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Preface

This book consists of a collection of articles describing the emerging and integrated
area of Energy, Natural Resources and Environmental Economics. A majority of the
authors are researchers doing applied work in economics, finance, and management
science and are based in the Nordic countries. These countries have a long tradition
of managing natural resources. Many of the applications are therefore founded on
such examples.

The book contents are based on a workshop that took place during May 15-16,
2008 in Bergen, Norway. The aim of the workshop was to create a meeting place
for researchers who are active in the area of Energy, Natural Resource, and Envi-
ronmental Economics, and at the same time celebrate Professor Kurt Jornsten’s 60th
birthday.

The book is divided into four parts. The first part considers petroleum and natural
gas applications, taking up topics ranging from the management of incomes and
reserves to market modeling and value chain optimization. The second and most
extensive part studies applications from electricity markets, including analyses of
market prices, risk management, various optimization problems, electricity market
design, and regulation. The third part describes different applications in logistics
and management of natural resources. Finally, the fourth part covers more general
problems and methods arising within the area.

The compiled set of 29 papers attempts to provide readers with significant con-
tributions in each of the areas. The articles are of two types, the first being general
overviews of specific central subject areas, and the second being more oriented to-
wards applied research. This hopefully makes the book interesting for researchers
already active in research related to energy, natural resources, and environmental
economics, as well as graduate students.

We acknowledge the valuable contributions from the Norwegian School of Eco-
nomics and Business Administration (NHH) and the Institute for Research in
Economics and Business Administration (SNF). We are also very grateful to all the
referees and to Ph.D. student Victoria Gribkovskaia for her work on the manuscript.

Bergen/Gainesville Endre Bjprndal
December 2009 Mette Bjgrndal
Panos Pardalos

Mikael Ronngvist
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Overview of the Contributions

Part I: Petroleum and Natural Gas

Sovereign wealth funds (SWF) is the new name for assets held by governments in
another country’s currency. These funds are growing at an unprecedented rate and
are becoming important players in global financial markets. Dgskeland describes
these funds and classifies different investment strategies.

Osmundsen discusses challenges, incentives, and ownership of petroleum reserves.
The issues are discussed in relation to two cases taken from Russia and Brazil.

Mohn describes how predictions from a geophysical approach to oil exploration
and production suggests that oil production will develop according to a predeter-
mined and inflexible bell-shaped trajectory, quite independent of variables relating
to technological development, economics, and policy.

Nygreen and Haugen discuss applications of mathematical programming tools and
techniques in field development planning for the Norwegian continental shelf.

Midthun and Tomasgard provide an overview of the natural gas value chain, mod-
elling aspects and special properties of pipeline networks that provide challenges
when doing economic analyses.

Mathiesen describes equilibrium models to analyze the European Market for
Natural Gas.

Fuglseth and Grgnhaug describe how equilibrium models can enhance managerial
team learning in complex and ever-changing situations.

Bengtsson and Nonds survey the planning and scheduling of refinery activities.

The focus is on identification of problems, models, and computational difficulties
introduced by the models.

xi



xii Overview of the Contributions

Part II: Electricity Markets and Regulation

Andersson and Lillestpl exploit multivariate and functional data techniques to
capture important features concerning the time dynamics of hourly day-ahead
electricity prices at Nordpool.

Electricity is a non-storable commodity and electricity prices follow fairly regular
fluctuations in demand, stemming from time dependent variations in economic
activity and weather conditions. However, it is possible to store electricity as a dif-
ferent energy carrier. These aspects are described by Gjglberg.

Bjerksund, Rasmussen, and Stensland analyze valuation and risk management in
the Norwegian electricity market.

Kristoffersen and Fleten provide an overview of stochastic programming models
in short-term power generation scheduling and bidding.

Chabar, Granville, Pereira, and lliadis present a decision support system that
determines the optimal dispatch strategy of thermal power plants while consider-
ing the particular specifications of fuel supply agreements.

Rebennack, Kallrath, and Pardalos discuss a portfolio optimization problem occur-
ring in the energy market where energy distributing public services have to decide
how much of the requested energy demand has to be produced in their own power
plant, and which complementary amount has to be bought from the spot market and
from load following contracts.

Bergendahl investigates the advantages of investing in plants for cogeneration, i.e.,
Combined Heat and Power (CHP), in case the heat is utilized for district heating.
A focus is set on Swedish municipalities where these are an important part of energy
production.

Bjgrndal, Jornsten, and Rud describe a price adjustment procedure based on
capacity charges for managing transmission constraints in electricity networks.

Agrell and Bogetoft analyze electricity distribution system operators and particular
challenges in the Nordic countries.

Bjgrndal, Bjgrndal, and Fange provide an overview of the Norwegian regulation of
electricity networks after the Energy Act of 1990. Various data envelopment analysis
(DEA) models are discussed.

Jennergren discusses elementary properties of allowed depreciation and return on
the asset base for a regulated company under two regulatory models, the traditional
rate-of-return model and the more recent long run incremental cost (LRIC) model.
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Part III: Natural Resources and Logistics

Sandal and Steinshamn examine harvesting of fish in predator—prey biological
models. In particular, they study whether the prey can be rescued by harvesting
the predator.

Greve, Golombek, and Harris study the Norwegian pulp and paper mills and
describe how they can reduce pollution and how this relates to absorptive capacity
and social capital.

D’Amours and Ronngvist describe and discuss important issues in collaborative
logistics.

Edwards discusses an assignment problem where pilots are assigned to ships in the
sea of Bothnia.

Andersson, Christiansen, and Fagerholt discuss transportation planning and
inventory management in the LNG supply chain. They also suggest models for
two typical problem formulations.

Part IV: General Problems and Methods

Hamacher and Jornsten present a combinatorial optimization model for the relin-
quishment of petroleum licenses on the Norwegian continental shelf. This work has
not been published earlier but forms a basis for k-cardinality tree problems.

Haugland presents an overview of models and solution methods for pooling
problems.

Flam presents a theoretical foundation including properties for cooperation under
ambiguity.

Aase studies the pricing of an American put option when the underlying assets pay
no dividend.

Stahl describes applications of discrete event simulation in the area covered in the
book. In particular, he discusses project management, bidding of oil resources and
game with duopolies.
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Investment Strategy of Sovereign Wealth Funds

Trond Dgskeland

Abstract Sovereign wealth funds (SWF) are a new name for assets held by
governments in another country’s currency. These funds are growing at an un-
precedented rate and are becoming important players in global financial markets.
In this paper, I describe how these funds are being invested and I develop a classifi-
cation of investment options available for sovereign wealth funds.

1 Introduction

When a country exports more than it imports the country accumulates assets. Such a
trade surplus may arise from several factors, for example, increased productivity, or
new access to valuable natural resources. Over the past decade we have seen histori-
cally large financial imbalances around the globe with many oil-producing and some
Asian countries running large trade surpluses on a sustained basis.! As accumu-
lated reserves in these countries are well beyond the requirements for exchange-rate
management, their financial leaders have started to rethink how best to manage
their accumulated reserves. Many countries already have set up their own long-term
investment vehicles funded by foreign-exchange assets. Other nations will surely
follow this pattern. These investment vehicles have recently been named sovereign
wealth funds (SWFs).

SWFs are not a new phenomenon, but in recent years, wealth accumu-
lated in existing funds has exploded, and many new funds have been created.

! The balance of trade is the difference between a nation’s imports and exports. The balance of trade
forms part of the current account, which also includes income from the international investment
position as well as international aid. If a government is going to accumulate assets in its Sovereign
Wealth Fund, the government should also run a surplus on the government budget. However, there
is a high correlation between trade surplus and government budget surplus.

T. Dgskeland

Department of Accounting, Auditing and Law, Norwegian School of Economics and Business
Administration (NHH), Helleveien 30, 5045 Bergen, Norway

e-mail: trond.doskeland @nhh.no

E. Bjgrndal et al. (eds.), Energy, Natural Resources and Environmental Economics, 3
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The International Monetary Fund (IMF) estimated in September 2007 that sovereign
wealth funds control as much as $3 trillion. This number can jump to $12 trillion
by 2012.

The size and growth of SWFs raise the issue of the expanded role of governments
in the ownership and management of international assets. It calls into question basic
assumptions about the structure and functioning of our national economies, global
investment, and the international financial system. Traditionally, in a market-based
economy and financial system, the role of government is limited in the economic
and financial systems. But economic and financial forces are shifting wealth toward
countries with innovative conceptions of the role of government in their economic
and financial systems. As governmental roles in investments change, some, for ex-
ample, financial experts and government leaders, are concerned about how SWFs
will be used. Will governments use SWFs simply as financial tools and eye invest-
ments from a purely financial standpoint, or will SWFs emerge as an implement
of political muscle? Such a concern is expressed, for example from the United
States, where foreign governments or government-controlled entities have bought
large, even controlling, stakes in financial institutions. American experts wonder
about the consequences of the latest bailouts of the largest US financial institutions
such as Citigroup and Morgan Stanley. We might also ask what would have hap-
pened with the financial institutions during the sub-prime crisis if the SWFs had
not helped. In light of the recent developments, the IMF, in close partnership with
SWFs, is currently working on establishing standards for the best use of SWFs in
global investment.

In the next section of the paper, I will give an overview of the development of
sovereign wealth funds. In Sect. 3, I will elaborate on the investment strategy of
sovereign wealth funds. Among other things, I will discuss different roles the gov-
ernment may have in SWFs. I will conclude with a few remarks on SWFs and the
possibility of a unified theory of investment strategy.

2 The Development of Sovereign Wealth Funds

The emergence of SWFs has been a direct consequence of the rapid growth of
central bank reserves. As central bank reserves in a number of countries have
grown in recent years, it became apparent that they exceeded by a large margin the
level of reserves necessary to ensure the precautionary objective of insulating those
countries’ currencies from speculative attacks.

Broadly we can divide the origin of a country’s large foreign exchange reserves
into two sources.

o Commodity. The source of the surplus is through commodity exports (either
owned or taxed by the government). These are typically oil and gas, but could
also be metals. 64% of SWFs have their funding source from commodities,
mainly oil and gas (based on numbers from Sovereign Wealth Fund Institute).
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e Traditional trade. Large current account surpluses have enabled non-commodity
exporters (particularly in Asia) to accumulate foreign exchange reserves. 36% of
assets of SWFs are funded by traditional trade.

Many of the funds are funded by a persistently large US current account deficit.
In general, Asian and oil producing nations have the largest cumulative reserves,
with China, Russia, and Middle Eastern countries being the fastest accumulators
over the past years.

Regardless of the source of funds, all countries need some foreign exchange
reserves. When a country, by running a current account surplus, accumulates more
reserves than it needs for immediate purposes, it can create a sovereign fund to
manage those “extra” resources. A sovereign wealth fund is often created when a
country sees that it has more foreign exchange reserves than needed for risk man-
agement. Accordingly, we can divide the foreign exchange reserves into two types
of reserves.

e Risk management funds. The funds’ objective is primary stabilization. This can
be the safety and liquidity of the currency or to insulate the budget and the
broader economy from excess volatility, inflation and other macroeconomic
threats. The funds are not set up to deliver investment returns.

o Sovereign wealth funds. The funds can be similar to pension or endowment funds.
SWFs have a very long, often multi-decade, investment horizon and limited lig-
uidity needs. The funds objective is long-term return and wealth maximization.
We consider the investment strategy of these funds in the next section.

There is no single, universally accepted definition of a SWEF. Based on the previous
classification of two types of reserves, we use the term SWF to mean a government
investment vehicle which is funded by foreign exchange assets, and which manages
these assets with a long horizon separately from the official reserves of the monetary
authorities (e.g., central bank). The assets may be managed directly by a government
entity or may be subcontracted to a private entity inside or outside the country.
Estimates of foreign assets held by sovereigns include $6 trillion of interna-
tional reserves (risk management funds) and about $3 trillion in types of sovereign
wealth fund arrangements. It is often difficult to classify a fund as either a risk
management or a SWF. Many of the funds are a combination of those two types.’
Assets under management of mature market institutional investors are estimated to
$53 trillion; about 20 times more than the size of SWFs. Hedge funds manage about
$1-$1.5 trillion, modestly less than those SWFs (IMF 2007). IMF projections sug-
gest that sovereigns (predominantly emerging markets) will continue to accumulate
international assets at the rate of almost $1 trillion per year, which could bring the
aggregate foreign assets under sovereign management to about $12 trillion by 2012.

2 A SWF or risk management funds are not the only way a country can hold money. A country
can also hold/own public pension funds, and state-owned enterprises. Public pension funds hold
the funds that states promise their citizens. These funds have traditionally kept low exposure to
foreign assets. State-owned enterprises are companies fully or partly managed by the state, each of
which may have its own assets and investments.
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For Asian emerging markets in particular, much will depend on how successful the
countries are in controlling growth. For a SWF with asset accumulation due to oil
revenues, future size is largely dependent upon the price of oil and the ability to
exploit old and find new oil fields.

SWFs use a variety of disclosure and transparency standards. By this we mean
that financial reporting and information about the funds vary from country to
country. As a result, precise data on the current size of SWFs are hard to come
by. Table 1 shows an overview of the largest funds made by SWF Institute. Some
SWEFs have a very long history. One of the first was the Kuwait Investment Board, a
commodity SWF created in 1953 from oil revenues before Kuwait gained indepen-
dence from Great Britain. As we can see in Table 1, other funds have been newly
created. Twenty new SWFs have been created in the past eight years. In this period
the assets under management of SWFs have grown from several hundred billions to
trillions of US dollars. Currently, about 35 countries have sovereign wealth funds.
Many other countries have expressed interest in establishing their own. Still, the
holdings remain quite concentrated, with the top six funds accounting for 73% of
total assets. The Abu Dhabi Investment Authority is the world’s largest fund. The six
biggest funds are sponsored by the United Arab Emirates (UAE), Norway, Singa-
pore, Saudi Arabia, Kuwait, and China.

In Sect.3 I outline a framework for how the SWFs should invest, and try to
compare this with how they actually invest. An accurate description of current

Table 1 Sovereign wealth funds

Assets
Country Fund name $ Billion Inception  Source
UAE - Abu Abu Dhabi investment 875 1976 Oil
Dhabi authority
Norway Government pension fund — 380 1990 Oil
global
Singapore Investment corporation 330 1981 Non-commodity
Saudi Arabia Various funds 300 NA Oil
Kuwait Kuwait investment 250 1953 Oil
authority
China China investment company 200 2007 Non-commodity
Itd.
China — Hong  Monetary authority 163 1998 Non-commodity
Kong investment portfolio
Singapore Temasek holdings 159 1974 Non-commodity
Australia Australian future fund 61 2004 Non-commodity
Qatar Qatar investment authority 60 2000 Oil
Libya Reserve fund 50 NA Oil
Algeria Revenue regulation fund 43 2000 Oil
US — Alaska Alaska permanent fund 39.8 1976 Oil
Russia National welfare fund 32 2003 Oil

(continued)
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Table 1 (continued)

Assets
Country Fund name $ Billion Inception  Source
Ireland National pensions reserve 30.8 2001 Non-commodity
fund
Brunei Brunei investment agency 30 1983 Oil
South Korea Korea investment 30 2005 Non-commodity
corporation
Malaysia Khazanah nasional BHD 25.7 1993 Non-commodity
Kazakhstan Kazakhstan national fund 21.5 2000 Oil, gas, metals
Canada Alberta’s heritage fund 16.6 1976 Oil
US — New Investment office trust 16 1958 Non-commodity
Mexico funds
Chile Economic and social 15.5 2007 Copper
stabilization fund
Taiwan National stabilisation fund 15 2000 Non-commodity
New Zealand New Zealand 13.8 2003 Non-commodity
superannuation fund
Iran Oil stabilisation fund 12.9 1999 Oil
Nigeria Excess crude account 11.0 2004 Oil
Botswana Pula fund 6.9 1993 Diamonds et al.
US — Wyoming Permanent Wyoming 3.7 1974 Minerals
mineral trust fund
US — Alabama Alabama trust fund 3.1 1986 Natural gas
Azerbaijan State oil fund 2.5 1999 Oil
Vietnam State capital investment 2.1 2006 Non-Commodity
corporation
East Timor Timor-Leste petroleum fund 2 2005 Oil, gas
Oman State general reserve fund 2 1980 Oil, gas
UAE - Ras Al RAK investment authority 1.2 2005 Oil
Khaimah
Venezuela FIEM 0.73 1998 Oil
Trinidad and Revenue stabilisation fund 0.46 2000 Gas
Tobago
Kiribati Revenue stabilisation fund 0.4 1956 Phosphates
Uganda Poverty action fund 0.35 1998 Foreign aid
Mauritania National fund for 0.2 2006 Oil, gas
hydrocarbon reserves
Angola Reserve fund for oil 0.2 2007 Oil
Total 3207

Data on assets under management reflect latest available figures as reported by each individual

entity or other authoritative sources. Updated March 19 2008 by SWF Institute

investments practices for SWFs is difficult to establish. This is because of the low
transparency of SWFs. Determination of their size, their investment strategies, and
assessing whether SWF investments may have been shaped by political objectives,
each pose special problems for the researcher.
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3 Investment Strategy

SWFs are as diverse in their investment strategies as in every other characteristic.
This study often uses the case of Norway as best practice, but as we will see SWFs
have not yet reached a consensus on the optimal investment strategy. In this section,
I will develop a framework that may help countries decide their investment strategy.

3.1 Framework for Optimal Investment Strategy

I have mentioned that sovereigns have a long investment horizon and limited liquid-
ity needs. Often SWFs aim to meet long-term real returns objectives and can accept
short-term volatility in returns for expected higher long-term returns. The funds may
often gain diversification benefits from a less-constrained asset allocation. Relative
to other institutional investors, SWFs have a stable funding base and no regulatory
requirements or capital adequacy. One way of formalizing these properties of the
investor is to formulate an optimization problem.

Primary objective is high stable long-term return and wealth maximization.
The sovereign maximizes its surplus wealth, defined as W. The country uses its
financial assets, defined as FA, to maximize wealth. As illustrated in Table 2, the re-
lation between financial assets and wealth is restricted by a liability profile, defined
as L. Defining the liability profile is difficult yet essential for the investment strat-
egy. A liability is the present value of future negative cash flows. One often has to
consider the broader national agenda, which could include various social, political,
intergenerational and environmental liabilities. For example, environmental prob-
lems, future pensions expenditures or infrastructure, could be future liabilities for a
country. Thus, the relation between financial assets, liabilities and surplus wealth is
given by the following relation, FA — L = W. Our decision variables are related to
financial assets. Our first choice is to decide which assets to invest in and then op-
timize the shares in the different asset classes (asset allocation policy). The second
choice is to choose an investment style. Either the investor believes in his ability
to outperform the overall market by picking stocks he believes will perform well
(strategic/active investment style) or he may think that investing in a market index
may produce potentially higher long-term returns (passive investment style).

Based on the written outline of an optimization problem, the rest of this section
will more thoroughly examine three key factors:

o The liability profile;
e The choice of asset allocation policy; and
e The choice between passive or strategical investment style.

Table 2 The balance sheet Balance sheet of SWE

f th t
of the country Financial Assets (FA) Liabilities (L)
Surplus wealth (W)
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For a more explicit quantitative solution of a similar optimization problem, I refer
to Dgskeland (2007).

3.1.1 The Liability Profile

Defining a liability profile is essential for the investment strategy. It appears,
however, that investors and some sovereign wealth funds do not have defined
liabilities in their strategy. Such an asset-only investor can be illustrated with help
of Table 2. If the sovereign does not take its liability profile into account, we can
assume they set L = 0. The surplus wealth (W) on the right-hand side will then
be equal the financial assets (FA). If the fund behaves as an asset-only investor, the
optimization problem of the investor is equal to a multi-period mean—variance port-
folio choice problem. If we assume no time-varying investment opportunities, the
asset allocation will be constant over time. The problem then collapses to a standard
mean-variance problem first solved by Markowitz (1952).

For a SWF this is a too simplified framework. The fund has liabilities. There are
some negative cash flows in the future the fund has to pay. Therefore, the rest of this
paper will investigate the more realistic case where the investor is an assez-liability
investor who takes its liabilities into account. The liability profile is dependent on
the withdrawal rules regarding the fund’s future cash flows. For traditional funds
(i.e., pension plans, insurance companies, endowments, etc.) it can be known with a
high degree of confidence for what purpose, when and how much money will be re-
quired. For a SWF, it is harder to identify the liability profile. Another difference is
the investment horizon. While ordinary pension funds face the challenge of balanc-
ing between short-term solvency risk and long-term continuity and sustainability,
the SWFs can focus on the latter. By defining the liability profile, the financial as-
sets will be “earmarked”. This has the advantage of transparency and control of the
fund.

Different liability profiles characterize different types of funds and influence how
they might be structured. Some SWFs combine several features in one entity. For ex-
ample, Norway combines elements of stabilization, sterilization and pension reserve
function. However, in principle, different liability profiles should result in different
entities and structures. In the next subsection, we will see how the liability profile
influences the risk-return profiles, that is, the asset allocation policy.

3.1.2 Asset Allocation Policy

The main choices in a sovereign’s asset allocation policy are the selection of asset
classes and their weights. Based on this process the fund will define a benchmark
portfolio. This is a portfolio against which the performance of the fund can be mea-
sured. It is not easy to find information about the asset allocation policy for different
SWFs. In Table 3, I have listed the available information for 10 of the largest SWFs.
Only for Norway and Australia it is possible to identify the asset allocation. It seems
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Table 3 Investment strategy and asset allocation of the 10 largest SWFs

Assets
Country and fund Name $ Billion Investment strategy and strategic asset allocation
UAE — Abu Dhabi Abu 875 Investment strategy and asset allocation is unknown
Dhabi investment
authority
Norway government 380 Defined strategy. Global asset allocation with 60%
pension fund-global in equities and 40% in global fixed income
Singapore investment 330 Global asset allocation (not made public). Invests in
corporation all major asset classes
Saudi Arabia various funds 300 Major global investor. The investment strategy and
asset allocation is not known beyond broad
indications.
Kuwait — Kuwait 250 Two funds, both with known strategy. One of them
investment authority holds 60% in MSClI-stocks, private equity and real
estate.
China — China investment 200 Not available
company ltd.
China — Hong Kong 163 Not available
monetary authority
investment
Singapore temasek holdings 159 Asset allocation unknown, but geographical
distribution disclosed (38% in Singapore, 40% in
rest of Asia)
Australia Australian future 61 Will implant international best practice for
fund institutional investment
Qatar — Qatar investment 60 Asset allocation undisclosed. Holds significant
authority stakes in foreign companies, participates in

buyouts.

there are still many funds that do not have a defined asset allocation policy and a
corresponding benchmark. Despite the lack of benchmarks, we see two trends in
the asset allocation of the SWFs. First, an increasing number of SWFs switch from
neutral assets like US Treasury bonds to a more diversified investment portfolio,
with a higher level of risk accepted in search of higher returns. The second trend is
a move from traditional assets like stocks, governments bonds and T-bills to other
asset classes such as commodities, hedge funds, private equity, infrastructure, and
real estate. For example, Norway recently announced that it will invest 5% of its
fund in real estate.

As mentioned, many sovereigns do not define an asset allocation policy, and
they probably do not link the asset allocation policy to the liability profile. I will
now propose a framework for how sovereigns might develop an asset allocation
policy and a corresponding benchmark. We find the benchmark by identifying the
connection between the liabilities and the asset classes. Our objective is to have as
large as possible wealth (W from Table 2) with lowest variance. We use the financial
asset to neutralize (hedge) the liabilities. Therefore, it is essential to understand the
long-term relation between the liabilities and the financial assets. Financial assets
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and liabilities have to be characterized by the same parameters (expected return,
variance and covariance) to fit in the risk return space. This is done by replication
of investable assets that are as closely correlated as possible to the liability. The risk
of any asset class with return R is measured with its covariance with the wealth:

Cov(R, W) = Cov(R, FA) — Cov(R, L).

Based on the relations from the balance sheet, we can split the covariance into two
parts. The first term is the covariance between the asset class with return R and
the rest of the financial assets. The second term is the covariance between the same
asset class and the liabilities. If the asset class covaries negatively with the value
of the financial asset and/or positively with the value of the liability, the asset class
hedges the wealth. The asset class should then be rewarded with a large share of the
financial assets.

Traditional measures of the covariance are related to short-term variability in
market value (e.g., contemporaneous correlation). For a long-term investor with
long-term liabilities, this is not appropriate because the long duration dimension
is not captured. For example, by a contemporaneous correlation it may look like
the correlation between stocks and wages is low, if so, stocks are not a good hedge
for pensions (related to wages). But using other methods to capture the long-term
relation (e.g., cointegration and duration matching), I find that there actually is a
positive relation. This implies that pension funds (and those SWFs with pensions in
their liability profile) should invest more heavily in stocks. Dgskeland (2007) looks
at investment strategy for sovereign wealth funds with Norway as a case. He finds
that stocks have a more positive relation than long-term bonds to pensions, imply-
ing a high stock share in the benchmark of the Norwegian Pension Fund. Thus, if
Norway was to take into account the long-term relation between financial assets
and pension liabilities, Norway should have a high fraction of stocks in their fund.
Recently, Norway has increased its share in equities from 40% to 60%.

The asset allocation policy should reflect the long-term relationships between the
financial assets and the liabilities. The fund should invest in a broadly diversified
portfolio, investing a major portion in what would be traditionally viewed as “risky”
assets, primary stocks. In our case, investing primarily in risk-free or “safe” assets
could be worse than investing in the so-called “risky” assets — it could effectively
guarantee that the fund would not be able to meet its sizable liability. But the funds
should also consider other classes such as private equity, corporate bonds, emerg-
ing markets, real estate, venture capital, infrastructure funds, and hedge funds. The
funds should not invest in the same commodity or commodity companies as their
largest revenue of the home country. It is strange that Norway, whose main revenue
comes from oil, invests large fractions of their portfolio in 0il companies.

Whether the liabilities are real or nominal influences the asset allocation policy.
For the risk management fund the financial assets often are invested nominally be-
cause when a sovereign needs the money they are needed nominally. For the more
long-term SWF the situation is different. An endowment fund typically needs to
maintain a certain amount of annual spending, while at the same time preserving
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the real value of the principal to continue paying annual amounts in the future.
A pension fund’s liabilities are also real, in that it will be making payments to
retirees based on some formula which includes real incomes.

The perfect match for real liabilities is inflation protected indexed linked bonds.
But these instruments yield a low return. If we compare nominal bonds and stocks,
we find that stocks are often a better hedge against inflation than nominal bonds.
With increasing inflation, the effect tends to be passed over to the customers in the
prices of goods and services. Thus, the real value of the company is quite stable.
This effect was first pointed out by Bodie (1976). Thus, stocks are a good match for
real liabilities.

The question whether to invest in the home country or internationally is also
influenced by the liability profile. For a fund with a strong focus on pension provi-
sion, its liabilities by definition must be denominated in the currency of the owner.
Yet, all of Norway’s assets are invested internationally and denominated in for-
eign currencies. Norway is a developed country with a high per-capita GDP and
a well-developed public safety net. Domestic investments could have driven down
the domestic return below the international return. Domestic investments could also
become subject to political processes which may reduce financial returns and trans-
parency. Therefore, Norway has limited all of the pension fund’s investments to
overseas markets. The strategy also fits in with the fund’s endowment approach; it
is simply transforming its concentrated exposure to volatile oil into a much more
balanced and diversified exposure within a broader global economy.

But Norway is a rich developed country. For an emerging market economy an
implicit currency bet (liabilities denominated in the home country and investments
internationally) would be likely to lose money in the long term. As emerging mar-
kets economies “catch up” in their levels of productivity and economic development,
their currencies, all other things begin equal, will almost certainly experience real
appreciation. It is probably not in the interest of an underdeveloped economy to
suppress current consumption and capital formation by the present generation — all
for the sake of maximizing financial savings of future generations. It is better for
the future generations to inherit a diversified highly advanced local economy than
a global financial portfolio. Thus, even if the framework for developing an asset al-
location policy is quite similar, different countries have different characteristic that
make the asset allocation policy heterogeneous.

3.1.3 Passive or Strategic/Active Investment Style

The final choice is to choose an investment style, either passive or strategic/active
investment style. As we see in Fig. | along the vertical axis, the different funds have
different strategies related to strategic/active and passive investments. The simplest
and most efficient way of investing (if one believes in efficient market) is to mimic
the benchmark defined in the asset allocation policy. Norway’s SWF has almost
a passive investment style. The fund follows the defined benchmark closely, but
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Fig. 1 Investment style and transparency of SWFs

deviates with small bets from the benchmark. The alternative investment style is to
invest strategically or actively. For this alternative, the fund often does not have a
defined benchmark. The overall goal is to maximize returns in absolute terms. In
Fig. 1 we see that the strategic/active funds also often have lowest transparency.
For a fund with strategic/active investment style it is hard to separate whether the
investments are done to directly maximize returns or are more so-called political
motivated investments. As SWFs are foreign state-owned investment vehicles, their
investments may raise concerns for the recipient country. A politically motivated
investment often improves the long-term, overall economic situation for a sovereign
by improving access to markets, technological advances, etc. In other words, po-
litically motivated investments pursue dominantly indirect economic return and/or
political benefits in order to increase the social welfare and/or to enlarge the nation’s
leeway in the international economical and political arena. Investments in so-called
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key industries (defense, infrastructure, communications, financial institutions, etc.)
are politically most feared. The low level of transparency in the majority of SWFs
heightens the suspicions of the recipient country.

Several SWFs have gained public interest for specific investments. SWFs
acquiring assets in the Unites States and elsewhere are creating concern among
policymakers. Sovereign funds such as Abu Dhabi’s Mubadala have invested in
private equity firms, including Carlyle, the American buyout giant, and Och-Ziff,
a hedge fund. Dubai’s SWF has bought up shares of several Asian companies,
including Sony. In Germany they are concerned that Russia is buying up pipelines
and energy infrastructure and squeezing Europe for political gain.

Money from SWF funds have participated strongly in the rescue of stricken Wall
Street banks after the sub-prime crises. Oil-rich nations as well as funds and banks
in Asia, have injected $41 billion of the $105 billion of capital injected into ma-
jor financial institutions since November 2007 (IMF 2008). Examples of strategic
investments done by SWFs in the US financial sector are listed in Table 4.

4 Conclusion

The growth of SWFs has raised several issues. First, the likely growth of SWFs and
the substantially higher risk tolerance of those who will be taking their asset alloca-
tion decisions may be large enough to have an impact on the average degree of risk
tolerance of investors across the world. This reduces somewhat the attractiveness
of relatively safe assets and increases the attractiveness of riskier. As a result of this
shifting pattern of demand, we can expect that bond yields gradually rise and reduce
the equity risk premium.

Second, if one believes in efficient markets, funds should not have an active
investment style. However, both among academics and professionals there is no
consensus about the best investment style. For example, before the financial crisis
the Norwegian Government Pension Fund had a quite large extra return from active
investing, but during the crisis almost all extra return is lost.

Third, many of the funds are operating as independent investment vehicles.
The funds should rather be used as an integrated diversification tool. For example,
the Norwegian Government Pension Fund should not invest in oil companies. One
argument in favor of not imposing restriction on the investment universe is that it
makes it more difficult to evaluate the fund’s performance. But at the same time the
Norwegian Government Pension Fund has restriction when it comes to ethical and
environmental investments, thus restricting the fund from investing in oil companies
should not be a problem.

There have been expressed concerns about SWFs transparency, including their
size, and their investment strategies, and whether SWF investments may be af-
fected by political objectives. Despite innumerable publications, statements and
research articles there are no common agreement on the investment strategies of the
SWFs. In this paper I have tried to describe some instructions for how to develop
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a framework for the investment strategy. Only the future will show whether there
will be developed a unified theory for the investment strategy of SWFs. And will
the politicians keep their fingers of the table and not intervene in the decisions made
by the funds?
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Chasing Reserves: Incentives and Ownership

Petter Osmundsen

Abstract Oil companies are concerned to replace the petroleum reserves they
produce in order to maintain their future level of activity. Reserves also represent
an important input when analysts value these companies. However, they have to
rely on booked reserves, which are subject to measurement errors. Many producer
countries want to control their own resources, a goal which can come into conflict
with the desire of the international companies for booked reserves. Where oil com-
panies do not own the reserves, they may have insufficient incentives to maximise
value — harmonising goals between a resource country and an oil company can be
difficult. This chapter discusses the relationship between reserves and financial in-
centives, and between reserves and valuation. The issues are illustrated throughout
with reference to two cases: StatoilHydro’s projects on Shtokman in Russia and
Peregrino in Brazil.

1 Introduction

In the Norwegian petroleum tax system, ownership of the resources rests with the
participants in a licence subject to conditions specified in the licence, the licence
agreement and more general regulations. The state often has its own share of the
licence through the State’s Direct Financial Interest (SDFI), which is managed by
Petoro.! Many would say that ownership of the resources is very important, not only
for the companies but also for the resource state. This is fairly obvious in the case
of the companies. Ownership makes it possible to carry the reserves on the balance
sheet, which financial markets want to see. Currently, great attention is being paid
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to the reserve replacement rate (RRR) of oil companies. We see constant references,
for instance, to basic valuation methods in which the value of an oil company is
equated with reserves in different countries multiplied by an estimated value per
barrel of oil equivalent (boe) in each country of production. For these figures to be
meaningful, however, one must operate with expected rather than booked reserves.

Private ownership in the licences is important for the state because it establishes
incentives to maximise value creation. Replacing ownership with other types of in-
centives is difficult, which presents a major challenge to producer countries where
the government will not allow foreign companies to own petroleum resources for
one reason or another. Ownership provides long-term incentives, where the compa-
nies wish to maximise value throughout the life cycle of the field. At the same time,
achieving homogenous ownership composition in licences across field areas with
reservoir contact (unitisation) is important in order to avoid sub-optimisation.

In everyday parlance, people often say that oil companies own their share of the
resources in a field on the Norwegian Continental Shelf (NCS). However, this is
not strictly correct. Oil companies are only licensees, who produce the petroleum
resources on behalf of the state. Ownership of underground resources is vested in
the state, which gives the government the legal authority to regulate various aspects
of reservoir management. On the other hand, the licensees own and control oil and
gas once they come to the surface. That ensures financial incentives to maximise
the value of the resources. When regulating the oil companies, more often, the gov-
ernment is subject to the Act on Public Administration and the standards this sets
for objectivity and orderly procedures. That is relevant at present in connection with
the development of the Goliat field in the Barents Sea. When the licensees have re-
ceived a production right, the government cannot refuse to allow the licence partners
to develop the field (as some seem to believe). However, it can impose objectively
justified and non-discriminatory requirements related to the development.

2 Booked Reserves

Since estimating actually expected cash flow for oil companies is difficult and
time-consuming (due to asymmetric information between analysts and company),
analysts use various indicators to make rough estimates of value. A key indicator to-
day is the RRR. This expresses how large a proportion of production in the present
year has been replaced by new booked reserves, i.e. a RRR of 1 means that the
booked reserves are unchanged. The ability of the companies to maintain reserves
ready for production in relation to on-going recovery says something about sustain-
ability and growth opportunities for the company, which is clearly highly relevant
for valuation. That depends, of course, on the indicator being free of measurement
errors. Results from analyses we have undertaken in the Department of Industrial
Economics and Risk Management at the University of Stavanger indicate that no
clear relationship exists between the RRR shown in the accounts and valuation; see
e.g. Misund et al. (2008). This is due to the measurement errors associated with
booked reserves, which are explained below.
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Still, analysts are very concerned with booked reserves. This is because booked
reserves are published in the quarterly accounts, whereas expected economic re-
serves are not readily available to analysts. When StatoilHydro recently presented
its accounts, much of the focus of the business press was on reserve replacement:

“Another worry was Statoil’s reserve replacement rate, which tracks the rate at which new
discoveries offset production. The rate tumbled from 86.0% in 2007 to 34.0% in 2008.
Although the three-year average rate came in at a healthier 60.0%, analysts voiced their
concern over the steep decline.”?

Analysts’ focus, however, does not necessarily correspond with that of the investors,
and the stock price is determined by the latter. The findings of Misund et al. (2008)
are that analysts and investors do not agree when it comes to the value relevance of
booked reserves. Accordingly, company managers should keep their calm and not
aggressively acquire new reserves in a sellers’ market, even if the RRR is taking a
temporary drop. Later in this chapter I analyse two investment cases for StatoilHy-
dro, and inquire whether they are selected on the basis of sound economic valuation
or whether they are driven by an urge to satisfy analysts’ demand for short-term
accounting reserves.

Several factors explain the lack of correspondence between booked reserves and
valuation. First, the figures on reserves comply with the conservative accounting
principles of the US Securities and Exchange Commission (SEC). These involve
such substantial measurement errors that they fail to provide a good expression of
the actual position for reserves. Second, investors will make their own reserve esti-
mates in any event. They are clearly not going to overlook the fact that StatoilHydro
has a substantial share in the Shtokman development, for instance. Focusing on
single indicators underestimates investors. They are concerned with cash flow and
cannot be deceived by high figures for booked reserves.

The information value of booked reserves suffers from a number of weaknesses.
Reserves are recognised on the basis of the spot oil price at the balance sheet
date, which does not necessarily represent a best estimate for future oil price de-
velopments. Booked reserves do not provide a consistent picture of reserves under
different contracts (an income tax system, for instance, will yield higher reserves
than one based on production sharing for identical cash flows). Perhaps, the most
important objection to the conservative rules, however, is that the reserve figures
do not provide complete information on the subsequent growth of the company and
thereby on the sustainability of its operations. This is because they do not include
less mature reserves, which can vary a great deal from one company to another. In
any event, the attention given to booked reserves helps make the NCS more attrac-
tive. The Norwegian licence model gives companies greater opportunities to carry
reserves than is the case in nations which operate with production sharing agree-
ments, contractor contracts and the like.

2 http://www.forbes.com/2009/02/17/statoilhydro-bp-shell-markets-equity-0217_0il_09.html
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2.1 Differences Between PSC and Concession Reserves

Traditional oilfield concession ownership is found in the OECD-area. Under this
system, if producers generate a profit from on-going extraction, they pay corporation
tax, sometimes supplemented with royalty or other taxes. In this instance, producers
own the underlying reserves, with reported reserves being the recoverable reserves
from the reservoir in total, and future physical reserve entitlement is unaffected by
price volatility.

Production sharing contracts exist in many of the world’s newer oil producing
and non-OECD regions including West Africa, Kazakhstan, Indonesia and Egypt.
The proliferation of these agreements in the 1990s has been a direct result of the
government’s desire to reclaim control of natural resources once a fair return has
been earned by the corporate producers.

PSC agreements vary widely but typically provide oil companies with a guar-
antee to cover a return on their capital costs and, in exchange, impose a reserve
entitlement structure. The contract generally escalates participation sharing by the
local government based on the price of oil and in some cases the volume of oil
pumped. As explained by Kretzschmar et al. (2007), the PSC allows contractual
contingent claims (often in forms of taxation or production sharing) to be made
against producer reserves when an agreed threshold of return is met and costs have
been covered. This interpretation recognises the contractual nature of possible fiscal
claims against oilfields (Lund 1992).

The most marked difference between concession ownership and production shar-
ing disclosures is that reserves and production do not vary in response to oil price
movements for concession fields, while both production and reserves vary under
PSC regimes. For concession fields, the oil company has an equity share in the
field, which does not vary with the oil price. The oil company is simply entitled
to its equity share of production and reserves. Under a PSC contract, on the other
hand, the oil company is to be paid a certain amount of oil to cover costs (cost oil)
and profits (profit oil). When oil prices rise, the number of barrels of oil needed to
pay for costs and profits are reduced. Kretzschmar et al. (2007) illustrate this with
field data from the Gulf of Mexico, where reserve and production entitlement re-
main unchanged across the full price range USD 22.5-90. Angolan PSC reserves,
by comparison, actually decrease by 0.451% per 1% oil price change in the range
USD 22.5-33.75 and decrease by 0.388% in the range USD 67.5-90. Production
entitlement, by comparison, also reduces in Angola, but by 0.291 and 0.181% re-
spectively over the same price intervals. In line with Rajgopal (1999), Kretzschmar
et al. (2007) recommend that supplementary information should disclose the effects
of oil and gas price changes on underlying reserve disclosures.

2.2 Petroleum Reserves: Definitions

Figure 1 is a graphical representation of various definitions of petroleum reserves.
The horizontal axis represents the range of uncertainty in the estimated potentially
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Fig. 1 Petroleum resource classification. Society of Petroleum Engineers?

recoverable volume for an accumulation, whereas the vertical axis represents the
level of status/maturity of the accumulation.

Resources definitions vary. Some define it as including all quantities of petroleum
which are estimated to be initially-in-place; however, some users consider only the
estimated recoverable portion to constitute a resource. In any event, it should be
understood that reserves in an accounting sense constitute a subset of resources,
being those quantities that are discovered (i.e. in known accumulations), recover-
able, commercial and remaining. This is a very conservative estimate, as it does

3 http://www.spe.org/spe-app/spe/industry/reserves/mapping.htm
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not account for contingent and prospective resources. Thus, the expected level of
petroleum reserves in an economic sense is larger. Another distinction is the treat-
ment of oil and gas prices. The reserve concept is always a physical volume, but
the extent of reserves is contingent on the level of the oil and gas prices. At high
prices, more resources are economic to extract, and reserves are accordingly higher.
Whereas economic reserves are based on expected energy prices, booked reserves
are based on the listed spot price at December 31.

The most widely used reserve disclosure is the one required by the SEC, owing
to the importance of US capital markets and the fact that most major private oil
companies have a US listing. Here companies are required to report their ‘proven’
reserves in a deterministic way, quite different from the probabilistic ways allowed
on other exchanges.

Arnott (2004) points out that it should always be remembered that the SEC
rules were introduced with the sole purpose of protecting shareholders. They were
brought in at a time when most of the US oil industry was still onshore, where
regular grid well-spacing was common and therefore it was fairly easy, using de-
terministic methods, to calculate not just the volume of remaining oil in place but
also its value. However, the oil and gas industry has subsequently witnessed a major
technological revolution. It is therefore ironic, according to Arnott, that at the very
time that the oil and gas industry is basing more and more of its investment deci-
sions on the results of measurements from new technologies, the SEC has tightened
up its definition of what can or cannot be reported and by inference has ruled out
measurements from these technologies.

The complaint about booked reserves is that this does not reflect economic reality
or the reserves that the company is using when formulating its internal plans and
projects. By only counting proven reserves, the SEC rules systematically understate
the true extent of the resource base. Another obvious example of measurement bias
is the oil produced in Canada from mining operations in tar sands. The SEC does not
allow such oil to be booked as petroleum reserves on the grounds that it is a mining
product — although it is at least as predictable as the oil from underground reservoirs.

Analysts are facing two problems: (1) the definition of reserves is not adequate,
and (2) given the emphasis that the market is perceived to put on booked reserves,
some oil companies have been tempted to manipulate their accounts — overstated
the booked reserves according to the prevailing reserve definitions. Some instances
of overbooking have raised uncertainty regarding booked reserves. According to
Arnott (2004) the practice of ‘smoothing’ reserves’ bookings in order to show steady
reserves growth can be just as misleading to investors as overbooking.

2.3 The Role of the Reserves Report

Oil company reserves’ disclosures are according to Arnott (2004) one of the most
important pieces of information that the financial sector requires in order to analyse,
compare and contrast the past and prospective operational performance of oil and
gas exploration and production firms. Recent reserves re-categorisations by several
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companies, after inquiries and questions of over-reporting from SEC, have only
served to highlight the inadequacy of the published information.

Arnott states that a company’s internal information structure of future production
estimates is not suitable for communication outside the company for many reasons.

e It would be dynamic, complex and difficult to interpret without full knowledge of
all the company’s practices and parameters — in other words without being inside
the company.

e It would prejudice the company in competitive bids and negotiations if this in-
formation were available to its competitors and counter-parties in negotiation.

o It is often subject to confidentiality agreements.

Obviously some communication with respect to reserves is necessary for private
companies with equity or bonds held on public stock and bond markets, since:

o The expectations of future production are an important predictor of a company’s
future capacity to reward shareholders and repay debt-holders. Thus, accurate
information is important for the companies to raise capital to new projects.

e The reported current profits depend on the allocation of exploration and develop-
mental costs between depreciation (charged over the lifetime of production) and
current expense (charged to current profits). Reported accounts therefore require
a definition of expected future production — typically described as ‘proven’ re-
serves (see Fig. 1) on a base which can be understood by investors and creditors
of the company.

3 Shtokman

Ownership has been much discussed in connection with Russia’s big Shtokman
field in the Barents Sea. This discovery is estimated to contain a total of 3,700
billion cubic metres of gas, making it 10 times larger than the Ormen Lange field
in the Norwegian Sea. StatoilHydro signed an agreement with Gazprom on 27
October 2007 concerning participation in the first phase of a Shtokman project.
Gazprom, Total and StatoilHydro have concluded a shareholder agreement over
the Shtokman Development AG company, which will be responsible for designing,
developing, constructing, financing and utilising the facilities in a first Shtockman
development phase.* Gazprom has 51%, Total 25% and StatoilHydro 24% of this
company, which is registered in Switzerland. Total and StatoilHydro will own the
phase one infrastructure for 25 years from the start of production on the field. Sta-
toilHydro has indicated that the company’s share of the gas resources corresponds
to roughly 800 million barrels of oil.’ Investment in phase one alone is likely to
exceed NOK 100 billion.

4 http://www.statoilhydro.com/no/News AndMedia/News/2008/Pages/ShtokmanDevelopmentAG.
aspx

5 Dagens Neringsliv, 22 February 2008.
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Basically, the incentives in this case do not look correctly configured. The de-
velopment company appears to own the infrastructure rather than the actual field.
Sevmorneftegaz, a wholly owned subsidiary of Gazprom, reportedly holds the
exploration and production licence for gas and condensate. The relationship be-
tween Shtokman Development and Sevmorneftegaz will build on a contract which
specifies that the latter bears all financial, geological and technical risk related to
production of gas and condensate and to gas liquefaction. It would thereby seem
that the Russians will retain the aspects which normally fall to an oil company.
OAO Gazprom owns all the shares in Sevmorneftegaz, and all the rights to market
the output.

This is a contract which appears to lie closer to the type of agreement concluded
by a contractor, rather than to those to which an oil company normally becomes
party. Furthermore, Total and StatoilHydro only own the infrastructure for the first
development stage. It is doubtful whether this provides sufficient incentive to max-
imise total value creation over a period of time for the whole field. This breaches
elementary principles for designing incentives — a supplier should have responsibil-
ity for the areas it can affect. Knowledge of reservoir conditions represents specialist
oil company expertise. Even without ownership of the actual reserves, it would have
been possible to create incentives by allowing rewards to be conditional on the pro-
duction portfolio.

This contract recalls contractor agreements on the NCS, where the contractor
bears responsibility for delays and cost overruns but does not participate in the up-
side or downside related to production and gas price trends. The limited upside —
which is a certain return on capital invested or a fixed sum — will often be balanced
in such cases by a limited downside (both in the formulation of the contract and
in its application), so that the limited opportunities for a return are proportionate
to a limited risk. StatoilHydro has also concluded contractor-like contracts in Iran.
These service fee deals specify what the oil company will receive, with the gov-
ernment taking the rest. This is the opposite of the practice in most other producer
countries, where the government’s share is specified and the oil company receives
the residual income. Payment takes the form of oil. Cash reimbursement of costs,
known as buy-back, is converted to oil at an agreed price. That makes it possible for
StatoilHydro to book the reserves. The problem in this case is that the limited upside
is not balanced by any downside limits. A substantial challenge has also been that
the regulatory authorities, the state oil company, and supplier companies are repre-
sented by the same people and ownership. That clearly puts the foreign oil company
in a weak negotiating position. Conditions in Russia are related.

Experience specifically from Iran makes it unlikely that StatoilHydro will be
willing to accept a traditional contractor agreement. In this context, it is worth noting
a comment from the head of the company’s Moscow office, Bengt Lie Hansen: “Our
exposure will be normal for an oil company — in other words, to both revenue and
costs from operation of the field.”® This must mean that Sevmorneftegaz, which has

¢ http://web3.aftenbladet.no/innenriks/okonomi/article536237.ece
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been allocated all upside in the field under the terms of the shareholder agreement,
will pass some of it on to the other participants. The upshot is that this will actually
become something which resembles an income tax system. How far and in what
way upside will be transferred to the foreign companies is unlikely to be determined
until 2009. Instead of relating the incentives directly to ownership in the licence,
in other words, ownership is being established in the infrastructure and efforts are
being made to create synthetic incentives which will imitate the terms ordinarily
enjoyed by international oil companies.

Obvious challenges here will be the credibility of the terms and the threat of
renegotiation. However, it could be objected that these challenges are also present in
other producer countries. Given their desire for greater predictability, the oil compa-
nies have often sought production sharing agreements because these — unlike income
taxes — represent legal contracts which are more binding on the resource country.
However, developments in recent years — not least in Russia — have demonstrated
that production sharing agreements are incomplete contracts which give the inter-
national companies no protection worth mentioning. According to industry sources,
the Russians do not want a production sharing agreement for Shtokman. Instead,
they want the field to be taxed in accordance with the Russian tax regime for the
petroleum sector. The exact terms will nevertheless be subject to negotiation.
The Russians are likely to insist that the international participants carry the bulk
of the financial risk. A normal method of doing this would be to let StatoilHydro
and Total carry (pay in advance) Gazprom’s development costs and pay substantial
royalties charged on top of ordinary income tax regardless of the financial position
of the project. With such terms, StatoilHydro and Total are guaranteed the down-
side in the project. The question is whether that is balanced by a corresponding and
credible upside.

The decision to give Gazprom-owned Sevmorneftegaz full control of the gas re-
sources is usually referred to as an example of the resource nationalism which is
widespread in producer countries outside the OPEC area. In Russia, the starting
point was a few oligarchs who had become billionaires in a very short time through
unreasonably favourable asset deals with the government. A key element in Putin’s
agenda, which Norwegians not least must respect, was precisely that the petroleum
resources should benefit the Russian people. However, the problem in Russia and
many other producer countries is that a nationalistic superstructure can hinder the
foreign participation needed to maximise the value of the resources for the popula-
tion at large. Ownership of and control over resources are the very core of resource
nationalism. Politicians in Russia could not say to their people that part of the own-
ership or control had been transferred to foreign companies, even though this might
be just what is required by pragmatic prosperity considerations.

An article in Norwegian technical weekly Teknisk Ukeblad of 21 November 2007
notes that Russian legislation hinders reserves being booked on the balance sheet,
and that the Russians are unlikely to amend the law simply to please the sharehold-
ers of StatoilHydro or Total. Pursuant to Russian law, Gazprom has the sole right to
sell gas from Russia. This provision must be changed if StatoilHydro is to be able to
carry reserves from Shtokman on its books. Such an amendment must be submitted
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to the Duma (parliament), says third secretary Alexey Rybkin at the Russian em-
bassy in Norway. The accounting rules are probably being interpreted too narrowly
in this case. If StatoilHydro and Total through their participation in Shtokman secure
rights to some of the production (because cost reimbursement and profits are paid
in the form of gas), they can recognise the reserves even without direct ownership.
This is the approach taken by StatoilHydro in Iran. What may be a bigger challenge
is that resource nationalism has proved to encourage a number of populist deci-
sions — typically a failure to respect signed agreements — which benefit neither the
oil companies nor the population of the host country in the long run. In Russia, for
instance, this could take the form of renegotiating terms if the project goes well and
StatoilHydro and Total make money. The same willingness to renegotiate cannot be
expected if project progress is poor and the companies suffer losses. An asymmetry
of this kind in frame conditions clearly represents poor business economics.

“When presenting the interim figures, [StatoilHydro CEO] Lund said that the Shtokman
partnership had to be viewed in a strategic light, both because Russia is an interesting
country for StatoilHydro and because the company will get the opportunity to continue
the development of technology for Arctic regions.”

“We hope that more opportunities will open for us through this innovative contract
and the special connections we have with Gazprom,”x said Arnaud Breuillac, the
man responsible for Total’s projects in central Europe and the Asian mainland.

The word ‘strategic’ is often used by chief executives in connection with projects
which do not satisfy their company’s general internal rate of return requirements.
In such cases, the investment decision is based on an assessment of supplemen-
tary value, which is often relatively subjective. An example is that moving into a
new area can generate additional opportunities (bridgehead investment — growth
options).

Since the merger, StatoilHydro has inherited the reserve replacement challenges
which faced Hydro as a separate enterprise. Like virtually all the international oil
companies, it is accordingly under pressure to secure new resources. With record oil
prices in 2008, a danger existed that future production was purchased at an exces-
sive price. StatoilHydro has a balanced portfolio, where activities are spread over a
number of fields in many producer countries. It has a high weighting of projects with
low country risk — typically in the OECD area. This also goes for new projects. Nev-
ertheless, it is uncertain whether increasing exposure to Shtokman makes sense in
portfolio terms (risk spreading). Excessive exposure to a single project will normally
be undesirable, and Russia poses a substantial country risk. Other oil companies
have had their assets in Russia confiscated with little compensation, and it is diffi-
cult to find examples of oil companies who have actually made money there. The
tax system is unpredictable, including uncoordinated taxation at several levels, and
demands can be made to sell part of the production locally at below international

" DN.no, 27 February.
8 DN.no, 19 March.
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market price. In addition, main partner Gazprom — with the Russian state as its prin-
cipal shareholder — is used as a political instrument. That said, the risk must be
measured against the alternatives in other producer countries, which are not nec-
essarily better. Account must also be taken of the fact that the renegotiated tax
agreements in Russia were not initially framed in an optimum manner from the
perspective of the Russian government. Among other facts, they were drawn up at
a time when the Russian state had been weakened. The oil companies should have
expected a renegotiation. Putin has also done a good deal to improve predictability
in Russia, partly through greater centralisation of resource taxation.

According to press reports, Total will pay USD 800 million simply for the right
to book reserves for Shtokman.’ If this is correct, the Russians have understood
that the oil companies’ need to carry reserves on their books and that they have
charged separately for this. StatoilHydro, on the other hand, is not paying anything
at present. Assuming that the company has had a genuine choice in this respect, the
decision to pass on recognising reserves appears basically sensible.'? The different
strategies pursued by the two companies relate to their need to make themselves
attractive to investors. All companies want to present accounts which ensure the
highest possible market valuation. When Total pays USD 800 million for its 25% of
the Shtokman development company, the aim is to be able to book reserves for the
field. StatoilHydro will not be able to carry corresponding reserves on its balance
sheet, since it has not paid anything. But the booked reserves have no intrinsic value.
Total and StatoilHydro will have the same cash flow from operation of the field. Ac-
cording to press reports, Total has thereby paid a substantial sum in order to improve
its balance sheet — assuming that these reports are correct. The consequence is that
the cash flow to Total shareholders will be weakened. StatoilHydro’s shareholders
are in the opposite position. Since the company has paid nothing in advance, net
cash flow will be higher. But it must also live with lower booked reserves. However,
it remains unclear how differences in payment could produce different rights for
booking reserves — and how this relates to the relevant accounting rules. Will Total
own reserves in the usual way as well as owning part of the development company?
Will it acquire different rights from Statoil? Will it receive payment in a different
way? The companies have not been allowed to make any further comments on the
terms nor have the final frame conditions been established. Negotiations on actual
participation in the Shtokman project took no less than 18 years. Lund told Dagens
Neeringsliv on 29 October 2007 that what has been concluded so far is a commercial
frame agreement, and that he would provide more details in 2009.'"" Nor will the
last word be said in 2009 — continuous renegotiation seems to be the guiding princi-
ple of Russia’s petroleum administration. Moscow chief Hansen told the Stavanger
Aftenblad daily that a bonus is to be paid in 2009 to participate in the project and

% http://www.dn.no/energi/article1211796.ece

10 However, reports concerning the recognition of reserves in the field are conflicting. Oslo business
daily Dagens Neringsliv reported on 10 January that StatoilHydro may be able to carry these
reserves regardless.

1 http://www.dn.no/energi/article1214983.ece
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that this represents the point when the investment decision will be taken.'> Expe-
rienced industry sources say that Total is a highly competent international player,
and that the USD 800 million it has paid is probably not solely for the right to carry
reserves but more of a regular signature bonus — and as such not particularly surpris-
ing. However, it is not entirely normal to begin conceptual studies for developing a
field before the frame conditions have been settled. The impression one gets is that
Total is in the driving seat for these studies. Is this a reflection of the fact that it
has already paid a signature bonus, or the result of pure expertise considerations?
Whatever the answer, it is a matter of concern if the two international participants
in the field do not obtain the same incentive structure. During the award phase, the
Russians demonstrated to the full that they are applying the principle of divide and
rule. The question is whether they understand that running a licence in this way will
be inappropriate once the award has been made. Have they grasped that constant
renegotiation weakens incentives for the companies to make a long-term commit-
ment to optimising value creation from the field?

4 Peregrino

Is StatoilHydro reserve-driven? Former Hydro’s poor RRR is also making its mark
on the merged company — proven reserves at 31 December 2007 were 6,010 mil-
lion boe, compared with 6,101 million a year earlier. That represents a decline of
91 million boe. Reserves in 2007 grew by 542 million boe through revisions, ex-
tensions/expansions and new discoveries, compared with a growth of 383 million in
2006 from the same sources. The RRR was 86% in 2007, compared with 61% in
2006, while the average three-year replacement rate — including the effect of sales
and acquisitions — was 81% at 31 December 2007 compared with 76% at the end of
2006.13

Does this put the company under pressure to obtain reserves quickly? Securing
reserves through exploration is a time-consuming process and would not help alle-
viate the acute reserve problem. However, the company has an active exploration
programme which is likely to contribute future additions to reserves. The short-term
problem is that today’s price level means reserves are very much a seller’s market.
By acquiring a 50% holding in Brazil’s Peregrino heavy oil field in March 2008,
the company would — according to certain analysts — be able to report a RRR of
more than 100% for 2008. This also seems to have been a target for the company.'*
But little is certain when it comes to reserve bookings. Statoil learnt that previously
when it had to write down its reserves in Ireland, as did Hydro when it wrote down

12 http://web3.aftenbladet.no/innenriks/okonomi/article536237.ece

13 http://www.statoilhydro.com/no/InvestorCentre/results/QuarterlyResults/Pages/FourthQuarter
2007.aspx

14 http://www.reuters.com/article/rbssEnergyNews/idUSL0940782820080109
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the Spinnaker acquisition in the Gulf of Mexico. The same is applied this year. The
RRR for 2008 ended at merely 34%.'> Expected reserves, however, was probably
fully replaced in 2008, if we use the company’s own price forecasts. The booked
reserves are seriously affected by the dramatic 70% reduction in the oil price, since
reserves are booked according to the spot price.'® By aggressive acquisitions Sta-
toilHydro added large volumes of oil and gas to its portfolio, which will turn into
booked reserves if prices go up again.

With reference to the Peregrino acquisition, oil commentator Arnt Even Bge
wrote in Stavanger Aftenblad on 5 March that StatoilHydro used to discover oil
fields but is now buying them up — while prices are at a peak. According to Bge,
proper oil companies find their own reserves. However, he added that the acquisi-
tions also contain a number of bright spots. According to StatoilHydro, experience
off Norway with the Grane heavy oil field and drilling on Troll could provide a
substantial increase in Peregrino’s recovery factor. In addition, there come strate-
gic considerations such as strengthening the company’s core areas and securing
the operatorship for the production phase. StatoilHydro was originally operator
only for the development stage, with Anadarko due to take over once production
began.

Many people would agree with Bge that a long-term and sustainable oil company
will primarily find oil through its own exploration efforts. This is where the greatest
value creation occurs. Farming in and out of licences can be a favourable supple-
mentary activity, but must then be counter-cyclical (buy cheap and sell expensive)
rather than pro-cyclical.

To make money farming into licences at a time when oil prices are high, the
company must be able to estimate reserves better than the seller or to develop and
operate the field more efficiently. StatoilHydro has very extensive exploration op-
erations both in Norway and abroad, and is likely to replace reserves by its own
efforts over time. But the company faces a short-term problem with reserves. The
question is then whether to bide one’s time or make acquisitions. Virtually all the
international oil companies are in the same boat after cutting back their exploration
operations in the 1990s and also experiencing poor drilling results.

A good deal of information about the Peregrino acquisition is provided in a stock
market announcement from StatoilHydro on 5 March 2008.!” Expected reserves
from this big heavy oil field are estimated at about 500 million barrels, excluding
upsides. Production is scheduled to begin in 2010 and to provide StatoilHydro with
additional output in the order of 100,000 barrels per day. The company already
had a 50% holding in the field, which lies off Rio de Janeiro, and now becomes
the sole licensee. StatoilHydro reported that the Peregrino project can cope with
an oil price of less than USD 50 per barrel. At the same time, the purchase con-

15 http://www.reuters.com/article/oilRpt/idUSLG57935420090217
16 Also, reserve booking rules prevent StatoilHydro from booking the tar sand acquisition in
Canada.

7This can be accessed at the company’s website. See http://www.statoilhydro.com/en/
NewsAndMedia/News/2008/Pages/Peregrino4March.aspx
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tract has a clause worth recognising. StatoilHydro is paying NOK nine billion for
the share of Peregrino and 25% of the deepwater Kaskida discovery in the Gulf of
Mexico.!® A possible additional compensation of up to NOK 1.5 billion may be
paid for Peregrino if future oil prices are above predefined levels up to 2020. This
shares the risk between buyer and seller. StatoilHydro has clearly hedged the down-
side through this agreement, but also appears to have ceded a substantial part of the
upside.

In spite of higher oil prices, the average price paid for proven and probable re-
serves in the international oil industry was USD 4.67 per boe in 2007, down from
USD 5.18 in 2006.'° Higher oil prices have been more than offset by cost and tax
increases. In an interview with Dagens Neeringsliv on 4 March 2008, share analyst
Gudmund Hille Isfeldt in DnBNor Markets estimated that StatoilHydro is paying
USD 1.4 billion for Peregrino, plus an optional USD 300 million from 2010 to 2020
depending on oil price trends. USD 1.4 billion translates into a price of USD 5.60
per barrel, excluding the USD 300 million related to oil prices in the production
period. Isfeldt added that the price per barrel becomes substantially lower when the
upside in the reserves is taken into account.

