Adaptive Integration of Distributed Semantic
Web Data

Steven Lynden, Isao Kojima, Akiyoshi Matono, and Yusuke Tanimura

Information Technology Research Institute, National Institute of Advanced Industrial
Science and Technology
(AIST) Tsukuba, Japan
{steven.lynden,a.matono,yusuke.tanimura}@aist.go.jp,
kojima@ni.aist.go.jp

Abstract. The use of RDF (Resource Description Framework) data is
a cornerstone of the Semantic Web. RDF data embedded in Web pages
may be indexed using semantic search engines, however, RDF data is of-
ten stored in databases, accessible via Web Services using the SPARQL
query language for RDF, which form part of the Deep Web which is not
accessible using search engines. This paper addresses the problem of effec-
tively integrating RDF data stored in separate Web-accessible databases.
An approach based on distributed query processing is described, where
data from multiple repositories are used to construct partitioned tables
that are integrated using an adaptive query processing technique sup-
porting join reordering, which limits any reliance on statistics and meta-
data about SPARQL endpoints, as such information is often inaccurate
or unavailable, but is required by existing systems supporting federated
SPARQL queries. The approach presented extends existing approaches
in this area by allowing tables to be added to the query plan while it is
executing, and shows how an approach currently used within relational
query processing can be applied to distributed SPARQL query process-
ing. The approach is evaluated using a prototype implementation and
potential applications are discussed.

1 Introduction

The Resource Description Framework (RDF) [I], published by the World Wide
Web Consortium (W3C), is used to model information in order to support the
exchange of knowledge on the Web. The Semantic Web [2] effort is expected
to lead to an increasing amount of data being published using RDF. In some
cases RDF is embedded in Web pages and sometimes it may be held privately,
but often, RDF data is published in Web-accessible databases which clients can
access using a query interface accepting SPARQL [3], a W3C Recommendation
RDF query language, currently the most widely used method of querying RDF
data. The term “Deep Web” [4] was coined to refer to the part of the web
hidden from search engine indexes behind dynamically generated pages or query
interfaces. Given the abundance of RDF repositories with querying interfaces,

S. Kikuchi, S. Sachdeva, and S. Bhalla (Eds.): DNIS 2010, LNCS 5999, pp. 174 2010.
© Springer-Verlag Berlin Heidelberg 2010

Adaptive Integration of Distributed Semantic Web Data 175

the Semantic Web also constitutes a Deep Web and there is a need to develop
tools for accessing and integrating such data, especially in dynamic application
domains such as news and weather reporting, social networks etc. As the number
of RDF repositories and the volume of data they contain is increasing, it is
anticipated that various applications can benefit from the integration of RDF
data from multiple distributed RDF repositories.

The SPARQL language allows sets of triple patterns to be matched against
RDF graphs, supported by various features such as conjunctions, disjunctions,
filter expressions, optional triple patterns and multiple ways of representing
query results. The SPARQL query language has an associated protocol, also
a W3C Recommendation, the SPARQL Protocol for RDF [f], which defines
an interface by which queries may be executed on a SPARQL data resource
along with bindings for HTTP and SOAP. The purpose of the SPARQL pro-
tocol is to promote interoperability, where clients can interact with SPARQL
data resources in a consistent way. For query results, another W3C Recom-
mendation, SPARQL Query Results for XML [@], provides a way of encoding
results from SPARQL queries. Many RDF data repositories use the SPARQL
query language, SPARQL Protocol and XML results format in conjunction to
provide an interface for clients. Examples include DBPedia [7], an extraction of
structured information from Wikipedia, and the RDF-based instantiation of the
DBLP computer science publication bibliography database [§]. The use of the
SPARQL query language, protocol and result format in conjunction eliminates
syntactic heterogeneity between different data sources allowing them to be ac-
cessed comnsistently regardless of the underlying RDF database implementation.
Alternatives to the SPARQL protocol exist in the form of the Open Grid Forum
(OGF) Data Access and Integration Service (DAIS) Working Group’s specifi-
cations for accessing RDF data resources [9], which may eventually provide an
alternative to the SPARQL protocol, and middleware support such as OGSA-
DAI-RDF [I0], however at present the SPARQL protocol is far more widely
used.

Federated queries across multiple SPARQL endpoints allow data from such
endpoints to be integrated, and is also of potential benefit in heterogeneous
information systems where individual components may use SPARQL wrappers
to expose data. Data integration in this context is made particularly appealing
by the Linked Open Data Project [I1], which aims to promote widespread usage
of URI-based representations to allow RDF terms to be consistently defined. The
use of consistent URIs to represent the same terms in different databases means
that joining data across two data sources is possible, therefore federated queries
over multiple repositories can provide results that are not obtainable from any
one individual repository.

