. As an example, the in-
cremental maintenance of 100 message appends is dramatically more efficient
than the full maintenance of the message table which may contain one million
records (See the real data size in Section 4). Let Δmessage be the appended
messages. The friend timeline view is incrementally maintained according to the
following equation obtained by applying the differentiation step [4]:

topkdate(πfriend(σuser=u(friend)) ��friend=user message ∪Δmessage) =
topkdate(topkdate(πfriend(σuser=u(friend)) ��friend=user message) ∪

topkdate(πfriend(σuser=u(friend)) ��friend=user Δmessage)) (6)

Note the out-most topkdate operation on the right hand in Equation (6) is required,
since its parameter is a union of two ordered sets. When u is not in the control table
hotuser, the corresponding view of u is not being materialized, so there is no need
of view maintenance. Otherwise, topkdate(πfriend(σuser=u(friend)) ��friend=user

message) is being materialized, so CAMEL maintains the view. Logically,
CAMEL has to incrementally maintain friend timeline view for each user in ho-

tuser, as described in Equation (5). However, the optimum plan of incremental
view maintenance is not always the same plan with view processing. CAMEL
chooses an optimum execution plan as follows. According to Equation (5), which
corresponds to joining hotspot with timeline(u) that includes joining friend

and message, CAMEL has to join three tables, hotspot, friend, Δmessage

and the order of joining those tables strongly impacts its performance. CAMEL
relies on the query optimizer of the database server to choose the optimum

2 80 friends in Twitter [7] and about 150 social relationships in real world [8].

352 K. Mikami, S. Morishita, and M. Onizuka

Algorithm 1. Incremental View Maintenance
Require: updated records ΔR, target table R
Ensure: updated target table R′ and distributed memory cache
1: if (R is message table) then
2: R′ = R ∪ΔR;
3: submit query in Fig.3;
4: for all value u ∈ hotspot.hotuser do
5: locate partition in the query result by u;
6: send the partition to the corresponding memory cache located by hash(u);
7: append the partition to the cached data specified by u, and then apply topkdate

operation to the cached data;
8: end for
9: else if (R is friend table) then

10: {Do incremental view maintenance in similar way when R is message table}
11: else {R is control table}
12: if ΔR is a type of insert then
13: R′ = R ∪ΔR;
14: for all u ∈ ΔR do
15: submit query of timeline(u) defined in Equation (4);
16: send the query result to the corresponding memory cache located by

hash(u);
17: copy the query result as cached data of u;
18: end for
19: else {ΔR is a type of eviction}
20: {Only this part is triggered from the distributed memory cache when ΔR has

already been evicted from the cache}
21: R′ = R - ΔR;
22: end if
23: end if

plan by submitting an SQL query, see Fig3. The view maintenance works as
follows (lines 3-7 in Alg.1): 1) submit query in Fig.3 and obtain the query
result partitioned by each value of hotspot.hotuser, 2) send each partition

SELECT hotspot.hotuser,Δmessage.*
FROM hotspot, friend, Δmessage

WHERE hotspot.hotuser=friend.user

AND friend.friend=Δmessage.user

GROUP BY hotspot.hotuser;

Fig. 3. View maintenance query

to the corresponding memory
cache located by hashing the
corresponding value of
hotspot.hotuser, and 3) at the
memory cache, append the spec-
ified partition to the cached data
located by hotspot.hotuser, and
then apply topkdate operation to
the cached data. In addition, the

third step is simplified to append the query result to the head of the cached data
without topkdate operation, since the date of any record in Δmessage is newer
than that stored in the memory cache.

Second, the materialized view is maintained by not only the update of the
base tables, but also the update of the control table, hotspot, that are updated

Lazy View Maintenance for Social Networking Applications 353

according to cache replacement policies. Notice that record eviction is triggered
by the distributed memory cache, whereas record insertion to the control table
is triggered by the database server. When a query of timeline(u) is processed,
CAMEL inserts u into hotspot table and the query result is copied in the dis-
tributed memory cache (lines 14-18 in Alg.1). For record eviction, CAMEL relies
on a cache replacement policy of distributed memory cache. In CAMEL, the dis-
tributed memory cache notifies the evicted records to the database server, so that
CAMEL can determine which update of base tables may affect the materialized
views (lines 20-21 in Alg.1).
Lazy view maintenance: We introduce a function to configure the level of
freshness of materialized views, so that system administrators can control the
throughput of the system. By lazily maintaining views as long as freshness is
being satisfied, CAMEL reduces the overhead of view maintenance by packing
multiple maintenance tasks (for example, 100 message appends) into one task.
This reduces the number of database accesses needed for maintenance, the num-
ber of communications between the database server and the distributed memory
cache, and the number of view maintenance operations on the distributed mem-
ory cache. However, lazy view maintenance approaches can suffer from the state
bug problem as described in Section 2. In general, lazy view maintenance must
use Equation (2) to avoid triggering the state bug. CAMEL creates for each
updatable table a differential table [9,6] storing updated records of base tables
that are not propagated to the materialized views. CAMEL periodically propa-
gates the updated records stored in the differential tables as indicated by either
time constraint or space constraint of the differential tables.
Optimization: CAMEL introduces two optimizations: pushing down the top-k
operation and creating reverse index.

The inefficiency of the query processing of timeline(u) is due to the fact that
it must join all the messages of the friends of user u, although most of them
are not needed in the query result. CAMEL optimizes this process by pushing
the top-k operation down to inside the join operation according to the following
equation:

topkdate(πfriend(σuser=u(friend)) ��friend=user message) =

topkdate(
⋃

f∈πfriend(σuser=u(friend))

topkdate(σf=user(message))) (7)

Intuitively, Equation (7) indicates that the top-k messages of all friends of user
u are obtained by 1) extract top-k messages of each friend of user u, 2) make
union of the extracted messages of all friends, and 3) extract top-k messages of
the obtained messages. It is also possible to omit the outer top-k operation by
using sorted-merge join, since it keeps the order of the records.

Remember that the optimum plan of incremental view maintenance is not
always the same as the plan for view/query processing. As an example, there are
multiple plans for SQL query in Fig.3: 1st plan is joining friend and Δmessage

first, and then joining the result with hotspot, and 2nd plan is joining three
tables in reverse order, joining hotspot and friend first, and then joining the

354 K. Mikami, S. Morishita, and M. Onizuka

result with Δmessage. The number of records in hotspot or Δmessage is
assumed to be less than that in friend. Then, for the 1st plan, an index should
be constructed on friend.friend, whereas for the 2nd plan, an index should
be constructed on friend.user. Not only do we build the latter index, which
is already built for view/query processing, but also the former index, namely
reverse index, to improve view maintenance performance.

3.4 Handling Failure of Distributed Memory Cache

Some machine that consists the distributed memory cache may fail due to system
failure or power supply failure. In such case, an inconsistency occurs between
control tables and cached data in the distributed memory cache: although the
control tables store records, there are no corresponding materialized views in the
distributed memory cache. There are two approaches to fix this inconsistency:
to immediately detect the restart of the partition and re-build the correspond-
ing materialized views, or to detect the inconsistency afterward when CAMEL
maintains the materialized views and finds the cache lost.

4 Experiments

We made experiments to evaluate the efficiency of lazy view maintenance and
tradeoff between system throughput and freshness of views. We omit the use of
the control table in the experiments, since its effectiveness has been validated
in [5]. This simplifies query and view maintenance processing, however the tech-
niques described in Section 3 still have a valid impact on view maintenance.

Setting: Our execution environment consisted of a single database server
(MySQL 5.0) on Xeon X5355(2.66GHz) with 16GB RAM, ten sets of distributed
memory cache servers (memcached 1.2.6) on Celeron 430(1.8GHz) with 2GB
RAM, and a single application server (memcached client, libmemcached 0.23
running on ruby 1.8.5) on Xeon X5470(3.33GHz) with 32GB RAM. Linux 2.6.18
was run on all 12 computers. Each distributed memory cache server was config-
ured to have 1GB cache pool.

Data and Workload: We used real data from a mini-blog service, Goo home
(http://home.goo.ne.jp), posted from May to November 2008 with the schema
definition described in Section 3.2. The number of records of friend, message

were 70.8K(thousand), 1128K, respectively. We stored all records in friend ta-
ble and first 1000K records in message table. They were MyISAM tables. We
constructed a message posting workload by using the reminding 128K message
records. We used different sizes of Δmessage from 1 to 100K records, to vali-
date the effectiveness of lazy view maintenance. For another workload of friend
timeline processing, we generated a synthetic workload by assuming that a user
who posts more messages or has more friends reads the friend timeline view more
frequently according to a Zipf distribution.

Lazy View Maintenance for Social Networking Applications 355

(a) Comparisons of three algorithms

0

500

1000

1500

2000

2500

3000

1 10 100 1000 10000 100000

w
ri

te
 th

ro
u

gh
p

u
t (

q
u

er
y/

se
c)

laziness (delta message size)

lazy maintenance

eager maintenance

cache invalidation

(b) Micro-benchmark for lazy maintenance

0

500

1000

1500

2000

2500

3000

1 10 100 1000 10000 100000

w
ri

te
 th

ro
u

gh
p

u
t (

q
u

er
y/

se
c)

laziness (delta message size)

stored procedure invocation

stored procedure invocation
+ SQL processing

Fig. 4. Performance of Lazy view maintenance

Results: (a) Fig.4 shows the system throughputs of message posting workload
by comparing three algorithms, cache invalidation, eager view maintenance, and
lazy view maintenance. Cache invalidation, which is a typical usage of distributed
memory cache, invalidates the records of the view that are affected by the update
of the base tables. Eager view maintenance maintains materialized views syn-
chronized with every record update in the base tables, whereas lazy view main-
tenance asynchronously maintains materialized views for every Δmessage-size
update. The X-axis value is the size of Δmessage for lazy view maintenance.
The throughputs of the other two methods are fixed against the X-axis, since
both are triggered by each record update of message table, so their throughputs
are independent of the size of Δmessage. It is interesting to observe that cache
invalidation is as expensive as eager view maintenance, because not only eager
view maintenance, but cache invalidation also requires query processing of Fig.3
to locate the materialized records in the view affected by the update of the base
tables. We also observe that lazy view maintenance improves the throughput of
message posting workload. As the size of Δmessage increases, the through-
put is improved more, because the overhead of view maintenance is reduced by
packing Δmessage-size maintenance tasks into one task. For example, lazy view
maintenance by CAMEL is 6.13 and 11.2 times faster than the other two when
Δmessage size is 100 and 1000, respectively.

(b) Fig.4, which uses the same scale as (a) Fig.4 in X- and Y-axis, shows
the result of a micro-benchmark of lazy view maintenance. stored procedure

invocation in (b) Fig.4 indicates the throughput of lazy view maintenance only
with the invocation of stored procedures, i.e., without SQL processing and view
maintenance on the distributed memory cache. stored procedure invocation

+ SQL processing indicates the throughput with the invocation of stored pro-
cedures plus SQL processing, but without view maintenance. Compared with
the performance of full lazy view maintenance in (a) Fig.4, we found that
view maintenance on the distributed memory cache is the major bottleneck in
performance.

356 K. Mikami, S. Morishita, and M. Onizuka

0

20

40

60

80

100

120

1 10 100 1000 10000 100000

fr
es

sh
es

s

laziness (delta message size)

Fig. 5. Freshness of views

Finally, Fig.5 depicts how the fresh-
ness of views varies when laziness of
views increases, while the write/read
ratio of the mixed workload of mes-
sage posting and friend timeline is
fixed to 1. The freshness of views is
defined as the ratio of the number of
the queries with fresh (not stale) re-
sults to the number of all queries. As
expected, freshness of views decreases
as laziness of views increases. For ex-
ample, freshness of views are 66.2%
and 38.0% when Δmessage size is
100 and 1000, respectively. By taking the result in (a) Fig.4 into account, we
conclude that lazy view maintenance by CAMEL is 6.13 and 11.2 times faster
than the method of eager view maintenance while keeping the freshness of ma-
terialized views at 66.2% and 38.0%, respectively.

5 Related Work

There are a number of related studies on incremental maintenance for materi-
alized views: [4] examines the view maintenance problem by categorizing main-
tenance techniques from three viewpoints: expressiveness of view definition lan-
guage, amount of available information, and type of modification.

Control table is introduced in [5] to control which records of views should be
dynamically materialized. Cache replacement policies (LRU, LRU-k, 2Q [10])
are used for the dynamic update policies of the control tables.

The state bug problem was pointed out by [6]. As we described in Section 2, it
is caused by applying equations of before table images to the after table images,
since only after images are available in case of lazy view maintenance. The ap-
proach illustrated in [9] solves this problem by keeping the base tables unchanged
by update operations. Instead, it uses an optimized hypothetical relation [11] to
store the updated records of base tables. One problem with this approach is
that it slows down the processing of all queries over base tables. Deferred or
asynchronous view maintenance was proposed in [6][12] but the focus was on
minimizing view downtime. Both of them avoid the state bug problem by using
compensation. Intuitively, compensation enables us to obtain the before image
of base tables from the after image by applying base log in a reverse way, such as
R = R′ - ΔR. The lazy maintenance proposed in [13] achieves efficient mainte-
nance while ensuring that queries see only up-to-date views. It avoids the state
bug by introducing row versioning, so both before and after images are available.
[14] also uses multi-versioning to reduce contention between view maintenance
and read operations. A deferred view maintenance for data cloud [15] proposes

Lazy View Maintenance for Social Networking Applications 357

two types of materialized views: remote and local view tables. Remote view table
is separated from the base tables, whereas local view table stores view records on
the same server as the corresponding base records. For incremental maintenance
of remote views, [15] uses a log that contains both before and after values of the
records.

6 Conclusion

We developed CAMEL, a lazy view maintenance system for social network-
ing applications on a database server interacting with a distributed memory
cache. We evaluated CAMEL using real data from a mini-blog service to show
that CAMEL is 6.13 and 11.2 times faster than the method of eager view
maintenance while keeping 66.2% and 38.0% of freshness of materialized views,
respectively.

We expect that social networking applications will expand rapidly in size
and type. One interesting application is nearmiss (http://twitter.com/nearmiss)
on Twitter, which inputs the user’s GPS data and notifies other users who
are close to him/her geographically. This example leads to an open problem:
social networking engines can act as a framework on which different applica-
tions with different priority levels are run. This feature is similar to the multi-
tenant function of data cloud and so the social networking engine must schedule
those different applications properly, if the system as a whole is to achieve high
throughput.

References

1. Cashmore, P.: MySpace, America’s Number One (2006),
http://mashable.com/2006/07/11/myspace-americas-number-one

2. Facebook: Press Room (2009),
http://www.facebook.com/press/info.php?statistics

3. Arrington, M.: End Of Speculation: The Real Twitter Usage Numbers (2008),
http://www.techcrunch.com/2008/04/29/

end-of-speculation-the-real-twitter-usage-numbers/

4. Gupta, A., Mumick, I.S.: Maintenance of materialized views: Problems, techniques
and applications. IEEE Data Engineering Bulletin 18(2), 3–18 (1995)

5. Zhou, J., Larson, P.Å., Goldstein, J., Ding, L.: Dynamic materialized views. In:
Proceedings of ICDE, pp. 526–535 (2007)

6. Colby, L.S., Griffin, T., Libkin, L., Mumick, I.S., Trickey, H.: Algorithms for de-
ferred view maintenance. SIGMOD Rec. 25(2), 469–480 (1996)

7. Owyang, J.: Understanding HP Lab’s Twitter Research research (2008),
http://www.web-strategist.com/blog/2008/12/08/

understanding-hp-labs-twitter-research

8. Howard, B.: Analyzing online social networks. Commun. ACM 51(11), 14–16 (2008)
9. Hanson, E.N.: A performance analysis of view materialization strategies. SIGMOD

Rec. 16(3), 440–453 (1987)

http://mashable.com/2006/07/11/myspace-americas-number-one
http://www.facebook.com/press/info.php?statistics
http://www.techcrunch.com/2008/04/29/end-of-speculation-the-real-twitter-usage-numbers/
http://www.techcrunch.com/2008/04/29/end-of-speculation-the-real-twitter-usage-numbers/
http://www.web-strategist.com/blog/2008/12/08/understanding-hp-labs-twitter-research
http://www.web-strategist.com/blog/2008/12/08/understanding-hp-labs-twitter-research

358 K. Mikami, S. Morishita, and M. Onizuka

10. Johnson, T., Shasha, D.: 2Q: A low overhead high performance buffer management
replacement algorithm. In: Proceedings of VLDB, pp. 439–450 (1994)

11. Agrawal, R., Dewitt, D.J.: Updating Hypothetical Data Bases. Information Pro-
cessang Letters 16, 145–146 (1983)

12. Salem, K., Beyer, K., Lindsay, B., Cochrane, R.: How to roll a join: asynchronous
incremental view maintenance. SIGMOD Rec. 29(2), 129–140 (2000)

13. Zhou, J., Larson, P.A., Elmongui, H.G.: Lazy maintenance of materialized views.
In: Proceedings of VLDB, pp. 231–242 (2007)

14. Quass, D., Widom, J.: On-line warehouse view maintenance. SIGMOD Rec. 26(2),
393–404 (1997)

15. Agrawal, P., Silberstein, A., Cooper, B.F., Srivastava, U., Ramakrishnan, R.: Asyn-
chronous view maintenance for VLSD databases. In: Proceedings of SIGMOD, pp.
179–192. ACM, New York (2009)

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 359–369, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Birds Bring Flues? Mining Frequent and High Weighted
Cliques from Birds Migration Networks

MingJie Tang1,3,∗ , Weihang Wang1,3, Yexi Jiang5, Yuanchun Zhou1, Jinyan Li4,
Peng Cui2,3, Ying Liu3, and Baoping Yan1

1 Computer Network Information Center, Chinese Academy of Sciences
2 Institute of Zoology, Chinese Academy of Sciences

3 Graduate University of Chinese Academy of Sciences
4 School of Computer Engineering, Nanyang Technological University

5 School of Computer Science, Sichuan University, Chengdu
{tangrock,supercat0325,yexijiang}@gmail.com,

zyc@.cnic.cn, jyli@ntu.edu.sg, cuipeng@ioz.ac.cn,
yingliu@gucas.ac.cn, ybp@cnic.cn

Abstract. Recent advances in satellite tracking technologies can provide huge
amount of data for biologists to understand continuous long movement patterns
of wild bird species. In particular, highly correlated habitat areas are of great
biological interests. Biologists can use this information to strive potential ways
for controlling highly pathogenic avian influenza. We convert these biological
problems into graph mining problems. Traditional models for frequent graph
mining assign each vertex label with equal weight. However, the weight differ-
ence between vertexes can make strong impact on decision making by biolo-
gists. In this paper, by considering different weights of individual vertex in the
graph, we develop a new algorithm, Helen, which focuses on identifying cli-
ques with high weights. We introduce “graph-weighted support framework” to
reduce clique candidates, and then filter out the low weighted cliques. We eva-
luate our algorithm on real life birds’ migration data sets, and show that graph
mining can be very helpful for ecologists to discover unanticipated bird migra-
tion relationships.

Keywords: Graph Mining, Birds Migration, Birds Flues H5N1, Scientific data,
Qinghai Lake.

1 Introduction

The Asian outbreak of highly pathogenic avian influenza H5N1disease in poultry in
2003, 2004 and 2009 was unprecedented in its geographical extent. Its transmission to
human beings showed an ominous sign of life-threatening infection [1]. Research
findings indicate that the domestic ducks in southern China played critic role in virus
reproduction and maintenance [9]. The major question is arising to understand the

∗ This work was supported by Special Project of Informatization of Chinese Academy of

Sciences in" the Eleventh Five-Year Plan", No.INFO-115-D02.

360 M. Tang et al.

highly correlated species’ habitat. It is critical for us to find the roots of the answers,
such as: how the wild life and domestic poultry intersect together to translate virus to
related places? How is the possibility of H5N1 that spilled over from the poultry sec-
tor into some wild bird species among habitats?

Clique is the most coherent and dense substructure among all kinds of subgraphs
based on the assumption that there is at most one edge between any two vertices [3].
Discovering cliques from graph transaction database can provide insights about the
underlying structure or relationships among different objects in graph transaction [5].
Meanwhile, researchers found that group of birds tended to move in ways that resem-
bled weighted graphs, especially when a flock was active during their migration. For
this matter, graph mining from birds’ migration data does bring some aspiration for
answering biological problem.

Traditional frequent cliques mining reflect information about the frequency of
the presence or absence of a specified vertex label. However, in many cases it is
possible that frequent cliques only contribute to a small portion of the overall
“profit”, whereas non-frequent cliques produce a large portion of the “profit”.
“Profit” could be defined as the object interest in different ways. In our study, bi-
ologists need to know active area of the birds by looking at the weights of the habi-
tat combinations in order to consider the possibility of the bird interaction virus
with poultry sector. The weight can be deemed as bird migration time on one habi-
tat or density of bird satellite tracking location points. For instance, a clique, C1,
may be a frequent subgraph with frequency 60%, contributing 1% of the whole bird
migration time. Another clique,C2, may be a non-frequent clique with frequency
8%, contributing 20% of the whole migration time. Empirical experience from other
ecological studies [10, 11] suggests that clique C2 would be much interest to biolo-
gists to track the bird flues transferring.

In this work, this new approach called Helen (it stands for High wEighted cLosed
cliquE miNing) was proposed to mine high weighted closed clique from graph trans-
action databases. We first introduce graph-weighted support framework which adopts
“downward close closure” to reduce the clique candidate sets. And then we prune the
overestimated weighted cliques. The main contributions of our work are summarized
as follows: (1) Convert the biological research problem associated with bird flues
translation way into graph mining problem, (2) Present new birds’ migration clique
mining mode to find highly correlated habitat areas. (3) Provide important and hided
clues about the relationship of bird migration and H5N1 according to the results of
our experiment.

The rest of this paper is organized as follows. Section 2 overviews the related
work. Section 3 points out the desired results in which biologists interested and the
practical challenges, then we introduce the preliminary concepts for discussion. Sec-
tion 4 proposes the birds’ migration clique mining model to find frequent and high
weighted closed clique. Section 5 presents the experiment results and discuss the
results for biological research ways. Finally, we summarize our works and point out
the future research direction in the section 6.

2 Related Works

The applications of satellite tracking to bird migration studies have enabled consider-
able progress to be made with regard to elucidating the migration routes and stay sites

 Birds Bring Flues? Mining Frequent and High Weighted Cliques 361

of various migratory bird species, with important implications, for example, for con-
servation [11]. Our previous works [2] use clustering and association rules to discover
bird migration habitats, site connectedness and migration routes. However, Biologists
found that bird migration routes in small range of area usually are graph patterns
rather than simple sequence.

In the previous published literature, we are unable to find any work on discovering
weighted cliques from graph database, however, lots of works deal with mining the
frequent clique and quasi-clique from multiple graphs. Pei et al. [5] proposed an algo-
rithm called Crochet to mine cross quasi-cliques from a set of graphs. Later, Wang et
al. [3] studied the problem of mining frequent closed cliques from graph databases.
We adopt their clique enumeration and pruning idea to find frequent clique (in the
section 4), and extend this by using the graph-weighted and rechecking to get high
weighted closed cliques (see section 4.2). Later, Zeng et al. [4] studied a more general
problem formulation, that is, mining frequent closed quasi-cliques from graph data-
bases, and proposed an efficient algorithm called Cocain to solve the problem.

Meanwhile, an effort was done on assessing weighted association rules mining in
the last decade using either the average weight value of the items comprising this
itemset, or utilizing weighted framework to evaluate the weighed association rules
[7]. Presumably the most relevant work to our current study was done by Liu [6], this
paper proposed two phase algorithm to deal with “utility mining” problem. We use
their two phase principle, but instead of using utility principle we use weighted-
support framework which is easier for interpretation (see section 3.2)

3 Problem Formulation

3.1 Desired Results and Challenges

Supposed in the Figure 1(a), migration routes of birds can be regarded as one kind of
graph, where habitat can be deemed as vertex nodes and the migration routes can be
treated as edges. And birds’ migration routes can be made of one graph database. Ana-
lyzing cliques from this graph database would give important knowledge about the
possibility of birds spillover H5N1 among habitats in the same clique. There are two
kinds of cliques that we hope to discover: frequent clique and high weighted clique.

Frequent Clique mining is such a process: given a graph transaction database D and
a minimum support threshold min_sup, identify the complete set of cliques in D that
are both frequent and closed. Several frequent cliques mining methods [3, 4, 5] could
be deployed to solve frequent clique mining.

In some scenarios, high weighted cliques can provide useful information if we pay
attention to the graph vertex weight. For example, in Figure 1 (a) and its related table
Figure 1(b), several factors such as the number of migration points or the time spending
on a particular habitat can be deemed as weight. If we dismiss this kind of information
which would influence biologists to judge the possibility of birds transfer avian virus to
domestic ducks or other birds [9], the mining results would not be “interest”.

3.2 Problem Definition

We start with the introduction of a set of terms that leads to the formal definition of
high weighted cliques mining problem. The same terms are given in [3,4,5].

362 M. Tang et al.

 (a) Birds Migration illustration (b) Weight of Migration Habitats

 Time
(Day)

Location
point

Habitat1 10 4000

Habitat2 30 6000

Habitat3 61 9000

Habitat4 21 4800

Habitat5 5 2000

Fig. 1. Bird migration Space defined by Longitude and Latitude in the left. Point with different
color and lines stand for tracked bird’s migration coordinates and migration routes, separately.
In the right table is birds’ active information associate with their migration habitat.

Notations Description
 V : V = {v1; v2;…; vk}, the set of vertices
 E: E V V⊆ × , the set of edges
 L: the set of vertex labels
 F : F :V⇒L, the mapping function from labels to vertices.
 G: G = (V;E; L; F), an undirected vertex-labeled graph
 |G| : |G| = |V|, the cardinality of G
 G(S): G(S): the induced subgraph on S from G, S ⊆ V (G)

In this paper, we consider simple graph only, which does not contain self-loops,
multi-edges, and edge labels. A clique is a fully connected graph and each pair of
vertices in V there exist an edge in E. The size of a clique is defined by the number of
vertices it contains, i.e.,|V|. A clique with n vertices is called an n-clique and the
number of edges in the n-clique is n*(n-1)/2. For instance, given the graph database in
Figure 2 and min_support=2, frequent 3-clique G1 and 4-clique G2 are illustrated at
the right side. We use canonical code to present each clique, canonical code represen-
tation is defined as the minimum string among all its possible strings such as [3]. For
example, Graph 3 in Figure 2(b) is a clique with 4 vertexes, the canonical form CF is
represented as the string “ABDE”, which is the smallest string with the combination
of four letters “A”, “B”, “D” and “E”. In the rest of paper, clique will be mentioned
by their canonical form directly. Depend on the canonical form of clique; the sub-
clique relationship can be changed to subsequence relationship. If clique C1 and C2
with canonical form CF1 and CF2 respectively, C1 ⊆ C2 iff CF1 is a sub string of CF2.

Frequent clique mining has been introduced in [3,4]. In the rest of paper, weights
for the graphs vertex are considered, and high weighted clique mining are discussed
mainly. Before discussion, some important definitions are given below.

DEFINITION 2.1 (Vertex weighted): The weight value w(L) means the significance
for certain vertex label L. A graph is a set of weighted labels, each of which may

 Birds Bring Flues? Mining Frequent and High Weighted Cliques 363

appear in multiple graphs with same weight. For instance, in the Table 2, weight of
the graph vertex in the Figure 2 are described: w(A)=7 , w(B)=6 ... □

DEFINITION 2.2 (Weighted graph): Gw = (V;E; L; F;W), an undirected vertex-
labeled Weighted graph. The weighted graph is only considered with the weighted for
the vertices label. □

DEFINITION 2.3 (Weight of graph): Weight (Gw) is the one graph weight. It could
be sum up weight of all vertex labels in one graph simply.

| |

1

Weight(G) =
V

i
i

w
=
∑ (1)

Where the |V| is the number of vertex label, the wi is the vertex weight. For example,
in the Figure 2 (a) and related weight Table 1:
Weight(G1)={w(A)+w(B)+w(C)+w(D)+w(E)}=(7+6+2+14+20)=49

DEFINITION 2.4 (High Weighted Clique): The high weighted clique can be de-
fined as the sum of the weight of the graph and the weight of the fraction of transac-
tions that the graph occurs in. Thus, one clique is high weighted clique if:

| |

1

()

WSP()
()

iC G

D

i
i

Weight C

C
Weight G

ε⊆

=

= >
∑

∑

 (2)

Where the Weight (G) and Weight(C) is the weight of one graph defined in the DE-
FINITION 2.3. |D| is the number of graphs in one graph database. ε is viewed as
user’s interest. In addition, one clique C is a High Weighted Closed Clique
(HWCC): If there does not exist another clique C’ such that C ⊆ C’, WSP(C’)=
WSP(C) and WSP(C)> ε . □

(a) An example of graph database D (b) Two frequent k-clique from D

Fig. 2. A graph database and parts of its sub graph

Table 1. The weight table for each vertical label in the Figure 2 (a)

Label A B C D E
Weight 7 6 2 14 20

364 M. Tang et al.

Problem Statement: Given one Graph database D and the related vertex weighted
table WT, weighted clique mining is to find all high weighted closed clique. For

example, in Figure 2 and Table 1, WSP(Clique 1)= WSP(ABC) = (15 × 2) / (49 +

29 + 47 + 43) = 0.17, WSP(Clique 2)=WSP(ABDE) = (47 × 2) / (49 + 29 + 47 +

43) = 0.55. If ε =0.5, clique(ABC) is a low weighted clique and should not be
considered.

The graph database in the Figure 2(a), and graph database related weighted table
(Table 1) will be our running examples in the rest of our paper.

4 Birds Migration Closed Clique Mining Model

We utilized a data mining framework to discover the frequent and high weighted
cliques as in the Figure.3. A clustering algorithm in [2] is developed in this system to
find sub-areas with a dense location points relative to the entire area. Then we
adopted clique mining to discover the frequent and high weighted clique between the
discovered habitats. Because of space limitation, details of frequent closed clique
mining approach CLAN can be reached from paper [3].

Fig. 3. System Framework of Cliques Mining Toward Birds Migration

4.1 HELEN: High Weighted Closed Cliques Mining

Motivated by discovering high weighted cliques from birds’ migration graph, we
intend to extend traditional frequent graph mining method to meet our requirements.
However, the "downward closure property" in Apriori-based approach cannot apply
to the weighted clique mining directly due to weight bias support. Considering the
challenges, “high graph-weighted” that owns downward closure property is deployed
to reduce clique candidates. In the second place, rechecking is explored to filter out
the high graph-weighted cliques that are indeed low high weighted clique. This
approach was called HELEN.

 Birds Bring Flues? Mining Frequent and High Weighted Cliques 365

4.1.1 High Graph-Weighted Support Framework to Prune Candidates
DEFINITION 4.1. Graph-Weighted Clique: The graph-weighted of a clique C,
denoted as tw(C), is the sum of the graph weight of all the graph that C embedded in::

tw() Weight()
w

w
C G D

C G
⊆ ⊆

= ∑

For example clique(ABC) in Figure 2, tw(clique ABC)
=(W(G1)+W(G2))=(49+29)=78.

DEFINITION 4.2. High Graph-Weighted Clique: For a given clique C, C is a high
graph-weighted supported clique if

| |

1

={tw((C)/ ())} '
D

i
i

WeigGWSP(hC t G) ε
=

>∑ ,

Theorem 1. The graph-weighted Downward Closure Property indicates that when
K-1 Clique is not high graph-weighted significant clique, the K clique can never be
the high graph-weighted significant clique as well. In the process of enumerating
clique, only high graph-weighted (K-1)-clique can be added as the candidates to
extend K-clique.

Proof: Let T(K) be the collection of the graph transactions containing K-Clique and
T(K-1) be the collection of transactions containing (K-1)-Clique. Although (K-
1)Clique ⊆ K-Clique, the graph support K-clique will decrease as the K increasing,
thus the T(K-1) is a superset of T(K).

(1) ()

((1)) () (()) ()
m n

m n
k clique G k clique G

tw K clique Weight G tw K clique Weight G
− ⊆ ⊆

− = > =∑ ∑

Then:
| | | |

1 1

())} { ()}{ ((1)) / (()) / '
D D

i i
i i

tw K clique tWeight G Weigw K clique ht G ε
= =

>− >∑ ∑

Theorem 2. Let HGWCC be the collection of all high graph-weighted closed cliques
in a transaction database D, and HWCC be the collection of high weighted closed

cliques in D. if 'ε ε= , HWCC HGWCC⊆
Proof

HWCCC∀ ⊆ ,if C is a high weighted clique, and HGWCCC ⊆

| | | |

1 1

() ()

()
() ()

' () i i

i
C G C G

D D

i i
i i

Weight C Weight G

GWSP C
Weight G Weight

W P
G

S Cε ε ⊆ ⊆

= =

< == ≤ =
∑ ∑

∑ ∑

Thus, C is high graph-weighted clique and HGWCCC ⊆ .
To illustrated the process of clique enumeration: one lattice in the Figure.4 is built

from the graph database in our running example (in section 3.2).The sub-clique rela-
tionship between two cliques can be represented by their canonical forms and they
can be conceptually organized into lattice like structure in depth search first order.
Each box represents one clique and its canonical form, edge between two boxes

366 M. Tang et al.

Fig. 4. Clique traverse-lattice tree related to the example in section 3.2. Canonical form boxes
covered by circle (solid and dashed) are high graph-weighted closed cliques when Weighted
Supportε is 0.5. Gray-shaded boxes denote the search space. The number in the middle and
bottom of canonical box is occurrence and graph-weighted support, separately. Clique with
solid circle are the high weighted cliques after pruned.

means the sub-clique relationship. One such example in the lattice tree is one of cli-
ques: ABE. It is supported by graph 1 and 3, and its frequent support is 2. Its graph-
weighted support is (49+47)/(49+29+47+43)=0.82.

4.1.2 Rechecking Procedure
From phase 1 one have generated a set of High Graph-Weighted Closed Clique
(HGWCC), but it may contain some false-positive results, we call such sub-clique
Pseudo High Weighted Closed Clique (PHWCC). We calculate its Weighted Sup-
port for each HGWCC. If it is a PHWCC, it should be pruned, otherwise it is kept.
For example, in the Figure.4 Clique(AB) with graph-weighted support 0.74 should be
pruned, because its weighted support is 0.29 and is lower to ε=0.5. What is more, in
order to reduce the computation cost, the weight of the entire graph and the result
clique should be calculated beforehand and stored in a data structure. Since the num-
ber of graph and result clique is not huge, and the weight of each graph or clique is
represented as a single value, the space cost is not high.

5 Experiments

In this section, we present empirical results. At first, the real application of birds’
migration database is introduced. The birds migration location data sets are converted
into a graph database contain 59 graphs. On average, there are 314 edges and 37 ver-
tices in each graph. The maxim one is the one graph from bar headed goose data sets,
which owns 540 edges and 67 vertices. Moreover the algorithm CLAN and HELEN is
discussed how to discover some highly related birds’ migration habitats, and present
some empirical results in the section 5.1. In addition, we would evaluate the HELN

 Birds Bring Flues? Mining Frequent and High Weighted Cliques 367

algorithm's efficiency and scalability (see section 5.2). Finally, we discuss the rela-
tionship between highly closed birds’ migration habitats with H5N1 incidents in 5.3.
The experiments are preformed on a 1.83 GHZ Inter(R) core(TM) CPU with 2G
memory and Windows XP platform. The program is implemented in Java. All of our
results are embedded into the Google Map.

5.1 Frequent and High Weighted Closed Cliques from Birds Migration
Network

Table 2 shows the number of HGWCC and HWCC. As the decrease in the closed
large clique would bring an increase on the small closed cliques for compensate, the
total amounts of high weighted closed clique will not change totally as a result. In
order to evaluate if the high weighted mining results is useful to the biologist re-
search, we compare the high weighted cliques with the frequent cliques mined by
traditional methods. We do observe a number of interesting cliques. For example, a
clique in Fig.6(a) is a not frequent item (its frequent is 3), however, its contribution
the total time of birds spring migration is more than 5.2%.

Table 2. Experiment summary of birds’ migration data

Minimum
Weighted support
Threshold

Run Times
(Seconds)

#Candidates
Cliques
(Size>2)

#High
Graph-weighted
closed clique

#High
Weighted closed
clique

0.5 20 27 15 8

0.4 50 56 34 14

0.3 109 94 53 31
0.2 172 122 79 44

0.1 694 145 91 70

5.2 Efficiency and Scalability Test of HELEN

To evaluate the efficiency of the algorithm, the proposed algorithm HELEN was
compared with CLAN. The desired results sets of HELEN and CLAN are different,
and their performance is not suitable for comparable. However, our purpose here is
show that our algorithm could handle high weighted graph mining problem without
increase time consuming greatly. At first, we compare two algorithms with birds’
migration data sets. Figure.5(a) shows the runtime of our algorithm by varying the
weighted support threshold from 0.1 to 0.5. The results illustrated that since the num-
ber of candidate cliques decreases as the minimum weighted support increases, the
execution time decreases, correspondingly. Time cost of rechecking would not in-
crease greatly comparing to CLAN since we have saved parts of results before (see
section 4.1.2). We also evaluate HELEN’s scalability using several real databases in
terms of the base size. In Figure.5(b) we replicated the birds’ migration graphs from 2
to 16 times. It is evident that HELEN shows a linear scalability in runtime against the
number of graphs in the database.

368 M. Tang et al.

(a) Efficiency (b) Scalability

Fig. 5. Efficiency and Scalability Test of HELEN

5.3 Waterbirds Movements in Relation to High Related Habitats and H5N1
Outbreaks

Information about H5N1 outbreaks were obtained from the Ministry of Agriculture of
the People’s Republic of China Database and OIE Database for the period 16 Febru-
ary 2004–18 May 2009. From our experiment results in the Figure 6, the correlation
between birds’ migration action and the timing of H5N1 incidents in waterbirds re-
gion around Lasha, China was very high. This place is one of the most important
areas for waterbirds to overwinter, and with high density of population and poultry.
The high weighted clique in the Figure 6 means that waterbirds incline to stay those
habitats in a longer time, since both of cliques have high weighted support 5.2% and

(a) One clique with frequent 3 and the Weighted
support is 5.2%

(b) One clique with frequent 2 and the Weighted
support is 3.1%

Fig. 6. High Weighted Cliques related to Birds Migration Habitats and H5N1 outbreak loca-
tions including wild and domestic birds. Circle in blue (habitats), line in red (migration routes),
and diamond circle (H5N1 once outbreak location). Vertex weight is time of birds’ spring
migration, which lasts from 2008 Oct 10th to 2008 Nov 21th.

 Birds Bring Flues? Mining Frequent and High Weighted Cliques 369

3.1%. For this matter, we can see that H5N1 outbreaks involving waterbirds occurred
during winter, when the potential for interaction with poultry and probability of direct
transmission from poultry to migratory waterbirds was predicted to be highest. The highly
closed habitats also could be consider follow: waterbirds are directly infected from poultry
(i.e., spillover), and they may be responsible for local movement of virus regionally, fol-
lowed by the potential to transmit virus back to poultry (i.e., spillback)[10,11].

6 Conclusion

In this paper, we suggest to explore the field by using the location data information as
a supplement data mining process which can provide an alternative approach for tra-
ditional bird telemetry data analysis: visual observation from the location points. In
order to discover high weighted cliques, we develop new algorithm HELEN. Our
experiment shows that frequent and high weighted clique mining do provide an effec-
tive assistance for biologists to discover new correlated relationship between habitats.
In the future, we plan to extend our current work to address several unresolved issues.
Specifically, we intend to extend the techniques proposed in this paper to mine high
weighted closed quasi-cliques.