Two aspects are of particular interest for a closer look.

1) After the acquisition, StatoilHydro will be the sole licensee.

Normal practice is for international oil companies to hold licences through joint
ventures with each other. The advantages relate partly to operations and partly to
risk sharing. More participants in a licence provide access to a wider range of ex-
pertise, and the companies can jointly arrive at optimum technical and commercial
decisions. This also permits the sharing of project-specific risks, which can often be
substantial — such as cost overruns and surprises related to the reservoir and pro-
duction. It is accordingly unusual to be the sole licensee of a field of this size. The
risk will quite simply be too large. An explanation for the acquisition could be that
an increased holding provides greater potential for carrying reserves on the balance
sheet. Another possible reason could be differences of opinion over the way the
field should be developed. StatoilHydro has ambitions of achieving a higher recov-
ery factor than would have been the case with the original plans, which also calls for
much larger investment. The opportunity to bring in other licensees at a later date
will nevertheless remain open, subject to approval by the authorities.

2) The payment for the licence transfer is a function of the future oil price.

The settlement for the licence share takes the form of a fixed amount plus a possible
supplementary compensation of up to NOK 1.5 billion if future oil prices rise above
predefined levels by 2010. Tying payments to future oil prices might be regarded as
risk hedging at the project level. StatoilHydro reduces the amount it has to pay today

'8 The latter acquisition was subject to approval by the other partners in the license and has been
turned down. This promising equity position is instead taken over by the partners.

19 This emerges from a survey conducted by analysis company John S Herold and Standard Char-
tered Bank. See www.dn.nofor 11 March 2008.
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in exchange for ceding part of the future upside in the project. However, risk hedging
at project level would not be recommended on the basis of economic research. What
means something to the owners of a company is its aggregate risk profile. Risk
management should accordingly be based exclusively on assessments of the risk
exposure of the company’s overall portfolio. Since individual company projects will
have risk profiles which cancel each other out to some extent, hedging need only be
considered for part of the residual risk. If the company hedges at a lower level, such
as a project, overall risk management could become excessive. This will lead in turn
to sub-optimisation, and contribute in part to excessive transaction costs for hedging.
It is otherwise also the case that investors who buy oil shares are precisely seeking
to include oil price risk in their portfolio, and will react negatively if profits fail to
grow sufficiently in line with rising oil prices. The possible unfortunate effects of the
risk-sharing agreement on Peregrino — such as results failing to improve sufficiently
as the price of oil increases — could however be reversed through the company’s
general risk management. One option would be transactions in the forward market.
But this illustrates precisely the point that conducting risk management at two levels
is pointless.

However, the agreement terms need not have anything to do with risk sharing.
Licence farm-ins occur internationally where the settlement is conditional on spe-
cific outcomes (such as a specified level of oil prices). An optimum solution for
two parties who take different views of the future could be to conclude such agree-
ments.20 If that is the case, it means that Anadarko has a more positive view of oil
price trends than StatoilHydro.

The stock market announcement specified repeatedly that the acquisition was
strategic. If this also means expensive, as experience would suggest, it could be ap-
propriate to take a closer look at the agreed payment mechanism. In addition to the
fixed settlement, StatoilHydro has given Anadarko an option conditional on the price
of oil. Whether that is the intention, this helps camouflage the real breakeven price.
Given the limited information provided, it is impossible to calculate the value of this
option. At first glance, the acquisition looks cheaper than it actually is and people
referred to a breakeven price of roughly USD 50 per barrel. The option payment
must be added if the true breakeven price is to be identified. To achieve comparabil-
ity with light oil projects — such as developments on the NCS — the spread between
light and heavy oil must also be taken into account. The oil prices referred to in the
press, Brent Blend and West Texas Intermediate (WTI), relate to light oil. At a press
conference held after the acquisition, it was explained that the breakeven price of
USD 50 cited by StatoilHydro for a heavy oil project referred to the Brent Blend
reference crude, so comparability is maintained.

Heavy oil is priced considerably lower than light crudes, not least because of
scarce refining capacity. Price trends for heavy crude could improve were capacity
to be built up in the refining sector, but the development of a growing volume of

20 Buyer and seller could achieve the same effect to some extent by taking positions in the forward
oil market.
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heavy oil reserves has prompted doubts among analysts about the progress of heavy
crude prices. The spread between heavy and light oils at the time of the signing of
the agreement was said to be USD 15-25 per barrel. Another specific project off
Brazil operates with a spread of USD 23 per barrel. In other words, this amount
must be deducted from quoted Brent Blend and WTI prices to find the heavy oil
price.”!

It was Hydro which acquired the first 50% of Peregrino (then called Chinook) for
USD 350 million from Canada’s EnCana in 2005. According to Isfeldt, StatoilHydro
has paid USD 1.4 billion for the remaining 50% plus an option of USD 300 million
from 2010 to 2020, depending on oil price developments.”> We are talking here
of a virtual quadrupling over three years. An increased recovery factor and higher
oil price expectations play a big part, and StatoilHydro has upgraded the expected
reserves during the development phase. But it appears that a good deal of strategic
value may also have been assigned to the actual operatorship.

When Hydro acquired 50% of this licence in 2005, the recovery factor for this
heavy oil field was estimated at 9%. With StatoilHydro’s reservoir development
plan, which utilises water injection and rock compaction, the estimated recovery
factor rose to about 20%, and an even higher factor has been suggested later. That
means estimated recoverable reserves have more than doubled.?® When valuing this
expansion, account must also be taken of the fact that increased reservoir utilisation
has a substantial cost side. When assessing the value of reserves today compared
with earlier valuations, it is important to determine whether the upgrades are based
on new reservoir information. That appears to be only partly the case. The stock mar-
ket announcement states that the potential supplementary resources are indicated by
three-dimensional seismic surveys and have been partly proven by drilling a new
well (3-PRG-0001-RSJ) in 2007. It also states that further appraisal wells will be
needed to confirm remaining upsides in the south-western and southern extensions
of the field.

The number of wells to be drilled and their spatial positioning — the well
network — are of great significance for the recovery factor. But reservoir proper-
ties also mean a lot — the size of the residual oil saturation behind a water front,
for instance. This can be difficult to estimate without a production history and
measurements.

Historical experience in the oil industry indicates that oil companies overin-
vest when crude prices are high, and are therefore cautious about expressing high

21 The discount on various oil grades depends on the supply and demand of a given grade and how
many potential buyers can handle heavier oils. Where heavy crude is concerned, the discount will
depend on how heavy it is, often expressed as degrees API, as well as on other factors such as
its viscosity, how complex it is to refine, whether it could be blended with lighter oils to permit
refining and so forth. Rather than a single spread, a whole range of prices exist. According to
industry specialists, the Peregrino oil has an API around 14, with an expected sales price 25-30%
lower than WTL

22 http://www.dn.no/energi/article1328359.ece

23 See http://www.statoilhydro.com/en/NewsAndMedia/News/2007/Pages/PeregrinoOperatorship.
aspx
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breakeven prices for new projects. At the same time, they need additional reserves —
which place them in a dilemma. StatoilHydro is in good company here, along with
virtually all the major international oil companies. A possible solution is optimistic
cost and reserve estimates. The latter incorporate various growth options in the form
of improved recovery from the main reservoir and supplementary resources. Statoil-
Hydro is far more optimistic for Peregrino in this respect than was Anadarko (and
all other potential bidders), and this undoubtedly represents part of the basis for the
transaction. On the other hand, the company is also highly competent in getting a
lot out of fields. The recovery factor on the NCS is the highest in the world. How-
ever, sub-surface experts are doubtful about how much of this high NCS recovery
should be attributed to advantageous natural conditions and how much to expertise.
It has been claimed, for instance, that seawater injection in Ekofisk has not only
hindered seabed subsidence but also affected the wettability of the chalk in a more
water-wetting direction, and thereby improved recovery. Furthermore, it has tran-
spired that a number of the large Norwegian sandstone reservoirs have a naturally
mixed wettability, ensuring a very high recovery factor through water injection or
natural water drive from the underlying aquifer.

5 Conclusion

International oil companies face problems replacing reserves through their own ex-
ploration and development activities. Reasons for this include a reduced exploration
commitment in the 1990s, fewer large discoveries and reduced access to oil fields in
regions with large resources.”* The latter is often referred to as resource nationalisa-
tion, where a number of resource-rich countries and regions like Russia, Venezuela
and the Middle East reduce the access for IOCs at high oil prices. Efforts are being
made to compensate for replacement challenges through extensive purchasing of re-
serves. The danger is that such acquisitions are made at a high price. Sharply rising
costs in the oil companies could represent a substantial challenge if oil prices were
to decline significantly, which they have. A focus on reserves and volume could
then be at the expense of profitability. This is a normal condition for the industry,
which has historically overinvested when oil prices were high. However, many mar-
ket players argue that the strong growth in demand for petroleum and the substantial
problems faced in replacing reserves will result in a permanent upward shift in the
oil price. A number of serious players went so far as to say that the price of crude
could not fall below the very high 2008 level. They were wrong.

A number of producer countries — typically those with the biggest resources —
are not prepared to cede ownership or control over their petroleum to foreign com-
panies. This creates challenges for gross value creation, since control of resources
is often closely related to incentives for maximising the value of reserves. It also

24 On the other hand, access to gas is simpler.
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limits opportunities for the international companies in these countries. However,
there should be scope for establishing synthetic incentives which imitate to some
extent those provided by normal licence terms. Both oil companies and producer
countries stand to benefit from such a solution.

This article has reviewed two cases involving StatoilHydro: the Shtokman field
off Russia and Brazil’s Peregrino discovery. StatoilHydro has manoeuvred itself
in a competent manner into key positions in Russia and Brazil, which are clearly
among the most promising producer nations in the coming years. The company
has established a close collaboration with Gazprom and Petrobras, and has ac-
quired promising licences in these two countries. Since Shtokman and Peregrino
will absorb big personnel and capital resources, however, they cannot simply be as-
sessed on the basis of the strategic opportunities which they could open for further
growth. They must also deliver in relation to StatoilHydro’s on-going value creation.
Analysts and the stock market have been lukewarm or negative to Shtokman and
positive to Peregrino.

The problem with buying reserves in other countries is that one typically bids
against companies with experience from the area (asymmetric information). One
can then end up suffering the winner’s curse — paying above the true value. Statoil-
Hydro has had some experiences of that kind, e.g. the Spinnaker acquisition in the
Gulf of Mexico. The opposite position prevailed in the Peregrino licence, however,
in that StatoilHydro already had a 50% holding. This was perhaps part of the reason
why the company wanted to become the sole licensee, which is unusual for such a
large field. Ceding part of the upside to the seller through an option related to the
sale is at the outset unfortunate from the shareholders’ perspective. However, this of
course depends on the alternative selling price without the option. Sometimes such
options are crucial to trigger a sale. Moreover, StatoilHydro has acquired an opera-
torship where it can utilise its experience and expertise from similar developments.
If the company succeeds in achieving high reservoir utilisation, as it has managed on
the NCS, the investment will still provide an upside providing costs are kept under
control. It could then also represent an important reference project for the company,
which could make it easier to acquire other reserves. However, high reservoir util-
isation calls for a lot of drilling, and rig rates are exceedingly high today. But it
is possible that the substantial volume in the field could justify this, and rig rates
are likely to go down. A high spread between light and heavy crude prices as well
as special costs associated with recovering heavy oil could represent challenges for
project economics. A good deal of environment-related uncertainty also attaches to
heavy oil projects.

A way of overcoming the problem presented by asymmetric information when
bidding for reserves would be to specialise in specific geographic areas and
geological structures. That avoids having to bid constantly against companies
who know more than oneself. Other considerations also favour a concentration,
such as becoming familiar with regulations and their enforcement and establishing
relations with the supplies industry. StatoilHydro has had a system of geographic
core areas, but this does not always appear to have been effective in limiting the
spread of activities.
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Where Shtokman is concerned, StatoilHydro has entered into a contractor con-
tract where its payment appears on paper to comprise a regulated maximum return
for leasing production equipment over a 25-year period. This type of deal is more
suitable for contractor companies. Its remuneration profile is not what investors in
oil companies are looking for — namely, a cash flow which varies with production
and gas prices. In addition to the long payback period in a country with substantial
political risk, a substantial downside risk probably exists in relation to delays and
overruns. Basically, there does not appear to be an upside which can compensate for
the downside in the project. However, the commercial terms are still subject to nego-
tiation, and efforts are being made to introduce synthetic incentives to the contract
which will give StatoilHydro an upside related to the development of gas prices and
the produced gas volumes. If such terms cannot be incorporated in a credible way
(through having the contract refer to international gas prices, for instance), it is dif-
ficult to see why StatoilHydro should want to give final consent to the agreement in
2009. The Shtokman involvement will lay claim to many competent people in a pe-
riod when expertise is in short supply, and will also call for very substantial capital
outlays. These aspects must be balanced against corresponding upside opportuni-
ties. Compared with Total, StatoilHydro may have a strategic advantage in the final
negotiation since it has not paid a signature bonus yet. Ultimately, however, both
companies are dependent on the Russians sticking to their agreements. That does
not appear to have been the case so far, but the Russians are in good company with
other producer countries in this respect.

Russian authorities have so far had the advantage that oil companies, in their hunt
for reserves, have been queuing up to develop fields in Russia. As experienced ne-
gotiators, they have also organised the playing field in such a way that the foreigners
are pushing hardest for an agreement. However, negative experiences for foreign oil
companies in Russia have shortened the queue to some extent. Moreover, plans and
milestones for the Shtokman development now appear to have been established. It
would not look so good for the Russians if StatoilHydro were to jump ship in 2009,
which could give the latter a certain negotiating strength. This is the type of raw bar-
gaining power which the Russians seem to understand. However, it remains unclear
whether they fully comprehend that an agreement which provides StatoilHydro and
Total with sufficient upside is necessary to harmonise their goals with those of the
Russian authorities in order to achieve the largest possible value creation from the
field. The willingness of the Russians to observe agreements is also questionable.
As a result, it may be simpler in today’s circumstances for the supplier companies
to make money in Russia since they are paid on a continuous basis and can pull
out should payment fail to be made. That will not be an option for StatoilHydro or
Total once they have locked many billions of kroner into irreversible infrastructure
investments.

While StatoilHydro can recognise booked reserves in Peregrino quickly, how far
it will be able to do so with Shtokman remains an open question. Recognising re-
serves in the field will be possible in formal terms, and the Russian authorities would
have nothing to lose from foreign companies doing so. Any barrier to recognising
reserves would be raised by resource nationalism, but it is hard to believe that such
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considerations would be stronger in Russia than in Iran. In any event, Shtokman
cannot relieve reserve replacement challenges in the short term, since it is unlikely
that the field can be booked as reserves for many years because technological, legal
and financial conditions have yet to be clarified.
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Elastic Oil: A Primer on the Economics
of Exploration and Production

Klaus Mohn

Abstract Predictions from the original geophysical approach to oil exploration and
production suggest that oil production will develop according to a predetermined
and inflexible bell-shaped trajectory, quite independent of variables relating to tech-
nological development, economics, and policy. Exploring the potential sources of
elasticity in oil reserves and production, this paper offers a modification to the geo-
physical approach. Based on economic theory and modern empirical research the
results suggest that both reserve-generation and production are indeed influenced
by factors and forces of technology, economics, and government regulation.

1 Introduction

The sharp oil price increase over the last few years has increased the interest for
security of energy supply in general, and for oil supply in particular. An important
factor behind the oil price surge is strong economic growth in large parts of the
world, but especially in newly industrialized economies like Brazil, Russia, India,
and China. Another important factor relates to oil supply. So far, the response in
oil supply to the latest price increase has been muted, partly due to financial pres-
sures and enhanced capital discipline among international oil and gas companies
(e.g., Osmundsen et al. 2007; Aune et al. 2007), but potentially also due to more
fundamental factors relating to the non-renewable nature of fossil fuels. In this con-
text, it is interesting to note that the most important petroleum provinces in the
OECD area are faced with depletion (e.g., USA, Canada, United Kingdom, and
Norway). International companies are therefore gradually shifting their attention
and activities toward resource-rich countries in other parts of the world (e.g. Russia,
Latin-America, Africa, and the Middle East).
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Ultimately, global oil reserves are bounded by nature, with physical limits both to
availability and production growth. One of the early proponents of the geophysical
approach to oil exploration and production was Hubbert (1962), who argues that cu-
mulative production is the key predictor of the rate of production. According to this
view, the geological knowledge which has been gained in a region is best described
by cumulative production. As the region matures, cumulative production will also
capture the inescapable destiny of depletion. And since production is determined
by the level of reserves, reserve depletion will also cause an ultimate dampening of
both investment rates and production. In consequence, petroleum production will
develop according to a logistic growth function, yielding bell-shaped trajectories
for exploration activity, reserve additions, and production. The sort of production
profiles generated by the geophysical approach to petroleum exploration and pro-
duction is illustrated in the right-hand panel of Fig. 1.!

Scale economies due to learning-by-doing (e.g., Quyen 1991; Krautkraemer
1998) will normally produce rapid growth in annual reserve additions from new dis-
coveries in the early phase of development of a new oil province.” As the province
matures, the average field size of new discoveries will tend down, and annual reserve
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Fig. 1 The geophysical perspective on oil exploration and production. Source: Stylised example
based on author’s calculations

! The so-called Hubbert’s peak was (quite successfully) applied to predict that US oil production
would reach its maximum around 1970. The same concept has inspired the current debate of Peak
Oil, with high-spirited discussions about when the world’s oil production will peak.

2 A popular analogy is found in the classic board game “Battleship”. In the early phases of the
game, with many ships on the board, expected rewards from bombing are high, with major learning
effects involved whenever a new ship is hit. However, expected marginal gains, as well as learning
effects, drop towards the end of the game, when the majority of ships have been sunk.
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additions will diminish. This is illustrated in the left-hand panel of Fig. 1, whereby
a bell-shaped curve for annual reserve additions gives rise to an s-shaped curve for
cumulated volumes of discovered oil reserves.

As opposed to the scientists of geophysics and geology, economists like to think
that oil production is governed by competitive companies’ maximization of ex-
pected profits. Consequently, economists put special emphasis on the influence of
unit costs of reserve-generation and production, market developments, and policy
regulations. This does not imply that economists entirely neglect the geophysical
aspects of oil exploration and production. Rather, the physical perspective repre-
sented by Hubbert’s peak is regularly taken as a point of departure, and augmented
with models and variables based on economic theory.

An obvious conundrum for the geophysical approach to oil production relates
to the actual development of global reserves and production rates over the last
decades. The fact is that proved global oil reserves have increased by 75% since
the beginning of the 1980s. Annual rates of production have increased by nearly
40% over the same period, and remaining global reserve life has gone from 30 to
40 years over the last 25 year period.’ The static approach implied by the Hubbert
curve fails in explaining this development (e.g., Lynch 2002), and one important
source of this shortfall relates to technological development (see also Watkins 2006).
Improved technologies have improved the reserve and revenue potential for re-
serve and revenue-generation, not only from exploration activities (e.g., Managi
et al. 2005), but also from new techniques for increased oil recovery in produc-
ing fields (e.g., Watkins 2002). At the same time, unit costs have been pushed down
by technological progress. New solutions for exploration, development and produc-
tion have implied a range of input-specific productivity gains, related to capital,
labor, and energy. Economic models of oil exploration and production seek to em-
bed these developments through appropriate mechanisms of technological progress,
and through the incorporation of technology variables in empirical research.

When geology meets the market there are also prices involved. The supply from
profit maximizing oil companies is determined by the equation between the oil price
and marginal cost of production. Moreover, oil is an energy bearer that faces varying
competition from other energy bearers, like coal, natural gas, and hydro-generated
electricity. Finally, oil companies operate in variety of input markets, with direct
exposure to varying costs of capital, labor, energy, materials, and other commodities.
Consequently, oil investment and oil supply is likely to be influenced not only by the
oil price, but also by a range of other energy prices, and potentially also by shifts and
shocks in the input markets. To some degree, these mechanisms are also captured
by economic models of oil supply.

Empirical studies of OPEC’s role in the oil market have generally failed to estab-
lish firm evidence of stable cartel behavior. However, recent studies do acknowledge
that some sort of collusion is taking place. The current discussion is more about
which model of imperfect competition the oil price formation adheres to, and to the

3 According to BP’s Statistical Review of World Energy 2007.
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stability issues of OPEC’s market power (e.g., Smith 2005). Whatsoever, industry
structure and macroeconomic management may have implications for incentives at
the operational level. If the group of OPEC is seen as a dominant producer of an oil
oligopoly, the strategic response to a lack of investment opportunities among their
non-OPEC competitors does not necessarily imply an increase in OPEC investment
(e.g., Aune et al. 2007). Moreover, oil investment and oil supply may not respond to
high oil prices in countries dominated by national oil companies, as these companies
may rather seek to stabilize government revenue than to maximize profits.

As the geophysical approach to oil production is focused entirely on the sub-
surface determinants of reserves and production, it also neglects the influence of
government regulation. Governments play a role along the entire value chain of oil
and gas companies. They control the access to exploration acreage, they approve
any development project, they set the conditions for operations, and they design and
impose systems of petroleum tax and government take. Moreover, governments also
decide on how to manage petroleum resources, and not the least how to deal with
resource revenues. It follows that economic models of oil production also require a
role for government regulation and policies.

All in all, the geophysical approach to oil exploration and production is improved
if the modeling framework is extended to include processes and variables con-
cerning technology, markets, policy regulations, and market structure. Such an
enhancement adds flexibility and elasticity to the geophysical approach. The re-
sult is a model that yields a better understanding of the interface between geology
and economics, with improved predictions of both reserve-generation and produc-
tion. This combined approach is illustrated in Fig. 2, where an interval of elasticity
is added for both reserve additions and for oil production. The shaded areas indicate
possible outcomes for oil exploration and production, depending on local and global
factors of technology, prices, market structure, and policy regulation.
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Fig. 2 The economic perspective on oil exploration and production. Source: Authors calculations
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The remainder of this chapter is organized as follows. Section 2 provides a brief
review of previous economic research on oil exploration and production, with a
special emphasis on empirical models. To shed light on the economic approach
to reserve-generation, Sect.3 gives a retrospect on exploration activities on the
Norwegian Continental Shelf (NCS). A couple of empirical models are demon-
strated in Sect. 4, again based on data from the NCS. Concluding remarks are offered
in Sect. 5.

2 Previous Research

As illustrated in Fig. 2, the economic perspective on oil exploration and production
usually introduces a rightward bias in the logistic growth framework of the geophys-
ical approach, as demonstrated in an empirical assessment of the ultimate resource
recovery by Pesaran and Samiei (1995). This implies that over a period of time, re-
source additions tend to outpace the original geophysical estimates. In consequence,
this also means that production rates will stay higher for longer than suggested by
the simple Hubbert curve of Fig. 1.

One important source of this bias relates to technological progress. Technological
progress can be addressed from two perspectives. On one hand, technological ad-
vances may exert a positive influence on the success rates in exploration and on the
recovery rates of production. On the other hand, the dual approach is to view tech-
nological progress as a source of unit cost improvements. This would imply that
technological advances induce an increase in yield per effort both in exploration
and production. The accumulation of information and competence has the poten-
tial to improve the returns from exploration (e.g., Cleveland and Kaufmann 1997;
Managi et al. 2005), as well as net revenues of production (e.g., Farzin 2001;
Watkins 2002). In exploration, significant technological advances relate to the col-
lection and interpretation of geological information, improved operational drilling
efficiency, as well as new technologies for real-time monitoring and measurement
of the well’s downhole conditions. According to Forbes and Zampelli (2000), tech-
nological progress increased the success rate in US offshore exploration by 8.3%
per year over the period 1986-1995. Similar advances in drilling technology are
highly relevant also for production activities, as the investment in additional pro-
duction wells become increasingly important when an oil field passes its peak, and
embarks on the road towards depletion. Towards the tail-end phase of production,
advanced reservoir management is combined with sophisticated drilling strategies to
drain the reservoirs and to maximize resource recovery. Based on historical figures,
Watkins (2002) finds that reserve appreciation over the lifetime of an average oil
field amounts to some 20% for the United Kingdom, and close to 50% for Norway.

Another important deficiency in the original Hubbert model is its neglect of
market mechanisms and price effects. Even though natural resources are bounded
by nature, they are exploited by companies who adjust their behavior accord-
ing to market developments and prices (e.g., Lynch 2002; Reynolds 2002).
Empirical exploration models for the US oil and gas industry are surveyed by
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Dahl and Duggan (1998), who conclude that acceptable models have been obtained
for drilling efforts, with long-term oil price elasticities above one (see also Mohn
and Osmundsen 2008; Ringlund et al. 2008). However, there is reason to believe
that drilling efficiency is also influenced by the oil price, as risk propensity in
company investment is affected by its financial flexibility (Reiss 1990; Iledare and
Pulsipher 1999). Based on time series data for the Norwegian Continental Shelf,
Mohn (2008) finds that reserve additions are indeed enhanced by an increase in
the oil price, due to responses both in effort and efficiency of exploration. His
explanation is that oil companies accept higher exploration risk in response to an
oil price increase, implying lower success rates and higher expected discovery
size. Since the beginning of the 1990s, a series of studies have also augmented the
simple Hubbert approach to oil production with economic variables, most notably
the price of oil (e.g., Kaufmann 1991; Cleveland and Kaufmann 1991; Pesaran
and Samiei 1995; Moroney and Berg 1999; Kaufmann and Cleveland 2001). The
research strategy of these studies has two stages. In the first stage, a reliable
estimate is obtained for the Hubbert production curve. In the second stage, the
deviation between observed production and the estimated Hubbert curve is mod-
eled as a function of economic variables. All these studies show that economic
variables are able to improve the quality of the original Hubbert model. How-
ever, the estimated oil price effects are modest, with elasticities of around 0.1
for the estimated production rates. The standard competitive model of supply has
also been applied for empirical cross-country studies of oil supply (e.g., Watkins
and Streifel 1998; Ramcharran 2002). In general, this class of models produces
positive, but modest price elasticities for non-OPEC countries. On the other
hand, the competitive model fails in providing a trustworthy description of OPEC
supply.

The failure of competitive models in explaining OPEC supply behavior is simply
a reflection of the imperfect competition in the global oil market. In 1960, OPEC
was founded to unite the interests of petroleum policies across member states. Since
then, OPEC oil ministers have met regularly to discuss prices and production quotas.
In 2006, OPEC countries accounted for 42% of the world oil production and 75%
of the world’s proven oil reserves.* Empirical studies of OPEC’s role in the oil
market have generally failed to establish firm evidence of stable cartel behavior.
However, recent studies do acknowledge that some sort of collusion is taking place.
The current discussion is more about which model of imperfect competition the
oil price formation adheres to, and to stability issues of OPEC’s market power
(e.g., Fattouh 2006).°> A popular assumption for OPEC behavior is the target rev-
enue hypothesis, which implies that production is regulated inversely with price to
uphold a revenue level which is adequate for exogenous investment and consump-
tion needs (e.g., Alhajji & Huettner 2000). The target revenue hypothesis imply that
supply curves could be backward bending at high prices, which could again explain

4 According to BP’s Statistical Review of World Energy 2007.
3 See Smith (2005) for a critical overview of empirical studies of OPEC behavior.
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the muted investment response in OPEC countries to the current record oil price.
However, as shown by Aune et al. (2007), net present value maximization com-
bined with the exploitation of market power is also consistent with OPEC supply
and oil price formation over the last years.

Finally, governments also exert an influence on reserve-generation and pro-
duction in the oil industry. For profit-maximizing oil companies firms, profits are
affected by tax systems and other forms of government take. Thus, incentives at the
industry level may be affected by the regulatory system. In an econometric study of
US exploration behavior, Iledare (1995) incorporates the tax system in his proxy for
the marginal value of reserves. In exploration activities, governments also play an
important role as the ultimate holders of exploration acreage. Access to exploration
acreage is determined by licensing systems and policies, which therefore have to be
incorporated in models of exploration activity and reserve-growth. Based on data
from the NCS, Mohn and Osmundsen (2008) illustrate how exploration drilling
is stimulated by awards of new exploration acreage, and Mohn (2008) also finds
the size of average discoveries to be affected by licensing policies. Governments
also play a role for the production phase of petroleum activity, with taxes and other
systems of government take as the most notable transmission mechanism. As an
example, a variable for pro-rationing of oil production in Texas prior to 1973 is
included in Moroney and Berg’s (1999) integrated model of oil supply. In gen-
eral, tax systems have the potential of reducing investments and production growth
(e.g., Boone 1998), distorting the optimal allocation of investments along the value
chain,’® and changing the distribution of capital for oil investment between countries.
See Glomsrgd and Osmundsen (2005) for a recent overview of these issues.

3 NCS Exploration and Production

The Norwegian Continental Shelf (NCS) is a relatively young oil and gas province.
Its petroleum potential was ignited among geologists by the discovery of the
Groningen gas field in the Netherlands in 1959. The first discovery on the NCS
was made in 1969, and the Ekofisk field was put on stream 2 years later.” A number
of discoveries were made in subsequent years (cf. Fig. 3), and, these laid the founda-
tions for the evolution of a new and important industry in Norway, and a supplying
region for US and European oil and gas markets. Today, 53 NCS fields contribute
to the total Norwegian oil and gas production at 236 M standard cubic meters (scm)

6 Capital requirement along the value chain include investments in exploration activities, field de-
velopment, efforts to increase oil recovery, processing and transport facilities, and potentially also
marketing activities.

7 A non-commercial discovery (Balder) was actually made by Exxon (Esso) already in 1967. How-
ever, it took 30 years of technological development to mature this discovery into a profitable field
development project based on subsea templates tied back to a floating production and storage
vessel. The Balder field was put on stream in 1999 and is still producing (mid 2008).
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Fig. 3 NCS exploration and production. Source: Norwegian petroleum directorate

oil equivalents (oe), with a natural gas share of some 40% (2008). According to the
Norwegian Petroleum Directorate (NPD), total oil production is now expected to
continue its phase of gradual decline. On the other hand, gas production is seen to
increase for another 5 years from today — to plateau levels of around 120 bn scm oe
per year. For a thorough industry and policy overview of the NCS, see Ministry of
Petroleum and Energy (2008).

Regulated gradualism has been a guiding principle for the development of the
Norwegian oil and gas sector. The key regulatory instrument for exploration and
production is the production license, which gives the exclusive right for explo-
ration and production of oil and gas within a specified area, usually referred to as a
block. Production licenses on the NCS are awarded through licensing rounds, and
licensees retain ownership for the produced petroleum. A specific number of blocks
are announced by the government, and the companies prepare applications based on
published criteria. Based on submitted applications, the Ministry of Petroleum and
Energy (MPE) decide on a partnership structure for each license, and an operator
is appointed to take responsibility for the day-to-day activities under the terms of
the license. Typically, a production license is awarded for an initial exploration pe-
riod that can last up to 10 years. However, specified obligation regarding surveying
and/or exploration drilling must be met during the license period. At completion of
this kind of obligations, licensees generally retain up to half the area covered by the
license for a specified period, in general 30 years.

After three decades of production, volume estimates from the Norwegian
Petroleum Directorate (2007) indicate that 2/3 of the expected total physical oil
and gas resources remain in the ground, nearly 40% of total resources are yet to
be matured to proven reserves and 26% of total resources remain undiscovered.
Exploration activity and results will be important to sustain production levels on the
NCS over the longer term.

The first exploration well was struck in the North Sea in 1966, but it took 30 wells
and 3 years before the breakthrough was made with the discovery of the Ekofisk field
late in 1969. Since then, another 1,200 explorations and appraisal wells have been
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Fig. 4 Exploration efforts and number of discoveries. Source: Norwegian Petroleum Directorate
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drilled, of which some 850 are classified as exploration wells (cf. Fig. 4). With more
than 600 exploration wells, the North Sea represents approximately three-fourth of
total cumulated exploration activity on the NCS. 160 exploration wells have been
drilled in the Norwegian Sea, whereas only 63 exploration wells have been drilled
in the under-explored Barents Sea. As illustrated in the right-hand panel of Fig.4,
the annual number of discoveries has largely hovered in the area between 5 and
15 over the last 20 years. However, we see a slight positive trend in the number of
discoveries over time. To detect the sources and factors behind this development,
the figures have to be decomposed even further.

A simple input measure to the exploration process is offered by exploration
effort, or drilling activity, as illustrated in the left-hand panel of Fig.4. A corre-
sponding output measure is offered by reserve additions per exploration well (yield
per effort). However, exploration output can be decomposed even further, as reserve
additions per exploration well is the product of average discovery rate and average
field size. The historical record for these two indicators is illustrated in Fig. 5. Over
the 40-year period, the discovery rate has average 1/3, which is quite high by inter-
national standards. We also note that the volatility of the discovery rate was high in
the early phase, which is an indication of high exploration risk due to inadequate
information and poor experience. Over a period of time, however, discovery rates
seem to have stabilized somewhat, and we also note a slight upward trend, which
probably can be attributed to the accumulation of competence, experience, and tech-
nological progress.

The right-hand panel of Fig. 5 reports annual averages for the size of new discov-
eries. In their pursuit of maximum return, oil companies rank exploration prospects
according to value potential, and target the structures with the highest potential first
(Iledare 1995; Dahl and Duggan 1998). This is one explanation why the early phase
of an oil province is usually dominated by large discoveries. However, government
policies also played an important role for this development, as the early phase of
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Fig. 5 Exploration success: discovery rates and average field size. Source: Norwegian petroleum
directorate and author’s calculations

the NCS history was characterized by regular licensing rounds, with a continuous
supply of virgin exploration acreage with high potential. Finally, the high oil price
level and an overconfident oil price outlook may also have induced oil companies to
increase their exposure to overall exploration risk in the 1970s and early 1980s. This
would also imply (lower expected discovery rates, and) a higher expected field size.

Over the last years, the NCS has gradually entered a more mature phase. Ex-
ploration efforts have been weak over the last years, and reserve additions from
exploration have slowed to a trickle (cf. Fig. 3). Oil production has passed its peak,
gas production is approaching its plateau, and there is no line of imminent new
field developments. On the other hand, the record-high oil price provides a strong
stimulus for investment to enhance recovery from the producing fields. To sustain
investment and production over the longer term, the NCS will ultimately depend on
new reserve additions from exploration. Both authorities and companies see a high
potential for gas discoveries in the deepwater areas off Mid Norway, but so far, the
establishment of a proven exploration play for this area is still pending (Norwegian
Petroleum Directorate 2007).® Access to new exploration acreage with high po-
tential in vulnerable waters off Northern Norway could be important to enhance
the NCS reserve base. Due to environmental concerns, the issue of new awards in
Northern Norway has developed into a highly controversial issue. However, an ex-
trapolation of the Norwegian approach to petroleum management suggests that a
political consensus will be reached, and that the industry will continue its gradual
quest into Northern waters.

8 An exploration play is a geographically bounded area where a combination of geological factors
suggests that producible petroleum can be discovered. The three most important factors are (1) a
reservoir rock where petroleum can be preserved, (2) a tight geological structure (a trap) that covers
the reservoir rock, and (3) a mature source rock containing organic material that can be converted
into petroleum (Norwegian Petroleum Directorate 2007).
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4 A Simple Model of NCS Exploration

The reserve concept is one of the factors that distinguish non-renewable resource
industries from other industries. Due to this defining characteristic, oil companies
engage in extremely risky exploration activities to support and grow their base of
oil and gas reserves, and to sustain production activity over the longer term. Among
the oil companies, the set of exploration opportunities is subject to continuous eval-
uation and management based on a range of criteria relating to geology, technology,
economic factors, and government policies. The result of this balancing act is a dy-
namic exploration strategy. Moreover, the implied portfolio of exploration drilling
activities yields a certain average finding rate, a particular distribution of discovery
size, and ultimately, a specific rate of gross reserve additions. Consequently, the data
we observe for efforts and efficiency in oil exploration are formed by simultaneous
decisions in each company. This simultaneity should be appreciated also in eco-
nomic models of the exploration process. Drawing on Mohn (2008), an empirical
modeling approach to exploration behavior will now be outlined, along with some
results for time series data from the NCS.

The exploration process represents the traditional source for reserve additions.
Based on sophisticated insight on the underground, exploration wells are directed at
various layers that presumably hold oil and/or gas resources, according to different
exploration plays. Exploration drilling may take place in virgin areas, where undis-
covered deposits are potentially, and where the base of accumulated information and
experience is correspondingly small. Alternatively, companies may focus their ex-
ploration in areas where fields have already been developed, with a significant base
of competence and experience, and with access to well-developed infrastructure for
processing and transport. Exploration in frontier areas represents higher risk than in
mature areas. Within the companies, this risk is balanced against expected return in
the management of the total exploration portfolio.

Based on standard principles from neoclassical theory for producer behavior,
exploration activity may be represented by a standard production function, whereby
inputs and technological progress are transformed into reserve additions. With profit
maximization as the key behavioral assumption, such a model transforms into an
optimal supply plan, where expected reserve additions depend on the oil price (Py)
and a set of state variables for geology (depletion; H;), technology (Z;), and gov-
ernment regulation (E;). Having tested a range of alternatives, our preferred model
includes cumulated exploration drilling activity as a proxy for depletion (H;). Over
the years, the collection of seismic data has grown exponentially on the NCS,
reflecting the accelerating diffusion of increasingly advanced techniques for more
efficient exploration activities. Accordingly, seismic surveying activity (Z;) is in-
cluded among our explanatory variables to capture technological progress. Finally,
exploration efforts and efficiency is influenced by the availability of exploration
acreage, which is subject to government regulation. Consequently, our model also
includes the volume of open exploration acreage (E;), which will be influenced
by both licensing rounds (AE; > 0) and relinquishments and license expiration
(AE; <0).
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We also bear in mind that reserve additions do not depend solely on efforts,
but also on output. To this end, we apply a useful decomposition introduced by
Fisher (1964), who demonstrated that annual reserve growth (R;) can be seen
as the product of exploration effort (D;), the average discovery rate (S;), and
average discovery size (M;). With explanatory variables grouped in the vector
Xt = [P, Hy, Z;, E}], this yields for annual reserve additions:

R(Xt) = D(Xy) - S(Xt) : M(Xt) . (1)

Equation (1) illustrates three sources of reserve additions, which all can be influ-
enced by geology, technology, economics, and regulation. Consider the impact on
reserve additions from an increase in the oil price. This will depend not only on
how an oil price shock affects drilling activity (D;), but also on its influence on the
discovery rate (Sy) and average field size (M;). The relation between these factors is
again a result of the management of exploration portfolios within each oil company.
To describe these mechanisms more precisely, define 8§ as the percentage increase
in annual reserve additions caused by an oil price increase of one percent. Equa-
tion (1) now implies that this total elasticity can be represented by the sum of three
partial elasticities:

R =eB yed +M 2)
Thus, the impact of an oil price increase depends directly on how such an increase
affects each of the three components of annual reserve generation. Corresponding
elasticities apply for the other explanatory variables.

Applying simultaneous estimation techniques, Mohn (2008) now estimates the
various elasticities implied by (1) and (2). Specifically, the empirical model has three
endogenous variables (Dy, S;, M;), and is specified as a vector error-correction
model, whereby changes in dependent variables are regressed on changes in ex-
planatory variables, as well as the deviation from an underlying equilibrium relation
between the model variables. Estimation is based on Full-Information Maximum
Likelihood (Johansen 1995), as implemented in PcGive 10.

Key results for persistent elasticities are summarized in Fig.6. The estimated
long-term parameters illustrate the percentage impact on annual reserve additions
from an increase in the explanatory variables of 1%. Moreover, Fig. 6 also illus-
trates how the combined elasticities of reserve growth with respect to explanatory
variables may be decomposed, with partial attributions from drilling efforts (D),
discovery rate (5), and average discovery size (M).

In terms of specific effects from explanatory variables, maturation and deple-
tion (H,) has a highly significant (p = 0.00)° dampening effect on annual reserve

°In testing of statistical hypotheses, the probability value (p-value) of a parameter estimate rep-
resents the likelihood of obtaining a result as extreme as the one obtained through our estimation,
given that the null hypothesis is through. In our notation (p = 0.00), the implication is not that the
p-value of this parameter estimate is actually O, but that it fails to break zero at the two-digit cutoff
level of measurement.
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ties by explanatory variable (per cent). Key: * FIML estimates obtained with PcGive 10;
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tor. Source: Mohn (2008)

additions, according to the estimation results. The main mechanism for this process
is that the average field size falls over a period of time, which is also evident from
Fig.5. Seismic surveying activity, our proxy for technological development, has a
mixed effect on the exploration process. The estimated total effect of this variable
on reserve additions is small, and statistically insignificant (p = 0.61). However,
the results do imply that seismic surveying activities contribute significantly to the
increase over a period of time in discovery rates (p = 0.00), as indicated in Fig. 5.

Results for the oil price (P;) illustrate the richness in economic effects from the
proposed modeling framework, with statistically significant parameter for all the
involved partial effects, as well as for the total effect (p = 0.00). Reserve additions
are stimulated by an increase in the oil price, not only because drilling activities
are spurred, but also because of positive effects on exploration efficiency — or yield
per effort. Discovery rates are suppressed when the oil price increases, according
to the econometric results. On the other hand, the estimated model establishes a
positive and highly significant link between the oil price and average discovery size,
an effect which dominates the estimated reduction in the discovery rate. This is a
clear indication that oil companies adjust their portfolio of exploration activities
according to changes in economic and financial conditions (Reiss 1990). In times
of high oil prices, high cash-flows and high risk appetite, companies seem to tilt
their exploration activities towards risky areas (frontier exploration), with relatively
low discovery rates, and with high expected discovery size. When oil prices are
low, cash flows are constrained, and the risk appetite is more modest, exploration
strategies are typically more cautious. Consequently, exploration efforts are reduced,
and focused in areas with higher discovery rates — and smaller expected field sizes
(mature areas).'?

10 As opposed to frontier exploration areas, mature areas are typically characterized by proven ex-
ploration models, producing fields, well-developed infrastructure, transport facilities and market
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Finally, the estimated model for the exploration process on the NCS also provides
a significant role for government policies, as represented by access to exploration
acreage. An increase in total licensed exploration acreage of 1%, will produce an
increase in annual reserve additions by 0.44% (p = 0.00), according to the results.
This effect has two sources. First, a modest increase in drilling activity is sustained
when new acreage is offered. Second, new licensing rounds have a positive effect
on average discovery size. With drilling efforts focusing on the most prospective
available blocks at any time, it is natural that new licensing rounds will result in
higher average discovery size.

The presented model leaves the impression that these variables relating to tech-
nology, economics and government regulation play a significant role for reserve
additions on the NCS. Moreover, the outlined modeling approach provides a bet-
ter representation of the complexity and sophistication of the exploration process
than a simple geophysical approach. Consequently, the study by Mohn (2008) lends
substantial support to the hypothesis that economic variables contribute to the ex-
planation of oil exploration and production behavior. To illustrate this point more
candidly, the presented model is re-estimated with the depletion indicator (H;) as
the only explanatory variable.

Table 1, reports the implied changes in estimated model quality, evaluated
through the log-likelihood ratio (LL), as well as the Schwartz (SC), Hanna-Quinn
(HQ), and Akaike information (AIC) criteria. These latter three criteria of model
selection may be seen as goodness-of-fit measures for comparisons of different time
series models based on the same data set. See Dornik and Hendry (2001) for theoret-
ical background, technical detail and specific procedures for standard specification
tests and model diagnostics in PCGive 10. At this point, we remind that an increase
in the log-likelihood ratio (LL) is an indication of improved statistical power of the
model, whereas a model improvement is generally associated with a reduction in the
three other reported test criteria for model selection (SC; HQ; AIC). From Table 1
we clearly see that a disregard of economic variables yields a reduction in the
log-likelihood, and increase in the other criteria of model selection. This confirms
the preference for a combined model, and an appreciation of economic variables in
the exploration process.

Table 1 The contribution of

economic variables to overall

model quality LL SC HQ AIC
Presented model 26.50 042 —120 —047
Reduced model —2.88 0.86 0.66 0.55

Test statistics for model reduction

access. Moreover, exploration activities in these areas are usually directed at smaller satellite
fields which can be tied back to already producing facilities of larger reservoirs (in decline), with-
out the large investments involved by stand-alone field developments in new oil and gas regions
(Norwegian Petroleum Directorate 2007).
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S A Simple Model of NCS Production

Previous research on oil and gas production suggests that economic variables may
also improve the explanation of production activity. To test the impact of economic
variables on extraction levels, Moroney and Berg (1999) propose and estimate a
simple econometric model on data from the United States. Not surprisingly, they
find that a combination of economic and geophysical variables provide an expla-
nation which outperforms its alternatives, both in economic and statistical terms.
Based on the framework of Moroney and Berg (1999) a model will now be outlined
to perform a similar test on production data from the NCS (cf. Fig. 3).

As in the previous section, we first specify a model that contains both physical
and economic variables. We then remove the economic variables, and compare the
two model versions using both economic interpretation and statistical criteria of
model selection. Consider a competitive firm that produces oil according to a well-
behaved neo-classical production function Q = F(L,H),'! where L; represent a
vector of variable inputs and H; is a vector of state variables, including reserve
variables, technological conditions and government policy. Maximization of profits
(IT) now implies that the following restricted profit function can be derived:

I =TI(P, W, H) = maxg, {P-Q—W-L}
st. F(L,H) > Q, (3)

where P is the price of oil, and W is the vector of input prices. Previous litera-
ture suggests that the role of traditional inputs is dominated by other factors in the
process of oil and gas exploration and production (e.g., Dahl and Duggan 1998;
Farzin 2001; Mohn 2008). The attention of this modeling exercise will therefore be
focused on potential variables of the H vector, and the vectors of variable inputs
and their prices are neglected for simplicity of exposition.!? In this example, we are
especially concerned with the role of economic variables (P) as opposed to geolog-
ical variables. Consequently, the H vector of this sketchy application will therefore
be earmarked for variables of reserve development and depletion.

In our approximation of an empirical specification for oil production, we now
assume a multiplicative form for the restricted profit function:

I =TI(P, H) = AP%exp[BH + yH?]. 4)

"' With a long-term perspective on the production process, all inputs may be seen as variable.
Consequently, the capital stock can be included in both the L and the H vector, depending on the
horizon of the decisions in question.

12To test the validity of this assumption, a variety of interest rate and labor cost variables were
included in preliminary estimations. However, plausible and robust estimates could not be estab-
lished for any of their coefficients.
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Observe that a squared term is included for the depletion mechanism, to allow for
potential non-linearities in the process of resource exhaustion. Hotelling’s lemma
now allows the derivation of optimal oil supply directly from (4). Partial differenti-
ation with respect to the oil price now yields:

I
?)_P = AP exp|BH + yH?], (3)

where A = GAando =a — 1, H isa depletion indicator, proxied by accumulated
production, and &, B, and y are the coefficients to be estimated.

Introducing small-caps for natural logs, as well as a time index ¢, we now specify
the econometric model as a simplified error-correction representation of (5):'3

AG: = AGi—1 + bopi—1 + b1 Hi—1 + by H | + uy. (6)

The underlying structural parameters of (3) can be calculated directly from the
estimated parameters of (6).'* The lag structure of (4) implies a gradual adjust-
ment to oil price changes which is consistent with adaptive price expectations
(cf. Farzin 2001). A simple form of expectations formation is therefore encompassed
by the error-correction specification. This specification also removes problems due
to non-stationarity in the model variables, and secures dynamic balance among
variables in the econometric equation. Equation (6) may therefore be estimated by
ordinary least squares.
Based on annual time series data over the period 1972-2004, we obtain:

AGr = —0.41g;—1 +0.38p,—1 +0.95H,_1 —0.19H?2 | . (7
(0.00) (0.00) (0.00) (0.00)

The estimated model is well-behaved, and meets the requirements implied by
standard specification tests. All parameters are highly significant in statistical terms,
as indicated by the p-values (in brackets). The lagged production level exerts a neg-
ative influence on production growth, according to the estimated model, implying
a slowdown in production as long as production increases. Observe also that our
depletion indicator takes a positive coefficient, suggesting that production growth is
actually stimulated by cumulated production. However, this stimulation is modified
by the negative and highly significant coefficient on the squared depletion term.
In sum, the standard properties of the geophysical approach seem to be fairly well

13 The error-correction specification would normally also include changes in model variables.
However, these proved insignificant in preliminary estimations, and are therefore left out for sim-
plicity of exposition. The constant term is also removed for the same reason.

14 Letting all changes approach zero, (4) can be solved for ¢, to obtain @« = —by/A, B = —b; /A,
y = —b,y /A (Bardsen 1989).
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captured by (7). Observe also that the oil price takes a positive coefficient. This in-
dicates that production levels on the NCS are significantly influenced by this key
economic parameter. To study the contribution of economic variables to our expla-
nation of NCS production growth, we now reestimate the model, leaving out the
price of oil. This yields:

Agy = 0.05q;—1 —0.17H,—1 + 0.03Ht2_1 . (8)
(0.30) (0.61) (0.33)

The first impression is already that (8) provides quite a miserable explanation of
production activity compared to (7). All parameters approach zero, they change
signs, and none of them are significant in statistical terms.

The standard criteria of comparison is the squared multiple correlation coefficient
R?2. However, as the constant term was removed from our preferred model based on
statistical inference, R? is no longer well-defined.'” The equation standard error
provides a better statistic for model comparison, as this measure is adjusted for de-
grees of freedom. For (7), we obtain an equation standard error of 0.25, whereas
the corresponding estimate for (8) is 0.45. This suggests a clear preference for the
model represented by (7). To conclude even more rigorously, Table 2 compares the
common battery of specification tests for statistical performance. As for the explo-
ration models in the previous section, Table 2 reports changes in estimated model
quality, evaluated through the log-likelihood (LL), as well as the Schwartz (SC),
Hanna-Quinn (HQ), and Akaike information (AIC) criteria. These indicators are the
same as applied for the exploration model above. See Dornik and Hendry (2001)
for details on their properties. We remind that an increase in the log-likelihood ratio
(LL) is an indication of improved statistical power of the model, whereas a model
improvement is generally associated with a reduction in the three other reported test
criteria for model selection (SC; HQ; AIC). Again, we see that a disregard of eco-
nomic variables yields a substantial reduction in the log-likelihood, and increase in
the other criteria of model selection. Consequently, we should prefer a combined
model. In summary, the value and importance of economic variables in models of
petroleum activity is further corroborated.

Table 2 The contribution of

economic variables to the

production model LL SC HQ AIC
Model with oil price 0.77 038 026 0.20
Model without oil price  —19.21 148 139 1.35

Test statistics for model reduction

15 R? also has a range of weaknesses with respect to model evaluation. The inclusion of additional
variables will never reduce the value of R?, and it may improve even if nonsense variables are
adjoined. Moreover, R? also depends on the choice of transformation of the dependent variable
(for example, Ay versus y). R> may therefore be misleading for model evaluation purposes.
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6 Concluding Remarks

Empirical research in petroleum economics has demonstrated again and again that
predictions based on the geophysical approach to oil exploration and production
gives a poor representation of actual development of the last 50 years or so. The typ-
ical pattern for individual fields, regions and provinces is that exploration activities
uncover far more oil reserves than is thought possible in the initial estimates. More-
over, the accumulation of technology, experience and competence also makes it
possible to recover more oil from each producing field than implied by the static
traditional geophysical approach to oil extraction.

My two applications are based on data from the Norwegian Continental Shelf,
an oil province whose development is characterized by gradualism and government
regulation. New insights into the complex process of oil exploration are obtained
through the combination of physical and economic variables in an integrated dy-
namic time series model. As an example, the results imply that additions to the
reserve base are affected by the oil price, not only because drilling efforts are spurred
when the oil price increases, but also because the output of the drilling process is
influenced by prices, cash-flows and adjustments to the exploration portfolio in each
company. The presented model of NCS oil exploration suggests that companies in-
crease their exposure to exploration risk when the oil price goes up, yielding lower
discovery rates, and higher average discovery size. On the other hand, a reduction
in the oil price makes oil companies more cautious. A low oil price makes them
focus exploration activities in less risky (mature) areas. The result is higher dis-
covery rates, and smaller discoveries. In the same model, reserve depletion exerts a
dampening effect on reserve growth, partly offset by the positive impact of seismic
surveys on discovery rates. Through the design and execution of licensing rounds
and awards of new exploration acreage, the expected reserve and production poten-
tial on the NCS is also affected by government policy. Awards of new exploration
acreage give a stimulus to reserve additions due both to enhanced drilling efforts
and improved drilling efficiency, according to the results.

A simple econometric example for NCS oil production also suggests that
economic variables play a significant role in the explanation of production lev-
els. The preferred econometric model of oil supply includes a positive and highly
significant parameter for the real oil price, indicating an own-price elasticity of oil
supply above 0.9, which is high by comparable standards. As for the exploration
model, we also find the estimated model of production to deteriorate when this
simple economic parameter is left out of the equation. A variety of specification
tests and standard statistics of model fit and clearly suggest that simple geophysical
models are outperformed by models which also include economic variables.

In summary, modern economic research has established a firm role for economic
variables in models of oil exploration and production. The importance of technol-
ogy, economics and policies to supplement the geophysical aspects of oil production
is also supported by the two examples of/in this chapter.
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Applied Mathematical Programming

in Norwegian Petroleum Field and Pipeline
Development: Some Highlights

from the Last 30 Years

Bjgrn Nygreen and Kjetil Haugen

Abstract This chapter discusses various attempts to apply mathematical
programming tools and techniques in field development planning for the Norwegian
continental shelf. The paper has a form of a (non-complete) survey, with the aim of
discussing and presenting various attempts, both within deterministic and stochastic
modelling.

1 Introduction

As indicated by Fig. 1!, Norwegian oil production reached its historic peak level at
around the year 2000. According to the predictions of Fig. 1, the production will
reach insignificant amounts in 25 years or less from now. As Fig. 1 also indicates
that the history of Norwegian oil production is relatively a recent one — production
started less than 40 years ago — 15 June 1971. The first field discovered on the Nor-
wegian continental shelf, The Ekofisk field, was discovered by Phillips Petroleum
Company in 1969. Amazingly, it is still (2006) the largest producing unit among 51
producing units totally.

During this relatively short time, a significant amount of mathematical program-
ming models and tools have been applied. Surely, classical applications in reservoir
modelling and in refinery planning are among such applications, but this chapter will
focus on the use of mathematical programming tools in investment/development
planning for fields and pipelines. This is perhaps somewhat special for Norway,
where such models have had a widespread use among companies and regulating

!'see http://www.norge.se/business/oil/oilproductionno.htm
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Fig. 1 Norwegian oil production over time

authorities. One important reason for this use may be the Norwegian petroleum leg-
islation with a relatively large emphasis on governmental regulation of the whole
industry. Still, research literature is relatively sparse on descriptions and reports
of the above alleged model use, with some noteworthy exceptions. General exam-
ples (not necessarily coupled to the Norwegian case) may be found in Aronofsky
and Williams (1962), Beale (1983), McFarland et al. (1984), Sullivan (1988), and
Bodington and Baker (1990), while some other authors who focus explicitly on Nor-
wegian field development planning are Haugland et al. (1988), Aboudi et al. (1989),
Haugen (1991, 1996), and Nygreen et al. (1998).

In the next paragraph, we will give some short historic remarks; while in
subsequent paragraphs, we will focus on modelling content on both deterministic
and stochastic mathematical programming modelling in the Norwegian petroleum
sector.

2 Some Historic Remarks

After the discovery of the previously mentioned Ekofisk field in 1969, several re-
search groups in Norway have applied mathematical programming to solve different
types of planning problems related to petroleum production. These groups can be
divided into three types:

1. Groups within petroleum companies operating on the Norwegian Continental
Shelf

2. Groups in applied research organizations

3. Groups in Norwegian universities and colleges including their students. These
groups have also collaborated
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Of the applied research groups, we want to mention two. The first is Christian
Michelsen Institute (CMI) in Bergen, where Professor Kurt Jornsten worked with
planning problems in connection with petroleum in the 1980s. The department of
CMI that Professor Jornsten worked for became a limited company named Christian
Michelsen Research in 1992. Part of his work at CMI is published in Aboudi
et al. (1989). The second group is SINTEF in Trondheim, where the authors of
this paper worked full or part-time in the 1980s also with planning problems for the
petroleum industry. We participated in making a model not very different from the
mentioned CMI model. Our model was published in Nygreen et al. (1998), after it
had been in professional use for 15 years.

After the discovery of petroleum in the Norwegian continental shelf, several uni-
versities and colleges in Norway started to develop courses with greater emphasis on
problems relevant for the petroleum industry. This was also the case for the Depart-
ment for managerial economics and operations research at the Norwegian Institute
of Technology (now a part of Norwegian University of Science and Technology)
where both the authors of this paper have worked full or part-time most of this
period.

During this period, several students have been offered master thesis work for
companies engaged in the Norwegian petroleum business. We will not mention
these students by name, but we want to mention that all of the ‘pioneer students’
using optimization models on problems in the North Sea at our department, studied
applied physics with specialization in operations research.

In the forthcoming paragraphs, we will try to sum up some of the basic principles
used in the above mentioned models emphasizing structural rather than operative
modelling.

3 Main Deterministic Model Assumptions

The decision problems analysed in the early 1980s were deterministic problems
where the discrete decisions — which fields to develop and when — were recognised
as being the most important.

A typical model would contain a given number of projects which could be started
in any one of several years. Some of these projects could also be forced to start
within the given planning horizon. Some projects produced oil and/or gas, while
other projects had capacities for processing and/or transportation of the products.
When a project was decided to be started in a given period (model-wise), this would
typically determine the amount of oil and gas produced by the project in all future
years. All resources needed by the project in all future years, were also determined
by deciding the start year.

Later these models were changed such that production was allowed to vary more
flexibly with the start year. Hence, a certain element (within simple physical bound-
aries) of variable production opportunities was introduced.
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4 Some Representative Deterministic Modelling

In order to indicate the basic modelling principles of the models discussed above,
we describe a simplified version of the model published in Nygreen et al. (1998).
We use lower case letters to represent subscripts and variables, and capital letters to
represent constants and parts of the constant names written as literal subscripts.

Only essential parts of the implemented model will be described here. We have
chosen not to comment on whether the constants are given directly or calculated
from several constants that are not defined.

For simplicity, many variables and constraints will be defined for all the possible
combinations of their subscripts, even if they are only used for some of the possi-
ble combinations. This means that the exclusion tests for variables and constraints
are omitted. Sets describing which subscripts to sum over in various constraints are
also omitted.

4.1 Start of Projects

If project j starts in period u, then variable xj, is set equal to one. A project that
does not start at all has its non-start variable, y;, set equal to one. The user can set
individual start periods for each project and also force some projects to start. This is
not shown explicitly in the formulation. All projects may at most start once. This is
modelled by declaring that all variables for project j in constraint type (1) belong
to a special ordered set of type 1.

Y xuty =1V (1)

Some projects are dependent on the start of other projects. This is modelled through
precedence constraints. In each such constraint, the dependent project is named the
successor and the other project is named predecessor. If there is no bound on the
difference between the start-time for such projects, we can write the constraints as
in (2). We use d as subscript for the precedence constraints. In the following con-
straints, j is always the successor project, while i is the predecessor in constraint d .

yj—yi>0,\7’d (2)

4.2 Alternatives

The user can define several different ways to develop a given petroleum field
by defining each possible development as a project and all these projects as an



Applied Mathematical Programming in Norwegian Petroleum Field 63

alternative. An alternative is a set of projects where at most one is allowed to start.
The number of projects in alternative a is Nap,.

> yj = Nam—1.Va 3)
J

The summation over j above is only for projects that belong to alternative a.

4.3 Production Decisions

In the first models, the production from each project was forced to follow the pro-
duction profile given by user input from the decided start year. If that made it
difficult to get the production to fit the capacities of the pipes and the markets,
one had to insert some flexibility by allowing the production to deviate from the
given profiles. Sullivan (1988) interpolates between two different developments of a
field. Beale (1983) used variables for pressure both in the reservoir and in the pipes
instead of profiles.

In a simple way, we may say that we chose the possibility of saving some product
to a later period — at the same time avoid exceeding the maximal production in the
profile determined by the user input.

The user specified the following data for production projects, directly or indi-
rectly; Tp;; = maximal total production of product s from project j, Prjsu =
maximal production of product s from project j in period ¢ if the project was started
in period u, Ryzj; = factor to multiply Pgjs, to get the minimal production of s in
year f.

With pj; as the variable for the produced amount of product s from project j in
year ¢, and gjs; as the corresponding cumulative production we can write (a simpli-
fied and too restrictive version of) the production constraints as:

Djst — Z PRj‘vtuxju = 07 V]a s, 1 (4)
Djst — Z Rurjs Priswxju = 0,Y j, 5,1 5)
pjst + qjs(l—l) - stt = Os V]v s, t (6)
Qjst < Tpjs¥ j,s,t (7

Usually we cannot vary production of different products independent of each other.
The constraints controlling this have been omitted here.
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4.4 Global Constraints

In the early days of the Norwegian petroleum production, Norwegian politicians
discussed possible bounds on both the total aggregated petroleum production each
year as well as on total yearly investments on the Norwegian shelf.

For each project j, the user has given data, Rjs, for the usage of resource b in
period ¢ given that the project starts in period u. If project j is a production project,
we also need a constant, Rpjy, which gives the amount of resource b for each unit
of product s produced from the project. We define a variable, r;,;, which is equal to
the total amount of resource b in period 7.

Z Z RipwXju+ Z Z Rpjsp pjst — oe = 0, Vb, 1 (8)
Jj u J s

In the case with aggregated production, we let b also represent the aggregate. Then
Rjpu 1s zero and Rpjg, is aggregation factors for product s. Then let Ryx;; and Ry,
be upper and lower bounds on the usage of resource b in period 7.

Runee < 1o < Rypxpr, Vb, t )

The resource variable, the resource balance and the bounds are only defined for
periods where there is at least one bound on the resource variable.

