


Lecture Notes in Computer Science 6014
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA



Luke Ong (Ed.)

Foundations
of Software Science and
Computational Structures

13th International Conference, FOSSACS 2010
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2010
Paphos, Cyprus, March 20-28, 2010. Proceedings

1 3



Volume Editor

Luke Ong
Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK
E-mail: lo@comlab.ox.ac.uk

Library of Congress Control Number: 2010921919

CR Subject Classification (1998): F.3, F.1, F.4, D.3, D.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-12031-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-12031-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180 5 4 3 2 1 0



Foreword

ETAPS 2010 was the 13th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that was
established in 1998 by combining a number of existing and new conferences. This
year it comprised the usual five sister conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 19 satellite workshops (ACCAT, ARSPA-WITS, Bytecode, CMCS,
COCV, DCC, DICE, FBTC, FESCA, FOSS-AMA, GaLoP, GT-VMT, LDTA,
MBT, PLACES, QAPL, SafeCert, WGT, and WRLA) and seven invited lec-
tures (excluding those that were specific to the satellite events). The five main
conferences this year received 497 submissions (including 31 tool demonstration
papers), 130 of which were accepted (10 tool demos), giving an overall accep-
tance rate of 26%, with most of the conferences at around 24%. Congratulations
therefore to all the authors who made it to the final programme! I hope that most
of the other authors will still have found a way of participating in this exciting
event, and that you will all continue submitting to ETAPS and contributing to
make of it the best conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice are
represented, with an inclination toward theory with a practical motivation on the
one hand and soundly based practice on the other. Many of the issues involved
in software design apply to systems in general, including hardware systems, and
the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2010 was organised by the University of Cyprus in cooperation with:

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

and with support from the Cyprus Tourism Organisation.



VI Foreword

The organising team comprised:

General Chairs: Tiziana Margaria and Anna Philippou
Local Chair: George Papadopoulos
Secretariat: Maria Kittira
Administration: Petros Stratis
Satellite Events: Anna Philippou
Website: Konstantinos Kakousis.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Parosh Abdulla (Uppsala), Luca
de Alfaro (Santa Cruz), Gilles Barthe (IMDEA-Software), Giuseppe Castagna
(CNRS Paris), Marsha Chechik (Toronto), Sophia Drossopoulou (Imperial
College London), Javier Esparza (TU Munich), Dimitra Giannakopoulou
(CMU/NASA Ames), Andrew D. Gordon (MSR Cambridge), Rajiv Gupta
(UC Riverside), Chris Hankin (Imperial College London), Holger Hermanns
(Saarbrücken), Mike Hinchey (Lero, the Irish Software Engineering Research
Centre), Martin Hofmann (LM Munich), Joost-Pieter Katoen (Aachen), Paul
Klint (Amsterdam), Jens Knoop (Vienna), Shriram Krishnamurthi (Brown),
Kim Larsen (Aalborg), Rustan Leino (MSR Redmond), Gerald Luettgen
(Bamberg), Rupak Majumdar (Los Angeles), Tiziana Margaria (Potsdam),
Ugo Montanari (Pisa), Oege de Moor (Oxford), Luke Ong (Oxford), Fer-
nando Orejas (Barcelona) Catuscia Palamidessi (INRIA Paris), George Pa-
padopoulos (Cyprus), David Rosenblum (UCL), Don Sannella (Edinburgh), João
Saraiva (Minho), Michael Schwartzbach (Aarhus), Perdita Stevens (Edinburgh),
Gabriele Taentzer (Marburg), and Martin Wirsing (LM Munich).

I would like to express my sincere gratitude to all of these people and
organisations, the Programme Committee Chairs and members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer for agreeing to publish the
ETAPS proceedings in the ARCoSS subline.

Finally, I would like to thank the organising Chair of ETAPS 2010, George
Papadopoulos, for arranging for us to have ETAPS in the most beautiful sur-
roundings of Paphos.

January 2010 Vladimiro Sassone



Preface

This volume contains the proceedings of the 13th International Conference on the
Foundations of Software Science and Computational Structures (FoSSaCS) 2010,
held in Paphos, Cyprus, 20–28 March 2010. FoSSaCS is an event of the Joint Eu-
ropean Conferences on Theory and Practice of Software (ETAPS). The previous
12 FoSSaCS conferences took place in Lisbon (1998), Amsterdam (1999), Berlin
(2000), Genoa (2001), Grenoble (2002),Warsaw (2003), Barcelona (2004), Edin-
burgh (2005), Vienna (2006), Braga (2007), Budapest (2008) and York (2009).

FoSSaCS presents original papers on the foundations of software science.
The Programme Committee (PC) invited submissions on theories and methods
to support analysis, synthesis, transformation and verification of programs and
software systems.

We received 110 abstracts and 86 full paper submissions; of these, 25 were
selected for presentation at FoSSaCS and inclusion in the proceedings. Also
included is the abstract of a lecture, “Introduction to Decidability of Higher-
Order Matching” by Colin Stirling, the FoSSaCS 2010 invited speaker. The PC
members, and the external experts they consulted, wrote a total of over 460
paper reviews, and the discussion phase of the meeting involved several hundred
messages. The competition was extremely keen; unfortunately many good papers
could not be accepted.

I thank all the authors of papers submitted to FoSSaCS 2010. I thank also
members of the PC for their sterling work, as well as the external reviewers for
the expert help and reviews they provided. Throughout the phases of submis-
sion, evaluation, and production of the proceedings, we relied on the invaluable
assistance of the EasyChair system; we are very grateful to its developer Andrei
Voronkov and his team. Last but not least, we would like to thank the ETAPS
2010 Local Organizing Committee (chaired by George A. Papadopoulos) and the
ETAPS Steering Committee (chaired by Vladimiro Sassone) for their efficient
coordination of all the activities leading up to FoSSaCS 2010.

January 2010 Luke Ong



Conference Organization

Programme Chair

Luke Ong University of Oxford, UK

Programme Committee

Andreas Abel Ludwig Maximilians University, Munich, Germany
Christel Baier University of Dresden, Germany
Patrick Baillot ENS Lyon, France
Miko�laj Bojańczyk University of Warsaw, Poland
Patricia Bouyer ENS Cachan, France
Krishnendu Chatterjee Institute of Science and Technology, Austria
Hubert Comon ENS Cachan, France
Thierry Coquand Göteborg University, Sweden
Herman Geuvers Radboud University, Nijmegen, The Netherlands
Masahito Hasegawa Kyoto University, Japan
Ranko Lazic University of Warwick, UK
John Longley University of Edinburgh, UK
Carsten Lutz University of Bremen, Germany
Guy McCusker University of Bath, UK
Angelo Montanari University of Udine, Italy
Markus Müller-Olm University of Münster, Germany
Rocco De Nicola University of Florence, Italy
Luke Ong (Chair) University of Oxford, UK
Jens Palsberg University of California at Los Angeles, USA
Dusko Pavlovic Kestrel Institute, USA
Benjamin Pierce University of Pennsylvania, USA
Alexander Rabinovich University of Tel Aviv, Israel
Jan Rutten CWI and Free University Amsterdam, The Netherlands
Makoto Tatsuta National Institute of Informatics, Tokyo, Japan

External Reviewers

Lucia Acciai
Luca Aceto
Klaus Aehlig
Jonathan Aldrich
Wladimir Araujo
Robert Atkey
Roland Axelsson

Lennart Beringer
Marco Bernardo
Nathalie Bertrand
Laura Bocchi
Chiara Bodei
Aaron Bohannon
Udi Boker



X Conference Organization

Benedikt Bollig
Filippo Bonchi
Marcello Bonsangue
Michele Boreale
Tomas Brazdil
Davide Bresolin
Thomas Brihaye
Christopher Broadbent
Dumitru Potop Butucaru
Luis Caires
Venanzio Capretta
Alberto Casagrande
Bor-Yuh Evan Chang
Adam Chlipala
Frank Ciesinski
Corina Cirstea
Dave Clarke
Matthew Collinson
Adriana Compagnoni
Pierluigi Crescenzi
Giovanna D’Agostino
Morten Dahl
Stéphanie Delaune
Giorgio Delzanno
Pierre-Malo Deniélou
josee Desharnais
Mariangiola Dezani
Laurent Doyen
Peter Dybjer
Rachid Echahed
Thomas Ehrhard
Alain Finkel
Marco Faella
Xinyu Feng
Wan Fokkink
Vojteich Forejt
Luca Fossati
Cédric Fournet
Massimo Franceschet
Oliver Friedmann
Andrew Gacek
Fabio Gadducci
Didier Galmiche
Pierre Ganty
Wouter Gelade

Raffaella Gentilini
Elena Giachino
Hugo Gimbert
Valentin Goranko
Daniele Gorla
Marcus Groesser
Stefan Haar
Matthew Hague
Ichiro Hasuo
Tobias Heindel
Angela Hennessy
Holger Hermanns
Thomas Hildebrandt
Florian Horn
Tomasz Idziaszek
Bart Jacobs
Petr Jancar
Alan Jeffrey
Barbara Jobstmann
Tomasz Jurdzinski
Antonios Kalampakas
Shin-ya Katsumata
Joachim Klein
Bartek Klin
Sascha Klueppelholz
Eryk Kopczynski
Stephane Kreutzer
Clemens Kupke
Alexander Kurz
Barbara König
Anna Labella
Jim Laird
Peter Lammich
Martin Lange
Francois Laroussinie
Slawomir Lasota
Olivier Laurent
Marina Lenisa
Paul Levy
Hans-Wolfgang Loidl
William Lovas
Etienne Lozes
Christoph Lüth
Christof Löding
Radu Mardare



Conference Organization XI

Nicolas Markey
Mieke Massink
Ralph Matthes
James McKinna
Catherine Meadows
Paul-Andre Mellies
Massimo Merro
Stephan Merz
Jakub Michaliszyn
Marino Miculan
Michael Mislove
Larry Moss
Mohammad Reza Mousavi
Aniello Murano
Andrzej Murawski
Keiko Nakata
Koji Nakazawa
Monica Nesi
Uwe Nestmann
Martin R. Neuhußer
Milad Niqui
Damian Niwinski
David Nowak
Vincent van Oostrom
Karol Ostrovsky
Joel Ouaknine
Damien Pous
Alessandra Palmigiano
Prakash Panangaden
Mimmo Parente
Pawel Parys
Dirk Pattinson
Levy Paul
Jan Peleska
Detlef Plump
Arnd Poetzsch-Heffter
John Power

Vinayak Prabhu
Gabriele Puppis
Femke van Raamsdonk
Sasa Radomirovic
Vishwanath Raman
Jason Reed
Alejandro Russo
Pietro Sala
Davide Sangiorgi
Arnaud Sangnier
Mor Savas
Zdenek Sawa
Sylvain Schmitz
Lutz Schrder
Jakob Grue Simonsen
Alex Simpson
Geoffrey Smith
Pawel Sobocinski
Ana Sokolova
Marielle Stoelinga
Pierre-Yves Strub
Aaron Stump
Grégoire Sutre
Luca Tesei
Salvatore La Torre
Ashutosh Trivedi
Josef Urban
Lionel Vaux
Nicola Vitacolonna
Dimitrios Vytiniotis
Daniel Wagner
Richard Warburton
Alexander Wenner
Freek Wiedijk
James Worrell
Hans Zantema
Marc Zeitoun



Table of Contents

FoSSaCS 2010 Invited Talk

Introduction to Decidability of Higher-Order Matching (Abstract) . . . . . . 1
Colin Stirling

Semantics of Programming Languages

A Semantic Foundation for Hidden State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Jan Schwinghammer, Hongseok Yang, Lars Birkedal,
François Pottier, and Bernhard Reus

Linearly-Used Continuations in the Enriched Effect Calculus . . . . . . . . . . 18
Jeff Egger, Rasmus Ejlers Møgelberg, and Alex Simpson

Block Structure vs. Scope Extrusion: Between Innocence and
Omniscience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Andrzej S. Murawski and Nikos Tzevelekos

Completeness for Algebraic Theories of Local State . . . . . . . . . . . . . . . . . . . 48
Sam Staton

Probabilistic and Randomised Computation

Fair Adversaries and Randomization in Two-Player Games . . . . . . . . . . . . 64
Eugene Asarin, Raphaël Chane-Yack-Fa, and Daniele Varacca

Retaining the Probabilities in Probabilistic Testing Theory . . . . . . . . . . . . 79
Sonja Georgievska and Suzana Andova

Concurrency and Process Theory

Forward Analysis of Depth-Bounded Processes . . . . . . . . . . . . . . . . . . . . . . . 94
Thomas Wies, Damien Zufferey, and Thomas A. Henzinger

Incremental Pattern-Based Coinduction for Process Algebra and Its
Isabelle Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Andrei Popescu and Elsa L. Gunter

Parameterised Multiparty Session Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and
Raymond Hu



XIV Table of Contents

On the Relationship between Spatial Logics and Behavioral
Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Lucia Acciai, Michele Boreale, and Gianluigi Zavattaro

Modal and Temporal Logics

An Easy Completeness Proof for the Modal μ-Calculus on Finite
Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Balder ten Cate and Gaëlle Fontaine

When Model-Checking Freeze LTL over Counter Machines Becomes
Decidable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Stéphane Demri and Arnaud Sangnier

Model Checking Is Static Analysis of Modal Logic . . . . . . . . . . . . . . . . . . . 191
Flemming Nielson and Hanne Riis Nielson

Counting CTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
François Laroussinie, Antoine Meyer, and Eudes Petonnet

Algorithmic Metatheorems for Decidable LTL Model Checking over
Infinite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Anthony Widjaja To and Leonid Libkin

Verification

Toward a Compositional Theory of Leftist Grammars and
Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Pierre Chambart and Philippe Schnoebelen

Degrees of Lookahead in Regular Infinite Games . . . . . . . . . . . . . . . . . . . . . 252
Michael Holtmann, �Lukasz Kaiser, and Wolfgang Thomas

Reachability Analysis of Communicating Pushdown Systems . . . . . . . . . . 267
Alexander Heußner, Jérôme Leroux, Anca Muscholl, and
Grégoire Sutre

The Complexity of Synchronous Notions of Information Flow
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Franck Cassez, Ron van der Meyden, and Chenyi Zhang

Categorical and Coalgebraic Methods

Monads Need Not Be Endofunctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Thorsten Altenkirch, James Chapman, and Tarmo Uustalu

CIA Structures and the Semantics of Recursion . . . . . . . . . . . . . . . . . . . . . . 312
Stefan Milius, Lawrence S. Moss, and Daniel Schwencke



Table of Contents XV

Coalgebraic Correspondence Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Lutz Schröder and Dirk Pattinson

Lambda Calculus and Types

Untyped Recursion Schemes and Infinite Intersection Types . . . . . . . . . . . 343
Takeshi Tsukada and Naoki Kobayashi

Solvability in Resource Lambda-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
Michele Pagani and Simona Ronchi della Rocca

A Hierarchy for Delimited Continuations in Call-by-Name . . . . . . . . . . . . . 374
Alexis Saurin

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389



Introduction to Decidability of Higher-Order
Matching

Colin Stirling

School of Informatics
University of Edinburgh

cps@inf.ed.ac.uk

Abstract. Higher-order unification is the problem given an equation
t = u containing free variables is there a solution substitution θ such
that tθ and uθ have the same normal form? The terms t and u are
from the simply typed lambda calculus and the same normal form is
with respect to βη-equivalence. Higher-order matching is the particular
instance when the term u is closed; can t be pattern matched to u?
Although higher-order unification is undecidable, higher-order matching
was conjectured to be decidable by Huet [2]. Decidability was shown in
[7] via a game-theoretic analysis of β-reduction when component terms
are in η-long normal form.

In the talk we outline the proof of decidability. Besides the use of
games to understand β-reduction, we also emphasize how tree automata
can recognize terms of simply typed lambda calculus as developed
in [1, 3–6].

References

1. Comon, H., Jurski, Y.: Higher-order matching and tree automata. In: Nielsen, M.
(ed.) CSL 1997. LNCS, vol. 1414, pp. 157–176. Springer, Heidelberg (1998)

2. Huet, G.: Rèsolution d’èquations dans les langages d’ordre 1, 2, . . . ω. Thèse de
doctorat d’ètat, Universitè Paris VII (1976)

3. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion schemes.
In: Procs. LICS 2006, pp. 81–90 (2006)

4. Ong, C.-H.L., Tzevelekos: Functional reachability. In: Procs. LICS 2009, pp. 286–295
(2009)

5. Stirling, C.: Higher-order matching, games and automata. In: Procs. LICS 2007, pp.
326–335 (2007)

6. Stirling, C.: Dependency tree automata. In: de Alfaro, L. (ed.) FOSSACS 2009.
LNCS, vol. 5504, pp. 92–106. Springer, Heidelberg (2009)

7. Stirling, C.: Decidability of higher-order matching. Logical Methods in Computer
Science 5(3:2), 1–52 (2009)

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, p. 1, 2010.



A Semantic Foundation for Hidden State

Jan Schwinghammer1, Hongseok Yang2, Lars Birkedal3,
François Pottier4, and Bernhard Reus5

1 Saarland Univ.
2 Queen Mary Univ. of London

3 IT Univ. of Copenhagen
4 INRIA

5 Univ. of Sussex

Abstract. We present the first complete soundness proof of the anti-
frame rule, a recently proposed proof rule for capturing information hid-
ing in the presence of higher-order store. Our proof involves solving a
non-trivial recursive domain equation, and it helps identify some of the
key ingredients for soundness.

1 Introduction

Information hiding, or hidden state, is one of the key design principles used by
programmers in order to control the complexity of large-scale software systems.
Being able to exploit this principle in the formal setting of a program logic
could represent an important step towards the development of modular, scalable
program verification techniques.

The idea is that an object (or function, or module) need not reveal in its
interface the fact that it owns and maintains a private, mutable data struc-
ture. Hiding this internal invariant from the client has several beneficial effects.
First, the complexity of the object’s specification is slightly decreased. More im-
portantly, the client is relieved from the need to thread the object’s invariant
through its own code. In particular, when an object has multiple clients, they are
freed from the need to cooperate with one another in threading this invariant.
Last, by hiding its internal state, the object escapes the restrictions on aliasing
and ownership that are normally imposed to objects with mutable state.

It is worth emphasizing that hiding and abstraction (as studied, for instance,
in separation logic [1–3]) are distinct mechanisms, which may co-exist within a
single program logic.1

The recently proposed anti-frame proof rule [4] enables hiding in the pres-
ence of higher-order store (i.e., memory cells containing procedures or code frag-
ments). In this paper, we study the semantic foundation of the anti-frame rule,
1 Abstraction is often implemented in terms of assertion variables (called abstract

predicates by Parkinson) that describe the private data structures of an object.
These variables are exposed to a client, but their definitions are not, so that the
object’s internals are presented to the client in an abstract form. Hiding, on the
other hand, conceals the object’s internals completely.

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 2–17, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



A Semantic Foundation for Hidden State 3

and give the first complete soundness proof for it. Our proof involves the solution
of an intricate recursive domain equation, and it helps identify some of the key
ingredients for soundness.

Information hiding with frame and anti-frame rules. Our results push
the frontier of recent logic-based approaches to information hiding. These ap-
proaches adopt a standard semantics of the programming language, and deal
with information hiding on a logical basis, by extending a Hoare calculus with
special proof rules. These usually take the form of frame rules that allow the
implementation of an object to ignore (hence implicitly preserve) some of the in-
variants provided by the context, and of anti-frame rules, which allow an object
to hide its internal invariant from the context [4–7].

In its simplest form, the frame rule [5] states that invariants R can be added
to valid triples: if {P}C{Q} is valid, then so is {P ∗R}C{Q ∗R}, where the
separating conjunction P ∗ R indicates that P and R govern disjoint regions of
the heap. In subsequent developments, the rule was extended to handle higher-
order procedures [6, 7] and higher-order store [8, 9]. Moreover, it was argued
that both extensions of the rule support information hiding: they allow one to
hide the invariant of a module [6] and to prove properties of clients, as long as
the module is understood in continuation-passing style.

Thorough semantic analyses were required to determine the conditions under
which these extensions of the frame rule are sound. Indeed, the soundness of
these rules raises subtle issues. For instance, the frame rule for higher-order
procedures turns out to be inconsistent with the conjunction rule, a standard
rule of Hoare logic [6, 7]. Furthermore, seemingly innocent variants of the frame
rule for higher-order store have been shown unsound [9, 10].

In the most recent development in this line of research, Pottier [4] proposed
an anti-frame rule, which expresses the information hiding aspect of an object
directly, instead of in continuation-passing style. Besides giving several extensive
examples of how the anti-frame rule supports hidden state, Pottier argued that
the anti-frame rule is sound by sketching a plausible syntactic argument. This
argument, however, relied on several non-trivial assumptions about the existence
of certain recursively defined types and recursively defined operations over types.

In this paper, we systematically study the semantic foundation of hidden state,
as captured by frame and anti-frame rules, in the presence of higher-order store.
In particular, we describe our soundness proof of a program logic that has both
frame and anti-frame rules.

Overview of the technical development. The anti-frame rule was originally
proposed in an expressive type system for an ML-like language [4]. In the context
of separation logic, it becomes an inference rule for deriving Hoare triples. A
slightly simplified version of it takes the following form:

{P ⊗R}C{(Q⊗R) ∗R}
{P}C{Q}



4 J. Schwinghammer et al.

Recall that the separating conjunction P ′∗Q′ holds of a heap when the heap can
be split into two sub-heaps that respectively satisfy P ′ and Q′. In order to specify
properties of stored code, we allow assertions to contain nested triples [9], and
introduce a ⊗ operator, whose meaning is roughly the following: P ′⊗R′ denotes
a version of P ′ where R′ has been ∗-conjoined with the pre- and post-conditions
of every triple, including deeply nested triples.

In the anti-frame rule above, the code C can be thought of as allocating and
initializing an object. The assertion R describes an internal invariant of this
object, which one wishes to hide. The conjunct − ∗ R in the post-condition of
the premise ensures that the invariant R is established by C, so R holds initially.
The two occurrences of − ⊗ R in the premise guarantee that every triple that
appears in the premise has R as pre- and post-conditions, so every interaction
between the object and the outside preserves R. The invariant R does not appear
in the conclusion of the rule, so one reasons about the rest of the program just
as if the object had no internal state.

Our soundness proof of the anti-frame rule is based on two key components.
The first is a new interpretation of Hoare triples, which explicates the universal
and existential quantifications that are implicit in the anti-frame rule. Let P ◦R
abbreviate (P⊗R)∗R. Roughly speaking, in our interpretation, a triple{P}C{Q}
is valid if, for all invariants R, the triple

{P ◦R}C {∃R′. Q ◦ (R ◦R′)} (1)

holds in the standard interpretation of triples. Pottier [4] showed how the anti-
frame rule allows encoding ML-like weak references in terms of strong references.
Readers who are familiar with models of ML references (see, e.g., [11]) may
thus find the above interpretation natural. Roughly speaking, the code C has a
function type P → Q, whose interpretation is: “for all worlds R, if C is given an
argument of type P in world R, then, for some future world R◦R′ (an extension
of R), C returns a result of type Q in world R ◦R′.”

The second element in our soundness proof is a formalization of the above in-
tuition. Our interpretation of assertions is parameterized by a set W of worlds, or
invariants, so that, semantically, an assertion is a function W → P(Heap) from
worlds to (certain) sets of heaps. Corresponding toR◦R′ in (1), there is a semantic
operation ◦ on W that lets us combine two invariants. This operation induces a
preorder on invariants, whereby R ◦R′ is greater than (i.e., a future world of) R.

In order to prove that the anti-frame rule is sound, we require assertions P
to be monotonic with respect to the preorder on invariants: that is, P (R) must
be a subset of P (R ◦R′), for all P , R and R′. This lets us relate an assertion P
at two different invariants R0 and R1, by first exhibiting an upper bound R2
of R0 and R1 and then using the monotonicity to conclude P (Ri) ⊆ P (R2) for
i ∈ {0, 1}. This forms an important step of our soundness proof.

In order to present our soundness proof as abstractly and elegantly as we
can, we begin with an axiomatization of worlds and world composition, that is,
we state a number of requirements that worlds should satisfy (Section 2). This
allows us to define the interpretation of triples and establish some of its key
properties in an abstract setting (Section 3).



A Semantic Foundation for Hidden State 5

In Sections 4 and 5, we move to a more concrete setting and present a small
imperative programming language that features higher-order store, in the form
of storable commands. We equip it with a proof system, which features nested
Hoare triples, frame rules, and anti-frame rules. As in Pottier’s original setting,
in this system, it is desirable that every assertion R be allowed to play the role of
an invariant. As a consequence, in this concrete instance, the set of invariants W
should be isomorphic to the semantic domain of assertions.

In summary, for this instance the requirements that we have described above
amount to the following non-standard recursive domain equation:

Assert ∼= Assert →m P(Heap). (2)

The subscript −m indicates that we consider only the subset of monotonic func-
tions. By restricting the codomain to subsets of Heap that satisfy particular
conditions, and by further restricting the function space, we can find a solution
to (a variant of) equation (2) in a category of complete metric spaces. However,
because monotonicity is defined in terms of the ordering over assertions, which
itself is defined in terms of the operation of composition ◦ on W (recall that W
and Assert are isomorphic), we cannot do this using “off-the-shelf” techniques
for solving recursive domain equations, like those of Rutten [12] or Birkedal et
al. [13]. Instead, we obtain a solution by explicitly constructing the inverse limit
of an appropriately chosen sequence of approximations to (2). We discuss these
challenges and our solution in more detail in Section 4.

Contributions. In summary, our main contributions are the following:

– We highlight which semantic ingredients are critical in establishing the va-
lidity of the frame and anti-frame rules. We hope that this will lead to
increased understanding, and expect that these ingredients can be used as
building blocks in the soundness proofs of future logics with information
hiding principles.

– We give a proof of the soundness of a program logic that includes frame and
anti-frame rules for higher-order store.

For space reasons, many proofs are omitted; some can be found in the full version
of this paper [14].

2 Semantic Setup

In this section, we describe semantic ingredients that can be used to validate
(certain types of) anti-frame and frame rules.

Programming language. Our assumptions on the semantics of the programming
language are fairly standard. We assume that there is a (pointed, chain-complete
partially ordered) set of heaps, Heap, and that commands either diverge, termi-
nate successfully, or fault, i.e., that Com = Heap � (Heap ⊕{error}⊥) is the set
of (strict continuous) functions into Heap with an error element adjoined. We also



6 J. Schwinghammer et al.

assume that there exists a family of projection functions (πk : Heap � Heap)k∈N.
The images of these projection functions must contain only finite elements2 and
the projection functions must satisfy the following conditions:

– ⊥ = π0(h) � . . . � πk(h) � πk+1(h) � . . . � h for all h ∈ Heap, i.e., the πk’s
form an increasing chain of approximations of the identity on Heap;

– πj ◦ πk = πmin{j,k} for all j, k; in particular, every πk is idempotent;
– k πk(h) = h, i.e., every heap is the limit of its approximations.

For example, these conditions hold if Heap is an SFP domain (e.g., [15]) with
a particular choice of projections. Finally, we assume a partial commutative
associative operation h ·h′, which intuitively lets us combine heaps with disjoint
locations and is compatible with the projections: πk(h · h′) = πk(h) · πk(h′).

We write N∞ for the natural numbers extended with∞, with∞+k = k+∞ =
∞. We define π∞ = id and 2−∞ = 0. The rank of h, written rnk(h), is the least
k ∈ N∞ such that πk(h) = h.

Uniformity and distance. Our program logics concern properties of heaps that
are closed under the projection functions πk. We write UAdm for the set of
admissible3 subsets p ⊆ Heap that are uniform: for any k ∈ N, if h ∈ p then
πk(h) ∈ p. Using the heap combination operation, we define separating conjunc-
tion p ∗ q for p, q ∈ UAdm in the usual way: h ∈ p ∗ q iff h = h1 · h2 for some
h1 ∈ p and h2 ∈ q. We assume that p ∗ q is in UAdm.4

Uniformity gives rise to a notion of distance between (or, similarity of) prop-
erties of heaps. More precisely, writing πk(p) for the image of p under the pro-
jection πk, the function d(p, q) = 2−sup{k∈N∞ | π (p)=π (q)} defines a notion of
distance on UAdm. This function satisfies the requirements of a 1-bounded ul-
trametric: that is, d takes real values in the interval [0, 1], is symmetric, is such
that d(p, q) = 0 holds iff p = q, and satisfies d(p, q) ≤ max{d(p, r), d(r, q)} for
all p, q, r ∈ UAdm. With respect to this metric, UAdm is complete in the usual
sense that every Cauchy sequence has a limit. The metric and this completeness
result of UAdm make it possible to model recursively defined assertions using
the Banach fixed point theorem.

Worlds and assertions. Our semantics of assertions is defined in the category
CBUlt of complete 1-bounded ultrametric spaces and non-expansive functions.
This means that every semantic domain involved in the semantics has an ap-
propriate notion of distance and that every function is non-expansive, i.e., the
distance between two outputs is no greater than the distance between the two
corresponding inputs.

The main ingredients necessary for validating forms of anti-frame and frame
rules are a set of possible worlds, and an interpretation of the worlds as assertions.
Thus, we require:
2 An element d in a cpo D is finite iff for all chains {dn}n∈ω in D, d � n∈ω dn implies

that d � dn for some n.
3 The admissibility of p means that p is closed under limits of chains and contains ⊥.
4 This assumption holds when Heap is constructed in a standard way in terms of finite

partial functions or records, just like our model in Sections 4 and 5.



A Semantic Foundation for Hidden State 7

1. A monoid (W, e, ◦) of worlds, or invariants, where W is an object in CBUlt
and the operation ◦ is non-expansive with respect to this metric. The monoid
structure induces a preorder � on W , by w � w′ ⇔ ∃w0 ∈ W.w′ = w ◦
w0. Note that ◦ is in general not commutative, and that w′ is obtained by
extending w on the right. Using this preorder, we define a domain

Assert def= (1
2 ·W )→m UAdm.

for assertions. Here, 1
2 ·W denotes the scaling of the distance function on

W by 1/2, and the function space consists of the non-expansive monotone
functions. Assertions are thus parameterized by worlds, and this parameteri-
zation satisfies two conditions. The first condition is contractiveness, meaning
that the distance between worlds gets reduced when they are used in an asser-
tion: d(p(w0), p(w1)) ≤ d(w0, w1)/2 for all p ∈ Assert and all w0, w1 ∈ W .
In the definition, contractiveness is formalized in two steps, first by scaling
down the distance of worlds by 1/2 and then by stipulating that assertions
should preserve this scaled-down distance (i.e., be non-expansive).

The second condition is monotonicity: p(w) ⊆ p(w ◦ w0) holds for all
p ∈ Assert and all w,w0 ∈ W . Here, w0 can be thought of as an invariant
that is hidden in world w and revealed in world w ◦ w0. If some heap h
satisfies the assertion p while w0 is hidden, then h still satisfies p after w0
is revealed. Intuitively, because the commands stored in the heap h do not
know about the invariant w0, they must preserve it.

2. A non-expansive coercion function i : W → Assert , which offers a way of
interpreting worlds as assertions.

We do not in general require W ∼= Assert : a one-way coercion is sufficient
for our purposes. In fact, it is possible to define instances of our framework
where W is strictly “smaller” than Assert . Such a restriction, where not
every assertion can play the role of a hidden invariant, can be exploited to
establish the soundness of stronger versions of anti-frame and frame rules
than the ones in the literature [4, 9]. For details, see Appendix D of the full
version of this paper [14].

For the moment, we simply assume that the above ingredients are provided.
In Section 4, we actually construct a particular set of worlds, together with an
appropriate coercion function from worlds to assertions. In this particular case,
W ∼= Assert holds.

The parameterization of assertions by a monoid W has the interesting conse-
quence that the following ⊗ operator, from Assert ×W to Assert :

(p⊗ w) def= λw0. p (w ◦w0)

is an action of this monoid over assertions, that is, it satisfies p ⊗ e = p and
(p ⊗ w) ⊗ w0 = p ⊗ (w ◦ w0). These are the semantic analogues of two of the
distribution axioms in Pottier’s type system [4], and are also included in the
logic of Section 5.



8 J. Schwinghammer et al.

Healthiness conditions. The monoid of worlds and the coercion function must
satisfy two further compatibility conditions. To express these, we use the ab-
breviation p ◦ w def= p ⊗ w ∗ i(w), where ∗ denotes the pointwise lifting of the
separating conjunction on UAdm to Assert . The first condition is:

Condition 1. Coercions preserve − ◦ w0: ∀w,w0 ∈W. i(w ◦ w0) = i(w) ◦ w0.

This condition lets us explain the extension of one invariant w by a second
invariant w0 in terms of assertions. By unfolding the definition, we see that
i(w ◦ w0) is the assertion obtained by ∗-conjoining the assertion i(w0) to i(w),
and additionally ensuring that all computations described by the latter also
preserve the invariant w0.

The asymmetric nature of Condition 1 indicates that we cannot in general
expect the monoid to be commutative. Instead, we require a weaker property:
the existence of commutative pairs.

Definition 1 (Commutative pair). Let w0, w1, a0 and a1 be worlds. The
pair (a0, a1) is a commutative pair for (w0, w1) iff (1) w0 ◦ a1 = w1 ◦ a0, (2)
i(w0)⊗ a1 = i(a0) and (3) i(w1)⊗ a0 = i(a1).

·
a1 �����

·

·w0

�����
w1

�����
·
a0�����

If (a0, a1) is a commutative pair for (w0, w1) then w0 ◦ a1 =
w1◦a0 provides an upper bound of w0 and w1 with respect to the
extension order �. Intuitively, we can “merge” two invariants,
ensuring that all computations described in the first invariant
preserve the second invariant, and vice versa.

Condition 2. Every pair (w0, w1) of worlds has a commutative pair.

Pottier’s revelation lemma [4], which forms the core of his sketch of a syntactic
soundness argument for his anti-frame rule, assumes the existence of commuta-
tive pairs. Commutative pairs play a similarly important role in the semantic
soundness proofs below. The model described in Section 4 gives a rigorous jus-
tification for their existence.

As a consequence of Condition 1 and of the fact that ⊗ is a monoid action,
we have the following lemma:

Lemma 2. For all p ∈ Assert and all w,w0 ∈W , (p ◦ w) ◦ w0 = p ◦ (w ◦ w0).

3 Semantic Triples, Anti-frame Rule and Frame Rules

In this section we consider the soundness of specific versions of anti-frame and
frame rules, based on the semantic setting described above. For a command c ∈
Com , let πk(c) be the command defined by πk(c)(h) = error if c(πk(h)) = error,
and by πk(c)(h) = πk(c(πk(h))) if c(πk(h)) ∈ Heap. Note that π∞(c) = c.

Definition 3. Let tri be the ternary predicate on Assert × Com ×Assert such
that tri(p, c, q) holds iff

∀u ∈ UAdm. ∀h ∈ p(e) ∗ u. c(h) ∈ Ad( w(q ◦ w)(e) ∗ u),

where Ad(−) is the admissible downward closure.



A Semantic Foundation for Hidden State 9

Anti-frame
|={p ⊗ w0}c{q ◦ w0}

|={p}c{q}

Deep-frame
|={p}c{q}

|={p ◦ w0}c{q ◦ w0}

Shallow-frame

{p}c{q} |={p ∗ i(w0)}c{q ∗ i(w0)}

Fig. 1. Semantic versions of a basic form of anti-frame and frame rules

This definition deserves some explanation. First, the universal quantification over
u ∈ UAdm in the definition of tri(p, c, q) “bakes in” the first-order frame rule,
i.e., tri(p, c, q) is only true of commands c that validate the first-order frame
rule. Next, the existential quantification (union) over worlds w ∈ W achieves
the hiding of state from the post-condition of triples, as expressed by anti-frame
rules. Because uniform admissible sets are not closed under arbitrary unions, we
take the admissible downward closure. Technically, this makes sense because we
assume commands are continuous and because we consider partial correctness
only. We view the post-condition Ad( w(q ◦ w)(e) ∗ u) ⊆ Heap as a subset of
Heap⊕{error}⊥ in the evident way. In particular, this means that tri(p, c, q) is
only true of commands c that do not fault for states in the pre-condition. This
definition does not “bake in” monotonicity w.r.t. invariants (worlds): p and q ◦w
are “closed” just by applying them to the empty world. This is rectified in the
following definition of validity:

Definition 4 (Validity). A (semantic) triple {p}c{q} holds with respect to w
and k ∈ N∞, which we write w |=k{p}c{q}, iff tri(p◦(w◦w0), πk(c), q◦(w◦w0))
holds for all w0 ∈ W . We sometimes omit the index when k =∞.

As a consequence of the quantification over worlds w0 in this definition, the
validity of a triple is monotonic: if w |=k{p}c{q} and w � w′ then w′ |=k{p}c{q}.
The approximate validity (i.e., the case where k �=∞) is used when considering
nested triples. Recall that assertions are the contractive monotone functions
from W to UAdm.5 Because nested triples will be interpreted as elements in
Assert , they must be contractive. The approximations will allow us to satisfy this
requirement. We write |={p}c{q} to mean that w |=k {p}c{q} for all k, w. Also,
we write {p}c{q} |= {p′}c′{d′} to mean that w |=k {p}c{q} ⇒ w |=k {p′}c′{q′}
holds for all w, k.

We are now ready to describe semantic versions of examples of anti-frame
and frame rules and to prove their soundness. The semantic rules are given in
Fig. 1, where the first two rules should be understood as the implication from
the premise to the conclusion.

Our first lemma is a consequence of the monotonicity of assertions.

Lemma 5. For all w, we have that (1) tri(p ⊗ w, c, q) ⇒ tri(p, c, q) and (2)
tri(p, c, q ◦ w)⇒ tri(p, c, q).

Proof. For the first implication, suppose that u ∈ UAdm and h ∈ p(e)∗u. By the
monotonicity of p and by e � w we obtain p(e) ⊆ p(w) = p(w ◦ e) = (p⊗w)(e).
5 More precisely, they are the non-expansive monotone functions from 1

2
·W to UAdm.



10 J. Schwinghammer et al.

Therefore, h ∈ (p⊗ w)(e) ∗ u. The result now follows from the assumption that
tri(p⊗ w, c, q) holds.

For the second implication, suppose again that u ∈ UAdm and h ∈ p(e) ∗ u.
We must show that c(h) ∈ Ad( w′(q ◦ w′)(e) ∗ u). From the assumption that
tri(p, c, q◦w) holds we obtain c(h) ∈ Ad( w′′((q ◦ w) ◦ w′′)(e) ∗ u). By Lemma 2,

w′′((q ◦ w) ◦ w′′)(e) = w′′(q ◦ (w ◦ w′′))(e) ⊆ w′(q ◦ w′)(e).

The result then follows from the monotonicity of ∗ and the monotonicity of the
closure operation Ad(·). ��
The next lemma amounts to gluing two commutative pair diagrams together
(along a0 there). Its proof involves the associativity of ◦ as well as Condition 1.

Lemma 6. If (a0, a1) is a commutative pair for (w0, w1) and (b0, a2) is a com-
mutative pair for (a0, w2) then (b0, a1◦a2) is a commutative pair for (w0, w1◦w2).

The following proposition combines Lemmas 5 and 6, and relates the validity of
two triples in our anti-frame rule.

Proposition 7. For all worlds (w0, w), if (a0, a) is a commutative pair for
(w0, w), then a |=k{p⊗ w0}c{q ◦ w0} implies w |=k{p}c{q}.
Proof. We need to show that w |=k{p}c{q}, which by definition means that for
all w1, letting w2 = w ◦ w1 and d = πk(c),

tri(p ◦ w2, d, q ◦ w2). (3)

By Condition 2, there exists a commutative pair (b0, a1) for (a0, w1). Let b2 =
a ◦ a1. By Lemma 6, (b0, b2) is a commutative pair for (w0, w ◦ w1) = (w0, w2).
In particular, we have w0 ◦ b2 = w2 ◦ b0 and i(b2) = i(w2) ⊗ b0. The assumed
triple implies tri((p⊗ w0) ◦ b2, d, (q ◦ w0) ◦ b2). Thus,

tri((p ◦ w2)⊗ b0, d, (q ◦ w2) ◦ b0) (4)

follows, using the following equalities:

(p⊗w0) ◦ b2 = p⊗ (w0 ◦ b2) ∗ i(b2) = p⊗ (w2 ◦ b0) ∗ i(w2)⊗ b0
= (p⊗w2)⊗ b0 ∗ i(w2)⊗ b0 = (p⊗w2 ∗ i(w2))⊗ b0
= (p ◦w2)⊗ b0,

(q ◦ w0) ◦ b2 = q ◦ (w0 ◦ b2) = q ◦ (w2 ◦ b0) = (q ◦ w2) ◦ b0.

From (4), we derive the desired triple (3) as shown below:

tri((p ◦w2)⊗ b0, d, (q ◦w2) ◦ b0)⇒ tri(p ◦w2, d, (q ◦w2) ◦ b0)
⇒ tri(p ◦w2, d, q ◦w2).

Both implications hold because of Lemma 5. ��



A Semantic Foundation for Hidden State 11

Corollary 8 (Anti-frame rule). The anti-frame rule in Fig. 1 is sound.

Proof. Pick w, k. Let p, c, q, w0 be as in the anti-frame rule in Fig. 1. We must
prove that w |=k{p}c{q}. By Condition 2, there exists a commutative pair (a0, a)
for (w0, w). By assumption, we have |={p⊗ w0}c{q ◦ w0}, so, in particular, a |=k

{p⊗ w0}c{q ◦ w0}. By Proposition 7, this implies w |=k{p}c{q}, as desired. ��
Next, we move on to the soundness proof of the two frame rules in Fig. 1.

Lemma 9. The following equivalence, which expresses a distribution axiom [9],
holds: w0 ◦ w |=k{p}c{q} iff w |=k{p ◦ w0}c{q ◦ w0}.
Proof. Pick w1. Let w′1 = w ◦ w1. By Definition 4 and the associativity of ◦, it
suffices to prove the equivalence of tri(p ◦ (w0 ◦ w′1), πk(c), q ◦ (w0 ◦ w′1)) and
tri((p◦w0)◦w′1, πk(c), (q◦w0)◦w′1). This equivalence follows from Lemma 2. ��
Corollary 10 (Frame rules). The frame rules in Fig. 1 are sound.

Proof. The soundness of the deep frame rule follows from Lemma 9. The shallow
rule is sound thanks to the universal quantification over u in Definition 3. ��

4 A Concrete Model with Recursively Defined Worlds

In this section, we consider a concrete instance of the general framework de-
scribed in Sections 2 and 3 where W is isomorphic to Assert . The Assert →W
direction of this isomorphism means that all assertions can be used as hidden
invariants. This lets us define a semantic model of the program logic that is
presented next (Section 5). The heap model in this particular case is given by
the following recursively defined cpos:

Heap = Rec(Val) Val = Int⊥⊕Com⊥ Com = Heap � Heap⊕{error}⊥ (5)

where Rec(Val) denotes records with entries in Val labelled by positive natural
numbers6. These labels serve as addresses or locations. The partial operation
h · h′ combines two heaps h and h′ (i.e., takes the union) whenever the domains
of h and h′ are disjoint. When h = ⊥ or h′ = ⊥, h · h′ is ⊥. The empty record
provides a unit for heap combination, thus there is also a unit for the separating
conjunction on UAdm. Finally, the solution of (5) in the category Cppo⊥ of
pointed cpos and strict continuous functions comes equipped with a family of
projections πk that satisfy the requirements of Section 2.

The key result of this section is the following theorem:

Theorem 11. There exists a monoid (W, e, ◦), where W is an object in CBUlt
with an isomorphism ι from W to (1

2 ·W )→m UAdm. The operation ◦ satisfies

∀w1, w2, w ∈W. ι(w1 ◦ w2)(w) = ι(w1)(w2 ◦ w) ∗ ι(w2)(w).

6 Formally, Rec(D) = (ΣN⊆finNats+(N →D↓))⊥ where N →D↓ is the cpo of maps
from the finite address set N to D↓ = D \ {⊥} of non-bottom elements of D.



12 J. Schwinghammer et al.

The equation in this theorem is just Condition 1, where the coercion i is taken
to be the isomorphism ι.

Construction of the worlds W in Theorem 11. In previous work [9] we gave a
model of a separation logic with nested triples and higher-order frame rules, but
no anti-frame rule. For this model we needed a solution W ′ to the following
domain equation:7

W ′ ∼= (1
2 ·W ′)→ UAdm. (6)

Note that (6) is almost the same domain equation as described in Theorem 11
above, except that there is no restriction to monotonic functions in the function
space on the right. One can use a general existence theorem [12, 13] to obtain
a solution W ′ for (6) in the category CBUlt . In a second step, using the com-
plete metric on W ′, one can then define a monoid operation ◦ that satisfies the
equation stated in Theorem 11.

In the present setup, this two-step approach to constructing a solution W ∼=
Assert and a monoid operation ◦ cannot be applied, however, because of the
added monotonicity requirement in Theorem 11: since the order on W is defined
in terms of the operation ◦, one needs ◦ already in order to express this equation,
i.e., it appears necessary to define the operation ◦ at the same time as W . Thus
we construct W ∼= (1

2 ·W )→m UAdm explicitly, as (inverse) limit

W = x ∈ k≥0Wk | ∀k ≥ 0. ι◦k(xk+1) = xk

of a sequence of “approximations” Wk of W ,

W0
ι0 �� W1
ι◦0

��
ι1 �� W2
ι◦1

��
ι2 �� . . .
ι◦2

��
ι �� Wk+1
ι◦

��
ι +1 �� . . .
ι◦+1

�� (7)

Each Wk is a complete 1-bounded ultrametric space equipped with a non-
expansive operation ◦k : Wk ×Wk → Wk and a preorder �k, so that Wk+1 =
(1
2 · Wk) →m UAdm are the non-expansive and monotone functions with re-

spect to �k. The maps ιk and ι◦k are given by ιk+1(w) = πk+2 ◦ w ◦ ι◦k and
ι◦k+1(w) = πk+1 ◦ w ◦ ιk. The diagram (7) forms a Cauchy tower [13], in that
supw dk+1(w, (ιk ◦ ι◦k)(w)) and supw dk(w, (ι◦k ◦ ιk)(w)) become arbitrarily small
as k increases. The operation ◦k+1 is defined in terms of ◦k and ι◦k:

(w1 ◦k+1 w2)(w) def= w1 (ι◦k(w2) ◦k w) ∗ w2(w).

One technical inconvenience is that the ◦k’s are not associative. However, asso-
ciativity holds “up to approximation k,” dk((x ◦k y) ◦k z, x ◦k (y ◦k z)) ≤ 2−k,
which yields associativity “in the limit” and thus a monoid structure on W by

(xk)k≥0 ◦ (yk)k≥0
def= limj>k ι

◦
k(. . . (ι

◦
j−1(xj ◦j yj)) k≥0.

7 Technically, we solved a different equation W ′ ∼= 1
2
(W ′ → UAdm). This difference is

insignificant, since the solution of one equation leads to that of the other equation.



A Semantic Foundation for Hidden State 13

To finish the proof of Theorem 11 one shows that ι(w) def= limk(λw′. wk+1(w′k))
establishes an isomorphism ι between W and (1

2 ·W )→m UAdm, which satisfies
ι(w1 ◦ w2) = ι(w1)⊗ w2 ∗ ι(w2) for (p⊗ w) = λw′.p(w ◦ w′).

The details of the proof are given in the full version of this paper [14].
Existence of commutative pairs. To show that W forms an instance of our seman-
tic framework, we also need to prove the existence of commutative pairs. Given
a pair (w0, w1) of worlds, we construct a commutative pair using properties of
⊗ and the coercion ι. Since the monoid operation ⊗ is contractive in its sec-
ond argument, so is the function f(a0, a1) = ι−1(ι(w0)⊗ a1), ι−1(ι(w1)⊗ a0)
on W × W . By the Banach fixed point theorem, there exists a unique pair
(a0, a1) = f(a0, a1). Thus ι(a0) = ι(w0) ⊗ a1 and ι(a1) = ι(w1) ⊗ a0. Since ι is
injective, we can prove the remaining w0 ◦a1 = w1 ◦a0 as follows. For all w ∈ W ,

ι(w0 ◦ a1)(w) = (ι(w0)⊗ a1)(w) ∗ ι(a1)(w) (by Theorem 11 and def. of ⊗)
= ι(a0)(w) ∗ (ι(w1)⊗ a0)(w) (by the above properties of a0, a1)
= ι(a0)(w) ∗ ι(w1)(a0 ◦ w) (by def. of ⊗)
= ι(w1 ◦ a0)(w) (by Theorem 11).

Theorem 12. The monoid (W, e, ◦) in Theorem 11 and the isomorphism ι :
W → Assert form an instance of the framework in Section 2.

5 Program Logic

We now give one application of our semantic development. We present a program
logic for higher-order store, which includes anti-frame and frame rules. Using the
results of Sections 3 and 4, we define the semantics of the logic and prove its
soundness.

Programming language. Fig. 2 gives the syntax of a small imperative program-
ming language equipped with operations for stored code and heap manipulation.
The expressions in the language are integer expressions, variables, and the quote
expression ‘C’ for representing an unevaluated command C. The integer or code
value denoted by expression e1 is stored in a heap cell e0 using [e0]:=e1, and this
stored value is later looked up and bound to the variable y by let y=[e0] in D. In
the case that the value stored in cell e0 is code ‘C’, we can run (or “evaluate”)
this code by executing eval [e0]. As in ML, all variables x, y, z are immutable.
The language does not include while loops: they can be expressed by stored
code (using Landin’s knot). The interpretation of commands in the cpo Com of
(5) is straightforward [9]. The interpretation of the quote operation, ‘C’, uses
the injection of Com into Val in Section 4.

Assertions and distribution axioms. As in previous work [9], our assertion lan-
guage is first-order intuitionistic logic, extended with the separating connectives
e, ∗, and the points-to predicate �→ [5]. The syntax of assertions appears in Fig. 2.
The standard connectives are omitted.

The most distinguishing features of the assertion language are Hoare triples
{P}e{Q} and invariant extensions P ⊗Q. The fact that a triple is an assertion



14 J. Schwinghammer et al.

e ∈ Exp ::= −1 | 1 | e1+e2 | . . . | x | ‘C’ integer expression, variable, quote

C ∈ Com ::= [e1]:=e2 | let y=[e] in C | eval [e] assignment, lookup, unquote
| let x=new (e1, . . . , en) in C | free e allocation, disposal
| skip |C1;C2 | if (e1=e2) C1 C2 no op, sequencing, conditional

P, Q∈Assn ::= e1 
→ e2 | e | P ∗ Q separating connectives
| {P}e{Q} | P ⊗ Q Hoare triple, invariant extension
| X | μX.P | . . . assertion variable, recursion

Fig. 2. Syntax of expressions, commands and assertions

{P}e{Q}⊗R ⇔ {P ◦R}e{Q ◦R}
(κx.P )⊗R ⇔ κx.(P ⊗R) (κ∈{∀,∃}, x /∈ fv(R))

(P ⊗R)⊗R′ ⇔ P ⊗ (R ◦R′)
(P ⊕Q)⊗R ⇔ (P ⊗R)⊕ (Q⊗R) (⊕∈{⇒,∧,∨, ∗})

P ⊗ R ⇔ P (R is e or P is one of true, false, e, e 
→ e′, . . .)
(μX.P ) ⊗ R ⇔ μX.(P ⊗ R) (X /∈ fv(R))

Fig. 3. Axioms for distributing −⊗ R

means that triples can be nested. Intuitively, the assertion P⊗Q denotes a version
of P where every (possibly deeply nested) triple receives a copy of Q as an extra
∗-conjunct in its pre- and post-conditions. More precisely, the behaviour of the ⊗
operator is described by the axioms in Fig. 3, which let us distribute ⊗ through
all the constructs of the assertion language. These axioms use the abbreviation
Q ◦R for (Q⊗R) ∗R.

Assertions include assertion variables X ∈ X , and can be recursively defined:
the construct μX.P binds X in P and satisfies the axiom μX.P ⇔ P [X :=
μX.P ]. Not every recursive assertion is permitted: for μX.P to be well-formed,
we require that P be formally contractive in X. In short, this means that every
free occurrence of X within P must lie either within a triple or within the second
argument of a ⊗ construct. (We omit the straightforward inductive definition
of formal contractiveness.) Semantically, this requirement ensures that μX.P
is well-defined as the unique fixed point of P , viewed as a function of X . In
particular, all assertions of the form μX.P ⊗X , where X does not appear in P ,
are formally contractive. Pottier’s applications of the anti-frame rule [4] make
extensive use of assertions of this form.

The interpretation of assertions uses W in Section 4. Given such W and an
environment η that maps variables x to values η(x) ∈ Val , we interpret an
assertion P as a non-expansive function �P �η : AssertX → Assert . The uniform
admissible sets in UAdm, partially ordered by inclusion, form a complete Heyting
algebra with a monotone commutative monoid. The domain Assert , ordered
pointwise, inherits this structure (see Appendix B of the full version of this



A Semantic Foundation for Hidden State 15

�P ⊗ R�η,ξ = �P �η,ξ ⊗ ι−1(�R�η,ξ) �μX.P �η,ξ = fix (λq. �P �η,ξ[X:=q])

�{P}‘C’{Q}�η,ξ = λw. {h | rnk(h) > 0 ⇒ w |=rnk(h)−1{�P �η,ξ} �C�η {�Q�η,ξ}}

Fig. 4. Interpretation of assertions

Anti-frame
Γ ;Ξ �{P ⊗R}e{Q ◦R}

Γ ; Ξ �{P}e{Q}

Deep-frame
Γ ;Ξ �{P}e{Q}

Γ ; Ξ �{P ◦R}e{Q ◦R}

Shallow-frame

Γ ; Ξ �{P}e{Q} ⇒{P ∗R}e{Q ∗R}

Fig. 5. Proof rules from separation logic

paper [14]). This is used to interpret the intuitionistic first-order fragment, ∗
and e of the assertion language. Fig. 4 shows three of the remaining cases. First,
via the isomorphism ι−1, we can turn any assertion r ∈ Assert into an invariant
ι−1(r) ∈ W and thus interpret the invariant extension P ⊗ R. Next, because
P must be formally contractive in X , the map q �→ �P �η,ξ[X:=q] on Assert is
contractive in the metric sense: thus, by the Banach fixed point theorem, it has
a unique fixed point. Finally, the interpretation of nested triples is in terms of
semantic triples, and uses approximate validity to ensure non-expansiveness.

Proof rules. The logic derives judgements of the form Γ ;Ξ � P , where P is an
assertion, and Γ and Ξ respectively bind variables and assertion variables. For
instance, to prove that command C stores at cell 1 some code that writes 0 into
cell 10, one would need to derive Γ ;Ξ � {1 �→ }‘C’{1 �→ {10 �→ } {10 �→ 0}}.

The logic includes the standard proof rules for intuitionistic logic and the logic
of bunched implications [16] as well as standard separation logic proof rules [9].
We do not repeat these rules here. Fig. 5 shows a version of the anti-frame rule
and two versions of the frame rule: the deep frame rule (expressed in combination
with the distribution axioms) and the first-order shallow frame rule (which takes
the form of an axiom).

Theorem 13 (Soundness). The interpretation of assertions is well-defined,
and validates the distribution axioms of Fig. 3 and the inference rules of Fig. 5.

6 Conclusion and Future Work

We have presented a semantic framework for studying the soundness of anti-
frame and frame rules for languages with higher-order store. Moreover, we have
presented a concrete instance of the framework, and used it to give the first
rigorous proof of soundness of separation logic with anti-frame and frame rules
for a language with higher-order store.



16 J. Schwinghammer et al.

We are aware of other instantiations of the semantic framework, which can
be used to show the soundness of stronger variants of the anti-frame and frame
rules, provided the universe W of invariants is restricted. For space reasons, we
have not included those instantiations in this extended abstract; they appear in
the full version of the paper [14].

Future work includes lifting the results in this paper to Pottier’s type-and-
capability system as well as extending our soundness results to generalized
versions of the anti-frame and frame rules where invariants evolve in more so-
phisticated ways over time [17, 18].

Acknowledgments. We would like to thank Kristian Støvring and Jacob Thams-
borg for helpful discussions. Partial support has been provided by FNU project
272-07-0305 “Modular reasoning about software” and EPSRC.

References

1. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL, pp. 247–
258 (2005)

2. Biering, B., Birkedal, L., Torp-Smith, N.: BI-hyperdoctrines, higher-order separa-
tion logic, and abstraction. TOPLAS 29(5) (2007)

3. Parkinson, M., Bierman, G.: Separation logic, abstraction and inheritance. In:
POPL, pp. 75–86 (2008)

4. Pottier, F.: Hiding local state in direct style: a higher-order anti-frame rule. In:
LICS, pp. 331–340 (2008)

5. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS, pp. 55–74 (2002)

6. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. In:
POPL, pp. 268–280 (2004)

7. Birkedal, L., Torp-Smith, N., Yang, H.: Semantics of separation-logic typing and
higher-order frame rules for Algol-like languages. LMCS 2(5:1) (2006)

8. Birkedal, L., Reus, B., Schwinghammer, J., Yang, H.: A simple model of sepa-
ration logic for higher-order store. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 348–360. Springer, Heidelberg (2008)

9. Schwinghammer, J., Birkedal, L., Reus, B., Yang, H.: Nested Hoare triples and
frame rules for higher-order store. In: CSL, pp. 440–454 (2009)

10. Pottier, F.: Three comments on the anti-frame rule (July 2009) (unpublished note)
11. Levy, P.B.: Possible world semantics for general storage in call-by-value. In: CSL,

pp. 232–246 (2002)
12. Rutten, J.J.M.M.: Elements of generalized ultrametric domain theory. TCS 170(1-

2), 349–381 (1996)
13. Birkedal, L., Støvring, K., Thamsborg, J.: The category-theoretic solution of re-

cursive metric-space equations. Technical Report ITU-2009-119, IT University of
Copenhagen (2009)

14. Schwinghammer, J., Yang, H., Birkedal, L., Pottier, F., Reus, B.: A semantic foun-
dation for hidden state (December 2009),
http://www.dcs.qmul.ac.uk/~hyang/paper/fossacs10-full.pdf

http://www.dcs.qmul.ac.uk/~hyang/paper/fossacs10-full.pdf


A Semantic Foundation for Hidden State 17

15. Streicher, T.: Domain-theoretic Foundations of Functional Programming. World
Scientific, Singapore (2006)

16. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bulletin of Symbolic
Logic 5(2), 215–244 (1999)

17. Pilkiewicz, A., Pottier, F.: The essence of monotonic state (October 2009) (sub-
mitted)

18. Pottier, F.: Generalizing the higher-order frame and anti-frame rules (July 2009)
(unpublished note)



Linearly-Used Continuations
in the Enriched Effect Calculus

Jeff Egger1,�, Rasmus Ejlers Møgelberg2,��, and Alex Simpson1,∗

1 LFCS, School of Informatics, University of Edinburgh, Scotland, UK
2 IT University of Copenhagen, Copenhagen, Denmark

Abstract. The enriched effect calculus is an extension of Moggi’s com-
putational metalanguage with a selection of primitives from linear logic.
In this paper, we present an extended case study within the enriched
effect calculus: the linear usage of continuations. We show that estab-
lished call-by-value and call-by name linearly-used CPS translations are
uniformly captured by a single generic translation of the enriched ef-
fect calculus into itself. As a main syntactic theorem, we prove that the
generic translation is involutive up to isomorphism. As corollaries, we
obtain full completeness results for the original call-by-value and call-
by-name translations. The main syntactic theorem is proved using a
category-theoretic semantics for the enriched effect calculus. We show
that models are closed under a natural dual model construction. The
canonical linearly-used CPS translation then arises as the unique (up to
isomorphism) map from the syntactic initial model to its own dual. This
map is an equivalence of models. Thus the initial model is self-dual.

1 Introduction

The continuations monad ((−) → R) → R is commonly used to model con-
trol effects. Following Moggi’s idea of interpreting call-by-value programs in the
Kleisli category [11,12], a call-by-value program from X to Y is interpreted as
a continuation transformer (Y → R) → (X → R). In an influential paper [3],
Berdine et al. observe that, in many programming situations, continuation trans-
formers satisfy an additional property: their argument, the continuation Y → R,
is used linearly. Thus a call-by-value program can be more informatively mod-
elled as a linear function (Y → R) � (X → R), corresponding to a Kleisli map
for the linearly-used continuations monad ((−)→ R) � R.

One goal of the present paper is to address the question: what is the natural
type-theoretic (and semantic) context for modelling linearly-used continuations?
With the presence of both intuitionistic (→) and linear (�) arrows, intuition-
istic linear type theory (ILL) (and its model theory) seems a natural answer.
Indeed, ILL has been used as the basis of a systematic study of linearly-used

� Research supported by EPSRC research grant “Linear Observations and Computa-
tional Effects”.

�� Research supported by the Danish Agency for Science, Technology and Innovation.

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 18–32, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Linearly-Used Continuations in the Enriched Effect Calculus 19

continuations by Hasegawa. In [6], he presents a continuation passing style (CPS)
translation of Moggi’s call-by-value computational λ-calculus into ILL, using the
linearly-used continuations monad, and establishes a full completeness result for
this. A follow-up paper [7] considers call-by-name.

In this paper, we use a more general type theory, the enriched effect calculus
(EEC) [4], as a context for modelling linearly-used continuations. On the one
hand, it can be seen as a fragment of ILL and, as such, its models strictly
generalise models of ILL. On the other hand, it is a conservative extension of
the standard calculi for modelling computational effects (Moggi’s computational
metalanguage [12], and Levy’s call-by-push-value (CBPV) [10]) with a selection
of constructs from linear logic. In fact, any adjunction model of CBPV (and
hence any model of Moggi’s computational metalanguage) expands to a model
of EEC [4]. This provides an abundant supply of computationally interesting
models of EEC that are not models of ILL.

The paper begins with a brief presentation of the enriched effect calculus in
Section 2. This is followed, in Section 3, by the treatment of linearly-used con-
tinuations within EEC. The starting point is the observation that Hasegawa’s
call-by-value [6] and call-by-name [7] linearly-used CPS translations of simply-
typed λ-calculus both fall in that fragment of ILL corresponding to EEC. The
first contribution of the paper is to show that, using EEC, we can recover these
translations in a particularly interesting way. This is achieved by identifying a
single canonical linearly-used CPS-translation of the entire enriched effect calcu-
lus into itself. Hasegawa’s call-by-value and call-by-name translations are derived
from this by composing the canonical translation with the standard call-by-value
and call-by-name encodings of typed λ-calculus into effect calculi (cf. Moggi [12],
Filinski [5], Levy [10]).

The canonical linearly-used CPS-translation of EEC into itself possesses a
remarkable property, unexpected in the context of CPS translations: it is invo-
lutive up to isomorphism. That is, the translation of a translated term equals
the original term modulo type isomorphism. This property is the main syntactic
theorem of the paper. As corollaries, we obtain full-completeness results for the
call-by-value and call-by-name linearly-used CPS translations into EEC, mirror-
ing Hasegawa’s results for the translations into ILL.

The second half of the paper provides a semantic context for the first. Section 4
reviews the notion of EEC model given in [4]. Following this, Section 5 gives
a semantic account of the canonical linearly-used CPS translation. We show
that the linearly-used continuations monad forms the basis of a duality of EEC
models. The dual model of a model can be viewed as a linearly-used continuations
model constructed over the original. The “dual” terminology is justified by every
model being isomorphic to its own double dual. Thus, surprisingly, every model of
the enriched effect calculus arises as a linearly-used continuations model relative
to some other model.

Finally, we specialise the dual model construction to the syntactic model of
EEC given by typed terms modulo equality. By the universal property of this
model [4], there is a unique (up to isomorphism) morphism of models from the



20 J. Egger, R.E. Møgelberg, and A. Simpson

Γ, x :A |− � x : A Γ |z :A � z : A Γ |Δ � ∗ : 1

Γ |Δ � t : A Γ |Δ � u : B

Γ |Δ � 〈t, u〉 : A × B

Γ |Δ � t : A × B

Γ |Δ � fst(t) : A

Γ |Δ � t : A × B

Γ |Δ � snd(t) : B

Γ, x :A |Δ � t : B

Γ |Δ � λx :A. t : A → B

Γ |Δ � s : A → B Γ |− � t : A

Γ |Δ � s(t) : B

Γ |− � t : A

Γ |− � ! t : !A

Γ |Δ � t : !A Γ, x :A |− � u : B

Γ |Δ � let ! x be t in u : B

Γ |z :A � t : B

Γ |− � λz :A. t : A � B

Γ |− � s : A � B Γ |Δ � t : A

Γ |Δ � s[t] : B

Γ |− � t : A Γ |Δ � u : B

Γ |Δ � !t ⊗ u : !A⊗B

Γ |Δ � s : !A⊗B Γ, x :A |z :B � t : C

Γ |Δ � let !x ⊗ z be s in t : C

Γ |Δ � t : 0

Γ |Δ � image(t) : A

Γ |Δ � t : A

Γ |Δ � inl(t) : A ⊕ B

Γ |Δ � t : B

Γ |Δ � inr(t) : A ⊕ B

Γ |Δ � s : A ⊕ B Γ |x :A � t : C Γ |y :B � u : C

Γ |Δ � case s of (inl(x). t; inr(y). u) : C

Fig. 1. Typing rules for the effect calculus

syntactic model to its dual. This morphism is an equivalence of models. Thus
the syntactic model is self-dual. Furthermore, the morphism identified from the
syntactic model to its dual is nothing other than the canonical linearly-used CPS
translation of EEC into itself from Section 3, and it is the equivalence property
of this morphism that proves the involutivity of the translation. Thus we obtain
a semantic proof of the main syntactic theorem of Section 3.

2 The Enriched Effect Calculus

The enriched effect calculus [4] is an extension of Moggi’s computational met-
alanguage [12] with constructors from linear type theory. Similar to Filinski’s
effect PCF [5] and Levy’s CBPV [10], it has two notions of types: value types
and computation types. We use α, β, . . . to range over a set of value type con-
stants, and α, β, . . . to range over a disjoint set of computation type constants.
We then use A,B, . . . to range over value types, and A,B, . . . to range over com-
putation types, which are specified by the grammar below:



Linearly-Used Continuations in the Enriched Effect Calculus 21

A ::= α | α | 1 | A× B | A→ B | ! A | A � B | !A⊗B | 0 | A⊕ B

A ::= α | 1 | A× B | A→ B | ! A | !A⊗B | 0 | A⊕ B .

The type constructor ! plays the role of Moggi’s monadic type constructor T and
Levy’s F . Our notation has been chosen to exhibit the enriched effect calculus
as a fragment of intuitionistic linear logic, a view which will be enhanced by the
typing rules below.

Note that computation types form a subset of the value types (which is not
the case in CBPV [10]). The reader is referred to [4] for further comparisons
with other calculi and explanations of the enriched effect calculus.

The enriched effect calculus has two typing judgements:

(i) Γ |− � t : B (ii) Γ |z : A � t : B ,

where Γ is a context of value-type assignments to variables. On the right of Γ
is a stoup, which may either be empty, as in the case of judgement (i), or may
consist of a unique type assignment x : A, in which case the type on the right of
the turnstyle is also required to be a computation type, as in (ii). The typing
rules are given in Figure 1. In them, Δ ranges over an arbitrary (possibly empty)
stoup, and the rules are only applicable in the case of typing judgements that
conform to (i) or (ii) above.

Γ |Δ � t = ∗ : 1 if Γ |Δ � t : 1

Γ |Δ � fst(〈t, u〉) = t : A if Γ |Δ � t : A and Γ |Δ � t : B

Γ |Δ � snd(〈t, u〉) = u : B if Γ |Δ � t : A and Γ |Δ � t : B

Γ |Δ � 〈fst(t), snd(t)〉 = t : A × B if Γ |Δ � t : A × B

Γ |Δ � (λx : A. t)(u) = t[u/x] : B if Γ, x : A |Δ � t : B and Γ |− � u : A

Γ |Δ � λx : A. (t(x)) = t : A → B if Γ |Δ � t : A → B and x �∈ Γ, Δ

Γ |− � let !x be !t in u = u[t/x] : B if Γ |− � t : A and Γ, x : A |− � u : B

Γ |Δ � let !x be t in u[! x/y] = u[t / y] : B if Γ |Δ � t : !A and Γ |y : !A � u : B

Γ |Δ � (λx : A. t)[u] = t[u/x] : B if Γ |x : A � t : B and Γ |Δ � u : A

Γ |− � λx : A. (t[x]) = t : A� B if Γ |− � t : A� B and x /∈ Γ

Γ |Δ � let !x⊗y be !t⊗s in u = u[t, s/x, y] : C if Γ |− � t : A and Γ |Δ � s : B

and Γ, x : A |y : B � u : C

Γ |Δ � let !x⊗y be t in u[!x⊗y/z] = u[t/z] : C if Γ |Δ � t : !A⊗B and Γ |z : !A⊗B � u : C

Γ |x : 0 � t = image(x) : A if Γ |x : 0 � t : A

Γ |Δ � case inl(t) of (inl(x). u; inr(y). u′) if Γ |x : A � u : C and Γ |y : B � u′ : C

= u[t/x] : C and Γ |Δ � t : A

Γ |Δ � case inr(t) of (inl(x). u; inr(y). u′) if Γ |x : A � u : C and Γ |y : B � u′ : C

= u′[t/y] : C and Γ |Δ � t : B

Γ |Δ�case t of (inl(x).u[inl(x)/z]; inr(y). u[inr(y)/z])

= u[t/z] : C if Γ |Δ � t : A ⊕ B and Γ |z : A ⊕ B � u : C

Fig. 2. Equality rules for the enriched effect calculus



22 J. Egger, R.E. Møgelberg, and A. Simpson

Rules for equalities between typed terms are presented in Figure 2. They are to
be considered in addition to the expected (typed) congruence and α-equivalence
rules.