References

1. Liu, J., et al.: Highly pathogenic H5N1 influenza virus infection in migratory birds. Sci-
ence 309, 1206 (2005)

2. Tang, M., Zhou, Y., Cui, P., Wang, W., Li, J., Zhang, H., Hou, Y., Yan, B.: Discovery of
Migration Habitats and Routes of Wild Bird Species by Clustering and Association Analy-
sis. In: Huang, R., Yang, Q., Pei, J., Gama, J., Meng, X., Li, X. (eds.) ADMA2009. LNCS,
vol. 5678, pp. 288–301. Springer, Heidelberg (2009)

3. Wang, J., Zeng, Z., Zhou, L.: CLAN: An Algorithm for Mining Closed Cliques From
Large Dense Graph Databases. In: ICDE 2006 (2006)

4. Zeng, Z., Wang, J., Zhou, L., Karypis, G.: Coherent closed quasi-clique discovery from
large dense graph databases. In: SIGKDD 2006 (2006)

5. Pei, J., et al.: Mining Cross-graph Quasi-cliques in Gene Expression and Protein Interac-
tion Data. In: ICDE 2005 (2005)

6. Ying, L., Liao, Choudhary, A.: A Fast High Utility Itemsets Mining Algorithm. In: UBDM
2005 (2005)

7. Tao, F., et al.: Weighted Association Rule Mining using Weighted Support and Signifi-
cance Framework. In: SIGKDD 2003 (2003)

8. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. of the
20th VLDB Conference (1994)

9. Li, et al.: Numbers and distribution of waterbirds and wetlands in the Asia-Pacific region:
results of the Asian Waterbird Census Wetlands International (2007)

10. Newman, S.H., Iverson, S.A., et al.: Migration of Whooper Swans and Outbreaks of High-
ly Pathogenic Avian Influenza H5N1 Virus in Eastern Asia. PLos ONE 4(5) (May 2009)

11. Sturm-Ramirez, K.M., Hulse-Post, D.J., Govorkova, E.A., Humberd, J., Seiler, P., et al.:
Are ducks contributing to the endemicity of highly pathogenic H5N1influenza virus in
Asia? J. Virol. 79, 11269–11279 (2005)

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 370–379, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Performance Improvement of OpenJPA by Query
Dependency Analysis

Miki Enoki, Yosuke Ozawa, and Tamiya Onodera

IBM Research – Tokyo, Japan
{enomiki,ozawaysk,tonodera}@jp.ibm.com

Abstract. OpenJPA is an implementation of the Java persistence API (JPA) for
Apache, with a caching layer for databases queries to share cached objects
among multiple client sessions. This is a critical component for high perform-
ance, since the caching layer can handle many database requests. However the
performance is limited when an application includes write transactions, because
the current OpenJPA cache invalidation mechanism is course-grained and this
results in a low cache hit rate. We have implemented two kinds of finer-grained
invalidation mechanisms by using query dependency analysis and integrated
them into OpenJPA. In our experiments with TPC-W, the OpenJPA with the
finer-grained invalidation mechanisms outperformed the current OpenJPA. In
addition, we created many more mixes TPC-W, and found that the finer mecha-
nism is not necessarily the better, that is, the best mechanism varies depending
on the mixes.

Keywords: EJB3.0, JPA, OpenJPA, Query dependency analysis, Cache
invalidation.

1 Introduction

Enterprise JavaBeans (EJB) [1] is the server-side component architecture for compo-
nent-based distributed applications using Java. EJB is extensively used for application
development since it permits the secure and portable handling of persistent data in the
form of distributed objects. The EJB 3.0 specification of 2006 made it easier to de-
velop applications by replacing many of the complicated techniques used in EJB 2.1.
The Java Persistence API (JPA) that was defined as a part of the EJB 3.0 specification
standardizes the Object-Relational (O/R) mapping to enhance the capabilities of EJB.
JPA simplifies the difficult task of using object-oriented programming with a rela-
tional database by replacing direct persistence-related database accesses with high-
level object handling functions. In addition, JPA provides the Java Persistence Query
Language (JPQL) which is an SQL-like language to retrieve and manipulate data.

There are several JPA implementations such as Apache OpenJPA [3], Hibernate
[4], and TopLink Essentials [5]. Each of them has a caching layer for database que-
ries. For example, OpenJPA has two types of cache, a DataCache and a QueryCache.
The DataCache stores entities loaded from a database and each instance corresponds
to a tuple in a table. The QueryCache stores lists of the object ids returned by queries.

 Performance Improvement of OpenJPA by Query Dependency Analysis 371

However the performance of a cache is limited when an application includes write
transactions, because the current OpenJPA cache invalidation mechanism is course-
grained and this results in a low cache hit rate.

In this paper, we introduce two invalidation mechanisms that use query depend-
ency analysis for finer-grained invalidations in the OpenJPA caching layer and evalu-
ate their effectiveness on TPC-W benchmark. The contributions of our paper are as
follows.

• Implementation of two finer-grained invalidation mechanisms for OpenJPA.
We implemented two invalidation mechanisms, column-based and value-based,
and integrated them into OpenJPA.

• Evaluation with an industry standard benchmark. We empirically studied the ef-
fectiveness of the invalidation mechanisms with TPC-W, and found that the
fine-grained mechanisms perform better in all the three mixes (scenarios) than
the original mechanism. In addition, we created many more mixes TPC-W, and
found that the finer mechanism is not necessarily the better, that is, the best
mechanism varies depending on the mixes.

The outline of the rest of this paper is as follows. Section 2 describes the cache
mechanism of OpenJPA. Section 3 provides explanations of query dependency analy-
sis for our two new invalidation mechanisms. Section 4 presents our experimental
environment and performance evaluations. Related work is presented in Section 5.
Section 6 concludes the paper.

2 Apache OpenJPA and Cache Mechanism

OpenJPA is one of the implementations of JPA by Apache Software Foundation [3].
OpenJPA also provides a caching layer to store the results of queries from a database
on the application server side [2]. This caching layer is designed to significantly in-
crease performance while remaining in full compliance with JPA standard. In this
section, we describe the cache mechanism of OpenJPA in detail.

2.1 DataCache and QueryCache

A table of a database corresponds to a Java class called an entity in OpenJPA. The
client program processes select, update, insert, and delete operations through entity
objects. A row of data in a table can also correspond to an instance of an entity. The
OpenJPA caching layer consists of two key-value stores.

The first store is called DataCache, which stores data loaded from the database.
The key for DataCache is an entity id (primary key of the table) and the value is the
entity instance. The second store is called QueryCache, which stores the results of
queries. Each key for QueryCache is the combination of a JPQL statement and its
instantiated parameters. The value is the list of entity ids returned as the result of
that query.

372 M. Enoki, Y. Ozawa, and T. Onodera

Figure 1 shows the relationships between the OpenJPA caches and a database.
When a select query is issued, OpenJPA checks for cached query results in Query-
Cache before retrieving the data from the database. If cached results are found, the
entity ids in the QueryCache are looked up, and that data is returned from DataCache
instead of accessing the database. Otherwise, the query is executed against the data-
base, and the response data is loaded into the cache.

OpenJPA cache

DB

QueryCache

DataCache

10AU3
………

35JN2
20AA1

stock…titlei_id

10AU3
………

35JN2
20AA1

stock…titlei_id

……

ken2

joey1

…namea_id

……

ken2

joey1

…namea_id

Fig. 1. DataCache and QueryCache

2.2 QueryCache Invalidation Mechanism: Table-Based Invalidation

When an update request is issued, OpenJPA has to maintain consistency with the data
in the database. OpenJPA has two update mechanisms: update through entity and
update by JPQL. Update through entity means using JPA method for update. When
the field data of an entity is modified by JPA method, the corresponded data in the
database is updated transparently. Update by JPQL means using JPQL for update. In
both cases, OpenJPA invalidates all cache entries which are related to the updated
table in QueryCache. That is, the invalidation is table-based.

1. Execute the query
OpenJPA cache

DataCache

App server

Application
DB

……
joey1

…namea_id

……
joey1

…namea_id

………
20AA1
stock…titlei_id

………
20AA1
stock…titlei_id

QueryCache

2. Notify
the change

:invalidated

UPDATE Item
SET
item.stock = 5
WHERE
item.i_id = 2

0. Update target
tuple in DB

3. Maintain
cache entries

CacheManager

Fig. 2. Table-based invalidation

Figure 2 illustrates how the table-based invalidation works. This example shows up-
dating the quantity of stock in the entity with id = 2 in the ITEM table. When the entity
is updated, OpenJPA invalidates all entries related to ItemEntity in QueryCache. As
expected, the table-based invalidation results in low cache hit rates.

 Performance Improvement of OpenJPA by Query Dependency Analysis 373

3 Query Dependency Analysis for Finer-Grained Cache
Invalidation

We now present two finer-grained invalidation mechanisms, column-based and value-
based. We employed query dependency analysis to enable their mechanisms.

3.1 Column-Based Invalidation

In column-based invalidation, the dependencies of the select and update queries are
determined by the column-level analysis of queries. Each column of select queries is
checked to see if it is affected by any update queries.

Figure 3 shows an example of column-based invalidation. The update query U1
modifies the number in the stock column of entities for which the subject matches the
parameter of executed query. Select query Q1 retrieves the i_id, title and stock data
from the ITEM table, while Q2 gets the title and price from the ITEM table. Through
query dependency analysis, we can determine that U1 affects only Q1 because Q1
selects the same column as U1 and only need to invalidate the cache entries for
Q1.Then Q1 is put into an invalidation candidates group associated with U1 and this
group is used for the invalidation of U1 at runtime.

U1 UPDATE ItemEntity SET stock = ? WHERE subject = ?

Q1 SELECT i_id, title, stock FROM ItemEntity WHERE subject = ?
Q2 SELECT title, price FROM ItemEntity WHERE i_id = ?

QueryCache

Q1 cache

Q2 cache

depends

Invalidation
candidates

Fig. 3. Column-based invalidation

3.2 Value-Based Invalidation

In value-based invalidation, the dependencies of the select and update queries are
determined by a value-level analysis of queries. This means that the parameters of the
update queries are checked to determine whether or not they affect each cached re-
sults at runtime.
 Figure 4 shows an example of value-based invalidation. At execution time for the
queries, we can obtain the values of the parameters of each query. For example, the
U1 can issue a query with the value “SPORTS”, and only the entries which are
cached with the parameter value of “SPORTS” will be invalidated.

374 M. Enoki, Y. Ozawa, and T. Onodera

U1 UPDATE ItemEntity SET stock = 10 WHERE subject = ‘SPORTS’

Q1 SELECT i_id, title, stock FROM ItemEntity WHERE subject = ?
Q2 SELECT title, price FROM ItemEntity WHERE i_id = ?

QueryCache

Q1 cache

Q2 cache

Invalidation
candidates

Fig. 4. Value-based invalidation

3.3 Procedure for Column-Based and Value-Based Invalidation

Figure 5 represents the procedure for column-based and value-based invalidation.
When an update query is issued, its dependency with cache entries in QueryCache

is checked. In case of value-based invalidation, it is additionally analyzed in query
parameter level. Our query dependency analysis is based on query-update independ-
ent analysis [16].

1. invalidate_QueryCache(updateQuery)
2. //iterate until all query pattern in QueryCache are checked
3. while(selectQueries.hasNext()){
4. selectQuery = selectQueries.getNext();
5. //check dependency by the column-level analysis
6. isdepend = doColumnBasedDependencyAnalysis (updateQuery, selectQuery);
7. if(isdepend){
8. //add keys to list for invalidation
9. invalidationList.add(getQueryKeys(selectQuery));
10. }
11. }
12. //invalidate only cache entries related in update Query
13. if(column_based_invalidation){
14. invalidate(invalidationList);
15. }else if(value_based_invalidation){
16. //vlue-level analysis
17. while(invalidationList.hasNext()){
18. selectQuery = invalidationList.getNext();
19. //check dependency by the value-level analysis
20. isdepend = doValueBasedDependencyAnalysis(updateQuery,uValues,selectQuery,sValues);
21. if(isdepend){
22. valueBasedInvalidationList.add(getQueryKeys(selectQuery));
23. }
24. invalidate(valueBasedInvalidationList);
25. }
26. }

Fig. 5. Procedure of column-based and value-based invalidation

 Performance Improvement of OpenJPA by Query Dependency Analysis 375

3.4 Usage with OpenJPA

There are two ways to update in OpenJPA as described in Section 2.2, update through
entity and update by JPQL. Hence, we have to apply query dependency analysis re-
gardless of how the update request is issued. This process is illustrated in Figure 6.
First, the update query is executed using both update methods, and then extract the
information to apply query dependency analysis for column-based or value-based
invalidation. Next, query dependency analysis module analyzes their dependency, and
generates the invalidation candidates.

Update through
entity

Update by JPQL

Query
Extraction

Query Dependency
Analysis

Invalidation
Candidate
Elicitation

Fig. 6. Query dependency analysis in OpenJPA

3.5 Invalidation Cost Models

Ideally, when any update query issued, only the affected data in cache should be in-
validated so as to keep high cache hit rate. However, strict cache maintenance some-
times brings overhead, thus the finer mechanisms may not necessarily get the better
performance.

To calculate the invalidation cost at runtime, the cost has two components, the cost
of removing cache entries Cr and the cost of analyzing query dependencies Ca to spec-
ify the cache entries to be invalidated. Therefore the total invalidation cost is defined
as Ci = Cr + Ca. The values Ip, Iq and Ir are the numbers of cache entries to be invali-
dated in table-based, column-based, and value-based invalidation, respectively. R is
the cost of removing one cache entry. The cost of value-based query dependency
analysis is defined as Qv.

:basedTable− ,RIC pr ×= 0=aC :basedColumn− ,RIC qr ×= 0=aC :basedValue− ,RIC rr ×= Vqa QIC ×=

Ca is estimated as zero for the table-based and column-based invalidations since the
dependency analysis can be done off-line if we can collect all of the query templates
in advance. Also these analyses only have to be conducted for the first time for each
query templates, even if we cannot collect all of the query templates. In contrast, we
have to use on-line analysis for the value-based invalidation since the query parame-
ters are determined only at runtime. The key challenge in efficient maintenance of
cache consistency is to determine an appropriate cache invalidation mechanism for
each application.

4 Performance Evaluation

In this section, we evaluate the performance of three cache invalidation mechanisms,
table-based invalidation (as in the original OpenJPA), column-based invalidation and

376 M. Enoki, Y. Ozawa, and T. Onodera

value-based invalidation. This section evaluates of the performance on various cache
invalidation mechanisms with the TPC-W workload.

4.1 TPC-W

The TPC-W benchmark is defined by Transaction Processing Council[12]. It is a
transactional web benchmark designed for evaluating e-commerce systems. In TPC-
W, web interactions can be classified as either “Browse” or “Order” interactions.
TPC-W provides three mixes that have different rate of Browse and Order web inter-
actions, the Browsing mix consists of 95% and 5%, the Shopping mix does 80% and
20%, and the Ordering mix does 50% and 50% respectively. The Browsing mix has a
high percentage of read-only interactions, whereas the ordering mix has a high per-
centage of database modifications (insert, update and delete).

The maximum throughput in TPC-W is defined as the maximum number of web
interactions per second (WIPS) sustained over a measurement period while respond-
ing to 90% of each type of interaction within given response time thresholds. We used
the TPC-W java implementation [11] and set the number of items to 100K and the
number of customers to 2.8 million.

4.2 Evaluation Platform

Our environment for this evaluation consists of three servers, a 64-bit Dual-Core
AMD Opteron 2218 x2 with 4 GB RAM and Linux 4.2 for the client server, two 64-
bit Dual-Core AMD Opteron 2222 x2 with 8GB RAM and Linux 4.2 for the applica-
tion server and the database server. We installed DB2 UDB v9.129 as the database
server and WebSphere Application Server v7.0 as the application server. We used
OpenJPA v1.2.0 and WebSphere eXtreme Scale as the cache pug-in. No matter what
cache plug-in of OpenJPA is used, the invalidation mechanism isn’t different since its
methods are defined by OpenJPA. The client server sends requests using EBs (Emu-
lated Browsers). In this experiment, we modified the data access part of the TPC-W
application to use OpenJPA.

4.3 The Performance Comparison of Each Cache Invalidation

We compared the OpenJPA cache invalidation performance using TPC-W for four
approaches: (1) NoCache: OpenJPA with no cache, (2) Base: the original OpenJPA
cache with table-based invalidation, (3) OpenJPA with a cache using column-based
invalidation, and (4) OpenJPA with a cache using value-based invalidation. Figure 7
shows the maximum throughput of TPC-W for each approach with each mix and
Table 1 represents the cache hit rate for QueryCache.

The throughput of the column-based and value-based invalidation mechanisms is
better than Base for all mixes. The value-based invalidation has about two times bet-
ter throughput than NoCache and the cache hit rate for the QueryCache was increased
to 92% for the Browsing mix. However, the throughputs of the cache topologies de-
creased as the ratio of the orders increased. It seems that cache invalidation cost
harms caching effectiveness. The performance differences between column-based

 Performance Improvement of OpenJPA by Query Dependency Analysis 377

invalidation and value-based invalidation also decreased even though the cache hit
rates of value-based invalidation remained high.

Fig. 7. Performance comparison in TPC-W

Table 1. Cache hit rate of QueryCache and DataCache

 Browsing mix Shopping mix Ordering mix
 Base Column Value Base Column Value Base Column Value

QueryCache 17% 24% 92% 8% 14% 82% 4% 21% 71%

The CPU utilization of the database server reached more than 90% while the appli-
cation server remained under 30% in the NoCache test, while the cache-using topolo-
gies kept the database server below 50% while the application server was above 90%
for all of the mixes. This indicates that NoCache causes the database server to become
the bottleneck. In contrast, the cache maintenance costs affect the application server
performance. However, since the cache topologies greatly reduce the load on the
database, the throughput can be increased by scaling out the application servers.

In the next experiment, we evaluated the advantages of the cache topologies by
modifying the ratios of Browse and Order between the Browsing mix and Ordering
mix ratios. The results are shown in Figure 8. The x-axis represents the ratio of
Browse and Order and the y-axis is the relative value of the three cache invalidation
mechanisms based on NoCache. The value 1 on the y-axis shows the performance of
NoCache for each ratio of Browse and Order.

From these experiments, we see that whereas the performance of base falls below
NoCache at the ratio of orders 10%, column-based and value-based invalidation can
keep the effect of cache to the ratio of orders 25%.

The performance of column-based and value-based invalidation are almost the
same at the ratio of orders is about 20%, and the performance of column-based invali-
dation is marginally better than value-based invalidation. This is because the cost of
value-based invalidation is the largest of the three mechanisms, as described in Sec-
tion 3.5. We found that the most suitable cache invalidation mechanisms depend on
the ratio of update queries, which reflects the characteristics of each application.

378 M. Enoki, Y. Ozawa, and T. Onodera

0 10 20 30 40 50
100 90 80 70 60 50

Order
Browse (%)

(%)

Fig. 8. Performance comparison of each cache invalidation

5 Related Work

There has been previous work on the performance of various early versions of EJB.
Paul et al. [6] explored the impact on performance of three commit options which are
defined in the EJB 1.1 specification. Emmanuel et al. [7] experimented with several
EJB 2.0 implementations by using different application implementation methods,
container designs and communication layers. Avraham et al. [8] compared the per-
formance among JDBC direct using application, the EJB application with and without
a cache enabled. In these experiments, the EJB application with the cache showed the
advantage of scale out. For EJB 3.0, Ben et al. [9] presented a prototype Java com-
piler with query extraction so as to optimize the amount of data loaded in each select
query. Zachary et al. [10] added JPQL type checking since the JPQL queries are not
analyzed in compilation.

Much previous work about database query caching exists. For example, DBCache
[14] caches only the data which is frequently retrieved. DBProxy [15] caches the data
as a materialized view. These cache storing techniques are different with which of
OpenJPA. OpenJPA stores all query results and data respectively, hence we uniquely
defined cache maintenance mechanism. Ferdinand[13] stores database query cache
and use offline analysis of queries and updates to know the dependency for making
fewer multicast groups for update notification. Our work is different from their focus.
We evaluated the effectiveness of some cache invalidation mechanism.

6 Conclusions and Future Work

OpenJPA is an implementation of the Java persistence API (JPA), with a caching
layer for databases queries. However, the performance is limited because of the cur-
rent course-grained OpenJPA cache invalidation mechanism.

To improve the cache hit rates for high performance, we created two kinds of finer
grained invalidation mechanisms by using query dependency analysis, column-based
and value-based invalidation. In our experiments with TPC-W, these new invalidation
mechanisms outperformed the current OpenJPA. In addition, we created many more
mixes TPC-W, and found that the finer mechanism is not necessarily the better, that
is, the best mechanism varies depending on the mixes.

Since the current OpenJPA implementation for cache maintenance is based on eager
maintenance, we focused on improving the eager model. However, lazy maintenance is

 Performance Improvement of OpenJPA by Query Dependency Analysis 379

also used in many scenarios. In our future research we may compare the performance
including lazy maintenance approaches. In the future, we generalize how to determine
the suitable invalidation mechanism depending on each application characteristic, and
create and apply more various grained invalidation mechanism to each query. We also
add application servers for scale out to get better performance.

References

1. EJB 3.0 Expert Group, JSR 220: Enterprise JavaBeans Version 3.0 Java Persistence API,
Sun Microsystems, Santa Clara, CA (2006)

2. Patrick, L., Mark, P.: An in-depth look at the architecture of an object/relational mapper.
In: Proceedings of the 2007 ACM SIGMOD international conference on Management of
data, pp. 889–894 (2007)

3. Apache OpenJPA, http://openjpa.apache.org/
4. Hibernate, http://www.hibernate.org/
5. TopLink Essentials,

 https://glassfish.dev.java.net/javaee5/persistence/
6. Paul, B., Shuping, R.: Entity Bean A, B, C’s: Enterprise Java Beans Commit Options and

Caching. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 36–55. Springer,
Heidelberg (2001)

7. Emmanuel, C., Julie, M., Willy, Z.: Performance and scalability of EJB applications. In:
Proc. 17th Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA 2002), pp. 246–261 (2002)

8. Avraham, L., James, T.: Improving Application Throughput With Enterprise JavaBeans
Caching. In: Proceedings of the 23rd International Conference on Distributed Computing
Systems (ICDCS 2003), pp. 244–251 (2003)

9. Ben, W., Ali, I., William, R.: Interprocedural query extraction for transparent persistence.
In: Proceedings of the 23rd ACM SIGPLAN conference on Object-oriented programming
systems languages and applications (OOPSLA 2008), pp. 19–36 (2008)

10. Zachary, T., Chris, T., David, S., Ranjit, J., Sorin, L.: Deep typechecking and refactoring.
In: Proceedings of the 23rd ACM SIGPLAN conference on Object-oriented programming
systems languages and applications (OOPSLA 2008), pp. 37–52 (2008)

11. Harold, W., Ravi, R., Mowwis, M., Mikko, H.: An Architectural Evaluation of Java TPC-
W. In: Seventh International Symposium on High-Performance Computer Architecture
(HPCA 2001), p. 229 (2001)

12. Transaction Processing Council. TPC-W specification, http://www.tpc.org.tpcw
13. Charles, G., Amit, M., Anastasia, A., Bruce, M., Todd, M., Christopher, O., Anthony, T.:

Scalable Query Result Caching four Web Applications. In: Proceedings of the 34th Very
Large Databases (VLDB 2008), pp. 550–561 (2008)

14. Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Woo, H., Lindsay, B.G., Naughton,
J.F.: Middle-tier database caching for e-business. In: Proc. ACM SIGMOD International
Conference on Management of Data (2002)

15. Amiri, K., Park, S., Tewari, R., Padmanabhan, S.: DBProxy: A dynamic data cache for
Web applications. In: Proc. International Conference on Data Engineering, ICDE 2003
(2003)

16. Levy, A.Y., Sagiv, Y.: Queries independent of updates. In: Proc. International Conference
on Very Large Data Bases, VLDB 1993 (1993)

Chimera: Stream-Oriented XML
Filtering/Querying Engine

Tatsuya Asai1, Shin-ichiro Tago1, Hiroya Inakoshi1, Seishi Okamoto1,
and Masayuki Takeda2

1 Fujitsu Laboratories Ltd., Kawasaki 211–8588, Japan
{asai.tatsuya@jp,s-tago@jp,inakoshi.hiroya@jp,seishi@labs}.fujitsu.com

2 Kyushu University, Fukuoka 819–0395, Japan
takeda@inf.kyushu-u.ac.jp

Abstract. In this paper, we study the problem of filtering and querying
massive XML data against a large set of XPath patterns in Univariate
XPath. Based on an efficient matching engine XSIGMA for linear XPath
patterns with Boolean expression over keywords and a twig evaluator over
event streams, we propose an XPath filtering/querying engine Chimera,
which runs fast and stably for any XPath patterns without heavy pre- pro-
cessing techniques for queried data often used by existing native XMLDBs
and RDBs. Chimera also runsmuch faster than those engines against thou-
sands of XPath patterns. We implemented Chimera and showed its effec-
tiveness by several experiments on artificial and real datasets.

1 Introduction

In the present age called the Info-plosion era, efficient processing for massive
XML data has been more important. Thus, there have been increasing demands
for efficient processing engines for standard XML querying languages such as
XPath [7], XQuery [4], and XSLT [6].

Existing XML querying engines are mainly divided into the following two
categories: (i) Stored data processing, and (ii) Stream processing. For stored data
processing, there are various commercial engines such as native XMLDB engines
and RDB engines with features for processing XML. Those engines enable us
to achieve higher performance for a tuned set of queries by using indices and
normalizing queried data. However, the burden of developing large and complex
systems with those engines has been increasing due to the large computational
and human costs for the heavy pre-processing that is required, as described
above. Furthermore, the response time of those engines strongly depends on the
characteristics and amount of input queries. For example, response time becomes
much worse when there are queries with many wildcards or when a number of
queries are input at once. Therefore, it is difficult to achieve fast and stable
performance for any input set of queries with those engines.

Stream processing technologies for XML data such as XML filtering [2,8,9,10]
and stream XML querying [5,11,13] have been widely studied and a lot of pro-
totyping systems have been proposed since around 2000. Most of those studies
achieved scalable performance against both data and query sizes to filter or to

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 380–391, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Chimera: Stream-Oriented XML Filtering/Querying Engine 381

query infinite XML streams continuously, while they restrict classes of queries
for fast and light-weight stream processing.

The purpose of this study is to develop an XPath querying engine that works
quickly and stably for massive XML datasets stored and multiple queries in-
put with light-weight pre-processing of data, instead of requiring heavy pre-
processing and human operations like traditional stored data processing engines.

In this paper, we consider stream-oriented filtering and querying methods
for stored large XML data and propose a fast and scalable querying engine
Chimera against a large set of XPath patterns included in Univariate XPath [3,9].
Chimera’s core engine, named XSIGMA, filters thousands of primitive XPath
patterns efficiently by a light-weight pre-processing technique for XML data [10]
and a DFA detecting together both occurrences of paths and keywords. Chimera
also includes evaluating engines for output event streams from XSIGMA. By
adopting such a stream-oriented architecture, Chimera achieves a fast and stable
performance against a large set of XPath patterns, in contrast with traditional
processing engines for stored XML data.

We show the effectiveness of Chimera by comparing it with several stream
XPath filtering/querying engines and a commercial RDB engine. The experi-
mental results show that Chimera runs fast and stably for any XPath patterns
without the need for heavy pre-processing techniques often used by existing na-
tive XMLDBs and RDBs. Furthermore, Chimera runs much faster than those
engines against thousands of XPath patterns.

1.1 Related Work

Several XPath streaming engines have been proposed. Yfilter [8] builds an NFA
for the queries by merging common prefixes of the query paths. XMLTK [2]
adopted the Lazy-DFA technique that converts the NFA for the queries into a
DFA lazily. TwigList [13] constructs tree-like structures for matching a twig pat-
tern from XML streams. SPEX [11] processes regular path expressions including
reverse axes [12]. The most related research is XAXEN [10], which is a stream-
oriented XML filtering engine using a light-weight pre-processing technique for
XML data.

1.2 Organization

This paper is organized as follows. In Section 2, we prepare basic notions and
definitions. In Section 3, we present the architecture of Chimera. In Section 4,
we report results from experiments on artificial and real datasets, and finally,
we conclude this paper in Section 5.

2 Preliminaries

2.1 XML Trees and Pathtrie

First, we define a model of XML data. Let Σ be an alphabet and Σ∗ denote the
set of strings over Σ. Let T be a set of tagnames . Then, an XML tree T is an

382 T. Asai et al.

XML Data D
<shop>

<floor>

<item>

<id>1</id>

<name>pen</name>

</item>

<category>

<name>stationery</name>

</category>

</floor>

<floor>

<item>

<id>2</id>

<name>cup</name>

</item>

<category>

<name>tableware</name>

</category>

</floor>

</shop>

shop

floor

id

item category

name name

1

pen stationery

floor

id

item category

name name

2

cup tableware

XML Tree T
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

19

18

Fig. 1. XML data D and its tree repre-
sentation T

1

2

4

3 6

5 7

Pathtrie PTD

shop

floor

item category

ID name name

BML Data B

[1

[2

[3

[41]4

[5pen]5

]3

[6

[7stationery]7

]7

]2

[2

[3

[42]4

[5cup]5

]3

[6

[7tableware]7

]6

]2

]1

0

Fig. 2. Pathtrie PTD and BML data B
for the XML data D

ordered tree such that the interior nodes, called the element nodes , are labeled
by tagnames in T and the leaves, called the text nodes , are labeled by strings in
Σ∗. Fig. 1 shows an XML data D and its tree representation T , where the circles
and the squares represent element and text nodes, respectively. The strings in
element and text nodes in T represent tagnames and text values, respectively.
The numbers adjacent to nodes of T mean their IDs.

Let T be an XML tree. Then, VT and ET denote the node set and the edge
set of T , respectively. Let k ≥ 0 be a non-negative integer. Then, a path p =
(v0, . . . , vk) ∈ V ∗

T in D is defined as a sequence from the root r = v0 to an
element node vk, where (vi, vi+1) ∈ ET holds for every i = 0, . . . , k − 1. Let
p = (v0, . . . , vk) be a path in T and tag(p) = (tag(v0), . . . , tag(vk)) ∈ T ∗ be
the sequence of tagnames associated with each node vi. Let D be an XML data
and T be its tree representation. Then, the pathtrie [10] PTD for D is defined
as a trie with alphabet T representing the set of tagname sequences for all
the paths in T . We associate each node in PTD with a non-negative integer
k = 0, 1, . . . , |PTD| − 1 called a path ID , where |PTD| is the size of PTD. The
figure on the left in Fig. 2 shows the pathtrie for the XML data D in Fig. 1,
where the strings associated with the edges mean tagnames and numbers in the
circular nodes mean path IDs.

2.2 Fragment of XPath Patterns

The fragment of XPath that Chimera supports is Univariate XPath [3,9], the
grammar of which is shown in Fig. 3. In what follows, XPath patterns mean any
strings generated by the grammar. If an XPath pattern has no predicates, we
call it a linear XPath pattern (or linear path for short).

An XPath pattern specifies a query tree Q to navigate an XML tree T . Now,
we will give a definition of query trees and their occurrences in XML trees. A
query tree Q is an unordered tree with a special node Out, called the output
node, such that the interior nodes are labeled by tagnames in T , the leaves are
labeled by Boolean expression over strings in Σ∗, and the edges are labeled by
‘/’ (child) or ‘//’ (descendant).

Chimera: Stream-Oriented XML Filtering/Querying Engine 383

Path := Step Path Step

Step := Axis NodeTest | Axis NodeTest ‘[’ Predicate ‘]’

Axis := ‘/’ | ‘//’

NodeTest := Tagname | ‘*’

Predicate := Path | Contains(Path, String) | Path CompOp Constant

| Predicate ‘and’ Predicate | Predicate ‘or’ Predicate | ‘not’

Predicate

CompOp := ‘=’ | ‘!=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’

Fig. 3. Univariate XPath

For an XML tree T and a query tree Q, we say that Q occurs in T if there
exists a matching function ϕ : VT → VQ satisfying the following conditions for
any v, v1, v2 ∈ VQ:

– (ϕ(v1), ϕ(v2)) ∈ ET holds if the edge-label of (v1, v2) ∈ EQ is ‘/’ and
(ϕ(v1), ϕ(v2)) ∈ E+

T holds if the edge-label of (v1, v2) ∈ EQ is ‘//’
– labelQ(v) = labelT (ϕ(v)) holds for every internal node v ∈ VQ

– labelQ(v) matches labelT (ϕ(v)) in the sense of string pattern matching for
every leaf v ∈ VQ

where labelQ(v) and labelT (w) denote the node-labels assigned to v ∈ VQ and
w ∈ VT , respectively. An occurrence of Q in T is defined as a node ϕ(Out) ∈ VT

such that Out ∈ VQ is the output node of Q and ϕ is a matching function from
Q in T . If v ∈ VT is an occurrence of Q in T , we say that Q occurs at v ∈ VT .
We denote by Occ(Q, T) ⊆ VT the set of all occurrences of Q in T .

2.3 Problem Statement

We give a formal definition of two basic problems we address in this paper as
follows:

Definition 1 (XPath filtering problem). For a given XML data D and a
given set X = {x1, . . . , xm} of XPath patterns, return the set Occ(X, T) :=
Occ(x1, T) ∪ · · · ∪Occ(xm, T) ⊆ VT , where T is the tree representation of D.

Definition 2 (XPath querying problem). For a given XML data D and a
given set X = {x1, . . . , xm} of XPath patterns, return each set Occ(xi, T) ⊆ VT

for every i = 1, . . . , m, where T is the tree representation of D.

3 Architecture

3.1 Overview of Chimera

In Fig. 4, we show the architecture of Chimera. Given a set X = {x1, . . . , xm}
of XPath patterns, Chimera first decomposes them into a set of primitive pat-
terns described in Section 3.3. The most significant component in the system is

384 T. Asai et al.

A set of XPath patterns X={x1,...,xm}

Decomposing X to the
set of primitive patterns
P={p1,...,pn}

ConstructDFA

DetectOcc
XSIGMA

Input:

Output: Answer sets Occ(xi, D) for every xi ∈ X

Pathtrie PTD

BML data B

XML data D
Import

Lazy Filter

Twig Evaluator

Lazy Filter

Twig Evaluator

Lazy Filter

Twig Evaluator

Occurrence event streams for P

Fig. 4. Architecture of Chimera

]

[

k

��{[,]}

1
2

k

ch(k)

ch(2)
ch(1)

M1

M2

Mk

Fig. 5. DFA for matching primitive
patterns, where each Mj is an AC
machine for matching string expres-
sions under π of path ID j. (Back-
ward transitions are omitted to dis-
play)

XSIGMA, which is a fast matching engine for primitive patterns described in
Section 3.4. XSIGMA generates occurrence event streams for all primitive pat-
terns in P . To achieve faster matching by XSIGMA, we assume that the input
XML data is transformed into its binary representation called BML data de-
scribed in Section 3.2. Finally, Chimera applies Lazy Filter and Twig Evaluator
described in Section 3.5 to the event streams for evaluating all XPath patterns
in X . In Chimera, the last evaluating processes can be executed in parallel.

3.2 Binary Transformation of XML Data

For a given XML data D and its pathtrie PTD, Chimera transforms D into its
binary representation B [10], called BML data for D, as follows. All occurrences
of start tags and end tags in D are, respectively, replaced with ‘[’ and ‘]’ followed
by their corresponding path IDs i ∈ {0, 1, . . . , |PTD| − 1}. We assume that ‘[’
and ‘]’ are reserved characters not included in Σ. This transformation process
takes O(|D| · log |T |) time [10], where |T | is the number of distinct tagnames in
D. The BML data B transformed from the XML data D of Fig. 1 is shown on
the right of Fig. 2, where the path IDs are given by the pathtrie PTD displayed
on the left.

3.3 Decomposing XPath Patterns

Let π be a linear XPath pattern not including descendant axes (//) and expr be
a Boolean expression over keywords in Σ∗. Then, primitive patterns are denoted
as p = π{expr}, which means that p occurs at v ∈ VD if and only if π occurs at
v and expr is evaluated to be true under v. For a primitive pattern p = π{expr},
expr is called the string expression under π.

In the Chimera system, each input XPath pattern xi is decomposed into a
set of primitive patterns. The decomposition procedure is rather straightfor-
ward: It first replaces the descendant axes (//) in xi with their possible tagname

Chimera: Stream-Oriented XML Filtering/Querying Engine 385

sequences with consulting the pathtrie, and then decomposes the resulting tree-
shaped patterns into their paths.

Now, we show small examples of pattern decomposition. Suppose that we have
the following XPath patterns for the XML data D in Fig. 1:

x1: /shop/floor//name[./ = "pen"]
x2: /shop/floor/item[name = "cup"]/ID

Then, x1 is decomposed into p11 = /shop/floor/item/name{”pen”} and p12 =
/shop/floor/category/name{”pen”}by the pathtrie PT in Fig. 2. Also, x2 is de-
composed intop21=/shop/floor/item{ε},p22=/shop/floor/item/name{”cup”},
and p23 = /shop/floor/item/ID{ε}.

3.4 XSIGMA: The Core Engine

Let D be an XML data and B be its binary representation. For a given set
P = {p1, . . . , pn} of primitive patterns and the pathtrie PTD, XSIGMA first
constructs a DFA M for matching the primitive patterns in P . Then, XSIGMA
scans B from left to right to find all occurrences of the input primitive pat-
terns and returns sequences Occ(p1), . . . , Occ(pn) of occurrence events for every
primitive pattern in P . We also call Occ(pi) an event stream for pi for every
i = 1, . . . , n.

In Fig. 6, we show the algorithm ConstructDFA. The algorithm builds a
machine M for matching all primitive patterns in P , consisting of Aho-Corasick’s
pattern matching machines [1] (AC machines, for short) Mπ for matching all
string expressions under π. Fig. 5 shows a machine M , where the circles and the
arrows represent states and transitions, respectively. Moreover, Mj represents
an AC machine for matching all string expressions under π where j is π’s path
ID, for every j = 1, . . . , |PTD|−1. Note that ch(j) denotes the set of child nodes
of j in the pathtrie PTD.

Then, we show the algorithm DetectOcc in Fig. 7. Receiving a BML data
B and a DFA M constructed by ConstructDFA, the algorithm scans B by
one character and make a transition in M . If the algorithm detects an occur-
rence of a primitive pattern pi ∈ P , then immediately it generates an occur-
rence event for pi. After finishing scanning B, the generation of event streams
Occ(p1), . . . , Occ(pn) is complete. As the result, DetectOcc finds all occur-
rences of every primitive pattern in P in O(|B| + ||Occ||) time while it uses
O(|PTD| · ||Str||) space in the worst case, where ||Occ|| is the total size of the
event streams and ||Str|| is the total length of strings included in P .

3.5 Evaluation for XPath Patterns

In this subsection, we describe the last two modules of Chimera, namely, Twig
Evaluator and Lazy Filter. Twig Evaluator constructs tree structures like
TwigList [13] from the event streams Occ(p1), . . . , Occ(pn) for evaluating ev-
ery input XPath pattern in X . Twig Evaluator runs in O(c · ||Occ||) time, where
c = maxxi∈X |xi| and ||Occ|| denotes the total size of the event streams. There-
fore, Twig Evaluator will be a bottleneck of Chimera when ||Occ|| is quite large.

386 T. Asai et al.

Algorithm ConstructDFA:
Input: A set P = {p1, . . . , pn} of primitive patterns and a pathtrie PT .
Output: A DFA M .
1. For every linear path π in PT , build an AC machine Mπ for matching all string

expressions under π in P .
2. Connect all machines Mπ as displayed in Fig. 5 and let M be the resultant machine.
3. Return M .

Fig. 6. An algorithm for constructing a DFA

Algorithm DetectOcc:
Input: A BML data B and a DFA M constructed by ConstructDFA.
Output: An event stream Occ.
1. Set i := 0 and s be the initial state of M .
2. While B[i] �= EOF, do the followings: /* scanning by one character */

– s := goto(s,B[i]). /* making a transition */

– If an occurrence of pi ∈ P is found, then return an occurrence event for pi.
– i := i + 1.