4.5 Transportation and Market Constraints

To get a good enough description of the transportation capacities in operational
models, one need to model pressure explicitly. For the long-term planning described
here, most petroleum companies were happy with models with fixed quantity con-
straints in transportation pipes. If two or more pipes were built between the same
nodes, these models would not account for different flows in different pipes. This
means that it is the pipe paths, k, which really matters here.

When the planning period started, there was a capacity, Caks, for product s along
path k in period ¢. Project j started in period u had a new capacity, Cjy,, for product
s in period 7. With these constants and a new variable, fj,, for the flow of product s
along path k in period ¢, the pipe path capacities were written:

Jisi = Y CionXiu < Casrs Yk, 5,1 (10)
Jj u

The constraints are only defined from the first period when it is possible to send
product s along path k. The summation over j is only for projects that expand
the capacity along path k for product s. If none such j exists, the constraint is
implemented as an upper bound.
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Normally, there are few markets compared with the number of nodes, but even so
the model is constructed in such a way that it is possible to have a market in every
node. The variable for the amount of product s delivered to the market at node n in
period ¢, is written m,,. This is modelled as a delivery from the node. Sy is equal
to +1(—1) if node n is an end node (a start node) for path k.

ijxt + Z Slnkfkst — My = Oa Vn’ s, t (11)
J k

These constraints (11) say that the flow into a node is equal to the flow out of the
same node in every period. The summation over j is only for projects that deliver
their product directly to node n. The flow variables account for the flow from and to
other nodes, while the market variables account for product leaving the transporta-
tion system.

The upper and lower bounds for delivery of product s to market n in period ¢,
Myixns and Mg, are given as user input for individual time periods, and modelled
as bounds.

MMant = Mpg = MMXIlSTv V}’l, S, t (12)

4.6 The Objective

The model is written such that the user can choose between two objectives. It is
possible either to minimise a weighted sum of deviations from a given goal on pro-
duction or resource usage, or to maximise the total net present value from all the
projects. Only the maximisation of the net present value will be discussed. From the
original data such as production profiles, cost profiles, product prices and interest
rates, we can calculate the contribution to the net present value from each project.
This calculation is not described here.

The net present value, Nyj,, for project j started in period u is calculated without
taking care of the contribution from any production. The net present value, Npjy,
of one unit of product s produced from project j in period ¢ is calculated in the
same way. For all the markets, the user needs to specify a unit price for all products
in every period. The price paths for one of the markets are called reference prices,
and these are used in the calculations of Npj;. To get the correct total net present
value, we also need to calculate the change in the total net present value, Ny, for
delivering a unit of product s to market n in period ¢, caused by the difference in
prices between this market and the reference market.

This means that we can write the objective in the following way:

Max 7 = Z Z Nyjuxju + Z Z Z Npjst pjsi + Z Z Z Nituss Mg (13)
J u J s t n s t
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The first summation over j is for all j, because all projects are expected to have at
least some of their costs fixed to the start of the project. The next summation over j
is only for projects with production.

In the first version of the model all production was fixed and there was only one
market. Then, the value of the production was put into Nyj, and only the first term of
the objective was present. When flexible production was introduced, the objective
got the second term. With several markets, the last term got included.

5 Stochastic Development Planning

During the 1980s, the price of raw oil dropped significantly, making a new kind of
price-sensitivity awareness within the industry. As a consequence, some need for
further analytic approaches including stochasticity, primarily on price/demand was
introduced.

Professor Jornsten, contributing significantly to the introduction of formal de-
terministic mathematical programming modelling within the Norwegian petroleum
industry, was perhaps also among the first addressing possible price uncertainty
problems related to field and transportation planning on the Norwegian conti-
nental shelf. In Jornsten (1992), Professor Jornsten introduces stochastic integer
programming methods to Norwegian petroleum companies applying the Progres-
sive Hedging algorithm on a scenario based formulation. Here, he shows promising
computational opportunities adding the Pivot and Complement heuristic to the re-
sulting large-scale zero-one mathematical programme.

At around the same time, the previously mentioned research group a SINTEF
in Trondheim also got some projects both from Norwegian Petroleum Directorate
(NPD) and STATOIL related to similar problems. This work led to the PhD-thesis
(Haugen 1991) for one of the authors, with the other author as the supervisor. This
contribution was perhaps more related to the computationally efficient use of mod-
ern vector processing, but it still contains some relevant stochastic modelling related
to price/demand uncertainty for the Norwegian petroleum industry. A later paper by
Haugen (Haugen 1996) focused more qualitatively on resource uncertainty. Both
these latter approaches utilized Stochastic Dynamic Programming as the solution
method.

In principle, these modelling attempts tried to add stochasticity to the type of
model described in Sect. 4. These models, themselves being hard enough to solve,
indicate that the attempts to include uncertainty had to contain simplifications. The
number of possible projects — as well as time periods — was typically significantly
reduced compared to the full-scale cases treated deterministically by companies.

We choose not to go into greater modelling details on these models. It seems
however interesting to point out that all the three above discussed models were com-
pany initiated and was financed by the industry — at least initially. This is by itself
interesting, not many other industries initiate stochastic programming development.
The typical situation — at least in our experience — is the opposite.
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It should also be pointed out that these early stochastic modelling attempts did
not survive in the companies as operative models. Whether this was due to added
(stochastic) informational needs, necessary simplifications compared to the deter-
ministic models or a more or less steadily increasing price of oil and natural gas,
we shall not judge. However, the price drop of oil in the 1980s was definitely a
releasing factor for the company initiated projects leading to the above described
academic/scientific development.

6 A Surprisingly Flexible Modelling Environment

Over a period of time, different investment planning issues have been addressed by
regulating authorities (NPD) as well as companies. The agents themselves indicate
that these models have been helpful through various epochs and political regimes.

It is perhaps safe to say that the scientific personnel saw the importance of build-
ing flexible models early. It is obvious that this flexibility has proven valuable in the
lifetime of these models regarding their ability to ‘grow’ and develop. The relatively
generic model structure built on the ‘project concept’ discussed in Sect.4 may be
seen as a key to the models’ use through all these years. The model concepts’ of
simple building blocks have proven flexible enough to cope with different structural
problems. Obviously, the models have been redeveloped, but the basic structure has
in many perspectives been relatively constant. As such, the redevelopment costs
have been kept relatively small, keeping these models alive.

In the following section, we will indicate this model flexibility by a short discus-
sion of some of the more important topics where such models have played a role.

7 Practical Model Usage

It is interesting to note that the early political discussion has focused mainly on
production level and to some extent on the level of annual capital investment in
the petroleum sector. The (early) focus has to a limited extent been on the income
generation.

The discussion on whether to plan for 40, 60 or 90 mill tons of annual petroleum
productions was raised mainly due to concern with the impact on the rest of the
society and due to concern with the depletion rate of an exhaustible resource.

Looking back on NPD’s investment planning, NPD also tended to focus much
on the use of input factors like annual spending on capital goods, the demand for
construction and engineering man-hours and the use of other skilled personnel. With
the new modelling capabilities NPD had ample possibilities to play with different
constraints regarding input factors.

The model also gave NPD the possibility to choose an objective for the model
where the weighted sum of deviations from a given goal was minimized. This way
NPD could find potential sequences of fields, which gave low annual variations in
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the use of specific input factors, thereby reducing the shocks on other sectors of
the economy. By comparing the net present value of such solutions with solutions
optimized under normal constraints for the same input factor and with the objective
to maximize net present value, it was possible to calculate the cost for obtaining a
more even level of demand for special input factors.

More recently, NPD has used the model to calculate the total value of the
petroleum resources. In this calculation it was necessary to find a sequence for the
development of future fields and prospects, and calculate the value of the cash flows.

8 What About Today?

Up to now, we have discussed the use of mathematical programming development
planning models into the mid-1990s. It seems important to point out that these
model concepts are still very much alive in Norwegian oil companies as well as
within regulating authorities. The fact that a group from SINTEF together with
StatoilHydro and GASSCO are nominated to the Franz Edelman finals this year
(2008) for projects applying mathematical programming methods (see GASSOPT
(Tomasgard et al. 2007; Midthun 2007)), should indicate this. These models are
perhaps slightly different, focusing a bit more on operative decisions. Still, to our
knowledge, models relatively equal to the models described in this chapter are still
routinely used both by major Norwegian private and public agents in the sector. The
models are of course more advanced both from a computational point of view as well
as the technological ‘look’ through faster and more versatile computing platforms.
Still, the initial work performed by the groups at CMI and SINTEEF in the early
1980s seems to have had an important impact even today, close to 30 years later.

So, what about the future? As Fig. 1 indicates, it may seem that the need for field
sequencing is diminishing due to the sheer lack of fields. However, one should bear
in mind that recent price patterns indicate that previously discovered fields — judged
unprofitable at the time — may very well change status. At the same time, techno-
logical development will go on, opening up new opportunities for added production
from old fields. Finally, certain previously unexplored areas on the Norwegian con-
tinental shelf previously being kept off the industry, like substantial promising areas
outside Lofoten, these days are being politically more ‘possible’ than before. This
is perhaps not good news for environmentalists, on the other hand, it may open up
for the next 30 years, petroleum production on the Norwegian continental shelf —
keeping demand high and steady for continued use of mathematical programming
tools and models.
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Analysis of Natural Gas Value Chains

Kjetil T. Midthun and Asgeir Tomasgard

Abstract In this paper, we provide an overview of the natural gas value chain,
modeling aspects and special properties that provide challenges when doing eco-
nomic analysis. We present a simple value chain optimization model and discuss
important properties of this model.

1 Introduction

This paper is a tutorial on economic modeling and analysis in the natural gas value
chain. The tutorial is by no means a complete overview but focuses on the most im-
portant properties (for a more detailed overview, see Rgmo et al. (2006) and Midthun
et al. (2008)). Special attention is given to system effects and the importance of the
portfolio perspective in the value chain. This tutorial will give an understanding for
the level of detail needed when doing analysis of natural gas networks.

The natural gas value chain has special properties that make it challenging to
analyze. In order to describe the value chain in a mathematical model, we have to
make assumptions that simplify the real world processes. There will be a tradeoff
between representing details in the physical properties and creating a solvable model
which can be used for analysis. In this paper, we discuss some of these tradeoffs and
present our view on the properties that are essential for doing analysis. We also
discuss how some assumptions can drastically alter the results of economic analysis
in natural gas networks.

The case study and focus for this paper will be the value chain for natural
gas in the North Sea, with an emphasis on the upstream network. We define the
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upstream network as the production facilities and transportation infrastructure in
the North Sea. The discussion also includes the market nodes in continental Europe
and the UK. The downstream network in these countries are, however, not part of
our discussion.

In Sect. 2, we provide a presentation of the most important model classes within
the natural gas industry as well as some references. The natural gas value chain
is introduced in Sect. 3, before we present a simple mathematical model for value
chain optimization in a natural gas network in Sect. 4. The model is then extended
and important characteristics of the natural gas value chain are discussed. In Sect. 5,
we give some conclusions and suggestions for interesting topics for future research.

2 Literature Review

The petroleum industry has been a pioneer in the application of operations research,
and the literature is therefore extensive. In Bodington and Baker (1990), an in-
teresting overview of the history of mathematical programming in the petroleum
industry is given. We present a short overview of some of the most important model
classes; investment models, value chain models, transportation models and equilib-
rium models.

Investment models give decision support for strategic decisions such as field in-
vestments and sequencing of investments. There are a large number of publications
within this field. This is not surprising given the large risks and costs associated
with offshore investments. There exist a number of deterministic investment models,
such as Sullivan (1988), Haugland et al. (1988), Nygreen et al. (1998) and van
den Heever et al. (2001). There are also some models which incorporate uncer-
tainty, such as Jornsten (1992), Haugen (1996), Jonsbraten (1998), and Goel and
Grossmann (2004). The uncertain parameters in the models include future demand
for natural gas, development of oil prices and available reserves in the fields.

The special properties of the transportation network make a value chain approach
to optimizing the system important. In the value chain approach, the complete net-
work is considered and optimized simultaneously (the special properties of the
transportation network are discussed later in this paper). The value chain approach
has become even more valuable after the liberalization process, which meant an in-
crease in flexibility for the participants in the value chain. Examples of value chain
models are Ulstein et al. (2007), Selot et al. (2007), Tomasgard et al. (2007) and
Midthun et al. (2007a).

The transportation of natural gas is one of the key elements when studying the
natural gas industry. Because of the interdependence among flows in pipelines, it
is important to find a tradeoff between accurately describing the properties of the
transportation network, and being able to solve the model. A simplified represen-
tation leads to an inaccurate model of the transportation (and may lead to wrong
conclusions), while a too detailed presentation makes the model non-linear and non-
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convex. Examples of transportation models with emphasis on the physical properties
are De Wolf and Smeers (2000), O’Neill et al. (1979), Westphalen (2004) and Selot
et al. (2007).

Equilibrium models are used to study situations where more than one player
acts strategically. The models are formulated as complementarity problems. A good
overview of complementarity problems in natural gas markets is given in Gabriel
and Smeers (2005). The paper gives a survey of some of the existing models, as
well as develops relevant models for the restructured natural gas markets. Other
examples of equilibrium models with application in natural gas are De Wolf
and Smeers (1997), Boots et al. (2004), Gabriel et al. (2005) and Zhuang and
Gabriel (2006).

3 The Natural Gas Value Chain

Natural gas is formed naturally from plant and animal remains. Subjected to high
pressure and temperature over millions of years, the organic material changed into
coal, oil and natural gas. The natural gas can be found in porous geological forma-
tions (reservoirs) beneath the earth’s surface. In these reservoirs, the gas can be in
gaseous phase or in solution with crude oil.

A simplified picture of the offshore natural gas value chain in the North Sea
is shown in Fig. I. The gas is transported from the production fields to process-
ing plants, or directly to the market hubs in Europe. There are storage possibilities
along the transportation route. In addition, the transportation network itself can be
considered as a storage facility since there are large volumes of gas contained in
the pipelines at all times. We give below a short presentation of the most important
elements in the value chain.

PHYSICAL PROCESS MARKETS Production fields

Upstream
market

Contract
| market

Production

(el

Transportation

Financial
market

Spot market

C it
market

Processing
plant

o ] =

Markets
(short term and long-term contracts)

Fig. 1 Illustration of the natural gas value chain
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3.1 Production and Processing

The gas is produced from the reservoirs. The driving forces are pressure from the
expanding gas as well as water which causes the gas to flow into the well. The gas
production depends on the pressure in the reservoirs. High pressure in the reservoir
gives a high production rate. In order to increase the pressure in the reservoir, and
thus increase production capacity, compressors are sometimes used.

The natural gas sold to Europe consists mainly of methane (dry gas). The
gas produced at the fields can, however, contain other components with market
value, such as associated hydrocarbons. Gas containing both dry gas and associ-
ated hydrocarbons is called rich gas. The rich gas is transported to processing plants
where the dry gas and wet gas (the associated hydrocarbons) are separated. The wet
gas is then heated in order to separate the different components which, in turn, are
sold in component markets.

3.2 Transportation

In the North Sea, the gas is transported in long, subsea pipelines operated at high
pressure levels. The gas molecules flow in the pipeline from high pressure points to
low pressure points. At the production fields, pressure is increased with compres-
sors in order to create a pressure difference that is sufficient for the gas to flow to
the landing points. With the completion of Langeled, the network will consist of
7,800 km of pipelines. For details on the infrastructure and topology in the North
Sea, see OED (2007).

3.3 Storage

The demand for natural gas shows strong seasonal patterns and large short-term
volatility. Both these factors give a large value to optimal storage utilization. There
are many different forms of storages that are used for storing natural gas: abandoned
oil and gas fields, aquifers, LNG-storages and salt caverns. The storages are different
with respect to capacity, injection and extraction capabilities and cost of operation.
For more information on storages, see EIA (2002). In addition, the pipeline network
can also be used as storage (line pack).

3.4 Markets

Traditionally, the gas from the North Sea has been sold in long-term take-or-
pay contracts (TOP). In the TOP-contracts, the price is determined based on a
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formula whose main components are the prices of competing fuels (for instance
oil). A yearly volume is decided, and then the buyers have flexibility with respect to
nomination on shorter time periods (within certain limits). One of the results from
the ongoing liberalization process in the European gas industry is emerging short-
term markets for natural gas.

3.5 Mathematical Models

In this section, we present a simple model for a transportation network for natural
gas. The natural gas value chain can be modeled as a collection of nodes: fields,
junction points and markets. In addition, we need pipelines to connect the nodes in
a transportation network. The gas molecules flow in the pipelines from high pressure
nodes to low pressure nodes. The volume of gas that flows in a pipeline between an
inlet and an outlet point is dependent on the pressure difference between these two
points and the design parameters of the pipeline. The design parameters incorporate,
amongst others, the length and diameter of the pipeline. To relate the design param-
eters and the pressure difference to the actual flow in the pipelines, the Weymouth
equation (see, for instance, Katz and Lee (1990) can be used.

There are various choices for an objective function for the model, such as max-
imize flow, minimize costs, maximize profits and maximize social surplus. In our
model, we maximize a utility function U(kg, r;, f;;). The variables in the model are
the production kg in each field g, the pressure r; in node I, and the flow fj; between
nodes i and j. The objective function can then be formulated as:

maxg, r,, f; U (1)

We then add constraints to take care of production limits, capacity limitations in
the pipelines, pressure limits in the nodes, mass conservation in the network and
demand satisfaction in the market nodes. The first set of constraints ensures that
mass is conserved in the network. Production k, in node g must equal the amount of
gas f, transported from the production node g into nodes j in its set of downstream
nodes O(g):

D fei=ke g€G )

J€O(g)

where G is the set of all field nodes. For the junction nodes, the amount of gas that
flows into node j must also flow out of node j:

> fi= Y fujeT. 3)

i€Z()) neO(j)
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where T is the set of all junction nodes. In the market node m, we need to make
sure that the quantity of gas delivered does not exceed the demand in the node, D,
denotes the demand:

> fm < Dm.meM, 4

JjEZ(m)

where M is the set of all market nodes. Moreover, we need to make sure that the
maximum and minimum requirements for the pressure in the nodes are satisfied:

ri>Ri, ieN, %)
<R, i€N, (6)

where N is the set of all nodes in the network. The capacity in the pipelines is
determined based on the Weymouth equation:

fi= Ky \Jrp =13, )

where fj; is the flow between the inlet point in node i and the outlet point in node
j, K% is a constant determined by the design parameters of the pipeline and r is
the pressure in the respective node. As we can see from this expression, the rela-
tion between flow and pressure is not linear. Actually, it describes a quarter cone
(see Fig. 2).

200 ~
150 S

100 +

Flow

50

200

140

100 120

Pressure out 50 80 Pressure in

Fig. 2 The Weymouth equation relates the design parameters in the pipeline and the pressure in
the entry and exit nodes to the flow in the pipeline
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In order to keep the transportation model as an LP model (and thus enable analy-
sis in large-scale networks), we use a linearized version of the Weymouth equation.
The linearization is based on a first-order Taylor series expansion around a set of
fixed pressure levels (RI,RO):

RI; RO;
W KV ——_rieN.jeOl).l=1,... L,

ij ! i
RIG — RO, VRIZ —RO;

where we use L linear constraints for each pipeline. For more details on the lin-
earization, see Rgmo et al. (20006).

fi=K

®)

3.6 System Effects

In natural gas transportation networks with several nodes and with more than one
pipeline connected to at least one of the nodes, there are system effects in the net-
work. The system effects come from the influence the pressure in a node has on
the flow in connected pipelines. If two pipelines are connected to the same node, a
pressure increase in the node will influence the potential flow in both pipelines. De-
pending on the topology of the network, the dependencies between pipelines may be
strong. Consider the small network in Fig. 3. The pressure in junction node j; influ-
ences the flow in all the three pipelines in the network. An increase of the pressure
in node j; will decrease the capacity from field g; to j;, and increase the capacity
from j; to both market m; and m,. Even in this very small network, the system
effects may be important, and it is difficult to determine appropriate fixed capacities
for the pipelines.

Midthun et al. (2008) discuss the importance of system effects for both sim-
ple maximize flow formulations as well as more complicated economical objective
functions. In electricity, various papers concerning externalities in the network exist

Fig. 3 A simple
transportation network
consisting of a field node,

a junction node and two @ @
market nodes
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(Bjgrndal 2000; Wu et al. 1996; Schweppe et al. 1988). In the natural gas lit-
erature, there are many examples of papers that present technical models of the
transportation problem (Ehrhardt and Steinbach 2005; Martin et al. 2006; De Wolf
and Smeers 2000; O’Neill et al. 1979; Westphalen 2004), as well as economical
models with a simplified representation of the transportation networks (Cremer and
Laffont 2002; Cremer et al. 2003).

3.7 Markets and the Portfolio Perspective

The development of short-term markets adds flexibility for the producers of natural
gas. In addition to creating new market possibilities (delivery of additional vol-
ume of gas) and risk management tools (financial markets), the short-term markets
also enables the producers to do virtual routing of gas (in space and time). For our
mathematical model, the inclusion of short-term markets enables us to change (4)
to the following, more flexible, version:

> fin=Dm+gmmeM, 9)

Jj€Z(m)

where ¢y, is the traded volume in the short-term market. This traded volume can be
both positive and negative. This means that the producers now have the possibility
to supply the demand in the market by purchasing gas in a spot market, as well as
the possibility to sell additional gas in the spot market.

To illustrate how this flexibility makes a portfolio perspective vital, consider the
network in Fig. 4. In the situation before the liberalization, a TOP-contract would
specify, for instance, that field g; should deliver to market 72, while g, should de-
liver to market m,. After the liberalization, the companies in the respective fields
and contracts can freely choose which field should deliver to which market node.
When short-term markets are introduced to this system, the flexibility in the system
is drastically increased. In a situation where field g; needs to produce, and there
is a demand in a TOP-contract in market m1, the delivery can be made in several

Fig. 4 An example network @ @
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ways. First of all, one possibility is to let field g; produce and then ship the volume
to market 7m2,. Another alternative is to send the volume produced in field g; to the
spot market in market m,, and then buy spot in m; to deliver in the TOP-contract.
Alternatively, field g, can produce and deliver in market m; while the production
from g, is sent to market m». If storages are introduced in the system, the possibil-
ities naturally increase even further. Also, in a large natural gas network there will
be a very large number of possible combinations that let field g; produce and let the
company fulfill the agreements in the TOP-contract in market m1;.

The discussion of routing in time is analogous. Consider a situation where field
g1 needs to produce in time 7', while the company must deliver in a TOP-contract
in market 72 in time 7" 4 1. One way of doing this is to send the production from g
to storage in time 7', and then send the gas from storage to market 71 in time 7" + 1.
Alternatively, the production in g; can be sold in a spot market in time 7', and in
time T + 1; either g, can produce and send the gas to market m, or the company
can buy spot in m to deliver in the TOP-contract. A lot of different possibilities are
open to the producer also in this case.

3.8 Modeling Competition

Normally, each production field has several license owners. Owing to the European
Union regulations as specified in the Gas Directive (European Union 1998 ), these
companies have to sell their gas independently. The transport capacity needed to
get the gas to the market is offered as an independent service and is adminis-
tered by the company Gassco. For a detailed description of this system and a more
precise model of the competition that arise in the transport markets, see Midthun
et al. (2007b). Here, we will give a simplified example of how our previous model
can be extended to handle competition. Naturally, the complexity increases as we
move from the model class of linear programming to modeling Nash equilibrium as
a complementarity problem. Some other references to similar competition models
are Hobbs (2001) and Wei and Smeers (1999).

We need to define some new notation based on the model in Sect. 4. Now, fj,; is
the flow from producer / in production node g into nodes j in its set of downstream
nodes O(g). Similarly, fj;, is the flow from producer / into market node m from
any of its upstream nodes /(m).

The mathematical model for producer / is then:

max s Z Z pmfljm—z Z Agj figi — Z Z Ajmﬁjm_zcg(klg)-

meM jeI(m) g€G jeO(g) meM jeI(m) geg
(10)

Here, Cg (ki) is a convex production cost function in node g for player /. The
production level is given by k;,. Also, A; is the entry tariff for each unit inserted in
the network in pipeline g; and A ;,, is the exit tariff for each unit withdrawn from
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the network in pipeline j,,. Here, p,, is the price of natural gas in a competitive spot
market m. In addition, we must make sure that the production in each field is the
same as the producer’s flow out of the field node and that each producer’s sales are
in accordance with his production:

Y fu=kg leLligeg (11)
J€O(g)
Yo fim=) _kgleL (12)
meM jeZ(m) g€g

We must also model the optimization problem for the independent system operator
(ISO) managing the network service. A number of objective functions for the net-
work operator may be considered, see, for example, Midthun et al. (2007b) for a
discussion. Here, we choose to maximize the tariff income in an entry—exit system.
Note that the decision variables of the system operator are the routing of natural gas
and allocation of capacity to the producers, while the tariff A (see (14) and (15))is a
consequence of these decisions. The motivation is as follows: by choosing the dual
variables as the tariff (it is not a decision variable for the system operator), each
of the producers have 0 profit on their last produced unit while the routing of the
system operator is used to maximize his tariff income:

max ¢ Z Z )kjmjj-m—f-z Z Agj foj- (13)

meM jeI(m) g€G jeO(g)

The optimization problem for the ISO consists of this objective function and (3),
(5), (6) and (8) from the original formulation.

In addition, we add market-clearing conditions to the complementarity problem.
These conditions determine the tariff in the system, and are given by the following
equations (L is the set of all producers /):

Yo fi= D D fu-g €0 (14)

Jj€O(g) JEO(g) leL

summarizing the entry flow into the network in each production node and

Yo fm= D D fimmeM, (15)

J€Z(m) JjE€Z(m)leLl

summarizing the exit flow into each market node. The dual variables for these con-
straints give, respectively, the entry tariff A,; and the exit tariff Aj,,.

Under the assumption that all the decisions are made simultaneously, this is
a complementarity program. It is normally solved by stating the Karush—Kuhn-
Tucker conditions (Karush 1939; Kuhn and Tucker 1951) of all the players and
solving the total system of equations, for example, using a solver like PATH (Dirkse
and Ferris 1995).
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4 Conclusions

We have presented a short tutorial on modeling of the natural gas value chain. The
various elements in the value chain have been introduced, and a simplified mathe-
matical model that can be used for analysis has been presented. We have stressed
the importance of keeping a portfolio perspective when planning and analyzing the
value chain. In addition, we advocate that modeling of the flow-pressure dependen-
cies in natural gas transportation networks is vital. If fixed capacities are assumed
on the pipelines, the dynamics of the system is lost.
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On Modeling the European Market
for Natural Gas

Lars Mathiesen

Abstract Several features may separately or in combination influence conduct and
performance of an industry, e.g., the numbers of sellers or buyers, the degree of
economies of scale in production and distribution, the temporal and spatial dimen-
sions, uncertainty about long run development of demand in particular combined
with large investments in production capacity and infrastructure, etc. Our focus
is modeling in order to obtain insight into market mechanisms and price forma-
tion. In particular, we demonstrate the rather different solutions obtained from the
price-taking behavior versus the oligopolistic Cournot behavior when the spatial
dimension is observed.

1 Introduction

The conduct and performance of an industry are characterized by several features
in combination, e.g., the nature of its products, the numbers of sellers or buyers, the
degree of economies of scale in production and distribution, the temporal and spatial
dimensions, etc. In any specific analysis, it is advisable to tailor-make a model to
the issues in question.! We consider the development of a model to help understand
price formation in the European natural gas market over a time horizon of the next
5-10 years. With this in mind, we will briefly review industry characteristics and
related modeling issues.

First and foremost is the nature of the product. Natural gas can be considered a
homogeneous good. Except for the low-calorific gas from Groeningen gases from
other fields mix in the pipelines. Consumers have no preference for the gas from a
particular supplier, which implies there will be one price. Of course, there are more
dimensions to supply than the product as such. Security and flexibility of deliveries
are concerns that may warrant price premiums and diversifications.

'Smeers (1997) reviews models and issues in the European gas market.
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Several features of the natural gas industry signal that fime is important.
In economic theory, resource extractive industries are typically studied from the
perspective of optimal intertemporal depletion paths.” There are very long lead
times between a decision to develop a field or build a major pipeline and deliveries
to the market. Investments are enormous, whereby capital costs vastly dominate
operating costs. Thus, uncertainties regarding future market conditions and the eco-
nomic feasibility of the projects are considerable for all parties involved.> Another
aspect of time is the seasonal pattern within a year. Some consumers have much
higher demand in winter than in summer. With costly production capacity, it may be
profitable to apply an average production rate and use storage to balance seasonal
demand.

Space is important for at least two reasons. The distance from a major field in
Russia, Algeria, or Norway to the market is large and combined with the above-
mentioned uncertainties it may imply low and highly uncertain net-back prices.
Also, distances between various consuming regions in Europe are considerable,
whereby net-back prices to a given supplier differ considerably between regions
and will influence his decision to supply these markets.

In the European gas market, there are a few large suppliers, some very influential
transmission and distribution companies, as well as a few large consumers, although
most consumers are small. Fewness and size imply potential market power, that is,
ability to influence price. The extent of power and the effects from exertion of power
are interesting issues for analysis. In production, fewness is related to the availabil-
ity of resources; only a few countries are endowed with natural gas. Furthermore,
extraction rights are allocated to only a few companies.* In transportation, fewness
is a result of the quite substantial economies of scale with respect to pipeline di-
mension both in terms of laying the pipeline and its carrying capacity. Transmission
and distribution networks are examples of natural monopolies. Old pipelines (or mo-
nopolistic behavior) may constrain flows and hinder some seller’s access to a market
and thus impede competition. Hence, modeling the actual network of pipelines with
their tariffs and capacities may be relevant.’

One question is who has power; another is how to model market power. Consider
the stylized structure in Fig. 1, where one or more gas producers sell to a transmis-
sion or a distribution company, who resells to the final consumers. The numbered

2 Mathiesen et al. (1987) argue that shadow prices of the vast gas resources of the larger suppliers
are close to zero whereby a static approach is appropriate from a resource perspective. The large
profits in gas production are oligopolistic rents that stem from uneven distribution of the resources
and not scarcity.

3 In order to reduce the risks caused by long lead times and large uncertainties, parties involved
write long term contracts for deliveries. The terms of such contracts may not match price formation
in an equilibrium model. But it seems that contracting clauses rather than being written in stone are
modified when market conditions change, thereby adapting to the logic of the market mechanism.
4 Algeria, Russia, and The Netherlands each have only one (large) producer, while in Norway a
central board coordinated sales for years.

3 For the analysis of investment in pipe capacities, modeling of flow as dependent on pressure at
nodes may be important (see De Wolf and Smeers 1993).



On Modeling the European Market for Natural Gas 85

1 2
Gas —— | Transmission [P

producers ¢ companies ¢
3 4

Consumers

Fig. 1 Combinations of market power

arrows represent exertion of market power. 1, for example, signals that producers
exploit market power versus price-taking transmitters and 3 represents the oppo-
site, when a transmission company exploits its power versus price-taking producers.
While one may observe that several of these relationships coexist in an industry, eco-
nomic theory makes the modeling of some combinations difficult. The problem is
whether the theory provides a (locally) unique solution or not.

Within noncooperative game theory, it is well known how to model 1, namely, an
oligopoly of producers selling to price-taking transmitters. This is the Nash—Cournot
model. 3 is that model turned upside down, i.e., an oligopsony of transmission
companies buying from price-taking producers. Although one does not see many
applications, it is conceptually sound. Combination 1&2 describes a situation of
successive market power, where producers sell to price-taking transmitters, who in
turn exploit their power over price-taking customers. Combination 2&3 is about a
company that has market power in both factor and product markets. It can be gener-
alized to an oligopolistic setting.

Combination 1&3 signals a situation where each side of a market has power.
Conceptually, this case is similar to a so-called bilateral monopoly. Rather than
having a unique solution, it involves a continuum of solutions. The impasse may
be resolved by using the Nash bargaining solution concept of cooperative game
theory. This theory, however, is not as easily available as the noncooperative theory
for large, detailed, numerical models. Thus, one has to decide which features are
essential to model, and which are not. Our model concept is based upon noncooper-
ative game theory, whereby we cannot model the explicit exertion of market power
of two opposing agents in a market. There are indirect ways to analyze the realities
of 1&3 though, and we return to such analysis below.

The above mentioned features, in addition to the number of details in each dimen-
sion, are relevant for some analyses. Even though present day PCs have an enormous
computing capacity, one has in practice, however, to abstain from bringing in every
dimension in minute detail. If not for other reasons, one should acknowledge that
such a model is meant to support rather than make decisions, and therefore has to
be transparent enough for the user to understand what is going on inside the model.

The remainder of the chapter is structured as follows. Section 2 reviews some at-
tempts at modeling natural gas markets, the focus is on behavior. Section 3 discusses
the modeling of behavior in a general setting. This is embedded in a spatial model
in Sect. 4, and striking differences of solutions of two different modes of behav-
ior are illustrated. Section 5 compares two types of transportation models. Section 6
concludes the chapter.
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2 Previous Modeling

An early effort is the Gas Trade Model developed in the Systems Optimization
Laboratory at Stanford around 1980 (Beltramo et al. 1986). It is a multiregional
transportation type model of the North American market and assumes price-taking
behavior in supply and demand. Berg (1990) employed a version of the model for
an analysis of increased Canadian supply to the US market, while Boucher and
Smeers (1984) applied this structure for an analysis of the European market.

Observing clear indications of exertion of market power on the selling side in
Europe, Mathiesen et al. (1987) studied the consequences for model solution of al-
ternative kinds of seller behavior, namely price-taking, Nash—Cournot or collusion.
They focused on the three large exporters to continental Europe — Algeria, Norway,
and the Soviet Union — and two large internal suppliers — UK and The Netherlands.
In addition, there was indigenous production in several of the 12 regional consump-
tion areas. They concluded that a modified Cournot-model seemed to track observed
volumes and prices best.

Using essentially the same model structure, Golombek et al. (1995, 1998)
analyzed various aspects of the deregulation process of the European energy market.
For example, the one Norwegian Cournot-player was replaced by several players
whereby supplied volumes increased and prices dropped. Boots et al. (2004) con-
sidered the case of a successive oligopoly (the combination of 1&3 in Fig. 1) in
a disaggregated market. Eldegard et al. (2001) developed a similar model and
included in addition the storage of gas between seasons. All these models con-
sider several supply and consumption regions and they are of transportation type
(see Sect. 5).

Brekke et al. (1987) argued that applying a static model to analyze 10-15 years
into the future seriously misrepresented the investment process over this time span.
They built an intertemporal model where suppliers engaged in a dynamic game
observing previous actions and reacting to them. Because of the time-dimension and
added complexity in the strategy-space, they condensed other aspects. For example,
they considered only one aggregate European excess demand — net of indigenous
production. They disregarded the UK market and subsumed Dutch production in
indigenous production, thus considering a game between the three players: Algeria,
Norway, and the Soviet Union.

Bjerkholt et al. (1989) studied market power exerted by the transmission compa-
nies and possible effects of a deregulation in terms of third party access to pipelines
of the European gas market by 1992. They did not formulate a model for optimal
tariffs (cf., our discussion related to combination 1&3 in Fig. 1). Hoel et al. (1987)
modeled a cooperative game between sellers and buyers represented by transmis-
sion companies. Grais and Zheng (1996) focused on the East—West gas trade and
studied a game with Russia as a Stackelberg leader versus a transmitter (in Eastern
Europe) and a Western European importer. von Hirschhausen et al. (2005) also
studied Russian options of transporting gas to Western Europe using both noncoop-
erative and cooperative strategies. Like the Brekke et al. model, these four analyses
led to fairly compact models.
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Mathiesen (1987) extended the Mathiesen et al. (1987) model to allow for an
explicit network of transmission lines. The model was constructed for Statoil to
simulate various scenarios in the European gas market. To facilitate such analyses,
the model was embedded in an interactive program and presented as a decision
support system. The user could choose the time horizon and modify some drivers of
natural gas prices, like the prices of alternative energies as light and heavy fuel oils,
growth in GDP, and the change of some energy policy parameters within a region.®
The model observed five different types of consumers in each region, with price and
income elasticities depending on the time horizon of the analysis.

Using the network model, Mathiesen (1988) demonstrated the importance of the
spatial dimension in combination with strategic behavior. Particularities of the geog-
raphy are lost when assuming that sale takes place at a central destination in Europe.
Selling strategies for a producer may look very different in a spatial and a nonspatial
model and the sales pattern of the competitive and the noncompetitive equilibria dif-
fer tremendously, as will be illustrated below. Simply because of different location
and distances to the various regions of the market, Algeria may benefit from a more
aggressive sales strategy than Norway and Russia, and there may be little the two
can do to counteract such sales.

Tandberg analyzed the potential for gas in Scandinavia (Tandberg 1990, 1992).
He studied investments in a pipeline system to supply Sweden and employed a
model that considered three forms of energy. Natural gas and electricity were mod-
eled to flow from gas fields or power plants to consumers through separate networks,
while fuel oil was supplied at a unit cost. Energy demand originated in six consumer
groups in twelve regions, where some consumers could entertain fuel switching de-
pendent on relative prices. Tandberg observed that gas supplies would increase total
energy supplies and reduce electricity prices — benefitting consumers — and reduce
the value of extant electricity generating capacity in Sweden — hurting producers. He
used the output from the equilibrium model to establish a pay-off matrix for a game
between electricity producers (wholesale) and retailers (representing consumers) in
Sweden.

(@ygard and Tryggestad (2001) consider the deregulation of the European gas
market using the McKinsey model. Judging from their nontechnical description,
and a presentation by Keller (2001) presumably of the same model, it seems to
be a fairly detailed network-type model with large numbers of production fields,
pipelines, consuming regions, and consumer types, but where suppliers and other
agents are price takers. It may seem that the behavioral dimension is sacrificed for
details. This may be reasonable strategy for some kind of analyses. As seen from our
numerical illustration below, however, the trade pattern of such a model, or changes
in trade pattern caused by shifts in parameters, may be next to noninformative.
One should appreciate the insights gained from a combination of behavior and
geography (Mathiesen 1988), or behavior and time (Brekke et al. 1987), both of
which combinations are not available in the McKinsey model.

® The Statoil model is expanded, its database is updated, and the interactive program improved.
It is helpful to analysts (see Fuglseth and Grgnhaug 2003), but it may also be too complicated for
most non-academics.
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3 Behavior

In many markets, producers have the ability to influence price and their exertion
of such power is an essential feature of the market. Adopting an assumption of
price-taking behavior may seriously distort model solutions. Of course, whether a
particular market, like the European natural gas market, is best modeled as noncom-
petitive rather than a competitive one is an empirical question. Rather than delve
on this question, we will illustrate some major differences in the solutions for these
alternative model assumptions.

Consider the market for a homogeneous product and assume that producers make
volume decisions. For ease of exposition in this section, assume there is one non-
segmented market. Let i denote producer,i = 1,...,n,

x; and Cj(x;) denote his volume and total cost of producing it,

p(X) denote the market price as a function of total supply, i.e., X = ¥;x;, and

mi(x) = p(X)x; — Ci(x;) denote his profits, where x = (x1,...,X,) is a vector
of decision variables for all n producers.

The profit maximization problem of producer i, is then

maximizenw; (X) = p (X)xi—Ci(xy),i =1,...,n. (1)

Through the vector X, his maximization problem is a function of all rivals’ decision
variables as well. Let ¢/ = 9C;/0x;. Provided x; > 0, his first-order (necessary)
condition for a profit maximum are

0mi/dxi =p + [(dp/dx1)(x1/0xi) + (dp/0x2)(9x2/0x;) + ...
+ (9p/9xa)(9xn/0x:)]x; — Ci/ 0x;

=p+ P’[1+Zk¢i (axk/axi):|xi —a ={p+p [1+6]x} —c’ =0

(@)

The term 6, = Xy; (0xi/0x;) represents the sum of rival’s responses to a change
in producer i ’s volume. It is called conjectural variations® signaling that producer i
holds conjectures about his rival’s responses. The entire bracketed term is marginal
revenue, and the condition says that optimal production is at a level where marginal
revenue equals marginal cost.

From (2) we may extract several behavioral types. The Nash—Cournot hypothesis
is that producer i conjectures that his rivals do not react to his change of volume,
i.e., (Oxx/0x;) = 0, k # i, whereby 6; = 0. Thus,

o /oxi = {p + p’xi} —¢i” = 0. 2.1

7 For a homogeneous product dp/dx; = dp/dx, = ... = dp/dx, = p’.

8 Bowley (1924) introduced the idea. Game theorists dislike the concept — only the Nash solution
0; = 0 is consistent. Others point out that #; 7 0 in particular markets and that should be taken as
a datum along with costs and demand. Bresnahan (1989) reviews several studies where such terms
have been estimated.
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Bertrand’s model can be described as 6; = —1, whereby [1 + 6] = 0. This is as if
the Bertrand firm believes that its increased output will be exactly offset by the other
firms. Observe that we are left with p — ¢/ = 0. This model should be distinguished
though from the case of the price taker who ignores his influence on price, i.e., he
thinks p’ = 0, in which case we also are left with the condition that price equals
marginal cost,

omi/oxi=p—c¢’ =0. 2.2)

The most general behavior is the case where (dxi/dx;) can be of any sign and value,
whereby 6; # 0 in (2). The Stackelberg model is one example and the model of a
dominant firm with a fringe of price-takers is another.”

Consider a cartel of producers,i € A € N = {1,2,...,n},'"” who maximize the
sum of profits. Each member i of the cartel thus considers the total production of
the cartel (Xxea xx) and not only his own (x;) when he adjusts his production

armi/dx; = {p +p’ (ZkeA xk) } —¢’ =0. 2.3)

3.1 Non-Negative Sales

In applications one has to allow the possibility that a producer does not operate
profitably in the market. That is, the maximization problem of producer i is

maximize i = {p (X) xi — C; (x;)} subjecttox; > 0,i =1,...,n. 3)
The first-order (Kuhn—Tucker) conditions of a Nash—Cournot player are:

—0mi/0xi = —{p+ p'xi} + ¢ >0,
x; >0, and
xi{lp+pxi}—c’1=0,i =1,...,n. 3.1

The first part of (3.1) states that marginal profit on sales has to be nonpositive.
Assume the opposite, namely that d7;/dx; was positive. Then, one could increase
profits by expanding sales, invalidating the initial position as equilibrium. The sec-
ond condition is that the volume has to be non-negative. Finally, if a volume is
positive, the marginal profit is zero, and oppositely, if marginal profit is negative,
the volume is zero. It simply is not profitable to sell even the first unit.

9 A leader assumes that his followers adjust their volumes to satisfy their individual first order
conditions. Their aggregate response follows from totally differentiating these conditions. The dif-
ference between the models stems from the different behavior of the followers — Cournot-players
versus price-takers.

107t is assumed that the cartel behaves as one Nash—Cournot player against non-members. Thus,
6i = 0.
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The first-order conditions (3.1) stem from n different optimization problems that
are interrelated. Mathiesen (1985) suggested that this problem could be solved by
the SLCP-algorithm,!! which today is available as the MCP-solver in GAMS.!?

3.2 Optimization Approach

A traditionally more popular approach is to try to convert equilibrium conditions like
(3.1) into a single optimization problem.'* The question is, under what conditions
does there exist a (fictitious) function I1(x) with the property that:

Il /dx; = 0m;/0x;,i = 1,...,n. 4)

If such a function I1(x) exists, the game of n agents maximizing individual profit
functions would be equivalent to a problem of a single agent maximizing this fic-
titious objective, and it could be solved by any optimizing code. In general, the
function IT(x) exists if and only if the n first-order conditions, like (3.1), are inte-
grable.'* Slade (1994) showed that for the homogeneous product Cournot model a
function IT(x) exists when (inverse) demand is linear, i.e., p = a — bX. In this case,

[T (x) = Zimi — [V20%ixi(Zx))]. 4.1)

It is well-known that the maximization of aggregate profits (the first term) leads to
a collusive outcome. The bracketed term thus corrects for this erroneous objective;
it undoes the coordination of activities implied by the sum of profits.

4 The Generalized Transportation Model

Consider a market for a homogeneous good. Assume there are many producers and
consumers so that one may reasonably apply price taking behavior. Individual pro-
ducers’ supply is aggregated into supply curves (industry cost curves) per region,
and likewise, individual consumers’ demand is aggregated into demand functions

! The acronym stands for A Sequence of Linear Complementarity Problems, describing a Newton-
like iterative process where the linear conditions in each step are solved by Lemke’s method.
12GAMS is a software package for a variety of optimization and equilibrium problems. It has
become an industrial standard. See www.gams.com for details on content and how to obtain this
package.

13 Samuelson (1952) originated this approach, demonstrating that in order to compute the com-
petitive equilibrium one could maximize the sum of consumers’ and producers’ surpluses. See
Takayama and Judge (1971) for applications.

14 Cf., integrability of demand in economic theory (see, e.g., Varian 1992).
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per region or segment. Let there be n producing and m consuming regions, and let
i and j denote producing, respectively, consuming region. Further, let

¢j denote the marginal cost of production in region i,

si(ci) denote supply from producing region i,

x;; denote sales from producing region i to consuming region j,
t;; denote the unit transportation cost from i to j,

Dpj denote consumer price in consuming region j, and

d;(p;) denote demand in consuming region j.

A competitive equilibrium is characterized by three sets of conditions.

Supply balance:

si(ci) — qu >0,¢ >0, cl[sl(c) qui| =0,i=1,...,n. 5.1)
Demand balance:

qu i (pi >0pj>0pj[2xu '(pj):|=0,j=1,...,m. (5.2)

Price formation:
¢i+tj—pj = O,xij > O,xij [Ci + £ —pj] =0,i=1,...,n,j=1,....,m. (5.3)

Equations (5.1) and (5.2) are conditions on regional balances of supply and de-
mand, while (5.3) relates to the profitability of trade flows between regions. In (5.1),
the production of region i has to be at least as large as its total sales; marginal
cost — interpreted as the supply-price — has to be non-negative; and finally, if the
supply price is positive, production equals sales. Equation (5.2) says that consump-
tion in region j cannot be larger than deliveries; the price has to be non-negative,
and finally, if the price is positive, consumption equals total delivery. Equation (5.3)
parallels condition (3). The negative of marginal profit on sales from supply-region i
to consuming region j has to be non-negative. The flow has to be non-negative; and,
if a flow is positive, its marginal profit is zero, while on the other hand, if marginal
profit is negative, the flow is zero. As we shall see below, zero will be a typical
outcome for a large number of flows in a competitive equilibrium.

Consider now maximizing the sum of consumers’ and producers’ surpluses. Let

¢i(Qi) = coi + c1;0; denote the marginal cost of producing Q; in region i, and
bj(Z;) = a; — bjZ; denote marginal willingness to pay for consumption Z;.

The optimization approach to solving (5.1)—(5.3) can then be stated as

maximize{ Zj (aj - 1/2ijj)Zj - |:( Zi coi + 1/2CnQi) 0i + Zi Zj fijxij:|}

6.1)
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subject to Zi Xij > Zj, Zj Xij < Qi, x;; > 0. (6.2)

Equations (6.1) and (6.2) constitute a quadratic programming problem analyzed by
Takayama and Judge (1971). The objective (6.1) represents consumers’ and produc-
ers’ surpluses computed as the difference between consumer valuation of volumes
(Z;) and costs of production and transportation. If Q; and Z; are exogenously stip-
ulated production and consumption volumes (Q; and Zj’ ), (6.1) and (6.2) reduce to
minimizing transportation costs. This is the transportation model of linear program-
ming.

maximize |~ > 1y | (6.3)

subject to Zi RAN Zj Xij < Q’i,andx;; > 0.

4.1 Noncompetitive Behavior

Assume now that producer i is a single decision unit and not an aggregate of in-
dividual producers. Assume further that this agent behaves according to the Nash
hypothesis when selling in region j, i.e., he observes his influence on price (p;)
and conjectures that other producers regard his volume (x;;) as given. The first-order
condition for his profitable sale to region j is then

(ci + 1) — (pj + pi’xj) = 0.x; = 0, and
Xij [(Ci + ) —(p + pj’xij)] =0,i=1,...,n,j =1,....m. (5.3

His marginal profit is now the difference between the marginal revenue and the
marginal cost of production plus transportation. This has to be nonpositive.

Let us compare implications of different behaviors. The price-taker sells to mar-
kets considering his net-back price [ p; — £;], i.e., his decision rule is sell to region
j when

Py — Lj = px — Lk forallk # j. See(5.3). (7.1)

Knowing that his supply affects the price, the Nash player considers the net-back of
marginal revenue [(pj + pj'xij) — tij], i.e., his decision rule is sell to region j when

[(pj + pj’xij) - lij] > [(px + px’xik) — ti] for all k # j. (7.2)

This net-back is an explicit function of his volume (with p’ < 0), and he adjusts Xij
so that sale to market j may be profitable. Hence, for a market far away, where net-
back price will be low, he will only sell a little. The following example will illustrate
the implications for trade volumes of rules (7.1) versus (7.2).
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4.1.1 A Numerical Example

Consider a market consisting of four individual producers and six consuming re-
gions. For the illustration of consequences of different behavioral assumptions we
use identical linear (inverse) demand and identical linear marginal cost functions

pi=20-025Z,j=1,.. 6andc=1+01Q; i=AB.C, D.

Unit transportation costs differ and are shown in Table 1.

For this model we have computed the competitive and the Cournot equilibria.
They differ in several respects. At the aggregate level, the competitive equilibrium
has a larger volume (262 vs. 214) and a lower (average) price (9 vs. 11). This is well
known. See Tables2 and 3. Even though demand and marginal cost functions are
identical across regions, unequal transportation costs make regional consumption
and individual production volumes differ. These are also well known facts.

Volumes and prices vary much more (in both absolute and relative terms) across
regions in the competitive equilibrium than in the Cournot equilibrium. The largest
volume is 26% and the highest price 32% above the smallest volume (price) in the
competitive equilibrium. The corresponding numbers in the Cournot equilibrium are
8% for both volume and price. Price variation between regions in a competitive equi-
librium is bounded by differences in transportation costs. It is interesting to observe

Table 1 Unit transportation From/to 1 2 3 4 5 6
st
o8 A 15 25 2 3 4 35
B 0.5 1.6 099 15 3 2.5
C 35 35 2 1 25 4
D 4 35 35 25 1 2

Table 2 Volumes and prices of the competitive equilibrium

From/to 1 2 3 4 5 6 Sum mc
A 17.0 42.3 59.3 6.9
B 29.3 40.0 69.3 7.9
C 4.4 48.3 6.5 59.2 6.9
D 35.8 38.3 74.2 8.4
Sum 46.3 42.3 44.3 48.3 42.3 38.3 261.9

Price 8.4 9.4 8.9 7.9 9.4 10.4 9.0

Table 3 Volumes and prices of the Nash—Cournot equilibrium

From/to 1 2 3 4 5 6 Sum mc
A 13.3 10.5 10.5 6.1 4.1 7.3 51.7 6.2
B 14.3 11.2 11.5 9.1 5.1 8.0 59.1 6.9
C 5.3 6.5 10.5 14.1 10.1 5.3 51.7 6.2
D 33 6.5 4.5 8.1 16.1 13.3 51.7 6.2
Sum 36.1 34.8 36.9 37.3 353 340 2142

Price 11.0 11.3 10.8 10.7 11.2 11.5 11.1
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that price differences in the Cournot equilibrium may be significantly smaller. Of
course, with identical demand, price elasticities are equal between regions in this
example, whereby a Cournot producer has no incentive to price discriminate.'> In
reality, price elasticities differ between various consumer groups. In a gas market
context, the relevant questions are whether a producer can price discriminate be-
tween consumers'® and to what extent the mix of consumer groups (with different
price elasticities) vary between regions.

The more spectacular difference between these equilibria is the rather diverse
trade patterns, with nine positive flows in the competitive equilibrium and 24 in the
Cournot equilibrium.'” In general and unless unit transportation costs (#;;) of pro-
ducer i differ too much between regions, a Cournot producer will supply all regions.
The price taking producer, however, supplies only a few of his neighboring regions.
The rationale of the competitive equilibrium is to provide commodities at the lowest
cost.'8 A competitive equilibrium would for example never have Norway supplying
Italy or Spain, and at the same time Algeria supply Belgium or Germany. Such a
solution would imply hauling a homogeneous commodity both ways across the Alps
and would constitute a waste of resources.!® This trade pattern, however, character-
izes the Cournot equilibrium,?” and to some extent also the present gas market.”!

From consumers’ perspective of security of deliveries it is noteworthy that the
Cournot model provides a dramatically different portfolio of suppliers. All suppli-
ers sell in every region and the market share of the dominant supplier varies between
0.26 and 0.38. This is a desirable property, although it may be unintended. In com-
parison, the competitive equilibrium has one or at most two suppliers and market
shares vary between 0.63 and 1.2

SWith (p, Z) = (10, 40), price elasticity is —1. When elasticities differ between regions (—0.6
to —1.4), price differences in the Cournot equilibrium are still smaller.

16 A gas producer typically does not sell to final consumers, but to various agents who sell and dis-
tribute gas to final consumers. A model with successive market power would be more appropriate
to capture price discrimination (cf., Boots et al. 2004 and Eldegard et al. 2001).

17 The Cournot equilibrium may have all nm flows positive, while the competitive equilibrium has
at most (n + m — 1) positive flows. The latter fact is well known within operations research as a
feature of a basic solution to the transportation model and within trade theory through the notion
of no cross-hauling.

18 1t is interesting to note that a collusive outcome — where all producers coordinate their sales (see
2.3) — has the same efficient trade pattern as the competitive solution, although volumes are about
40% lower.

19 Of course, even though contracts involve sales from North to South and vice versa, transmission
companies may avoid actual cross-hauling.

201n reality, fixed costs of deliveries block small flows. In modeling terms, this feature implies
non-convexities that are hard, but not impossible, to implement in an optimization or equilibrium
model.

2!'In line with the regional disaggregation of this example, the European natural gas market has at
present about 20 positive flows. When asked why Statoil would sell to Italy rather than Germany,
a sales representative commented: “We already sell much in Germany and selling larger volumes
would depress our prices there.”

22 Of course, deliveries from any supplier could be constrained in the competitive model in order
to prevent such dominance.
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A producer’s incentive for selling differs between the two models. From (7.1) it
follows that he sells only to markets yielding the highest net-back price. Producer A,
for example, has net-back prices 6.93, 6.93,6.92,4.92, 5.42, and 6.92 from markets
1 to 6. He sells to markets 1 and 2, and does not sell in markets 3 and 6, even though
his net-back prices from these two markets are only slightly lower, namely 6.92
versus 6.93. In the Cournot equilibrium, net-back marginal revenues are equalized,
while net-back prices may differ between the markets he supplies (see (7.2)).
Producer A sells to all six markets and his net-back prices are 9.5, 8.8, 8.8,7.7, 7.2,
and 8. It is noteworthy that he sells to markets with a net-back price difference of 2.3,
while the price taker does not sell to markets where the difference is as low as 0.01.%3

The regional price-pattern of the two models also follows different logics. An
immediate result of the competitive equilibrium is that when a supplier sells in sev-
eral markets, the price increases with transportation cost (distance to the market)
and covers his combined costs of production and transportation. The Nash—Cournot
equilibrium, however, may have decreasing price with transportation cost (distance)
to a market as illustrated in the following stylized example. Consider three regions
1-3 along a line. There are pipelines with a unit transportation cost of 1 between
neighboring markets. Gas suppliers are located in regions 1 and 3, but not in region
2. Demand in aregionis Q = 15— P, and the industry cost curves of regions 1 and
3 are, respectively,

c1 = 340.25 QlandC3 =8+ 0.4Q1.

In a competitive equilibrium producers of region 1 sell in all markets, while produc-
ers of region 3 only sell in their home market. Equilibrium prices are 7, 8, and 9,
respectively.

Assume now that there is one supplier in region 1 with the marginal cost curve
c1 shown above and two suppliers in region 3 each with a marginal cost curve
c3x = 84 0.2¢k, k = 1,2, which may be interpreted as each having half the supply
of the aggregate (Q1). The Nash—Cournot equilibrium has prices 10.33, 10.28, and
10.03, i.e., decreasing and not increasing going from 1 to 3.%*

23 Traded volumes in the competitive equilibrium depend on transportation cost in a step-like man-
ner, that is, a volume stays fixed for cost variations over some range and then jumps. The difference
in net-back prices between a market that is served and one that is not served may be arbitrarily
small. In our example, N does not serve market 3 until transportation cost is below 1.99. But at a
unit cost of 1.98 A shifts his entire volume (17) from market 1 to market 3 and B shifts a similar
volume oppositely. Who sells where in a competitive equilibrium is therefore very sensitive to rela-
tive transportation costs. Individual flows in the Cournot equilibrium are much more stable to such
parameter changes. (Aggregate flows of production and consumption, however, are very stable in
both models.)

24 When establishing a gas model for the European market in the mid-1980s it seemed that actual
gas-prices were reduced going east to west in Europe. The reason could be that USSR met no

competition in eastern markets, while there were alternative suppliers and hence competition in the
West.
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Based on the observation that price exceeds supply cost in the Cournot equilib-
rium, it has been suggested (Smeers 1997) that by allowing mark-ups on cost, the
competitive model can be employed to simulate the Cournot equilibrium. Inspection
of conditions (5.3) and (5.3') reveal that a mark-up-factor (1) has to be

Aij = —(pj’xij)/(ci +4).i=1,....,n,andj =1,...,m.

There are two problems here. One is that the information content is demanding as
these mark-ups differ both by producer and market. In fact, the entire Cournot flow-
matrix (x;;) has to be known. So, if that is known, why bother use another model to
replicate it?

The next problem is related to the model, its solver and the structure of the so-
lution. Assume the Cournot equilibrium is known and compute parameters Aij, as
distinguished from functions of variables. Solve (6.1) and (6.2) modified by mark-
ups (1 + Ajj) on cost. The resulting model has multiple solutions. One is the Cournot
equilibrium another has the trade pattern of Table 2 only flows are smaller. But there
are more solutions. With multiple solutions, it is my experience that it is unclear
which solution will be reported by the solver.” It is likely to be a competitive-
looking one. As illustrated above, such a solution may be inappropriate for some
managerial purposes, e.g., analyzing marketing strategies, because its trade pattern
is so sensitive to (direct or indirect) changes in transportation costs.

5 Network

Transportation in the previous model can be pictured as in Fig. 2a. Supplier i can sell
in any market j. There is no explicit mention of how transportation is performed,
and only unit transportation cost is represented. It is assumed to be the lowest cost
of shipping a unit from i to j. This is a transportation type model.

Natural gas has to follow a designated transportation system, a network of
pipelines, although the gas may flow along any of a number of different routes.
Figure 2b displays the same industry where producers (A-D) insert gas into the net-
work and consuming regions (1-6) extract gas. Gas from A to market 6, for example,
may flow along one or more of several routes: A-2-4-6, A-1-4-6, A-1-3-4-6, or
A-1-3-5-6. This a network type of model.

25 The MCP-solver of GAMS replicated the Nash equilibrium when the mark-up was computed
immediately following the computation of the (true) Nash, but it generated a trade pattern with 9
flows when the mark-up equilibrium was computed immediately following the competitive one (or
when the matrix of A;;’s was input to a new run). Although both these trade patterns had 9 positive
flows only two flows were positive in both equilibria. The reason for these seemingly arbitrary
trade patterns in the mark-up equilibrium stems from the definition of A;; whereby reduced costs
{pi — (ci + t)(1 + A;)} = 0, all , j, at the equilibrium admitting any trade pattern that adds up
to equilibrium production and consumption volumes.
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a Demand regions b

Supply regions

o

Fig. 2 (a) Transportation type. (b) Network type

From a network model one may compute the cheapest route of transporting be-
tween two regions, and use the corresponding unit cost in a transportation type
model. The critical issue is whether there are features of the network that are not
represented by such unit costs.

Restricted capacities of individual pipelines are certainly not represented in the
simplest version of the transportation model. Figure 3a illustrates the case of a
pipeline with unit cost, or tariff, # and a given maximal capacity K (in terms of
m?3 flow per time period). As long as the total flow along this pipeline is below K,
e.g., demand for capacity is D1, there is no problem. All shipments are allowed at
the unit cost 7. If demand for capacity exceeds K, like in case D, however, some
shipments cannot be executed, and there has to be rationing. The simplest rationing
from a modeling point of view is to use the shadow price p of the scarce capacity K.
That is, the cost per unit transported through the pipeline is increased to (¥ + ), at
which demand equals the capacity. Assume that the value of w is known. Tariff ¢
could then be replaced by (f + w) and the capacity constraint disregarded. The ag-
gregate flow in the optimal solution would now equal the capacity.

The shadow price depends on the optimal solution of the market model, however,
much like the mark-ups of the previous section. Hence, shadow prices cannot be
known in advance, although the value for a particular pipeline may turn out to be
fairly stable between various scenarios.

A critical issue is whether the time horizon of the analysis is sufficiently long so
that capacities can be increased in order to be nonbinding. Then one may assume
that the necessary investments will be made to accommodate planned flows, and
one may employ a transportation type model. If, on the other hand some capacities
will be constraining within the time horizon, there may be no escape, but model the
actual network. Obviously, one will have to aggregate details also in this dimension
of the market and represent only the major transmission lines.
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Fig. 3 (a) Pipeline pricing. (b) Pipeline pricing

There are two issues related to behavioral types when modeling a network of
individual pipelines. One is about gas suppliers the other is about pipeline owners.
The first is about how the flows are modeled. Traditionally, flows into and out of a
given node are aggregated, and the aggregate flow into, e.g., node 4 (in Fig. 2b) has
to equal the aggregate flow out of this node. The model sums the cost per unit of
gas injected into the network and the unit costs of transportation (including shadow
prices) along the various pipelines into a price of delivering gas at any node. And
oppositely, it provides net-back prices to a supplier from any market.