There is a standard call-by-value translation of typed λ-calculus into Moggi’s
computational metalanguage, Filinski’s effect PCF [5], and Levy’s CBPV [10].
Similarly, there is a standard call-by-name translation into the latter two, which
exploits the existence of computation types. We recall these using the syntax
of our effect calculus. As a source calculus, we use the simply-typed λ-calculus
with types σ, τ, . . . given by:

σ ::= α | 1 | σ × τ | σ → τ .

The call-by-value interpretation translates a type σ into a value type σcbv, and
the call-by-name interpretation into a computation type σcbn.

αcbv = α αcbn = α

1cbv = 1 1cbn = 1

(σ × τ)cbv = σcbv × τcbv (σ × τ)cbn = σcbn × τcbn

(σ → τ)cbv = σcbv → !τcbv (σ → τ)cbn = σcbn → τcbn .

Here, we assume that each type constant α of the typed λ-calculus, is included
as a value-type constant, and has an associated computation-type constant α.

On terms, the cbv translation maps a judgement x1 : σ1, . . . , xn : σn� t : τ to

x1 : σcbv
1 , . . . , xn : σcbv

n |− � tcbv : !τcbv .

We omit the (routine) details. The cbn translation rather trivially maps a judge-
ment x1 : σ1, . . . , xn : σn � t : τ to

x1 : σcbn
1 , . . . , xn : σcbn

n |− � tcbn : τcbn .

3 Linearly-Used Continuations

In [6], Hasegawa studies a translation from typed λ-calculus into intuitionistic
linear type theory (ILL) which implements a continuation passing semantics in
which continuations are used linearly. In [7], he defines a corresponding call-
by-name translation (actually for a variant of Parigot’s λμ-calculus [13]). The
call-by-value interpretation translates a type σ into a linear type σcbvR , and the
call-by-name interpretation translates σ to σcbnR , as defined in Figure 3. Both
translations are defined with respect to a distinguished type constant R, which
acts as a result type for continuations. Whereas Hasegawa’s translations are into
ILL, we give them into the enriched effect calculus, for which it is crucial that
R is a computation type, hence the underlining. The important point is that
Hasegawa’s type translations fall into the EEC fragment of ILL.

For terms, Hasegawa [6,7] gives translations into ILL. Once again, these trans-
lations land in the fragment of ILL given by the enriched effect calculus, and we



Linearly-Used Continuations in the Enriched Effect Calculus 23

αcbvR = α αcbnR = α

1cbvR = 1 1cbnR = 0

(σ × τ )cbvR = σcbvR × τ cbvR (σ × τ )cbnR = σcbnR ⊕ τ cbnR

(σ → τ )cbvR = σcbvR → ((τ cbvR → R) � R) (σ → τ )cbnR = !(σcbnR � R) ⊗ τ cbnR .

Fig. 3. Cbv and cbn linearly-used CPS translations of typed λ-calculus

shall just give them directly as translations into the latter. On terms, the cbv
translation maps a judgement x1 : σ1, . . . , xn : σn � t : τ to

x1 : σcbvR

1 , . . . , xn : σcbvR
n |− � tcbvR : (τcbvR → R) � R .

The cbn translation maps a typing judgement x1 : σ1, . . . , xn : σn � t : τ to

x1 : σcbnR

1 � R, . . . , xn : σcbnR
n � R |− � tcbnR : τcbnR � R .

For lack of space, we do not give the details of the term translations, see [6,7].
We now present the canonical linearly-used CPS translation of the entire EEC

into itself. This translation maps any value type A to a value type AVR and any
computation type B to a computation type BCR , as defined in Figure 4. Note,
that the result type R is treated differently from the other computation-type
constants, and α ranges only over the latter. For each computation type A, we
obtain an isomorphism iA : (ACR � R)→ AVR , whose easy definition we omit.

Next, we define the translation of terms. We translate a typing judgement
Γ |− � t : A as:

ΓVR |− � tVR : AVR ,

where ΓVR is the context obtained by applying (−)VR to every type in Γ . A
typing judgement Γ |z : A � t : B is translated to:

ΓVR |z : BCR � tCR : ACR .

The two translations are given in Figure 5. In this figure, each line corresponds to
one of the typing rules in Figure 1. Observe that each typing rule that mentions
Δ has two cases in Figure 5: one for empty stoup, and one for non-empty stoup.
Also note that, in Figure 5, we always write z for the stoup variable.

We now establish the main properties of the translation. Since it is defined
compositionally on the term structure, a straightforward induction proves:

Proposition 1 (Soundness)

1. If Γ |− � t = u : A then ΓVR |− � tVR = uVR : AVR .
2. If Γ |z : A � t = u : B then ΓVR |z : BCR � tCR = uCR : ACR .

A fundamental property is that, for the entire enriched effect calculus, the
linearly-used CPS translation is involutive up to type isomorphism.



24 J. Egger, R.E. Møgelberg, and A. Simpson

αVR = α

αVR = αCR � R αCR = α

1VR = 1 1CR = 0

(A × B)VR = AVR × BVR (A × B)CR = ACR ⊕ BCR

(A → B)VR = AVR → BVR (A → B)CR = !AVR ⊗ BCR

(!A)VR = (!A)CR � R (!A)CR = AVR → R

(A � B)VR = BCR � ACR

(!A⊗B)VR = (!A⊗B)CR � R (!A⊗B)CR = AVR → BCR

0VR = 0 CR � R 0CR = 1

(A ⊕ B)VR = (A ⊕ B)CR � R (A ⊕ B)CR = ACR × BCR

RVR = R RCR = ! 1

Fig. 4. Linearly-used CPS translation of enriched effect calculus types

Theorem 1 (Involution property). For every value type A, there is an iso-
morphism jA : AVRVR → A, and, for every computation type A, there is a linear
isomorphism kA : ACRCR � A, such that:

1. If Γ |− � t : A then t = jA (tVRVR) [j−1(Γ )], where we write [j−1(Γ )] for the
substitution [j−1(x) / x]x: C∈Γ .

2. If Γ |z : A � t : B then t = kB (tCRCR) [k−1
A (z) / z] [j−1(Γ )].

For the proof, suitable isomorphisms jA and kA are easily defined by induction on
the structure of types. Given these, it should, in principle, be a routine unwinding
of definitions to verify the equalities in items 1 and 2. However, because of the
intricacy of Figure 5, the terms tVRVR and tCRCR are extremely unwieldy, and such
a direct verification seems impractical. Instead, we shall give a more manageable
(as well as more conceptually appealing) proof of the theorem using categorical
model theory, in Section 5.

Theorem 2 (Full-completeness). The linearly-used CPS translation is full
and faithful, i.e.:

1. If Γ | − � t, u : A are two terms of the same type and tVR = uVR (i.e., the
equality is provable in context) then t = u.

2. If Γ |z : A � t, u : B and tCR = uCR then t = u.
3. If ΓVR |− � t : AVR then there exists Γ |− � u : A such that t = uVR.
4. If ΓVR | z : BCR � t : ACR is a valid typing judgement, then there exists Γ |

z : A � u : B such that t = uCR.

Proof. For statement 1, suppose Γ |− � t, u : A and tVR = uVR . Then:

t = jA (tVRVR) [j−1
C (x) / x]x: C∈Γ (Theorem 1.1)

= jA (uVRVR) [j−1
C (x) / x]x: C∈Γ (Proposition 1)

= u (Theorem 1.1) .



Linearly-Used Continuations in the Enriched Effect Calculus 25

Γ VR , x :AVR |− � xVR = x

Γ VR |z :ACR � zCR = z

Γ VR |− � ∗VR = ∗
Γ VR |z : 0 � ∗CR = image(z)

Γ VR |− � 〈t, u〉VR = 〈tVR , uVR〉
Γ VR |z : ACR ⊕ BCR � 〈t, u〉CR = case z of (inl(z). tCR ; inr(z). uCR)

Γ VR |− � fst(t)VR = fst(tVR)

Γ VR |z : ACR � fst(t)CR = tCR [inl(z)/z]

Γ VR |− � snd(t)VR = snd(tVR)

Γ VR |z : ACR � snd(t)CR = tCR [inr(z)/z]

Γ VR |− � (λx :A. t)VR = λx :AVR . tVR

Γ VR |z : !AVR ⊗BCR � (λx :A. t)CR = let !x ⊗ z be z in (tCR)

Γ VR |− � (s(t))VR = sVR(tVR)

Γ VR |z : BCR � (s(t))CR = sCR [!tVR ⊗ z / z]

Γ VR |− � (! t)VR = λf : AVR → R. f(tVR)

Γ VR |− � (let ! x be t in u)VR = iB(λz : BCR . tVR [λx : AVR . i−1
B (uVR)[z]])

Γ VR |z : BCR � (let ! x be t in u)CR = tCR [(λx : AVR . i−1
B (uVR)[z]) /z]

Γ VR |− � (λz :A. t)VR = λz :BCR . tCR

Γ VR |− � (s[t])VR = iB(λz : BCR . i−1
A (tVR)[sVR [z]])

Γ VR |z : BCR � (s[t])CR = tCR [sVR [z] / z]

Γ VR |− � (!t ⊗ u)VR = λz : AVR → BCR . i−1
B (uVR)[z(tVR)]

Γ VR |z : AVR → BCR � (!t ⊗ u)CR = uCR [z(tVR) / z]

Γ VR |− � (let !x ⊗ z be s in t)VR = iC(λz : CCR . sVR [λx : AVR . tCR ])

Γ VR |z : CCR � (let !x ⊗ z be s in t)CR = sCR [(λx : AVR . tCR) / z]

Γ VR |− � (image(t))VR = iA(λz : ACR . tVR [∗])
Γ VR |z : ACR � (image(t))CR = tCR [∗/z]

Γ VR |− � (inl(t))VR = λz : ACR × BCR . i−1
A (tVR)[fst(z)]

Γ VR |z : ACR × BCR � (inl(t))CR = tCR [fst(z) / z]

Γ VR |− � (inr(t))VR = λz : ACR × BCR . i−1
A (tVR)[snd(z)]

Γ VR |z : ACR × BCR � (inr(t))CR = tCR [snd(z) / z]

Γ VR |− � (case s of (inl(x). t; inr(y). u))VR = iC(λz : CCR . sVR [〈tCR , uCR〉])
Γ VR |z : CCR � (case s of (inl(x). t; inr(y). u))CR = sCR [〈tCR , uCR〉 / z]

Fig. 5. Linearly-used CPS translation of terms



26 J. Egger, R.E. Møgelberg, and A. Simpson

For statement 3, suppose ΓVR |− � t : AVR . Define u = jA(tVR) [j−1(Γ )]. Then:

uVR = j
A
VR (uVRVRVR) [j−1(ΓVR)] (Theorem 1.1)

= j
A
VR ((j−1

A (u) [j(Γ )])VR) [j−1(ΓVR)] (Theorem 1.1)

= j
A
VR (tVRVR) [j−1(ΓVR)] (Definition u)

= t (Theorem 1.1) .

The proofs of items 2 and 4 are similar. ��
We end this section by showing how the linearly-used CPS translation of the
enriched effect calculus into itself subsumes the call-by-value and call-by-name
linearly-used CPS translations of Figure 3, from [7,6]. Indeed, these are obtained
uniformly by precomposing the translation on the enriched effect calculus with
the standard call-by-value and call-by-name translations.

Theorem 3 (Recovering (·)cbvR and (·)cbnR ).

1. For every simple type σ, we have σcbvR = (σcbv)VR ; and, for every simply-
typed term Θ � t : σ, we have tcbvR = (tcbv)VR .

2. For every simple type σ, there is a linear isomorphism rσ : (σcbn)CR � σcbnR

such that, for every Θ � t : σ, it holds that tcbnR = p−1
τcbn((tcbn)VR)[p(Θ)],

where pσ is the isomorphism iσcbn ◦ (rσ � R) : (σcbnR � R)→ (σcbn)VR .

That proofs are by induction on the structure of σ and t.
Statement 2 of the theorem is more complex than one would like because the

types (σcbn)CR and σcbnR are not syntactically identical. The difficulty derives
from ((σ → τ)cbn)CR = ! (σcbn)VR ⊗ (τcbn)CR ∼= ! ((σcbn)CR � R) ⊗ (τcbn)CR . But
identity does not hold because we do not have AVR = ACR � R. This technicality
could be avoided by changing to a syntax for EEC with no overloading between
value and computation types, as in Levy’s CBPV [10]. However, then the syntax
of EEC terms would become more complex.

Hasegawa [6] proves full-completeness for the call-by-value linearly-used CPS
translation of Moggi’s computational λ-calculus [11] into ILL. He also has a
similar result for the call-by-name translation of [7] restricted to the simply-
typed λ-calculus (private communication). The corollary below adapts this to
our identical translations into EEC. In fact, our results follow from Hasegawa’s
(and not vice versa!). What is interesting is our method of proof, which applies
the results we have established for our canonical translation. In the statement,
we write λc for the equational theory of Moggi’s computational λ-calculus.

Corollary 1 (Full completeness of (·)cbvR and (·)cbnR ).

1. If Θ � t, u : τ and ΘcbvR | − � tcbvR = ucbvR : (τcbvR → R) � R then
Θ �λ t = u : τ .

2. If ΘcbvR | − � u : (τcbvR → R) � R then there exists a simply-typed term
Θ � t : τ such that u = tcbvR .



Linearly-Used Continuations in the Enriched Effect Calculus 27

3. If Θ � t, u : τ and ΘcbnR |− � tcbnR = ucbnR : τcbnR then Θ �βη t = u : τ .
4. If ΘcbnR |− � u : τcbnR then there exists a simply-typed term Θ � t : τ such

that u = tcbnR .

Proof. We only give arguments for call-by-value. It can be shown that the map-
ping (·)cbv from the computational λ-calculus into EEC is full and faithful.1 For
statement 1, suppose ΘcbvR | − � tcbvR = ucbvR : (τcbvR → R) � R. Then, by
Theorem 3.1, (Θcbv)VR | − � (tcbv)VR = (ucbv)VR : ((τcbv)VR → R) � R. But
we have ((τcbv)VR → R) � R = (!τcbv)VR . So, by Theorem 2.1, Θcbv | − �
tcbv = ucbv : ! τcbv and statement 1 follows from the faithfulness of (·)cbv. For
statement 2, by Theorem 2.3 there exists u′ such that Θcbv |− � u′ : ! τcbv and
(u′)VR = u. Statement 2 now follows from the fullness of (·)cbv. ��

4 Models

We review the notion of model of the enriched effect calculus [4]. This is defined
in terms of enriched category theory [8]. Recall that, given a chosen monoidal
category V, a V-enriched category (or, V-category) C is given by a collection
of objects, with, for every pair of objects A,B ∈ C, a specified hom-object
C(A,B) ∈ V, together with families of morphisms in V supplying C with its
identity maps and an associative composition. When V is the category of sets,
a V-category is just an ordinary (locally small) category. When modelling the
enriched effect calculus, it is natural to ask for the category of linear maps
between computation types to be enriched over the category of value types,
since the value types A � B act as hom-objects. In the sequel, we shall assume
some basic knowledge of enriched category theory; see [8] for a detailed account.

We shall consider enrichment only with respect to categories V that are carte-
sian closed (we write BA or [A→ B] for functions spaces). Any such category is
self-enriched. We say that a V-enriched category C has (V-)powers2 if, for all
objects A ∈ V and B ∈ C, there exists an object BA ∈ C with isomorphisms

C(C,BA) � [A→ C(C,B)]

V-natural in objects C of C. The dual property is that of having (V-)copowers :
for all A ∈ V and B ∈ C, there must exist an objectA·B of C with isomorphisms

C(A ·B,C) � [A→ C(B,C)]

V-natural in C. An enriched adjunction F � U between V-functors F : D→ C
and U : C→ D requires the existence of isomorphisms in V

C(F (A), B) � [A→ U(B)]

which are V-natural in A and B.
1 E.g., the term model of λc [11] fully embeds in a model of CBPV [10], and every

model of CBPV fully embeds in a model of EEC [4] (the assumptions of sums [10]
and cartesian closedness [4] are not needed for the embeddings).

2 Kelly writes cotensors (resp., tensors) where we write powers (resp., copowers).



28 J. Egger, R.E. Møgelberg, and A. Simpson

Definition 1. An enriched-effect-calculus model comprises: a cartesian closed
category V, with V-enriched finite products, coproducts, powers, copowers, and
a V-adjunction F � U : C→ V.

We shall loosely specify models as F � U : C → V, without making the other
structure (which is, in any case, determined up to isomorphism) explicit.

To interpret the enriched effect calculus in a model, value types A are in-
terpreted as objects V[[A]] of V, and computation types A are interpreted as
pairs (C[[A]], sA) where C[[A]] is an object of C, and sA : U(C[[A]])→ V[[A]] is an
isomorphism in V. The reader is referred to [4] for further details.

In [4], the equational theory of the enriched effect calculus is shown to be sound
and complete with respect to interpretations in models. Completeness is proved
via a syntactic model construction. Since this model will play an important role
in Section 5, we recall its definition.

The category VSyn has as objects value types and as morphisms from A to
B terms of the form x : A | − � t : B identified up to the equality theory of
EEC. Composition is given by substitution. The VSyn-enriched category CSyn
has as objects all computation types and as object of morphisms from A to B
the value type A � B. Powers and copowers are given by the constructions
A → B and !A⊗B, respectively. The right adjoint is the forgetful functor from
computation types to value types, with its action on morphisms defined by the
coercion (A � B)→ (A→ B). The left adjoint is given by ! .

The syntactic model is characterised by a universal property. To formulate
this, one needs a notion of morphism of models. Essentially, a morphism from
F � U : C→ V to F ′ � U ′ : C′ → V′, is given by a pair of functors S : V→ V′

and T : C → C′ (jointly) preserving the structure. There are, however, two
complicating factors. First, morphisms need only preserve structure up to iso-
morphism rather than identity. (This choice is both mathematically natural and
essential to the results of Section 5.) Second, C and C′ are enriched over two dif-
ferent categories, which leads to subtle requirements regarding how the functor
T enriches. These issues are treated in [4]. There is a notion of coherent nat-
ural isomorphism (henceforth, cni) between morphisms of models; hence, the
category of models is naturally enriched in that of groupoids, Grpd.

Theorem 4 ([4, Theorem 3]). Given an enriched-effect-calculus model F �
U : C→ V and families of objects, V[[α]] in V and C[[α]] in C, indexed by type
constants, there exists a morphism of models from the syntactic model FSyn �
USyn : CSyn → VSyn to F � U : C → V that extends the given interpretation of
type constants, and this morphism is unique up to cni.

We remark, that the proof of the theorem produces a morphism that preserves
type constants up to equality. Nevertheless, uniqueness (up to isomorphism)
holds relative to the wider class of morphisms that only preserve type constants
up to isomorphism.



Linearly-Used Continuations in the Enriched Effect Calculus 29

5 Dual Models

Given a model F � U : C → V of the enriched effect calculus and an object R
of C, one can define another model FR � UR : Cop → V by:

FR := R(−) UR := C(−,R) .

Indeed, Cop is trivially V-enriched. Its enriched powers and copowers are given
by copowers and powers in C, respectively; similarly also products and coprod-
ucts. And it is standard that R(−) � C(−,R) is an enriched adjunction. We call
the constructed model the R-dual of F � U : C→ V.

There are obvious similarities between the dual model construction and the
linearly-used CPS translation on enriched effect calculus types, defined in Fig. 4.
For example, FR corresponds to the (−)→ R action of the translation of !(−) to
computation types. Similarly, UR implements the feature that the translation,
AVR , of A as a value type is obtained (modulo the isomorphism iA) as ACR � R,
where ACR is the interpretation of A as a computation type. Furthermore, the
induced monad C(R(−),R) on V corresponds to the linearly-used continuations
monad ((−)→ R) � R.

Monads of the form C(R(−),R) have been called dual monads by Lawvere [9],
who considers them in the case that U : C → V exhibits C as a category of
algebras for a monad over its enriching category. Our dual model construction
performs the analogous operation on general enriched adjunctions, rather than
on monads. As we shall see below (Theorem 5), in our setting, the “dual” ter-
minology is particularly appropriate.

Because of the choice of object R, the natural context for considering the dual
model construction is as an operation on pointed models, (F � U : C → V, R),
where R is a chosen object of C. A morphism of pointed models is a morphism
of models (S, T ) together with an isomorphism TR → R′. For a pointed model
M = (F � U : C → V, R), the dual pointed model M⊥ is defined to be (FR �
UR : Cop → V, F1). The choice of F1 may seem arbitrary here, but it is crucial
to Theorem 5 below.

Proposition 2. The dual model construction is a Grpd-enriched functor on
the Grpd-category of pointed models.

Proof (outline). A morphism (S, T ) is mapped to (S, T op : Cop → (C′)op),
and a cni (α : S ⇒ S′, β : T ⇒ T ′) is mapped to (α, β−1 : T op ⇒ (T ′)op). ��

Theorem 5. For every pointed model M, we have a natural isomorphism of
pointed models between M and M⊥⊥.

Proof (outline). We show that the pair of identity functors is the required
isomorphism fromM→M⊥⊥. The double dual M⊥⊥ turns out to be (F⊥⊥ �
U⊥⊥ : C→ V, FR 1), where F⊥⊥ = (−)·F1 (this is the power (F1)(−) calculated
in Cop) and U⊥⊥ = Cop(−, F1). Then we calculate: F⊥⊥ = (−) · F1 ∼= F ,
similarly U⊥⊥ = Cop(−, F1) = C(F1,−) ∼= U , and also FR 1 = R1 ∼= R. ��



30 J. Egger, R.E. Møgelberg, and A. Simpson

Models of intuitionistic linear logic supply a natural collection of models for the
enriched effect calculus. A linear/nonlinear model [2] consists of a cartesian-
closed category V (the intuitionistic category), a symmetric monoidal closed
category C (the linear category), and a symmetric monoidal adjunction F �
G : C→ V. The model has additives if C has finite products and coproducts. It
is classical if C is ∗-autonomous [1]. In [4, Proposition 1], it is shown that every
linear/nonlinear model with additives is a model of the enriched effect calculus.
Given an object R of C, the dual model is thus a model of the enriched effect
calculus. However, it is not (in general) a linear/nonlinear model (e.g., Cop need
not be symmetric monoidal closed). Thus models of the enriched effect calculus
are closed under a natural construction which is not available for models of
intuitionistic linear logic. However, models of classical linear logic are preserved
by the dual model construction, when R is chosen to be the dualizing object. In
fact, unsurprisingly, such models are self-dual.

Proposition 3. If F � G : C → V is a model of classical linear logic with
additives then, defining the pointed model M = (F � G : C → V, ⊥), where ⊥
is the dualizing object, it holds that the M is (pointed) isomorphic to M⊥.

Proof (outline). The isomorphism is given by (Id : V → V, (−)∗ : C → Cop)
fromM to M⊥, where (−)∗ is the ∗-autonomous dualizing functor. ��
We next exhibit a more surprising example of self-duality, the syntactic model.
As in Section 3, we assume a computation-type constant R. We then consider
the syntactic model together with R as the chosen object of CSyn:

MSyn,R := (FSyn � USyn : CSyn → VSyn, R) .

By Theorem 4, there is a unique morphism (up to cni) from the model FSyn �
USyn : CSyn → VSyn to the model FR

Syn � UR
Syn : Cop

Syn → VSyn given by functors
SR : VSyn → VSyn and TR : CSyn → Cop

Syn satisfying:

SR(α) ∼= α TR(α) ∼= !1 if α = R
α otherwise

Obviously, this is a morphism of pointed models fromMSyn,R to (MSyn,R)⊥.

Theorem 6. The morphism (SR, TR) is an equivalence of pointed models be-
tween MSyn,R and (MSyn,R)⊥.

Proof (outline). By Proposition 2, (SR, (TR)op) is a morphism from (MSyn,R)⊥

to (MSyn,R)⊥⊥ and, by (the proof of) Theorem 5, (Id, Id) is a morphism from
(MSyn,R)⊥⊥ to MSyn,R. The composite endomorphism (SR SR, (TR)op TR) on
MSyn,R obviously maps value type constants α and computation type constants
α, other than R, to themselves. In the case of R, we have

(TR)op TR (R) ∼= (TR)op(!1) ∼= (TR)(!1) ∼= 1→ R ∼= R ,



Linearly-Used Continuations in the Enriched Effect Calculus 31

where the penultimate isomorphism is because TR maps the left adjoint !(−)
in MSyn,R to the left adjoint (−) → R in (MSyn,R)⊥. Thus the endomor-
phism (SR SR, (TR)op TR) on MSyn,R preserves all type constants up to iso-
morphism. By Theorem 4, this endomorphism is isomorphic to the identity
morphism. For the composite endomorphism (SR SR, TR (TR)op) on (MSyn,R)⊥,
we have TR (TR)op = ((TR)op TR)op, which is again isomorphic to the identity be-
cause (TR)op TR is (as shown above). Hence (SR, TR) : MSyn,R → (MSyn,R)⊥ and
(SR, (TR)op) : (MSyn,R)⊥ →MSyn,R together form an equivalence of models. ��
The self-duality of MSyn,R exhibited above differs in two important respects
from the self-duality for classical linear/nonlinear models of Proposition 3. First,
(SR, TR) is not an isomorphism. Second, the functor SR is not (even isomorphic
to) the identity on VSyn. (Though SRSR is isomorphic to the identity.)

It is now a straightforward matter to finally prove Theorem 1. The crucial ob-
servation is that the morphism (SR, TR) is the generic linearly-used CPS trans-
lation of the enriched effect calculus into itself. Indeed, the object actions of
SR and TR are respectively the value-type and computation-type translations of
Fig. 4, and the morphism actions are respectively (·)VR and (·)CR from Fig. 5.

Proof of Theorem 1 (outline). We have seen above that SRSR is isomorphic
to the identity on VSyn, and (TR)op TR is isomorphic to the identity on CSyn. We
define the jA : AVRVR → A to be components of the former natural isomorphism,
and the kA : ACRCR � A to be components of the latter. Statement 1 of the
theorem is equivalent to the naturality of the jA. The naturality condition which
the kA are required to satisfy to be part of a cni, is the diagram below.

(A � B)VRVR
jA�B � A � B

ACRCR � BCRCR

=

� ACRCR � kB� ACRCR � B

kA � B

�

Hence, if Γ |z : A � t : B then

λz :A. t = jA�B (λz :A. t)VRVR [j−1(Γ )] (statement 1)

= jA�B (λz :ACRCR . (tCRCR)) [j−1(Γ )] (def. (−)VR)

= (λz :A. kB(tCRCR) [k−1
A (z) / z]) [j−1(Γ )] (naturality k)

proving statement 2 of the theorem. ��
We end the paper by mentioning a couple of issues that there is no space to
cover in detail. We call a pointed model M = (F � U : C → V, R) canonically
pointed if R is isomorphic to F1. Because we have FR 1 = R1 ∼= R, we see that
M⊥ is canonically pointed if and only if M is. We say that F � U : C → V is
canonically self dual if the canonically pointedM = (F � U : C→ V, F1) is self
dual. By an argument similar to the proof of Theorem 6, the syntactic model can



32 J. Egger, R.E. Møgelberg, and A. Simpson

be shown to be canonically self dual. This has syntactic repercussions for EEC.
If the computation-type constant R is replaced uniformly by the computation
type !1 in the canonical linearly-used CPS translation then one still obtains the
involutivity property and its consequences.

Finally, we mention that the key to Theorem 5 is that every V-enriched
adjunction F � U : C→ V is isomorphic to a V-adjunction of the standard form
(−)·I � C(I,−), by setting I ∼= F1. This fact allows models of the enriched effect
calculus to be described more simply as triples (V,C, I), where the adjunction
is replaced by simply requiring a specified object I of C. This approach renders
many properties of dual models obvious. What becomes less straightforward is
to connect semantic and syntactic properties, since the semantic structure is less
close to the syntactic primitives.

Acknowledgement. We thank the anonymous referees for helpful suggestions.

References

1. Barr, M.: ∗-autonomous categories. 752, vol. LNM (1979)
2. Benton, P.N.: A mixed linear and non-linear logic: Proofs, terms and models. In:

Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933. Springer, Heidelberg
(1995)

3. Berdine, J., O’Hearn, P.W., Reddy, U., Thielecke, H.: Linear continuation-passing.
Higher Order and Symbolic Computation 15, 181–208 (2002)

4. Egger, J., Møgelberg, R.E., Simpson, A.: Enriching an effect calculus with linear
types. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 240–254.
Springer, Heidelberg (2009)

5. A.: Filinski. Controlling Effects. PhD thesis, School of Comp. Sci., CMU (1996)
6. Hasegawa, M.: Linearly used effects: Monadic and CPS transformations into the

linear lambda calculus. In: Hu, Z., Rodŕıguez-Artalejo, M. (eds.) FLOPS 2002.
LNCS, vol. 2441, pp. 167–182. Springer, Heidelberg (2002)

7. Hasegawa, M.: Semantics of linear continuation-passing in call-by-name. In:
Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 229–243.
Springer, Heidelberg (2004)

8. Kelly, G.M.: Basic Concepts of Enriched Category Theory. London Math. Society
Lecture Note Series, vol. 64. Cambridge University Press, Cambridge (1982)

9. Lawvere, F.W.: Ordinal sums and equational doctrines. In: Seminar on Triples and
Categorical Homology Theory (ETH, Zürich), pp. 141–155. Springer, Heidelberg
(1969)

10. Levy, P.B.: Call-by-push-value. In: A functional/imperative synthesis. Semantic
Structures in Computation. Springer, Heidelberg (2004)

11. Moggi, E.: Computational lambda-calculus and monads. In: Proc. 4th LICS, pp.
14–23 (1989)

12. Moggi, E.: Notions of computation and monads. Information and Computation 93,
55–92 (1991)

13. Parigot, M.: λμ-calculus: an algorithmic interpretation of classical natural deduc-
tion. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer,
Heidelberg (1992)



Block Structure vs. Scope Extrusion: Between
Innocence and Omniscience

Andrzej S. Murawski� and Nikos Tzevelekos��

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract. We study the semantic meaning of block structure using game se-
mantics and introduce the notion of block-innocent strategies, which turns out
to characterise call-by-value computation with block-allocated storage through
soundness, finitary definability and universality results. This puts us in a good
position to conduct a comparative study of purely functional computation, com-
putation with block storage and dynamic memory allocation respectively. For
example, we show that dynamic variable allocation can be replaced with block-
allocated variables exactly when the term involved (open or closed) is of base type
and that block-allocated storage can be replaced with purely functional compu-
tation when types of order two are involved. To illustrate the restrictive nature
of block structure further, we prove a decidability result for a finitary fragment
of call-by-value Idealized Algol for which it is known that allowing for dynamic
memory allocation leads to undecidability.

1 Introduction

Most programming languages manage memory by employing a stack for local vari-
ables and heap storage for dynamically allocated data that may live beyond their initial
context. A prototypical example of the former mechanism is Reynolds’s Idealized Al-
gol [16], in which local variables can only be introduced inside blocks of ground type.
Memory is then allocated on entry to the block and deallocated on exit. In contrast,
languages such as ML permit variables to escape from their current context under the
guise of pointers or references. In this case, after memory is allocated at the point of
reference creation, the variable is allowed to persist indefinitely (in practice, garbage
collection or explicit deallocation is used to put an end to its life).

In this paper we would like to compare the expressivity of the two paradigms. As a
simple example of heap-based memory allocation we consider the language RML, intro-
duced by Abramsky and McCusker in [2], which is a fragment of ML featuring integer-
valued references. They also constructed a fully abstract game model of RML based on
strategies (also referred to as knowing strategies) that allow the player to base his deci-
sions on the full history of play. On the other hand, at around the same time Honda and
Yoshida [6] showed that the purely functional core of RML, better known as call-by-
value PCF [14], corresponds to innocent strategies [7], i.e. those that can only rely on a

� Supported by an EPSRC Advanced Research Fellowship (EP/C539753/1).
�� Supported by EPSRC (EP/F067607/1).

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 33–47, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



34 A.S. Murawski and N. Tzevelekos

restricted view of the play when deciding on the next move. Since block-structured stor-
age of Idealized Algol seems less expressive than dynamic memory allocation of ML
and more expressive than PCF, it is natural to ask about its exact position in the range
of strategies between innocence and omniscience. Our first result is an answer to this
question. We introduce the family of block-innocent strategies, situated strictly between
innocent and knowing strategies. As a vehicle for our study we use a call-by-value vari-
ant IAcbv of Idealized Algol and prove that each IAcbv-term can be interpreted by a
block-innocent strategy (soundness), each finitary block-innocent strategy corresponds
to an IAcbv-term (finitary definability) and each recursively presentable block-innocent
strategy corresponds to an IAcbv-term (universality). Block-innocence captures the par-
ticular kind of uniformity exhibited by strategies originating from block-structured pro-
grams, akin to innocence yet strictly weaker. In fact, we define block-innocence through
innocence in a setting enriched with explicit store annotations added to standard moves.
For instance, in the play shown below1, if P follows a block-innocent strategy, he is free
to use different moves as the fourth and sixth moves, but the tenth one and the twelfth
one have to be the same.

q q q 0 q 1 a a q 0 q 0

Additionally, our framework detects “storage violations” resulting from an attempt to
access a variable from outside of its block. For instance, no IAcbv-term will ever produce
the following play (the last move is the offending one).

q q q 0 q 1 a a q q

The notion of block-innocence provides us with a systematic methodology to address
expressivity questions related to block structure such as “Does a given strategy originate
from a stack-based memory discipline?” or “Can a given program using dynamic mem-
ory allocation be replaced with an equivalent program featuring stack-based storage?”.
To illustrate the approach we conduct a complete study of the relationship between the
three classes of strategies according to type-thereotic order. We find that knowingness
implies block-innocence when terms of base types (open or closed) are involved, that
block-innocence implies innocence exactly for types of at most second order, and that
knowingness implies innocence if the term is of base type and its free identifiers are
of order 1.

As a further confirmation of the restrictive nature of the stack discipline of IAcbv,
we prove that program equivalence is decidable for a finitary variant of IAcbv which
properly contains all second-order types as well as some third-order types (interestingly,
our type discipline covers the available higher-order types in PASCAL). In contrast, the
corresponding restriction of RML is known to be undecidable [10].

Related work. The stack discipline has always been regarded as part of the essence
of Algol [16]. Accordingly, finding models embodying stack-oriented storage manage-
ment has become an important goal of research into Algol-like languages. In this spirit,
in the early 1980s, Reynolds [16] and Oles [11] devised a semantic model of Algol-like

1 For the sake of clarity, we only include pointers pointing more than one move behind.



Block Structure vs. Scope Extrusion: Between Innocence and Omniscience 35

languages using a category of functors from a category of store shapes to the category
of predomains. Perhaps surprisingly, in the 1990s Pitts and Stark [13,17] managed to
adapt the techniques to languages with dynamic allocation. This would appear to create
a common platform suitable for a comparative study such as ours. However, despite the
valuable structural insights, the relative imprecision of the functor category semantics
(failure of definability and full abstraction) makes it unlikely that the results obtained by
us can be proved via this route. The semantics of local effects has also been investigated
from the category-theoretic point of view in [15].

As for the game semantics literature, Ong’s work [12] based on strategies-with-state
is the work closest to ours. His paper defines a compositional framework that is proved
sound for the third-order fragment of call-by-name Idealized Algol. Adapting the results
to call-by-value and all types is far from immediate. For a start, to handle higher-order
types, we note that the state of O-moves is no longer determined by its justifier and
the preceding move. Instead, the right state has to be computed “globally” using the
whole history of play. However, the obvious adaptation of so modified framework to
call-by-value does not capture the block-structure of IAcbv. Quite the opposite: it seems
to be more compatible with RML than IAcbv! Consequently, further changes are needed
to characterize IAcbv. Firstly, to restore definability, the explicit stores have to become
lists instead of sets. Secondly, conditions controlling state changes must be tightened.
In particular, P must be forbidden from introducing fresh variables at any step and,
in a similar vein, must be forced to drop some variables from his moves in certain
circumstances.

The paper cited above is part of a series that has eventually led to a complete classi-
fication of the decidable cases of call-by-name (finitary) Idealized Algol. Much less is
known about the call-by-value case, we are only aware of two papers: one by Ghica [5]
and the other by the first-named author [10]. Both rely on regular languages to capture
the game semantics of fragments of IAcbv and RML respectively. Their other common
feature is that the types considered are selected in such a way that no pointers need to
be represented in the induced plays. Our results represent further progress with regard
to IAcbv. The type system of our language, named IA2+

� , is designed in such a way that
only pointers from O-moves need not be represented, but we must include an explicit
representation of pointers from certain P-moves. In particular, in contrast to [5], we can
account for all second-order types, as we allow all first-order types to occur in contexts.
“Curried” types of the form A→ B → C are especially tricky to handle here, because
they can only be dealt with correctly if pointers from P-moves are encoded explicitly
(recall that in the call-by-value setting A → B → C and A × B → C are not iso-
morphic). Any further extension of the type system of IA2+

� leads either to context-free
languages or to plays in which pointers from O-moves of unbounded length would have
to be handled, which seemingly requires an infinite alphabet.

2 Syntax

To set a common ground for our investigations, we introduce a higher-order program-
ming language L that features syntactic constructs for both block and dynamic



36 A.S. Murawski and N. Tzevelekos

Γ, x : var � M : β
Γ � new x in M : β Γ � ref : var Γ � () : unit

i ∈ Z

Γ � i : int
(x : θ) ∈ Γ
Γ � x : θ

Γ � M1 : int Γ � M2 : int
Γ � M1 ⊕ M2 : int

Γ � M : int Γ � N0 : θ Γ � N1 : θ
Γ � if M thenN1 else N0 : θ

Γ � M : var
Γ � !M : int

Γ � M : var Γ � N : int
Γ � M :=N : unit

Γ � M : unit → int Γ � N : int → unit
Γ � mkvar(M, N) : var

Γ � M : θ → θ′ Γ � N : θ
Γ � MN : θ′

Γ, x : θ � M : θ′

Γ � λxθ.M : θ → θ′
Γ � M : (θ → θ′) → (θ → θ′)

Γ � Y(M) : θ → θ′

memory allocation. Its types are generated by the grammar below, where β ranges over
the ground types unit and int.

θ ::= β | var | θ → θ

The syntax of L is given in the Figure above. Note in particular the first two rules con-
cerning variables. The order of a type is defined as follows: ord(β) = 0, ord(var) = 1,
ord(θ1 → θ2) = max(ord(θ1) + 1, ord(θ2)). For any i ≥ 0, terms that are typable us-
ing exclusively judgments of the form x1 : θ1, · · · , xn : θn �M : θ, where ord(θj) < i
(1 ≤ j ≤ n) and ord(θ) ≤ i, are said to form the ith-order fragment. To spell out the
operational semantics of L, we need to assume a countable set Loc of locations, which
are added to the syntax as auxiliary constants of type var. We shall write α to range
over them. The semantics then takes the form of judgments s,M ⇓ s′, V , where s, s′

are finite partial functions from Loc to integers,M is a term and V is a value. Terms of
the following shapes are values: (), integer constants, elements of Loc, λ-abstractions
or terms of the form mkvar(λxunit.M, λyint.N). Here we only reproduce the two eval-
uation rules related to variable creation.

s ∪ (α �→ 0),M [α/x] ⇓ s′, V
s, new x inM ⇓ s′ \ α, V α/∈dom s

s, ref ⇓ s ∪ (α �→ 0), α
α/∈dom s

s′ \ α is the restriction of s′ to dom s′ \ {α}. The former rule encapsulates the state
within the newly created block, while the latter creates a reference to a new memory
cell that can be passed around without restrictions on its scope.

Given a closed term � M : unit, we write M ⇓ if there exists s such that ∅,M ⇓
s, (). We shall call two programs equivalent if they behave identically in every context.
This is captured by the following definition, parameterized by the kind of contexts that
are considered, to allow for testing of terms with contexts originating from a designated
subset of the language.

Definition 1. Suppose L′ is a subset of L. We say that the terms-in-context
Γ � M1,M2 : θ are L′-equivalent (written Γ � M1 ∼=L′ M2) if, for any L′-context
C[−] such that � C[M1], C[M2] : unit, C[M1] ⇓ if and only if C[M2] ⇓.

We shall study three sublanguages of L called PCF+, IAcbv and RML. The latter two
have appeared in the literature as paradigmatic examples of programming languages
with stack discipline and dynamic memory allocation respectively.



Block Structure vs. Scope Extrusion: Between Innocence and Omniscience 37

MA⇒B = IA⇒B � IA � IA � MB

IA⇒B = {∗}
λA⇒B = [(∗, PA), (iA, OQ), λ̄A � IA, λB]

�A⇒B = {(∗, iA), (iA, iB)} ∪ �A ∪ �B

MA⊗B =IA⊗B � IA � IB , IA⊗B = IA × IB

λA⊗B = [((iA, iB), PA), λA � IA, λB � IB ]

�A⊗B ={((iA, iB), m) | iA �A m ∨ iB �B m}
∪ (�A� IA

2
) ∪ (�B� IB

2
)

– PCF+ is a purely functional language obtained from L by removing new x inM
and ref. It extends the language PCF [14] with primitives for variable access, but
not for memory allocation.

– IAcbv is L without the ref constant. It can be viewed as a call-by-value variant of
Idealized Algol [16]. Only block-allocated storage is available in IAcbv.

– RML is L save the construct new x inM . It is exactly the language introduced in [2]
as a prototypical language for ML-like integer references.

We shall often write letx = M inN instead of (λx.N)M . Note that, since new x inM
is equivalent to letx = ref inM , RML and L merely differ on a syntactic level in that
L contains “syntactic sugar” for blocks. In the opposite direction, our results will show
that ref cannot in general be replaced with an equivalent term that uses new x inM . In-
deed, our paper provides a general methodology for identifying and studying scenarios
in which this expressivity gap occurs.

3 Game Semantics

Here we introduce the game models used throughout the paper, which are based on the
Honda-Yoshida approach to modelling call-by-value computation [6].

Definition 2. An arena A = (MA, IA,�A, λA) is given by
– a set MA of moves, and a subset IA ⊆MA of initial moves,
– a justification relation �A⊆MA × (MA \ IA), and
– a labelling function λA : MA → {O,P} × {Q,A}

such that λA(IA)={PA} and, wheneverm �A m′, we have (π1λA)(m) �=(π2λA)(m′)
and (π2λA)(m′) = A =⇒ (π2λA)(m) = Q.

The role of λA is to label moves as Opponent or Proponent moves and as Questions
or Answers. We typically write them as m,n, . . . , or o, p, q, a, qP , qO, . . . when we
want to be specific about their kind. The simplest arena is 0 = (∅, ∅, ∅, ∅). Other “flat”
arenas are 1 and Z, defined by M1 = I1 = {∗}, MZ = IZ = Z. The two standard
constructions on arenas are presented in the figure above, where ĪA stands forMA \ IA,
the OP -complement of λA is written as λ̄A, and iA, iB range over initial moves in the
respective arenas. Types of L can now be interpreted with arenas in the following way:
�unit� = 1, �int� = Z, �var� = (1 ⇒ Z) ⊗ (Z ⇒ 1) and �θ1 → θ2� = �θ1�⇒ �θ2�.
Although arenas model types, the actual games will be played in prearenas, which
are defined in the same way as arenas with the exception that initial moves must be
O-questions. Given arenas A and B, we can construct the prearenaA→ B by setting:

MA→B = MA � MB λA→B = [(iA, OQ) ∪ (λ̄A � IA) , λB]

IA→B = IA �A→B = {(iA, iB)}∪ �A ∪ �B .



38 A.S. Murawski and N. Tzevelekos

For Γ = {x1 : θ1, · · · , xn : θn}, typing judgmentsΓ � θ will eventually be interpreted
by strategies for the prearena �θ1� ⊗ · · · ⊗ �θn�→ �θ� (if n = 0 we take the left-hand
side to be 1), which we shall denote by �Γ � θ� or �θ1, · · · , θn � θ�.

A justified sequence in a prearena A is a finite sequence s of moves of A satisfying
the following condition: the first move must be initial, but all other moves m must be
equipped with a pointer2 to an earlier occurrence of a move m′ such that m′ �A m.
A play in A is a justified sequence s satisfying the standard conditions of Alternation,
Well-Bracketing and Visibility [7]. Visibility is based on the notions of O-view �s� and
P-view �s� of a justified sequence s, given by: �ε� = ε , �s o� = �s� o , �s o · · · p� =
�s� o p ; �ε� = ε , �s p� = �s� p , �s p · · · o� = �s� p o . We write PA to denote the set
of plays in A.

Definition 3. A (knowing) strategy σ on a prearenaA, written σ : A, is a prefix-closed
set of plays from A satisfying the first two conditions below. A strategy is innocent if,
in addition, the third condition holds.

O-CLOSURE If even-length s ∈ σ and sm ∈ PA then sm ∈ σ.
DETERMINACY If even-length sm1, sm2 ∈ σ then m1 = m2.
INNOCENCE If s1m, s2 ∈ σ with odd-length s1, s2 and �s1� = �s2� then s2m ∈ σ.

Now we shall extend the framework to allow moves to be decorated with stores that
contain name-integer pairs. The names should be viewed as semantic analogues of lo-
cations. When employing such moves-with-store, we are not interested in what exactly
the names are, but we would like to know how they relate to names that have already
been in play. Hence, the objects of study are rather the induced equivalence classes
with respect to name-invariance, and all ensuing constructions and reasoning need to
be compatible with it. This overhead can be dealt with robustly using the language of
nominal set theory [4].

Let us fix a countably infinite set A, the set of names, the elements of which we shall
denote by α, β and variants. Consider the group PERM(A) of finite permutations of A,
denoted by π and variants. A strong nominal set [18] is a set equipped with a group
action of PERM(A) such that each of its elements has finite strong support. That is to
say, for any x ∈ X , there exists a finite set ν(x) ⊆ A, called the support of x, such
that, for all permutations π, (∀α ∈ ν(x). π(α) = α) ⇐⇒ π · x = x. Intuitively, ν(x)
is the set of names “involved” in x. For example, the set A

# of finite lists of distinct
names with permutations acting elementwise is a strong nominal set. Name-variance
in a strong nominal set X is represented by the relation: x ∼ x′ if there exists π such
that x = π · x′.

We define a strong nominal set of stores, the elements of which are finite sequences
of name-integer pairs. Formally,

Σ, T ::= ε | (α, i) :: Σ

where i ∈ Z and α ∈ A \ ν(Σ). We view stores as finite functions from names
to integers, though their domains are lists rather than sets. Thus, we define the do-
main of a store to be the list of names obtained by applying the first projection to

2 We then say that m′ justifies m. If m is an answer, we might also say that m answers m′. If a
question remains unanswered in s, it is open.



Block Structure vs. Scope Extrusion: Between Innocence and Omniscience 39

all of its elements. In particular, ν(dom (Σ)) = ν(Σ). If α ∈ ν(Σ) then we write
Σ(α) for the unique i such that (α, i) is an element of Σ. For stores Σ, T we write:
Σ ≤ T for dom (Σ) � dom (T ) ; Σ ≤p T for dom (Σ) �p dom (T ) ; Σ ≤s T for
dom (Σ) �s dom (T ), where �,�p,�s denote the subsequence, prefix and suffix re-
lations respectively. Note that Σ ≤(p/s) T ≤(p/s) Σ implies dom (Σ) = dom (T ) but
not Σ = T . Finally, let us write Σ \ T for Σ restricted to ν(Σ) \ ν(T ).

An S-move (or move-with-store) in a prearena A is a pair consisting of a move and
a store. We typically write S-moves as mΣ , nT , oΣ , pT , qΣ , aT . The first-projection
function is viewed as store erasure and denoted by erase( ). Note that moves contain
no names and therefore, for any mΣ , ν(mΣ) = ν(Σ) = ν(dom (Σ)) . A justified
S-sequence in A is a sequence of S-moves equipped with justifiers, so that its erasure is
a justified sequence. The notions of O-view and P-view are extended to S-sequences in
the obvious manner. We say that a name α is closed in s if there are no open questions
in s containing α.

Definition 4. A justified S-sequence s in a prearenaA is called an S-play, also written
s ∈ SPA, if it satisfies the following conditions, for all α ∈ A.

INIT If s = mΣ · · · then Σ = ε.
JUST-P If s = · · · oΣ · · · pT · · · then Σ ≤p T . If λA(p) = PA then dom (Σ) =

dom (T ).
JUST-O If s = · · · pΣ · · · oT · · · then dom (Σ) = dom (T ).
PREV-PQ If s = · · · oΣqTP · · · then Σ \ T ≤s Σ and Σ \ (Σ \ T ) ≤p T and

(a). if α ∈ ν(T \Σ) then α /∈ ν(s<q ),
(b). if α ∈ ν(Σ \ T ) then α is closed in s<q .

VAL-O If s = · · · pΣs′oT · · · and α ∈ (ν(T ) ∩ ν(Σ)) \ ν(s′) then T (α) = Σ(α).

For example, PREV-PQ stipulates that P-questions may drop some names from the store
and append some others, but these changes may only take place in blocks at the tail of
the store. Moreover, appended names must be fresh in the whole play, and a name can
be dropped only if it has been closed.

Let us remark that, as stores have strong support, the set of S-plays SPA is a strong
nominal set. Further properties of S-plays include:

– If s = · · ·mΣaTP · · · then Σ \ T ≤s Σ and Σ \ (Σ \ T ) ≤p T and
(a) if α ∈ ν(T ) then α ∈ ν(Σ),
(b) if α ∈ ν(Σ \ T ) then α is closed in s<a .

– If s = s1o
ΣpT s2 with α ∈ ν(Σ) \ ν(T ) then α /∈ ν(s2).

Definition 5. An S-strategy σ on an arena A, written σ : A, is a prefix-closed set of
S-plays from A satisfying the first three of the following conditions. An S-strategy is
innocent if it also satisfies the last condition.

NOMINAL CLOSURE If s′ ∼ s ∈ σ then s′ ∈ σ.
O-CLOSURE If even-length s ∈ σ and smΣ ∈ SPA then smΣ ∈ σ.
DETERMINACY If even-length smΣ1

1 , smΣ2
2 ∈ σ then smΣ1

1 ∼ smΣ2
2 .

INNOCENCE If s1mΣ1 , s2 ∈ σ with s1, s2 odd-length and �s1� = �s2� then there
exists s2mΣ2 ∈ σ with �s1mΣ1� ∼ �s2mΣ2�.



40 A.S. Murawski and N. Tzevelekos

Example 6. For any base type β, let us define the S-strategy cellβ : �var → β� → �β�
as the least innocent S-strategy containing the plays below. We use read and write(i)
(i ∈ Z) to refer to the question-moves of �var�, and i (i ∈ Z) and ok for the non-initial
answers.

q0 q1
(α,0) a1

(α,i) a0 q0 q1
(α,0) read(α,i) i(α,i) q0 q1

(α,0) write(j)(α,i) ok(α,j)

Example 7. Had we used sets instead of lists for representing stores, the following “S-
strategy”, which represents incorrect overlap of scopes (α and β are in scope of one
another, but at the same time have different scopes), would be innocent.

q0 q1
(α,0),(β,0) 01

(α,0),(β,0) q1
(α,0) q0 q1

(α,0),(β,0) 11
(α,0),(β,0) q1

(β,0)

Arenas and S-strategies form a category, which we call S, and so do innocent S-
strategies. S turns out to exhibit the same kind of categorical structure as that discussed
in [6], which can be employed to model call-by-value higher-order computation with
recursion. Thus, the functional part of IAcbv can be interpreted in S according to the
standard recipe. Assignment, dereferencing and mkvar can in turn be modelled using
the innocent strategies without stores from [2]. Finally, the denotation of new x inM is
obtained by composing the denotation of λxvar.M with the innocent S-strategy cellβ .
Let us write �· · ·�S for the resultant semantic map.

Proposition 8 (Soundness). For any IAcbv-term Γ �M : θ, �Γ �M : θ�S is an inno-
cent S-strategy.

Innocent S-strategies can be decomposed in a similar way to the innocent strategies
of [6]. There is one important exception, though, which occurs when the second-move
introduces a non-empty store (our rules of play imply that the move must be a ques-
tion). Let α be the first variable from the non-empty store. In order to decompose the
strategy, consider a P-view s in which α occurs in the second move qα. It turns out that
s = qqαsαs

′, where (the store of) a movemΣ from s contains α if, and only if, it is qα
or in sα. In addition, no justification pointers connect s′ to qαsα. This separation can be
applied to decompose the view-function of an innocent S-strategy. The sα parts, put to-
gether as a single S-strategy, can subsequently be dealt with in the style of factorization
arguments, which remove α from moves at the cost of an additional var-component.
Finally, to relate sα’s to the suitable s′ one can use numerical codes for qαsα. These
ideas lie at the heart of the following result. By a finitary innocent S-strategy we mean
an innocent strategy whose view-function quotiented by name-variance is finite.

Proposition 9 (Finitary Definability and Universality).
– Any finitary innocent S-strategy is IAcbv-definable.
– Any recursively presentable innocent S-strategy is IAcbv-definable.

It is worth noting that the universality result for innocent S-strategies implies an anal-
ogous result for innocent strategies and PCF. Thanks to call-by-value, the result is
actually sharper than the universality results of [1,7], which had to be proved “up to
observational equivalence”. This was due to the fact that partial recursive functions
could not always be represented in the canonical way (i.e. by terms for which the cor-
responding strategy contained plays of the form q q n f(n)). This is no longer the case



Block Structure vs. Scope Extrusion: Between Innocence and Omniscience 41

under the call-by-value regime, where each partially recursive function f can be coded
by a term whose denotation will be the strategy based on plays of the shape n f(n).

With the soundness and definability results in place, we could now proceed in the fa-
miliar way to define a fully abstract model of IAcbv via the intrinsic quotient. However,
this would be somewhat counterproductive. It turns out that RML is a conservative ex-
tension of IAcbv (Corollary 14), so the (simpler) fully abstract model of RML from [2],
based on knowing strategies, is already fully abstract for IAcbv. In fact, our model can
be related to knowing strategies more precisely. Observe that by erasing storage annota-
tions in an innocent S-strategy σ we obtain a knowing strategy, which we call erase(σ)
(determinism follows from the fact that stores in O-moves are uniquely determined
and from block-innocence). Let us write �· · ·� for the knowing strategy semantics (cast
in [6]).

Lemma 10. For any IAcbv-term Γ �M : θ, �Γ �M : θ� = erase(�Γ �M : θ�S).

This means the intrinsic quotient we would construct in the setting with stores can
be represented more explicitly via the induced complete plays (without stores)3. Even
though innocent S-strategies have not led us to a direct account of full abstraction for
IAcbv, we have obtained important insights into the structure of knowing strategies rep-
resenting IAcbv-terms: they are erasures of innocent S-strategies. Knowing strategies
with this property will be referred to as block-innocent. The knowledge that strategies
determined by IAcbv are block-innocent will be crucial in establishing a series of results
in the following sections.

Example 11. Let us revisit the two plays from the Introduction. The first one indeed
comes from an innocent S-strategy (we reveal the stores below). For the second one to
become innocent (in the setting with stores), a store with variable α, say, would need
to be introduced in the second move. Then α must also occur in the seventh move by
JUST-O, but it must not occur in the eighth move by JUST-P (the PA clause). Hence, it
will not be present in the ninth move by JUST-O. Consequently, the last move (justified
by the seventh move) is bound to break either PREV-PQ(a) (if it contains α) or JUST-P
(if it does not).

q q(α,0) q(α,0) 0(α,1) q(α,1) 1(α,1) a(α,0) a q 0 q 0

4 From Omniscience to Innocence

In Section 2 we introduced the three languages: PCF+, IAcbv and RML. By the sound-
ness and universality results of the previous section (as well as the soundness results
from [6,2]) the languages correspond respectively to innocent, block-innocent and know-
ing strategies. LetA be an arena. We write IA,BA andKA for the corresponding classes
of (store-free) strategies in A. Obviously, IA ⊆ BA ⊆ KA. Next we shall study type-
theoretic conditions under which one kind of strategy collapses to another. Thanks to

3 A play is complete if it does not contain unanswered questions. That such plays capture pro-
gram equivalence in RML follows from the argument in [3], readily adaptable to RML. By
Corollary 14, the same characterization will apply to IAcbv.



42 A.S. Murawski and N. Tzevelekos

the universality results, this corresponds to the existence of an equivalent program in a
weaker language.

Lemma 12. Let A = �θ1, · · · , θn � θ → θ′�. Then BA � KA.

Proof. Observe that there exist moves q0, a0, q1, a1 such that q0 �A a0 �A q1 �A a1
and consider σ = {ε, q0, q0a0, q0a0q1, q0a0q1a1}, i.e. σ has no response at q0a0q1a1q1.
Then σ ∈ KA \ BA. It is worth remarking that a strategy of the above kind denotes the
RML-term � let v = ref inλxunit.if !v thenΩ else v := !v + 1 : unit→ unit. ��
Lemma 12 confirms that, in general, block structure restricts expressivity. However, the
next result shows this not to be the case for open terms of base type.

Lemma 13. Let A = �θ1, · · · , θn � β�. Then BA = KA.

Proof. Observe that any knowing strategy for A becomes block-innocent if in the sec-
ond move P introduces a store with one variable that keeps track of the history of play
(this is reminiscent of the factorization arguments in game semantics). The variable
should be removed from the store by P only when he plays an answer to the initial
question, in which case the play becomes complete and cannot be extended further. ��
By universality, we can conclude that each RML-term of base type is equivalent to
an IAcbv-term. Since contexts used for testing equivalence are exactly of this kind, we
obtain the following corollaries. The first one amounts to saying that RML is a conser-
vative extension of IAcbv. The second one states that block-structured contexts suffice
to distinguish terms that might use scope extrusion.

Corollary 14. For any IAcbv-terms Γ �M1,M2 and RML-terms Γ � N1, N2

– Γ �M1 ∼=RML M2 if, and only if, Γ �M1 ∼=IAcbv
M2.

– Γ � N1 ∼=RML N2 if, and only if, Γ � N1 ∼=IAcbv
N2.

Now we investigate the boundary between block structure and lack of state.

Lemma 15. Let A be an arena such that each question enables an answer 4. The fol-
lowing conditions are equivalent.

1. BA ⊆ IA.
2. No O-question is enabled by a P-question: m �A qO implies λA(m) = PA.
3. Store content of O-questions is trivial: sqΣO ∈ SPA implies dom (Σ) = ε.

We can now determine at which types block-innocence implies innocence.

Lemma 16. �θ1, · · · , θn � θ� satisfies condition 2 of Lemma 15 iff ord(θi) ≤ 1 (i =
1, · · · , n) and ord(θ) ≤ 2.

Consequently, second-order IAcbv-terms always have purely functional equivalents. Fi-
nally, we can pinpoint the types at which strategies are bound to be innocent: it suffices
to combine the previous findings.

4 All denotable arenas enjoy this property.



Block Structure vs. Scope Extrusion: Between Innocence and Omniscience 43

Lemma 17. Let A = �θ1, · · · , θn � θ�. Then KA = IA iff ord(θi) ≤ 1 (i = 1, · · · , n)
and ord(θ) = 0.

In the next section we demonstrate that the gap in expressivity betweenKA and BA also
bears practical consequences. The undecidable equivalence problem for second-order
finitary RML becomes decidable in second-order finitary IAcbv (as well as at some third-
order types).

5 Decidability of a Finitary Fragment of IAcbv

To prove program equivalence decidable we restrict the base datatype of integers to
the finite segment {0, · · · , N} (N > 0) and replace recursive definitions (Y(M)) with
looping (whileM doN ). Let us call the resultant language IA�. Our decidability result
will hold for a subset IA2+

� of IA�, in which type order is restricted. IA2+
� will reside

inside the third-order fragment of IA� and contain its second-order fragment. Note that
the second-order fragment of similarly restricted RML is known be undecidable (even
without loops) [10].

The decidability of program equivalence in IA2+
� will be shown by translating terms

to regular languages representing the corresponding knowing strategies. We stress that
we are not going to work with the induced S-plays. Nevertheless, the translation will
crucially rely on insights gleaned from the semantics with explicit stores. More pre-
cisely, we will be interested in capturing the induced complete (store-free) plays. It is
worth mentioning that, unlike in the (single-threaded) call-by-name setting, complete
plays need not be maximal.

To represent plays as words, one needs to consider carefully how to represent point-
ers, should that be necessary. For example, this can be done by decorating moves with
integers that encode the distance from the target in some way. Only pointers from ques-
tions require attention, since those from answers are uniquely reconstructible through
the well-bracketing condition. Next we analyse two typing scenarios that look hopeless
from the point of view of encoding pointers, since the distance from the pointer can
grow arbitrarily. In the first case, thanks to block-innocence, we will be able to over-
come the difficulties. The other case must remain a challenge for future work (or an
undecidability result). On the basis of our discussion we shall subsequently introduce
the type system of IA2+

� .
Consider the arena �θ � θ1 → . . .→ θk → β�. Due to the presence of the k arrows

on the right-hand side we obtain chains of enablers q0 � a0 � · · · � qk � ak, where
q0 is initial and each qi (i = 1, · · · , k) is initial in �θi�. We shall call the moves spinal.
Consider � � λxunit.λyunit.() : unit→ unit→ unit� (i.e. k = 2), which contains plays
of the form q0a0(q1a1)j for any j ≥ 0. Pointers are still uniquely determined in these
plays, but everything changes once O plays q2 next. Then the target might be any of
the j occurrences of q1. The strategy in question actually offers responses in all such
cases, so it would seem that all of these plays need to be represented (thus necessi-
tating the use of an infinite alphabet). Fortunately, thanks to block-innocence, we can
restrict ourselves to the case j = 1 and make the problem disappear. To see why, ob-
serve that none of the moves qi, ai will ever carry a non-empty store in an S-play, by



44 A.S. Murawski and N. Tzevelekos

Definition 4. Thus, because the strategy is block-innocent, its behaviour is already rep-
resented faithfully by the single play q0a0q1a1q2a2. In fact, this is one of the cases
when block-innocence implies innocence, but in general this will not be true for deno-
tations of IA2+

� -terms. Hence, we generalize the observation as follows. Since the move
q1 never carries a non-trivial store, it follows that no additional information about the
strategy is hidden in plays containing two occurrences of q1. This is because a block-
innocent strategy has to behave uniformly after each q1 and in general will depend only
on what happened between q0 and a0, and not on what happened after a previous copy
of q1 was played (there can be no communication between the “threads” started with q1
because q1 cannot carry a non-trivial store). Now that it is known that O need only play
one occurrence of q1, we can apply a similar reasoning to q2, and so on. This yields
the following lemma. Note that, due to Visibility, insisting on the presence of a unique
copy of q1, · · · , qk in a play amounts to asking that each qi be preceded by ai−1.

Lemma 18. Call a play spinal if each spinal question qi (0 < i ≤ k) occurring in it is
the immediate successor of ai−1. Let P spA be the set of spinal plays of A. Let σ, τ : A
be block-innocent strategies. Then σ ∩ P spA = τ ∩ P spA implies σ = τ .

Hence, for the purpose of checking program equivalence, it suffices to compare the
induced sets of spinal complete plays.

Now that we have dealt with one challenge, let us introduce another one, which
cannot be overcome so easily. Consider the arena �(θ1 → θ2 → θ3)→ θ4 � θ� and
the enabling sequence q0 � q1 � q2 � a2 � q3 it contains. Now consider the plays
q0q1(q2a2)jq3, where j ≥ 0. Again, to represent the pointer from q3 to one of the
j occurrences of a2, one would need an unbounded number of indices. This time it
is not sufficient to restrict j to 1, because the behaviour need not be uniform after
each q2 (this is because in the setting with stores a non-empty store can be intro-
duced as soon as in the second move q1). To see that the concern is real, consider
the term f : (unit→ unit→ unit)→ unit � new x in f(λyunit. · · ·λzunit. · · · ) : unit,
where (· · · ) contain some code inspecting and changing the value of x.

This leads us to introduce IA2+
� via a type system that will not generate the configura-

tion just discussed. Another restriction is to omit third-order types in the context, as they
lead beyond the realm of regular languages (cf. f : ((unit→ unit)→ unit)→ unit �
f(λgunit→unit.g()). Since var leads to identical problems as unit → unit, we restrict its
use accordingly.

Definition 19. IA2+
� consists of IA�-terms whose typing derivations rely solely on typ-

ing judgments of the shape x1 : ctype1, · · · , xn : ctypen �M : ttype, where ctype and
ttype are defined by the grammar below.

ctype ::= β | var | β → ctype | var→ ctype | (β → β)→ ctype
ttype ::= β | var | ctype → ttype

A lot of pointers from questions become uniquely determined in strategies represent-
ing IA2+

� terms, namely, all pointers from any O-questions and all pointers from P -
questions to O-questions.

Lemma 20. Let A = �ctype1, · · · , ctypen � ttype� and s1, s2 be spinal plays of A
that are equal after all pointers from O-questions and all pointers from P-questions to
O-questions have been erased. Then s1 = s2.



Block Structure vs. Scope Extrusion: Between Innocence and Omniscience 45

Thus, the only pointers that need to be accounted for are those from P-questions to O-
answers. Here is the simplest scenario illustrating that they can be ambiguous. Consider
the terms

f : unit→ unit→ unit � let g1 = f() in (let g2 = f() in gi()) : unit

where i = 1, 2. They lead to the following plays, respectively for i = 1 and i = 2,
which are equal up to pointers from P-questions to O-answers.

q0 q1 a1 q1 a1 q2 q0 q1 a1 q1 a1 q2

We are going to represent such pointers with numerical indices encoding the target of
the pointer inside the current P-view. More precisely, let us enumerate (starting from 0)
all question-enabling O-answers in the P-view. Then pointers from P-questions to O-
answers can be encoded by decorating the P-question with the index of the O-answer.
The plays above will be encoded as q0q1a1q1a1q

0
2 and q0q1a1q1a1q

1
2 respectively (other

pointers are uniquely recoverable by Lemma 20 and will not be represented explicitly).
So that we need not study the behaviour of the representation scheme for pointers under
general composition (after which the indices might need to be recalculated), we restrict
our translation to terms in a canonical shape, to be defined next. Any IA�-term can be
converted effectively to such a form and the conversion preserves denotation.

The canonical forms are defined by the following grammar. We use types as super-
scripts, whenever we want to highlight the type of an identifier (u, v, x, y, z range over
identifier names). Note that the only identifiers in canonical form are those of base type,
represented by xβ below.

C ::= () | i | xβ | xβ ⊕ yβ | if xβ then C else C | xvar := yint | !xvar | λxθ .C |
mkvar(λxunit.C, λyint.C) | new xvar in C | while C do C | let xβ = C inC |
letx = zyβ inC | let x = z mkvar(λuunit.C, λvint.C) in C | letx = z(λxθ.C) in C

Lemma 21. Let Γ �M : θ be an IA�-term. There is an IA�-term Γ � N : θ in canon-
ical form, effectively constructible from M , such that �Γ �M� = �Γ � N�.

Proof. N can be obtained via a series of η-expansions, β-reductions and commuting
conversions involving let and if. ��
A useful feature of the canonical form is that the problems with pointers can be related
to the syntactic shape: they concern references to let-bound identifiers xθ such that θ
is not a base type (i.e. θ = var or θ is a function type). The representation scheme
for pointers corresponds then to enumerating such let bindings along branches of the
syntactic tree of the canonical form (using 0 for topmost bindings). Below we state our
representability theorem for IA2+

� -terms. The definition ofAM is actually too generous,
as we shall only need indices to decorate P-questions enabled by O-answers (in concrete
examples the indices will be superscripts).

Proposition 22. Suppose Γ � M : θ is an IA2+
� -term. Let AM = MA + (MA × N),

where A = �Γ � θ�. Let CΓ�M be the set of non-empty spinal complete plays from
�Γ �M : θ�. Then CΓ�M can be represented as a regular language over a finite subset
of AM .



46 A.S. Murawski and N. Tzevelekos

Proof. For brevity, we shall write CM instead of CΓ�M whenever it is clear what Γ
should be. CM can be decomposed as i∈I (i CiM ). Obviously CM is regular if, and
only if, so is any of CiM (i ∈ IA). Hence, it suffices to show that CiM is regular for
any relevant i. The proof proceeds by induction on the structure of canonical forms.
The most difficult cases are those involving let. Note that whenever a canonical form
of an IA2+

� -term is of the shape letx = z(λxθ.C) in C, z’s type must be of the form
(β1 → β2) → (θ1 → θ2) (and θ is a base type). We handle this case below. Consider
the terms:

Γ, z : (β1 → β2)→ (θ1 → θ2), y : β1 �M : β2,
Γ, z : (β1 → β2)→ (θ1 → θ2), x : θ1 → θ2 � N : θ′.

Assuming that M and N satisfy the Proposition, we show that so does N ′ ≡ letx =
z(λyβ1 .M) inN . We shall refer to moves contributed by x : θ with mx. If we want to
range solely over O- or P-moves from the component, we use ox and px respectively.
Moreover, we use mz,x, oz,x, pz,x to refer to copies of mx, ox, px in the z : θ′ →
θ component. The most common operation performed using this notation will be the
relabelling of mx to mz,x. If θ is a function type, then there is a unique P-question qx
enabled by the initial move �x. Whenever we have a separate substitution rule for qx,
the rule for mx or px will not apply to qx. In most cases we will want to substitute q0z,x
(qz,x decorated with index 0 represent a topmost binding) for qx. In addition, i+ 1/i is
used to increment all numerical indices by 1. Then we have

C(i ,� )
N ′ = qz C′ �z,x C(i ,� ,� )

N [i+ 1/i, q0z,xC′/qx, pz,xC′/px, oz,x/ox]

where C′ = ( i∈I� 1�
iz C(i ,� ,i )

M [jz/j])∗ and j ranges over I�β2�. ��
Theorem 23. Program equivalence of IA2+

� -terms is decidable.