Fig. 7. An algorithm for finding occurrences of primitive patterns

To overcome this difficulty, we have devised Lazy Filter, which is a fast and
light-weight filtering module for event streams, and arranged it in front of Twig
Evaluator. Lazy Filter recognizes and removes such events in advance to be ob-
viously evaluated as false in Twig Evaluator by checking lazy logical conditions.
For example, suppose that we have the pattern /A1[B1]/ . . . /An[Bn]. Then, Lazy
Filter evaluates the logical condition B1 ∧ . . . ∧ Bn on the event streams. If the
condition is false, the corresponding events are removed. A complex twig pattern
tends to cause large event streams since the number of decomposed primitive
patterns becomes large and they match data frequently. Thus, Lazy Filter plays
an important role in Chimera for achieving fast and stable performance.

4 Experimental Results

In this section, we will present experimental results on artificial and real datasets
to evaluate the performance of Chimera. We implemented the prototyping sys-
tem in C. The experiments were run on a PC (Intel 2.66GHz dual core, CentOS
5.2) with 4GB of main memory. In Table 1, we show datasets prepared for the
experiments. The data XMark1, XMark5, and XMark10 are randomly generated
by xmlgen1 with scaling factors 1, 5, and 10, respectively. The data dblp2 is bib-
liographic information on major computer science. We also randomly generated

1 http://monetdb.cwi.nl/xml/downloads.html
2 http://www.cs.washington.edu/research/xmldatasets/www/repository.html#dblp

Chimera: Stream-Oriented XML Filtering/Querying Engine 387

Table 1. Datasets for the experiments

XMark1 XMark5 XMark10 dblp
Data size (MB) 111 558 1,118 128
BML size (MB) 120 603 1,208 129
tagnames 74 74 74 35
pathtrie nodes 515 515 515 126

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Patterns

R
u
n
n
in

g
 t

im
e
 (
s
e
c
)

XSIGMA

XMLTK

YFILTER

(a) Patterns without wildcards

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Patterns

R
u
n
n
in
g
 t
im
e
 (
s
e
c
)

XSIGMA

XMLTK

YFILTER

(b) Patterns with wildcards (50%)

Fig. 8. Running time comparison for filtering single primitive patterns

test sets of XPath patterns by using pathgenerator3 with DTDs of XMark and
dblp.

In what follows, we assume that a wildcard means // or *, and that patterns
with wildcards (c%) mean that their occurrence probabilities of // and * are
both c% (0 ≤ c ≤ 100). We call patterns with wildcards (0%) as patterns with-
out wildcards . We also define simple patterns and complex patterns as XPath
patterns with at most one predicate and ones with more than two predicates,
respectively.

4.1 Comparing XSIGMA with Other XML Filtering Engines

First, we compared the performance of XSIGMA with those of yfilter [8] and
XMLTK [2] in filtering a single primitive pattern. Fig. 8 shows the running
times of those engines over XMark1 data for 30 primitive patterns with/without
wildcards. XSIGMA runs about 3.4 times faster than XMLTK and about 70
times faster than yfilter.

Then, we studied performance of XSIGMA for filtering a set of primitive
patterns. In Fig. 9 and 10, we show the running time and the memory us-
age of XSIGMA, yfilter, and XMLTK against sets of primitive patterns of size
1, 10, . . . , 10000. From the results, XSIGMA runs faster than yfilter and XMLTK
against large sets of primitive patterns while it uses more computing space than
XMLTK. This tradeoff between XSIGMA and XMLTK comes from the difference
of their strategies for matching primitive patterns using DFA. XSIGMA adopts

3 http://yfilter.cs.berkeley.edu/code release.htm

388 T. Asai et al.

0

5

10

15

20

25

30

1 10 100 1000 10000

of petterns

R
u
n
n
in

g
 t

im
e
 (

s
e
c
)

XSIGMA

XMLTK

YFILTER

(a) Patterns
without wildcards

0

20

40

60

80

1 10 100 1000 10000

of petterns

R
u
n
n
in
g
 t
im
e
 (
s
e
c
)

XSIGMA

XMLTK

YFILTER

(b) Patterns with
wildcards (50%)

Fig. 9. Running time comparison of
XSIGMA against a set of primitive pat-
terns

0

200

400

600

800

1000

1 10 100 1000 10000

of patterns

M
e
m

o
r
y
 s

iz
e
 (

M
B

)

XSIGMA

XMLTK

YFILTER

(a) Patterns
without wildcards

0

200

400

600

800

1000

1 10 100 1000 10000

of patterns

M
e
m

o
r
y

s
iz

e

(M

B
)

XSIGMA

XMLTK

YFILTER

(b) Patterns with
wildcards (50%)

Fig. 10. Space comparison of XSIGMA
against a set of primitive patterns

Table 2. Import time comparison

Running time (sec) XMark1 XMark5 XMark10 dblp
Chimera 4 23 43 8
DB2 30 732 932 40

�

�

��

��

��

��

��

� � � � � �� �� �� �� �� �� �� �� �� ��

	
�����

�
�
�
�
��
��
��
	

��
�

�

�����

���

�	��

�������

(a) Simple patterns without wildcards

�

�

��

��

��

��

��

� � � � � �� �� �� �� �� �� �� �� �� ��

	
�����

�
�
�
�
��
��
��
	

��
�

�

�����

���

�	��

�������

(b) Simple patterns with wildcards (50%)

�

�

��

��

��

��

��

� � � � � �� �� �� �� �� �� �� �� �� ��

	
�����

�
�
�
�
��
��
��
	

��
�

�

�����

���

�	��

�������

(c) Complex patterns without wildcards

�

�

��

��

��

��

��

� � � � � �� �� �� �� �� �� �� �� �� ��

	
�����

�
�
�
�
��
��
��
	

��
�

�

�����

���

�	��

�������

(d) Complex patterns with wildcards (50%)

Fig. 11. Running time comparison for querying single XPath patterns on XMark

Chimera: Stream-Oriented XML Filtering/Querying Engine 389

the DFA matching primitive patterns directly for faster processing and XMLTK
adopts the Lazy-DFA technique for using less memory.

4.2 Comparing Chimera with Other XPath Querying Engines and

a Commercial RDB

We also compared Chimera to yfilter, SPEX [11], and IBM’s DB2 (Enterprise
Server Edition Version 9.7). Note that XMLTK does not allow both simple and
complex patterns completely. Table 2 compares the import time of Chimera and
DB2, where the import time of Chimera we measured is the time for pathtrie
construction and binary XML data transformation. Chimera is 5-30 times faster
than DB2.

Then, we executed performance comparison for querying the four kinds of
single XPath patterns, which are (a) simple patterns without wildcards, (b)
simple patterns with wildcards, (c) complex patterns without wildcards, and
(d) complex patterns with wildcards. Fig. 11 and 12 show the results against
each kind of single patterns on XMark1 and dblp, respectively. From the results,
Chimera runs fast and stably against each kind of patterns. DB2 also runs fast
while its performance sometimes becomes worse especially in case of querying a
pattern with wildcards. This shows the potential of stream-oriented processing
for large XML data stored.

Finally, we examined the scalability of Chimera. In Fig. 13, we show the
running time of Chimera, yfilter, and DB2 for querying a set of patterns of
sizes 100, 1000, . . . , 5000 on XMark1 and dblp data. In Fig. 14, we also show the
running time of Chimera on XMark1, XMark5, and XMark10 data against a set

(a) Simple patterns without wildcards (b) Simple patterns with wildcards (50%)

(c) Complex patterns without wildcards (d) Complex patterns with wildcards (50%)

Fig. 12. Running time comparison for querying single XPath patterns on dblp

390 T. Asai et al.

(a) XMark1 (b) dblp

Fig. 13. Running time comparison for querying a
set of XPath patterns

�

��

���

���

���

���

���

� ��� ��� ��� 	�� ���� ����

�����������

�
�
�
�
��
��
��
	

��
�

�

���������	

����������	

�����������	

�����������	

Fig. 14. Scalability of Chimera

of patterns of sizes 10, 100, 1000, 2000.The pattern sets used in those experiments
include both simple and complex patterns with wildcards (1%). From the results,
we can conclude that Chimera runs fast in real time and scales against the size
of both data and patterns.

5 Conclusion

In this paper, we proposed an XPath filtering/querying engine Chimera. Based
on an efficient matching engine XSIGMA for primitive patterns and a twig evalu-
ator over event streams, Chimera runs fast and stably against a large set of XPath
patterns in Univariate XPath. The experimental results show that Chimera runs
fast and stably for any XPath patterns and scales against thousands of XPath
patterns without the need for any heavy pre-processing techniques.

References

1. Aho, A.V., Corasick, M.: Efficient String Matching: An Aid to Bibliographic Search.
Comm. ACM 18(6), 333–340 (1975)

2. Avila-Campillo, I., Green, T.J., Gupta, A., Onizuka, M., Raven, D., Suciu, D.:
XMLTK: An XML toolkit for scalable XML processing. In: Proc. PLANX 2002
(2002)

3. Bar-Yossef, Z., Fontoura, M., Josifovski, V.: On the Memory Requirements of
XPath Evaluation over XML Streams. Journal of Computer and System Sci-
ences 73(3), 391–441 (2007)

4. Boag, S., Chamberlin, D., Ferandez, M.F., Florescu, D., Robie, J., Simeon, J.:
XQuery 1.0: An XML Query Language. W3C (2003),
http://www.w3.org/TR/xquery

5. Chen, Y., Davidson, S., Zheng, Y.: An Efficient XPath Query Processor for XML
Streams. In: Proc. ICDE 2006 (2006)

6. Clerk, J.: XML Transformations (XSLT) Version 1.0. W3C (1999),
http://www.w3.org/TR/xslt

7. Clerk, J., DeRose, R.: XML Path Language (XPath) Version 1.0. W3C (1999),
http://www.w3.org/TR/xpath

http://www.w3.org/TR/xquery
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath

Chimera: Stream-Oriented XML Filtering/Querying Engine 391

8. Diao, Y., Altinel, H., Franklin, M.J., Zhang, H., Fischer, P.M.: Path Sharing and
Predicate Evaluation for High-performance XPath Filtering. In: Proc. ACMTOD
(2003)

9. Gou, G., Chirkova, R.: Efficient Algorithms for Evaluating XPath over Streams.
In: Proc. SIGMOD 2007, pp. 269–280 (2007)

10. Mitarai, S., Ishino, A., Takeda, M.: Light-weight Acceleration for Streaming XML
Document Filtering. In: Proc. SWOD 2007, pp. 37–42 (2007)

11. Olteanu, D.: SPEX: Streamed and Progressive Evaluation of XPath. TKDE 19(7),
934–949 (2007)

12. Olteanu, D., Meuss, M., Furche, T., Bry, F.: XPath: Looking Forward. In:
Chaudhri, A.B., Unland, R., Djeraba, C., Lindner, W. (eds.) EDBT 2002. LNCS,
vol. 2490, pp. 109–127. Springer, Heidelberg (2002)

13. Qin, L., Yu, J.X., Ding, B.: TwigList: Make Twig Pattern Matching Fast. In: Ko-
tagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA
2007. LNCS, vol. 4443, pp. 850–862. Springer, Heidelberg (2007)

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 392–395, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Privacy and Anonymization as a Service: PASS*

(Demonstration proposal)

Ghasem Heyrani-Nobari1, Omar Boucelma2, and Stéphane Bressan1

1 School of Computing, National University of Singapore
ghasem@comp.nus.edu.sg, steph@nus.edu.sg

2 LSIS, Aix-Marseille University
omar.boucelma@univ-cezanne.fr

Abstract. The Internet and the World Wide Web democratized the means to
publish and share corporate and personal data. Many anecdotes occurred over
the last decades that well illustrate the danger for privacy and confidentiality.
The advent of Cloud computing infrastructures is likely, if successful, to further
encourage this trend. The analysis, diagnosis and prevention of privacy risk
within a Cloud computing infrastructure are therefore important services to
provide to users. In recent years, several algorithms such as K-anonymity, L-
diversity and Anatomy, have been proposed to address the issue of data ano-
nymization and diversification. They transform original data sets into modified
data sets ensuring some privacy while minimizing the information loss incurred
during the transformation. Shared and published data can remain meaningful
without jeopardizing privacy.

We propose an integrated collection of privacy management services to-
gether with an interface to orchestrate their execution and assess their evalua-
tion. The system consists of Web services and Cloud architecture. Cloud users
can explore and apply privacy management services as Cloud services. This
proposal is a first but significant step towards the general concept of a Cloud of
data services and data transformation processes for data privacy, anonymity, se-
curity, quality, mining, management, publishing and sharing of data.

Keywords: web services, data privacy, anonymization, online database tools,
data quality, cloud services.

1 Introduction

Organizations are producing larger and larger amounts of electronic information. It is
often a necessity --for various reasons related to business and marketing practices -- to
share and publish data. These organizations need however to make sure that sensitive
information is not disclosed. They need to often resort to ad hoc transformations with
little guarantee of privacy. In [3] such risk has been strikingly illustrated: the medical

* This project is partially supported by a university research grant R-252-000-328-112 and

SERC Grant 0421120028.

 Privacy and Anonymization as a Service: PASS 393

record of the governor of Massachusetts has been identified among publicly available
medical data.

The problem is further exacerbated by the heterogeneity of hardware, software and
data. Cloud computing among its various objectives also aims at offering to users a
flexible solution to the problem of interoperability by providing a unique integration
platform: the Cloud itself.

The system we propose to demonstrate, PASS, advocates the concept of a Cloud
and service oriented solution for the management of data privacy. It consists of a (i)
web based user interface for the analysis, diagnosis [2] and elimination of the privacy
risk and the exploration of the possible solutions, and (ii) web services for the reali-
zation of an integrated solution.

PASS offers a range of data anonymization and diversification algorithms in a one
stop integrated environment together with all the utility services to sample, test, up-
load, process and save data to be published.

2 Designing Data Processes

Processing in PASS is organized in projects. Each project is a collection of objects:
datasets (imported data, remote data sources and results) and processes that apply to
the data. Objects can be shared among several projects.

The processes can be simple (the application of a single algorithm) or complex (a
workflow). Processes can be executed stepwise in order to allow exploration and
debugging.

Consider this as a simple usage scenario. A user registers the connection to her re-
mote database. She creates the process for investigating the anonymization of her data.
She creates a new process to do so. She decides to import a sample of the data using the
sampling service. She wants to try the Anatomy Algorithm on her sample dataset. She
specifies the schema and the sensitive attributes. She can customize the ontology for
non numeric attributes generalization. Once the process is designed, she can execute it.
The results are represented as two new Datasets in the current project folder.

The user can further check whether the output is a 3-Anonymized dataset or de-
cide to change the process parameters and run it again. Once satisfied, she can run the
same process on her entire data set and export the results as an XML document to her
DB2 Server.

3 System Architecture

The main design goal of PASS is to make the data processing as flexible and simple
as possible while providing efficiency. PASS consists of three main groups of Ser-
vices: data services, user services and control services (see Fig 1). For implementation
purposes, we used Microsoft .Net Framework, together with WCF (Windows Com-
munication Foundation) [9] which supports both synchronous and asynchronous
communications. Services can be invoked through different standards and protocols
such as SOAP and REST.

394 G. Heyrani-Nobari, O. Boucelma, and S. Bressan

Data services can be used for various data processing jobs such as anonymization,
privatization and sampling methods.

User services offer authentication, authorization and accounting together with
VPN, SSH or SSL connections.

Control services are responsible for system stability, accessibility and extendibil-
ity. For instance, they allow tracing and monitoring, and the control of resources or
running processes.

Fig. 1. Privacy & Anonymization as a Service (PASS)

Web services can be used interactively through an interface or programmatically
to develop new applications in a variety of environment and on diverse platforms.

The interactive interface is a Web-based platform. It follows the design concept of
a cross browser WebOS based on Web 2.0 standards. PASS users recognize a familiar
and flexible working environment similar to a process oriented virtual desktop. We
used several clients and server side techniques and libraries such as Ajax [8], JQuery
[6] and JSON [7].

The current implementation proposes the following anonymization services: k-
Anonymization [3], Anatomy [5], Anonymizing sequential releases [4] and Entropy
L-Diversity [1].

3.1 Connectivity

In PASS there are several ways to initialize the datasets, which can be from local
CSV files, local relational tables stored in the local database (populated manually for
testing or with imported data) to remote data sources (external database servers, web
services, streams or cloud datasets). The standard protocols of PASS (reference) allow
connectivity to a large variety of local and remote sources and formats.

 Privacy and Anonymization as a Service: PASS 395

Similarly, PASS services are easily added as they are integrated using a standard
web service interface. Although they are local to the PASS server in the current archi-
tecture and implementation, the design and implementation cater for both distributed
and remote services.

4 Conclusion

The system we propose to demonstrate is a proof of concept for a Cloud-based and
service oriented approach to not only data privacy diagnosis and protection in
particular but also to a workflow-oriented approach to the management of data in the
cloud. It is made possible by the convergence of many technologies and standards:
Web services, business process description and execution languages, Web 2.0
technologies. The system is easily demonstrated thanks to a simple yet complete
Web-based interface.

References

1. Machanavajjhala, Gehrke, J., Kifer, D.: l-diversity: Privacy beyond k-anonymity. In: ICDE
(2006)

2. Mirakabad, M.R.Z., Jantan, A., Bressan, S.: Towards a Privacy Diagnosis Centre:
Measuring k-Anonymity. In: International Symposium on Computer Science and its
Applications, CSA (2008)

3. Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-based Systems, 557–570 (2002)

4. Wang, K., Fung, B.: Anonymizing sequential releases. In: SIGKDD (2006)
5. Xiao, X., Tao, Y.: Anatomy: Simple and effective privacy preservation. In: VLDB (2006)
6. JQuery new JavaScript library, http://jquery.com
7. JSON (JavaScript Object Notation), http://www.json.org
8. AJAX (Asynchronous JavaScript and XML),

 http://www.w3.org/TR/XMLHttpRequest/
9. WCF (Windows Communication Foundation),

 http://msdn.microsoft.com/en-us/netframework/aa663324.aspx

Visual Evaluation of Outlier Detection Models

Elke Achtert, Hans-Peter Kriegel, Lisa Reichert,
Erich Schubert, Remigius Wojdanowski, and Arthur Zimek

Institut für Informatik, Ludwig-Maximilians-Universität München
Oettingenstr. 67, 80538 München, Germany

http://www.dbs.ifi.lmu.de

{achtert,kriegel,reichert,schube,wojdanowski,zimek}@dbs.ifi.lmu.de

Abstract. Many outlier detection methods do not merely provide the
decision for a single data object being or not being an outlier. Instead,
many approaches give an “outlier score” or “outlier factor” indicating
“how much” the respective data object is an outlier. Such outlier scores
differ widely in their range, contrast, and expressiveness between different
outlier models. Even for one and the same outlier model, the same score
can indicate a different degree of “outlierness” in different data sets or
regions of different characteristics in one data set. Here, we demonstrate
a visualization tool based on a unification of outlier scores that allows to
compare and evaluate outlier scores visually even for high dimensional
data.

1 Introduction

Finding outliers that do not fit well to the general data distribution is very
important in many practical applications, including e.g. credit card abuse de-
tection in financial transactions data, the identification of measurement errors
in scientific data, or the analysis of sports statistics data. Outlier detection can
be seen as not merely interested in removing noise but also in finding interest-
ing database objects deviating in their behavior considerably from the majority
and, as such, providing new insights. Indeed, both aspects of outlier detection
are like two sides of a medal as one person’s noise may be another person’s sig-
nal. The application scenarios given above highlight both interests in outliers,
as measurement errors in scientific data should possibly just be removed while
a case of credit card abuse is the solely interesting fact among a wealth of usual
data. As different as the questions that should be answered by outlier detection
methods, as different are the approaches to the problem of identifying outliers.
Aside from different properties of outlier detection methods, i.e., global vs. local,
scoring vs. labeling, supervised vs. unsupervised, there is a huge variety of intu-
itions or techniques for how to decide on the “outlierness” of a database object.
Examples of such intuitions are the original statistical approach [4], the distance
based notion of outlierness [6,12,3,11], the density based approach [5,10] along
with various adaptations to different scenarios [13,8,7], or the angle-based defi-
nition of outliers [9]. Since many approaches providing outlier scores are based

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 396–399, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.dbs.ifi.lmu.de

Visual Evaluation of Outlier Detection Models 397

on quite different assumptions, intuitions, and models, they naturally also differ
substantially in the scaling, range, and meaning of values. In some cases, high
values of an outlier score mean, the corresponding database object is not at all
an outlier, in other cases, a higher value indicates more “outlierness”. In some
cases, the minimum occurring outlier score is around 1, indicating that the cor-
responding database object perfectly fits to the data distribution, in other cases,
1 is the maximum value, indicating the database object is an outlier as much
as possible. For many methods, the scaling of occurring values of the outlier
score even differs within the same method from data set to data set, i.e., outlier
score x in one data set means, we have an outlier, in another data set the very
same score x is not extraordinary at all. In many cases, even within one and
the same data set, the identical outlier score x for two different database objects
can denote substantially different degrees of outlierness, depending on different
local data distributions around the two objects. Hence a major problem for any
user not very acquainted with the outlier detection method in question is how
to interpret the “factor” provided in order to decide whether or not the data
object actually is an outlier and how to compare the outlier score provided by
one outlier model to the outlier score provided by another model. Furthermore,
since different models are based on different assumptions and intuitions, they are
differently well suited for different data sets. Their results, however, are in many
cases very difficult to compare. Aside from the scaling issue, opposite decisions
on the outlierness of single objects may be equally meaningful since there is no
generally valid definition of what constitutes an outlier in the first place. For dif-
ferent application scenarios, a different selection of outlier detection approaches
may be meaningful.

2 Demonstration

Here, we present a visualization tool that is able to visualize high dimensional
data sets in 2D projections and mark the outlier score assigned by different
methods to each object. The contrast of the outlier scores within one data set
can also be visualized. In our framework, we implemented a range of different
outlier detection models (examples have been given above) in a way that allows
to freely combine the outlier detection method with different distance measures,
where applicable, and therefore, e.g., to apply one implementation to different
data types or to learn about the impact of the chosen distance function. Aside
from standard distance functions like Lp norms or the cosine distance, there are
also distance functions available specialized e.g. on time series data. Further-
more, the outlier detection algorithm can be backed by various index-structures
provided by the framework. In Figure 1(a), a 4-dimensional data set is visual-
ized in thumbnails for all axis-parallel two-dimensional projections. The color of
each bubble shows the color of the corresponding cluster or noise. The data set
consists of six clusters (colors red, blue, green, orange, cyan, and magenta), and
some outliers (dark red). The top row shows stacked histograms of the distribu-
tion of values for each of the four dimensions, colored according to the respective

398 E. Achtert et al.

(a) Thumbnails of LoOP [7] scores for all 2-d pro-
jections (top row: one-dimensional distributions) of a
4-dimensional data set.

(b) 2-d projections with
Reference Point Outlier [11]
(top) and LDOF [13] (bot-
tom) scores annotated.

Fig. 1. Some visualization features

cluster. Figure 1(b) shows the visualization of the outlier scores of two different
methods for one data set in the same selected two-dimensional projection in
detail. This visualization can be saved in various filetypes such as JPEG, PNG,
EPS, PDF, or SVG. The latter is the original internal representation. Hence, the
tool also allows for scale free zoom-in or zoom-out to inspect a specific region
of the data set in more detail. The radius of a bubble reflects the magnitude
of the corresponding outlier factor. This visualization requires a (non-trivial)
scaling of the outlier scores for all available methods into a comparable range.
We chose the range [0, 1] which is provided already by some methods and can
be thought of reflecting the probability of being an outlier. For all methods
implemented within our framework and scaling differently, we provide adapters
for the desired comparative scaling. This architecture is easily extendable for
incorporation of new or different outlier detection methods. To assess how re-
markable a specific outlier score is in a given data set, our tool also shows the
contrast of outlier scores assigned by a specific model for a complete data set.
If there is a low contrast of outlier scores, it is clear that the decision to select
the top k outliers is rather arbitrary. Instead one could equally well select the
top k − 5 or top k + 7 data objects as outliers. On the other hand, if there is
a clear separation between top scores and lower scores, the user gets a valuable
information on a possibly meaningful cut-off outlier score to define “real” out-
liers. Nevertheless, aside from the comparison of the absolute values of outlier
scores, many approaches just aim at a concise ranking as only the top-k outliers

Visual Evaluation of Outlier Detection Models 399

are interesting. Hence, it is also possible to visualize just the top-k outliers (as
shown in Figure 1(b), top, for the reference point approach [11], where also the
chosen reference points are shown in red).

3 Conclusion

In summary, the contributions of the demonstrated software are (i) the possible
application of a unifying scaling on arbitrary outlier scores; (ii) an intuitive
visualization of (top-k) outlier scores on data of real vector spaces of arbitrary
dimensionality; (iii) an illustration of the contrast of the outlier scores suitable as
user guidance to select an appropriate threshold for final decision on outlierness;
(iv) a flexible implementation of a broad selection of outlier detection methods
that allows for usage of different distance measures and can be backed by various
index structures.

Via http://www.dbs.ifi.lmu.de/research/KDD/ELKI/, the demonstrated
software is available as release 0.3 of the ELKI framework [2,1].

References

1. Achtert, E., Bernecker, T., Kriegel, H.P., Schubert, E., Zimek, A.: ELKI in time:
ELKI 0.2 for the performance evaluation of distance measures for time series. In:
Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009.
LNCS, vol. 5644, pp. 436–440. Springer, Heidelberg (2009)

2. Achtert, E., Kriegel, H.P., Zimek, A.: ELKI: a software system for evaluation of
subspace clustering algorithms. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM
2008. LNCS, vol. 5069, pp. 580–585. Springer, Heidelberg (2008)

3. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In:
Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431,
p. 15. Springer, Heidelberg (2002)

4. Barnett, V., Lewis, T.: Outliers in Statistical Data, 3rd edn. John Wiley & Sons,
Chichester (1994)

5. Breunig, M.M., Kriegel, H.P., Ng, R., Sander, J.: LOF: Identifying density-based
local outliers. In: Proc. SIGMOD (2000)

6. Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large
datasets. In: Proc. VLDB (1998)

7. Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: LoOP: local outlier probabilities.
In: Proc. CIKM (2009)

8. Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: Outlier detection in axis-parallel
subspaces of high dimensional data. In: Proc. PAKDD (2009)

9. Kriegel, H.P., Schubert, M., Zimek, A.: Angle-based outlier detection in high-
dimensional data. In: Proc. KDD (2008)

10. Papadimitriou, S., Kitagawa, H., Gibbons, P., Faloutsos, C.: LOCI: Fast outlier
detection using the local correlation integral. In: Proc. ICDE (2003)

11. Pei, Y., Zäıane, O., Gao, Y.: An efficient reference-based approach to outlier de-
tection in large datasets. In: Proc. ICDM (2006)

12. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers
from large data sets. In: Proc. SIGMOD (2000)

13. Zhang, K., Hutter, M., Jin, H.: A new local distance-based outlier detection ap-
proach for scattered real-world data. In: Proc. PAKDD (2009)

http://www.dbs.ifi.lmu.de/research/KDD/ELKI/

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 400–403, 2010.
© Springer-Verlag Berlin Heidelberg 2010

ADERIS: Adaptively Integrating RDF Data from
SPARQL Endpoints

Steven Lynden, Isao Kojima, Akiyoshi Matono, and Yusuke Tanimura

Information Technology Research Institute, National Institute of Advanced Industrial
Science and Technology (AIST), Tsukuba, Japan

{steven.lynden,a.matono,yusuke.tanimura}@aist.go.jp,
kojima@ni.aist.go.jp

Abstract. This paper describes the Adaptive Distributed Endpoint RDF
Integration System (ADERIS), an adaptive, distributed query processor for
integrating RDF data from multiple data resources supporting the SPARQL query
language and protocol. The system allows a user to issue a federated query with-
out any knowledge of the data contained in each endpoint and without specifying
details of how the query should be executed. ADERIS relies on very limited in-
formation about each RDF data source to construct SPARQL source queries, the
results of which are used to construct RDF predicate tables, which are integrated
using pipelined index nested loop joins, the number and order of which may vary
during query execution in order to reduce response time.

Keywords: Adaptive query processing, RDF query processing, distributed data
integration.

1 Introduction

SPARQL [1], a W3C recommendation query language for RDF, is a widely used
method of querying RDF data. Primarily, the SPARQL language allows sets of triple
patterns to be matched against RDF graphs, supported by various features such as con-
junctions, disjunctions, filter expressions, optional triple patterns and multiple represen-
tations of query results. The SPARQL query language has an associated protocol with
HTTP and SOAP bindings, and an XML-based results format, which complement each
other to promote interoperability, allowing clients to interact with RDF data sources
without having to deal with syntactic heterogeneities between different infrastructures.
This approach is used by many large repositories, such as DBPedia [2]. Federated que-
ries across multiple SPARQL endpoints allow data from such endpoints to be inte-
grated, and is also potentially beneficial in heterogeneous information systems where
individual components use SPARQL wrappers to expose data. Data integration in this
context is particularly appealing when bearing in mind the progress made by the Linked
Open Data Project [3], which aims to promote the widespread usage of URI-based rep-
resentations to allow RDF terms to be consistently defined. Where consistently defined
RDF terms are used across multiple repositories, data can be joined together to answer
federated SPARQL queries across multiple RDF repositories.

 ADERIS: Adaptively Integrating RDF Data from SPARQL Endpoints 401

 Various systems exist supporting federated queries across multiple RDF data
sources, such as ARQ [4], the SPARQL query processor from the Jena Semantic Web
Framework, which possesses capabilities for executing remote queries and is com-
plemented by extensions for query optimisation in the form of the Distributed ARQ
(DARQ) [5] system. SemWIQ [6] is another system based on ARQ for optimising
and executing distributed RDF queries. These systems require accurate statistics about
data sources in order to effectively optimise query plans and cannot alter their query
plans during execution if performance is sub-optimal. In contrast, an assumption
made in the design of ADERIS is that many RDF endpoints are made available with-
out statistics about the data contained within them and gathering such information is
difficult. Endpoints may be constantly updated and therefore behave unpredictably in
terms of response time due to computational load and the effects of network commu-
nication times, therefore ADERIS aims to rely as little as possible on statistics about
endpoints and avoids generating static query plans. Query processing is done in an
almost entirely adaptive fashion, joining data as it becomes available and modifying
join order based on selectivity information gathered at runtime.

2 System Details

Prior to issuing federated queries, the set of SPARQL endpoints over which queries
are executed are registered with the system, which involves the user supplying the
system with a URI for each of the endpoints. ADERIS performs the following steps
during query execution:

1. Issue Source Queries. If available, metadata (e.g. presence/absence of terms,
indexes etc) about RDF endpoints are used to generate a source query for each
SPARQL endpoint registered with the system. A source query is a SPARQL
query issued to an endpoint in order to fetch triples that may be needed to an-
swer the query. The objective of source query generation is to generate queries
that minimise the number of triples returned while still retrieving all triples
that may be needed to execute the federated query. ADERIS employs various
schemes to achieve this that can function with various kinds of meta-
data/statistics. The most basic scheme relies on extremely limited information,
specifically the set of predicate terms contained in a data source, which can be
obtained from an endpoint by issuing a simple SPARQL query when the end-
point is registered with the system.

2. Construct Predicate Tables. The results from each source query are used to
construct a set of predicate tables, where a two-column table exists for each
predicate returned as a result from a source query and each row of the predi-
cate table represents a triple by storing the corresponding subject/object val-
ues. This vertically partitioned approach has been shown to be effective when
processing RDF data in [7]; here it provides a set of tables, constructed by the
source queries, which must be joined to answer the query. The mapping be-
tween the source queries and predicate tables is usually one-to-many (or in
rare cases one-to-one) and the metadata used in (1) to generate source queries
is used to determine this mapping, which is used in the next step to determine

402 S. Lynden et al.

Fig. 1. The ADERIS client at two different points during the execution of a federated SPARQL
query. Four endpoints, the URLs of which are listed in the top left frame under the heading
"Data Sources", are queried. The panel on the right shows the query plan, initially (top) joining
two predicate tables that have become available. The second (bottom) query plan has adapted to
join two new tables and results have started to become available (shown in the bottom left
frame). The join order can be modified further by the system if necessary.

 ADERIS: Adaptively Integrating RDF Data from SPARQL Endpoints 403

when a predicate table is complete, i.e. the moment in time when all source
queries that map to a given predicate table have returned all their results. In-
dexes are generated on potential join predicates to allow index nested loop
joins to be used in the next step.

3. Join Predicate Tables. Predicate tables are inserted into the query plan when
they become complete, using an extension of the technique described in [8],
which is capable of reordering the joins without throwing away already gener-
ated results. Any other processing that needs to be done (evaluating FILTER
expressions that couldn't be pushed down into source queries. etc.) is also done
here in order to answer the query.

The main benefit of this approach is that it can adapt to different characteristics of the
data obtained from remote data sources. The ADERIS interface, illustrated in Fig 1,
allows the user to lookup and register SPARQL endpoints and issue federated queries.
The query execution and its adaptations are highlighted by a real-time display of the
join order as processing is performed. Query results are displayed in real-time as they
are produced by the pipelined query plan. Although the system currently supports
only a limited subset of the SPARQL query language, future work will increase the
range of supported queries. Various applications of this work, where answering
SPARQL queries over multiple RDF repositories can play an important role will also
be investigated. The software prototype described in this paper forms the basis of an
open source project, more information about which can be found at:
http://dbgrid.org/FederatedSPARQL.

Acknowledgement
This work is supported by the Strategic Information and Communications R&D Pro-
motion Programme (SCOPE) of the Japanese Ministry of Internal Affairs and Com-
munications.

References

1. Prud’hommeaux, E., et al.: SPARQL Query Language for RDF, W3C Recommendation
(January 2008), http://www.w3.org/TR/rdf-sparql-query/

2. DBPedia, http://dbpedia.org
3. Linked Data, http://linkeddata.org
4. ARQ - A SPARQL processor for Jena, http://jena.sourceforge.net/ARQ/
5. Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL. In:

Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS,
vol. 5021, pp. 524–538. Springer, Heidelberg (2008)

6. Langegger, A., Woss, A.: A Semantic Web Middleware for Virtual Data Integration on the
Web. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021, pp. 493–507. Springer, Heidelberg (2008)

7. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: SW-Store: A Vertically Partitioned
DBMS for Semantic Web data management. VLDB J. 18(2), 385–406 (2009)

8. Li, Q., Sha, M., Markl, V., Beyer, K., Colby, L., Lohman, G.: Adaptively Reordering Joins
during Query Execution. In: Proc. ICDE, pp. 26–35. IEEE Computer Society, Los
Alamitos (2007)

Outline of Community-Type Content
Based on Wikipedia

Akiyo Nadamoto1, Eiji Aramaki2, Takeshi Abekawa3, and Yohei Murakami4

1 Konan University
Okamoto 8–9–1, Higashinada-ku, Kobe, 658–8501, Japan

nadamoto@konan-u.ac.jp
2 The University of Tokyo

Hongou 7–3–1, Bunkyo-ku, Tokyo, 113–8655, Japan
eiji.aramaki@gmail.com

3 National Institute Informatics
Hitotubashi 2–1–2, Chiyoda-ku, Tokyo, 101–8430, Japan

abekawa@nii.ac.jp
4 National Institute of Information and Communications Technology

Hikaridai 3–5, Seika-cho, Soraku-gun, Kyoto, 619–0289, Japan
yohei@nict.go.jp

Abstract. It is difficult to understand the outline of community-type
content such as Blog, Social Network Services(SNS), and Bulletin Board
System(BBS) because multiple users post content freely. In this paper,
we have developed a system that presents the outline of community-
type content by using Wikipedia. We focus on the table of contents
(TOC) collected from Wikipedia. Our system compares the comments
in a thread with the information in the TOC obtained from Wikipedia
and identifies contents that are similar. Thus, the user can understand
the outline of community-type content when he/she views a table with
similar contents.

1 Introduction

SNSs and blogs, which are maintained by a community of people, are popular
Web 2.0 tools. We call the content of such Web 2.0 tools “community-type
content.” Community-type content, a representative example of Web 2.0 content,
consists of multiple threads, and each thread consists of comments posted by
multiple users. It is difficult to understand a thread in a community because
users post comments freely, and their language is complicated. In community-
type content, users sometimes enter into heated discussions, because of which
they concentrate only on one issue and lose track of the actual theme. In this
case, each user may want to know how relevant his/her point is to the discussion.
Hence, we believe that it would be beneficial for users to understand the outline
of their discussion. On the other hand, the contents of Wikipedia are posted
by different users, whose policy is “Neutral point of view is the fundamental
principle of Wikipedia [1].” Thus, we consider that Wikipedia contents are based

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 404–407, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Outline of Community-Type Content Based on Wikipedia 405

Fig. 1. Comparing in VOCC

on the general viewpoint of a given theme. In this paper, we propose a system
that presents the outline of a thread in community-type content by comparing
the comments in a thread with the Wikipedia content. In this case, we choose
the title of an article from Wikipedia and compare each comment in a thread in
the community with the smallest structure in the table of contents (TOC) from
the article. (show Figure 1) We call this system “Viewing Outline of Community-
type Content (VOCC).”

2 Outline of VOCC

Figure 2 shows user interface of VOCC. In Figure 2, the left-hand window in (a)
shows the Wikipedia article that contains the keywords input by the user, and
the left-hand window in (b) shows the results obtained with VOCC. We use the
topic of the content structure list to identify the exact outline of a thread.
Overview of our system:

1. A user inputs the theme of a thread that he/she wants to use as a keyword
for comparison.

2. VOCC displays the target Wikipedia article on the left side of the window
and the list of candidates in the community whose theme matches the user’s
input on the right side of the window(Figure 2(a)).

3. The user selects the community and thread he/she wants to compare.
4. A Wikipedia article and the thread in a community-type content are ex-

tracted on the basis of the keyword entered by a user. The Wikipedia article
is called the “target article”; the thread in the community-type content ,
“target thread”; and the comment in the target thread , “target comment.”

5. VOCC extracts the keywords that are based on topic structure[2] from a
target thread.

406 A. Nadamoto et al.

Fig. 2. Display of VOCC

6. VOCC then compares the target comment with each small passage in the
target article on the basis of the TOC by using the topic structure and
extracts the content discussed in the target thread.

7. In steps 5 and 6, VOCC calculates the number of comments in a target
thread.

8. VOCC presents a similar title from Wikipedia as the outline of a thread
(Figure 2(b)).

Since VOCC uses the tab browser, the user can browse both the target article
and the results by simply clicking the tab.

3 Comparison between Threads and Articles

Target Passage of the article

In this study, we consider the topic of the target article to be the same as that in
a thread (show Fig1). In other words, we identify the target article whose theme
matches the keyword input by the user. After identifying the target article, we
compare the comments in the thread with each small passage in the article. Each
small passage in the article is classified on the basis of the TOC of the target
article. In this case, not all the small passages in the article are regarded as target
passages. If the topic of the community is “The Masters Tournament” and the
target thread in the community discusses “Tiger Woods,” since the target article
refers to “Tiger Woods,” the thread topic is “Tiger Woods in Masters.” The
article on “Tiger Woods” includes information other than that on “Tiger Woods

Outline of Community-Type Content Based on Wikipedia 407

in Masters,” and this information should be removed from the small passage in
the target article. We consider the target passage with the highest target passage
degree DTaPi. DTaPi is determined as follows:

DTaPi =
m∑

j=1

wsj + wct > β

where wsj is the weight of the subject term sj , and wct is the weight of the topic
of the community. These values are calculated by using tf/idf .