In an application with several suppliers injecting flows possibly at different
nodes, these flows mix and the model disregards who are the sellers. This is of
little importance if all sellers are price takers (see (5.3)). The information on market
prices is available and the model computes net-back prices of supplying the various
markets. When supplier i is not a price-taker, however, for example he may be a
Nash—Cournot player, information on his supplies (x;) to market j is needed (see
(5.3")). In order to provide this information, the model has to keep track of individual
sales, which requires a reformulation of the traditional network models.

In the discussion related to Fig. 3a, we stated that at a tariff (or price) (¢ + n),
the market involving supply of and demand for capacity of the pipeline was cleared.
Implicitly, we assumed that the owner of the pipeline stipulated his price ¢ inde-
pendent of actual demand or stipulated (¢ + ) taking marginal willingness to pay
for this capacity as given. The price taking assumption may be dubious when for
example a pipeline owner is in a position to set his price optimally. As mentioned
above noncooperative theory does not provide a unique solution when both sides
of a market enjoy market power, e.g., a supplier of transmission capacity and a gas
producer demanding such capacity. Computing the equilibrium for alternative levels
(1, t2, t3) of the tariff provide corresponding levels of aggregate flows whereby one
finds a pipeline owner’s corresponding profit and may infer his optimal price (see
Fig.3b).
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6 Conclusion

Our concern has been to communicate how to model in order to gain insight into
the market mechanism and price formation in the European market for natural gas.
When insight and not predictions is the driving force of modeling, we advocate a
balance between different features and the amount of factual detail in the description
of any such feature. One should appreciate the insights gained from a combina-
tion of behavior and geography (Mathiesen 1988), or behavior and time (Brekke
et al. 1987), both of which are not available in a very detailed optimization model
like, e.g., the McKinsey model (Jygard and Tryggestad 2001).

As exemplified above, the competitive and the Cournot equilibria differ
markedly. When analyzing sales strategies at the aggregate level, e.g., selling in
Europe, or at a disaggregate level, e.g., selling in France, understanding the com-
petition and the market mechanisms is essential. And in order to understand price
formation one has to include rivalry.
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Equilibrium Models and Managerial
Team Learning

Anna Mette Fuglseth and Kjell Grgnhaug

Abstract The purpose of this paper is to enhance the insights of whether and, if
s0, how equilibrium models can enhance managerial team learning in complex and
ever-changing situations. To handle this research challenge we first clarify the con-
cept of managerial team learning. Then, we present an example of an equilibrium
model, VisualGas, which has been developed to help managers in a large oil and
gas company to improve their understanding of market behavior. We report on a
quasi-experimental study where a team of managers/market analysts evaluated the
consequences for the company of a critical market event, first without and then with
the system. It was found that use of the system led to a more varied interpretation of
the event, i.e., learning, but also to a focus on the system variables only.

1 Introduction

The purpose of this paper is to explore whether equilibrium models can enhance
managerial team learning in complex and ever-changing environments — and if so,
how?

In the past decades, there has been an increasing focus on the ability of organiza-
tions to learn. There are several reasons for this increased focus on learning, such as
rapid technological development and political changes, which also have led to lib-
eralization and globalization of markets, and consequently intensified competition.
Furthermore, these developments have contributed to increased turbulence in firms’
environments, and thus their needs to discover opportunities and threats to survive
and prosper. To handle such changes adequate knowledge is needed, and thus con-
tinuous learning becomes a prerequisite. It is the individual organization member
who learns. Today, organizations are usually headed by a team of managers. This
implies that the learning in the managerial team becomes crucial.
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Review of the literature on managerial team learning reveals, however, that scarce
attention is paid to the role of model-based systems in general and in particular to
the role of equilibrium models, to support such learning. This is especially the case
for important, nonrepetitive strategic tasks, i.e., in situations where the need for
learning and knowledge is the greatest.

In economics an equilibrium model is a simplified representation of a single
market (partial model) or an economy with interrelationships among various mar-
kets (general model). This paper focuses on equilibrium models that are specified
according to a mathematical format amenable to interpretation by algorithms for
computing equilibrium prices and volumes (see, e.g., Mathiesen 1985). The output
from the algorithm is a state of the modeled market or economy in which supply
and demand for every good and service are equal. Equilibrium is usually considered
to be a hypothetical state, but the market/economy may be thought of as moving
towards equilibrium. Equilibrium models may thus be a useful tool to enhance the
understanding of consequences of complex market changes.

In this paper, we draw attention to a specific equilibrium model developed to help
managers in a large oil and gas company improve their understanding of European
gas markets, i.e., turbulent markets of great strategic importance for the company.

The remaining part of this chapter is organized as follows. In the next section, we
clarify the notion of managerial team learning. There we also argue for our emphasis
on teams. Next, we describe the actual equilibrium model, VisualGas. After this we
describe the design of a quasi experiment where a managerial team evaluates the
consequences of a critical market event for the company, first without and then with
VisualGas. The findings from the two quasi-experimental sessions are compared
and related to criteria expected to reflect learning. Implications of the findings are
discussed.

2 Managerial Team Learning

Learning as such is an old topic to study. Lately, managerial team learning has in-
creasingly attracted interest both among researchers and practitioners. However, not
only is the term (concept) ambiguous, but also the phenomenon itself, including de-
rived questions such as who — or what — are the learners, and where and how does
such learning take place (Easterby-Smith et al. 1998).

It is not our purpose here to review the extant and diverse literature related to this
topic. Rather, our purpose is to address the research question whether and possibly
how equilibrium models may enhance managerial team learning in complex tasks
under uncertainty, a topic that has almost been neglected in previous research.

The term managerial team learning implies that it should denote learning beyond
individual learning in organizational contexts. In this paper, we have found it useful
to build on Huber’s (1991) characterization of organizational learning, which also
includes team learning:
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e Learning occurs when any of the members acquires knowledge that may be
related to the organization;

e More learning occurs when the knowledge is transferred to other members;

e More learning occurs when more varied interpretations are developed; and

e When more members comprehend and contribute to such varied interpretations.

In this paper, we are particularly interested in assessing learning as development of
“more varied interpretations” in a managerial team. The reason is that interpreta-
tion, i.e., explaining, construing the significance of events, is an essential element
of organizational performance (Drucker 1974). Real-world complex events do not
present themselves as objective facts. Events must be noticed and interpreted, often
based on weak signals and data from various sources.

Our reasons for building on Huber’s view are that it does not limit organizational
learning to a process initiated by a mismatch between expected and actual results of
action, but also include learning as a process initiated to respond to plausible future
events (Nonaka 1994), which is essential for our research purpose.

One limitation of the above characterization is that it does not relate learning to
the history of the organization, i.e., that learning depends on what is already known
in the organization (Argyris and Schon 1996). Another limitation is that it does not
link individual and group/team learning to organizational references that are estab-
lished to guide behaviors (Argyris and Schon 1996), e.g., goals, strategies, policies
and routines. Such linking is necessary to understand how individual and group/team
learning can lead to concerted activities that increase organizational effectiveness.

In contrast to Huber (1991), we use the notion “member” instead of terms such
as “unit,” “component,” and “entity.” The reason is our belief that learning in teams
is to be understood as both a cognitive and a social activity (Gherardi et al. 1998).
Our contribution is based on the view that it is individuals who learn (Simon 1991;
Argyris and Schon 1996), but also that individuals are social beings who construct
their understanding and learn from social interaction, among others in the workplace
(Gherardi et al. 1998).

Management literature increasingly emphasizes the importance of teams for or-
ganizational success in the modern economy (Cohen and Bailey 1997; Senge 1990).
A team is a small number of people with complementary competences and skills,
committed to a common purpose (Katzenbach 1998). There are multiple reasons
for the increased emphasis on teams. The handling of complex tasks often requires
complementary competences and skills that are not possessed by one individual
only. Furthermore, in case of environmental changes, a variety of perspectives are
often useful to enhance the understanding of causes and possible consequences of
events, which is again essential for the development of adequate actions.

The concept of learning is usually related to individual living organisms’ adap-
tation to their particular environment (Anderson 1995). A crude distinction can
be made between theories of behavioral and cognitive learning (Anderson 1995).
Behavioral theories attempt to explain learning as a result of training or reactions
to performance feedback without considering conscious thought. Cognitive learning
theories attempt to explain variations in performance by considering changes in in-
dividuals’ knowledge structures.
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In this paper, we focus on cognitive learning, i.e., learning related to generating
and acquiring new knowledge, new ways of perceiving problems and generating so-
lutions, etc. Such learning requires knowledge and memories for storing knowledge
and representations of knowledge, and it requires processes to change/develop the
knowledge.

Distinctions are often made between different phases of the learning process
(see Pawlowsky 2001). Huber (1991), e.g., distinguishes among knowledge acquisi-
tion, information distribution, information interpretation and memorization. In our
opinion the basic processes as regards team learning are information and commu-
nication processes. We believe that focus on these processes helps understand how
knowledge is developed and transferred among individuals with different knowl-
edge structures. Information processing comprises the individual’s detection of data
and other stimuli from the environment, interpretation of the data/stimuli, reflection
and the coding of information as data to be communicated to others or to be en-
tered into a database. It should be noted, that reflection is not dependent on external
stimuli, but can also be a further processing of present knowledge. Communication
involves at least two persons, some kind of message and a medium for transfer of
messages between the persons. Communication processes are particularly related
to interaction involving language, and communication is said to be effective if a
receiver understands a message as intended by the sender. Knowledge transfer and
development of “more varied interpretations” are in our opinion closely related to
the notion of effective communication.

Huber (1991) does not elaborate on the notion of “more varied interpretations.”
In our opinion, however, such development can usefully be related to a change in
the level of information processing at the individual level and group development
at the team/group level. Evaluating whether use of equilibrium models support de-
velopment of more varied interpretations, we will build on cognitive complexity
theory (Schroder et al. 1967). This theory focuses on the relationship between the
development of knowledge structures and level of information processing, but also
includes group development in face-to-face interactions. According to the theory,
persons with well developed knowledge structures can function more effectively in
complex and changing environments. The theory also argues that level of informa-
tion processing is influenced by the complexity of the task. If the handling of a
complex task makes a heavy demand on an individual’s cognitive capacity (“infor-
mation overload”), the level of information processing may be reduced.

A low level of information processing is characterized by the generation of few
alternative interpretations of a stimulus and extensive use of simplifying heuris-
tics, such as availability and anchoring (Tversky and Kahneman 1974) and search
for confirmation (see, e.g., Einhorn and Hogarth 1978). Availability refers to the
tendency to focus on information that is most “available” in memory and neglect
other aspects. Anchoring refers to the tendency to let past focus influence subse-
quent evaluations. By search for confirmation is meant the tendency to search for
data/information that supports prior beliefs and neglect search for data/information
that allows to test and challenge prior beliefs and evaluations.
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Individuals able to function at a high level of information processing are sup-
posed to be more sensitive to environmental changes and to have an increased
perception of uncertainty. They are supposed to take more aspects (dimensions) into
consideration when evaluating an event, and to generate more alternative interpreta-
tions of the potential effects of the event. In addition, they are supposed to develop
more complex interpretations comparing and combining various alternatives, e.g.,
to view an event from both a positive and a negative perspective and to see an event
from the viewpoints of different actors (Schroder et al. 1967; Fuglseth 1989).

As regards group functioning (Schroder et al. 1967, pp. 11-12), it is assumed that
group performance basically depends on the group members’ level of information
processing and on the specific environmental conditions, e.g., task complexity. It is
also assumed that the members, in the communication processes, have an effect on
the conceptual level of each other, and that group functioning is developmental. Low
and high levels of group development are expected to have similar characteristics as
described for levels of information processing above.

3 VisualGas

VisualGas is an example of an equilibrium model that has been developed to sup-
port strategic decision making and cognitive learning in a Norwegian oil and gas
company. The system is based on a generic gas model originally developed by
Mathiesen (1987). The model depicts supply and demand functions for the European
gas markets. In addition, it handles various forms of producer behavior (price taker,
Nash—Cournot oligopoly, and monopoly), pipeline capacity restrictions and tariffs,
and import quota. It is connected to an algorithm for solving nonlinear complemen-
tarity problems (Mathiesen 1985), i.e., the algorithm calculates equilibria prices and
volumes. A graphical user interface takes care of the interaction between the users
and the system. The interface presents the gas model to the users, indicates what the
system can do for them, and how they run the system.

The system is primarily used in connection with the strategic decision processes
in the company. Experienced managers and analysts are in charge of scenario gen-
eration and analyses. Novices participate in the processes and gradually become
experienced. When experienced users are transferred to other positions in the or-
ganization or leave the company, part of their knowledge is still retained in the
strategic analysis group through the discussions with their colleagues and the repre-
sentation in the system. VisualGas can thus be considered part of the organizational
memory (Walsh and Ungson 1991). It is a representation of managers’ and analysts’
causal beliefs that have developed in information and communication processes in
the strategic management group over a long period and with the involvement of
many people. It is a tool that provides a point of focus around which to organize the
interpretation of market events in the group (Wenger 1998).



106 A.M. Fuglseth and K. Grgnhaug

4 Research Methodology

Designing an experimental study for real-life strategic situations involves special
problems and considerations. First, managers’ time is a scarce and expensive re-
source, so there are usually constraints on the time allocated to participation in
experimental studies. Second, managers may be reluctant to participate in research
experiments using real-life strategic cases because they do not want to reveal their
considerations to researchers who want to publish their findings. Furthermore, there
are usually few users of custom-built systems such as VisualGas. It is, therefore,
difficult to design an experiment that involves comparison of similar events and a
control group.

Our research design is influenced by the above considerations. We had to de-
sign a one-group quasi-experimental study. The group consisted of (all) the three
users at that time: a manager and two market analysts. The manager had sev-
eral years of experience using VisualGas for market analyses, and he participated
in the latest updating of the model. At the time of the quasi experiment (June
2001), he had, however, not used the system recently. The two analysts were in-
volved in the search and evaluation of the data used for the latest calibration of
the model. They are both economists and were well acquainted with the modeling
format, but had little experience using the model for analysis of strategic problem
situations.

As “experimental stimulus” we chose a case related to the liberalization of the
gas markets according to the EU Gas Directive in 1998 and the recent EU critique
of the organization of Norwegian gas sales through the Gas Negotiation Committee.
The task presented to the group was to evaluate the consequences of the liberal-
ization for the oil and gas company in terms of volumes, prices and profit — if
the company does not develop actions to handle the event. The idea for this is-
sue came up in a discussion with one of the top managers. Thus, the task is related
to an actual event that had already been noticed as potentially critical. The task
was limited to interpretation, i.e., the group was not asked to develop actions also.
As argued above, however, interpretation is an essential element of organizational
performance.

The quasi experiment included two 2-h sessions with a lengthy lunch in between.
First, the subjects analyzed the problem without VisualGas. After lunch, they ana-
lyzed the same problem using VisualGas. In the first session, they were allowed to
use other information sources and decision aids, such as a spreadsheet.

Data was collected using observation and tape recording of both sessions. The
second session was also videotaped. The purpose of the video recording was to
synchronize the discussions and the use of VisualGas, i.e., to keep track of which of
the screen pages of the system they were commenting on. Furthermore, the scenarios
generated during the second session were saved, and we had a copy of the files for
analytical purposes. The tape recordings were transcribed.
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5 Findings and Analysis

This section presents our findings from the quasi experiment. As argued above, we
were particularly interested in evaluating whether the use of VisualGas would lead
to development of “more varied interpretations” (Huber 1991) of the market event.
Based on our elaboration on this notion, drawing particularly on cognitive complex-
ity theory (Schroder et al. 1967), we derived the following criteria for comparison
of the two experimental sessions:

e Number of relevant aspects considered;
e Level of group development as revealed in group discussions (the evaluation
criteria are further specified in Table 2 below).

First, we focus on the concepts used by the subjects in each of the two sessions.
Then, we give a brief description of each session. Finally, we compare the sessions
and relate the findings to the above-mentioned criteria for team learning.

5.1 Concepts Used in the Two Sessions

Table 1 presents concept categories used in the discussions during the two ex-
perimental sessions. The purpose of the table is to get an overview of the main
differences in concept use without and with VisualGas.

The first column shows how we have categorized the concepts in super ordinate
and subordinate concepts. The subordinate concepts are indented. Actual concepts
mentioned by the participants are not included in order to save space. In the discus-
sion below, however, we will give examples of the concepts used. The categories
have been derived mainly from the structure of the discussions. In the first session,
e.g., the participants started with a discussion of the management of the Norwegian
shelf with goals and the role of the authorities (see the first category in Table 1). The
second column shows the number of concepts used in the discussions during the
sessions.

The table reveals considerable differences in concept use between the sessions.
One of the main differences is related to the goal discussion. In the first session
there was a general discussion of the goals for the Norwegian shelf, such as optimal
utilization of resources versus self-interest of the actors. In the second session, focus
was on profit generation in the company with consideration of income and cost.

Another difference is that in the first session consequences of the liberalization
of the gas markets were almost only related to the supply side, whereas in the sec-
ond session the consequences were also related to demand. However, the discussion
of individual producers was more detailed in the first session, including concepts
such as surplus and scarcity of gas, seasonal variation and take-back clauses. In the
second session, focus was on the producers’ production capacities and volumes.

A third difference is related to categories such as trade pattern and pipelines
that were not used in the first session. These categories are closely related to the
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Table 1 Concept categories

Number of concepts
used in discussions

Concept categories Before After

Management of the Norwegian shelf 7 1
Goals 0
Role of authorities

—

Producer economic results
Profit
Prices
Income
Costs

S O = =N

N
—

Supply (production) 1
Producer behavior
Actors
Gas fields
Volumes

Demand (consumption)
Actors

—_
_—O = WY N =N W W= =

Import quota
Growth
Substitutes
Volumes

Trade pattern — changes
Pipe lines

A OO OO WI B O

AN B~ W

Number of superordinate categories
Number of concepts

(O8]
W

44

consideration of the demand side and to the discussions on profit generation in the
second session.

VisualGas did not introduce the participants to new concepts, so the main reason
for the differences in concept use is probably the absence of the system to support
information processing in the first session. The table indicates that it is particularly
difficult to use concepts requiring integration of categories without the support of
decision aids. An example is trade pattern that requires integration of demand, sup-
ply and pipeline capacity.

The presentation above concerns which concepts the team members used in each
session, but it does not describe how the concepts were used. In the next sections we
will further elaborate on the differences in the discussions.

5.2 Description of the First Session (without VisualGas)

The first session started with a discussion of assumptions on which to base the
development of consequences of the liberalization of gas markets. The members
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assumed that the company would retain some market power, and that the Norwe-
gian authorities would still control the exploitation of the Norwegian gas fields.
Then, they discussed producer behavior on the Norwegian shelf, concluding that
the company would behave as an oligopolist, whereas other Norwegian producers
would probably behave as price takers.

Based on these assumptions, they discussed the consequences for the company
in relation to the Norwegian competitors and also to other producers. As mentioned
above, this discussion was very detailed, revealing that particularly the two market
analysts have a very thorough understanding of the behavior of producers such as the
United Kingdom and The Netherlands. Then, the manager introduced the demand
side, and there was a brief discussion related to a growth prognosis for gas demand
in Europe, particularly the United Kingdom.

The conclusion of the first discussion was that the team believed that prices most
probably would go down. They believed that volumes would be rather unchanged
because the authorities would still be able to control production. They expressed
doubts regarding the development of profit, believed that profits most probably
would go down, but did not expect any dramatic changes.

An interesting aspect was that the conclusion appeared at the start of the ses-
sion and was almost not changed during the discussion, but only moderated. For
example, a statement such as: “The prices will go down,” was modified to: “We
do not believe that prices will go up, most probably they will go down.” A few
critical questions were posed in connection with the moderation of the conclusion,
e.g., whether large producers might overflow the markets. The following discussion,
however, was characterized by attempts to find arguments to support the conclusion
that was generated at the start of the session.

5.3 Description of the Second Session (with VisualGas)

The session with VisualGas started with a discussion of the assumptions of the
model and the expression of confidence that the model parameters gave a valid
representation of the markets. All three participants had been involved in the param-
eterization of the model. Then, they generated a new base case, primarily changing
the producer behavior for The Netherlands from price taker to oligopolist. They
solved the scenario, and agreed that the results were reasonable after a discussion
where they compared the model results with their perceptions of the current market
situation.

As the next step they generated the scenario with the producer behavior they had
concluded on in the first session, i.e., the company behaving as oligopolist and other
Norwegian producers behaving as price takers. Then, they solved the scenario — and
were rather surprised by the results. The profit was lower than expected, primarily
due to much higher transportation costs than expected. This surprise started a search
for explanation of the results by developing a series of scenarios: They changed the
behavior of the company to price taker. They also removed a restriction on a pipeline
capacity. Finally, they ran the scenario they considered the most plausible, namely
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the company behaving as an oligopolist without the earlier imposed restriction on
the pipeline capacity — and other Norwegian producers behaving as price takers.

In the evaluation of the outcomes of each scenario they studied various screen
pages, comparing the effects with the outcomes of the previous scenario. They
looked at the changes in trade patterns, utilization of pipeline capacity and shadow
prices. The direction of the changes in model results was as expected, but they had
problems understanding some of the effects, particularly the heavy increase in trans-
portation costs.

The preliminary conclusion of the second session was to check the model as-
sumptions regarding transportation costs. Then, they needed to run more scenarios
before making up their minds regarding the consequences of the liberalization of

the gas markets.

5.4 Comparison of the Sessions

Table 2 summarizes the above description of the two sessions.
The table shows that team members handled the task at a higher level of group de-
velopment in the session with VisualGas (Schroder et al. 1967), i.e., team learning.

Table 2 Level of group development before and after use of VisualGas

Level of Group Development

Before

After

Biases
Availability

Anchoring

Search for confirmation
Number of alternatives

Base case, current situation

Scen. 1

Scen. 2

Scen. 3

Scen. 4
Comparing interpretations
Combining interpretations

Perception of uncertainty

Level of evaluation
Generation of conflict

Handling of conflict

Closure (conclusion)

Increased volumes, pressure
on prices

Yes

Yes

1(2)

Implicit

Norway 1 N-C/Norway 2 PT

Implicitly
No
Yes, volumes (supply)

Ordinal
Yes, but few critical questions

Argumentation to support
conclusion

Yes

All model variables taken into
account

No

Yes, but did not get

5

Modeled explicitly

Norway 1 N-C/Norway 2 PT

Norway 1 PT/Norway 2 PT

Norway 1 PT with removed
restriction

Norway 1 N-C with removed
restriction

Explicitly

Yes, search for explanations

Yes, profit, trade pattern,
transp. costs

Ratio

Yes, evidence against
expectations

Attempts to understand model
behavior

No

N — C Nash—Cournot oligopoly, PT price taker
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In the second session the tendency to use simplifying heuristics, such as availabil-
ity and anchoring (Tversky and Kahneman 1974), was reduced. In the first session
focus was on gas supply and prices. In the second there was more focus on profit as
a result of considering prices, income and costs. Much attention was paid to vari-
ables such as trade pattern and transportation costs, i.e., variables that are related to
the interaction of supply and demand. Without a computerized tool to perform the
necessary calculations it is difficult to evaluate how changes in market assumptions
affect profit. In the first session there was a tendency to anchor the effects of the lib-
eralization to the current market situation. The team did not expect volumes, prices
and profit to change dramatically. In the second session, however, VisualGas calcu-
lated and presented the effects of the same scenario compared to the outcomes of a
base case that they had just considered to be a fair representation of their own be-
liefs. The differences between the calculated effects and the team expectations were
dramatic, and VisualGas thus prevented an anchoring effect. Instead of searching
for confirmation, they had a need to search for explanation of the surprise.

In the first session the members only generated one set of consequences. They
did not state their assumptions of the current market situation explicitly, so com-
parisons were only implicit, and there were no alternative scenarios to combine. In
the second session they had to start with the generation of a case representing their
current market assumptions, because VisualGas requires a base case for comparison
of scenarios. Since the equilibrium solution was rather surprising, they generated
four additional scenarios in a search for an explanation as described above. The out-
comes of each scenario were explicitly compared to the outcomes of the previous
scenarios. The outcomes of the second and third scenarios were also combined to
form a hypothesis that was only partly supported in the fourth scenario.

In the first session the subjects evaluated consequences of the liberalization
mainly using general economic theory. Their evaluation of the direction of the
changes in key variables such as profit, prices and volumes was as calculated by
VisualGas, but their evaluations were at the ordinal level (“profit will be reduced”).
In the second session, however, VisualGas made it possible for them to use a ra-
tio level in the evaluation of the consequences (“profit will be reduced by x%”),
and their perception of environmental uncertainty related to the market change was
increased.

In the first session there was a tendency to minimize conflict and to search for
arguments that supported the consequences stated at the beginning of the session.
This finding indicates that the team fell into the confirmation bias trap (see, e.g.,
Bazerman 1998). Thus, the team was able to reach a conclusion after one and a
half hours. In the second session the subjects’ perceptions of the uncertainty of the
outcomes increased, and they were not able to reach a conclusion regarding the
consequences of the market event at the end of the 2 h scheduled for the session.

The second session started with the scenario that was concluded on in the first
session, i.e., the scenario the team considered the most probable. However, the con-
sequences computed by VisualGas were very different from the team members’
expectations developed in the first session. The above descriptions show that the
subjects did not use any arguments from the first session in their evaluations of the
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consequences of the market event in the second session. It is, therefore, not plausi-
ble that the differences between the two sessions were caused by learning in the first
session. Furthermore, the second session took place 1h after the first session, and
we had lunch with the subjects during the break. There were, therefore, no “outside
forces” that could have affected the results.

6 Concluding Remarks

In this paper we have presented the results of a quasi experiment to explore the
effects on team learning of using an equilibrium model, VisualGas. The findings
reported above demonstrate that such models can support managers/analysts in
developing a more varied interpretation of environmental changes, i.e., enhance
learning:

e Taking a larger number of relevant aspects into consideration;

e Operating with a more varied set of assumptions and evaluating a larger number
of consequences for the company;

o Evaluating consequences using quantitative (ratio level) expectations instead of
ordinal, thereby increasing their sensitivity to how critical the market event is to
goal attainment.

Equilibrium models can, however, only help the users calculate and present results
based on the variable and parameter values they enter into the system. The users
must have a thorough knowledge of the task environment, and they need other infor-
mation sources to help them notice environmental changes and to generate plausible
scenarios. They must also understand both the possibilities and the limitations of the
modeling format, and they must compare model assumptions and outcomes with
empirical data to check whether the model is a valid representation of their task en-
vironment. Therefore, the usefulness of equilibrium models depends heavily on the
participation of experienced managers/analysts in the user teams.

Using the system, however, there was a tendency that the subjects limited their at-
tention to the model variables. In the first session the subjects generated more ideas
based on their detailed knowledge of individual producers — but they were not able
to incorporate their ideas in their evaluations of the consequences of the event. Fur-
thermore, even though the team members considered more scenarios in the second
session, the additional scenarios represented systematic changes in assumptions to
understand model results related to the scenario they considered the most probable.
They did not involve, e.g., assumptions of changed behavior of other European pro-
ducers as well. This lack of exploration of alternative scenarios may, however, be
due to the fact that the subjects had problems making sense of the increase in the
transportation costs within the time scheduled for the session.

This paper reports on the use of one particular equilibrium model in a specific
research setting. More research is called for to investigate the interaction between
equilibrium models and human beings to enhance learning. In our quasi experi-



Equilibrium Models and Managerial Team Learning 113

ment one of the strengths of using the model was that it generated a surprise,
stimulating a search for explanations (Weick 1995; Louis 1980) — that also raised
questions regarding the validity of some of the model assumptions. Longitudinal
studies should be performed to investigate the interplay between the users’ detection
of changes in the task environment and the changes in/updates of the task model, i.e.,
the interaction between the users’ knowledge and the representation of part of this
knowledge in external organizational memories. Furthermore, longitudinal studies
should be undertaken to find out whether use of equilibrium models enhances the
development of users’ knowledge structures, increasing their ability also to detect
and make sense of weak environmental signals — and thus also a more proactive and
effective handling of complex events in ever-changing environments.
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Refinery Planning and Scheduling: An Overview

Jens Bengtsson and Sigrid-Lise Nonas

Abstract In this chapter, we give an overview of recent literature on the planning
and scheduling of refinery activities. Planning of refinery activities ranges from
determining which crude oil types to acquire to which products that should be
produced and sold in the market. The scheduling ranges from scheduling of crude
oil unloading and blending to blending of components to finished products. This
overview treats three different categories of activities: planning and scheduling of
crude oil unloading and blending, production planning and process scheduling, and
product blending and recipe optimization. The focus will be on identifications of
problems, the models outlined for the specified problems, and the computational
difficulties introduced by the models. A final section discusses an agenda for future
research.

1 Introduction

Building a modern refinery is a huge investment that puts its owner in a position
where high fixed cost must be covered for a lengthy future. Because of this in-
vestment and fixed cost, efficient use of refinery resources is important both for
short-term and long-term profitability. In addition, refineries incorporate complex
equipment and produce complicated chemical reactions, posing difficult challenges
for determining the best use of the refinery capacity.
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Apart from the complexity of the refinement and the challenges of determining
efficient processes within the refinery itself, other factors play key roles in the search
for profits within the industry. The markets for crude oil and petroleum products
have developed over the decades and have shown to be sensitive both to political
issues and disruptions and variations in demand and supply. The market for oil re-
lated products is well-developed and this also includes the freight market. The latter
is important since crude oils and products are dependent on transport to their in-
termediate and final destinations. Accordingly, profitability will also be affected by
transportation costs.

The supply chain of an integrated oil company stretches from the production
and purchasing of crude oil to customers buying petrochemical products or fuel for
heating or transport. There are many decisions that must be made along the supply
chain such as what crude oil mix to buy and sell, what components and products
should be produced, and whether they should be kept for internal use, stored, or
sold to external players.

To address the challenges in the oil and gas supply chain quantitative models and
mathematical programming techniques have been developed for several decades and
their use has significantly increased the ability to plan and control refinery activities
and to increase profits.

From a refinery management perspective there is a difference between planning
and scheduling. At the planning stage, the time horizon is typically several weeks or
months, and the decisions typically concern purchase of crude oils and the produc-
tion and sales of products. Since the markets associated with refinery operations are
volatile, the use of correct and updated information is important because this will
strongly affect the capability to identify market opportunities. The identification of
market opportunities is crucial for increased profitability. The capability of identi-
fying market opportunities will be dependent on a company’s ability (given current
condition: prices, production decisions, available crude, etc.) to determine its deci-
sion to buy, refine, and sell its products. To make such decisions, the company must
consider already booked and planned production, together with future prices.

Due to the complexity involved in different refinery operations throughout the
supply chain, the refinery scheduling problem is often separated into three different
sub-problems, see Fig. 1 below. The first sub-problem involves the crude oil unload-
ing from vessels or pipelines, its transfer to storage tanks and the charging schedule
for each crude oil mixture to the distillation units. The second sub-problem consists
of production unit scheduling, which includes both fractionation and reaction pro-
cesses. The third sub-problem is related to the blending, storage, and lifting of final
products.

Historically, refiners have built organizations based on the processes associated
with planning and scheduling. To drive operational efficiency, major refining com-
panies are now putting increased focus on managing supply chain activities as an
integrated process, closely connecting refinery planning and scheduling to improve
communication and total plant operation.

In this chapter, we will give an overview of the latest literature on refinery plan-
ning and scheduling and also make some suggestions for future research. A previous
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Fig. 1 Three sub-systems of an oil refinery

survey of literature on production planning and scheduling models for refinery op-
erations can be found in Pinto et al. (2000). The focus of the chapter will be on
the identifications of problems, the type of models outlined to solve the identified
problems, and the computational difficulty introduced by the models (it will not dis-
cuss how the computational difficulties are met). The overview is organized in three
different parts, which correspond to the sub-problems mentioned earlier. Literature
that focuses on modeling the whole refinery supply chain is also discussed. This can
be found under the production planning section.

2 Crude Oil Selection and Crude QOil Scheduling

The planning and scheduling of crude oil operations in a refinery is a critical task that
can save the refinery millions of dollars per year (Kelly and Mann 2003a, b). Crude
oils vary significantly in compositions, product yields, properties, and prices, and
their acquisition accounts for a large portion of the refineries’ cost. A key issue for
a refinery is, therefore, to identify and process optimal crude blends that maximize
profit margins (Li et al. 2007).

Typically, an oil refinery receives its crude oil through a pipeline that is linked
to a docking station, where oil tankers unload. The unloaded crude oil is stored at
the refinery in crude oil tanks. The crude oils are stored in these tanks, at least for
a minimum amount of time (to allow the separation of the brine), before the mix of
crude oils is transferred to charging tanks or directly blended and processed in the
distillation tower.

In general, two types of ships supply crude to a refinery: very large crude carri-
ers (VLCCs) that may carry multiple parcels of different crudes and small vessels
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carrying single crude. Due to its size the VLCCs often dock at a single buoy mooring
(SBM) station offshore whereas the small vessels berth at the jetties. The pipeline
connecting the SBM station with the crude tanks normally has a substantial holdup
(Li et al. 2007), while the holdup in the jetty pipeline is not that critical.

The shipping schedule for the crude oil tankers is determined by the procure-
ment and logistic department in conjunction with the crude oil purchase. Due to
lengthy waterborne transit times, this schedule is done a long time before the crude
oil tankers arrive at the refinery. In the case that the crude oil carrier transport differ-
ent crude oil parcels, the unloading sequence is also predetermined due to logistic
considerations. Before a VLCC can unload, it must first eject the crude that resides
in the SBM pipeline. This crude can, as suggested in Reddy et al. (2004b), be mod-
eled as an extra crude oil parcel from the carrier. A general assumption is that the
holdup of the jetty pipeline is negligible. In the literature, it is typically assumed that
the holdup of the SBM pipeline is negligible.

The crude oil scheduling is based on the current information on arrival of crude
oil vessels or carriers, crude composition in different tanks, and the optimal crude
feed to the crude distillation units (CDUs) from the production plan.

2.1 Selection of Crude Oils

The main goal of the crude selection is to find a feasible crude blend that maximizes
the profit of the planned production in the time horizon considered, taking into ac-
count the current storage of crude oil at the refinery and the crude tankers scheduled
to arrive at the refinery. The “wrong” crude mix can cost a refiner both in excess
feedstock expense and lost product revenue. To find the right crude mix the sched-
uler has to take into account both processing and economic considerations. After
the selection of crude oils, the crude procurement and logistics departments have to
secure the crudes and schedule them for delivery.

The monthly planning model, updated with more advanced crude blending sim-
ulations, is often used as a decision tool in order to determine the optimal crude
oil mix. Each refinery has built up its own history of how different crudes have
performed for their refinery in the past. This information is then used in the
crude blending simulation to achieve an optimal crude slate. Both Stommel and
Snell (2007) and Ishizuka et al. (2007) present good discussions and describe gen-
eral rules for how leading companies handle the selection and the scheduling of
crude oil.

In the literature, crude oil selection has been considered as part of the production
planning problem. The literature, however, neglects one important component.
The complex nonlinear blending relation of different crude oil mix is omitted in the
planning problem due to the increase in problem complexity. In the industry, these
relations are usually solved using in-house or more commercial simulation tools.
The general review of literature related to production planning is presented in a
later section.
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2.2 Scheduling of Crude Oils

The objective of crude oil scheduling is to minimize the operational cost while
meeting the target crude oil load to the CDU. For the scheduling one assumes a
fixed arrival schedule for vessels, knowledge of the quantity and quality of crude oil
at the vessels and the crude oil mix at the crude tanks, the minimum settling time
for the brine at the tanks, minimum and maximum level of crude in the tanks, min-
imum and maximum flow rate in the pipeline, and the target feeding-rate (quality
and quantity) of the crude oil blend for the CDU. It is also common to assume that
a tank cannot receive and feed crude at the same time.

Given these facts, the objective of the crude oil scheduling is then to determine
the unloading schedule for each vessel (this includes the timing, rates, and which
tank to transfer the oil parcels to); the transfer schedule of crude oil mix between
storage and charging tanks (if both are present in the refinery); the inventory levels
and crude oil concentration for all storage and charging tanks; and finally the charg-
ing schedule for each CDU (how much should be transferred to each CDU from
each charging tank).

To model the crude oil scheduling we need a large number of binary allocation
variables to consider the discrete scheduling decisions, such as selecting a tank to
receive a crude oil mix and nonlinear constraints to calculate the crude oil compo-
sition for the storage and charging tanks. So far, the models proposed for crude oil
scheduling have not considered nonlinear crude properties. The nonlinear property
constraints are approached by linear constraints that consider key crude compo-
nent concentrations or blending indexes that are linear on a volumetric or weighted
basis. Even if we assume linear crude properties, the crude oil scheduling results
in a complex mixed integer nonlinear (MINLP) model. The nonlinear terms are bi-
linear and originate from the mass balance and crude mix composition constraints
for the storage and charging tanks and the feed from these tanks. A nonlinear term
f(x, y, z) is said to be bi-linear if it is linear with respect to each of its variables, i.e.,
f(x,y,2) = x*y + y*z+*x.

Several authors have discussed different models and methods to solve this crude
oil blending and scheduling problem, taking into account different degrees of refin-
ery complexity. The scheduling problem can be modeled using either a continuous
time approach or a discrete time approach. The discrete time formulation tends to
rely on an excessive number of time periods to achieve the required accuracy, while
continuous time formulation results in complex models that require several assump-
tions or specialized algorithmic solution techniques. Recent trends in scheduling
models for chemical processes have however moved toward continuous time formu-
lations to avoid the high number of integer variables found in discrete time models.
The continuous time modeling is particularly suited to crude oil scheduling since
refinery activities can range from some minutes to several hours (Joly et al. 2002).
A review that compares discrete and continuous time approaches of scheduling for
chemical processes is provided by Floudas and Lin (2004).

One of the first models presented for the crude oil scheduling is a discrete mixed-
integer linear programming (MILP) presented by Lee et al. (1996). The authors
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consider one docking station, a set of storage tanks, a set of charging tanks and a
set of CDUs The objective is to find a schedule that meets the predetermined crude
slate for the CDU, while minimizing total operating cost (unloading cost, cost for
demurrage, tank inventory cost, and changeover cost for the CDUs). In addition,
the crude mix in the charging tanks should be within predefined quality measures
with regard to key component concentration. Their linear reformulation of the bi-
linear mass balance constraints is, however, not rigorous enough to ensure that the
crude mix composition for the storage and charging tanks is the same as the com-
position of the flow from the tanks. This inconsistency is denoted as “composition
discrepancy” by Li et al. (2002) and Reddy et al. (2004a). In general, composition
discrepancy may occur when individual component flows are used in a linear refor-
mulation for the bi-linear mass balance term for storage and charging tanks where
mass accumulates. Li et al. (2002) proposed a discrete mixed integer nonlinear pro-
gramming (MINLP) model that extended the model in Lee et al. (1996) by reducing
the number of discrete decision variables (they replace two bi-index binary variables
with one tri-index binary variable) and by including new features as multiple jetties
and allowing the possibility for two tanks to feed a crude distillation unit. The so-
lution approach outlined for the MINLP model may, however fail to find a feasible
solution even if one exists (Reddy et al. 2004a; Kelly and Mann 2003a, b).

Jia and Ierapetritou (2003, 2004) outline a continuous time MILP model for the
crude oil scheduling, using only linear terms for the crude mix operations as in Lee
et al. (1996). They assume no cost for crude or tanks changes, one tank feeding one
CDU at a time (and vice versa). The objective is to minimize demurrage, unloading
and inventory cost. As for Lee et al. (1996), the MILP model may suffer from com-
position discrepancies. The crude composition in the storage and charging tank may
not match its feed to the charging tanks and to the CDU.

Moro and Pinto (2004) propose a continuous time MINLP formulation for the
crude oil scheduling. The model considers one pipeline to unload the crude oil,
settling time in the crude tanks to separate brine from the oil, and at most, two
crude oil tanks feeding the CDU. They propose to measure the quality of the CDU
stream by limiting the concentration of the critical components in the feed to the
CDU. Their objective is to maximize the CDU feed rate while minimizing the crude
tank operating costs. Moro and Pinto (2004) also proposed a MILP approach of the
MINLP model where the bilinear crude mixing term is linerarized by discretizing
the amounts or types of crude oils present in the storage tanks. The MILP approach
suffers, however, from an increasing number of binary variables as the number of
discretization interval increases. Reddy et al. (2004a) developed, in parallel to Moro
and Pinto (2004), a continuous time MINLP formulation considering multi-parcel
vessels loading at one SBM, pipelines that transfer the crude parcels from the SBM
to the crude storage, and charging tanks that again feed the CDUs. Multiple storage,
tanks can feed one CDU (and vice versa). They also discuss how SBM parcels can
be created to take into account that before a vessel can unload, the crude in the SBM
pipeline (the SBM parcel) has to be transferred to a storage tank. The objective of the
scheduling model is to maximize gross profit (profit of products-cost of crude oils)
while minimizing the operating cost (CDU changeover cost, demurrage, penalty for
running under the crude safety stock).



Refinery Planning and Scheduling: An Overview 121

In addition to the features considered in the continuous time model the discrete-
time model outlined by Reddy et al. (2004b) accounts for multiple vessels unloading
to a set of jetties and transfer of crude oil between the storage tanks. They also
present a novel approach for dealing with parcel unloading, which uses fewer binary
variables than earlier work (Li et al. 2002; Lee et al. 1996). In addition, they allow
more than one unloading allocation in any time period, thus utilizing the entire time
period to the maximum extent. The objective for their scheduling model is to max-
imize the crude margin (total value of cuts from the crude distillation units minus
the cost of purchasing, transporting, and processing the crude) minus the operating
costs (changeover, demurrage, penalty for running under the crude safety stock).
The unloading cost and inventory cost is not considered since the amount of crude
is fixed for the scheduling horizon. The demand for crude oil for each CDU has,
however, to be satisfied. Their solution approach improves the solution approach
proposed by Li et al. (2002) but may still fail to find a feasible solution even if one
exists. Li et al. (2007) improved the MINLP formulation of Reddy et al. (2004a)
in two ways. First, constraints that disallow uncontrolled changes in the CDU feed
rates are inserted. Second, linear blending indexes, weight- and volume based, are
used to better approximate the nonlinear crude oil properties.

From this literature we see that the crude scheduling problem is approached with
both MILP and MINLP models and solved either with standard MILP and MINLP
solvers or with tailor-made solution approaches. A global optimization algorithm for
the crude scheduling problem would be preferable, but considering the large sizes
of practical problems and the need for quick solutions, that will require considerable
effort and is a great challenge for future research. The main difficulty is to deal with
the large number of integer variables in the model and the complexity of nonlinear
blending and crude oil mixing operations.

Note that disruptions such as crude arrival delay could make any given schedule
infeasible and necessitate rescheduling of operations. Adhitya et al. (2007) discuss
how to reschedule in order to make only minimal changes to the scheduled opera-
tions rather than undergo a total reschedule.

3 Production Planning and Scheduling

The refinery is built up of different processing units that transform a variety of input
streams into several output streams. The flow rate and product specification, e.g.,
octane number and sulphur content, of each output stream is determined by the flow
rate and product specification of the unit feed and the operating mode of the pro-
cessing unit. Nonlinearity arises from mixing the feed and, in the yield, from the
processing. The change of operating mode of a processing unit results in a period
with reduced capacity and disturbance in the yield (quality and quantity) of the pro-
cessing. Reduced capacity and disturbance in the yield also occur for a start up after
a period with maintenance. To correctly model the disturbance caused by a change
in operating mode is difficult, usually the issue is relaxed by incurring a setup cost
for each change in mode.
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For a general refinery, the planning specifies which crude or intermediate
products to purchase and which products to produce. The planning decisions are
taken based on forecast of future demand, and usually planning takes into account a
two or three months time horizon. The production plan is used in a rolling horizon
setting to take into account updated information regarding refinery and markets.
The decisions related to scheduling of refinery activities are generally performed
on the basis of shorter time horizons, i.e., days or weeks, to determine the specific
timings of the operations.

3.1 Production Planning

To support production planning decision making, refineries generally use com-
mercial packages based on linear one-periodic models that rely on constant yields
(PIMS from Aspen Tech and RPMS from Honeywell, Process Solutions). This has
motivated researchers to outline models that give a more accurate representation of
the refinery processes or activities. In this section, literature that takes into accounts
multiple periods and different degrees of nonlinearity in the mixing and process-
ing operations are presented. Papers that consider a supply chain perspective and
uncertainty in market data are also presented.

One of the first contributions to consider nonlinearity in the production planning
is that of Moro et al. (1998). Moro proposes a framework where every unit in the
refinery is represented as an entity and the complete refinery topology is defined by
connecting the unit streams. For the processing units nonlinearity can be considered
in the blending relations and in the process equations. A general MINLP model is
discussed for a diesel production planning problem, but this is only partly outlined
in the paper. Detailed blending and processing formulations are presented only for
the hydro-treating unit. They report that the refinery plan obtained from the MINLP
model improved the performance of the case company significantly compared to the
current operating decision that was based on experience and manual calculations.
The same planning model is discussed in Pinto and Moro (2000), here with results
from a new case study.

Neiro and Pinto (2005) formulate a MINLP model that extends the planning
model discussed in Moro et al. (1998) to account for multiple time periods and
uncertainty in market data. Uncertainty is considered in the product demand, the
product price and the cost of crude oil. The uncertainty is expressed in scenarios,
and the objective function includes weighted values of each scenario based on the
probability for each scenario to occur. For each time period, the main decisions are
which crude oil to select, how to operate the processing units, and how much of the
final products to hold in inventory. They show an exponential increase in solution
time with the number of time periods as well as with the number of scenarios. In
the work listed above, only sub-systems of the gas and oil supply chain have been
considered in a reasonable level of detail. Neiro and Pinto (2004) propose a frame-
work for modeling the whole petroleum supply chain, including crude oil suppliers,
distribution centers, and several complex conversion refineries interconnected by
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intermediate and end product streams. This study outlines a large scale one periodic
MINLP planning model for the system addressing crude oil purchasing, production
units processing, inventory management, logistics, and end product sales decisions.
Neiro and Pinto (2004) consider nonlinear blending for the different processing units
and storage tanks, and nonlinear operating conditions in accordance to the yield
from the processing units. They consider a supply chain with four refineries con-
nected with pipelines and storage tanks, each with different capacity and topology.

Refinery planning and the refinery scheduling are generally performed sequen-
tially, mainly due to the complexity of the refinery sub-problems. When determining
the refinery production plan, many of the scheduling constraints are uncertain. To
obtain a feasible schedule which utilizes resources in, or close to, an optimal fashion,
it is important that the company determine a plan which makes this possible. If the
planning and scheduling is done sequentially, there is no guarantee that the pro-
duction plan can give an operable schedule. Kuo and Chang (2008) have addressed
this issue and present a MILP planning model that addresses stream allocations and
processing run modes for several scheduling intervals. By considering the whole
refinery supply chain and splitting the planning period into several sub-intervals,
Kuo and Chang, are better able to match the planning and scheduling decisions and
improve the performance of the supply chain scheduling activities.

Environmental regulations and the risks of climate change pressure refineries to
minimize their greenhouse gas emissions. Refineries also face more stringent prod-
uct specifications on oil products which typically increase their energy consumption
and CO, emissions. Szklo and Schaeffer (2007) address this problem, also with a
specific focus on the Brazilian refining sector. Holmgren and Sternhufvud (2008)
discuss different possibilities for reduction of CO, emissions for petroleum refiner-
ies in Sweden. More analytical approaches to this problem have also been addressed.
Babusiaux (2003), Nejad (2007), Pierru (2007), and Babusiaux and Pierru (2007)
have proposed different methods for allocating the CO, emissions among the dif-
ferent refinery products produced.

Elkamel et al. (2008) propose a MILP for the production planning of refinery
processes. They consider how to find suitable CO, mitigation options for the pro-
cessing units that meet both a CO, emission target and the final product demand
while maximizing profit.

Zhang and Hua (2007) propose a MILP model for a multi-period planning model
that considers the integration of the processing system and the utility system for the
refinery industry. The objective here is to determine an optimal material and energy
flow in order to maximize the overall profit.

Uncertainty is present in different forms in the different sub-system in the
refinery. Some of the latest work that considers uncertainty in the planning and
scheduling of refinery activities is by Neiro and Pinto (2005, 2006), Pongsakdi
et al. (2006), and Zimberg and Testuri (2006). Pongsakdi et al. (2006) address the
planning of crude oil purchasing and its processing based on the network structure
proposed by Pinto et al. (2000). Uncertainty is considered both in product prices and
product demands. The stochastic problem is modeled as a linear two stage stochastic
model with recourse and is solved using a special implementation of the average
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sampling algorithm introduced by Aseeri and Bagajewicz (2004). Test results show
that in comparison to the stochastic solution the deterministic solution has a lower
expected gross refinery margin and a larger risk. The profit is maximized taking into
account product revenues, crude oil costs, inventory costs, and cost of unsatisfied
demand.

Zimberg and Testuri (2006) consider the crude oil procurement and processing
for a case company that has a specific focus on the bunker fuel oil production.
Generally, the gas oil, diesel, and fuel oil products are more dependent on the right
crude oil mix than the gasoline products. A simplified two stage stochastic process
is considered. The first stage decision, purchasing of crude oil, is taken two months
before the second stage decisions, the processing of the crude oil and blending of
intermediate products. A case study that compares the deterministic (mean values)
and stochastic solution of the problem is presented. The risk is not considered, only
the expected refinery margin. Neiro and Pinto (2005, 2006), as previously discussed,
take into consideration uncertainty in product demand, product prices and crude oil
cost. The uncertainty is modeled in discrete scenarios and weighted according to the
probability of occurrence.

Pitty et al. (2008) and Koo et al. (2008) develop a decision support for an inte-
grated supply chain, which in this case means that it handles activities such as crude
oil supply and transportation in addition to intra-refinery activities. The decision
support is based on a simulation-optimization framework and takes stochastic vari-
ations in transportation times, yields and prices into account. Pitty et al. present the
complete dynamic model whereas Koo et al. use the decision support to optimize
the design and operation in three different supply chain related cases.

Current research has to a large degree been focused on modeling and analyzing
different types of refinery planning problems and has used commercial solvers as
GAMS (OSL, DICOPT, CONOPT) with the different solution approaches they offer
to solve the outlined problems. Nonlinearity is considered in some degree and for
some problems multiple periods is proposed. Also, a supply chain view has been
considered. Some recent papers consider decomposition strategies to solve the large
complex nonlinear planning problem. Future research should consider methods for
solving the complex MINLP problems more efficiently and focus on more advanced
methods that consider uncertainty in market data.

3.2 Production Scheduling

In the literature, MILP models are generally outlined for production scheduling
problems. The models focus on part of the refinery activities and incorporate dif-
ferent degree of details regarding the blending and processing in the processing
units. The models are generally solved using standard commercial solvers as GAMS
(CPLEX, OSL, DICOPT, CONOPT). Pinto et al. (2000) propose a discrete MILP
model for the production and distribution scheduling of diesel. The scheduling
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system considered a set of crude distillation units that produce specified intermedi-
ate (or end) products for storage in a set of intermediate tanks before they are mixed
and sent through pipelines to supply the consumer market where there is a known
demand. The proposed MILP model considers linear blending relations. Results are
reported for a case company considering market demand for three different types of
diesel oil. A scheduling horizon of one day considering one hour time intervals is
addressed.

Joly et al. (2002) outline both a discrete MINLP model and a discrete MILP
model for the scheduling problem that considers decisions related to mixing, storage
and distribution. The system configuration includes 1 deasphalting unit, 1 cracking
unit, 2 diluents storage tanks, 15 storage tanks for final products, and 2 pipelines.
The nonlinear terms in the MINLP model refer to the calculation of viscosity in
the oil mix and are linearized in the MILP model. The models produced similar
results in terms of solution quality, while the solution time for the MILP model was
a bit longer. Moro and Pinto (2004) and Joly et al. (2002) also discuss a scheduling
problem that addresses how to make use of the given raw materials, processing units,
and storage in order to meet the LPG product deliveries. They did not investigate
formulations related to product quality.

Goethe-Lundgren et al. (2002) outline a discrete MILP model for a refinery
production scheduling problem considering one distillation unit and two hydrotreat-
ment units that can each operate in 5-10 modes. The model considers how to run
the processing units in an optimal manner to minimize production and inventory
costs. The model can also be used to evaluate the feasibility and the production cost
for given product and crude oil shipping plans. To make the base schedule robust,
Goethe-Lundgren et al. (2002) implemented new constraints in the model that as-
sure that enough end products are available if a tanker should arrive one day too
early, and to assure enough storage capacity if a tanker is delayed one time period.
They also report how the flexibility decreased (the cost increased) when a more
robust schedule was offered.

Jia and Ierapetritou (2004) propose continuous time MILP formulations for spe-
cific crude oil, production and product scheduling problems. A lube-oil refinery is
considered for the processing units parts. The study proposes a continuous time
MILP formulation for the scheduling problem that takes into account material bal-
ance in tanks and production units; capacity, allocation, and sequence constraints;
and demand constraints.

Due to the complexity of the problem, the current work proposed for the pro-
duction scheduling relaxes most of the nonlinear relations, and only simple refinery
systems or sub-systems of the refinery topology are considered. Future work in this
area should focus on formulating models and finding corresponding solution ap-
proaches that enable companies to solve nonlinear production scheduling models of
real-world sizes in a reasonable time. In addition, new work that studies how the
daily scheduling decisions might best be incorporated in the production planning
and how uncertainty in the market data could be modeled in the scheduling problem
would also benefit the gas and oil industry.
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4 Product Blending and Recipe Optimization

The product blending problem concerns the best way to mix different components
and additives in order to meet quality and demand requirements of the final products.
Several final products can be produced out of a number of combinations of compo-
nents, but some properties of the final product do not show linear relationships, e.g.,
pour point of diesel. These relationships put requirements on the optimization model
so that the nonlinearity must be handled in some way.

The product blending problem is usually split into a long-term problem and a
short-term problem. In the case of long-term situation, the problem is basically
to determine optimal recipes that maximize profit given quality specifications and
quantity requirements. In the short-term situation, detailed operational and temporal
constraints come into play and the basic issue becomes that of scheduling.

Glismann and Gruhn (2001) claim that short-term scheduling of blending pro-
cesses is more complicated than scheduling of most other processes because of
the option of blending a product in many different ways. In the scheduling of
blending, consideration of recipe optimization and short-term scheduling within
an integrated approach becomes necessary. To address this Glismann and Gruhn
develop an integrated approach to coordinate nonlinear recipe optimization and
short-term scheduling of blending processes. They propose a two-level optimization
approach that sets up a large scale NLP model to determine product quantities and
recipes. Given the result from the NLP model, a MILP model based on a resource-
task-network is used for the scheduling problem to optimize resource and temporal
aspects. Both models are discrete time models. Whereas the NLP model maxi-
mizes profit, the MILP model minimizes deviations from given tank volume goals.
Glismann and Gruhn also present alternative strategies to handle situations where a
given goal cannot be met. They advocate integrating the planning and scheduling by
using an iterative approach so that if the goal at the scheduling level cannot be met
(due to bottlenecks), then the new information will be brought back to the planning
level and the modified NLP problem solved again. After this, the MILP problem
would be reconsidered until a feasible or satisfying solution is found.

Jia and Ierapetritou (2004) consider scheduling of gasoline blending and distri-
bution as one of three sub-problems. The other two sub-problems consider crude oil
and processing units. They assume that the recipe of each product is fixed, in order
to keep the model linear. The problem is modeled as a MILP-problem in contin-
uous time and based on the state-task-network (STN) representation introduced by
Kondili et al. (1993). In Jia and Ierapetriou the objective function is formulated such
that certain flows are as close as possible to a goal flow, but they also mention that
other objective functions can be used.

Mendez et al. (2006) point out that there are a number of mathematical pro-
gramming approaches available to the short-term blending and scheduling problem.
But in order to reduce problem difficulty, most of them rely on special assump-
tions that generally make the solution inefficient or unrealistic for real world cases.
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Some of the common simplifying assumptions are (a) fixed recipes are predefined,
(b) components and production flow rates are known and constant, and (c) all prod-
uct properties are assumed to be linear.

Mendez et al. develop a novel iterative MILP formulation for the simultaneous
optimization of blending and scheduling and formulate the problem both in discrete
and continuous time. The components flow from the processing unit is stored in
component tanks before the components are blended in blend headers and sent to
product tanks. The resulting nonlinear MINLP blending and shipment problem is
modeled as a successive MILP problem. The objective function maximizes profit
and is based on the assumption that the cost of components can be observed or
determined.

Mendez et al. also highlight the fact that the multi-period product blending and
product shipping problem is a complex and highly constrained problem where
feasible solutions may be difficult to find. To increase the speed of the solution
procedure, preferred product recipes could be included in the problem to help find
a feasible solution more quickly. To avoid infeasible solutions, Mendez et al. pro-
pose to include penalty for deviation from preferred product recipe and penalties
for deviations from specified product qualities. They also propose to allow pur-
chase of components at a higher cost from a third-party to relax minimum inventory
constraints.

Future work might focus on how to determine the component value and the
preferred product receipt, in order to optimize the combined performance of the
short-term blending and product shipments and how to coordinate the scheduling
decisions with long-term planning decisions.

In the literature, the values of the components are commonly presented as a
known value, as in Mendez et al. (2006). Often, however, the refinery’s value of
a certain component is unknown due one of two reasons; the component’s value
cannot be found from an external market or the value is not appropriate since lead
times makes this option infeasible. A variety of methods, based on marginal val-
ues of components and properties and product values, can be used to determine the
value of the components, and special attention should be made to the value that is
used because different component values can give different optimal blends.

We know that the short-term blending decision is affected by two facts: (a) flexi-
bility in the short-term is restricted, making it sometimes hard to stick to the recipe,
which is considered optimal in the longer term, typically given by the planning
model and (b) the relative value of blending components at the blending point in
time might be different from the value determined in the long-term optimization.
Thus, in the short-term, another recipe may be more profitable than the long-term
optimal recipe, and the deviations from the long-term recipe may indicate that other
blending recipes should be used. In the ideal world, it would be possible to observe
the values of components, and in order to more closely approximate the values
of these components, there must be integration between short-term and long-term
decision.
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5 Discussion and Further Research

This chapter has analyzed papers that consider planning and scheduling problems in
refineries. The papers consider planning and scheduling problems mainly for refin-
ery sub-systems and for refinery supply chains, in different forms and with different
degrees of detail. It has been common to use commercial MILP and MINLP solvers
to address the refinery model proposed. In addition, specialized algorithms have
been proposed to solve specific industry sized problems in a reasonable time. Un-
fortunately, no general solution technique has so far been outlined that can solve
real world problems in a satisfactory manner.

Due to the complexity of the refinery planning and scheduling problem, the
works proposed to this date relax most of the nonlinear relations. Future work should
focus on formulating correct NLP that take into account all aspects of the refinery
sub-systems and on developing solution techniques that enable companies to solve
nonlinear scheduling models of real-world sizes in a reasonable time.

Better coordination of refinery activities can increase throughput, reduce qual-
ity give away and demurrage, and improve the refinery’s ability to evaluate special
opportunities that may arise. Future research should consider how to coordinate the
scheduling decisions with the long-term planning decisions.

Beyond developing solution techniques and more advanced models, there is cur-
rently an increased focus on environmental impact from activities associated with
refining of crude oil. Tougher environmental regulations on oil products set by au-
thorities and an increased focus on reduction of CO, emissions put new constraints
and requirements on decision making and adds more complexity to an already com-
plex situation. Given contemporary consensus about the environment, more research
focusing on environmental impact is needed.
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Multivariate Modelling and Prediction
of Hourly One-Day Ahead Prices at Nordpool

Jonas Andersson and Jostein Lillestgl

Abstract In this paper, we exploit multivariate and functional data techniques to
capture important features concerning the time dynamics of hourly one-day ahead
electricity prices at Nordpool. The methods are also used to obtain pragmatic pre-
diction schemes for these prices. Following Huisman et al. (Energy Economics 29,
2007), we first consider the 24-hourly one-day ahead prices as a 24-dimensional
variable observed on a daily basis. These are analyzed by means of a multivariate
analysis of variance (MANOVA) and the results are presented by some enlighten-
ing graphs. We then account for the smoothness of the curve that these 24 values
form when they are seen as a function of time of the day. This smoothness is ex-
ploited by a functional analysis of variance (FANOVA). Multivariate prediction is
then addressed, first by a simple univariate ARIMA scheme combined with hourly
corrections obtained from the MANOVA and then by a true multivariate state space
scheme.

1 Introduction

Modelling and forecasting of electricity prices is of importance for producers as well
as consumers. Both the spot market and the financial market connected to deregu-
lated electricity markets need forecasts for capacity planning and risk management.
While many features of electricity prices are in common with features of stock
prices, there are also some important distinctions to make. Two such distinctions
are the obvious seasonalities and the possible stationarity of electricity prices. Mod-
els containing such features are usually not preferred for stock price analysis since
they clearly contradict the idea of market efficiency. There are therefore reasons not
to adopt stock price models directly to electricity prices since doing so would imply
ignoring important information present in historical data.
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The present paper aims to contribute to the literature about the dynamic proper-
ties of so-called spot prices in the electricity market. Our work differs from Huisman
et al. (2007) in the following respects: We include a yearly component and we also
suggest a variety of other methods of analysis. In particular, we show how statis-
tical methods such as multivariate analysis of variance (MANOVA) and functional
analysis of variance (FANOVA) can be used to discover such properties.

The rest of the paper is organized as follows. Section 2 briefly describes the trad-
ing mechanism on the Nordpool market and the nature of the data that we analyze.
Section 3 will give an overview of some documented stylized facts of electricity
prices followed by Sect.4, which reviews the recent literature on modelling and
forecasting of electricity prices. Section 5 uses MANOVA to investigate the differ-
ent seasonal properties of electricity prices. In Sect. 7, it is shown how to combine
results from MANOVA with a simple univariate time series technique to forecast
the hourly spot prices. Section 6 shows how to exploit the smoothness properties of
the daily prices profiles to reduce estimation uncertainty. This is done by means of
FANOVA. In Sect. 8, methods to deal with possible volatility aspects are discussed,
and in Sect. 9, a state-space approach is explored in order to study the possibility of
time-varying parameters for the analysis of variance models. Section 10 concludes.