We remark that adding dynamic memory allocation in the form of ref to IA2+
� , or its

second-order sublanguage, results in undecidability [10]. Hence, at second order, block
structure is “strictly weaker” than scope extrusion.

6 Summary

In this paper we have introduced the notion of block-innocence that has been linked
with call-by-value Idealized Algol in a sequence of results. Thanks to the faithfulness
of block-innocence, we could investigate the interplay between type theory, functional
computation and stateful computation with block structure and dynamic allocation re-
spectively. We have also shown a new decidability result for a carefully designed frag-
ment of IAcbv. Its extension to product types poses no particular difficulty. In fact, it
suffices to follow the way we have tackled the var type, which is itself a product type.
The result thus extends those from [5] and is a step forward towards a full classifi-
cation of decidable fragments of IAcbv: the language IA2+

� we considered features all
second-order types and some third-order types, while finitary IAcbv is known to be un-
decidable at order 5 [9]. Interestingly, IA2+

� features restrictions that are compatible
with the use of higher-order types in PASCAL [8], in which procedure parameters can-
not be procedures with procedure parameters. An interesting topic for future work is a
category-theoretic characterization of block-innocence.



Block Structure vs. Scope Extrusion: Between Innocence and Omniscience 47

References

1. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information and Com-
putation 163, 409–470 (2000)

2. Abramsky, S., McCusker, G.: Call-by-value games. In: Nielsen, M. (ed.) CSL 1997. LNCS,
vol. 1414, pp. 1–17. Springer, Heidelberg (1998)

3. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game semantics for
Idealized Algol with active expressions. In: O’Hearn, P.W., Tennent, R.D. (eds.) Algol-like
languages, pp. 297–329. Birkhaüser, Basel (1997)

4. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal
Aspects of Computing 13, 341–363 (2002)

5. Ghica, D.R.: Regular-language semantics for a call-by-value programming language. In: Pro-
ceedings of MFPS. Electronic Notes in Computer Science, vol. 45. Elsevier, Amsterdam
(2001)

6. Honda, K., Yoshida, N.: Game-theoretic analysis of call-by-value computation. Theoretical
Computer Science 221(1-2), 393–456 (1999)

7. Hyland, J.M.E., Ong, C.-H.L.: On Full Abstraction for PCF: I. Models, observables and the
full abstraction problem, II. Dialogue games and innocent strategies, III. A fully abstract and
universal game model. Information and Computation 163(2), 285–408 (2000)

8. Mitchell, J.C.: Concepts in programming languages. Cambridge University Press, Cambridge
(2002)

9. Murawski, A.S.: About the undecidability of program equivalence in finitary languages with
state. ACM Transactions on Computational Logic 6(4), 701–726 (2005)

10. Murawski, A.S.: Functions with local state: regularity and undecidability. Theoretical Com-
puter Science 338(1/3), 315–349 (2005)

11. Oles, F.: Type algebras, functor categories and block structure. In: Nivat, M., Reynolds, J.C.
(eds.) Algebraic Methods in Semantics, pp. 543–573. Cambridge University Press, Cam-
bridge (1985)

12. Ong, C.-H.L.: Observational equivalence of 3rd-order Idealized Algol is decidable. In: Pro-
ceedings of IEEE Symposium on Logic in Computer Science, pp. 245–256. Computer Soci-
ety Press (2002)

13. Pitts, A.M., Stark, I.: On the observable properties of higher order functions that dynamically
create local names, or: What’s new? In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS
1993. LNCS, vol. 711, pp. 122–141. Springer, Heidelberg (1993)

14. Plotkin, G.D.: LCF considered as a programming language. Theoretical Computer Science 5,
223–255 (1977)

15. Power, J.: Semantics for local computational effects. Electr. Notes Theor. Comput. Sci. 158,
355–371 (2006)

16. Reynolds, J.C.: The essence of Algol. In: de Bakker, J.W., van Vliet, J.C. (eds.) Algorithmic
Languages, pp. 345–372. North Holland, Amsterdam (1981)

17. Stark, I.D.B.: Names and Higher-Order Functions. PhD thesis, University of Cambridge
Computing Laboratory, Technical Report No. 363 (1995)

18. Tzevelekos, N.: Full abstraction for nominal general references. Logical Methods in Com-
puter Science 5(3) (2009)



Completeness for Algebraic Theories of
Local State

Sam Staton

Computer Laboratory, University of Cambridge

Abstract. Every algebraic theory gives rise to a monad, and monads
allow a meta-language which is a basic programming language with side-
effects. Equations in the algebraic theory give rise to equations between
programs in the meta-language. An interesting question is this: to what
extent can we put equational reasoning for programs into the algebraic
theory for the monad?

In this paper I focus on local state, where programs can allocate, up-
date and read the store. Plotkin and Power (FoSSaCS’02) have proposed
an algebraic theory of local state, and they conjectured that the theory
is complete, in the sense that every consistent equation is already deriv-
able. The central contribution of this paper is to confirm this conjecture.
To establish the completeness theorem, it is necessary to reformulate the
informal theory of Plotkin and Power as an enriched algebraic theory in
the sense of Kelly and Power (JPAA, 89:163–179). The new presentation
can be read as 14 program assertions about three effects.

The completeness theorem for local state is dependent on certain
conditions on the type of storable values. When the set of storable values
is finite, there is a subtle additional axiom regarding quotient types.

1 Introduction

In this paper we are interested in reasoning about local state, about programs
such as

let val a = ref(3) in a:=4; !a end; (1)

As Moggi suggested [16], one way to give a denotational semantics to a side-
effecting program of type τ1 → τ2 is to give a morphism �τ1� → T (�τ2�), in a
category equipped with a monad T .

Many monads arise as free models of algebraic theories. Formally, we may say
that an equation for a monad T is a pair of morphisms B → T (A). Thus an
equation can be thought of as a pair of denotations of programs, i.e. an assertion
that two programs are the same. A system of equations for a monad typically
gives rise to a quotient monad in which the equations are satisfied. In summary:
by specifying equations between denotations of programs, we can construct a
new denotational semantics which is sound for these equations.

In assessing the power of this technique, it is important to ask whether a
monad is complete in the following sense: every equation (e1, e2) : B → T (A) is

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 48–63, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Completeness for Algebraic Theories of Local State 49

either already true (i.e. e1 = e2), or it is inconsistent (i.e. only satisfied in trivial
models). This property is sometimes called Hilbert-Post completeness. It means
that our monad is ‘as good as possible’, given the base category. There are no
further equations between programs that can be accommodated in our model.

For local state, the category of sets is insufficient, and so we move to the
category of nominal sets (first considered by Gabbay and Pitts [9] as a model
of variable binding). This category has an object A of ‘atoms’, which we will
think of as locations. This object captures many of the important properties of
locations. It is infinite, although there is no injection N � A from the natural
numbers; informally, the locations are local and cannot be globally enumerated.

The theory of local state is enriched in the category of nominal sets. Let V

be some (nominal) set of values. The operations of the theory induce generic
effects, which include upd : A× V→ T (1) (update a location with a value),
lk : A→ T (V) (lookup the value in a location and return it), ref : V→ T (A) (re-
turn a new cell containing a given value). With the let construction of Moggi’s
meta-language (and some infix notation), we can write programs such as (1).

The central contribution of this paper is Theorem 5, where we show that the
enriched algebraic theory of local state is complete. This solves a conjecture of
Plotkin and Power [20].

For Theorem 5 to hold, the set of storable values must be infinite. When it
is finite, the theory of local state is not complete. If there are only two values,
then there is an interesting additional equation involving quotient types.

Aside: limitations of a naive semantics. The denotational semantics in nominal
sets works well at first order, but it is well known that such a naive semantics is
limited at higher-order. At higher order, a more careful treatment of functions
is needed. Consider the following programs, of type 1 → T (A → {tt,ff}) (see
e.g. [19]).

let a⇐ ref(v) in (λb. ff) let a⇐ ref(v) in (λb. [a ?= b]) (2)

(Here, [(−) ?= (−)] : A → {tt,ff} is the equality test function.) There is a com-
pelling operational argument for considering these expressions to be equivalent:
they both allocate a new location (a), but they never reveal it, so it should never
be received as an argument. However, in the category of nominal sets, there is
an isomorphism i : [A → {tt,ff}] ∼= P (A) between the nominal set of functions
[A→ {tt,ff}] and the nominal set P (A) of finite and cofinite sets of atoms, such
that i(λb. [a = b]) = {a} and i(λb. ff) = ∅. There is also a cardinality function
card : P (A)→ N�{ω}. The following argument is typical for showing that equa-
tions between programs cannot be made into equations in the algebraic theory.
If we equate the programs (2) in our theory of local state, we will be able to
conclude that

0 = let f ⇐ let a⇐ ref(v) in (λb. ff) in card(i(f))

= let f ⇐ let a⇐ ref(v) in (λb. [a ?= b]) in card(i(f))
= 1



50 S. Staton

The problem here is that the composite (card · i) : [A → {tt,ff}] → (N � {ω})
will not be definable in any reasonable programming language. Authors have
used logical relations [3,4,15,18,22,26], game semantics [1,14,17], and bisimula-
tion [12,24] to make denotational semantics that can support some higher-order
properties.

Structure. After recalling background material, I give a new presentation of a
theory of local state in Section 4. In Section 5 I prove that the theory of local
state is complete when the set of storable values is infinite, and we discuss the
situation when the set of values is finite. I conclude in Section 6 by outlining the
innovations that were helpful in moving from the theory proposed by Plotkin
and Power [20] to the theory in Sec. 4, so that the completeness result could be
stated and proved.

2 Presentations of Enriched Algebraic Theories and
Strong Monads

We now recall some aspects of the presentation of enriched algebraic theories
from the exposition by Kelly and Power [13], simplified and adapted to the
needs of this work. In particular, we focus on the case of cartesian structure,
rather than arbitrary monoidal structure.

Let C be a cartesian closed category. A signature in C is a set Op, thought
of as a set of operators, and an assignment to each operator op ∈ Op of two
objects of C, called the arity and coarity of op. When op ∈ Op has arity A and
coarity B, we write (op : B → A) ∈ Op.

An algebra for a signature Op is an object X of C together with, for every
(op : B → A) ∈ Op, a morphism opX : B×XA → X . Homomorphism of algebras
is defined in the evident way.

We will only consider signatures Op for which the category of Op-algebras is
monadic over C. A sufficient condition for this is that C is a Grothendieck topos.

Every monad TOp arising from a signature Op on C has a strength. For every
pair of objects X , Y , there is a morphism strX,Y : TOp(X)× Y → TOp(X × Y )
making certain diagrams commute (see e.g. [16, def. 32]).

For any strong monad T on C, every morphism f : B → T (A) induces interpre-
tations in T -algebras. The interpretation of f in a T -algebra (X,x : T (X)→ X)
is the following composite:

f(X,x) = B ×XA f×id−−−→ T (A)×XA str−−→ T (A×XA)
T (eval)−−−−−→ T (X) x−→ X .

Informally, f(X,x) takes an element of B and a valuation of A in X , and returns
an element of X .

An equation for a monad T is a pair of morphisms λ, ρ : B → T (A) with
common domain and codomain. The object B is to be thought of as the context
of the equation, while A is to be thought of as the type of the variables. A
T -algebra (X,x) is said to satisfy an equation λ, ρ : B → T (A) if we have two
equal morphisms: λ(X,x) = ρ(X,x) : B ×XA → X .



Completeness for Algebraic Theories of Local State 51

A theory in C is a pair (Op,Eq) of a signature Op and a set of equations
Eq for TOp . An algebra for a theory (Op,Eq) is an Op-algebra that satisfies
all the equations in Eq . We will only consider theories for which the category
of (Op,Eq)-algebras is monadic over C (e.g. C is a Grothendieck topos). The
resulting monad T(Op,Eq) is again strong.

2.1 Simple Meta-language for a Strong Monad

We will use a variant of Moggi’s simple meta-language [16] for reasoning about
generalized elements of a strong monad. Let T be a strong monad on a category C
with products.

The types of the meta-language are the objects of C. The terms of the meta-
language are built from variables (roman type) and the following grammar:

t ::= let y : Y ⇐ t in t | f(x1, . . . , xn) (for f : X1 × · · · × Xn → T (Y )).

When f = η · g, we will elide η, the unit of T .
A typing context is an assignment of variables to types. The typing rules

include structural rules such as

x : X � x : X
and

Γ � t : Z
Γ, y : Y � t : Z

For every morphism f : X1 × · · · × Xn → T (Y ) in C, we have a well-typed
term x1 : X1, . . . , xn : Xn � f(x1, . . . , xn) : Y . The let construction is typed by
the following rule:

Γ � t : Y Γ, y : Y � u : Z
Γ � let y : Y ⇐ t in u : Z

We use the common syntactic sugar, pattern matching in let, writing (t; u) for
let : Y ⇐ t in u, etc.

For a typing context Γ = (x1 : X1, . . . , xn : Xn), we let �Γ � = X1 × · · · ×Xn.
Every typed term-in-context (Γ � t : X) has a semantics in the category C,
�Γ � t : X� : �Γ �→ T (X), given by induction on the structure of typing deriva-
tions. The interesting case is the let construction: Γ � let y : Y ⇐ t in u : Z is
interpreted as the following composite:

�Γ �
(id,�t�)−−−−→ �Γ �× T (Y ) str−−→ T (�Γ �× Y )

T (�u�)−−−−→ T (T (Z))
μ−→ T (Z) .

For a monad TOp arising from a signature Op, every operation (op : B → A) ∈ Op
induces a morphism B → TOp(A). These morphisms can be thought of as
“generic effects” in our meta-language.

When two terms are typed in the same context, e.g. Γ � t : X and Γ � u : X ,
then we will write Γ � t = u : X to indicate that the corresponding mor-
phisms �t�, �u� : �Γ �→ T (X) are equal. There are various sound rules for this
notion of equality. For instance,

Γ � t1 : X1 Γ � t2 : X2 Γ, x1 : X1, x2 : X2 � t3 : X3

Γ � let x2 ⇐ (let x1 ⇐ in t1t2) in t3 = let x1 ⇐ in t1(let x2 ⇐ t2 in t3) : X3



52 S. Staton

Another important rule is the following substitution law:

Γ, x : X � t1 = t2 : Y Γ � u : X
Γ � [u/x]t1 = [u/x]t2 : Y

3 Rudiments of Nominal Sets

We now recall the category of nominal sets. As a category of continuous group
actions, it was considered as a base category for local state by Stark [22]. The
present formulation is due to Gabbay and Pitts [9].

We begin by fixing an infinite set A of atoms. In this paper, we think of these
atoms as locations in the store. Let Sym(A) be the group of permutations on A,
ranged over by π. Recall that a Sym(A)-set is a set X together with a function
Sym(A)×X → X , such that (π′ · π) • x = π′ • (π • x) and id • x = x.

A finite set of atoms, A ⊆f A, is said to support x ∈ X if whenever π|A = id,
π • x = x. A Sym(A)-set is a nominal set if every element has a finite support.
In this case, every element x ∈ X has a smallest supporting set, supp(x).

Nominal sets form a category, Nom. A morphism f : X → Y is an equivariant
function, i.e. for all π ∈ Sym(A) and x ∈ X , we have f(π • x) = π • (f(x)). The
category of nominal sets has lots of structure.

– The set A of atoms is a nominal set, with action π • a = π(a).
– Any set X can be made into a nominal set with discrete action: for all x ∈ X ,

let π • x = x. For example, the terminal nominal set has one element.
– The product of two nominal sets can be made into a nominal set.
– The set of all (not necessarily equivariant) functions X → Y between two

nominal sets has a Sym(A)-set structure given by (π•f)(x) = π•(f(π−1•x)).
With this structure, not all functions have finite support. We write [X →fs Y ]
or Y X for the set of finitely supported functions X → Y . This is the cartesian
closed structure of the category of nominal sets.

– IfX is a nominal set and R is an equivalence relation onX that is equivariant
(i.e. x R x′ =⇒ (π • x) R (π • x′)) then the quotient X/R has a natural
nominal set structure.

– Given two nominal sets X , Y , we can form the disjoint product:

X ⊗ Y = {(x, y) |x ∈ X, y ∈ Y, supp(x) ∩ supp(y) = ∅} .

In particular A ⊗ A is the set of pairs of distinct atoms. We will write A
⊗n

for the n-fold disjoint product of A. The nominal sets {A⊗n | n ∈ N} form
a generator of Nom: if two equivariant functions f, g : X → Y are different
then there is n ∈ N and h : A

⊗n → X such that f · h = g · h.

4 A Theory of Local State

A new presentation of the theory of local state is given in Figure 1. It is an
algebraic theory enriched in the category of nominal sets. We build it from a



Completeness for Algebraic Theories of Local State 53

theory of global state, a theory of block, and four additional equations specifying
how these theories interact. I have specified the equations for the theory using
the syntax for the meta-language for TOp . For example, the notation

GS2. a : A � let v⇐ !a in let w ⇐ !a in (v,w) ≈ let v⇐ !a in (v, v) : V× V

describes two morphisms A→ TOp(V× V).
The theory is parametrized in a set V of values. We consider V as a discrete

nominal set.
Note that, by equation B31, and basic properties of nominal sets, we have

v,w : V � let a⇐ ref(v) in let b⇐ ref(w) in [a ?= b] = ff : {tt,ff} .

The theory of global state has two operations, lk : A → V and upd : A×V → 1. We
use infix notation, respectively !a (“look-up location a”) and a := v (“update location
a to v”). There are 7 equations:
GS1. a : A � let v ⇐ !a in a := v ≈ () : 1
GS2. a : A � let v ⇐ !a in let w ⇐ !a in (v, w) ≈ let v ⇐ !a in (v,v) : V × V

GS3. a : A, v, w : V � a := v; a := w ≈ a := w : 1
GS4. a : A, v : V � a := v; let w ⇐ !a in w ≈ a := v; v : V

GS5. a, b : A � let v ⇐ !a in let w ⇐ !b in (v, w)
≈ let w ⇐ !b in let v ⇐ !a in (v,w) : V × V

GS6. (a, b) : A ⊗ A, v,w : V � a := v; b := w ≈ b := w; a := v : 1
GS7. (a, b) : A ⊗ A, v : V � a := v; !b ≈ let w ⇐ !b in a := v; w : V

The theory of block has an operation, refn : A
⊗n × V → A

⊗(n+1), for every natural
number n ∈ N. Infix, we write, refn(�a; v); the intuition is “allocate a new location,
different from �a, initialized with v”. We use a shorthand: ref(v) = ref0(�a; v).
There are two equations and one equation schema. For each n ∈ N, we write pn for
the injection A

⊗(n+1) � A
⊗n × A.

B1. v : V � let a ⇐ ref(v) in () ≈ () : 1
B2. v, w : V � let a ⇐ ref(v) in let b ⇐ ref(w) in (a, b)

≈ let b ⇐ ref(w) in let a ⇐ ref(v) in (a, b) : A × A

B3n. v : V,�a: A
⊗n � let �b ⇐ refn(�a; v) in pn(�b) ≈ let b ⇐ ref(v) in (�a, b) : A

⊗n × A

The theory of local state combines the theory of global state with the theory of
block, with 4 additional equations:
LS1. v, w : V � let a ⇐ ref(v) in a := w; a ≈ let a ⇐ ref(w) in a : A

LS2. v : V � let a ⇐ ref(v) in let w ⇐ !a in (w, a)
≈ let a ⇐ ref(v) in (v, a) : V × A

LS3. a : A, v, w : V � let b ⇐ ref(v) in a := w; b ≈ a := w; let b ⇐ ref(v) in b : A

LS4. a : A, v : V � let b ⇐ ref(v) in let w ⇐ !a in (w, b)
≈ let w ⇐ !a in let b ⇐ ref(v) in (w, b) : A

Fig. 1. The theory of local state, enriched in the category of nominal sets. The theory
is parametrized on a set V of values.



54 S. Staton

(We could alternatively reason about the theory of local state in a ‘nominal
equational logic’ (e.g. [5,6,8]) but we would then have to restrict to a finite set of
values and we would have no guarantee of the strength of the resulting monad.)

4.1 Algebras for Local State

We now construct algebras for the theory of local state. We begin with algebras
for global state; we then consider algebras for block; and finally we combine these
ideas to arrive at algebras for local state.

To begin, we consider the nominal set S = [A →fs V]. These functions are to
be thought of as stores. Notice that a function S : A→ V has support A ⊆f A if
and only if there is v ∈ V such that for all a ∈ (A \ A) we have s(a) = v . We
can think of a store as being initialized to some value, and then subjected to a
finite modification.

For any nominal set X , a computation in X is a finitely supported function
χ : S→fs (S×X). We write χ1 and χ2 for the left and right projections, respec-
tively. The computations form a model of the theory of global state:

– We define an equivariant function updX : A× V× (S ×X)S → (S ×X)S as
follows: let (updX(a, v , χ))(S) = ((χ1(S))[v/a ], χ2(S)), where (χ1(S))[v/a ] is
the store which behaves like χ1(S), except that location a maps to v .

– We define an equivariant function lkX : A × (S×X)S V → (S × X)S as
follows: let (lkX(a, χ̄))(S) = (χ̄(S(a)))(S). Here, χ̄ is a finitely supported
function V→fs (S×X)S.

We are primarily interested in the free model of global state. The structure
(S×X)S is not the free model of global state on X because it typically contains
too much. For instance, there is a computation in (S × N)S that counts the
number of different values in memory. Assuming that the values are numbers,
there is a computation in (S× 1)S that adds 7 to every memory cell.

To cut down our model, we say a finite set A ⊆f A storage-supports χ if
whenever two stores S, S′ ∈ S agree on A (i.e. S|A = S′|A) then we have

1. (χ1(S))|A = (χ1(S′))|A; and
2. χ2(S) = χ2(S′); and
3. (χ1(S))|A\A = S|A\A and (χ1(S′))|A\A = S′|A\A.

Storage-supporting is an equivariant property, and so we can define a nominal
set TGS(X) as follows:

TGS(X) = {χ : S→fs (S×X) | supp(χ) storage-supports χ} . (3)

It is straightforward to check that the above model of global state in (S ×X)S

restricts to a model in TGS(X).

Proposition 1. For every nominal set X, the nominal set TGS(X) is the free
algebra of the theory of global state over X.



Completeness for Algebraic Theories of Local State 55

Next, we consider the free block algebra TBK(X) on a nominal set:

TBK(X) = {(s, x) | x ∈ X, s : supp(x) ⇀ V}/� . (4)

Here, we are writing s : supp(x) ⇀ V to indicate that s might be partially
defined, and � is the equivalence relation generated as follows: if π ∈ Sym(A) is
permutation such that π|supp(x)\dom(s) = id, then (s, x) � (s · π−1, π • x). The
Sym(A)-set structure is given by π • [s, x]� = [s · π−1, π • x]�.

– Define an equivariant function refnX : A
⊗n × V× (TBK(X))A

⊗( +1)→ TBK(X)
as follows: let

refnX(�a, v , f) =

[s+ (b �→ v), x]� where there is b ∈ A such that [s, x]� =f(�a, b)

and b �∈ supp(f,�a), b ∈ supp(x), b �∈ dom(s).

[s, x]� where there is b ∈ A such that [s, x]� =f(�a, b)

and b �∈ supp(x), b �∈ supp(f(�a, b)).

It is important to note that the definition of refnX(�a, v , f) is independent of
the particular choice of b.

An intuition for an equivalence class [s, x]� in TBK(X) is that s is a local
store that assigns values to some of the locations involved in x. Notice that
supp([s, x]�) = supp(x) \ dom(s): those locations that are assigned values are
local, so that it doesn’t matter if they are renamed.

Now, we can consider free algebras for the full theory of local state:

Proposition 2. The free algebra over X for the theory of local state has carrier
TGS(TBK(X)).

Recall that the composition of two monads is not a monad unless one can give
a distributive law (e.g. [2]). Equations LS1–4 can be understood as defining a
distributive law δ : TBK · TGS → TGS · TBK (see also [11, §4], [21]): let

δX [s, χ]� (S) = S′|(A\dom(s)) ∪ S|dom(s) , S′|(dom(s)∩supp(x)) , x �
where (S′, x) = χ(S|(A\dom(s)) ∪ s).

5 Completeness

We now show that the theory of local state is complete, in the following sense.
To make some preliminary definitions, we return to the situation of Section 2.

Definition 3. A theory (Op,Eq) in a cartesian closed category is complete if
every additional equation B ⇒ T(Op,Eq)(A) is either satisfied in all algebras, or
satisfied only in subterminal algebras.

(Recall that a subterminal object is a subobject of the terminal object. In the
category of nominal sets, the only proper subterminal object is the empty set.)
Some authors call this property “Hilbert-Post completeness”, after Hilbert and
Post proved this property of the propositional calculus.

A useful technique for showing that an equation is only satisfied in subterminal
algebras is to derive the equation � tt = ff : {tt,ff} from it.



56 S. Staton

Lemma 4. Let T be a strong monad on a distributive category. The two injec-
tions 1→ T (1 + 1) are equal if and only if all T -algebras are subterminal.

5.1 Completeness when the Storable Values Are Infinite

Theorem 5. If the set V of values is infinite then the theory of local state is
complete.

This subsection is devoted to the proof of this theorem.
Consider an equation Γ � λ ≈ ρ : X . Suppose that it is not satisfied in the

free algebra, TLS(X), so that λ = ρ : �Γ � → TLS(X). We proceed roughly as
follows: by considering the ways that λ and ρ could be different, we construct
a context E so that tt = E [λ] and ff = E [ρ]. We then use Lemma 4 to conclude
that the extra equation (λ ≈ ρ) is only satisfied in the subterminal models.

It is helpful to make use of Proposition 2 and to prove the theorem in the
following two steps.

Step 1. We will first prove the following result. Let (Op,Eq) and (Op′,Eq ′) be
theories in Nom, such that T(Op,Eq) = TGS · T(Op′,Eq′). We will assume that
the theory (Op′,Eq ′) is complete with respect to (Op,Eq)-algebras, that is,
that every equation of the form Γ ⇒ T(Op′,Eq′)(X) is either satisfied in all
(Op′,Eq ′)-algebras, or satisfied only in subterminal (Op,Eq)-algebras. From
this assumption we will conclude that the theory (Op,Eq) is complete.

Step 2. To conclude Theorem 5, we will assume that the nominal set V of values
is infinite, and prove that the theory of block is complete with respect to
local state algebras.

Under the hypothesis of Step 1, we consider an equation Γ � λ ≈ ρ : X with
λ = ρ : �Γ � → TGS(T(Op′,Eq′)(X)). Since the nominal sets {A⊗n | n ∈ N} form
a generator, we have n ∈ N and an equivariant function γ : A

⊗n → �Γ � such
that λ · γ = ρ · γ. Pick an enumeration of distinct atoms {b1, . . . , bn}. From the
characterization of TGS (see (3)), we know that there must be a store S0 ∈ S

with support {b1, . . . , bn} such that λ(γ(b1, . . . , bn))(S0) = ρ(γ(b1, . . . , bn))(S0).
Either

(π1(λ · γ(b1, . . . , bn)))(S0) = (π1(ρ · γ(b1, . . . , bn)))(S0)
or (π2(λ · γ(b1, . . . , bn)))(S0) = (π2(ρ · γ(b1, . . . , bn)))(S0) .

(5)

In the first case, we have two different stores, both supported by {b1, . . . , bn}.
There must therefore be i ≤ n such that we have two different values:

((π1(λ · γ(b1, . . . , bn)))(S0))(bi) = ((π1(ρ · γ(b1, . . . , bn)))(S0))(bi) in V.

We now rewrite this observation in the monadic metalanguage. We define a
term �a : A

⊗n � S0(�a) : 1 by �a : A
⊗n � a1 := S0(b1); . . . an := S0(bn). We have

the following equations.

�a : A
⊗n � S0(�a); (λ · γ)(�a); !ai ≈ S0(�a); (λ · γ)(�a); (π1(λ(γ(�b))(S0))(bi))

�a : A
⊗n � S0(�a); (ρ · γ)(�a); !ai ≈ S0(�a); (ρ · γ)(�a); (π1(ρ(γ(�b))(S0))(bi))



Completeness for Algebraic Theories of Local State 57

We will use the context Snap�a[−]:

Snap�a[−] =
let v1 ⇐ !a1 in . . . let vn ⇐ !an in let r⇐ [−] in a1 := v1; . . . an := vn; r.

This simple context has the property that for any nominal set X and for any
term �a: A

⊗n � t(�a): 1,

�a : A
⊗n � Snap�a[t(�a); ff] ≈ ff and �a : A

⊗n � Snap�a[t(�a); tt] ≈ tt : {tt,ff} .

So, in this situation we can conclude the following sequence of equations:

�a: A
⊗n � tt ≈ Snap�a[S0(�a); (λ · γ)(�a); tt]

≈ Snap�a[S0(�a); (λ · γ)(�a); [!ai
?= π1(λ(γ(�b))(S0))(bi)]]

≈ Snap�a[S0(�a); (ρ · γ)(�a); [!ai
?= π1(λ(γ(�b))(S0))(bi)]]

≈ Snap�a[S0(�a); (ρ · γ)(�a); ff]
≈ ff .

At this point, we note that the following rule is valid for the metalanguage in
nominal sets, because the projection function �Γ �× A

⊗n → �Γ � is always epi:

Γ � t : X Γ � u : X Γ,�a : A
⊗n � t = u : X

Γ � t = u : X
(6)

We have derived � tt = ff, and so the subterminal algebras are the only alge-
bras satisfying Γ � λ ≈ ρ. This concludes the case where π1(λ(γ(�b)))(S0) =
π1(ρ(γ(�b)))(S0).

For the other case in (5), where π2(λ(γ(�b)))(S0) = π2(ρ(γ(�b)))(S0), we pro-
ceed as follows. We consider the equation

�a: A
⊗n � Snap�a[S0(�a); (λ · γ)(�a)] ≈ Snap�a[S0(�a); (ρ · γ)(�a)] : X .

The function described by the left hand side of this equation always returns
π2(λ(γ(�b)))(S0), leaving the global store unchanged; and the function described
by the right hand side of this equation returns π2(ρ(γ(�b)))(S0), leaving the global
store unchanged. We thus have two unequal functions A

⊗n → T(Op′,Eq′)(X): an
equation that is not satisfied in the free (Op′,Eq ′)-algebra T(Op′,Eq′)(X). By the
assumption for Step 1, the only (Op,Eq)-algebras that satisfy this equation are
subterminal. This concludes Step 1.

We now tackle Step 2: we will show that the theory of block is complete with
respect to TLS-algebras. We consider a pair of distinct equivariant functions
λ, ρ : Γ → TBK(X) and show that this equation is only satisfied in subterminal
TLS-algebras. As above, we have n ∈ N and γ : A

⊗n → Γ such that λ · γ = ρ · γ.
We begin by setting up some notation. For any nominal set Y , a natural

number m, and a permutation group G < Sym(m), we write Y m/G for the



58 S. Staton

nominal set of n-tuples (y1, . . . , ym) up to the equivalence relation generated by
(y1, . . . , ym) ∼G (yπ(1), . . . , yπ(m)) for π ∈ G.

The nominal set X admits the following analysis (as does every nominal set).
There is an ordinary set Orb and for each o ∈ Orb, a natural number mo and a
permutation group Go < Sym(mo), together with an isomorphism

i : X ∼=
o∈Orb

A
⊗m /G .

We write orb : X → Orb for the evident projection function. This is a version of
the orbit-stabilizer theorem: Orb is the set of orbits ofX ; and the finite groupsGo
generate the stabilizers. This characterization forms the correspondence between
nominal sets and named sets with symmetry [7,10].

We now pick an enumeration of distinct atoms {b1, . . . , bn}, and we pick rep-
resentatives (s, x) and (s′, x′) of the �-equivalence classes λ(γ(�b))) and ρ(γ(�b)))
respectively. Without loss of generality, by the definition of �, we assume that
dom(s) ∩ supp(x′) = ∅ = dom(s′) ∩ supp(x).

We proceed differently depending on whether x and x′ are in the same or-
bit, whether orb(x) = orb(x′). If orb(x) = orb(x′), then we have the following
sequence of equations in any algebra satisfying (λ ≈ ρ).

�a: A
⊗n � tt ≈ let r⇐ (λ · γ)(�a) in [orb(r) ?= orb(x)]

≈ let r⇐ (ρ · γ)(�a) in [orb(r) ?= orb(x)] ≈ ff : {tt,ff} .

If x and x′ are in the same orbit then we proceed as follows. It is at this
point that we make use of the fact that the set V of values is infinite: pick n
distinct values v1, . . . , vn that lie outside the ranges of s and s′. We define a
partial function s′′ : A ⇀ V as follows:

For i ≤ n: s′′(bi) = vi
For b ∈ dom(s): s′′(b) = s(b)
For b′ ∈ dom(s′): s′′(b′) = s′(b′) .

We write ō for orb(x), and let inō[b1 . . . bm¯]G¯ = i(x) and inō[b′1 . . . b′m¯
]G¯ = i(x′).

Notice that dom(s′′) = supp(x)∪supp(x′), and so the function s′′ is defined at bi
and b′i for every i ≤ mō. Crucially, the tuple-quotients

[s′′(b1), . . . , s′′(bm¯)]G¯ and [s′′(b′1), . . . , s
′′(b′m¯

)]G¯ in V
m¯/G¯ (7)

are different, because [s, x]� = [s′, x′]�. In what follows, we abbreviate (7) by
writing [�w ]G¯ for the left hand tuple and [�w ′]G¯ for the right hand tuple.

We now translate these observations into the monadic metalanguage. We con-
sider a derived effect

lk :
o∈Orb

(Am /G ) −→ TLS
o∈Orb

(Vm /G ) .



Completeness for Algebraic Theories of Local State 59

Informally, lk(ino[a1, . . . , am ]G ) returns the result of simultaneously looking up
the values in locations a1, . . . , am . Formally, it is the unique equivariant function
making the following diagram commute:

o∈Orb(∼G )

����

��
o∈Orb(∼G )

����

o∈Orb(A
m )

(�) ��

��

TLS o∈Orb V
m

��

o∈Orb(A
m /G )

lk
�� TLS o∈Orb(V

m /G )

(8)

The arrow labelled (�) corresponds to the Orb-fold coproduct of terms

�a: A
m � let v1 ⇐ !a1 in . . . let vm ⇐ !am in (v1, . . . , vm ) : V

m

and the upper diagrams commute by axiom GS5. Informally, it does not mat-
ter which order the locations are read, and so the Go-equivalence classes are
respected.

In any TLS-algebra satisfying (λ ≈ ρ), we have

�a : A
⊗n � tt ≈ let r⇐ (λ · γ)(�a) in a1 := v1; . . . an := vn; [lk(i(r)) ?= inō[�w ]G¯]

≈ let r⇐ (ρ · γ)(�a) in a1 := v1; . . . an := vn; [lk(i(r)) ?= inō[�w ]G¯]
≈ ff : {tt,ff} .

Using (6), we complete Step 2 and finish our proof of Theorem 5.

5.2 An Additional Axiom when the Set of Values Is Finite

The proof of Theorem 5 relies on the hypothesis that the set of values is infinite.
This is the situation considered by Plotkin and Power in [20].

There are many applications where the set of storable values is finite. If there
is only one value, so we have a model of the ν-calculus [19], the theory is com-
plete, and the proof can be adapted: the theory of block remains complete with
respect to the theory of local state. If V is empty, then all algebras are terminal.
If V is finite and has more than one element, then the theorem fails. We will give
a counter-example in the case where V = {tt,ff}. Consider the quotient nominal
set A

3/C3 , with (a, b, c) ∼C3 (b, c, a). Then the following computations are distin-
guished in TLS(A3/C3), but they are equated in some non-trivial TLS-algebras.

c : A � let a⇐ ref(tt) in let b⇐ ref(ff) in [a, b, c]C3 : A
3/C3

c : A � let a⇐ ref(ff) in let b⇐ ref(tt) in [a, b, c]C3 : A
3/C3

(L5)

Notice that if we add an additional constant � to V, then these terms are distin-
guished in all algebras, using the context E [−] = c := �; let r⇐ [−] in lkC3(r) .
Here, the effect lkC3 : A

3/C3 → TLS(V3/C3) is to be defined as in (8), in the pre-
vious subsection.



60 S. Staton

The theory of local state is thus not complete, in the sense of Defn. 3, when the
set of values is finite. This notion of completeness is arguably too strong, because
the nominal set (A3/C3) would never arise as the denotation of an intensional
type.

Recall from the work of Tzevelekos [25] that a nominal set X is said to be
strong if, for all x ∈ X and a ∈ supp(x), if π•x = x then π(a) = a. Equivalently,
a nominal set is strong if it is isomorphic to a coproduct of nominal sets of the
form A

⊗n. Arguably, the denotations of first-order intensional types are always
strong nominal sets.

Theorem 6. Let X be a strong nominal set. Every equation that is of the form
Γ ⇒ TLS(X) is either satisfied in all TLS-algebras, or satisfied only in subtermi-
nal TLS-algebras.

This result is proved in much the same way as Theorem 5. The crucial lemma
is a refined form of Step 2 in that proof.

Every equation of the form Γ ⇒ TBK(X), with X a strong nominal set,
is either satisfied in all TBK-algebras, or satisfied only in subterminal
TLS-algebras.

6 Comparison with the Theory of Plotkin and Power

Plotkin and Power [20] propose a theory for local state, which is the starting point
for the present paper. We conclude this paper by making precise the relationship
between their theory and ours. Throughout this section, we suppose that V is a
countably infinite set.

Let I be the category of natural numbers and injections between them, and
consider the category [I,Set] of covariant presheaves I→ Set and natural trans-
formations between them. We can define a presheaf A of locations by A(n) = n.
There is an endofunctor δ on [I,Set], given by (δX)(n) = X(n+ 1).

Definition 7. A Plotkin-Power algebra for local state is a presheaf X : I→ Set
together with three natural transformations

l : XA → XV u : X → XA×V b : δX → XV

subject to 13 commuting diagrams [20, Sec. 4].

Theorem 8. The category of Plotkin-Power algebras for local state is equivalent
to the category of algebras for the monad TLS on Nom (as in Section 4).

The theory of Plotkin-Power algebras appears very similar to the theory in Fig-
ure 1, but there are two subtle points, outlined in the following proof sketch.

Every block-algebra preserves pullbacks. The first discrepancy between Fig. 1
and Defn. 7 is that the carrier of an algebra in Defn. 7 is a presheaf in [I,Set],



Completeness for Algebraic Theories of Local State 61

rather than a nominal set. It is well known that the category Nom of nominal
sets is equivalent to the category of pullback-preserving-functors I→ Set, but
not every presheaf I→ Set preserves pullbacks.

The proof of completeness (Sec. 5) is significantly simplified by working in the
category of nominal sets. Equality is decidable, and we have the principle (6).

Define a block algebra to be a presheaf X together with a natural transforma-
tion δX → XV, such that the relevant diagrams from [20,21, def. 5.1] commute.

Proposition 9. The carrier of every block algebra preserves pullbacks.

One way to prove Prop. 9 is to consider a small category BV whose objects are
natural numbers, and where a morphism f : n→ m is a function f : n→ (m�V)
that is injective on f−1(m). Composition is in the style of a Kleisli category. The
important observation is that the category of block algebras is equivalent to the
category of functors [BV,Set]. Indeed, the inclusion I→ BV induces a monadic
forgetful functor [BV,Set] → [I,Set]. We will say that a morphism f : n → m
in BV is total if im(f) ⊆ m. Pullbacks of total morphisms in BV are absolute,
in the sense that they are preserved by every functor.

An alternative presentation of block . The presentation of Defn. 7 is not an
enriched algebraic theory as in Section 2, because it involves the operation
b : δX → XV. Plotkin and Power are able to give a strength for the result-
ing monad by hand, but they leave open the problem of finding an algebraic
presentation and hence they do not have all the effects in their meta-language.

The following result plays a crucial role in the proof of Theorem 8. The first
datum corresponds to the Plotkin-Power block operator, while the second corre-
sponds to our family {refn} of operators, with equations B3n (Fig. 1). We write
A
⊗n for the representable functor I(n,−) : I→ Set.

Proposition 10. Let X, Z be presheaves in [I,Set]. The following data are
equivalent.

1. A natural transformation δX → XZ

2. A family of natural transformations {βn : XA
⊗( +1) → X(A⊗ ×Z)}n∈N making

the following diagrams commute:

X(A⊗ ×A)

(β0)A
⊗ ��

Xp
��
XA

⊗( +1)

(β )
��

X(A⊗ ×Z)

for every n ∈ N.

I present an alternative solution in [23], but using a more generous enrichment
for which the completeness theorem (Thm. 5) does not hold.

Acknowledgements. It has been helpful to talk with Marcelo Fiore, Chung-Kil
Hur, Paul Levy, Tadeusz Litak, Rasmus Møgelberg, Gordon Plotkin, John Power,
and Nikos Tzevelekos. The reviewers gave very helpful feedback.



62 S. Staton

References

1. Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, C.-H.L., Stark, I.D.B.: Nominal
games and full abstraction for the nu-calculus. In: LICS 2004 (2004)

2. Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Heidelberg (1984)
3. Benton, N., Leperchey, B.: Relational reasoning in a nominal semantics for stor-

age. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 86–101. Springer,
Heidelberg (2005)

4. Birkedal, L., Stø, K.: Realizability semantics of parametric polymorphism, refer-
ences, and recursive types. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504,
pp. 456–470. Springer, Heidelberg (2009)

5. Clouston, R.A., Pitts, A.M.: Nominal equational logic. In: Articles dedicated to
Gordon Plotkin. ENTCS, vol. 172, pp. 223–257 (2007)

6. Fiore, M.P., Hur, C.-K.: Term equational systems and logics. In: Proc. of MFPS
XXIV. Electron. Notes Theor. Comput. Sci, vol. 218, pp. 171–192 (2008)

7. Fiore, M.P., Staton, S.: Comparing operational models of name-passing process
calculi. Inform. and Comput. 204(4), 435–678 (2006)

8. Gabbay, M., Mathijssen, A.: A formal calculus for informal equality with binding.
In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 162–176.
Springer, Heidelberg (2007)

9. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable bind-
ing. Formal Aspects of Computing 13, 341–363 (2001)

10. Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras
(pre)sheaves and named sets. Higher-Order Symb. Comput. 19(2-3), 283–304
(2006)

11. Hyland, M., Plotkin, G.D., Power, J.: Combining effects: Sum and tensor. Theoret.
Comput. Sci. 357, 70–99 (2006)

12. Jeffrey, A., Rathke, J.: Towards a theory of bisimulation for local names. In: Proc.
of LICS 1999, pp. 56–66 (1999)

13. Kelly, G.M., Power, A.J.: Adjunctions whose counits are coequalizers, and pre-
sentations of finitary enriched monads. J. Pure Appl. Algebra 89(1-2), 163–179
(1993)

14. Laird, J.: A game semantics of names and pointers. Ann. Pure Appl. Logic 151(2-3),
151–169 (2008)

15. Møgelberg, R.E.: A nominal relational model for local variables. Draft (2009)
16. Moggi, E.: Notions of computation and monads. Inform. and Comput. 93(1), 55–92
17. Murawski, A.S., Tzevelekos, N.: Full abstraction for Reduced ML. In: de Alfaro,

L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 32–47. Springer, Heidelberg (2009)
18. O’Hearn, P.W., Tennant, R.D.: Parametricity and local variables. J. ACM 42(3),

658–709 (1995)
19. Pitts, A., Stark, I.: Observable properties of higher order functions that dynami-

cally create local names, or: What’s new? In: Borzyszkowski, A.M., Sokolowski, S.
(eds.) MFCS 1993. LNCS, vol. 711. Springer, Heidelberg (1993)

20. Plotkin, G.D., Power, J.: Notions of computation determine monads. In: Nielsen,
M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer,
Heidelberg (2002), http://homepages.inf.ed.ac.uk/gdp/publications/

21. Power, J.: Semantics for local computational effects. In: Proc. of MFPS XXII (2006)
22. Stark, I.: Categorical models for local names. LISP and Symbolic Computa-

tion 9(1), 77–107 (1996)

http://homepages.inf.ed.ac.uk/gdp/publications/


Completeness for Algebraic Theories of Local State 63

23. Staton, S.: Two cotensors in one: Presentations of algebraic theories for local state
and fresh names. In: Proc. of MFPS XXV (2009)

24. Sumii, E.: A complete characterization of observational equivalence in polymorphic
λ-calculus with general references. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS,
vol. 5771, pp. 455–469. Springer, Heidelberg (2009)

25. Tzevelekos, N.: Full abstraction for nominal general references. Logical Methods
in Computer Science 5(3) (2009)

26. Zhang, Y., Nowak, D.: Logical relations for dynamic name creation. In: Baaz,
M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 575–588. Springer,
Heidelberg (2003)



Fair Adversaries and Randomization
in Two-Player Games

Eugene Asarin1, Raphaël Chane-Yack-Fa2,�, and Daniele Varacca3

1 LIAFA - CNRS & Univ. Paris Diderot, France
2 Univ. de Sherbrooke - Département d’informatique - Quebec, Canada

3 PPS - CNRS & Univ. Paris Diderot, France

Abstract. Two-player games are used to model open systems. One
player models the system, trying to respect some specification, while
the other player models the environment. In classical model checking,
the objective is to verify that the system can respect its specification,
whatever the environment does.

In this article, we consider a more realistic scenario when the en-
vironment is supposed to be fair. We define a notion of fair player in
two-player games. Our solution is inspired by Banach-Mazur games, and
leads to a definition of a novel class of 3-player games called ABM-games.
For ω-regular specifications on finite arenas, we explore the properties
of ABM-games and devise an algorithm for solving them. As the main
result, we show that winning in an ABM-game (i.e. winning against a
fair player) is equivalent to winning with probability one against the ran-
domized adversary.

Keywords: Games, Markov decision processes, fairness.

1 Introduction

Two-player games are used to model open systems. One player (sometimes called
Adam) models the system, trying to achieve some goal, while the other player
(sometimes called Eve) models the environment. In classical model checking, one
wants to verify that the system can achieve the goal in any kind of environment.
Therefore, one can assume a very evil Eve, able to exploit the smallest weakness
of Adam. In many situations, the environment is not that evil. It can make
choices against the system, but sometimes it can play in its favour. There are
different ways to model such an environment. One possible way is to suppose
that the environment makes random choices. This leads to the notion of 1 1/2-
player games, or Markov decision processes (MDP). In such models, one wishes
to verify whether the system can reach its goal with probability 1.

Another point of view is to suppose that the environment is fair. Fairness
assumptions are well known in the context of closed systems. In most cases
[2,14], fairness assumptions are of the form “if an action is allowed infinitely often

� During this research the second author was with LIAFA and PPS.

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 64–78, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Fair Adversaries and Randomization in Two-Player Games 65

during a run, then it is done infinitely often”. But what does it mean for a player
to be fair? A general definition of fairness for closed systems has been proposed
in [15]. It is based on a different notion of game: the Banach-Mazur game. A
property is defined to be a fairness property if the good player has a winning
strategy in the game. This definition has a topological characterisation in terms
of comeager sets. In [14], a comparison between the general notion of fairness
and Markov chains is performed. It is shown that for ω-regular specifications, a
finite Markov chain satisfies the specification with probability 1, if and only if
the specification is a fairness property in the sense of [15].

In this work, we propose a similar definition of fair player. The idea is to split
Eve into two “sub-players”, Banach (good) and Mazur (evil), playing the Banach-
Mazur game between themselves. Eve is thus not always playing against Adam,
but sometimes she shares his goals. However Adam does not know when this is
the case, he only knows that Eve is split. To show that our notion of 2-player
game with fair Eve is correct, we compare it with Markov Decision Processes.
Similarly to the result of [14], we show that for games with ω-regular conditions,
Adam can reach his goal with probability 1 in an MDP if and only if he can win
the game against fair Eve.

The characterisation in terms of Banach-Mazur games gives a different point
of view of qualitative probabilistic model checking. In [13], this point of view
is used to simplify and modify the classic algorithm by Courcoubetis and Yan-
nakakis [7]. Also it helps providing a notion of counterexample for probabilistic
model checking [12]. We hope that our proposal can be the starting point for
similar results in the model checking of MDPs.

Structure of the paper: In Section 2, we introduce the known notions of two-
player game, Markov decision process, Banach-Mazur game, etc. We present
the theorem that links Banach-Mazur games on graphs with Markov chains.
In Section 3, we introduce our new game, the ABM game. We show that for
parity winning condition, if player Adam wins, then he has a memoryless winning
strategy, and for ω-regular condition, he has a finite memory strategy. This is the
main technical result of the paper, and we present the complete proof. This proof
is indeed constructive and it generates an algorithm to decide whether Adam
has a winning strategy, and to produce the winning strategy when it exists. We
also show that, contrary to two-player games, the ABM game is not determined,
by showing a game where no player has a winning strategy. Finally, in Section
4, we show that, for parity and ω-regular goals, Adam wins the ABM game, if
and only if he almost surely wins in the corresponding Markov decision process.
This result uses the existence of memoryless and finite memory strategies.

2 Infinite Games on Finite Graphs

2.1 Preliminaries

A (directed) graph is a pair G = (V, T ) where V is a set of vertices (also called
states) and T a set of edges (or transitions) such that T ⊆ V ×V . In this article,



66 E. Asarin, R. Chane-Yack-Fa, and D. Varacca

we assume that the graphs are finite, i.e. V is always a finite set. We also consider
only graphs without dead-ends, i.e. for all v ∈ V there exists a vertex w ∈ V such
that (v, w) ∈ T . We assume the reader is familiar with the notion of strongly
connected component. A bottom strongly connected component U is a strongly
connected component such that for all v ∈ U , (v, v′) ∈ T =⇒ v′ ∈ U . A path
of a graph is an infinite sequence x = (v0, v1, . . . ) such that (vk, vk+1) ∈ T for
each k ∈ N. A path fragment is a finite prefix α = (v0, v1, . . . , vn) of some path.

An initialized graph is a pair (G, v0), where v0 ∈ V . An arena is a 4-tuple
G = (G, VA, VE , v0) where (G, v0) is an initialized graph and {VA, VE} is a
partition of V . A vertex of VA is typically represented by a square and a vertex
of VE by a circle. In case that one of the two sets VA, VE is empty, we identify
the arena with the underlying initialized graph. A winning condition Ω on G is
a subset of the set V ω of infinite sequences on V . For x ∈ V ω, we denote by
inf(x) the set of elements of V which appear infinitely often in x.

2.2 Two-Player Games

We define first classical 2-player games on arenas [9]. In this kind of games, each
player plays successively on the arena and the game never stops.

Definition 1. A 2-player game on an arena G is a pair G
2 = (G , Ω) where Ω

a winning condition on G . A play on G is a path on G starting at v0.

We call the two players Adam and Eve. Intuitively, the players play the game
by moving on vertices a token initially placed in v0. In each vertex vi, if vi ∈ VA
then Adam moves the token to some vertex vi+1 so that (vi, vi+1) ∈ T . If vi ∈ VE
then Eve chooses a successor. Adam wins a play x if x ∈ Ω, otherwise Eve wins.

Definition 2. A strategy for Adam is a mapping φ : V ∗ → V which, for each
path fragment α ending in vi ∈ VA, returns a successor vertex φ(α) = vi+1 such
that (vi, vi+1) ∈ T . Adam follows a strategy φ during a play x = (v0, v1, . . . ) if
for all i ∈ N such that vi ∈ VA, φ(v0, . . . , vi) = vi+1. We say that φ is a winning
strategy for Adam in G

2, if Adam wins each play beginning in v0 following the
strategy φ. We say also that Adam wins the game if he has a winning strategy.

The definition is analogous for Eve. To choose the strategy, a player may just
need a memory of bounded size, or no memory at all.

Definition 3. A finite memory strategy for Adam is a mapping φ : V ×M → V
where M is a finite set, together with an update function up : V ×M →M , and
an initial state memory m0 ∈M . Adam follows a finite memory strategy φ during
a play x = (v0, v1, . . . ) if there is a sequence of memory states (m0,m1, . . . ) such
that for all i ∈ N, up(vi,mi) = mi+1 and whenever vi ∈ VA, then φ(vi,mi) =
vi+1. A memoryless (or positional) strategy for Adam is a mapping φ : V → V ,
which for all vertices vi ∈ VA gives a successor vertex φ(vi) = vi+1.

Positional strategies can be seen as finite memory strategies where M is a sin-
gleton.



Fair Adversaries and Randomization in Two-Player Games 67

2.3 Winning Conditions

We can consider several classes of winning conditions on arenas [9], such as
reachability conditions, Büchi conditions, Muller conditions or parity conditions.

Definition 4. A parity game on an arena G is a 2-player game together with
a colouring function c : V → N, such that the winning condition Ω is the set of
plays x such that the number min(c(inf(x))) is even.

A classical theorem is the following:

Theorem 5 ([8,16]). If Adam has a winning strategy on a parity game, then
he has a positional winning strategy.

We can define a more general class of winning conditions, using parity automata.
The definition of parity automata is standard, see for instance [9]. A winning
condition Ω is said to be ω-regular if it is accepted by some parity automaton.
One can transform a game with ω-regular winning condition into a parity game
by making the synchronised product of the game with the automaton. In this
way, one can prove the following well known fact:

Theorem 6. If Adam has a winning strategy for an ω-regular winning condi-
tion, then Adam has a finite memory winning strategy.

The memory needed by Adam is essentially the automaton recognizing the win-
ning condition.

2.4 Probabilistic Models

In certain cases, we want to model unpredictable events in systems. Therefore,
we want to be able to take transitions in a probabilistic way.

Definition 7. A 1 1/2-player game is a triple G
11/2 = (G , p, Ω) where G =

(G, VA, VE , v0) is an arena, Ω a winning condition like in 2-player games, while
p is a probabilistic transition function defined as p : VE × V → [0, 1] such that
p(ve, v) = 0 iff (ve, v) /∈ T and for all ve ∈ VE, v∈V p(ve, v) = 1. If the graph
G is bipartite then the game is also called Markov Decision Process (MDP). If
VA = ∅, then the game is a 1/2-player game G

1/2 and it is also known as Markov
Chain (MC).

In 1 1/2-player games, Eve is the 1/2 player because she does not really make
any choices. So we will not talk about strategies for Eve. However, strategies
for Adam are defined in the same way as in 2-player games. They can be finite
memory or memoryless. In this article, we will not need randomized strategies
that can be found in the literature [6].

Given a strategy for the full player Adam, one generates a (possibly infinite
state) Markov chain by taking the “execution tree” of the graphG and by pruning
out all the choices Adam does not take. If the strategy is finite memory the
corresponding Markov chain has finitely many states. One can calculate with
standard techniques the probability of measurable sets of infinite paths. See for
instance [6] for more details. Here we are interested in the following definition:



68 E. Asarin, R. Chane-Yack-Fa, and D. Varacca

Definition 8. We say that Adam has an almost sure winning strategy if in the
Markov chain generated by the strategy, the winning condition has probability 1.
Adam wins almost surely if he has an almost sure winning strategy.

Note that ω-regular winning conditions are always measurable.

2.5 Banach-Mazur Games

A different kind of 2-player game is a game where players do not play only
one transition but a sequence of transitions successively, and the alternation is
not decided by the arena, but by the players themselves. This game is called a
Banach-Mazur game or a path game. It is played on a graph.

Definition 9. A Banach-Mazur game G
BM is given by an initialized graph

(G, v0), and a winning condition Ω.

The two players are B (Banach) and M (Mazur). M begins in v0 and chooses
a path fragment (v0

0 , v
0
1 , . . . , v

0
n0

) of size n0 (also chosen). Then player B does
the same from the vertex v0

n0
. The game goes infinitely alternating player B

and player M turns, so we get an infinite sequence x. Banach wins if x ∈ Ω,
otherwise Mazur wins.

Definition 10. A play z of a Banach-Mazur game G
BM is an infinite sequence

of path fragments z = (β0β1 . . . ) where βk = (vk0 , . . . , v
k
n ). The flattening of a

play z is the corresponding infinite path. Banach wins a play z, if its flattening
belongs to Ω, otherwise Mazur wins. A strategy for Banach is a mapping ψ :
(V ∗)∗ → V + which for each finite sequence γ = (β0 . . . βi) of path fragments,
gives a feasible path fragment ψ(γ) = βi+1 = (vi+1

0 , . . . , vi+1
n( +1)

). Banach follows
a strategy ψ during a play x = (β0β1 . . . ) if for all i ∈ N such that i is even,
ψ(β0 . . . βi) = βi+1. The strategy ψ for Banach is winning in G

BM from v0, if
Banach wins each play starting in v0 following the strategy ψ. The strategy for
Mazur is defined analogously.

The Banach-Mazur game was proposed by Mazur (see [11], problem 43) as a
way of characterising the topological notion of co-meagerness of subsets of the
unit interval. Mazur conjectured that the second player has a winning strategy if
and only if the winning condition is co-meager in the standard topology. Banach
proved this (and he won, as prize, a bottle of wine). Banach-Mazur games
were adapted later on graphs (see [4]). Völzer, Varacca and Kindler [15] used
them to give a definition of fairness in Kripke structures (equivalent to closed
systems). They argued that this game generalizes the known notions of fairness
in systems, and they proposed the following definition:

Definition 11. Ω ⊆ V ω is a fairness property on (G, v0) if B has a winning
strategy in the Banach-Mazur game on (G, v0) with winning condition Ω.

We will adapt the game in order to express fairness in open systems, i.e. classical
2-player games.

An important result is the link between the Banach-Mazur games and Markov
chains, shown by the following theorem.



Fair Adversaries and Randomization in Two-Player Games 69

Theorem 12 ([14]). If (G, v0) is an initialized graph, Ω an ω-regular winning
condition and p any probabilistic transition function on V , then Ω has probability
1 in the Markov chain generated on (G, v0) by p iff Banach wins the Banach-
Mazur game on (G, v0, Ω).

3 ABM Games

3.1 Definitions

After having recalled the known notions of 2-player games and Banach-Mazur
games, we now propose a new kind of game that somehow combines those two. In
this new game, Adam plays as usual, but Eve is split in two. The two halves are
called Banach and Mazur. Intuitively Banach helps Adam (he is good or “Bon”
in French), while the real adversary is Mazur (evil, or “Mauvais” in French).

Definition 13. An ABM game is given by an arena G = (G, VA, VE , v0), and
a winning condition Ω.

The game G
ABM = (G , Ω)ABM is played by players A, EB and EM . At the

beginning of the game, if v0 ∈ VA then A chooses a transition (v0, v1) ∈ T . If
v0 ∈ VE then EM chooses the transition. The game goes on in the same way as
in 2-player games. States that belong to VA are controlled by player A and those
in VE by player EM . After a while, player EM has to let the control of VE states
to player EB . Then, it is this one’s turn to play against player A before passing
the lead to EM again and so on. The following definition formalizes the rules of
play for Banach and Mazur:

Definition 14. A move tree λ of player EB (or EM ) from a state vk ∈ VE,
is a finite, prefix closed set of path fragments starting at vk, and verifying the
following conditions:

• for each path fragment α ∈ V ∗ and each vertex v ∈ VE , if αv ∈ λ then there
is at most one vertex w such that (v, w) ∈ T and αvw ∈ λ;

• for each path fragment α ∈ V ∗ and each vertex v ∈ VA, αvw ∈ λ if and only
if (v, w) ∈ T .

In a state of VA, player A chooses a transition as in the classical 2-player game.
But in a state vi ∈ VE the token is moved according to the move tree λ given by
EM or EB . In fact, if EM (or EB) gets the lead in vk then (vk, . . . , vi) is a prefix
of a branch of λ. If vi has a successor, then EM (EB resp.) plays vi+1, which is
the unique successor of vi in the tree. Else, EM (EB resp.) passes the lead.

Intuitively, in open systems, player A represents the system while players EB
and EM the environment. When we want to verify a specification, we assume that
the system always makes the right choice but the environment is not necessarily
always against. Sometimes the environment helps A to satisfy the property,
sometimes the environment plays against. In this way, ABM games allow us to
model a fair environment.



70 E. Asarin, R. Chane-Yack-Fa, and D. Varacca

Like in Banach-Mazur games, we can see an infinite play x as an infinite
sequence of tree branches x = (β0β1 . . . ) where βk = (vk0 , . . . , v

k
n ) is a path

fragment where EB is leading if k is odd and EM is leading if k is even. Players
A and EB win the play x if the flattening of x ∈ Ω, else EM wins. In the
following sections we will sometimes identify a play with its flattening.

Definition 15. A strategy φ for player A is defined as in 2-player games. A
strategy for player EB or EM is a mapping ψ : V ∗ → T where T is the set
of move trees. Player A follows a strategy φ during a play x = (β0β1 . . . ) with
flattening x = (v0v1 . . . ) if for all i ∈ N such that vi ∈ VA, φ(v0, . . . , vi) = vi+1.
EB (EM resp.) follows a strategy ψ during a play x = (β0β1 . . . ) if for all i ∈ N

such that i is even (odd resp.), φ(β0 . . . βi) = λi and βi+1 is a branch of λi.
A pair of strategies (φ, ψ) (for A and EB respectively) is said to be winning if

A and EB win the play following their respective strategies. We say that A has
a winning strategy φ if there exists a winning pair of strategies (φ, ψ) for A and
EB. Player A wins the game if he has a winning strategy.

If EM plays the move tree on Fig. 1 at the beginning of the game, he will reach
q3 then q4 before passing the initiative or will pass his turn if player A chooses
the transition to q1.
Remark. In the definition of ABM games, it is important to notice that a
strategy for player A depends only on the sequence of the previously visited
vertices. Therefore, A never knows whether he is playing against Banach or
Mazur at any given time. That is why there are three players and not only two.
This is important for the main result (Theorem 32) to hold.

In the example of Fig. 2, consider the following winning condition: ��q3 ∧
�¬q4 (infinitely often q3 but never q4). Consider the ABM game with this win-
ning condition. If we suppose that player A always knows who is leading in states
of VE , we can construct a winning strategy for players A and EB.

q0

q1

q2

q3 q4

q0

q1q2

q3

q0

q1q2

q4

Fig. 1. Example of an arena and a move tree in this arena



Fair Adversaries and Randomization in Two-Player Games 71

q0

q1

q2

q3 q4

1

Fig. 2. A 1 1/2-player game

While player EM is leading, player A takes
the transition going to q1. Then he takes tran-
sition to q2 when EB gets the lead. Player EB
always takes transition to q3. Thus, state q3
is visited infinitely often but state q4 never.
However, if Eve plays randomly (with any
Markovian distribution), it is not difficult to
see that for any strategy of A, the winning
condition has probability 0. This contradicts
Theorem 32.

This is also the reason why we cannot code
our game in terms of classic 2-player games. A comparison with games with
imperfect information (see e.g. [5,3]) remains to be explored.

3.2 Traps and Attractors

Before presenting the main theorems, we need to study some properties of ABM
arenas. The following notions were often used in proofs in classical 2-player
games [9,16].

Definition 16. Let G = ((V, T ), VA, VE , v0) be an arena. A trap for Eve (or
E-trap) in G is a subset of vertices U ⊆ V such that:
– for all v ∈ U ∩ VE , (v, v′) ∈ T =⇒ v′ ∈ U ,
– for all v ∈ U ∩ VA, there exists v′ ∈ U such that (v, v′) ∈ T .

Trap for Adam can be defined in the same way.

The idea of the E-trap is to consider the set of vertices in which Adam can
keep the token no matter what does Eve. The following easy proposition was
expressed in [16] for 2-player games. It depends only on Adam, and thus it holds
also for ABM games.

Proposition 17. In an ABM game, player A has a memoryless strategy to keep
the play in an E-trap.

Definition 18. Let G = ((V, T ), VA, VE , v0) be an arena. The attractor of U ⊆
V for Eve (or E-attractor) written AttrE(U), is the limit of the sequence de-
fined as:
– Attr0E(U) = U ,
– ∀i ≥ 0, Attri+1

E (U) = AttriE(U) ∪ {v ∈ VE | ∃v′ ∈ AttriE(U) such that
(v, v′) ∈ T } ∪ {v ∈ VA | (v, v′) ∈ T =⇒ v′ ∈ AttriE(U)}.

Attractor for Adam can be defined in the same way.

In 2-player games, an E-attractor of a set U induces a strategy for Eve to reach
U . In ABM games, vertices of VE are alternately controlled by EB and EM and
thus there is no strategy for any of these 2 players to reach U . However, we have
the following property on the complement anyway.

Proposition 19 ([16]). The complement of an E-attractor in an arena is an
E-trap.



72 E. Asarin, R. Chane-Yack-Fa, and D. Varacca

3.3 Positional Strategies

In the rest of this section, we will show that in the case of ABM games with
parity winning conditions, winning strategies for Adam can be memoryless. A
classical method to prove such a result is to compute the set of winning positions
and show that from these states there exists a positional winning strategy. This
technique was used for the 2-player games [16]. In doing so, the set of states
is partitioned into winning and losing states. Later, we will observe that ABM
games are not determined. However, we still can compute winning and non-
winning positions. In the following, G denotes a graph, G = (G, VA, VE , v0) an
arena and c : V → N a colouring mapping defining a parity winning condition
as in 2-player games.

Theorem 20. If player A wins the parity game (G , c)ABM then A has a mem-
oryless winning strategy.

To start proving this result, let CM
G = {CM0 , . . . , CMi . . . , CMn } be the set of bot-

tom strongly connected components of graphG that have the following property:
for all i < n, for all U ⊆ CMi , if U is an E-trap and U is strongly connected
then min(c(U)) is odd. We write CB

G = {CB0 , . . . , CBi . . . , CBm} the set of bottom
strongly connected components of G that do not have that property.

This construction draws its inspiration from the proof [6] of the existence
of memoryless strategies in MDP with parity winning condition. In fact, the
sets CM

G and CB
G are inspired from the concept of controllably win recurrent

vertices [7,6].

Lemma 21. For all strategies φ for A and ψ for EB , there exists a play x
following φ and ψ such that inf(x) is an E-trap.

Proof. Fix a pair of strategies (φ, ψ) for A and EB. We will show that EM can
play in order to make x an E-trap. Therefore, we suppose that EM knows players
A and EB ’s strategies and chooses his moves according to these. Anytime during
the play where EM has the initiative, we will say that a vertex q ∈ VE is explored
if EM has already taken all outgoing edges from q since the beginning of his turn.
We will say that q is exhausted if there is no play that follows φ and reaches q.
Player EM will play in this way: when he gets the lead, if there exists a vertex
q ∈ VE not explored and not exhausted then EM tries to reach it. This is possible
because q is not exhausted. There exists a play following φ that allows this. So in
this visited state q, he chooses a transition that has not yet been taken since he
is leading. EM repeats this process until all vertices of VE are marked explored
or exhausted, and then passes the initiative. We notice that an exhausted vertex
will stay forever exhausted. Formally, a move tree λ of EM is a tree that owns
at most one branch λ0 such that each node n ∈ VE of the branch is not a leaf.
Indeed, that branch represents the revealed strategy of player A. To agree with
the definition of a move tree, EM passes the lead if A does not follow his strategy
φ. The branch λ0 is finite. Suppose that λ0 is infinite, then there always exists
a vertex that is not explored and not exhausted. That contradicts the finiteness



Fair Adversaries and Randomization in Two-Player Games 73

of the graph. Each vertex is eventually either explored or exhausted. So the tree
λ is finite and it is a proper move tree.

Suppose now that for a play x obtained in that way, inf(x) is not an E-trap.
Then there exist vertices s ∈ VE and t ∈ V such that (s, t) ∈ T , s ∈ inf(x) and
t /∈ inf(x). s ∈ inf(x) then s will never be exhausted and each time EM gets the
initiative, he will be able to visit its successor t. So we visit t infinitely often.
But t /∈ inf(x), contradiction. We can conclude that inf(x) is an E-trap. �
Lemma 22. Player A has no winning strategy in the parity game on CM

G .

Proof. Let CMi ∈ CM
G . Assume that A and EB have a winning pair of strategies

(φ, ψ) on CMi . Then for each play x following the strategies (φ, ψ), U = inf(x)
is a strongly connected set such that min(c(U)) is even. Thus, by definition of
CM
G , U is not an E-trap. That is a contradiction regarding to previous lemma.

As a consequence, A and EB do not have winning strategies on CMi . So A has
no winning strategy on CM

G . �
Lemma 23. Player A has a memoryless winning strategy in the parity game
on CB

G .

Proof. Let CBi ∈ CB
G . By definition of CB

G , we know that there exists an E-trap:
U ⊆ CBi such that min(c(U)) is even. We write m a vertex, which has minimal
colour in U . The strategy φ of player A is the following: for all u ∈ U such
that u ∈ VA, A chooses a successor v ∈ U such that for all others successors w
of u, the distance between v and m is shorter than the one between w and m.
And for all u /∈ U such that u ∈ VA, A will choose similarly the successor with
shortest distance to reach the set U . The strategy ψ for player EB consists in
using a similar strategy of shortest distance when it is his turn and passing the
lead to player EM each time the vertex m is reached. (In the same way that
in Lemma 21, we do not consider the case where player A does not follow his
strategy. So the move tree is finite.) Remark that distances to the vertex m and
to the set U are well-defined for each vertex of the component CBi because of its
strong connection. Let x be a play following strategies φ and ψ. Then inf(x) ⊆ U
because the strategies allow to reach the set U and to stay in it forever. Thus the
minimal vertex infinitely often reached is min(c(inf(x))) = m. We can conclude
that the pair of strategies (φ, ψ) is winning. Moreover, φ is clearly memoryless.
So A has a memoryless winning strategy on CB

G . �
Now we will show that we can partition the set of vertices V of the graph into a
winning region for A written W and a non-winning region for A written L. We
construct L by induction:

– G0 = G,
– L0 = AttrE(CM

G0
),

– Gi+1 = Gi restricted to V \ Li,
– Li+1 = Li ∪AttrE(CM

G +1
).