Existing systems for integrating RDF data from distributed SPARQL end-
points generally rely on the availability of statistics about the data which are
then used by an optimiser to compute a join order. This works well when the op-
timiser has accurate statistics about the data present in each of the repositories,
allowing it to minimise the size of the data retrieved from each endpoint and

176 S. Lynden et al.

effectively optimise joins and other operations. In contrast this paper focuses on
an adaptive approach that can respond to the characteristics of the data and
SPARQL endpoints from which the data is retrieved (for example join predicate
selectivity, rate at which the data is produced by the service etc.) while the data
is being integrated.

The framework described compiles a federated SPARQL query into a number
of source queries which are sent to individual SPARQL endpoints to retrieve the
data required to answer the query. The results from source queries are used to
construct a set of vertically partitioned RDF tables, which act as a temporary
buffer to hold data while it is integrated. The vertical partitioning of RDF triples
into relational predicate tables (one table for each predicate; subject and object
values as the two columns of each table) has been shown to be effective in [12].
The vertically partitioned tables are processed by an extension of the adaptive
query processing techniques presented in [I3], which allows join order to change
during query processing. This approach is adopted for optimising queries that
perform time-consuming joins between multiple RDF data sources by dynam-
ically building a query plan that can adapt to the characteristics of the data
as the query is being processed. Although the technique presented uses rela-
tional database processing techniques to join the predicate tables, the approach
in general aims to address challenges specific to integrating data from RDF
repositories, where SPARQL endpoints are autonomous and managed by indi-
viduals resulting in unpredictability and a lack of accurate statistics about the
data, meaning that adaptive query processing techniques can provide a signifi-
cant benefit. In addition to this, adaptive approaches also have the potential to
perform better in unpredictable environments, which is the case with integrating
data on a large scale. For example, data sources may be busy or temporarily un-
available and therefore process queries more slowly than anticipated, and some
endpoints may vary with respect to their support for specific features of the
SPARQL query language and their efficiency in supporting those features.

As the basic data model for knowledge representation on the Semantic Web,
RDF is currently becoming widely adopted. RDF is being used by various dif-
ferent individuals and organisations to publish information and a number of
publicly available RDF databases contain millions of triples [l. RDF forms the
basis of other Semantic Web components such as RDF Schema (RDFS) and The
Web Ontology Language (OWL). Together these components have the potential
to provide an interoperable description of information that can be interpreted
unambiguously and processed by automated reasoning and inference systems.
Community efforts, such as the the Linked Data project aim to promote the shar-
ing of data using RDF, and furthermore, RDF is being used by some publishers
to offer dynamic content, for example BBC Backstageld, which publishes various
media in RDF, for example information about TV and radio programmes. All
this means that publicly available RDF data is constantly being updated and

! The Uniprot protein database [http://www.uniprot.org], DBPedia and the Linked
Open Data project are examples.
2 BBC Backstage [http://ideas.welcomebackstage.com/datal

Adaptive Integration of Distributed Semantic Web Data 177

growing rapidly, presenting a significant challenge to the developers of applica-
tions that need to access this data. Furthermore, one of the key challenges related
to the proliferation of RDF data is that it is widely distributed. A distributed
RDF query processor addresses this issue by providing a technique for querying
multiple RDF repositories as if querying a single repository using SPARQL. In
particular, the use of adaptive query processing techniques is useful in scenar-
ios where the statistics about the contents of the repositories are incomplete
or unavailable, the data is constantly updated, and joins need to be performed
between data in different repositories.

The technique described in this paper has been used to develop a federated
SPARQL query processing interface, the Adaptive Distributed Endpoint RDF
Integration System (ADERIS) [14], which allows users to compose SPARQL
queries and execute them over multiple SPARQL services. This application
is suitable for users with a knowledge of SPARQL allowing them to compose
queries, however the approach is also useful for developing other applications
where queries are composed automatically and hidden from the user behind the
scenes.

2 Related Work

As SPARQL is relatively new, having become a W3C recommendation in 2008,
work focusing on distributed data integration over SPARQL endpoints is at an
early stage. Work in the wider area of distributed RDF query processing can be
roughly divided into the following categories:

1. Search engine based approaches which aim to index a large number of indi-
vidual documents containing Semantic Web data, for example Swoogle [15]
and YARS2 [16].

2. Top-down approaches where an RDF data set is partitioned into smaller
subsets which are processed in parallel. Examples of such approaches include
decomposition using RDF molecules [I7], data partitioning and placement
strategies for parallel RDF query processing [I8] and the use of peer-to-
peer/distributed hash table based approaches for distributing query pro-
cessing over a set of peers [19)].

3. Mediator-based approaches where data sets from multiple autonomous end-
points are combined together by the mediator, which optimises a federated
SPARQL query, providing transparent access to the individual endpoints as
if they were a single RDF graph.

Work related to (3) is discussed here, where SPARQL is used as the query
language and protocol via which data sources are accessed.

Firstly, although not a comprehensive distributed query processing solution,
it is worth mentioning that ARQ [20] (the SPARQL query processor for the
Jena [21] framework for developing semantic web applications) provides query
language extensions for executing remote queries, extending SPARQL with a
“SERVICE” construct which forwards triple patterns to a remote endpoint.