2 Nordpool and Electricity Price Data

The price data under study is system prices from the Nordpool Elspot market', a
trading place for electricity for the Scandinavian countries, Finland and Germany.
On this market, hourly contracts for physical delivery of electricity for the next 24-h
period are announced once a day. The prices are formed by so-called equilibrium
point trading where the market participants put their bids and offers, after which
supply and demand curves of the market are determined. The intersection between
these curves is the price. Bids can be posted for a particular hour (hourly bids), for a
block of hours (block bids) or for producing in the hour with highest price (flexible
hourly bids). The observation period of the data studied here is 1997-2007.

Congestions are treated by dividing the market into bidding areas so that the
market participants must make their bids in the area where their production or con-
sumption is physically located. The bidding areas are Sweden (SE), Finland (FI),
the German area (KT), Jutland (DK?2) and Zealand (DK1). Norway is divided into
two or three areas depending on the capacity at a particular point in time. This di-
vision is determined by the Norwegian Transition System Operator (TSO), Statnett.
As pointed out by Huisman et al. (2007), a price series of this type should be inter-
preted as daily observations on a 24-dimensional time series, or panel. If the prices
are seen as an hourly observed time series, one would not account for the fact that
the prices are actually determined once every day. From a practical point of view,
the data is therefore organized according to Table 1.

! A more detailed description of the pricing mechanism can be found at www.nordpoolspot.com


www.nordpoolspot.com
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Table 1 The organization

 the d o4 dail la.m. 2a.m. 24 p.m.
of the cata as 24 daily 01/01/97 23018 22127 ... 22072
observed time series

01/02/97 218.27 214.79 . 228.52
01/03/97 239.62 232.93 . 240.50
01/04/97 252.34 250.41 ... 248.83
01/05/97 251.31 248.54 . 254.63

2.1 Local or UTC Time

A methodological problem occurs because of daylight-saving time changes. This
implies that once every spring there will be a lack of an observation at one
time-point. This problem has to be handled with care, since seasonalities are of
main interest here, and these are distorted by this seemingly minor problem.

By using UTC (GMT) time, we will obtain a time series that does not have this
problem. However, since the peak hours of electricity prices are related to the local
time that governs when electricity is more or less used, in many applications, the
local time is the time to prefer. In those cases, the missing spring observation and the
additional autumn observation must be aligned correctly in the dataset. The solution
we have used for the missing spring observation is to impute with an interpolated
value of the two surrounding ones.

2.2 Price or Log-Price?

Working with daily stock price data, a natural step before commencing with any
analysis, is to compute returns by taking the first difference of the logarithms. This
can, for daily data, be interpreted as a close approximation to percentage returns.
The term “return” does not have the same natural interpretation for electricity spot
prices since this concerns a commodity that will, in fact, be physically delivered.
However, one could suspect that variation in price for high levels is larger than
the variation for low levels, causing problems in many types of statistical analysis.
Thereby, the logarithm of the price is a good starting point from a statistical point
of view.

3 Some Stylized Facts of Electricity Prices

In this section, some initial univariate analysis of the daily means of the hourly log-
prices will be made. We do this to see what stylized facts we can also expect in the
multivariate setting, in order to provide realistic models. However, we will not deal
with all stylized facts for the multivariate case in this paper. In practice, one would
keep the modelling simple and limit the model to the most important aspects for
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Fig. 2 Autocorrelation functions (ACF) for mean log-prices and differenced mean log-prices.
(a) ACF for mean log-price, (b) ACF for first-difference of mean log-price

the given context. Figure 1 shows a time series plot of the mean log-price series,
with features similar to each hourly component. Some stylized facts are discernible
already from this figure. A yearly season is obviously present and there are sudden
jumps of the price downwards and upwards with irregular frequency. Not as obvious,
there is a slight tendency of the log-price to increase over the 11 observed years. By
looking at Fig. b of a shorter stretch of the series, one can see that there also is an

obvious weekly seasonality.

3.1 Seasonalities

Figure 2 shows the autocorrelation functions (ACF’s) of the log-price and the
first-difference of the log-price (which is essentially relative price changes). The
seasonalities, already uncovered in the time series plots in Fig. 1, are even more vis-
ible here. The yearly variation is seen as the wave of period length approximately
365 in the ACF of the log-price. The weekly season can be seen in the ACF of the
relative changes. The slow decay of these graphs combined with the fact that the
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length of the cycles are equal to two natural seasonalities in nature (years) and hu-
man life (weeks), we are bound to believe that the seasonalities can be realistically
modelled as deterministic.

3.2 Stationary or Non-Stationary Models

The question whether the log-prices are stationary or not is answered already since
a deterministic seasonality has been argued to be present here. Thus, they are not
assumed to be stationary. However, one outstanding issue concerning stationarity,
or more precisely covariance stationarity, is the properties of the deviations from
these deterministic seasonalities. For this purpose, the residuals after correction for
seasonalities may be computed, by analysis of variance or regression by dummies,
and studied. A time plot of such residuals is presented in Fig. 3a.

The slowly decaying autocorrelations in Fig. 3b indicate that the residual series
may be non-stationary or nearly so. However, a unit root test rejects the hypothesis
of non-stationarity. It turns out that the stationary ARIMA(1, 0, 1)(1, 0, 1)7 process
fits the series fairly well, with autoregressive coefficients of magnitude AR = 0.914
and seasonal AR = 0.863, respectively. This is not far from one, which corresponds
to the non-stationary process ARIMA(0, 1, 1)(0, 1, 1)7. It may of course be of some
interest to conclude that the series has mean reverting features. However, if the con-
text is short-term predictions, a long run property of this kind is of minor interest,
and the simpler ARIMA(O, 1, 1)(0, 1, 1)7 may be preferred. A similar discussion
applies for the residual from each component series, with some indications that the
stationary ARIMA(1, 0, 1)(1, 0, 1)7 should be preferred for these.

Residuals after seasonal correction ACF of Residuals for Mean LogPrice
(with 5% significance limits for the autocorrelations)
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Fig. 3 Residuals from seasonally adjusted series. (a) Time series plot of residuals, (b) ACF of
residuals
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3.3 Distributional Assumptions

In order to see if normality assumptions may be justified we provide histograms
and normal probability—probability (PP) plots of the seasonally adjusted series. In
Fig.4 we see a fairly bell-shaped distribution with somewhat heavier tails than the
normal. Similar patterns exist for each of the component series. But as we shall see
later, there are hourly differences. Note that since these are strongly correlated, we
do not necessarily observe a strong central limit effect for the mean log-price series.

A number of methods assume normality but we see no reason to replace the error
distribution here by another one, say a normal mixture distribution, which is a com-
mon way to model thick tails. In some applications, though, such as risk evaluations,
it is essential to replace the assumption of normality with a more realistic one.

3.4 Jumps

The sudden outbursts, or jumps, in the price series that can be seen in Fig. la is
a feature common with security prices, but is probably more distinct for electricity
prices. This property is one of the factors making the thick tails of the distribution of
price changes and should ideally be accounted for in any statistical analysis where
the tails of the distributions are of relevance. This is for example, the case when risk
shall be measured. One popular way of modelling jumps in the continuous finance
literature is to combine a diffusion process with a marked point process, a so-called
jump-diffusion process. These processes imply trajectories that usually behave quite
smoothly, but suddenly with low and irregular frequency jumps up or down similar
to the electricity spot price in Fig. 1a. For electricity prices, this approach is used by
Weron et al. (2004).

a b
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Fig. 4 Distribution of residuals from seasonally adjusted series. (a) Histogram of residuals,
(b) Normal PP plot of residuals
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Fig. 5 Differenced mean log-prices to illustrate volatility aspects. (a) Time series plot, (b) ACF
of absolute values

3.5 Volatility Clustering

Volatility clustering in the 24-vector time series of log-prices may be studied from
a variety of viewpoints, either individually or in terms of a derived series that rep-
resents the day, say the daily average, median, minimum, maximum or range. We
may also study the volatility directly, or in terms of the residuals after accounting
for the weekly and yearly seasonalities. Note here the difference between hourly,
non-vectorized volatilities and daily, cross-vector volatilities.

Volatility clustering is typically studied in terms of the differences in log-prices.
As an example, Fig. 5a and 5b show the daily differenced mean log-price series and
the autocorrelation function of its absolute value.

In order to explore the volatility of the mean log-price series in more detail,
we have fitted an ARMAX-GARCH model to the series. On the basis of the
above findings, we have specified the ARMA term as ARMA(I,1), represented
the seasonalities by the covariate matrix X of seasonal dummies and specified
the volatility by the common GARCH(1,1). Note that this neglects any stochastic
seasonalities indicated in Sect.3.2. It turns out that both GARCH parameters are
significant with sum close to one, the case referred to as IGARCH, where the un-
conditional variance does not exist.

This is also representative for volatility patterns for each component series and
for the residuals after accounting for the seasonalities.

Thus, there is obviously predictable volatility in electricity price changes. This
could in some applications, such as risk evaluations, be readily exploited. It could
also be useful to incorporate this feature when calculating prediction intervals for
the prices.

4 Literature Review

This short literature survey intends to give a picture of the state-of-the-art on the
topic of modelling and forecasting of electricity prices.
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Deng and Jiang (2005) propose models based on Levy-driven Ornstein-
Uhlenbeck processes with the main purpose of obtaining a good fit to the marginal
distribution of electricity prices. Guthrie and Videbeck (2007) show that commonly
used statistical models for electricity prices are unable to capture a number of prop-
erties for such series. They argue that the direct adoption of models from the security
price literature is inappropriate since they cannot capture the correlation structure
between different hours during the day. Hadsell and Shawky (2006) study volatility
of electricity prices and its causes, such as geographical zone and transition conges-
tion. Huisman et al. (2007) use a panel data approach to simultaneously model the
day-ahead prices for all hours of the day. This is also the approach followed in the
present paper. They find hourly-specific mean-reversion around an hourly-specific
mean-level of the prices. They also conclude that correlation is higher between
prices within different categories, such as peak-hours, than for between prices in
different categories. Vehvilainen and Pyykkonen (2005) present a theory-based
method where fundamentals are independently modelled after which a market
equilibrium model is used to model the electricity spot price. In Walls and Zhang
(2005) and Chan and Gray (2006), the authors exploit extreme value theory and
the ideas of Value-at-Risk (VaR) to study electricity price risk. Weron et al. (2004)
use a jump-diffusion process together with a hidden Markov model to capture
the extreme spikes observed in electricity prices, while Weron and Przybylowicz
(2000) investigate the property of mean-reversion in electricity prices by means of
Hurst R/S analysis. Becker et al. (2007) develop a Markov switching model with
transition probabilities that are allowed to depend on variables representing demand
and weather.

The articles cited above did not focus mainly on the issue of forecasting. The
following papers do. Conejo et al. (2005) combine a wavelet transform and ARIMA
models to forecast day-ahead electricity prices. Their idea is to use the wavelet
transform to obtain series more appropriate to model with ARIMA-models than
the original series. Nogales and Conejo (2006) use transfer function models, while
Ruibal and Mazumdar (2008) use a bid-based stochastic model to predict both
hourly and average prices. This model accounts for both economic and physical
features of the market. Garcia-Martos et al. (2007) use a mixed model approach
where several forecasting methods are combined. There are also a number of papers
exploiting artificial neural network techniques, for example, Szkuta et al. (1999) and
Pao (2007).

5 Multivariate Decomposition and Modelling

We can always model log-prices at hour & day ¢, y;(h), as a sum of two components

yi(h) = fi(h) + e (h) (1

where f;(h) is a deterministic component representing predictable regularities, like
expected log-price level and seasonalities, and a stochastic component e; (k) repre-
senting volatility and spikes, as well as serial correlation in level and volatility.
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We may represent time by year (i), week (j), weekday (k) and hour (h), so that
the combination (i, j, k, 1) uniquely determines the observation unit. A natural de-
composition of the log-prices is

Vigh = An + A3+ /\};,V + AL + ey (2)

with subscripts now representing time identification.

Given the one-day ahead information structure, it is natural to consider the price
quotes for a given day as a 24-dimensional vector yjjx with elements y; ;. We then
have

ik = A + A0 + A7 + A2 + e (€)

If we consider the more coarse classification year (i), month (j), and weekday (k),
we have to add an index (1) denoting the “repeat” of the given month (/ = 4 or 5).

Yijkl=l+/\,y+l§4+/\,? + ejj 4)

These representations may be used for decomposing the log-prices linearly in
deterministic seasonal components without any concern about the error term. The
expressions may be taken as point of departure for multivariate analysis of vari-
ance (MANOVA) modelling. However, it is not necessary that the error terms are
independent, identically distributed, and definitely not multinormal as required for
standard inference theory. Nevertheless, the least squares feature of MANOVA soft-
ware may be used to derive a decomposition, and do exploratory data analysis, for
instance, looking at the hourly profiles of the coefficients in each component. Above,
we think of the categorical variables as fixed effect variables, which may be appro-
priate for Month and Weekday. Year may alternatively be taken as a random effect
or, if we believe there is a trend, taken as a covariate.

Note also that our problem may alternatively be described within the framework
of panel data modelling or multilevel statistical modelling, for which there exist
software that combines the categorical features with the time series features. We
will not follow this here.

We will study the representation by the year, the month and the weekday. As for
the parameterization we may take one category for each of the three categorical
variables as base. With 11 years of data this corresponds, including the constant
term, to 1 + 10 + 11 4+ 6 = 28 free parameter vectors. Alternatively, we may
express it as deviations from a total mean vector, thus having 1 + 11 + 1247 = 31
parameters, but having in mind that they sum to the zero-vector over the categories
for each of the three categorical variables. The estimated coefficients obtained from
running a standard MANOVA program are shown in Fig. 6, where the exhibits are
coefficients for the constant term (a), year (b), month (c) and weekday (d).

In exhibit (a), we see clearly the overall daily pattern with price going down from
midnight to about 4 a.m., then increasing to a high at 10 a.m., and then declining with
a temporal upward bump at about 6 p.m. In exhibit (b), we see the daily pattern due
to year, which is fairly constant within each year. The curves for the first four years
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Fig. 6 MANOVA lambda parameter estimates vs. Hour. (a) Lambda vs. Hour, (b) Lambda-Year
vs. Hour, (¢) Lambda-Month vs. Hour, (d) Lambda-Weekday vs. Hour

(1997-2000) are below the mean level, the following (2001-2002) at the mean level,
and the last five (2003-2007) are above the mean level. This may reflect an upward
trend. This should not be taken as deterministic, for instance, there is a significant
drop from 2006 to 2007. In exhibit (c), we see the daily pattern due to month, with
the December curve on top and the July curve at the bottom, and the other monthly
curves ordered in a natural fashion. Note the differences between the daily patterns
between the summer and the winter months, with a downpass at night in the summer
and a slight rise at night in the winter, less differences during working hours, and
then more disparate again in the early evening. In exhibit (d), we see the daily pattern
due to weekday, with the two weekend curves below the mean level with Sunday at
the bottom, and both with a significant dip at about 8 a.m. The five ordinary working
days curves are, as expected, above the mean level and fairly close together, except
for Friday afternoon, which moves towards the weekend level. A closer look at these
curves may reveal additional features that make practical sense.

A MANOVA also provides estimates of the standard errors of prediction. How-
ever, they are based on normality, serial independence and constant covariance
matrix assumptions, which is not necessarily the case. It is therefore of interest to
look into the multivariate distributional aspects of the residuals. Here we limit our-
selves to exhibit the daily variation of the standard deviation, skewness and kurtosis.
This is shown in Fig. 7. We see that the standard deviation is fairly stable over the



Multivariate Modelling and Prediction of Hourly One-Day Ahead Prices at Nordpool 143
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Fig. 7 Daily variation of the standard deviation, skewness and kurtosis of the residuals

day. The skewness is negative at night but then goes positive in the morning and
stays positive with peaks around 9 a.m. and 6 p.m. The kurtosis is slightly above 3,
the level corresponding to normal, with a strong peak above 7 around 9 a.m. and a
smaller peak around 6 p.m.
The MANOVA-model may also be written on multivariate regression form,
that is,
Y=X-B+E (5)

where Y and E are T x 24 matrices and X is the 7" x 28 design matrix and B
is the 28 x 24 matrix of regression coefficients, with T being the total number of
observations. In our case T is 4,017.

The design matrix will consist of Os and 1s in the pattern that defines the calendar
structure of the problem. If we have chosen the alternative parameterization with
parameter vectors summing to one for each categorical calendar variable, the left
out category for each type (usually the last) will be represented by —1, in order for
the regression parameters of the type to sum to the zero vector. MANOVA software
typically provides the estimated coefficients only as option, and it is important to
know the kind of parameterization used. Some software also provides the generated
design matrix, which may be used for later regression purposes (and also tells the
kind of MANOVA parameterization used).

In the above, we have set aside the possible time series features of the series.
Within the given framework this can be studied by looking at the residuals after the
MANOVA estimation (or the multivariate regression estimation). For the current
data they turned out to have features like a multivariate IMA(1) series. This may
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indicate the alternative modelling approach, where we model a multivariate time
series with the calendar variables as covariates. However, multivariate time series
software may not be readily available, and are most often limited to vector autore-
gressive time series, possibly with covariates. One notable exception is SCA, which
has a framework for identification and estimation of VARIMA models.

6 Functional Data Approach

A feature not taken into account in the MANOVA in Sect.5 is the fact that the
co-variation of the different spot prices for each day is not totally arbitrary. There
is a smoothness in the price profiles, that is, the spot price seen as a curve over
the hours of one day. While maintaining the interpretation of the MANOVA, this
smoothness can be accounted for and thereby can remove some of the estimation
uncertainty. In this section, this will be done by means of functional data analysis,
see, for example, Ramsay and Silverman (1997) for an excellent review of this topic.
Here a very brief introduction will be given to enable us to describe the technique
of interest in this paper, functional analysis of variance (FANOVA).

6.1 Notation

A functional data observation can be represented by a vector

1

y
ve=|" ©

Yn

where each of the n points are observations from a function, y; (%), with some as-
sumed smoothness properties, for example, continuous second-order derivatives.
Each point in the vector y, is observed for the argument value h,, r = 1,2,....n,
in this paper the same values for all observations. n would in the present analysis be
the number of observations per day, 24. The set of T observations of the variable is
often represented in terms of the matrix

Y11 Y12 = Vin
Y21 Y22 - )2
y=|" "7 " ()

Y11 YT2 """ YTn

For the present, dataset T is 4,017, that is, the number of days observed.
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6.2 System of Basis Functions

A common way to impose the assumption of smoothness, which will also be used
in this paper, is to choose an appropriate system of P basis functions, ¢(h) =
[¢1(h), p2(h), ..., pp (h)] that can capture the features of the observed data. If well
choosen, a linear combination of these functions can approximate the observed data
sufficiently well, even if P is choosen significantly smaller than n. In the present
analysis, the basis will be sine and cosine functions because of the periodic nature
of our data. Our functions can now be represented by

yi(h) = c;(h) (®)

where the P x 1-vector ¢; contains coefficients determining each data point. The
entire dataset is often represented by

Y=Co )
where
€11 C12 - C1P
C21 C22 *-: C2p
c=1 . .. . (10)
CT1 CT2 *** CTP
and

o1(h1) ¢1(ha) - p1(hr)
¢2(h1) ¢2(hz) -+ Ppa(hy)

an
¢p(h1) op(h2) --- pp(hy)

The question of how to calculate the C-matrix will be answered differently de-
pending on which basis system has been chosen. The perhaps obvious solution, the
best mean square fit Y @'(®®’)~! is sometimes appropriate.

In the present case, however, we are using a Fourier basis, defined by ¢ (h) = 1,
¢ar—1 = sin(rwh) and ¢, = cos(roh) where w = 2w /H and H is the length
of the observation interval (24 in the present case). It is well known that the coeffi-
cients in this case are best calculated by means of the fast Fourier transform (FFT).
P is here set to 10. Loosely speaking, the reduction of the multivariate analysis of
variance problem has been reduced from 24 to 10. A more elaborate analysis, not
done here, would be to use a roughness-penalty approach in the estimation in order
to smooth the function even more. The smoothness of the estimated function, in the
present analysis totally governed by the chosen number of basis functions, could
then be determined by the observed data, that is, through cross-validation.
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6.3 Functional Analysis of Variance (FANOVA)

The functional model we will use is written as
Yijki(h) = A(h) + AF () + 2 (h) + AL (h) + eijii (h) (12)

where notation analogous to the one in Sect.5 is used. The estimation is made by
the package fda-package (Ramsay et al., 2007) in the statistical programme package
R (R Development Core Team, 2007).

Just as for the MANOVA in Sect. 5, which can be rewritten according to (5), the
model (12) can be formulated as a functional regression model. In this model, only
the dependent variable is functional. The explanatory variables are represented by
the same matrix X as in the MANOVA.

yi(h) = x;A(h) + e/ (h) 13)

where x; is the #’th row of the X-matrix, y;(h) is the function y;;x;(h) and ¢
now is an index which uniquely defines a combination of the quadruple (i, j, k, ).
A is a 28-dimensional vector of functions representing the grand-mean function of
prices over one day, 6 functions representing the functions specific for weekdays,
11 month-specific functions and 10 year-specific functions. Since the estimation is
performed in such a way that all weekday-functions should sum to zero, the 7th
weekday-function is obtained by just negating the sum of the 6 estimated functions.
Analogous reasoning produces the remaining functions for the month- and year-
specific effects.

The estimation is performed by representing y; (%) and the A-functions in the
Fourier-basis. This results in a multivariate regression where the coefficients
of the observed y-function are regressed on X yielding the coefficients of the
A-functions, b. From these, the A-functions can be recovered by A(h) = b'¢(h).
See Ramsay and Silverman (1997), Chap. 9 for a more comprehensive presentation
of FANOVA. The results of the analysis can be seen in Fig. 8.

The pattern is consistent with the MANOVA. The improvement of the method
consists of less estimation variability.

7 Prediction via Univariate ARIMA Modelling

An alternative to VARIMA predictions with covariates may be to model the daily
mean log-prices as a univariate time series, and get predictions for the individual
hours by correction factors estimated from daily profiles, which may depend on the
calendar. In the time series of daily averages, we still have two seasons, the weekly
and the yearly. For market predictions locally, the weekly season is of prime impor-
tance, and will enter in the ARIMA specification, while the yearly season can be
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Fig. 8 FANOVA lambda function estimates vs. Hour. (a) Lambda vs. Hour, (b) Lambda-Year vs.
Hour, (c) Lambda-Month vs. Hour, (d) Lambda-Weekday vs. Hour

dealt with in a variety of ways, among others (a) take as a covariate (b) performing
alocal fit or (c) ignore it. The latter may be in order as a pragmatic choice, since the
likely model involves differencing, so that the predictions will depart from the local
level anyway.

Taking VARIMA(0, 1, 1)(0, 1, 1)7 with monthly covariates as a preferred model
for the 24-dimensional log-price vector, it will be consistent to take a univariate
ARIMA(0, 1,1)(0, 1, 1)7 with monthly covariates as the preferred model for the
daily average log-prices. This is not so when autoregressive terms are added, or if a
VAR-approach is taken.

In fact, autocorrelation plots for the mean-log-price reveal that differencing and
seasonal differencing are necessary to achieve stationarity. In Fig. 9, we show the
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Fig. 9 Autocorrelation of (1,7)-differenced log-price

autocorrelation plot after this differencing, consistent with an MA(1) and an MA(7)
component, with the common side lobes at the seasonal lag.
The estimated model turned out as follows:

ARIMA Model: MeanLog-Price
Type Coef SE Coef T P
MA 1 0.1818 0.0155 11.70 0.000
SMA 7 0.8887 0.0074 120.57 0.000

Residuals: SS
MS

24.1882
0.0060 DF = 4007

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 89.2 117.6 140.5 160.8
DF 10 22 34 46

The residuals from the ARIMA fit indicate possibilities for improvement, but
no natural simple alternative model seems at hand. This is probably due to some
structural changes in a series of this length, not accounted for in the strict ARIMA
context. If we estimate this model, using shorter stretches of data, say 2—3 months,
the fit is generally very good, residual variance lower, with the seasonal MA(7) still
highly significant, while the MA(1) term is significant in most cases, although not
in the case of the last 2-3 months of the data from 2007.
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Table 2 Multiplicative hourly factors to daily mean price predictions. Numbers
based on MANOVA

Hours 01-06  0.9442 09073  0.8816  0.8660  0.8685  0.9070
Hours 07-12  0.9603  1.0246  1.0771 1.0858  1.0903  1.0822
Hours 13-18  1.0643  1.0500  1.0382  1.0309 1.0354  1.0543
Hours 19-24  1.0540 1.0382  1.0224 1.0177 1.0032  0.9588

Table 3 Multiplicative hourly factors to daily mean price predictions. Numbers
based on FANOVA

Hours 01-06  0.9093  0.8775  0.8637 0.8684  0.8940  0.9423
Hours 07-12  1.0048  1.0593  1.0864 1.0880  1.0803  1.0721
Hours 13-18  1.0597  1.0415  1.0280 1.0299  1.0433  1.0519
Hours 19-24  1.0462  1.0335 1.0242  1.0146  0.9919  0.9525

With z; being the mean log-price at day ¢, the one-day ahead prediction at time
uis
2M(l) = 2y + Zu—6 — 2u—7 — Ba, — 67a,—¢ + 067a,—7

where 0 and 6 are the estimated moving average coefficients and a; = z; —Z;—1 (1),
that is, past prediction errors. From these predictions, daily prices can be obtained by
exponentiation. Predictions for each hour may then be found through multiplications
by the hourly factors from the MANOVA- or FANOVA-analysis given in Tables 2
and 3, respectively. It is worthwhile to note that the one-step ahead prediction for our
model also can be represented by two intertwined exponentially weighted moving
average schemes.

8 Multivariate Volatility

Until now, our main concern has been multivariate modelling and the prediction of
price level. The implicit assumption has been constant residual covariance matrix.
This may not be the case, and there are two aspects to this: (a) volatility depending
on the seasons and (b) conditional volatility. In Sect. 3.5, we have seen that mean
log-prices exhibit univariate volatility clustering. This feature should therefore be
expected in the multivariate context as well. The concern for volatility may be the
prime concern in some financial contexts, but just nuisance in the operational con-
text. To get improved point predictions of prices it seldom helps to add all data
features to the model, although this may provide a more realistic uncertainty evalu-
ation. We will briefly look into the two volatility aspects.

To get some insight to how the volatility depends on the season we have taken the
log-squared residuals from the MANOVA analysis of Sect. 5, and performed another
MANOVA, and plotted daily curves for each effect, main effect, year, month and
weekday, similar to Fig. 6. The main conclusions from these plots (not shown) are:
(a) Higher volatility at night (b) different levels between years (c) higher volatility
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in July/August and December/January but lower in March and (d) all days about
equal and constant effects, except Sundays which is both higher and peaked in early
morning.

Now to the volatility clustering aspect: Multivariate volatility models are mainly
studied in connection with volatility in returns, and where volatility is the main
object of study. There are many proposals of such models in the literature, mostly
of the GARCH type, see Bauwens et al. (2006) for a review. A problem with such
models is the large number of parameters to be estimated, in particular, when they
come in addition to the level parameters, as is the case here. In practice, it is often
sufficient to limit attention to models of order (1,1). The curse of dimensionality
may also be solved by index models, where each component is expressed in terms
of a representative index series. In a sense, this is what we do when we have used
the daily mean log-price as the basis and scaled the result according to an hourly
index. If we model this representative series both with respect to time varying and
conditional level and volatility, this will imply a joint scaling, convenient but not
necessarily realistic.

Now consider the modelling of the conditional (residual) covariance matrix X
written as

X = S:C Sy (14)

where S; is a diagonal matrix of conditional standard deviations at time ¢ and C; is
the correlation matrix. A possible modelling approach is to take component volatil-
ity as univariate GARCH and specify a model for the correlations. A class of models
is the dynamic correlation models, where C; is expressed by an updating scheme
in terms of C;_; and a correlation matrix based on recent observations, see Tsay
(2006) for some suggestions.We will not go into further detail here, but note that
the dynamic prediction approach presented in the next section involves updating of
covariance matrices.

9 Multivariate Dynamic Modelling

In practice, one may want to make one-day ahead predictions of the hourly
(log)prices based on an online updating scheme adaptive to possible parameter
changes over time. One possibility is to use standard recursive univariate forecast-
ing procedures to the mean log-prices, and then use hourly correction factors, for
instance, using multiplicative factors after exponentiation, as we did above for the
univariate ARIMA predictions. Among readily available procedures are exponen-
tial smoothing schemes (Holt—Winter) and state space model schemes (Kalman).
Similar multivariate schemes exist, but may not be readily available as canned
software.

A natural framework for dynamic modelling is to consider the 1 x24 dimensional
observation vector y, expressed by

yi=x,-B; +e (15)
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together with the state equation for the 28 x 24 dimensional matrix B,
B;=B; 1+ D; (16)

Note that the observation equation is just line t of our previous regression equation
Y = X - B + E in terms of all observations, but now with the 28 x 24 dimensional
regression matrix B; depending on ¢.

Here we assume that the error terms e, and D, are both independent over time
and mutually independent. For the between-hour covariances, we assume

cov(esi, e;) = 0 a7
cov(Dy, D) =0+ W (18)

where W is a known 28 x 28 matrix. Note that intraday correlation structure given
by X' = (0i;) is assumed common to both equations.

This model fits into the framework of multivariate dynamic linear models
(MDLM) as described in West and Harrison (1997), which also allows a more
extensive state equation with cross-dependencies expressed by premultiplication of
the lagged state variable by a time-dependent matrix G;, as well as having known
time-dependent multiplicative factors to the covariances. With distributional as-
sumptions on the error terms as well as prior distributions on the parameters B
and ¥, a Bayesian updating scheme is established, which provides the posterior
distribution, given data, for (B;, X'), as well as the predictive distribution of y,.
Although the distributions involved are fairly complicated, involving the matrix nor-
mal/inverse Wishart distribution, the recursive scheme for the current parameters is
easily programmed. The iterations need starting values as well as specification of
the matrix W . If I, denotes the observational information up to time ¢, the scheme
goes as follows (r = 1,2, ...)

1. Posterior distribution of (B;_1, X') given I;_;.
2. Prior distribution of (B, X') given I;_;.

3. Predictive distribution of y, given I,_;.

1. Posterior distribution of (B, X') given I;.

-+ Repeating for each ¢.

Although this scheme is derived under very specific distributional assumptions,
not likely to be fulfilled in reality, the predictive abilities may compare well with
alternatives, and may be preferred for its adaptive and recursive features. We will
here gain some insight by looking at the predictions of the log-prices for the week
December 10-16, 2007, in comparison with the observed log-prices this week and
the week before, as seen in Fig. 10.

We see the common hourly pattern of log-prices in the predictions as well as
in the observed series, but the daily curves are not ordered in the expected pattern
presented earlier. Consider first the prediction in exhibit (a). Here Monday is the
lowest curve, and the expected lowest, Saturday and Sunday, are in the middle.
We also see a spike on Tuesday 18 h, and a corresponding low at the same time
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Fig. 10 Predictions Dec10-Dec16 2007. (a) Predicted, (b) Observed, (c) Observed week before

the following Wednesday. If we look at the observed log-prices in exhibit (b), we
see good agreement with the predictions, better in the beginning of the week than
at the end. We also see a spike on Friday at 9 h that was not predicted. For a part
explanation of these findings, we may look at the observed pattern the week before
in exhibit (c), where Monday was lower than expected. Combined with the usual low
Sunday, this has lead to lowered overall predictions for the Monday of the coming
week. The predictions for the prior week (not shown), have the common pattern with
Saturday and Sunday as the low curves, but with the outliers at 18 h on Tuesday and
Wednesday. This represents some experience from the recent past, still influencing
predictions, but is not observed in the current two weeks.

10 Conclusion

We have reviewed some stylized facts of electricity prices and illustrated, on Nord-
pool Elspot data from 1997 to 2007, how to discover them with multivariate and
functional data techniques. From an exploratory point of view, the methods produce
graphs which describe the daily price profiles for different categories of the data,
such as one particular month, thereby enabling comparisons between categories.
It is also shown how these techniques can be used together with simple univariate



Multivariate Modelling and Prediction of Hourly One-Day Ahead Prices at Nordpool 153

forecasting methods to predict the entire daily price profile of electricity spot prices.
Furthermore, a multivariate dynamic linear model, enabling time-varying parame-
ters, is described and illustrated on the Nordpool data. The need for allowing for the
seasonalities studied in this paper is apparent. However, if used in forecasting for
trading purposes, this is probably rather a requirement for not loosing money than a
possibility for abnormal returns.
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Appendix: Abbreviations

ARIMA(p,d,q)(P, D, Q)s: Seasonal Integrated Autoregressive Moving Average
model with p autoregressive terms, d differences, ¢ moving average terms, P sea-
sonal autoregressive terms, D seasonal differences, O seasonal moving average
terms and seasonality s.

GARCH(q, p): Generalized Autoregressive Conditionally Heteroskedastic model
with g lagged squared error terms and p lagged conditional variances.

IGARCH(q, p): A GARCH(q, p) model where the sum of the p + ¢ coefficients
equal one.

ARMAX: An ARIMA(p, 0, g)-model with added explanatory variables.



Time Regularities in the Nordic Power Market:
Potentials for Profitable Investments
and Trading Strategies?

Ole Gjglberg

Abstract Electricity is a nonstorable commodity. Consequently, electricity prices
will follow fairly regular fluctuations in demand, stemming from time dependent
variations in economic activity and weather conditions. However, it is possible to
store electricity as a different energy carrier (e.g., hot water) and both consumers
and producers have some leeway for changing behavior in order to take advantage
of price regularities. Thus, the price regularities should be within arbitrage lim-
its, and one would expect price regularities to be reduced over time as a result of
investments that increase flexibility in consumption as well as production. In this
article, hourly, daily, and weekly prices and price changes at the Nordic power ex-
change (Nord Pool) are analyzed over the period January 1995-December 2006.
The tentative conclusion from the statistical analysis is that the price regularities
may offer potentials for profitable investments in flexibility as well as profitable
trading strategies.

1 Introduction

In well functioning commodity markets, excessive spatial price differentials will
quickly be removed through arbitrage, so that prices for identical goods at different
locations do not persistently differ by more than transportation and transaction costs
incurred by moving goods from one location to another. Likewise, price changes
over time for a commodity will not systematically and persistently move outside
a range defined by the cost-of-carry, i.e., capital cost (including a risk premium),
storage costs, insurance, etc. Neither will there be persistent regularities in price
movements that can be utilized in order to make abnormal profits.
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Spatial and intertemporal arbitrage typically requires goods to be storable. In this
article, we study intertemporal price regularities for electric power. Once produced,
electricity as such is nonstorable. However, electricity may be stored as a differ-
ent energy carrier. Prior to production, electricity may be stored as, e.g., a water
reservoir or as a tank of oil or a pile of coal. After being produced, electric power
may be stored as hot water or the electricity may be used to lift water upstream for
later use. Furthermore, electric power may be stored as hydrogen produced through
electrolyses.

Although possible, such storage of electric power is confronted by several tech-
nological and physical restrictions. While electricity demand changes in a fairly
predictable way over the week or from one season to another, it is not easy to ad-
just supply accordingly. There is a limited flexibility in most electricity generating
technologies. However, contrary to production at a nuclear plant, scheduled hydro-
based electricity production can to some extent be adjusted to expected short-term
variations in demand. But also for hydro power producers, there are limits to flex-
ibility and there are costs involved in trying to scale supply according to demand
variations. The laws of thermo dynamics apply and in order to, for instance, take
advantage of regular price increases by using the water twice the producer must
calculate the costs involved.

Consumers may also to some extent adjust their planned consumption according
to intertemporal price regularities. Other energy carriers can be used as a substi-
tute for electricity in order to heat water and buildings when the electricity price
is temporarily high. This requires technological flexibility through, for instance, in-
vestments in dual-fuel type of boilers. For consumers to consider such investments,
the market must function in such a way that it is practically possible to take advan-
tage of price variations. This means that technologies must be installed that makes
it possible for consumers to pay electricity consumption according to day of the
week and even time of the day, known as real-time-pricing (RTP).! The introduc-
tion of such technologies on a larger scale than we have seen so far will most likely
contribute to changes in demand patterns over time and in that way smooth price
movements.

2 Literature on Price Relationships in the Power Markets

While there is a huge body of empirical studies on most commodity markets, cov-
ering topics such as market efficiency, arbitrage, spot—futures—storage relationships,
etc., the literature on price relationships in the electricity markets is more modest.
The major reason for this is obviously related to the fact that the electricity mar-
kets until some 10-15 years ago were tightly regulated in more or less all countries
worldwide. However, the number of electricity market studies has increased rapidly

! For a survey on research on RTP in electricity markets, see Borenstein (2009).
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since deregulation, in which the Nordic countries and the Nordic power exchange
(Nord Pool) have played a leading role, subsequently followed up by the European
energy exchanges (EEX and APX).

A seminal paper on the spot—forward price relationship for electricity based
on data from Nord Pool was presented by Lucia and Schwartz (2002). The paper
examines the regular patterns in the behavior of electricity prices and the shape
of the futures/forward curve. Bystrom (2003) discusses hedging performance us-
ing the futures contracts at Nord Pool, while Wilkens and Wimschulte (2007) and
Shawky et al. (2003) investigate the pricing of electricity futures at the EEX and in
the U.S., respectively. Gjglberg and Johnsen (2001) discuss the relationship between
storage volumes in terms of water reservoir fillings and the Nord Pool spot/futures
spread. Koekebakker and Ollmar (2005) present empirical evidence on the forward
curve at Nord Pool, while Kristiansen (2007) focuses on the monthly forward con-
tract, also at Nord Pool. Cartea and Villaplana (2008) analyze the seasonal pattern
of forward prices in the Nordic as well as the English, Welsh and U.S. markets.
Outside the Nordic/European power markets, Bessembinder and Lemmon (2002)
discuss optimal hedging in the electricity applying data from the Pennsylvania, New
Jersey, Maryland (PJM), and the California Power Exchange (CALPX). Longstaff
and Wang (2004) conduct an empirical analysis of forward pricing at the PJM mar-
ket, while Woo et al. (2001) analyze cross hedging and forward-contract pricing of
electricity in the U.S. market.

As regards spot price behavior in the electricity markets, a series of studies
has emerged during recent years. Weron (2000) analyzes price volatility while
Simonsen et al. (2004) and Simonsen (2005) present “the stylized facts” of the pric-
ing, i.e., seasonality, return distributions, volatility clustering, and mean reversion at
Nord Pool. Burger et al. (2004) present a model for spot pricing at EEX, taking into
account, among other factors, seasonal patterns and mean reversion. Robinson and
Baniak (2002) study the volatility of spot prices in the English and Welsh electricity
pool, suggesting that generators with market power may have an incentive to create
volatility in the spot market in order to benefit from higher risk premia in the contract
market. Worthington et al. (2005) analyze spatial transmission of price volatility in
five regional Australian electricity markets, while Park et al. (2006) conduct a simi-
lar analysis of spatial price relationships across different regional electricity markets
in the U.S. Yet another category of papers aim at making forecasting models for dif-
ferent power markets (e.g., Gareta et al. 2005; Yamin et al. 2004; Conejo et al. 2005).

The present article is a contribution to the understanding of spot price behavior
in one of the most advanced and active power markets over the last 15-20 years,
i.e., the Nordic power market. Based on price observations from Nord Pool” every
hour, 24 h a day over the period 1 January 1995 to 31 December 2006 (4,383 days;
105,192h), a set of distinct time regularities is revealed and discussed: “The-day-
of-the-week pattern,” “The week-end pattern,” “The time-of-the-day pattern,” and

2 The prices are the hourly system prices at the Nordic power exchange Nord Pool. Data were
downloaded from Nord Pool’s server.
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“The Mean reversion pattern.” We describe these patterns and we search for possible
changes in patterns over time. Finally, we indicate to what extent there are possible
arbitrage and investment opportunities based on the observed price behavior.

3 Day-of-the-Week Pattern

As for other power markets, the price in the Nordic power market is extremely
volatile. Figures | and 2 describe the weekly (mean) price and the weekly per-
centage price changes over the period January 1995-December 2006. As can be
seen, the price fluctuated heavily around a mean of approximately NOK 146/MW
during the period 1995 through the summer of 2003. Then, a temporary extreme
surge introduced a period of higher prices towards 2007. Figure 2 visualizes the
extreme volatility in this market. Disregarding the spikes (normally the result of ex-
treme weather conditions), more than 25% of the 652 weeks had a price change of
+10% or more. The weekly standard deviation is 12.5%, annualized close to 90%.
This is substantially higher than the volatility in the oil market during the same pe-
riod (roughly 30% on an annual basis) and very much higher than the stock market
volatility (20-24%).

The weekly means smoothen out the day-to-day variations (as well as the in-
traday variations). Thus, there is a highly regular pattern in price levels and price
changes through the week. Figure 3 describes this pattern, i.e., high Monday prices,
slightly lower on Tuesday, Wednesday, and Thursday. Comes Friday and the price is
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Fig. 1 Weekly mean prices 1995-2006, NOK/MWh
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significantly lower — and even more so on Saturday and Sunday. Thus, the Monday
price has on the average topped the Sunday price by approximately 11%.

Table 1 summarizes the percentage changes (dLog) from 1 day of the week to the
next for the entire period as well as subperiods. As can be seen, the price change
from Sunday to Monday has been between 9 and 12%. For the entire sample (626
weeks), there has been a further significant price increase from Monday to Tues-
day. This, however, seems to be a pattern that disappears after 2001 when there is
no longer a significant price change from Monday till Tuesday. Friday, except for
the period 2001-2003, shows significant negative price changes at the start of the
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Table 1 Mean percentage price changes since the previous day
2 Jan 1995-31 2 Jan 1995-1 1 Jan 2001-1 1 Jan 2004-31
Dec 2006 Jan 1998 Jan 2004 Dec 2006
Monday 0.113 0.095 0.121 0.092
(34.20)** (14.30)** (17.10)** (20.40)**
Tuesday 0.008 0.015 0.001 (0.184) —0.002
(2.32)* 2.27)* (—0.346)
Wednesday —0.002 —0.009 —0.002 0.004 (0.936)
(—0.506) (—1.34) (—0.246)
Thursday —0.007 —0.000 —0.012 —0.004
(—2.24)* (—0.09) (—1.63) (—0.819)
Friday —0.018 —0.014 —0.006 —0.021
(—5.45)** (—2.06)* (—0.883) (—4.66)**
Saturday —0.063 —0.056 —0.071 —0.040
(—18.90)** (—8.39)** (—9.93)** (—8.86)**
Sunday —0.031 —0.032 —0.029 —0.030
(—=9.31)** (—4.82)** (—4.11)** (—6.57)**
N 4,382 days; 1,096 days; 1,096 days; 1,096 days;
625 weeks 156 weeks 156 weeks 156 weeks

() = t-values
" Significant at 0.05/0.01 level

week-end, followed by substantial price reductions on Saturday and Sunday (—6.3%
on Saturday and —3.1% on Sunday for the whole sample).

Despite some minor differences across the three subperiods, the week-day pattern
appears to be very stable. On the margin, a producer who could move the supply of
X MWh from Sunday to Monday would have a return of some 9-12% over the 24 h.
A consumer who could move her demand from, say, Saturday to Sunday would save
roughly 3% and as much as 9% if she could postpone her consumption from Friday
till Sunday. There is reason to ask whether consumers and producers are taking full
advantage of these strong short-term price regularities.

4 The Week-End Pattern

Within the day-to-day pattern, the price movement through the week-end reveals
another interesting pattern. Power prices indicate that the week-end has become
more oval during the last few years. While Saturday and Sunday a few years ago
represented the true week-end, Friday has gradually moved into the leisure zone.
The development is illustrated in Fig. 4, showing the probability of a price increase
on a Friday £2 S.E. estimated recursively by continuously increasing the observa-
tion window from 1995 to 1997 and onwards. Up till 1997-1998 this probability
was not significantly different from 0.5, i.e., till 1997-1998 the price change from
Thursday to Friday might just as well be positive as negative. Then, the probability
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for a positive price increase on Friday declines significantly towards roughly 0.35.
In other words, Friday gradually seems to have been integrated into the week-end
price reduction. This is due to a relative decline in demand on Fridays, i.e., a gradual
change in consumer behavior (“the oval week-end”). The figure understates the de-
cline in positive price changes on Fridays. For the period 2000-2006 (2,557 days),
there was a price decline 72% of all Fridays, as compared to 57% for all Thursdays
and 43% for all days (including Fridays).

Again, there is reason to ask whether this pattern could be utilized for profitable
arbitrage or change in production plans, e.g., by moving production volumes from
Fridays to Thursdays.

5 Time-of-the-Day Pattern

The power market is characterized by a very regular pattern throughout the day.
The pattern is visualized in Fig. 5 and summarized in Table 2. Just before midnight,
the price drops by some 3%. This decline continues for another 4 h, generating an
average price reduction of some 10-12% between 10 p.m. and 4 a.m. Then, between
5 am. and 9 a.m. there is a significant price surge, averaging 15-18%. This pattern
has remained quite stable since 1995, although with some peculiarities during the
subperiod 2001-2004 when there were some ups and downs during the afternoon.
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Table 2 Mean percentage price change since the previous hour

Hour 1995-2006 1995-1998 2001-2004 2004-2006
1 —1.0 —1.7 —0.7 —0.6
2 —2.7 —2.5 —-2.9 —24
3 —1.7 —1.1 —1.8 —1.9
4 —1.3 —0.8 —1.3 —-1.6
5 0.5 0.1 0.4 0.5
6 3.2 2.2 3.3 33
7 4.4 4.7 4.3 3.6
8 5.5 4.6 6.5 4.4
9 4.8 2.5 6.3 4.1

10 —0.3 0.6 —1.0 —0.2

11 —0.2 0.0 —0.1 0.0

12 —0.9 —0.5 —1.1 —0.6

13 —1.6 —1.0 —2.3 —1.2

14 —1.1 —0.6 —-1.3 —1.0

15 —0.8 —0.4 —1.0 —0.7

16 —0.3 —0.4 —0.2 —0.3

17 0.6 0.0 1.5 0.5

18 1.8 0.8 2.5 1.5

19 —0.2 0.0 —0.2 0.1

20 —1.5 —0.5 —2.6 —1.2

21 —1.4 —0.6 —2.2 —1.2

22 —0.4 —0.1 —0.4 —0.6

23 —1.5 —1.8 —1.4 —1.2

24 —-3.3 —3.2 —-3.3 -3.0

Bold types: Significant at 0.01 level
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One must ask whether such extreme and regular short-term amplitudes are con-
sistent with an efficient market. Would it not be possible to make profits from
moving production or consumption by just a few hours?

6 Mean Reversion

Previous studies (e.g., Schwartz 1997; Weron et al. 2004; Cartea and Figueroa 2005;
Simonsen et al. 2004) have found electricity prices to be mean reverting. Given the
observed regularities over the day and during the week, this is no surprise. However,
one would assume that the mean reverting pattern would disappear when adjusting
for these calendar and time-of-the-day regularities, or when looking at time series
for which there is no reason to find such cycles. This can be done by estimating
models of the type

n
pr=co+ Y aipiite (1

i=1

n 7
pe=Y aipii+ Y ADAY;+e )

i=1 i=1

where p; is the percentage price change since last week (1) or since yesterday (2)
and where DAY is a (1;0)-dummy for each week day (Monday, Tuesday, etc.). For
(1), we would not expect to find any systematic pattern in the way that the price
change from 1 week to the next is related to previous weekly price changes. For
(2), we would expect to find no significant alpha-estimates, having “taken out” the
week-day regularity.

As can be seen from Tables 3 and 4, both hypotheses are rejected. There is a sig-
nificant relationship between the percentage price change this week and the change
that took place 1 and 2 weeks ago. True, the explained variance is very small (7% for
all periods). Still, the regularity may be used at least for forecasting the direction of
the price 1 week to the next.®> As regards the daily price changes, a significant mean
reversion still remains after correcting for the week day effect. Thus, there is a 7-day
cycle with a significant and positive parameter estimates for the price change (1-7)
and then significant and negative estimates for (z—1) through (z-5). The explained
variance is small. Still, there is an additional explanation, although small, by includ-
ing the previous 7 days’ price changes in addition to the week-day dummies.

3 We conducted a small experiment, using model (1) for weekly forecasting out-of-sample. During
the 104 weeks 2005-2006, we predicted the correct direction during 63 weeks. With an a priori
probability of 0.5, this result is relatively unlikely to occur by chance (0.02 probability).
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Table 3 Estimation results model (1), weekly observations

Ao (¢3] (%) DW Rz
1995 (4)-2006 (52) 0.0008 (0.183) 0.12 (3.09) —0.24 (—6.24) 1.98 0.07
1995 (4)-1999 (52) —0.0008 (—0.08) 0.13 (2.11) —0.26 (—4.30) 2.00 0.08
2000 (1)-2004 (52) 0.002 (0.28) 0.10 (1.65) —0.25(—4.23) 1.94 0.07
2002 (1)-2006 (52) 0.001 (0.252) 0.23 (3.83) —0.16 (—2.68) 1.89 0.07

() = t-values

Table 4 Estimation results, model (2), daily observations

Estimated parameter Estimated parameter

1995-2006 t-value 2003-2006 t-value
P*,_ —0.13 —8.62** —0.14 —5.40™*
P*._, —0.14 —9.24** —0.13 —4.91**
P* 3 —0.07 —4.38** —0.10 —3.66™*
P*_4 —0.09 —6.19** —0.10 —3.99**
P* s —0.08 —5.14** —0.09 —3.22%*
P*i—¢ 0.01 0.74** 0.01 0.84
P*_4 0.13 8.39 0.13 3.50**
Constant 0.00 0.00 0.00 0.00
DW 2.01 2.01
R? 0.06 0.06
N 4,375 1,461

The estimated lambdas (week day means) are not reported
" Significant at 0.01 level

7 Tentative Conclusions

As stated in the introduction: it comes as no surprise to find time regularities in elec-
tricity prices. However, the strength, persistence, and magnitude of the regularities
observed raise the question whether these regularities may offer profitable
trading/production planning strategies or also profit opportunities from invest-
ments in technologies that allow for greater flexibility in energy production and/or
consumption. Some investments aiming at utilizing intertemporal price differences
are quite expensive, e.g., investments in pumping water back into the reservoir,
investments in increased reservoir capacity or in new “complementary” production
technologies. On the other hand, not so expensive technologies on the consumption
side are available that may make it profitable to change consumption behavior, such
as investments in dual burners (e.g., electricity/oil) and investments in metering
technology for RTP. Whether the observed regularities are sufficiently strong for
supporting such investments in new technologies remains to be seen. However,
just by presenting detailed information on price regularities, one may see that the
regularities become less pronounced.
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Valuation and Risk Management
in the Norwegian Electricity Market*

Petter Bjerksund, Heine Rasmussen, and Gunnar Stensland

Abstract The purpose of this paper is twofold: Firstly, we analyse the option
value approximation of traded options in the presence of a volatility term struc-
ture. The options are identified as: (a) “European” (written on the forward price of a
future flow delivery); and (b) “Asian”. Both types are in fact written on (arithmetic)
price averages. Secondly, adopting a 3-factor model for market risk which is com-
patible with the valuation results, we discuss risk management in the electricity
market within the Value at Risk concept. The analysis is illustrated by numerical
cases from the Norwegian electricity derivatives market.

1 Introduction

Historical time series, implicit volatilities of quoted option prices, as well as the
experience of professional traders and brokers, clearly indicate the presence of a
volatility term structure in the Norwegian electricity derivatives market. The purpose
of this paper is to analyse the implications of this volatility term structure for: (a) val-
uation of the most frequently traded options; and (b) market risk management.

Our starting point is to represent the electricity forward market at date ¢ by a for-
ward price function f(¢, T), which may be interpreted as the forward price at date
t of a hypothetical contract with delivery at date T (i.e., with an infinitesemal deliv-
ery period). In the electricity forward market, the underlying quantity is delivered
as a flow during a specific future time period. This contract may be interpreted as a
portfolio of hypothetical single-delivery contracts, hence the forward price follows
from the function f (¢, T) by no-arbitrage.

*This chapter is a corrected version of Bjerksund, Rasmussen, and Stensland (2000).
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Assuming lognormality, we represent the uncertainty in the forward market at
date ¢ by a volatility function o(tr — ¢, T — t), which corresponds to the Black’76
implicit volatility of a European option with time to exercise t — ¢ written on the
future forward price f(¢, T') with time to delivery T — ¢.

However, the traded “European” electricity option is written on the forward price
of a contract with delivery as a constant flow during a specific future time period.
Following Kemna and Vorst (1990), we adopt the Black’76 concept for approx-
imating the option value and obtain the theoretical forward price as well as an
approximated plug-in volatility.

The traded Asian option is written on the average spot price observed during
a specific period. The exercise date of the option typically coincides with the last
observation date. We obtain the theoretical forward price and the Black’76 plug-in
volatility.

Next, we turn to risk management within the Value at Risk concept. The idea
of Value at Risk is to quantify the downside risk of the future market value of a
given portfolio at a chosen horizon date. We represent the market risk by a 3-factor
model, which is compatible with our forward price dynamics assumption. We use
Monte Carlo simulation in order to generate the probability distribution of the future
portfolio market price.

The advantage of integrating valuation and risk management is: (a) the market
risk exposure of a future position is consistent with the current forward and option
prices; and (b) we may use our option valuation approximation results to calculate
conditional future option values.

2 The Model

2.1 The Forward Market

Research on valuation of commodity derivatives and management of commodity
market risk has been an expanding area within finance during the last decade.
At the same time, the use of various bilateral OTC arrangements in the industry
has increased, and new commodity derivatives have been introduced in the financial
market place.

For many commodities, the forward prices indicate a non-constant convenience
yield (e.g., seasonal pattern). Moreover, the commodity option market prices clearly
indicate that the constant volatility assumption of Black’76 is violated for most com-
modities. Typically, the implicit volatility is a decreasing and convex function of
time to maturity.

Gibson and Schwartz (1990) develop a two-factor model for oil derivatives,
where the commodity spot price is geometric Brownian, and the instantaneous con-
venience yield rate follows a mean-reverting Ornstein—Uhlenbeck process. Within
this model, closed form solutions exist for the forward price as well as European
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calls (see Bjerksund (1991) and Jamshidian and Fein (1990)). Hilliard and Reis
(1998) investigate several alternative models, including the case where the spot price
is a mixed jump-diffusion process. For a survey on alternative models for valuation
and hedging, see Schwartz (1997).

Models where assumptions on spot price and convenience yield dynamics are
starting points will typically predict forward prices which are different from the
ones observed in the market. Using the general Heath, Jarrow, and Morton (1992)
approach, Miltersen and Schwartz (1998) develop a general framework for com-
modity derivatives valuation and risk management with stochastic interest rates as
well as stochastic convenience yield. This model can be calibrated to the current for-
ward market. In their Gaussian special case, the call option value essentially boils
down to a generalised version of Black’76.

Our model assumptions may be considered as a special case of the gaussian
Miltersen—Schwartz model. Complicating the picture in the case of electricity
derivatives, however, is the fact that the physical “underlying asset” is a constant
flow received during a specific time period, rather than one “bulk” delivery at a
specific date.

Turning to our model, we represent the forward market at date # by a continuous
forward price function, where f(¢, T') denotes the forward price at date ¢ on a con-
tract with delivery at date 7 > ¢. Consider a forward contract with delivery date T,
and assume the following forward price dynamics at date t < 7" (with respect to the
risk-adjusted martingale probability measure)

df(t,T) a "

ING) _(T—t+b+c)dW ), (1)

where a, b, and ¢ are positive constants, and d W*(¢) is the increment of a standard

Brownian motion with expectation E;*[dW*(¢)] = 0 and Var}[dW*(t)] = dt. By

construction, the expectation of (1) is zero with respect to the martingale measure.
The above corresponds to the forward price of this contract at the future date

7 € [t, T] being lognormal, and given by the following stochastic integral

f@.T)y= f@.T)
T T 2

Observe that E;*[1. f(z, T)] = f(¢, T), which confirms that the forward price is a
martingale with respect to the *-probability measure.

Now, consider a hypothetical European call option with time to exercise T — ?,
written on the future forward price f(z, T') on a contract with time to delivery T —¢.
It follows from the literature (see, e.g., Harrison and Kreps (1979) and Harrison
and Pliska (1981)) that the market value of the option can be represented by the
expected (using the martingale measure) discounted (using the riskless rate) future
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pay-off. With the future forward price being lognormal, the call value is given by
the Black’76 formula

Vil (f@T) = K] = Ef [e7 0 (£(2.T) — K) |
T, TIN() — KN(d2)},  (2)

where N () is the standard normal cumulative probability function,

In(f(t.T)/K) + 30°(x —1)

@ = oVt : ®)
dr=di—ovT—1t, 4)

_ f(@.T)
o= \/Var [1 (f(t T))i|/(r—t). (5)

Observe that the key input of Black’76 is: (a) the forward price at date ¢ of the
underlying asset f(¢, T'); and (b) the uncertainty of the underlying asset, represented
by the volatility o.

The assumed dynamics translates into the volatility o being a function of time
to exercise (of the option), t — ¢, and time to delivery (of the underlying forward),
T —t, and given by

o=o0(t—t,T—1t)

B e
where!

T (F@DN] o T[T dfGT)
var [ln(ﬂz,m)}‘w‘r’ [L f(s,T)}

a2
=|=————2acIn(T — 2 .
|:T—s+b acln(T —s+b)+¢ s:|S=z @)

In the following, we represent the forward market at date ¢ by the forward price
function f(z, T') and the volatility function o (v — ¢, T —t).

! To establish the first equality, apply Ito’s lemma

T = df (s, T = d T
oG- 1 (R 157
J@T) s= \ S, T) s=t ACHD
insert the assumed forward price dynamics, and observe that the second integral is deterministic

as of date ¢. The second equality follows from the fact that Brownian motions have independent
increments across time.

D=
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3 European Option

3.1 Forward on a Flow Delivery

In the electricity forward market, the underlying physical commodity is delivered
during a specific time period [T7, T»] as a constant flow (at a rate of (T, — T7)~!
units per year). We observe delivery periods on contracts ranging from one day to
one year, depending on the remaining time to delivery of the contract.

We represent the forward market at date ¢ by the forward price function f(z, s),
t < s < T. By value additivity, the market value at date ¢ of receiving one unit of
the commodity from dates T to 75 (at a rate of 1/(T» — T1)) is simply

T T
Vi / 215 S8 ol = / * r—n S5 ds, ®)
T T, —-T T T, —T

1 1

where ¢t < T1 < T5. In a rational market, the forward price F(t, Ty, T>) is deter-
mined such that the market value at date ¢ of the payments equals the right-hand
side of the equation just above. Indeed, in the hypothetical case of up-front payment
at date ¢, the forward price would coincide with the right-hand side just above.

Now, suppose that the forward price is paid as a constant cash flow stream during
the delivery period (at a rate of F(t, Ty, T2)/(T> — T1) per time unit). At date 7, the
net market value of entering the contract is zero, leading to the following forward
price

T
Ft, T1,T2) = / w(s;r) f(t,s)ds, 9)
T,
where —rs
e
w(s;r) = ———. (10)
fTle e Tsds

Consequently, the forward price F (¢, T1,T>) may be interpreted as the average
of the forward prices f(¢, s) over the delivery period [T7, T>], with respect to the
weight function?, which reflects the time value of money.

3.2 Call Option Valuation

The European calls which are traded in the electricity derivatives market are typ-
ically written on a forward price. In particular, consider a European call option
written on the pay-off F(z, Ty, T>) with strike K and exercise date < T;. Observe
that the exercise date of the option precedes the delivery period of the underlying
forward contract.

2 Observe that w(s; r) > 0Vs € [T}, T»] and fTle w(s;r)ds = 1.
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Following Kemna and Vorst (op.cit.), we approximate the option value within the
Black’76 framework. We have already obtained the theoretical forward price of the
underlying uncertain pay-off, F (¢, T1, T2). In addition, we need an approximated
volatility parameter. Approximate the forward price dynamics for ¢ < T; by?

dF(t, Ty, T») /S=T2 1 df.s) s)
_— ) S
F(t, Ty, T) s=r, Ta—Ti f(t,5)

:{ a 1n(T2_t+b)+c}dW*(t). (11)

T,—T T,—t+b

Next, obtain the approximated variance
F(tr, Ty, T) /T dF (s, Ty, T»)
Var} |In [ ———=-] | = Var/ ———d
art I:n(F(lﬂTlsz )i| arz |: t F(S,Tl,T2) y
2 st 2
a T,—s+b

= In——] d 12
(Tz—Tl) /t (nTl—S+b) s ( )

2ac T Th—s+b T
+ In ds—i—cz/ ds,
T2—T1/t Th—s+b t

where the first and the second integrals are*

T 2
/t (ln %:—?IZ) ds = [(x + ) (In(x + a))?

—2(x + o) In(x + @) In(x — @)
+4a1n(20) In (xz;“) (13)

_4adilog (x; “)
o

+(x —a) (In(x —a)) ]

X()
X(@)'

T 72—S+b
In—ds=[(x+a)ln(x +«
/t n ) p b N [( )n( )

—(x —a)In(x — oz)]))gg?) , (14)

3 The approximation proceeds in the following two steps

dF(t.T\.T)) _ 7" dft.s) dfts)
Tl MRS e /n "0

4 We have corrected the typos in a previous version of this paper pointed out in Lindell and Raab
(2008).
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where we define

-1, (15)
Xs)=b+ 2T+ Th) -, (16)

o

and where the dilogarithm function is defined by’
X
1
dilog (x) = / ln(s) ds where x > 0 a7
1

see, for example, Abramowitz and Stegun (1972).