Comparison between comments in the target thread and the target

passage of the article

First, we calculate the weight of each subject term and content term by using
tf/idf . Then, we compare the comment in a thread CPi with the target passage
TaPj of an article by using a cosine vector in the following manner:

Sim(CPi, T aPj) =
−→
F (CPi) •

−→
F (TaPj)

|−→F (CPi)| • |
−→
F (TaPj)|

< γ

where −→F (CPi) is a feature vector of CPi and −→F (TaPj) is a feature vector of
TaPj. If Sim(CPi, T aPj) is greater than the threshold γ, the target passage in
the article is the outline of a comment.

4 Conclusion

We have developed a method called “VOCC” for presenting the outline of
community-type content by using Wikipedia. Our system compares the com-
ments in a thread with the information in the TOC obtained from Wikipedia
and identifies contents that are similar. Thus, the user can understand the outline
of community-type content when he/she views a table with similar contents.

Acknowledgments. A part of this study was supported by a Grant-in-Aid for
the Information Explosion Project (Number: 21013044).

References

1. NPOF of Wikipedia, http://en.wikipedia.org/wiki/NPOV
2. Nadamoto, A., Qiang, M., Tanaka, K.: B-CWB: Bilingual Comparative Web

Browser Based on Content-Synchronization and Viewpoint Retrieval. World Wide
Web Journal (Online) ISSN: 1573-1413

http://en.wikipedia.org/wiki/NPOV

BISCAY: Extracting Riding Context
from Bike Ride Data

Keiji Sugo1, Manabu Miyazaki1, Shin’ichi Konomi1, Masayuki Iwai2,
and Yoshito Tobe1

1 Department of Information Systems and Multimedia Design,
Tokyo Denki University

2-2 Kanda-Nishiki-Cho, Chiyoda-ku, Tokyo, Japan
2 Institute of Industrial Science, the University of Tokyo

4-6-1 Komaba, Meguro-ku, Tokyo, Japan

Abstract. Recently, global warming is a serious problem all over the
world. Japan endeavors to promote using bicycles in order to protect en-
vironment. We developed a system for supporting cyclists by using the
data from a bike sensor network. Cyclists lose comfort of riding when
they need to go through crowded streets. We collect riding information
obtained with a gyro sensor attached to handlebars of a bicycle. Based
on such information, we then extract riding condition of cyclists. This
paper presents the design and implementation of a Human Probe system
that can collect and store sensor data to show comfortable cycling routes
on a map.

Keywords: Bikenet, sensor network, Human Probe, gyro sensors.

1 Introduction

There is an increasing number of people who ride bicycles to save fuel resources,
reduce the emission of carbon dioxide, and live healthily. However, cyclists some-
times need to use the lane for cars or sidewalks when there are no dedicated
bike paths. If cyclists use sidewalks, they would feel uncomfortable, and make
pedestrians feel uncomfortable as well. Thus, it is a challenge for a bike rider
to find suitable roads in an urban area. To solve the above issue, we propose
BISCAY which calculates comfort indicators of cycling roads. In BISCAY, we
attach a three-axis gyro sensor and a GPS receiver to a bike, which monitors a
hand operation and braking during a bike ride. The comfort is calculated using
the information emitted by the gyro sensor. Bikenet[1] is the system which can
gather environmental information on a route. However they do not focus on the
comfort of riders. We detect the movement of handles to measure the comfort
of riders. Furthermore, BISCAY enables the cyclists to share comfort indicators
on the Web map.

In this paper we first define the context indicators for riding a bike. Secondly
we describe an algorithm for calculating comfort indicators for cyclists. Finally,
we show the details of our demonstration.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 408–411, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

BISCAY: Extracting Riding Context from Bike Ride Data 409

2 System Architecture

In a BISCAY bicycle, a three-axis gyro sensor and a GPS receiver are attached
to the center of a handle and near the rear reflector, respectively, as shown in
Fig.1. The three-axis Gyro sensor measures Yaw, Pitch and Roll in a raw data
format. Here, the three physical quantities mean the following:
@@Yaw: degree of handle
@@Pitch: road grade
@@Roll: degree of carving of bike
@@GPS: latitude, longitude and speed of bike
Each data item is acquired in a 100-ms interval to analyze it with a sliding
window. The length of the sliding window is 3.2-ms. In addition, we define a
data set for analysis. A data set consists of three consecutive windows. The
current data set shares the last two windows with the previous data set and the
first two windows with the next data set. The data set is a unit of analyzing
signals generated by the gyro sensor.

3 Extraction of Riding Context

In this section we define indicators for calculating comfort and use them to
extract contextual information about bike rides.

3.1 Basic Indicators

Depending on the sensing rate of sensor nodes, sensing data from one bike can
become a large amount. We define indicators and use them instead of sensed
raw data. We next define the details about meandering driving, steepness of
slope, smoothness of surface, and frequency of breaking as basic indicators which
represent the characteristic to show the riders that a route is comfortable or not.

Meandering Indicator. We convert yaw signals of the gyro sensor into four
contexts: normal running, fast and slow meandering, and left or right turns. Fast
Fourier Transform (FFT) is applied to extract frequency information. We con-
sider meandering as a high frequency operation of a handle in a few seconds. To
capture such a high frequency signal, we utilize the yaw signal. Our preliminary
analysis shows that meandering affects signals in the range between 1 to 5 Hz.
Therefore, we capture the signal strength for 1-5-Hz frequency. We set two levels
of thresholds to distinguish between a sudden change and a slow turning. Two
thresholds are set as follows:
@@Th(high): above 160(Acceleration)
@@Th(low): between Th(high) and 80(Acceleration)
The actions of left or right turns exhibit similar characteristics; yawing cap-
tures the direction of running. However the turn differs from meandering that
the magnitude of 1-5-Hz signals continues to rise instead of staying at the same
level. Therefore we consider that a left or right turn happens if the average signal
strength increases by more than 50 in the adjacent signal windows.

410 K. Sugo et al.

Fig. 1. Bike with GPS, three-axis sensors,
and a PC for uploading data

Small Icon Increase

Large Icon Decrease

Decrease or Increase

Flat
Uphill
Downhill

Road grade

Normal

Meandering(weak)

Meandering(strong)

Extraction of running
context

Fig. 2. BISCAY Web map showing the
strength of meandering

Steepness Indicator. The steepness can be obtained using pitch signals. There-
fore we can straightforwardly utilize the pitch signal to calculate the steepness. If
the average of pitch in one data set exhibits 3.5%, it corresponds to a slope. As
our experiential trials, most of riders feel stressed when the slope degree is more
than 3.0%.

Braking Indicator. The speed of moving can be calculated using a change
in positions indicated by the GPS. We also calculate a change in the speed
and judge that breaking occurs when the speed decreases by more than 5 km/h.
Another advantage of calculating the speed is that we can also identify the places
where decrease or increase of the speed frequently happens.

3.2 Extraction

We conducted an experiment of validity of extracting contexts. The result is
shown in Fig. 3. The above two graphs show snapshots of meandering. It indi-
cates that indicators are successfully expressed. The left bottom graph shows a
snapshot of running on a slope. It can detect the steepness of the road. Finally,
the right bottom graph shows a situation of breaking. As shown in the graph,
five times of breaking are clearly extracted.

In this experimentation, we have checked and monitored sensor data to eval-
uate accuracy. Braking graph shows the times of harsh braking. This evaluation
shows the correct recognition of GPS data.

4 Demonstration

We will demonstrate the system that is shown in Fig. 1. Participants will be able
to move the handlebar, tilt the bike, and so on, in order for the system to capture
such actions using sensors. Therefore, we can easily demonstrate the system even
without the space to ride the bike. The system stores and analyzes the sensed
data to extract and display the comfort indicators in real time. The system then
sends the extracted information to a server so as to generate a map-based visual

BISCAY: Extracting Riding Context from Bike Ride Data 411

Fig. 3. Basic indicators:meandering, meandering and normal, road grade, and braking

representation (see Fig. 2) Overall, participants will be able to experience the
entire process to capture, store, analyze and visualize the context of bike rides
using a bike sensor network.

5 Conclusion

In this paper we have presented a system that can collect and store sensor data
to show comfortable cycling routes on a map, and described the details of the
demonstration of this system. Preliminary data show that the defined indicators
well exhibits the status of riding and can be used for information sharing.

References

1. Eisenman, S.B., Miluzzo, E., Lane, N.D., Peterson, R.A., Ahn, G.-S., Campbell,
A.T.: The BikeNet mobile sensing system for cyclist experience mapping. In: ACM
Conference on Embedded Networked Sensor Systems (ACM SenSys 2007), pp. 87–
101 (2007)

2. Sugo, K., Iwai, M., Tobe, Y.: BISCAY:Bike-to-Bike Sensor Network for Context
Acquisition of Cycling Roads. In: 3rd International Workshop on SensorWebs,
Databases and Mining in Networked Sensing Systems, SWDMNSS 2009 (2009)

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 412–415, 2010.
© Springer-Verlag Berlin Heidelberg 2010

SERPWatcher: A SERP Mining Tool as a Novel Social
Survey Method in Sociology

Yoshifumi Masunaga1, Naoko Oyama2, Chiemi Watanabe2, Kazunari Ito1,
Kaoru Tachi2, and Yoichi Miyama1

1 Aoyama Gakuin University, Fuchinobe 5-10-1, Sagamihara, Kanagawa 229-8558, Japan
{masunaga,kazu}@si.aoyama.ac.jp, d8108008@cc.aoyama.ac.jp

2 Ochanomizu University, Otsuka 2-1-1, Bunkyo, Tokyo 112-8650, Japan
{oyama.naoko,watanabe.chiemi,tachi.kaoru}@ocha.ac.jp

Abstract. Web search engines accept keywords and return a search engine re-
sults page (SERP). Since the SERP itself and the ranking order change with
time reflecting the changes in society, it might be possible to accurately follow
the movement of society by mining SERPs. This demonstration shows a SERP
mining tool named SERPWatcher, which could be a novel social survey method
in the field of sociology in that it totally differs from the traditional methods
such as questionnaires and interviews.

Keywords: Web, Search engine results page (SERP), SERP mining,
SERPWatcher, Social survey method.

1 Introduction

The purpose of developing a search engine results page (SERP) mining tool named
SERPWatcher is to provide a novel social survey method in the field of sociology [1].
The SERPWatcher has the following features: (1) It continuously collects SERPs with
respect to a certain set of search keywords in order to formulate a “SERP archive”
that the expected users, i.e. the scientists in the field of sociology, can mine. (2) It
provides sophisticated interfaces and functions to the users for SERP mining. (3) It
notifies the users when it detects certain changes in the ranking order of Web pages in
SERPs. A beta version of SERPWatcher is currently available at our institute. The set
of SERPs that SERPWatcher collected is called a SERP archive, and it constitutes a
4-dimensional “cube” whose axes are the search keyword, the search engine, the
SERP collection date, and the Web page, and whose “cell” takes the value of the
ranking order of the Web page. For the users to read the social movement from the
SERP archive easily, the SERPWatcher collects the title, snippet (explanation of the
Web page described under the page title), and the set of backlinks of the Web page in
addition to its URL. Following the OLAP approach, SERPWatcher provides a user-
friendly interface for a multidimensional analysis. It also provides an alert function in
that it sends an e-mail to users when it detects certain ranking order changes in the
latest SERP. Additionally, the top pages of a news site (namely, Google News), which
are collected on the same day the SERP is collected, are also archived.

 SERPWatcher: A SERP Mining Tool as a Novel Social Survey Method in Sociology 413

2 What Is SERPWatcher?

SERPWatcher is a tool that observes the change in the ranking order of Web pages on
a SERP in a comprehensive manner and provides sophisticated interfaces and func-
tions to expected users, i.e., scientists from the field of sociology. More precisely
SERPWatcher has the following functions:

1. Periodic collection of SERPs
2. Construction of SERP archives
3. Multidimensional analysis and display of SERP archives
4. Alerts
5. Collection and display of news (Google News)

Figure 1 shows the system configuration of SERPWatcher. The SERP collection
program, the backlink collection program, and the news collection program operate
regularly as batch programs. Collected SERPs are recorded in a file whose records are
ordered by search engine, collection date, and search keyword. Another batch pro-
gram with this file as an input is run to store the file into a database. A relational data-
base management system (MySQL, in our current implementation) is used for storing
the collected SERPs. A beta version of SERPWatcher is realized as a remote system
with a thin client. The operating system of the server is Red Hat Enterprise Linux 5.1
(x86/x86_64). The development programming language is Ruby 1.8.5 (2006-08-25)
[i386-linux] and Ruby on Rails 2.1. MySQL 5.0.45 is used as a relational database
management system.

Fig. 1. System Configuration of SERPWatcher

3 Multidimensional Analysis of SERP Archive

The SERP archive that accumulates SERPs regularly collected on the basis of various
search engines and the search keywords has two database features:

414 Y. Masunaga et al.

1. The SERP archive is not updated.
2. The SERP archive composes a multidimensional database.

Therefore, the SERP archive is suitable for OLAP (Online Analytical Processing). We
examined methods of analyzing the SERP archive as a multidimensional database
with the social scientists who were the intended users. As a result, it turned out that
they wanted to specify a search keyword first (in other words, they want to fix the
search keyword first), and then carry out the following three types of search carefully:

(a) {web page URL, collection date}→{ranking order of the web page}
(b) {web page URL, search engine}→{ranking order of the web page}
(c) {search engine, collection date}→{ranking order of the web page}

Note that demands (a), (b), and (c) correspond to the typical cubic operations named
(a) search engine fixation view, (b) collection date fixation view, and (c) Web page
fixation view, respectively.

Figure 2 shows a typical screenshot of SERPWatcher (in case (a)). By selecting a
value from the “search engine” pull-down menu, users can select one of the seven
search sites: Google, Yahoo! Search, Live Search, Baidu, goo, infoseek.rakuten, and
excite. The search keyword can be selected from the pull-down menu in the “search
keyword” window. The users can specify a range of interested ranking order and an
interesting range of the collection dates by specifying their values in the “ranking
displayed in this view. Because of space limitations, we have omitted the screenshots
for case (b) and case (c). However, the screens are designed similarly.

Fig. 2. Snapshot of SERP Archive Display Corresponding to Search Engine Fixation View
(Case (a)) (Vertical Axis: Web Pages, Horizontal Axis: Date, Subject: Ranking Order)

 SERPWatcher: A SERP Mining Tool as a Novel Social Survey Method in Sociology 415

4 Demonstration Overview

The following aspects of SERPWatcher will be explained and demonstrated online
via the Internet:

1. Background, purpose of the development of SERPWatcher, and related works
2. Design of SERPWatcher
3. Multidimensional analysis of SERP archive
4. Representation of multidimensional analysis of SERP archive
5. Alert function of SERPWatcher
6. Collection of auxiliary data for SERP analysis
7. Client server system configuration of SERPWatcher
8. Construction of SERP archive using a relational DBMS
9. Implementation of a beta version of SERPWatcher
10. SERP collection method and data cleaning

5 Conclusion

The development of SERPWatcher is based on our previous research on Web mining
[2, 3], which gave us the insight that “SERP mining” could be a novel social study
method that is completely different from the traditional social study methods such as
questionnaires and interviews. The beta testers of SERPWatcher from the field of
gender studies have expressed a very positive impression through the exploratory
experimental use of SERPWatcher for more than 18 months.

Acknowledgments. The authors are thankful to Mr. Sumito Takeuchi of Aoyama
Gakuin University for his contribution. This research is partly supported by a Grants
in-Aid for Scientific Research of MEXT of Japan in the Category of Scientific Re-
search (B) (Grant number 19300025) on “Construction of an Integrated Web Mining
Environment as a New Methodology for Social Science Studies” (2007-2009).

References

1. Masunaga, Y., Oyama, N., Watanabe, C., Ito, K., Tachi, K., Miyama, Y.: Design and Im-
plementation of SERPWatcher (2009) (to be submitted elsewhere)

2. Oyama, N., Masunaga, Y., Tachi, K.: A Diachronic Analysis of Gender-related Web Com-
munities using a HITS-based Mining Tool. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa,
M., Zhang, Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 355–366. Springer, Heidelberg
(2006)

3. Oyama, N., Masunaga, Y.: On the Trustworthiness and Transparency of a Web Search Site
examined using “Gender-equal” as a Search Keyword. In: Zhang, Y., Yu, G., Bertino, E.,
Xu, G. (eds.) APWeb 2008. LNCS, vol. 4976, pp. 625–630. Springer, Heidelberg (2008)

Corona: Energy-Efficient Multi-query Processing
in Wireless Sensor Networks

Raymes Khoury, Tim Dawborn, Bulat Gafurov, Glen Pink, Edmund Tse,
Quincy Tse, K. Almi’Ani, Mohamed Gaber, Uwe Röhm, and Bernhard Scholz

The University of Sydney
School of Information Technologies

Sydney NSW 2006, Australia

Abstract. Wireless sensor networks (WSNs) are a core infrastructure
for automatic environmental monitoring. We developed Corona as an
in-network distributed query processor that allows to share a sensor net-
work between several users with a declarative query language. It includes
a novel approach for minimising sensor activations in shared wireless
sensor networks: we introduce the notion of freshness into WSN so that
users can ask for cached sensor reading with freshness guarantees. We
further integrated a resource-awareness framework that allows the query
processor to dynamically adapt to changing resource levels. The capa-
bilities of this system are demonstrated with several aggregation queries
for different users with different freshness and result precision needs.

1 Introduction

The latest generation of wireless sensor platforms allows for advanced in-network
data processing. The central challenge remaining though is energy efficiency.

We have designed and implemented a distributed query engine for wireless
sensor networks, called Corona, which runs on the Sun SPOT platform. This
platform is unique in that it runs a Java VM as operating system ’on the bare
metal’. In this demonstration, we show how Corona facilitates access to a shared
WSN infrastructure for different users and how the integration of data caching
and resource-awareness allows to trade result accuracy for energy efficiency:
– Using the declarative query interface of Corona, several users can share a

WSN consisting of several Sun SPOT nodes. The queries run in the system
with different start-times, epochs and lifetimes.

– Corona can adapt internal data processing functionalities to the available
resources such as free memory or battery level.

– The multi-query capabilities of Corona allow to cluster sensor readings into
local storage buffers on each node, which are less-frequently retrieved by
de-coupled selection queries, significantly reducing communication efforts.

– Finally, Corona allows to specify a freshness constraint for queries in order
to facilitate sharing of sensor readings between queries. This new freshness
parameter works with arbitrary concurrent queries and helps to minimize
sensor activations in the network .

The innovation of our approach is this combination of dynamic multi-query
execution, freshness constraints for sharing of sensor activations, and adaptive-
ness to changing resource levels.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 416–419, 2010.
� Springer-Verlag Berlin Heidelberg 2010

Corona: Energy-Efficient Multi-query Processing in WSNs 417

2 System Architecture

Corona is our research platform running on the Sun� Small Programmable Ob-
ject Technology (SPOT) sensor network platform, developed at Sun Microsys-
tems Laboratories [1,2]. Our system is fully written in Java on top of the Sun
SPOT’s Squawk VM, a lightweight J2ME� virtual machine. This gives our sys-
tem the advantage of the ease of system maintenance and extension.

Corona follows a traditional WSN query processor architecture (cf. Figure 1)
that consists of three components [3]:

1. the query engine that is executed on the Sun SPOTs,
2. the host system on the user’s PC that is connected to the base station, and
3. a GUI client which connects via TCP/IP to the host system.

The control system runs on the user’s PC that is connected to the base station.
It provides some local persistent storage for query results and can be accessed
by several users concurrently via a graphical user interface for query input and
result visualisation as shown in Figure 1.

Fig. 1. System architecture and user interface of Corona

Corona uses a variant of an acquisitional SQL dialect as querying language.
The language allows to access the internal state of each sensor node, filter it
with selection predicates and perform in-network aggregation and clustering;
attributes either specify physical sensors like light, temp (temperature), x, y, z,
or meta information such as nodeid, parent, time. Queries can have specific start
times, an epoch between activation and a lifetime.

An unique feature of our Corona system is its multi-tasking capabil-
ity: Our query processor can execute several queries concurrently. This allows to
share the same network for several applications, which helps reducing infrastruc-
ture costs. Queries can be submitted by different users or applications. Query
tasks execute via a physical query plan; they are composed of relational query
operators that operate on virtual horizontal partitioned relational tables. The
query engine supports all the fundamental query operators including selection,
projection, join and aggregation, as well as an in-network clustering operator.

418 R. Khoury et al.

The major challenge is energy efficiency because sensor nodes are battery
powered. To this end, Corona provides two unique features to dynamically im-
prove the lifetime of the system: Firstly, its in-network clustering operator allows
clustering of results on the nodes in order to provide more information about
the sensor readings when aggregating while still keeping number transmitted
messages small. Instead of sending each individual sensor reading to the bases-
tation, this operator allows to cluster the sensor readings around frequent values
into a local storage on the node. A second de-coupled query than allows to
retrieve those clustering results only. This de-coupled selection query can run
with a much longer activation epoch, yielding a reduction of the communication
effort. Furthermore, this clustering operator is resource-aware, meaning it can
dynamically adapt its processing granularity (by means of the clustering dis-
tance threshold) and its output granularity (by means of merging neighbouring
clusters) based on pre-defined resource limits [4].

A second innovation is the freshness mechanism that Corona incorpo-
rates which allows to specify per query a threshold up to which sensor readings
of previously activated queries are to be used for a second query too:

SELECT temperature

FROM sensors

WHERE light > 100

EPOCH 60s RUNCOUNT 60

FRESHNESS 10s

The freshness constraint specifies how much time is allowed to pass since the last
sensor acquisition so that the query engine would not activate the sensor again, but
rather use the previous sensor reading from the cache on the sensor node. This
decision is done dynamically on every query activation. Additionally, the query
optimizer at the host can take this freshness constraint into consideration to de-
termine the optimal time shift (up to a maximum value) of the start time of a new
query, so that the cache hits during its lifetime are maximized. We have developed
a heuristic algorithm which calculates the near-optimal time-shift at the host. Our
performance studies show that heuristic is very scalable in terms of run count and
query count, but has linear one to one dependency on number of queries.

3 Background and Related Work

Distributed query processing in wireless sensor networks has been an active re-
search area over the last few years. TinyDB [5] and Cougar [6] represent the first
generation of query processing systems in wireless sensornetworks. The state of the
art is to abstract from the underlying sensor hardware by basing the WSN query
processors on virtual machines (VM) that run on the sensor nodes [7]. Corona falls
into this category by using the Squawk Java VM of Sun SPOT nodes and focuses
specifically on multi-query execution and resource-awareness. The adaptive clus-
tering operator in Corona, called ERA-Cluster, was initially presented in [8].

Running several queries concurrently can also be seen as a way to reduce
power consumption. [9] introducing the notion of a network query which is a

Corona: Energy-Efficient Multi-query Processing in WSNs 419

combination of all user queries running in the system. Hence, the query proces-
sor on the noes is actually executing only one query in the system. Corona in
contrast only executes the currently needed query and especially activates only
the necessary sensors.

4 Summary and Conclusions

The central challenge for WSNs is energy and communication efficiency. We have
developed a distributed query processor for the novel Sun SPOT platform that
provides a declarative query interface to users and allows to dynamically share
the WSN infrastructure between several user queries.

In order to maximize the network lifetime, Corona provides a resource moni-
toring component through which the query engine can dynamically adapt its pro-
cessing to changing resource levels. We have further applied the idea of caching to
shared wireless sensor networks in order to minimise sensor activations. Corona’s
query language allows users to choose how outdated sensor readings are allowed
to be before requiring a separate sensor activation for a query. We also developed
a technique of shifting query starting times to increase cache usage. All these
capabilities are implemented in a working prototype that is available under GPL.

Acknowledgements. This work is supported by the Australian Research Council
(ARC) under grant DP0664782, and by Sun Microsystems Labs.
Corona is available under GPLv3 from [10].

References

1. Simon, D., Cifuentes, C., Cleal, D., Daniels, J., White, D.: Java on the bare metal
of wireless sensor devices: the Squawk java virtual machine. In: Proc. of the 2nd
Int. Conf. on Virtual Execution Environments, VEE (2006)

2. Sun Microsystems: SunSpotWorld website, http://www.sunspotworld.com/
3. Scholz, B., Gaber, M.M., Dawborn, T., Khoury, R., Tse, E.: Efficient time triggered

query processing in wireless sensor networks. In: Lee, Y.-H., Kim, H.-N., Kim, J.,
Park, Y.W., Yang, L.T., Kim, S.W. (eds.) ICESS 2007. LNCS, vol. 4523, pp. 391–
402. Springer, Heidelberg (2007)

4. Roehm, U., Gaber, M.M., Tse, Q.: Enabling resource-awareness for in-network data
processing in wireless sensor networks. In: Proceedings of ADC 2008 (2008)

5. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an acquisi-
tional query processing system for sensor networks. ACM TODS 30(1) (2005)

6. Yao, Y., Gehrke, J.: The cougar approach to in-network query processing in sensor
networks. SIGMOD Record 31(3), 9–18 (2002)

7. Müller, R., Alonso, G., Kossmann, D.: SwissQM: Next generation data processing
in sensor networks. In: Proceedings of CIDR 2007, Asilomar, USA (2007)

8. Phung, N.D., Gaber, M.M., Röhm, U.: Resource-aware online data mining in wire-
less sensor networks. In: Proceedings of the IEEE CIDM Symposium (2007)

9. Trigoni, N., Yao, Y., Demers, A., Gehrke, J., Rajaraman, R.: Multi-query optimiza-
tion for sensor networks. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh,
M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 307–321. Springer, Heidelberg (2005)

10. The Corona Website (2009), http://www.it.usyd.edu.au/~wsn/corona/

http://www.sunspotworld.com/
http://www.it.usyd.edu.au/~wsn/corona/

Aquiba: An Energy-Efficient Mobile Sensing
System for Collaborative Human Probes

Niwat Thepvilojanapong1,2, Shin’ichi Konomi1,2,
Jun’ichi Yura3, Takeshi Iwamoto4, Susanna Pirttikangas5, Yasuyuki Ishida1,

Masayuki Iwai6, Yoshito Tobe1,2, Hiroyuki Yokoyama7, Jin Nakazawa3,
and Hideyuki Tokuda3

1 Tokyo Denki University, Japan
wat@osoite.jp

2 CREST, JST, Japan
3 Keio University, Japan

4 Toyama Prefectural University, Japan
5 University of Oulu, Finland
6 University of Tokyo, Japan

7 KDDI R&D Laboratories, Japan

Abstract. Portable sensory devices carried by humans—which are re-
ferred to as Human Probes—facilitate easy-to-use sensing and monitor-
ing of urban areas. In this demonstration, we developed a prototype of
Aquiba sensing system from off-the-shelf mobile phone. Aquiba involves
collaborative sensing that helps in achieving high-fidelity sensing while
minimizing overall energy consumption. We validated the benefit of col-
laborative sensing through field experiments.

1 Introduction

Human-Probe sensing, which allows ordinary people carrying sensors to par-
ticipate in data collection, provides an exciting opportunity to design a novel
humans-in-the-loop sensing environment because it eliminates the hindrance of
deploying myriad static sensors across a wide area and leads to a fully distributed
urban sensing. Human Probes consider not only participatory and opportunis-
tic modes of data capture but also collaboration without community bonds.
Such collaboration could take place automatically among strangers, even with-
out them being aware of it. Therefore, this paper focuses on the design and
analysis of collaborative Human Probes by exploiting dynamic, emergent, and
ephemeral pedestrian groups. We propose a mobile sensing system called Aquiba
for efficiently collect environmental data in urban areas. In order to minimize
total energy consumption while still achieving high-fidelity sensing, Aquiba au-
tonomously adjusts sensing rate of each Human Probe based on the availability
of nearby Human Probes which always changes along the time. We develop pro-
totype devices and conducted field experiments in which the results confirm the
efficacy of Aquiba system in terms of energy efficiency and sensing fidelity.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 420–423, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Aquiba: An Energy-Efficient Mobile Sensing System 421

MHPZ-P Sensors
MHPZ PMHPZ-P MHPZ-P

MHPZ-C MHPZ-body

MHPZ-App

Serial

pp
BREW

Software

MHPZ-body

Interface

MHPZ-body

Fig. 1. A prototype of Human-Probe device

2 Aquiba: Collaborative Sensing System

Aquiba considers the following issues which are decided on the basis of the
various factors relating to Human-Probe sensing: (i) an environmental sensing
system consists of a server, mobile phones, and sensors; (ii) the mobile phones
are equipped with cellular and short-range wireless interfaces; (iii) the sensors
are either integrated in the mobile phones or positioned at various locations in
the environment to capture environmental data; (iv) the server issues a query
including the desired sensing rate Ri for each data type for each sensing area Ai,
where i indicates the index of the sensing areas; (v) the mobile phones are able
to acquire their current location information. In particular, the Human Probes
that we consider perform implicit sensing tasks, i.e., the sensors automatically
capture the requested data and the mobile phones upload the data to the server
via a cellular network. The mobile phone uses short-range wireless interface to
communicate with nearby sensors and other mobile phones.

Upon receiving a query from the server, Human Probe which exists in Ai

performs the collaborative sensing by adjusting its sensing rate to Ri

ki
, where

ki is the number of Human Probes in Ai. To maintain information of other
Human Probes in the same sensing area, a mobile phone uses short-range radio
to broadcast beacon packets periodically. Based on received beacon packets, a
Human Probe can determine the current number of neighboring Human Probes
and accordingly adjust its sensing rate. Each Human Probe needs to set an
expiry time for each neighboring Human Probe and delete the expired neighbors
from its neighbor table periodically. In our implementation, the determination
of the beacon interval and neighbor management is based on those of AODV
protocol [1].

3 Prototype Implementation

We developed a platform of Mobile-phone-based Human Probe with ZigBee
(MHPZ). The hardware of MHPZ consists of three components: MHPZ body,

422 N. Thepvilojanapong et al.

MHPZ parent (MHPZ-P), and MHPZ child (MHPZ-C) as shown in Fig. 1. The
MHPZ body is an off-the-shelf mobile phone and functions as a Human Probe if
it is physically connected with MHPZ-P. The MHPZ-P, which is equipped with
a ZigBee interface, is connected to the MHPZ body via a serial interface and can
communicate with any ZigBee devices. Thus the MHPZ-P functions as a gate-
way between the mobile phone and various sensors with ZigBee communication
capability. Finally, the MHPZ-C can sense and transmit data to the MHPZ-P
via ZigBee radio.

Inside the MHPZ body, we implemented a BREW application software (MHPZ-
App) to handle communication with an MHPZ-P and control cellular communica-
tion ofmobile phone. The MHPZ-App controls and monitors the MHPZ-P through
a synchronous command, i.e., the MHPZ-App issues a command (e.g., asking to
broadcast a beacon packet) to the MHPZ-P, which in turn sends corresponding
replies (e.g., informing neighbor information or sensed data) to the MHPZ-App.
The MHPZ-App calculates an appropriate sensing rate based on the Aquiba proto-
col. In our prototype implementation, MICAz Motes are used for both MHPZ-P
and MHPZ-C, and Casio G’zOne W62CA is the MHPZ body.

4 Experimental Study

We asked 12 participants to carry the MHPZ platforms and walk in an 156m-
by-132m area. The MHPZs collaboratively captured temperature data and up-
loaded them to a server. There were six experimental scenarios (E1–E6), each
of which specified a different walking pattern and stopping probability. Partici-
pants walked freely in scenarios E1–E4, while they followed a different sequence
of predetermined way points in scenarios E5 and E6. When people run into their
acquaintances on the street, they may stop for a short period to say hello and
have a conversation. We examined the impact of such a behavior by using dif-
ferent stopping probability in each scenario, i.e., 1.00, 0.50, 0.33, 0.25, 1.00, and
0.33 for scenarios E1, E2, E3, E4, E5, and E6, respectively. Each participant
received a trump card, and they stopped when encountering a participant who
carry the same trump card. In all scenarios, Ri was set to 12 times per minute,
and the beacon packets were broadcast every five seconds.

Human Probes aim to maximize sensing fidelity which is defined as a ratio
of the sensing rate perceived by the server to the desired sensing rate in a given
sensing area. If the total number of packets arrives at the server during the

period ΔT is N , the sensing fidelity is
min(N

ΔT ,Ri)
Ri

. We also calculate upload
ratio which is a ratio of the number of uploads carried out by Aquiba protocol
to the number of uploads carried out by non-collaborative Human Probes.

The results of all scenarios are shown in Fig. 2. Fig. 2a shows the variation of
sensing fidelity along time axis. For all scenarios, sensing fidelity generally achieves
the highest level (1.0) except for the several instances being temporarily below 1.0.
The lower sensing fidelity is partially due to stale neighbor information. Fig. 2b
shows overall sensing fidelity for the entire experimental period along with 95%
confidence intervals. As far as sensing fidelity is concerned, there is no significant

Aquiba: An Energy-Efficient Mobile Sensing System 423

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Time (s)

Se
ns

in
g

fid
el

ity

E1
E2
E3
E4
E5
E6

(a) Temporal variation of sensing fi-
delity.

E1 E2 E3 E4 E5 E6
0

0.2

0.4

0.6

0.8

1

Se
ns

in
g

fid
el

ity

(b) Overall sensing fidelity.

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Time (s)

U
pl

oa
d

ra
tio

E1
E2
E3
E4
E5
E6

(c) Temporal variation of upload ratio.
E1 E2 E3 E4 E5 E6

0

0.2

0.4

0.6

0.8

1

U
pl

oa
d

ra
tio

(d) Overall upload ratio.

Fig. 2. Experimental results

difference among all scenarios. The experiments showed that sensing fidelity is not
significantly affected by the stopping probabilities and walking patterns.

The temporal variation of upload ratio (Fig. 2c) was normally lower than 40%.
Fig. 2d shows overall upload ratio for the entire experimental period along with
95% confidence intervals. The upload ratios of scenarios E5 and E6 (predeter-
mined routes) are significantly different, i.e., the number of uploads is reduced
when the stopping probability is high. The upload ratios of scenarios E1, E2,
E3, and E4 (free walk) suggests a similar impact of the stopping probability on
upload ratio, i.e., higher stopping probability leads to lower upload ratio.

5 Demonstration

In the demonstration, we will prepare MHPZ devices and show how the mobile
phones acquire data from sensor, and how the phones find neighbor Human
Probes and adjust their sensing rate automatically. Users can check current
status and set parameters of Aquiba through GUI of mobile phones. We will
also prepare the server to show collected sensor data in real-time.

Reference

1. Perkins, C.E., Belding-Royer, E.M., Das, S.: Ad hoc on-demand distance vector
(AODV) routing. RFC 3561, IETF (July 2003)

A Shoes-Integrated Sensing System for
Context-Aware Human Probes

Kazumasa Oshima1, Yasuyuki Ishida1, Shin’ichi Konomi1,2,
Niwat Thepvilojanapong1,2, and Yoshito Tobe1,2

1 Tokyo Denki University, Japan
shima@u-netlab.jp

2 CREST, JST, Japan

Abstract. Human Probes, which are human integrated or embedded
with sensors, allow the acquisition of a variety of contextual informa-
tion, facilitate collaborative information sharing and community action
as well as the provision of personalized services such as personal health
management and context-aware advertisements. Recently, we have ex-
amined the usefulness of pressure sensors embedded in shoes [2]. In this
demonstration, we extend our previous research on embedded pressure
sensors by considering complimentary uses of accelerometers so as to
capture precise and meaningful context in our daily lives. Pressure sen-
sors and accelerometers are similarly useful for capturing the motion of
pedestrians; however, the close examination of the signals from both sen-
sors reveals the strengths and the weaknesses of each, and suggests the
possibility of their complimentary use to support Human Probes.

1 A Human-Probe System

We designed and implemented a Human-Probe system that captures data from
accelerometers and pressure sensors embedded in shoes. Figure 1 shows the
overview of the system that integrates pressure sensors and Sun SPOTs [1]. The
Sun SPOTs, which are equipped with a three-axis accelerometer and a wireless
communication interface, are attached at the heel portions of the shoes, with x,
y, and z axes pointing to the directions shown in Fig. 1. Two pressure sensors
are embedded in a shoe, one at the toe and the other at the heel portion.

Using the system, we carried out field experiments and collected data from
a pedestrian who put on the sensor-enabled shoes and walked in four different
walking conditions (see Table 1).

Sun SPOT
(3-axis accelerometers)

Pressure Sensors

Z

X
Y

X

Fig. 1. Sensor-enabled shoes

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 424–427, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Shoes-Integrated Sensing System for Context-Aware Human Probes 425

Table 1. Walking conditions

Walking conditions Details

Flat surface Asphalt pavement
Stair 18cm-high, 28cm-wide steps
Slope 25-degree slope
Lawn 15cm-high grass

500

300

400

500

(k
Pa

)

Heel

100

200

300

400

500

es
su

re
 (k

Pa
)

Heel
Toe

0

100

200

300

400

500

Pr
es

su
re

 (k
Pa

)

Time (s)

Heel
Toe

0

100

200

300

400

500

1 51 101

Pr
es

su
re

 (k
Pa

)

Time (s)

Heel
Toe

0 1 2
0

100

200

300

400

500

1 51 101

Pr
es

su
re

 (k
Pa

)

Time (s)

Heel
Toe

0 1 2

Fig. 2. Pressure values when walking on a flat surface

2 Data Analysis

We collected data in four different places in Tokyo, each of which corresponds to
different walking conditions in Table 1. This section presents the analysis of the
data.

2.1 Analysis of Pressure Data

Figure 2 shows the pressure values measured by two pressure sensors in a shoe. It
is likely that the peak patterns could provide useful information for estimating the
context ofwalking. Figure 3 shows the distribution of the peak values at the toe and
the heel for each walking environment. The distribution suggests that we can es-
timate the ground-surface conditions using learned threshold values. We conclude
that the pressure sensors embedded in shoes can provide information that is useful
for understanding the context of walking such as ground-surface conditions.

2.2 Analysis of Acceleration Data

We can also estimate the context of walking by examining acceleration patterns.
Figure 4 shows the acceleration data along the y and z axes, which were captured
from a pedestrian walking on a flat surface as he pulls his foot up and moves it
forward and down. We found that fluctuation patterns of y-axis acceleration data
in A and B shaded periods in the figure are different for each walking condition,
thereby allowing us to capture information related to up-down motion of a foot.
The acceleration data along the z-axis show a repeating waveform (see Figure 4).
We also verified that the waveform of z axis changes when we impose restrictions
on step length. This suggests that the acceleration data along the z-axis is useful
for acquiring information about step length. We conclude that the accelerometers
embedded in shoes can provide information that is useful for understanding the
motion of walking.

426 K. Oshima et al.

400

450

300

350

400

450
a)

250

300

350

400

450
To

e
(k

Pa
)

Flat

150

200

250

300

350

400

450
ss

ur
e

at
 T

oe
 (k

Pa
)

Flat
Stair (down)
Stair (up)

50

100

150

200

250

300

350

400

450
Pr

es
su

re
 a

t T
oe

 (k
Pa

)

Flat
Stair (down)
Stair (up)
Slope
Lawn

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500

Pr
es

su
re

 a
t T

oe
 (k

Pa
)

Flat
Stair (down)
Stair (up)
Slope
Lawn

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500

Pr
es

su
re

 a
t T

oe
 (k

Pa
)

Pressure at Heel (kPa)

Flat
Stair (down)
Stair (up)
Slope
Lawn

Fig. 3. A distribution of peak values of pres-
sure sensors

Fig. 4. Acceleration values when walk-
ing on a flat surface

0
1
2
3

ra
tio

n
(g

)

-3
-2
-1

1 51 101

A
cc

el
er

200
250
300
350
400
450

ur
e

(k
Pa

)

0
50

100
150
200

1 51 101

Pr
es

su

Time (s)0 1 2 3 4

Fig. 5. Complimentary use of accelerometers and pressure sensor.

