
J. Grundspenkis et al. (Eds.): ADBIS 2009 Workshops, LNCS 5968, pp. 55–62, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Rule-Based Management of Schema Changes
at ETL Sources

George Papastefanatos1, Panos Vassiliadis2, Alkis Simitsis3,
Timos Sellis4, and Yannis Vassiliou1

1 National Technical University of Athens
{gpapas,yv}@dblab.ece.ntua.gr

2 University of Ioannina
pvassil@cs.uoi.gr

3 HP Labs
alkis@hp.com

4 Institute for the Management of Information Systems
timos@imis.athena-innovation.gr

Abstract. In this paper, we visit the problem of the management of inconsisten-
cies emerging on ETL processes as results of evolution operations occurring at
their sources. We abstract Extract-Transform-Load (ETL) activities as queries
and sequences of views. ETL activities and its sources are uniformly modeled
as a graph that is annotated with rules for the management of evolution events.
Given a change at an element of the graph, our framework detects the parts of
the graph that are affected by this change and highlights the way they are tuned
to respond to it. We then present the system architecture of a tool called
Hecataeus that implements the main concepts of the proposed framework.

Keywords: ETL Schema Evolution, Hecataeus.

1 Introduction

In a high level description of a data warehouse general architecture, data stemming
from operational sources are extracted, transformed, cleansed, and eventually stored
in fact or dimension tables in the data warehouse. Once this task has been successfully
completed, further aggregations of the loaded data are also computed and subse-
quently stored in data marts, reports, spreadsheets, and several other formats that can
simply be thought of as materialized views. The task of designing and populating a
data warehouse can be described as a workflow, generally known as Extract-
Transform-Load (ETL) workflow, which comprises a synthesis of software modules
representing extraction, cleansing, transformation, and loading routines. The whole
environment is a very complicated architecture, where each module depends upon its
data providers to fulfill its task. This strong flavor of inter-module dependency makes
the problem of evolution very important in data warehouses, and especially, for their
back stage ETL processes.

During the lifecycle of the warehouse it is possible that several counterparts of the
ETL process may evolve. For instance, assume that a source relation’s attribute is

56 G. Papastefanatos et al.

deleted or renamed. Such a change affects the entire workflow, possibly, all the way
to the warehouse, along with any reports over the warehouse tables. Similarly, assume
that the warehouse designer wishes to add an attribute to a source relation. Should this
change be propagated to ETL activities that depend on this source? Research has
extensively dealt with the problem of schema evolution, in data warehouses [1, 2, 3,
8, 11, 12] and materialized views [4, 5, 6]. Although several problems of evolution
have been considered in the related literature, to the best of our knowledge, there is no
global framework for the management of evolution in the described setting.

In this paper, we sketch a framework for detecting and resolving inconsistencies
emerging on ETL processes as results of evolution operations. The goal is to provide
a mechanism to the designer for the smooth adaptation of ETL scenarios to evolution
changes occurring at their sources as well as for the early detection of vulnerable
parts in the overall design. The proposed framework employs a representation tech-
nique that maps all the essential constructs of an ETL configuration to graphs. Thus,
its basis is a graph model, called evolution graph, which models in a coherent and
uniform way internal structural elements of an ETL process such source relations,
activities, queries extracted from ETL procedures, etc.

We furthermore provide a suitable technique for handling changes occurring in the
ETL source schema, in such way that the human interaction is minimized. The pro-
vided technique enriches the evolution graph with semantics, namely evolution events
and rules, called policies in our framework, that predetermine the impact of changes
on the graph constructs. These rules dictate the actions that are performed, when addi-
tions, deletions or modifications occur on the DW sources. Specifically, assuming that
a graph construct is annotated with a policy for a particular event (e.g., a relation node
is tuned to deny deletions of its attributes), the proposed framework (a) performs the
identification of the affected part of the graph and, (b) if the policy is appropriate,
proposes the readjustment of the graph to fit to the new semantics imposed by the
change. All of the above concepts are implemented in a powerful and user friendly
tool, called HECATAEUS.

Theoretical aspects concerning the employed graph model, the proposed rule-based
framework as well as its experimental evaluation over real case ETL scenarios have
been thoroughly presented in [9, 10]. In this paper we provide in details the internals
of the system architecture of the proposed tool.

2 Graph-Based Modeling of ETL Processes

We employ a graph theoretic approach to capture the various and complex schema
dependencies that exist between software modules comprising an ETL process. The
proposed graph modeling uniformly covers relational tables, views, ETL activities,
database constraints and SQL queries as first class citizens. All the aforementioned
constructs are mapped to a graph, that we call Evolution Graph. The constructs that
we consider are classified as elementary, including relations, conditions, queries and
views and composite, including ETL activities and ETL processes. Composite ele-
ments are combinations of elementary ones. Originally, the model was introduced in
[10] and here, we provide an extended summary.