G is a finite graph so the sequences (Gi)i and (Li)i converge. We write GW the
limit of the sequence (Gi)i, L the limit of (Li)i and W = V \ L.



74 E. Asarin, R. Chane-Yack-Fa, and D. Varacca

Lemma 24. For all i ∈ N, player A has no winning strategy on Li if EM is
leading the states of VE.

Proof. Player A has no winning strategy on CM
G so he does not have one on L0

either. Indeed, player EM can play the strategy induced by the E-attractor to
reach CM

G where A has no winning strategy. Let n ∈ N, suppose that A has no
winning strategy on Ln if EM is leading. According to Lemma 22, we know that
A has no winning strategy on CM

G +1
if the play is restricted to the graph Gn+1.

The only way for A to win would be to always reach Ln when player EB has
the initiative in Ln. By induction hypothesis, if EM leads in Ln then A has no
winning strategy. But for each play where we can reach Ln with EB, there exists
a play where we can reach LN with EM . Player EM only needs to simulate the
moves of EB until he arrives at LN . So A has no winning strategy on CM

G +1
. As

shown previously, player A does not have a strategy in its E-attractor either.
Thus A has no winning strategy in Ln+1 = Ln ∪ AttrE(CM

G +1
) if EM has the

initiative. �
Lemma 25. W is an E-trap.

Proof. For all i ∈ N, V \ Li is an E-trap because it is the complement of an
E-attractor. So W is an E-trap. �
Lemma 26. Player A has a memoryless winning strategy on W .

Proof. When the token is in W \CB
G , strategies for A and EB consist in strate-

gies of shortest paths to the set CB
G in W similar to previously described strate-

gies. According to Lemma 25, W is an E-trap, so A has a strategy to prevent
EM from reaching L. The shortest distance strategy also allows to stay in W .
Furthermore, we can always reach CB

G . Indeed, the only bottom strongly con-
nected components reachable from a state of W belong to CB

G by construction
of L and W . The strategy of distance is then a winning and memoryless strategy.
When CB

G is reached, we can use the strategy described in Lemma 23, which
is also winning and memoryless. �
Proof of Theorem 20. At the beginning of the game, EM leads, so A has no
winning strategy on L according to Lemma 24. Lemma 26 says that A has a
memoryless winning strategy on W = V \L. In consequence, if A has a winning
strategy in the initial state then he has a memoryless winning strategy. �
We observe that the proof of Theorem 20 is constructive. It provides explicitly
the winning region of Adam. Also, for each state of this region, the winning
strategy is explicitly given by Lemma 23 and Lemma 26.

3.4 ABM Games Are Not Determined

Lemma 22 says that players A and EB have no winning strategy in the parity
game on CM

G . In general, player EM has no winning strategy either on CM
G . We

can infer that the game is not determined.



Fair Adversaries and Randomization in Two-Player Games 75

q0

q1

q2

q3 q4

4

34

2 1

Fig. 3. Example of parity game

Consider the parity game represented on
Fig. 3. Lemma 22 says that players A and EB
do not have any strategies to win the game.
However, we can observe here that player EM
does not have a strategy either. If he wants
to win, EM has either to reach infinitely of-
ten state q4 or reach infinitely often q1 and
a finite number times q3. But EM does not
know player A’s strategy. If A were to take
the transition going to q2 a finite number of
times, then EM could just pass to EB with-
out making any moves. But since he does not know actually if player A intends
to take this transition infinitely often or not, there are two cases.

– If player EM supposes that player A will reach q2 infinitely often, then his
strategy has to wait for this move and reach state q4 before passing the lead
to player EB . However, if eventually A never reaches q2, then EM would
never pass his turn. As a consequence, this is not a strategy because the
move tree chosen by EM must be finite.

– If EM supposes that A will never reach q2 again at a certain point, then he
will pass his turn in q1. But we can imagine a scenario where each time EM
passes the initiative, A take the transition to q2 and let EB reach q3.

In any case, we cannot define any winning strategy for player EM in this game.

3.5 Finite Memory

We conclude the section by extending Theorem 20 to ω-regular winning condi-
tions, similarly to Theorem 6.

Theorem 27. Let G be an arena and Ω ⊆ V ω an ω-regular condition. If player
A has a winning strategy in the game (G , Ω)ABM then he has a finite-memory
winning strategy.

The proof technique is similar to the one used for Theorem 6. One makes the
product with a deterministic parity automaton recognising the winning condi-
tion. The automaton is essentially the memory needed by Adam.

4 Fairness as Randomization

In this section, we intend to demonstrate a theorem similar to Theorem 12 in
the context of open systems. That is we want to build a connection between
ABM games and 1 1/2-player games. We first do this for the parity case, and
then extend to all ω-regular conditions.

We start by noting that the existence of memoryless strategies for ABM games
is mirrored in MDP.



76 E. Asarin, R. Chane-Yack-Fa, and D. Varacca

Theorem 28 ([7,6]). Let G = (G, VA, VE , v0) be an arena, p : VE × V → [0, 1]
a probabilistic transition function on VE such that p(ve, v) = 0 iff (ve, v) /∈ T
and for all ve ∈ VE, v∈V p(ve, v) = 1, and c : V → N a colouring mapping. If
Adam wins almost surely the parity 1 1/2-player game (G , p, c) then Adam has a
memoryless almost sure winning strategy.

4.1 The Parity Case

Theorem 29. Let G = (G, VA, VE , v0) be an arena, c a colouring, p a prob-
abilistic transition function on VE and Ω ⊆ V ω the parity winning condition
defined by c. If A has a winning strategy in the game (G , Ω)ABM then Adam has
an almost-sure winning strategy in the 1 1/2-player game (G , p, Ω).

Proof. Assume that player A has a winning strategy in the game (G , Ω)ABM .
Then according to Theorem 20, A has a memoryless winning strategy φ. For each
state of VA, we keep only the outgoing edge provided by φ. Let K = ((V, TK), v0)
be the initialized graph where TK = T \ {(va, v) ∈ T | va ∈ VA and φ(va) �= v}.
We can easily see that, if player A wins in (G , Ω′)ABM then Banach wins in
(K , Ω′)BM . Indeed, each play that is winning for A on G can be simulated on
K . It does not matter if Banach or Mazur has the initiative in a state of VA
because there is only one outgoing edge.

Let p′ be the probabilistic transition function on V such that for all ve ∈ VE ,
v ∈ V , p′(ve, v) = p(ve, v) and for all va ∈ VA, (va, v) ∈ T =⇒ p′(va, v) = 1.
This defines a Markov chain on ((V, TK), v0). Thanks to Theorem 12, we know
that the winning condition Ω has probability 1 in this Markov chain. But this
shows that φ is an almost sure winning strategy for Adam in the 1 1/2-player
game (G , p, Ω). �
Theorem 30. Let G = (G, VA, VE , v0) be an arena, c a colouring, p a proba-
bilistic transition function on VE and Ω the parity winning condition defined by
c. If Adam has an almost sure winning strategy in the 1 1/2-player game (G , p, Ω),
then A has a winning strategy in the game (G , Ω)ABM .

Proof. Suppose that Adam has an almost sure winning strategy in the game
(G , p, Ω). Then according to Theorem 28, Adam has a memoryless almost sure
winning strategy. Let K = ((V, TK), v0) be the initialized graph where TK =
T \ {(va, v) ∈ T | va ∈ VA and φ(va) �= v}. Let p′ be the probabilistic transition
function on V such that for all ve ∈ VE , v ∈ V , p′(ve, v) = p(ve, v) and for all
va ∈ VA, (va, v) ∈ T =⇒ p′(va, v) = 1. This generates a Markov chain. As
Adam wins almost surely in (G , p, Ω) then Ω has probability 1 in the Markov
chain. By Theorem 12, Banach has a winning strategy in the game (K , Ω)BM .
This means that φ is a winning strategy for Adam in the game (G , Ω)ABM .
The winning strategy of player EB is to simulate Banach winning strategy in
(K , Ω)BM . Thus Adam and Banach have also a winning strategy in the game
(G , Ω)ABM . �



Fair Adversaries and Randomization in Two-Player Games 77

The following theorem results from Theorem 30 and Theorem 29.

Theorem 31. Let G = (G, VA, VE , v0) be an arena, c a colouring, p a proba-
bilistic transition function on VE and Ω the parity winning condition defined by
c. Adam has an almost-sure winning strategy in the 1 1/2-player game (G , p, Ω)
if and only if A has a winning strategy in the game (G , Ω)ABM .

4.2 ω-Regular Conditions

The key fact in order to exploit Theorem 12 is that the graph obtained after
applying the memoryless strategy of Adam is finite, as Theorem 12 applies only
to finite graphs. We notice thus that Theorem 20 on the existence of memoryless
strategies is essential in the proof of Theorem 32. In the case of ω-regular win-
ning conditions, the strategy of Adam is finite memory. As in the memoryless
case, the key observation is that the graph one gets by applying the strategy is
finite (though larger than the original graph). Thus, it is still possible to apply
Theorem 12. We omit the straightforward details of the proof.

Theorem 32. Let G = (G, VA, VE , v0) be an arena, p a probabilistic transition
function on VE and Ω ⊆ V ω an ω-regular condition. Adam has an almost-sure
winning strategy in the 1 1/2-player game (G , p, Ω) if and only if A has a winning
strategy in the game (G , Ω)ABM .

We can notice that if VA = ∅ then we have the special case of Theorem 12.
Thus, we showed that playing against a fair player is equivalent to playing

against a probabilistic player in the case of ω-regular properties.

5 Related and Future Work

The Banach-Mazur game is one possible definition of fairness in closed systems.
An equivalent topological definition can be given in terms of co-meagerness.
In [1], the topological definition is used to prove the equivalence between prob-
abilistic and fair semantics of timed automata. Interestingly, this equivalence
holds only for one-clock automata, but it breaks down once we allow more than
one clock. Another equivalent definition is in terms of α-fairness [10]. Of the three
definitions, this is the one that most resembles the intuitive notion of fairness “if
something is often possible, it will be often performed”. It would be interesting
to define fair strategies for Eve in terms of α-fairness. We also expect that this
game-theoretic point of view can be applied to improve existing algorithms, or
to find new ones, in the qualitative model checking of MDPs.

In this paper, we have applied a definition of fairness to one of the players of
2-player games. In general, we could study what happens to other players and
other games. For instance, a 1 1/2-player game where Adam plays fairly should be
equivalent to a Markov chain. Finally, we would like to explore the connections
between ABM games and games with imperfect information ([5,3]).



78 E. Asarin, R. Chane-Yack-Fa, and D. Varacca

References

1. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Almost-sure model
checking of infinite paths in one-clock timed automata. In: LICS 2008, pp. 217–226.
IEEE Computer Society, Los Alamitos (2008)

2. Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time
logic with fairness. Distributed Computing 11(3), 125–155 (1998)

3. Bertrand, N., Genest, B., Gimbert, H.: Qualitative determinacy and decidability
of stochastic games with signals. In: LICS 2009, pp. 319–328. IEEE Computer
Society, Los Alamitos (2009)

4. Berwanger, D., Grädel, E., Kreutzer, S.: Once upon a time in the West. Deter-
minacy, complexity and definability of path games. In: Vardi, M.Y., Voronkov, A.
(eds.) LPAR 2003. LNCS, vol. 2850, pp. 226–240. Springer, Heidelberg (2003)

5. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-
regular games with imperfect information. Logical Methods in Computer Sci-
ence 3(3) (2007)

6. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Quantitative stochastic parity
games. In: SODA 2004, pp. 114–123. ACM/SIAM (2004)

7. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification.
Journal of the ACM 42(4), 857–907 (1995)

8. Emerson, E.A., Jutla, C.: Tree automata, mu-calculus and determinacy (extended
abstract). In: FOCS 1991, pp. 368–377. IEEE Computer Society, Los Alamitos
(1991)

9. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

10. Lichtenstein, O., Pnueli, A., Zuck, L.D.: The glory of the past. In: Parikh, R. (ed.)
Logic of Programs 1985. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985)

11. Mauldin, D. (ed.): The Scottish Book. Birkhäuser, Basel (1981)
12. Schmalz, M., Varacca, D., Völzer, H.: Counterexamples in probabilistic LTL model

checking for Markov chains. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009
- Concurrency Theory. LNCS, vol. 5710, pp. 587–602. Springer, Heidelberg (2009)

13. Schmalz, M., Völzer, H., Varacca, D.: Model checking almost all paths can be less
expensive than checking all paths. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007.
LNCS, vol. 4855, pp. 532–543. Springer, Heidelberg (2007)

14. Varacca, D., Völzer, H.: Temporal logics and model checking for fairly correct
systems. In: LICS 2006, pp. 389–398. IEEE Computer Society, Los Alamitos (2006)

15. Völzer, H., Varacca, D., Kindler, E.: Defining fairness. In: Abadi, M., de Alfaro, L.
(eds.) CONCUR 2005. LNCS, vol. 3653, pp. 458–472. Springer, Heidelberg (2005)

16. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theor. Computer Science 200, 135–183 (1998)



Retaining the Probabilities
in Probabilistic Testing Theory

Sonja Georgievska and Suzana Andova

Department of Mathematics and Computer Science, Eindhoven University of
Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

s.georgievska@tue.nl, s.andova@tue.nl

Abstract. This paper considers the probabilistic may/must testing the-
ory for processes having external, internal, and probabilistic choices.
We observe that the underlying testing equivalence is too strong and
distinguishes between processes that are observationally equivalent.
The problem arises from the observation that the classical compose-
and-schedule approach yields unrealistic overestimation of the proba-
bilities, a phenomenon that has been recently well studied from the
point of view of compositionality (de Alfaro/Henzinger/Jhala 2001, Che-
ung/Lynch/Segala/Vaandrager 2006), in the context of randomized pro-
tocols (Chatzikokolakis/Palamidessi 2007), and in probabilistic model
checking (Giro/D’Argenio/Ferrer Fioriti 2009). To that end, we propose
a new testing theory, aiming at preserving the probability information in
a parallel context. The resulting testing equivalence is insensitive to the
exact moment the internal and the probabilistic choices occur. We also
give an alternative characterization of the testing preorder as a proba-
bilistic ready-trace preorder.

1 Introduction

The testing theory for concurrent processes [7, 13] is based on the criterion that
two processes are equivalent iff they cannot be distinguished when interacting
with their environment, which is an arbitrary process itself. The aim is to obtain
the coarsest congruence for parallel composition by the definition of the relation.
It turned out that, for a broad class of processes, the testing equivalence [7, 13]
and the failures equivalence [1] coincide [20]. Both theories, [1] and [7, 13] gave
prominence to the notion of “unobservability” of the exact moment in which a
process makes an internal choice.

Originally, only qualitative properties were in the focus of theories for reactive
processes. In many applications with unreliable components, however, it is more
useful to prove that a system will deadlock less than 0.1% of the time, rather
than never. This is one of the reasons why probabilistic choice, as a refinement
of internal choice, was introduced in process semantics, in addition to action
choice and standard internal choice. To be able to reason about the probabilistic
behavior of systems, schedulers were adopted, which resolve the nondeterminism
and yield fully probabilistic systems.

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 79–93, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



80 S. Georgievska and S. Andova

s1
2

���
�

1
2

���
�

◦
h �����

t
���

�� ◦
h �����

t
���

��

◦
p��
◦ ◦ ◦

p ��◦ ◦

u
h �� t��◦

p ��◦� ��◦

s‖u1
2

���
�

1
2

���
�

◦
���� ��	

	 ◦
���� ��	

	

◦
��
◦ ◦ ◦

��◦� ��
◦� ��◦ ◦

s̄h
��





 t
����

��

◦1
2 ����

1
2��

 ◦1
2 ����

1
2��



◦
p��
◦ ◦ ◦

p ��◦ ◦

Fig. 1. The coin-flipping machine and the guessing user

Originally, schedulers were monolithic: processes were composed and sched-
ulers were applied to the composed system. With this reasoning, an extension of
the may/must testing theory for the case with probabilistic choice was defined
[24]. However, it was soon observed that the compose-and-schedule approach
could yield unrealistic overestimation of the probabilistic behaviour of the com-
posed system [17, 19, 22]. We explain this phenomenon via the examples that
follow.

The gambling machine. Consider a system consisting of a machine and a user,
that communicate via a menu of two buttons “head” and “tail” positioned at
the machine. The machine first makes a fair choice (i.e. flips a coin) whether to
give a prize if “head” is chosen or if “tail” is chosen. Then the user is allowed to
choose “head” or “tail” by pressing the appropriate button. If the user chooses
the right outcome, a prize is awarded. Note that by no means the user could
have detected the machine’s choice beforehand. The machine can be modeled
by process graph s in Fig. 1. Thus, in half of the machine runs, it offers a prize
after the “head” button has been pressed (out of the two-button menu “head”
and “tail”), while in the other half of the runs it offers a prize after the “tail”
button has been pressed (out of the two-button menu “head” and “tail”). The
user can be modeled by process graph u in Fig. 1. Sometimes she would press
“head” and sometimes “tail”; however, she is “happy” (denoted by action �)
iff, after pressing a button, a prize follows. Note that the user makes her choice
based on the options the machine offers; in this example the menu consists of
two options.

Let the user and the machine interact, by synchronizing on their common ac-
tions, except on action �. In terms of testing theory [7], process s is tested with
test u. By means of probability theory, it can be calculated that the probability
that the user has guessed the output of flipping is 1

2 . That is, the probability of a� action being reported is 1
2 . However, most of the existing approaches for prob-

abilistic testing, in particular probabilistic may/must testing [8, 9, 15, 21, 23, 24],
do not give this answer. As we mentioned above, in order to compute the prob-
ability of � being reported, the probabilistic may/must testing uses schedulers.
These schedulers have access to the nodes of the graph of the synchronized
process.



Retaining the Probabilities in Probabilistic Testing Theory 81

a) x1
2 ����

1
2��



◦
w ��

◦
w ��◦

r ��
◦

r ��◦
h ��

◦
t ��◦ ◦

y
w ��◦
����� ��



◦
r ��

◦
r ��◦

h ��
◦

t ��◦� ��
◦� ��◦ ◦

b) x̄1
2 ����

1
2���

�

◦
a ��

◦
b ��◦

r ��
◦

r ��◦
h ��

◦
t ��◦ ◦

ȳ
b		a 

 ◦

����� ��


◦
r ��

◦
r ��◦

h ��
◦

t ��◦� ��
◦� ��◦ ◦

Fig. 2. The coin tosser and
result-guesser game: a) fair
play; b) unfair play

Consider the synchronization s ‖ u represented
by the process graph in Fig. 1, where actions are
hidden after they have synchronized (τ -labels are
omitted in the figure). Each scheduler resolves the
choice in the nondeterministic nodes of s ‖ u and
yields a fully probabilistic process graph. For s ‖ u
in Fig. 1 there are four possible schedulers, which
yield the following set of probabilities with which
s passes the test u: {0, 1

2 , 1}. We can see that, be-
cause the power of the schedulers is unrestricted,
unrealistic upper and lower bounds for the proba-
bilities are obtained. Observe that this happens due
to the effect of “cloning” the synchronization non-
determinism. The choice between synchronizing on
h or t has been “cloned” in both futures after the
probabilistic choice in s ‖ u. In this way, when re-
solving the nondeterminism in s ‖ u, a scheduler
assumes that the user has unrealistic power to see
the result of the coin-flipping before guessing.

Consider now process graph s̄ in Fig. 1. To
the user s̄ may as well represent the behaviour of
the coin-flipping machine – the user cannot see
whether the machine flips the coin before or after
making the “head or tail” offers. According to the
user, the machine acts as specified as long as she
is able to guess the result in half of the cases. In fact, both schedulers defined
by the probabilistic may/must testing, when applied to s̄ ‖ u yield exactly
probability 1

2 of reporting a � action. Consequently, none of the approaches
in [8, 9, 15, 21, 23, 24] equate processes s and s̄: when tested with u, they
produce different bounds for the probabilities of reporting �1.

The coin tosser – result guesser game. Consider the following game. Player x
tosses a fair coin and hides the outcome. Player y guesses the outcome of the
tossing and writes it down. While he is writing the result down, player x waits
(i.e. he may write down something meaningless). Then, they both agree to reveal
their outcomes, i.e. x to uncover the coin and y to show what he has written.
Players x and y are modeled in Fig. 2a. Obviously, the probability that the
second player guesses correctly, i.e. reports �, equals 1

2 . However, the schedulers
applied to the resulting graph for the synchronization of both players give the
set of probabilities {0, 1

2 , 1}, thus, suggesting that there is a strategy such that
player y can always guess the result correctly. On the other hand, if process
x′ = w.r.(h⊕ 1

2
t) is synchronized with y, both schedulers applied to the resulting

process graph suggest that the probability of reporting a � action is exactly
1
2 . Hence, in probabilistic may/must testing theory processes x and x′ cannot

1 If we ignore the probabilities, processes s and s̄ are testing-equivalent by [7].



82 S. Georgievska and S. Andova

be equated, and therefore prefix does not distribute over internal probabilistic
choice. In other words, the internal (probabilistic) choice is “observable”. 2

It is important to note that, if the players are as in Fig. 2b, i.e. the coin tosser
reveals the outcome by offering different actions for synchronization (a or b),
then the guesser can surely guess the result: he would make his guess depending
on the action on which both players previously synchronized (a or b).

1.1 Contributions

The testing preorder relations defined in [23, 24] were shown to be branch-
ing time (simulations) in [9, 15, 18]. Thus, distribution of prefix over inter-
nal/probabilistic choice is not allowed. This implies that if we are about to com-
bine external, classical internal and internal probabilistic choice, for verification
purposes we can only rely on equivalences that inspect the internal structure of
the process graphs. Nevertheless, the most discouraging fact is that in a parallel
composition the probability information might be lost, as the previous examples
show. This questions the reasons for adding probabilities in the model initially.

The main contribution of this paper is testing semantics in the style of [7]
for processes exhibiting external, internal and probabilistic choices that does
not yield over-estimated or under-estimated probabilities with which a process
passes a test. To achieve this, we propose a novel method for labeling the internal
transitions that arise in the parallel composition of the process and the test.
The usage of the labels solves the problem with the “cloned nondeterminism”
and allows us to compute the probabilities with which a process passes a test.
Moreover, unlike the schedulers-based approaches [23, 24], our approach makes
the resolution of the nondeterminism state-independent, which, we believe, is
more appropriate for testing-based semantics.

The technical contributions of the paper are the following. In our model the
internal transitions with the same node of origin have different labels which serve
as identifiers for the transitions in a parallel context (Sec. 3). Having this, we
first define resolution of the internal nondeterminism in a process (Sec. 4.1).
Then, when testing a process with a test, given a resolution of the internal non-
determinism of the process, we define how the synchronization nondeterminism
and the internal nondeterminism of the test are resolved (Sec. 4.2). Our solution
avoids overestimation and underestimation of the probabilities with which the
process passes the test. Based on the testing semantics, we define a preorder
relation between processes from which it follows that one process implements
another iff the former contains “less” nondeterminism (Sec. 4.2). Finally, we
characterize the testing preorder as a probabilistic ready-trace preorder relation
(Sec. 5). The latter reveals that, indeed, our testing equivalence is insensitive to
the exact moment of occurrence of internal/probabilistic choices.

Due to lack of space and to avoid technical complications while presenting the
ideas and the results, in this paper we restrict to finitely-branching, divergence-
free, though recursive processes and to finite tests.
2 Variants of this problem were initially pointed in [17, 19, 22] and treated in [3, 5,

6, 11].



Retaining the Probabilities in Probabilistic Testing Theory 83

2 Preliminaries

In this paper we use the Bayesian definition of probability because it is more
suitable than the measure-theoretic one for our definition of ready-trace preorder.

Bayesian probability For a set A, 2A denotes its power-set. The following defi-
nitions are taken from [16].

We consider a sample space, Ω, consisting of points called elementary events.
Selection of a particular a ∈ Ω is referred to as an “a has occurred”. An event
A ⊆ Ω is a set of elementary events. A,B,C, . . . range over events. An event A
has occurred iff a has occurred for some a ∈ A. Let A1, A2, . . . be a sequence
of events and C be an event. The members of the sequence are exclusive given
C, if whenever C has occurred no two of them can occur together, that is,
if Ai ∩ Aj ∩ C = ∅ whenever i 	= j. C is called a conditioning event. If the
conditioning event is Ω, then “given Ω” is omitted.

For certain pairs of events A and B, a real number P (A|B) is defined and
called the probability of A given B. These numbers satisfy the following axioms:

A1: 0 ≤ P (A|B) ≤ 1 and P (A|A) = 1.
A2: If the events in {Ai}∞i=1 are exclusive given B, then P (∪∞i=1Ai | B) =

∞
i=1 P (Ai|B).

A3: P (C|A ∩B) · P (A|B) = P (A ∩ C|B).

For P (A|Ω) we simply write P (A).

3 Model

We define our model of process graphs and operations on them. Presuppose
a finite set of actions A and a countable set of labels L such that A ∩ L =
∅. A process graph has three types of transitions (edges), representing action,
internal, and probabilistic transitions; a state (node) can perform only one type
of transitions. The action transitions are decorated with actions from A, while
the internal transitions with labels from L. No two action transitions with the
same state of origin are labeled the same and no two internal transitions with the
same state of origin are labeled the same. Moreover, if two states have transitions
each with the same label, then the sets of all labels of their outgoing (internal)
transitions coincide. All states are reachable from a designated initial state via
zero or more transitions.

Definition 1 (Process graph). A process graph (or simply process) is a tuple
P = (SA, Sp, Sτ ,→,�, ���, r), where

– SA, Sp, Sτ are finite sets of action, probabilistic, and nondeterministic states
respectively,

– r ∈ SA ∪ Sp ∪ Sτ is the initial state,
– → ⊆ SA × A × (SA ∪ Sp ∪ Sτ ) is an action transition relation such that

(s, a, t) ∈ → and (s, a, t′) ∈ → implies t = t′,



84 S. Georgievska and S. Andova

– �⊆ Sτ × L× (SA ∪ Sp ∪ Sτ ) is an internal transition relation such that
• (s, l, t) ∈� and (s, l, t′) ∈� implies t = t′, and
• if (s, l, t) ∈� and (s′, l, t′) ∈� for some l ∈ L and states t, t′, then, for

every k ∈ L, (s, k, q) ∈� for some q iff (s′, k, q′) ∈� for some q′,
– ��� ⊆ Sp × (0, 1] × (SA ∪ Sp ∪ Sτ ) is a probabilistic transition relation

such that (s, π, t) ∈��� and (s, ρ, t) ∈��� implies π = ρ, and for all s ∈ S,
(s,π,t)∈��� π = 1, and

– for every state s ∈ SA ∪ Sp ∪ Sτ , there exists a sequence {(si, αi, si+1)}ni=1
such that s1 = r, sn+1 = s, and for every i ∈ {1, . . . n}, (si, αi, si+1) belongs
to one of the transition relations.

The set of all process graphs is denoted by G. A process graph is usually named

by its initial state. We write s a−→ t rather than (s, a, t) ∈ →, s
l� t rather than

(s, l, t) ∈�, and s
π��� t rather than (s, π, t) ∈ ��� (or s ��� t if the value of π

is irrelevant in the context). We write s a−→ to denote that there exists an action
transition s a−→ s′ for some s′ ∈ S, where by S we denote SA ∪ Sp ∪ Sτ . Given a
process s and an action a ∈ A, by sa we denote the process (if exists) for which
s
a−→ sa.
For a finite index set I, by s a−→ {si}i∈I (resp. s

π��� {si}i∈I , s
τ
� {si}i∈I) we

denote that there exist transitions {s a−→ si}i∈I (resp. {s π��� si}i∈I , {s
τ
� si}i∈I)

and s has no other outgoing transitions.
We define the parametric operators ⊕, , � 3 on process graphs.

Definition 2. Let I be a finite index set and {si}i∈I be a set of process graphs.
For {πi}i∈I ⊂ (0, 1] such that i∈I πi = 1, {τi}i∈I ⊂ L and {ai}i∈I ⊆ A, the
parametric operators ⊕, , � on process graphs are defined as follows: ⊕i∈Iπisi
(resp. �i∈I aisi, i∈Iτisi ) is constructed by creating a new state s, a set of
disjoint copies {s′i}i∈I of the process graphs {si}i∈I , and transitions {s π��� s′i}i∈I
(resp. {s a−→ s′i}i∈I , {s

τ
� s′i}i∈I ). The constant δ denotes a process that has

only one state, δ ∈ SA, and no transitions.

Given a process graph P = (SA, Sp, Sτ ,→,�, ���, r), let I : SA �→ 2A be a
function such that, for all a ∈ A, s ∈ SA, it holds a ∈ I(s) iff s

a−→. I(s) is called
the menu of s. Intuitively, for s ∈ SA, I(s) is the set of actions that process s
can perform initially.

A finite process graph is a process graph in which only finite paths exist. A
divergence-free process graph is a process graph without infinite sequences of
probabilistic or internal transitions. To simplify the presentation, throughout
the paper we assume that processes are divergence-free.

4 Testing Preorder

In this section we define a testing preorder relation in the style of [7] for the
model introduced in Sec. 3. We first define the notion of unfolding a process and
3 These operators are not to be confused with the CSP operators; however, we choose

them so that they have the same intuitive meaning.



Retaining the Probabilities in Probabilistic Testing Theory 85

the notion of resolving internal nondeterminism in a process. They are needed
in Sec. 4.2, where we define the testing preorder.

4.1 Resolving Internal Nondeterminism

The internal nondeterminism in a process is resolved by appropriately assigning
probability distributions to the internal choices, i.e. assigning probabilities to
the labels of the internal transitions. We first define a function that unfolds a
process to a certain depth and relabels the internal transitions. Then we define
how the probabilities are assigned.

Let E denote the set of equations of type i∈I xi = 1 such that I is a finite
index set and {xi}i∈I ⊂ L. For a given set of non-negative numbers I, by max I
we denote the maximum of the numbers in I, if I 	= ∅, or 0, if I = ∅. We slightly
abuse the notation ⊕ and by ⊕i∈Iπi(si, Ci) we denote the pair (⊕i∈Iπisi,∪i∈ICi),
for a given finite index set I, a set of process graphs {si}i∈I , and a set {Ci}i∈I
such that Ci ⊂ E for i ∈ I. Similarly for � and .

We next define the unfolding recursive function. The unfolding “depth” equals
the maximal length of a sequence of observable actions that the unfolded process
could perform.

Definition 3. The partial function U: G × 2E × N �→ G × 2E, called unfolding,
is defined as 4

U(s, C,m) =

⊕i∈I πiU(si, C,m), if m > 0, s
π��� {si}i∈I

i∈Iτn+1
i U(si, C ∪ { i∈I τ

n+1
i = 1},m), if m > 0, s

τ
� {si}i∈I ,

n = max{k| i∈I τ
k
i = 1 ∈ C}

�i∈I aiU(si, C,m− 1), if m > 0, s a−→ {si}i∈I
(δ, C) otherwise

where the labels {τn+1
i } are fresh labels.

By unfolding of a process graph a finite tree is obtained. The labels of the internal
transitions in the obtained tree are fresh with respect to the labels in the original
process graph. Every time a state with outgoing internal transitions labeled with
the set {τi}i∈I is to be unfolded, a fresh label set {τn+1

i }i∈I is used for labeling
this particular internal choice in the tree. This label set, in fact, contains implicit
information , n, about the number of times a state in the original graph with
the same label set {τi}i∈I has been unfolded up to that moment. The set of
equations obtained by unfolding are used later for assigning probabilities to the
labels.

Intuitively, if in the original process graph one internal choice happens in the
future of another, although they have the same labels, they are different from
4 In the definition of the function, the index n in τn

i is not to be confused with nth

power of τi; we would denote the latter with (τi)n.



86 S. Georgievska and S. Andova

zτ5
�������

�� τ6�� ���
��

◦
a
���

d
���

��
◦

a
���

d
���

��

◦
b ��

d
���

��
◦

a ��
◦

c ��
d
���

��
◦

a��◦
d ��
◦

b ��
◦

b ��
◦

d ��
◦

c��
◦

c��◦ ◦ ◦ ◦ ◦ ◦

≈ v
a

�����
�� d

�����
��

◦
τ1 ���

τ2�� ���
��

◦
a ��◦

b ��
d
���

��
◦

c ��
d
���

��
◦

τ1 ��� τ2����◦
d ��
◦

b ��
◦

d ��
◦

c ��
◦

b ��
◦

c��◦ ◦ ◦ ◦ ◦ ◦

� w
a

�����
�� d

�����
��

◦
τ1 ���

τ2�� ���
��

◦
a ��◦

b ��
d
���

��
◦

c ��
d
���

��
◦

τ3 ��� τ4����◦
d ��
◦

b ��
◦

d ��
◦

c ��
◦

b ��
◦

c��◦ ◦ ◦ ◦ ◦ ◦
Fig. 3. Relations between several processes; processes z and v are obtained by inter-
leaving τ5(ab) � τ6(ac), resp. a(τ1b � τ2c), with action d

each other. Therefore, they are given different labels in the unfolded tree. On
the contrary, if choices with the same set of labels are placed “in parallel”, as
those in process v in Fig. 3, then they represent the same choice. Namely, since
v in Fig. 3 is the parallel composition of process q = a(τ1b  τ2c) and action d,
and process q does not synchronize on action d, the internal choice of q cannot
be influenced by action d. Consequently, both internal choices that appear in
the graph of process v must be resolved in the same manner.

Given a tree that results from unfolding a process, we define how probabilities
are assigned to the labels of the internal transitions.

Definition 4. Let s be a process graph, m ≥ 0, U(s, ∅,m) = (s̄, C), and L/C
be the set of all variables that appear in C. Let λ : L/C �→ [0, 1] be a function
assigning values to the variables in L/C respecting the constraints C. We call
λ a resolution of C. Given λ, let sm be the process graph obtained when every

transition si
τ
� s′i that belongs to the process graph s̄ is replaced by si

λ(τ )
��� s′i, if

λ(τki ) 	= 0, or erased if λ(τki ) = 0. We call sm a m-resolution of process s.

Intuitively, sm is the process that results when the internal choices in s̄ have
been replaced by probabilistic choices with labels given by λ.

4.2 Definition of the Testing Preorder

A test T , as usual, is a finite process graph given as a tree, such that, for a
symbol ω 	∈ A, there may exist transitions s ω−→ for some states s of T , denoting
success. Additionally, we assume that no two labels of the internal transitions of
the test are the same (we justify this assumption below). By T we denote the
set of all tests. Given a test T , by length(T ) we denote the maximal length of a
sequence of observable actions which T can perform before performing ω.

In the previous subsection we defined how the internal nondeterminism of a
process is resolved. However, two other types of nondeterminism arise when a
process is being tested: first, the nondeterminism with respect to the action on
which the process and the test synchronize, if there are more than one candidate-
actions for synchronization at the moment (synchronization nondeterminism),
and, second, the internal nondeterminism of the test.



Retaining the Probabilities in Probabilistic Testing Theory 87

Regarding the synchronization nondeterminism, note that the resolution must
not depend on the internal transitions of the processes; otherwise the problem
with overestimated probabilities, as discussed in the example on the gambling
machine in Sec. 1, would remain. Second, we must not underestimate the power
of the entity that resolves the synchronization nondeterminism, which can be
even more hazardous 5. For example, consider again the machine s, the user
u, and their synchronization s‖u in Fig. 1, described in Sec. 1. 6 Obviously, in
order to keep the probability of 1

2 with which s passes test u, we need to “remem-
ber” that both internal choices in s‖u are resolved in the same way. Therefore,
if the process and the test do not have a history of synchronization, the way
the synchronization nondeterminism is resolved should depend on the set of
candidate-actions for synchronization and on nothing else. On the other hand,
as the process and the test proceed interacting, the entity that resolves the syn-
chronization nondeterminism may actually “remember” its history of resolution.
Therefore, we also take into account this history in the resolution of the current
synchronization nondeterminism – otherwise, we would risk underestimation of
the probabilities with which the process passes the test.

Concerning the test, we assume that all labels of internal transitions that it
contains are distinct. That is, we restrict to the subset of tests that are most
powerful and have “full control” over their nondeterminism. In fact, if two pro-
cesses are not distinguished by this subset of tests, then they should not be
distinguished by the rest of the (less powerful) tests either. Now, to avoid un-
derestimation of the probabilities, we must not exclude the possibility that the
test itself is the entity that resolves the synchronization nondeterminism (as
in the gambling machine). Therefore, the test can also take into account the
history of resolving the synchronization nondeterminism, when making deci-
sions on resolving its internal nondeterminism. For example, consider the test
a(τ1dω  τ2cω) � bcω and the process 1

2 (ad � b) ⊕ 1
2 (ac). When testing the

process, the test can choose transition τ1 if action a was performed out of the
options a and b, and the transition τ2 if a was the only option on the menu. In
this way, the chances to report success increase.

We now formalize the above discussions. By P we denote the set of all poly-
nomials with variable names in the labels set L. For a given finite index set I,
a set of polynomials {φi}i∈I ⊂ P, a set {Ci}i∈I with Ci ⊂ E for i ∈ I, and a
set {αi}i∈I of scalars or variables in L, by i∈I αi(φi, Ci) we denote the pair
( i∈I αiφi,∪i∈ICi).

Let G�� ⊂ G be the set of all process graphs that contain no internal transi-
tions. We next define recursively the function for computing the result of testing
a process in G�� ⊂ G with a test.

5 With overestimated probabilities we might fail to verify a correct protocol [3, 12],
but with underestimated probabilities we might claim a protocol to be correct, even
if it is not.

6 Here actually the user itself resolves the synchronization nondeterminism, but in
general this is not the case.



88 S. Georgievska and S. Andova

Definition 5. The partial function R : G�� ×T ×L× 2E �→ P× 2E is defined as

R(s, T, l, C) =

(1, C), if T ω−→
i∈I πi · R(si, T, l, C), if s

π��� {si}i∈I , T 	 ω−→
i∈I πi · R(s, Ti, l, C), if T

π��� {Ti}i∈I , s 	���

i∈I τ
l
i · R(s, Ti, l, C ∪ { i∈I τ

l
i = 1}), if T

τ
� {Ti}i∈I , s 	���

a∈K τ
l
(a,K)R(sa, Ta, τ l(a,K), C ∪ { a∈K τ

l
(a,K)=1}), for K = I(s)∩I(T ) 	= ∅

(0, C) otherwise.
where the labels {τ li} and {τ l(a,K)} are fresh labels.

Definition 6. Let ε be a special label that cannot appear in any process or test,
s ∈ G�� and T be a test. Let R(s, T, ε, ∅) = (φ, C) and L/φ be the set of all
variables that appear in φ. Let λ : L/φ �→ [0, 1] be a function assigning values to
the variables in L/φ respecting the constraints C. We call λ a resolution of s|T .
The value of the polynomial φ for the values of its variables given by λ is denoted
by Pr(s, T, λ).

Intuitively, for a process s without internal transitions, Pr(s, T, λ) is the proba-
bility with which s passes test T , given that the synchronization nondeterminism
and the internal nondeterminism of the test are resolved by λ.

We now define the testing preorder relation. Intuitively, a process s implements
a process t iff for every test T it holds that, for every resolution of the internal
nondeterminism in s, there exists a resolution of the internal nondeterminism in
t, such that the options for resolving the synchronization nondeterminism and
the internal nondeterminism in the test are the same for both processes when
tested with T , and, moreover, for every possible resolution of the synchronization
nondeterminism and the internal nondeterminism in the test, the probability
with which s passes T is equal to the probability with which t passes T .

Definition 7. Let s and t be two processes. s implements t, denoted by s �T t,
iff for every test T with length(T ) = m and for every m-resolution sm of s, there
exists an m-resolution tm of t, such that R(sm, T, ε, ∅) = R(tm, T, ε, ∅), and, given
an arbitrary resolution λ of sm|T , it holds that Pr(sm, T, λ) = Pr(tm, T, λ).

In general, process s implements process t iff s contains “less” internal nonde-
terminism than process t.

Definition 8. Processes s and t are testing-equivalent, denoted by s ≈T t, iff
s �T t and t �T s.

Examples. Consider processes s and s̄ and test u in Fig. 1. Neither of them has
internal nondeterminism. When test u is applied to s and s̄, the set of options
for resolving the synchronization nondeterminism is the same for both processes.
Moreover, for every resolution of the synchronization nondeterminism, the prob-
ability with which s and s̄ pass test u is 1

2 . Consider now process x and test y in



Retaining the Probabilities in Probabilistic Testing Theory 89

Fig. 2. Process x has no internal nondeterminism and there is no synchroniza-
tion nondeterminism. No matter how y resolves its internal nondeterminism, the
probability with which x passes y is 1

2 .

Remark 1. Note that Definitions 3 and 5 can be merged into one definition for
the process graph resulting from testing a process with a test. The process would
have only probabilistic, internal and ω-transitions and the labels of the internal
transitions would be created as the resulting tree is being created, according to
Def. 3 and Def. 5. We separated the definitions for clarity and because Def. 3 is
also needed in Sec. 5 and it simplifies the proof of Theorem 1.

5 Characterizing the Testing Preorder as a Probabilistic
Ready-Trace Preorder

In this section we characterize the testing preorder with a probabilistic ready-
trace preorder.

Definition 9 (Ready trace). A ready trace of length n is a sequence O =
(M1, a1,M2, a2, . . . ,Mn−1, an−1,Mn) where Mi ∈ 2A for all i ∈ {1, 2, . . . , n}
and ai ∈Mi for all i ∈ {1, 2, . . . , n− 1} .

We assume that the observer has the ability to observe the actions that the
process performs, together with the menus out of which actions are chosen.
Intuitively, a ready trace O = (M1, a1,M2, a2, . . . ,Mn−1, an−1,Mn) can be ob-
served if the initial menu is M1, then action a1 ∈M1 is performed, then the next
menu is M2, then action a2 ∈ M2 is performed and so on, until the observing
ends at a point when the menu is Mn.

Next, given a process s ∈ G��, i.e. without internal transitions, we define a
process s(M,a). Intuitively, s(M,a) is the process that s becomes, assuming that
menu M was offered to s and action a was performed. For example, for process
s in Fig. 1, s({h,t},h) = 1

2p⊕ 1
2δ.

Suppose s
π1��� s1

π2��� s2 . . .
π��� sn and sn ∈ SA. Denote the product

π1π2 · · ·πn by π. We write s π⇒ sn rather than s
π1��� s1

π2��� s2 . . .
π��� sn.

Definition 10. Let s ∈ G��. Let M ⊆ A, a ∈ M be such that I(s) = M if
s ∈ SA, or otherwise there exists a transition s ⇒ s′ such that I(s′) = M . The
process graph s(M,a) is obtained from s in the following way:

– if s a−→ sa then s(M,a) = sa;
– if s ��� then s(M,a) ≡ ⊕i∈I ππ s′i, where {s′i}i∈I are all process graphs s.t. for
i ∈ I there exists a sequence of transitions s π⇒ si

a−→ s′i s.t. I(si) = M , and
π =

s⇒s ,I(s )=M
πi.

Definition 11. Let (M1, a1,M2, a2, . . . ,Mn−1, an−1,Mn) be a ready trace of
length n and s ∈ G��. Functions P 1

s (M) and Pns (Mn|M1, a1, . . .Mn−1, an−1)
(for n > 1) are defined in the following way:



90 S. Georgievska and S. Andova

P 1
s (M) =

s���s′ π · P 1
s′(M) if s ∈ Sp,

1 if s ∈ SA, I(s) = M,

0 otherwise.

P 2
s (M2|M1, a1) =

P 1
s( 1 1)

(M2) if P 1
s (M1) > 0,

undefined otherwise.

Pns (Mn|M1, a1, . . . , an−1) =
Pn−1
s( 1 1)

(Mn|M2, a2, . . . , an−1) if P 1
s (M1) > 0,

undefined otherwise.

Let the sample space consist of all possible menus and let s ∈ G��. Function
P 1
s (M) can be interpreted as the probability that menu M is observed when pro-

cess s starts executing. Let the sample space consist of all ready traces of length
n. Function Pns (Mn|M1, a1, . . .Mn−1, an−1) can be interpreted as the probabil-
ity of the event {(M1, a1, . . . ,Mn−1, an−1,Mn)}, given the event {(M1, a1, . . .
Mn−1, an−1, X) : X ∈ 2A}, when observing ready traces of process s. These
probabilities are well defined, i.e. they satisfy axioms A1-A3 of Sec. 2.

Definition 12. Let s and t be two processes. We say s implements t w.r.t.
ready traces (notation s �O t) iff for every n ≥ 0 and every n-resolution s̄ of s,
there exists a n-resolution t̄ of t such that for all k ≤ n and for all ready traces
(M1, a1, . . .Mk),

– P 1
s̄ (M1) = P 1

t̄ (M1) and
– if k > 1, then P ks̄ (Mk|M1, a1, . . .Mk−1, ak−1) is defined if and only if
P kt̄ (Mk|M1, a1, . . .Mk−1, ak−1) is defined, and, in case they are both defined,
they are equal.

Informally, a process s implements a process t iff, for every n-resolution s̄
of the nondeterminism in s, there is an n-resolution t̄ of the nondetermin-
ism in t such that for every ready trace (M1, a1,M2, a2, . . .Mk) of length
k ≤ n, the probability to observe Mk, under the condition that the sequence
(M1, a1,M2, a2, . . .Mk−1, ak−1) was previously observed, is defined at the same
time for both s̄ and t̄, and, moreover, in case both probabilities are defined, they
coincide.

Definition 13. Let s and t be two processes. s and t are ready-trace-equivalent,
denoted by s ≈O t, iff s �O t and t �O s.

Examples. Processes s and s̄ in Fig.1 are ready-trace equivalent. Processes z
and v in Fig. 3 are ready-trace equivalent and they both implement process w
in the same figure. Processes z and v can be actually seen as an interleaving of
processes τ5ab  τ6ac, resp. a(τ1b  τ2c), none of which can recognize action d,
with action d, while process w has “full control” over its nondeterminism. Fig.
4 also represents relations between several processes.

Theorem 1. Let s and t be two processes. s �O t if and only if s �T t.
Proof. See [10].



Retaining the Probabilities in Probabilistic Testing Theory 91

◦
1
3

���
�
� 2

3

���
�

�

◦

a
��

◦
b

�� � ◦
τ1

������
��
�

τ2
�� ���

��
��

◦

a
��

◦
b

�� ≈ ◦
τ1 ���

τ2�� ���
��

◦
a

��

◦
b

��◦
τ3

�� ��
τ3

�� ��

◦
τ4

����
τ4

����

� ◦
τ1 ���

τ2�� ���
��

◦
a

��

◦
b

��◦
τ3

�� ��
τ5

�� ��

◦
τ4

����
τ6

����

Fig. 4. Relations between several recursive processes

6 Related Work

Testing preorders in the style of [7] for systems exhibiting external, internal
and internal probabilistic choices were first introduced in [24], where centralized
(monolithic) schedulers, as discussed in Sec. 1, were used. These preorders were
later extensively studied and characterized as simulations [8, 9, 15, 21, 23]. Mo-
tivated to allow distribution of prefix over internal (probabilistic) choice, as in
[7, 13, 14], proposals for testing semantics were given in [19] and [2]. In these
approaches all probabilistic choices in a process are resolved at the beginning of
the execution. Thus, internal choices are “pushed” downwards and replicated,
having as a side-effect loss of the probability information and loss of idempotence
of internal choice.

The phenomenon of overestimated probabilities that results from system anal-
ysis using centralized schedulers was first observed in [17] and also pointed at
in [19, 22]; however, it started being treated relatively recently.

The first paper to introduce distributed schedulers for concurrent systems to
overcome the problem with the super-powerful centralized schedulers, discussed
in Sec. 1, is [6], for a setting and parallel composition that is rather different
than ours. The motivation is to allow compositionality for the trace distributions
inclusion (see e.g. [22]). Reference [5] also treats the compositionality problem
for trace distributions inclusion for reactive-generative probabilistic systems, by
exploiting distributed schedulers.

The first paper to introduce the finer reasoning of testing semantics [7] under
restricted schedulers is [3]. It introduces an explicit scheduler, which communi-
cates with the process via labels: two nodes in the process are indistinguishable
to a scheduler if they have the same labels. For example, the probabilities with
which process s (Fig. 1) passes test u, and whether processes s and s̄ can be
equated, depend on the labeling system.

Unlike the previous approaches for solving the problem with overestimated
probabilities in concurrent processes, the “schedulers” that we define do not use
information about the states of the processes. We believe that this is essential
if the equivalence relation is based on the notion of observability or testing. On
the other hand, taking into consideration all possible resolutions of internal non-
determinism seems to be unavoidable when defining preorder relations between
probabilistic-nondeterministic systems. For example, even in statistical black-box
testing (see [4]), one needs to consider all possible schedulers in order to come
up with a reasonable notion of trace distribution inclusion.



92 S. Georgievska and S. Andova

7 Conclusion

We defined a testing preorder relation in the style of [7] for processes exhibiting
internal, external, and probabilistic internal nondeterminism. The goal of the
testing semantics was to preserve the probability information in a parallel con-
text and to produce realistic estimates of the probabilities with which a process
passes a given test, based on the information that both entities exchange. To
our knowledge, this is the first testing semantics of its kind that tackles this
problem. We also showed that the testing preorder relation can be character-
ized with a probabilistic ready-trace preorder, which is easier to grasp from an
observer’s point of view. From this characterization it easily follows that the
equivalence relation is insensitive to the exact moment of occurrence of internal
and probabilistic choices.

In the future we plan to extend our work to divergent and infinitely-branching
processes, to consider recursive tests and to study the preorder relation defined
here in a process algebraic setting. It would be also interesting to apply the
testing preorder for verification purposes.

Acknoledgements. We are grateful to the anonymous reviewers for FoSSaCS’10,
whose detailed comments improved the final version of this paper.

References

1. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. Journal of ACM 31(3), 560–599 (1984)

2. Cazorla, D., Cuartero, F., Valero, V., Pelayo, F.L., Pardo, J.J.: Algebraic theory
of probabilistic and nondeterministic processes. Journal of Logic and Algebraic
Programming 55(1-2), 57–103 (2003)

3. Chatzikokolakis, K., Palamidessi, C.: Making random choices invisible to the sched-
uler. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp.
42–58. Springer, Heidelberg (2007)

4. Cheug, L., Stoelinga, M.I.A., Vaandrager, F.W.: A testing scenario for probabilistic
processes. Journal of ACM 54(6), 29:1–29:45 (2007)

5. Cheung, L., Lynch, N., Segala, R., Vaandrager, F.: Switched PIOA: Parallel compo-
sition via distributed scheduling. Theoret. Comp. Science 365(1-2), 83–108 (2006)

6. de Alfaro, L., Henzinger, T., Jhala, R.: Compositional methods for probabilistic
systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp.
351–365. Springer, Heidelberg (2001)

7. De Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. Theoret.
Comp. Science 34, 83–133 (1984)

8. Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C.: Testing finitary probabilis-
tic processes (extended abstract). In: Bravetti, M., Zavattaro, G. (eds.) CONCUR
2009 - Concurrency Theory. LNCS, vol. 5710, pp. 274–288. Springer, Heidelberg
(2009)

9. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.: Characterising test-
ing preorders for finite probabilistic processes. Logical Methods in Computer Sci-
ence 4(4:4), 1–33 (2008)



Retaining the Probabilities in Probabilistic Testing Theory 93

10. Georgievska, S., Andova, S.: Retaining the probabilities in probabilistic testing
theory. Technical Report (to appear, 2010),
http://www.win.tue.nl/~sgeorgie/general_testing.pdf

11. Giro, S., D’Argenio, P.: On the expressive power of schedulers in distributed prob-
abilistic systems. In: Proc. QAPL 2009. ENTCS (2009) (to appear)

12. Giro, S., D’Argenio, P., Ferrer Fioriti, L.M.: Partial order reduction for probabilistic
systems: A revision for distributed schedulers. In: Bravetti, M., Zavattaro, G. (eds.)
CONCUR 2009 - Concurrency Theory. LNCS, vol. 5710, pp. 338–353. Springer,
Heidelberg (2009)

13. Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)
14. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood

Cliffs (1985)
15. Jonsson, B., Wang, Y.: Testing preorders for probabilistic processes can be char-

acterized by simulations. Theoret. Comp. Science 282(1), 33–51 (2002)
16. Lindley, D.V.: Introduction to Probability and Statistics from a Bayesian View-

point. Cambridge University Press, Cambridge (1980)
17. Lowe, G.: Representing nondeterministic and probabilistic behaviour in reactive

processes. Technical Report PRG-TR-11-93, Oxford Univ. Comp. Labs (1993)
18. Lynch, N., Segala, R., Vaandrager, F.: Observing branching structure through

probabilistic contexts. SIAM Journal on Computing 37(4), 977–1013 (2007)
19. Morgan, C., McIver, A., Seidel, K., Sanders, J.W.: Refinement-oriented probability

for CSP. Formal Aspects of Computing 8(6), 617–647 (1996)
20. De Nicola, R.: Extensional equivalences for transition systems. Acta Informat-

ica 24(2), 211–237 (1987)
21. Palmeri, M.C., De Nicola, R., Massink, M.: Basic observables for probabilistic

testing. In: Proc. QEST 2007, pp. 189–200. IEEE Computer Society, Los Alamitos
(2007)

22. Segala, R.: Modeling and verification of randomized distributed real-time systems.
PhD thesis. MIT (1995)

23. Segala, R.: Testing probabilistic automata. In: Sassone, V., Montanari, U. (eds.)
CONCUR 1996. LNCS, vol. 1119, pp. 299–314. Springer, Heidelberg (1996)

24. Wang, Y., Larsen, K.G.: Testing probabilistic and nondeterministic processes. In:
Proceedings of the IFIP TC6/WG6.1 Twelth International Symposium on Protocol
Specification, Testing and Verification XII, pp. 47–61 (1992)

http://www.win.tue.nl/~sgeorgie/general_testing.pdf


Forward Analysis of Depth-Bounded Processes

Thomas Wies, Damien Zufferey, and Thomas A. Henzinger

IST Austria (Institute of Science and Technology Austria)

Abstract. Depth-bounded processes form the most expressive known fragment
of the π-calculus for which interesting verification problems are still decidable.
In this paper we develop an adequate domain of limits for the well-structured
transition systems that are induced by depth-bounded processes. An immediate
consequence of our result is that there exists a forward algorithm that decides
the covering problem for this class. Unlike backward algorithms, the forward al-
gorithm terminates even if the depth of the process is not known a priori. More
importantly, our result suggests a whole spectrum of forward algorithms that en-
able the effective verification of a large class of mobile systems.

1 Introduction

We are interested in the verification of π-calculus processes [21, 22], i.e., message pass-
ing systems that admit unbounded creation of processes and name mobility. We can
think of a configuration of such a system as a graph [14, 20]. The vertices of the graph
are the processes labelled by their current local state. Edges between processes indi-
cate whether the respective processes share a channel, i.e., whether they are able to
communicate with each other.

The most expressive known fragment of the π-calculus for which interesting verifi-
cation problems are still decidable is the class of depth-bounded processes [18]. Intu-
itively, in a depth-bounded process there is a bound on the length of all simple paths in
all reachable configuration graphs (the graphs may contain cycles). A typical example
of a depth-bounded process is a server-client architecture where a server answers re-
quests of clients and where each client only knows the name of the server but not the
names of other clients. Both the number of simultaneously active clients as well as the
number of pending requests for the server can be unbounded.

In this paper we are concerned with the covering problem for depth-bounded pro-
cesses. Intuitively, the covering problem asks whether a system can reach a configura-
tion that contains some process that is in a local error state. A decision procedure for
the covering problem therefore enables the automated verification of an interesting class
of safety properties. Meyer showed in [18] that depth-bounded processes admit well-
structured transition systems (WSTS) [1, 9, 12]. This implies that the covering problem
for depth-bounded processes of known depth can be decided using a standard backward
algorithm for WSTSs. The question whether the covering problem is decidable for the
entire class of depth-bounded processes was open.

We present the first forward algorithm for this problem. Unlike backward algorithms,
our algorithm terminates even if the bound of the system is not known a priori. We thus
show that the covering problem is decidable for the entire class. Our algorithm is an

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 94–108, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Forward Analysis of Depth-Bounded Processes 95

instance of the expand, enlarge, and check algorithm schema for WSTSs that exhibit
a so-called adequate domain of limits (ADL) [10, 13]. An adequate domain of lim-
its for the well-quasi-ordering of a WSTS provides an effective representation of all
downward-closed sets of configurations, i.e., ADLs are the key for ensuring termina-
tion of forward analyses of WSTSs. Our main technical contribution is the development
of an adequate domain of limits for depth-bounded processes. For this purpose we show
that downward-closed sets of configurations in depth-bounded processes are character-
ized by finite unions of regular languages of unranked trees.

Besides our theoretical interest in forward analysis of π-calculus processes there are
also practical considerations that make forward algorithms more appealing than their
backward counterparts. A backward analysis needs to consider all possible unifications
between names that may enable processes to synchronize. A forward analysis instead
knows which names are equal and which are not. In practice, the search space of a
forward analysis is therefore often significantly smaller than the search space of a back-
ward analysis. We give an example that demonstrates this phenomenon in Section 3.
While the forward algorithm that we consider in this paper is mainly of theoretical in-
terest, our adequate domain of limits suggests a whole spectrum of forward algorithms
that enable the effective verification of a large class of mobile systems. This spectrum
ranges from acceleration-based algorithms in the style of Karp-Miller [8, 11, 15] to
approximation algorithms based on abstract interpretation [6].

Further related work. Depth-bounded processes are semantically defined in terms of
reachable configurations. While checking depth-boundedness is in general undecidable,
many fragments of the π-calculus that are defined syntactically [2, 7] or in terms of type
systems [4, 25, 26] are subsumed by depth-bounded processes. Our result carries over
to these fragments. Further related work can be found in the context of graph rewriting
systems. Bauer and Wilhelm [3] developed an overapproximating shape analysis for
graph rewriting systems whose reachable configurations have a star-like shape. Such
systems are bounded in the length of the acyclic paths. Our result naturally generalizes
to such systems and promises complete algorithms for their verification.

2 Preliminaries

We first fix the syntax and semantics of our version of the π-calculus and briefly re-
call depth-bounded processes, well-quasi-orderings, better-quasi-orderings, and well-
structured transition systems.

2.1 The π-Calculus and Depth-Bounded Processes

We consider systems of recursive equations in the polyadic π-calculus that have a spe-
cific normal form inspired by Amadio and Meyssonnier [2].

Assume a countable infinite set of names with typical elements x, y and a countable
infinite set of process identifiers with typical elementsA,B. We assume that each name
and identifier has an associated arity in N. We denote by x a (possibly empty) vector
over names and denote by [x/y] a substitution on names.

Process terms P are recursively composed of the unit process 0, parameterized pro-
cess identifiers A(x), and the standard operations of parallel composition P1 | P2,



96 T. Wies, D. Zufferey, and T.A. Henzinger

external choice π1.P1 +π2.P2, and name restriction (νx)P . Hereby, a prefix π is either
an input prefix of the form x(y) or an output prefix of the form x(y). All parameter vec-
tors occuring in process terms must respect the arities of names and identifiers. We call
the terms of the formA(x) threads. We write Π in order to denote indexed parallel com-
position and Σ for indexed external choice. We further write (νx) for (νx1) . . . (νxn)
where x = x1, . . . , xn. An occurrence of a name x in a process term P is called free
if it is not below a (νx) or an input prefix y(x). We denote by fn(P ) the set of all free
occurring names in P . We say that P is closed if fn(P ) = ∅. We denote by P ≡ Q the
usual structural congruence relation on process terms, i.e., P is syntactically equal to
Q up to renaming and reordering of restricted names, scope extrusion, elimination of
units, and associativity and commutativity of parallel composition and external choice.

A configuration is a closed process term of the following form

(νx)(Π
i∈I

Ai(xi))

A process P is a pair (I, E) where I is an initial configuration and E is a finite set
of parametric equations A(x) = P such that (1) every process identifier in P and I is
defined by exactly one equation in E and (2) fn(P ) ⊆ {x}. We assume that all equations
in E have the following normal form:

A(x) = Σ
i∈I

πi.(νxi)( Π
j∈J

Aj(xj))

Operational semantics. Given a process P = (I, E), we define a transition relation→E
on configurations that captures the usual π-calculus reduction rules as follows. Let P
and Q be configurations then we have P →E Q if and only if the following conditions
hold:

1. P ≡ (νu)(A(v) | B(w) | P ′),
2. the defining equation of A in E is of the form A(x) = x(x′).(νx′′)(M) +M ′,
3. the defining equation of B in E is of the form B(y) = y(y′).(νy′′)(N) +N ′,
4. σ = [v/x,w/x′, zA/x′′,w/y, zB/y′′] where z = zA, zB are fresh names,
5. σ(x) = σ(y),
6. Q ≡ (νu, z)(σ(M) | σ(N) | P ′).

We denote by →∗E the reflexive transitive closure of the relation →E . We say that a
configuration P is reachable in process P if and only if I →∗E P . Finally, we denote by
Reach(P) the set of all reachable configurations of process P .

Depth-Bounded Processes. We now recall the definition of the class of depth-bounded
processes [18]. The nesting of restrictions nestν of a process term is measured recur-
sively as follows nestν(0) = nestν(A(x)) = nestν(P1 + P2) = 0, nestν((νx)P ) =
1 + nestν(P ), and nestν(P1 | P2) = max {nestν(P1),nestν(P2)}. The depth of a
process term P is the minimal nesting of restrictions of process terms in the congru-
ence class of P :

depth(P ) = min {nestν(Q) | Q ≡ P } .



Forward Analysis of Depth-Bounded Processes 97

Definition 1 (Depth-Boundedness). A set of configurationsC is called depth-bounded
if there is kD ∈ N such that depth(P ) ≤ kD for all P ∈ C. A process P is called depth-
bounded if its set of reachable configurations Reach(P) is depth-bounded.

Example 2. The following equations describe a simple client-server system where a
server can spawn clients and answer their requests. The server is given by process iden-
tifier Server(x, y). The channel x is used for communication with clients. The channel
y is used to trigger creation of new clients.

Server(x, y) = (x(z).Answer(z) | Server(x, y))
+ (y().(νu)(Client(u, x) | Answer(u) | New(y) | Server (x, y)))

Client(u, x) = u().(Client(u, x) | Request(x, u))
Answer(u) = u().0 New(y) = y().0 Request(x, u) = x(u).0

If the initial configuration is given by (νx, y)(New (y) | Server (x, y)) then the depth
of all reachable configurations is bounded by 2.

2.2 WQOs, BQOs, and WSTSs

We briefly recall the relevant theory of well-quasi-orderings, better-quasi-orderings [23],
and well-structured transition systems [1, 9, 12].

Well-quasi-ordering. A pair (X,≤) of a set X and a binary relation ≤ on X is called
well-quasi-ordered set (wqo) if and only if (1) ≤ is a quasi-ordering (i.e., reflexive and
transitive) and (2) any infinite sequence x0, x1, x2, . . . of elements from X contains
an increasing pair xi ≤ xj with i < j. A nonempty set Y ⊆ X is called directed if
for any x, y ∈ Y there exists z ∈ Y with x, y ≤ z. A set Y ⊆ X is called upward-
closed if for any pair x, y such that x ∈ Y and y ≥ x implies y ∈ Y . Similarly, Y
is called downward-closed if for any pair x, y such that x ∈ Y and y ≤ x implies
y ∈ Y . The upward-closure of Y ⊆ X is defined as ↑ Y = {x | ∃y ∈ Y. x ≥ y }.
Correspondingly, we denote by ↓ Y the downward-closure of Y . We extend the ordering
≤ to an ordering ≤ on subsets of X as expected: for Y1, Y2 ⊆ X , we have Y1 ≤ Y2 iff
for all y1 ∈ Y1 there exists y2 ∈ Y2 if y1 ≤ y2. For Y ⊆ X we call Y ′ ⊆ X large in
Y iff Y ≤ Y ′. Conversely, we call Y ′ small in Y if Y ′ ≤ Y . A subset Y ⊆ X of X is
called irreducible if for any Y1, Y2 ⊆ X , Y ≤ Y1 ∪ Y2 implies Y ≤ Y1 or Y ≤ Y2.

Better-quasi-orderings. Let ≤ be a quasi-ordering on a set X then define the quasi-
ordering ≤1 on subsets of X as follows: for Y1, Y2 ⊆ X , we have Y1 ≤1 Y2 iff there
exists an injection φ : Y1 → Y2 such that for all y1 ∈ Y1, y1 ≤ φ(y1). We are inter-
ested in wqo sets (X,≤) whose powerset is again a wqo with respect to ≤1. For this
purpose we consider Nash-William’s better-quasi-orderings [23]. Better-quasi-ordered
(bqo) sets are particular well-behaved wqo sets. Unlike general well-quasi-orderings,
bqo sets are closed under the powerset construction. The formal definition of better-
quasi-orderings is rather technical and not required for understanding this paper. We
therefore refer to [23] for the actual definition. We only state the properties of bqo sets
that we will use in our proofs.



98 T. Wies, D. Zufferey, and T.A. Henzinger

Proposition 3. Let (X,≤) be a bqo then

1. (X,≤) is a wqo,
2. (2X ,≤1) is a bqo,
3. every Y ⊆ X is a bqo with respect to the restriction of ≤ to Y .

Properties 1 and 2 are proved in [23]. Property 3 immediately follows from the defini-
tion of bqo sets.

Well-structured transition system. A well-structured transition systems (WSTS) is a
transition system T = (S, s0,→,≤) where S is a set of configurations, s0 ∈ S an initial
configuration,→⊆ S × S a transition relation, and ≤ ⊆ S × S a relation satisfying the
following two conditions: (well-quasi-ordering) ≤ is a well-quasi-ordering on S; and
(compatibility) ≤ is upward compatible with respect to →, i.e., for all s1, s2, t1 such
that s1 ≤ t1 and s1 → s2, there exists t2 such that t1 →∗ t2 and s2 ≤ t2.

Definition 4 (Covering Problem). Given a WSTS (S, s0,→,≤) and a configuration
t ∈ S, the covering problem asks whether there exists a configuration t′ ∈ S such that
s0 →∗ t′ and t ≤ t′.

3 The Covering Problem for Depth-Bounded Processes

We define the following natural quasi-ordering ≤ on configurations of processes: let
P ≡ (νx)P ′ andQ be configurations then P ≤ Q if and only if Q ≡ (νx)(P ′ | R) for
some process term R. Meyer [18] proved that depth-bounded sets of configurations are
well-quasi-ordered by ≤. Thus, a depth-bounded process P = (I, E) induces a well-
structured transition systems (Reach(P), I,→E ,≤). We are interested in the covering
problem for these WSTSs.

Forward vs. backward algorithms. The standard algorithm for deciding the covering
problem for a WSTS is a backward algorithm that works as follows. Starting from
the configuration t that is to be covered one computes the set of backward-reachable
configurations of the upward closure of t and then checks whether this set contains
the initial configuration. The well-quasi-ordering ensures that the backward analysis
terminates.

In the WSTS (Reach(P), I,→E ,≤) that is induced by a depth-bounded process P
we implicitly restrict the transition relation→E to the forward-reachable configurations
Reach(P). The predecessor configurations with respect to this restricted transition re-
lation are not effectively computable, i.e., the backward algorithm is not applicable to
this WSTS. On the other hand, predecessor configurations for the unrestricted tran-
sition relation are effectively computable, but the induced set of backward-reachable
configurations is in general not depth-bounded (and thus not well-quasi-ordered by ≤).
A backward algorithm can only be effectively applied to the WSTS (C(k), I,→E ,≤).
Here C(k) is the set of all configurations of depth k and k is the maximal depth of con-
figurations in Reach(P), i.e., Reach(P) ⊆ C(k). Since k must be known in advance,
Meyer’s result only implies that the covering problem is decidable for depth-bounded



Forward Analysis of Depth-Bounded Processes 99

processes of known depth. We will show that there exists a forward algorithm that over-
comes this limitation.

Besides the theoretical deficiency of backward algorithms there is also a practical
reason why forward algorithms are more attractive. We explain this with an example.

Example 5. Consider the parameterized process P(n) for n ∈ N that is given by the
initial configuration I(n):

(νx, z, y, y1, . . . , yn)(Buffern(x, z, y1, . . . , yn) | Env(z, x, y))

and the equations E(n):

Buffer 0(x, z) = x(y).Buffer 1(x, z, y)
Buffer i(x, z, y1, . . . , yi) = x(y).Buffer i+1(x, z, y1, . . . , yi, y)

+ z(y1).Buffer i−1(x, z, y2, . . . , yi) for 0 < i < n

Buffern(x, z, y1, . . . , yn) = z(y1).Buffern−1(x, z, y2, . . . , yn)
Env(z, x, y) = x(y).(νu)(Env (z, x, u)) + z(u).Env(z, x, u)

The process P(n) models a finite FIFO buffer that stores data sent by the environment
in a queue of maximal length n. The queue is modeled using the parameter lists of the
process identifiers Buffer i.