2.3 Complimentary Usage of Sensors

According to the above discussion, accelerometers are able to capture dynamic
context such as walking patterns, on the other hand, pressure sensors are able to
capture static context such as ground-surface conditions. This suggests compli-
mentary sensing functions of both sensors. Figure 5 supports this conclusion by
showing a situation that only one kind of sensor is able to capture changes of the
sensing value (the shaded periods in the figure), while the value captured by the
other sensor does not change during the periods. Figure 6 shows a complicated
case of walking data. Acceleration data do not show any significant patterns;
thus a high-level, high-cost technique is required to analyze and understand the
data. However, we can extract each walking step easily by applying a simple
recognition algorithm on pressure data.

3
A B

2

3
Y
Z

A B

1

2

3

n
 (g

)

Y
Z

A B

-1

0

1

2

3

er
at

io
n

 (g
)

Y
Z

A B

-2

-1

0

1

2

3

A
cc

el
er

at
io

n
 (g

)

Y
Z

A B

-3

-2

-1

0

1

2

3

1 51

A
cc

el
er

at
io

n
 (g

)

Y
Z

0 1

A B

-3

-2

-1

0

1

2

3

1 51

A
cc

el
er

at
io

n
 (g

)

Time (s)

Y
Z

0 1

A B

A Shoes-Integrated Sensing System for Context-Aware Human Probes 427

2
1
0

-2
-1

2
1
0

-2
1io

n
(g

)

-1

2
1
0
2

-1

2
1
0
2

A
cc

el
er

at
i

-2
-1-2-1

500
400kP

a)

400
300
200

100Pr
es

su
re

 (k

0 1 2 3 Time (s)0

P

Fig. 6. Detection of complicated walking data

WiFiMobile Device

Laptop

IEEE 802.15.4

Laptop
PC

Various surfaces Sensor-enabled shoes

Fig. 7. Illustration of demonstration

3 Demonstration

Although we are using mobile phones to validate participatory sensing, we use
WiFi in this demonstration to avoid possible troubles. Subjects can try to put on
shoes, which are equipped with accelerometers and pressure sensors, and walk on
four kinds of surfaces (as shown in Table 1). Figure 7 illustrates the structure and
components of demonstration. As described in Sect. 1, we integrate Sun SPOTs
and pressure sensors in shoes. The Sun SPOTs use IEEE 802.15.4 to transmit
sensor data to a mobile PC, which in turn forwards the data to a laptop PC
through WiFi interface. Upon receiving sensor data, the laptop PC analyzes and
shows current ground-surface condition as well as other walking information such
as walking patterns of subjects.

References

1. Sun SPOT World, http://www.sunspotworld.com
2. Uehara, Y., Uchiyama, T., Mori, M., Saito, H., Tobe, Y.: Always-on karte: A system

for elderly people’s healthcare using wireless sensors. In: INSS 2006, May 2006, pp.
45–48 (2006)

http://www.sunspotworld.com

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 428–431, 2010.
© Springer-Verlag Berlin Heidelberg 2010

DigestJoin: Expediting Joins on Solid-State Drives∗

Shen Gao, Yu Li, Jianliang Xu, Byron Choi, and Haibo Hu

Depart of Computer Science
Hong Kong Baptist University

Kowloon Tong, Hong Kong SAR, China
{sgao,yli,xujl,bchoi,haibo}@comp.hkbu.edu.hk

Abstract. This demonstration presents a recently proposed join algorithm
called DigestJoin. Optimized for solid-state drives (SSDs), DigestJoin aims at
reducing intermediate join results and hence expensive write operations while
exploiting fast random reads. The demonstration system consists of an im-
plementation of DigestJoin in the open-source PostgreSQL database man-
agement system on an Intel SSD. In the demonstration, we will showcase the
performance benefits of DigestJoin in comparison to a traditional join
algorithm and highlight the workloads in which DigestJoin is particularly
favorable.

1 Introduction

Solid-State Drives (SSDs) have recently been a competitive alternative secondary
storage for database applications, thanks to their superiority such as low access la-
tency, low power consumption, and excellent shock resistance [1]. However, com-
pared to magnetic disks, SSDs possess a number of distinct I/O characteristics, which
affect database applications, among others. First, SSDs do not involve any mechanical
components so that there is a negligible seek time in reading pages. A random read is
almost as fast as a sequential read on SSDs. Second, SSDs have an erase-before-write
constraint: a page has to be erased before it can be overwritten. Although this can be
addressed by the out-place update strategy, new issues such as wear leveling and gar-
bage collection arise, rendering a write slower than a read on SSDs. Third, with the
short I/O latency (e.g., the random read of an SSD is 150X faster than that of a mag-
netic disk [1]), I/O cost may no longer dominate CPU computation cost in evaluating
a query on an SSD-based database system. These distinct I/O characteristics make the
state-of-the-art join algorithms, which assume I/O characteristics of magnetic disks,
suboptimal when implemented on SSDs.

In this demonstration, we present DigestJoin ⎯ a recently proposed algorithm that
optimizes join performance for SSDs by reducing intermediate join results and

∗ This work was partially supported by the Research Grants Council of Hong Kong (Grants

HKBU210808 and HKBU211307) and Natural Science Foundation of China (Grant No.
60833005).

 DigestJoin: Expediting Joins on Solid-State Drives 429

exploiting fast random reads [2]. DigestJoin consists of two phases: digest-table join-
ing and page fetching (see Figure 1). In the first phase of digest-table joining, Digest-
Join projects the tuple id (tid) as well as the attribute(s) that participate in the join.
The projected tables are called the digest tables. A traditional join algorithm is then
applied on the digest tables to generate the digest join results. The digest join results
are simply pairs of tids together with the join attribute(s), thereby minimizing the size
of intermediate join results. In the second phase of page fetching, based on the digest
join results, DigestJoin loads the full tuples that satisfy the join from the original ta-
bles to produce the final join results. Whenever a tuple is fetched from disk, the entire
page containing the tuple is fetched. Ideally, each page should be fetched at most once
during the process of final-result construction. However, this is difficult to achieve in
practice due to memory constraints. As the digest join results are not clustered with
respect to page address, a page may be fetched multiple times during the construction
process. Thus, a page fetching strategy is needed to minimize the number of page
accesses. In the following sections, we provide more details of each of the two phases
in DigestJoin with an example.

Fig. 1. Overview of DigestJoin Fig. 2. Connecting SSD to mother-
board

2 Digest-Table Joining

Consider two tables A = {a1, a2, …, an} and B = {b1, b2, …, bn}. Denote the tuple ids
of these two tables by A.tid and B.tid, respectively. In the first step, we scan tables A
and B and compute the digest tables that contain only the join attributes and the tuple

ids. For example, given a simple join A ⊳⊲A.ax=B.bx B, the digest tables will be A’ =
{A.tid, A.ax} and B’ = {B.tid, B.bx}. After that, we apply a traditional join algorithm
(e.g., nested-loop, hash join, or sort-merge) to the digest tables to generate the digest
join results, e.g., in the form of {A.tid, B.tid, ax} for the above example. As the digest
tables are often much smaller than the original tables, the I/O of the join, especially
the write operations on SSDs, would be greatly reduced.

430 S. Gao et al.

3 Page Fetching

The digest join results consist of only the tids of the tuples that satisfy the join. To
produce the final join results, we fetch the tuples from the original tables according to
tids. The fetching is performed at page-level granularity. This has been known to be
the classical page fetching problem in index-based joins. However, as random reads
are no longer an issue on SSDs, we can simply minimize the amount of I/Os in fetch-
ing the full tuples. On the other hand, due to the short I/O latency of SSDs, the CPU
computation cost of page fetching should also be taken into consideration.

As an illustration, one straightforward solution is to fetch the pages of the tuples as
soon as they are generated in the digest-table joining phase, and cache them in a
buffer for future use. Since random reads are fast on SSDs, we assign as few input
buffers as possible in the digest-table joining phase in order to maximize the number
of buffers for page caching. For example, suppose that sort-merge is used to join the
digest tables. Page fetching is incorporated in the merge phase of the digest-table join
(i.e., after the digest tables have been sorted). We assign only two input buffers to
merge the two sorted digest tables. The remaining buffer space forms a page cache. A
cache replacement policy, LRU, is used for the management of the page cache. This
page fetching strategy maximizes the amount of cached pages. Meanwhile, it does not
incur much CPU computation cost. More advanced page fetching strategies for SSDs
have also been proposed; interested readers may refer to [2] for details.

4 Demonstration Description

We have implemented DigestJoin in PostgreSQL 8.3.6 [3], an open-source database
management system. We store the TPC-H tables on an Intel 80GB X25-M SSD,
which are connected to the motherboard via a SATA II connection (see Figure 2). In
this demonstration, we will showcase the performance benefits of DigestJoin in com-
parison to a traditional sort-merge join (TraditionJoin) algorithm and highlight the
workloads in which DigestJoin is particularly favorable.

Figure 3(a) gives a screenshot of the GTK+ interface of our demonstration system.
After launching the system, the user can input a join query in standard SQL form.
Below is an example:

SELECT *
FROM CUSTOMER C, ORDERS O
WHERE C.C_CUSTKEY = O.O_CUSTKEY

Next, the user can set a number of parameters for execution:

• Join result selectivity: This adds to the WHERE clause of the user query an
additional filtering function that selects part of the original join results. The se-
lectivity can be ranged from 0.01 to 1.0.

• Skewness of join results: When used with the join selectivity, this parameter
controls the page distribution of selected join results. When it is set at 0, the join
results are evenly distributed; when it is set at 1, the selected join results are
highly clustered on a few hot pages.

 DigestJoin: Expediting Joins on Solid-State Drives 431

• Buffer size: This sets the size of the buffer (in terms of the number of 8KB
pages) used for the join algorithm.

• Dataset size: Each dataset under testing has three sizes for selection: small
(250MB), medium (500MB), and large (1GB).

The user can also choose an execution mode. In simultaneous mode (Figure 3(a)), to
contrast the performance difference, DigestJoin and TraditionJoin will be executed
side-by-side, and their elapsed times will be visualized in the performance bars (see
the left part of Figure 3(a)) in real time. For TranditionJoin, the whole join process is
divided into three stages: scanning and sorting the outer table (Phase I), scanning and
sorting of the inner table (Phase II), and merging join results (Total Time). For Di-
gestJoin, the whole process is divided into generating digest join results (Phase I),
page fetching (Phase II), and generating final results (Total Time). During the execu-
tion, the “Processing” status will be displayed in the corresponding stage. After com-
pleting all stages, the total elapsed time will be reported. In an alternative separate
mode (Figure 3(b)), the two join algorithms will be executed one after the other in
order to eliminate their possible performance interference of simultaneous execution.
Finally, the user can check the join results by clicking the Results buttons. An online
demo video for DigestJoin is available at http://www.comp.hkbu.edu.hk/~db/demo.

(a) Simultaneous mode (b) Separate mode

Fig. 3. User interface of the demonstration system

References

1. Lee, S.-W., Moon, B., Park, C., Kim, J.-M., Kim, S.-W.: A Case for Flash Memory SSD in
Enterprise Database Applications. In: Proceedings of SIGMOD, pp. 1075–1086 (2008)

2. Li, Y., On, S.T., Xu, J., Choi, B., Hu, H.: DigestJoin: Exploiting Fast Random Reads for
Flash-based Joins. In: Proceedings of the 10th International Conference on Mobile Data
Management (MDM 2009), pp. 152–161 (2009)

3. PostgreSQL, http://www.postgresql.org/

A Large Scale Key-Value Store Based on
Range-Key Skip Graph and Its Applications

Susumu Takeuchi1, Jun Shinomiya2, Toru Shiraki3, Yoshimasa Ishi3,
Yuuichi Teranishi1,3, Mikio Yoshida4, and Shinji Shimojo1

1 National Institute of Information and Communications Technology, Japan,
{stakeuti,sshinji}@nict.go.jp

2 School of Engineering, Osaka University, Japan
shinomiya.jun@ise.eng.osaka-u.ac.jp

3 Graduate School of Information Science and Technology, Osaka University, Japan
{shiraki.toru,ishi.yoshimasa,teranisi}@ist.osaka-u.ac.jp

4 BBR Inc., Japan, yos@bbr.jp

Abstract. An overlay network called Range-key Skip Graph (RKSG)
has been proposed that can perform range-to-range search on peer-to-
peer network. In this paper, we propose a large scale key-value store
realized on RKSG, which is possible to scale-out a database with range
query. Moreover, applications that utilize the store are implemented and
will be demonstrated through private PlanetLab on JGN2plus.

Keywords: P2P Overlay Network, Range-key Skip Graph, Key-value
Store.

1 Introduction

Recently, key-value store that allows a massive number of computers to have a
large scale fast database is adopted in many systems. However, existing key-value
stores only support to retrieve data by a single key, i.e., only exact matching is
provided. In the ubiquitous environment, range retrieval that can extract data
within a specific range of a key is required as well as exact matching. For example,
a weather sensor application would need to retrieve the current observed data
in each sensor located in a specific region, and a navigation application would
need to retrieve movement histories of people in a specific region to recommend
a route to go to a certain place.

In order to realize key-value store that supports exact matching, DHT (Dis-
tributed Hash Table), which is a structured P2P (Peer-to-Peer) overlay network
such as Chord [1] and Kademlia [2], is effective for archiving high scalable one.
Windows Azure1 is one of the available implementations of DHT-based key-value
store. However, DHT-based architecture cannot support range retrieval so that
realizing key-value store which supports range query is difficult. Accordingly, a
structured overlay network Skip Graph (SG) [3] is proposed to support range

1 Windows Azure Platform: http://www.microsoft.com/azure/windowsazure.mspx

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 432–435, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Large Scale Key-Value Store Based on RKSG and Its Applications 433

retrieval, but SG is designed for searching a node so that it is difficult to handle
a massive amount of data.

Therefore, we have proposed Range-key Skip Graph (RKSG) [4] that is based
on SG and is developed to handle range-to-range query. In RKSG, a node can
have multiple ranges and search other nodes that manage the required range of
a query. A large scale key-value store is implemented by utilizing RKSG in this
paper, which allows retrieving all the data that is assigned to the keys within
the range of the query. As a demonstration, applications are developed to show
the availability and scalability of the store that can handle a massive amount of
data and nodes. The applications include a visualization tool of weather sensor
stations and movement histories of users.

2 Range-Key Skip Graph

Skip Graph is a structured overlay network that is based on Skip List [5], but is
extended for applying to the distributed environment. In SG, each node belongs
to higher level independently at a certain probability, and the nodes that are
belong to the same level connect each other based on membership vector. To
retrieve a key, a search node transfers a query to the neighboring connected
nodes from the upper level to the lower level. Since SG includes range query
feature in its routing algorithm, implementing it in the distributed environment
is easier than DHT-based methods that support range query. However, each node
can have only one key, so managing enormous data, e.g., location-dependent
contents, by the limited number of nodes efficiently is difficult.

To address this issue, Range-key Skip Graph that handles a range as a key has
been proposed. In SG, keys must be arranged totally ordered relation, so a range
key should be managed by dividing the range to the independent range(s) or by
defining order relation by extracting a certain part of the range as a represen-
tative key. The former method is very difficult to implement in P2P distributed
environment where a node joins and leaves frequently, because dividing and
combining the ranges of the keys is inadequate whenever it occurs. The latter
method is easier to implement, but range-keys that meet a request sometimes
cannot be retrieved because the part or all the ranges of the keys are included
in another range key.

Accordingly, in RKSG, the minimum value of a range of a key is treated as a
representative key of the range key as illustrated in Figure 1. In addition, each
link and range of other range keys that include the minimum value of the range
key is hold in the inclusion keys list of the key. When a node wants to retrieve
a range, a query is forwarded by utilizing the inclusion keys list of the retrieved
keys. Consequently, RKSG supports range-to-range retrieval based on SG.

3 Demo Applications

For demonstrating the availability and scalability of RKSG, the following demo
applications which include the RKSG-based key-value store are implemented

434 S. Takeuchi et al.

5 - 7 6 - 13 17 - 18

Inclusion keys list

•5-7

Ordered by the minimum

value of each range key

Fig. 1. Key Arrangement in Range-key
Skip Graph

Key

Search

0-1000 1000-2000 2000-3000 3000-4000

get : 2100-3000

Range-Key Skip Graph

20

key value key value key value key value

50

1080

1250

2180

2850

3023

3876

abc

xyz

foo

bar

bob

dave

alice

cyndi

bob

dave

Fig. 2. Key-value Store Supports Range
Query

and will be demonstrated through private PlanetLab in JGN2plus where many
nodes are available over wide area.

3.1 Key-Value Store with Range Query

Key-value store is a sort of database that holds data as a pair of a key and a
value. Traditional database system, i.e., relational database management system
(RDBMS), can have multiple values for a piece of data as columns, but is difficult
to apply in the environment where an enormous amount of data is available
because of lack of scalability. On the contrary, key-value pairs in key-value store
can be divided by the ranges of the keys so that the data can be easily divided and
distributed in multiple servers. Thus, key-value store can scale-out a database,
which is difficult to achieve by RDBMS, and that is necessary for the distributed
environment.

Several implementations of key-value store have been provided, but existing
key-value stores cannot support range key and range query that is inadequate
in the ubiquitous environment where many nodes (e.g., sensors, cellular phones)
join, leave, or move frequently. Thus, the RKSG-based key-value store is imple-
mented in this paper. By utilizing RKSG, each node can have its management
area that is indicated by range-key, and the key-value store can support range
query as illustrated in Figure 2. Consequently, an application can search the
related nodes that manage a specific region based on those range-keys.

3.2 Visualization of Weather Sensor Information

Figure 3 shows an application that demonstrates visualization of weather sen-
sor information on Live E! project2. The observed data is stored in the key-
value store continually by each deployed sensor node, and this application draws
contour lines of weather information, e.g., temperature, humidity, pressure, by
collecting related sensing information from the region of the screen.
2 Live E!: http://www.live-e.org/en/

A Large Scale Key-Value Store Based on RKSG and Its Applications 435

Fig. 3. Weather Sensor Information Fig. 4. Movement Histories

3.3 Visualization of Movement Histories

Figure 4 shows an application that demonstrates visualization of users’ move-
ment histories that can be obtained by GPS etc. The histories are stored in the
key-value store by each user’s node, and this application collects them that are
located in the region of the screen.

4 Conclusion

In this paper, Range-key Skip Graph that enables nodes on P2P overlay net-
work to retrieve data by range-to-range query was introduced. RKSG manages
the inclusion keys list so that a node can retrieve any range that contains dupli-
cate ranges among different nodes. To share several kinds of information in the
distributed environment, key-value store was realized on RKSG that is easy to
scale-out and enables the multiple nodes to handle huge amount of information.
As a demonstration, two applications that utilize the store and require range
query were implemented.

References

1. Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scalable Peer-to-
Peer Lookup Service for Internet Applications. In: ACM SIGCOMM 2001 (Septem-
ber 2001)

2. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based
on the XOR metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, p. 53. Springer, Heidelberg (2002)

3. Aspnes, J., Shah, G.: Skip Graphs. ACM Transactions on Algorithms 3(4), 37 (2007)
4. Ishi, Y., Teranishi, Y., Yoshida, M., Shimojo, S., Nishio, S.: A proposal of range-key

extension of Skip Graph. IPSJ Technical Report 2009-DPS-139 (1), 1–7 (2009) (in
Japanese)

5. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. In: Dehne, F.,
Santoro, N., Sack, J.-R. (eds.) WADS 1989. LNCS, vol. 382, pp. 437–449. Springer,
Heidelberg (1989)

Answering Range-Aggregate Queries over
Objects Generating Data Streams

Marcin Gorawski and Rafal Malczok

Silesian University of Technology,
Institute of Computer Science,

Akademicka 16,
44-100 Gliwice, Poland

{Marcin.Gorawski,Rafal.Malczok}@polsl.pl

Abstract. Nowadays computer systems process various types of data
such as images, videos, maps, data streams to name a few. In this paper
we focus on a problem of answering range-aggregate queries over objects
generating data streams. Our motivating example is a network of meters
monitoring utilities consumption and continuously reporting the readings
to central gathering points. An answer to a range-aggregate query is a
merged stream of aggregates allowing analyses of utilities consumption in
a given region. In order to calculate the answer we integrate MAL (Ma-
terialized Aggregates List) with spatial aggregating index, e.g. aR-Tree.
The result we obtain is a spatial aggregating index with functionality of
answering range queries over objects generating data streams. The index
is embedded in an experimental stream data warehouse system imple-
mented in Java. The implementation provided us with the possibility of
presenting the index operation and also carrying out a number of tests.

1 Introduction

In recent years data warehouse systems become more and more popular. Users
find the ability of processing large amounts of data in a short time very useful and
convenient. This trend is supported by products of large software companies who
enrich their business offer with ready-to-use data warehouse solutions integrated
with broadly known database systems. A simple data warehouse can be created
by a user who, by clicking, models data warehouse structure, builds dimensions,
attributes and hierarchies and finally defines the available reports. Therefore,
systems built from scratch and dedicated for a single company are no longer the
only way to create a data warehouse.

The extension of the domain where data warehouse systems are applied, re-
sults in the need for supporting various, often far from standard, types of data.
Very interesting are aspects of adapting data warehouse to be used for process-
ing stream data. To the stream data category we classify, for example, car traffic
and cell phones tracking data as well as utilities consumption data. For the pur-
pose of storing and processing stream data stream data warehouses are being
designed and implemented.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 436–439, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Answering Range-Aggregate Queries over Objects Generating Data Streams 437

The area of stream data processing and storing is an active research field.
There are many projects focused on designing systems which make possible to
register and evaluate continuous queries [1]. Stream data warehouse systems pose
many new challenges which do not occur in standard data warehouses. One of
the most important is the problem concerning the data loading process (ETL
– Extract, Transform and Load). In standard data warehouses ETL is a batch
process launched from time to time (every night, every weekend etc) while in
stream data warehouses the ETL process is a continuous one. On the other hand,
changing nature of the ETL process forces stream data warehouses designers to
provide efficient mechanisms for processing and managing stream data.

We started our research from a problem of answering range spatial queries
over objects generating data streams. In this paper we first describe our moti-
vating example. Then we address the issues of integrating MAL (Materialized
Aggregates List), an extended version of a solution previously developed in our
laboratory for processing long aggregates lists, with spatial aggregating index,
e.g. aR-Tree. The result of integration is a spatial aggregating index with the
functionality of answering range queries over objects generating data streams.
Finally we present the system in which the index is implemented.

1.1 Motivating Example and Problem Definition

Stream data processing is, in many cases, motivated by the need of handing
endless streams of sensor data [3]. The motivation for the research presented in
this paper is a system of integrated utilities meters reading. The system monitors
consumption of utilities such as water, natural gas and electrical energy.

Considering the telemetric system operation we can assume that every single
meter is an independent source generating an endless stream of readings. A user
who analyzes the system operation may be interested in the following aspects:

– What is the total number of meters located in a specified region (or regions)
of the telemetric installation?

– How much utilities is consumed by inhabitants of the region (or regions)?

Let us consider the above as a query which answer consists of two parts. The
first part provides information about the number of various kinds (water, gas
etc.) of meters located in the query region. The second part is a merged stream
(or streams) of aggregated readings flowing from the meters encompassed by the
region query.

To answer the first part we can use a spatial index which, in very fast and
efficient way, can answer any range query [2].

In order to calculate the second part, we need to apply an indexing structure
which in index nodes stores aggregates concerning objects located in the nodes
regions. The first solution proposed for this problem was aR-Tree [5] (aggregation
R-Tree). aR-Tree index nodes located on the higher levels of the hierarchy store
the number of objects on the nodes located in the lower levels.

The designers of the mentioned spatial aggregating indices assumed that the
size of the aggregated data is well defined and small enough to fit into the

438 M. Gorawski and R. Malczok

computer main memory. Such an assumption cannot be made for a stream data.
In the following section we present the extensions introduced to a spatial aggre-
gating index which allow indexing objects generating data streams.

2 Answering Range Aggregating Queries

The main idea of our solution is to extend the existing functionality of aR-Tree
(or any spatial aggregating index with similar features) providing a component
that could be an integral part of every index node and would be able to pro-
cess data streams of any length. Such a component is MAL [4] (Materialized
Aggregates List).

MAL is a combination of a memory structure and a set of dedicated algo-
rithms. MAL bases its operation on the concept of list and iterator. Mechanisms
implemented in the list allow generating and then optionally materializing the
calculated aggregates while iterators are used for browsing the generated data
and communicating with the list.

When used as a component of indexing structure nodes, MAL must be able
to merge aggregates streams. Aggregates streams merging operation merges two
or more aggregates streams creating one aggregates stream. All merged streams
must contain aggregates used during adding operation, merging cannot be per-
formed for streams where some required aggregates are missing.

2.1 Spatial Aggregating Index Extensions

Processing data streams requires efficient solutions. The efficiency is regarded as
both the time complexity of the applied algorithms and memory complexity of
used data structures. Designing MAL we tried to cover all efficiency aspects: we
used multithread implementations of page-filling algorithms and static table to
store the aggregates. Hence we can be sure that, properly configured, a single
instance of MAL will not consume too much system resources.

More problematic is the situation when there are multiple MALs in a spatial
index. In order to control the number of iterator tables used by those instances
we apply the concept of a resource pool (referenced below as table pool). We
also developed a dedicated iterator tables assignment algorithm that manages
the available tables to make the query evaluation process efficient.

The operation of the algorithm depends on the number of elements (nodes and
objects) in FAN and M sets. The sets are created while the query answering
algorithm browses the index and contain: index nodes entirely covered by the
query region (Full Access Nodes: FAN) and single telemetric elements (meters)
encompassed by the query region (meters: M).

If the table pool contains more than one iterator table, the nodes (FAN set)
and objects (M set) involved in the answer stream generation process are sorted
according to a set of below-listed criteria. Then, the available tables are assigned
to the nodes and objects according to the sorting order: (1) the number of
materialized data available for a given node, (2) generated stream materialization
possibility and (3) the amount of objects encompassed by the node’s region.

Answering Range-Aggregate Queries over Objects Generating Data Streams 439

3 Presentation

The described solution is a part of DWE (Data Warehouse Experimental), a
framework implemented in Java. DWE is equipped with graphical user interface.
The user can see a map of telemetric system installation with utilities meters
marked as points of different colors. Using a rubber rectangle user defines a set
of regions which create spatial query. Another query parameter is the moment
of time since when the aggregation should start. After sending the query to the
system the user can observe the process of query evaluation. The observation
includes changes of stream data sources (database, raw stream, materialized
data), table pool statistics (the number of available tables, the number of usages
of a single table) and continuously updated query results presented in the form
of tables and charts.

Demonstration of the DWE system and the discussed solution is going to be
preceded by a short presentation that would address the most important aspects
of the research motivation and system assumptions. During the demonstration
the working system would be presented with the special focus on the process of
answering range aggregate queries over objects generating data streams.

References

1. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: Popa [6], pp. 1–16

2. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-Tree: An efficient
and robust access method for points and rectangles. In: Garcia-Molina, H., Jagadish,
H.V. (eds.) SIGMOD Conference, pp. 322–331. ACM Press, New York (1990)

3. Bonnet, P., Gehrke, J., Seshadri, P.: Towards sensor database systems. In: Tan,
K.-L., Franklin, M.J., Lui, J.C.-S. (eds.) MDM 2001. LNCS, vol. 1987, pp. 3–14.
Springer, Heidelberg (2001)

4. Gorawski, M., Malczok, R.: On efficient storing and processing of long aggregate
lists. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2005. LNCS, vol. 3589, pp. 190–199.
Springer, Heidelberg (2005)

5. Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial
data warehouses. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.)
SSTD 2001. LNCS, vol. 2121, pp. 443–459. Springer, Heidelberg (2001)

6. Popa, L. (ed.): Proceedings of the Twenty-first ACM SIGACT-SIGMOD- SIGART
Symposium on Principles of Database Systems, Madison, Wisconsin, USA, June
3-5. ACM, New York (2002)

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 440–443, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Real-Time Log Analysis Using
Hitachi uCosminexus Stream Data Platform

Yoshiyuki Hayashida1, Nobuhiro Ioki1, Naomi Arai1, and Itaru Nishizawa2

1 Hitachi Software Division, 2 Hitachi Central Research Laboratory, Japan
{yoshiyuki.hayashida.cf,nobuhiro.ioki.yz,naomi.arai.ek,

itaru.nishizawa.cw}@hitachi.com

Abstract. In this demo, we present real-time log analysis using Hitachi uCos-
minexus Stream Data Platform, uCSDP for short. Real-time log analysis is one
of the key applications that offers preventive measures to detect irregular ma-
nipulations and human mistakes in system management, and reduces the risk
and loss caused by such operations to the minimum in advance. uCSDP is the
stream data processing system featuring its declarative query processing lan-
guage, flexible time management, RAS support for high-available processing,
and eager scheduling for ultra low latency processing. This demo highlights the
uCSDP features for realizing real-time log analysis very easily and effectively.

Keywords: Stream data processing, Real-time Log analysis, CQL.

1 Introduction

Recently the quantity of data produced by IT systems has been increasing rapidly
corresponding to the growth in large scaled complex computer systems, and diffusion
of IC cards and sensor technology. As fusion of real world and IT accelerates business
speed, revolution in the IT infrastructure is required. The stream data processing (SDP
for short) system [1, 2] is a new IT platform responding to this requirement. Main
aspect of SDP is an ability to calculate a large amount of data in real-time manner by
processing them sequentially in memory.

Hitachi uCosminexus Stream Data Platform, uCSDP for short, provides a SDP
engine, and supports a declarative continuous query language based on CQL [3].
uCSDP has several extended features: flexible time management, RAS support for
high-available processing, and eager scheduling for ultra low latency processing.

Real-time log analysis is one of the promising applications of SDP system. IT sys-
tems compute a large quantity of data including their own log files generated by
themselves. Although the log files contain the business process information and sys-
tem status records that give the precious information for detecting system status and
user misoperations, they are usually only stored in the storage system and are not
effectively used in the absence of those IT platforms which analyze them in real-time
manner so far. Considering this demand, SDP system is far more suited to handle this
task compared to traditional database management systems.

 Real-Time Log Analysis Using Hitachi uCosminexus Stream Data Platform 441

This paper explains the features of uCSDP in Section 2, describes how to analyze
log files in real-time using uCSDP in Section 3, and concludes this paper in Section 4.

2 Basic and Extended Features of Hitachi uCSDP

2.1 Declarative Query Language and Flexible Time Management

Hitachi uCSDP models stream as an unbounded bag of pairs of tuple and timestamp,
and models relation as time-varying bag of tuples, and offers a general-purpose de-
clarative continuous query language based on CQL [3].

uCSDP adopts two timestamp handling modes (server timestamp and application
timestamp) to support wide variety of applications. In server timestamp mode, the
timestamp of stream tuple is determined at the time when the tuple arrives at uCSDP.
In application timestamp mode, uCSDP uses the timestamp embedded in the stream
tuple itself. The user can select an appropriate mode suitable for the application.

In addition to the timestamp handling modes, the user can set time “range” for
event time adjustment. uCSDP adjusts out-of-order events if input data are in the
“range”. This feature is necessary to collect data from different data sources.

2.2 High Available Data Processing

High availability mechanism is essential to the real business systems. uCSDP is
equipped with RAS supporting features such as application tracing, tuple logging,
processing time monitoring, queue monitoring, and partial blockage to ensure high
availability.

In the SDP systems, burst data input to a time-based sliding window causes the
huge memory consumption that may cause system instability. uCSDP provides “time
resolution management” mechanism in order to avoid huge memory consumption.
The mechanism pre-calculates summary value for each sub-window and generates
query results using the pre-calculated summary values. With this mechanism, uCSDP
reduces the memory consumption without any approximation technique such as sam-
pling [4] for burst data input to the time-based sliding window aggregation queries,
and it greatly contributes to improvement of system stability.

2.3 Eager Scheduler for Ultra Low Latency Processing

For actual applications, a certain number of CQL queries are needed to describe com-
plicated business logics. Data processing latency to process data for such business
logics increases in the manner of traditional round robin scheduler.

To cope with this problem, uCSDP adopts eager scheduler and queue management
mechanism. It concatenates queries, removes intermediate queues between queries,
and schedules each stream tuple processing execution starting from the input and
ending with the output of uCSDP to minimize data transfer overhead.

442 Y. Hayashida et al.

3 Real-Time Log Analysis Demo Description

3.1 Demo Overview and Configuration

Fig. 1 shows the real-time log analysis demo system consisting of uCSDP, input
and output adapters, and the user interface component written in Java. It detects
improper use of an IT system by monitoring and analyzing Web access logs in large
quantities to find out symptoms of system anomalies and unusual user access pat-
terns immediately from log data streams. As a demo platform, we use Red Hat En-
terprise Linux 5.1 on Pentium 4 (1.2GHz) PC with 1GB memory. The inputs are
Web proxy and certification log files. The input adapter converts the log files to
stream tuples and sends them to uCSDP. uCSDP outputs the analysis results as
streams. Then the output adapter converts the results and sends them to the system
manager’s dashboard GUI.

uCosminexus Stream Data Platform

Proxy Server

Log

Authentication System

System Manager

Alert

Log

Rule

End User

Fig. 1. Real-time Log Analysis System Configuration

3.2 Demo Scenario

In this demo, we apply a simple rule considering that POST submissions with a cer-
tain pattern within a short period might include illegal Web accesses, for example,
three trials of more than five POST operations in ten minutes. Fig. 2 displays a GUI
snapshot of a monitoring result. The graph area displays the frequency of POST op-
erations and the table area shows detailed access histories with warning colors that let
the system manager know which users satisfy the scenario conditions.

User name POST count POST size (KB) Access count Data access size (KB) Host
John 9 47.577 276 1,115.524 10.209.100.100
Lisa 3 7.810 294 1,356.501 10.209.100.104
Tom 3 86.006 273 945.489 10.209.100.109
Bob 2 2.230 277 1,252.450 10.209.100.102

Proxy Web Access Information

0
5

10
15

15:13:50 15:14:46

John
Tom
Bob

Fig. 2. Real-time Log Analysis Monitoring GUI

 Real-Time Log Analysis Using Hitachi uCosminexus Stream Data Platform 443

3.3 Merit of Applying uCSDP to Real-Time Log Analysis

In the past, after a problem occurred, the log files were used as materials to investi-
gate causes. Real-time log analysis using uCSDP, however, enables detection of the
problem cause at the same time with the problem occurrence from quantities of log
information including Web proxy logs and certification logs.

By defining the analysis scenario in CQL, the system manager does not have to
care about lower layer implementations. Analysis conditions including parameters
and thresholds can be modified easily and flexibly, so that the system manager can
concentrate on system operations.

In real situations, the event time management feature of uCSDP described in Sec-
tion 2.1 is necessary because the logs from different servers arrive at the analysis
system in out-of-order. In addition to the processing efficiency, high availability
mechanism is the key to applying a new data processing system to the real business
situation. We believe that RAS features of uCSDP mentioned in Section 2.2 are pow-
erful enough to realize it.

4 Conclusion

We have presented real-time log analysis system using our stream data processing
platform uCSDP. Real-time log analysis system is one of the key applications that
offers preventive measures of detecting irregular manipulations and human mistakes
at system management, and reduces the risk and loss caused by such operations to the
minimum in advance also. We believe that uCSDP offers stream data processing
features not only realizing real-time log analysis described in this paper but also real-
izing other real-time data processing applications.

References

1. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G., Olston,
C., Rosenstein, J., Varma, R.: Query Processing, Resource Management, and Approxima-
tion in a Data Stream Management System. In: Proc. of CIDR 2003 (2003)

2. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker,
M., Tatbul, N., Zdonik, S.: Monitoring streams: a new class of data management applica-
tions. In: Proc. of the 28th VLDB (2002)

3. Arasu, A., Babu, S., Widom, J.: The CQL Continuous Query Language: Semantic Founda-
tions and Query Execution. The VLDB Journal 15 (2006)

4. Babcock, B., Datar, M., Motwani, R.: Sampling From a Moving Window Over Streaming
Data. In: Proc. of SODA 2002 (2002)

Anddy: A System for Author Name Disambiguation in
Digital Library

Jia Zhu, Gabriel Pui Cheong Fung, and Xiaofang Zhou

School of ITEE, The University of Queensland, Australia
{jiazhu,zxf,uqgfung}@itee.uq.edu.au

Abstract. In this demonstration, we implement a system called Anddy that tries
to disambiguate author names in digital library by clustering. Our system will try
to cluster the citation records based on some user input parameters such that, ide-
ally, each cluster should contain citation records that belong to the same author,
meanwhile different clusters denote different authors. For each cluster, we will
further display a taxonomy representing it and the social network that the cluster
has.

Keywords: Clustering, Name Disambiguation, Taxonomy.

1 Introduction

In digital library, it is very common that several authors share the same name because
name is not an unique identifier. For instance, if we search “Wei Wang” in DBLP 1,
more than 60 different “Wei Wang” are mixed in the same page, and DBLP cannot
disambiguate these 60 different “Wei Wang” successfully. This will make the users feel
very inconvenient because it is difficult for them to identify which records belong to
which author.

In this demo, we present a system called Anddy (Author Name Disambiguation in
Digital Library) to group the citation records that refer to the same author. Fig. 1 shows
a sample interface of our system. For example, users can input an author name, e.g.
“Wei Wang”, in the search field and select the model that they want to use to cluster the
records. Our system will then try to cluster the citation records based on the input pa-
rameters (the author name and a user selected clustering model) such that, ideally, each
cluster should contain citation records that belong to the same author, meanwhile differ-
ent clusters denote different authors. In addition, our system will further display some
advanced and useful information for each cluster, such as the linkage among different
authors, a graphical taxonomy to show the linkage among different records within the
same cluster, etc.

2 System Description

Anddy consists of two parts: a clustering framework and a user interface. As shown in
Fig. 2, the clustering framework takes the citation records need to be identified as input

1 http://www.informatik.uni-trier.de/ ley/db/

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 444–447, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Anddy: A System for Author Name Disambiguation in Digital Library 445

Fig. 1. The Interface of Anddy

and perform clustering based on a user selected clustering model. The user interface
accepts the user input and presents the clustering results to the user. We will describe
these two components in this section.

2.1 Clustering Framework

We have implemented three different clustering models in Anddy and allows users to
choose using which of the clustering models to cluster the citation records. The three
models that we have implemented are: simple linkage model, taxonomy based model
and web-context model. We implemented these three models because they are some of
the most popular models nowadays.

Simple Linkage Model

In this model [3], it tries to link all the citation records based on graph theory. Specifi-
cally, given a graph G, each vertex v is a citation record, and each edge e between two
vertices represents the similarity of two vertices (i.e. the similarity between two citation
records). The similarity is calculated based on the token strings in three attributes: (1)
authorships, (2) paper title and (3) publication venue. If the similarity is high enough,
then these two records refer to the same entity.

Taxonomy based Model

In our early work [4], a model called taxonomy based model is proposed to enhance the
name disambiguation issue by enriching the information from citation records. Taxonomy

446 J. Zhu, G.P. Cheong Fung, and X. Zhou

Fig. 2. Clustering Framework

is a data structure that can express the relationship among different terminologies [1]. We
construct some term-based taxonomies based on terms’ lexical similarity and their co-
occurrences in the paper titles. In these taxonomies, each node is a term extract from paper
titles and the linking between two nodes is the relationship of them (their similarities).
Once we have the taxonomies, we can calculate the similarity among clusters by exploring
the links in these taxonomies. For example, assume a record A contains a list of terms TA,
and a record B contains a list of terms TB. If TA and TB have heavy linking according to
the taxonomies, then record A and B might refer to the same entity.

Web-Context Model

This model [2] tries to retrieve more information from the web automatically so as to
identify whether two citation records belong to the same author. This model is different
from the above two models because it does not only consider the information within a
single domain, but further extract information from some other external domains. Yet,
information like email and affiliation, although can usually disambiguate the citation
records correctly, are difficult to retrieve because of the unstructured nature of web
pages. In this demo, we implement a model to analyze the URLs return from search
engine and determine if two records refer to the same entity or not. For example, assume
there are two records need to be identified, A and B, and each record has a list of URLs
returned from search engine after input the paper title as query. If there are high overlap
in their URLs, then these two records may refer to the same author. Obviously, there are
some digital libraries web pages should be ignored, e.g. Citeseer 2, because these sites
contain records in one page but it does not mean these records refer to the same author.