Now, consider a European call option with exercise date T written on the forward
price F(t,T1,T,), where t < © < T7 < T, The option value at date ¢ can now
be approximated by Black’76, using the forward price F(¢, T, T>) above and the
volatility parameter vg

vE(t—t,T1 —t, T, —1)
F(r,T1,T»)
Var? |1 [t 18
\/ar’[“(m 7.7 )]/ 0 a8
The volatility parameter vg associated with the European option is a function of the

time to maturity of the option (¢ — ¢), the time to start of delivery (77 — ¢), and the
time to stop of delivery (75 —t).

VE

4 Asian Option

Asian options are written on the average spot price observed during a specific period
[Ty, T3], with exercise date t > T,. With continuous sampling, the (arithmetic)
average of the spot prices f(s, s) observed from 7} to T is defined by

T

Aty = |

T

T f(s,s)ds. (19)

We are interested in evaluating a call option with strike K and exercise date 75,
written on the arithmetic average A(T7, T>). For simplicity, we deal with the case of

3> The function is approximated numerically by

—_1)k
Y (xkzl) for0<x <1

dilog (x) = N
-1 (In(x))* — pay— (““k+l) for x > 1

where 7 is a sufficiently large positive integer.
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t < T first. With the future spot prices being lognormal, there is no known prob-
ability distribution for the arithmetic average. Within the Black’76 framework, the
option value approximation problem boils down to finding the theoretical forward
price and a reasonable volatility parameter.

Now, it follows from the martingale property of forward prices that the forward
price on a contract written on (the cash equivalent of) A(77, T») with delivery at
date T» is

T> 1
Fi[A(Ty.T»)] = E} |:/T P—— — f(s, s)ds:|

T> 1
:/ f(t s)ds. (20)
T T2 -

Observe that the forward price F;[A(Ty, T2)] simply is the (equally weighted) arith-
metic average of the current forward prices over the sampling period [T7, 73]. This
forward price may be interpreted as the cost replicating this contract in the market.®

Turning to the Black’76 volatility parameter, approximate the dynamics of the
underlying forward price at date T € [t, T>] by

dF:[A(Ty, T>)] / =h 1 df(z.s) S)
[A(TlaTZ)] s=max{t,T1} TZ_TI f(f S)
a T2—T+b *
1 h <T
{Tz—Tln(Tl—t-l-b)—i_c}dW(T) e = @1
a T.—t+b T, —t "
1 aw h T
{TZ_Tln( 5 )+T2—T1 } (r) whent > T}

Obtain the approximated variance by

L[ AT
Vet [In (F (AT, Tz)])i|

s | [T AF[A(T. TY)]
— Y [/m FIATL T @

(m5) [ (n7=55)
= — In—— | dr
T, —T; f Ti—t+b

6 Assume for the moment a discrete time model where the delivery period [T}, T5] is divided into
n time intervals of time length Az. Consider the following strategy: At the evaluation date 7, buy
e~ (=i +i-40) (1 /) units forward for each delivery T) +i - At,i = 1,...,n. As time passes
and the contracts are settled, invest (or finance) the proceeds at the riskless interest rate r. At the
delivery date T > T, the pay-off from the strategy is Y ;—, (1/n) f(Ty +i - At, Ty + i - At) —
Y (1/n) £, Ty +i - Ar), where the first term represents the desired spot price, and the second
(riskless) term may be interpreted as the forward price as of date 7.
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2ac I T—t+b n
+ — n—dr+c2 d‘C 22
T2—T1/t Tl—T+b t ( )

2 Ty 2
a T.—1t+b
+ / (m—) it
(TZ_Tl) Ty b
2 L Tyt 4b Th— Lorr,—1)\?
n ac / 1n 12 T+ 2 Tdt—i—cz/ ( 2 ‘L’) dx.
-T Jr, b T, -T rn \In—T

where the first and the second integrals are evaluated by inserting t = 77 in (13)-
(14) above, and the fourth and the fifth integrals are

T, _ 2 ¥y
/ (m TZ—T”) dv = b[y (n(y)? ~ 2y In(y) + ZyJT 23)
T

b
1
/Tz L (LmTHb) mr P [1y2In(y) = yIn(y) + y — 1¥2]]
T, b T,—-T1 ,-T
(24)
where
_ D-Ti+b
yo 2o 1th (25)

b
The Black’76 volatility parameter v4 is now found by

va(Ty —t, T2 —1)

T [ AT.T»
\/VM’ [In (FZ[A(Tl, Tz)])i| /7~ o

Observe that the volatility parameter v4 is a function of time to the first sampling
date, 71 — ¢, and time to the last sampling date, 7, — ¢, where the latter coincides
with the time to exercise of the option.

Next, consider the case where the option is evaluated within the sampling period,
that is, 71 < ¢t < T5. It follows immediately from the definition of the arithmetic
average that

VA

-T T,—t
ATy, Ty) = — Tll A(Ty. 1) + T;_ T A(t, T»). 27)

Consequently, with 77 < t < T5, the call option problem is equivalent to

Villr, (4T3, T) = K] = 2= Vi1, (0. T - K) ] 28)

T, —-T
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where
T, — T, t—T1
K' = K — A(Ty,1), 29
T 1 Tt (T, 1) (29)
that is, a portfolio of T7;2__7£1 call options, each written on the average over the re-

maining sampling period [¢, T2] where the strike is adjusted for the already observed
prices. In the non-trivial case of K’ > 0, the value of the adjusted option can be eval-
uated by inserting 7) = ¢ and K = K’ in the evaluation procedure above. In the
degenerate case of K’ < 0, it will always be optimal to exercise the call, which
reduces the adjusted option to a forward with the current value

T:
Vi[ir, (A6 T2) = K) | = e @0 (13— 1) " f(s)ds —K') . (30)

t

S Valuation: An Example

5.1 Current Term Structure

The Nordic electricity market NORDPOOL consists of several forward and futures
contracts. The traded contract and their market prices at December 15, 1999 are
found in Fig. 1.
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Fig. 1 Market prices at December 15, 1999
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Fig. 2 Forward prices

On the Basis of the bid/ask prices, we construct a continuous forward price func-
tion. The forward function is given by the smoothest function that prices all traded
contracts on NORDPOOL within the bid/ask spread. The forward price function on
December 15, 1999 is represented by the continuous yellow curve in Fig. 2. The
red horizontal lines in Fig. 2 correspond to the quoted forward price of each traded
contract.

5.2 Volatility

The volatility in forward prices falls rapidly in this market. The volatility on a single
day delivery starting in one week might be 80%, whereas a similar delivery starting
in 6 months will typically have less than 20% immediate volatility.

Figure 3 shows the forward price function and the volatility curve at December
15, 1999 for the following calendar year (i.e., 2000).

5.3 Contract Valuation

In the following, we consider three valuation cases as of December 15, 1999. The
first case corresponds to the contract “FWYR-2000 Asian/M”, see the first line in
Fig. 4. The strike of the option is 120 and the contract expires at December 31, 2000.
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Fig. 4 Contract valuation

The contract is subject to “monthly settlements”, which means that the contract
represents a portfolio 12 monthly Asian options, where each option is written on the
monthly price average and settled at the end of the month.

The second case is a European put option with strike 120 and expiration date
December 31, 1999, written on the forward price on the forward contract on delivery
from January 1, 2000 to June 30, 2000. The value of the option and the underlying
contract are found in lines 3 and 2 in Fig. 4.
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Fig. 5 Split of Asian option

The third case is a European put option with strike 120 and expiration date June
30, 2000, written on the forward price on the forward contract on delivery from July
1, 2000 to December 31, 2000. The value of the option and the underlying contract
are found in lines 4 and 5.

Figure 5 considers the first case in more detail. Each line corresponds to an Asian
option with strike 120 written on a monthly price average with expiration at the end
of the month. Observe that as seen from December 15, 1999, the volatility of the un-
derlying monthly price average is a decreasing and convex function of the delivery
month (e.g., January 43.8%; June 30.3%; December 24.4%). By value additivity, the
value of each monthly option adds up to the value of the quoted contract (79,661.86
in Fig. 4).

6 Value at Risk

The idea of Value at Risk (VaR) is to focus on the downside market risk of a given
portfolio at a future horizon date. For a discussion on VaR, see Hull (1998) and
Jorion (1997).

Evidence suggests that even though a one-factor model may be adequate for val-
uation in a multi-factor environment, it typically performs poorly as a tool for risk
management (e.g., dynamic hedging). In the following, we discuss a three-factor
Value at Risk (VaR) model, which is consistent with the valuation and approxima-
tion results above, following from (1) above.
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In order to obtain a richer class of possible forward price functions, assume
the following forward price dynamics (with respect to the martingale probability
measure)

—

2ac
T—t+b

dr.T) _ a
f@,T) T—t+b

dwi(t) + ( )5 dw3 (1) + cdW3(t),  (31)

where a, b, and ¢ are the positive constants from (1) above, and d W}*(¢), d W' (¢),
and d Wj(t) are increments of three uncorrelated standard Brownian motions.
Observe that the instantaneous dynamics of (31) just above is normal with zero
expectation and variance

Var} [df(l’ T)i| =

T ds, (32)

2
a n 2ac e
T—t+b T—t+b

which is consistent with the dynamics of (1) above.
It follows that the forward price function f(z,T) at the future date t is the

stochastic integral
K a K a 2
——dWi(s) - 1 / — ) d
/, T—s+b 1) =7 + \T—s+b s

1
T 2ac 2 T 2ac

—_— aw’ —l/ —d 33

et [(725) a4 [ et o9

s
exp{/ c dW;(s)—%/ czds}.
t t

In addition, the forward market at the future date t is represented by the associated
Black’76 implicit volatility function 6 (8 —t, T —1), where 6 € [z, T] is the exercise
date of the option, and 7" > 6 is the delivery date of the underlying forward.

Consider a portfolio of electricity derivatives at the future date r. The idea of
VaR is to analyse the downside properties of the probability distribution of the fu-
ture portfolio value. We apply the simulation methodology in order to generate this
probability distribution, from which Value at Risk can be calculated. The procedure
consists of the following steps (which are repeated): First, use a random generator
to draw a possible realisation for the future forward price function consistent with
(33) above. Second, use the above valuation and approximation results to calculate
the associated market value of each position, conditional on the realised forward
price function (as well as the future implicit Black’76 volatility function). Thirdly,
calculate the conditional market value of the portfolio (which follows immediately
from value additivity). Now, for a large number of iterations, we approximate the
probability distribution of the future portfolio value by the histogram following from
the simulation results.

f@.T) = f@.T)exp
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7 Value at Risk: An Example

7.1 Price Path Simulations

Equation (33) describes how the future forward price function is simulated from
current market information. The f(¢, T') function is the forward price at time ¢ for
delivery at time T'. The parameters a, b, and ¢ are inputs to the volatility function.

In order to simulate possible price paths, we use (33) repeatedly. In Fig. 6 we
present 100 simulated week prices based on this model. In each simulated path, the
following procedure is followed. First, the forward function next week is simulated,
integrating this curve from zero to 7 days gives the first week price. Next, we use
this new forward curve in combination with the volatility curve to obtain the forward
curve in the next step and so on. In this way, we obtain the correct and large short-
term volatility in prices in addition to the much smaller volatility in prices as seen
from today. We observe that the simulation model gives a substantial mean reversion
in prices. This is in accordance with empirical data. The advantage of this method
is that current information about the volatility curve and the term structure of prices
is sufficient to perform this simulation.

7.2 Value at Risk Calculation

In the following, we focus on the downside risk of a given financial portfolio of for-
wards and options. Assume that we want a probability distribution which represents

290

40

Fig. 6
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Price path simulation
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Fig. 7 Distribution for the value of the forward contract first half of 2000 in one week, NOK

the possible future market values of the portfolio in one week. First we simulate
the term structure starting in one week using (33). For each simulation, we find the
market value of all instruments in the portfolio. By assigning equal probability to
each simulation, this gives a distribution of future market values.

We have chosen a very simple example portfolio. It consists of a forward contract
for the first 6 months in year 2000 and a put option with exercise date at the last day
of 1999, written on the same forward. The strike on the option is 120. Figure 7 gives
the distribution in one week for the forward contract. Figure 8 gives similar infor-
mation for the put option. In Fig. 9, we give the statistics for the total portfolio. The
example illustrates the risk reduction effect from the option on the total portfolio.

8 Conclusions

The purpose of this paper is to derive a decision support model for professionals in
the electricity market for valuation and risk management. The paper applies results
and methods from finance, and incorporates the fact that electricity derivatives are
written on a commodity flow rather than a bulk delivery.

The electricity derivatives market is represented by a forward price function,
following from the quoted prices on traded contracts. The market uncertainty is
modelled by a volatility function being a decreasing (and convex) function of time.
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Fig. 8 Distribution for the value of a put option on the forward contract first half of 2000 in one
week, strike equal 120, NOK
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The paper presents value approximation results for “European” as well as Asian
call options. The 3-factor market risk management model presented in the paper is
compatible with these results and can be used for quantifying the future market risk
of given portfolios (including VaR).

Acknowledgment We thank the editors, anonymous referees, and P.E. Manne for useful
comments.

Appendix

This appendix evaluates (12) above. Define the new integration variable x = b +
%(Tz + T1) — s and the constant @ = %(Tz — T1), and write the integral as

F(t,Ti,T 2 X 2
Var [ln (—(T ! 2))} = ( a ) / (ln (x+a)) dx
Ft, T, T, T,—T X(z) X —o

2 X(@)
+ ac / ln(x+a)dx+cz(r—t),
T2—T1 X(2) X —0U

where X(t) = b+ 3(To + T1) —tand X(1) = b + (T + T1) — .
Observe that with b > Oandt < v < Ty < T,, we have x +«a > 0 and
x —a > 0 for x € [X(r), X(t)]. Now, use the following two results:’

2
/ (ln (itz)) dx = (x + o) (In(x + @))?

—2(x + a)In(x + @) In(x — a)

44020 In (xz_ “) — 4adilog (x; “)
(04 (04

+(x —a) (In(x — a))* — 4a,
/ln (x +a)dx =x+a)nx+ao)—(x—a)ln(x —a) —2a,

X =0

where

ds.

dilog(x) = / " In(s)

1 L—s

Substitute the results into the variance expression, to obtain the desired result.

71t is straightforward to verify these results using the fact that

d
— dilog (x) = In(x) .
ax 1—x
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Stochastic Programming Models for Short-Term
Power Generation Scheduling and Bidding

Trine Krogh Kristoffersen and Stein-Erik Fleten

Abstract We provide an overview of stochastic programming models in short-term
power generation scheduling and bidding. Special emphasis is placed on the devel-
opment prompted by the restructuring of the electricity sector.

1 Introduction

Traditional applications of stochastic programming to power operation planning
represent a well-developed research area. The setting is based on centralized
decision-making and regulated markets in which many local producers enjoy
monopoly. However, the area of applications within the new environment of de-
centralized decision-making, deregulated markets and competition continues to
develop.

This chapter aims to present the development in stochastic programming models
for short-term power generation scheduling and bidding prompted by the restruc-
turing of the electricity sector. Although many models apply in general, the starting
point is Nordic electricity producers participating in the Nordic electricity market.
We seek to explain how the models of the traditional setting can be adapted to the
new environment and how some newer models become highly relevant. To discuss
such models from a practical viewpoint, we include a number of applications, con-
sider computational aspects such as decomposition potential and introduce the most
common solution approaches.

The outline of the chapter is as follows. A short introduction to the stochastic
programming framework is given in Sect. 2. Sections 3 and 4 are confined to power
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generation scheduling in regulated and deregulated markets, respectively, whereas
Sect. 5 presents a selection of solution approaches to such problems. Section 6 dis-
cusses the bidding problems that have arisen with the restructured markets along
with approaches for solving them.

For a more general survey on stochastic programming problems in energy, see
Wallace and Fleten (2003) who consider both short-term, medium-term and long-
term problems.

2 The Stochastic Programming Framework

The models of the following sections are multi-stage stochastic programming
models. Due to only limited information on some data, decisions are made under
uncertainty. When decisions are made without anticipating future realizations of un-
certain data, decisions are partitioned into stages according to the information flow.
Hence, when the realization of uncertain data is only gradually revealed, decisions
are made dynamically. Uncertainty is often described by a finite set of scenarios and
corresponding scenario probabilities, a scenario being a path of realizations over
time. Scenarios can be generated, for example, from historical data, by the match-
ing of statistical properties, Hgyland and Wallace (2001); Hgyland et al. (2003), or
by sampling from statistical models, Shapiro (2003); Pennanen (2005). To ensure
that the same information always induces the same decisions, uncertainty can be
represented by a so-called scenario tree in which scenarios are clustered so that
branching occurs with the arrival of new information and decisions are taken at the
nodes of the tree. Hence, the scenario tree is based on a set of nodes /. Apart from
the root node, all nodes have an ascendant node and a set of descendant nodes. For
node n, the immediate ascending node is termed n_; with the transition probability
7"/"=1 that is, the probability that n is the descendant of n_;. The probabilities
of the nodes are then given recursively by 7! = 1 and 7" = n"/"—17"1 n > 1.
A scenario tree is illustrated in Fig. 1. For more on the notation of scenario trees in
stochastic programming, see Romisch and Schultz (2001).

scenarios

wt

AWV

[e=}
—_
o -+
I

5 time

Fig. 1 Multi-stage scenario tree
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3 Power Generation Scheduling in Regulated Markets

Due to centralized decision-making, power generation scheduling within the setting
of regulated markets may concern several producers that are voluntarily or legally
coordinated. By social welfare arguments, the models rest upon cost minimization
subject to demand satisfaction.

3.1 Thermal Unit Commitment and Hydro-Thermal Scheduling

As a starting point, we address the thermal unit commitment problem from the per-
spective of a regulated utility. The stochastic programming problem consists in the
dynamic scheduling of start-ups, shut-downs and operation levels of the thermal
units such as to minimize expected costs of meeting an uncertain demand that is
only revealed gradually.

To formalize this, let Z index the thermal units. Denote the on/off-decisions of
the units u?,i € Z € {0,1},n € N and let the p! € Ry,i € ZT,n € N represent
the corresponding operation levels. Due to the node dependency decisions can adapt
dynamically to realized demand. Expected costs account for future operational fuel
costs and start-up costs. These costs are modeled by the functions FC(-) and SC(-)
in (1). The functions are typically approximated by piecewise linear functions in
order to obtain a mixed-integer programming formulation. Generation is subject to
upper and lower bounds, p}""’, pi™,i € I, see (2). In order to prevent thermal
stress and high maintenance costs, minimum up- and down-time constraints apply.
These are given by (3), where t/"", 1/, j € T denote the minimum up- and down-
times. In addition, must-on/-off constraints can be included. A regulated utility is
forced to satisfy demand by means of generation only which leads to the constraints
(4) with demand denoted by d”,n € N. The utility may have similar reserve re-
sponsibilities, which induces the constraints (5) with reserve demand denoted by
r",n € N. Reserves ensure excess system capacity in the case of failure. The ne-
cessity of including reserve constraints in a stochastic model depends on whether
failures are explicitly incorporated in the scenarios, for example, as demand peaks
corresponding to the capacities of disrupted units. Thus, the thermal unit commit-
ment problem is

min Z Z”n(FCi(P,n,M;Z) + SCi(uf’,u:’“)) (D
neN ieT

stul pi™ < pl <ull pi™, i€I,neN 2)
M’.Z—T—u’.lf(rJrl)fu;l’ 'C=1,...,T;nax—1,l'€I,n€_/\/' 3)

1 1

n_ _ i .
w, TV —u! T <1 -, =1, 0" —1Liel,neN
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pr’zd", neN 4)
i€T
Ywrpr e —p =", neN ()
i€l

pl>0,ul €{0,1}, i €Z,neN.

Early attempts to formulate mathematical programming models in power oper-
ation planning date back to Kirchmayer (1958) who considered the operation of
power systems in general, and Baldwin et al. (1959) who studied the shut-down of
generating units. A deterministic unit commitment model was found in, for example,
Muckstadt and Koenig (1977), before finally Fahd and Sheble (1994) provided an
overview of the early unit commitment formulations. With the progress in stochas-
tic programming, the stochastic extensions of the deterministic operation planning
problems began to take form with, for example, Bunn and Paschentis (1986), who
investigated economic dispatch of electricity under demand uncertainty, as well as
Takriti et al. (1996); Carpentier et al. (1996), who considered the unit commitment
problem when subjected to uncertain demand, unit failures, etc. The model above is
similar in spirit.

Thermal power production can be combined with hydropower generation us-
ing pumped storage plants, the result being referred to hydro-thermal generation.
Hydro-thermal scheduling consists in the planning of thermal power production
with the possibility of using electricity to pump up water and store it in the reservoirs
for future hydropower generation. The planning may be complicated by uncertainty
in inflows to the reservoirs. The objective is therefore to minimize expected thermal
operational costs as well as opportunity costs of hydropower generation that arise
since the water could be saved for future use. The opportunity costs are measured as
the future value of stored water. Various heuristics can be used to estimate this value,
including the use of information in long-term forward contracts. As an alternative,
Fosso et al. (1999) suggest to calculate marginal water values for a hydro system
as derivatives of stochastic dynamic programming value functions with respect to
reservoir storage levels and use these to obtain water values for each reservoir in the
system. Including water values is an attempt to avoid end effects due to a finite time
horizon, such as the tendency of the multi-stage stochastic programming problem to
empty the reservoirs in the final stage. Short-term hydro-thermal scheduling mod-
els in multi-stage stochastic programming are found several places in the literature,
see Dentcheva and Romisch (1998); Growe-Kuska et al. (2000, 2002); Nowak and
Romisch (2000). However, as an alternative to including water values, the authors
constrain the final storage levels to a certain size.

Similar in spirit to the hydro-thermal scheduling models are the two-stage
unit commitment models of Carge and Schultz (1998) and Gollmer et al. (2000).
The models also seek to find a unit commitment schedule for thermal units in a
hydro-thermal utility. Since, however, coal-fired units have longer start-up times
than gas-burning units, the on-/off-decisions of the coal-fired units are first-stage,
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whereas corresponding decisions of the gas-burning units are second-stage. For
other two-stage hydro-thermal planning problems, see also Dentcheva and Romisch
(1998) and Nowak et al. (2000), who assign a full schedule in the first stage and a
compensation schedule in the second stage.

3.2 Hydro Scheduling

When hydro scheduling is addressed from the point of view of a regulated hy-
dropower utility, the problem consists in the spatial distribution of water releases
between different hydro reservoirs such as to satisfy a possibly uncertain electricity
demand. Since direct operating costs of hydropower generation are negligible, the
water releases from the reservoirs are determined by a balance between the immedi-
ate and future value of their contents. Challenges are posed by natural inflows being
uncertain and reservoirs being connected by a network in which releases upstream
contribute to inflows downstream, possibly with a time delay. Although formulated
as medium-term hydro scheduling, Jacobs et al. (1995) present such a model. The
model includes an entire network of lakes, reservoirs, water courses, tunnels, junc-
tions and power houses. Since the hydropower system is connected to a thermal
system, the major costs are those of avoiding thermal generation. A complete re-
view on deterministic and stochastic reservoir management models is given by Yeh
(1985).

The hydropower unit commitment problem introduces the scheduling of start-ups
and shut-downs into the hydro scheduling problem. It follows that the overall prob-
lem consists in determining on/off-schedules and corresponding generation levels
of the turbines so as to balance current costs and future water values. Most di-
rect operating costs can be ignored so that current costs account for start-up costs
only, although even hydro start-up costs are much lower than thermal start-up costs.
Hydropower unit commitment has been addressed only few times in the literature,
one of the few examples being Philpott et al. (2000).

4 Restructured Markets

Deregulated markets allow for decentralized decision making and the main focus
of this section is therefore a single producer. For the modelling of an entire power
system, guidelines are provided by, for example, Bjgrndal and Jgrnsten (2005). In
deregulated markets, previous obligations to serve demand are replaced by the op-
portunity of power producers to buy and sell production of any volume. This section
assumes that the producer is a price-taker, which can be justified by the size of the
producer and by the number of other market participants. Nevertheless, in practice,
market price manipulations may sometimes occur, for example, due to the isolation
of producers and consumers caused by grid congestion. For a discussion of conges-
tion management, see Bjgrndal and Jgrnsten (2001).



192 T.K. Kristoffersen and S.-E. Fleten

4.1 Thermal Unit Commitment

We will illustrate how the traditional models can be adapted to the deregulated en-
vironment using the thermal unit commitment model of Sect. 3.

With the possibility of trading in the day-ahead market and the financial markets,
electricity production can be disposed of both through traditional bilateral con-
tracts and through newer physical and financial market contracts. Moreover, power
producers can purchase electricity from the markets. We now follow the lines of
Wallace and Fleten (2003). Denote by d”,n € N the demand of bilateral contracts
and let the variables y™", y™" € R, ,n € N represent market contracts for selling
and buying, respectively. With no constraints on the market contracts, these add the
flexibility necessary for production, demand, purchases and disposals to match. This
leads to the equality constraint

Yopl=d" -y =y neN. (6)
i€T

The expected revenues of future market disposals and purchases amount to

Z nnpn(y+,n _ y—,n)’ (7
neN

where p",n € N denote the market prices. By substitution in (7), the demand
constraints (6) can be relaxed. Demand constraints may however still be present in
the very short term due to, for example, day-ahead commitments, see Fleten and
Kristoffersen (2008). The reserve constraints can likewise be relaxed as reserves
are often the responsibility of the power system operator in a deregulated market.
Relaxing these constraints, the model decouples with respect to thermal units and,
thus, decision-making can be conducted on a unit basis. With the introduction of
revenues from market disposals and purchases, the objective has shifted from cost
minimization to profit maximization. Furthermore, a new significant source of un-
certainty has come into play since market price information may be limited. The
modified thermal unit commitment problem is therefore

max Z Zn"(p"p," — FCi(p?,u}) — SCi(u;”u;l—l))
neN ieT
s.t. 2) ——(3)
pr>0,u" €{0,1}, i €eZ,neN.

In line with the above, the authors Takriti et al. (2000) address the thermal unit
commitment as a stochastic programming problem and include both buying and
selling of electricity to a spot market in which prices are not known in advance.
The buying and selling are modelled as two additional units. Bounds on these
units are automatically imposed by maximum demand and supply. For an overview
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of the deregulated electricity system in Norway and the corresponding long-term,
medium-term and short-term models used for hydro scheduling, see Fosso et al.
(1999).

S Solution Approaches

5.1 Thermal Unit Commitment and Hydro-Thermal Scheduling

The solution approaches to stochastic power operation problems are often exten-
sions from the deterministic case. Primal approaches rely on linear programming
(LP) and LP-based branch and bound, highly supported by the advances in hard-
ware and the development of software implementations. General purpose codes can
combine the LP methodology with a variety of options for arranging the branch and
bound such as branching rules, fast heuristics, etc. Most importantly, the LP-based
branch and bound works with ample enrichment as long as the model is expressed
in mixed-integer linear terms. The drawback of the approach is that it handles a full
model which is not feasible for high-dimensional integer problems. By branching
in one dimension at a time, the size of the branch and bound tree increases expo-
nentially with the dimension. This paves the way for the following decomposition
methods.

Among the dual approaches, Lagrangian relaxation has proved to be a strong
tool with the algorithmic progress for solving the Lagrangian dual, the usually small
duality gap and the advance of fast Lagrangian heuristics. For the application of La-
grangian relaxation in the deterministic case, see Feltenmark et al. (1997); Gollmer
et al. (1999); Jornsten et al. (1985). For a justification of the application to stochas-
tic programming problems, we refer the reader to Rockafellar and Wets (1978);
Bjgrnestad et al. (1988).

To illustrate, we develop the Lagrangian dual of the multi-stage stochastic pro-
gramming version of the thermal unit commitment problem of Sect. 3. The problem
is nearly separable with respect to thermal units as only the constraints (4) and (5)
couple different units. This property may be utilized by stochastic Lagrangian relax-
ation of the unit-coupling constraints. Assigning non-negative stochastic Lagrange
multipliers that have the same tree structure as d”, r",n € N, the Lagrangian is

L(u.p:di. ) i= Y Y 7" (FCi(p}.uf) + SC;(uf . ™))

neN i€l
+ ) A" (d" =Y p})
neN i€l

+ Z 7"\ (r” - Z(u?pf"“x — pl”))

neN i€eT
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and the corresponding dual function is given by
D(A1,42) = min {L(u, p:21.22) : (2) — (3)}. (8)
The Lagrangian dual now reads
max {D(A1,42) : (A1, A2) € RZVIL )

Due to integrality restrictions, the primal problem is nonconvex. The dual prob-
lem therefore only provides a lower bound to the primal problem, although the
Lagrangian relaxation provides a tighter bound than linear relaxation.

The problem (8) decomposes into single-unit subproblems. In this fashion, the
dual function

D(A1,42) = ZDi(AhAZ) + Z n"(Afd" +2A5r")
ieT neN

is evaluated by solving subproblems of the form

Di(hiAa) = m@n{ S (ming FC/ () — (V= AD) ()}
i neN Pi

—I—SCi(u;’,u?’l) —/\guf’pf"“x) :(3);.

Hence, the dimensionality problem of the unit commitment problem is avoided
by separately solving smaller single-unit subproblems, potentially utilizing the
similarities between the subproblems. The subproblems are multi-stage stochastic
programming problems. For an outline of how to solve the subproblems by dynamic
programming, including how to cope with minimum up- and down times, see for ex-
ample, Nowak and Romisch (2000).

Since the Lagrangian dual (9) is a concave and non-differentiable problem, it
was originally solved with subgradient procedures. Currently, more refined meth-
ods such as cutting plane or bundle methods have been successfully applied. An
example is the proximal bundle method used in Dentcheva and Romisch (1998);
Growe-Kuska et al. (2002); Nowak and Romisch (2000). On the basis of func-
tion evaluations and subgradient information, the method constructs a bundle of
linearizations of the dual function to be maximized.

Mostly, the dual solution provided by a cutting plane or bundle method violates
the demand and reserve constraints and thereby produces a duality gap. A La-
grangian heuristic is therefore used to determine a feasible and almost optimal
solution of the primal problem. In most cases, the heuristic seeks to find a unit
commitment solution that induces economic dispatch of the plant. The heuristic
suggested in Growe-Kuska et al. (2002) perturbs the Lagrange multipliers such as
to obtain primal feasible unit commitment schedules. By fixing binary variables
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that do not change with the perturbation the size of the problem is drastically
decreased. The remaining variables are switched off one at a time as long as fea-
sibility persists.

The authors Dentcheva and Romisch (1998); Growe-Kuska et al. (2002); Nowak
and Romisch (2000) employ the stochastic Lagrangian relaxation to the stochastic
hydro-thermal scheduling problem. This prompts a decomposition into both single-
unit thermal and hydro subproblems and opens the possibility of heuristics that
exploit the additional flexibility of hydropower-pumped storage plants. The two-
stage problems by Dentcheva and Romisch (1998); Nowak et al. (2000) are solved
in the same fashion as the multi-stage problems.

Among other dual solution approaches to stochastic power operation problems
is Lagrangian relaxation of the non-anticipativity constraints. An early reference on
Lagrangian relaxation of the non-anticipativity constraints is Jornsten et al. (1985).
To state a few examples from power operation planning, Takriti et al. (1996, 2000)
solve the multi-stage stochastic unit commitment problem by progressive hedging,
whereas Carge and Schultz (1998); Gollmer et al. (2000) solve the two-stage version
of the problem by dual decomposition.

5.2 Hydro Scheduling

The application of dynamic programming to hydro scheduling is supported by the
sequential structure of the decision-making process and justified by the fact that the
problems have relatively few stage-coupling constraints. As an example, an appli-
cation of dynamic programming to hydropower unit commitment problems is found
in Philpott et al. (2000). To facilitate computations, the continuous reservoir storage
and discharge levels are often discretized. However, with the discretization of the
state space, the full dynamic programming approach is known to suffer from the
curse of dimensionality and is able to handle only a few reservoirs. In order to re-
strict the state space, it has been proposed to aggregate reservoirs and power stations
or to decompose the dynamic programming problem according the reservoirs.

Another way of avoiding the curse of dimensionality in multi-stage stochastic
linear programs is by the application of nested Benders’ decomposition. As an
example Benders’ decomposition has been applied by Jacobs et al. (1995) to a
hydro-scheduling module of a larger stochastic hydro-thermal scheduling problem.
The authors suggest a number of algorithmic enhancements such as the use of warm
start bases, initial cut generation, disaggregated cuts and tree traversing strategies,
all further explored in Morton (1996). The performance of the enhanced algorithm
is tested on a collection of multi-stage stochastic hydro-scheduling problems. The
algorithm is outperformed by general LP optimizers in the deterministic case but is
preferable as the number of scenarios increase.

For further comparisons of multi-stage stochastic hydro-scheduling algorithms,
the authors Archibald et al. (1996) investigate the revised simplex method, full
dynamic programming with a uniform discretization of the state space, dynamic
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programming decomposition according to reservoirs and nested Benders’ decom-
position. The authors find the nested Benders’ decomposition approach to be the
fastest, followed by dynamic programming decomposition, the revised simplex
method and finally full dynamic programming. It should be remarked that although
most results favor the nested Benders’ decomposition, the approach fails to solve
stochastic programs with several stages due to the explosion in the number of
sub-problems. Moreover, Benders’ decomposition applies only to stochastic linear
programming problems and, hence, is not feasible for unit commitment problems.

The major drawbacks of both dynamic programming and nested Benders’ de-
compositions can be avoided by stochastic dual dynamic programming proposed by
Pereira and Pinto (1991). To avoid the curse of dimensionality, the dynamic pro-
gramming value function is described by supporting hyperplanes as is the case in
nested Benders’ decomposition. To prevent the number of Benders’ subproblems
from exploding, smaller sets of subproblems are chosen by sampling from the set
of scenarios at every stage. As a result, an upper bound can be estimated and its
confidence limits can be used as a guideline for stopping the algorithm. It should
be remarked, however, that stochastic dual dynamic programming is not capable of
incorporating market price uncertainty.

6 Physical Market Exchange and Bidding

With the liberalization of the power markets, new problems have arisen and the need
for newer models has been obvious. Of great importance are especially the problems
of physical exchange and bidding in power markets.

Most bidding problems consider a number of one-period sealed auctions in an
electricity market organized as a pool in which a uniform clearing price rule applies.
As concerns stochastic programming models, Fleten and Pettersen (2005) propose a
mixed-integer linear program for constructing bidding curves to be submitted to the
Nordic day-ahead market. The model applies to a price-taking retailer who supplies
to end users under both price and demand uncertainty. As the problem consists in
demand-side bidding, decision-making can be made on an hourly basis. In contrast,
approaching the bidding from the point of view of a hydropower producer day-ahead
market exchange and hydropower generation has to be coordinated. As a result,
time coupling due to, for example, reservoir balancing forces decision-making to
be effected on a daily basis, cf. Fleten and Kristoffersen (2007). Similar in some
respects, Nowak et al. (2005) model simultaneous power production and physical
market exchange of a hydro-thermal producer who is, however, able to influence
market prices. The producer is subjected to uncertainty in foreign bids.

For the modelling of bidding curves, define a bid as a price-volume pair (x, p).
The problem of selecting both a price p and a volume x is nonlinear. To circumvent
this problem, the continuous price range can be discretized into a finite number of
fixed price points p; < --- < py such that possible bids are (x1, p1),..., (XH, Pr)
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where only the volumes xi,...,xy € Ry have to be selected. Let the bidding
curve be defined by the relation between volume and price, denoted by y and p,
respectively. Nowak et al. (2005) suggest the use of hourly block bids such that
the resulting bidding curve is a nondecreasing step function. In contrast, Fleten and
Pettersen (2005) perform a linear interpolation between the price-volume points and
construct a nondecreasing piece-wise linear bidding curve that is consistent with the
rules of the Nordic day-ahead market

P — D1 pP2—p
X

2+ X1 Jf pr < p<p2
P2 — D1 P2— D1
y=19:
P— PH-1 PH —pP .
———xg-1 + ———xg ,if pg1 <p = pH.
PH — PH-1 PH — PH-1

In Fleten and Kristoffersen (2007), the modelling of the Nordic day-ahead market
includes both a piece-wise linear bidding curve and block bids of longer durations.
For further studies based on the price-taker assumption, Neame et al. (2003)
consider a generator making offers into an electricity spot market under price un-
certainty. Since the generator does not affect market prices, the optimal offers reflect
the marginal costs of generation which is illustrated on, for example, hydro schedul-
ing. However, Prichard and Zakeri (2003) argue that since the costs of hydropower
generation include only opportunity costs of released water, there is no simple way
to determine marginal costs and bid accordingly. Instead the authors suggest the use
stochastic dynamic programming for deriving bidding curves. The dynamic pro-
gramming approach is also used by Pritchard et al. (2005) for deriving piecewise
constant bids, taking into account both both short-term and long-term effects of hy-
dropower production. Similarly, Fleten and Steinsbg (2008) seek to obtain a balance
between short-term and long-term effects by means of stochastic mixed-integer pro-
gramming. Finally, in contrast to day-ahead bidding, De Ladurantaye et al. (2007)
introduce a stochastic programming model for bidding into a two-hour-ahead mar-
ket. Other contributions to optimizing bidding strategies for price-takers include
Contreras et al. (2002); Conejo et al. (2002); Lu et al. (2004); Ni et al. (2004).
Bidding strategies for generators with market power are investigated in, for
example, Anderson and Philpott (2002). Their bidding curve is modelled as a con-
tinuous parametrized curve, considering both smooth curves and the extension to
step functions in the case of a finite number of bids. The clearing of the market is
established in a separate network flow model through which the generator is able to
influence market clearing prices and prices are further affected by random demand
and random supply of competitors. To encapsulate the effect of uncertainty on the
dispatch of the generator, the so-called market distribution function describes the
probability of not being fully dispatched in the market and the optimal bidding
curve is selected such as to maximize expected profit in terms of this market distri-
bution function. The resulting optimization problem is a nonlinear control problem.
Philpott and Schultz (20006) integrate the framework with thermal scheduling and
unit commitment. The authors propose two-stage decision problems for optimizing
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offers of either a single or several thermal units. In both cases, one stage consists of
a unit commitment part handled by dynamic programming whereas the other stage
involves a bidding part for which optimality conditions are derived.
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Optimization of Fuel Contract Management
and Maintenance Scheduling for Thermal Plants
in Hydro-based Power Systems

Raphael Martins Chabar, Sergio Granville, Mario Veiga F. Pereira,
and Niko A. Iliadis

Abstract The objective of this work is to present a decision support system that
determines the optimal dispatch strategy of thermal power plants while consid-
ering the particular specifications of fuel supply agreements, such as take-or-pay
and make-up clauses. Opportunities for energy purchase and selling at the spot
market as well as a detailed modeling of the power plant (maintenance cycles,
influence of temperature, etc.) are also considered during the optimization. In an
integrated approach, the model also determines the plants’ optimal schedule for
maintenance. Since decisions in a stage have an impact in the future stages, the
problem is time-coupled with a multi-stage framework. Moreover, the main driver
for the decision-making is the energy spot price, which is unknown in the future
and is modeled in this tool through user-defined scenarios. Therefore, the calcu-
lation of the optimal dispatch strategy is modeled as a decision under uncertainty
problem, where at each stage the objective is to determine the optimal operation
strategy that maximizes the total revenues taking into account the constraints and
characteristics of the fuel supply contract. The methodology applied is a hybrid
Stochastic Dual Dynamic Programming (SDDP)/Stochastic Dynamic Programming
(SDP). Examples and case studies will be analyzed for the Brazilian system.

1 Introduction

As widely discussed in the literature (Chabar 2005; Granville et al. 2003a), spot
price volatility in thermal based systems results mostly from fluctuations in the
demand, from forced outages of equipment, and from fluctuations in fuel prices.
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Hydro dominated systems, such as the Brazilian system, have relatively small
short-term volatility, but high medium-long term volatility. The reason for the
reduced short-term volatility is that the hydro plants can easily transfer the energy
from off-peak to peak hours. In other words, these plants usually have more than
enough capacity to modulate the peak supply and thus avoid the main causes of
short-term volatility. This leads to an equalization of spot prices in the short run.

Hydro systems are designed to ensure the load to be supplied even under ad-
verse hydrological conditions. However, these conditions do not frequently occur —
which is the reason for medium term volatility. As a consequence, the system has
excess of energy during most of the time. This surplus allows the demand to be met
without using any thermal resource, resulting in very low spot prices. Nevertheless,
whenever a drought period occurs, hydro plants may turn to be unable to supply
alone the system demand and as a consequence spot prices increase rapidly, and can
even reach the system’s rationing cost. Due to the high storage capacity of water
reservoirs, these low cost periods can become long, interspersed with very high cost
periods resulting from droughts. For example, Fig. 1 below shows the observed spot
prices in the Brazilian Wholesale Energy Market from 2000 until early 2005.

In this context, it is known that a thermal plant that generates only when spot
prices are high can meet its contract obligations with a low effective operating cost.
Hence, operational flexibility is a very attractive characteristic for thermal plants in
hydro-based systems.

Nevertheless, this operational flexibility, along with the low diversification of fuel
markets, is in opposition with the constraints that fuel producers have. The latter
participants have high fixed costs due to capital expenditures in developing pro-
duction and transportation infrastructure, such as investments in gas fields (in case

R$/MWh Spot Price - source: www.ccee.org.br
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of gas producers) and pipelines. Operational flexibility introduces high volatility to
the producer’s cash flow. As a consequence, fuel supply agreements are structured
over take-or-pay (ToP) clauses. These are just financial agreements to reduce the
volatility of the fuel producer’s revenues and are not necessarily associated to con-
sumption obligation. The ToP clauses impose an anticipated purchase of a minimum
amount of fuel (on a daily, monthly, and/or yearly basis), independently of its con-
sumption. The amount of fuel bought but not consumed is virtually “stored” for a
pre-set period. During this period, the fuel can be recovered by the plant. This is
known as make-up clause.

In the Brazilian power system, thermal generators declare to the Independent
System Operator (ISO) their variable operating costs ($/MWh), availability (MW),
and must-run generation (MW). Based on the declarations of all agents, the ISO
carries out a least-cost hydrothermal scheduling of the system aiming on meeting
the system demand with the lowest possible operating cost (Pereira and Pinto 1984,
1985; Pereira et al. 1998). This approach is adopted in many other countries, such
as Peru and Ecuador.

Therefore, in order to profit the most from its operational flexibility considering
the fuel supply agreements constraints, the generator has to develop an operation
strategy that optimizes the management of the fuel contract use. Instead of firing at
each stage an amount of fuel corresponding to the ToP clause, as if this clause was
physical, it may be more attractive to have its dispatch reduced during low price
periods and store the paid but not fired fuel for future use when spot prices are high.

Another relevant aspect consists in the definition of a maintenance schedule for
the plant since all maintenance is associated to a high fixed execution cost. The less
the plant is dispatched, the latter — and also the fewer — it will have to stop for main-
tenance, resulting in lower costs. Furthermore, the best strategy will be to schedule
the maintenances for the periods with low spot prices. Due to this interdependency
between dispatch strategy and maintenance scheduling, these factors should be an-
alyzed jointly.

The objective of this work is to present a tool that determines the optimal dispatch
strategy for a power plant taking into account:

The fuel supply agreement with take-or-pay and make-up conditions,
— Upsides opportunities of trading in the spot market,
Plant’s detailed operating characteristics such as

e Maintenance cycles
e Power output

— Conversion rate variations due to temperature and degradation with lifetime,
Changes in configuration over time such as

e Changes in the number of generation units
e Changes in the available power

— Variable and fixed costs,
Energy sale contracts, etc.
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The model also determines the optimal maintenance schedule for each genera-
tion unit individually regarding each unit’s elapsed effective operating time and
the maximum allowed operating time before each maintenance cycle, considering
maintenance execution costs. The methodology and examples of this work will be
presented using a combined cycle natural gas power plant (CCGT). The proposed
approach can be easily extended for any other technology whose fuel supply agree-
ment has take-or-pay and make-up clauses.

This work is organized as follows: Sect. 2 describes the general aspects of fuel
supply agreements, maintenance scheduling and discusses decision under uncer-
tainty aspects. Section 3 presents the general aspects of the proposed methodology
and describes the tool. Examples and case studies are presented in Sect. 4. Section 5
presents the comparison between the Brazilian and European markets and the adap-
tations of the model for Europe. Section 6 states all of the conclusions of this work.

2 General Aspects: Fuel Supply Agreements, Maintenances,
and Decision Under Uncertainty

2.1 Fuel Supply Agreements: Characteristics

A standard fuel supply agreement (FSA) establishes a volume (maximum) of fuel
(in case of natural gas, it is defined in MMm?>/day) that can be withdrawn by the
producer for daily consumption, besides the commodity fuel price per unit of con-
sumption (in $/MMBTU). If ToP clauses are applied, then, from this contracted
monthly maximum amount, the generator is obliged to purchase (but not necessar-
ily to consume) X %. If, in the end of the year, the annual consumption is lower than
Y % of the total annual volume of the FSA, then the plant must purchase the differ-
ence. These are the monthly and annual ToP clauses, respectively. For example, the
standard FSA observed in the Brazilian power system imposes clauses of X = 56%
and Y = 70%. The fuel already purchased but not consumed is “virtually” stored
for a period of N years (in the case of Brazil, N = 7). This means that the fuel can
be recovered by the plant at every moment (make-up clause), respecting the maxi-
mum amount that can be daily withdrawn. These arrangements can differ from fuel
to fuel.

Besides the ToP clauses on the commodity, there are (usually) ship-or-pay (SoP)
clauses referring to the use of the pipeline: in the contract it is specified that the
price to be paid for the transportation of each unit of fuel (in case of natural gas, it
is expressed in $/MMBTU). The thermal plant has to pay a monthly minimum of
Z % of the amount contracted for the use of the transportation structure. In Brazil,
Z = 95% is the typical SoP value for natural gas agreements. As opposed to the
ToP on the commodity, the SoP does not have any make-up clause (the amount paid
refers to the pipeline use in that specific month and cannot be deducted from future
transportation if it is not used in the current month). Since there is no make-up on
the transportation parcel, the SoP is seen by the generator as a fixed cost.
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Finally, there is still a clause on the FSA referring to the margin of the local
distribution company of natural gas, which is a fee for the use of local distribution
transportation network. In case of Brazil, this clause is identical to the SoP, with a
payment referring to 70% of the total volume contracted, but with a price per unit
transported usually lower.

2.2 Fuel Opportunity Cost

The generator must manage the use of the contracted natural gas respecting all
aforementioned clauses that are part of the FSA. As observed previously, a straight-
forward operation strategy of the generator is to declare a must-run generation to
the ISO in order to consume all the time exactly the 70% ToP of the FSA. In
this way, the generator meets, without storage, its monthly/annual requirements of
ToP and local distribution margin. Under this strategy, during high spot price peri-
ods, the generator will have some additional costs of buying extra fuel (besides the
amount corresponding to 70% ToP) to have its plant dispatched at maximum capac-
ity. However, other operation policies, taking into account the characteristics and
flexibilities of the FSA, may be more attractive for the generator. In those policies,
the power plant would change from a fixed must-run generation full-time to a more
flexible generation scheduling. This strategy will manage the use and storage of the
natural gas in a more efficient way and this will reduce the purchases of extra fuel,
since the fuel will be stored from low price periods to high ones.

In order to determine this strategy, the plant must determine the opportunity cost
of the natural gas (whose purchase is mandatory, but not its consumption) during all
stages. This opportunity cost will reveal whether it is more profitable to consume
the gas today or store it for the future.

2.3 Decision Under Uncertainty

The dispatch decision and consequently the use of natural gas, depends on the spot
price trajectory. During low price periods the generator prefers to meet its contracts
of energy supply buying energy in the spot market and storing the gas for future use.
On the other hand, during high price periods the generator will attend its demand
with a lower cost than the spot market price and if the production is greater that the
contracted energy, the plant can sell this excess in the spot market, earning an addi-
tional profit. As the future spot prices are unknown, the problem becomes a decision
making under uncertainty. The uncertainty in prices is modeled using scenarios that
represent possible trajectories of the price making the optimization problem multi-
period and stochastic (large-scale optimization problem). Considering spot prices
scenarios as input data to the model, we assume that the production of the ther-
mal plant does not affect the prices in the spot market (price taker without market
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power). Such an assumption is reasonable when the installed capacity of the plant is
significantly lower than the total system capacity (case for individual thermal plants
in the Brazilian power system).

In hydro power systems, the spot prices in a period are highly correlated with
the ones of the following period. This is due, mainly, to the time correlation of
the water natural inflows of the system (inflow temporal persistence), meaning that
given an observed “low” price in a period, it is likely to observe also a “low” (or
“not high”) price in the next period. This autocorrelation of spot prices can be mod-
eled using a conditional probability distribution for one stage to the next one. For
each possible spot price in a given period, there is associated a set of conditional
probabilities that represent the evolution possibilities from this spot price state (sce-
nario) to another in the following period. This random process can be modeled via
a Markov Chain. In this way, based on the price scenarios we estimate the matrix of
transition probabilities from every price state (conditioned) in stage ¢ to every price
state in period ¢ + 1. Details on this Markov Chain modeling and estimation can
be found in (Chabar 2005; Wallace and Fleten 2003; Flatabo et al. 1998; Gjelsvik
et al. 1999).

2.4 Maintenance Scheduling

Another important aspect in the definition of a plant’s operation strategy is the
scheduling of maintenance. Each different type of cycle of maintenance is asso-
ciated with a direct cost. As the dispatch of a flexible plant in the Brazilian system
is reduced, the needs for maintenance are also lower. It is interesting to schedule
maintenances to months where spot prices are low. Thus, the joint optimization of
maintenance and management of the fuel contract is essential to define the optimal
dispatch for the company.

2.5 Computational Model

As the modeling of hydro plants’ reservoirs (Granville et al. 2003b; Wallace and
Fleten 2003; Flatabo et al. 1998; Gjelsvik et al. 1999), the mechanism of virtual
storage of fuel due to the monthly and annual ToP clauses of the FSA can be mod-
eled using two fictitious reservoirs. One reservoir, called A, where all natural gas
not consumed from the monthly ToP is stored. Another reservoir, called B, where
the difference between the annual ToP amount and the sum of all monthly ToPs
of a year is stored. The scheme of fuel supply/storage is illustrated in Fig.2. The
percentages used are 56% for monthly ToP and 70% for annual ToP.

The 0.56 x CT; Hm> (where CT; is the volume of gas established in the con-
tract for month 7), corresponding to the clause of monthly ToP can be directly
consumed (CToP;), partially or totally, and/or be stored in the reservoir A (ARM;).



Optimization of Fuel Contract Management and Maintenance 207
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Fig. 2 Fuel supply/storage scheme

This amount is charged at the price of the commodity in period ¢ (PGC;), as defined
in the contract. However, the recovery of the gas from reservoir A (GToP;), already
paid at the moment of its storage, is only allowed if the percentage of the monthly
ToP has been totally consumed.

In turn, the complementary amount of the annual ToP, (difference between the
70% of the annual contract and the sum of the monthly 56%) is represented as
follows: in the first month (beginning of the month) of each contractual year, there
is a supply of gas to reservoir B equal to the total difference between 70% and 56%
referring to the whole year. There is no payment for this initial supply. At each
period ¢, the generator can transfer gas from reservoir B to A. This transfer (GTR;)
is charged at the PGC; price and corresponds to “extra” monthly ToP gas purchase.

In the last month (beginning of the month) of each contractual year, all the
amount of gas in B (if there is any) is transferred to reservoir A and is charged
at the PGC; price. By this operation, reservoir B is completely emptied, fulfilling
the condition of the yearly ToP clause.

Moreover, in case the plant wants to produce more energy and both reservoirs A
and B are empty in a given stage and all the monthly ToP of this stage has already
been consumed then additional gas (AG;) can be bought at an established price.
The latter must occur respecting the maximum limit of monthly gas consumption
established in the FSA.

The fuel stored in reservoir A has a limited period for recover (make-up clause).
Due to that, an additional structure is used to “track” the storage date of all gas that
enters reservoir A. For each portion stored in reservoir A, when the number of stored
years reaches the limit duration, this portion is discarded (GDesc;). Clearly, when
an amount of gas is recovered from reservoir A, this additional structure is updated,
always discarding the gas from the oldest to newest.

Similar to the ToP clauses management, the maintenance schedule can also be
modeled by reservoirs. The maintenances are characterized by cycles (that cor-
respond to a type of maintenance) and each cycle has a direct cost. A specific
maintenance is necessary when a unit reaches the number of hours of operation
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Table 1 Example of

Average
maintenance specifications duration  Cost
Cycle Frequency (h)  (Days)  (millions R$)
Combustor 8,000 7 3.5
Hot path circuit 24,000 14 10
Major maintenance 48,000 21 20

of a cycle. An example of maintenance cycles for generation units are depicted on
Table 1. If an interruption for maintenance occurs on a high spot price period, the
plant revenue is constrained. As a result, it is interesting to move the maintenance
interruptions to low spot price periods; anticipating them even though the number
of hours on a cycle has not been reached yet. The maintenance interruption can be
anticipated but not postponed.

For modeling purpose, there is one reservoir of remaining hours of operation for
each generation unit and each maintenance cycle. For instance, for a case with 3 cy-
cles and 3 units, 9 reservoirs are used. These reservoirs have different capacities that
correspond to the cycle frequency that they model. In the beginning of the study, for
each generation unit, these reservoirs are filled with the amount of remaining hours
of operation until next maintenance. As the unit operates, all reservoirs (all cycles)
for that unit are reduced by the quantity of the elapsed hours. In case of a mainte-
nance, either resulting from an anticipation or not, the unit stops during the service
period, the plant “pays” the maintenance cost and the reservoir corresponding to
that executed cycle is totally filled again.

The solution procedure for a stochastic multi-stage optimization problem in-
volving reservoir modeling is well-known in literature. It has been intensively
applied on hydro-thermal dispatch problems (Granville et al. 2003b; Wallace and
Fleten 2003; Pereira and Pinto 1984, 1985; Pereira et al. 1998). Due to the exponen-
tial dimensionality of the problem, a hybrid Stochastic Dual Dynamic Programming
(SDDP)/Stochastic Dynamic Programming (SDP) approach is appropriate to find a
solution on an acceptable computational time (Pereira and Pinto 1984, 1985; Pereira
et al. 1998). The details of the hybrid SDDP/SDP methodology applied are beyond
the scope of this article.

In terms of dynamic programming, for a given stage and for a given price, the
problem is formulated as (1):

FBF* (VAt,VBt,{VH;’j,i =1...Nunit,j = 1...Nman},nk)

t

N
= maxRl; + Y | prv1k.s) x FBFYy (VArer VB, {VHL i

s=1

- 1...Nunit,j=1...Nman},7t,k+1)] 1
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Subject to

Fictitious reservoir balance constraints (reservoir A, B and for maintenance
remaining hours), as:

VA[+1 = VA[ +ARM; — GTOP[ + GTR[ — GD@SC[
VBz+1 == VBt - GTRt
VH' | = VHI x (1 = X[7) + VH' x (Xf’j) —y xEG] :

for all unit i and all maintenance j

Gas consumption priority: 1st CToP; is consumed, then GToP; and finally AGy;
Accounting for the immediate revenue in stage ¢ (RI;), which includes the finan-
cial result in the spot market, the revenues with energy supply contracts, the fuel
payments (ToPs, SoP and the margin for the Distribution company (DisCo), fixed
and variable operating costs and expenses with the execution of maintenances;

Transformation of gas to energy:

fvzul””qz); x EG

H.

Constraint of maximum gas consumption;

Bound on the number of concurrent maintenances of the same type of cycle that
may take place in a given month;

Bound on the generation due to programmed maintenances and unexpected fail-
ure of units;

Constraints related to the mechanism implemented for the modeling of the FSA
conditions, such as the transfer of all fuel from reservoir B to A in the end of each
year (clause of complement of the annual ToP) and the supply of gas in reservoir
B in the beginning of each year;

Variation of the maximum generation capacity with the environmental temper-
ature, power degradation and efficiency (conversion of gas to energy) of the
generation units with the elapsed hours of operation;

Incidence of tariffs and taxes.

i
L CToP, + GToP; + AG,

Where

VA; is the volume of gas in reservoir A, VB; is the volume of gas in reservoir
B and VH;"” is the “volume” of remaining hours of operation that the unit i has
until the next maintenance of cycle j (Nunit is the number of generation units
and Nman is the number maintenance cycles);

Yy is the spot price in stage ¢ and scenario s;

pi+1(k,s) is the transition probability of spot price of scenario k in stage ¢
(known value in stage #) to the spot price of scenario s in stage ¢ + 1 (condi-
tional transition probability of price).
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o X t’ / is the binary decision variable associated to the schedule of maintenance of
cycle j for the unit i in stage .

e VH’ is the maximum capacity of the reservoir of remaining hours of operation
until the next maintenance of cycle j (e.g., 8,000 h, 24,000 h, etc.).

. EGi is the energy produced in MWh by the unit i in stage .

e y is the inverse of the power of each unit; gof is the conversion factor from
MMBTU to MWh of unit i (efficiency); H,. is the heat rate of the gas (in
BTU/m?3).

This Mixed Integer Linear Programming (MILP) problem is solved for each time
stage (month) and spot price scenario in an iterative process until the convergence of
the SDDP/SDP algorithm (details of the algorithm are found in Chabar 2005). In the
problem, the immediate revenue at each stage is maximized taking into considera-
tion the probable future revenues that may occur given (conditioned to) the current
spot price. The future revenues are represented by the future benefit functions (FBF)
also known as cost-to-go functions, which translate the opportunity cost of storage
(storage of fuel in reservoirs A and B, and “storage” of hours in the remaining hours
in the maintenance reservoirs). In this way, at each stage and for each state of the
spot price, the optimal solution is the one that maximizes the sum of the immedi-
ate revenue plus the expected value of the future revenues. The FBF of stage t and
price level k describes the total future revenue from stage ¢ 4 1 until the end of the
study horizon, seen from stage ¢ at price level k. The approximations of the FBF
are obtained iteratively by the dynamic programming algorithm. This calculation is
made in a backward in time recursion based on the Bellman principle. When the
problem of stage ¢ and scenario k is solved, we obtain the optimal solutions for this
stage and scenario and will be able to construct and approximation of the FBF for
stage t — 1 and so on, starting from the last stage of the horizon until the first one.
When the backward recursion is complete, then a forward in time recursion is ex-
ecuted, optimizing the plant’s operation in a Monte Carlo simulation, staring from
the first stage until the last one, for all scenarios. This backward—forward procedure
is performed as many times as needed to consider that the FBF approximations are
satisfactory and the problem solution is good (for more details on the convergence
of the algorithm see Chabar 2005). The dual variables associated to the constraints
of reservoirs balance (A, B and of hours for next maintenance) are the opportunity
costs of storage. The dual variable associated to the constraint of balance of reser-
voir A

(VA[+1 = VAt +ARM; — GTOP[ + GTR[ — GD@SC[) B

for example, is the opportunity cost of storing the gas from the monthly ToP. The
dual variable associated to the constraint of balance of each reservoir of remain-
ing hours (VH,{, = VH;' x (1 — X;/) + VH' x (X)) =y x EG/), reflects the
opportunity cost of anticipating (by executing the maintenance before the number
of hours reach the frequency of the cycle)/postponing (by not running or producing
less with the unit) the execution of maintenance of cycle j in uniti.
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3 Case Study

The application of the developed methodology will be illustrated here with a case
study using data of the Brazilian system. The 80 spot price scenarios were obtained
via a fundamentalist approach using the SDDP hydrothermal least-cost dispatch
model (developed by PSR; Granville et al. 2003a, b; Pereira and Pinto 1984, 1985).
The SDDP model was ran for a given configuration of the whole Brazilian system
supply and demand and for a set of 80 samples of hydrological scenarios, generated
by a stochastic inflow model starting on March 2004 and end on December 2008 in
monthly time steps. A higher resolution of the operation “inside” the month is ob-
tained by considering three load blocks (peak, off-peak, and an intermediate level).

The thermal plant considered has three closed-cycle gas-turbine (CCGT) units
(with an efficiency of ~7,000 MMBTU/MWh) totaling 780 MW of installed capac-
ity. The maintenance specifications are the ones in Table 1. It has been considered
that this plant is, on average, unavailable 3% yearly due to unpredictable failures
(EFOR), with 90% of the failures lasting 24h and 10% of them lasting 360 h.
The plant has an energy supply agreement of 725 MW at R$130/MWh and a FSA
of 3.4 million m? of gas daily. In this contract, the percentages of monthly ToP,
annual ToP, SoP, and DisCo margin are, respectively, 56, 70, 95, and 70%. The
price of the commodity (gas) is R$3.5/MMBTU, the price of its transportation is
R$4.5/MMBTU and the DisCo margin is R$0.5/MMBTU. The heat rate of the gas
is 37,300 BTU/m3 and the gas, if not consumed, may be stored by the fuel supplier
for a maximum time of 7 years. It has been considered that the plant’s fixed cost is
R$3/kWmonth and that its variable cost (O&M) is R$4/MWh. We also assume that,
at the beginning of the study horizon, no fuel was stored (reservoir A was empty).

In order to compare the flexible operation strategy (optimized by the model) and
the usual operation policy (which establishes a monthly consumption of 70% of the
gas contract — constant declaration of inflexibility without any storage of gas), we
evaluate both strategies in both cases. The operation with the continuous consump-
tion of 70% of the contracted gas does not consider the future benefit (FB) of the
storage of the gas from ToP, since it does not consider opportunity costs. In this
operation, all the components of the gas costs are faced as fixed costs. Neverthe-
less, the flexible operation calculated from the model, does consider this possible
FB and takes it into account in the decision making of the operation. Moreover,
with respect to the maintenance scheduling, the policy without FB (which does not
consider opportunity costs) does not take into account the benefits that the antici-
pation of programmed interruptions brings. Consequently, all maintenance will take
place when the units (individually) reach the number of hours of operation defined
for each cycle. However this time may, unavoidably and undesirably, coincide with
high price periods.