Suppose we want to check that the configuration P ≡ (νx, z)(Buffer 0(x, z)) is
coverable in P(n). The number of representatives for the set of configurations that are
backward-reachable from the upward-closure of P grows exponential in n. The reason
is that in one of the continuations of the choices that define Buffer i(x, z, y1, . . . , yi)
the parameter y1 does not occur. A backward algorithm that computes the predecessors
for the execution of this choice has no knowledge about the name that the parameter y1
denotes. It has to guess whether it is a fresh name or whether it is equal to one of the
other names appearing in the continuation. On the other hand, a forward algorithm al-
ways knows which name the parameter y1 denotes. Therefore, the set of representatives
for the configurations that are forward reachable from I(n) grows only linear in n. It
is this phenomenon that makes forward algorithms more appealing for the analysis of
π-calculus processes.

4 An Adequate Domain of Limits

Most forward algorithms for solving the covering problem of WSTSs compute the
cover, i.e., the downward-closure of the forward-reachable configurations and then
check whether this set contains the configuration to be covered. In order to effectively
compute the cover, one needs to find a completion of the wqo set that contains all the
limits of downward-closed sets. The canonical example is the completion for the well-
quasi-ordering on markings of Petri nets. It is given by vectors over the set Nω of natural
numbers extended with the limit ordinal ω. This completion is the basis for the Karp-
Miller algorithm [15] that computes the covering tree of a Petri net. The notion of an
adequate domain of limits [10, 13] formalizes the completions of wqo sets.



100 T. Wies, D. Zufferey, and T.A. Henzinger

An adequate domain of limits (ADL) [13] for a well-quasi-ordered set (X,≤) is a
tuple (Y,, γ) where Y is a set disjoint from X ; (L1) the map γ : Y ∪ X → 2X

is such that γ(z) is downward-closed for all z ∈ X ∪ Y , and γ(x) =↓ {x} for all
x ∈ X ; (L2) there is a limit point � ∈ Y such that γ(�) = X ; (L3) z  z′ if and
only if γ(z) ⊆ γ(z′); and (L4) for any downward-closed set D of X , there is a finite
subset E ⊆ Y ∪ X such that γ(E) = D, where γ is extended to sets as expected:
γ(E) = z∈E γ(z). A weak adequate domain of limits (WADL) [10] for (X,≤) is a
tuple (Y,, γ) satisfying (L1),(L3), and (L4). Note that any weak adequate domain of
limits can be extended to an adequate domain of limits.

4.1 Limit Configurations

We now describe a weak adequate domain of limits for depth-bounded configurations.
In order to finitely represent the limits of infinite downward-closed sets we need to be
able to express that certain subterms in a configuration can be replicated arbitrarily of-
ten. A natural solution to this problem is to extend configurations with the replication
operator ! that is used as a recursion primitive in alternative definitions of the π-calculus
[21, 22]. Instead of using replication to express recursion, we use it to effectively rep-
resent infinite sets of configurations.

A limit configuration E is constructed recursively from process identifiers A(x),
parallel compositionE1 | E2, name restriction (νx)E and replication !E. We extend the
congruence relation ≡ from configurations to limit configurations by adding the axiom
!E ≡ (E | !E). We carry over the definitions of the transition relations of processes
and the quasi-ordering ≤ from configurations to limit configurations by replacing the
congruence relation in the definitions with the extended congruence relation. We then
define the denotation γ(E) of a limit configurationE as its downward-closure restricted
to non-limit configurations:

γ(E) = {P | P configuration and P ≤ E }
The quasi-ordering  on limit configurations that is required for the adequate domain
of limits is defined by condition (L3).

Example 6. Consider again the client-server process presented in Example 2. The fol-
lowing limit configuration denotes the cover of this process:

(νx)((νy)(New (y) | Server(x, y))
| !(νz)(Client(z, x) | Answer(z))
| !(νz)(Client(z, x) | Request(x, z)))

We now state the main technical result of this paper. Given a finite set of process
identifiers PI , we denote by C(PI , k) the set of all configurations over PI that have
depth at most k. We further denote by L(PI , k) the set of all limit configurations over
PI whose elements denote sets of k-bounded configurations such that L(PI , k) itself
does not contain the configurations in C(PI , k).

Theorem 7. Let k ∈ N and let PI be a finite set of process identifiers. Then (L(PI , k),
, γ) is a weak adequate domain of limits for the well-quasi-ordered set (C(PI , k),≤).

In the remainder of this section we prove Theorem 7.



Forward Analysis of Depth-Bounded Processes 101

4.2 Tree Encoding of Depth-Bounded Configurations

We first relate depth-bounded configurations with graphs of bounded tree-depth, which
in turn can be encoded into trees of bounded height. The construction is similar to
the one used in [18]. However, we prove that the tree encodings of depth-bounded
configurations are not just well-quasi-ordered, but in fact better-quasi-ordered.

Communication topology. We use standard notation for (undirected) graphs. A labelled
graph over a finite set of labels L is a tuple (G, lv, le) whereG is a graph, lv : V (G)→
L is a vertex labelling function, and le : V (E)→ L is an edge labelling function.

Let P = (I, E) be a process. Let further n be the maximal arity of all vectors of
names occurring in I and E , and let A be the set of all process identifiers occurring
in I, E . Define the set of labels L

def= 2{0,...,n} ∪ A ∪ {•} where • is distinct from all
process identifiers. Let P be a configuration of process P of the form

(νx)(Πj∈JAj(xj))

where x = x1, . . . , xm, and the index sets {1..m}, and J are disjoint. The function ct
maps P to a labelled graph overL as follows: the graph consists of vertices correspond-
ing to threads and names occurring in the configuration. Each thread vertex is labelled
by the process identifier of the corresponding thread in the configuration. There are
edges between thread vertices and name vertices indicating that one of the names in the
parameter vector of the thread is the name associated with that name vertex. Formally,
ct(P ) is a graph ((V,E), lv, le) where

– V is a union of disjoint sets of vertices {vj}j∈J and {v1, . . . , vm},
– E = { {vj , vi} | j ∈ J ∧ 1 ≤ i ≤ m ∧ xj = xi for some 1 ≤ r ≤ n },
– lv(vk) =

Ak if k ∈ J
• otherwise,

– le({vj , vi}) = { r | j ∈ J ∧ 1 ≤ i ≤ m ∧ xj = xi }.
We call ct(P ) the communication topology of configuration P .

Tree-depth. We relate depth-bounded sets of configurations to sets of graphs of bounded
tree-depth [24]. A path π in a graphG is a sequence v1, . . . , vn of vertices in V (G) that
are consecutively connected by edges in E(G). We say that π connects vertices v1 and
vn. We call π simple path if for all 1 ≤ i < j ≤ n, vi �= vj . A tree T is a graph
such that every pair of distinct vertices in T is connected by exactly one path and this
path is simple. A rooted tree is a tree with a dedicated root vertex. A rooted forest is
a disjoint union of rooted trees. The height of a vertex v in a rooted forest F , denoted
height(F, v), is the number of vertices on the path from the root (of the tree to which v
belongs) to v. The height of F is the maximal height of the vertices in F . Let v, w be
vertices of F and let T be the tree in F to which w belongs. The vertex v is an ancestor
of vertex w in F , denoted v � w, if v belongs to the path connecting w and the root
of T . The closure clos(F ) of a rooted forest F is the graph consisting of the vertices
of F and the edge set { {v, w} | v � w, v �= w }. The tree-depth td(G) of a graph G
is the minimum height of all rooted forests F such that G ⊆ clos(F ). The tree-depth



102 T. Wies, D. Zufferey, and T.A. Henzinger

of a labelled graph is the tree-depth of the enclosed graph. Finally, we say that a set of
graphs G has bounded tree-depth if there exists k ∈ N such that all graphsG ∈ G have
tree-depth at most k.

Proposition 8. A set of configurationsC is depth-bounded iff its communication topolo-
gies ct(C) have bounded tree-depth.

The proof of Proposition 8 uses Meyer’s characterization of sets of depth-bounded con-
figurations in terms of sets of graphs that are bounded in the length of the simple paths
[18, Theorem 1]. One can easily show that a set of graphs is bounded in the length of
the simple paths if and only if it has bounded tree-depth.

We now relate the ordering on configurations P ≤ Q with an ordering on the un-
derlying communication topologies. Given two labelled graphs G1 and G2, we say G1
is (isomorphic to) a subgraph of G2, written G1 ↪→ G2, iff there exists an injective
label-preserving homomorphism from G1 to G2.

Lemma 9. Let P and Q be configurations. Then P ≤ Q iff ct(P ) ↪→ ct(Q).

Tree encoding. A labelled rooted tree over a finite set of labels L is a pair (T, l) where
T is a rooted tree and l : V (T )→ L a vertex labelling function. We extend the relation
↪→ to rooted labelled trees, as expected, and we say that a tree T1 is a subtree of tree T2
whenever T1 ↪→ T2 holds. In the following, we fix a finite set of labels L. Let Lk be the
set of all isomorphism classes of labelled graphs G over labels L ∪ (L × {1..k}) such
that G has at most k vertices. Clearly, since L is finite, Lk is finite.

Given a labelled graphG over labelsL that has tree-depth at most k, we can construct
a labelled rooted tree (T, l) over the set of labels Lk from G as follows. First, let F be
a rooted forest of minimal height whose closure contains the graph induced by G. The
rooted tree T is constructed from the forest F by extending F with a fresh root vertex
r that has edges to all the roots of the trees in F . The labelling function l is defined
as follows. Let v ∈ V (T ) be a vertex in T . If v = r then l(r) is the empty graph.
Otherwise v is a vertex in F (and thus inG). Let P be the subgraph ofG that is induced
by the vertices on the path from v to the root (of the tree in F to which v belongs).
Now construct a graph Ph from P by adding to the label of each vertex of P its height
in F . Then l(v) is the isomorphism class of Ph. Since G has tree-depth at most k,
Ph ∈ Lk. Thus, l is well-defined. Let Treesk be the function mapping a labelled graph
G of tree-depth at most k to the set of all labelled rooted trees over Lk that can be
constructed from G as described above. We denote by rng(Treesk) the set of labelled
trees {Treesk(G) | G labelled graph over L with td(G) ≤ k }.
Lemma 10. Let k ∈ N and T1, T2 be trees in rng(Treesk). If T1 is a subtree of T2 then
G1 ↪→ G2 for all G1, G2 with T1 ∈ Treesk(G1) and T2 ∈ Treesk(G2).

Let T be a rooted tree and x, y ∈ V (T ) two vertices. The infimum of x and y, denoted
x inf y, is the vertex z ∈ V (T ) with the greatest height such that z � x and z � y.
Given rooted trees T1 and T2, a function ϕ is an inf-preserving embedding from T1 into
T2 iff (1) ϕ : V (T1) → V (T2) is injective, and (2) for all x, y ∈ V (T1), ϕ(x inf y) =
ϕ(x) inf ϕ(y). An embedding between two rooted labelled trees over the same set of
labels is label-preserving iff it maps vertices to vertices with the same label.



Forward Analysis of Depth-Bounded Processes 103

Clearly, if a tree is a subtree of another tree then there exists an inf and label pre-
serving embedding between these trees. For trees that result from the tree encoding of
configurations the converse holds, too. Vertices of different height in such trees have al-
ways different labels. Thus, an inf and label-preserving embedding between such trees
also preserves antecedence of vertices.

Lemma 11. Let k ∈ N and T1, T2 be trees in rng(Treesk). Then the following two
properties are equivalent:

1. there exists an inf and label-preserving embedding from T1 to T2;
2. T1 is a subtree of T2.

Laver [16] proved a variation of Kruskal’s tree theorem for trees labelled by a bqo
set, namely that countable rooted trees labelled by a bqo set are a bqo under inf-
preserving embedding. Similar to Friedman’s special case of Kruskal’s tree theorem,
we get the special case of Laver’s theorem that rooted trees labelled by a finite set of
labels are better-quasi-ordered by inf and label-preserving embedding. Thus, together
with Lemma 10 we get the following proposition.

Proposition 12. For any k ∈ N, (rng(Treesk), ↪→) is a bqo set.

4.3 Limit Configurations as Ideal Completions

Finkel and Goubault-Larrecq [10] characterize the minimal candidates for the WADLs
of a wqo setX in terms of its ideal completion. This means that the set of all downward-
closed directed subsets of X forms a WADL for X . We use this observation to prove
that limit configurations form WADLs for depth-bounded configurations.

Proposition 13. The directed downward-closed sets of depth-bounded configurations
are exactly the denotations of limit configurations.

By [10, Proposition 3.3] the above proposition implies Theorem 7. In our proof of
Proposition 13 we characterize the tree encodings of downward-closed sets of configu-
rations in terms of the languages of hedge automata [5, Chapter 8].

Hedge automata. A (nondeterministic) finite hedge automatonA over a finite alphabet
Σ is a tuple (Q,Σ,Qf , Δ) where Q is a finite set of states, Qf ⊆ Q is a set of final
states, and Δ is a finite set of transition rules of the following form:

a(R)→ q

where a ∈ Σ, q ∈ Q, and R ⊆ Q∗ is a regular language over Q. These languages R
occuring in the transition rules are called horizontal languages.

A run of A on a rooted labelled tree T with vertex label function l : V (T ) → Σ
is a vertex label function r : V (T ) → Q such that for each vertex v ∈ V (T ) with
a = l(v) and q = r(v) there is a transition rule a(R) → q with r(v1) . . . r(vn) ∈ R
where v1, . . . , vn are the immediate successors of v in T . In particular, to apply a rule
to a leaf, the empty word ε has to be in the horizontal language of the rule R.

A rooted labelled tree T is accepted by A if there is a run r of A on T such that r
labels the root of T by a final state. The language L(A) of A is the set of all rooted
labelled trees over Σ that are accepted byA.



104 T. Wies, D. Zufferey, and T.A. Henzinger

Finite partitions of well-quasi-ordered sets. In order to characterize the horizontal lan-
guages of the constructed hedge automaton we will define equivalence classes on the
vertices of the individual levels of the tree encodings. For this purpose, the following
definition will be useful. Let (X,≤) be a well-quasi-ordered set. We call a partition
P ⊆ 2X of X an infinite chain partition if and only if (1) P is finite and (2) for all
Y ∈ P , either Y is a singleton or Y contains an infinite chain C such that Y ≤ C.

Proposition 14. If (X,≤) is a countable well-quasi-ordered set then there exists an
infinite chain partition of X .

In order to prove Proposition 13, we first prove that every directed downward-closed
set of depth-bounded configurations is the denotation of a limit configuration.

Lemma 15. Let D be a downward-closed set of configurations then there exists a limit
configurationE such that D = γ(E).

For proving the lemma, let D = (Pi)i∈N be a downward-closed directed family of
configurations and let k be the maximal tree-depth of the graphs in ct(D). Choose
some Q0 ∈ D whose communication topology has tree-depth k. Using Q0 construct
an ascending chain D′ = (Qi)i∈N as follows: for each i ∈ N choose Qi ∈ D such
that Pi ≤ Qi and Qi−1 ≤ Qi. Such Qi exists for each i ∈ N since D is directed and,
by induction, Qi−1 ∈ D. Then by construction (1) D = ↓D′ and (2) all elements in
D′ have tree-depth k. Let (Gi)i∈N be the family of labelled graphs Gi = ct(Qi). Now
for each i ∈ N choose a tree Ti ∈ Treesk(Gi) such that the family T = (Ti)i∈N is an
ascending chain with respect to the subtree relation. Such a family exists because the
Gi are ordered by subgraph isomorphism and all Gi have the same tree-depth. Without
loss of generality we assume that the vertex sets of all trees Ti are pairwise disjoint.

Let V = i∈N
V (Ti), E = i∈N

E(Ti), and let l be the union of all the vertex
labelling functions of the labelled trees Ti. The height of the vertices in the trees Ti
range from 1 to k + 1. For a node x ∈ V of height h > 1 we denote by parent(v) ∈ V
the parent of v in the tree Ti to which v belongs. Similarly, for a node v ∈ V we denote
by Children(v) the set of all vertices that are direct successors of v in the tree to which
v belongs. We extend the functions parent to sets of vertices, as expected. Furthermore,
let T (v) be the subtree rooted in v of the tree Ti with v ∈ V (Ti). For all 1 ≤ h ≤ k+1,
let Vh be the set of all vertices in V that have height h. For all h we extend the relation
↪→ from labelled rooted trees to vertices in Vh as expected: for all v, w ∈ Vh, v ↪→ w
iff T (v) ↪→ T (w). From Proposition 12 and Property 3 of Proposition 3 follows that
for all h, (Vh, ↪→) is a bqo.

We will now construct a finite hedge automatonA from the family of trees T whose
language is both small and large in T . For this purpose we define an equivalence relation
on each Vh that partitions Vh into finitely many equivalence classes. These equivalence
classes serve as the states of the automaton.

For each i ∈ N fix some injective label-preserving homomorphism φi : V (Ti) →
V (Ti+1) and denote by φ[i,j] the composition φj−1 ◦ · · · ◦ φi if j > i and the identify
function id if j = i. Then define an equivalence relation ∼ on V as follows: for all
vi ∈ V (Ti) and vj ∈ V (Tj)

vi ∼ vj iff
i ≤ j and φ[i,j](vi) = vj or
i ≥ j and φ[j,i](vj) = vi



Forward Analysis of Depth-Bounded Processes 105

a

b

c

b

c c

a

b

c

b

c c c

a

b

c

b

c c c c

↪→ ↪→ ↪→ . . .

A = (Q, Σ, Qf , Δ)

Q = { } Qf = { }Σ = {a, b, c}

Δ = { c(ε) → , c(ε) → , b( ) → , b( +) → , a( ) → }

Fig. 1. A chain of labelled trees with the equivalence classes under the relations �h and the
constructed hedge automaton

Now, recursively define an equivalence relation �h on Vh for each 1 ≤ h ≤ k + 1
as follows: for h = 1 we simply have v �1 w for all v, w ∈ V1. In order to define �h
for h > 1 we need some intermediate definitions. Given an equivalence class U in the
quotient of Vh−1 wrt. �h−1, let Children(U) be the set of equivalence classes ṽ in the
quotient Vh/∼ such that some v ∈ ṽ has a parent in U . Since (Vh, ↪→) is a bqo, and
Children(U) ⊆ 2V , it follows from Proposition 3 that (Children(U), ↪→1) is also a
bqo and thus a wqo. Furthermore, Children(U) is countable. Thus, by Proposition 14
there exists an infinite chain partition of Children(U). For each U , choose one such
infinite chain partition P(U) of Children(U). Then for v, w ∈ Vh we define: v �h w
iff there exists U ∈ Vh−1/� −1 such that (1) parent(v), parent(w) ∈ U and (2) there
is P ∈ P(U) such that v, w ∈ P .

We can easily prove by induction on h that each�h is indeed an equivalence relation
on Vh and that each �h partitions Vh into finitely many equivalence classes. Further-
more, using the definition of infinite chain partitions one can easily prove the following
properties.

Lemma 16. Let U ∈ Vh/� then

1. all v ∈ U have the same label,
2. U is directed with respect to ↪→,
3. if h = 1 then U contains exactly the root vertices of all the trees Ti,
4. if h > 1 then parent(U) ⊆ U ′ for some U ′ ∈ Vh−1/� −1 and

(a) either all vertices in U ′ have at most one child in U or
(b) every v ∈ U is contained in a proper infinite chain C ⊆ U and for every finite

subset V ⊆ U there exists v′ ∈ U ′ such that V ↪→1 Children(v′) ∩ U .

Now let � be the union of all the relations �h. Then � is an equivalence relation
on V that partitions V into finitely many equivalence classes. For an equivalence class
U ∈ V/�, letC(U) be the set of all equivalence classes that contain children of vertices
in U . Furthermore, let l(U) be the unique label of all vertices in U , and letm(U) denote
1 if every parent of a vertex v ∈ U has at most one child in U and, otherwise, let m(U)
denote the symbol +. Now define the hedge automatonA = (Q,Σ,Qf , Δ) where:

– Q = V/�,
– Σ = Lk,



106 T. Wies, D. Zufferey, and T.A. Henzinger

– Qf = V1/�,
– Δ consists of transition rules of the following form for each U ∈ V/�
• l(U)(Um(U1)

1 · · ·Um(U )
n )→ U if C(U) = {U1, . . . , Un}

• l(U)(ε)→ U if C(U) = ∅.
Figure 1 depicts a chain of trees and the constructed automaton A. The equivalence
classes in the quotient V/ � are highlighted in the trees.

Using Lemma 16 we can now prove that the language accepted by A is both small
and large in T .

Lemma 17. L(A) is small in T , i.e., ∀T ∈ L(A)∃i ∈ N : T ↪→ Ti.

Lemma 18. L(A) is large in T , i.e., ∀i ∈ N ∃T ∈ L(A) : Ti ↪→ T .

Note that by construction of A the tree encoding operation can be reversed on the trees
in L(A). Let DA be the corresponding set of configurations. From Lemmas 17,18,10,
and 9 follows that D = ↓D′ = ↓DA. From A we can now easily construct a limit
configurationE whose denotation is the downward closure of DA. It follows that D =
↓DA = γ(E) which proves Lemma 15.

Lemma 19. For any limit configurationE, γ(E) is a downward-closed directed set.

Clearly γ(E) is downward-closed. For proving that γ(E) is directed, we can again
construct a hedge automaton A from E, such that the tree encoding operation can be
reversed on all trees accepted by A and the downward-closure of the resulting config-
urations DA coincides with γ(E). Using a simple pumping argument for the language
L(A) we can show that for every two trees T1, T2 ∈ L(A) there exists a tree T ∈ L(A)
such that T1 ↪→ T and T2 ↪→ T . It follows that DA is directed and thus γ(E).

5 Forward Analysis of Depth-Bounded Processes

The expand, enlarge, and check (EEC) algorithm of Geeraerts et al. [13] is a forward
algorithm that decides the covering problem for effective WSTSs with appropriate ade-
quate domain of limits.

A WSTS (X,x0,→,≤) and an adequate domain of limits (Y,, γ) for the wqo
(X,≤) are effective if the following conditions are satisfied: (E1) X and Y are recur-
sively enumerable; (E2) for any x1, x2 ∈ X , one can decide whether x1 → x2; (E3)
for any z ∈ X ∪ Y and for any finite subset Z ⊆ X ∪ Y , one can decide whether
Post(γ(z)) ⊆ γ(Z); and (E4) for any finite subsets Z1, Z2 ⊆ X ∪ Y , one can decide
whether γ(Z1) ⊆ γ(Z2).

We argue that the WSTS induced by a depth-bounded process together with its
WADL of limit configurations are effective. The conditions (E1) and (E2) are clearly
satisfied. Also given a limit configuration z we can compute a finite set of limit configu-
rations denoting Post(γ(z)). Note further that Proposition 13 implies that for any finite
subsets Z1, Z2 ⊆ L(PI , k), γ(Z1) ⊆ γ(Z2) holds if and only if for all z1 ∈ Z1 there
exists z2 ∈ Z2 such that γ(z1) ⊆ γ(z2). The inclusion problem γ(z1) ⊆ γ(z2) can
be reduced to the language inclusion problem for deterministic hedge automata, which



Forward Analysis of Depth-Bounded Processes 107

is decidable. For this purpose, one computes deterministic hedge automata from the
finitely many tree encodings of the configurations of z1 and z2 and then checks whether
the language of some automaton of z1 is included in the language of some automaton
of z2. Thus conditions (E3) and (E4) are also satisfied.

Finally, let us explain why the EEC algorithm terminates on depth-bounded systems
even if the bound of the system is not known a priori. The idea of the algorithm is to
simultaneously enumerate two infinite increasing chains. The first chain X0 ⊆ X1 . . .
is a sequence of finite subsets of X that contains all reachable configurations of the
analyzed system. The second chain Y0 ⊆ Y1 ⊆ . . . is a sequence of finite subsets
of Y that contains all limits Y . In each iteration i the algorithm computes an under
and an over-approximation of the analyzed system for the current pair (Xi, Yi) of el-
ements in the chain. These approximations are such that the under-approximation is
guaranteed to detect that t can be covered if Xi contains a path to a covering state. The
over-approximation is guaranteed to detect that t cannot be covered if Yi can express
↓ Post∗(↓ s0) and this set does not cover t. The conditions on the chains ensure that
one of the two conditions eventually holds for some i ∈ N.

For deciding the covering problem of depth-bounded systems we can now simply
enumerate the sets C(PI ) = k∈N

C(PI , k) and L(PI ) = k∈N
L(PI , k). Then in

each iteration of the EEC algorithm the pair (Xi, Yi) is contained in some limit do-
main C(PI , k),L(PI , k)) and the conditions on the chains for termination of the EEC
algorithm are still satisfied.

Theorem 20. The covering problem for depth-bounded processes is decidable.

Complexity. Depth-bounded processes subsume Petri nets [19]. This implies an expo-
nential space lower bound on the complexity of the covering problem for depth-bounded
processes [17]. The exact complexity is open.

6 Conclusion

At the dawn of cloud computing and processors that put an enormous number of cores at
disposal of the programmer, message passing concurrency is gaining more and more im-
portance. Many typical use cases of message passing such as client-server and consumer-
producer communication with an unbounded number of clients/producers, and master-
worker load balancing, can be modeled by depth-bounded processes. The covering
problem plays a central role in the automated verification of the correctness of mes-
sage passing systems. We prepared the ground for a spectrum of forward algorithms
that solve the covering problem for depth-bounded processes. The exploitation of our
result for the development of practical forward algorithms for this class of systems is
our primary goal for future research.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems for
infinite-state systems. In: LICS, pp. 313–321 (1996)

2. Amadio, R.M., Meyssonnier, C.: On decidability of the control reachability problem in the
asynchronous pi-calculus. Nord. J. Comput. 9(1), 70–101 (2002)



108 T. Wies, D. Zufferey, and T.A. Henzinger

3. Bauer, J., Wilhelm, R.: Static analysis of dynamic communication systems by partner ab-
straction. In: SAS, pp. 249–264 (2007)

4. Busi, N., Gabbrielli, M., Zavattaro, G.: Replication vs. recursive definitions in channel based
calculi. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 133–144. Springer, Heidelberg (2003)

5. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C.,
Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2008),
http://tata.gforge.inria.fr/ (release November 18, 2008)

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)

7. Dam, M.: Model checking mobile processes. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 22–36. Springer, Heidelberg (1993)

8. Finkel, A.: A Generalization of the Procedure of Karp and Miller to Well Structured Tran-
sition Systems. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 499–508. Springer,
Heidelberg (1987)

9. Finkel, A.: Reduction and covering of infinite reachability trees. Inf. Comput. 89(2), 144–179
(1990)

10. Finkel, A., Goubault-Larrecq, J.: Forward Analysis for WSTS, Part I: Completions. In:
STACS. Dagstuhl Sem. Proc., vol. 09001, pp. 433–444 (2009)

11. Finkel, A., Goubault-Larrecq, J.: Forward Analysis for WSTS, Part II: Complete WSTS. In:
Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP
2009. LNCS, vol. 5556, pp. 188–199. Springer, Heidelberg (2009)

12. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput.
Sci. 256(1-2), 63–92 (2001)

13. Geeraerts, G., Raskin, J.-F., Van Begin, L.: Expand, Enlarge and Check: New algorithms for
the coverability problem of WSTS. J. Comput. Syst. Sci. 72(1), 180–203 (2006)

14. Janssens, D., Lens, M., Rozenberg, G.: Computation graphs for actor grammars. J. Comput.
Syst. Sci. 46(1), 60–90 (1993)

15. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2), 147–195
(1969)

16. Laver, R.: On Fraïssé’s Order Type Conjecture. Ann. of Math. 93(1), 89–111 (1971)
17. Lipton, R.J.: The reachability problem requires exponential space. Technical Report 62, Yale

University (1976)
18. Meyer, R.: On boundedness in depth in the pi-calculus. In: IFIP TCS. IFIP, vol. 273, pp.

477–489. Springer, Heidelberg (2008)
19. Meyer, R., Gorrieri, R.: On the relationship between pi-calculus and finite place/transition

petri nets. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 463–
480. Springer, Heidelberg (2009)

20. Milner, R.: Flowgraphs and flow algebras. J. ACM 26(4), 794–818 (1979)
21. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, I. Inf. Comput. 100(1),

1–40 (1992)
22. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, II. Inf. Comput. 100(1),

41–77 (1992)
23. Nash-Williams, C.S.J.A.: On better-quasi-ordering transfinite sequences. Proc. Camb. Phil.

Soc. 64, 273–290 (1968)
24. Nešetřil, J., de Mendez, P.O.: Tree-depth, subgraph coloring and homomorphism bounds.

Eur. J. Comb. 27(6), 1022–1041 (2006)
25. Ostrovský, K.: On Modelling and Analysing Concurrent Systems. PhD thesis, Chalmers

University of Technology and Gotebörg University (2005)
26. Sangiorgi, D.: pi-calculus, internal mobility, and agent-passing calculi. Theor. Comput.

Sci. 167(1&2), 235–274 (1996)

http://tata.gforge.inria.fr/


Incremental Pattern-Based Coinduction for
Process Algebra and Its Isabelle Formalization

Andrei Popescu and Elsa L. Gunter

University of Illinois at Urbana-Champaign

Abstract. We present a coinductive proof system for bisimilarity in
transition systems specifiable in the de Simone SOS format. Our coin-
duction is incremental, in that it allows building incrementally an a priori
unknown bisimulation, and pattern-based, in that it works on equalities
of process patterns (i.e., universally quantified equations of process terms
containing process variables), thus taking advantage of equational rea-
soning in a “circular” manner, inside coinductive proof loops. The proof
system has been formalized and proved sound in Isabelle/HOL.

1 Introduction

Bisimilarity is arguably the most natural equivalence on interactive processes.
Assuming process transitions are labeled by (observable) actions a, processes P
and P ′ are bisimilar iff: (I) whenever P can a-transit to a process Q, P ′ can also
a-transit to some process Q′ such that P ′ and Q′ are again bisimilar; (II) and
vice versa; (III) and so on, indefinitely (as in an infinite game).

The above informal description of the bisimilarity relation can of course be
made rigorous by defining bisimilarity to be the largest bisimulation, i.e., the
largest relation θ for which (I) and (II) hold (with “bisimilar” replaced by “in
θ”). But the largest-fixpoint description loses (at least superficially) the game-
theoretic flavor of the intuitive description, so we stick to the latter for a while.
How would one go about proving that P and Q are bisimilar? Well, if one were
allowed an infinite proof, one could try to show that each transition of P is
matched by a transition of Q so that the continuations P ′ and Q′ are (claimed
to be) bisimilar (and vice versa), and then prove the bisimilarity claims about
all pairs of continuations P ′ and Q′, and so on. This way, one would build an
infinite tree whose nodes contain bisimilarity claims about pairs of processes.
Now assume that, while expanding the tree, one encounters a repetition of a
previous claim (that appeared on an ancestor node). A reasonable “optimization”
of the infinite proof would then be to stop and “seal” that node, because the
bisimilarity argument for its ancestor can be repeated ad litteram. In other
words, one may take the (yet unresolved!) goal of the ancestor as a hypothesis,
which discharges the repetitive goal – this is the upside of trying to build an
infinite proof: non-well-foundedness (i.e., circularity) works in our advantage.
Assume now one finds such repetitions on all paths when building the tree.
Then our bisimilarity proof is done! In terms of the fixpoint definition, we have

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 109–127, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



110 A. Popescu and E.L. Gunter

proved that the pair (P,Q) of processes located at the root are bisimilar by
coinduction, i.e., by exhibiting a bisimulation that contains (P,Q). In terms
of proof engineering however, the needed bisimulation did not appear out of
nowhere, but was built incrementally from the goal, essentially by an exploration
that discovered a regular pattern for an infinite proof tree. In fact, coinductive
proofs are intuitively all about discovering regular patterns.

This paper provides formal support for this intuition. Here is an illustration
of our approach, for a mini process calculus. Fix a set of actions act with a given
silent action τ ∈ act and a map on act \ {τ}, a �→ a, such that a = a for all
a ∈ Act. The processes P are generated by the grammar: P ::= 0 | a.P | P |Q | !P .
Thus, we have idle process, action prefix, parallel composition, and replication.
“!” binds more strongly than “|”. The behavior of processes is specified by the
following labeled transition system:

·
a.P

a� P
(PREF)

P0
a� Q0

P0|P1
a� Q0|P1

(PARL)
P1

a� Q1

P0|P1
a� P0|Q1

(PARR)

P0
a� Q0 P1

a� Q1

P0|P1
τ� Q0|Q1

(PARS)
P

a� Q

!P a� !P |Q
(REPL)

P
a� Q0 P

a� Q1

!P τ� !P |(Q0|Q1)
(REPLS)

We may wish to prove in this context that parallel composition is associative
and commutative and that replication absorbs self-parallel composition, i.e.,
that (P0|P1)|P2 = P0|(P1|P2), P0|P1 = P1|P0, and P |!P = !P for all processes
P0, P1, P2, P , where we write “=” for strong bisimilarity. In fact, assume we al-
ready proved the first two facts and are left with proving the third, P |!P = !P .
For this, we first check to see if the equations we already know so far (associa-
tivity and commutativity of |) imply this new one by pure equational reasoning
– no, they don’t. This means we cannot discharge the goal right away, and
therefore we need to perform unfoldings of the two terms in the goal. We unfold
P |!P and !P until we reach hypotheses involving only process meta-variables.
The upper side of Figure 1 contains all possible derived rules (i.e., compositions
of primitive rules in the system, all the way down to non-decomposable hypothe-
ses) that can be matched by P |!P in order to infer a transition from P |!P . And,
similarly, the lower side for the term !P – in this latter case, the matched derived

P
a� Q

P |!P a� Q|!P
(PARL) (1)

P
a� Q

!P a� !P |Q
(REPL)

P |!P a� P |(!P |Q)
(PARR) (2)

P
a� Q0 P

a� Q1

!P τ� !P |(Q0|Q1)
(REPLS)

P |!P τ� P |(!P |(Q0|Q1))
(PARR) (3)

P
a� Q0

P
a� Q1

!P a� !P |Q1

(REPL)

P |!P τ� Q0|(!P |Q1)
(PARS) (4)

P
a� Q

!P a� !P |Q
(REPL) (5)

P
a� Q0 P

a� Q1

!P τ� !P |(Q0|Q1)
(REPLS) (6)

Fig. 1. The matching derived rules for P |!P and !P



Incremental Pattern-Based Coinduction 111

rules coincide with the matched primitive rules. To see how the derived rules are
obtained, the figure shows whole derivation trees, but we only care about the
leaves and the roots of these trees.

Next, we try to pair these derived rules (upper versus lower), by the accor-
dance of their hypotheses and their transition labels. The only valid pairing
possibilities are: (1) with (5), (2) with (5), (3) with (6), and (4) with (6). The
targets of the conclusions of the rules in these pairs yield four new goals: (i)
Q|!P = !P |Q; (ii) P |(!P |Q) = !P |Q; (iii) P |(!P |(Q0|Q1)) = !P |(Q0|Q1); (iv)
Q0|(!P |Q1) = !P |(Q0|Q1). The original goal, P |!P = !P , is replaced by the above
four goals, and is also henceforth taken as a hypothesis. Notice that our goals
are generic, i.e., universally quantified over the occurring process meta-variables,
P,Q,Q0, Q1. Now, equational reasoning (by standard equational rules, including
substitution) with hypothesis P |!P = !P together with the already known lem-
mas (P0|P1)|P2 = P0|(P1|P2) and P0|P1 = P1|P0 is easily seen to discharge each
of the remaining four goals, and the proof is done.

Why is this proof valid, i.e., why does it represent a proof of the fact that,
for all process terms P , P |!P and !P are bisimilar? The rigorous justification for
this is the topic of this paper. But the short answer has to do with our previous
discussion on discovering patterns: the above is really a proof by coinduction
(on universally quantified equalities of terms up to equational closure), which
builds incrementally the relation representing the coinductive argument. Notice
the appearance of circular reasoning: a goal that cannot be locally discharged
is expanded according to the SOS definition transition relation and becomes
a hypothesis. In this particular example, the proof is finished after only one
expansion, but the process of expanding the goals with taking them as hypotheses
may in principle continue, obtaining arbitrarily large proof trees.

We show that deductions such as the above are sound for a wide class of
process algebras – those specifiable by SOS rules in the de Simone format [11].
Our results have been given a formalization in Isabelle/HOL [3], which was de-
sirable for two reasons: first, the very technical constructions (especially in Sec.
4) and arguments (in both Secs. 3 and 4) were asking for a means to be ab-
solutely sure of their correctness; second, the formalization has the potential
of leading to an implementation of a coinductive tool. Here is the structure of
this paper. The rest of this section establishes some notation. Sec. 2 discusses
our representation of the de Simone format. Secs. 3 and 4 contain our origi-
nal theoretic contribution: incremental proof systems for bisimilarity – Sec. 3
for standard bisimilarity, Sec. 4 for universally quantified bisimilarity equations.
Sec. 5 discusses related and future work. More details on our Isabelle scripts
and on various other technical topics, as well as more examples, can be found
in the technical report [28], to which we occasionally refer from this paper. [28]
is an identical copy of this paper, except that it has an appendix with more
details. The Isabelle scripts can be found at http://hdl.handle.net/2142/14857
in both html-browsable and pdf formats (App. C in [28] has details about
the scripts.)



112 A. Popescu and E.L. Gunter

Conventions and notations. By “Isabelle”, here we mean “Isabelle/HOL”.
We present our work in the usual mathematical language, but partly employ
the Isabelle dialect of this language in order to allow the interested reader to
easily relate this paper with our Isabelle formal proofs. (We believe that this
choice does not decrease readability, since the Isabelle notation is very close
to standard mathematical notation and also occasionally allows for clear and
concise formulations, as, e.g., with datatypes and records. A priori familiarity
with the Isabelle dialect is not required from the reader.)

Isabelle distinguishes between a type and a set, but the set-theoretical-oriented
reader is free to ignore this distinction; as a matter of syntax though, membership
to a type is denoted by “::” and membership to a set by “∈”. nat is the type of
naturals. Given types α and β, α × β is their product type, α ⇒ β the type of
functions between α and β, α list the type of lists of items in α, and α set the
type of sets of items in α.1 fst and snd are the two projections from α×β. [] is the
empty list and [a0, . . . , an−1] the list consisting of the n indicated items; given a
list L and i < lengthL, L!i is the (i+ 1)-th element in L (thus, the first element
is L!0). The operator set : α list⇒ α set gives the set of the items appearing in
a list. A list L is said to be nonrepetitive if L!i �= L!j for all i, j < length L with
i �= j. For readability, we consistently use: sans serif fonts for constants, such
as length and set; boldface for types, such as nat; underlined boldface for type
constructors, such as list and set.

2 Syntax and Operational Semantics of Processes

Process variables, terms and substitution. We fix the following types:
param, of parameters, ranged over by p; opsym, of operation symbols (opsyms
for short), ranged over by f, g; var, of (process) variables, ranged over by X,Y, Z
– this latter type is assumed to be infinite. The type term, of (process) terms,
ranged over by P,Q,R, T, S, U, V , is defined as an Isabelle datatype (i.e., initial
algebra): Datatype term = Var var | Op opsym (param list) (term list).

Thus, a term can have any opsym at the top, applied to any list of param-
eters and any list of terms (of any length), without being subject to further
well-formedness conditions. Hence an opsym f does not have an a priori associ-
ated numeric rank (m,n) (indicating that f takes m parameters and n terms).
Rather, we allow in term the whole pool of all possible terms under all possible
rankings of the operation symbols. This looseness w.r.t. terms is admittedly a
formalization shortcut (fitting nicely the Isabelle simply-typed framework), but
is completely unproblematic for the concepts and results of this paper: while
an SOS specification of a transition system will of course employ only certain
(possibly overloaded) ranks for the opsyms, the unused ranks will be harmless,
since they will not affect transitions or bisimilarity.

1 Note the use of postfix notation for type constructors – this is not standard math-
ematically, but is intuitive, as it matches natural language: while an element of int
is an integer, an element of int list is an integer list.



Incremental Pattern-Based Coinduction 113

σ and τ will range over var⇒ term. We consider the operators:
- vars :: term⇒ var set, giving the set of variables occurring in a term.
- [ ] :: term × (var ⇒ term) ⇒ term, such that T [σ] is the term obtained
from T by substituting all its variables X by σX .

Next we represent the meta-SOS notion of a transition-system specification
[15,26]. Given any type α, the type α ftrans, of formal α-transitions, consists of
pairs, written k � l, with k, l :: α, where k is called the source and l the target.
We fix a type act, of actions, ranged over by a, b.

Rules syntax. The type rule, of (SOS-)rules, ranged over by rl , is defined to be
the following record type (i.e., a productwith named projections):Record rule=

hyps :: (var ftrans) list (read “hypotheses”)
cnc :: term ftrans (read “conclusion”)
side :: (nat⇒ act)⇒ act⇒ bool (read “side-condition”)

The hypotheses and the conclusions of our rules are therefore formal transitions
between variables, and between terms, respectively. I.e., for any rule rl :
- hyps rl has the form [XX 0 � Y0, . . . ,XX n−1 � Yn−1], with XX j , Yj variables;
- cnc rl has the form S � T , with S and T terms.

One can visualize rl as
XX 0 � Y0, . . . ,XX n−1 � Yn−1

S � T
[λ as, b. side rl as b]

where as :: nat⇒ act and b :: act. Actually, we think of rl as follows:

XX 0
as 0� Y0 , . . . ,XX n−1

as (n−1)� Yn−1

S
b� T

[side rl as b]

Note however that the side condition side rl is (for now) allowed to take into con-
sideration the whole function as , and not only its first n values as 0, . . . , as (n−
1), as one would expect – this is corrected below by “saneness”.

Given a rule rl with hyps rl and cnc rl as above, we write: theXXs rl , for
the variable list [XX 0, . . . ,XX n−1]; theYs rl , for the variable list [Y0, . . . , Yn−1];
theS rl , for the term S; theT rl , for the term T .

A rule rl is said to be sane if the following hold:

-(1) theYs rl is nonrepetitive;
-(2) set(theXXs rl) ⊆ vars(theS rl);
-(3) vars(theS rl) ∩ set(theYs rl) = ∅;
-(4) vars(theT rl) ⊆ vars(theS rl) ∪ set(theYs rl);
-(5) ∀as , as ′. (∀i < length(theYs rl). as i = as ′ i) −→ side rl as = side rl as ′.

A rule rl is said to be amenable if theS rl has the form Op f ps [Var X0, . . . ,Var
Xm−1], where f is an opsym, ps a list of parameters, and [X0, . . . , Xm−1] a
nonrepetitive list of variables. Given an amenable rule rl as above, we write
thef rl for f , theps rl for ps , and theXs rl for [X0, . . . , Xm−1].

Saneness expresses a natural property for well-behaved SOS rules: Think of
a term S as a generic composite process, built from its unspecified components



114 A. Popescu and E.L. Gunter

(its variables) by means of opsyms. Then a sane rule is one that describes the
behavior of the composite S in terms of the behavior of (some of) its components:
condition (2) says that indeed the hypotheses refer to the components, (1) and
(3) that the hypotheses only assume that some components transit “somewhere”
(without any further information), (4) that the resulted continuation of the
composite depends only on the components and their continuations, and (5)
that the side-condition may only depend on the action labels of the hypotheses
and of the conclusion. In addition, amenability asks that the composite process
S be obtained by a primitive operation f applied to unspecified components.
The conjunction of saneness and amenability is precisely the de Simone format
requirement [11], hence we call a rule de Simone if it is sane and amenable.

Running example. We show what the example in the introduction becomes
under our representation. Assume that act is an unspecified type with constants
− :: act ⇒ act and τ :: act such that a = a for all a �= τ . Define the relation
sync :: act⇒ act⇒ act⇒ bool by sync a b c = (a �= τ ∧ b �= τ ∧ a = b∧ c = τ).
We take opsym to be a three-element datatype Pref | Par | Repl and param to
be act. For readability, in our running example (including throughout the future
continuations of this example), for all X :: var, S, T :: term and a :: act, we
use the following abbreviations: X for Var X ; a.S for Op Pref [a] [S]; S |T for
Op Par [] [T, S]; !S for Op Repl [] [S].

Rls consists of the rules {PREFa. a :: act}∪{PARL,PARR,PARS,REPL,REPLS}
listed below, where X,Y,X0, X1, Y0, Y1 are fixed distinct variables.

·
a.X

b� X

(PREFa)
[a = b]

X0
as 0� Y0

X0 | X1
b� Y0 | X1

(PARL)
[as 0 = b]

X0
as 0� Y0

X1 | X0
b� X1 | Y0

(PARR)
[as 0 = b]

X0
as 0� Y0 X1

as 1� Y1

X0 | X1
b� Y0 | Y1

(PARS)
[sync (as 0) (as 1) b]

X
as 0� Y

!X b� !X | Y

(REPL)
[as 0 = b]

X
as 0� Y0 X

as 1� Y1

!X b� !X | (Y0 | Y1)

(REPLS)
[sync (as 0) (as 1) b]

For listing the rules, we employed the previously discussed visual representation.
E.g., the formal description of PARS is (| hyps = [X0 � Y0, X1 � Y1]; cnc =
(X0 | X1 � Y0 | Y1); side = (λ as , b. sync (as 0) (as 1) b) |). All the rules in this
example are easily seen to be de Simone.

Rules semantics. We fix Rls, a set of de Simone rules. The one-step transition
relation induced by Rls on terms is a (curried) ternary relation step :: term ⇒
act ⇒ term ⇒ bool, where we write P a� Q instead of step P a Q, defined
inductively by the following clause:
- if rl ∈ Rls , σ((theXXs rl)!j)

as j� σ((theYs rl)!j) for all j < length(theYs rl),
and side rl as b holds, then (theS rl)[σ] b� (theT rl)[σ]
(where σ :: var⇒ term, as :: nat⇒ act, and b :: act).

The above definition is the expected one: each (generic) rule in Rls yields, for
each substitution of the variables in the rule and for each choice of the actions



Incremental Pattern-Based Coinduction 115

fulfilling the side-condition, an inference of the instance of the rule’s conclusion
from the instances of the rule’s hypotheses.

Bisimilarity. We write rel for (term×term) set, the type of relations between
terms, ranged over by θ, η, ξ. The (monotonic) retract operator Retr :: rel⇒ rel,
named so because it maps each θ to a relation retracted (w.r.t. transitions) back
from θ, is defined by: Retr θ = {(P,Q). (∀a, P ′. P a� P ′ −→ (∃Q′. (P ′, Q′) ∈
θ ∧ Q a� Q′ )) ∧ (∀a,Q′. Q a� Q′ −→ (∃P ′. (P ′, Q′) ∈ θ ∧ P a� P ′ ))}. The
bisimilarity relation, bis :: rel, is the greatest fixed point of Retr.

Notice that we defined bisimilarity for open terms (i.e., terms possibly contain-
ing variables), while often in the literature both transition and bisimilarity are
defined for closed terms only (with step and Retr defined by the same conditions
as above, but acting on closed terms and relations on closed terms, respectively).
However, for the de Simone format of our rules (as well as for more general for-
mats, e.g., well-founded pure tyft [15]), transition does not bring any variables
(in the sense that, if P a� P ′ , then the free variables of P are among those of
P ′) implying that two closed terms are bisimilar according to our definition iff
they are bisimilar according to the aforementioned “closed” version.

Because of the particular format of the rules, bis is a congruence on terms.
This is in fact true for rule formats more expressive than the one considered here
[6,15,32]. However, we shall need to exploit a stronger property specific to the de
Simone format, namely: whenever θ is a congruence, it follows that θ ∩ (Retr θ)
is also a congruence. Let, for any relation θ, congCl θ be its congruence closure.
From the above, we infer a powerful “up to” coinduction rule (that is, up to
bisimilarity and up to arbitrary contexts), due to de Simone [11] and Sangiorgi
[34], improving on traditional coinduction:

Theorem 1. For all θ :: rel, if θ ⊆ Retr(congCl(θ ∪ bis)), then θ ⊆ bis.

3 The Raw Coinductive Proof System

We now present the core of our original theoretical contribution: defining an
incrementally-coinductive proof system for bisimilarity and proving it sound. We
define the raw deduction relation I� :: rel ⇒ rel ⇒ bool (with infix notation)
inductively by the clauses:

·
θ I� θ′

(Ax)
[θ′ ⊆ congCl(θ ∪ bis)]

∀θ′ ∈ Θ. θ I� θ′
θ I� Θ

(Split)
[Θ �= ∅]

θ′ ∪ θ I� θ′′
θ I� θ′

(Coind)
[θ′ ⊆ Retr θ′′]

θ I� θ′ is eventually intended to mean: “θ implies θ′ modulo bisimilarity and
congruence closure”. Here is the intuitive reading of the rules (thinking of them
as being applied backwards for expanding or discharging goals). (Ax) allows to
deduce θ′ from θ right away. (Split) allows for splitting the goal according to
a chosen partition of its conclusion. (Coind) is the interesting rule, and is the
actual engine of the proof system. To get an intuitive grasp of this rule, let us first
assume that θ = ∅ (i.e., that θ is empty). Then the goal is to show θ′ included in



116 A. Popescu and E.L. Gunter

congCl bis, i.e., in bis. For this, it would suffice that θ′ ⊆ Retr(θ′); alternatively,
we may “defer” the goal by coming up with an “interpolant” θ′′ such that θ′ ⊆
Retr(θ′′) and θ′ implies θ′′ modulo bisimilarity and congruence. (As we shall
see in the next section, working symbolically with open terms provides natural
interpolant candidates.) In case θ �= ∅, θ should be thought of temporally as the
collection of auxiliary facts gathered from previous coinductive expansions.

Note that, for the aforementioned intention of the proof system, (Coind) is not
sound by itself : regarded as applied backwards to a goal, it moves the conclusion
θ′ to the hypotheses, creating a circularity. In other words, of course it is not
true that the conjunction of θ′′ ⊆ congCl(θ′ ∪ θ ∪ bis) and θ′ ⊆ Retr θ′′ implies
θ′ ⊆ congCl(θ ∪ bis) for all θ, θ′, θ′′. Yet, the proof system as a whole is sound in
the following sense:
Theorem 2. If ∅ I� θ, then θ ⊆ bis.
In the remainder of this section, we outline the proof of this theorem.

(I) In order to gain more control on the proof system, we objectify it in a
standard fashion, by considering proofs (i.e., proof trees) explicitly, at the object
level (as opposed to merely implicitly as they appear in the inductive definition
of I�). For this, we pick a sufficiently large type index, ranged over by i, and
define the type prf, of proof trees, ranged over by Pf , with constructors mirroring
the clauses in the definition of I� :
Datatype prf = Ax rel rel | Split (index⇒ prf) rel rel | Coind prf rel rel

We let Pfs range over index ⇒ prf. The pair of relations that a proof tree Pf
“proves”, which is (θ, θ′) when Pf has the one of the forms Ax θ θ′, Split Pfs θ θ′,
or Coind Pf θ θ′, is denoted by proves Pf . The conclusion-hypothesis depen-
dencies and the side-conditions of the clauses defining I� are captured by the
predicate correct :: prf⇒ bool, defined recursively as expected:
- correct (Ax θ θ′) = (θ′ ⊆ congCl(θ ∪ bis));
- correct (Split Pfs θ θ′) =
((∀i. correct(Pfs i) ∧ fst(proves(Pfs i)) = θ) ∧ i. snd(proves(Pfs i)) = θ′);
- correct (Coind Pf θ θ′) =
(correctPf ∧ fst(provesPf ) = θ′ ∪ θ ∧ θ′ ⊆ Retr(snd(provesPf ))).

It is immediate that θ I� θ′ holds iff ∃Pf . correct(Pf ) ∧ proves(Pf ) = (θ, θ′).
(II) Thus, it suffices to show that θ ⊆ bis whenever there exists a correct proof

tree Pf such that proves(Pf ) = (θ, θ′). For showing the latter, we introduce a
couple of auxiliary concepts. Given Pf , a label in Pf is a pair (θ, θ′) “appearing”
in Pf – formally, we define labels :: prf⇒ (rel × rel) set by:
- labels (Ax θ θ′) = {(θ, θ′)};
- labels (Split Pfs θ θ′) = {(θ, θ′)} ∪ i. labels(Pfs i);
- labels (Coind Pf θ θ′) = {(θ, θ′)} ∪ labelsPf .

We let LeftPf denote the union of the lefthand sides of all labels in Pf , and
RightPf the union of the righthand sides of all labels in Pf .

Lemma 1. If Pf is correct, then Right Pf ⊆ congCl((Left Pf) ∪ bis).

Lemma 2. If Pf is correct and fst(proves Pf) ⊆ Retr(Right Pf), then Left Pf ⊆
Retr(Right Pf).



Incremental Pattern-Based Coinduction 117

Lemma 1 follows by an easy induction on proof trees. By contrast, Lemma 2
requires some elaboration – before getting into that, let us show how the two
lemmas imply our desired fact. Assume that Pf is correct and proves Pf = (∅, θ).
Then the hypotheses of both lemmas are satisfied by Pf , and therefore (since
also Retr is monotonic) Left Pf ⊆ Retr(Right Pf ) ⊆ Retr(congCl((Left Pf )∪bis)),
implying, by Theorem 1, Left Pf ⊆ bis. With Lemma 1, we obtain Right Pf ⊆
congCl(bis), which means (given that bis is a congruence) Right Pf ⊆ bis. And
since θ ⊆ Right Pf , we obtain θ ⊆ bis, as desired.

It remains to prove Lemma 2. This lemma states a property of proof trees
that depends on a hypothesis concerning their roots (i.e., the pair (θ, θ′) that
they “prove”). The task of finding a strengthening of that hypothesis so that a
direct proof by structural induction goes through seems rather difficult, if not
impossible. We instead take the roundabout route of identifying an invariant
satisfied on backwards paths in the proof trees whose roots satisfy our hypoth-
esis. First, we define the notion of a path (independently of proof trees): a list
[(θ0, θ′0), . . . , (θm−1, θ

′
m−1)] is called a path if the following is true for all n < m−1:

either θn+1 = θn, or θn+1 ⊆ Retr(θ′n+1) ∪ θn. Then one can verify the following:
-(a) Fix ξ :: rel. If [(θ0, θ′0), . . . , (θm−1, θ

′
m−1)] is a path, θ0 ⊆ Retr ξ and

∀n < m. θ′n ⊆ ξ, then ∀n < m. θn ⊆ Retr ξ. (By easy induction on n.)
-(b) If Pf is correct, proves(Pf ) = (θ, θ′), and (η, η′) is a label in Pf , then there
exists a path [(θ0, θ′0), . . . , (θm−1, θ

′
m−1)] consisting of labels in Pf (i.e., such that

(θn, θ
′
n) are labels in Pf for all n < m) and connecting (θ, θ′) with (η, η′) (i.e.,

such that (θ0, θ′0) = (θ, θ′) and (θm−1, θ
′
m−1) = (η, η′)). (By induction on Pf .)

With these preparations, we can prove Lemma 2: Assume proves(Pf ) = (θ, θ′)
and θ ⊆ Retr(Right Pf ). Fix a label (η, η′) in Pf . According to (b), there exists
a path connecting (θ, θ′) with (η, η′) and going through labels in Pf only. Then
the hypotheses of (a) are satisfied by the aforementioned path and ξ = Right Pf ,
and therefore all the lefthand sides of the pairs in this path are included in
Retr(Right Pf ). In particular, η ⊆ Retr(Right Pf ). Since the choice of the label
(η, η′) was arbitrary, it follows that Left Pf ⊆ Retr(Right Pf ), as desired.

Remarks. (1) The soundness of I� was established not locally (rule-wise), as
is customary in soundness results, but globally, by analyzing entire proof trees.
What the potential backwards applications of the clause (Coind) do is to improve
the candidate relation for the coinductive argument. In the end, as shown by the
proof of Theorem 2, the (successful) relation is synthesized by putting together
the righthand sides of all labels in the proof tree.

(2) The proof system represented by I� is not a typical syntactic system, but
contains semantic intrusions – in effect, the system is complete already by its ax-
iom (Ax), which allows for an instantaneous “oracle proof” that the considered
relation is included in bisimilarity. But of course, the realistic employment of this
system will appeal to such instantaneous proofs only through the available (al-
ready proved) lemmas. (Thus, the purpose of including bis in the side-condition
of (Ax) was not to ensure completeness (in such a trivial manner), but to al-
low the usage of previously known facts about bisimilarity.) A more syntactic



118 A. Popescu and E.L. Gunter

and syntax-driven system for terms (also featuring oracles though, for the same
reason as this one) will be presented in the next section.

4 Deduction of Universally Quantified Bisimilarity
Equations

Next we introduce a deduction system for term equalities, where, as before, we
interpret equality as bisimilarity, but now we interpret the occurring variables
as being universally quantified over the domain of terms.

Universal bisimilarity, ubis :: rel, is defined as follows: (U,U ′) ∈ ubis iff
(U [τ ], U ′[τ ]) ∈ bis for all substitutions τ :: var⇒ term. Thus, e.g., given distinct
variablesX and Y and an opsym f , (Op f [] [Var X,Var Y ],Op f [] [Var Y,Var X ])
∈ ubis is equivalent to ∀U, V :: term. (Op f [] [U, V ],Op f [] [V, U ]) ∈ bis.

Matched derived rules. Derived rules appear by composing primitive rules
(i.e., the de Simone rules in Rls) within maximal composition chains. I.e., they
come from considering, in the SOS system, derivation trees that are completely
backwards-saturated (in that their leaves involve only variables as sources and
targets) and then forgetting the intermediate steps in these trees. A derived rule
may not be amenable (hence not de Simone), but will always be sane. We shall
let drl denote derived rules, keeping the symbol rl for primitive rules.

We are interested in constructing all derived rules that are matched by a given
term U in such a way that U becomes the source of the conclusion of the derived
rule; in doing so, we also care about avoiding any overlap between the freshly
generated variables (required to build the rules) and the variables of another
given term V (that we later wish to prove universally bisimilar with U). We
thus introduce the operator mdr :: term ⇒ term ⇒ rule set, read “matched
derived rules”, such that, given U, V :: term, mdr V U is the set of all the
derived rules with U as the source of their conclusion and with “the Ys” fresh
for V . We write mdr V U instead of mdr V U .

The definition of mdr is both intuitive and standard (and was already sketched
in the pioneering paper [11]), but its formalities are very technical, due to the
need to avoid name overlapping and compose side-conditions. Here, we count on
its understanding by examples and by its abstract properties, but App. A in [28]
gives the general definition. (In [6,4], where what we call “matched derived rules”
are called “ruloids”, mdr is not even defined, but rather the existence of such an
operator satisfying suitable properties (essentially the same with what we call
below soundness and completeness of the matched derived rules) is proved.)

Running example (continued). We again assume that all the variables X,Y
etc. that we refer to below are fixed distinct variables.
- mdr !X(X | !X), the set of derived rules matched by X | !X and with “the Ys”
avoiding the variables of !X , consists of {DRL1,DRL2,DRL3,DRL4} (see below);
- mdrX | !X(!X), the set of derived rules matched by !X and with “the Ys”
avoiding the variables of X | !X , consists of {DRL5,DRL6} (given below).



Incremental Pattern-Based Coinduction 119

X
as 0� Y

X | !X � Y | !X
(DRL1)
[as 0 = b]

X
as 0� Y

X | !X � X | (!X | Y )

(DRL2)
[∃c.as 0 = c ∧ c = b]

X
as 0� Y0 X

as 1� Y1

X | !X � X | (!X | (Y0 | Y1))

(DRL3)

∃c.
sync (as 0) (as 1) c
∧ c = b

X
as 0� Y0 X

as 1� Y1

X | !X � Y0 | (!X | Y1)

(DRL4)

∃c.
as 1 = c ∧
sync (as 0) c b

X
as 0� Y

!X � !X | Y
(DRL5)
[as 0 = b]

X
as 0� Y0 X

as 1� Y1

!X � !X | (Y0 | Y1)

(DRL6)
[sync (as 0) (as 1) b]

Remarks. (1) Because the term !X has only depth 1, the matched derived rules
DRL5,DRL6 are essentially the primitive rules REPL,REPLS. Moreover, DRL1
was obtained by a single (backwards) application of the rule PARL.

(2) Each of DRL2,DRL3,DRL4 arises from the composition of two primitive
rules. For example, DRL3 is obtained by applying PARR, and then applying
REPLS to the resulted hypothesis:

X
as 0� Y0 X

as 1� Y1

!X c� !X|(Y0 | Y1)
(REPLS)
[sync (as 0) (as 1) c]

X | !X b� X | (!X | (Y0 | Y1))

(PARR)
[c = b]

The side-condition of DRL3 is obtained by composing (essentially as relations)
the two side-conditions, of PARR and REPLS, yielding existential quantifica-
tion over c. Of course, the side-conditions of DRL2,DRL3,DRL4 can be read-
ily simplified to the equivalent forms as 0 = b, sync (as 0) (as 1) b and again
sync (as 0) (as 1) b, but eliminating the existential quantifiers may not be possi-
ble in general – recall that side-conditions are arbitrary predicates.

The only property we care about concerning elements drl of mdr V U w.r.t. V
is that theYs(drl ) are all distinct from the variables of V . On the other hand,
concerning the relationship between mdr V U and U , we have the crucial facts of
soundness and completeness w.r.t. transition:
- For all drl ∈ mdr V U , drl is sound, i.e.: for all τ :: var ⇒ term, as ::
nat ⇒ act, and b :: act, if τ((theXXs drl)!j)

as j� τ((theYs drl)!j) for all j <
length(theYs drl) and side drl as b holds, then (theS drl)[τ ] b� (theT drl)[τ ] .
- mdrV U is complete for inference of transitions with sources that match U , i.e.:
for all τ :: var⇒ term, b :: act and Q :: term such that U [τ ] b� Q , there exist
drl ∈ mdrV U , τ ′ :: var⇒ term and as :: nat⇒ act such that:
— τ ′ coincides with τ on vars U (hence U [τ ] = U [τ ′]);

— τ ′((theXXs drl)!j)
as j� τ ′((theYs drl)!j) for all j < length(theYs drl );

— side drl as b holds;
— (theT drl)[τ ′] = Q (and also, remember that theS drl = U).

Deduction of universal bisimulation. An equation will be simply a pair
of terms, written U ∼= V , and we write equation for the type of equations.
(Note that rel is the same as equation set.) Our goals will consist of pairs
(set of equations) – equation, where all equations shall be thought of as being
universally quantified. We shall mostly use S, T, U, V for terms thought of as
patterns, and P,Q,R for terms thought of as instances.



120 A. Popescu and E.L. Gunter

Given U,U ′ :: term, G :: mdr U ′ U ⇒ mdr U U
′, and g :: drl∈mdr ′ U{0, . . . ,

length(theXXs(G drl )) − 1} ⇒ {0, . . . , length(theXXs drl) − 1}, we define the
predicate simul U U ′ G g, read “U is (one-step-)simulated by U ′ via G and g”,
to mean that, for all drl ∈ mdrU U

′, the following holds: Assume drl has the
form XX 0

as 0� Y0 , . . . ,XX n−1
as (n−1)� Yn−1

S
b� T

[side drl as b] (∗)
and drl ′ = G drl has the form

XX ′0
as 0� Y ′0 , . . . ,XX ′n′−1

as (n′−1)� Y ′n′−1

S′ b� T ′
[side drl ′ as b] (∗∗)

(and therefore g drl :: {0, . . . , n′ − 1} ⇒ {0, . . . , n− 1}) Then:
- (1) XX g drl j = XX ′j (i.e., syntactically equal, as variables) for all j < n′.
- (2) ∀as :: nat⇒ act, b :: act. side drl as b −→ side (G drl) (as ◦ (g drl )) b.

Given the rules drl , of the form (∗), and drl ′, of the form (∗∗), and given
h :: {0, . . . , n′ − 1} ⇒ {0, . . . , n − 1}, we define newGoal drl drl ′ h to be the
equation T ∼= T ′[(Y ′j /Yh j)j<n′ ], where (Y ′j /Yh j)j<n′ is a substitution that maps
each variable Y ′j to the variable Yh j (more accurately, to the term Var Yh j).

simul and newGoal will work in tandem in our deduction system as follows:
Given a goal U ∼= U ′, we wish to prove U and U ′ universally bisimilar. For this,
we should show that, for any continuation of an instance of U , there exists a
bisimilar continuation of an instance of U ′ (and vice versa, but next we ignore
the “vice versa” part). By the completeness of mdr, any transition of an instance
of U is given by a derived rule drl in mdrU ′ U . By the soundness of mdr, for
finding a transition of an instance of U ′ that simulates that of U , it would suffice
to find for drl a derived rule in drl ′ which is possible whenever drl is possible.
Thus, we first need a map G :: mdrU ′ U ⇒ mdr U U

′ (giving the drl ′ for each
drl ∈ mdrU ′ U), and then, for each drl , a justification of the possibility of G drl
in terms of that of drl . Now, possibility of (a transition along) a derived rule is
given by its (formal) hypotheses and its side conditions. Hence, a justification of
the possibility of G drl in terms of the possibility of drl can be given by a map
from the hypotheses of G drl to those of drl that preserves the sources (which are
variables) and yields an implication between the side conditions – this is formally
achieved by a function g :: drl∈mdr ′ U{0, . . . , length(theXXs(G drl)) − 1} ⇒
{0, . . . , length(theXXs drl) − 1} that, together with G, satisfies the conditions
defining simul U U ′ G g. Moreover, we have to prove that, for each combination
(drl , G drl), the resulted continuations of the presumptive instances of U and
U ′ are again bisimilar – we obtain a newGoal drl (G drl) (g drl ) for each such
combination (note that generating this new goal has to take into consideration
the dispatching of formal hypotheses performed by g drl , meaning that we also
have to substitute some “Ys”). Finally, the incremental nature of our coinduction
(inherited from the previous section) shows up: for proving each of the new goals,
we may assume the old goal, U ∼= U ′.

We are led to the deduction relation � :: equation set⇒ equation⇒ bool
(with infix notation), defined inductively by the following clauses:



Incremental Pattern-Based Coinduction 121

·
θ � U ∼= U ′

(Eqnl)
[θ ∪ bis �eq U ∼= U ′]

∀drl ∈ mdr U′ U. θ ∪ {U ∼= U ′} � newGoal drl (G drl) (g drl)
∀drl ′ ∈ mdr U U ′. θ ∪ {U ∼= U ′} � newGoal drl ′ (G′ drl ′) (g′ drl′)

θ � U ∼= U ′

(Coind)
simul U U ′ G g
simul U ′ U G′ g′

In the side-condition at (Eqnl), �eq is standard equational-logic deduction. We
include bis among the hypotheses, because we wish to allow any known facts
about bisimilarity to “help” �-deduction, including facts obtained by means
other than �. Again, due to circularity (moving goals to the hypotheses), a rule
like (Coind) cannot be sound in itself, but again we have global soundness:

Theorem 3. If ∅ � U ∼= U ′, then (U,U ′) ∈ ubis.

Proof sketch. We use the soundness of I� (Theorem 1) together with the rules
defining � being simulated by those defining I�. Namely, we show, by induc-
tion on �, that θ � U ∼= U ′ implies sstvsmCl(θ) I� sstvsmCl({(U,U ′)}), where
sstvsmCl :: rel⇒ rel gives the substitutive and symmetric closure of a relation,
i.e., sstvsmCl(ξ) = {(S[σ], T [σ]). σ :: var⇒ term, (S, T ) ∈ ξ ∨ (T, S) ∈ ξ}.

If θ � U ∼= U ′ followed by an application of (Eqnl), then sstvsmCl(θ) I�
sstvsmCl({(U,U ′)}) follows applying the I�-clause (Ax), since the equational
closure coincides with the substitutive symmetric closure of the congruence
closure.

Assume now θ � U ∼= U ′ followed by (Coind), meaning that there exist
G, g,G′, g′ such that: (i) simul U U ′ G g; (ii) ∀drl ∈ mdr U ′ U. θ ∪ {U ∼= U ′} �
newGoal drl (G drl ) (g drl); (iii) simul U ′ U G′ g′; (iv) ∀drl ′ ∈ mdr U U

′. θ ∪
{U ∼= U ′} � newGoal drl ′ (G′ drl ′) (g′ drl′). Then, by the induction hypothesis:
- ∀drl ∈ mdr U ′ U. sstvsmCl(θ ∪ {U ∼= U ′}) I� sstvsmCl({newGoal drl (G drl)
(g drl)}).
- ∀drl ′ ∈ mdr U U

′. sstvsmCl(θ ∪ {U ∼= U ′}) I� sstvsmCl(newGoal drl ′ (G′ drl ′)
(g′ drl′)).

Let θ′ = sstvsmCl({(U,U ′)}) and let θ′′ = {newGoal drl (G drl ) (g drl). drl ∈
mdr U ′ U}∪{newGoal drl ′ (G′ drl ′) (g′ drl′). drl ′ ∈ mdrU U

′}. The crucial thing to
notice is that, since simul U U ′ G g and simul U ′ U G′ g′ hold, sstvsmCl({(U,U ′)})
⊆ Retr θ′ also holds – and the paragraph right before introducing � can be
regarded as an informal justification for why this is true. Therefore, θ′′ is an
“interpolant” for applying the I�-clause (Coind). Indeed, applying the I�-clause
(Split) to (1) and (2), we obtain θ′ ∪ θ I� θ′′ and then, by the I�-clause (Coind),
we obtain θ I� θ′, as desired. ��
Running example (finished). We are now ready to make rigorous the proof
of ∀P :: term. (P |!P, !P ) ∈ bis presented in the introduction. Consider the
following four proof trees of depth 0 (later referred to as Pf 1,Pf 2,Pf 3,Pf 4)
where we list the side-conditions for (Eqnl) as hypotheses:



122 A. Popescu and E.L. Gunter

{X|!X ∼= !X} ∪ bis �eq Y |!X ∼= !X|Y
{X|!X ∼= !X} � Y |!X ∼= !X|Y (Eqnl)

{X|!X ∼= !X} ∪ bis �eq X|(!X|Y ) ∼= !X|Y
{X|!X ∼= !X} � X|(!X|Y ) ∼= !X|Y (Eqnl)

{X|!X ∼= !X} ∪ bis �eq X|(!X|(Y0|Y1)) ∼= !X|(Y0|Y1)
{X|!X ∼= !X} � X|(!X|(Y0|Y1)) ∼= !X|(Y0|Y1)

(Eqnl)

{X|!X ∼= !X} ∪ bis �eq Y0|(!X|Y1) ∼= !X|(Y0|Y1)
{X|!X ∼= !X} � Y0|(!X|Y1) ∼= !X|(Y0|Y1)

(Eqnl)

Then our final proof (tree) is:
Pf 1 Pf 2 Pf 3 Pf 4

∅ � X|!X ∼= !X
(Coind)

Explanations. At (Coind), we took:
- G to map DRL1 and DRL2 to DRL5, and to map DRL3 and DRL4 to DRL6;
- g DRL1 and g DRL2 to be the identity on {0}, and g DRL3 and g DRL4 to be
the identity on {0, 1};
- G′ to map DRL5 to DRL1, and to map DRL6 to DRL3;
- g′ DRL5 to be the identity on {0}, and g′ DRL6 to be the identity on {0, 1}.
(Note that any function G′ mapping DRL5 to either DRL1 or DRL2 and DRL6 to
either DRL3 or DRL4 together with g′ as above would lead to a valid proof.)