178 S. Lynden et al.

ARQ is extended by DARQ [22] (Distributed ARQ), a comprehensive RDF
distributed query processor capable of parsing, planning, optimising and exe-
cuting queries over multiple SPARQL endpoints. When using DARQ), it is not
necessary to refer to named graphs or specify anything other than a standard
declarative SPARQL query - DARQ parses the query, determines which data
sources should be queried and optimises the process of retrieving and integrat-
ing data from individual data sources. The system optimises queries based on
information about individual data sources provided by service descriptions, a
metadata format introduced in order to describe an RDF data source. Service
descriptions provide the DARQ optimiser with information such as predicate
selectivity values and other statistics, and are utilised during the generation of
source queries and join ordering, which is combined with physical optimisation
implemented using iterative dynamic programming.

FeDeRate [23] is a system for executing distributed queries over multiple data
sources supporting a variety of different interfaces, focusing on applications in
the domain of bioinformatics. Queries are submitted to FeDeRate in SPARQL,
mapped to a set of source queries which are sent to the individual data sources,
the results of which are combined and returned as the result of the federated
query. FeDeRate provides support for distributed queries with named graph
patterns using SPARQL’s syntactic support for queries over multiple named
graphs. Multiple named graphs may be referred to in a query, each of which is
accessed in the order that they appear in the query (as is the case with ARQ).
FeDeRate aims to minimise query result sizes in order to more efficiently execute
queries by using results from previously executed source queries as constant
values in subsequent queries. Optimisation such as query re-writing and join
ordering are not performed.

SemWIQ [24] is another system implemented using ARQ that offers a simi-
lar approach to DARQ), supporting RDF distributed queries with an optimiser
that uses statistics about endpoints obtained by a monitoring component that
issues SPARQL queries in order to generate statistics. In contrast to DARQ),
SemWIQ is able to support queries over endpoints for which DARQ’s statistics
and metadata can not be obtained due to restrictions of autonomy or privacy
etc., which is also the aim of the work presented in this paper. The monitoring
component, RDF-Stats [25], available as a separate component to the distributed
query processor, uses an extended SPARQL syntax supported by many SPARQL
endpoints which allows the aggregate construct COUNT. The authors state that
the monitoring component pulls a large amount of data from data sources and
should therefore be installed close (or ideally on the same cluster/node) as the
data source it is monitoring. SemWI(Q implements various query optimisation
strategies such as push-down of filter expressions, push down of optional group
patterns, push-down of joins and join and union reordering. However, as is the
case with DARQ, optimisation is done statically and requires statistics about
data sources.

The work presented in this paper differs from the approaches discussed in
this section in the sense that adaptive, rather than static optimisation, is used.

Adaptive Integration of Distributed Semantic Web Data 179

Furthermore, the approach presented in this paper focuses on efficiently exe-
cuting a specific kind of query, that of ordering multiple joins with large input
sizes. In practice, the adaptive approach could be used in conjunction with the
optimisation techniques implemented by systems such as DARQ and SemWIQ.

3 Federated SPARQL Query Processing Framework

The framework is based on a mediator that accepts a federated SPARQL query,
decomposes the query into a set of source queries and adaptively processes the
results. The system’s behavior is divided into two phases:

— Setup phase: the mediator is initialised with a list of SPARQL endpoints
over which queries are to be executed in the next phase.

— Query processing: federated queries are accepted and executed by the
mediator.

3.1 Setup Phase

To efficiently generate source queries, some metadata is required about each RDF
repository. As one of the key assumptions made in this work is that repositories
are autonomous and it may be difficult to retrieve detailed metadata and statis-
tics, the metadata used is restricted to information obtainable via a straightfor-
ward SPARQL query. As a minimum requirement, the mediator requires requires
knowledge of whether a particular predicate is known to be present or absent in
a given data source. During the initialisation of the system, a list of SPARQL
endpoint URISs is passed to the mediator, which submits the following SPARQL
query to each endpoint:

SELECT DISTINCT ?p WHERE { ?s 7p 7o }

Regarding RDF data and SPARQL queries, in general the following observations
made in [I8] hold true:

— The number of distinct predicate values is much less than the number of
distinct subjects or objects.

— In SPARQL queries, predicates are usually specified as query constraints,
whereas subjects and objects are more likely to be variables.

These properties are exploited later during querying, and also here during ini-
tialisation, as the number of distinct predicate terms tends to be much smaller
than subjects and objects, the above query can usually be executed in a rea-
sonable amount of time by most endpoints. In cases where the query cannot be
executed due to limits on query processing time or result sizes, an alternative
method such as the RDF-Stats tool for generating statistics about RDF data
can be used.

180 S. Lynden et al.

FEDERATED QUERY
SPARQL RESULT
QUERY

Mediator

: Start
Parsing adaptive

processor

1

.
B <predicate 1> <predicate 2> <predicate M>
.
.
N subject object subject object subject object
N
s1 ol s1 ol st ol
s2 02 s2 02 e s2 02
Execute
source
queries results \

source
query 1

SPARQL

source 2 “

source 1

0

source
query 2

SPARQL

source
query N

SPARQL

source N u

Fig. 1. Query processing framework

This figure illustrates the steps performed during query processing. In (1) the federated
SPARQL query is parsed and a set of source queries over N data sources are compiled
which are then executed in (2). An adaptive optimiser/evaluator is then started (3)
which joins the M predicate tables, constructed using source query results, to answer
the query.