Two cases have been set up deriving from the general case: casel — deterministic
case with maintenance and case 2 — stochastic with maintenance. The deterministic
case has been considered for an analysis purpose as they illustrate more straightfor-
wardly the mechanisms of fuel storage and anticipation of maintenances.
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3.1 Case 1: Deterministic with Maintenance

We consider, integrated to the management of the fuel supply contract, the optimiza-
tion of maintenance scheduling. The operation strategy that considers the FB of fuel
storage is more efficient than the one that fires all gas from ToP at each stage. This
is achieved by turning off the generation units during the periods of low profitability
(low prices) and storing fuel for future use. We see that through the comparison of
the respective dispatches in Fig. 3a,b. Besides, Fig. 4a,b show that, during the pe-
riods of high prices when the plant wants to produce energy at “full throttle”, the
policy without FB, which does not provide any fuel storage. It can also be observed
that, although the FB is considered, additional fuel (extra ToP) purchases take place.
Nevertheless, these purchases are much lower than those that result from the pol-
icy without FB and happen since additional fuel is needed (during the period from
September to December of 2006). That is, an operative policy with FB that results in
the same financial outcome, but that does not buy additional gas during September
to December of 2006 would be one that only anticipates the extra fuel consump-
tion (like a “short blanket). Moreover, if extra ToP purchases are unavoidable, it is
desired that they happen the latest possible. This occurs because the strategy has a
“wait-and-see” nature.

Concerning maintenance, the future signaling via the FB reallocates the schedul-
ing, placing them in humid periods (low prices), while the policy without FB
executes all maintenances always on the cycle limits, despite the spot price level
at this moment. It can be observed comparing both operations in Fig. 5a,b. Besides,
the operation that considers the FB, establishes a lower level of dispatch (the plant
is only dispatched when the spot price is attractive and the amount of energy that
is produced increases with the price). This becomes evident due to the fact that the
first maintenance scheduled in the study horizon happens earlier than in the case
without FB. This lower use of the plant’s generation units, extending the time to the
next maintenance, makes the policy with FB even more efficient than the conven-
tional strategy. The FB function, in this case, provides an increase of approximately
7% in the plant’s revenue, which jumps from R$845 millions (conventional case) to
R$906 millions (case with FB).

3.2 Case 2: Stochastic with Maintenance

In reality, any isolated forecast of spot prices trajectory would be ignoring the
inherent uncertainty of prices, which must be taken into consideration in the deci-
sion making process. The stochastic case is the one that better represents the reality.
However, the consideration of the stochasticity of prices makes the problem more
complex. In a stochastic environment, each decision does not just depend on the
projected prices of a given series (as it happens in deterministic cases), but on all
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Fig. 3 (a) Optimization without future benefit function. (b) Optimization with future benefit
function

possible future price evolution (considering the probability of occurrence of each
evolution at each stage). The observed gain with the use of the FB function is now,

on average, about 8%, increasing the expected value of the present value of the
revenue from R$830 to R$893 millions.
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Fig. 4 (a) Optimization without future benefit function. (b) Optimization with future benefit
function

Figure 6 shows the distribution of the present value of the plant’s revenue for
both policies. It can be observed that the curve that describes the distribution for
the policy with FB is, for all scenarios, above the other curve that describes the
policy without FB, stressing the gain that an efficient policy provides. This gain is
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Fig. 5 (a) Optimization without future benefit function. (b) Optimization with future benefit
function

especially high for the scenarios with the lowest spot prices, which are the ones that
yield the lowest outcomes. On the other hand, for the highest values of revenues,
which result from the scenarios that are conditioned to the highest level of prices,
this difference becomes lower. For these situations, both policies (with and without

FB) define similar dispatches, since the plant generates almost all the time if the
spot price is high.
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Fig. 7 Results for a given series (with future benefit function)

Figure 7 illustrates the decisions resulting from the policy with FB, of storage
of gas and additional fuel consumption, for one of the 80 price scenarios that have
been considered. If this scenario is compared to a deterministic case it could have
been observed that the results in the stochastic case would have been different from
the results in the deterministic case. The deterministic defined policy would have
been the optimal policy for that specific scenario without considering the rest of the
scenarios. In the stochastic case, however, several other possible spot price trajecto-
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ries may occur and the decision to be taken is the one that is the best in terms of the
expected value. This approach considers that it is unknown ex ante which of the 80
sample scenarios will occur.

4 European Application

In this section, we will describe the similarities between the above-analyzed
Brazilian case and a European application. The differences between both mar-
kets are mainly associated to the development stage of the natural gas industry
in those regions and consequently the market liquidity (Barroso et al. 2005). The
section will be concluded with the adaptations and developments that have to be
made to the model for this application.

4.1 Differences and Similarities

4.1.1 Contract Types

Gas contracts are both in Europe and Brazil of a take-or-pay type. Similar clauses for
the monthly, weekly, and daily limits apply along with years-cycle make-up periods.

4.1.2 Markets

Market structure is the main difference that exists between the two cases. European
market is liberalized with developed spot and financial markets. Products traded are
liquid offering the opportunity to gas portfolio managers for a finer optimization.
In the European market a gas plant is optimized taking into consideration the access
to gas and power market for both buying and selling. The production of the plant
and the gas contract are optimized comparing to the price level of the spark spread.
Moreover, the European market has different price areas, which are interconnected
and give a wider choice for power allocation.

4.1.3 Gas Contracts Portfolios

In contrast to the Brazilian market, the European market has a variety of long-
term gas contracts of take-or-pay type. Each company can have a portfolio of these
contracts in order to supply its power stations. This diversity demands for an opti-
mization for the choice of contract used according to its clauses.
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4.1.4 Corporate Behavior

Given the existence of the spot and financial markets, companies are able to design
a strict risk policy. An elaborate risk policy results to dynamic hedging strategies
where trading around the assets is essential. To structure dynamic strategies, a tool
like the one presented above is needed.

4.1.5 Asset Portfolios

The asset portfolios in the European market are differently diversified, having a
greater percentage of thermal plants and a much lower percentage of hydro. As men-
tioned in the second section, this structure gives another profile to price volatility
making more difficult for the system to react to short-term than long-term shifts.

4.2 Algorithm of Future Adaptations and Developments

Further steps can be development in order to adapt the model for the European
market. The future developments and adaptations are

e Gas market consideration for both buy and sell transactions,

¢ Financial market considerations for electricity and gas market using forwards
and futures contracts for hedging purposes,

e Consideration of a gas contract portfolio for the supply of a portfolio of power
stations,

o Consideration of gas transportation network constraints that may limit the use
of sets of FSA in the gas contract portfolio to specific plants of the generation
portfolio.

5 Conclusion

This work presented a computational model that determines the optimal dispatch
strategy for a thermal plant with a gas contract. We have considered the specifica-
tions of the fuel supply agreement and its take-or-pay clauses, the opportunities of
purchases and sales of energy in the spot market and the plant’s detailed operational
characteristics. In an integrated approach, the model determines also the optimal
maintenance schedule for the plant’s generation units. As the decisions in one stage
have impact in the subsequent stages and as a function of the future trend of the
short-term price, there is a time coupling in the decision making process. Thus, the
problem is a multi-stage decision making under uncertainty. It has been shown that
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a non-negligible gain can be obtained associated to the definition of an operative
policy and maintenance scheduling strategy (instead of a fixed planning). This strat-
egy seeks to manage, in an optimal way, the use of the fuel already bought (due to
take-or-pay clauses) and determine the optimal maintenance schedule possible.
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Energy Portfolio Optimization for Electric
Ultilities: Case Study for Germany

Steffen Rebennack, Josef Kallrath, and Panos M. Pardalos

Abstract We discuss a portfolio optimization problem occurring in the energy
market. Energy distributing public services have to decide how much of the re-
quested energy demand has to be produced in their own power plant, and which
complementary amount has to be bought from the spot market and from load fol-
lowing contracts. This problem is formulated as a mixed-integer linear programming
problem and implemented in GAMS. The formulation is applied to real data of a
German electricity distributor.

1 Introduction

We consider large German public services distributing energy in the order of mag-
nitude of Diisseldorf, Hanover or Munich. On the one hand, the public services have
to be large enough in order to utilize the optimization techniques discussed here; but
on the other hand they have to be smaller than the supra-regional electric distributor,
that is, RWE or E.ON.

The major difference of public services to supra-regional electric distributors is
that public services usually do not sell excess energy in the energy market. They are
price takers and their objective is to minimize the cost while meeting the demand for
energy or electric power, resp.; in this paper we treat energy (physical unit: Wh or
MWh) and electric power (physical unit: W or MW) as two different utilities which
can be traded in the market.
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The optimization model discussed in this article also does not apply to small
public utility companies as they usually have one exclusive supplier of vendor, that
is, RWE or E.ON. Therefore, they do not have a portfolio of sources of supply which
can be optimized.

The considered electric distributor has several sources of supply in order to sat-
isfy the demand for power of their customers. Among these possibilities are:

e The electric power generation in a single power plant operated autarkic by the
electric distributor.

e The electric power generation in an external power plant. The operation of the
plant is regulated by the carrier to a great extent.

e The purchase of energy in arbitrary quantities at any time from a business partner,
known by name, with a bilateral treaty. This form of trading is called “Over The
Counter.” It stands in contrast to the anonymous stock jobbing.

e The purchase of standardized power products on the stock exchange, in the so-
called spot market, abbreviated by SM. This is short-term trading.

e The purchase of power on the stock exchange in the forward market. This is
long-term trading.

e The purchase of power in arbitrary quantities through so-called load-following
contracts or LFCs.

The complete range of the opportunities can only be exploited in the mid-term; for
instance, in an optimization over the whole year. In this article, we focus on the
short-term portfolio optimization; that is, within one or two days. That is, we are
given the operating conditions, including the mid-term decisions. The task is then
to optimize the power plant operation and the purchase of energy in such a way that
the total costs are minimized while satisfying the demand. The energy demand is
given via a power forecast for the following day.

In this article, we develop a mixed-integer linear programming (MILP) formu-
lation for the energy portfolio optimization problem allowing the following three
sources of energy supply:

e The electric power generation in the own power plant,
e The purchase of standardized products from the spot market, and
e The purchase of power via the LFC with one supplier of vendor.

The mathematical programming formulation is implemented in the modelling lan-
guage GAMS. The code has been added to the GAMS (2009) model library with
the name poutil.gms (Portfolio Optimization for electric UTILities).

This electricity optimization problem falls in the scope of the unit commitment
problem and economic dispatch problem. In contrast to the unit commitment prob-
lem, our model does not include any constraints on power transmission, reverse
spinning or ramping. The economic dispatch problem differs from ours in the way
that the different energy sources are only subject to capacity constraints whereas we
have to deal with additional technical or production restrictions such as minimum
idle time periods of the plant.
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Dillon et al. (1978) provide a mixed-integer linear programming formulation of
the unit commitment problem, also taking into account energy exchange contracts.
The model by Carrion & Arroyo (2006) for thermal plants uses less binary vari-
ables than the model by Dillon et al. Our model assumes a discrete cost structure for
the power plant in contrast to the quadratic one discussed by Carrion and Arroyo.
Mixed-integer programming was also used by Hobbs et al. (2002) to solve the unit
commitment problem. The optimal selling of energy in the electricity spot market
is modelled as an MILP problem by Arroyo and Conejo (2000) and as a stochastic
program by Philpott & Schultz (2006). In the literature, there are many specialized
algorithms for solving the unit commitment problem (Wallace & Fleten (2003);
Sheble & Fahd (1994); Padhy (2004); Sen & Kothari (1998); Baldick (1995))
and the economic dispatch problem (Madrigal & Quintana (2000); Chowdhury &
Rahman (1990); Dhillon & Dhillon (2004)).

As we plan day-ahead, we assume that all data are reasonably well known. The
day-ahead forecast is rather accurate but nevertheless subject to uncertainties. The
forecast is derived from historical data, annual load profiles, weekday specifics ten-
dencies, temperature profiles for the next days, and considers public holidays as
well as special events such a soccer finals, formula I racings, etc. Smoothing and
averaging over many influence factors lead to a rather stable forecast. The remain-
ing uncertainties are of the order of a few percent and may lead to minor changes;
they are mostly covered by LFC costs. The prices for the purchased energy are
given through contracts and the spot market. Furthermore, we assume to have a
quite accurate power forecast for the planning horizon. However, when such data
are not reliable or when looking at longer planning horizons, a stochastic model
would be preferable against a deterministic one; taking into account, for instance,
the stochastic spot prices and/or stochastic demand. Such models and algorithms are
discussed, for instance, by Takriti et al. (1996, 2000) and by Shiina & Birge (2004).
Including hydro, wind or solar as an energy source into the model leads also to
stochastic components; c.f. Nowak & Romisch (2000); Growe-Kuska & Rémisch
(2005); Brand et al. (2004).

A simple unit commitment model code is available in the LINDO Systems (2003)
library model unitcoml.1lg4.

We start with the description of the problem in Sect.2. The mathematical for-
mulations are discussed in detail in Sect. 3, including the special cost structure of
the different energy sources and the constraints associated with the power plant op-
eration. In Sect.4, we discuss some limitations of the model and provide possible
modifications of the formulation. Computational results for the implemented model
in GAMS are given in Sect. 5. Conclusions of this article are provided in Sect. 6.

Throughout the article, we introduce several sets, variables and input data given.
We denote all variables with small letters and input data as capital ones. In the
Appendices, all sets (App. A), variables (App. B), constraints (App. C), input data
and parameters (App. D) used in the mathematical model are summarized along
with their synonyms in the GAMS (2009) model poutil.gms.
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2 Description of the Problem

In this section, we discuss the short-term optimization problem for the day-ahead
planning of the energy portfolio.
In general, the power curve of one day is given by the continuous function

P(1), 0<t<24,

given in MW. We brake the power process into quarters of an hour. The use of
quarter-hour values as general time frame is a common standard in worldwide
energy economics; furthermore it is based on several directives, as, for instance,
in Germany the MeteringCode (VDN (2006)), in Austria the statistical regulation
Osterreichische Elektrizititsstatistikverordnung (2007); as a practical example one
can find the published maximum load values of Stadtwerke Saarlouis GmbH (2003)
in quarter-hours. Furthermore, in the energy industry, the continuous process of the
produced and provided power is treated as fixed within a quarter-hour basis. With
this convention, we can approximate the power curve through a step function. Let
T be the set of quarter-hour time slices per day; thatis, 7 := {1,..., N T = 96).
We assume that we are given the forecast of electric power for all 96 quarter-hour
time intervals per day
P, t=1,...,N",

measured in MW. In order to meet the demand, the utility company disposes of three
sources of supply,

e A power plant (PP) with given capacity.

e The opportunity to buy power from the spot market at the energy bourse in the
form of standardized products.

e A load-following contract with one supplier of vendor. The amount of energy is
assumed to be unlimited.

The total cost for the fulfillment of the demand is then given by the sum of the power
plant operation cost, the cost for the purchase of power from the spot market and the
cost for the purchase of power from the open supply contract.

The structure of the cost components and the constraints involved are discussed
in the following sections.

2.1 Power Plant Usage

We assume that we are given a natural gas power plant. The reasons are that they
are quite common in Germany (23% of primary energy supply in 2004; European
Commission (2007)) and that they can be operated very flexibly. This implies that
we do not have to consider restrictions which last for more then one day.
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The costs of the power generation in the own power plant consist in principle of
the fix costs per day and the variable costs per MWh generated. To simplify mat-
ters, the variable costs of the power generation are assumed to be constant. This
disregards that operational costs depend on the actual degree of efficiency and that
operating a power plant beside the point of optimum causes variable costs to in-
crease; see Sect. 4.2 for further details.

Let us now discuss the constraints associated with the power plant usage. The
power plant has a maximal power of PFF | measured in MW. During normal op-
eration, the power plant should not be operated with less than 40% of its maximal
power. This is not a technical restriction or a generally accepted convention, but
a useful approach to avoid an obvious contradiction to the assumption of constant
variable costs.

Let p® be the amount of power in MW of the power plant at time period ¢. Then
we get

pr? > 0.4P

max’

vi, ey

in case the power plant is used; otherwise we have pF¥ = 0, obviously.

For technical reasons, the power of the plant is not a continuous variable but fixed
in steps of 10% of the maximal power. A restriction to 10% steps while running a
power plant is obviously deliberate but one should remember that an operator would
never choose an infinite continuum of steps but only a small number of usual operat-
ing points. These so-called partial load operation points are ordinarily determined
by technical attributes of the power plant and are supposed to be given. Whether
these in our model are defined as equidistant steps or as a set of given figures does
not matter. However, it is important to define them as a small set of discrete numbers
to approach reality.

Define stage 1 as the idle stage of the plant and stages 2, 3, ..., 8 as the stages
corresponding to the power level of 40% PFP | 50% PFP . ..., 100% PI' . The
stages and the corresponding power level with respect to the maximal power level
PP are illustrated in Fig. 1. This allows us to substitute (1) by

max

pr =0.1(0sy + 2)PPP

max?

Vi 2)

with o5 € {2,3,4,5,6,7,8}.

In order to avoid permanent changes of the power level, we require any power
stage to continue for at least DEF quarter-hours, with a typical value of D2F = 8.
A constant operation over a period of DM quarter-hours is a deliberate sim-
plification of the model as well; but it covers the experience that it could be
considered as ineffective to change the operation mode of an engine permanently.
The change itself causes loss of energy through start-up and shut-down losses
(Wood & Wollenberg (1996)), which we do not want to take into consideration

here. This restriction on the changes of the power plant can be formulated as
p?P = pf-lj_l =...= p?ik, with k > 7, 3)

where j is a time interval containing a shift of the power level.
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Fig. 1 Stages of the power plant vs. fraction of maximal power level

To avoid a complete shut-down of the power plant for only a short time period,
any idle period has to last for at least 4 h:

pf-P = pf-lj_l =...= p?im, withm > 15, 4

where j is a time interval containing an idle time.

We relax this condition for the end of a day. The idle times can then be shorter,
as some part of this time can be transformed to the next day or may be coming from
the previous one. These boundary conditions show the drawback of looking at each
day separately. In reality, every day has some pre-history, providing the boundary
conditions.

2.2 Energy Purchase from the Spot Market

The European Energy Exchange (EEX) in Leipzig provides the spot market as an
opportunity to trade energy. This means that we can buy standardized products in
short term. We consider here the so-called base load and peak load contracts which
belong to the continuous trading of EEX'; Madlener & Kaufmann (2002). They are
traded at one day and delivered at the next day; EEX (2007). Special cases occurring,
for instance, on weekends are not considered here; those are the weekend-base load
contracts’.

'We do not consider selling in the auction market in our model.

2 Weekend-base load contracts specify the delivery for 48h, starting at Saturday 0:00a.m. and
ending on Sunday 12:00 p.m.; peak load contracts for the weekends are not offered.
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Each base load contract specifies the delivery of a constant power of 1| MW from
0:00 a.m. to 12:00 p.m. at the following day after the completion of the contract.

Each peak load contract specifies the delivery of a constant power of 1 MW from
8:00 a.m. to 8:00 p.m. at the following day after the completion of the contract.

The provider and customer remain anonymous for these contracts. The commer-
cial clearing and settlement is handled by the EEX, while the technical delivery
is done through the power grid operators in Germany. Currently, the power grid in
Germany is not uniform nationwide. There are four transmission network operators:
E.ON, Vattenfall, RWE Transportnetz Strom and EnBW.

We get from the conventions above that the contribution to the energy portfolio
from the spot market, ep™, is given though the number & of base load and the number
B of peak load contracts bought, while respecting the above time intervals for energy
delivered.

The cost for the energy from the spot market is calculated via the total delivered
energy amount in MWh.

2.3 Energy Purchase from the Load-Following Contract

The LFC can be seen as a compensation for the vacancy of the previously dis-
cussed sources of energy supply; Heuck & Dettmann (2005). An energy load can be
covered only partially by the standardized products from the spot market and the rel-
atively inflexible power plant operation. However, the utility company is committed
to meet the power demand of its customers. Therefore, the vacancy has to be closed
by a flexible instrument. Obviously, the flexibility of this instrument makes the en-
ergy purchase from the LFC to the most expensive source of the three discussed in
the paper as it transfers all risk from the customer to the seller of the contract. The
LFCs are also called full requirements contracts.

The costs for the LFC are determined via the typical two-component supply-
contracts; Erdmann & Zweifel (2007). That is, the delivered power, or more pre-
cisely, the power level peak, as well as the delivered energy amount, are considered.
In other words, it is the sum of the so-called power rate [€/MW] and the energy
rate [€/MWh].

The power rate CFI:RF C of the LFC is based on the highest drain of power (quarter-
hour value) within a year pLFC. To avoid random anomalies up to a certain amount,
one usually applies the arithmetic mean of the two — in some contracts also three —
highest monthly peaks as the rated value of the calculation of the power rate. We get
for the cost of the power rate

LFC _ ~LFC LFC
CPR - CPR,year * Pmax > (5

where Cpt gear is the cost coefficient per MW of the power rate on an annual basis.
For the demand rate contracts considered in this article, usually there are defined
annually quantity zones with different prices. Let Z; and Z, be the borders of the
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quantity zones given in MWh and let P{C, PJC and P1FC be the prices in € per

MWh in these zones. We denote by eyL;(rj the delivered energy amount annually.

Then, the prices in € per MWh are given by

LFC LFC
P it 0 < ey = 24

LFC LFC
P2 , ifZy < Cyear <Z,

LFC : LEC
P, it 2, < €year

Recognize that the price PlLFC is paid for the amount of energy in zone 1, where
price PZLFC is only paid for the amount of energy within zone 2, exceeding the
quantity in zone 1.

The quantity price PLF¢

or total variable cost per year associated with the LFC,

year °
can then be stated as
LFC _LFC . LFC
Py - evears if0 < ewyr <Z1
LFC LFC LFC ( ,LFC . LFC
PYear =P Z1+ P, (eyear_zl)’ 1fZl<eyearfzz.

PLFC. Zy 4 PYFC(Z5 = Z1) + PEFC (eHEC - 75) . if 75 < elC
The resulting piece-wise linear price curve is shown in Fig. 2.

This price system is adjusted annually. When using it on a daily basis, it leads to
the following effect. At the beginning of the year, we are always in zone 1, growing
steadily into zone 2 and resulting finally in zone 3 at a particular point of time. With
this interpretation of the model, the effective current price depends on the relative
position of the day within the year. This leads to difficulties for short-term modeling.
To overcome this problem, we introduce a daily-based model in Sect. 3.1.

The amount of energy from LFC is, in principle, unlimited and can vary in each of
the quarter-hour time periods without restrictions. Hence, no additional constraints
for the energy purchase from the LFC are needed.

eLFC
year

MWHh]
Z1 Z2

Fig. 2 Piece-wise linear price curve for the load-following contract (on an annual basis)
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3 Mathematical Formulation

In this section, we formulate the described problem above as a MILP problem. Our
task is to minimize the total cost while meeting the demand forecast for each quarter-
hour time interval and the constraints associated with the power plant usage.

3.1 Objective Function

The total cost ¢ for the fulfillment of demand for the particular day consists of the
cost for the power plant operation, c?, the cost for the purchase of power from the
spot market, ¢™, and the cost for the purchase of power from the load-following
contract, ¢*FC. Hence, we get for the total cost

clot — cPP + CSM + CLFC. (6)

Let us now discuss the three cost components in detail.

3.1.1 Ceost for the Power Generation in the Own Power Plant

The cost associated with the power plant is given by the sum of the fixed cost CﬁPxP
and the variable cost CF¥ per MWh. Recognize that the variable cost represents the
cost for the produced energy and the fixed cost includs the electric power cost; that
is, the power capacity of the plant influences the construction cost of the plant which
are included in the fixed cost Cfff . We can then write the total cost in € as
PP PP PP PP

¢ = Cﬁx + Cvar e, (7)
where e*? is the total energy withdrawn from the power plant. If we denote by pf®
the electric power in MW of the power plant during time slice 7, then we get

NT 1
=2 ®)

t=1

3.1.2 Cost for the Purchase of Energy from the Spot Market

As introduced in Sect. 2.2, let o be the number of base load and 8 be the number of
peak load contracts. The electric power purchased per time interval ¢ (quarter-hour)
is then given by

ptSMza—i-I,P’L-,B, 9)
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with the usage of step function /" for the peak load contracts. From the description

of Sect. 2.2, they are active within 48 quarter-hour intervals, for respectively 12 h

0,t=1,...,32 and ¢t =281,...,96

IPL — ) ) ) ) ) . 10
d {1,t=33,...,80 {10)

The payment has to be made over the total energy amount in MWh delivered, re-
sulting in

NT

NT
Z —pM Z (0 + I B) =240+ 12- . (11

Finally, the cost for the purchase of energy from the spot market during the day are
determined by the bourse. They are CBL € per MWh for the products base load and
CPL € per MWh for peak load, respectively. Finally, this yields to the cost

NT
1
M= L (CPat+ ot p) =24 CP e+ 12.CT B (12)
t=1

associated with the purchase of energy from the spot market. As the electric power
for the base load and peak load contracts is constant, there is no additional cost for
the electric power associated with the base load and peak load contracts.

3.1.3 Cost for the Energy Purchase from the Load-Following Contract

In Sect. 2.3, we saw that the price of the LFC is given as the sum of the power rate
and the variable cost per MWh purchased, the energy rate.

The power rate CFI:RF C is given through formula (5), which depends on the maxi-
mum yearly power level p-FC with respect to quarter-hours. Notice that optimization
could lead to the scenario that for a short time period high power is drained, which
contributes only very little energy but results in high energy peaks implying a high
power rate. In order to avoid such situations, we introduce an electric power ref-
erence level, Prlgf C, which is not allowed to be exceeded by the electric power
purchased from the LFC. This reference level could either be the highest measured
value so far, a corresponding last year value, an arbitrary limit which is not allowed
to be exceeded, or a reference level determined by a mid-term/long-term optimiza-

tion model. Hence, we want to satisfy the following constraint

plFc < plLrc V1, (13)

ref >
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with pLF€ being the electric power from the LFC for time slice ¢. This hard con-
straint on pFC allows us to substitute pLFC in formula (5) by PLFC. Hence, the
power rate reduces to fixed cost on an annual basis. As our model is a short-term
optimization model, these costs are not relevant. Therefore, the cost for the purchase

from the LFC is given by the energy rate CI%EC, which is variable cost per MWh, as

¢ = R (14)

Now, consider the special zone prices of the LFC described in Sect. 2.3. As al-
ready mentioned, the annually based price system is improper for our optimization
model. To overcome these difficulties, we split the zones into daily quantities and
simulate daily zones. Instead of using Z; and Z», the zonal borders Z and Z3 are
utilized with

Z$ = Z7,/365, Z3= 7Z,/365. (15)

With eFC as the daily delivery quantity from the load-following contract

NT 1
= o (16)

t=1
we have that the quantity price of one day is given by

PlLFC . eLFC if0 < el FC < chi

’
MC =1 PLFC. 74 PLEC (eLFC — Z4) | if Z{ <eC<zg.

PLFC. Z4 4 PLFC(Z4 — Z§) + PEFC (€ — Z9) | if Z§ < M€

In order to keep the model generic, we assume to have N8 different zones; where
b € B is one of the zones; thatis, b € B := {1,..., NB}. In our case, we have
NB = 3. To identify the appropriate price segments, we use the binary variables
Wp. These variables indicate in which interval the daily purchased amount of energy
lies, that is

e o7d LFC d
1, 1be_1§e <Zb

, hb=1,...,NB, 17
0, otherwise an

-

where we define for notational convenience Z§ = 0 and Z;lvB as a number large

enough. Let variable eIZ;FC be the contribution to e'F¢
that the equalities

in segment b. Then we get

NB
Y =1 (18)
b=1
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and
NB
eFC =" (Zp_ e + €5"C). (19)
b=1
as well as the inequalities
< (Z0-Z8 iy b= N 0)

connect variables e} and ju;, to the energy ¢ purchased from the LFC. Hence,

we obtain the energy rate of the LFC

NB
iR = 3 (G5 o+ P ). en
b=1

where CbLFC are the accumulated cost up to segment b, that is,

0, ith=1
G, =4 PIFC-Z4, if b =2 (22)
CLC+ PIFC (24 —2Z3 ), ifb=3,...,N®

The breaking down of the zone prices on a daily basis is a trick to present the
special price structure of the LFC. In practice, one could use the data of the previous
years to estimate the cost of the LCF for each day. However, such a method requires
a huge amount of experience in order to adjust the price in a meaningful way and it
has to be seen in practice if it would outperform the special modelling of the zone
prices discussed above.

The set of variables w1, ..., uys form a so-called Special Order Set of type 1
(SOS-1), as only one variable of the set can have a non-zero value. The SOS-1 was
introduced by Beale & Tomlin (1969). Description of SOS-1 in the context of integer
programming can be found, for instance, in Kallrath & Wilson (1997, Chapter 6.7).

3.2 Demand and Power Plant Constraints

Let us now discuss the demand constraints and the constraints for the power plant
operation.
3.2.1 Power Demand Constraints

Clearly, we have to meet the electric power demand for each quarter-hour. That
gives us
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PP SM LFC T
P, +p; +ps =P t=1,....,N". (23)

Recognize that the power demand has to be met exactly. The reason is that (at least
a large amount of) energy cannot be stored.

3.2.2 Power Plant Constraints

We have to discuss the modelling of the restricted operation of the power plant.
Therefore, we introduce the binary variables

| 1, if the power plant is at time ¢ at stage m

Smt = .
mt 0, otherwise

(24)

to model the stages, m € M := {1,...,NM = 8}, of the plant. Stage m = 1
corresponds to the idle state of the power plant. Values m = 2, ..., NM = 8 refer
to the capacity utilizations 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1, respectively. The plant
is in exactly one of those stages at any time, that is

NM
Y bm=1. Vi (25)
m=1

The utilized power can then be calculated according to the following formula

NM
=P Y S o, VL (26)
m=2
where PP is the capacity of the power plant in MW. Note that this is the counter
part of (2) with binary variables, but also holds true when the plant is in the idle
stage 1.

In (3), we formulated the requirement that any power stage has to be continued
for at least 2 h. This constraint is called minimum up time constraint. For this pur-
pose, the binary variables y? keep track, if there is a change in the power plant level
in time slice ¢

X2 e — bt ¥m, =2 NV, @7)
and
x> 8mi—1 —8me,  ¥m, t=2,... . N". (28)

Inequalities (27) and (28) ensure that variable th has value 1, if there is a change in
the stage of the plant; however, th can also have value 1, if there was no change in
the stage. It is only important that it is now possible to formulate the condition
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S S S S S S S S S
Xt Xiv1 t Xivo H Xigs + Xiga + Xigs T Xigs T Xive T Xig7 = 1
t=1,...,NT -7

or generally

DM?

act

Y =L =1 N'—(DF-1), (29)
k=1

ensuring that within any 2 h, or DY = 8 time intervals, at most one stage change
takes place.

In addition to the restrictions above, we discussed in Sect. 2.1 also the require-
ment for any idle period to be at least 4 h. This condition is called minimum idle
time requirement or minimum down time requirement. Let us introduce the binary
variable y}, indicating if the power plant has been started, that is, if it left the idle
state in time slice 7. We get the following inequalities

Xt = 81e—1 — 1, t=2,....,N". (30
The condition for the idle period given in (4) can then be modelled as

PP
Did]

D Apxr =L t=1...N'—(Dif —1) (31)
k=1

with D} = 16, or 4 h respectively. Constraint (31) can be interpreted in the way
that the power plant is not allowed to leave the idle state more than once within any
DIF time slices.

As already mentioned in Sect. 2.1, we relax the condition of the minimum up and
idle time for the beginning and the end of the planning horizon. However, for ¢ = 1,
t = NT—(DP? — 1), we have that the stage of the power plant is allowed to change
only once in the first and last DF! time slices.

The variables > are initially binary variables indicating a change of the stage
of the power plant. However, we can relax these variables to be non-negative con-
tinuous. The reason is that constraints (27), (28) and (29) force the variables )(,S to
be binary in the case that the minimum up time condition is tight, as the right hand
side of constraints (27), (28) and (30) can only take the values O and 1. Recognize
that this does not mean that the left hand side of constraints (29) being equal to
1 implies that the variables x> are binary. From the modeling point of view, it is
therefore equivalent to use a binary or a non-negative continuous domain for vari-
ables x;. However, computationally, there is a difference’. The reason is that most

3 For the real data of Stadtwerke Saarlouis, the running time of the continuous model compared
to the binary model was less than 40%, it needed 45% of the iterations and 60% of the branching
nodes.
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Branch & Bound and Branch & Cut algorithms use LP domain relaxations, treating
binary variables as continuous; c.f. Wolsey & Nemhauser (1999) and Atamtiirk &
Savelsbergh (2005). The branching process ensures then that those continuous vari-
ables are forced to be integral. In case of variable y?, we do not want the solver
to branch on those, as their integrality is already applied by the binary variables
Sm:. However, if we can “forbid” the solver to branch on those variables (in GAMS
this is accomplished by setting the priorities to +inf), then these two approaches
of modelling the domain are also computationally equivalent*. The same concept
holds also true for the variables y!.

This idea of avoiding to branch on variables y? and y! can be realized in the
modelling language GAMS by defining branching priorities for these variables;
c.f. Rosenthal (1997, 2008) and Bruce et al. (2009). The default branching prior-
ity for integral variables in GAMS is value 1. The higher the value, the lower is the
priority to branch on these variables. The GAMS code for our case can then look as
follows

*

%+ avoid branching on variables "chiS(t)" and "chiI(t)"
*

chiS.prior(t) = +inf ;

chiI.prior(t) = +inf ;

* use the branching priorities in the model
portfolio.prioropt = 1 ;

Defining an arbitrary value > 1 for the branching priority for the variables x5
and y! ensures that the branching on those variables is done only after all other
variables have integral value. However, as the integrality of the variables §,,, does
not imply the variables th and x! to be binary, it might be needed to branch on those
variables nevertheless. One way where such a branching is not necessary is the case
when there is a (non-zero) cost associated with the variables th and )(}; for instance,
start-up cost for the power plan, see Sect. 4.2.

Carrion & Arroyo (2006) give a compact formulation of the minimum up and
minimum idle time constraints using only one set of binary constraints — instead of
two sets of variables x5 and y!. However, they have a quadratic cost structure for the
power plant and binary variables indicating if the power plant is used or not. Growe-
Kuska et al. (2002) also use binary variables indicating if the plant is used in time
slice ¢ or not. Hence, they can also model the minimum up/down time requirement
without using additional binary variables.

4 Recognize that for this argument to be correct, we need also that the heuristics treat both the
binary and the continuous case equivalently as well as factional solutions for the variables x> and
%! are not rejected by the heuristics and during the branching process. However, just setting the
branching priorities low, i.e. to value 10, has already a significant impact. For our case of the real
data, the running time decreased by 30%.
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4 Improvements of the Model Formulation

4.1 Assumptions and Limitations of the Model

Here, we discuss the assumptions needed for our model and present some
limitations.

1.

The pricing for the LFC is very simplified. In practice, there are special rebates;
that is, they depend on the total energy purchased or the ratio of energy purchased
to maximal power drained.
Although the electric power forecast is accurate enough for about a week, the
increase of the time horizon to two or more days is computationally expensive
and thus limits the application of this model.
As public services in Germany usually do not sell energy in the spot market,
our model does not include this feature. Indeed, allowing to trade excess energy,
leads to a different kind of optimization problem: One would operate the own
power plant at an optimal efficient level and optimize the sale and purchase of
the remaining/excess energy in the market.

An overview of the behavior of such a market can be found in the book edited
by Schweppe et al. (2002).

4.2 Modifications

e EEG: Renewable Energy Act: A law to regulate the priority of renewable en-

ergies in Germany; Bundesministerium fiir Wirtschaft und Technologie (2004,
2006). Especially the expansion of wind energy is intended. It forces electric
distributors having wind-energy plants in their portfolio for their service area.
Hence, it forces the additional purchase of wind-energy. However, the exact
amount produced by wind is unpredictable. The optimization model has to treat
this energy source stochastically. Stochastic optimization models and algorithms
for this topic have been widely discussed in literature.

Hour Contracts: The power bourse EEX also offers hour contracts which refer
only to a specific hour. Those hour contracts can be used to fill up some small
portion of the portfolio which is not covered by the base load and peak load
contracts.

Emission Modeling: The environmental issues in power generation play an im-
portant role. Especially the emissions of CO,, NO, or SOy are currently under
restriction. This can be modeled, for instance, via hard or soft constraints on the
generated emissions or by minimizing the cost associated with those emissions.
However, in the latter case, it is difficult to derive appropriate costs for the emis-
sions. This problem is called environmental dispatch problem. More details can
be found, for instance, in Talaq et al. (1994) and Yalcinoz & Koksoy (2007).
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o Efficiency Factor under Partial Load: The efficiency factor of a power plant
decreases when it is operated only under partial load. In particular, the variable
costs are not constant through the whole power range. Hence, for each power
stage, a separate cost has to be assumed. This is not so much a problem from the
point of view of the mathematical modelling, but it is particularly difficult to get
realistic data; that is, the cost coefficients. Let CIﬁP be the variable cost in € per
MWh for the power plant when operated in stage m € M, m > 2. If those data

are available, then we can substitute the variable cost CF - e* of the power plant
in (7) by
NT NM
20 P 22 2 Gl (m £ 2) 6.
t=1m=2

Recognize that we do not need any additional variables or constraints.

o Start-up Cost for the Power Plant: In (7), we stated that the cost of the power
plant consists of fixed cost Cir and variable cost Cr per MWh produced by the
plant. Those fixed costs apply whether we use the power plant during this day
or not. Such fixed costs can be, for instance, capital costs. However, it is more
realistic, to have also start-up costs, which occur whenever the power plant is
operated from an idle state. Those costs are typically fuel-costs for warming up.
Let CFP be the start-up cost for the power plant. Then, we can add the following
cost

(jPPZE:AXz

t=1

to the cost of the power plant ¢** given in (7).

Similarly, one could define shut-down cost for the plant. However, in this case,

additional variables would be needed. Recognize that we can also include stage-

switching cost, applying whenever the power plant changes its stage of operation.
e Down-Time or Forced Operation of the Power Plant: In practice, it could oc-

cur that the power plant has to be shut-down for some time period; for example,

due to scheduled maintenance. This can be handled straight forward with our

model by defining

81e =1,

for all time slices ¢t where we want to force the plant to be in idle state. This
condition implies for a given ¢ that §,,; = O for all m € M, m > 2 according to
constraint (25).

This can be easily done in GAMS with the following code

force the power plant to be shut down in time slice ’'t17'
i.e. to be in idle state in time slice 't17’

* Ok ok ok

delta.fx('ml’,'t1l7’) =1 ;
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The same idea can be used to force the power plant to operate in a certain stage
m € M, m > 2 or just not to be in the idle stage. Recognize that in all cases, the
number of binary variables in our model are reduced.

5 Computational Results

The optimization model is implemented in GAMS, version 22.7. The code is in-
cluded in the GAMS (2009) model library with the model name poutil.gms.
All computations are done with a Pentium Intel Centrino Dual 2.00 GHz with 1 GB
RAM and Windows XP platform. In order to achieve computational results that are
comparable, we use only one processor. We observed that with two processors, the
speed-up time is almost linear in average.

A GAMS code to use multiple processors looks as follows

for parallel use of cplex

create file ‘cplex.opt’
and set the number of threads to 2
$ onecho > cplex.opt
threads 2
$ offecho

*
*
*
*
*

* use the option file ‘cplex.opt’ for the ‘energy’ model
energy.optfile = 1 ;

Using the real data for the Stadtwerke Saarlouis GmbH (2003), a German dis-
tributor, we get a (proven) optimal solution within 987 seconds. The computational
details are given in the first row of Table 1 and the solution is plotted in Fig. 3. The
total energy demanded is given in the area below the power demand forecast.

Table 1 shows computational results for different electric power demand fore-
casts. The basis are some real data for the power forecast. The new power forecast is

Table 1 Computational results for different demand forecasts. The first row are the real data and
all other data are (uniform) randomly generated within an absolute difference of 2%

Power Plant Spot Market LFC

elf? ct? a B eSM  SM pLFC oLFC #Nodes CPU
6,015.0 150,375.0 90 5 2,220 71,580 694.00 44,838 266,793.0 59,300 986.61
6,120.0 153,000.0 82 14 2,136 69,864 663.75 43,265 266,129.0 24,100 734.63
6,172.5 154,312.5 78 12 2,016 65,808 747.75 47,633 267,753.5 100,500 1678.67
6,045.0 151,125.0 90 0 2,160 69,120 728.25 46,619 266,864.0 50,000 992.30
6,142.5 153,562.5 82 10 2,088 67,896 726.00 46,502 267,960.5 53,800 1511.08
6,165.0 154,125.0 80 11 2,052 66,852 723.75 46,385 267,362.0 87,100 1225.34
59775 149,4375 94 0 2,256 72,192 713.75 45,865 267,494.5 53,300 1550.58
6,292.5 157,312.5 71 18 1,920 63,384 707.25 45,527 266,223.5 41,700 1020.03
6,202.5 155,062.5 79 11 2,028 66,084 714.75 45,917 267,063.5 48,400 2020.84
10 6,202.5 155,062.5 79 9 2,004 65,100 727.75 46,593 266,755.5 51,400 845.41

N e N R N N
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— Demand = Total Power
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Fig. 3 Optimal solution for real data of Stadtwerke Saarlouis

randomly generated within a 2% tolerance. The column with label “# Nodes” gives
the number of nodes in the Branch & Bound tree. The running time is stated in the
last column and is measured in seconds. In all the 10 cases, the energy purchased
from the LFC was enough to be in the cheapest price segment three. The borderline
from price segment two to three is 500 MWh on a daily basis. Interestingly, the solu-
tions differ quite remarkably when the energy forecast changes slightly; especially
the purchase of energy from the spot market differ a lot.

In Table 2, the computational results for different minimum duration times be-
tween state changes of the power plant is shown. The power forecast are the same in
all computations. We can observe that the change in the duration does not affect the
solution very much. In fact, the difference in the total cost between a duration time
of 1h and 4 h is less than 2%. One explanation can be found in Fig. 3 as the power
level of the power plant does not change every 2 h. Hence, a change in the duration
has not such a big effect. As expected, the computational running time decreases
when increasing the duration DF¥,. An optimal solution for the duration of 4h is
shown in Fig. 4.

We performed also some computational tests for the case of a two-day planning
horizon, NT = 192. The tested instance could not be solved to global optimality
and after 10 h of computation time, the gap was still 5.99%.
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Table 2 Computational results for different minimum duration times DFP,
of the power plant

Power Plant Spot Market LFC
DPP PP PP a B eSM SM pLFC  LFC #Nodes CPU

act €

4 6,112.5 152,812.5 90 2,220 71,580 596.50 39,768 264,160.5 1471,000 15039.56
6 6,075.0 151,875.0 90 2,220 71,580 634.00 41,718 265,173.0 165,700 1736.77
8  6,015.0 150,375.0 90 2,220 71,580 694.00 44,838 266,793.0 59,300  986.61
10 6,022.5 150,562.5 90 2,184 70,104 722.50 46,320 266,986.5 25,300  685.06
12 6,165.0 154,125.0 75 17 2,004 65,964 760.00 48,270 268,359.0 19,500  798.44
14 6,060.0 151,500.0 80 15 2,100 68,820 769.00 48,738 269,058.0 ~ 15,900  459.86

16  6,060.0 151,500.0 80 15 2,100 68,820 769.00 48,738 269,058.0 7,700  358.73

between state changes

N L L

—— Demand = Total Power
Power Plant
Spot Market

- —— Load-Following Contract

400 | - - e

w
(SN

04 - i

300 4 - -

04 =

200 +

Electric Power (MW)
&

35 40 45 50 55 60 65 70 75 80 85 90 95
Time (quaterly)

0 b ———————
0 5 10 15 20 25 30

Fig. 4 Optimal solution for real data of Stadtwerke Saarlouis with D’? = 16 (4 h)

act

6 Conclusion

In this article, we developed a model for the portfolio optimization of an electric
services distributor. This study was motivated by a real case of public services in
Germany. It brings together the real energy world and mathematical optimization.
The model is very generic and can be easily extended with additional features but
nevertheless, it has an appropriate degree of details matching the real world case.
We also showed that the developed model is computationally effective for one-day
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ahead planning. The developed model has also didactic value as some modelling
tricks and their computational implications are discussed. The GAMS code is avail-
able in the GAMS (2009) model library.
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A Indices and Index Sets

The indices, index sets and the indicator function of the mathematical programming
model of Sect. 3 are given in the first column of Table 3. The second column states
the name of the corresponding set/function used in the GAMS model poutil . gms
included in the GAMS (2009) model library. The third column gives some explana-
tions along with the size of the sets.

The model is generic and can tolerate in principle any number of time slices Nt.
However, when changing the planning horizon, the modelling of the spot market has
to be adjusted; for example, there has to be a variable @ and § for each day of the
planning horizon. In addition, the zones for the LFC have to be adjusted for the new
horizon; for example, the step function 1, ,P L in formula (10) has to be redefined.

In principle, the model can handle any number of power plant stages Nm. How-
ever, when changing this number, the formula for the power level pf P stated in (26),
has to be changed too.

B Variables

All variables used in the mathematical model are summarized in the first column
of Table 4. The corresponding variable name of the GAMS model poutil.gms,
included in the GAMS (2009) model library, is given in the second column. A “-” in
the second column states that this variable is not used in the GAMS model formula-
tion, for example, the variable could be substituted by other variables. The units are
stated in []-brackets in the third column and the forth column gives the type of the
variable in the GAMS model formulation. Ry, Z, {0, 1} means that the variable
is non-negative continuous, non-negative integer or binary, respectively. Recognize
that this does not represent the domain of the variable but the type of the variable in
the GAMS model. Particularly, the binary variables y; and y! are modelled being
non-negative continuous; see Sect. 3.2.

Table 3 Indices, index sets and indicator function

te7T:={1,...,NT} t Set of time slices per day.
The day is split in N7 time intervals of 15 min each.
NT =96
meM:={l,...,.NM} m Set for the power level stages of the power plant. The

first stage corresponds to the stationary or idle
phase of the plant; all other stages correspond to
the 60—100% plant utilization stages. NM = §

beB:={l,...,NB} b Set of support points of the zone prices for the LFC.
NB =3
I IPL(t)  Indicator function for the peak load contract. It is

defined in (10)
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Table 4 Variables with corresponding GAMS name, unit, model domain, equation reference(s)

and explanations

Objective Function

ct c €] R4 (6) Total cost

Power Plant

cPP CcPP [€] R4+ (7) Cost associated with the power plant usage

et - [MWh] R4 (8) Total amount of energy withdrawn from the
power plant

pF? PPP (t) [MW] R4 (26) Amount of power withdrawn from the power
plant for time slice 7.
This variables can only have the discrete
values 0,0.6,0.7,0.8,0.9 and 1.0 referred
to the power plant capacity PFP

S delta(m,t) [—] {0,1} (24) Binary variable with value 1 if the power
plant is in time interval ¢ in stage m and 0
otherwise

Vs chis(t) [—] R4 (27), Binary variable with value 1 if the power

(28), plant changes its stage at the beginning of
29) time interval ¢ and O otherwise

b chiI(t) [—] R4+ (30) Binary variable with value 1 if the power
plant has been started up at the beginning
of time interval ¢ and O otherwise; that is,
the power plant left the idle condition

Spot Market

M cSM [€] R4+ (12) Cost for the energy purchase from the spot
market

eSM - [MWh] Ry (11) Energy purchased from the spot market

pM PSM (t) [MW] Ry (9) Electric power from the spot market for time
slice ¢ resulting from base load and peak
load contracts

o alpha [—] Z Quantity/proportion of the base load contracts
of the portfolio contribution bought from
the spot market.
Typical range is between 0 and 200. We
set as an upper bound the maximal
demand in the planning horizon

B beta [—] Z 4 Quantity/proportion of the peak load
contracts of the portfolio contribution
bought from the spot market.
Typical range is between 0 and 200. We
set as an upper bound the maximal
demand in the planning horizon

Load-Following Contract

ctre cLFC [€] R4 (14) Cost for the energy purchase from
load-following contract: energy rate

etre eLFCtot [MWh] Ry (16) Total energy from the LFC

effe eLFCs (b) [MWh] R4 (20) Contribution to the total energy of the LFC in
segment b

prrc PLFC(t) [MW] Ry (13) Power from the LFC for time slice ¢

m mu (b) [—] {0,1} (17) Binary variables with value 1 if the daily

purchased amount of energy lies between
Z}  and Z}
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C Constraints

All constraints of the GAMS model poutil . gms, included in the GAMS (2009)
model library, are summarized in the Table 5. The first column of Table 5 states
the name of the constraint in the GAMS model, the second column gives the
corresponding equation number of the mathematical programming formulation in-
troduced in Sect. 3 and the third column gives a brief explanation.

D Input Data and Parameters

All input data/parameters of the mathematical model are stated in the first column of
Table 6. The corresponding name of the GAMS model poutil.gms, included in

Table 5 Constraints of the GAMS model with corresponding equation number and explanations

Objective Function

obj (6) Total cost

Power Demand

demand (t) (23) Power demand constraint for each time slice ¢ (quarter-hour)

Power Plant

PPcost 7) Power plant cost. The fixed costs of the power plant are not
included in this model

PPpower (t) (26)  Power of power plant at time slice ¢

PPstage (t) (25) The power plant is in exactly one stage at any time slice ¢

PPchiS1(t,m) (27)  Constraint on variable chiS (t) to track a stage change m at
time slice ¢

PPchiS2 (t,m) (28)  Constraint on variable chiS (t) to track a stage change m at
time slice ¢

PPstageChange (t) (29) Atmost, one stage change takes place within any DEF time
slices

PPstarted(t) (30)  Constraint on variable chiI (t) to indicate if the plant left
the idle state at the beginning of time slice ¢

PPidleTime (t) (31)  The idle time of the power plant has to last for at least Dil;ll)
time slices

Spot Market

SMcost (12)  Cost for the power from the spot market

SMpower ©) Power from the spot market

Load-Following Contract

LFCcost (21)  Cost for the power from the LFC as the energy rate

LFCenergy (16)  Energy from the LFC for one day via LFC power

LFCmu (18)  Constraint on the price segment

LFCenergyS (19)  Energy from the LFC for one day via energy from the different
segments

LFCemuo (20)  Accumulated energy amount for the first segment

LFCemug (b) (20)  Accumulated energy amount for all segments except the first

one
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Table 6 Input data/parameters with corresponding GAMS name, unit and explanations
Power Demand

P, PowerForecast (t) [MW] Power demand forecast on a quarter-hour
base
Power Plant

crr [€] Fix costs of the power plant

crr cPPvar [€/MWh]  Variable costs of the power plant

PP pPPMax [MW] Power plant capacity in Megawatt

D - -] Minimum number of time intervals between

act
two consecutive stage changes of the
plant. DP? = 8. This is modelled in the
GAMS code via the set 1S
DY, - [—] Minimum number of time intervals for the
plant to remain in an idle period.
DFP, = 16. This is modelled in the

GAMS code via the set 1T

Spot Market
CBL cBL [€/MWh]  Cost per base load contract purchased
CcPt cPL [€/MWh]  Cost per peak load contract purchased

Load-Following Contract

cire [e/MW] Cost for power rate; given in formula (5)
CPLRFSW [€/MWh]  Cost for power rate on an annual basis
PLIC pLFCref [MWh] Electric power reference level for LFC
Zy eLFCbY (b) [MWh] Annual borders of quantity zones for LFC
z eLFCDb (b) [MWh] Daily borders of quantity zones for LFC;
b € Band ZJ = 0; calculated via
formula (15)
PLF C cLFCvar (b) [€/MWh]  Variable cost/price of LFC in segment b
crre cLFCs (b) [€] Accumulated variable cost of LFC up to

segment b; calculated through (22)

the GAMS (2009) model library, is given in the second column; a “-” states that this
variable is not used in the GAMS model formulation. The particular units of the data
are given the []-brackets in the third column. Column four states some explanations
as well as the value of the parameters. One instance, defining the values of the data,
is given in the GAMS model poutil.gms.

The fixed costs CE' of the power plant are not included in the model as they are
irrelevant for the optimization decisions.



Investment in Combined Heat and Power: CHP

Goran Bergendahl

Abstract This study investigates the advantages of investing in plants for
cogeneration, i.e., Combined Heat and Power (CHP), in case the heat is utilized for
district heating. A focus is set on Swedish municipalities. The demand for heat is
visualized in terms of load curves and duration diagrams. A standard diagram is
chosen in order to analyze the dimensioning of a CHP plant. Two main alternative
dimensions are analyzed in depth, namely to operate a plant with full capacity dur-
ing eight months or alternatively during six months of the year. For each alternative,
a CHP plant is compared to a heat water plant (a “boiler”) and a biological fuel
is compared to the one of natural gas. Then, further expansions are analyzed in
a parametric way. The outcome is that it is efficient to choose the dimension so
large that it will only be operating at full scale during three months of the year. It
is also shown that CHP plant based on biological fuel is profitable and outstanding.
These theoretical findings are then illustrated by data taken from 10 large Swedish
municipalities — Goteborg, Helsingborg, Link6ping, Lund, Malmdo, Norrkoping,
Stockholm, Uppsala, Visteras, and Orebro. However, even if cogeneration is an
energy efficient way to supply electricity and heat in these municipalities, there are
constraints to invest. Examples are contracted deliveries of heat from outside, ex-
isting old plants, average cost pricing, and uncertainties in terms of future taxation
principles.

1 The Economics of Cogeneration

Cogeneration or Combined Heat and Power (CHP) is a modern form of technology
to produce simultaneously heat and power in the same plant and from the same
energy source, such as oil, coal, natural gas, or biomass. In doing so, a substantial
amount of energy may be saved in comparison to systems producing heat and power
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separately. However, such a form of joint production requires an almost immediate
use of the heat either in terms of district heating or as heat for industrial processes.
Here, it is important to observe that heat for district heating rarely is transported over
large distances, while the opposite is true for electricity. The effect has been that
electricity is often sold over large networks and under competition, while district
heating mostly is sold via local networks and under monopoly.

A cogeneration plant is viewed as being very energy efficient and friendly for the
environment as it makes use of the steam after that it has passed through a turbine.
Such a plant may reduce CO, emissions, power sector investments, and the cost
of distribution to the end consumer (see e.g., IEA 2008, p. 4, 7, 25). However, to
preserve such energy efficiency there must exist a demand for hot water either in
terms of district heating or in terms of industrial processes.

Many different forms of cogeneration are nowadays in operation, such as steam
backpressure turbines, steam condensing turbines, combined cycle gas/steam tur-
bines, gas turbines with heat recovery, and internal combustion engines. Table 1
demonstrates that in 25 countries of the European Union (EU) about 10% of electric-
ity production (299.2 TWh) came from cogeneration in the year 2002. Germany was
the largest producer with 56.2 TWh. Denmark stood for the largest share (49.1%) of
cogeneration out of the total generation of electricity while France (with 4.9%) was
among the countries with the lowest shares. The corresponding data for Sweden in
2002 were 10 TWh or 6.8%. However, in Sweden substantial amounts of electric
energy have been used for production of district heating from heat pumps making
the net supply of electricity from cogeneration substantially smaller.'

Table 1 CHP generation and capacity for heat and electricity by specific countries 2002
(Danko & Losonen 2006, Table 2)

Country? EU-25 D DK F S SF

CHP Electricity 299.6 56.2 19.3 28.6 10.0 22.6
Production
(TWh)

Share of Total 9.1 9.8 49.1 4.9 6.8 38.0
Electricity
Generated (%)

CHP Electricity 91.6 26.4 5.4 6.5 32 5.8
Capacity (GW)

CHP Heat 2,844.2 544.7 122.7 263.4 116.9 263.4
Production
(TJ’000)

CHP Heat Capacity 236.1 48.7 10.6 23.0 7.5 15.4
(GW)

I “Sweden has been successful in developing district heating. However, inside this sector only
4.7 TWh electricity is produced by cogeneration. At the same time, 4.2 TWh electricity is used for
heating purposes. Consequently, only 0.5 TWh electricity remains to meet the demand for electric-
ity outside the district heating sector.” (Kommunforbundet et al. 2002, p. 6).

D= Germany, DK = Denmark, F = France, S = Sweden, and SF = Finland.
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Sweden has taken a unique position, as no other country inside EU has such
a small percentage of the heat for district heating coming from cogeneration.> A
question to pose is if this minor share for Sweden depends on lower profitability,
on larger risks, or may be on higher taxes? Consequently, there is a large interest in
finding out the profitability of cogeneration in general and for Sweden in specific.
Therefore, the purposes of this paper are as follows:

1. To develop a procedure to evaluate investments in cogeneration in general, and
to apply such a method on real world cases.

2. To compare the profitability and the environmental consequences of investing in
cogeneration with an investment in a boiler plant for heat production only.

3. To investigate the potential for a set of larger Swedish municipalities to invest in
cogeneration in order to serve their inhabitants with district heating.

This paper is based upon an earlier document written in Swedish (Bergendahl 2008).
It is organized as follows. First, we analyze the demand for district heating formal-
ized in terms of duration diagrams. Second, we present alternatives of investments in
heat and power. Third, we estimate the profitability of alternative investment strate-
gies. Fourth, we apply the best strategy on the largest municipalities in Sweden.

2 The Demand for District Heating and Its Duration

In Sweden, the annual demand for hot water for heating purposes has been estimated
to about 70 TWh for residential buildings and to about 24 TWh for other build-
ings (STEM 2006). Out of these 94 TWh, district heating stands for approximately
44 TWh. About 300 municipalities in Sweden have systems for district heating.
Approximately 50 of them make use of cogeneration for their production of hot
water. The largest shares of district heating (85-90%) are found in big cities such as
Goteborg, Linkoping, Lund, Malmo, Norrkoping, Stockholm, Uppsala, and Orebro.

The demand for district heating varies with the outdoor temperature. That implies
that the demand is higher in the winter than in the summer and higher during the day
than at night. The seasonal variations are often very large, which has been illustrated
by Werner (1984). He has studied variations in the demand for heat day by day over
the year 1978. He found a variation of approximately one to five between summer
and winter. For a week in February 1979 he demonstrated an approximate variation
of three to two.

The demand for electricity is more related to industrial production than district
heating. Consequently, cogeneration may be used to produce more heat and less
electricity during certain periods, and vice versa.

3 Observe that in Denmark of 2003 CHP stood for a much higher share of the total electricity
produced than in Sweden. A reason may be that in Sweden a substantial part of the electricity
is produced by hydro power and nuclear power, while Denmark had to look for other electricity
sources.
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A load diagram is a basic instrument to analyze the demand for district heat-
ing (see Fig. 1). However, such a diagram cannot be directly used to determine the
best combination of plants of different types. For that purpose the load diagram
must be transformed into a duration diagram that is a diagram where the demand is
ranked in the decreasing order over a year. A duration diagram may either express
the amount of energy demanded (in GWh) during each time segment or the average
power demanded (in MW) during the same time segments.

Duration diagrams (Fig. 2) are used to determine a portfolio of different plants to
serve the demand for heat (and electricity). Plants with low running costs but with
high fixed costs are useful for the base load. Plants with high running costs but low
fixed costs are more useful for the top load.
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Fig. 1 Load diagram for the average power (MW) — example
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Fig. 2 Duration diagram for heat
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Assume as given a duration diagram. Then a normalized duration diagram is
obtained by dividing for each time segment the amount of energy demanded by the
total annual demand. Normalized duration diagrams are useful in order to compare
duration diagrams between different municipalities.

In general, duration diagrams are not officially available. However, a set of ex-
amples may be found in different sources such as the following ones from certain
Swedish cities:

Malmoé 1979 (see Werner 1984)

Pited 1998 (see Bystrom 1999, p. 8)

Uddevalla 2001 (see Johnsson & Rossing 2003, pp. 20-22)

Varberg, Falkenberg and Halmstad 2003 (see Dahlberg-Larsson & Werner 2003,

p- 15).

In these sources, the demand for heat has been given in terms of load curves. Below,
these load curves have first been rearranged into duration curves, which in turn have
been transformed into duration diagrams by splitting up the duration curves into
30-day time intervals (not necessarily equivalent to the monthly periods used in the
example of Figs. 1, 2 above). The outcomes are shown in Table 2 below.

Then, these data have been normalized city by city by dividing them based on
the corresponding annual demand for heat. These normalized duration diagrams
are presented in Fig. 3 below.

In comparing these cities we observe that Malmo has a flatter duration diagram
than the others, and that Pited has the steepest slope on the duration diagram. That

Table 2 Average demand for heat over twelve 30-days periods of a year (in MW = MWh/h)

Period 1 2 3 4 5 6 7 8 9 10 11 12
Malmé 1979 489 438 390 333 333 291 243 195 150 100 100 100
Pitea 1998 36 28 25 22 19 17 14 11 09 07 05 04

Uddevalla 2001 47 44 42 37 34 28 25 17 14 9 7 7
Varberg, etc. 2003 205 150 140 130 120 110 9 70 60 45 35 25

0,2
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0,12 1

0,1 1 I
0,08 1
0,06 -
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0 4
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Percent of Annual Demand

12 3 456 7 8 9 101112
30-days Time Period

Fig. 3 Normalized duration diagrams for a set of Swedish municipalities
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Table 3 A standardized distribution of the demand for heat, average capacity
needed, and accumulated heat production over twelve 30-day periods of the
year given a municipality with an annual demand of 1,000 GWh

Accumulated
Percent of annual Average capacity production of
30-Day period demand needed (MW) heat (GWh)
1 16 244 178
2 14 213 334
3 13 198 478
4 11 167 600
5 10 152 711
6 9 137 811
7 7.5 114 894
8 6 91 961
9 5 76 1,016
10 35 53 1,055
11 2.5 38 1,083
12 2.5 38 1,110

Assume that the demand for heat per hour (MWh'/h) is given for each of the
7,860 h of the year and presented in decreasing order that is as a duration
diagram. First, take the 30 days with the highest demand and calculate the
average capacity needed for that group. With 16% of an annual demand of
1,000 GWh, that implies 0.16 x 1000/730 = 0.2192 GWh/h or 219.2 MW.
(Observe that 7, 860/12 = 730.) Finally, assume that we generate 10% losses
in energy, why we have to produce 219.2/0.9 = 243.5 MWh/h for the first 30-
day period Then the same procedure is performed in consecutive order of the
following eleven 30-day periods of the year resulting in the capacity needed
as well as the accumulated production of heat Consequently, the third column
states a duration diagram over the capacity needed for a municipality with a
standardized demand. For example, the sixth 30-day period requires a produc-
tion capacity of at least 137 MW and the eighth 30-day period a capacity of
91 MW.

indicates that the outdoor temperatures have a substantial influence on the shape of
the duration diagrams. Malmg in the south have usually mild winters while Pitea
in the north has cooler winters. Uddevalla, Varberg, Falkenberg, and Halmstad are
all located along the Swedish west coast with about the same temperature condi-
tions. The difference in the shape of the duration diagrams between these west coast
cities may probably be explained by differences in temperature between different
years. The data for Uddevalla were from the year 2001 while the data for Varberg,
Falkenberg, and Halmstad were from the year 2003.