Here is why we end up with the above four proof tasks after applying (Coind):
( )

newGoal DRL1(G DRL1)(g DRL1) = newGoal DRL1 DRL5(λi. i) = Y |!X ∼= !X|Y ;
newGoal DRL2(G DRL2)(g DRL2) = newGoal DRL2 DRL5(λi. i) = X|(!X|Y ) ∼= !X|Y ;
newGoal DRL3(G DRL3)(g DRL3)=newGoal DRL3DRL6(λi. i)=X|(!X|(Y0|Y1))∼=!X|(Y0|Y1);
newGoal DRL4(G DRL4)(g DRL4) = newGoal DRL4 DRL6(λi. i) = Y0|(!X|Y1) ∼= !X|(Y0|Y1);
newGoal DRL5(G′DRL5)(g′DRL5) = newGoal DRL5 DRL1(λi. i) = Y |!X ∼= !X|Y ;
newGoal DRL6(G′DRL6)(g′DRL6)=newGoal DRL6DRL3(λi. i)=X|(!X|(Y0|Y1))∼=!X|(Y0|Y1).

The side-conditions of (Coind) are immediately checkable. E.g., for
simul (X |!X) (!X) G g, we need to check the following trivial facts:
- w.r.t. condition (1) (in the definition of simul): that X = X .
- w.r.t. condition (2): that each of the following are pairwise equivalent:
— as 0 = b and as 0 = b;
— ∃c. as 0 = c ∧ c = b and as 0 = b;
— ∃c. sync (as 0) (as 1) c ∧ c = b and sync (as 0) (as 1) b;
— ∃c. as 1 = c ∧ sync (as 0) c b and sync (as 0) (as 1) b.

At (Eqnl) in all the four immediate subtrees of the main proof tree, we con-
sidered the fact (assumed previously proved) that {X |Y ∼= Y |X, (X |Y )|Z ∼=
X |(Y |Z)} ⊆ bis, hence what we really used was equational-logic deduction from
{X |!X ∼= !X, X |Y ∼= Y |X, (X |Y )|Z ∼= X |(Y |Z)}, which easily discharges the
equational side-conditions of the axioms, finalizing the proof.

The above proof does not display any non-trivial “dispatch” function g in
the (Coind) rule application. In general however, it is not guaranteed that the
formal hypotheses of two obtained derived rules (from the two terms of the goal)
that one wishes to pair come in the same order, nor that these rules have the



Incremental Pattern-Based Coinduction 123

same number of hypotheses. (See the proof of commutativity of “|” from App.
B in [28].)

5 Concluding Remarks

We have developed and formalized in Isabelle a proof system for process algebra
where bisimilarity is proved incrementally, while exploring and expanding the
goal, without requiring an a priori constructed bisimulation relation. Our results
apply to a wide class of process algebras.

Related work. Unique fixpoint induction for CCS and its variants [23,17,25]
is an early notion of proof-theoretic circularity for coinduction applicable to sit-
uations where circularity is explicit in the SOS by means of (guarded) fixpoint
equations. We conjecture that unique fixpoint induction in an instance of our
incremental coinduction.

We had two major sources of inspiration. First, the idea of circular coinduction
(CC for short) in the context of algebraic specifications. It was introduced in [14]
in the behavioral specification language BOBJ [1], and then also implemented
axiomatically in (generic) Isabelle under the “supervision” of the CoCASL spec-
ification language [16] and in Maude [9] as the circular coiductive prover CIRC
[20,19,31]. A comparison of our proof system with CC is somewhat difficult to
sketch, as it has to deal with different technical settings and to balance the ad-
vantages of both generality and specialization. To simplify the discussion, we
shall implicitly assume a back-and-forth translation between SOS specifications
and the coalgebraic and behavioral specifications required by the CC settings.
Our proof system is in a sense more general and in a sense more specialized.

It is more general in that it applies to nondeterministic processes, not handled
by CC (e.g., the running example in this paper is not approachable in CC, not
even interactively). On the other hand, CIRC, based on rewriting logic, could
employ the results presented here in order to extend CC with nondeterminism.2

Also, CoCASL as a specification language has the expressive power required to
deal with process algebra and nondeterminism, hence to support a version of
CC for nondeterministic systems. However, it is the determinism of CC that
allows for partial automation, admirably illustrated by CIRC. (Our formalized
system, once fine-tuned into a tool, will also allow automation for determinis-
tic, and, to some extent, finitely-branching cases – see below the discussion on
future work.)

It is more specialized in that the deterministic instances of our setting are more
restricted than what CC can handle (in particular, e.g., deterministic lookahead,
not approachable here, is unproblematic in CC). On the other hand, our power-
ful coinduction “up to”, underneath arbitrary contexts (not supported by CC)
is possible precisely because of this restriction.

2 Which is not to say our proof system is a minor variation of CC – nondetermin-
ism (technically, the interplay between our rules (Split) and (Coind) from Sec. 3)
represented the main difficulty in our soundness proof.



124 A. Popescu and E.L. Gunter

Finally, our coinductive technique is presented in a logical form, as a proof
system, like in [31], and not as an algorithm like in the other cited works on CC.
In [31], logical form is achieved through the introduction of so-called freezing
operators, hard to justify logically – with this respect, our proof system has the
advantage of “purity”.3 (Here we should also remark some less related work:
circular systems in logical form were also developed in [7,10] for first-order logic
and the μ-calculus, respectively.)

The second major source of inspiration was the notion of coinduction proofs
up to bisimilarity and arbitrary contexts, introduced in [11,24] and developed
in [34,35]. This idea also appears in a general coalgebraic setting in [5] and is
illustrated by extensive examples in, e.g., [33]. The convenience of performing
unrestricted equational reasoning relies essentially on the “up to” coinduction
principle, Theorem 1.

Other related work includes frameworks for bisimilarity of open terms in
[29,8,4] (also building on the seminal work from [11]), where open terms are
considered universally quantified, as we do in this paper for universal bisimilar-
ity. Our soundness result for � w.r.t. universal bisimilarity, Theorem 3, could
have been more sharply phrased: on one hand, as a soundness result w.r.t. the
notion of bisimulation under formal hypotheses from [11,29]; on the other, w.r.t.
to the relation from [4] (which is essentially universal bisimilarity in any conser-
vative extension of the SOS system). All works cited in this paragraph discuss
non-incremental proof systems, where the desired bisimulation relation needs to
be fed by the user.

Descriptions of more or less automatic software tools for proving bisimilarity
in process algebra abound in the literature – see [18,21] for overviews. While most
of these tools are dedicated to (and optimized for) particular process algebras
(and many to finite-state systems), ECRINS [12] is based precisely on generic
process algebra in de Simone format, meaning that the results of this paper on
incremental coinduction apply directly to that setting (and, interestingly, a form
of coinduction that “attempts to add more couples to the [previously specified]
relation” is indicated in [12] as a direction for future research, to our knowledge
not pursued so far). Finally, in Coq [2], the interaction between its general-
purpose support for building proofs and its coinductive types (as illustrated,
e.g., in [13]) also leads to a form of incremental coinduction whose relationship
with our approach is yet to be understood.

Future work. The de Simone SOS format is already fairly general, covering a
wide range of process algebras, including CCS-like process algebras with guarded
recursion, and even de Simone systems under weak bisimilarity (since for them
weak bisimilarity can be regarded as strong bisimilarity for trace-based de Si-
mone systems, as suggested in [27]). An extension of our incremental coinductive
technique to more general formats such as GSOS [6] or tyft/tyxt [15] is of course

3 In a sense, what these freezing operators do is to guard against coinduction up-to,
not sound in general. So again, our logical system achieves convenience because of
specialization, i.e., by sacrificing some generality.



Incremental Pattern-Based Coinduction 125

desirable. Another direction for generalization is the allowance of bindings in
the syntax of terms, including π-calculus-like bindings featuring scope extrusion
(thus generalizing HOL-based settings for π-calculus such as [22,30]).

In our proof system for universal bisimilarity, �, one has to come up with
suitable dispatch functions G, g,G′, g′ at each application of the coinduction
rule (Coind), and therefore (Coind) is not syntax-directed per se, hence not
trivially automatable – this is inherent in the hardness of bisimilarity in our
general setting. However, (Coind) does allow to decompose the goal symboli-
cally, without asking the user to decide for a global bisimilarity candidate –
instead, assisted by the powerful Isabelle classical reasoner and simplifier (able
to discharge the typically simple goals resulted from chaining side-conditions),
the user can explore various choices of the dispatch functions by analyzing the
derived rules. Moreover, for systems with finite number of rules one can write an
Isabelle tactic that tries all the combinations of dispatch functions. While this
would require exponential time, it may still be feasible for cases of interest, since
the time-complexity is a function of the symbolic branching of process patterns
(determined by logical formulas obtained from side-conditions), and not of the
actual branching of processes given by all possible instances of the rules. For the
general case, we should aim at organizing our formalization (by means of proof
tactics and pretty-printers) into a partly-interactive partly-automatic tool. The
advantages of such a tool will of course include the generality of its scope and
the fact that, unlike most other tools, it would be (a priori) formally certified.

Acknowledgments. We thank the reviewers for the careful and insightful read-
ing of this paper and for pointing out related work. The first author is grate-
ful to Grigore Roşu for many hours of discussion on his circular coinduction
technique.

References

1. BOBJ, http://cseweb.ucsd.edu/groups/tatami/bobj
2. The Coq proof assistant, http://coq.inria.fr
3. Isabelle, http://www.cl.cam.ac.uk/research/hvg/Isabelle
4. Aceto, L., Cimini, M., Ingolfsdottir, A.: A bisimulation-based method for proving

the validity of equations in GSOS languages. To appear in Electr. Proc. Theor.
Comput. Sci.

5. Bartels, F.: Generalised coinduction. Math. Struct. Comp. Sci. 13(2), 321–348
(2003)

6. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1),
232–268 (1995)

7. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In:
Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer,
Heidelberg (2005)

8. Bruni, R., de Frutos-Escrig, D., Mart́ı-Oliet, N., Montanari, U.: Bisimilarity con-
gruences for open terms and term graphs via Tile Logic. In: Palamidessi, C. (ed.)
CONCUR 2000. LNCS, vol. 1877, pp. 259–274. Springer, Heidelberg (2000)

http://cseweb.ucsd.edu/groups/tatami/bobj
http://coq.inria.fr
http://www.cl.cam.ac.uk/research/hvg/Isabelle


126 A. Popescu and E.L. Gunter

9. Clavel, M., Durán, F.J., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Que-
sada, J.F.: The Maude system. In: Narendran, P., Rusinowitch, M. (eds.) RTA
1999. LNCS, vol. 1631, pp. 240–243. Springer, Heidelberg (1999)

10. Dam, M., Gurov, D.: μ-calculus with explicit points and approximations. J. Log.
Comput. 12(2), 255–269 (2002)

11. de Simone, R.: Higher-level synchronizing devices in MEIJE-SCCS. Theor. Com-
put. Sci. 37, 245–267 (1985)

12. Doumenc, G., Madelaine, E., de Simone, R.: Proving process calculi translations in
ECRINS: The pureLOTOS → MEIJE example. Technical Report RR1192, INRIA
(1990), http://hal.archives-ouvertes.fr/inria-00075367/en/

13. Giménez, E.: An application of co-inductive types in Coq: Verification of the al-
ternating bit protocol. In: Berardi, S., Coppo, M. (eds.) TYPES 1995. LNCS,
vol. 1158, pp. 135–152. Springer, Heidelberg (1996)

14. Goguen, J.A., Lin, K., Roşu, G.: Circular coinductive rewriting. In: ASE 2000, pp.
123–132 (2000)

15. Groote, J.F., Vaandrager, F.: Structured operational semantics and bisimulation
as a congruence. Inf. Comput. 100(2), 202–260 (1992)

16. Hausmann, D., Mossakowski, T., Schröder, L.: Iterative circular coinduction for
coCASL in Isabelle/HOL. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp.
341–356. Springer, Heidelberg (2005)

17. Hennessy, M., Lin, H.: Proof systems for message-passing process algebras. Formal
Asp. Comput. 8(4), 379–407 (1996)

18. Inverardi, P., Priami, C.: Automatic verification of distributed systems: The process
algebra approach. Formal Methods in System Design 8(1), 7–38 (1996)

19. Lucanu, D., Goriac, E.-I., Caltais, G., Roşu, G.: CIRC: A behavioral verification
tool based on circular coinduction. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.)
CALCO 2009. LNCS, vol. 5728, pp. 433–442. Springer, Heidelberg (2009)

20. Lucanu, D., Roşu, G.: CIRC: A circular coinductive prover. In: Mossakowski, T.,
Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 372–378.
Springer, Heidelberg (2007)

21. Madelaine, E.: Verification tools from the CONCUR project,
http://www-sop.inria.fr/meije/papers/concur-tools

22. Melham, T.F.: A mechanized theory of the pi-calculus in HOL. Nord. J. Com-
put. 1(1), 50–76 (1994)

23. Milner, R.: A complete inference system for a class of regular behaviours. J. Com-
put. Syst. Sci. 28(3), 439–466 (1984)

24. Milner, R.: Communication and concurrency. Prentice-Hall, Englewood Cliffs
(1998)

25. Monroy, R., Bundy, A., Green, I.: On process equivalence = equation solving in
ccs. J. Autom. Reasoning 43(1), 53–80 (2009)

26. Mousavi, M.R., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20
years after. Theor. Comput. Sci. 373(3), 238–272 (2007)

27. Popescu, A.: Weak bisimilarity coalgebraically. In: Kurz, A., Lenisa, M., Tarlecki,
A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 157–172. Springer, Heidelberg (2009)

28. Popescu, A., Gunter, E.L.: Incremental pattern-based coinduction for process al-
gebra and its Isabelle formalization. Technical Report, University of Illinois,
http://hdl.handle.net/2142/14858

29. Rensink, A.: Bisimilarity of open terms. Inf. Comput. 156(1-2), 345–385 (2000)

http://hal.archives-ouvertes.fr/inria-00075367/en/
http://www-sop.inria.fr/meije/papers/concur-tools
http://hdl.handle.net/2142/14858


Incremental Pattern-Based Coinduction 127

30. Röckl, C., Hirschkoff, D.: A fully adequate shallow embedding of the π-calculus in
Isabelle/HOL with mechanized syntax analysis. J. Funct. Program. 13(2) (2003)

31. Roşu, G., Lucanu, D.: Circular coinduction: A proof theoretical foundation. In:
Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 127–
144. Springer, Heidelberg (2009)

32. Rutten, J.J.M.M.: Processes as terms: Non-well-founded models for bisimulation.
Math. Struct. Comp. Sci. 2(3), 257–275 (1992)

33. Rutten, J.J.M.M.: Elements of stream calculus (an extensive exercise in coinduc-
tion). Electr. Notes Theor. Comput. Sci., 45 (2001)

34. Sangiorgi, D.: On the bisimulation proof method. Math. Struct. Comp. Sci. 8(5),
447–479 (1998)

35. Sangiorgi, D., Walker, D.: The π-calculus. A theory of mobile processes, Cambridge
(2001)



Parameterised Multiparty Session Types�

Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu

Department of Computing, Imperial College London

Abstract. For many application-level distributed protocols and parallel algo-
rithms, the set of participants, the number of messages or the interaction struc-
ture are only known at run-time. This paper proposes a dependent type theory
for multiparty sessions which can statically guarantee type-safe, deadlock-free
multiparty interactions among processes whose specifications are parameterised
by indices. We use the primitive recursion operator from Gödel’s System T to
express a wide range of communication patterns while keeping type checking
decidable. We illustrate our type theory through non-trivial programming and
verification examples taken from parallel algorithms and Web services usecases.

1 Introduction

As the momentum around communications-based computing grows, the need for ef-
fective frameworks to globally coordinate and structure the application-level interac-
tions is pressing. The structures of interactions are naturally distilled as protocols. Each
protocol describes a bare skeleton of how interactions should proceed, through e.g. se-
quencing, choices and repetitions. In the theory of multiparty session types [3, 5, 13],
such protocols can be captured as types for interactions, and type checking can statically
ensure runtime safety and fidelity to a stipulated protocol.

One of the particularly challenging aspects of protocol descriptions is the fact that
many actual communication protocols are highly parametric in the sense that the num-
ber of participants and even the interaction structure itself are not fixed at design time.
Examples include parallel algorithms such as the Fast Fourier Transform (run on any
number of communication nodes depending on resource availability) and Web ser-
vices such as business negotiation involving an arbitrary number of sellers and buy-
ers. This paper introduces a robust dependent type theory which can statically ensure
communication-safe, deadlock-free process interactions which follow parameterised
multiparty protocols.

We illustrate the key ideas of our proposed parametric type structures through exam-
ples. Let us first consider a simple protocol where participant Alice sends a message
of type nat to participant Bob. To develop the code for this protocol, we start by speci-
fying the global type, which can concisely and clearly describe a high-level protocol for
multiple participants [3, 13, 17], as follows (below end denotes protocol termination):

G1 = Alice → Bob : 〈nat〉.end

Upon agreement onG1 as a specification forAlice and Bob, each program can be imple-
mented separately. For type-checking,G1 is projected into end-point session types: one

� The work is partially supported by EPSRC EP/G015635/1 and EP/F003757/1.

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 128–145, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Parameterised Multiparty Session Types 129

from Alice’s point of view, !〈Bob, nat〉 (output to Bobwith nat-type), and another from
Bob’s point of view, ?〈Alice, nat〉 (input from Alicewith nat-type), against which the
respective Alice and Bob programs are checked to be compliant.

The first step towards generalised type structures for multiparty sessions is to allow
modular specifications of protocols using arbitrary compositions and repetitions of in-
teraction units (this is a standard requirement in multiparty contracts [21]). Consider the
typeG2 = Bob→ Carol : 〈nat〉.end. The designer may wish to compose sequentially
G1 and G2 together to build a larger protocol:

G3 = G1; G2 = Alice → Bob : 〈nat〉.Bob → Carol : 〈nat〉.end

We may also want to iterate the composed protocols n-times, which can be written by
foreach(i < n){G1;G2}, and moreover bind the number of iteration n by a dependent
product to build a family of global specifications, as in:

Πn.foreach(i < n){G1; G2} (1)

Beyond enabling a variable number of exchanges between a fixed set of participants, the
ability to parameterise participant identities can represent a wide class of the commu-
nication topologies found in the literature. For example, the use of indexed participants
W[i] (denoting the i-th worker) allows to specify a family of session types such that
neither the number of participants nor message exchanges are known before the run-
time instantiation of the parameters. The following type and diagram both describe a
sequence of messages from W[n] to W[0] (indices decrease in our foreach, see § 2):

Πn.(foreach(i < n){W[i + 1] → W[i] : 〈nat〉}) n �� n-1 �� . . . �� 0 (2)

Here we face an immediate question: what is the underlying type structure for such
parametrisation, and how can we type-check each (parametric) end-point program?
The type structure should allow the projection of a parameterised global type to an end-
point type before knowing the exact shape of the concrete topology. In (2), if n ≥ 2,
there are three distinct communication patterns inhabiting this specification: the ini-
tiator (send only), the n − 1 middle workers (receive and send), and the last worker
(receive only). This is no longer the case when n = 1 (there is only the initiator and the
last worker) or when n = 0 (no communication). Can we provide a decidable projection
and static type-checking by which we can preserve the main properties of the session
types such as progress and communication-safety in parameterised process topologies?
The key technique proposed in this paper is a projection method from a dependent
global type onto a generic end-point generator which exactly captures the interaction
structures of parameterised end-points and which can represent the class of all possible
end-point types.

The main contributions of this paper follow:

– A new expressive framework to globally specify and program a wide range of para-
metric communication protocols (§ 2). We achieve this result by combining depen-
dent type theories derived from Gödel’s System T [18] (for expressiveness) and
indexed dependent types from [22] (for tractability to control parameters), with
multiparty session types.

– Decidable and flexible projection methods based on a generic end-point generator
and mergeability of branching types, enlarging the typability (§ 3.1).



130 N. Yoshida et al.

i ::= i | n | i op i′ Indices
P ::= P ∧ P | i ≤ i′ Propositions
I ::= nat | {i :I | P} Index sorts
P ::= Alice | Worker | . . . Participants
p ::= p[i] | P Principals
S ::= nat | 〈G〉 Value type
U ::= S | T Payload type
K ::= {n0, ..., nk} Finite integer set

G ::= Global types
| p → p′ : 〈U〉.G Message
| p → p′ : {lk : Gk}k∈K Branching
| μx.G Recursion
| R G λi :I.λx.G′ Primitive recursion
| x Type variable
| G i Application
| end Null

R G λi :I.λx.G′ 0 −→ G
R G λi :I.λx.G′ (n+1) −→ G′{n/i}{RG λi :I.λx.G′ n/x}

Fig. 1. Global types and type reduction

– A dependent typing system that treats the full multiparty session types integrated
with dependent types. The resulting static typing system allows decidable type-
checking and guarantees type-safety and deadlock-freedom for well-typed pro-
cesses involved in parameterised multiparty communication protocols (§ 3).

– Applications featuring various process topologies, including the complex butterfly
network for the parallel FFT algorithm (§ 2.3, § 3.6). As far as we know, this is
the first time such a complex protocol is specified by a single type and that its
implementation can be automatically type-checked to prove communication-safety
and deadlock-freedom. We also extend the calculus with a new asynchronous join
primitive for session initialisation, applied to Web services use cases [19] (§ 3.6).

The complete formal definition of our system, including proofs and additional material
for examples and implementations can be found in [11].

2 Types and Processes for Parameterised Multiparty Sessions

2.1 Global Types

Global types allow the description of the parameterised conversations of multiparty ses-
sions as a type signature. Our type syntax integrates three different formulations: (1)
global types from [3]; (2) dependent types with primitive recursive combinators based
on [18]; and (3) parameterised dependent types from a simplified Dependent ML [1, 22].

The grammar of global types (G,G′, ...) is given in figure 1. Parameterised princi-
pals p, p′, q, ... can be indexed by one or more parameters, e.g. Worker[5][i+ 1]. Index
i ranges over index variables i, j, n, naturals n or arithmetic operations. A global in-
teraction can be a message exchange (p → p′ : 〈U〉.G), where p, p′ denote the sending
and receiving principals, U the payload type of the message and G the subsequent in-
teraction. Payload types U are either value types S (which contain base type nat and
session channel types 〈G〉), or end-point types T (which correspond to the behaviour of
one of the session participants and will be explained in § 3) for delegation. Branching
(p → p′ : {lk : Gk}k∈K) allows the session to follow one of the different Gk paths in
the interaction (K is a ground and finite set of integers). μx.G is a recursive type where
type variable x is guarded in the standard way.



Parameterised Multiparty Session Types 131

Mesh

W[n][m] ��

��

��

��

. . . ��

����

��

��

��

. . . ��

��
:

��

:

��

. . . :

���� �� . . . �� W[0][0]

Πn.Πm.

foreach(i < n){
foreach(j < m){
W[i + 1][j + 1] → W[i][j + 1] : 〈nat〉.
W[i + 1][j + 1] → W[i + 1][j] : 〈nat〉};

W[i + 1][0] → W[i][0] : 〈nat〉};
foreach(k < m){W[0][k + 1] → W[0][k] : 〈nat〉}

Fig. 2. Parameterised multiparty protocol on a mesh topology

The interesting addition is the primitive recursion operator R G λi : I.λx.G′ from
Gödel’s System T [12] whose reduction semantics is given in figure 1. Its parameters
are a global type G, an index variable i with range I , a type variable for recursion x
and a recursion bodyG′.1 When applied to an index i, its semantics corresponds to the
repetition i-times of the bodyG′, with the index variable i value going down by one at
each iteration, from i−1 to 0. The final behaviour is given byGwhen the index reaches
0. The index sorts comprise the set of natural numbers and its restrictions by predicates
(P, P′, ..) that are, in our case, conjunctions of inequalities. op represents first-order
indices operators (such as +,−, ∗,...). We often omit I and end in our examples. Using
R, we define the product, composition, repetition and test operators (seen in § 1):

Πi.G =R end λi.λx.G{i + 1/i} foreach(i<j){G} =R end λi.λx.G{x/end} j

G1; G2=R G2 λi.λx.G1{x/end} 1 if j then G1 else G2=R G2 λi.λx.G1 j

where we assume that x is not free in G and G1, and that the leaves of the syntax trees
of G1 and G are end. These definitions rely on a special substitution of each end by
x (for example, p→ p′{l1:!〈nat〉; end, l2:end}{x/end} = p→ p′{l1:!〈nat〉;x, l2:x}).
The composition operator appends the execution of G2 to G1; the repetition operator
above repeatsG j-times2; the boolean values are integers 0 (false) and 1 (true). Similar
syntactic sugar is defined for local types and processes. Note that composition and
repetition do not necessarily impose sequentiality: only the order of the asynchronous
messages and the possible dependency [13] between receivers and subsequent senders
controls the sequentiality. A parallel version of the sequence example of (§ 1 (2)) can
be written: Πn.(foreach(i < n){W[n − i] → W[n − i − 1] : 〈nat〉}).

Mesh example. The session presented in figure 2 describes a particular protocol over a
standard mesh topology [15]. In this two dimensional array of workers W, each worker
receives messages from his left and top neighbours (if they exist) before sending mes-
sages to his right and bottom (if they exist). Our session takes two parameters n and m
which represent the number of rows and the number of columns. Then we have two iter-
ators that repeat W[i+1][j+1]→ W[i][j+1]: 〈nat〉 and W[i+1][j+1]→ W[i+1][j] : 〈nat〉
for all i and j. The communication flow goes from the top-left W[n][m] and converges
towards the bottom-right W[0][0] in n+m parallel message exchanges.

1 We distinguish recursion and primitive recursion in order to get decidability results, see § 3.4.
2 This version of foreach uses decreasing indices. One can write an increasing version [11].



132 N. Yoshida et al.

c ::= y | s[p] Channels
u ::= x | a Identifiers
v ::= a | n Values

p̂, q̂ ::= p̂[n] | P Principal values
m ::= (q̂,p̂,v) | (q̂,p̂,s[p̂’]) | (q̂,p̂,l) Messages in transit
h ::= ε | m · h Queue types

e ::= i | v | x | s[p] | e op e′ Expressions

P ::= Processes
| ū[p0, .., pn](y).P Init
| u[p](y).P Accept
| ā[p] : s Request
| c!〈p, e〉; P Value sending
| c?〈p, x〉; P Value reception
| c ⊕ 〈p, l〉; P Selection
| c&〈p, {lk : Pk}k∈K〉 Branching

| μX.P Recursion
| 0 Inaction
| P | Q Parallel
| R P λi.λX.Q Primitive recursion
| X Process variable
| (P i) Application
| (νs)P Session restriction
| s:h Queues

Fig. 3. Syntax for user-defined and run-time processes

2.2 Process Syntax and Semantics

Syntax. The syntax of expressions and processes is given in figure 3, extended from
[3], adding the primitive recursion operator and a new request process. Identifiers u can
be variables x or channel names a. Values v are either channels a or natural numbers
n. Expressions e are built out of indices i, values v, variables x, session end points (for
delegation) and operations over expressions. In processes, sessions are asynchronously
initiated by ū[p0, .., pn](y).P . It spawns, for each of the {p0, .., pn}, a request that is
accepted by the participant through u[p](y).P . Messages are sent by c!〈p, e〉;P to the
participant p and received by c?〈q, x〉;P from the participant q. Selection c⊕ 〈p, l〉;P ,
and branching c&〈q, {lk : Pk}k∈K〉, allow a participant to choose a branch from those
supported by another. Standard language constructs include recursive processes μX.P ,
restriction (νs)P and parallel composition P | Q. The primitive recursion operator
R P λi.λX.Q takes as parameters a process P , a function taking an index parameter i
and a recursion variable X . A queue s : h stores the asynchronous messages in transit.

An annotated P is the result of annotating P ’s bound names and variables as in
e.g. (νa : 〈G〉)Q or s?(x : 〈G〉)Q or R Q λi : I.λX.Q′. We omit the annotations unless
needed. We often omit 0 and the participant p from the session primitives. Requests,
session hiding and channel queues appear only at runtime, as explained below.

Semantics. The semantics is defined by the reduction relation −→ presented in fig-
ure 4. The standard definition of evaluation contexts (that allow e.g. W[3 + 1] to be re-
duced to W[4]) is omitted. The metavariables p̂, q̂, .. range over principal values (where
all indices have been evaluated). [ZeroR] and [SuccR] are standard and identical to
their global type counterparts. The rule [Init] describes the initialisation of a session by
its first participant ā[p0, .., pn](y0).P0. It spawns asynchronous requests ā[p̂k] : s that
allow delayed acceptance by the other session participants (rule [Join]). After the con-
nection, the participants share the private session name s, and the queue associated to
s (which is initially empty by rule [Init]). The variables yp in each participant p are then
replaced with the corresponding session channel, s[p]. A more verbose, but symmetric,
version of [Init] (where any participant can start the session, not only p0) could also be
used [11].



Parameterised Multiparty Session Types 133

R P λi.λX.Q 0 −→ P [ZeroR]

R P λi.λX.Q n + 1 −→ Q{n/i}{R P λi.λX.Q n/X} [SuccR]

ā[p̂0, .., p̂n](y).P −→ (νs)(P{s[p̂0]/y} | s : ∅ | ā[p̂1] : s | ... | ā[p̂n] : s) [Init]

ā[p̂k] : s | a[p̂k](yk).Pk −→ Pk{s[p̂k]/yk} [Join]

s[p̂]!〈q̂, v〉; P | s : h −→ P | s : h · (p̂, q̂, v) [Send]

s[p̂] ⊕ 〈q̂, l〉; P | s : h −→ P | s : h · (p̂, q̂, l) [Label]

s[p̂]?(q̂, x);P | s : (q̂, p̂, v) · h −→ P{v/x} | s : h [Recv]

s[p̂]&(q̂, {lk : Pk}k∈K) | s : (q̂, p̂, lk0) · h −→ Pk0 | s : h (k0 ∈ K) [Branch]

Fig. 4. Reduction rules

The rest of the session reductions are standard [3, 13]. The output rules [Send] and
[Label] push values, channels and labels into the queue of the session s. The rules
[Recv] and [Branch] perform the complementary operations. Note that these operations
check that the sender and receiver match. Processes are considered modulo structural
equivalence, denoted by ≡ (in particular, we note μX.P ≡ P{μX.P/X}).

2.3 Processes for Parameterised Multiparty Protocols

We give here the processes corresponding to the interactions described in § 1 and § 2.1,
then introduce a parallel implementation of the Fast Fourier Transform algorithm.

Sequence from § 1 (2). The process below generates all participants using a recursor:

Πn.(if n = 0 then 0
else (R (ā[W[n], .., W[0]](y).y!〈W[n − 1], v〉;0

| a[W[0]](y).y?(W[1], z);0)

λi.λX.(a[W[i + 1]](y).y?(W[i + 2], z); y!〈W[i], z〉;0 | X) n − 1)

When n = 0 no message is exchanged. In the other case, the recursor creates the n− 1
workers through the main loop and finishes by spawning the initial and final ones.

As an illustration of the semantics, we show the reduction of the above process for
n = 2. After several applications of the [SuccR] and [ZeroR] rules, we have:

ā[W[2], W[1], W[0]](y).y!〈W[1], v〉; | a[W[0]](y).y?(W[1], z); | a[W[1]](y).y?(W[2], z); y!〈W[0], z〉;
which, with [Init], [Join], [Send], [Recv], gives:

−→ (νs)(s : ε | s[W[2]]!〈W[1], v〉; | ā[W[1]] : s | ā[W[0]] : s |
a[W[0]](y).y?(W[1], z); | a[W[1]](y).y?(W[2], z); y!〈W[0], z〉; )

−→ (νs)(s : ε | s[W[2]]!〈W[1], v〉; | ā[W[1]] : s |
s[W[0]]?(W[1], z); | a[W[1]](y).y?(W[2], z); y!〈W[0], z〉; )

−→∗ (νs)(s : ∅ | s[W[2]]!〈W[1], v〉; | s[W[0]]?(W[1], z); | s[W[1]]?(W[2], z); s[W[1]]!〈W[0], z〉; )
−→∗ (νs)(s : ∅ | s[W[0]]?(W[1], z); | s[W[1]]!〈W[0], v〉; )
−→∗ ≡ 0



134 N. Yoshida et al.

(a) Butterfly pattern
xk−N/2

��������
�� Xk−N/2 = xk−N/2+

xk ∗ ω
k−N/2
N

xk

���������
�� Xk = xk−N/2 + xk ∗ ωk

N

(b) FFT diagram
x0 ���������	0

���
��

��
�

1 ���������	0

���
��

��
��

��
�

2 ���������	0

���
��

��
��

��
��

��
��

��
��

�
3 ���������	0

X0 ��

x4 ���������	1

		������ ���������	1

���
��

��
��

��
� ���������	1

���
��

��
��

��
��

��
��

��
��

�
���������	1

X1 ��

x2 ���������	2

���
��

��
� ���������	2



���������� ���������	2

���
��

��
��

��
��

��
��

��
��

�
���������	2

X2 ��

x6 ���������	3

		������ ���������	3



���������� ���������	3

���
��

��
��

��
��

��
��

��
��

�
���������	3

X3 ��

x1 ���������	4

���
��

��
� ���������	4

���
��

��
��

��
� ���������	4

��																				
���������	4

X4 ��

x5 ���������	5

		������ ���������	5

���
��

��
��

��
� ���������	5

��																				
���������	5

X5 ��

x3 ���������	6

���
��

��
� ���������	6



���������� ���������	6

��																				
���������	6

X6 ��

x7 ���������	7

		������ ���������	7



���������� ���������	7

��																				
���������	7

X7 ��

(c) Global type G =

Πn.
foreach(i < 2n){i → i : 〈nat〉};
foreach(l < n){
foreach(i < 2l){
foreach(j < 2n−l−1){
foreach(k < 2){
foreach(k′ < 2){
i ∗ 2n−l + k ∗ 2n−l−1 + j

→ i ∗ 2n−l + k′ ∗ 2n−l−1 + j : 〈nat〉}}}}}
(d) Processes P (n, p, xp, y, rp) =

y!〈p, xp〉;
foreach(l < n){

if bitn−l(p) = 0
then y?〈p, x〉; y!〈p + 2n−l−1, x〉;

y?〈p + 2n−l−1, z〉; y!〈p, x + z ω
g(l,p)
N 〉;

else y?〈p, x〉; y!〈p− 2n−l−1, x〉;
y?〈p− 2n−l−1, z〉; y!〈p, z + x ω

g(l,p)
N 〉; };

y?〈p, x〉; rp!〈0, x〉;
where g(l, p) = p mod 2l

Fig. 5. Fast Fourier Transform on a butterfly network topology

Mesh from figure 2. The mesh example is more complex: when n and m are bigger
than 2, there are 9 distinct roles that each have a different pattern of communication.
We only list processes for (1) the centre workers W[i][j] (0 < i < n, 0 < j < m) who
are connected in all four directions, (2) the initiator W[n][m] from the top-left corner.
Below, f(i, j) represents the expression computed at the (i, j)-th element.

Pcentre(i, j) = a[W[i][j]](y).y?(W[i + 1][j], z1); y?(W[i][j + 1], z2);
y!〈W[i − 1][j], f(i − 1, j)〉; y!〈W[i][j − 1], f(i, j − 1)〉; 0

Pstart(n, m) = ā[W[0][0]..W[n][m]](y).y!〈W[n − 1][m], f(n − 1, m)〉;

FFT. We describe a parallel implementation of the Fast Fourier Transform algorithm
(more precisely the radix-2 variant of the Cooley-Tukey algorithm [10]).

Figure 5(a) illustrates the recursive principle of the algorithm, called butterfly, where
two different outputs can be computed in constant time from the results of the same two
recursive calls. The complete algorithm is illustrated by the diagram from figure 5(b).
It features the application of the FFT on a network of N = 23 machines on an hy-
percube network computing the discrete Fourier transform of vector x0, . . . , x7. Each
row represents a single machine at each step of the algorithm. Each edge represents a
value sent to another machine. The dotted edges represent the particular messages that
a machine sends to itself to remember a value for the next step. Each machine is suc-
cessively involved in a butterfly with a machine whose number differs by only one bit.



Parameterised Multiparty Session Types 135

T ::= End-point types
| !〈p, U〉; T Output
| ?〈p, U〉; T Input
| ⊕〈p, {lk : Ti}k∈K〉 Selection
| &〈p, {lk : Ti}k∈K〉 Branching

| μx.T Recursion
| R T λi :I.λx.T ′ Primitive recursion
| x Type variable
| T i Application
| end End

Fig. 6. End-point types

p → p′ : 〈U〉.G� q = if q=p=p’ then !〈p, U〉; ?〈p, U〉; G � q
else if q=p then !〈p′, U〉; G � q
else if q=p’ then ?〈p, U〉; G � q
else G� q

p → p′ : {lk : Gk}k∈K� q = if q=p then ⊕〈p′, {lk : Gk � q}k∈K〉
else if q=p’ then &〈p, {lk : Gk � q}k∈K〉
else �k∈KGk � q

R G λi :I.λx.G′� q = R G � q λi :I.λx.G′ � q

(μt.G)� p = μt.G � p
x� p = x

(G i) � p = (G� p) i
end � p = end

Fig. 7. Projection of global types to end-point types

Note that the recursive partition over the value of a different bit at each step requires a
particular bit-reversed ordering of the input vector: the machine number p initially re-
ceives xp where p denotes the bit-reversal of p. Figure 5(c) gives the global session type
describing the interactions between 2n machines. The first iterator is the initialisation
step. Then we have an iteration over variable l for the n successive steps of the algo-
rithm. Figure 5(d) defines the processes that each of the machines runs. Each process
returns the final answer at rp.

3 Typing Parameterised Multiparty Interactions

3.1 End-Point Types and End-Point Projections

The syntax of end-point types is given in figure 6. Output expresses the sending to p of
a value or channel of type U , followed by the interactions T . Selection represents the
transmission to p of a label lk chosen in {lk}k∈K followed by Tk. Input and branching
are their dual counterparts. The other types are similar to their global versions.

End-point projection: a generic projection. The relation between end-point types
and global types is formalised by the projection relation. Since the actual participant
characteristics might only be determined at runtime, we cannot straightforwardly use
the definition from [3, 13]. Instead, we rely on the expressive power of the primitive
recursive operator: a generic end-point projection ofG onto q, writtenG � q, represents
the family of all the possible end-point types that a principal q can satisfy at run-time.

The general endpoint generator is defined in figure 7 using the derived construct
if then else . The projection p → p′ : 〈U〉.G � q leads to a case analysis: if the
participant q is equal to p, then the end-point type of q is an output of type U to p′;
if participant q is p′ then q inputs U from p′; else we skip the prefix. The first case



136 N. Yoshida et al.

corresponds to the possibility for the sender and receiver to be identical. Projecting the
branching global type is similarly defined, but for the operator 	 explained below. For
the other cases (as well as for our derived operators), the projection is homomorphic.

Mergeability and injection of branching types. We first recall the example from [13],
which explains that naı̈ve branching projection leads to inconsistent end-point types.

W[0] → W[1] : {ok : W[1] → W[2] : 〈bool〉, quit : W[1] → W[2] : 〈nat〉}

We cannot project the above type onto W[2] because, while the branches behave differ-
ently, W[0] makes a choice without informing W[2] who thus cannot know the type of the
expected value. A solution is to define projection only when the branches are identical,
i.e. we change the above nat to bool in our example above.

In our framework, this restriction is too strong since each branch may contain differ-
ent parametric interaction patterns. To overcome this, we propose two methods called
mergeability and injection of branching types. Formally, the mergeability relation �� is
the smallest congruence relation over end-point types such that:3 if ∀i ∈ (K ∩J).Tk ��
T ′j and ∀i ∈ (K \J)∪(J \K).lk �= lj , then &〈p, {lk : Tk}k∈K〉 �� &〈p, {lj : T ′j}j∈J 〉.
When T1 �� T2 is defined, we define the injection 	 as a partial commutative operator
over two types such that T 	 T = T for all types and that:

&〈p, {lk : Ti}k∈K〉 � &〈p, {lj : T ′
j}j∈J 〉 =

&〈p, {lk : Tk � T ′
k}k∈K∩J ∪ {lk : Tk}k∈K\J ∪ {lj : T ′

j}j∈J\K〉
The mergeability relation states that two types are identical up to their branching types
where only branches with distinct labels are allowed to be different. By this extended
typing condition, we can modify our previous global type example to add ok and quit
labels to notify W[2]. We get:

W[0] → W[1] : {ok : W[1] → W[2] : {ok : W[1] → W[2]〈bool〉 },
quit : W[1] → W[2] : {quit : W[1] → W[2]〈nat〉}}}

Then W[2] can have the type &〈W[1], {ok : 〈W[1], bool〉, quit : 〈W[1], nat〉}〉which could
not be obtained through the original projection rule in [3, 13]. This projection is sound
up to branching subtyping (cf. Lemma 3.4).

3.2 Type System

This subsection introduces the type system. Because free indices appear both in terms
(e.g. participants in session initialisation) and in types, the formal definition of what
constitutes a valid term and a valid type are interdependent and both in turn require a
careful definition of a valid global type.

Judgements and environments. One of the main differences with previous session
type systems is that session environments Δ can contain dependent process types. The
grammar of environments, process types and kinds are given below.

Δ ::= ∅ | Δ, c:T Γ ::= ∅ | Γ, P | Γ, u : S | Γ, i : I | Γ, X : τ τ ::= Δ | Πi :I.τ

3 The idea of mergeability is introduced informally in the tutorial paper [8].



Parameterised Multiparty Session Types 137

Δ is the session environment which associates channels to session types. Γ is the
standard environment which contains predicates and which associates variables to sort
types, service names to global types, indices to index sets and process variables to ses-
sion types. τ is a process type which is either a session environment or a dependent
type. We write Γ, u : S only if u �∈ dom(Γ ). We use the same convention for others.

Following [22], we assume given in the typing rules two semantically defined judge-
ments: Γ |= P (predicate P is a consequence of Γ ) and Γ |= i : I (i : I follows from
the assumptions of Γ ). We also inductively define well-formed types using a kind sys-
tem [11]. The judgement Γ � U � κ means type U has kind κ. Kinds include proper
types for global, value, principal, end-point and process types (denoted by Type), and
the kind of type families, written by Πi : I.κ. Well-formedness of a term i and P in Γ
and environments is defined in the standard way [1].

3.3 Typing Processes

We explain here (Figure 8) a selection of the process typing rules. Rules [TNAT] and
[TVAR] are standard (Γ � Env means that Γ is well-formed). For participants, we check
their typing by [TID] and [TP] in a similar way as [22] where Γ � κ means kinding κ
is well-formed. In [TPREC], we use the abbreviation [0..j] = {i : nat | i ≤ j}. Then

Γ � Env
[TNAT]

Γ � n � nat

Γ � κ
[TID]

Γ � Alice � κ

Γ � p � Πi :I.κ Γ |= i :I
[TP]

Γ � p[i] � κ{i/i}

Γ, i : I−, X : τ{i/j} � Q � τ{i + 1/j} Γ � P � τ{0/j} Γ, j :I � τ � κ
[TPREC]

Γ � R P λi.λX.Q � Πj :I.τ

Γ � G1 ≡ G2 Γ � G′
1 ≡ G′

2 or

Γ � R G1 λi :I.λx.G′
1 n ≡ R G2 λi :I.λx.G′

2n with Γ |= I = [0..m], 0 ≤ n ≤ m
[PREC]

Γ � R G1 λi :I.λx.G′
1 ≡wf R G2 λi :I.λx.G′

2

Γ �whnf(G1)≡wf whnf(G2)
[WF]

Γ � G1 ≡ G2

Γ �P �τ Γ �τ ≡τ ′
[TEQ]

Γ � P � τ ′
Γ �P �τ Γ �τ ≤τ ′

[TSUB]
Γ � P � τ ′

Γ, X : τ � P � τ
[TREC]

Γ � μX.P � τ

Γ, X : τ � Env
[TVAR]

Γ, X : τ � X � τ

Γ � P � Πi :I.τ Γ |= i ∈ I
[TAPP]

Γ � P i � τ{i/i}

Γ � u : 〈G〉 Γ � P � Δ, y : G � p0

Γ � pi � nat Γ |= pid(G) = {p0..pn}
[TINIT]

Γ � ū[p0, .., pn](y).P � Δ

Γ � u : 〈G〉 Γ � P � Δ, y : G � p
Γ � p � nat Γ |= p ∈ pid(G)

[TACC]
Γ � u[p](y).P � Δ

Γ � a : 〈G〉 Γ � p � nat Γ |= p ∈ pid(G)
[TREQ]

Γ � ā[p] : s � s[p] : G � p

Γ � e � S Γ � P � Δ, c : T
[TOUT]

Γ � c!〈p, e〉; P � Δ, c :!〈p, S〉; T

Fig. 8. Process typing



138 N. Yoshida et al.

we define I− by [0..0]− = ∅ and [0..i]− = [0..i − 1]. This rule deals with the
changed index range within the recursor body. More precisely, we first check τ ’s kind.
Then we verify for the base case (j = 0) that P has type τ{0/j}. Last, we check the
more complex inductive case: Q should have type τ{i + 1/j} under the environment
Γ, i:I−, X :τ{i/j} where τ{i/j} of X means that X satisfies the predecessor’s type
(induction hypothesis). [TAPP] is the elimination rule for dependent types.

Since our types include dependent types and recursors, we need a notion of type
equivalence. We extend the standard method of [1, §2] with the recursor: [WF] is the
main rule definingG1 ≡ G2 and relies on the existence of a common weak head normal
form for the two types and [PREC] says two recursors are equated if either (1) each
subgraph is equated by ≡, or (2) they reduce to the same normal forms when applied to
a finite number of indices. Rule [TEQ] allows to type processes up-to type equivalence.

[TINIT] types a session initialisation on shared channel u, binding channel y and
requiring participants {p0, .., pn}. The premise verifies that the type of y is the first
projection of the global type G of u and that the participants in G (denoted by pid(G))
can be semantically derived as {p0, .., pn}. [TACC] allows to type the p-th participant to
the session initiated on u. The typing rule checks that the type of y is the p-th projection
of the global type G of u and that G is fully instantiated. The kind rule ensures that G
is fully instantiated (i.e. G′’s kind is Type). [TREQ] types the process that waits for an
accept from a participant: its type corresponds to the end-point projection of G.

Recursion [TREC], variable ([TVAR]), output ([TOUT]), input, delegation, inaction,
branching/selection and the expression typing rules as well as the typing rules for
queues are similar to those in [3, 13].

3.4 Properties of Typing

Ensuring termination of type-checking with dependent types is not an easy task since
type equivalences are often derived from term equivalences. We rely on the strong nor-
malisation of System T [12] for the termination proof.

Proposition 3.1 (Termination and Confluence). The head relation−→ on global and
end-point types (i.e. G −→ G′ and T −→ T ′ for closed types in Figure 2) are strong
normalising and confluent on well-formed kindings.

The following lemma is proved by defining the weight of the equality and showing the
weight of any premise of a rule is always less than the weight of the conclusion (the
weight for a recursor needs to be extended to allow the inductive equality rule).

Proposition 3.2 (Termination for Type-Equality Checking). Assuming that proving
the predicates Γ |= P appearing in type equality derivations is decidable, then type-
equality checking of Γ � G ≡ G′ terminates. Similarly for other types.

Proposition 3.3 (Termination for Type-Checking). Assuming that proving the predi-
cates Γ |= P appearing in kinding, equality, projection and typing derivations is decid-
able, then type-checking of annotated process P , i.e. Γ � P � ∅ terminates.

Proof. (Outline) By the standard argument from indexed dependent types [1, 22], for
the dependent λ-applications, we do not require equality of terms (i.e. we only need the



Parameterised Multiparty Session Types 139

equality of the indices by the semantic consequence judgements). Hence to eliminate
the type equality rule �TEQ�, we include the type equality check into �TINIT,TREQ,TACC�
(between the global type and its projected session type), and the input rule (between the
session type and the type annotating x). Similarly for recursive agents. Since α ≡ β
(for any type α and β) terminates, these checks always terminate. �	

To ensure the termination of Γ |= P, several solutions include the restriction of pred-
icates to linear equalities over natural numbers without multiplication (or to other de-
cidable arithmetic subsets) or the restriction of indices to finite domains, cf. [22].

3.5 Type Soundness and Progress

The following lemma states that mergeability is sound with respect to the branching
subtyping≤. By this, we can safely replace the third clause 	k∈KGk � q of the branch-
ing case from the projection definition by �{T | ∀k ∈ K.T ≤ (Gk � q)}. This allows
us to prove subject reduction by including subsumption as done in [13].

Lemma 3.4 (Soundness of mergeability). Suppose G1 � p �� G2 � p and Γ � Gi.
Then there exists G such that G � p = �{T | T ≤ Gi � p (i = 1, 2)} where � denotes
the maximum element with respect to ≤.

As session environments record channel states, they evolve when communications pro-
ceed. This can be formalised by introducing a notion of session environments reduction.
These rules are formalised below modulo≡.

– {s[p̂] :!〈q̂, U〉; T, s[q̂] :?〈p̂, U〉; T ′} ⇒ {s[p̂] : T, s[q̂] : T ′}
– {s[p̂] : ⊕〈q̂, {lk : Tk}k∈K〉} ⇒ {s[p̂] : ⊕〈q̂, lj〉; Tj}
– {s[p̂] : ⊕〈q̂, lj〉; T, s[q̂] : &(p, {lk : Tk}k∈K)} ⇒ {s[p̂] : T, s[q̂] : Tj}
– Δ ∪ Δ′′ ⇒ Δ′ ∪ Δ′′ if Δ ⇒ Δ′.

The first rule corresponds to the reception of a value or channel by the participant q̂;
the second rule treats the case of the choice of label lj while the third rule propagate
these choices to the receiver (participant q̂). Using the above notion we can state type
preservation under reductions as follows:

Theorem 3.5 (Subject Congruence and Reduction). If Γ � P � τ and P −→∗ P ′,
then Γ � P ′ � τ ′ for some τ ′ such that τ ⇒∗ τ ′.
Note that communication safety [13, Theorem 5.5] and session fidelity [13, Corollary
5.6] are corollaries of the above theorem. A notable fact is, in the presence of the asyn-
chronous join primitive, we can still obtain progress in a single multiparty session as
in [13, Theorem 5.12], i.e. if a program P starts from one session, the reductions at
session channels do not get a stuck. Formally we write Γ �� P �Δ if P is typable and
with a type derivation where the session typing in the premise and the conclusion of
each prefix rule is restricted to at most a singleton. Another element which can hinder
progress is when interactions at shared channels cannot proceed. We say P is well-
linked when for each P −→∗ Q, whenever Q has an active prefix whose subject is a



140 N. Yoshida et al.

(free or bound) shared channels, then it is always reducible. The proof is similar to [13,
Theorem 5.12].4

Theorem 3.6 (Progress). If P is well-linked and without any element from the runtime
syntax and Γ �� P � ∅. Then for all P −→∗ Q, either Q ≡ 0 or Q −→ R for some R.

3.6 Typing Examples

Repetition example - § 1 (1). This example illustrates the repetition of a message
pattern. Let G(n) = foreach(i < n){Alice → Bob : 〈nat〉.Bob → Carol : 〈nat〉}.
Following the projection from figure 7, Alice’s end-point projection of G(n) is5:

G(n) � Alice = R end λi.λx.!〈Bob, nat〉;x n

Let Alice(n) = ā[Alice, Bob, Carol](y).(R 0 λi.λX.y!〈Bob, e[i]〉;X n) and let
Δ(n) = {y : (G(n) � Alice)} and Γ = n : nat, a : 〈G〉. We can prove that Γ �
Alice(n)�∅ from [TINIT] if we have Γ � R 0 λi.λX.y!〈Bob, e[i]〉;X n�Δ(n). This,
in turn, is given by [TPREC] and [TAPP] from Γ, i : I−, X : Δ(i) � y!〈Bob, e[i]〉;X �
Δ(i+ 1) and the trivial Γ � 0 � y : end. From [TVAR], we have Γ, i : I−, X : Δ(i) �
X � Δ(i). We conclude by [TOUT] and weak head normal form equivalence [WF] of
the types Δ(i + 1) and y :!〈Bob, nat〉; (R end λj.λx.!〈Bob, nat〉;x i). Bob(n) and
Carol(n) can be similarly typed.

Sequence example - § 1 (2). The sequence example consists of three roles (when
n ≥ 2): the starter W[n] sends the first message, the final worker W[0] receives the final
message and the middle workers first receive a message and then send another to the
next worker. We write below the generic projection for participant W[p] (left) and the
end-point type that naturally types the processes (right):

R end λi.λx.
if p = W[i + 1] then !〈W[i], nat〉;x
else if p = W[i] then ?〈W[i + 1], nat〉;x
else x n

if p = W[n] then !〈W[n − 1], nat〉; else
if p = W[0] then ?〈W[1], nat〉;else
if p = W[i] then ?〈W[i + 1], nat〉;!〈W[i − 1], nat〉;

In order to type this example, we need to prove the equivalence of these two types.
For any instantiation of p and n, the standard weak head normal form equivalence rule
[WF] is sufficient. Proving the equivalence for all p and n requires either (a) to bound
the domain I in which they live, and check all instantiations within this finite domain;
or (b) to prove the equivalence through a meta-logic case analysis. In case (a), type
checking terminates, while case (b) allows to easily prove strong properties about a
protocol’s implementation.

4 We believe a stronger progress property for interleaved multiparty sessions ensured by the
interaction typing in [3] can be obtained in this framework, too (since our typing system is an
extension from the communication system in [3]).

5 For readability, in the following examples, we omit from the nested conditionals the impossible
cases.



Parameterised Multiparty Session Types 141

FFT example - Figure 5. We prove type-safety and deadlock-freedom for the FFT
processes. Let Pfft be the following process:

Πn.(νa)(R ā[p0..p2 −1](y).P (2n − 1, p0, xp0 , y, rp0)

λi.λY.(ā[pi+1](y).P (i + 1, pi+1, xp +1 , y, rp +1) | Y ) 2n − 1)

As we reasoned above, each P (n, p, xp, y, rp) is straightforwardly typable by an end-
point type which is equivalent with the one projected from the global type G from
figure 5(c). Automatically checking the equivalence for all n is not easy though: we
need to rely on the finite domain restriction using [WF,PREC]. The following theorem
says once Pfft is applied to a natural number m, its evaluation always terminates with
the answer at rp. The proof is by the progress (Theorem 3.5), noting Pfft m is typable
by a single, multiparty dependent session (except the answering channel at rp).

Theorem 3.7 (Type safety and deadlock-freedom of FFT). For all m, ∅ � Pfft m�∅;
and if Pfft m −→∗ Q, then Q −→∗ (r0!〈0, X0〉 | . . . | r2m−1!〈0, X2m−1〉) where the
rp!〈0, Xp〉 are the actions sending the final values Xp on external channels rp.

Web Service example - Figure 9. We program and type a real-world Web service
use case: Quote Request (C-U-002) is the most complex scenario described in [19], the
public document authored by the W3C Choreography Description Language Working
Group [21]. As described in Figure 9, a buyer interacts with multiple suppliers who in
turn interact with multiple manufacturers in order to obtain quotes for some goods or
services. The Requirements from Section 3.1.2.2 of [19] include the ability to reference
a global description from within a global description to support recursive behaviour
as denoted in STEP 4(b, d): this can be achieved by parameterised multiparty session
types.

We write the specification of the usecase program modularly, starting from the first
steps of the informal description above. Here, Buyer stands for the buyer, Supp[i] for
a supplier, and Manu[j] for a manufacturer. We alias manufacturers by Manu[i][j] to ex-
press the fact that Manu[j] is connected to Supp[i] (a single Manu[j] can have multiple
aliases Manu[i′][j], see figure 9). Then, we can write global types for each of the steps.
STEP 1 is a simple multicast (typeG1). For STEP 2, we write first G2(i), the nested in-
teraction loop between the i-th supplier and its manufacturers (Ji gives all Manu[j] con-
nected to Supp[i]). Then G2 can describe the subsequent action within the main loop.
For STEP 3, for simplicity we assume the preference is given by the (reverse) ordering
of I . The first choice of G3 corresponds to the two cases of STEP 3. In the innermost
branch of G3, the branches ok, retryStep3 and reject correspond to STEP 4(a), (b) and
(c) respectively, while the type variable t models STEP 4(d). We can now compose these
subprotocols together. The full global type is then G = Πi.ΠJ̃.(G1 ; μt.(G2 ; G3))
where we have i suppliers, and J̃ gives the index sets Ji of the Manu[j]s connected with
each Supp[i].

For the end-point projection, we focus on the suppliers’ case. The projections of
G1 and G2 are straightforward. For G3 � Supp[n], we use the branching injection
and mergeability theory developed in § 3.1. After the relevant application of �TEQ�, we



142 N. Yoshida et al.

Supp[0] �� ��


��



 Manu[0][0]

Buyer �� ��
��

�������
��

�����
���

Supp[1]��
��


Manu[0][1]
Manu[2][1]

Supp[2] �� ��
��

�������
Manu[1][2]
Manu[2][2]

: :

1. A buyer requests a quote from a set of suppliers.
G1 = foreach(i < n){Buyer → Supp[i] : 〈Quote〉}

2. All suppliers receive the request to ask their respective
manufacturers for a bill of material items. The suppliers
interact with their manufacturers to build their quotes for
the buyer.
G2(i)=foreach(j :Ji){Supp[i] → Manu[i][j] : 〈Item〉.

Manu[i][j]→Supp[i] : 〈Quote〉}
The eventual quote is sent back to the buyer.
G2 =foreach(i :I){G2(i); Supp[i]→ Buyer : 〈Quote〉}

3. EITHER
(a) The buyer agrees with one or more of the quotes and places the order(s). OR
(b) The buyer responds to one or more of the quotes by modifying and sending them back

to the relevant suppliers.
4. EITHER

(a) The suppliers respond to a modified quote by agreeing to it and sending a confirmation
message back to the buyer. OR

(b) The supplier responds by modifying the quote and sending it back to the buyer and the
buyer goes back to STEP 3. OR

(c) The supplier responds to the buyer rejecting the modified quote. OR
(d) The quotes from the manufacturers need to be renegotiated by the supplier. Go to STEP

2.

G3 = R t λi.λy.Buyer → Supp[i] : {
ok : end
modify :Buyer → Supp[i] : 〈Quote〉.

Supp[i] → Buyer : {ok : end
retryStep3 : y
reject : end}} i

G3 � Supp[n] = &〈Buyer, {
ok : end
modify : ?〈Buyer, Quote〉;⊕〈Buyer,{

ok : end
retryStep3 : y
reject : end}〉}〉

Fig. 9. The Quote Request use case (C-U-002) [19] with the corresponding global types

can obtain the projection written in Figure 9. To tell the other suppliers whether the
loop is being reiterated or if it is finished, we can simply insert the following closing
notification foreach(j ∈ I \ i){Buyer→ Supp[j] : {close :}} before each end, and
a similar retry notification (with label retryStep3) before x. Finally, each end-point
type is formed by (G1 � Supp[n] ; μx.G2 � Supp[n] ; G3 � Supp[n]). While the global
types look sequential, actual typed processes can asynchronously join a session and be
executed in parallel (e.g., at STEP 1-2, no synchronisation is needed between Supp[i]).

We have explored the impact of parameterised type structures for communications
through implementations of the above use case and of several parallel algorithms in
Java with session types [14], including the Jacobi method (with sequence and mesh
topologies) and the FFT. We observe (1) a clear coordination of the communication
behaviour of each party with the construction of the whole multiparty protocol, thus re-
ducing the programming errors and ensuring deadlock-freedom; and (2) a performance
benefit against the original binary session version, reducing the overhead of multiple
binary session establishments (see [11]). Full implementation and integration of our
theory into [4, 14] is on-going work.



Parameterised Multiparty Session Types 143

4 Related Work

Dependent types. The first use of primitive recursive functionals for dependent types
is in Nelson’s T π [18] for the λ-calculus, which is a finite representation of T ∞ by Tait
and Martin Löf [16, 20]. T π can type functions previously untypable in ML, and the fi-
nite representability of dependent types makes it possible to have a type-reconstruction
algorithm. We also use the ideas from the DML’s dependent typing system in [1, 22]
where type dependency is only allowed for index sorts, so that type-checking can be
reduced to a constraint-solving problem over indices. Our design choice to combine
both systems gives (1) the simplest formulation of sequences of global and end-point
types and processes described by the primitive recursor; (2) a precise specification for
parameters appearing in the participants based on index sorts; and (3) a clear integra-
tion with the full session types and general recursion, whilst ensuring decidability of
type-checking (if the constraint-solving problem is decidable). From the basis of these
works, our type equivalence does not have to rely on behavioural equivalence between
processes, but only on the strongly normalising types represented by recursors. None of
these works investigate families of global specifications using dependent types.

Types and contracts for multiparty interactions. The work [7] presented an exe-
cutable global processes for Web interactions based on the binary session types. Our
work provides flexible, programmable global descriptions as types, offering a progress
for parameterised multiparty session, which is not ensured in [7]. Recent formalisms
for typing multiparty interactions include [6, 9]. These works treat different aspects of
dynamic session structures. Contracts [9] can type more processes than session types,
thanks to the flexibility of process syntax for describing protocols. However, typable
processes themselves in [9] may not always satisfy the properties of session types such
as progress: it is proved later by checking whether the type meets a certain form. Hence
proving progress with contracts effectively requires an exploration of all possible paths
(interleaving, choices) of a protocol. The most complex example of [9, § 3] (a group
key agreement protocol from [2]), which is typed as π-processes with delegations, can
be specified and articulated by a single parameterised global session type as:

Πn :I.(foreach(i < n){W[n − i] → W[n − i + 1] : 〈nat〉};
foreach(i < n){W[n − i] → W[n + 1] : 〈nat〉.W[n + 1] → W[n − i] : 〈nat〉})

Once the end-point process conforms to this specification, we can automatically guar-
antee communication safety and progress.

Conversation Calculus [6] supports the dynamic joining and leaving of participants.
Though the formalism in § 2.2 can operationally capture such dynamic features, the
aim of the present work is not the type-abstraction of dynamic interaction patterns.
Our purpose is to capture, in a single type description, a family of protocols over arbi-
trary number of participants, to be instantiated at runtime. The parameterisation gives
freedom not possible with previous session types: once typed, a parametric process
is ensured that its arbitrary well-typed instantiations, in terms of both topologies and
process behaviours, satisfy the safety and progress properties of typed processes. Pa-
rameterisation, composition and repetition are common idioms in parallel algorithms
and choreographic/conversational interactions, all of which are uniformly treatable in



144 N. Yoshida et al.

our dependent type theory. Here types offer a rigorous structuring principle which can
economically abstract rich interaction structures, including parameterised ones.

Acknowledgements. We thank the reviewers, Lasse Nielsen and Dimitris Mostrous for
their useful comments for the paper and Kohei Honda for discussions.

References

1. Aspinall, D., Hofmann, M.: Dependent Types. In: Advanced Topics in Types and Program-
ming Languages. MIT Press, Cambridge (2005)

2. Ateniese, G., Steiner, M., Tsudik, G.: Authenticated group key agreement and friends. In:
CCS 1998: Proceedings of the 5th ACM conference on Computer and communications se-
curity, pp. 17–26. ACM, New York (1998)

3. Bettini, L., et al.: Global progress in dynamically interfered multiparty sessions. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer,
Heidelberg (2008)

4. Bhargavan, K., Corin, R., Deniélou, P.-M., Fournet, C., Leifer, J.: Cryptographic protocol
synthesis and verification for multiparty sessions. In: CSF, pp. 124–140 (2009)

5. Bonelli, E., Compagnoni, A.: Multipoint session types for a distributed calculus. In: Barthe,
G., Fournet, C. (eds.) TGC 2007 and FODO 2008. LNCS, vol. 4912, pp. 240–256. Springer,
Heidelberg (2008)

6. Caires, L., Vieira, H.T.: Conversation types. In: Castagna, G. (ed.) ESOP 2009. LNCS,
vol. 5502, pp. 285–300. Springer, Heidelberg (2009)

7. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred programming for
web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 2–17. Springer,
Heidelberg (2007)

8. Carbone, M., Yoshida, N., Honda, K.: Asynchronous session types: Exceptions and multi-
party interactions. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS,
vol. 5569, pp. 187–212. Springer, Heidelberg (2009)

9. Castagna, G., Padovani, L.: Contracts for mobile processes. In: Bravetti, M., Zavattaro, G.
(eds.) CONCUR 2009 - Concurrency Theory. LNCS, vol. 5710, pp. 211–228. Springer, Hei-
delberg (2009)

10. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex fourier
series. Mathematics of Computation 19(90), 297–301 (1965)

11. Online Appendix, http://www.doc.ic.ac.uk/˜yoshida/dependent/
12. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in Theoretical Com-

puter Science, vol. 7. CUP, Cambridge (1989)
13. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In: POPL

2008, pp. 273–284. ACM, New York (2008)
14. Hu, R., Yoshida, N., Honda, K.: Session-Based Distributed Programming in Java. In: Vitek,

J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidelberg (2008)
15. Leighton, F.T.: Introduction to parallel algorithms and architectures: arrays, trees, hyper-

cubes. Morgan Kaufmann, San Francisco (1991)
16. Martin-Lőf, P.: Infinite terms and a system of natural deduction. In: Compositio Mathemat-

ica, pp. 93–103. Wolters-Noordhoof (1972)
17. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially commutative

asynchronous sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 316–332.
Springer, Heidelberg (2009)

http://www.doc.ic.ac.uk/~yoshida/dependent/


Parameterised Multiparty Session Types 145

18. Nelson, N.: Primitive recursive functionals with dependent types. In: Schmidt, D., Main,
M.G., Melton, A.C., Mislove, M.W., Brookes, S.D. (eds.) MFPS 1991. LNCS, vol. 598, pp.
125–143. Springer, Heidelberg (1992)

19. Web Services Choreography Requirements (No. 11),
http://www.w3.org/TR/ws-chor-reqs

20. Tait, W.W.: Infinitely long terms of transfinite type. In: Formal Systems and Recursive Func-
tions, pp. 177–185. North Holland, Amsterdam (1965)

21. Web Services Choreography Working Group. Choreography Description Language,
http://www.w3.org/2002/ws/chor/

22. Xi, H., Pfenning, F.: Dependent types in practical programming. In: POPL, pp. 214–227
(1999)

http://www.w3.org/TR/ws-chor-reqs
http://www.w3.org/2002/ws/chor/


On the Relationship between
Spatial Logics and Behavioral Simulations�

Lucia Acciai1, Michele Boreale1, and Gianluigi Zavattaro2

1 Dipartimento di Sistemi e Informatica, Università di Firenze, Italy
2 Dipartimento di Scienze dell’Informazione, Università di Bologna, Italy

Abstract. Spatial logics have been introduced to reason about distributed com-
putation in models for concurrency. We first define a spatial logic for a gen-
eral class of infinite-state transition systems, the Spatial Transition Systems (sts),
where a monoidal structure on states accounts for the spatial dimension. We then
show that the model checking problem for this logic is undecidable already when
interpreted over Petri nets. Next, building on work by Finkel and Schnöbelen,
we introduce a subclass of sts, the Well-Structured sts (ws-sts), which is gen-
eral enough to include such models as Petri nets, Broadcast Protocols, ccs and
Weighted Automata. Over ws-sts, an interesting fragment of spatial logic - the
monotone fragment - turns out to be decidable under reasonable effectiveness
assumptions. For this class of systems, we also offer a Hennessy-Milner theo-
rem, characterizing the logical preorder induced by the monotone fragment as
the largest spatial-behavioural simulation. We finally prove that, differently from
the corresponding logic, this preorder is in general not decidable, even when con-
fining to effective ws-sts.

1 Introduction

Spatial logics [6, 7] are modal logics for describing the behavior and spatial structure of
concurrent systems. Beside propositional and temporal operators, they include spatial
operators, the most prominent of which is _ |_, having the following meaning: the for-
mula φ1|φ2 is satisfied by any process that can be decomposed into two processes that
satisfy respectively φ1 and φ2. Spatial logics have been applied to several models, such
as the pi-calculus [7] and the Ambient Calculus [9].