Adaptive Integration of Distributed Semantic Web Data 181

3.2 Query Processing
Query processing, illustrated in Figure[Il consists of the following three steps:

1. Source query generation: the query is parsed and the data sources that need
to be utilised in order to answer the query are determined. Source queries
are constructed for each of these data sources, with the aim of retrieving all
the data needed to answer the query while minimising the execution time of
each query.

2. Execution of source queries and construction of predicate tables: source
queries are sent to the SPARQL endpoints and the results are used to con-
struct the predicate tables. Each triple returned from a query is placed,
according to its predicate value, in the appropriate table.

3. Adaptive join processing: the predicate tables are joined dynamically, ad-
ditionally any other operations in the federated SPARQL query, such as
FILTER predicates that could not be pushed down to source queries, are
applied here.

Steps 2 and 3 may overlap and take place concurrently, for instance, source
queries may still be executing while some predicate tables have been constructed
and are being joined. Each of the above steps is described in more detail below.
The following example federated query will be referred in order to illustrate the
process.

3.3 Example Federated SPARQL Query

To illustrate the approach, an example federated query over four data sources is
used. The data sources contain triples from the Friend of a Friend (FOAF) [26]
and DBPedia ontologies, distributed among data sources as follows.

Data source S1: Contains triples predicates foaf :name or foaf:homepage, i.e.
triples of the following form exist in the data source:

subject <http://xmlns.com/foaf/0.1/name> object
subject <http://xmlns.com/foaf/0.1/homepage> object

Data source S2: like S1, also contains only triples with predicate values foaf :name
and foaf :homepage and no triples where the predicate is foaf:depiction or
dbpedia:occupation. Data source S3: contains triples where the predicate is
foaf:depiction only. Data source S4: contains triples where the predicate
dbpedia:occupation only.

Each of the above data sources exposes its data via a separate SPARQL end-
point. The following query, which fetches the name, URL and image properties
associated with all entities classified as musicians, is executed over the data
sources:

PREFIX foaf: <http://xmlns.com/foaf/0.1>
PREFIX dbpedia: <http://dbpedia.org/property>
SELECT 7name ?url ?7img WHERE {

?7p foaf:name 7name .

182 S. Lynden et al.

?p foaf:homepage 7url .

?p foaf:depiction 7img .

?p dbpedia:occupation 7occupation
filter (7occupation=<dbpedia:Musician>)

3.4 Source Query Generation

The generation of source queries, sent to remote endpoints to retrieve data
needed to execute the federated query, is the only point at which the system
requires metadata, collected in the setup phase, about the SPARQL endpoints
being queried. For each data source, a source query is generated which contains
all of the triple patterns from the federated query that could possibly match
triples in the given data source, pushing down any filter expression predicates
and joins where possible. For the example query, the source queries generated
for data sources S1 & S2 are:

SELECT 7p 7ol 702 WHERE {
?p foaf:homepage 7ol
?p foaf:name 702

}

The above query pushes down a part of the join between the triple patterns
involving foaf:name and foaf:homepage to data sources S1 and S2 because
these data sources contain triples with both of these predicate values. The source
query for S3 retrieves all triples with the predicate value foaf:depiction as no
filter predicate or join can be pushed down to this data source:

SELECT ?p 7o WHERE {
?p foaf:depiction 7o

}
Finally, the source query for S4 pushes down one filter predicate as follows:

SELECT 7p 7o WHERE {
?p dbpedia:occupation 7o
FILTER (7o=<dbpedia:Musician>)
}

The metadata provides a mapping from predicates to data sources allowing
source queries such as those exemplified above to be constructed, retrieving from
each data source only triples with predicate values that are needed to evaluate
the query.

3.5 Construction of Predicate Tables

Each source query produces a stream of result triples used to construct a set of
predicate tables, where a table exists for each unique predicate value contained
in the results produced by the source queries. Each predicate table possess two
columns (subject and object) and maintains an index on any column that can
be potentially used as a join predicate during the subsequent phase when the

Adaptive Integration of Distributed Semantic Web Data 183

tables are joined to answer the query. A predicate table is complete when all
source queries that can possibly produce triples to be inserted into the given
table have finished. In the example introduced in the previous section, the four
predicate tables in Figure 2] are created.