2.2 User Interface

Our system is a web based application and implemented by Java/JSP. The interface
includes: (1) A search bar which allow users to search authors’ citation records; (2)
An drop down box which allows users to choose different clustering models to cluster
the citation records; (3) A results page which displays records that has been assigned to
different cluster, so that each cluster, ideally, should contain citation records that belong
to the same author, meanwhile different clusters should refer to different author; (4) An
advanced information section in the page which displays the authors’ network (Fig. 3)
and the term-based taxonomy related to the cluster (Fig. 3).

2 http://citeseer.ist.psu.edu/

Anddy: A System for Author Name Disambiguation in Digital Library 447

Authors Network Term-based Taxonomy

Fig. 3. Graphical Authors Network and Term-based Taxonomy

3 Demonstration Overview

Our demonstration uses a real-world dataset extract from DBLP. In the demonstration,
we will show how Anddy works and how a user can employ it to efficiently search
citation records by author’ name. Specifically, we will: (1) demonstrate the process
from submit a query, select a clustering model to obtain a clustering result; (2) show
how important and the practical usefulness of the graphical authors’ network and the
term-based taxonomy.

References

1. Bast, H., Durpret, G., Piwowarski, B.: Discovering a term taxonomy from term similarities
using principal component analysis. In: Semantics, Web and Mining, pp. 320–331 (2006)

2. Jiang, J.Y., Lee, H.M., Yang, K.H., Peng, H.T., Ho, J.M.: Author name disambiguation for
citations using topic and web correlation. In: Research and Advanced Technology for Digital
Libraries, pp. 185–196 (2008)

3. Yin, X.X., Han, J.W.: Object distinction: Distinguishing objects with identical names. In: IEEE
23rd Int. Conf. on Data Engineering, pp. 1242–1246 (2007)

4. Zhu, J., Fung, G.P.C., Zhou, X.F.: A term-based driven clustering approach for name disam-
biguation. In: Proc. Joint. APWeb/WAIM, pp. 320–331 (2009)

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 448–451, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A System for Keyword Search on Hybrid XML-
Relational Databases Using XRjoin

Liru Zhang, Tadashi Ohmori, and Mamoru Hoshi

Graduate School of Information Systems, The University of Electro-Communications
1-5-1, Chofugaoka, Chofu City, Tokyo, Japan

{zhangliru,omori}@hol.is.uec.ac.jp

Abstract. With storing XML data as a type of a column, relational databases
have become more powerful. A relational database including both XML data
and relational data is termed a hybrid XML-Relational database (XML-RDB) in
this paper. Because existing keyword-search techniques on either relational da-
tabases (RDB) or XML databases (XML DB) cannot get appropriate results, we
propose a new method of keyword search on XML-RDB to get more reasonable
results than existing methods. To realize it, a new join operator, named XRjoin,
is designed and utilized to join XML data with relational data. We construct a
demo system by using DB2 v9.5, and our experiments show that the system can
find the answers that we want to get.

1 Introduction

Keyword search is a popular function of databases to enable users to extract infor-
mation under databases without any knowledge of the schema or query languages.
Since major relational databases management systems have allowed the residence
of XML data in relations, there is increasing need for users to retrieve both
XML and relational data by keyword search. On a hybrid XML-RDB such as
IBM DB2 9.5 [5], Microsoft SQL Server 2008, applying the keyword search is a
challenging task, because keyword-search techniques on RDB widely differ from
those on XML DB.

There are several studies on keyword search over structured databases such as
DBXplorer [1], DISCOVER [4] on RDB, XRANK [2] on pure XML DB. However,
XRANK cannot get appropriate results if the result is composed of XML subtrees
related by various relational linkages. DBXplorer does not consider XMLs and cannot
retrieve the information obeying the hierarchy of XML. DISCOVER does join by any
relationship, but the maximum Candidate Network’s size T limits its ability to retrieve
the subtrees of XMLs having any depth or heterogeneity. To overcome the problem of
retrieving subtrees of schema-less XMLs related by any linkage, we propose a new
keyword-search method on XML-RDB. A new join operator, XRjoin, uses the
SQL/XML query language to do join between XML and relational data. This paper
demonstrates how XRjoin works in practice and gives reasonable samples to approve
our hybrid XML-RDB system useful.

 A System for Keyword Search on Hybrid XML-Relational Databases Using XRjoin 449

2 Our Proposal on a Hybrid XML-RDB

We design a new schema for a hybrid XML-RDB, based on the ER model of a RDB
which stores the corresponding information of DBLP.xml.

Fig. 1(a) shows that the RDB has four entities “Conference”, “Session”, “Paper”,
“Authors”, and four relationships “Conf-Sess”, “Sess-Paper”, “Paper-Author”, “Cita-
tion”. In this case, the XML data have been decomposed into several tables.

For obtaining useful subordinate information of XML, a hybrid XML-RDB is util-
ized to contain XML without any change of its format. Fig. 1(b) shows the schema of
a hybrid XML-RDB. This schema includes three entities “Conference”, “Paper”,
“Authors”, and two “part-of” relationships. “Conference” and “Authors” are hybrid
entities storing XML data. An instance of “XML1” in “Conference” is presented in
the left of Fig. 2, which has the “Conf-Session-Paper” hierarchy. In the right of Fig. 2,
“XML2” in “Authors” has the “Author-Paper” hierarchy. In both of “XML1” and
“XML2”, the information of “Paper” is described by “PID” only.

The processes of keyword search on XML-RDB are composed of the following
four steps: (1) identify entities hit by keywords, (2) enumerate join-trees, (3) generate
statements, (4) execute these statements and obtain results. The entities including
keywords are identified by searching the auxiliary tables (details in [3]). Based on
these entities, the system enumerates minimum-cost Steiner-trees that contain all
keywords in the schema-graph. These trees are called join-trees. If there is a hybrid
entity in a join-tree, our proposed XRjoin (section 3), which is an operator to join
XML with relational data, is needed. A join-tree decides how to join between these

 (a) The ER (Entity-Relationship) model of a RDB (b) The schema of a hybrid XML-RDB

Fig. 1. Data model

Fig. 2. A fragment of our experimental XML-RDB

450 L. Zhang, T. Ohmori, and M. Hoshi

entities. For one join-tree, the statements for natural join or XRjoin are generated and
executed automatically. If the results exist, they will be sent to the user interface.

3 XRjoin

XRjoin is designed to extract relevant information between XML data and relational
data. We present an illustration of concrete contents to explain how XRjoin works.

Fig. 3 shows several tuples of “Paper”, and an XML in “Conference”. The key-
word “tuning” exists in “S_title” of the session SID:S004 in “XML1”. The keyword
“SQL” exists in “Title” of two tuples PID:P004 and PID:P006 in “Paper”.

XRjoin ((Conference, “tuning”), (Paper, “SQL”)) is an operator to extract relevant
hybrid information from “tuning”-related XMLs in “Conference” and “SQL”-related
tuples in “Paper”. It extracts the LCA (Least Common Ancestor) between the element
SID:S004 (including "tuning") and one of the paper elements PID:P004 and PID:P006
(including "SQL" as a paper). The subtree from the LCA appears as a new XML in
CXML column of T (the resulting table of XRjoin in Fig. 4). Besides CXML, related
relational data (PID, Title, Keywords) in Paper also appears as additional columns of T.
As a result, the first hybrid tuple in Fig. 4 means that a paper including “SQL” belongs
to a session including “tuning”. The second hybrid tuple means that a paper including
“SQL” belongs to a conference that has a session including “tuning”.

Formally, when a keyword K1 exists in a hybrid entity X and when another key-
word K2 exists in a relation entity E, XRjoin ((X, K1), (E, K2)) is defined as a set of
new tuples [e, LCA-T(e_id,K1) on x] for all e in E and all x in X, such that

Fig. 3. The instances of the hybrid entity “Conference” and the relation “Paper”

Fig. 4. The result T of XRjoin ((Conference, “tuning”), (Paper, “SQL”))

 A System for Keyword Search on Hybrid XML-Relational Databases Using XRjoin 451

- e is a tuple satisfying K2 in E; let e_id be the tuple-id representing e in X;
- LCA-T (e_id, K1) on x is a subtree in the XML of x whose root element is the

LCA for the element e_id and an element satisfying K1.
Namely, the XRjoin ((X, K1), (E, K2)) retrieves the XML information satisfying K1
(in X) which further contains a relational data-item satisfying K2 (in E).

Demonstration: We will demonstrate a keyword search engine on a subset of DBLP
which includes 10 years information of VLDB (1999-2008). On this hybrid XML-
RDB, join operations for keyword search can be finished in 5 seconds at most. Our
proposed system (details in [3]) will show its efficiency at the demo scene. The sys-
tem can interactively find appropriate and ordered XML-relational hybrid infor-
mation which cannot be obtained by XRANK [2] or DBXplorer [1].

At the end of this paper, a snapshot of demo system is given in Fig. 5. This is an
example when keywords “link” and “sanjay” are inputted. The original data about
“link” and “sanjay” in this hybrid XML-RDB are shown in Fig. 2. The results are
derived from a join-tree (in the left box) which does XRjoin twice and natural join
once (in the right box). These results are listed by ascending order of the sum of two
subtrees’ scores that are computed when XRjoin works. The answer of No.1 in Fig. 5
means that an author named “sanjay” has written a paper in the conference
VLDB2004, which has a session hit by “link” (Click the plus sign to view the detail
of XML in this interface). The answers cannot be obtained by existing techniques.

Fig. 5. A snapshot of the demo system

References

1. Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: A System for Keyword-Based Search over
Relational Databases. In: ICDE, pp. 5–16. IEEE, San Jose (2002)

2. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked Keyword Search
over XML Documents. In: SIGMOD, pp. 16–27. ACM, California (2003)

3. Zhang, L., Ohmori, T., Hoshi, M.: Keyword Search on Hybrid XML-Relational Databases
By using XRjoin. In: Kitagawa, H., Ishikawa, Y., Li, Q. (eds.) DASFAA 2010, Part II.
LNCS, vol. 5982, pp. 292–298. Springer, Heidelberg (2010)

4. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword search in relational databases.
In: VLDB, pp. 670–681. Morgan Kaufmann, Hong Kong (2002)

5. IBM DB2 Database Information Center,
http://publib.boulder.ibm.com/infocenter/db2luw/

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 452–455, 2010.
© Springer-Verlag Berlin Heidelberg 2010

MediaMatrix: A Video Stream Retrieval System with
Mechanisms for Mining Contexts of Query Examples

Shuichi Kurabayashi and Yasushi Kiyoki

Graduate School of Media and Governance, Keio University
5322 Endoh, Fujisawa, Kanagawa, 252-0816, Japan
{kurabaya,kiyoki}@sfc.keio.ac.jp

Abstract. This paper presents a context-based whole video retrieval system that
retrieves an entire video stream, not just individual scenes in videos. The main
feature of this system is a novel query processing paradigm that involves data
mining techniques to extract a query context, which is expressed as a combina-
tion of multiple videos. A query for this system consists of an example video
and a context video. The example video is for representing the color-emotions
hidden within video content, which are extracted using methods developed for
color psychology research. The context video is for performing a context rele-
vance computation between the example video and videos in a database. This
paper demonstrates an implemented system that includes a SQL-like video
stream query language and mechanisms for visualizing emotive contexts of a
video stream.

Keywords: video search engine, context-computing, query language.

1 Introduction

As video data becomes prevalent on the Web, the result of a video search engine
query can easily exceed the practical limits on the time a user has to watch to them.
Despite the fact that many video-search engines have been provided for this purpose,
extensive manual tweaking and heuristic trial-and-error is still required for users to
find their desired videos. This is primarily because user-generated videos have insuf-
ficient and/or unreliable metadata in the form of titles and tags. It is increasingly im-
portant to utilize the concept of context-dependent database computations for retriev-
ing video data according to emotive contexts[1].

This paper presents a context-based whole video retrieval system[2], called Me-
diaMatrix. This system analyzes the color-emotions hidden within video content
using methods developed for color psychology research. As shown in Fig.1, a query
for this system consists of an example video and a context video. The example video
is for representing the color-emotions of video content. The context video is for per-
forming a context relevance computation between the example video and videos in a
database. This computation evaluates similarities between the example video and
context video, for extracting which context of the video is most relevant to the user.

 MediaMatrix: A Video Stream Retrieval System with Mechanisms 453

Such contexts as dominance, prominence, and hierarchical granularity of color-
emotions might be selected. The system realizes new ways of querying artistic, visu-
ally rich and dynamic video content such as television dramas, animation, and movies
– something not possible when limited to just a few words. This is done by inspecting
the dynamic, temporally evolving contexts of video data. Movies are a prime example
of media in dire need of new retrieval mechanisms for returning an entire video
stream according to the query contexts. This is because the performance of a movie in
its entirety is what users search for, as opposed to independent fragments which lose
their meaning when separated from the whole.

Example Video

Contextual
Multimedia

Query Language
Search
Results

Context Video

Feature Extraction Context Mining Correlation Computation

Color
Emotion

Association

Visual
Heuristics
Dictionary

Video
Database

Video Segmentation

Feature Matrix

Dominance/Prominence
Analysis for Color

EmotionColor-Emotion Analysis

Granularity Analysis

cs1 cs2 cs3 … csm

Tim
e

tw 0.2 0.4 0.2 … 0.1
tw+i 0.1 0.1 0.0 … 0.2
tw+2i 0.1 0.3 0.25 … 0.4
… … … … … …
tw+ni 0.43 0.33 0.11 … 0.04

182 color-schemas (impression words)

cs1 cs2 cs3 … csm

T
im

e

tw 0.2 0.4 0.2 … 0.1
tw+i 0.1 0.1 0.0 … 0.2
tw+2i 0.1 0.3 0.25 … 0.4
… … … … … …
tw+ni 0.43 0.33 0.11 … 0.04

182 color-schemas (impression words)

Data matrices which are
adapted to the context

Query matrix which is
adapted to the context

Fig. 1. Overview of the context-based whole video retrieval system

Fig. 2. The system analyzes emotive contexts by computing the color-emotion correlation of
every video frame

2 MediaMatrix System Implementation

The core component of the MediaMatrix system is a context-based similarity video
search engine with dynamic video content analysis mechanisms. This system analyzes
the color-emotions hidden within video content by referencing color-emotion defini-
tions developed in the course of color psychology research [3, 4]. Each color-emotion,
which corresponds to a specific emotional perception of humans, consists of 120

454 S. Kurabayashi and Y. Kiyoki

chromatic colors and 10 monochrome HSV colors defined in “Color Image Scale
[3]”. The system extracts the color-emotion for each video frame by computing the
correlation between 182 color schema and 130 HSV colors. Fig.2 shows a color-
emotions analysis result visualization computed by the implemented system. In the
query execution process, the system extracts the following three query contexts (CX1,
CX2, and CX3), which are expressed as a combination of videos. (CX1) Dominance /
(CX2) Prominence of Color-Emotions: the system provides LEF-IGEF (Local Emo-
tion Frequency – Inversed Global Emotion Frequency) operator[2] for selecting color-
emotions by computing the specificity of color-emotions to each frame throughout the
entire video stream. The LEF-IGEF operator increases its prominence proportionally
to the appearance ratio of a color-emotion in a video frame, but is offset by the fre-
quency of the color-emotion in the entire video. Fig. 3 shows a visualization of the
dominance of color-emotions and Fig.4 shows a visualization of prominence of color-
emotions and the extracted prominent scenes. (CX3) Granularity of Color-Emotions:
since one single video may contain different meanings at multiple granularity levels,
the system applies the hierarchical agglomerative clustering method with UPGMA for
recognizing the granularity of a video as shown in Fig.5.

Fig. 3. A visualization of the dominance
(appearance ratio) of a color-emotion in the
frames (vertical axis: the correlation score of
each color-emotion, horizontal axis: the time-
line of the video data stream)

Fig. 4. A visualization of the prominence of
color-emotions and the extracted prominent
scenes. A high score means that the color-
emotion has strong significance

Fig. 5. The system applies the hierarchical
agglomerative clustering method for analyz-
ing the granularity of color-emotions

3 System Demonstration

Fig.6 shows an integrated video search environment with a structured query language
for video. To demonstrate the proposed system, we use 128 Japanese animation vid-
eos. Each video file is 24 minutes in duration. The total duration of the video files is

 MediaMatrix: A Video Stream Retrieval System with Mechanisms 455

51 hours, and the total size is 6.8 gigabytes. Each video is accompanied by a text
annotation written by its publisher. To evaluate the performance, we have compared
our method with a traditional keyword-based video retrieval provided by video host-
ing services. Overall, our approach can achieve an average precision of 56.1% which
is about 50% better than that of keyword-based retrieval systems (5.2%).

Fig. 6. The integrated video search environment with a structured query language for video

4 Conclusion and Future Work

This paper has proposed MediaMatrix, a system that provides a novel query language
for allowing users to express and characterize their queries by using existing video
clips as contexts. Its capabilities enable new ways of querying artistic, visually rich
and dynamic video content such as television dramas, animation, and movies – some-
thing which is not possible by using just a few words. As future work, we are expand-
ing the scalability of the system for performing real-time video analysis.

References

1. Kiyoki, Y., Kitagawa, T., Hayama, T.: A metadatabase system for semantic image search by
a mathematical model of meaning. SIGMOD Rec. 23, 34–41 (1994)

2. Kurabayashi, S., Ueno, T., Kiyoki, Y.: A Context-Based Whole Video Retrieval System
with Dynamic Video Stream Analysis Mechanisms. In: 11th IEEE International Symposium
on Multimedia, San Diego, USA, pp. 505–510 (2009)

3. Kobayashi, S.: Color Image Scale. Oxford University Press, USA (1992)
4. Valdez, P., Mehrabian, A.: Effects of color on emotions. Journal of Experimental Psychol-

ogy: General 123, 394–409 (1994)

Application Developments in Mashup
Framework for Selective Browsing

Takakazu Nagamine and Tomio Kamada

Dept. of Computer Sci. and System Eng., Kobe University
{nagamine,kamada}@cs26.scitec.kobe-u.ac.jp

Abstract. We are developing a new mashup framework for creating flex-
ible applications in which users can selectively browse through mashup
items. The framework provides GUI components called widgets through
which users can browse mashed-up data selectively, and the system pro-
cesses demand-driven creation of mashed-up data upon receiving access
requests through widgets. In this demonstration, we introduce some ap-
plications with the above-mentioned features, and show how users can
build these applications on our framework.

1 Introduction

In recent years, many kinds of information has been provided via Web services,
and developers have chances to combine different types of information in order
to provide a new integrated service using mashup technologies.

We are proposing a new mashup framework [1,2] for creating flexible applica-
tions. The developer can prepare various mashup items in an application, where
the users can browse items selectively according to their interests through GUI
components called widgets. Receiving interactive actions for the browsing, our
system incrementally creates mashed-up data with focusing on the current view
of the application. The application developer only has to specify how to combine
web services and how to display mashed-up data through widgets. This demon-
stration introduces some applications with the above features, and shows how
to build these applications in our framework.

2 Application Features

Fig. 1 is a screenshot of a sample application for a hotel search. The user first
inputs an address and a date of check-in. The “hotel table” lists nearby hotels
and their information, and the “map” plots their locations. The user can click
a row of the hotel table and get detailed information of the corresponding hotel
on lower placed tables. The application handles user interactions, and invokes
Web services in the background if necessary. When the system gets the results
of Web services, it displays them instantly. These table widgets have facilities
to add/change columns interactively (Fig. 1 A), and the use can use various
criteria derived from mashups, such as photos, room rates, or information of

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 456–459, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Application Developments in Mashup Framework for Selective Browsing 457

Fig. 1. Screenshot of a sample mashup application d its features

neighboring restaurants. Receiving scroll down actions, the table shows further
results that will appear incrementally (B). When the user finds hotels having
unsuitable properties, the user can apply filters to remove such hotels for the
subsequent browsing (C). If the user has optional days to be checked, the system
will update only affected results (e.g. room rates) on the current view.

As our system adopts demand-driven creation of mashed-up data, it first
calculates only mashed-up data needed for the initial view. When the system
gets user actions such as scroll down of the tables, it starts calculation of newly
needed data for display. Web services that may often produce many results adopt
paginated queries in order to return results in multiple pages, and our system
fetches these pages in a demand-driven manner. If the user sets filter conditions
on hotels, the system avoids needless mashups for hotels that are filtered out
except condition values. In cases where the user changes some inputs, the system
re-calculates only data depending on the changing values and needed for the
current view.

3 How to Build Applications

Our framework provides a data management engine for demand-driven data
creation and its built-in widget library, and the developer just specifies configu-
rations of the data model and the display for an application (Fig. 2). The data
model adopts declarative configurations to cope with our demand-driven data
creation, and the developer can design large combinations of Web services. The
widgets provide facilities of property monitoring and event handling to make
applications interactive. This section gives a brief introduction of how to build
applications in our framework. The detailed descriptions are described in [1].
The developer can use the GUI editor for the configurations.

458 T. Nagamine and T. Kamada

Fig. 2. Overview of our framework

3.1 Data Model Configuration

Our framework uses a tree data structure called a mashup tree to represent
mashed-up data (Fig. 3 A). Each node of the mashup tree represents data oper-
ation and its result, while arrows represent data flows to deliver arguments to the
operators. Using the tree structure, we can simply express nested list structures
such as a list of hotel nodes and the list of neighboring restaurant nodes for
each hotel. For child node creation at the elements of a list, the same operation
is used for all the elements. Our framework provides the following four types
of operations: user inputs, Web service calls, extractions of XML elements, and
user-defined operations.

In the model canvas of our GUI editor (Fig. 3 B), top level nodes are placed in
the “top box”, and each declaration of a list structure is represented by a table.
Each table column represents child node declarations of list elements. There is
a catalog of major Web services and operation templates (e.g. aggregators like
sum operation). The developer can add child node declarations by drag and drop
actions from the catalog. To create the sample application, the developer first
drops a hotel search Web service into the “top box”. As the hotel search service
returns the results as a list, our editor adds a hotel table linked with the “top
box”. Secondly, the developer drops a photo search service into the hotel table,
and the photo column is created. When the developer drops a Web service or
an operation that returns a list (e. g. restaurant search) into the hotel table, the
corresponding table appears.

3.2 Display Configuration

There are two main way of specifying the display target. One is to specify static
part of the mashup tree using the path from the top node. In the case of the hotel
table, the developer specifies the path to hotel nodes. The other is to specify the
target that is bounded to the property of other widgets. For example, each table
widget has a “selected” property that denotes the element node corresponding
to the currently selected row by the previous click action. In this application,
lower placed tables monitor the “selected” property of the hotel table to display
detailed information of the selected hotel.

In the display configuration mode (Fig. 3 C), our GUI editor allows the de-
veloper to choose widgets (e.g., table or map) from the widget catalog, layout

Application Developments in Mashup Framework for Selective Browsing 459

Fig. 3. Building applications in our framework

them on the application canvas, and set display targets afterwards. In the case
of table widgets, there is more simple way. The developer can drag tables from
the model canvas and drop them directly into the application canvas. In the
sample application, the developer just drags hotel and restaurant tables from
the model canvas into the application canvas, then two table widgets are created
with default display target. Afterwards, the developer chooses the map from the
catalog, and bounds the display target to a property of the hotel table.

Acknowledgements. This research was partially supported by Exploratory IT
Human Resources Project (MITOU Program) of Information-technology Promo-
tion Agency, Japan (IPA) in the fiscal year 2008.

References

1. Ikeda, S., Nagamine, T., Kamada, T.: Application Framework with Demand-Driven
Mashup for Selective Browsing. Journal of Universal Computer Science 15(10),
2109–2137 (2009)

2. Connecollect Project,
http://www.cs26.scitec.kobe-u.ac.jp/farm/PL/?Connecollect

http://www.cs26.scitec.kobe-u.ac.jp/farm/PL/?Connecollect

Retrieving System of Presentation Contents
Based on User’s Operations and Semantic

Contexts

Daisuke Kitayama and Kazutoshi Sumiya

University of Hyogo
1–1–12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan

ne07p001@stshse.u-hyogo.ac.jp, sumiya@shse.u-hyogo.ac.jp

Abstract. More and more presentation contents, which consist of het-
erogeneous media such as videos and slides, have recently been recorded
and viewed. In e-Learning, we often use presentation contents archives.
However, if there is a slide that includes a keyword that the users do
not know, it is difficult for them to understand the rest of the presenta-
tion contents. So, they must stop viewing it and look up the keyword.
In this paper, we propose an interval-retrieving method that is based
on the user’s viewing operations. By using this method, we extract the
user’s interval-retrieving intention using his/her viewing operations and
selected keywords. Queries are also generated for the intervals by us-
ing the user’s retrieving intention and a keyword role in the intervals.
This method also enables the users to obtain intervals that help them
to more efficiently understand the contents of the presentation without
discontinuing viewing them.

1 Introduction

Presentations can be stored for repeated viewing [1], which means you never
have to worry about missing a lecture. In the case of e-learning, a speaker or
listener who has viewed the content once might want to review it. The content
then can be retrieved from the archives where the presentation data is stored.
Such content is often located at specific intervals of a presentation[2,3]. As many
presentations are now accessible via multi-media[4], a practical method is nec-
essary for extracting the relevant scenes from integrated heterogeneous media
content.

It has proven difficult, however, to extract a meaningful interval from a single
medium of a multi-media presentation. For example, trying to extract an inter-
val from text media using a keyword input is likely to yield countless intervals
containing the key word and is thus basically useless. In the case of video media,
excessively long or inadequately short intervals will be extracted.

We propose a presentation contents retrieval system that is based on the users’
viewing operations and the semantic contexts from presentation archives. Our
system uses the following three processes. At first, we extract the users’ opera-
tions for the interested scenes and the keywords from the viewing interactions.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 460–463, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Retrieving System of Presentation Contents 461

…

…
…

…

t

k1

Slide

Video

Scene4 Scene5 Scene6 Scene7 Scene8
Scene9

k1
k1

k1 k1
k2

k2

k2 k2

k2
k3

k3

k3

k3

Presentation contents

User

k1

k3

k2

k3

Analyzing viewing intentions by users’ operations

Detecting semantic contexts from contents metadata

Generating queriesPresentation

archives

Fig. 1. Concept of interval retrieving using user’s operation

Next, we analyze the semantic context of the scenes they are interested in and
the keywords from the presentation contents based on the users’ operations. Fi-
nally, we generate a search query for the presentation archives using the analyzed
semantic contexts. Users can then retrieve intervals from other presentation con-
tents that they are interested in without inputting query keywords by using our
system.

2 Our Approach

We analyze the semantic context of presentation contents from the users’ oper-
ations and generate a query for use in searching through presentation archives.
Figure 1 shows a conceptual image of our system. Our system has the following
three feature.

Analyzing semantic contexts. We hypothesized that there is a specific role
for each scene in a presentation and these specific roles might be determined
by analyzing the relation among the scenes across all media. Suppose that
a speaker is introducing a new game machine. When he or she is explaining
the “basic performance of the game machine”, the scene is more likely to be
regarded as a general-content scene than an explanation of the “mechanism
of the game machine”. However, this same scene is likely to be regarded
as having more detailed content than an explanation of the “list of game
machines”. Consequently, the role of a scene is assumed to be relatively
determined. If the speech content is detailed, the slide content is presumed
to be detailed, and there will be even more speech in the video [5]. We assume
that an interval of interest for extraction can be selected by analyzing the
semantic roles of the scenes and their relation across heterogeneous media.

462 D. Kitayama and K. Sumiya

We call these roles semantic contexts. We define semantic contexts as de-
tailed, generalized, instance, and additional intervals. We use the semantic
contexts to extract the users’ intentions and generating queries.

Extracting users’ searching intentions. We define viewing operations as
viewing video contents, selecting scenes, and browsing contents using slides.
We took into account that the users’ searching intentions are extracted from
these operations. For example, when a user views scenes and then selects key-
words that do not include the viewed scenes, he or she wants the meanings
of the keywords because he or she does not know how to use the keywords
for any contexts. The users’ searching intentions are limitless. Therefore,
we define five examples of users’ searching intentions, a new word search, a
detailed interval search, an abstract search, an instance search, and a com-
paring search. We use the searching intentions for extracting keywords and
generating queries.

Generating queries using semantic contexts and users’ intentions. We
generate a query from viewing operation pattern, selected keywords and
order relation of scenes. We use an order relation to represent the semantic
contexts. For example, when a user selects the keyword “controller” after
viewing scenes about “game machines”, a searching intention is used as a
detailed interval search. In this case, We generate a query for extracting in-
tervals that have a semantic relation to the detailed interval, and a scene
concerning a “controller” should be followed by another scene concerning
“game machines’f. If the order is a reverse sequence, the extracted interval
has a different meaning from that of the user viewing the presentation.

3 Concluding Remarks

Our prototype system was implemented by analyzing the users’ viewing opera-
tions and the retrieving interval from presentation archives. The users’ viewing
operations are analyzed for extracting the users’ intentions from the viewing
operations, detecting the semantic contexts, and generating queries. The out-
put intervals are retrieved by the generated queries. In particular, we retrieve
the candidate intervals by using keywords, which are included in the generated
queries. Then, the system filters by the order condition and detected semantic
contexts. The prototype system was developed using Visual C� with Microsoft
Visual Studio 2005. The terms in the slides and videos were extracted using the
ChaSen Japanese morphological analysis system [6] called SlothLib [7]. Figure 2
shows some screen shots of the interface for the prototype system.

In this paper, we introduced our prototype system. We discussed how to
retrieve archived presentation contents by using semantic contexts and users’
operations. In our future work, we will evaluate our system using a large amount
of real presentation contents and participants. We will confirm the accuracy of
detecting semantic contexts and users’ intentions, and the effectiveness of the
generated queries by comparing them with a conventional keyword search.

Retrieving System of Presentation Contents 463

Area of viewing operationsList of scene

List of keywords on the current scene

Selected keywords

Area of output intervals

Fig. 2. Screen image of prototype system

Acknowledgment

This research was supported in part by a Grant-in-Aid for Scientific Research
(B)(2) 20300039 and Grant-in-Aid for JSPS Fellows 21.197 from the Ministry of
Education, Culture, Sports, Science, and Technology of Japan.

References

1. DBSJ Archives,
http://www.dbsj.org/Japanese/Archivess/archivesIndex.html

2. Kan, M.Y.: SlideSeer: A digital library of aligned document and presentation pairs.
In: Proc. of the 7th ACM/IEEE-CS joint conference on Digital libraries, pp. 81–90
(2007)

3. Repp, S., Linckels, S., Meinel, C.: Towards to an Automatic Semantic Annotation
for Multimedia Learning Objects. In: Proc. of the international workshop on Edu-
cational multimedia and multimedia education, pp. 19–26 (2007)

4. Ricoh Corporation: MPmeister, http://www.ricoh.co.jp/mpmeister/
5. Kitayama, D., Otani, A., Sumiya, K.: A Scene Extracting Method based on Struc-

tural and Semantic Analysis of Presentation Content Archives. In: Proc. of The Sev-
enth International Conference on Creating, Connecting and Collaborating through
Computing, C5 2009 (2009)

6. Asahara, M., Matsumoto, Y.: Extended Models and Tools for High-performance
Part-of-Speech Tagger. In: Proc. of The 18th International Conference on Compu-
tational Linguistics (COLING 2000), pp. 21–27 (2000)

7. SlothLib, http://www.dl.kuis.kyoto-u.ac.jp/SlothLibWiki/

http://www.dbsj.org/Japanese/Archivess/archivesIndex.html
http://www.ricoh.co.jp/mpmeister/
http://www.dl.kuis.kyoto-u.ac.jp/SlothLibWiki/

Fuzzy Keyword Search on Spatial Data

Sattam Alsubaiee and Chen Li

Department of Computer Science, University of California, Irvine, CA 92697, USA
{salsubai,chenli}@ics.uci.edu

Abstract. In recent years, many websites have started providing
keyword-search services on maps. In these systems, users may experi-
ence difficulties finding the entities they are looking for if they do not
know their exact spelling, such as the name of a restaurant. In this paper,
we present a solution to support fuzzy keyword search on spatial data.
We combine a spatial index structure with inverted indexes on grams to
efficiently answer fuzzy queries on maps. We show two system prototypes
to demonstrate the practicality of our solution.

1 Motivation

Many websites based on geographical information nowadays support keyword
search on their data such as business listings and photos. Such services accept
queries consisting of two parts: a set of keywords and a spatial location. The
goal is to find objects with these keywords close to the location. Such a query is
called a spatial-keyword (SK) query [1]. There are several local-search websites,
such as Google Maps, Yahoo! Local, Bing Maps, Yellow Pages, and MapQuest
Maps. At such a website, a user might look for a restaurant called “Aomatsu”
close to Irvine in California. The website returns business listings close to the
city that match the keywords. Another example website is the service by Flickr
that supports location-based photo search (http://www.flickr.com/map). A user
may ask for photos about the “Coliseum Stadium” close to Los Angeles.

Users often do not know the exact spelling of keywords. For example, the
user may mistype a query as (aumatso restaurant) near (Irvine, CA) when
looking for the restaurant Aomatsu. Similarly, a user could mistype the word
“coliseum” and submit a query: (colisum stadium) near (Los Angeles, CA).
It is important to find relevant answers to such mistyped queries. Unfortunately,
most existing location-based systems do not provide correct answers to a query
even with only a single typo. Table 1 shows how several systems behaved for five
mistyped variations of the query “aomatsu restaurant” as of June 20, 2009. In
most cases, the search engines either returned an empty answer or gave irrelevant
results. Both Google and Yahoo could suggest alternative queries, but they very
often could not give the right suggestion. We also experimented with the Flickr
Maps photo search engine and saw similar limitations. An interesting observation
is that during the development of our work, the results of these systems kept
changing. For instance, the evaluation results as of September 2009 had more
“no-results” cases.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 464–467, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Fuzzy Keyword Search on Spatial Data 465

Table 1. Results of Local-Search Engines for Mistyped Queries (as of June 20, 2009)

Search Engine Results of Mistyped Queries
aumatso aomatso aumatsp amatsu aumatso

restaurant restaurant restaurant restaurant

Yahoo! Local � � � � �
Bing Maps � � � � �
Yellow Pages � � � �
MapQuest Maps �
� : No results � : Correct suggestion : Wrong suggestion/answer.

In this paper, we study how to solve this problem by supporting fuzzy keyword
search on spatial data. Given a query with keywords and a location, we want to
find objects close to the location with those keywords, even if those keywords
do not match exactly. Thus we can find relevant objects for the user even in the
presence of typos in the query or data. Notice our approach is more powerful than
the approach of suggesting an alternative query (the “Did you mean” feature
used by many systems). The latter can only suggest a new query, while our
approach can find relevant answers, even if the answers’ keywords are only similar
to those of the query.

2 Problem Formulation and Our Solution

Formulation: Consider a collection of spatial objects o1, . . . , on, and each ob-
ject has a textual description (a set of keywords) Ti and a location Li. A query
consists of the following: Q = 〈Qs, Qt〉, where Qs is a spatial region such as a
rectangle or a circle. Qt is a fuzzy-keyword condition, which consists of a set of
keywords and an edit-distance threshold δ. Our goal is to find the objects in the
collection such that each of them r is within the region Qs. In addition, for each
keyword k in Qt, the object r has a keyword d in its description, such that the
edit distance between k and r is within the threshold δ. For simplicity, we as-
sume the threshold is a constant, and our results can be easily generalized to the
case where the threshold varies based on the length of the keywords. A related
problem is fuzzy string search: given a collection of strings, how to efficiently
find those that are similar to a given query string? Many algorithms have been
proposed to answer fuzzy keyword queries using inverted lists of grams [2]. Sev-
eral algorithms have been proposed in the literature to answer spatial-keyword
queries by assuming exact matching of keywords [1,3]. A recent paper [4] also
studies how to support fuzzy keyword search on spatial data. Their approach is
probabilistic, and does not guarantee to find all the answers to a query.

Our solution: We use an R*-tree to index the objects based on their spatial
attribute. Our solution extends naturally to other tree-based structures, such as
kd-trees and quadtrees. Each node in the tree stores the keywords of the spatial
objects in its leaf nodes. To support fuzzy keyword search, we choose nodes in

466 S. Alsubaiee and C. Li

the tree to build gram-based inverted indexes for their stored keywords. In this
paper, we choose one level of the tree and construct gram indexes for all the
nodes at that level, denoted by L.

We answer a fuzzy spatial-keyword query as follows. Let Q be a query with a
spatial condition Qs and a fuzzy-keyword condition Qt. Intuitively, the algorithm
traverses the tree top-down. Before reaching level L, where the gram-based in-
verted indexes reside, the algorithm only relies on the spatial information of each
node to decide which nodes to traverse. The rationale is that higher levels can
have many keywords, and it is computationally expensive to do pruning based
on the condition Qt by finding similar keywords. At level L, for each candidate
node, the algorithm uses the node’s gram inverted index to find keywords that
satisfy the fuzzy-keyword condition Qt, i.e., finding keywords that are similar
to at least one keyword in Qt according to the edit-distance threshold. This set
of similar keywords, denoted by C, is propagated in the later process of the
traversal in order to prune branches in the tree.

We studied how to choose the level L of tree nodes to construct gram indexes.
Notice that at each tree node, its stored keywords is the union of the keywords of
its leaf-node objects. If multiple objects have the same keyword, this keyword is
stored only once in the common ancestors of their leaf nodes. In particular, the
root of the tree (L = 1) has all the keywords in the dataset. We can see a trade-
off between the query performance and the size of the gram inverted indexes.
As L increases, the total number of keywords on which we need to build gram
inverted indexes increases. Thus the total size of the gram inverted indexes will
increase. Meanwhile, the performance of finding similar keywords from a gram
inverted index is very related to the size of the index.

3 Demonstration Description

We used two real datasets to develop two prototypes for demonstration. The first
dataset was a multimedia metadata collection extracted from Flickr pages, called
“CoPhIR Test Collection” (http://cophir.isti.cnr.it). We processed the dataset
to extract the photos taken in the U.S. based on their latitude and longitude
values. Moreover, we used the keywords in the title, description, and tags of a
photo as its textual attribute. The final dataset had about two million objects,
with a size of 300MB. Each record had a URL corresponding to the photo or a
page including the photo. The second dataset had geographical objects (such as
lakes and hills) obtained from http://www.geonames.org/. We used the objects
residing in the U.S., and the final dataset had about 1.8 million objects. The
total data size was 90MB. In the experiments, we built inverted indexes using
2-grams.

Both systems provide an interface similar to existing local-search and photo-
search services on maps. Each interface has a map and two input boxes, one
for textual keywords and one for a location. The map is using the Google Maps
API, and can display the search results for a query. We also use the Google Maps
Geocoder API to obtain the latitude and longitude of the entered location. Once

Fuzzy Keyword Search on Spatial Data 467

the user clicks the search button, the objects satisfying the query conditions will
be shown as red markers on the map. If the user clicks a marker, the information
about the corresponding object (e.g., a photo) will be displayed. Some markers
overlap with each other, and we grouped these near-by markers under a green
marker. If the user clicks a green marker, the map will zoom in to show the
included objects. We will use the prototypes to demonstrate the capabilities and
advantages of supporting fuzzy keyword queries. Fig. 1 shows a screenshot of
the results page for a query with a mistyped keyword on the first dataset.

Fig. 1. A screenshot of our system on the CoPhIR dataset for answering the mistyped
query “colisum stadium near Los Angeles, CA”

Acknowledgements. We thank Kensuke Ohta for his discussions in this work.