Each relation R(Ω1,Ω2,…,Ωn) in the database schema, either a table or a file (it can
be considered as an external table), is represented as a directed graph, which com-
prises a relation node, R, representing the relation schema; n attribute nodes, one for

 Rule-Based Management of Schema Changes at ETL Sources 57

each of the attributes; and n schema relationships, directing from the relation node
towards the attribute nodes, indicating that the attribute belongs to the relation. Con-
straints – i.e., primary/foreign key, unique, not null – are modeled with use of a sepa-
rate constraint node (i.e., PK node, not null node, etc), connected via operand
edges with the attribute(s) on which the constraint is applied.

The graph representation of a Select - Project - Join - Group By (SPJG) query in-
volves a new node representing the query, named query node, and attribute nodes
corresponding to the schema of the query. The query graph is a directed graph con-
necting the query node with all its schema attributes, via schema relationships. In
order to represent the relationship between the query graph and the underlying rela-
tions, we resolve the query into its essential parts: SELECT, FROM, WHERE, GROUP BY,
HAVING, and ORDER BY, each of which is eventually mapped to a subgraph. The edges
connecting the query node with its subgraph components (i.e., attributes contained in
the SELECT clause, the relation nodes contained in the FROM clause, etc.) are anno-
tated as map-select, from, where, group-by and having relationships. The direction of
the edges is from the query subgraph towards its source subgraphs (i.e., the respective
relations/views accessed by the query). WHERE and HAVING clauses are modeled via a
left-deep tree of logical conditions to represent the selection formulae; the edges in-
volved are annotated as operand relationships. Nested queries are also part of this
modeling, too. For the representation of aggregate queries, we employ a new node
denoted as GB, to capture the set of attributes acting as the aggregators; and one node
per aggregate function labeled with the name of the employed aggregate function;
e.g., COUNT, SUM, MIN.

Views are considered either as queries or relations (materialized views). They con-
stitute both queries over the database schema as far as their definition is concerned
and relations to other queries as far as their functionality and their extension are con-
cerned. Their dual role is captured and represented as intermediate graphs between
relations and queries.

ETL activity is modeled as a sequence of SQL views. An ETL activity necessarily
comprises: (a) one (or more) input view(s), populating the input of the activity with
data coming from another activity or a relation; (b) an output view, over which the
following activity will be defined; and (c) a sequence of views defined over the input
and/or previous, internal activity views.

Lastly, an ETL summary is a directed acyclic graph acting as a zoomed-out vari-
ant of the detailed evolution graph. The set of nodes comprises all activities, relations
and views that participate in an ETL process and the edges connect the providers and
consumers.

Fig. 1. Zoomed-out view of an ETL scenario

58 G. Papastefanatos et al.

map-select

map-select

S

S group by

map-select
SUM

from

from

=where
op2

op1

GB group by

W.EMP#.FK
op

op

S S

S SS

S

EMP.PK

op

WORKS

EMP

...NameEmp#

Emp# Hours Proj#

T_HOURS

Emp#

ETL_Act9

Fig. 2. Detail graph representation of ETL_Act9 activity

Figure 1 shows the summary of a simple ETL workflow involving 9 activities
(green triangles) two data sources, (i.e., EMP, WORKS), one lookup table, (i.e., L1) and
one target table T1 of the DW.

Fig. 2 depicts the detailed graph representation for a specific activity, namely
ETL_Act9 of the ETL summary, containing the following aggregate query:

Act9: SELECT EMP.Emp# as Emp#, Sum(WORKS.Hours) as T_Hours
 FROM EMP, WORKS
 WHERE EMP.Emp# = WORKS.Emp#
 GROUP BY EMP.Emp#

3 Regulating Schema Evolution

The basic aspects of our framework involve the detection of the parts of the system,
which are affected by an evolution change and the regulation of their reaction to this
change. Therefore, we first, exploit the dependencies which are represented as edges
in the evolution graph to both detect syntactical and semantic inconsistencies follow-
ing a schema evolution event. We furthermore regulate the impact of an evolution
event towards the nodes of the graph by annotating the graph with rules, called poli-
cies. The adaptation of a node to an evolution event and furthermore the propagation
of the event towards the rest of the graph is dictated by the rule defined on the node.
The proposed framework enables the user to proactively identify and regulate the
impact of evolution processes. It provides the appropriate semantics to perform hypo-
thetical evolution scenarios and test alternative evolution policies for a given configu-
ration before the evolution process is applied on a production environment.