In the work presented in this paper, predicate tables are stored in main mem-
ory, but they could potentially be written to a file system if necessary. To provide
true scalability, a distributed file system could be used to store the tables over
multiple nodes and parallelise the process of sending source queries and gener-
ating predicate tables from the results. Further performance enhancements are
also possible, for example, caching predicate tables used in previous queries in
order to speed up subsequent queries may be possible in some scenarios.

dbpedia:Occupation Source query:

Subject Object S4
dbpedia:Beck dbpedia:Musician (sample row)
foaf:Depiction Source query:

Subject Object S3

dbpedia:Batman http://../batman.png

foaf:Homepage Source query:
Subject Object S1 and S2
dbpedia:Beck www.beck.com
foaf:Name Source query:
Subject Object S1 and S2

dbpedia:Ian Rankin foaf:lan Rankin

Fig. 2. Example predicate tables created by the source queries in Section [3.4]

3.6 Adaptive Join Processing

Producing query results involves computing a set of joins between the con-
structed predicate tables. Here, all joins are index nested loop joins that consume
each tuple from their left input, use an index on join attributes to lookup match-
ing tuples from the right input and output joined tuples to the next operator
in the plan. [I3] presents a technique for reordering pipelined index nested loop
join-based query plans where the notion of depleted state is introduced to en-
capsulate the moment in which a sequence of joins is in a state whereby the
join order can be changed without throwing away results that have already been
produced. Here, this technique is applied when joining the predicate tables as it
allows the joins to be reordered based on run-time selectivity statistics (which

184 S. Lynden et al.

step 1:
add foaf:name, R1
foaf-homepage U
foaf:name foaf:homepage

Fig. 3. Adaptive join processing is initialised when two tables become complete. This
plan can be executed while the other predicate tables are being generated.

initially have to be roughly estimated). As some predicate tables become com-
plete before others, it is necessary to extend the reordering approach in a way
that allows the processing of joins between tables as soon as they become com-
plete rather than being idle until the entire set of query queries has finished.
When joins are executed, the selectivity of each join predicate is monitored so
that subsequent optimisation can use accurate selectivity values to find optimal
join orders. Monitoring is implemented within each join operator by recording
the number of input and output tuples processed by the operator. This whole
process takes place dynamically as the predicate tables constructed from source
query results become available.

The approach is explained using the ongoing example, the query processing of
which is illustrated in figures[3] [@and[El Initially, consider a state in which source
queries S1 and S2 are the first ones to finish. This means that the predicate tables
foaf :name and foaf:homepage are complete and may be joined, as illustrated
by Step 1 in Figure Bl The optimiser chooses to join with foaf:name as the
left input and use the index on foaf:homepage to execute the join. Following
this, source query S4 finishes and the dbpedia:occupation table is complete.
At this point foaf:homepage has only been used as the probed table (this is
the the right input table to the join from which tuples are retrieved using the
index); some rows from foaf :name have been consumed by the join and some
joined tuples have been output (R1). In order to avoid losing the joined result,
the optimiser creates two sub-plans as illustrated by Step 2 in Figure [the first
sub-plan has the result produced in Step 1, R1, as the left input table to a join
with dbpedia:occupation; the second sub-plan uses the unprocessed part of
foaf :name (the part of this table that wasn’t consumed by the join in Step 1),
referred to as foaf :name (%), and the optimiser is able to fully reorder this plan
based on the selectivity statistics gathered as the joins are executed. Both sub-
plans access the dbpedia:occupation table simultaneously; the first sub-plan
using the index to probe the table, the second plan either using it as a probed
input or possibly a left input to the first join, as is the case in Step 3 in Figure[5l
This can be achieved by keeping a separate set of pointers for each sub-plan to
determine which rows to read.

Adaptive Integration of Distributed Semantic Web Data 185

step 2:
add dbpedia:occupation

R2 R3

Join

U >,

reordering X

/ possible
R1

i foaf:homepage

dbpedia:occupation / \

dbpedia:occupation foaf:name(*)

Fig. 4. A third table is added during adaptive join processing. Two independent plans
are formed that will be integrated when all predicate tables are complete. The join
order of the plan generating R3 may be changed (at any time, independently of the
other plan) in response to monitored join selectivities. The other plan’s join order
cannot be changed because there is no index on the intermediate results R1 that was
generated in the previous step.

When the remaining source query, S3, has finished, all predicate tables are
now complete and the plan can be finalised. As two independent query sub-plans
have been created in Step 2, this must take place when both plans are in states
where reordering is possible (a ‘depleted state’ as defined in [I3]), which can be
achieved by pausing the first sub-plan to reach this state after the completion of
S3 and waiting for the next sub-plan to enter this state. At this point the final
plan may be constructed, which consists of the results from the two sub-plans
created in Step 2 joined with the now-available foaf:depication table, and
additionally a sub-plan processing the non-consumed parts of each of the four
tables. It should be noted that the plan in Step 2 that produces R2 needs to
be executed until is has completely consumed its input from R1. The plans that
produce R1 (in Step 1) and R3 (in Step 2) are discarded once the next step is
reached as they do not read tuples from a cache operator, and in these cases only
the cache needs to be preserved. Each of the sub-plans in Step 3 are combined
by union operators to produce the query result as no new predicate tables need
to be added. Processing joins as described here has the following advantages:

— Nothing is known about the selectivity of join predicates before the query is
executed so it is difficult to produce a statically optimised query plan. Using
selectivity monitoring and join reordering alleviates the need to produce a
statically optimised plan.