Starting from the well-known correspondence between the Hennessy-Milner logic
and bisimulation [19], a rich literature has been dedicated to the study of the relation-
ship between modal logics and behavioural equivalences or preorders. In the realm of
spatial logics, this study has been undertaken in [20, 24], in the case of the Ambient Cal-
culus, and in [5, 8], in the case of the ccs and pi-calculus. A discussion on these works,
which are strongly related to our study, is deferred to the concluding section. The ob-
jective of the present paper is to start such an investigation in a general setting. To this
aim, we introduce the notion of spatial transition system (sts): a possibly infinite-state
transition system, endowed with a monoidal structure on states representing the spatial

� Research partly supported by the EU within the FET-GC2 initiative, project Sensoria. The
third author is partially supported by the EU integrated project HATS.

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 146–160, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



On the Relationship between Spatial Logics and Behavioral Simulations 147

dimension. We introduce a very simple spatial logic L, consisting of atomic predicates,
the and/or/not logical operators, a behavioral modality indicating the possibility to reach
a state with a given property, and the spatial operator described above. We then interpret
L over sts’s, relating the spatial operator to the monoidal structure. On the one hand, sts
are general enough to include models such as the Calculus of Communicating Systems
(ccs, [22]), Petri nets (and variants thereof, such as reset nets, transfer nets and broad-
cast protocols), and weighted automata. On the other hand, even if L is very simple, it
is enough expressive to describe interesting properties, such as the impossibility for a
ccs process to reach a state where a race condition on a channel arises, or one-safety on
Petri nets (i.e. all places in all reachable markings contain at most one token).

Our first result is that model checking of L is indeed in general undecidable in infi-
nite state systems, even for quite simple sts like Petri nets. This leads us to considering
the negation-free fragment of L, written L0 and introduce the class of Well-Structured
Spatial Transition Systems (ws-sts). The latter builds on the class of Well-Structured
Transition Systems introduced by Finkel and Schnöbelen [17]; in particular, the exis-
tence of a well-quasi order on states that is compatible with both the transition and the
monoidal structure of the system plays a crucial role. The class of ws-sts is still general
enough to include all the models mentioned above. We prove that L0 is decidable for
the class of ws-sts, subject to some reasonable effectiveness conditions.

Next, we characterize the logical preorder induced by L0, that is, the preorder that
relates s to t whenever t satisfies all the L0-formulae satisfied by s. We present a coin-
ductive characterization of the logical preorder in terms of a (weak) simulation, enriched
with constraints on the spatial properties of s and t and the basic predicates they satisfy
(a Hennessy-Milner theorem for L0). This simulation, that we call spatial-behavioral
preorder (sbs), is, in fact, the largest well-quasi order that is compatible with the spatial
and transition structure of the system.

Finally, we show that, differently from L0, this preorder is in general not decidable,
even restricting to effective ws-sts.

Structure of the paper. In Section 2 we define sts and sbs and introduce some concrete
instances that will be used throughout the paper. In Section 3 we introduce L and its
fragment L0, the considered spatial logics, and we prove the undecidability of L in
Petri nets and ccs. Section 4, after introducing some background material and defining
the class of effectivews-sts, discusses the decidability ofL0. In Section 5 we prove that
the preorder induced by L0 coincides with the largest sbs, and in Section 6 we prove
that the latter is not decidable inws-sts in general. A few remarks on further and related
work conclude the paper in Section 7. Due to lack of space, some proofs have been left
out of this short version (they can be found in [1]).

2 Spatial Transition Systems

In this section we introduce spatial transition systems, we provide some instances that
will be used as running examples throughout the paper, and we introduce a natural
extension of weak simulation for spatial transition systems.



148 L. Acciai, M. Boreale, and G. Zavattaro

2.1 Basic Definitions

Recall that a transition system (ts) is a structure (S ,→) where S , ranged over s, t, . . ., is a
set of states and→⊆ S ×S is a set of transitions. We let→∗ be the reflexive and transitive
closure of →. The set of immediate predecessors and predecessors of a state s ∈ S
are defined respectively as Pred(s) =

{
t | t→ s, t ∈ S

}
and Pred∗(s) =

{
t | t→∗ s, t ∈ S

}
.

The definitions of Pred and Pred∗ are extended to sets of states as expected. In the
following, we let At be a finite set of atomic predicates ranged over p,p′, . . .. We let
P(At) denote the powerset of At. Recall that a monoid (M,⊕,0M) is a semigroup with
0M as an identity element.

Definition 1 (spatial transition system). A spatial transition system (sts) is a tuple
S = (S ,→,⊕,O) where: (1) (S ,→) is a transition system, (2) (S ,⊕,0S ) is a monoid for
some 0S ∈ S , and (3) O : S →P(At) is an observation function.

The relationship among the transition system, the monoid and the observation function
is given by the following spatial-behavioral simulation.

Definition 2 (spatial-behavioral simulation). A spatial-behavioral simulation (sbs)
over a sts S = (S ,→,⊕,O) is a binary relation R ⊆ S × S such that whenever sR t
then:

1. whenever s→ s′ then there exists t′ ∈ S such that t→∗ t′ and s′ R t′;
2. whenever s = s1⊕ s2 then there are t1, t2 ∈ S such that t = t1⊕ t2 and siR ti, i = 1,2;
3. O(s) ⊆ O(t).

The largest sbs, denoted 	, is a preorder over S , called spatial-behavioral preorder.

2.2 Concrete Instances of sts

Calculus of Communicating Systems. The fragment of ccs with input guarded replica-
tion1 instead of recursion can be turned into a sts as detailed in [4], that is, working
modulo structural congruence and identifying ⊕ and its identity with parallel compo-
sition | and 0, respectively. Moreover, the relation 
 introduced in Definition 14 of [4]
can be easily proved to be a spatial-behavioral simulation w.r.t. this sts.

Affine Well-Structured Nets. We consider a generalization of Petri nets (pn) introduced
by Finkel et al.: as discussed in Section 7.2 of [16], pn, Double pn, Generalized Transfer
pn (thus also Broadcast Protocols [12]) and Reset pn are all instances of affine wsn. Let
N

p, for p ≥ 1, be ranged over by n,m, . . .. Let m(i) denote the ith component of m. The
preorder 
⊆ Np ×Np is defined point-wise as expected: n 
 m if and only if for each
i = 1, ..., p, n(i) ≤ m(i). A well-structured net (wsn) is a triple N = (Np,F, 
), where Np

is the set of states (in the pn terminology, markings on the places 1, ..., p) and F is a
finite set of partial functions f , f ′, . . . : Np → Np, whose domain is an upward-closed
subset of Np – that is, whenever m 
 n and m ∈ dom( f ) then n ∈ dom( f ), for each f ∈ F.
An affine wsn is a wsn where for each function f ∈ F there is a square matrix A ∈ Np×p

1 Intuitively, the replicated process !a.P corresponds to an infinite number of copies of a.P in
parallel: a.P| · · · |a.P| · · · .



On the Relationship between Spatial Logics and Behavioral Simulations 149

and a vector B ∈ Zp such that for each m ∈ dom( f ), f (m) = A ·m+B with m,B seen as
column vectors. Let us fix an affinewsn N. Clearly, (Np,+,0p), with + indicating sum of
vectors, is a monoid. Define At to be {1, . . . , p} and, for any n ∈ Np, O(n) =

{
i
∣∣∣ n(i) � 0

}
.

Finally, define the transition relation: n→F m iff f (n) = m for some f ∈ F (see [16]).
Clearly, (Np,→F ,+,O) is a sts for which 
 is a sbs (due to the fact that each f ∈ F is
monotone). Moreover, 
 is also the spatial-behavioral preorder (i.e. the largest sbs).

There are interesting variations of this construction, corresponding to choosing dif-
ferent observation functions O. For instance, one can leave the set At unspecified, fix
a labelling function from places to sets of atomic predicates, l : {1, ..., p} → P(At), and
then let O(m) =

⋃
i∈1..p :m(i)>0 l(i). Yet another possibility is observing enabled transi-

tions in the current state: assuming F = { fi | i ∈ I}, this is obtained by letting At = I and
O(m) = {i ∈ I |m ∈ dom( fi)}. These variations too give rise to sts for which 
 is a sbs,
but in general not the largest one.

Weighted Automata. Recall that a semiring K is a structure (K,+,×,0,1) such that
(K,+,0) is a commutative monoid, (K,×,1) is a (not necessarily commutative) monoid,
× distributes over + both to the left and to the right and 0 annihilates both to the left
and to the right (i.e., 0× a = a× 0 = 0 for each a ∈ K). Now let us fix a semiring K
and consider the following preorder over K: a 
 b iff there is c ∈ K s.t. a+ c = b. With
these definitions, the construction illustrated above for Affine Nets carries over formally
unchanged when replacing both N and Z by K. Doing so, we cast (a generalization
of) Weighted Automata (wa, [21]) into the framework of sts2. Concrete instances are:
K = N, K = Q+ (positive rationals) and K = R+ (positive reals, hence e.g. finite-state
Markov chains). Another instance is the (max,+) (a.k.a. tropical semiring [25]) used in
quantitative evaluation of discrete-time systems [3]. The latter is defined over N∪{∞},
by letting “+” to be max and “×” to be +.

3 The Logics L and L0

3.1 Definitions and Examples

Definition 3. The set L of logic formulae φ,ψ, . . . is given by the following syntax,
where p ∈ At: φ ::= p

∣∣∣ φ|φ ∣∣∣ ♦∗φ ∣∣∣ ¬φ ∣∣∣ φ∧φ ∣∣∣ φ∨φ.

The set of logical operators includes spatial modalities (atomic predicates p ∈ At, the
composition operator “|”), dynamic connectives (the eventuality modality ♦∗), and the
usual boolean connectives (¬,∧,∨). The interpretation of L over a sts is given below.

[[p]]=
{
s ∈ S |p ∈O(s)

}
[[♦∗φ]]=Pred∗([[φ]]) [[¬φ]]=S \ [[φ]]

[[φ1 ∨φ2]] = [[φ1]]∪ [[φ2]] [[φ1∧φ2]] = [[φ1]]∩ [[φ2]]

[[φ1|φ2]] =
{
s1⊕ s2 | s j ∈ [[φ j]] for j = 1,2

}

Connectives are interpreted as expected. In particular, satisfiability of the basic pred-
icates is given by O while satisfiability of the composition operator relies on the possi-
bility of decomposing states via ⊕. In what follows we usually write s |= φ if s ∈ [[φ]].

2 Concretely, states s, t, ... of the wa are elements of Kp×1, and s→ t iff t = A · s, where A ∈Kp×p

is the transition matrix of the wa.



150 L. Acciai, M. Boreale, and G. Zavattaro

Following [2], we say that a formula is monotone if it does not contain any occurrence
of ¬. We let L0 denote the subset of monotone formulae. A formula is anti-monotone
if it is of the form ¬φ with φ monotone.

Example 1. The following formulae for ccs depends on generic names a and b. The
anti-monotone formula φ = ¬♦∗(a∧ b) says that the output on a and b are forever mu-
tually exclusive; e.g. a+b �|= φ. This is different from ψ = ¬♦∗(a|b), still anti-monotone,
saying that it will never be the case that there are two independent threads in the system
offering an output on a and one on b; e.g. a+b |= ψ, while a|b �|= ψ.

Similar properties can be defined in the case of wsn. Let i, j ∈ {1, . . . , p}. The formula
¬♦∗(i∧ j) says that no marking is reachable where place i and place j are non-empty.
This is equivalent to ¬♦∗(i | j) if i � j, while ¬♦∗∨p

l=1(l | l) says that the net is one-
safe. Switching the alternative interpretation where enabled transitions are observed,
the formula ¬♦∗(i∧ j) would say that no marking is reachable where both fi and f j are
enabled. This is now stronger than ¬♦∗(i | j), saying that no marking is reachable where
fi and f j can both fire simultaneously. The logic can also be used to define properties
that go beyond pure coverability, such as (♦∗a)|(♦∗b), saying that, from the current state,
two non conflicting transitions on a and b can be reached. These formulae also make
sense in the case of wa. As an example, in a Markov chain, ¬♦∗(i | j) says that it is
not possible to reach a state where both transition i and transition j have non-zero
probability.

3.2 Undecidability of L
We now prove that the logic L turns out to be undecidable already for Petri nets pn, one
of the simplest instantiations of affinewsn in which the matrix A, used in the definitions
of the functions f , always corresponds with the identity matrix.

The proof is by reduction from the containment problem for pn. An instance of the
containment problem consists of two pn Σ1, Σ2 with the same number of places, and a
bijection g between the sets of places of Σ1 and Σ2 (g, called renaming in the following,
is extended to a bijection between markings in the obvious way). The problem consists
of checking whether for every reachable marking m of Σ1, g(m) is reachable in Σ2. Rabin
showed that this problem is undecidable (the proof is in [18]). Following the approach
used in [13] to prove the undecidability of the modal μ-calculus for pn, we reduce the
containment problem to the problem of model checking a given formula in a pn.

Assume that the number of places of Σ1 and Σ2 is p. We now define a pn [[Σ1,Σ2]] =
(N2p+4,F,
) where 
 is the usual ordering on naturals extended to vectors. The states
of [[Σ1,Σ2]] are vectors of length 2p+4: the first p elements are used to represent states
of Σ1, the subsequent p elements are used to represent states of Σ2, while the last 4
elements are used to divide the computations in four distinct phases. The first phase is
a simulation of a computation of Σ1, the second phase is the passage through a specific
observable state, the third phase is a simulation of Σ2, and the last phase is used to
check whether the markings reached by the simulations of Σ1 and Σ2 correspond up-to
renaming.

Formally, the computations of [[Σ1,Σ2]] are controlled by F containing the three
classes of functions defined below, where we use x ·y to denote the juxtapositions of the
vectors x and y:



On the Relationship between Spatial Logics and Behavioral Simulations 151

– F contains the functions f1(x) = x+ 02p · (−1,1,0,0), f2(x) = x+ 02p · (0,−1,1,0),
and f3(x) = x+02p · (0,0,−1,1);

– for each f (x) = x+B in Σ1 (resp. Σ2), F contains a corresponding f (x) = x+B ·0p+4

(resp. f (x) = x+0p · B ·04) defined only if x(2p+1)> 0 (resp. if x(2p+3)> 0);
– for each place s in {1, · · · , p}, F contains a function f (x) = x+ Bs, defined only if

x(2p+4)> 0, where Bs contains−1 in the positions s and p+g(s), and 0 elsewhere.

Assuming that the initial states of Σ1 and Σ2 are respectively m1 and m2, we will con-
sider for [[Σ1,Σ2]] the state m1 ·m2 · (1,0,0,0).

We now discuss the meaning of the three classes of functions defined above. The first
three functions dictate the passage from one phase to the subsequent one. In the second
class of functions, those of the form f (x) = x+ B · 0p+4 (resp. f (x) = x+ 0p · B · 04) are
used to mimic the computations of Σ1 (resp. Σ2) during the first (resp. the third) phase.
The third class of functions reduces in a synchronized manner the values in the places
s and p+g(s). In this way, if a state with all the first 2p elements equal to 0 is reached,
we can conclude that the markings reached during the simulations of the computations
of Σ1 and Σ2 correspond up-to renaming. We now prove a proposition that formalizes
the correctness of the reduction: in the statement of the proposition we exploit the fact
that every state x reachable in [[Σ1,Σ2]] such that x(2p+2) > 0 is an intermediary state
between the simulation of a computation of Σ1 (performed while the element in position
2p+1 is 1) and the subsequent simulation of a computation of Σ2 (performed while the
element in position 2p+3 is 1).

Proposition 1. Given two Petri nets Σ1, Σ2 with initial markings m1 and m2, respec-
tively, we have that they satisfy the containment problem iff for every computation of
[[Σ1,Σ2]] starting from m1 ·m2 ·(1,0,0,0) and leading to a state x such that x(2p+2)> 0,
then the computation can be extended in order to reach a state in which the first 2p el-
ements are all equal to 0.

In the light of this theorem we conclude that two Petri nets Σ1 and Σ2, with initial
markings m1 and m2, satisfy the containment problem iff for the pn [[Σ1,Σ2]] we have

m1 ·m2 · (1,0,0,0) |= ¬♦∗¬(¬(2p+2)∨ (♦∗∧i∈{1,··· ,2p} ¬i)
)

from which we get the following result.

Theorem 1. The model checking of L is undecidable for pn.

It is worth noting that the logicL is undecidable also for the fragment of ccs introduced
in Section 2.2. This can be proved as a corollary of an undecidability result in [4].
In that paper (see Section 3) weak bisimulation is proved to be undecidable, for this
fragment of ccs, presenting a nondeterministic modeling of Random Access Machines
(RAMs) [23], a well known register based Turing complete formalism. The encoding
is nondeterministic because it can give rise to computations that do not correspond
to the computation of the modeled RAM. Nevertheless, those computations generate
subprocesses that performs infinite computations presenting the barb w′ infinitely often.
So we have that a RAM R terminates iff the corresponding encoding [[R]] in ccs has
a computation leading to a halt instruction – in the encoding in [4] halt instructions
present the barb w – but without subprocesses left by wrong computations, that is, iff
[[R]] |= ♦∗(w∧ (¬♦∗w′)).



152 L. Acciai, M. Boreale, and G. Zavattaro

4 Decidability of L0

In this section we show the existence of a significant sub-class of Spatial Transition
Systems, that we call effective Well-Structured Spatial Transition Systems (ws-sts),
for which the monotone fragment L0 turns out to be decidable. Basically, ws-sts en-
hance classical wsts [17] by taking into account the spatial structure given by the
monoid (S ,⊕,0).

4.1 Well-Structured Spatial Transition Systems

Recall that a quasi-ordering (qo) (aka preorder) over S is a reflexive and transitive
relation over S . A well-quasi-ordering (wqo) is a qo 
 over S such that for any infinite
sequence s1, s2, . . . in S there exists indexes i < j such that si 
 s j; in other words, S
does not have infinite antichains. For any qo 
 over S and T ⊆ S , we say s ∈ T is a
minimal element of T if for each t ∈ T , s 
 t; we let Min(T ) denote the set of minimal
elements of T . A well-structured spatial transition system is a sts equipped with a qo
that is compatible with→, ⊕ and O.

Definition 4 (well-structured spatial transition system). A well-structured spatial
transition system (ws-sts) is a sts S = (S ,→,⊕,O) equipped with a wqo 
 over S
satisfying the following conditions: (1) 
 is a sbs, (2) whenever s 
 s′ then for each
t s⊕ t 
 s′ ⊕ t and t⊕ s 
 t⊕ s′, and (3) 0S ∈Min(S ).

Example 2. The concrete instances of sts provided in Section 2.2 are ws-sts. Theo-
rem 6 of [4] proves that 
 is a wqo over ccs, while clauses (1), (2) and (3) can be easily
checked.For what concerns affine wsn, clearly 
 is a wqo because it is defined as the
pointwise extension of ≤ over N, which is a wqo (Dickson’s Lemma [10]). Clause (1)
of Definition 4 has been discussed in Section 2.2 and clauses (2) and (3) can be easily
checked. Hence, (Np,F,+,O) is a ws-sts for any variation of O. Essentially the same
reasoning applies to weighted automata. Concrete instances where 
 is a wqo, hence
the construction yields a ws-sts, are K = N, K = R+ and K =(max,+).

4.2 Decidability of L0 for Effective ws-sts

Before presenting the technical machinery needed to define effective ws-sts and to
prove the decidability ofL0 for this particular class of ws-sts, we present the following
lemma stating that |= on monotone formulae is compatible with both sbs and ⊕.

Lemma 1. Let (S ,→,⊕,O) be a ws-sts and s, t ∈ S . Let φ be a monotone formula. (1)
If s 	 t and s |= φ then t |= φ. (2) If s |= φ then, for each t also s⊕ t |= φ.

Let us introduce some auxiliary notations and results first. Given any s in a set X pre-
ordered by 
, we let its upward-closure to be ↑ s =

{
t | s
 t

}
. This notation is extended to

any set I ⊆ X as expected. A set I is upward-closed if ↑ I = I. A finite basis of an upward-
closed set I is a finite set B ⊆ X such that ↑ B = I. If X is a wqo, any upward-closed set I
has a finite basis. Indeed, it is enough to choose from Min(I) one representative of each
equivalence class induced by 
: there must be finitely many such classes, otherwise one



On the Relationship between Spatial Logics and Behavioral Simulations 153

could form an antichain. Now, in any ws-sts and for any monotone φ, [[φ]] is upward
closed w.r.t. 
 (Lemma 1(1)). Hence the existence of a finite basis of [[φ]] is guaranteed.
Now we have to show how to build one such basis.

For the rest of the section, let us fix aws-stsS. We assume three functions b, pb∗ and
mub, yielding finite bases for certain upward closed sets. Specifically: for each atomic
predicate p, b(p) yields a finite basis of [[p]], that is ↑ b(p) = [[p]]; for each finite I ⊆ S ,
pb∗(I) yields a finite basis of Pred∗(↑ I); and for each s1, s2 ∈ S , mub(s1, s2) yields a
finite basis of ↑ s1∩ ↑ s2, in other words a set of minimal upper bounds for s1 and s2.
For the time being, we make no assumption about the effectiveness of these functions.
Building on them, a finite basis of [[φ]], written Fb(φ), is defined below by induction
on φ.

Fb(p) = b(p) Fb(♦∗φ) = pb∗(Fb(φ)) Fb(φ1 ∨φ2) = Fb(φ1)∪Fb(φ2)
Fb(φ1∧φ2)=

⋃
s1∈Fb(φ1), s2∈Fb(φ2) mub(s1, s2) Fb(φ1|φ2)=

⋃
s1∈Fb(φ1), s2∈Fb(φ2){s1⊕ s2}

Proposition 2. Let φ be monotone. Then Fb(φ) is a finite basis of [[φ]].

In order to prove decidability, we need to argue now about effectiveness of b, pb∗ and
mub. In particular, we shall rely on Finkel and Schnöbelen’s result below that estab-
lishes effectiveness of pb∗ under certain conditions. Let us define the pred-basis of a
state s, pb(s), as the finite basis of ↑ Pred(↑ s):

↑ pb(s) =↑ Pred(↑ s) = {t | t �→� s}.
Let us say that a ws-sts has an effective pred-basis if pb(·) is computable. We say awsts
S is effective if it has effective pred-basis and 
 is decidable.

Proposition 3 (Proposition 3.5 [17]). If S is an effective wsts, then it is possible to
effectively compute a finite basis of Pred∗(↑ I), for any finite I ⊆ S . That is, there exists
a computable pb∗ function for S.

We say a ws-sts S is effective if it is effective as a wsts and ⊕, b(·) and mub(·, ·) are
computable. By the above proposition and the definition of Fb, we have the following
result. The wanted result follows as a corollary.

Proposition 4. Let S be an effective ws-sts. Then Fb(φ) can be effectively computed,
for any monotone φ.

Corollary 1 (decidability). LetS be an effectivews-sts. For any s and (anti-)monotone
φ, it is decidable whether s |= φ.

4.3 Decidability in Concrete Instances

Let us discuss effectiveness of thews-sts introduced in Section 2. In each case, the non-
trivial part is actually defining effective pred-basis pb and mub functions. Effectiveness
of ccs as a ws-sts can be proved along the lines of [2] (note that the definition of mub
turns out to be nontrivial).

Let us now briefly consider affine wsn. Each affine function is recursive, hence effec-
tiveness of the pred-basis follows from Theorem 4.2 of [16]. Next, for any m,n ∈ Np,



154 L. Acciai, M. Boreale, and G. Zavattaro

mub(m,n)= l ∈Np is defined thus: l(i) =max{n(i),m(i)}, for each i = 1, . . . , p. Indeed l is
computable and n,m ≤ l. Moreover, by definition, whenever n ≤ k and m ≤ k then l ≤ k,
hence ↑ l =↑ n∩ ↑ m. These definitions of course apply also to the alternative version of
ws-sts with enabled transitions as atomic predicates.

In the case of wa, one must ensure in the first place the effectiveness of the pred-
basis, that strictly depends on the specific semiring; we leave this problem for future
investigations. As an example, the results in [26] seem to indicate that an effective
pred-basis exists in the case of tropical semirings.

5 A Hennessy-Milner Theorem for L0

In this section we prove that, under certain conditions, the logical preorder induced by
the monotone fragmentL0 coincides with the largest sbs. The proof goes along the lines
of the classical theorem for bisimulation and the Hennessy-Milner logic [22]. However,
the proof requires extra care, as it has to work also for non-image-finite processes. In-
deed, the condition of image-finiteness, customary in process calculi when dealing with
“weak” relations, makes little sense in our setting. When building distinguishing for-
mulas for sbs-unrelated states, this fact will lead us to considering an in general infinite
number of derivatives. A similar issue is raised by the monoidal structure of the sys-
tem. In the end, we will be able to prove the result for a rather general class of ws-sts
that enjoy certain monotonicity conditions. In the actual proof, though, we will have to
resort to certain continuity arguments in order to cope with the issues outlined above.
The technical device to do this is the notion of complete wsts of [14, 15]. Intuitively, in
a complete ws-sts, ascending chains of states always converge to limit points, and the
limit operation commutes with transitions, sum and observation.

A few preliminary definitions are in order. Let (X,
) be a poset. Recall that a set
D ⊆ X is directed if any two elements in D have an upper-bound in D. A dcpo is a poset
(X,
) where any directed set D ⊆ X has a least upper bound (lub) in X, denoted

∨
D.

A dcpo is algebraic if any element x ∈ X is the lub of the set of finite elements 
 x
(recall that y ∈ X is finite if for every directed D, whenever y 
∨D then y 
 d for some
d ∈ D). The set of finite elements of any poset X is denoted by fin(X). Let X,Y be two
preordered sets. A partial function f : X→ Y is monotone if dom( f ) is upward closed
in X and whenever x 
 x′ in dom( f ) then f (x) 
 f (x′) in Y. When X and Y are dcpo, we
say f is continuous if f is monotone, its domain is Scott-closed (that is, upward-closed,
and such that for any directed D ⊆ X,

∨
D ∈ dom( f ) implies D∩ dom( f ) � ∅) and, for

any directed D, f (
∨

D) =
∨

f (D). Finally, we say f is finitary if f (fin(X)) ⊆ fin(Y).
Following [14], we say a ws-sts is functional if its transition relation→ can be de-

composed as the union of finitely many transitions functions: →= ∪n
i=1δi, where for

i = 1, ...,n, δi : S → S is a partial monotone function. Note that in a functional ws-
sts, monotonicity of ⊕ and O (the latter w.r.t. set inclusion in P(At)) follows by def-
inition. Complete ws-sts however require something more than monotonicity. Let us
record that for any finite set I, P(I), partially ordered by set inclusion, is trivially an
(algebraic) dcpo.

Definition 5 (complete ws-sts). A complete ws-sts is a functional ws-sts
(S ,∪n

i=1δi,⊕,O) such that (S ,
) is an algebraic dcpo, each δi : S → S is a finitary



On the Relationship between Spatial Logics and Behavioral Simulations 155

continuous partial function and ⊕ : S ×S → S and O : S →P(At) are finitary continu-
ous total functions.

For each state s in a transition system, define Post∗(s) to be the set of states reachable

from s: Post∗(s)
�
= {s′|s→∗ s′}. Note that a complete ws-sts in our sense is also a com-

plete wsts in the sense of [14]. Hence we have the following result from [14] about the
cover of s, that is, the downward closure of Post∗(s).

Lemma 2 ([14], Proposition 6.1). In any complete wsts, hence in any complete ws-
sts, for any state s there is a finite set F ⊆ Post∗(s) such that ↓ Post∗(s) =↓ F.

The following result is a generalization of the previous one to the spatial component.

Lemma 3. Let S be a completews-sts. For any state s, consider the set Ds = {(t, t′)| s=
t⊕ t′}. Then there is a finite F ⊆ Ds s.t. ↓ Ds =↓ F in S ×S .

We also need inductively defined approximants of the spatial-behavioral similarity.

Definition 6 (approximants of similarity). Let S be a ws-sts. We let (	i)i∈N be the
sequence of preorders on S defined by induction on i as follows:

a) s 	0 t always;
b) s 	i+1 t if: (1) whenever s → s′ then there exists t′ s.t. t →∗ t′ and s′ 	i t′; (2)

whenever s = s1 ⊕ s2 then there exist t1, t2 s.t. t = t1⊕ t2 and s j 	i t j for j = 1,2; (3)
O(s) ⊆ O(t).

We let 	ω be ∩i∈N 	i.

The preorder	ω can be proved to coincide with 	; the proof relies on arguments similar
to those used in the proof of Theorem 2 below.

Proposition 5. On a complete ws-sts, 	 and 	ω coincide.

Let S be a spatial transition system. The logical preorder 	L over states is defined as:
s 	L0 t if and only if for each formula φ ∈ L0, s |= φ implies t |= φ. Here is the first
version of the result we are after.

Theorem 2 (Hennessy-Milner type theorem for complete ws-sts). On a complete
ws-sts, 	 and 	L0 concide.

Proof: The inclusion 	 ⊆ 	L0 holds for any ws-sts (Lemma 1(1)). As for the opposite
inclusion, it is convenient to work with 	ω (Proposition 5). The proof then is a variant of
the one in [22]. In particular, we prove the contrapositive statement, that s �	ω t implies
s �	L t. Assume that there is an index i s.t. s �	i t: we show the existence of a formula φ
s.t. s |= φ and t �|= φ. The proof is by induction on i. Assume i > 0. Now, s �	i t means that
one of the clauses (1–3) of Definition 2 is violated.

Let us examine (1) first: there is s′ s.t. s→ s′ and for no t′ ∈ Post∗(t) it holds that
s′ 	i−1 t′. Consider the cover of t, ↓ Post∗(t) =↓ F for some finite set F ⊆ Post∗(t)
(Lemma 2). It is not difficult to show that for any u ∈ F, s′ �	i−1 u. By induction hypoth-
esis, there exists then φu s.t. s′ |= φu and u �|= φu. Moreover, for each t′ ∈↓ u, t′ �|= φu either



156 L. Acciai, M. Boreale, and G. Zavattaro

(a consequence of Lemma 1). Consider now φ = ♦∗ (
∧

u∈F φu). By construction s |= φ,
but t �|= φ.

The case where (2) is violated is handled similarly relying on Lemma 3. In particular,
s= s1⊕ s2 for some s1 and s2 s.t. for each pair (t1, t2) satisfying t = t1⊕ t2, either s1 �	i−1 t1
or s2 �	i−1 t2. Let us write as {(t j

1, t
j
2)| j ∈ J} (J finite) the set F given by Lemma 3. By

induction, for each j ∈ J there exists either φ j
1 satisfied by s1 but not by t j

1, or φ j
2 satisfied

by s2 but not by t j
2. In the former case let φ j

2
�
= true, in the latter case φ j

1
�
= true. Consider

now φ = (
∧

j∈J φ
j
1) | (∧ j∈J φ

j
2). By construction, s |= φ, but t �|= φ. Finally, the case (3) is

obvious. �

Next, we extend the above result to the class of functional (not necessarily com-
plete) ws-sts’s. Let us introduce some terminology first. For any complete ws-sts S =
(S ,∪n

i=1δi,⊕,O), let us denote by fin(S) the functional wsts (fin(S ),∪n
i=1δi,fin,⊕fin,Ofin),

where fin(S ) inherits the wqo of S and δi,fin, ⊕fin, Ofin are the restrictions of δi, ⊕ and
O, respectively, to fin(S ). Let us denote by 	fin the spatial-behavioral similarity defined
over fin(S) (the subscript fin will be omitted when no ambiguity arises).

Two functional ws-sts’s are isomorphic if there is an embedding between them that
is a bijection and commutes with the functions δi (i = 1, ...,n, for one and the same n), ⊕
and O, as expected. Clearly, any isomorphism preserves, in both directions, both 	 and
|=, hence 	L0 . Now, given a functional ws-sts S there is a canonical way of building a
complete ws-sts Ŝ such that fin(Ŝ) is isomorphic to S: one takes the ideal completion
of S, where the set of states, Ŝ , is the set of all ideals (that is, directed, downward
closed subsets) of S ordered by set inclusion, and δ̂i, ⊕̂, Ô are the unique continuous
extensions of the corresponding (monotone) functions of S. The isomorphism between
S and fin(Ŝ) is given by the function ·̂ : S → fin(Ŝ ) that sends each s ∈ S into ↓ s ∈ fin(Ŝ ).
A further technical ingredient is needed so as to ensure that Ŝ is well-ordered: the wqo
S we start with must be a ω2-wqo. Intuitively,ω2-wqo strengthens the condition of wqo
in the sense that one can always extract an infinite ascending chain xi, j < x j,k < xk,l < · · · ,
with i< j < k < l, out of any family of elements {xm,n}m∈I,n∈J . We refer the reader to [14]
for the formal definition of this concept and further details of this construction; here,
we just stress that only pathological instances of non-ω2-wqo exist, and they have no
computational relevance. With these definitions and facts at hand, the main result of the
section is an easy consequence of Theorem 2.

Theorem 3 (Hennessy-Milner type theorem, functional case). Let S be a functional
ws-sts equipped with a ω2-wqo. Then 	 and 	L0 coincide over S.

Example 3. Both wsn (not necessarily affine) and wa are functional by definition. As
mentioned in Section 2.2, 	 coincides with 
 in the interpretation of the observation
function given by O(m) = {i|m(i) � 0}. In the other two cases discussed in Section 2, the
result is more interesting, as 	, hence 	L0 , is a much coarser relation.

6 Undecidability of the Spatial-Behavioral Preorder

The spatial-behavioral preorder 	 is in general undecidable in (effective) ws-sts even
if it is the preorder induced by the decidable logic L0. The proof is by reduction from



On the Relationship between Spatial Logics and Behavioral Simulations 157

the boundedness problem for reset nets (rn) [11]. rn correspond to the subset of affine
well-structured nets in which the matrix A, used in the definitions of the functions f ,
contains only the value 0 excluding some value equal to 1 in the main diagonal. This
model can be seen as an extension of pn in which transitions can remove all the tokens
in some given places. Given a rn and an initial state, the boundedness problem consists
of checking whether the set of reachable states is finite. This problem is proved to be
undecidable for rn in [11].

Consider a reset net Σ with p places and initial marking m. It is not restrictive to
assume that there is no function f (x) = Ax+ B defined for x = 0p. We define an affine
wsn [[Σ]] = (Np+4,F,
) (where 
 is the usual ordering on naturals extended to vectors)
such that there exist two states s1 = 0p · (0,0,1,0) and s2 =m · (1,0,0,0) of [[Σ]] such that
s1 	 s2 iff Σ is unbounded. In the constructedwsnwe will consider a very simple atomic
predicate notEmpty and the interpretation exploiting the following labelling function
l : {1, ..., p+ 4} → P(At), such that l(i) = {notEmpty}, for i = p+ 2 and i = p+ 4, and
l(i) = ∅, otherwise. The idea that we follow in the definition of [[Σ]] is as follows:

– The state s1 = 0p · (0,0,1,0) can give rise to computations of length n, for every n,
that first increment by one the value in position p+ 3 until the value n is reached,
and then such value is moved in position p+4 yielding the state 0p · (0,0,0,n).

– The state s2 =m · (1,0,0,0) can mimic every computation m→∗ m′ in Σ. Every time
a transition is performed, the value in position p+ 1 is increased by one, thus the
state m′ · (k,0,0,0) is reached assuming that k − 1 steps have been simulated. An
additional transition can move all the tokens in the marking m′ in position p+2 and
set to 0 the value in position p+ 1, thus yielding the state 0p · (0,#m′,0,0) where
#m′ denotes the total number of tokens in the marking m′ .

The final states 0p · (0,0,0,n), for every n, and 0p · (0,#m′,0,0), for every marking m′
reachable in Σ, of the computations starting from s1 and s2 are related by the atomic
predicate notEmpty (able to observe the values in positions p+ 2 and p+ 4). We will
prove that this relationship guarantees that s1 	 s2 iff Σ is unbounded.

We formally introduce [[Σ]] defining its set F that contains the following functions:

– f1 is a function that increments by one the value in position p+ 3 if it is greater
than 1. Namely, f1(x) = Ax+B, defined only if x(p+3) > 0, where A is the identity
matrix and B = 0p · (0,0,1,0).

– f2 is a function that moves the value in position p+ 3 to position p+ 4. Namely,
f2(x) = Ax+B where A(i, j) = 0 for every i and j, excluding A(p+4, p+3)= 1, and
B = 0p+4.

– A set of functions that simulate the computation steps of Σ (when the value in
position p+1 is greater than 1) and increment the value in position p+1. Namely,
for every function f (x) = Ax + B in the definition of Σ, we consider a function
f ′(x′) = A′x′ + B′, defined only if x′ = x · (1,0,0,0) and f is defined for x, where
A′(i, j) = A(i, j) for every 1 ≤ i, j ≤ p and A′(i, j) = 0 for every p+ 1 ≤ i, j ≤ p+ 4,
and B′ = B · (1,0,0,0).

– f3 is a function that moves all the tokens in the marking reached after the simulated
computation of Σ in position p+ 2. Namely, f3(x) = Ax+ B where A(i, j) = 0 for
every i and j, excluding A(p+2, j) = 1 for 1 ≤ j ≤ p, and B = 0p+4.



158 L. Acciai, M. Boreale, and G. Zavattaro

– f4 is a function that permits to restart the simulation of Σ if the value in position
p+1 is not 0. Namely, f4(x) = Ax+B, defined only if x(p+1)> 0, where A(i, j) = 0
for every i and j, and B = m · (1,0,0,0).

We now prove the correctness of the reduction.

Theorem 4. Let Σ be a reset net with inital marking m. Consider the affine wsn system
[[Σ]], and the states s1 = 0p · (0,0,1,0) and s2 = m · (1,0,0,0). We have that s1 	 s2 iff Σ
is unbounded.

Proof: We first consider the if part. Assume that s1 	 s2. Given a natural number n, we
will prove that Σ has a computation starting from m and leading to a marking with at
least n tokens, from which the unboundedness of Σ follows. Consider a computation of
[[Σ]] of length n starting from s1 and leading to 0p · (0,0,0,n). As s1 	 s2 we have that
[[Σ]] has a computation starting from s2 and leading to a state 0p · (0,n′,0,0) with n′ ≥ n.
As the computations starting from the state s2 mimic computations of Σ before moving
all the tokens in the reached marking in position p+2, we have that also in Σ there is a
computation from m leading to a marking with n′ tokens.

We now consider the only-if part. Assume that Σ is unbounded. In this case we have
that Σ has an infinite computation m = m1 → m2 → ·· · → mi→ ·· · with the following
property: there exists an infinite increasing sequence of indexes 1 = l1, l2, . . . , l j, . . . such
that if j < j′ then #mlj < #mlj′ . We now prove that s1 	 s2 showing the existence of a
spatial-behavioral simulation R between states of [[Σ]] such that (s1, s2) ∈ R. Let R be
the relation including the following pairs:

1.
(
0p · (0,0,k,0), mlj · (k′,0,0,0)

) ∈ R for every 0 < k ≤ k′ ≤ l j, where mlj is taken
from the computation of Σ, ml1 →+ ml2 →+ · · · →+ mlj →+ · · · , with #mlj < #mlj′
for every j < j′, described above,

2.
(
0p · (0,0,0,k), 0p · (0,k′,0,0)

) ∈ R for every k ≤ k′,
3.
(
0p+4, 0p+4) ∈ R,

4.
(
0p · (0,0,k,0), 0p · (k,0,0,0)

) ∈ R for every k > 0.

The relation R is a spatial-behavioural simulation as it satisfies the three conditions
in the Definition 2. There are only two non-trivial conditions to be checked. The first
one is that the pairs

(
0p · (0,0,k,0), 0p · (k,0,0,0)

)
satisfy condition (1). This holds be-

cause of the function f4 that allows the second state 0p · (k,0,0,0) to restart the sim-
ulation of the computation m1 → m2 → ·· · → mi → ·· · . The second one is that the
pairs

(
0p · (0,0,k,0), mlj · (k′,0,0,0)

)
satisfy condition (2). In this case we observe that

0p · (0,0,k,0) = t1 + t2 iff t1 = 0p · (0,0,k1,0) and t2 = 0p · (0,0,k2,0) with k = k1 + k2.
If k1 = k and k2 = 0 we simply observe that mlj · (k′,0,0,0) = mlj · (k′,0,0,0)+ 0p+4. If
k1 < k we observe that mlj · (k′,0,0,0) = 0p · (k1,0,0,0)+mlj · (k′ − k1,0,0,0) and that
(
0p · (0,0,k1,0), 0p · (k1,0,0,0)

) ∈ R and
(
0p · (0,0,k2,0), mlj · (k′ − k1,0,0,0)

) ∈ R. We
complete the proof observing that (s1, s2) ∈ R as

(
0p · (0,0,1,0), m · (1,0,0,0)

) ∈ R due
to the first item of the definition of R and because m = m1. �

In the light of this theorem and knowing from [11] that the boundedness problem in
reset nets is undecidable, we can conclude that the spatial-behavioral simulation 	 is
undecidable for affine wsn.



On the Relationship between Spatial Logics and Behavioral Simulations 159

7 Conclusion

We have investigated connections between spatial logic and simulation relations, and
related decidability issues, in a general setting of spatial transition systems. One of our
results states the coincidence, under certain assumptions, of the logical preorder and
of the largest sbs. In the setting of the Ambient Calculus and Ambient Logic, simi-
lar results have been achieved by Sangiorgi & al. in [20, 24]. On the one hand, the
clauses of our sbs are reminiscent of their intensional bisimilarity. On the other hand,
their completeness proof relies on techniques very different from ours; in particular, the
presence in the logic of an adjunct of | helps them in defining characteristic formulae
for processes in a syntax-driven way, which can have no counterpart in our framework.
(Un)decidability of the Ambient Logic is also investigated in [20]. Caires and Lozes
study the power of the adjunct in [8]; they too offer Hennessy-Milner theorems based
on characteristic formulae and undecidability results relatively to a small fragment of
ccs, but they consider a strong, rather than a weak next-step modality as we do. In the
setting of the pi-calculus, Caires [5] offers a Hennessy-Milner theorem and decidabil-
ity results for a Spatial Logic without adjunct, again considering strong modalities and
relying on characteristic formulae.

The reader may observe that, while decidability of the monotone spatial logic L0

holds of course for all instances of the framework, the undecidability results are proved
in the setting of Affine Well-Structured Nets (wsn). As for future work, we plan to
investigate this issue further, so as to obtain new decidability results, or even abstract
undecidability results that holds for a whole sub-class of models. Concerning the first
direction, we observe that the decidability of sbs seems connected to the problem of
effective computation of the finite clover set (see [15]) for ↓ Post∗(s), and this turns out
to be effective if we move from reset/transfer Petri nets to Petri nets. Another issue left
open by our study is, in the case of wa, the characterization of semirings for which a
pred-basis is effectively computable.

Acknowledgment. We thank the anonymous referees for their useful comments on the
submitted version of this paper. The second author wishes to thank Jean Goubault-
Larrecq for stimulating discussions on complete wsts.

References

1. Acciai, L., Boreale, M., Zavattaro, G.: On the relationship between spatial logics and behav-
ioral simulations. Tech. rep. (2010), http://rap.dsi.unifi.it/~acciai

2. Acciai, L., Boreale, M.: Deciding safety properties in infinite-state pi-calculus via be-
havioural types. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 31–42. Springer, Heidelberg (2009)

3. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and linearity. Wiley,
Chichester (1992)

4. Busi, N., Gabbrielli, M., Zavattaro, G.: Comparing Recursion, Replication, and Iteration in
Process Calculi. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 307–319. Springer, Heidelberg (2004)

http://rap.dsi.unifi.it/~acciai


160 L. Acciai, M. Boreale, and G. Zavattaro

5. Caires, L.: Behavioural and Spatial Observations in a Logic for the pi-Calculus. In:
Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 72–89. Springer, Heidelberg
(2004)

6. Caires, L., Cardelli, L.: A spatial logic for concurrency (part II). Theor. Comput. Sci. 322(3),
517–565 (2004)

7. Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Inf. Comput. 186(2), 194–
235 (2003)

8. Caires, L., Lozes, E.: Elimination of Quantifiers and Undecidability in Spatial Logics for
Concurrency. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 240–
257. Springer, Heidelberg (2004)

9. Cardelli, L., Gordon, A.D.: Anytime, Anywhere: Modal Logics for Mobile Ambients. In:
Proc. of POPL, pp. 365–377 (2000)

10. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with r distinct
prime factors. Amer. Journal Math 35, 413–422 (1913)

11. Dufourd, E.C., Finkel, A., Schnöebelen, P.: Reset Nets Between Decidability and Undecid-
ability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
103–115. Springer, Heidelberg (1998)

12. Esparza, J., Finkel, A., Meyr, R.: On the Verification of Broadcast Protocols. In: Proc. of
LICS, pp. 352–359 (1999)

13. Esparza, J.: On the Decidability of Model Checking for Several μ-calculi and Petri Nets. In:
Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 115–129. Springer, Heidelberg (1994)

14. Finkel, A., Goubault-Larrecq, J.: Forward Analysis for WSTS, Part I: Completions. In: Proc.
of STACS, Dagstuhl Seminar Proceedings 09001, pp. 433–444 (2009)

15. Finkel, A., Goubault-Larrecq, J.: Forward Analysis for WSTS, Part II: Complete WSTS. In:
Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP
2009. LNCS, vol. 5556, pp. 188–199. Springer, Heidelberg (2009)

16. Finkel, A., McKenzie, P., Picaronny, C.: A Well-Structured Framework for Analysing Petri
Net Extensions. Information and Computation 195(1-2), 1–29 (2004)

17. Finkel, A., Schnöebelen, P.: Well-Structured Transition Systems Everywhere! Theoretical
Computer Science 256(1-2), 63–92 (2001)

18. Hack, M.H.T.: Decidability questions for Petri nets. Ph.D Thesis. MIT (1976)
19. Hennessy, M., Milner, R.: On Observing Nondeterminism and Concurrency. In: de Bakker,

J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309. Springer, Heidelberg
(1980)

20. Hirschkoff, D., Lozes, E., Sangiorgi, D.: Separability, Expressiveness, and Decidability in
the Ambient Logic. In: Proc. of LICS, pp. 423–432 (2002)

21. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Monographs in Theoretical Com-
puter Science, EATCS Series, vol. 5. Springer, Heidelberg (1986)

22. Milner, R.: Communication and concurrency. Prentice-Hall, Englewood Cliffs (1989)
23. Minsky, M.: Computation: Finite and Infinite Machines, 1st edn. Prentice-Hall, Inc., Engle-

wood Cliffs (1967)
24. Sangiorgi, D.: Extensionality and Intensionality of the Ambient Logics. In: Proc. of POPL,

pp. 4–13 (2001)
25. Simon, I.: Limited subset of a Free Monoid. In: Proc. of FOCS, pp. 143–150 (1978)
26. Valk, R., Jantzen, M.: The residue of vector sets with applications to decidability problems

in Petri nets. Acta Informatica 21, 643–674 (1985)



An Easy Completeness Proof for the Modal
µ-Calculus on Finite Trees

Balder ten Cate1,∗ and Gaëlle Fontaine2,�

1 University of California, Santa Cruz
2 ILLC, Universiteit van Amsterdam

Abstract. We give a complete axiomatization for the modal μ-calculus
on finite trees. While the completeness of our axiomatization already
follows from a more powerful result by Igor Walukiewicz in [11], our
proof is easier and uses very different tools, inspired from model theory.
We show that our approach generalizes to certain axiomatic extensions,
and to the extension of the μ-calculus with graded modalities. We hope
that the method might be helpful for other completeness proofs as well.

The μ-calculus is an extension of modal logic with a fixpoint operator. In
1983, Dexter Kozen suggested an axiomatization and showed completeness for
the aconjunctive fragment of the μ-calculus (see, e.g., [7]). It took more than
ten years to prove completeness. This proof is due to Igor Walukiewicz [11] and
is quite involved. It uses tableaux and the notion of disjunctive formula. We
propose here a simpler proof in a particular case. More precisely, we prove the
completeness of the Kozen axiomatization Kμ extended with the axiom μx.�x
with respect to the class of finite tree models. Finite trees are a fundamental
data structure in computer science, and logics on finite trees have received con-
siderable attention in recent literature, motivated by applications in areas such
as XML [1,8].

Our argument consists of three steps. The first step consists of defining a
notion of rank which plays the same role as the modal depth for modal formulas.
One of the main properties of the rank is the following. In order to know whether
a formula ϕ of rank n is true at a node w, it is enough to know which proposition
letters are true at w and which formulas of rank at most n are true at the
successor nodes of w. Another key property of the rank is that there are only
finitely many formulas of a given rank (up to logical equivalence).

The second step is to prove completeness of the μ-calculus with respect to
generalized models, which are basically Kripke models augmented with a set of
admissible subsets, in the style of Henkin semantics for second order logic.

� The first author was supported by the Netherlands Organization for Scientific Re-
search (NWO), under grant 639.021.508 and by ERC Advanced Grand Webdam on
Foundation of Web data management. The second author is supported by VICI grant
639.073.501 of the NWO. We are grateful to Alexandru Baltag and Yde Venema for
their comments on earlier drafts. We also thank the anonymous referees for helpful
remarks.

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 161–175, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



162 B. ten Cate and G. Fontaine

The last step is inspired by the work of Kees Doets (see, e.g., [3]). Let us call
a node in a generalized model n-good if there is a node in a finite tree model
which satisfies exactly the same formulas of rank at most n. Using an induction
principle, we show that every node in a generalized model satisfying μx.�x is
n-good. It is here that we use the main property of the rank. Finally, putting this
together with the completeness for generalized models, we obtain completeness
for the class of finite tree models.

This argument can also be applied to some extensions of the logic Kμ+μx.�x.
More precisely, we prove that when we add finitely many shallow axioms (as
defined in [10]), we obtain a complete axiomatization for the corresponding class
of finite trees. We also show that we can adapt our proof to show completeness
for the graded μ-calculus extended with the axiom μx.�x. Let us also mention
that a similar method has been used for other completeness proofs in [6].

The paper is organized as follows. In section 1, we recall what is the Kozen
axiomatization for the μ-calculus Kμ and what is the intended semantics. In
section 2, we define the notion of rank for a formula. In section 3, we give a
definition for the generalized models and we show completeness of Kμ with
respect to the class of generalized models. In section 4, we use Kees Doets’
argument to obtain completeness of Kμ + μx.�x with respect to the class of
finite tree models. In the last two sections, we give some examples of extensions
of Kμ+μx.�x to which we can apply our method in order to prove completeness.

1 Syntax, Semantics and Axiomatization

We introduce the language and the Kripke semantics for the μ-calculus. We also
recall the axiomatization given by Dexter Kozen.

Definition 1. The μ-formulas over a set Prop of proposition letters and a set
V ar of variables are given by

ϕ ::= � | p | x | ϕ ∨ ϕ | ¬ϕ | ♦ϕ | μx.ϕ,
where p ranges over the set Prop and x ranges over the set V ar of variables.
In μx.ϕ, we require that the variable x appears only under an even number of
negations in ϕ. We will assume that V ar is infinite.

As usual, we let φ∧ψ, �ϕ and νx.ϕ be abbreviations for ¬(¬ϕ∨¬ψ), ¬♦¬ϕ
and ¬μx.¬[¬x/x]. The notions of subformula, bound variable, free variable and
substitution are defined in the usual way. If ϕ and ψ are μ-formulas and if p is a
proposition letter, we denote by ϕ[ψ/p] the formula obtained by replacing in ϕ
each occurrence of p by ψ. Similarly, if x is a variable, we define ϕ[ψ/x].

A μ-sentence is a formula in which all the variables are bound. A μ-formula
is a modal formula if it does not contain any subformula of the form μx.ϕ.

Definition 2. A Kripke frame is a pair (W,R), where W is a set and R a binary
relation on W . A Kripke model is a triple (W,R, V ) where (W,R) is a Kripke
frame and V : Prop→ P(W ) a valuation. If (w, v) belongs to R, we say that w
is a predecessor of v and v is a successor of w.



An Easy Completeness Proof for the Modal μ-Calculus on Finite Trees 163

Given a formula ϕ, a Kripke modelM = (W,R, V ) and an assignment τ : V ar →
P(W ), we define a subset [[ϕ]]M,τ that is interpreted as the set of points at which
ϕ is true. The subset is defined by induction in the usual way. We only recall
that

[[μx.ϕ]]M,τ = {U ⊆W : [[ϕ]]M,τ [x:=U ] ⊆ U},
where τ [x := U ] is the assignment τ ′ such that τ ′(x) = U and τ ′(y) = τ(y),
for all y �= x. Observe that the set [[μx.ϕ]]M,τ is the least fixpoint of the map
ϕx : P(W )→ P(W ) defined by ϕx(U) := [[ϕ]]M,τ [x:=U ], for all U ⊆W .

If w ∈ [[ϕ]]M,τ , we writeM, w �τ ϕ and we say that ϕ is true at w under the
assignment τ . If ϕ is a sentence, we simply writeM, w � ϕ.

A formula ϕ is true in M under an assignment τ if for all w ∈ W , we have
M, w �τ ϕ. In this case, we write M �τ ϕ. A set Φ of formulas is true in a
model M under an assignment τ , notation: M �τ Φ, if for all ϕ in Φ, ϕ is true
in M under τ . Finally, if (W,R) is a Kripke frame and for all valuations V and
all assignments τ , ϕ is true in (W,R, V ) under the assignment τ , we say that ϕ
is valid in (W,R) and we write (W,R) � ϕ.

Definition 3. The axiomatization of the Kozen system Kμ consists of the fol-
lowing axioms and rules

propositional tautologies,
If 	 ϕ→ ψ and 	 ϕ, then 	 ψ (Modus ponens),
If 	 ϕ, then 	 ϕ[p/ψ] (Substitution),
	 �(p→ q)→ (�p→ �q) (K-axiom),
If 	 ϕ, then 	 �ϕ (Necessitation),
	 ϕ[x/μx.ϕ]→ μx.ϕ (Fixpoint axiom),
If 	 ϕ[x/ψ]→ ψ, then 	 μx.ϕ→ ψ (Fixpoint rule),

where x is not a bound variable of ϕ and no free variable of ψ is bound in ϕ.

Definition 4. If Φ is a set of modal formulas, we write K + Φ for the smallest
set of modal formulas which contains the propositional tautologies, the K-axiom
and is closed under the Modus Ponens, Substitution and Necessitation rules. We
say that K + Φ is the extension of K by Φ. Note that if Φ is empty, we simply
write K.

Next, if Φ is a set of modal formulas, we denote by K+r Φ the smallest set of
formulas which contains both K and Φ and is closed under the Modus Ponens
and Necessitation rules. We call K +r Φ the restricted extension of K by Φ.

Finally, if Φ is a set of μ-formulas, we write Kμ + Φ for the smallest set of
formulas which contains both Kμ and Φ and is closed under the Modus Po-
nens, Substitution, Necessitation and Fixpoint rules. We say that Kμ +Φ is the
extension of Kμ by Φ.

Definition 5. Let (W,R) be a Kripke frame. A point r in W is a root if for all
w in W , there is a sequence w0, . . . , wn such that w0 = r, wn = w and (wi, wi+1)
belongs to R, for all i ∈ {0, . . . , n − 1}. The frame (W,R) is a tree if it has a
root, every point distinct from the root has a unique predecessor and there is no



164 B. ten Cate and G. Fontaine

sequence w0, . . . , wn+1 in W such that wn+1 = w0 and (wi, wi+1) belongs to R,
for all i ∈ {0, . . . , n}.

The frame (W,R) is a finite tree if it is a tree and W is finite. Finally, a finite
tree Kripke model is a Kripke model (W,R, V ) such that (W,R) is a finite tree.

Proposition 1. Let M = (W,R, V ) be a Kripke model. The formula μx.�x is
true at a point w in M iff there is no infinite sequence w0, w1 . . . in W such
that w0 = w and (wi, wi+1) belongs to R, for all i ∈ N.

In particular, the formula μx.�x is true inM iff there is no infinite sequence
w0, w1, . . . such that (wi, wi+1) belongs to R, for all i ∈ N. That is, iff M is
conversely well-founded.

We prove the completeness of the logic Kμ + μx.�x with respect to the class of
finite tree Kripke models. That is, a formula ϕ is provable in Kμ + μx.�x iff it
is valid in any finite tree Kripke model. In fact, this result can be derived from
the completeness result proved by Igor Walukiewicz in [11]. We will give more
details at the end of Section 4.

2 Rank of a Formula

The goal of this section is to come up with a definition of rank that would be
the analogue of the depth of a modal formula. For modal logics, it is not hard
to see that the truth of an arbitrary formula ϕ at some world w only depends of
the truth of the proposition letters at w and of the truth of formulas ψ at the
successors of w, where the depth of ψ is at most the depth of ϕ. In our proof,
we will need something similar for the μ-calculus.

The most natural idea would be to look at the nesting depth of modal and
fixpoint operators. However, this definition does not have the required properties.
The notion of rank that we develop here is in fact related to the closure of a
formula, which has been introduced by Michael Fischer and Robert Ladner in [5].

Definition 6. The closure Cl(ϕ) of a formula ϕ is the smallest set of formulas
such that

ϕ ∈ Cl(ϕ), if ψ ∨ χ ∈ Cl(ϕ), then {ψ, χ} ⊆ Cl(ϕ),
if ¬ψ ∈ Cl(ϕ), then ψ ∈ Cl(ϕ), if μx.ψ ∈ Cl(ϕ), then ψ[x/μx.ψ] ∈ Cl(ϕ).
if ♦ψ ∈ Cl(ϕ), then ψ ∈ Cl(ϕ),

It is also proved in [7] that the closure Cl(ϕ) of a formula ϕ is finite. In order to
define the rank, we also need to recall the notion of the depth of a formula.

Definition 7. The depth d(ϕ) of a formula ϕ is defined by induction as follows

d(�) = d(p) = d(x) = 0, d(ϕ ∨ ψ) = max{d(ϕ), d(ψ)},
d(¬ϕ) = d(ϕ), d(♦ϕ) = d(μx.ϕ) = d(ϕ) + 1.

Definition 8. The rank of a formula ϕ is defined as follows

rank(ϕ) = max{d(ψ) | ψ ∈ Cl(ϕ)}.



An Easy Completeness Proof for the Modal μ-Calculus on Finite Trees 165

Remark that since Cl(ϕ) is finite, rank(ϕ) is always a natural number. All we
will use later are the following properties of the rank.

Proposition 2. If the set Prop of proposition letters is finite, then for all nat-
ural numbers k, there are only finitely many sentences of rank k (up to logical
equivalence).

Proof. Fix a natural number k. Note first that if rank(ϕ) = k, then in particular,
d(ϕ) ≤ k. Hence, it is enough to show that there only finitely many sentences
of depth below k (up to logical equivalence). If d(ϕ) ≤ k, we may assume that
the only variables occurring in ϕ are some x1, . . . , xk. It is routine to prove by
induction on l that there are finitely many formulas of depth l with variables
x1, . . . , xk, up to logical equivalence. ��
Proposition 3. The rank is closed under boolean combination. That is, for any
n, a boolean combination of formulas of rank at most n is a formula of rank at
most n.

Proposition 4. Every formula ϕ is provably equivalent to a boolean combina-
tion of proposition letters and formulas of the form ♦ψ, with rank(ψ) ≤ rank(ϕ).

Proof. A formula is guarded if every bound variable is in the scope of a modal
operator. Each formula ϕ is provably equivalent to a guarded formula of rank
less or equal to the rank of ϕ (see, e.g., [11]) . Therefore, let ϕ be a guarded
formula. We define a map G by induction as follows:

G(�) = �, G(p) = p, if p is a free variable of ϕ,
G(¬ψ) = ¬G(ψ), G(ψ ∨ ψ′) = G(ψ) ∨G(ψ′),
G(♦ψ) = ♦ψ, G(μx.ψ) = G(ψ[x/μx.ψ]).

We note that G is not defined for a bound variable x of ϕ. Using the fact that
ϕ is guarded, one can show that the computation of G(ϕ) is well-defined and
does terminate. It is not hard to see that G(ϕ) is equivalent to ϕ. We remark
now that if ψ belongs to Cl(ϕ), then Cl(ψ) is a subset of Cl(ϕ). It follows that
G(ϕ) is a boolean combination of proposition letters and formulas of the form
♦ψ, with rank(ψ) ≤ rank(ϕ). ��

3 Completeness for Generalized Models

We introduce generalized models which are the analogue for the μ-calculus of
the general models for second order logic. We prove completeness of Kμ with
respect to the class of generalized models.

Definition 9. Consider a quadrupleM = (W,R, V,A) where (W,R) is a Kripke
frame, A is a subset of P(W ) and V : Prop→ A a valuation. A set which belongs
to A is called admissible.

We define the truth of a formula ϕ under an assignment τ : V ar → A by
induction. All the clauses are the same as usual, except the one defining the



166 B. ten Cate and G. Fontaine

truth of μx.ϕ. Normally, we define the set [[μx.ϕ]]M,τ as the least pre-fixpoint of
the map ϕx (see Definition 2). But here, we define it as the intersection of all
the admissible pre-fixpoints of ϕx.

[[�]]M,τ = W,
[[p]]M,τ = V (p),
[[x]]M,τ = τ(x),
[[¬ϕ]]M,τ = W\[[ϕ]]M,τ ,
[[ϕ ∨ ψ]]M,τ = [[ϕ]]M,τ ∪ [[ψ]]M,τ ,
[[♦ϕ]]M,τ = {w ∈W : ∃v ∈W s.t. wRv and v ∈ [[ϕ]]M,τ},
[[μx.ϕ]]M,τ = {U ∈ A : [[ϕ]]M,τ [x:=U ] ⊆ U},

where τ [x := U ] is the assignment τ ′ such that τ ′(x) = U and τ(y) = τ(y), for
all y �= x. If w ∈ [[ϕ]]M,τ , we write M, w �τ ϕ and we say that ϕ is true at w
under the assignment τ . If ϕ is a sentence, we simply writeM, w � ϕ. A formula
ϕ is true in M under an assignment τ if for all w ∈ W , we haveM, w �τ ϕ. In
this case, we writeM �τ ϕ.

The quadruple M = (W,R, V,A) is a generalized model if for all formulas
ϕ and all assignments τ : V ar → A, the set [[ϕ]]M,τ belongs to A. A triple
F = (W,R,A) is a generalized frame if for every valuation V : Prop → A, the
quadruple (W,R, V,A) is a generalized model.

If F = (W,R,A) is a generalized frame, we call (W,R) the underlying Kripke
frame of F . A formula ϕ is valid in a generalized frame F = (W,R,A), notation:
F � ϕ, if for all valuations V : Prop→ A and all assignments τ : V ar→ A, the
formula ϕ is true in (W,R, V,A) under the assignment τ .

Any Kripke model M = (W,R, V ) can be seen as the generalized model M ′ =
(W,R, V,P(W )). It follows easily from our definition that for all formulas ϕ and
all points w ∈ W ,

M,w � ϕ iff M ′, w � ϕ.

Now we show that for all sets Φ of formulas, the logic Kμ + Φ is complete
with respect to a particular generalized model. If we were only interested in
showing that Kμ+μx.�x is complete, we would restrict ourselves to prove that
Kμ+μx.�x is complete with respect to a particular generalized model. But later,
we will also show completeness for some extensions of Kμ and it will become
handy to suppose that Φ contains other additional axioms.

First we introduce some definitions and recall some results of modal logic.

Theorem 1 ([9]). Let Φ be a set of modal formulas. There exists a model M
such that for all modal formulas ϕ, ϕ is provable in K +r Φ iff M � ϕ.

This theorems says that every (restricted) extension of K is complete with re-
spect to a class of Kripke models. However, all of these extensions might not be
complete with respect to a class of Kripke frames. Indeed, there is no guarantee
that the formulas in Φ are valid in the frame corresponding to the model given
by Theorem 1.



An Easy Completeness Proof for the Modal μ-Calculus on Finite Trees 167

Definition 10. Let Prop be a set of proposition letters and V ar a set of vari-
ables. We let μFL be the set of sentences of the form μx.ϕ or νx.ϕ, for some
μ-formula ϕ over Prop. We denote by Prop+ the set Prop ∪ {pϕ : ϕ ∈ μFL}.

If ϕ is a μ-formula over Prop+, we define s(ϕ) as the formula obtained by
replacing each proposition letter of the form pψ (ψ ∈ μFL), by the formula ψ.
We call s(ϕ) the source of ϕ.

Next, if ϕ is a μ-formula over Prop+, we say that a modal formula ψ over
Prop+ is the replacement of ϕ if ψ is obtained by replacing in the formula s(ϕ)
all maximal subformulas χ in μFL, by the proposition letter pχ. In this case, we
use the notation repl(ϕ). Finally, if Σ is a set of μ-formulas over Prop, we let
repl(Σ) be the set {repl(ϕ) : ϕ ∈ Σ}.
For example, let ϕ be the formula ♦(μx.pνy.x∧y). Then s(ϕ) is the formula
♦(μx.νy.(x ∧ y)) and repl(ϕ) is the formula ♦pμx.νy.(x∧y). We remark also that
for all formulas ψ, repl(ψ) is a modal formula over Prop+.

Now we will prove that for all sets of formulas Φ, the logic Kμ+Φ is complete
with respect to the class of generalized models which make Φ true. An easy way
to show this would be to do a standard canonical model construction (inspired
by the one used for the completeness of the modal logic K).

However, we give here another proof. The idea is to use the replacement map
introduced previously in order to translate the completeness result for modal
logic into a completeness result for generalized Kripke models. This proof might
seem a bit more tedious. In fact, it will make our result easier to extend to other
settings (like graded μ-calculus).

Theorem 2. Let Φ be a set of μ-formulas over a set Prop. There is a generalized
model M = (W,R, V,A) such that for all sentences ϕ, ϕ is provable in Kμ + Φ
iff M � ϕ.

In particular, the logic Kμ + Φ is complete with respect to the class of gener-
alized models which make Φ true. That is, for all sentences ϕ, ϕ is provable in
Kμ + Φ iff for all generalized models M such that M � Φ, we have M � ϕ.

Proof. By Theorem 1, there is a Kripke model N = (W,R, V +) (over Prop+)
such that for all modal formulas α over Prop+, α is provable in K+rrepl(Kμ+Φ)
iff N � α. Now let A be the set {[[δ]]N : δ modal formula over Prop+}. We define
M as the quadruple (W,R, V +,A).

First, we show that for all μ-formulas ϕ over Prop+, all v in W and all
assignments τ : V ar → A, we have

N , v �τ repl(ϕ) iff M, v �τ ϕ. (1)

The proof is by induction on the complexity of ψ. We skip the details by lack of
space. Next, we prove that for all μ-sentences ϕ (over Prop), we have

M � ϕ iff ϕ is provable in Kμ + Φ.

For the direction from left to right, suppose that ϕ is not provable in Kμ+Φ.
This implies that repl(ϕ) is not provable in K +r repl(Kμ + Φ). Therefore, the



168 B. ten Cate and G. Fontaine

formula repl(ϕ) is not true in N . By equivalence (1), this means that ϕ is not
true in M.

For the direction from right to left, assume that ϕ is provable in Kμ + Φ. It
is routine to show that for all generalized models M′ such that M′ � Φ, we
have that M′ � ϕ. Moreover, using equivalence (1) together with the fact that
repl(Φ) is true in N , we obtain that Φ is true inM. Putting everything together,
we get that ϕ is true in M.

To finish the proof, it remains to show that M is a generalized model. That
is, for all μ-formulas ϕ over Prop, the set [[ϕ]]M belongs to A. Fix a μ-formula ϕ
over Prop. By equivalence (1), the set [[ϕ]]M is equal to [[repl(ϕ)]]N . By definition
of A, this set belongs to A.

4 Completeness for Finite Tree Models

In the style of Kees Doets [3], we prove completeness of Kμ+μx.�x with respect
to the class of finite tree Kripke models. The argument is as follows. First, we say
that a point w in a generalized model is n-good if there is a point v in a finite
tree Kripke model such that no formula of rank at most n can distinguish w
from v. Next, we show that “being n-good” is a property that can be expressed
by a formula γn of rank at most n. Afterwards, we prove that each point (in a
generalized model) satisfying μx.�x, is n-good. Finally, using completeness for
generalized models, we obtain completeness of Kμ + μx.�x with respect to the
class of finite tree Kripke models.

In this section, we will assume that the set Prop of proposition letters is finite.
Often we write “finite tree” instead of “finite tree Kripke model”.

Definition 11. Fix a natural number n. Let M and M′ be two generalized
models. A world w ∈M is rank n-indistinguishable to a world w′ ∈M′ if for all
formulas ϕ of rank at most n, we have

M, w � ϕ iff M′, w′ � ϕ.
In case this happens, we write (M, w) ∼n (M′, w′). Finally, we say that w ∈M
is n-good if there exists a finite tree N and some v ∈ N such that (M, w) ∼n
(N , v).
Definition 12. Let n be a natural number and let Φn be the set of formulas of
rank at most n. For any generalized model M and any w ∈ M, we define the
n-type θn(w) as the set of formulas in Φn which are true at w.

By Proposition 2, Φn is finite (up to logical equivalence) and in particular, there
are only finitely many distinct n-types.

Lemma 1. Let n be a natural number. There exists a formula γn of rank n such
that for any generalized model M and any w ∈M, we have

M, w � γn iff (M, w) is n-good.



An Easy Completeness Proof for the Modal μ-Calculus on Finite Trees 169

Proof. Let n be a natural number and let γn be the formula defined by

γn = { θn(w) |w is n-good},
where w a point in a generalized modelM and θn(w) is shorthand for {ϕ :
ϕ ∈ θn(w)}. Since there are only finitely many distinct n-types, the formula γn
is well-defined. Moreover, from Proposition 3, it follows that the rank of γn is n.