Below we will demonstrate a general procedure for calculating the profitability
of investments in cogeneration compared to the one of a boiler. For the purpose of
illustration we will introduce in Table 3 a “standardized” distribution of the demand
for district heating in Sweden bearing in mind the fact that different municipalities
will deviate from such a standard. Here, the standardization is based on the average
demand for heat in the four studies of Swedish cities (see Table 2).

The example illustrated in Table3 indicates a situation, where the first time
period has an average production level of 244 MW and the second one an aver-
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age level of 213 MW. Thus, it is relevant to say that the duration for 244 MW is 30
days; the duration for 213 MW is 60 days, etc. Consequently, a duration of one year
is valid for 38 MW only. In principle, plants with high fixed costs but low running
costs are suitable for a production with a long duration. On the other hand, the best
use of plants with low fixed costs but high running costs is for shorter durations.
Consequently, the flatter the duration diagrams the more use there will be for plants
with high fixed costs but low running costs.

A cogeneration plant is a typical representative for plants with high fixed costs
but low running costs. So, the flatter the duration diagram is the more use there is
for cogeneration. Consequently, existing plants fuelled by oil or coal may become
suitable for a production with a shorter duration, as their running costs are high but
the fixed costs low (mainly because they have had a long period of depreciation).

Furthermore, an investment in cogeneration is usually associated with economies
of scale, that is the larger the capacity the lower the average production cost. There-
fore, large municipalities are expected to make more use of cogeneration than
smaller ones may do.

An additional factor has to be taken into account. Many municipalities have
signed long term contracts with industrial firms concerning deliveries of waste heat
from their processes. In most cases, such contracts have duration of almost one
year. Consequently, waste heat deliveries may stand for a substantial part of the
“base load” capacity. That leads up to a production schedule such as demonstrated
in Fig. 4. Therefore, a conclusion will be that the main keys to successful invest-
ments in cogeneration are rather flat duration diagrams with few contracts for waste
heat from nearby industries.

250 ~
200 +
150 +
Oil & Coal (MW)
100 + ® Cogeneration (MW)
¥ Waste Heat (MW)

2 3456 7 8 9101112
30-dyas Time Period

Fig. 4 An assumed production schedule for a fictitious municipality with an annual demand of
1,000 GWh district heating
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3 Efficient Investments for the Production of Heat

There are two main ways to produce hot water for district heating. One is in a
boiler plant (BP) and the other is a cogeneration plant (CHP). A cogeneration
plant (Fig. 5) requires steam to be produced at a higher temperature than in a boiler
plant. Consequently, fitel costs are higher for a cogeneration plant than for a boiler
plant. Different fuels may be used, such as oil, coal, natural gas, forest products, and
sewage. The choice of fuel will have a large influence on the running costs. Further-
more, investment costs are higher for a cogeneration plant than for a boiler plant, as
the investments include a turbine to generate electricity.

In this section, we will analyze the best combination of investment and operation
in order to deliver district heating in a municipality. With the “best combination”
we first assume that environmental effects are met in terms of (a) the design of the
investments, (b) operational constraints, and (c) environmental taxation. Given those
conditions we will develop investment strategies being friendly for the environment
and with the net present value as large as possible.

The environmental taxation is supposed to guide a municipality to choose fuels
in order to reduce the emissions of substances that will hurt the environment. The
estimation of these emissions given in Table 4 below is taken from STEM (2006).

In year 2007, Sweden introduced a new taxation system, with an aim to stimulate
a reduction of these unwanted substances. That system is presented in Table 5 and
the data are then inserted into the calculation schemes of Tables 6 and 7.*

Fig. 5 Flow chart for a cogeneration plant

Table 4 Emissions of substances which may hurt the environment

Type of Sulfur dioxid Nitrogen dioxid Carbon dioxid ~ Dust particles VOC®
plant (Fuel) (g/MWh) (g/MWh) (kg/MWh) (g/MWh) (g/MWh)
Oil 756 486 324 5.8 46.8
Coal 284 281 382 104.4 8.3
Waste 202 202 83 4.3 5.4
Biofuel 144 335 11 13.3 82.8
Natural Gas 12 237 209 1.2 12.6

4 In addition to these taxes on the production and the use of energy, a customer has to pay the gen-
eral value-added tax (VAT). However, the value-added tax will have no influence when comparing
different investment alternatives.

3> VOC = Volatile Organic Compounds.
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Table 5 Swedish taxes on energy, carbon dioxide and sulfur as of year 2007

Taxes on Taxes on carbon Taxes on
Fuel energy dioxide sulfur dioxide Total taxes
Oil, EO1 75 266 - 341
Oil, EO5 70 248 10 328
Coal (0.5% S) 43 315 20 378
Natural gas 20 185 - 205
Peat - - 15 15

Cogeneration is supposed to generate substantial advantages for the environment
compared to power plants, for which the waste heat is disposed into the water with-
out any productive use. Consequently, the Swedish parliament has decided to allow
the owner of a cogeneration plant a reduction on the taxes on energy and carbon
dioxide under the condition that the heat is given a productive use and not being
wasted. That reduction will be 100% off the energy tax, 100% off the carbon diox-
ide tax when biomass will be the fuel, and 79% off the carbon dioxide tax when
natural gas will be the fuel.

Furthermore, cogeneration has an advantage of flexibility compared to many
other kinds of plants for power production. With cogeneration one may increase
the proportion of heat and reduce the proportion of electricity when the electricity
prices are low and reversely. Such an advantage may be handled as a real option
and given a substantial value in the economic evaluation of an investment (see, e.g.,
Kulatilaka 2001; Cavus 2001; Olsson & Bergendahl 2006).

In the following, we will base our calculations on (a) the price on a certificate for
power production is set to SEK 0.18/kWh, (b) the carbon dioxide tax has presently
a level of SEK 0.378/kWh for natural gas from cogeneration and SEK 1.8/kWh for
natural gas from a boiler plant, and (c) the energy tax of 0.2 SEK/kWh is only valid
for the case of a boiler heated by natural gas.

Given these levels of pollution charges we will focus on investments that will
take advantage of the economies of scale in cogeneration. Therefore, we will con-
sider such a “standard” municipality, which expects an annual demand for heat of
1,000 GWh, mainly to be served by a new plant for operation in 20 years.

Furthermore, observe that we will assume that the use of cogeneration or alterna-
tively a boiler is mainly to serve a municipality with the base load demand for heat.
Consequently, we will aim at identifying an optimal load program for such a plant.
That implies to find the number of months at full capacity leading to the largest net
present value.® For purpose of illustration, we will start off with a situation for a mu-
nicipality, which is going to choose between the following two alternative strategies
for the design of a base load investment.

e Strategy 1: The maximum plant size is designed for full scale utilization in eight
months of a year.

61t will be assumed that the investment costs for any plant will occur at the beginning of year 1
and that the annual costs and revenues from its operation will be charged at the end of each of the
20 years of operation.
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Table 6 Four investment alternatives for a plant to be operated at full capacity during eight months
of a year

Plant CHP CHP Boiler Boiler
Natural Natural
Fuel Gas Biomass Gas Biomass
Capacity heat (MW) 91.3 91.3 91.3 91.3
Capacity electricity (MW) 102.6 33.6 - -
Production heat (GWh/year) 533.2 533.2 533.2 533.2
Production electricity (GWh/year) 599.2 196.2 - -
Fuel needed (GWh/year) 1,132.4 729.4 533.2 533.2
Investment (MSEK) 750 750 130 300
Maintenance (MSEK/year) 15 24 3 7.5
Fuel price (SEK/MWh) 2257 1508 225 150
Taxes CO, (SEK/MWh)° 37.8 - 180 -
Fuel costs (MSEK/year)!? 297.6 109.4 215.9 80.0
Emission rights (MSEK/year)'! 223 - 10.5 -
Electricity price (SEK/kWh)!? 0.43 0.43 - -
Electricity certificates (SEK/kWh)!3 - 0.18 - -
Revenues electricity (MSEK/year) 231.9 119.7 - -
Heat price, excl. distr. (SEK/kWh)!4 0.5 0.5 0.5 0.5
Energy taxes (SEK/kWh) - - 0.2 -
Revenues heat (MSEK/year)'” 239.9 239.9 144.0 239.9
Net revenues (MSEK/year)'® 136.9 226.2 —85.4 152.4
Net present value (MSEK) 956 2,068 —1,19%4 1,599

"The price level for natural gas is estimated to SEK200-250/MWh.

8This price level seems relevant for splinters. The price level for pellets is assumed to be somewhat
higher or about SEK170/MWh.

%In Sweden, a boiler heated with natural gas have to pay 100% carbon dioxide tax (SEK180/MWh),
while a CHP plant heated by natural gas only have to pay 21% of the carbon dioxide tax (i.e. 0.21x
SEK180/MWh).

10(Fuel Needed) x (Fuel Price + Taxes).

" Assume an emission of 201 tons CO, per GWh fuel and a fuel price of SEK98/ton fuel (see
Sarnholm 2005, p. 37).

12See www.nordpool.com for statistics on energy prices 2006. They indicate that the eight highest
monthly prices had an average of SEK0.43/kWh. See also Fastigheten Nils Holgersson 2006,
Fig.3, p. 14.

BElectricity certificates are usually not valid for more than 15 years. However, we assume here
that they may be prolonged for five additional years.

14The price level for heat including the costs of distribution is usually set to SEK0.6-0.7/kWh
(e.g. see Fastigheten Nils Holgersson 2006, pp. 24-25). The costs of distribution are analyzed
by Frederiksen & Werner 1993, pp. 372-376. They assume that the total costs of distribution are
about SEK0.04-0.05/kWh. In addition, they assume costs for losses in pressure. Consequently,
SEKO0.5/kWh seems to be a relevant level for the market price exclusive distribution.

I5(Heat Production) x 0.9 x (Heat Price -Taxes). The factor 0.9 stands for the amount of heat sold
in relation to the amount produced.

16(Revenues Electricity) 4 (Revenues Heat) — (Fuel Costs) — (Emission Rights) — (Maintenance).
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Table 7 Four investment alternatives for a plant to be operated at full capacity during six
months per year

Plant CHP CHP Boiler Boiler
Natural Natural
Fuel Gas Biomass Gas Biomass
Capacity heat (MW) 137 137 137 137
Capacity electricity (MW) 153.1 49.8 - -
Production heat (GWh/year) 749.9 749.9 749.9 749.9
Production electricity (GWh/year) 838.1 290.8 - -
Fuel needed (GWh/year) 1,588.0 1,040.7 749.9 749.9
Investment (MSEK) 1,100 1,080 190 440
Maintenance (MSEK/year) 22 34 4.5 11
Fuel price (SEK/MWh) 225 150 225 150
Taxes CO, (SEK/MWh) 37.8 - 180 -
Fuel costs (MSEK/year) 417.3 156.1 303.7 112.5
Emission rights (MSEK/year) 31.3 - 20.5 -
Electricity price (SEK/kWh) 0.434 0.434 - -
Electricity certificates (SEK/kWh) - 0.18 - -
Electricity revenues (MSEK/year) 327.0 160.7 - -
Heat price excl. distr. (SEK/kWh) 0.5 0.5 0.5 0.5
Energy taxes (SEK/kWh) - - 0.2 -
Revenues heat (MSEK/year) 337.5 337.5 202.5 337.5
Net revenues (MSEK/year) 194.3 308.1 —126.2 214.0
Net present value (MSEK) 1,321 2,759 —1,762 2,226

e Strategy 2: The maximum plant size is designed for full scale utilization only in
six out of eight months of a year.

Then, the remaining part of the demand for 1,000 GWh is supposed to be met
through capacities already in operation.

Four investment alternatives will be displayed for each of the two strategies
above.

1. A cogeneration plant to be fuelled by biomass.

2. A cogeneration plant to be fuelled by natural gas.
3. A boiler to be fuelled by biomass.

4. A boiler to be fuelled by natural gas.

Finally, if Strategy 2 is found to be the most profitable one for all the four cases, we
will go further on to investigate if cogeneration should be designed for a full scale
utilization in a fewer number of months than the six ones.

3.1 The Economics of Strategy 1

In Table 6, we will analyze the benefits and costs associated with the above men-
tioned four alternatives based upon an assumption that the scale is chosen in order
to operate at capacity in eight months. That leads up to the following assumptions.
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Fig. 6 A duration diagram for a cogeneration plant designed to meet the base load with full
capacity during eight months

e All four alternatives are dimensioned in order to produce 91.3 MW heat (see
Fig. 6 above).

e In case natural gas is to be used as the fuel, the cogeneration plant may get a
power capacity of 102.6 MW. Alternatively, if biogas is treated as the alternative,
the capacity for power will only become 33.6 MW.

o The investment cost for a cogeneration plant is estimated to SEK750 million for
both the case with natural gas and the one with biomass. In case biomass is
chosen as the fuel, the exhaust gases will be used to extract additional energy for
district heating.

e The maintenance costs are estimated to SEK15 million/year for natural gas and
SEK?24 million/year in case of biomass.

e The fuel costs are estimated to SEK225/MWh for natural gas and SEK150/MWh
for biomass.

Given these assumptions we may calculate the net present values for the four al-
ternatives in accordance with Table 6 above. The discount rate will be set to 5% in
general.

3.2 The Economics of Strategy 2

Strategy 2 is based on an assumption that a municipality with the same annual de-
mand for district heating of 1,000 GWh/year may find it profitable to expand the
cogeneration capacity to a level above what is needed for a full scale production
that is above the 91.3 MW heat. In order to investigate the economics of such an
expansion, we will focus on a capacity which allows for full scale utilization only
in six out of eight months. For the remaining two months production is assumed
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Fig. 7 A duration diagram for a cogeneration plant designed to meet the base load with full
capacity during six out of eight months

at a level just to meet demand. Table 3 demonstrates that one may then expand the
production capacity to 137 MW, which is illustrated by Fig. 7 above.

As a consequence, the investment costs for cogeneration will increase to a level of
1,100 MSEK for a plant based on natural gas and to about 1,080 MSEK for the case
of biomass as a fuel. If one considers an investment in a boiler, then the investment
costs are supposed to become substantially lower, that is 190 MSEK, when natural
gas is supposed to become the fuel or, alternatively, 440 MSEK in case biomass is
to become the fuel. Such a plant will be run at capacity (137 MW) in six months of
the year. For the seventh month the production level will stay at about 114 MW and
for the eighth month at about 91 MW (compare Table 3).!” The outcome is given in
Table 7.

3.3 Results from the Profitability Analyses

In Sects. 3.1 and 3.2, we have calculated the profitability of investing in a cogener-
ation plant as well as in a boiler plant. Both of them were designed for a base-load
production during eight months per year. The peak load production during these
eight months as well as the off-peak production during the remaining four months
was supposed to be served by existing capacities.

Strategy 1 assumed an investment of 91.3 MW, which will allow for a full capac-
ity use in eight months of the year. Thus, we may identify such an investment as
one with a base load factor of 0.0913, that is a 91.3 MW investment per 10°MWh

71t is assumed that the Swedish systems of energy taxation and regulation will prevent such an
overcapacity in the seventh and eighth month to be used for an unilateral production of electricity
(see the note above on a 100% tax reduction).
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Table 8 Computational results

Capacity ~ Capacity Production ~ Production Net present

heat power heat electricity Investment value
Alternative  (MW) MW) (GWh/year) (GWh/year) (MSEK) (MSEK)
Strategy 1
COGEN/NG 91.3 102.6 533.2 599.2 750 956
COGEN/Bio 91.3 33.6 533.2 196.2 750 2,068
Boiler/NG 91.3 533.2 130 —1,194
Boiler/Bio 91.3 - 533.2 - 300 1,599
Strategy 2
COGEN/NG 137 153.1 749.9 838.1 1,100 1,321
COGEN/Bio 137 49.8 749.9 290.8 1,080 2,759
Boiler/NG 137 - 749.9 - 190 —1,762
Boiler/Bio 137 - 749.9 - 440 2,226

(1,000 GWh) annual heat demand. Strategy 2 went for an investment of 137 MW,
which will only allow for a full capacity use in six out of eight months. However,
it will result in a larger production volume than Strategy 1. As for fuel, we have
considered two choices — natural gas or biomass. That ended up in eight different
alternatives, for which the outcomes are presented in Table 8 above.

The calculations demonstrate the following findings.

A cogeneration plant is more profitable than a boiler plant.

Biomass is a better fuel alternative than natural gas (at least under the present
system of taxation).

It is profitable to design the capacity at least for a size of 137 MW (Strategy 2).

However, the question still to be answered is whether it is efficient to expand the
capacity above 137 MW.

3.4 A Parametrical Expansion of the Capacity

In order to answer the question of an expansion above 137 MW, let us make a rough
estimation by starting out from Strategy 2, alternative “COGEN/Bio” with a capacity
of 137 MW heat. Then, make the following assumptions.

1.

The additional cost for expanding the size of the investment above 137 MW will
become (1,080-750)/(137-91.3) MSEK per MW = 7.22 MSEK per MW. That is,
we assume that the marginal investment costs are proportional to the additional
size.

. The additional net revenues from such an expansion are then assumed to become

proportional to the sales of heat. With the net revenues of 308.1 MSEK for a sales
volume 0.9 x 749.9 = 674.9 GWh/year which implies SEK0.457/kWh.

The discount rate is set to 5%. For a horizon of 20 years that implies a discount
factor of 12.46.
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Then, follow Table 3 and consider a stepwise expansion from 137 to 152, 167, 198,
213, and 244 MW, corresponding to a full scale utilization in 5, 4, 3, 2, and 1 months,
respectively. The outcomes in terms of net present values are presented in Table 9
below.

Table 9 demonstrates that given the assumed data in terms of costs and revenues
it seems optimal to expand the cogeneration capacity above the 137 MW capacity
of Strategy 2 to a level of 213 MW but not as far as 244 MW. The outcome of such
a decision is illustrated in Fig. 8. It shows the strategy of investing in a cogeneration
plant fuelled by biomass to be operated with full capacity in two out of eight months.
However, such a conclusion is very sensitive to the level of the investment cost as
well as the level of sales. For example, Table 9 shows that a 4% increase in the
investment outlays a 4% reduction in the sales revenues will result in that the case
of 2 months full scale capacity utilization only will not be profitable.

Then the corresponding sales volumes of heat from cogeneration will be ex-
panded from 674.9 GWh/year to (674.9 + 49.3 + 394 + 61.1 4+ 19.7) =
844.4 GWh/year and the sales volumes of electricity from 261.7 GWh/year to
(261.7 + 19.1 + 15.3 + 17.0) = 320.6 GWh/year. That gives us the following
“Standard Expansion Module” to be considered by any large Swedish municipality.

A Standard Expansion Module

Annual Heat Demand: 1,000 GWh
Optimal Cogeneration Capacity: 213 MW
Fuel: Biomass

Cogeneration in Operation: 8 months/year
Optimal Sales from Cogeneration:

e Heat: 844.4 GWh/year

e Electricity: 320.6 GWh/year

Consequently, the Standard Expansion Module is designed for sales of 1,000 GWh
heat out of which 84% should come from cogeneration. Below we will show how ten
large Swedish municipalities may realize these potential benefits from cogeneration.

4 Potential Investments in Cogeneration for 10 Large
Swedish Municipalities

In this section, we will investigate the potential for profitable investments in cogen-
eration in larger Swedish municipalities. To allow for economies of scale we will fo-
cus on the 10 municipalities with the largest demand for district heating.'® They are
Stockholm, Géteborg, Malmd, Uppsala, Visteras, Linkoping, Orebro, Norrkoping,

181t is evident that cogeneration may be profitable for smaller municipalities as well. However, this
paper will not focus on finding a break-even point for cogeneration.
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Fig. 8 A duration diagram for a cogeneration plant designed to operate with full capacity during
two out of eight months

Table 10 Estimated potentials for cogeneration (COGEN) in the ten largest Swedish

municipalities in year 20032
(d) Heat from
COGEN by (e) COGEN
(c) Actual Use of the Capacity by Use
(b) Deliveries of Heat from Strategy for of the Strategy
District Heating COGEN a Standard for a Standard
(a) Municipality 2003 (GWh) 2003 (GWh) Module (GWh) Module (MW)
Stockholm C 2,916 1,347 2,4624# 621
Stockholm V 1,038 966 876 221
Stockholm S 2,968 1,310 2,506# 632
Uppsala 1,596 844 1,3484# 340
Link6ping 1,280 1,386 1,081 272
Norrkoping 948 1,024 800 202
Malmo 2,257 871 1,905# 481
Lund 875 207 T39% 186
Helsingborg 913 632 TT1# 194
Goteborg 3,450 437 2,913# 735
Orebro 1,038 813 876# 821
Visterds 1,459 1,627 1,232 311

“In 2003, Stockholm operated three separate systems for district heating, Central (C),
West (V), and South (S).

Helsingborg, and Lund. Based on available statistics from year 2003 it has been
possible to estimate the potentials for investment in cogeneration in these cities.
Table 10 presents these potentials. The actual demand for district heating as
of 2003 is given in column (b) and the corresponding cogenerated heat of that
year in column (c). Then we estimate the amount of heat that would come from
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cogeneration in case we use the above optimal strategy for a Standard Expansion
Module (column (d)). Finally, the potential cogeneration capacity is given in column
(e). For example, Link6ping delivered 1,280 GWh heat during the year 2003. Then
the Standard Expansion Module recommended a use of 213 MW cogeneration for
each sales of 1,000 GWh. That is, we will arrive at a recommendation for Linkoping
to operate with 213 MW x 1,280/1,000 = 272.6 MW cogeneration. Then the an-
nual sales of heat from cogeneration will become GWh 844.4 x 1,280/1,000 =
1,081 GWh.

Let us now investigate Table 10. Compare the actual production of heat from
cogeneration (column (c)) with the ones obtained by the use of a Standard Expan-
sion Module (column (d)). Then we will find that in 2003 there seems to have been
a potential for cogeneration investments in Stockholm C, Stockholm S, Uppsala,
Malmo, Lund, Helsingborg, Géteborg, and Orebro (all marked with #). However,
some of them have already signed long term contracts for purchasing of waste heat
from industries and other organizations. For example, E-ON in Malmé will purchase
1,150 GWh/year from the two firms NCB and SYSAV, Oresundskraft in Helsing-
borg has signed up for 340 GWh/year in terms of industrial waste, and Goteborg
Energi has contracted 1,000 GWh/year from the waste destruction firm Renova and
1,000 GWh/year in terms of industrial waste heat from Shell and Preem. Vattenfall
Virme in Uppsala has invested substantially in a waste destruction plant, which will
reduce the need for cogeneration substantially. That leads us to a conclusion that
among the above 10 municipalities, the main potentials for investments in cogener-
ation seems to be found in Stockholm and in Lund.

In reality, since in 2003 the municipality of Stockholm investigates an investment
in cogeneration by biomass, Lund looks for a biomass investment of 50 or 100 MW,
Malmo goes for a new plant based on natural gas, and finally, Goteborg has been
invested in a new plant based on natural gas. The actions taken by Goteborg and by
Malmo may be explained by the fact that their potentials for cogeneration seem to
be so large (2,913 GWh and 1,905 GWh, respectively, as given in Table 10) that they
allow both for external deliveries of heat and for cogeneration production.

S Limits for Investments in Cogeneration

In this paper, we have demonstrated a procedure to evaluate potential investments
in cogeneration. In Sect. 3, it has been shown that an investment in cogeneration is
more efficient than an investment in a boiler plant. Simultaneously, we have also
found that it seems economically motivated to invest in a capacity so large that full
capacity utilization is only expected during two out of eight months of operation.
Furthermore, given a set of reasonable assumptions on prices and taxes in Sweden,
it has been shown that biomass is a better fuel alternative than natural gas. However,
the larger the investment costs per unit of capacity and the lower the price level for
electricity and heat, the smaller the optimal size of investment. Then two months of
full capacity utilization may not be enough.
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Furthermore, there are limits for investment. The following ones seem to be most

important ones.

Contracted deliveries of waste heat from industries and sewage destruction plants
reduce the potentials for cogeneration.

Existing capacities in terms of old plants based upon the use of oil, coal, and
other non-renewable fuels may postpone new investments in cogeneration.

The slope of the load curve will influence the profitability of cogeneration. The
flatter the load curve is, the more efficient the use of cogeneration will become.
A use of average cost pricing will delay the investment in cogeneration. Lower
prices in the summer time combined with higher prices in the winter time will
instead stimulate a more even use of district heating and thus clear the way for
more cogeneration.

The uncertainty of the future taxation principles may deter firms from investing.
Lower taxes on district heating compared to individual heating systems may be
motivated both for environmental reasons and for economic purposes.

Today, cogeneration is exempted from energy taxation except for any time period
when it is used for electricity generation only or for heat generation only. As it
may well be efficient to run periodically a CHP as a single product plant, those
exceptions ought to be eliminated.

However, in spite of these limitations it seems reasonable to assume that cogener-
ation ought to become one of the most important means to meet a growing future
demand for electricity and district heating. The given analysis shall be seen as a
procedure to calculate how efficient cogeneration is compared to other alternatives
of producing heat and electricity.
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Capacity Charges: A Price Adjustment Process
for Managing Congestion in Electricity
Transmission Networks

Mette Bjgrndal, Kurt Jornsten, and Linda Rud

Abstract In this paper, we suggest a procedure based on capacity charges for
managing transmission constraints in electricity networks. The system operator
states nodal capacity charges for transmission prior to market clearing. Market clear-
ing brings forth a single market price for electricity. For optimal capacity charges the
market equilibrium coincides with that of optimal nodal pricing. Capacity charges
are based on technical distribution factors and estimates of the shadow prices of
network constraints. Estimates can be based on market information from similar
congestion situations, and then capacity charges can be brought near the optimal
values through an iterative process.

1 Introduction

The goal of deregulating the electricity market has been to achieve efficiency
through competition in supply and demand. A special feature of the electricity
commodity is the reliance on a common network for transmission, where network
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constraints have important implications for optimal economic dispatch, due to the
externalities created by the loop flow features of the network. Highly different
market designs have been chosen for handling network constraints, with different
implications for efficiency. Our objective is to combine several of the suggested ap-
proaches, and see whether it is possible to find a good approximation to optimal
nodal prices by using system operator announced capacity charges.

In the proposed capacity charge approach (see also Bjgrndal et al. 2000), capacity
constraints are handled by issuing nodal capacity charges. Market clearing brings
forth a single market price for energy which is common to the entire pool. The net
nodal price equals the common market price less the nodal capacity charges. For
positive (negative) capacity charges, the net nodal price is lower (higher) than the
market price. Optimally set, capacity charges allow the market to reach optimal
dispatch since net nodal prices then equal optimal nodal prices. Capacity charges
are issued by the system operator, and are based partly on technical load factors,
and partly on the shadow prices of congested lines. Implementation of the capacity
charge approach can be on an ex post or an ex ante basis:

o If capacity charges are announced ex post, that is, after bidding and market clear-
ing, the approach is merely a different representation of the nodal pricing method,
now with the aggregate effect of capacity constraints in the grid priced explicitly
in each node. With ex post announcement of capacity charges, the system opera-
tor has full information of shadow prices, and the calculation of capacity charges
is straightforward.

e On an ex ante basis capacity charges are issued prior to bidding and market clear-
ing, and are thus taken into consideration by the market participants when stating
their supply and demand curves. In this case, now without full information,
the shadow prices of congested lines have to be estimated. The implementa-
tion further depends upon the overall design of the electricity market. Within the
framework of a separate day-ahead scheduling market and a real-time balancing
market, the market participants state their bids after the announcement of capac-
ity charges. Market clearing then brings forth a market equilibrium consistent
with the estimated shadow prices of expected capacity constraints. The efficiency
of the market equilibrium can be improved through iterative adjustment of the es-
timated capacity charges to reach an optimal and feasible market solution. Within
the framework of a pure real-time spot market, the ex ante announcement of ca-
pacity charges allows participants to adjust demand and supply bids according to
the anticipated capacity charge. These estimated capacity charges will, however,
not be able to clear the market alone, and there is no room for a direct iterative
process. This requires using, for example, ex post nodal prices together with the
pre-announced capacity charges.

The capacity charge approach offers several advantages. A main issue is the role of
capacity charges as important market signals for demand and supply, signaling geo-
graphical differences in the nodal cost of aggregate network constraints. Compared
to approaches such as zonal pricing, the method also incorporates the advantages of
nodal pricing, as capacity charges may be nodally differentiated. Further, as capacity
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charges apply to all contracts of physical delivery, the method enables spot and bilat-
eral contracts to coexist. Also, as capacity charges are issued by the system operator,
and are based on technical information and estimates of shadow prices, this may en-
able a clearer distinction between the role of the exchange and the system operator,
and might facilitate coordination through market coupling in areas where there exist
multiple exchanges. As for implementing ex ante announced capacity charges in the
case of the pure real-time spot market, the use of pre-announced capacity charges
may be a source of enhancing market efficiency. In a market which is cleared ba-
sically at real-time only, we note that the producer or consumer has to be able to
respond instantly to prices in order to submit price-elastic bids. If not, only price-
inelastic bids can be submitted. The pre-announcement of capacity charges will
enable this group to adjust plans according to the signals of expected congestion
cost conveyed by the capacity charges.

The rest of the paper is organized as follows. Section 2 discusses the approach in
relation to other methods for handling congestion in electricity markets. Section 3
presents the foundation for the capacity charge approach, and shows its relation to
optimal dispatch by nodal prices, using a model with a “DC”-approximated net-
work. Section4 illustrates the approach of optimal capacity charges in a six-node
example. Section5 discusses iterative approaches for implementing the capacity
charge method, illustrated with a standard gradient method. Section 6 discusses a
heuristic approach for obtaining feasible flows. Section 7 concludes the paper, and
future research is discussed.

2 Literature Review

The concept of nodal prices is discussed by Schweppe et al. (1988). Optimal nodal
prices are produced by the solution of the welfare maximization problem as the dual
prices of the power flow equations, and are interpreted as the value of power in
each node (cf. Wu et al. (1996)). A mechanism that enforces optimal nodal prices
to which generators and consumers adapt, will then contribute to social optimum
in the short run. Wu et al. (1996), however, point to several counter-intuitive and
possibly troublesome characteristics of implementing the nodal pricing approach.
For instance, for the system operator to calculate the optimal economic dispatch
and implement it, suppliers and consumers must truthfully reveal cost and demand
functions, and they may not be willing to give away such strategic information.

On the other hand, the price system suggested by Chao and Peck (1996)
represents a system for “explicit congestion pricing,” where, instead of provid-
ing locational electricity prices as nodal prices do, the use of scarce transmission
resources is explicitly priced. This is accomplished by the design of a trading rule
based on load factors or distribution factors, which specify the transmission capac-
ity rights that traders must acquire in order to complete an electricity transaction. In
optimum, Chao—Peck prices are consistent with optimal nodal prices, and in accor-
dance with the shadow prices of the transmission constraints of the optimal dispatch
problem. A slight modification of Chao—Peck prices is suggested by Stoft (1998),
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where a “hub” price is determined by allowing electricity bids at a given node
(or “hub”) in the network. Both mechanisms rest upon the existence of a market that
brings forth the prices of transmission rights on the links. The number of prices these
systems have to derive is usually far less than the number of nodes in the network.

The coordinated multilateral trade model suggested by Wu and Varaiya (1995)
intends to attain optimal dispatch without requiring the system operator to collect
private information, that is, supply and demand curve bids. Instead, brokers carry
out profitable multilateral trades under feasibility constraints. Central coordination
is achieved through an iterative process, where loading vectors are announced by
the system operator, and where brokers using this information must evaluate the fea-
sibility of the trades in question. Consequently, the decision mechanisms regarding
economics and the feasibility of system operation are separated. Economic deci-
sions are carried out by private multilateral trades among generators and consumers,
while the function of ensuring feasibility is coordinated through the system operator
who provides publicly accessible data, based upon which generators and consumers
can determine profitable trades that meet the secure transmission loading limits.

In relation to the optimal dispatch problem, the coordination models can be inter-
preted as different relaxation schemes, with competitive players in generation and
consumption, and where the system operator solves different sub-problems and in-
formation is exchanged back and forth. The decompositions corresponding to nodal
pricing and Chao—Peck pricing are price-driven. In the case of nodal prices, the sys-
tem operator hands out the optimal nodal prices obtained after solving the optimal
dispatch problem, and optimal dispatch is achieved as producers and consumers
adapt to their local prices. For Chao—Peck prices, a market is supposed to bring
forth the competitive prices of transmission rights, while the system operator pro-
vides information on how trades affect every single link. When traders adapt to the
transmission charges of the links imposed by the prices of the transmission rights,
the overall problem is solved. The coordinated multilateral trade model can be inter-
preted as a Benders’ decomposition method, where the market players maximize net
profit, and quantities are communicated to the system operator, which in turn checks
feasibility and generates constraints. The new constraints must then be taken into
consideration when additional trades are placed, and the process continues. Due to
the complexity of electric networks, each method has its limitations in practical use.

In this paper, we combine several of the above approaches. Our objective is to
find good approximations of the optimal nodal prices based on an uncongested
system price and the loading vectors of congested lines. This approach may be
interpreted as a Chao—Peck pricing approach including a “hub,” as suggested by
Stoft (1998), where we estimate/guess the shadow prices of congested lines. Our
approach is also similar to the coordinated multilateral trade model of Wu and
Varaiya (1995) in that we need not rely on the disclosure of private informa-
tion. Compared to Wu and Varaiya (1995), instead of announcing the constraints
through the publication of the loading vector, the grid operator announces a set of
nodal capacity charges that is based on an estimate/guess of the shadow price of
the constraint in question, and the loading vector. The approach is also similar to
that of Glavitch and Alvarado (1997) who use market information to estimate cost
parameters.
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3 The Capacity Charge Approach

The optimal market equilibrium is the market solution which gives the maximum
social surplus attainable within the constraints of the system. In this section, we
compare the market equilibrium of the capacity charge approach with this optimal
economic dispatch.

Consider an electricity market where supply and demand are located in n nodes
which are interconnected by a constrained transmission grid. Demand in node 7,
qlfi, depends upon the market price p; in the node. The demand curve is specified as
the general function plfi (qld ) which is assumed to be non-increasing in qlfi . Likewise,
supply in node 7, g7, also depends on the market price p; of the node, and the supply
curve is specified as the general non-decreasing function p}(g;).

The social surplus, I, is defined as total willingness to pay, less total cost of
production, as given in (1). The total willingness to pay is given by the area under
the demand curve, while the total cost of production is the area under the supply

curve.
d s

n i 9q;
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Assuming locational marginal prices in the various nodes, social surplus may be
decomposed into demand surplus, supply surplus and grid revenue, the latter due to
congestion. These are shown respectively as the three terms of (1).
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In general, the transmission grid consists of several lines that connect the nodes.
To illustrate the nodal capacity charge approach, we consider real power using the
lossless linear “DC” approximation of power flow equations, with reactance equal
to 1 on every link.! Each line ij of the network is defined by the two nodes i and j
which it interconnects. Let g;; be the flow along line #j. If positive, the flow is in the
direction from node i to node j. If negative, the flow is in the direction from node
J to node i. Under the lossless “DC” approximation we have g; = —¢j;. The net
injection in node i is defined by:

g =q—q @)

If positive, there is a net injection. If negative, there is a net withdrawal.

! The “DC” approximation is the customary approximation used in the literature when dealing
with the management of transmission constraints. Under these assumptions, and with well-behaved
cost and benefit functions, the optimal dispatch problem is convex. For the specifics of the “DC”
approximation, see for instance Wu and Varaiya (1995), Chao and Peck (1996), or Wu et al. (1996).
In the “DC” approximation both losses and reactive power are left out.
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The power flow on each line is determined by Kirchhoff’s junction rule,
Kirchhoff’s loop rule, and the Law of conservation of energy, given by (3)—(5).
Kirchhoff’s junction rule (3) states that the current flowing into any node is equal
to the current flowing out of it. There are n nodes, and there are n — 1 independent
equations.

qizz#iq,-j i=1,....n—1 A3)

Equation (4) follows from Kirchhoff’s loop rule, that states that the algebraic sum of
the potential differences across all components around any loop is zero. The number
of independent loops is given by m — n + 1, where m is the number of lines in the
grid. (L) = (L1,..., Ly—n+1) is the set of independent loops® and L is the set of
directed arcs ij in a path going through loop £.

ZijequijZO {=1,....m—n+1 4)

The law of conservation of energy (5) states that, in the absence of losses, total
generation equals total consumption.

Y4 =0 )

For a given network and load, the power flows may be represented by load
factors. Each load factor ﬂfjf” shows the fraction of an injection in node / with with-
drawal in node m that flows along line ij. Note that 8" = — Bl and B! = —f".
Under the “DC” approximation the load factors are constants, that is, they are in-
dependent of load.’ By introducing a reference point r, the load factors may be
represented by a loading vector B;(r) = (B} 87" ... ") = (B} B ... B}) for each
link ij. Element k of loading vector 8,,(r) shows the flow along line ij if 1 MW is
injected into node k and withdrawn at the reference point r. A trade between node
[ and m, may be viewed as a combined trade between nodes / and r, and nodes r
and m. Thus, we have that B = Bl + /" = Bl — pi" = Bl — B

Considering any line k/ with net injections ¢; given, the line flow along line k/
can be expressed by load factors as:

qu = Zi Budi (6)

Capacity constraints CAP; > 0 and CAP;; > 0 on line §j require that g; < CAP;
and g;; < CAP;;. The capacity constraints may thus be stated as:

> Bugi SCAPy k=1....n. I=1..n k#lI (7

2 See Dolan and Aldous (1993).

3 In general AC systems the load factors depend on the distribution of loads over the network. Our
method applies also for general AC systems, however, requiring recalculations of the load factors
according to the load.
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Note that if there is no direct link between nodes i and j, we have fj’" = jl;" =0,
and CAPij = CAPji =0.

Under the “DC” approximation, with appropriate objective functions, for in-
stance quadratic cost and benefit functions, the optimal economic dispatch is given
by the following convex optimization problem:

d s
n q; q;
maximize I, = Zi:l |:/o pfi (q)dq—/o ri (q)dq:|

subjectto qi =qis—qld i=1,....n
gi=)  4ii=1..n-1
ZUGLZCIU=0 t=1,....m—n+1

Z.%‘:O
1
> Bugi < CAPy k=1,....n,1=1,....n.k#1 (8)

In the unconstrained case, where neither of the capacity constraints of (8) are bind-
ing, there will be a uniform price in the market. For the capacity constrained case,
where at least one capacity constraint is binding, nodal prices will differ and may
be different for all nodes.* If the constraint q;; < CAPy is binding, we have
qu = CAPy and thus gy > 0. As gx = —qu, the corresponding constraint
g < CAPy is not binding. Define the shadow prices of (7) as ux > 0. Thus, if
Wi > 0, we have uy = 0, and vice versa.

Under the capacity charge approach, we assume that the system operator first
provides nodal capacity charges, cc;. On receiving this information, the participants
determine supply and demand bids. Market clearing results in an equilibrium energy
price, p, which is common to the entire pool. The capacity charges may be positive
or negative. A positive capacity charge, cc; > 0, is defined as the amount cc; that
the suppliers in the node pay per unit supplied, or equivalently the amount cc; that
the consumers receive per unit consumed. For a negative charge, consumers pay,
while producers are compensated. The net nodal price thus equals p; = p — cc;.

Proposition 1. The market equilibrium of the capacity charge approach is in accor-
dance with optimal economic dispatch when capacity charges are optimally defined.

Proof. 1f we relax the capacity constraints in (8), we obtain the Lagrangian function:

qf q;
Alw) = Zl. [/O p?(q)dq—/o Pf(CI)dq:|
+ Zk Zl Mkl [CAPkl - Zi ﬁ;ﬂ,(qls - qzd):l 9)

4 Refer to Wu et al. (1996) for the characteristics of optimal nodal prices.
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For a given vector p consisting of shadow prices for all lines of the network,
the relaxed problem /() = {max A(p)s.t.(2)-(5)} provides an upper bound on
the objective function value of (8). This follows from weak duality. Because of
strong duality, solving the dual problem min,, /(p) also provides the solution to our
original problem (8). Considering the objective function of the dual problem and
rearranging terms, we get:

af .
NOEDD [ /0 pi@dg+Y " > mubiaf }
ai .
- Zi |:/0 pi(q)dq + Zk Zl Mklﬁ]ldqis:| + Zk Zl M CAP
q¢ q;
=), /0 @) =, /0 Pi@dg + ) D muCAPy  (10)

The rearranged Lagrangian function is quite similar to the original (1), however,
with two alterations. First, the original supply and demand functions are perturbed,
and have been shifted by the term ), >, uwupy,, as shown in (11).

piad) = pla) + ), Y b= pf ) + cei
i (af) = p; (%HZ Z wably = pi(qf) + cci (11)

This perturbation is equivalent to the shift in supply and demand curves resulting
from the capacity charge approach, where suppliers and consumers in node i face a

capacity charge
cci = > by (12)

Secondly, we have the addition of the last term ), >, uyCAPy. For a given
shadow price vector u, this term is a constant. For optimal shadow prices, u};, the
term is equal to the Merchandising surplus (cf. Wu et al. (1996)), which is equiva-
lent to our definition of grid revenue in (1”). Thus, social optimum is achieved by the
system operator issuing optimal capacity charges cc; =) >, ,u,flﬁ,‘;l, and subse-
quently solving the unconstrained optimal dispatch problem by clearing the market
according to the perturbed supply and demand functions of (11). |

In our approach, capacity constraints are managed by means of nodal capac-
ity charges, which cause shifts in the supply and demand curves. Thus, constraints
are implicitly taken care of, and market equilibrium results from clearing the mar-
ket on a common energy price, p, that is, the system price. In optimum, the net
prices of each node, p; = p — cc;, are equivalent to the optimal nodal prices of
the nodal pricing approach. Note, however, that although optimal capacity charges
cc; are given by (12), they are not uniquely defined, but are associated with the load
factors. When using load factors associated with a reference point, both the level
of the capacity charges, and the system price are affected by the chosen reference
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point. Using optimal shadow prices will however always ensure the same optimal
net nodal prices, regardless of which reference point is chosen. If market partici-
pants optimally adapt to the net price, that is, the market energy price corrected by
the capacity charge, market equilibrium is not affected by the choice of reference
point.

4 A Numerical Example

To illustrate the nodal capacity charge approach, we use an electricity market model
with production and consumption located in six nodes. As a benchmark we show
the outcome of the optimal unconstrained and constrained dispatch, the latter using
nodal prices. With optimally defined capacity charges, we show that the outcome of
the capacity charge approach is identical to that of nodal pricing.

4.1 Model and Parameters

In the example, we assume that generators have quadratic cost functions, with a
profit function =¥ of the general form 7% = (p —cc;)q] — %ci (g7 )2, which gives us
linear supply curves. We also assume linear demand functions. Supply and demand
curves, including capacity charges, are shown as:

p = ciq; + cci (13)

p=a;+cci — biqlfi (14)

where a;, b;, and ¢; are positive parameters. The parameters of our numerical ex-
ample are shown in Table 1.

Social surplus, decomposed into the surpluses of consumers and suppliers, and
grid revenue due to congestion, is given by (15).

6 6 6
M=) _ sl@—pteg +) _ 3(p—calg+) . eeilq) —qf)

5)
The network connecting the six nodes is shown in Fig. 1.
Table 1 Parameters Node a; b; ci
1 20 0.05 0.2
2 20 0.05 0.1
3 30 0.10 0.7
4 20 0.05 0.2
5 30 0.10 0.7
6 30 0.10 0.1
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Fig. 1 Network
1 4

O U

We apply the lossless linear “DC” approximation of the power flow equations,
with reactance equal to 1 on every link. For given net injections ¢g;, power flows are
determined according to (3)—(5). Thus, the node rule equations follow in (3’), the
loop rule equations® in (4’) and the requirement of energy balance in (5').

q1 = q12 + q13 + q14

q2 = —q12 + 423

43 = —q23 — 413 t+ 435 (3"
q4 = —q14 + qa5 + q46

45 = —435 — 445 + gs56

q13 = q12 + 423

q13 = q14 + qa5 — 435 4"
413 = 414 + 446 — 456 — 435
q1+q2+q3+qa+qs +q6 =0 (5"

The load factors ,ij”‘ show the power flow on line ij following from an injection of
one unit in node / and withdrawing it in node m. By solving (3")—(5") with ¢; = 1
and g, = —1, we can compute the load factors i}" for all links. The load factors
for our example network are shown in Table 2.

For example, a trade consisting of injecting ] MW in node 1 and withdrawing it
in node 3, gives a flow over line 12 equal to % in direction from 1 to 2. Likewise,
injecting 1 MW in node 2 and withdrawing it in node 3, results in a flow over
line 12 of —33, that is, a flow of 33 from 2 to 1. If combined, the flows over line
12 from the two trades partly cancel, resulting in a net flow over line 12 equal to
q12 = 15 + (—35) = 15-

Alternatively, by introducing a reference point r for withdrawals, the load factors
may be represented by the loading vectors B;(r) for each link ij. The load factors
using reference point 3 are for example given by ,353 derived from the five columns
for trades with node 3 in Table2, (columns 13, 23, 34, 35, and 36), and noting
that B = —pj" and that B2°> = 0 by definition. This loading vector shows line
flows for trades from any injection point to the reference point only. Note that all

3 The number of independent loops are m —n + 1 = 8-6 + 1 = 3.
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information of Table 2 is contained in these five columns. A general trade between,
for example, node 1 and 6, may be viewed as a combined trade between node 1 and 3
and between 3 and 6. For example, the flow on line 12 resulting from this trade is
16 _ 13+'336_i+(_1 = 2
12 = P12 12 = 715 15/ = 15°

4.2 Unconstrained Optimal Dispatch

Assuming no congestion in the network, optimal dispatch and maximum social sur-
plus results from aggregating supply and demand curves, and clearing the market so
that the prices of all regions are the same, thatis, p1 = p» = p3 = ps = p5 = ps.
Due to the absence of constraints, all resulting flows are feasible, and capacity
charges and grid revenue due to congestion are thus equal to 0. In our exam-
ple, the market price of energy in the scenario of zero capacity charges is 17.09.
Table 3 shows the optimal unconstrained dispatch of our example. The table also
displays total social surplus, 7552.33, and its allocation to production, consump-
tion, and the grid.

4.3 Nodal Prices

Now, assume that the capacity of the lines are as shown in Table 4. In the example
we assume that CAP;; = CAP;;°. These capacity constraints make the unconstrained
optimal dispatch infeasible, as the constraints of lines 23, 35 and 45 are violated at
this solution.

With the nodal pricing approach optimal nodal prices result from optimal dis-
patch. Table 5 displays optimal dispatch, nodal prices, and the allocation of social
surplus. In optimal dispatch, we find that the capacity of lines 23, 45, and 46 are

Table 3 Unconstrained dispatch

Net Supply Demand Grid Total

Node Price Supply Demand Injection Surplus Surplus Revenue Surplus | Line Flow

12 —34.40
1 17.09 8547 58.14 27.33 73043 84.51 0.00 814.93 | 13 43.99
2 17.09 170.93 58.14 112.79 1460.86 84.51 0.00 154536 | 14 17.73
3 17.09 2442 129.07 —104.65 208.69 832.95 0.00 1041.64 | 23 78.39
4 17.09 8547 58.14 27.33 73043 84.51 0.00 814.93 | 35 17.73
5 17.09 2442 129.07 —104.65 208.69 832.95 0.00 1041.64 | 45 43.99
6 17.09 170.93 129.07 41.86 1460.86 832.95 0.00 2293.81 | 46 1.07
Sum 561.63 561.63 0.00 4799.96 2752.37 0.00 7552.33 | 56 —42.93

6 In reality, this may not be so, as the grid lines may be operated with different capacities depending
on the direction of the flow over the interconnection. This is especially so if links are aggregated
individual lines.
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Table 4 Line capacities Line Capacity

12 60
13 60
14 60
23 60
35 10
45 30
46 8
56 60

binding. Line 35, although expected, is not constrained, while the flow direction
of line 46 has changed and the flow limit is binding in optimal dispatch. The table
also shows optimal shadow prices for each line. Since pu; = 0 if u; > 0, we have
displayed only one shadow price per line. If positive, it indicates that the constraint
CAPj; is binding. If negative, it indicates that the constraint CAPj; is binding, where
the absolute value of p;; is the shadow price of the constraint CAP;;.

The nodal pricing approach follows from Schweppe et al. (1988), see also
Hogan (1992). In order to implement a system of nodal prices, it is required that
the system operator calculates optimal nodal prices on the basis of information of
the network, supply, and demand.

4.4 Optimal Capacity Charges

Under the capacity charge approach a positive or negative capacity charge cc; is
issued to each node, while the market is cleared at a single equilibrium price p. If
capacity charges are announced prior to market clearing, consumers and producers
will take the announced capacity charge into account when deciding supply and
demand bids. Market response to optimally defined capacity charges, will result in
a feasible and optimal market equilibrium.

Table 6 shows the optimal capacity charges, when the system price is defined
as the unconstrained energy price. Note that the net nodal prices, p; = p — cc;,
equal the optimal nodal prices, and that the resulting market equilibrium and social
surplus of the two methods coincide. Likewise, if capacity charges are announced
after bidding and market clearing, we see that it is straightforward to represent nodal
prices by a common market price and nodal capacity charges, so that p; = p —cc;,
thatiscc; = p — pi.

Optimal capacity charges are defined by (12), using the optimal shadow prices
from Table 5, and load factors defined by the physical characteristics of the grid
from Table 2. Load factors are defined relatively to the chosen reference point. The
level of both the system price and the capacity charges depend on this chosen point
of reference. The net nodal price, p; = p — cc;, as well as the nodal differences
between both net prices and between capacity charges, however, are the same, re-
gardless of the chosen point of reference. Table 7 shows examples of optimal sets of
energy price and capacity charges, depending on the chosen reference point.
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Table 6 Optimal capacity charges

Capacity Net Supply Demand Grid Total
Node Price Charge Supply Demand Injection Surplus Surplus Revenue Surplus | Line Flow
12 —24.42
1 17.09  0.05 8523 59.08  26.15 72642  87.26 1.23 81491 | 13 35.58
2 17.09  0.95 161.47 77.05 84.42  1303.69 148.43 79.83 1531.95| 14 14.99
3 17.09 —1.62 26.73 112.89 —86.17 250.06 637.26 139.37 1026.69 | 23 60.00
4 17.09  0.81 81.40 74.39 7.01 662.62 138.36  5.69 806.68 | 35 9.41
5 17.09 —2.38 27.82 10524 —77.41 270.95 553.74 184.50 1009.19 | 45 30.00
6 17.09 —0.21 173.00 127.00  46.00 1496.45 806.45 —9.52 2293.38 | 46  —8.00
Sum 555.66 555.66 0.00 4710.18 2371.50 401.11 7482.79 | 56 —38.00

As market participants face identical net nodal prices in all cases, their resulting
supply and demand will be the same as in optimal dispatch, that is, as shown in
Table 5. We find the same production, consumption, line flows, social surplus, and
allocation of surplus, including identical grid revenues. Moreover, the grid revenue
is equal to the merchandizing surplus under optimal nodal prices.

However, although all market participants are equally well off in all cases, we
may find that their perception of the situations may differ. For the individual mar-
ket participant, it may be difficult to see the relation between the market price and
the capacity charges. A market participant facing a capacity charge would thus be
likely to think of his burden due to the constraint as the capacity charge cc; he faces,
with a total burden of cc;g; for suppliers and —cciq;i for consumers. Table 8 dis-
plays the perceived burdens of the consumers and producers due to the transmission
constraints.

For instance, considering the producer in node 6, the choice of node 5 as the
reference node leads to a total payment of 376.50, whereas the choice of node 2
as the reference point, induces a total compensation of 199.41. However, since the
net prices are identical in all situations, the surpluses of each participant will be the
same as shown in Table 5. For example, the producer in node 6 has a supply surplus
of 1496.45 in all cases.

5 An Iterative Adjustment Process

We found that optimal capacity charges and appropriate adjustment of bid curves
lead to optimal dispatch. From (12) we see that the informational requirements
for issuing optimal capacity charges are the loading vectors and the shadow prices
of congested lines. Loading vectors are technical information, which we assume
are readily available. Shadow prices are in principle found by solving the optimal
dispatch problem, thus requiring that the system operator has information on cost
and benefit functions. When capacity charges are issued prior to bidding and mar-
ket clearing, shadow prices have to be estimated. Estimated shadow prices can be
improved through an iterative process, making use of market responses to obtain
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Table 8 Perceived burdens of the constraint

Basis of determining capacity charges

Unconstrained Reference  Reference Reference Reference Reference Reference

price point 1 point 2 point 3 point 4 point 5 point 6
Producer 1 4.00 0.00 —76.60 141.86 —65.27 207.13 21.64
Consumer 1 —2.77 0.00 53.09 —98.33 4524  —143.58 —15.00
Producer 2 152.70 145.12 0.00 413.88 21.46 537.54 186.12
Consumer 2 —72.87 —69.25 0.00 —197.50 —10.24  —256.50 —88.81
Producer 3 —43.23 —44.49 —68.51 0.00 —64.96 20.47  —37.70
Consumer 3 182.61 187.91 289.37 0.00 274.36 —86.45 159.24
Producer 4 66.16 62.34 —10.82 197.83 0.00 260.16 83.01
Consumer 4  —60.46 —56.97 9.89 —180.80 0.00 —237.77 —75.86
Producer 5 —66.31 —67.62 —92.62 —21.31 —88.92 0.00 —60.55
Consumer 5 250.81 255.75 350.33 80.59 336.34 0.00 229.03
Producer 6 —35.81 —43.93 —199.41 244.02 —176.41 376.50 0.00
Consumer 6 26.29 32.25 146.39 —179.14 129.50  —276.39 0.00
Sum 401.11 401.11 401.11 401.11 401.11 401.11 401.11

good estimates of the shadow prices. Such an iterative approach is similar to that
of Wu and Varaiya (1995), however, while they use feasibility and clever market
agents (brokers) to arrange multilateral trades, we use prices and market response
to coordinate the nodal markets.

The problem of the system operator in this case is to state capacity charges, based
on estimates of the shadow prices of the congested lines, and improved upon through
an iterative process. The iterative approach may be interpreted and implemented in a
direct or indirect manner. The direct approach involves a series of actual iterations in
clearing the market, where participants after each market clearing receive adjusted
capacity charges to which they respond with adjusted supply and demand curve
bids. The final market price and capacity charges will be those of the last iteration.
While this direct approach contributes to ensuring “correct” prices for each point
in time, the transaction costs of several iterations for each market clearing could
be quite large. Alternatively, the iterative approach may be implemented indirectly.
On observing a pattern of congestion similar to earlier periods, the iteration comes
about when the system operator uses information on earlier market responses to
improve estimates. This may be a more cost efficient method, and justifiable if con-
gestion situations last for a period of time. In this case, market responses to earlier
capacity charges may be used to obtain better estimates. It is also possible to start
with an estimate based on information obtained from earlier estimates and market
observations, and improve capacity charges through a few iterations.

We illustrate the iterative process by using a simple updating procedure in our
example, assuming the direct interpretation, or alternatively, identical market condi-
tions in consecutive time slots. In the example we start with capacity charges equal
to zero, implying that no lines are congested. This results in the unconstrained dis-
patch solution, which is not feasible. Alternatively, starting points may be based on
forecasts of congested lines and shadow prices.
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In each iteration, shadow prices, and consequently capacity charges, are updated,
to relieve the congested lines. The objective here is to illustrate the approach, rather
than finding the most efficient updating rule. There is a vast literature on algorithms
for updating (see for example Minoux 1986). For illustration, we have employed a
standard gradient method, where the shadow prices are updated on the general form:

Ve
wi = o M

(16)

Vi

where ufj is the estimated shadow price of line ij at iteration ¢, )’5’ is a gradient of
the objective function in (9) valued at iteration ¢, H )/i; H is a normalization of the

gradient, and Al’.j is the step chosen at time 7. In the example, we have defined the
terms as follows:

IA! k
Vi = gar = CAPy= ) _Bjdi = CAP;—g; a7
i k

lvi| = cap; (18)

where we see that yi’j is the under- or over-utilization of the line, and by normalizing
by CAP;;, we have the relative under- or over-utilization of the line.

If CAP; — g;; < 0, the line is congested, requiring the shadow price estimate of
line ij to be raised. If CAP;; — g;; > 0, the line is not congested and any shadow price
estimate for the line has to be driven towards 0. Thus the step Al’.j must be negative.
The size of the step /\fj determines the speed of change. In our example relatively
small steps induce a slow convergence towards the optimal value, while larger, but
still moderate steps give a faster convergence. However, steps which are large rel-
ative to the congestion of the line may cause an oscillation of capacity utilization
and shadow price around the optimal values. A definition of step size dependent on
the degree of capacity utilization, for example as shown in (19), may give a faster
convergence when over-utilization is high, while reducing oscillation around the
optimal value.

for ——

-1 > 0.1
2 = CAP; (19)
/ caP; - g3
0.1 for <oy
CAP,;

Figure 2 shows the resulting development of social surplus in 25 iterations defined
by (16)—(19) and with non-negativity constraints on the shadow prices. Starting from
the value connected to the infeasible unconstrained case, social surplus evolves to-
wards the level of the optimal case, however, oscillating due to our rather crude
definition of the iteration process.
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Fig. 3 Iterations: capacity utilization and shadow prices

The corresponding developments of capacity utilization and shadow prices are
displayed in Fig. 3. The left hand side displays the capacity and capacity utilization
of the lines that either are constrained starting with zero capacity charges (that is, at
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the system price of unconstrained dispatch), and/or that are constrained in optimal
dispatch. As in the above tables, the capacity and flow of line ij is displayed as a
positive number when the flow is in the direction 7 to j, and as a negative number
when the flow is in the direction j to i. The right hand side shows the estimated
shadow prices, where we equivalently have determined p;; > 0 as the shadow price
for the capacity in the direction of i to j, while | ,ul-j| is the shadow price of capacity
in the direct from j to i if p; < 0.

In the unconstrained market solution, we find that the implied flows over lines
23, 35, and 45 exceed capacity. This indicates a positive shadow price for each of
these lines, and the adjustment rule induces a rise in the shadow price estimates.
Nodal capacity charges are issued based on these estimates, and the result in the
second round of market clearing is a reduction of the actual flow over these lines.
Further iterations gradually increase the shadow price estimates of the lines, thus
reinforcing the reduction of the flow over the capacitated lines towards a feasible
solution.

It should be noted that the flows over all lines change as a result of the capacity
charges and the corresponding market equilibria:

— Line 35 is initially infeasible in the unconstrained solution, and the shadow
price of this line is estimated to be positive. However, though initially infeasi-
ble, changes in the flows of other lines due to capacity charges, actually induce a
lower flow over line 35, inducing a flow below capacity in optimum.

— Lines 12, 13, 14, and 56 are initially feasible. New market solutions as a result
of the capacity charges cause changes in lines 12, 13, 14, and 56 with flows still
below the line capacity.

— Line 46 starts with an initial feasible flow of 1.07 in the direction from node
4 to node 6. Changes elsewhere in the network give a reduced flow, and sub-
sequently a change in the flow direction, from node 6 to node 4, as illustrated
in the figure by negative numbers. Further changes in the network flows impli-
cate a non-feasible flow from 6 to 4 and thus a positive shadow price estimate
for He4.

The iterations in Fig. 3 illustrate the use of the gradient for updating shadow price
estimates. In our example, we find that with a constant small step, for example,
0.1, the line flow is driven asymptotically towards the capacity, albeit necessitating
a large number of iterations. A higher step size will speed the process when the
shadow price is far from the optimal value, but results in an oscillation around the
optimal value when coming near optimum, as shown in the example. The engineer-
ing of a more efficient algorithm will reduce the number of iterations called for.
However, taking into account the costs of iterations, in order to obtain feasible flows
within a small number of iterations, the adjustment procedure may have to be com-
bined with some other mechanism as, for example, curtailment or counter trading.
In the next section we attempt to speed up the convergence by a simple heuristic
procedure.



Capacity Charges: A Price Adjustment Process for Managing Congestion 287

6 A Heuristic Procedure for Faster Convergence

Above we have illustrated how iterations based on a simple standard gradient
method can bring the market solution towards optimal dispatch, and reduce line
flows of constrained lines towards capacity limits. We see that this procedure may
require a rather large number of iterations to reach the optimal solution. If the cost of
further iterations exceeds the gain in social surplus, it may be optimal to terminate
the iterative procedure before reaching the optimal solution. However, note that the
illustrated procedure is an upper bounding procedure, where the line flows of con-
strained lines are driven to the capacity limit from above. By prior termination of
the iteration procedure, the resulting flow will not be feasible. To find a feasible
flow, load or injections may be curtailed. A problem is, however, to curtail such
that the resulting market equilibria, that is, prices and quantities, are consistent with
bid functions. An infeasible flow can also be corrected through a secondary mar-
ket, for instance for counter trading. An alternative or supplement to such cut-off
mechanisms is to “force” the iteration itself to reach a feasible solution.

In this section we discuss a heuristic approach for finding a feasible flow that is
also a market equilibrium, and as we will see, brings us near the optimal solution.
The proposed heuristic procedure is based on Everett (1963).

Let us first