— The predicate tables are processed as they become available so there is no
need to wait until all source queries have finished before executing the query.
This has the potential to reduce query response time in certain cases.

186 S. Lynden et al.

step 3:
add foaf:depiction
U
Jjoin
reordering
> possible
/ \ foaf:depiction
/ \ R3 foaf:depiction bpedla occupation(*)
foaf:depiction /
foaf:homepage foaf:name(*)

step 3(a) - example reordering

/\
7\
ﬂ\ A

R3

foaf:depiction foaf:depiction
R2 foaf.deplctlon / \

dbpedia:occupation(*) foaf:name(*)

Fig.5. The final table is added during adaptive join processing. Step 3 (a) shows an
example reordering which can take place if join predicate selectivity monitoring shows
that estimated selectivity is substantially different from the monitored selectivity. The
reordered elements of the plan are highlighted in bold. Note that sub-plans can be

reordered independently of other sub-plans.

Adaptive Integration of Distributed Semantic Web Data 187

— Predicate tables that have been joined can potentially be discarded. Com-
pared to waiting until all predicate tables become complete, this can be
beneficial in terms of memory usage when processing large amounts of data.

4 Performance Analysis

A prototype query processor has been implemented in Java, currently supporting
only SPARQL SELECT queries with subject/object variables (predicates must
be constrained) and without various language features such as support for the
OPTIONAL construct. The prototype does however allow for an evaluation of
the approach based on the execution of a simple federated query over multiple
SPARQL endpoints.

4.1 Data Sources and Queries
An evaluation is made using QUERY-1:

PREFIX dbpedia: <http://dbpedia.org/property>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema>
PREFIX foaf: <http://xmlns.com/foaf/0.1>
PREFIX skos: <http://www.w3.org/2004/02/skos/core>
SELECT 7ref ?7comment 7page ?subj WHERE {

7obj dbpedia:reference 7ref .

?0obj rdfs:comment 7comment .

?obj foaf:page 7page .

7obj skos:subject 7subj

}

This federated SPARQL query combines data from four separate RDF data
sources, each of which contains data from one of the following four DBPedia
data sets which are available for download individually from the DBPedia site:

1. The “External Links” data set containing triples with the predicate term
dbpedia:reference.

2. The “Short Abstracts” data set containing triples with the predicate term
rdfs:comment.

3. The “Links to Wikipedia Article” data set containing triples with the pred-
icate term foaf :page.

4. The “Article Categories” data set containing triples with the predicate term
skos:subject.

The SPARQL endpoints are constructed by downloading the files from DBPedia
and using Joseki [27] to provide a SPARQL front end. Each endpoint is located
on a separate (3GHz Intel Xeon) machine with 1MB available memory for the
Java Virtual Machine providing the endpoint. Endpoint machines are connected
to the machine on which the mediator is deployed (2GHz AMD Athlon X2, 2GB
RAM) via a 100Mbs Ethernet LAN. The experiments compare the following four
query processing strategies:

188 S. Lynden et al.

— wait no-adapt: The system does not allow join reordering (no-adapt) and
the joins are not processed until all source queries have finished and the
predicate tables are complete (wait).

— no-wait no-adapt: The system does not allow join reordering (no-adapt) but
as soon as predicate tables are complete they may be joined if possible (no-
wait).

— wait adapt: Join reordering is allowed (adapt), but the plan is not executed
until all source queries have finished and the predicate tables are complete
(wait).

— no-wait adapt: The full application of the technique presented in this paper;
join reordering is allowed (adapt) and predicate tables may be joined as soon
as they become available (no-wait).

Distributed query processing over autonomous data sources can be complicated
by the unpredictability of the data sources and the communication channels be-
tween them. Data sources may sometimes be slow to respond if demand from
multiple clients is high or maintenance/updates to the data are taking place. In
some cases, queries may fail completely if data sources are temporarily unavail-
able or a network problem occurs when communicating with the data source.
There may also be differences between the underlying implementation used by
different data sources, for example, indexes used and support or lack of support
for different aspects of the SPARQL query language. Adaptive query processing
can help to mitigate the effects of such unpredictability by responding to differ-
ent data source response times while a federated query is being processed. To
model such an environment, source query failures are incorporated into the ex-
periments. Source query failures are modeled as follows: for each federated query
processed by the system, one of the source queries (randomly selected) encoun-
ters a fatal problem necessitating the source query to be executed again. This
behaviour is introduced with the aim of simulating real-life situations where a
SPARQL service is busy and cannot respond (temporarily unavailable) or a ser-
vice is down and data must instead be retrieved from an alternative (replicated)
service. Two experiments are performed, as described below.

Ezxperiment 1. The first experiment investigates the performance with respect to
scalability by varying the size of the data sets. Subsets of the complete data sets
are used to execute the experiments with each data source containing the same
number of triples, starting with each data source containing 100,000 triples. The
experiment is repeated for larger data set sizes in increments of 100,000 triples
until all data sources contain 600,000 triples.