In such manner, each graph construct is enriched with policies that allow the de-
signer to specify the behavior of the annotated construct whenever events that alter
the database graph occur. The combination of an event with a policy determined by
the designer/administrator triggers the execution of the appropriate action that either
blocks the event, or reshapes the graph to adapt to the proposed change. The space of

 Rule-Based Management of Schema Changes at ETL Sources 59

potential events comprises the Cartesian product of two subspaces; specifically the
space of hypothetical actions (addition/ deletion/modification) by the space of graph
constructs sustaining evolution changes (e.g., nodes for relations, attributes, condi-
tions, etc.). For each of the above events, the administrator annotates graph constructs
with policies that dictate the way they will react to an event when affected. Three
kinds of policies are defined: (a) propagate the change, meaning that the graph must
be reshaped to adjust to the new semantics incurred by the event; (b) block the
change, meaning that we want to retain the old semantics of the graph and the hypo-
thetical event must be blocked or, at least, constrained, through some rewriting that
preserves the old semantics [6, 7] and (c) prompt the administrator to interactively
decide what will eventually happen. For the case of blocking, the specific method that
can be used is orthogonal to our approach, which can be performed using any avail-
able method [6, 7].

Specifically, given an event altering the source database schema our framework de-
termines those activity graph constructs that are directly connected to the source al-
tered and thus affected by the event. For each affected construct, its prevailing policy
is determined. According to the prevailing policy, the status of each construct is set.
Subsequently, both the initial changes, along with the readjustment caused by the
respective actions, are recursively propagated as new events to the consumers of the
activity graph.

Example. Consider the simple example query SELECT * FROM EMP as part of the
ETL_ACT4 of Fig 1. Assume that the provider relation EMP is extended with a new
attribute PHONE. There are two possibilities: First, the * notation signifies the request
for any attribute present in the schema of relation EMP. In this case, the * shortcut can
be treated as “return all the attributes that EMP has, independently of which these
attributes are”. Then, the query must also retrieve the new attribute PHONE. Alterna-
tively, the * notation acts as a macro for the particular attributes that the relation EMP
originally had. In this case, the addition to relation EMP should not be further propa-
gated to the query.

A naïve solution to a modification of the sources; e.g., the addition of an attribute,
would be that an impact prediction system must trace all queries and views that are
potentially affected and ask the designer to decide upon which of them must be modi-
fied to incorporate the extra attribute. We can do better by extending the current mod-
eling. For each element affected by the addition, we annotate its respective graph
construct with the policies mentioned before. According to the policy defined on each
construct the respective action is taken to correct the query.

Therefore, for the example event of an attribute addition, the policies defined on
the query and the actions taken according to each policy are:

─ Propagate attribute addition. When an attribute is added to a relation appearing
in the FROM clause of the query, this addition should be reflected to the SELECT
clause of the query.

─ Block attribute addition. The query is immune to the change: an addition to the
relation is ignored. In our example, the second case is assumed, i.e., the SELECT
* clause must be rewritten to SELECT A1,…,AN without the newly added
attribute.

60 G. Papastefanatos et al.

Fig. 3. Propagating addition of attribute PHONE

─ Prompt. In this case (default, for reasons of backwards compatibility), the de-
signer or the administrator must handle the impact of the change manually;
similarly to the way that currently happens in database systems.

The graph of the query SELECT * FROM EMP is shown in Figure 2. The annotation
of the Q node with propagating addition indicates that the addition of PHONE node to
EMP relation will be propagated to the query and the new attribute is included in the
SELECT clause of the query.

4 System Architecture

In the context of the proposed framework, we have implemented a tool, called
Hecataeus, used for the construction and visualization of the evolution graph, its an-
notation with policies regarding evolution semantics, and lastly the management of
evolution propagation towards the graph. Hecataeus enables the user to transform
ETL activities abstracted as SQL source code to evolution graphs, explicitly define
policies and evolution events on the graph and determine affected and adjusted graph
constructs according to the proposed framework. The graph modeling of the environ-
ment has versatile utilizations: apart from the impact prediction and the creation of
hypothetical evolution scenarios, the user may also assess several graph-theoretic
metrics of the graph that highlight sensible regions of the graph. Hecataeus is a user-
friendly visual environment that helps administrators and users to perform hypotheti-
cal evolution scenarios on database applications.