References

1. Hariharan, R., Hore, B., Li, C., Mehrotra, S.: Processing spatial-keyword (sk) queries
in geographic information retrieval (gir) systems. In: SSDBM, p. 16 (2007)

2. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for approximate
string searches. In: ICDE, pp. 257–266 (2008)

3. Felipe, I.D., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: ICDE,
pp. 656–665 (2008)

4. Yao, B., Li, F., Hadjieleftheriou, M., Hou, K.: Approximate string search in spatial
databases. In: ICDE (2010)

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 468–471, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Adaptive Recommendation for Preferred Information
and Browsing Action Based on Web-Browsing Behavior

Kosuke Takano1 and Kin Fun Li2

1 Kanagawa Institute of Technology, Department of Information & Computer Sciences
1030 Shimo-ogino Atsugi, Kanagawa 243-0292, Japan

takano@ic.kanagawa-it.ac.jp
2 University of Victoria, Department of Electrical & Computer Engineering

Victoria, BC, Canada V8W 3P6
kinli@uvic.ca

Abstract. A Web recommender system based on the inference from a user’s
Web-browsing behavior has been proposed and implemented. This system is
capable of recommending items of interest to a user and specific Web-browsing
action on the current item using a novel similarity measure approach. The re-
commender is adaptive to individual user’s preference as well as a user’s chang-
ing interest via a dynamic user feedback mechanism and empirical statistics on
Web-browsing actions taken. Furthermore, users’ quantitative comments and the
qualitative measures of users’ behavior provide an ideal setting to ascertain the
premise, implicitly used in several other existing recommender systems, that
there is a correlation between preference information and browsing behavior.

Keywords: recommender system, adaptive feedback, web-browsing behavior,
preference thesaurus, browsing action.

1 Motivations and Objectives

The World Wide Web has become an indispensable resource for people to gather
information as the Web provides a quick search capability to its rich data and abun-
dant services. To retrieve desired and relevant information effectively, many tech-
niques have been proposed. In particular, recommender systems have been designed
to assist a user in navigating the myriad of information on the Web and suggesting
items that the user is most likely interested in. Explicit user preference information
based on user feedbacks and implicit measures such as browsing history are being
used in interest prediction and information filtering.

Web-browsing behaviors such as dwell time, mouse click, scroll action, and search
query, together with site visit history and personal document collection, are often used
in usage and content mining to assist in making recommendation. In the “Stuff I’ve
Seen” system [2], personal contextual items, such as authors and thumbnails from the
documents that the user has already seen, are used to search for relevant information.
The SEARCHY system [3] filters and re-ranks the Web search results by exploiting
the user’s profile as obtained from his/her Web-browsing behavior.

 Adaptive Recommendation for Preferred Information 469

Morita et al. propose an information reminder system [4] where a user’s action
such as printing, copying and pasting, are recorded during a Web-browsing session.
This user profile is then utilized to provide personalized information to the user. A
personalized information provision system [1], [2], [3], [4], [5] recommends or
navigates to preferable information based on the implicit assumption that a user’s
preference is strongly correlated to his/her browsing behavior. However, to the best
of our knowledge, this assumption has neither been studied nor validated.

In our previous work [5], we proposed an adaptive personalized recommender sys-
tem using a preference-thesaurus constructed based on Web-browsing behavior and
user feedback. This system is personalized for an individual user by capturing his/her
browsing behavior into a preference-thesaurus. Moreover, the system can adapt to
different users as well as their changing behavior and/or interest through direct feed-
back and continuous update to each individual’s preference-thesaurus.

We have extended and made several enhancements to our initial prototype recom-
mender. Our main goal here is to demonstrate the capabilities of this system:

• Improve recommendation through continuous use
• Personalize to individual user
• Recommend Web-browsing action for the current document/page
• Provide mechanism to monitor dynamically changing user interest

In addition to the above contributions, this work is also a major endeavour aimed to
validate the conjecture that there is a correlation between Web-browsing behaviour
and information preference. This correlation study will be carried out based on user
interviews and empirical data.

2 An Adaptive Personalized Recommender System

The current version of the recommender system provides two types of recommenda-
tion to the user: Web items or pages that are most likely of interest to the user, and a
recommended Web-browsing action such as bookmarking or printing the current
page. Feedback from the user in the form of ranked results and the monitored Web-
browsing actions empower the dynamic adaptive nature of the system.

As shown in Fig. 1, the recommendation consists of three iterative phases. During
the first phase, a user’s Web-browsing behaviors are monitored and important term
sets are extracted for the associated behaviors from the viewed/collected documents.
An initial personal preference-thesaurus is constructed based on each behavior’s term
set and its term score. In the second phase, Web items to be recommended are ranked
by the similarity between the preference-thesaurus term set and each document. Dur-
ing the final learning phase, the preference-thesaurus is updated based on the user’s
evaluation feedback on the most recent recommended items. In this phase, our re-
commender detects influential Web-browsing behavior in order to make better rec-
ommendation by filtering out non-influential behaviors.

470 K. Takano and K.F. Li

Based on a mapping of the preference-thesaurus and the current page or item, the
Web-browsing action recommended is shown to the user as an enlarged icon (e.g.,
printer on tool bar) or in a pop-up window to suggest bookmarking as shown in Fig.
2. If the user took the Web-browsing action recommended, the preference-thesaurus is
updated by increasing the behavior’s association with the term set included in the
current page or item.

User survey in written or electronic form and/or interview will provide some quali-
tative evidence on the premise that Web-browsing behavior is correlated to informa-
tion preference. Also, whether the user will follow the suggested Web-browsing ac-
tion will give quantitative measure to ascertain this correlation which is the central
tenet of the proposed recommender system.

3 Demo Proposal

The demo system will be a prototype recommender system as described in previous
sections. All the capabilities of the system will be available to the users. User survey
and/or interview, as well as statistical measurement on Web-browsing actions, will be
carried out. A preliminary on-line demo can be found at:

http://www.chen.ic.kanagawa-it.ac.jp/dasfaa2010/demo.html

(A) Web Browser (B) AdaptiveRecommender

Keyword
Total
Score

Web browsing Behavior
Browse Search …

t1 s1 v11 v21
t2 s2 v12 v22
t3 s3 v13 v23
… … … … …

w1 w2 …

(C) Preference Thesaurus

(iii) User’s feedback(iv) Recommends
Web browsing action

(i) Captures term sets
and the associated
behaviors into
preference thesaurus

ImprovedRecommendation

Intelligent Browsing Action

(ii) Recommends
pages or items

Fig. 1. An Adaptive Web-browsing Recommender System

 Adaptive Recommendation for Preferred Information 471

User often printsWeb pages
about“classical music”.

Browser enlarges “print icon”, when user
is viewingWeb pages aboutmusic.

[Print]

[Mouse Click]

[Bookmark]

Fig. 2. Web-browsing Action: Enlarged Icon for Printing

Table 1. Typical Web-browsing behaviors

ID Web-browsing behavior Term set to be extracted
I1 Web pages browsed Terms appeared on the Web pages
I2 Terms on Web pages selected by mouse-

click
Terms selected

I3 Terms on Web pages copied onto the
clipboard

Terms copied onto the clipboard

I4 Keywords searched within Web pages Search keywords
I5 Web pages saved Terms appeared on the saved Web pages
I6 Web pages printed Terms appeared on the Web pages printed
I7 Web pages bookmarked Terms appeared on the Web pages

bookmarked
I8 Search keywords input to the Web search

engines
Search keywords input to the Web search
engines

I9 Web pages browsed from search results Terms appeared on the returned Web
pages browsed

References

1. Chirita, P.-A., Firan, C.S., Nejdl, W.: Personalized Query Expansion for the Web. In: Pro-
ceedings of the 30th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pp. 7–14 (2007)

2. Dumais, S., Cutrell, E., Cadiz, J.J., Jancke, G., Sarin, R., Robbins, D.C.: Stuff I’ve Seen: A
System for Personal Information Retrieval and Re-Use. In: Proceedings of the Annual In-
ternational ACM SIGIR Conference on Research and Development in Information Re-
trieval, pp. 72–79 (2003)

3. Marcialis, I., Vita, E.D.: SEARCHY: An Agent to Personalize Search Results. In: Proceed-
ings of the 3rd International Conference on Internet and Web Applications and Services
(ICIW 2008), pp. 512–517 (2008)

4. Morita, T., Hidaka, T., Tanaka, A., Kato, Y.: System for Reminding a User of Information
Obtained Through a Web Browsing Experience. In: Proceedings of the 16th International
World Wide Web Conference, WWW 2007, pp. 1327–1328 (2007)

5. Takano, K., Li, K.F.: An Adaptive Personalized Recommender Based on Web-Browsing
Behaviour Learning. In: Proceedings of the 2009 IEEE International Symposium on Mining
and Web (MAW 2009), pp. 654–660 (2009)

BIDEL: An XML-Based System for Effective Fast
Change Detection of Genomic and Proteomic Data

Song Yang2 and Sourav S. Bhowmick1,2

1 Singapore-MIT Alliance, Nanyang Technological University, Singapore
2 School of Computer Engineering, Nanyang Technological University, Singapore

assourav@ntu.edu.sg

Abstract. A key issue to address in biological data integration is how to de-
tect changes to the underlying biological data sources. In this demonstration,
we present a novel system called BIDEL for detecting changes to genomic and
proteomic data (sequences and annotations). We transform heterogeneous bio-
logical data to XML format (if necessary) and then detect changes between two
versions of unordered XML representation of biological data. This demonstration
will showcase the functionality of our system and the effectiveness of change
detection in life sciences environment.

1 Introduction

Detecting changes to the underlying biological data sources is a key challenge in bi-
ological data integration. In this demonstration, we present a system called BIDEL1

(Biological Delta Detector) for detecting changes to old and new versions of genomic
and proteomic data. In our system, we first transform heterogeneous genomic and
proteomic data to XML format [4] (if necessary) and then detect changes between
two versions of unordered XML representation of biological data [2,3]. Specifically, the
BIODIFF [2] component of BIDEL detects exact changes to the annotation
(non-sequence) data associated with gene or protein sequences. It extends X-Diff [6],
a published unordered XML change detection algorithm, by addressing its limitations
to exploit structural characteristics of underlying data (discussed in Section 3 and [2]).
On the other hand, the SEQDIFF module detects changes to sequence data. Note that
existing XML change detection techniques [6] are not designed to compute changes to
sequences. To the best of our knowledge, this is the first system to detect changes to
both annotation and sequence data associated with biological entities.

2 System Overview

Figure 1(a) shows the architecture of BIDEL and consists of the following modules.

The Visual Interface Module: Figure 1(b) depicts the screen dump of the visual inter-
face of BIDEL. It consists of three panels. The top-left panel displays a list of versions
of biological data (genomic and proteomic data in XML as well as flat file format) that
we wish to compare in BIDEL. A user can view the details of a document in the top
right panel by clicking on the correspond item in the list. Note that the transformation

1 In Maltese, bidel means “to change”.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 472–476, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

BIDEL: An XML-Based System for Effective Fast Change Detection 473

Fig. 1. Architecture and visual interface of BIDEL

of a flat file to XML format is achieved by clicking on the Open icon in the menu. It
invokes the Bio2X [4] algorithm for the transformation (discussed below). Given an
old and new versions of XML representation of biological data, the changes to the data
are computed by clicking on the Compare icon in the menu. It invokes the BIOD-
IFF [2] and SEQDIFF [3] algorithms to detect the changes to annotation (non-sequence)
and sequence data, respectively. The bottom panel displays various types of changes
that are computed by these two algorithms. A user can click on one of the four tabs
(Insertions, Deletions, Updates, and Sequence) to view a specific type of
changes. For instance, in Figure 1(b) clicking on the Updates tab results in the dis-
play of a list of updates detected by BIODIFF. Similarly, Figure 2 depicts the changes to
sequence data when the Sequence tab is clicked. A user can also view the complete
set of changes in XML format by clicking on the XML version tab.

The Bio2X Module: This module currently converts flat file data from GenBank, EMBL,
Swiss-Prot, and PDB into XML format. The rule bases are designed in a consistent man-
ner so that a single transformer is sufficient to parse any data file from any database.
The transformer chooses a suitable rule base for parsing the input flat file based on its
origin database and generates the XML data file. The rule base exploits the hierarchical
structure of the source to constrain the data extraction problem. It allows for extraction
of target patterns based on surrounding landmarks, line types and other lexical patterns
in the flat files. It also allows for more advanced features such as disjunctive pattern
definitions. Finally, it involves machine-learning techniques to refine the rules in order
to improve the accuracy of the transformation. The reader may refer to [4] for details
related to the transformer.

The BIODIFF Module: This module implements the algorithm BIODIFF [2] that iden-
tifies exact changes to the annotations associated with primary biological objects (gene
and protein sequences). It takes as input two versions of unordered XML representation
of annotations of a gene or a protein (the sequence data is excluded) from the Bio2X
module, denoted by D1 and D2, and detect changes between them. The algorithm
extends X-Diff [6] by addressing some of its limitation and consists of four phases,

474 S. Yang and S.S. Bhowmick

namely the identifier checking phase, the parsing and hashing phase, the matching
phase, and the edit script generation phase. The identifier checking phase determines
whether the two versions are identical by comparing the version identifiers of the bio-
logical data records. If the two entries are not identical, then BIODIFF parses D1 and
D2 into DOM trees tree1 and tree2 in the parsing and hashing phase. This step is
similar to the one in X-Diff [6]. The goal of the matching phase is to compute the min-
imum cost matching between tree1 and tree2. Each XML tree is divided into a set of
smaller subtrees rooted at distinct first-level nodes. Note that each first-level element
nodes resulted from Bio2X has a unique name and hierarchy. Each smaller tree is com-
pared with another smaller tree from the second XML tree having the node with same
name. This step makes it possible to use different methods of matching for subtrees
having different characteristics (e.g, elements containing distinct or identical subele-
ments). Note that these characteristics of the subtrees are extracted by the Bio2X mod-
ule during XML transformation. BIODIFF employs four types of matching techniques
for different subtree characteristics, namely one-to-one comparison, identical subele-
ment comparison, extended signature comparison, and bipartite matching. Lastly, sim-
ilar to X-Diff, the edit script generation phase generates a minimum-cost edit script for
changes to annotation data based on the minimum cost matching found in the matching
phase.

The SEQDIFF Module: This module implements a heuristic non-optimal algorithm
called SEQDIFF [3] to detect changes between two versions of biological sequences of
the same biological entity extracted by the Bio2X module. Specifically, it detects in-
sert, delete, and update of a nucleotide or protein sequence at a specific position. The
algorithm consists of two phases, namely the sequence comparison phase and the edit
script generation phase. The first phase is based on the local alignment concept used in
BLAST. That is, genes adjacent in one sequence should also remain near to each other in
the new sequence. Based on this heuristic, the sequence is divided into segments (that
act like sliding windows) and an optimal alignment is performed within each segment
without any consideration for other choices from the other segment. Note that the al-
gorithm computes the alignment twice by first matching the first sequence onto second
one; and then matching the second one onto the first one. This is because it is not known
apriori in which direction of match generates the higher score. In the second phase,
the edit script is generated based on the alignment with a higher score. The alignment

Fig. 2. Output of SEQDIFF module

BIDEL: An XML-Based System for Effective Fast Change Detection 475

result is traversed and the aligned segments with same values are matched. The aligned
segments with different values are updated. The unaligned segments in the new version
are inserted, while the ones in the old version are deleted. Figure 2 shows a screenshot
of the edit script generated by the SEQDIFF module.

3 Related Systems and Novelty

A number of techniques for detecting changes to ordered and unordered XML data has
been proposed (e.g., [6]). BIDEL differs from these approaches in the following ways.
Firstly, since the min-cost max-flow algorithm for computing the bipartite mapping be-
tween two XML trees is the most time consuming part, it is desirable to reduce the
size of data set during mapping. Existing XML change detection techniques fail to do
so for biological data as it ignores the structural semantics of the underlying data. In
contrast, BIDEL reduces the data size for bipartite mapping by exploiting the struc-
tural characteristics of XML representation of biological data. Consequently, BIODIFF

shows better performance than X-Diff (up to 6 times faster) [2]. Secondly, none of
these techniques are designed to detect changes to sequence data. The SEQDIFF com-
ponent of BIDEL implements a heuristic strategy to detect different types of changes to
old and new versions of sequence data. Lastly, to the best of our knowledge, none of
the existing XML change detection system has been demonstrated in a major database
conference.

Pairwise sequence alignment techniques [1,5] can be considered as the closest to
the SEQDIFF module. Our change detection tool differs from these techniques in the
following ways. First, sequence alignment techniques focus on finding similarities be-
tween the sequences whereas our technique focus on finding differences between a pair
of sequences. Second, these approaches are designed to compare sequences among dif-
ferent biological entities. However, in change detection problem we are interested in
detecting changes to two versions of a sequence of the same entry in terms of in-
sertion, deletion, and update. Third, is the issue of performance. SEQDIFF trades off
optimality for better performance. Specifically, SEQDIFF is significantly faster than
DCLBDA [1], an optimal sequence alignment algorithm (highest observed factor being
350 times [3]).

4 Demonstration

Our demonstration aims to showcase the functionality and effectiveness of the BIDEL

system in detecting changes to genomic and proteomic data. We will showcase the
followings. (a) Demonstrate detection of different types of changes to annotation and
sequence data using real-world datasets (EMBL, PDB, and Genebank). We will show
how this process is simplified by the BIDEL visual interface. (b) Demonstrate the cases
when the result quality of BIDEL is comparable to X-Diff as far as detection of changes
to annotation data is concerned. (c) Demonstrate better efficiency and scalability of
BIODIFF module compared to general unordered XML change detection algorithms (say
X-Diff). We will also show cases where X-Diff fails to detect changes to annotation data
due to lack of memory but BIODIFF is able to detect these changes.

476 S. Yang and S.S. Bhowmick

References

1. Davidson, A.: A Fast Pruning Algorithm for Optimal Sequence Alignment. In: IEEE BIBE
(2001)

2. Song, Y., Bhowmick, S.S.: BioDiff: An Effective Fast Change Detection Algorithm for Ge-
nomic and Proteomic Data. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajee-
warawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 275–287. Springer, Heidelberg
(2007)

3. Song, Y., Bhowmick, S.S.: SeqDiff: An Effective Fast Change Detection Algorithm for Bio-
logical Sequences. Technical Report (2008),
www.cais.ntu.edu.sg/˜assourav/TechReports/SeqDiff-TR.pdf

4. Song, Y., Bhowmick, S.S.: Bio2X: A Rule-based Approach for Semi-automatic Transfor-
mation of Semistructured Biological Data to XML. Data and Knowledge Engineering Jour-
nal 52(2), 249–271 (2003)

5. Tatusova, T.A., Madden, T.L.: BLAST 2 Sequence, a new tool for comparing protein and
nucleotide sequences. FEMS Microbiology Letters 174, 247–250 (1999)

6. Wang, Y., DeWitt, D., Cai, J.-Y.: X-Diff: A Fast Change Detection Algorithm for XML Doc-
uments. In: ICDE, pp. 519–530 (2003)

www.cais.ntu.edu.sg/~assourav/TechReports/SeqDiff-TR.pdf

DISTRO: A System for Detecting Global Outliers from
Distributed Data Streams with Privacy Protection�

Ji Zhang1, Stijn Dekeyser1, Hua Wang1, and Yanfeng Shu2

1 Department of Mathematics and Computing,
The University of Southern Queensland, Australia

{Ji.Zhang,Stijn.Dekeyser,Hua.Wang}@usq.edu.au
2 CSIRO ICT Centre, Hobart, Australia

Yanfeng.Shu@csiro.au

Abstract. In this demo proposal, we present a new system, called DISTRO (a.k.a
DIstributed STReam Outlier Detector), for detecting outliers from distributed
data streams. DISTRO is able to effectively identify outliers from distributed
data streams that are consistent with those generated by the centralized detection
paradigm. DISTRO is also able to ensure high-level data privacy throughout the
detection process. A number of optimization strategies are devised to further en-
hance its speed and communication performance. This proposal provides details
on the motivation and technical challenges of detecting outliers from distributed
data streams, presents an overview of DISTRO, and gives the plans for its system
demonstration.

1 Introduction

Outlier detection from data streams is an important research problem in data mining
that aims to find objects that are considerably dissimilar with the majority of data in the
streams. In many cases, data streams are collected by multiple distributed agents (e.g.,
sensors in a sensor network) and outliers need to be detected from all the data that are
collected. This kind of outliers are called global outliers.

The challenge for detecting global outliers lies in that centralized outlier detection
(i.e., integrating the distributed data streams and carrying out outlier detection centrally)
is intractable due to the potentially huge amount of data in the data streams and/or the
privacy-related issues of data collected in different sites. The existing distributed outlier
detection methods mainly suffer the following drawbacks: 1) The outlier-ness metrics
they use are not updatable and are therefore not suitable for data streams [1][2][3]; and
2) The mediator they use needs to process a significant portion of the detailed stream
data, thus the privacy of data may be compromised [4][5].

To address these problems, we present a new system, called DISTRO (short for
DIstributed STReam Outlier Detector) in this demo proposal. The innovative features
and contributions of DISTRO are summarized as follows:

– DISTRO is able to produce outlier detection results that are consistent with those
produced in a centralized environment without data integeration;

� This work is partly supported by the Tasmanian ICT Centre, which is jointly funded by the
Australian Government through the Intelligent Island Program and CSIRO.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 477–481, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

478 J. Zhang et al.

Fig. 1. System architecture of DISTRO Fig. 2. Calculate k-ODF for
data p (k = 3)

– The communication between the mediator and the distributed sites only involves
compact summary-level information, leading to a low data transfer overhead;

– A number of optimization techniques have been incorporated into DISTRO to en-
able it to achieve even better speed and space performance;

– As end users and mediator have no access to the detailed distributed data except
the final top outliers and data communication is prohibited amongst different dis-
tributed sites, DISTRO can, to the maximum extent, ensure privacy of proprietary
data in the whole detection process. Various anonymization schemes can also be
readily incorporated to anonymize the final outliers if necessary.

2 An Overview of DISTRO

In this section we present an overview of DISTRO and describe the algorithms that
needs to be executed in various parts of the system. The system architecture diagram of
DISTRO is given in Figure 1. There are three major parties in DISTRO system: the end
users, the mediator and the distributed sites. The end users are the people who request
outliers (typically the top n) for certain purpose. Requests from users are then passed
to the mediator. Upon receiving a request, the mediator starts to execute the outlier de-
tection process. The major role of the mediator is to generate the global data summary
periodically and broadcast it to all the distributed sites for detecting local outliers. Each
distributed site collects and processes the data stream it receives. The final global top
n outliers are generated by the mediator and returned to end users through it. In DIS-
TRO, the mediator can communicate with each distributed site but no communication
is allowed amongst distributed sites themselves. Both the mediator and distributed sites
have necessary computational capacity.

In order to compute the outlier-ness of data (as defined below) in the data streams
efficiently, we introduce the grid structure to partition the data space in each distributed
site. A multi-dimensional grid with equal-volumed cells is super-imposed in the data
space. The gird structure facilitates the efficient generation of updatable local/global
data summaries that are suitable for data stream applications.

DISTRO: A System for Detecting Global Outliers from Distributed Data Streams 479

Definition 1. k-Outlying Degree Factor (k-ODF): k-ODF measures the strength of out-
lierness of data in the stream. ODF of a data point p is defined as the averaged distance

between p and its k nearest dense cell centroids: k-ODF (p)=
∑k

i=1 Dist(p,centroid(ci))
k ,

where k is a user-specified parameter and typically takes a small value. k-ODF measures
outlier-ness for data by calculating its distance to its nearby dense regions, which is intu-
itive and consistent with human perception. Figure 2 presents an example of calculating
k-ODF for data p when k = 3 (the red crosses in the figure indicate centroids of the
dense cells).

The Algorithm of DISTRO. DISTRO detects global outliers from distributed data
streams in the following steps:

Step 1: Assigning data into grid structure (distributed sites). Data in the data stream
are read in sequentially and assigned into a cell in the grid. Instead of physically creating
the grid structure, we only maintain the list of populated cells. The incoming data is
mapped into one appropriate cell in this list. If the data falls into a cell that is not yet in
the list, then a new cell will be added into the list. The density of a cell will be updated
using a decaying function and sliding window techniques.

Step 2: Generating representative data (mediator). The density of cells will be ag-
gregated periodically in the mediator. This operation is called aggregation. When aggre-
gation is triggered, the local cell density needs to be transfered to the mediator. We only
transfer the information of the populated cells rather than that of all the cells in the grid.
Upon receiving the information of populated cells from all the distributed sites, the ag-
gregation is carried out to aggregate density of populated cells from distributed sites and
identify dense cells in the grid in order to calculate k-ODF for data. The dense cells are
defined as the smallest number of most dense cells in the grid that contain no less than
q ∗ 100% of the total number of data that are assigned in the grid (0 < q ≤ 1 and typi-
cally q is quite close to 1). The exact value of the number of the dense cells Nr is deter-
mined using the following inequity:

∑Nr−1
i=1 Dec(ci) ≤ q ∗ 100%N ≤

∑Nr

i=1 Dec(ci).
The centroids of the dense cells are called representative data which are considered as
a global summary of the data streams. The list of representative data are then broadcast
to all the distributed sites.

Step 3: Generating local top-n outliers (distributed sites). When each distributed site
receives the representative data from mediator, the k-ODFs of data are calculated. The
top-n local outliers can be picked up based on k-ODF for each distributed site. The
local top-n outliers are then sent to mediator for producing the global top outliers.

Step 4: Generating global top-n outliers (mediator). When all the top local outliers
are collected, the mediator will merge them and generate the global top-n outliers. The
final results are retuned to end users.

3 Optimization Techniques for DISTRO

Besides the above algorithm, we have also devised a number of optimization techniques
for effectively speeding up DISTRO and reducing the transferring overhead. For ease of
referral, we call the algorithm we presented earlier in Section 2 as the base algorithm.

480 J. Zhang et al.

• Using Outlier Candidates. Outlier candidates are those data selected from the data
stream in each distributed site which feature high outlying values. The local top-n out-
liers are selected only from these outlier candidates based on the k-ODF ranking. The
number of outlier candidates is normally a few times (e.g. 4 or 5) of n in order to provide
a sufficiently large pool for outlier selection. Suppose that the size of outlier candidates
is m ∗n, where m is a positive real-value number provided by users. To generate m ∗n
outlier candidates, the data in the s most sparse cells whose total number of data ex-
ceeds m ∗ n will be selected as the outlier candidates. Here s is picked as the minimum
integer satisfying this requirement. This strategy makes it possible for DISTRO to only
evaluate k-ODF for a small number of data in the data stream.

• Performing Local Pruning of Streaming Data. In the base algorithm, all the stream-
ing data arriving at each distributed site needs to be first archived in the limited-sized
temporary storage space (memory or disc), awaiting aggregation to be performed. Nev-
ertheless, when streaming data are arriving in a high rate, this limited storage space
will be quickly filled up and aggregation has to be triggered for all the distributed sites
in a relatively high frequency. As we have assumed that there is no communication
amongst distributed sites, it is impossible to ship the unevenly distributed data amongst
distributed sites to solve this problem. Alternatively, we devise a cell density estimation
technique to significantly reduce the aggregation frequency without seriously compro-
mising the effectiveness of outlier detection. Suppose that each distributed site has re-
ceived a global summary during time t, then the estimated global density of cell c at time
t′(t′ > t) at site i can be quantified as Denestimate(c, i, t′) = Den(c, t)+f(c, i, t′−t),
where f(c, i, Δt) is the function that returns the estimated changes of density of c in
a time duration of Δt in distributed site i based on statistics obtained in the previous
aggregation cycles. By doing this, we can have an estimated global summary with-
out aggregation, based on which the new locally estimated representative data can be
generated. Using the locally estimated representative data, we can estimate the k-ODF
of each local streaming data. We only need to store those data with relatively large
k-ODF as local outlier candidates and discard the rest. The benefit of this strategy is
that we can remarkably reduce the size of stream data that needs to be archived in
the temporary storing space and noticeably prolonged the interval between two con-
secutive aggregation cycles. This contributes to a low data transferring overhead of
DISTRO.

• Implementing Global Top-n Outliers Merging Algorithm. In the base algorithm,
each distributed site will ship the top-n local outliers to the mediator to produce the
global top-n outliers. This scheme can be further fine tuned to achieve a better transfer
performance. The basic idea is that we first only transfer, from each distributed site,

n
Nsites

to the mediator to ensure that there will be initially n outliers in mediator. These
n outliers are merged to produce the initial top-n global outlier list. The minimum
value of k-ODF of this list, denoted as minkODF is extracted and broadcast to all the
distributed sites. We can then prune away local outliers in each distributed whose k-
ODF value is lower than minkODF as it is guaranteed that they cannot possibly be
included in the global top-n list. This pruning strategy is able to reduce the local outlier
candidates that need to be transferred to the mediator.

DISTRO: A System for Detecting Global Outliers from Distributed Data Streams 481

4 Demonstration Plan

Our demonstration of DISTRO will consist of the following four parts:
First, we will describe to the audience the real-life application scenarios of outlier

/anomaly detection in distributed multi databases/repository to motivate our DISTRO
system. We will also introduce the pros and cons of the existing systems.

Second, we will showcase the system architecture of DISTRO. The Emphasis will be
the introduction of various components in DISTRO regarding what their roles are and
how they communicate with each other in the outlier detection process. The architecture
demonstration is very useful to help the audience understand the algorithm of DISTRO
that involves end users, mediator and distributed sites;

Third, the experimental evaluation results will be presented to the audience to show
the effectiveness and efficiency of DISTRO. We will show that the the result of DISTRO
is consistent with that generated in a centralized environment. Component analysis will
also be used to show how each optimization technique assists DISTRO to achieve better
speed and space performance;

Last but not least, an on-site demonstration of DISTRO will be played to the audi-
ence. The audience will be encouraged to interact with the demo themselves. We will
provide on-site assistance to the audience to use the prototype upon request.

References

1. Branch, J.W., Szymanski, B.K., Giannella, C., Wolff, R., Kargupta, H.: In-Network Outlier
Detection in Wireless Sensor Networks. In: ICDCS 2006, p. 51 (2006)

2. Chhabra, P., Scott, C., Kolaczyk, E.D., Crovella, M.: Distributed Spatial Anomaly Detection.
In: INFOCOM 2008, pp. 1705–1713 (2008)

3. Dutta, H., Giannella, C., Borne, K.D., Kargupta, H.: Distributed Top-K Outlier Detection from
Astronomy Catalogs using the DEMAC System. In: SDM 2007 (2007)

4. Sheng, B., Li, Q., Mao, W., Jin, W.: Outlier detection in sensor networks. In: MobiHoc 2007,
pp. 219–228 (2007)

5. Su, L., Han, W., Yang, S., Zou, P., Jia, Y.: Continuous Adaptive Outlier Detection on Dis-
tributed Data Streams. In: HPCC 2007, pp. 74–85 (2007)

Introduction to Social Computing

Irwin King

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, NT, Hong Kong
king@cse.cuhk.edu.hk

http://www.cse.cuhk.edu.hk/~king

Abstract. With the advent of Web 2.0, Social Computing has emerged
as one of the hot research topics recently. Social Computing involves
the collecting, extracting, accessing, processing, computing, visualizing,
etc. of social signals and information. More specifically, this tutorial
places special emphases in machine learning, data mining, information
retrieval, and other computational techniques involved in collective in-
telligence processing of social behavior data collected from blogs, wikis,
clickthrough data, query logs, tags, etc., and from areas such as social
networks, social search, social media, social bookmarks, social news, so-
cial knowledge sharing, and social games. In this tutorial, I plan to give
an introduction to Social Computing and elaborate on how the vari-
ous characteristics and aspects are involved in the social platforms for
collective intelligence. The topics include social network theory and mod-
eling, graph mining, query log processing, learning to rank, recommender
systems, human computation, etc. The tutorial is prepared for machine
learning, web mining, and information retrieval researchers who are in-
terested in computational approaches to social computing.

Brief Profile

Irwin King’s research interests include machine learning, web intelligence &
social computing, and multimedia processing. In these research areas, he has
over 200 technical publications in journals (JMLR, ACM TOIS, IEEE TNN,
Neurocomputing, NN, IEEE BME, PR, IEEE SMC, JAMC, JASIST, IJPRAI,
DSS, etc.) and conferences (NIPS, IJCAI, CIKM, SIGIR, KDD, PAKDD, ICDM,
WWW, WI/IAT, WCCI, IJCNN, ICONIP, ICDAR, etc.). In addition, he has
contributed over 20 book chapters and edited volumes. Moreover, Irwin King
has over 30 research and applied grants. One notable system he has developed
is the VeriGuide System, previously known as the CUPIDE (Chinese University
Plagiarism IDentification Engine) system, which detects similar sentences and
performs readability analysis of text-based documents in both English and in
Chinese to promote academic integrity and honesty.

Irwin King is an Associate Editor of the IEEE Transactions on Neural Net-
works (TNN) and IEEE Computational Intelligence Magazine (CIM). He is a

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 482–484, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.cse.cuhk.edu.hk/~king

Introduction to Social Computing 483

member of the Editorial Board of the Open Information Systems Journal, Jour-
nal of Nonlinear Analysis and Applied Mathematics, and Neural Information
ProcessingLetters and Reviews Journal (NIP-LR). He has also served as Spe-
cial Issue Guest Editor for Neurocomputing, International Journal of Intelligent
Computing and Cybernetics (IJICC), Journal of Intelligent Information Sys-
tems (JIIS), and International Journal of Computational Intelligent Research
(IJCIR). He is a senior member of IEEE and a member of ACM, International
Neural Network Society (INNS), and Asian Pacific Neural Network Assembly
(APNNA). Currently, he is serving the Neural Network Technical Committee
(NNTC) and the Data Mining Technical Committee under the IEEE Computa-
tional Intelligence Society (formerly the IEEE Neural Network Society). He is
also a Vice-President and Governing Board Member of the Asian Pacific Neural
Network Assembly (APNNA).

Selected References

1. Xin, X., King, I., Lyu, M.R., Deng, H.: A social recommendation framework based
on multi-scale continuous conditional random fields. In: Proceedings to the ACM
18th Conference on Information and Knowledge Management (CIKM2009), Hong
Kong, China, November 2-9, pp. 1247–1256. ACM, New York (2009)

2. Ma, H., King, I., Lyu, M.R., Yang, H.: Semi-nonnegative matrix factorization with
global statistical consistency in collaborative filtering. In: Proceedings to the ACM
18th Conference on Information and Knowledge Management (CIKM 2009), Hong
Kong, China, November 2-9, pp. 767–775. ACM, New York (2009)

3. Lin, Z., King, I., Lyu, M.R.: Matchsim: A novel neighbor-based similarity measure
with maximum neighborhood matching. In: Proceedings to the ACM 18th Con-
ference on Information and Knowledge Management (CIKM2009), Hong Kong,
China, November 2-9, pp. 1613–1616. ACM, New York (2009)

4. Deng, H., King, I., Lyu, M.R.: Enhancing expertise retrieval using community-
aware strategies. In: Proceedings to the ACM 18th Conference on Information and
Knowledge Management (CIKM 2009), Hong Kong, China, November 2-9, pp.
1733–1736. ACM, New York (2009)

5. Zhou, T.C., King, I.: Automobile, car and BMW: Horizontal and hierarchical ap-
proach in social tagging systems. In: Workshop Proceedings to the Social Web
Search and Mining (SWSM 2009) at the ACM 18th Conference on Information
and Knowledge Management (CIKM2009), Hong Kong, China, November 2-9, pp.
25–32. ACM, New York (2009)

6. Ma, H., Lyu, M., King, I.: Learning to recommend with trust and distrust rela-
tionships. In: Proceedings to the 3rd ACM Conference on Recommender Systems,
New York City, NY, USA, October 22-25 (accepted)

7. Yuen, M.-C., Chen, L.-J., King, I.: A survey of human computation systems. In:
Proceedings of the 2009 International Symposium on Social Computing Applica-
tions (SCA 2009), 12th IEEE International Conference on Computational Science
and Engineering (CSE2009), Vancouver, Canada, August 29-31, pp. 723–728. IEEE
Computer Society, Los Alamitos (2009)

8. Ma, H., King, I., Lyu, M.R.: Learning to recommend with social trust ensemble.
In: Allan, J., Aslam, J.A., Sanderson, M., Zhai, C., Zobel, J. (eds.) Proceedings to
the 32nd Annucal ACM SIGIR Conference (SIGIR 2009), Boston, MA, July 19-23,
pp. 203–210. ACM Press, New York (2009)

484 I. King

9. Deng, H., King, I., Lyu, M.R.: Entropy-biased models for query representation on
the click graph. In: Allan, J., Aslam, J.A., Sanderson, M., Zhai, C., Zobel, J. (eds.)
Proceedings to the 32nd Annucal ACM SIGIR Conference (SIGIR2009), Boston,
MA, July 19-23, pp. 339–346. ACM Press, New York (2009)

10. Deng, H., Lyu, M.R., King, I.: A generalized co-hits algorithm and its application
to bipartite graphs. In: The Proceedings to the 15th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD 2009), Paris, France, June 28-July
1 (2009)

11. Deng, H., King, I., Lyu, M.R.: Effective latent space graph-based re-ranking model
with global consistency. In: Proceedings to the Second ACM International Confer-
ence on Web Search and Data Mining (WSDM 2009), Barcelona, Spain, February
9-12 (2009)

12. Huang, K., Xu, Z., King, I., Lyu, M.R.: Semi-supervised learning from general
unlabeled data. In: Proceedings to the Eighth IEEE International Conference on
Data Mining (ICDM 2008), Pisa, Italy, December 15-19 (2008)

13. Huang, K., King, I., Lyu, M.R.: Direct zero-norm optimization for feature selection.
In: Proceedings to the Eighth IEEE International Conference on Data Mining
(ICDM 2008), Pisa, Italy, December 15-19 (2008)

Mining Moving Object, Trajectory and Traffic
Data

Jiawei Han, Zhenhui Li, and Lu An Tang

Department of Computer Science
University of Illinois at Urbana-Champaign, USA

{hanj,zli28,tang18}@uiuc.edu

With the wide availability of satellite, RFID, GPS, sensor, wireless, and video
technologies, moving-object data have been collected in massive scale and are
becoming increasingly rich, complex, and ubiquitous. There is an imminent need
for scalable and flexible data analysis over moving-object information; and thus
mining moving-object data has become one of major challenges in data mining.
There have been considerable research efforts on data mining for moving object,
trajectory, and traffic data sets. However, there has been few systematic tutorial
on knowledge discovery from such moving-object data sets. This tutorial presents
a comprehensive, organized, and state-of-the-art survey on methodologies and
algorithms on analyzing different kinds of moving-object data sets, with an em-
phasis on several important mining tasks: pattern-mining, clustering, classifica-
tion, outlier analysis, and multidimensional analysis. Besides a thorough survey
of the recent research work on this topic, we also show how real-world applica-
tions can benefit from data mining of moving object, trajectory, and traffic data
sets. The tutorial consists of three parts: (1) moving object pattern mining, (2)
trajectory data mining, and (3) traffic data mining.

In the first part, moving object pattern mining, we introduce different pattern
mining algorithms for various moving object patterns. Frequent pattern is one of
the most basic patterns that detects frequently visited routes, such as “Railway
Station→ Time Square→ Central Park” for New York city travelers. The chal-
lenge of frequent pattern lies in the approximation of locations and transition time.
Periodic pattern mining is another interesting topic since periodicity is an intrinsic
nature of moving objects. For example, people have weekly working pattern and
animals have yearly migration pattern. But how to detect periodicity for moving
objects in 2-dimensional space remains a difficult problem. Moving object grouping
pattern discovers the social behaviors of moving objects in groups. Research have
been conducted in different definitions, such as moving cluster, flock and convoy.
But strict temporal and spatial constraint may result in failure of finding mean-
ingful patterns. Thus, a concept called swarm is further proposed to suit for more
realistic cases.Other interesting patterns including leadership, following, andmeet-
ing are studied as well. Leadershipand following patterns discovers a small number
of objects (e.g., suspect, wolf) that follow one or a set of given moving objects (e.g.,
people, sheep). Meeting could describe the movement that suspects meet to plot
an attack or animals meet together for the same food resources.