Ezxperiment 2. The second experiment introduces FILTER expressions into
QUERY-1 to evaluate performance where predicates are evaluated by each of
the data sources - this results in variance of the size of the data set returned
by each data source and the amount of time taken by each data source to an-
swer source queries. Randomly selected letters or common string patterns such
as ‘the’; ‘as’, ‘in’ etc. are inserted into REGEX (regular expression) functions

Adaptive Integration of Distributed Semantic Web Data 189

associated with each triple pattern. In any randomly generated query, for each
triple pattern there is a 0.25 probability of inserting a randomly selected word.
For example, a randomly generated query could be:

PREFIX dbpedia: <http://dbpedia.org/property>
PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schema>
PREFIX foaf: <http://xmlns.com/foaf/0.1>
PREFIX skos: <http://www.w3.org/2004/02/skos/core>
SELECT 7obj ?ref 7comment ?7page 7subj WHERE {
7obj dbpedia:reference 7ref .
?0obj rdfs:comment 7comment .
7obj foaf:page 7page . FILTER regex(str(?page), ‘in’)
7obj skos:subject 7subj

}

Inserting predicates into the query in this manner introduces increases the vari-
ance of the processing time per result triple for source queries (since REGEX
functions may need to be implemented by data sources), the size of the result
set returned from each data source, and hence, the size of the federated query
result set and overall query processing time. 20 queries were generated randomly
using the approach described, and for each generated query, the response times
of the four different query processing strategies were compared.

4.2 Results

Response times for Experiment 1 are shown in Figure [l It can be seen that
the no-wait adapt strategy provides the fastest response times, in particular
with large data sizes. Response times for Experiment 2 are shown in Figure [1],
where each item on the x-axis corresponds to a randomly generated query (the
order in which the queries appear is not significant and comparisons should be
made between the four different response times of the different strategies within
the same query only). Again, the no-wait adapt strategy generally performs
better when compared to the other strategies, in particular when overall query
processing times are relatively high. As with Experiment 1, results show some
advantage of the two adaptive techniques (wait adapt and no-wait adapt) over
the non-adaptive techniques, in particular when query response times are high.
As the no-wait adapt strategy appears to perform best when the number of
triples is large, e.g. when each data source contains 600k triples in in Figure
where it has a clear advantage over the non-adaptive strategies, future work will
involve performing experiments with larger data sets in order to confirm that
this observed trend continues as join input sizes grow. For low query response
times, corresponding to queries that involve relatively small volumes of data
being returned from source queries, there is little difference between the four
strategies. Where the adaptive strategies perform worse than the non-adaptive
strategies, this can be accounted for by the overhead in adapting, including
monitoring for states at which reordering is possible and starting/stopping the
executing plan.

190 S. Lynden et al.

H no-wait adapt M wait adapt B no-waitno-adapt M wait no-adapt

1400

1200

1000

800

Response
time
(seconds)

600

400

200

0-:

100,000 200,000 300,000 400,000 500,000 600,000

Number of triples in each data source

Fig. 6. Experiment 1 response times

Adaptive Integration of Distributed Semantic Web Data 191

H no-wait adapt M waitadapt M no-wait no-adapt M wait no-adapt

1200

1000

800

Response
time 600
(seconds)

400

200 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Query

Fig. 7. Experiment 2 response times

5 Conclusions

An adaptive framework has been presented for executing queries over multiple
SPARQL endpoints that differs from existing approaches which use static query
optimisation techniques. Many SPARQL web services are currently available and
the number of them is growing. The work presented in this paper is a framework
for executing queries over federations of such services. The framework proposed
in this paper, which allows adaptive query processing over dynamically con-
structed predicate tables to be performed in conjunction with the construction
of the predicate tables, was shown to perform relatively well in unpredictable en-
vironments where source query failures may occur. The prototype implemented
was evaluated using real data, showing some advantage in terms of response
times of adaptive over non-adaptive methods using a subset of DBPedia. Future
work will aim to investigate other data sets with different characteristics and

192 S. Lynden et al.

larger data sets. As the approach presented in this paper focuses on efficiently
executing a specific kind of query, that of adaptively ordering multiple joins,
further work will focus on optimising other kinds of queries and implement-
ing support for more SPARQL query language features. Future work will also
concentrate on investigating how the work can be applied in various domains.

Acknowledgments

This work was supported by the Strategic Information and Communications
R&D Promotion Programme (SCOPE) of the Ministry of Internal Affairs and
Communications (MIC), Japan.