The main packages of Hecataeus are shown in the diagram of Fig. 4. The Parser is
responsible for parsing the input files (i.e., DDL and workload definitions). The func-
tionality of the Catalog is to maintain the schema of relations, views, etc., as well as
to validate the syntax of the workload processed (i.e., activity definitions, queries,
views) by the Parser. The Evolution Manager is responsible for representing the un-
derlying schema and the parsed queries abstracted from ETL activities in the pro-
posed graph model. The Evolution Manager holds all the semantics of nodes and
edges of the aforementioned graph model, assigning nodes and edges to their respec-
tive classes. It holds all the evolution semantics for each graph construct (i.e., events,
policies) and algorithms for performing evolution scenarios. The Metric Manager is
responsible for maintaining the metrics definition and for their application on the
graph. Each metric applied on the evolution graph is implemented as a separate

 Rule-Based Management of Schema Changes at ETL Sources 61

Fig. 4. System Architecture

function in the Metric Manager. The Graph Viewer is responsible for the management
of the visual properties of the graph. It communicates with the Evolution Manager,
which holds all evolution semantics and methods. Graph Viewer offers distinct col-
orization and shapes for each set of nodes and edges according to their types and the
way they are affected by evolution events. It applies layout algorithms on the graph,
adjusts the visibility of nodes and visualizes the graph at different levels of abstrac-
tion. Lastly, the Hecataeus GUI is responsible for the interaction with the user offer-
ing a large variety of functions, such as editing of the graph properties, addition,
deletion and modification of nodes, edges and policies. The GUI package enables the
user to raise evolution events, to detect affected nodes by each event and highlight
appropriate transformations of the graph. Lastly, it offers the import or export of
evolution scenarios to XML or image formats (i.e., jpeg).

In Fig. 5 the class diagram of the core component of Hecataeus, i.e., Evolution
Manager is shown. The EvolutionGraph class comprises a collection of nodes and
edges, which belong to a certain type (i.e., relation node, from edge, etc.). Each node
is annotated with a collection of policies; each of them has a type (i.e., propagate,
block or prompt) for handling an event. Additionally, a node sustains a collection of

Fig. 5. Evolution Manager Class Diagram

62 G. Papastefanatos et al.

events, which belong to a specific event type (i.e., delete attribute, rename relation,
etc.) according to the type of node on which they occur. Lastly, a message is created
for each event occurred on a node of the graph and transmits the impact of the event
towards the adjacent nodes. Nodes handle the event and according to the prevailing
policy are assigned with a status determining the action that is performed on them.

5 Conclusions

In this paper, we have dealt with the internals of a system, Hecataeus that handles the
schema evolution in ETL environment. Our goal was to provide a coherent frame-
work for appropriately propagating potential changes occurring at the ETL sources to
all affected parts of the system, with a limited overhead imposed on both the system
and the humans, who design and maintain it. Toward that aim, we have modeled the
internal parts of ETL activities as the constituents of a dependency graph and we
annotate parts of this graph with rules that regulate the propagation of evolution
changes towards the whole workflow. In this paper we have presented the internal
architecture of Hecataeus, which has been specifically designed in an extensible fash-
ion to allow the future incorporation of different kinds of events and policies.

References

1. Golfarelli, M., Lechtenbörger, J., Rizzi, S., Vossen, G.: Schema Versioning in Data Ware-
houses. In: ECDM 2004, pp. 415–428 (2004)

2. Blaschka, M., Sapia, C., Höfling, G.: On Schema Evolution in Multidimensional Data-
bases. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 153–164.
Springer, Heidelberg (1999)

3. Kaas, C., Pedersen, T.B., Rasmussen, B.: Schema Evolution for Stars and Snowflakes.
In: ICEIS (2004)

4. Bellahsene, Z.: Schema evolution in data warehouses. Knowledge and Information Sys-
tems 4(2) (2002)

5. Mohania, M., Dong, D.: Algorithms for adapting materialized views in data warehouses.
In: CODAS (1996)

6. Nica, A., Lee, A.J., Rundensteiner, E.A.: The CSV algorithm for view synchronization in
evolvable large-scale information systems. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso,
G. (eds.) EDBT 1998. LNCS, vol. 1377, p. 359. Springer, Heidelberg (1998)

7. Velegrakis, Y., Miller, R.J., Popa, L.: Preserving mapping consistency under schema
changes. VLDB J. 13(3) (2004)

8. Bouzeghoub, M., Kedad, Z.: A Logical Model for Data Warehouse Design and Evolution.
In: Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, p.
178. Springer, Heidelberg (2000)

9. Papastefanatos, G.: Policy Regulated Management of Schema Evolution in Database–
centric Environments. PhD Thesis. NTUA (February 2009)

10. Papastefanatos, G., Vassiliadis, P., Simitsis, A., Vassiliou, Y.: What-if Analysis for Data
Warehouse Evolution. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS,
vol. 4654, pp. 23–33. Springer, Heidelberg (2007)

11. Wrembel, R., Bebel, B.: Metadata Management in a Multiversion Data Warehouse. J. Data
Semantics (8), 118–157 (2007)

12. Golfarelli, M., Rizzi, S.: A Survey on Temporal Data Warehousing. IJDWM 5(1), 1–17
(2009)

	Rule-Based Management of Schema Changesat ETL Sources
	Introduction
	Graph-Based Modeling of ETL Processes
	Regulating Schema Evolution
	System Architecture
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