In the second part, trajectory mining, we focus more on trajectory cluster-
ing, classification and outlier detection. For trajectory clustering, many high

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 485–486, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

486 J. Han, Z. Li, and L.A. Tang

dimensional data clustering methods can be easily adapted if we treat each
timestamp as one dimension. Studies related to different distance measures in
high dimensional space and efficient computation of these distance functions
haven been conducted. Probabilistic methods are also proposed by modeling
a set of trajectories as individual sequences of points generated from a finite
mixture model. While these methods cluster trajectories as a whole, they ig-
nore sub-trajectory clusters. A partition-and-group framework is proposed to
solve this problem. It first partitions a trajectory into multiple line segments
and then cluster the line segments based on density. Outlier could be a natural
byproduct of clustering result. The objects that are distant from any cluster
can be considered as outliers. Recently, methods specifically designed for more
complex cases are developed, such as integration of multi-dimensional informa-
tion and partial trajectory outlier detection. While there are many clustering
and outlier detection methods, few classification method has been developed
for moving objects. A related area could be time series classification, in which
1-Nearest-Neighbor has been the most popular method and a shapelet-based
classification method has recently shown to be effective. Time series studies
mainly deal with 1-dimensional data whereas moving object classification has to
face more complicated 2-dimensional spatial data. Recently, a trajectory classi-
fication method based on regions and trajectory clusters has shown satisfactory
result. This method extracts discriminative regions and trajectory clusters for
some class as classification features.

Finally, we introduce some state-of-the-art traffic data mining methods. Traffic
data, different from free space movement, is confined to road networks. An im-
portant task in traffic analysis is the shortest/fastest path computation. Classical
shortest path problem focuses on efficient computation in a large road network.
However, historical traffic data may discover real fastest path and thus an adap-
tive fastest path computation method is proposed. Another interesting topic is to
predict destination of moving vehicles. Methods based on Bayesian classification
and frequent pattern have been developed to efficiently and effectively predict the
recent or distant movement. In real life, people are also concerned with road condi-
tions, such as hot/jammed roads and abnormal events on some road segments. To
monitor road conditions, density-based routes clustering method is developed for
hot routes discovery and temporal outlier detection in vehicle data is used to find
abnormal road segments. Lastly, since road network naturally forms hierarchical
structures and different granularity is embedded in temporal data, it is necessary
to analyze moving object data in a multidimensional way, such as multidimen-
sional traffic anomaly detection on highways and traffic cube and mining in traffic
cube space.

In summary, this tutorial presents the state-of-the-art research on moving ob-
ject data analysis including pattern mining, trajectory clustering, classification,
outlier detection, and traffic analysis. It shows the confluence of multiple scientific
and engineering disciplines, including data mining, database systems, geographic
information system, statistical analysis, and machine learning, and links to mul-
tiple applications. We also discuss several promising research directions.

Querying Large Graph Databases

Yiping Ke1, James Cheng2, and Jeffrey Xu Yu1

1 Department of Systems Engineering and Engineering Management
The Chinese University of Hong Kong
Shatin, New Territories, Hong Kong
{ypke,yu}@se.cuhk.edu.hk

2 Division of Information Systems
School of Computer Engineering

Nanyang Technological University, Singapore
jamescheng@ntu.edu.sg

Abstract. Graph exists ubiquitously in a wide spectrum of application
domains, such as protein structures in biology, chemical compounds in
chemistry, food webs in ecology, social networks, Web graphs, P2P net-
works, and many more. With the increasing popularity of graph databases,
how to assess graph data effectively and efficiently becomes an important
research problem. Considerable research efforts have been devoted to de-
veloping advanced query processing techniques on graph databases. This
tutorial presents a comprehensive survey on methodologies and
techniques for querying large graph databases, including subgraph and su-
pergraph query processing, structural similarity query processing, correla-
tion search in transaction graph databases, connection query processing
and approximate matching in large graphs. The tutorial is prepared for
database and data mining researchers who are interested in complex data
types that can be generally modeled as graphs.

1 Introduction

This tutorial provides a comprehensive overview of the main methodologies and
techniques for querying large graph databases. The tutorial starts with subgraph
query processing, which has been well-studied in the literature. Representative
techniques include GraphGrep [1], gIndex [2], C-tree [3], FG-index [4], TreePi
[5], GString [6], GDIndex [7], Tree+Δ [8], GCoding [9], and QuickSI [10]. It then
continues with a newly introduced counterpart, supergraph query processing, with
two existing techniques, cIndex [11] and GPTree [12]. The next part focuses on
structural similarity search, which is a special type of subgraph queries by al-
lowing structural relaxation. Systems that support structural similarity search
include SUBDUE [13], RASCAL [14], Grafil [15], C-tree [3], and GDIndex [7].
The tutorial also covers an emerging type of graph queries, namely correlation
queries, which discovers subgraphs with similar occurrence distributions. Typical
techniques include CGSearch [16], TopCor [17], and FCP-Miner [18]. Finally, the
tutorial ends with query processing on large graphs, including connection sub-
graph [19], center-piece subgraph [20], proximity subgraph [21], context-aware
object connection discovery [22], and approximate matching queries [23,24].

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, pp. 487–488, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

488 Y. Ke, J. Cheng, and J. Xu Yu

References

1. Shasha, D., Wang, J.T.L., Giugno, R.: Algorithmics and applications of tree and
graph searching. In: PODS, pp. 39–52 (2002)

2. Yan, X., Yu, P.S., Han, J.: Graph indexing based on discriminative frequent struc-
ture analysis. ACM Trans. Database Syst. 30(4), 960–993 (2005)

3. He, H., Singh, A.K.: Closure-tree: An index structure for graph queries. In: ICDE,
p. 38 (2006)

4. Cheng, J., Ke, Y., Ng, W., Lu, A.: Fg-index: towards verification-free query pro-
cessing on graph databases. In: SIGMOD, pp. 857–872 (2007)

5. Zhang, S., Hu, M., Yang, J.: Treepi: A novel graph indexing method. In: ICDE,
pp. 966–975 (2007)

6. Jiang, H., Wang, H., Yu, P.S., Zhou, S.: Gstring: A novel approach for efficient
search in graph databases. In: ICDE, pp. 566–575 (2007)

7. Williams, D.W., Huan, J., Wang, W.: Graph database indexing using structured
graph decomposition. In: ICDE, pp. 976–985 (2007)

8. Zhao, P., Yu, J.X., Yu, P.S.: Graph Indexing: Tree + Delta >= Graph. In: VLDB,
pp. 938–949 (2007)

9. Zou, L., Chen, L., Yu, J.X., Lu, Y.: A novel spectral coding in a large graph
database. In: EDBT, pp. 181–192 (2008)

10. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: An efficient
algorithm for testing subgraph isomorphism. In: VLDB, pp. 364–375 (2008)

11. Chen, C., Yan, X., Yu, P.S., Han, J., Zhang, D.Q., Gu, X.: Towards graph contain-
ment search and indexing. In: VLDB, pp. 926–937 (2007)

12. Zhang, S., Li, J., Gao, H., Zou, Z.: A novel approach for efficient supergraph query
processing on graph databases. In: EDBT, pp. 204–215 (2009)

13. Holder, L., Cook, D., Djoko, S.: Substucture Discovery in the SUBDUE System.
In: KDD Workshop, pp. 169–180 (1994)

14. Raymond, J.W., Gardiner, E.J., Willett, P.: RASCAL: calculation of graph simi-
larity using maximum common edge subgraphs. Comput. J. 45(6), 631–644 (2002)

15. Yan, X., Yu, P.S., Han, J.: Substructure similarity search in graph databases. In:
SIGMOD Conference, pp. 766–777 (2005)

16. Ke, Y., Cheng, J., Ng, W.: Correlation search in graph databases. In: KDD, pp.
390–399 (2007)

17. Ke, Y., Cheng, J., Yu, J.X.: Top-k correlative graph mining. In: SDM, pp. 1038–
1049 (2009)

18. Ke, Y., Cheng, J., Yu, J.X.: Efficient discovery of frequent correlated subgraph
pairs. In: ICDM, pp. 239–248 (2009)

19. Faloutsos, C., McCurley, K.S., Tomkins, A.: Fast discovery of connection sub-
graphs. In: KDD, pp. 118–127 (2004)

20. Tong, H., Faloutsos, C.: Center-piece subgraphs: problem definition and fast solu-
tions. In: KDD, pp. 404–413 (2006)

21. Koren, Y., North, S.C., Volinsky, C.: Measuring and extracting proximity in net-
works. In: KDD, pp. 245–255 (2006)

22. Cheng, J., Ke, Y., Ng, W., Yu, J.X.: Context-aware object connection discovery in
large graphs. In: ICDE, pp. 856–867 (2009)

23. Tian, Y., Patel, J.M.: Tale: A tool for approximate large graph matching. In: ICDE,
pp. 963–972 (2008)

24. Tong, H., Faloutsos, C., Gallagher, B., Eliassi-Rad, T.: Fast best-effort pattern
matching in large attributed graphs. In: KDD, pp. 737–746 (2007)

H. Kitagawa et al. (Eds.): DASFAA 2010, Part II, LNCS 5982, p. 489, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Future Directions of Innovative Integration between
Multimedia Information Services and Ubiquitous

Computing Technologies

Yasushi Kiyoki1 and Virach Sornlertlamvanich2

1 Graduate School of Media and Governance, Keio University, SFC

5322 Endoh, Fujisawa, Kanagawa, 252-0816, Japan
kiyok@sfc.keio.ac.jp

2 National Electronics and Computer Technology Center, Digitized Thailand Project,
National Science and Technology Development Agency, Thailand

virach@tcllab.org

Abstract

Over the past decade, the success of multimedia and database technologies results a
large extent to use various data resources provided to create innovative applications.
Rapid progress in this technology and its applications has been seen especially in the
Internet-based social aspects. Databases, knowledge bases, data mining and multime-
dia data managements have become important subjects not only in academic commu-
nities related to information systems and computer science but also in business areas.

This panel session is the opportunity to address world-wide research issues for the
exchange of scientific aspects and experiences achieved in multimedia data manage-
ments, ubiquitous computing, and other related disciplines. Basic system platforms
will be discussed in the context of multimedia information services and ubiquitous
computing technologies. The main topics of this panel session target the themes in the
interdisciplinary domain between multimedia information modelling, multimedia
systems and ubiquitous computing technologies.

The rapid progress of multimedia data management technology has realized the
large scale of media data transfer and resource-accumulation in the world. The ubiqui-
tous computing technology has also been creating new information provision envi-
ronments in the world-wide scope. Innovative integrations of large scale multimedia
data and ubiquitous computing resources will lead to a new information society. This
panel session focuses on promising integration between multimedia information
services and ubiquitous computing in regard to integrated system architectures, me-
dia-data analysis, community-based media data-creation, user-generated multimedia
content, large-scale storage systems, mobile computing and new sensing device tech-
nologies. To this end much attention is paid also to various applications including e-
community, e-learning and e-commerce. For construction of the integrated systems of
multimedia information services and ubiquitous computing, further innovative tech-
nologies are expected. This panel session will discuss opportunities for explorations
of significant research and development.

Author Index

Abekawa, Takeshi II-404
Achtert, Elke II-396
Ahmed, Chowdhury Farhan I-399
Ahn, Sukhyun I-414
Almi’Ani, K. II-416
Alsubaiee, Sattam II-464
Ang, Hock Hee I-34, I-368
Arai, Naomi II-440
Aramaki, Eiji II-404
Asai, Tatsuya II-380
Asakura, Hiroshi II-327
Asano, Yasuhito I-460
Assent, Ira I-307

Balke, Wolf-Tilo II-246
Banaei-Kashani, Farnoush I-202
Bao, Zhifeng I-93, I-262
Bhowmick, Sourav S. I-299, II-472
Boucelma, Omar II-392
Bressan, Stéphane I-337, II-392

Cao, Hui II-216
Chan, Chee-Yong I-322
Cheema, Muhammad Aamir I-233
Chen, Chen I-384
Chen, Chun II-116
Chen, Gang I-19, II-1, II-216, II-276
Chen, Gencai II-116
Cheng, James II-487
Cheng, Reynold I-535
Chen, Jinchuan I-535
Chen, Ke II-1
Chen, Lei I-155, I-352, II-62
Chen, Lijiang I-3
Chen, Nan II-1
Chen, Tao I-218
Cheong Fung, Gabriel Pui II-94, II-444
Choi, Byron II-428
Cho, Taehyung II-337
Chung, Ji-man II-337
Chung, Yu-Chi II-79
Cong, Gao II-231
Cui, Bin I-3, II-231
Cui, Peng II-359

Dawborn, Tim II-416
Dekeyser, Stijn II-477
Deng, Ke I-565
Doulkeridis, Christos II-269
Du, Xiaoyong I-580, II-94

Emmanuel, Sabu II-313
Enoki, Miki II-370

Faerber, Franz II-291
Fang, Yuan I-322
Fei, Zhongchao I-627
Feng, Jianhua I-277, II-138
Feng, Shi I-476
Fung, Gabriel Pui Cheong I-565

Gaber, Mohamed II-416
Gafurov, Bulat II-416
Gal-Oz, Nurit I-63
Gao, Jun II-123
Gao, Shen II-428
Gao, Yunjun II-1, II-116
Ghose, Aditya II-306
Gonen, Yaron I-63
Gopalkrishnan, Vivekanand I-34, I-368
Gorawski, Marcin II-436
Grund, Martin II-291
Gudes, Ehud I-63
Gurung, Sashi II-17

Hagiwara, Masayoshi II-320
Han, Jiawei I-384, II-32, II-485
Hasan, Mahady I-233
Ha, Seong-wook II-337
Hayashida, Yoshiyuki II-440
Heyrani-Nobari, Ghasem II-392
Hoi, Steven C.H. I-34
Hoshi, Mamoru I-292, II-448
Hsu, Wynne I-186
Hu, Haibo II-428
Hu, Junfeng II-116
Huo, Wenyu I-498
Hurson, Ali II-17
Hu, Tianlei II-276
Hwang, Seung-won I-414, II-47

492 Author Index

Inakoshi, Hiroya II-380
Inoue, Takeru II-327
Ioki, Nobuhiro II-440
Ishida, Yasuyuki II-420, II-424
Ishi, Yoshimasa II-432
Ito, Kazunari II-412
Iwaihara, Mizuho I-299
Iwai, Masayuki II-408, II-420
Iwamoto, Takeshi II-420

Jain, Ramesh I-202
Jeong, Byeong-Soo I-399
Jiang, Wei II-17
Jiang, Xiao II-123
Jiang, Yexi I-595, II-359
Jung, Eunjin I-414

Kamada, Tomio II-456
Kang, Seungseok II-337
Kankanhalli, Mohan S. II-313
Kazemi, Leyla I-202
Ke, Yiping I-352, II-487
Khoury, Raymes II-416
Kim, Myoung Ho I-520
King, Irwin II-482
Kiran, R. Uday I-49
Kitayama, Daisuke II-460
Kitsuregawa, Masaru I-612
Kiyoki, Yasushi II-452, II-489
Köhler, Henning II-109
Kojima, Isao II-400
Konomi, Shin’ichi II-408, II-420, II-424
Kotidis, Yannis II-269
Kowalkiewicz, Marek I-550
Kranen, Philipp I-505
Kremer, Hardy I-307
Kriegel, Hans-Peter II-396
Krueger, Jens II-291
Kurabayashi, Shuichi II-452

Laurent, Anne I-78
Lee, Chiang II-79
Lee, Dik Lun I-635
Lee, Jae-Gil II-32
Lee, Mong Li I-186
Lee, Sang-goo II-337
Lee, Wang-Chien I-444
Lehrack, Sebastian I-429
Leonardi, Erwin I-299
Leung, Kenneth Wai-Ting I-635

Li, Binyang I-476
Li, Chen II-464
Li, Chuan I-595
Li, Guoliang I-277
Li, Jiang I-110
Li, Jianhui I-277
Li, Jianxin I-125
Li, Jinyan II-359
Li, Kin Fun II-468
Li, Ming II-199
Lin, Dan II-17
Ling, Tok Wang I-93, I-262
Lin, Tao II-199
Lin, Xuemin I-140, I-233
Liu, Chengfei I-125, I-550
Liu, Hong-Cheu II-306
Liu, Le I-277
Liu, Lu I-384
Liu, Ruilin II-176
Liu, Xingjie I-444
Liu, Ying II-359
Liu, Yu II-138
Liu, Zheng I-171, I-612
Li, Xiaolei II-32
Li, Yi II-153
Li, Yu II-428
Li, Zhenhui II-32, II-485
Lo, Eric II-168
Lofi, Christoph II-246
Lu, Jiaheng I-93, I-580
Lu, Wei II-94
Lu, Xuesong I-337
Lynden, Steven II-400

Malczok, Rafal II-436
Mani, Murali II-199
Masunaga, Yoshifumi II-412
Matono, Akiyoshi II-400
Meng, Xiaofeng II-261
Mikami, Keita II-347
Miyama, Yoichi II-412
Miyazaki, Manabu II-408
Morishita, Shinji II-347
Müller, Emmanuel I-505
Murakami, Yohei II-404
Myung, Jaeseok II-337

Nadamoto, Akiyo II-404
Nagamine, Takakazu II-456
Nakazawa, Jin II-420

Author Index 493

Negrevergne, Benjamin I-78
Nett, Michael I-505
Nguyen, Hoang Vu I-368
Ng, Wee Keong I-34
Ning, Bo I-125
Nishizawa, Itaru II-440

Ohmori, Tadashi I-292, II-448
Ohshima, Hiroaki I-491
Okamoto, Seishi II-380
Onizuka, Makoto II-347
Onodera, Tamiya II-370
Oshima, Kazumasa II-424
Oyama, Naoko II-412
Oyama, Satoshi I-491
Ozawa, Yosuke II-370
Özsu, M. Tamer II-62

Pink, Glen II-416
Pirttikangas, Susanna II-420
Plattner, Hasso II-291

Qian, Weining I-627
Qu, Wenyu I-233

Raissi, Chedy I-337
Ramakrishnan, Raghu I-2
Reddy, P. Krishna I-49
Reichert, Lisa II-396
Reidl, Felix I-505
Risch, Tore II-184
Roh, Gook-Pil II-47
Röhm, Uwe II-416
Roh, Yohan J. I-520
Rundensteiner, Elke A. II-199

Sachan, Amit II-313
Sadiq, Shazia I-565
Sato, Hiroshi II-327
Schmitt, Ingo I-429
Schneider, Markus I-218
Scholz, Bernhard II-416
Schubert, Erich II-396
Seidl, Thomas I-307, I-505
Selke, Joachim II-246
Sha, Chaofeng II-153
Shahabi, Cyrus I-202
Sheng, Chang I-186
Shen, Heng Tao I-3
Shimojo, Shinji II-432

Shinomiya, Jun II-432
Shiraki, Toru II-432
Shou, Lidan I-19, II-1, II-216, II-276
Shu, Yanfeng II-477
Sicard, Nicolas I-78
Song, Inchul I-520
Sornlertlamvanich, Virach II-489
Sugo, Keiji II-408
Su, I-Fang II-79
Sumiya, Kazutoshi II-460
Sun, Yuanhao I-277

Tachi, Kaoru II-412
Tago, Shin-ichiro II-380
Takahashi, Noriyuki II-327
Takano, Kosuke II-468
Takeda, Masayuki II-380
Takeuchi, Susumu II-432
Tanaka, Katsumi I-491
Tanbeer, Syed Khairuzzaman I-399
Tang, Changjie I-595
Tang, Lu An II-485
Tang, MingJie II-359
Tang, Rong I-595
Tanimura, Yusuke II-400
Tan, Kian-Lee I-19
Teranishi, Yuuichi II-432
Termier, Alexandre I-78
Thepvilojanapong, Niwat II-420, II-424
Tian, Yuan I-444
Tinnefeld, Christian II-291
Tobe, Yoshito II-408, II-420, II-424
Tokuda, Hideyuki II-420
Tok, Wee Hyong I-337
Tse, Edmund II-416
Tse, Quincy II-416
Tsotras, Vassilis J. I-498

Uematsu, Yukio II-327

Verhein, Florian I-85
Viswanathan, Ganesh I-218
Vlachou, Akrivi II-269

Wang, Daling I-476
Wang, Guoren I-125, I-155
Wang, Hua II-477
Wang, Hui (Wendy) II-176
Wang, Junhu I-110, I-250
Wang, Liwei I-565
Wang, Tengjiao II-123

494 Author Index

Wang, Ting II-138
Wang, Wei I-140
Wang, Weihang II-359
Wang, Xiaofang I-580
Wang, Yan I-580
Watanabe, Chiemi II-412
Wei, Fang I-627
Weikum, Gerhard I-1
Wojdanowski, Remigius II-396
Wong, Kam-Fai I-476
Wong, Raymond Chi-Wing II-168
Wu, Di I-352
Wu, Huayu I-93, I-262

Xie, Xing I-186
Xu, Chang II-276
Xu, Jianliang I-444, II-428
Xu, Kaikuo I-595
Xu, Liang I-93, I-262
Xu, Linhao I-3

Yahalom, Ran I-63
Yan, Baoping II-359
Yan, Cheng II-276
Yang, Dongqing II-123
Yang, Jing II-94, II-109
Yang, Shiqiang I-384
Yang, Song II-472
Yang, Zhenglu I-612
Yan, Xifeng I-384
Ye, Mao I-444
Yeon, Jongheum II-337
Yokoyama, Hiroyuki II-420
Yongchareon, Sira I-550
Yoshida, Mikio II-432

Yoshikawa, Masatoshi I-460
Yuan, Wenjie I-218
Yuan, Ye I-155
Yu, Ge I-476
Yu, Jeffrey Xu I-125, I-171, I-250,

I-352, I-612, II-487
Yu, Philip S. I-352, I-384
Yura, Jun’ichi II-420

Zeier, Alexander II-291
Zeitler, Erik II-184
Zeleznikow, John II-306
Zhang, Ji II-477
Zhang, Liru I-292, II-448
Zhang, Xiaolong I-19
Zhang, Xinpeng I-460
Zhang, Ying I-140
Zhang, Yinuo I-535
Zhao, Dongyan II-62
Zhao, Jiakui II-231
Zhao, Xiaohui I-550
Zheng, Kai II-109
Zheng, Yu I-186
Zhou, Aoying I-627, II-153
Zhou, Chunjie II-261
Zhou, Xiaofang I-565, II-94,

II-109, II-444
Zhou, Yongluan II-216
Zhou, Yuanchun II-359
Zhu, Feida I-384
Zhu, Gaoping I-140
Zhu, Jia II-444
Zhu, Ke I-140
Zimek, Arthur II-396
Zou, Lei II-62

	5982
	Perface
	Organization
	Table of Contents – Part II
	Trajectories and Moving Objects
	B$^{s}-tree: A Self-tuning Index of Moving Objects
	Introduction
	Motivation
	Overview of the Proposed Techniques

	Related Work
	TheB$^{s}-tree
	Index Structure
	Query Algorithms

	Self-tuning of the Bs-tree
	Update and Query Performance Analysis
	Self-tuning Framework

	Experiments
	Basic Performance
	Overall Performance
	Self-tuning Performance
	Concurrency Performance

	Conclusion
	References

	Privacy-Preserving Location Publishing under Road-Network Constraints
	Introduction
	Related Work
	Problem Statement
	Our Approach
	Clustering-Based Anonymization
	Finding Candidate Clusters
	Selecting Representative Trajectory
	Construction of the C-tree

	Experimental Study
	Experimental Results in Synthetic Datasets
	Experimental Results in Real Datasets

	Conclusion
	References

	Incremental Clustering for Trajectories*
	Introduction
	General Framework
	Problem Statement
	TCMM Framework

	3 Trajectory Clustering Using Micro- and Macro-clustering
	TrajectoryMicro-Clustering
	TrajectoryMacro-clustering

	Experiments
	Synthetic Data
	Real Animal Data in Free Space
	Real Traffic Data in Road Network
	Parameter Sensitivity

	Related Work
	Conclusions
	References

	NNCluster: An Efficient Clustering Algorithm for Road Network Trajectories*
	Introduction
	Related Work
	Clustering Algorithm
	Distance Measure for Trajectory Data

	Problem Definition
	DistanceMeasure
	Road Segment Distance
	Trajectory Distance

	Clustering Algorithm
	Baseline Algorithm
	NNCluster

	Experimental Evaluation
	Experimental Settings
	Efficiency
	Quality of the Clustering Result
	Effects on Parameter k

	Conclusion
	References

	Skyline Queries
	Dynamic Skyline Queries in Large Graphs
	Introduction
	Preliminaries
	Shared Shortest Path Algorithm
	SSP Pruning Algorithm
	Computing Shortest Path Distance
	Putting It All Together: SSP Query Algorithm

	Experiments
	Related Work
	Conclusions
	References

	Top-k Combinatorial Skyline Queries*
	Introduction
	Problem Formulation
	Top-k Combinatorial Skyline Query Processing
	The Brute-Force Method
	Restricted Construction Algorithm (RCA)

	Performance Evaluation
	Conclusion
	References

	Extract Interesting Skyline Points in High Dimension
	Introduction
	Preliminaries
	Motivation and Objective

	Problem Definition
	Proposed Work: LMB
	Implementation
	Extraction
	Further Analysis

	Experiment
	Effect of Cardinality
	Effect of Dimensionality
	Effect of k
	Effect of p
	Quality of Result

	Summary and Conclusion
	References

	Transitivity-Preserving Skylines for Partially Ordered Domains
	Introduction
	Dominance
	Transitivity-Preserving Extensions
	TX-dominance

	Conclusion
	References

	Finding the Most Desirable Skyline Objects
	Introduction
	Problem Statement
	Algorithms for MDSO Queries
	Cell Based Algorithm
	Sweep Based Algorithm

	Experimental Evaluation
	Conclusion
	References

	Privacy and Security
	Multiple Sensitive Association Protection in the Outsourced Database*
	Introduction
	Preliminary Knowledge
	Sensitive Association Rules
	Architecture of Sensitive Association Protection in Outsourced Databases

	Table Decomposition for Sensitive Association Protection
	Information Leakage Incurred by Multiple Associations
	Basic Table DecompositionMethod
	Optimization Strategy 1: Multiple Grouping Annotation
	Optimization Strategy 2: Merging of Sub-tables
	Data Organization across Outsourced Database and Trusted Database

	Query Evaluation over Protected Sensitive Association
	Query Plan Rewriting
	Query Results Recovery

	Experiments
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion and Future Work
	References

	A Semantic Information Loss Metric for Privacy Preserving Publication*
	Introduction
	Related Work
	Preliminaries
	Measuring Data Quality
	Traditional Data QualityMeasurement
	Shortcomings of Traditional Data Quality Metric
	SILM - The Semantic Information Loss Metric

	s-RAC and s-DataFly
	Experiments
	Experimental Settings
	Aggregate Query Answering Accuracy
	Classification Accuracy

	Conclusion and Future Work
	References

	On t-Closeness with KL-Divergence and Semantic Privacy
	Introduction
	Some Basic Models
	t-Closeness with KL-Divergence
	Properties of t-Closeness with KL-Divergence
	t-Closeness with JS-Divergence
	Relationship with t-Closeness with EMD
	Relationship with Entropy l-Diversity

	Semantic Privacy
	Experimental Evaluation
	Performance
	Data Quality

	Related Work
	Conclusion and Future Work
	References

	Competitive Privacy: Secure Analysis on Integrated Sequence Data
	Introduction
	Preliminary
	Competitive Privacy
	Query Restriction
	Empirical Study
	Conclusion
	References

	Privacy-Preserving Publishing Data with Full Functional Dependencies
	Introduction
	Related Work
	Preliminaries
	Privacy Model
	FFD-Based Attack

	Intersection-Grouping (IG)
	Anonymization Algorithm
	Experiments
	Conclusion
	References

	Data Streams
	Scalable Splitting of Massive Data Streams
	Introduction
	Splitstream Functions
	Parallelizing LRB
	Single Process Splitstream

	Splitstream Trees
	Multi-level Hash Function
	A Cost Model for Splitstream Trees
	Maxtree and Exptree Splitstream Trees
	Theoretical Evaluation

	Experimental Setup
	Preliminary Experiments
	Experimental Evaluation
	Autosplit
	LRB Performance

	Related Work
	Conclusions and Future Work
	References

	Constraint-Aware Complex Event PatternDetection over Streams*
	Introduction
	Preliminary
	Event Data Model
	Event Query Model

	Query Satisfiability and Unsatisfiability
	Event Constraint
	Satisfiability and Unsatisfiability Checking
	Lightweight Constraint Checking
	Handling Predicate-Based Filtering

	Query Execution
	Performance Evaluation
	System Implementation
	Experimental Setting
	Queries with Only Pattern-Based Filtering
	Queries with Only Predicate-Based Filtering
	Conclusion of the Experimental Study

	Related Work
	Conclusion
	References

	Attribute Outlier Detection over Data Streams
	Introduction
	Related Works
	Preliminary
	Background
	Problem Statement

	The AOMA Algorithm
	Data Structure
	Cluster Maintenance Module
	Outlier Query Module

	The Approximate AOMA Algorithm
	Experimental Evaluation
	Experiment Environment and Data Sets
	Experiment Analysis

	Conclusion
	References

	Similarity Search and Event Processing
	ISIS: A New Approach for Efficient Similarity Search in Sparse Databases
	Introduction
	Related Work
	The New Approach: ISIS
	Dimension Transformation
	Algorithms for ISIS
	An Enhanced Approach

	Experimental Study
	Parameter Tuning
	Comparison with Other Methods

	Conclusion
	References

	Highly Scalable Multiprocessing Algorithms for Preference-Based Database Retrieval
	Introduction
	The Parallelization Design Space for Retrieval Algorithms
	The Design Space for Skyline Query Evaluation
	The Design Space for Parallelization of Basic Operations

	Parallel Skyline Computing
	Algorithms Using Split-and-Merge Parallelization
	Continuously Locked Parallel BNL
	Lazy List Parallel BNL
	Lock-Free Parallel BNL

	Experiments
	Memory Usage and the Role of pskyline
	Speed-Up and Scaling

	Conclusion and Outlook
	References

	IO3: Interval-Based Out-of-Order Event Processing in Pervasive Computing
	Introduction
	Related Works
	Preliminaries
	Interval-Based Out-of-Order Solution
	Real-Time Based Method
	Correct Based Method

	Experiments
	they will trend to the same.6 Conclusion and Future Work
	References

	Peer-to-Peer Similarity Search Based on M-Tree Indexing
	Introduction
	Preliminaries
	Metric-Based Routing Indices
	Metric-Based Similarity Search
	Super-Peer Local Query Processing
	Query Routing

	Experimental Evaluation
	Conclusions
	References

	Storage and Advanced Topics
	Update Migration: An Efficient B+ Tree for Flash Storage*
	Introduction
	Related Work
	Overview
	Preliminaries
	How Update Migration Works

	TheUM-B+Tree
	Node Structure
	Operations

	High Availability
	Concurrency Control
	Recovery
	Checkpoint

	Experiments
	On NAND Chip
	On Raw SSD Device

	Conclusion
	References

	Optimizing Write Performance for Read Optimized Databases
	Introduction
	The Reason for Write-Optimized Storages
	SAP BWA as Read Optimized Column Store
	Data Representation

	The Merge Process
	Detailed Description of the Merge Algorithm
	Complexity Analysis of the Merge Algorithm
	Evaluation

	Optimizations and Future Work
	Related Work
	Conclusion
	References

	Towards an Algebraic Framework for Querying Inductive Databases
	Introduction
	An Algebraic Framework for Data Mining
	A Data Mining Algebra
	Frequent Item-Set Computation
	Decision Tree Induction

	A Logical Framework for Data Mining
	Query Optimisation Issue
	Conclusion
	References

	Efficient Aggregate Licenses Validation in DRM
	Introduction
	Problem Definition
	Proposed Efficient Aggregate Validation Method
	Performance Analysis
	Conclusion
	References

	Industrial
	Development Procedure of the Cloud-Based Applications
	Constraints of Developing the Cloud-Based Applications
	Development Procedure of the Cloud-Based Applications
	Analysis Method of the Cloud-Based Applications
	Design Problems Regarding the Use Case
	Requirements of Consistency and Its Implementation

	Conclusion
	References

	Rapid Development of Web Applications by Introducing Database Systems with Web APIs
	Introduction
	Background
	Web Application Architectures
	Atom Format and Protocol

	Requirements
	Design
	Architecture for Reusability
	Efficient Access Control Model
	Trigger-Like Easy Extension
	Search Queries and Frequency Distribution

	Experiments
	Implementation
	Evaluation

	Conclusions
	References

	A General Maturity Model and Reference Architecture for SaaS Service
	Introduction
	Related Work
	Research Methodology

	An Analysis of SaaS Service
	Case Study: In Case of Current SaaS Service Vendors
	Common Functions of SaaS Service

	SaaS Maturity Model
	The Axis of Maturity Model
	Maturity Model

	SaaS Service Architecture
	Major Activities of Maturity Model
	Reference Architecture

	Conclusion and Future Work
	References

	Lazy View Maintenance for Social Networking Applications
	Introduction
	Preliminary
	CAMEL
	Architecture
	Application
	Technical Advantages
	Handling Failure of Distributed Memory Cache

	Experiments
	Related Work
	Conclusion
	References

	Birds Bring Flues? Mining Frequent and High Weighted Cliques from Birds Migration Networks
	Introduction
	Related Works
	Problem Formulation
	Desired Results and Challenges
	Problem Definition

	Birds Migration Closed Clique Mining Model
	HELEN: High Weighted Closed Cliques Mining

	Experiments
	Frequent and High Weighted Closed Cliques from Birds Migration Network
	Efficiency and Scalability Test of HELEN
	Waterbirds Movements in Relation to High Related Habitats and H5N1 Outbreaks

	Conclusion
	References

	Performance Improvement of OpenJPA by Query Dependency Analysis
	Introduction
	Apache OpenJPA and Cache Mechanism
	DataCache and QueryCache
	QueryCache Invalidation Mechanism: Table-Based Invalidation

	Query Dependency Analysis for Finer-Grained CacheInvalidation
	Column-Based Invalidation
	Value-Based Invalidation
	Procedure for Column-Based and Value-Based Invalidation
	Usage with OpenJPA
	Invalidation Cost Models

	Performance Evaluation
	TPC-W
	Evaluation Platform
	The Performance Comparison of Each Cache Invalidation

	Related Work
	Conclusions and Future Work
	References

	Chimera: Stream-Oriented XML Filtering/Querying Engine
	Introduction
	Related Work
	Organization

	Preliminaries
	XML Trees and Pathtrie
	Fragment of XPath Patterns
	Problem Statement

	Architecture
	Overview of Chimera
	Binary Transformation of XML Data
	Decomposing XPath Patterns
	XSIGMA: The Core Engine
	Evaluation for XPath Patterns

	Experimental Results
	Comparing XSIGMA with Other XML Filtering Engines
	Comparing Chimera with Other XPath Querying Engines and a Commercial RDB

	Conclusion
	References

	Demo
	Privacy and Anonymization as a Service: PASS*
	Introduction
	Designing Data Processes
	System Architecture
	Connectivity

	Conclusion
	References

	Visual Evaluation of Outlier Detection Models
	Introduction
	Demonstration
	Conclusion
	References

	ADERIS: Adaptively Integrating RDF Data from SPARQL Endpoints
	Introduction
	System Details
	References

	Outline of Community-Type Content Based on Wikipedia
	Introduction
	Outline of VOCC
	Comparison between Threads and Articles
	Conclusion
	References

	BISCAY: Extracting Riding Context from Bike Ride Data
	Introduction
	System Architecture
	Extraction of Riding Context
	Basic Indicators
	Extraction

	Demonstration
	Conclusion
	References

	SERPWatcher: A SERP Mining Tool as a Novel Social Survey Method in Sociology
	Introduction
	What Is SERPWatcher?
	Multidimensional Analysis of SERP Archive
	Demonstration Overview
	Conclusion
	References

	Corona: Energy-Efficient Multi-query Processing in Wireless Sensor Networks
	Introduction
	System Architecture
	Background and Related Work
	Summary and Conclusions
	References

	Aquiba: An Energy-Efficient Mobile Sensing System for Collaborative Human Probes
	Introduction
	Aquiba: Collaborative Sensing System
	Prototype Implementation
	Experimental Study
	Demonstration
	Reference

	A Shoes-Integrated Sensing System for Context-Aware Human Probes
	AHuman-ProbeSystem
	DataAnalysis
	Analysis of Pressure Data
	Analysis of Acceleration Data
	Complimentary Usage of Sensors

	Demonstration
	References

	DigestJoin: Expediting Joins on Solid-State Drives*
	Introduction
	Digest-Table Joining
	Page Fetching
	Demonstration Description
	References

	A Large Scale Key-Value Store Based on Range-Key Skip Graph and Its Applications
	Introduction
	Range-Key Skip Graph
	Demo Applications
	Key-Value Store with Range Query
	Visualization of Weather Sensor Information
	Visualization of Movement Histories

	Conclusion
	References

	Answering Range-Aggregate Queries over Objects Generating Data Streams
	Introduction
	Motivating Example and Problem Definition

	Answering Range Aggregating Queries
	Spatial Aggregating Index Extensions

	Presentation
	References

	Real-Time Log Analysis Using Hitachi uCosminexus Stream Data Platform
	Introduction
	Basic and Extended Features of Hitachi uCSDP
	Declarative Query Language and Flexible Time Management
	High Available Data Processing
	Eager Scheduler for Ultra Low Latency Processing

	Real-Time Log Analysis Demo Description
	Demo Overview and Configuration
	Demo Scenario
	Merit of Applying uCSDP to Real-Time Log Analysis

	Conclusion
	References

	Anddy: A System for Author Name Disambiguation in Digital Library
	Introduction
	System Description
	Clustering Framework
	User Interface

	Demonstration Overview
	References

	A System for Keyword Search on Hybrid XML RelationalDatabases Using XRjoin
	Introduction
	Our Proposal on a Hybrid XML-RDB
	XRjoin
	References

	MediaMatrix: A Video Stream Retrieval System with Mechanisms for Mining Contexts of Query Examples
	Introduction
	MediaMatrix System Implementation
	System Demonstration
	Conclusion and Future Work
	References

	Application Developments in Mashup Framework for Selective Browsing
	Introduction
	Application Features
	How to Build Applications
	Data Model Configuration
	Display Configuration

	References

	Retrieving System of Presentation Contents Based on User’s Operations and Semantic Contexts
	Introduction
	Our Approach
	Concluding Remarks
	References

	Fuzzy Keyword Search on Spatial Data
	Motivation
	Problem Formulation and Our Solution
	Demonstration Description
	References

	Adaptive Recommendation for Preferred Information and Browsing Action Based on Web-Browsing Behavior
	Motivations and Objectives
	An Adaptive Personalized Recommender System
	Demo Proposal
	References

	BIDEL: An XML-Based System for Effective Fast Change Detection of Genomic and Proteomic Data
	Introduction
	SystemOverview
	Related Systems and Novelty
	Demonstration
	References

	DISTRO: A System for Detecting Global Outliers from Distributed Data Streams with Privacy Protection*
	Introduction
	AnOverviewofDISTRO
	Optimization Techniques for DISTRO
	Demonstration Plan
	References

	Tutorials and Panels
	Introduction to Social Computing
	Brief Profile
	Selected References

	Mining Moving Object, Trajectory and Traffic Data
	Querying Large Graph Databases
	Introduction
	References

	Future Directions of Innovative Integration between Multimedia Information Services and Ubiquitous Computing Technologies

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