References

1. Klyne, G., Carroll, J.J.: Resource description framework (rdf): Concepts and ab-
stract syntax. Technical report, W3C (2004)

2. Berners-Lee, T.H., Lassila, O.J.: The Semantic Web. Scientific American 284(5),
28-37 (2001)

3. Eric Prudhommeaux and Andy Seaborne. SPARQL Query Language for RDF.
Technical report, W3C (2008)

4. Bergman, M.K.: The Deep Web: Surfacing Hidden Value. The Journal of Electronic
Publishing 7 (2001)

5. Clark, K.G., Feigenbaum, L., Torres, E.: SPARQL Protocol for RDF. Technical
report, W3C (2008)

6. Beckett, D., Broekstra, J.: SPARQL Query Rresults XML Format. Technical re-
port, W3C (2008)

7. DBPedia, http://dbpedia.org/

8. D2R Server publishing the DBLP Bibliography Database,
http://www4.wiwiss.fu-berlin.de/dblp/

9. Gutiérrez, M.E., Kojima, 1., Pahlevi, S.M., Corcho, O., Gémez-Pérez, A.: Access-
ing RDF(S) data resources in service-based grid infrastructures. Concurrency and
Compututation: Practice and Experience 21(8), 1029-1051 (2009)

10. Kojima, I., Kimoto, M.: Implementation of a Service-based Grid Middleware for
Accessing RDF Databases. In: Proceedings of Workshop on Semantic Extensions
to Middleware: Enabling Large Scale Knowledge Applications (SEMELS 2009)
(November 2009)

11. Linked Data - Connect Distributed Data across the Web, http://linkeddata.org/

12. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: SW-Store: a vertically parti-
tioned DBMS for Semantic Web data management. VLDB J 18(2), 385-406 (2009)

13. Li, Q., Sha, M., Markl, V., Beyer, K., Colby, L., Lohman, G.: Adaptively Reorder-
ing Joins during Query Execution. In: Proc. ICDE, pp. 26-35. IEEE Computer
Society, Los Alamitos (2007)

14. Lynden, S., Kojima, I., Matono, A., Tanimura, Y.: ADERIS: Adaptively integrating
RDF data from SPARQL endpoints (Demo Paper). In: Proceedings of the Database
Systems for Advanced Applications (DASFAA) Conference 2010 (2010) (to appear)

15. Ding, L., Finin, T., Joshi, A., Peng, Y., Cost, R.S., Sachs, J., Pang, R., Reddivari,
P., Doshi, V.: Swoogle: A Semantic Web Search And Metadata Engine. In: 13th
ACM Conference on Information and Knowledge Management (2004)

http://dbpedia.org/
http://www4.wiwiss.fu-berlin.de/dblp/
http://linkeddata.org/

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.
27.

Adaptive Integration of Distributed Semantic Web Data 193

Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A Federated Repository
for Querying Graph Structured Data from the Web. In: Aberer, K., et al. (eds.)
ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 211-224. Springer, Heidelberg
(2007)

Newman, A., Li, Y.-F., Hunter, J.: Scalable Semantics, The Silver Lining of Cloud
Computing. In: 4th IEEE International Conference on e-Science (e-Science 2008)
(2008)

Tanimura, Y., Matono, A., Kojima, I., Sekiguchi, S.: Storage Scheme for Parallel
RDF Database Processing Using Distributed File System and MapReduce. In: In-
ternational Conference on High Performance Computing in the Asia Pacific Region
(2009)

Liarou, E., Idreos, S., Koubarakis, M.: Continuous RDF Query Processing over
DHTs. In: International Conference Semantic Web Computing (2007),
http://iswc2007.semanticweb.org/papers/323.pdf

ARQ SPARQL query processing framework, http://jena.sourceforge.net/ARQ/
Carroll, J.J., Dickinson, I., Dollin, C., Seaborne, A., Wilkinson, K., Reynolds, D.,
Reynolds, D.: Jena: Implementing the semantic web recommendations. Technical
Report HPL-2003-146, Hewlett Packard Laboratories (2004)

Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL. In:
Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021. Springer, Heidelberg (2008)

Prudhommeaux, E.: Optimal RDF access to relational databases. Technical report,
W3C (2005), http://www.w3.org/2004/04/30-RDF-RDB-access/

Langegger, A., Woss, A., Bloch, W.: A Semantic Web Middleware for Virtual
Data Integration on the Web. In: Bechhofer, S., Hauswirth, M., Hoffmann, J.,
Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021. Springer, Heidelberg (2008)
RDFStats home (subproject of Semantic Web Integrator and Query Engine),
http://semwiq.faw.uni-linz.ac.at/rdfstats/

The Friend of a Friend (FOAF) Project, http://www.foaf-project.org/
JOSEKI - A SPARQL Server for Jena, http://www.joseki.org/

http://iswc2007.semanticweb.org/papers/323.pdf
http://jena.sourceforge.net/ARQ/
http://www.w3.org/2004/04/30-RDF-RDB-access/
http://semwiq.faw.uni-linz.ac.at/rdfstats/
http://www.foaf-project.org/
http://www.joseki.org/

	Adaptive Integration of Distributed Semantic Web Data
	Introduction
	Related Work
	Federated SPARQL Query Processing Framework
	Setup Phase
	Query Processing
	Example Federated SPARQL Query
	Source Query Generation
	Construction of Predicate Tables
	Adaptive Join Processing

	Performance Analysis
	Data Sources and Queries
	Results

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