It remains to check that γn has the required properties. It is immediate to see
that if a point w in a generalized model is n-good, then γn is true at w. For the
other direction, assume that γn is true at a point w in a generalized model M.
Therefore, there is a point w′ in a generalized modelM′ such that w′ is n-good
and θn(w′) is true at w. Since w′ is n-good, there is a point v in a model N such
that w′ and v are rank n-indistinguishable. Using the fact that w and w′ have
the same n-type, we obtain that w and v are also rank n-indistinguishable. That
is, w is n-good. ��
Lemma 2. For all natural numbers n, 	K �γn → γn.

Proof. Let n be a natural number. By Theorem 2, it is enough to show that the
formula �γn → γn is valid in all generalized models. Let M be a generalized
model and let w ∈ M. We have to show M, w � �γn → γn. So suppose
M, w � �γn. If w is a reflexive point, we immediately obtain M, w � γn and
this finishes the proof. Assume now that w is irreflexive. We have to prove that
(M, w) is n-good. That is, we have to find a finite tree N and some v ∈ M such
that (M, w) ∼n (N , v).

Now for any successor u of w, we haveM, u � γn. Therefore, (M, u) is n-good
and there exists a finite tree Mu = (Wu, Ru, Vu) and some wu ∈ Wu such that
(M, u) ∼n (Mu, wu). Without loss of generality, we may assume that wu is the
root ofMu.

The idea is now to look at the disjoint union of these models and to add
a root v (that would be rank n-indistinguishable from w). However, this new
model might not be a finite tree (w might have infinitely many successors). The
solution is to restrict ourselves to finitely many successors of w. More precisely,
for each n-type, we pick at most one successor of w.

So let U be a set of successors of w such that for any successor u of w, there
is exactly one point u′ of U satisfying θn(u) = θn(u′). Remark that since there
are only finitely many distinct n-types, U is finite. Let N = (W,R, V ) be the
model defined by

W = {v} ∪ {Wu : u ∈ U},
R = {(v, wu) : u ∈ U} ∪ {Ru : u ∈ U},

V (p) =
{v} ∪ {Vu(p) : u ∈ U} ifM, w � p,
{Vu(p) : u ∈ U} otherwise,

for all proposition letters p. Since U is finite, N is a finite tree. Thus, it is enough
to check that for any formula ϕ of rank at most n, we have

M, w � ϕ iff N , v � ϕ.



170 B. ten Cate and G. Fontaine

By Proposition 4, ϕ is provably equivalent to a boolean combination of proposi-
tion letters and formulas of the form ♦ψ, where rank(ψ) is at most n. Thus, it
is enough to show that w and v satisfy exactly the same proposition letters and
the same formulas ♦ψ with rank(ψ) ≤ n.

By definition of V , it is immediate that w and v satisfy the same proposition
letters. Now let ψ be a formula of rank at most n. We have to show that

M, w � ♦ψ iff N , v � ♦ψ.
For the direction from left to right, suppose thatM, w � ♦ψ. Thus, there exists
a successor u of w such that M, u � ψ. By definition of U , there is u′ ∈ U
such that (M, u) ∼n (M, u′). Thus, (M, u) ∼n (Mu′ , wu′ ) and in particular,
Mu′ , wu′ � ψ. By definition of R, it follows that N , v � ♦ψ. The direction from
right to left is similar. ��
Proposition 5. For all natural numbers n, 	K μx.�x→ γn.

Proof. By Lemma 2, we know that �γn → γn is provable in Kμ. By the Fixpoint
rule, we obtain that μx.�x→ γn is provable in Kμ. ��
Theorem 3. Kμ + μx.�x is complete with respect to the class of finite tree
Kripke models.

Proof. For any finite tree M, we have M � Kμ and M � μx.�x. Thus, it is
sufficient to show that if ϕ is not provable in Kμ+μx.�x, there exists a finite tree
N such that N � ϕ. Let ϕ be such a formula. In particular, �K μx.�x → ϕ.
By Theorem 2, we haveM, w � μx.�x→ ϕ, for some generalized modelM and
some w ∈M.

Let n be the rank of ϕ. By Theorem 2 and Proposition 5, we get thatM, w �
μx.�x→ γn. Since M, w � μx.�x, it follows thatM, w � γn. Therefore, there
exists a finite tree N and some v ∈ N such that (M, w) ∼n (N , v). Since
M, w � ϕ, we have N , v � ϕ.

As mentioned before, this result also follows from the completeness of Kμ showed
by Igor Walukiewicz in [11]. We briefly explain how to derive Theorem 3 from
the completeness of Kμ. Recall that in [11], Igor Walukiewicz showed that a
sentence ϕ is provable in Kμ iff it is valid in all trees.

Suppose that a sentence ϕ is not provable in Kμ + μx.�x. In particular, the
formula μx.�x → ϕ is not provable in Kμ. It follows from the completeness of
Kμ that there is a model M = (W,R.V ) and a point w in W such that (W,R)
is a tree and μx.�x → ϕ is not true at w. We may assume that w is the root
of (W,R).

Since μx.�x is true at w and since w is the root, it follows from Fact 1 that
the tree (W,R) is conversely well-founded. Let n be the rank of ϕ. Now, if a
point v in W has more than one successor of a given n-type θ, we can pick one
successor of n-type θ and delete all the other successors of n-type θ. This would
not modify the fact that ϕ is not true at w. By doing this operation inductively
and using the fact that (W,R) is well-founded, we can prove that the tree (W,R)
may be assumed to be finite. Therefore, there is a finite tree (W,R) in which ϕ
is not valid.



An Easy Completeness Proof for the Modal μ-Calculus on Finite Trees 171

5 Adding Shallow Axioms to Kµ + µx.�x

By slightly modifying our method, it is also possible to prove that when we
extend the logic Kμ + μx.�x with axioms that are shallow (defined below), we
obtain complete axiomatizations for the corresponding class of finite trees.

Definition 13 ([10]). A formula is Prop-free if it is a sentence that does not
contain any proposition letter. A formula is propositional if it is a sentence of
the μ-calculus that contains neither ♦ nor μ.

A formula is shallow if no occurrence of a proposition letter is in the scope of
a fixpoint operator and each occurrence of a proposition letter is in the scope
of at most one modality. In other words, the shallow formulas is the language
defined by

ϕ ::= ψ | ♦ψ | ϕ ∨ ϕ | ¬ϕ,
where ψ is either a Prop-free formula or a propositional formula.

For example, ♦p → �p is a shallow formula. Other examples are formulas ex-
pressing that each point has at most two successors (♦p∧♦(q∨¬p)→ �(p∨q)),
or that each point has at most one blind successor (♦(p ∧�⊥) ∧�(�⊥ → p)).

The remaining of the section is devoted to the proof of the following com-
pleteness result. Recall that a formula ϕ defines a class C of finite trees if C is
exactly the class of trees which make ϕ valid.

Theorem 4. Let ϕ be a shallow formula. Then the logic Kμ + μx.�x + ϕ is
complete with respect to the class of finite trees defined by ϕ.

In order to prove this result, as for the logic Kμ + μx.�x, we first show that
the logic is complete with respect to a class of generalized frames. To do so, we
combine the completeness of the logic Kμ with respect to the class of generalized
frames together with a property of shallow formulas, which was proved in [10].
We first recall this property.

Definition 14. A generalized frame F = (W,R,A) is differentiated if for all
w, v ∈W with w �= v, there exists A ∈ A such that w ∈ A and v /∈ A.

A generalized model F = (W,R,A) is tight if for all w, v ∈ W such that
(w, v) /∈ R, there exists A ∈ A such that v ∈ A and for all u ∈ A, (w, u) /∈ R.

A generalized frame is refined if it is differentiated and tight.

Definition 15. A formula ϕ is persistent with respect to refined frames if for
all refined frame F such that F � ϕ, the formula ϕ is valid on the underlying
Kripke frame of F .

Theorem 5 ([10]). Every shallow formula is persistent with respect to refined
frames.

Theorem 6. Let ϕ be a shallow formula. The logic Kμ + ϕ is complete with
respect to the class of generalized frames whose underlying Kripke frames make
ϕ valid.



172 B. ten Cate and G. Fontaine

Proof. By Theorem 2, we know that the logic Kμ+ϕ is complete with respect to
a generalized model N = (W,R, V,A). Moreover, it follows from the proof of this
theorem, that we may assume A to be the set {[[ψ]]N : ψ sentence }. Therefore,
it is enough to show that in the underlying Kripke frame (W,R), ϕ is valid.

First we prove that ϕ is valid in the generalized Kripke frame (W,R,A). Let
V ′ : Prop→ A be a valuation and let N ′ be the generalized model (W,R, V ′,A).
We have to show that N � ϕ. It follows from the definition of A that for all
proposition letters p, there is a formula ϕp such that V (p) = [[ϕp]]N . Now it is
routine to show that

N ′ � ϕ iff N � ψ,
where ψ is a formula obtained by replacing each proposition letter p occurring
in ϕ by the formula ϕp. Using Theorem 2, we obtain that N � ψ iff ψ belongs
to the logic Kμ+ϕ. Clearly, ψ belongs to Kμ+ϕ since this logic is closed under
substitution and this finished the proof that ϕ is valid in the generalized Kripke
frame (W,R,A).

Now, in Theorem 1, we could make the extra assumption that the model
M = (WM, RM, VM) is such that the generalized frame (WM, RM,AM) is
refined, where AM is the set {[[ψ]]M : ψ modal formula }. This is a standard
result and follows from the proof of Theorem 1. By looking at the proof of
Theorem 2, we can see that this implies that the generalized frame (W,R,A)
(as defined in the first paragraph of this proof) is refined. Recall also that we
proved that ϕ is valid in this generalized frame. It follows from Theorem 5 that
the formula ϕ is valid in the Kripke frame (W,R).

Definition 16. Let ϕ be a formula and letM be a generalized model. A point
w ∈M is n-good for ϕ if there exist a finite tree G, a Kripke model N based on
G such that G � ϕ and (M, w) ∼n (N , v), for some v ∈ G.
Lemma 3. Let ϕ be a formula and let n be a natural number strictly greater than
the rank of ϕ. There exists a formula δn of rank n such that for all generalized
models M and all w ∈M, we have

M, w � γn iff (M, w) is n-good for ϕ.

Proof. Let γn be the formula given by Lemma 1. We can define δn as the formula
γn ∧ μx.ϕ ∧�x.
The proof of the next lemma is an easy adaptation of the proof of Lemma 2.
Details are omitted.

Lemma 4. Let ϕ be a shallow formula and let n be a natural number strictly
greater than the rank of ϕ. If δn is the formula given by Lemma 3, then 	K +ϕ
�δn → δn.

Proposition 6. Let ϕ be a shallow formula and let n be a natural number
strictly greater than the rank of ϕ. If δn is the formula given by Lemma 3,
	K μx.�x→ γn.



An Easy Completeness Proof for the Modal μ-Calculus on Finite Trees 173

Proof. By Lemma 4, we know that �δn → δn is provable in Kμ + ϕ. By the
Fixpoint rule, we obtain that μx.�x→ δn is provable in Kμ + ϕ.

Theorem 7. Let ϕ be a shallow formula. The logic Kμ+μx.�x+ϕ is complete
with respect to the class of finite tree defined by ϕ.

Proof. It is easy to see that every formula of the logic Kμ + μx.�x+ ϕ is valid
on all finite trees of the class defined by ϕ. Thus, it is sufficient to show that if
ψ is not provable in Kμ+μx.�x+ϕ, there exists a finite tree G such that G � ϕ
and G � ψ. Let ψ be such a formula. In particular, �K +ϕ μx.�x → ψ. By
Theorem 6, there exist a generalized frame F and generalized model M based
on F such that F � ϕ andM, w � μx.�x→ ϕ, for some w ∈ F .

Let n be a natural number strictly greater than the rank of ϕ and greater or
equal to the rank of ψ. By Theorem 6 and Proposition 6, we get that M, w �
μx.�x → δn. Since M, w � μx.�x, it follows that M, w � δn. Therefore, there
exist a finite tree G, a Kripke model N based on G and v ∈ G such that G � ϕ
and (M, w) ∼n (N , v). Since M, w � ψ, we have N , v � ψ.

6 Graded µ-Calculus

By adapting the definition of rank for the graded μ-formulas, we can use the
same proof to show that the graded μ-calculus together with the axiom μx.�x
is complete with respect to the class of finite trees. We start by recalling the
definition of the graded μ-calculus.

Definition 17. The formulas of the graded μ-calculus are given by

ϕ ::= � | p | x | ϕ ∨ ϕ | ¬ϕ | ♦kϕ | μx.ϕ,
where p ranges over the set Prop of proposition letters, x ranges over the set
V ar of variables and k is a natural number. In μx.ϕ, we require that the variable
x appears only under an even number of negations in ϕ. As before, we assume
that V ar is infinite and a graded modal formula is a formula which does not have
any subformula of the form μx.ϕ.

For all natural numbers k, we let �kϕ be an abbreviation for ¬♦k¬ϕ. More-
over, for all k > 0, we denote by ♦!kϕ the formula ¬♦kϕ ∧ ♦k−1ϕ. We also let
♦!0ϕ be the formula ¬♦0ϕ.

Definition 18. Given a formula ϕ, a Kripke model M = (W,R, V ) and an
assignment τ : V ar → P(W ), we define a subset [[ϕ]]M,τ that is interpreted as
the set of points at which ϕ is true. The subset is defined by induction as before,
with the extra requirement that

[[♦kϕ]]M,τ = {w ∈W : ∃ U ⊆ [[ϕ]]M,τ ∩ {u ∈ W : wRu}
s.t. U has at least k + 1 elements}.

The notions of truth and validity are defined as in Definition 2.



174 B. ten Cate and G. Fontaine

Definition 19. The axiomatization of the system GKμ consists of the following
axioms and rules

propositional tautologies,
If 	 ϕ→ ψ and 	 ϕ, then 	 ψ (Modus ponens),
If 	 ϕ, then 	 ϕ[p/ψ] (Substitution),
If 	 ϕ, then 	 �0ϕ (Necessitation),
	 ϕ[x/μx.ϕ]→ μx.ϕ (Fixpoint rule),
♦k+1p→ ♦kp (axiom G1),
�0(p→ q)→ (♦np→ ♦nq) (axiom G2),
♦!0(p ∧ q)→ ((♦!kp ∧ ♦!lq)→ ♦!k+l(p ∨ q)) (axiom G3),
	 ϕ[x/μx.ϕ]→ μx.ϕ (Fixpoint axiom),
If 	 ϕ[x/ψ]→ ψ, then 	 μx.ϕ→ ψ (Fixpoint rule),

where x is not a bound variable of ϕ and no free variable of ψ is bound in ϕ.
The logic GK is the smallest set of formulas which contains the propositional

tautologies, the axioms G1, G2 and G3 and is closed under the Substitution, the
Modus ponens and the Necessitation rules.

Theorem 8 ([4]). The logic GK is complete with respect to a single model.
That is, there is a Kripke modelM such that a graded modal formula is provable
in GK iff it is true in M.

Theorem 9. The logic GKμ + μx.�0x is complete with respect to the class of
finite trees. That is, a graded μ-formula is provable in GKμ + μx.�0x iff it is
valid in all finite trees.

Proof (sketch). The structure of the proof is the same as the one for the proof of
Theorem 3. So first, we need to define a notion of rank for graded μ-formulas. As
before, we start by defining the closure and the depth of a formula. The closure
of graded formula is defined as in Definition 6, except that we replace ♦ by ♦k.
The depth of a graded μ-formula is defined by induction as follows

d(�) = d(p) = d(x) = 0, d(ϕ ∨ ψ) = max{d(ϕ), d(ψ)},
d(¬ϕ) = d(ϕ), d(♦kϕ) = d(ϕ) + k + 1,
d(μx.ϕ) = d(ϕ) + 1.

Finally, we can define the rank of a graded μ-formula as in Definition 8.
The second step is to prove completeness of GKμ with respect to the class of

generalized frames. Using Theorem 8, it is possible to show this by using a proof
that is completely similar to the proof of Theorem 2. We do not give details.

We can do so easily this step because we gave a proof of Theorem 2 which
uses directly the completeness result for the modal case, instead of adapting the
canonical model construction for the modal case to the μ-calculus. Indeed, the
canonical model construction for graded modal logic is rather difficult and it
would not be immediate to adapt it when fixpoints are added.

The last step is to show the completeness of GKμ + μx.�0x with respect to
the class of finite trees. This is done by extending all the notions and results of
section 4 to the setting of the graded μ-calculus. It is immediate how to proceed.



An Easy Completeness Proof for the Modal μ-Calculus on Finite Trees 175

7 Further Work

We believe that this method could be adapted to other cases. In the last section,
we considered the fixpoint version of graded modal logic. Graded modal logic is
an extension of modal logic with some sort of counting. We could look at fixpoint
versions of modal logic extended with richer form of counting. An example would
be Presburger modal logic (see, e.g., [2]). Finally, we would like to mention that
Stéphane Demri (p.c.) raised the question to which class of coalgebras this proof
could be adapted.

References

1. Bojańczyk, M.: Effective characterizations of tree logics. In: PODS 2008: Pro-
ceedings of the twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pp. 53–66. ACM, New York (2008)

2. Demri, S., Lugiez, D.: Presburger modal logic is only PSPACE-complete. In: Fur-
bach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 541–556.
Springer, Heidelberg (2006)

3. Doets, K.: Monadic Π1
1 -theories of Π1

1 -properties. Notre Dame Journal of Formal
Logic 30(2) (1989)

4. Fattorosi-Barnaba, M., Cerrato, C.: Graded modalities I. Studia Logica, 47 (1988)
5. Fischer, M., Ladner, R.: Propositional dynamic logic of regular programs. Journal

of Computer and System Sciences 18(2) (1979)
6. Gheerbrant, A., ten Cate, B.: Complete axiomatizations of MSO, FO(TC1) and

FO(LFP1) on finite trees. In: LFCS (2009)
7. Kozen, D.: Results on the propositional μ-calculus. In: Lee, I., Smolka, S.A. (eds.)

CONCUR 1995. LNCS, vol. 962, Springer, Heidelberg (1995)
8. Libkin, L.: Logics for unranked trees: An overview. Logical Methods in Computer

Science 2(3) (2006)
9. de Rijke, M., Blackburn, P., Venema, Y.: Modal Logic. Cambridge University Press

(1991)
10. ten Cate, B.: Model theory for extended modal languages. PhD thesis, University

of Amsterdam, ILLC Dissertation Series DS-2005-01 (2005)
11. Walukiewicz, I.: A note on the completeness of Kozen’s axiomatization of the

propositional μ-calculus. The Bulletin of Symbolic Logic 2(3) (1996)



When Model-Checking Freeze LTL over
Counter Machines Becomes Decidable�

Stéphane Demri1 and Arnaud Sangnier2

1 LSV, ENS Cachan, CNRS, INRIA Saclay IdF, France
2 Dipartimento di Informatica, Università di Torino, Italy

Abstract. We study the decidability status of model-checking freeze LTL over
various subclasses of counter machines for which the reachability problem is
known to be decidable (reversal-bounded counter machines, vector additions sys-
tems with states, flat counter machines, one-counter machines). In freeze LTL, a
register can store a counter value and at some future position an equality test can
be done between a register and a counter value. Herein, we complete an earlier
work started on one-counter machines by considering other subclasses of counter
machines, and especially the class of reversal-bounded counter machines. This
gives us the opportuniy to provide a systematic classification that distinguishes
determinism vs. nondeterminism and we consider subclasses of formulae by re-
stricting the set of atomic formulae or/and the polarity of the occurrences of the
freeze operators, leading to the flat fragment.

1 Introduction

Counter machines. Counter machines are ubiquitous computational models that provide
a natural class of infinite-state transition systems, suitable for modeling various applica-
tions such as broadcast protocols [17], time granularities [10] and programs with pointer
variables [6], to quote a few examples. They are also known to be closely related to data
logics for which decision procedures can be designed relying on those for counter ma-
chines, see e.g. remarkable examples in [5,3]. When dealing with this class of models,
most interesting reachability problems are undecidable but subclasses leading to de-
cidability have been designed including reversal-bounded counter machines [25], one-
counter machines [26], flat counter machines [18] and vector addition systems with
states (see e.g. [32]).

Model-checking with Freeze LTL. In order to verify properties on counter machines,
we aim at comparing counter values and we shall use the so-called freeze operator. The
freeze quantifier in real-time logics has been introduced in the logic TPTL, see e.g. [1].
The formula x · φ(x) binds the variable x to the time t of the current state: x · φ(x) is
semantically equivalent to φ(t). This variable-binding mechanism, quite natural when
rephrased in first-order logic, is present in various logical formalisms including for ex-
ample hybrid logics [22,2], freeze LTL [14] and predicate λ-abstraction [30]. Freeze

� A. Sangnier is financed by a postdoctoral fellowship from DGA/ENS Cachan, France. Work
also supported by the Agence Nationale de la Recherche, grant ANR-06-SETIN-001.

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 176–190, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



When Model-Checking Freeze LTL over Counter Machines Becomes Decidable 177

LTL is a powerful extension of LTL that allows to store counter values in registers. In-
finitary satisfiability restricted to one register is already undecidable [14] just as model-
checking for nondeterministic one-counter machines [15], which is quite unexpected
since one-counter machines seem to be harmless operational models. Moreover, there
is some hope that model-checking happens to be more tractable than satisfiability since
more constraints are requested on models viewed as runs.

Our contribution. We carry on with the quest started in [15] to determine which
classes of counter machines admit decidable model-checking with freeze LTL. In the
paper, we consider the above-mentioned classes of counter machines for which the
reachability problem is decidable. We provide an exhaustive analysis completing [15];
some results are obtained by adequately adapting known results to our framework or
by designing simple reductions. However, at each position, we may have to deal with
more than one counter values. Our main technical contributions allow us to establish
the following results with a special focus on reversal-bounded counter machines.

– Model-checking freeze LTL (written MCω(LTL↓)) over deterministic vector addi-
tion systems with states and deterministic reversal-bounded counter machines is de-
cidable (see Corollary 11). However, MCω(LTL↓) over reversal-bounded counter
machines is undecidable, even when restricted to one register (see Theorem 7).

– MCω(LTL↓) restricted to flat formulae over reversal-bounded counter machines is
decidable (see Corollary 17) as well as the restriction to positively flat formulae
over one-counter machines (see Theorem 18), partly by taking advantage of recent
results about parameterized one-counter machines [23].

A complete summary can be found in Section 8. As a nice by-product of the classifica-
tion we made, we show a tight relationship between reachability problems for parame-
terized counter machines and model-checking counter machines over the flat fragment
of freeze LTL (see Section 7.2). Besides, we believe that the principles underlying our
undecidability proof for MCω(LTL↓) over reversal-bounded counter machines could
be reused for other problems on such counter machines.

Because of lack of space, omitted proofs can be found in [16].

2 Standard Classes of Counter Machines

In this section, we recall standard definitions about various classes of counter machines.
We write N [resp. Z] for the set of natural numbers [resp. integers]. Given a dimension
n ≥ 1 and k ∈ Z, we write k to denote the vector with all values equal to k and ei to
denote the unit vector for i ∈ {1, . . . , n}. We recall that a semilinear set of N

n is a finite
union of linear sets. We often refer to Presburger arithmetic which consists of first-order
logic over the structure 〈N, 0,≤,+〉 (and more generally over 〈Z, 0,≤,+〉) [31]. It is
known that a subset of N

k is semilinear if and only if it is definable by a formula in
Presburger arithmetic [20].

2.1 Counter Machines

A counter machine M is defined as a tuple 〈n,Q,Δ, q0〉 where n ≥ 1 is the dimension
ofM ,Q is a finite set of control states,Δ ⊆ Q×G×A×Q is a finite set of transitions



178 S. Demri and A. Sangnier

where G = {zero, true}n is the finite set of guards and A = {−1, 0, 1}n is the
finite set of actions, and q0 ∈ Q is the initial control state. Given a counter machine
M , we introduce the transition system TS(M) = 〈Q × N

n,−→〉 where Q × N
n is

the set of configurations and −→⊆ (Q × N
n) × (Q × N

n) is the transition relation:
for 〈q, v〉, 〈q′, v′〉 ∈ Q × N

n, we have 〈q, v〉 −→ 〈q′, v′〉 def⇔ there exists a transition
t = 〈q, g, a, q′〉 ∈ Δ such that: v′ = v + a and for 1 ≤ c ≤ n, g(c) = zero implies
v(c) = 0. We write

∗−→ to denote the reflexive and transitive closure of −→ and the
reachability set of M is Reach(M) def= {〈q, v〉 | 〈q0, 0〉 ∗−→ 〈q, v〉}. Observe that this
reachability set implicitly depends on the initial configuration 〈q0, 0〉: this is all what
we need in the sequel. A finite (resp. infinite) run in TS(M) is a finite (resp. infinite)
sequence ρ = 〈q0, 0〉 −→ 〈q1, v1〉 −→ . . .. A counter machine M is deterministic (also
known as single-path) whenever for each 〈q, v〉 ∈ Reach(M), there is at most one
configuration 〈q′, v′〉 such that 〈q, v〉 −→ 〈q′, v′〉. In the sequel, we shall use Minsky
machines that form a special class of deterministic 2-counter machines.

We present below two types of decision problems when C is a class of counter ma-
chines. The reachability problem for the class C is defined as follows: given a machine
M ∈ C and a configuration 〈q, v〉, does 〈q0, 0〉 ∗−→ 〈q, v〉 ? Similarly, the generalized
repeated reachability problem for the class C is defined as follows: given a counter ma-
chine M ∈ C and N sets F1, . . . , FN of control states, is there a run of M such that for
1 ≤ i ≤ N , there is a control state in Fi that is repeated infinitely often?

1CM. One-counter machines are naturally defined as counter machines of dimen-
sion one. Various logical formalisms have been introduced to specify the behavior of
one-counter machines, including Freeze LTL [15] and EF logic [21]. When one-counter
machines are enriched by a finite alphabet (so that transitions are labelled), the univer-
sality problem is undecidable [26], witnessing that this simple operational model can
lead to natural undecidable problems.

VASS. Vector addition systems with states (a.k.a. VASS) are known to be equivalent
to Petri nets, see e.g. [32], and they correspond to counter machines without zero-tests,
i.e. each guard has no component equal to zero. To be precise, we are a bit less liberal
than the usual definition since we only consider actions in {−1, 0, 1}n (instead of Z

n)
but this does not make a real difference for all the developments made in this paper.

Flat counter machines. A directed graph G = 〈V,E〉 (with V ⊆ E × E) is said to
be flat whenever each vertex belongs to at most one cycle (path for which the initial and
final vertices coincide). A counter machine 〈n,Q,Δ, q0〉 is flat whenever (1) between
two control states there is at most one transition and (2) the directed graph 〈Q, {〈q, q′〉 ∈
Q2 : 〈q, g, a, q′〉 ∈ Δ}〉 is flat. Reachability problems have been considered for flat
counter machines in [4,18]; for instance it is proved that flat counter machines have an
effectively computable semilinear set [4,18], see also [8].

2.2 Reversal-Bounded Counter Machines

The class of reversal-bounded counter machines has been introduced in [25] by con-
sidering the following restriction: each counter performs only a bounded number of al-
ternations between increasing and decreasing mode. This class of counter machines is
particularly interesting because it has been shown that each reversal-bounded counter
machine has a semilinear reachability set which can be effectively computed. We present



When Model-Checking Freeze LTL over Counter Machines Becomes Decidable 179

now a more general class of counter machines proposed in [19]. Given a bound b ∈ N,
we consider the number of alternations between increasing and decreasing mode when
the value of the considered counter is above b; if for each counter this number of alter-
nations is bounded by a constant k ∈ N, we say that the counter machine is k-reversal-
b-bounded. From now on, we say that a counter machineM is reversal-bounded if there
exist k, b ∈ N such that M is k-reversal-b-bounded and in the sequel, when reversal-
bounded counter machines are part of the instances of some decision problems, we as-
sume that they come with their k and b. As mentioned in [19], the above-defined class of
reversal-bounded counter machines contains those defined in [25] and it also contains
the counter machines for which the set of reachable configurations is finite. To make
the distinction, we will call the machines introduced in [25] Ibarra reversal-bounded
counter machines.

In [19], the authors prove that the reachability problem is decidable for reversal-
bounded counter machines (in fact their reachability set is also an effectively com-
putable semilinear set) and in [33] it is proved that the generalized repeated reachability
problem for this class of machines is also decidable when considering only one set of
control states to be repeated infinitely often. The proof of this last result relies on the
fact that this problem is decidable for Ibarra reversal-bounded counter machines [11].
Note that we can easily reduce the generalized reachability problem with N ≥ 1 sets
of control states to its restriction to only one set (the same way the emptiness prob-
lem for generalized Bûchi automata can be reduced to the emptiness problem for Büchi
automata).

Theorem 1. The generalized repeated reachability problem for reversal-bounded coun-
ter machines is decidable.

3 LTL with the Freeze Operator

In this section, we present a variant of temporal logic LTL with registers (also known
as Freeze LTL) in order to reason about runs from counter machines. In [15], LTL with
registers is used to specify properties about one-counter machines. The datum stored
in a register is the current counter value and equality tests are performed between a
register value and the current counter value. When dealing with counter machines, a
register can store the value of a counter c and test it later against the value of counter
c′ with possibly c 
= c′. Below, we present different ways to restrict the equality tests
between registers and counters.

Given a finite set Q of control states (possibly empty) and n ≥ 1, the formulae of
the logic LTL↓[Q,n] are defined as follows:

φ ::= q | ↑cr | ¬φ | φ ∧ φ | φ ∨ φ | φUφ | φRφ | Xφ | ↓cr φ
where q ∈ Q, c ∈ {1, . . . , n} and r ∈ (N \ {0}). Intuitively, the modality ↓cr is used
to store the value of the counter c into the register r; the atomic formula ↑cr holds true
if the value stored in the register r is equal to the current value of the counter c. An
occurrence of ↑cr within the scope of some freeze quantifier ↓cr is bound by it; otherwise
it is free. A sentence is a formula with no free occurrence of any ↑cr.



180 S. Demri and A. Sangnier

Models of LTL↓[Q,n] are runs of transition systems from counter machines of di-
mension n and with a set of control states containing Q. Given a counter machine
〈n,Q′, Δ, q0〉 with Q ⊆ Q′ and a run ρ, we write |ρ| to denote its length in ω + 1
and the ith configuration (0 ≤ i < |ρ|) is denoted by 〈qi, vi〉. A counter valuation f
is a finite partial map from N \ {0} to N. Note that whenever f(r) is undefined, the
atomic formula ↑cr is interpreted as false. Given a run ρ and a position 0 ≤ i < |ρ|, the
satisfaction relation |= is defined as follows (Boolean clauses are omitted):

ρ, i |=f q
def⇔ qi = q

ρ, i |=f ↑cr def⇔ r ∈ dom(f) and f(r) = vi(c)

ρ, i |=f Xφ
def⇔ i+ 1 < |ρ| and ρ, i+ 1 |=f φ

ρ, i |=f φ1Uφ2
def⇔ for some i ≤ j < |ρ|, ρ, j |=f φ2

and for all i ≤ j′ < j, we have ρ, j′ |=f φ1

ρ, i |=f φ1Rφ2
def⇔ for all i ≤ j < |ρ|, ρ, j |=f φ2

or for some i ≤ j < |ρ|, ρ, j |=f φ1
and for all i ≤ k ≤ j, ρ, k |=f φ2

ρ, i |=f ↓cr φ def⇔ ρ, i |=f [r �→v (c)] φ

f [r �→ vi(c)] denotes the register valuation equal to f except that the register r is
mapped to vi(c). In the sequel, we omit the subscript “f” in |=f when sentences are
involved. We use the standard abbreviations for the temporal operators (G, F, . . . ) and
for the Boolean operators and constants (⇒, �, ⊥, . . . ).

We defined below fragments of LTL↓[Q,n] by restricting the use of the freeze opera-
tors. The strict fragment, written LTL↓,s[Q,n], consists in associating a unique counter
to each register (to store and to test). More precisely, a formula φ in LTL↓,s[Q,n] ver-
ifies the following syntactic property: if ↓cr ψ is a subformula of φ, then φ has not
subformulae of the form either ↑c′r or ↓c′r ψ′ with c 
= c′. We also write LTL[Q] to
denote the fragment of LTL↓[Q,n] in which the atomic formulae of the form ↑cr are
forbidden (and therefore ↓cr becomes also useless).

Model-checking problems. The infinitary (existential) model-checking problem over
counter machines, written MCω(LTL↓[·, ·]), is defined as follows: given a counter ma-
chine M = 〈n,Q′, Δ, q0〉 and a sentence φ ∈ LTL↓[Q,n] with Q ⊆ Q′, is there an
infinite run ρ such that ρ, 0 |= φ? If the answer is “yes”, we write M |=ω φ. The
subproblem of MCω(LTL↓[·, ·]) with formulae restricted to LTL↓,s[Q,n] is written
MCω(LTL↓,s[·, ·]). Given n ≥ 1, we write MCω(LTL↓[·, n]) to denote the subprob-
lem of MCω(LTL↓[·, ·]) with counter machines of dimension at most n. Similarly, we
write MCω(LTL↓[∅, ·]) to denote the subproblem of MCω(LTL↓[·, ·]) with no atomic
formula made of control states. Similar notations are used with other fragments of
LTL↓[Q,n]. In this existential version of model checking, this problem can be viewed
as a variant of satisfiability in which satisfaction of a formula can be only witnessed
within a specific class of data words, namely the runs of the counter machine. Note that
results for the universal version of model checking will follow easily from those for the
existential version when considering fragments closed under negation or deterministic
counter machines.



When Model-Checking Freeze LTL over Counter Machines Becomes Decidable 181

Flat formulae. We say that the occurrence of a subformula in a formula is positive
if it occurs under an even number of negations, otherwise it is negative. Let L be a
fragment of LTL↓[Q,n]. The flat fragment of L, written flat-L, is the restriction of
L where, for any occurrence of φ1Uφ2 [resp. φ2Rφ1], if it is positive then the freeze
operator ↓ does not occur in φ1, and if it is negative then the freeze operator ↓ does
not occur in φ2. A formula is positively flat when it is flat and no occurrence of the
freeze operator ↑ occurs in the scope of an odd number of negations. For example, the
formula below belongs to the positively flat fragment and it states that sometimes there
is a value of the counter 1 such that (1) infinitely often counter 2 takes that value if
and only if infinitely often counter 3 takes that value and (2) from some future position,
the counter 4 has always that value: F ↓11 [(GF ↑21⇔ GF ↑31) ∧ FG ↑41]. Considering flat
fragments remains a standard means to regain decidability: for instance flat fragments
of LTL variants have been studied in [9,7] (see also in [27, Section 5] the design of a
flat logical temporal language for model-checking pushdown machines). Section 7 shall
illustrate that flatness can lead to decidability but this is not always the case.

4 Preliminary Results

In this section, we present preliminary results that will be helpful to strenghten forth-
coming results and we present results for flat counter machines and one-counter ma-
chines based on existing works. We shall study the effects of restricting the set of atomic
formulae, for instance by allowing only atomic formulae that are control states [resp.
that are of the form ↑cr].

4.1 Purification, or How to Get Rid of Control States

Control states can be viewed as an internal piece of information about the counter
machines and therefore, it is interesting to understand whether the absence of control
states among the set of atomic formulae (called herein purification) makes a difference.
Lemma 2 below roughly shows that control states can be always encoded by patterns
for various classes of counter machines.

Lemma 2. Given a counter machine M = 〈n,Q,Δ, q0〉 and a sentence φ in
LTL↓[Q,n], one can build in logspace a counter machine MP = 〈n+ 1, QP , ΔP , q0〉
and a formula φP ∈ LTL↓[∅, n+ 1] such that M |=ω φ iff MP |=ω φP . Moreover, M
is deterministic [resp. reversal-bounded, flat] iff MP is deterministic [resp. reversal-
bounded, flat] and φ ∈ LTL↓,s[Q,n] iff φP ∈ LTL↓,s[∅, n+ 1].

The proof consists in introducing an additional counter whose behavior in MP encodes
the control states from M . The reduction in the proof of Lemma 2 does not preserve
the number of counters; however, a purification lemma can be also established for the
class of one-counter machines as shown in [15]. By the way, the construction in [15]
could be also adapted to encode control states by patterns however, it does not preserve
reversal-boundedness.



182 S. Demri and A. Sangnier

4.2 Restricting the Atomic Formulae to Control States

Before considering decidability issues with the freeze operator, it is legitimate to won-
der what happens when the atomic formulae are restricted to control states. We show
below that for all subclasses of counter machines considered in this paper, this restric-
tion leads to decidability (for flat counter machines, the proof is postponed to the next
subsection). Basically, the proof is a consequence of the two following properties: LTL
formulae can be translated into equivalent Büchi automata (see e.g. [35]) and repeated
reachability problem is decidable for the concerned subclasses of counter machines.

Theorem 3. MCω(LTL[·]) restricted to one-counter machines, VASS, and reversal-
bounded counter machines is decidable.

4.3 Existing Results for Two Subclasses

In this paper, we wish to provide a complete classification with respect to the above-
mentioned subclasses. The two following results are known results recasted in our con-
text. First, we observe that LTL↓[Q,n] can be viewed as a fragment of the temporal
logic FOCTL�(Pr) [12] which extends the logic CTL� by allowing the use of Presburger
formulae as atomic propositions to describe sets of configurations for a counter ma-
chine. Since model-checking FOCTL�(Pr) over flat counter machines is decidable [12],
we establish the following theorem.

Theorem 4. MCω(LTL↓[·, ·]) restricted to flat counter machines is decidable.

Moreover, in [15], the authors obtain the following results concerning the model-
checking of LTL with registers over one-counter machines.

Theorem 5. [15] (I) MCω(LTL↓[·, 1]) is undecidable. (II) MCω(LTL↓[·, 1]) restricted
to deterministic one-counter machines is PSPACE-complete.

5 Nondeterministic Counter Machines

Herein, we consider the model-checking problems over LTL↓[Q,n] for nondeterminis-
tic counter machines. We have seen that for the class of one-counter machines the prob-
lem is undecidable (see Theorem 5(I)) whereas it is decidable for flat counter machines
(see Theorem 4). First, we observe that zero-tests can be easily encoded in LTL↓[Q,n]
by first storing the initial value of counters in some register r0 and then performing a
zero-test on counter c with the atomic formula ↑cr0 .

Theorem 6. MCω(LTL↓[·, ·]) restricted to VASS and to positively flat formulae with at
most one register is undecidable.

The proof is based on a simple encoding of zero-tests. For what concerns reversal-
bounded counter machines, we have the following result:

Theorem 7. MCω(LTL↓[·, 4]) restricted to reversal-bounded counter machines and to
formulae with at most one register is undecidable.



When Model-Checking Freeze LTL over Counter Machines Becomes Decidable 183

To prove this result, we present a reduction from the halting problem for Minsky ma-
chines; note that a similar reduction is used in [28] in order to prove that in reversal-
bounded counter machines extended with equality tests between distinct counters, the
reachability problem is undecidable.

Proof. (sketch) Let M = 〈2, Q,Δ, q0〉 be a Minsky machine (deterministic counter
machine with two counters) and qF ∈ Q be a final control state with no transition from
it. Without any loss of generality, we can assume that if 〈q, g, a, q′〉 ∈ Δ performs a
decrementation, then the transition is of the form 〈q, true,−ec, q′〉 for some c ∈ {1, 2}.
Moreover, for q, q′ ∈ Q, the set {〈g, a〉 : 〈q, g, a, q′〉 ∈ Δ} contains at most one
element. Let us build the reversal-bounded counter machine M = 〈4, Q′, Δ′, (q0)∅〉 as
follows:

– Q′ = {qX : q ∈ Q, X ⊆ {1, 2}} (X records on which counter of M zero-test is
needed next),

– Δ′ is the smallest set of transitions satisfying the conditions below:
• for X ⊆ {1, 2}, 〈(q0)∅, true, 0, (q0)X〉 ∈ Δ′,
• for all 〈q, g, a, q′〉 ∈ Δ, we have 〈q1, true, a′, q′1〉 ∈ Δ′ assuming that
∗ q1 = qX with X = {c ∈ {1, 2} : g(c) = zero},
∗ for c ∈ {1, 2},
· a(c) = 1 implies a′(c) = 1 and a′(c+ 2) = 0,
· a(c) = −1 implies a′(c) = 0 and a′(c+ 2) = 1,
· a(c) = 0 implies a′(c) = a′(c+ 2) = 0.

• for X ⊆ {1, 2}, 〈(qF )X , true, 0, (qF )X〉 ∈ Δ (final loops).

By construction, the counter machine M ′ is reversal-bounded since the four counters
only increase. The idea behind this construction is that the first [resp. second] and the
third [resp. fourth] counters of M ′ respectively count the number of incrementations
and decrementations of the first [resp. second] counter of M . No zero-test is performed
inM ′; in order to simulate a zero-test inM , we would need to test equality between two
counters, which is not allowed in our models. Consequently, we encode these equality
tests by formulae.

Let us build a formula φ in LTL↓[Q′, 4] such that M ′ |=ω φ iff the control state qF
can be reached from the initial configuration ofM . We consider the following auxiliary
formulae (c ∈ {1, 2}):

φc
def=
q∈Q {c}⊆X⊆{1,2}

qX and φq
def=
X⊆{1,2}

qX .

We are now in position to define φ:

φ
def= Fφq ∧

c∈{1,2}
G(φc ⇒↓c1↑c+2

1 )∧
c∈{1,2}

G(
〈q,true,−e ,q′〉∈Δ

q∅∧Xφq′ ⇒↓c1 ¬ ↑c+2
1 )

It remains to show that M ′ |=ω φ iff the control state qF can be reached in M . ��
The result of Theorem 7 can be refined by showing the undecidability of the strict
fragment MCω(LTL↓,s[·, 4]) restricted to reversal-bounded counter machines. Observe
that we shall modify the above developments while we are dealing with a strict fragment
for which each register is associated with a unique counter.



184 S. Demri and A. Sangnier

Theorem 8. MCω(LTL↓,s[·, 4]) restricted to reversal-bounded counter machines is
undecidable.

The proof takes advantage of a refinement in the contruction of the counter machineM ′

from the proof of Theorem 7 and it is interesting for its own sake. So far, it is still open
whether the problem is Σ1

1-hard since we are “only” able to reduce the halting problem
to it.

6 Deterministic Counter Machines

In this section, we restrict ourselves to classes of deterministic counter machines. A
class C of deterministic counter machines has the PA-property

def⇔ for each counter
machine M ∈ C, one can effectively build a formula φM (x0, . . . , xn+1) in Presburger
arithmetic such that for all j0, . . . , jn+1 ∈ N, 〈j0, 〈j1, . . . , jn〉〉 is the jn+1th configu-
ration of the unique run of M iff 〈j0, . . . , jn+1〉 |= φM (x0, . . . , xn+1) (assuming that
M has dimension n and its set of control states is viewed as a finite subset of N).

We show below that model-checking restricted to counter machines can be some-
times reduced to the decidable satisfiability problem for Presburger arithmetic.

Lemma 9. Let C be a class of deterministic counter machines. If C has the PA-property,
then the model-checking problem MCω(LTL↓[·, ·]) over counter machines in C is de-
cidable.

The proof of Lemma 9 is based on an internalization of the satisfaction relation in
Presburger arithmetic.

Lemma 10. Deterministic reversal-bounded counter machines and deterministic VASS
have the PA-property.

Corollary 11. MCω(LTL↓[·, ·]) is decidable when restricted to deterministic reversal-
bounded counter machines and deterministic VASS.

Checking whether a VASS is deterministic can be decided by using instances of the
covering problem (the problem is actually PSPACE-complete [24]). Checking whether
a reversal-bounded counter machine is deterministic is also decidable adding a counter
which counts each step and using the fact that the reachability set can be expressed
in Presburger arithmetic. By contrast, checking whether a counter machine is reversal-
bounded is undecidable [19].

7 Flat Freeze LTL

In this section, we consider the restriction of the model-checking problem to flat for-
mulae only. By Theorem 4, we already know that MCω(flat− LTL↓[·, ·]) restricted to
flat counter machines is decidable and that MCω(flat− LTL↓[·, ·]) restricted to VASS
is undecidable (the proof of Theorem 6 involves only flat formulae). It is worth ob-
serving that flat LTL↓[Q,n] strictly contains LTL[Q], and therefore we refine below
decidability results from Section 4.2.



When Model-Checking Freeze LTL over Counter Machines Becomes Decidable 185

7.1 A Detour to Counter Machines with Parameterized Tests

We introduce here parameterized counter machines in order to solve later model-che-
cking problems restricted to flat formulae. First, let us fix some definitions. A counter
machine with parameterized tests (shortly parameterized counter machine) is defined
as a counter machineM = 〈n,Q,Δ, q0, Z〉 extended with a finite set Z of integer vari-
ables such that the guards g are among ({zero, true} ∪ {=(z), 
=(z), >(z), <(z) |
z ∈ Z})n. A concretization C of M is a map C : Z → N. Given a parameter-
ized counter machine M and a concretization C, we introduce the transition system
TS(M,C) = 〈Q × N

n,−→〉 where −→⊆ (Q × N
n) × (Q × N

n) is defined as follows:
for 〈q, v〉, 〈q′, v′〉 ∈ Q × N

n, we have 〈q, v〉 −→ 〈q′, v′〉 def⇔ there exists a transition
t = 〈q, g, a, q′〉 ∈ Δ such that v′ = v + a, and for 1 ≤ c ≤ n, g(c) equals zero
implies v(c) = 0, g(c) is equal to =(z) implies v(c) = C(z), g(c) is equal to 
=(z)
implies v(c) 
= C(z), g(c) is equal to >(z) implies v(c) > C(z) and, g(c) is equal to
<(z) implies v(c) < C(z). A finite [resp. infinite] run in TS(M,C) is a finite [resp.
infinite] sequence ρ = 〈q0, 0〉 −→ 〈q1, v1〉 −→ . . .. The parameterized reachability prob-
lem for counter machines is defined as follows: given a parameterized counter machine
M and a configuration 〈q, v〉, is there a concretization C such that 〈q0, 0〉 ∗−→ 〈q, v〉 in
TS(M,C)? Even if the parameterized reachability problem is obviously undecidable,
we will see in this section that some restrictions lead to decidability. We will say that a
parameterized counter machine is Ibarra reversal-bounded if the classical counter ma-
chine obtained by replacing each parameterized test by true is Ibarra reversal-bounded.
We have then the following result.

Theorem 12. [28] The parameterized reachability problem for Ibarra reversal-boun-
ded parameterized counter machines is decidable.

If a parameterized counter machine has no guard of the form either 
=(z) or <(z), we
say it is restricted. In [23], parametric one-counter machines are defined as extensions
of one-counter machines extended with actions consisting in incrementing or decre-
menting the unique counter with some parameterized integer constants. In [23], it is
shown that the reachability problem for this class of one-counter machines is decidable.
Here is a corollary.

Lemma 13. The parameterized reachability problem for restricted parameterized one-
counter machines is decidable.

The proof of Lemma 13 consists in substituting each test of the form =(z) by the
following sequence of instructions: decrement by z, perform a zero-test and increment
by z. In order to encode the test >(z), we use the same technique except that we do not
introduce a zero-test between the decrementation (in fact we also add a decrementation
by 1 and an incrementation by 1) and the incrementation. Note that this method does
not work if we allow guards of the form either 
=(z) or <(z), because the value of
the counter cannot be negative, hence the decidability of the parameterized reachability
problem for one-counter machines remains an open problem.



186 S. Demri and A. Sangnier

We introduce here a new problem which is needed to reduce the considered model-
checking problem. The parameterized generalized repeated reachability problem for
parameterized counter machines is defined as follows: given a parameterized counter
machine M , N sets F1, . . . , FN of control states, are there a concretization C and an
infinite run of TS(M,C) such that for 1 ≤ i ≤ N , one control state in Fi is repeated
infinitely often?

From the previous theorem and lemma, we deduce the following corollary.

Corollary 14. The parameterized generalized repeated reachability problem is decid-
able when considering Ibarra reversal-bounded parameterized counter machines and
restricted parameterized one-counter machines.

7.2 Flat Formulae and Parameterized Counter Machines

For MCω(LTL↓[·, ·]) restricted to flat formulae, we have the following result.

Theorem 15. There is a reduction from MCω(LTL↓[·, ·]) restricted to flat formulae to
the parameterized generalized repeated reachability problem for counter machines.

Proof. (sketch) Let M = 〈n,Q,Δ, q0〉 be a counter machine and φ be a flat sentence
belonging to LTL↓[Q,n]. Without any loss of generality, we can assume that φ is in
negation normal form (which means that all the occurrences of negation appear only
in front of atomic formulae). Moreover, we can assume that if ↓cr ψ and ↓c′r′ ψ are
distinct occurrences of subformulae in φ, then r 
= r′ (this may just linearly increase
the number of registers). Consequently, if ψ1Uψ2 [resp. ψ1Rψ2] is a subformula of φ,
then the freeze operator ↓ cannot occur in ψ1 [resp. ψ2]. We shall effectively build a
parameterized counter machine M ′ = 〈n,Q′, Δ′, q0, Z ′〉 and sets F1, . . . , FN ⊆ Q′

for which there is a concretization C and an infinite run of TS(M ′,C) such that for
1 ≤ i ≤ N , one control state in Fi is repeated infinitely often iff M |=ω φ.

Let us fix some notations. As usual, the formula φ can be encoded as a finite tree
whose leaves are labelled by atomic formulae and internal nodes are labelled by (Boolean,
temporal or freeze) connectives. Each node of the formula tree corresponds naturally
to a subformula and the set of nodes can be viewed as a finite prefix-closed subset
occ(φ) ⊆ (N \ {0})∗ (finite sequence of natural numbers). Each element in occ(φ) cor-
responds to the occurrence of a subformula in φ; hence two occurrences may correspond
to the same subformula. The use of occurrences instead of subformulae is motivated by
the need to provide formal and clear statements in which occurrences are crucial. For
each occurrence u ∈ occ(φ), we write φ(u) to denote the corresponding subformula in
φ; for instance φ(ε) = φ. Moreover, when u is a prefix of u′, written u ≤pre u

′, we
know that φ(u′) is a subformula of φ(u). We write occ↓(φ) [resp. occ↑(φ)] to denote
the set of occurrences corresponding to formulae whose outermost connective is of the
form ↓cr [resp. ↑cr]. Let m = card(occ↓(φ)). Observe that if m = 0, then we are in the
case of MCω(LTL[·]) which has been treated in Section 4.2. In the sequel, we assume
thatm > 0. Given u ∈ occ↑(φ) with φ(u) =↑cr, we write bind(u) to denote the longest
prefix of u (with respect to ≤pre) in occ↓(φ) such that φ(bind(u)) is of the form ↓c′r ψ
(i.e., with the same register). An atom X is a subset of occ(φ) satisfying the conditions
below (we abusively use subformulae to denote occurrences corresponding to formulae



When Model-Checking Freeze LTL over Counter Machines Becomes Decidable 187

with the appropriate outermost connective): (1) if ψ1 ∧ ψ2 ∈ X , then ψ1, ψ2 ∈ X ;
(2) for all atomic formulae ψ ∈ X , {ψ,¬ψ} 
⊆ X ; (3) if ψ1 ∨ ψ2 ∈ X , then either
ψ1 ∈ X or ψ2 ∈ X ; (4) if ↓cr ψ ∈ X , then ψ ∈ X . The set of atoms of φ is denoted
by AT(φ). A pair of atoms 〈X,X ′〉 is said to be one-step consistent iff the conditions
below hold true: (I) if ψ1Uψ2 ∈ X , then either ψ2 ∈ X or (ψ1 ∈ X and ψ1Uψ2 ∈ X ′);
(II) if ψ1Rψ2 ∈ X , then ψ2 ∈ X and (ψ1 ∈ X or ψ1Rψ2 ∈ X ′); (III) if Xψ ∈ X ,
then ψ ∈ X ′; (IV) No atom X ′′ strictly included in X ′ satisfies the conditions (I)–(III)
(by replacing X ′ by X ′′). We will now describe the construction of the parameterized
counter machine M ′ which will use m integer variables z1, . . . , zm. Intuitively, each
integer variable will be used to store the value of a register. In order to make explicit
this dependancy, we shall use a one-to-one map reg : occ↓(φ) → {1, . . . ,m}. We
define also a function counter : occ↓(φ) ∪ occ↑(φ) → {1, . . . , n} that indicates the
counter involved in the subformula. Given u ∈ occ↓(φ) such that φ(u) =↓cr ψ, we have
counter(u) = c and given u ∈ occ↑(φ) such that φ(u) =↑cr, we have counter(u) = c.
The set Q′ of control states is equal to {q0} �Q× AT(φ) plus some auxiliary control
states that are introduced to perform tests. The relation Δ′ is defined as follows. First,
〈q0, true, 0, 〈q0, Y 〉〉 ∈ Δ′ whenever ε ∈ Y and no atom strictly included in Y contains
ε (init). Then, for each transition 〈q, g, a, q′〉 ∈ Δ there is in Δ′ the following sequence

of transitions 〈q, Y 〉 · · · qaux1 · · · qauxT

g,a−→ 〈q′, Y ′〉 assuming that:

1. occ↓(φ) ∩ Y contains T1 elements, say u1, . . . , uT1 ; occ↑(φ) ∩ Y contains T2
elements, say uT1+1, . . . , uT1+T2 ; {u ∈ Y | u·1 ∈ occ↑(φ) and φ(u) is a negation}
contains T3 elements, say uT1+T2+1, . . . , uT1+T2+T3 with T = T1 + T2 + T3,

2. 〈Y, Y ′〉 is a one-step consistent pair,
3. {φ(u) : u ∈ Y } ∩Q ⊆ {q} and ¬q 
∈ {φ(u) : u ∈ Y },
4. for i ∈ {1, . . . , T1} [resp. i ∈ {1, . . . , T2}, i ∈ {1, . . . , T3}], before reach-

ing the control state qauxi [resp. qauxT1+i, q
aux
T1+T2+i], there exists a transition test-

ing equality [resp. equality, inequality] between zk and the counter counter(ui)
[resp. counter(uT1+i), counter(uT1+T2+i)] with the identity k = reg(ui) [resp.
k = reg(bind(uT1+i)), k = reg(bind(uT1+T2+i))].

Finally, let u1, . . . , uN be the occurrences in occ(φ) such that the outermost temporal
connective of φ(ui) is the until operator U. Then, for 1 ≤ i ≤ N , Fi = {〈q, Y 〉 : ui 
∈
Y or (ui · 2) ∈ Y }. It remains to show that M |=ω φ iff there exist a concretization C
and an infinite run of TS(M ′,C) such that for 1 ≤ i ≤ N , one control state in Fi is
repeated infinitely often. ��

7.3 Decidability Results

Remark that if the counter machine M is Ibarra reversal-bounded, then the parame-
terized counter machine M ′ built from M and the flat formula φ is Ibarra reversal-
bounded. Using Corollary 14 and Theorem 15, we conclude that MCω(LTL↓[·, ·]) re-
stricted to Ibarra reversal-bounded counter machines and to flat formulae is decidable.
Furthermore this can be extended to the class of reversal-bounded counter machines,
using Lemma 16 below.



188 S. Demri and A. Sangnier

Lemma 16. There is an exponential-time reduction from MCω(LTL↓[·, ·]) restricted to
reversal-bounded counter machines into MCω(LTL↓[·, ·]) restricted to Ibarra reversal-
bounded counter machines. Furthermore this reduction preserves flatness of the
formulae.

Corollary 17. MCω(LTL↓[·, ·]) restricted to reversal-bounded counter machines and
to flat formulae is decidable.

Finally, assume the formula φ is a positively flat formula (see Section 3). For all atoms
Y ∈ AT(φ), the set {u ∈ Y | u · 1 ∈ occ↑(φ) and φ(u) is a negation} is empty. So,
in the construction of M ′ from M and φ, we only use parameterized tests of the form
=(z). Hence, if M is a one-counter machine and φ is a positively flat formula, we
deduce that M ′ is a restricted parameterized one-counter machine. Using Corollary 14
and Theorem 15, we get the result below.

Theorem 18. MCω(LTL↓[·, ·]) restricted to one-counter machines and to positively
flat formulae is decidable.

In order to extend Theorem 18 to the full flat fragment, one needs to perform inequality
tests in parameterized one-counter machines, which is so far unclear how to perform
while preserving decidabibility of the corresponding parameterized reachability prob-
lem. This generalization is left as an open problem.

8 Concluding Remarks

In this paper, we have studied the decidability status of model-checking freeze LTL over
various subclasses of counter machines for which the reachability problem is known to
be decidable. Our most remarkable technical contributions concern reversal-bounded
counter machines and flat formulae. Besides, we have established an original link be-
tween reachability problems for parameterized counter machines and model-checking
counter machines over the flat fragment of freeze LTL. The table below contains a sum-
mary of the main results (D stands for decidability, U for undecidability) in which
the columns referred to restriction either on the counter machines or on the formulae.
Sometimes, an additional restriction between parentheses is indicated in order to em-
phasize that the result holds true for a stricter fragment. Bibliographical references in
the table indicate that the related result is mainly due to the referred work.

Det. NDet. Flat formulae No ↑cr
RB D U (strictness) D D

Cor. 11 Theo. 8 Cor. 17 [11]
1CM PSPACE-C. U (1 reg.) open |D for pos. flatness PSPACE-C.

[15] [15] Theo. 18 [34,13]
Flat CM D D D D

Theo. 4
VASS D U (1 reg.) U D

Cor. 11 Theo. 6 Theo. 6 [29]



When Model-Checking Freeze LTL over Counter Machines Becomes Decidable 189

Here are a few rules of thumb: determinism, flat counter machines and no freeze lead
to decidability. However, flat formulae often guarantee decidability (except for VASS)
whereas reversal-boundedness can lead to decidability (but the restriction with a single
register leads to undecidability). Finally, throwing away the atomic formulae made of
control states does not help for decidability. Even though we have established various
decidability results, the complexity of the decision problems is far from being known,
mainly because we use reductions to Presburger arithmetic. Such characterizations are
part of future work.

Acknowledgments. We would like to thank the anonymous referees for their comments
and suggestions on a preliminary version.

References

1. Alur, R., Henzinger, T.: A really temporal logic. JACM 41(1), 181–204 (1994)
2. Areces, C., Blackburn, P., Marx, M.: A road-map on complexity for hybrid logics. In: Flum,

J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 307–321. Springer, Hei-
delberg (1999)

3. Björklund, H., Bojańczyk, M.: Bounded depth data trees. In: Arge, L., Cachin, C., Jurdz-
iński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 862–874. Springer, Heidel-
berg (2007)

4. Boigelot, B.: Symbolic methods for exploring infinite state spaces. PhD thesis, Université
de Liège (1998)

5. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable logic
on words with data. In: LICS 2006, pp. 7–16. IEEE, Los Alamitos (2006)

6. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with
lists are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
517–531. Springer, Heidelberg (2006)

7. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In: LICS 2007,
pp. 109–118. IEEE, Los Alamitos (2007)

8. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. Fundamenta Infor-
maticae 91(2), 275–303 (2009)

9. Comon, H., Cortier, V.: Flatness is not a weakness. In: Clote, P.G., Schwichtenberg, H.
(eds.) CSL 2000. LNCS, vol. 1862, pp. 262–276. Springer, Heidelberg (2000)

10. Dal Lago, U., Montanari, A., Puppis, G.: On the equivalence of automaton-based represen-
tations of time granularities. In: TIME 2007, pp. 82–93. IEEE, Los Alamitos (2007)

11. Dang, Z., Ibarra, O., San Pietro, P.: Liveness verification of reversal-bounded multicounter
machines with a free counter. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS
2001. LNCS, vol. 2245, pp. 132–143. Springer, Heidelberg (2001)

12. Demri, S., Finkel, A., Goranko, V., van Drimmelen, G.: Towards a model-checker for
counter systems. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 493–
507. Springer, Heidelberg (2006)

13. Demri, S., Gascon, R.: The effects of bounding syntactic resources on Presburger LTL.
Journal of Logic and Computation 19(6), 1541–1575 (2009)

14. Demri, S., Lazić, R., Nowak, D.: On the freeze quantifier in constraint LTL: decidability
and complexity. I&C 205(1), 2–24 (2007)

15. Demri, S., Lazić, R., Sangnier, A.: Model checking freeze LTL over one-counter automata.
In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 490–504. Springer, Heidel-
berg (2008)



190 S. Demri and A. Sangnier

16. Demri, S., Sangnier, A.: When Model-Checking Freeze LTL over Counter Machines Be-
comes Decidable. Research report, LSV, ENS Cachan (2010)

17. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: LICS 1999,
pp. 352–359. IEEE, Los Alamitos (1999)

18. Finkel, A., Leroux, J.: How to compose Presburger accelerations: Applications to broadcast
protocols. In: FST&TCS 2002. LNCS, vol. 2256, pp. 145–156. Springer, Heidelberg (2002)

19. Finkel, A., Sangnier, A.: Reversal-bounded counter machines revisited. In: Ochmański, E.,
Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 323–334. Springer, Heidelberg
(2008)

20. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pacific Jour-
nal of Mathematics 16(2), 285–296 (1966)

21. Göller, S., Mayr, R., To, A.: On the computational complexity of verifying one-counter
processes. In: LICS 2009, pp. 235–244. IEEE, Los Alamitos (2009)

22. Goranko, V.: Hierarchies of modal and temporal logics with references pointers. Journal of
Logic, Language, and Information 5, 1–24 (1996)

23. Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in succinct and parametric
one-counter automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009 - Concurrency
Theory. LNCS, vol. 5710, pp. 369–383. Springer, Heidelberg (2009)

24. Howell, R., Jančar, P., Rosier, L.: Completeness results for single-path Petri nets.
I&C 106(2), 253–265 (1993)

25. Ibarra, O.: Reversal-bounded multicounter machines and their decision problems.
JACM 25(1), 116–133 (1978)

26. Ibarra, O.: Restricted one-counter machines with undecidable universe problems. Mathe-
matical Systems Theory 13(181), 181–186 (1979)

27. Ibarra, O., Dang, Z.: On removing the stack from reachability constructions. In: Eades,
P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 244–256. Springer, Heidelberg
(2001)

28. Ibarra, O., Su, J., Dang, Z., Bultan, T., Kemmerer, R.: Counter machines and verification
problems. TCS 289(1), 165–189 (2002)

29. Jančar, P.: Decidability of a temporal logic problem for Petri nets. TCS 74(1), 71–93 (1990)
30. Lisitsa, A., Potapov, I.: Temporal logic with predicate λ-abstraction. In: TIME 2005, pp.

147–155. IEEE, Los Alamitos (2005)
31. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer

Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes Rendus du
Premier Congrès de Mathématiciens des Pays Slaves, Warsaw, pp. 92–101 (1929)

32. Reutenauer, C.: The Mathematics of Petri nets. Masson and Prentice (1990)
33. Sangnier, A.: Vérification de systèmes avec compteurs et pointeurs. Thèse de doctorat, LSV,

ENS Cachan, France (2008)
34. Sistla, A., Clarke, E.: The complexity of propositional linear temporal logic. JACM 32(3),

733–749 (1985)
35. Vardi, M., Wolper, P.: Reasoning about infinite computations. I&C 115, 1–37 (1994)



Model Checking Is Static Analysis of
Modal Logic

Flemming Nielson and Hanne Riis Nielson

DTU Informatics, Technical University of Denmark
{nielson,riis}@imm.dtu.dk

Abstract. Flow Logic is an approach to the static analysis of pro-
grams that has been developed for functional, imperative and object-
oriented programming languages and for concurrent, distributed, mobile
and cryptographic process calculi. In this paper we extend it to deal with
modal logics and prove that it can give an exact characterisation of the
semantics of formulae in a modal logic. This shows that model check-
ing can be performed by means of state-of-the-art approaches to static
analysis and allow us to conclude that the problems of model checking
and static analysis are reducible to each other. In terms of computational
complexity we show that model checking by means of static analysis gives
the same complexity bounds as are known for traditional approaches to
model checking.

1 Introduction

Model checking [10,2] is a successful approach to the validation of properties
expressed in modal logics with respect to models expressed as transition systems.
The transitions may originate from descriptions of hardware or more recently of
software systems. Much work focuses on transition systems that are finite and
have no structured data although extensions to infinite systems and structured
data (e.g. allowing cryptographic terms) exist.

Static analysis [9,13] is in a similar way a successful approach to the valida-
tion of properties of programming languages. Originally used in the development
of compilers it has spread to uses in editors in software development environ-
ments, program validation, program understanding and is also being applied
to distributed formalisms such as process calculi. A number of “schools” exist,
including Data Flow Analysis, Type and Effect Systems, and Abstract Interpre-
tation to name but a few.

Flow Logic [17] is a particular approach to static analysis that borrows meth-
ods and techniques from Abstract Interpretation, Data Flow Analysis and Con-
straint Based Analysis while presenting the analysis in a style more reminiscent
of Type Systems. One of the hallmarks of Flow Logic it that it makes a clear
distinction between (i) the specification of the analysis, (ii) whether or not a
proposed analysis result is indeed correct with respect to the semantics, and
(iii) the computation of the best analysis result. The logical format used for

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 191–205, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



192 F. Nielson and H. Riis Nielson

presenting specifications focuses on ensuring the implementability of the analy-
ses — often this is possible in low polynomial (cubic) time. Over the years Flow
Logic has proved to be a robust approach able to deal with a wide variety of
programming paradigms (e.g. [17]) and calculi of computation (e.g. [4,14,18]).

The problem. The interplay between model checking and static analysis has in-
trigued many researchers for many years. Early comparisons focused on static
analyses over-approximating the solution set while model checking similarly
under-approximating the solution set (in case of non-termination). Successive
enhancements within model checking and static analysis add to the complexity
of understanding their interplay.

A number of papers have taken the view that static analysis is model checking
of formulae in suitable modal logics. Possibly the first paper is [22] that focused
on how to understand the construction of complex data flow equations through
their characterisation in a modal μ-calculus. In [20] it is shown how abstract
interpretation can be used to cast further light on the construction and this is
extended in [21] where an Action Computation Tree Logic is used to express the
logical properties. Finally, [11] describe a Java based software system utilising
some of these ideas.

The contribution. In this paper we add to the conceptual understanding by
showing that model checking really amounts to a static analysis of the modal
formulae. To be concrete we choose an Action Computation Tree Logic (ACTL
[12]) and develop a static analysis in the Flow Logic approach by means of
Alternation-free Least Fixed Point Logic (ALFP [15]) as used in the Succinct
Solver [16] — indeed this is the first paper to extend Flow Logic to deal with
modal logic.

At the conceptual level we believe that the developments of Steffen and
Schmidt on the one hand, and our present contribution on the other, jointly
show the close relationship between model checking and static analysis – to the
extent that they seem to be reducible to each other. Clearly we cannot formu-
late this as precisely as reducibility among computational problems for the good
reason that the notions of model checking and static analysis have not been
clearly formalised and there may even be lack of consensus on where the exact
boundaries are.

Overview. In Section 2 we give the necessary background information on la-
belled transition systems and Action Computation Tree Logic. Section 3 then
presents the essence of the Flow Logic approach to static analysis including
the Alternation-free Least Fixed Point Logic that often plays a key role in
the implementations of Flow Logics. Our main contribution is in Section 4
where we present a precise static analysis of Action Computational Tree Logic
within Flow Logic and prove its correctness – thereby giving further insights
on the relationship between model checking and static analysis. We conclude
in Section 5.



Model Checking Is Static Analysis of Modal Logic 193

2 Modal Logic

Labelled Transition Systems. A labelled transition system (LTS) has the
form (S,A,→) where S is a non-empty set of states, A is a non-empty set of
actions and →⊆ S × A × S is the transition relation. We shall write s →a s′

whenever (s, a, s′) ∈ →. A transition system is finite whenever both S and A
are finite. A transition system is finitely branching whenever the sets sp(s) =
{(a, s′) | s→a s′} are finite for all choices of s; clearly a finite transition system
is also finitely branching.

A path π is a maximal sequence (si →a si+1)i such that si →a si+1 for all
i ≥ 0. This means that a path is either infinite or ends in a state that is stuck ; the
latter means that there are no outgoing transitions for any action. Sometimes
we write the path in the form (si →a si+1)0≤i<n to make it clear that i ≥ 0
and that the path has length n ∈ {0, · · · ,∞}; it follows that if n �=∞ then sn is
stuck. If s0 is a stuck state then there is exactly one path (si →a si+1)i starting
in s0, namely the empty path.

One can arrange to avoid stuck states by adding a new state sstuck and en-
sure that all stuck states, as well as sstuck, have a transition to sstuck for some
possibly new action; in this case all paths will be infinite and this is the usual as-
sumption in model checking where transition systems are supposed to be Kripke
structures. However, this is not usually the case for transition systems generated
from programming languages or process calculi; consequently we have opted for
a treatment where a path may end in a stuck state.

Action Computation Tree Logic. We shall use a variant of the modal logic
Action Computation Tree Logic (ACTL) [12] to express properties of paths in
labelled transition systems. It is defined by:

φ ::= true | false | bp | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | φ1 ⇒ φ2
| EXΩ φ | AXΩ φ | E[φ1 Ω1UΩ2 φ2] | A[φ1 Ω1UΩ2 φ2]

The subscripts Ω ⊆ A are sets of actions used to restrict the transitions taken.
The base predicates bp (so far left unspecified) denote sets of states used to
restrict the target state of the transitions taken. The E modality quantifies
over the existence of paths, the A modality quantifies over all paths, X focuses
on the next step and U is an until modality; we have chosen1 a version of U
that focuses on eventually taking an action in a certain set Ω2 to reach a state
satisfying a certain property φ2. The interpretation of the modal operators is
given in Table 1; when expressing the interpretation of a formula in the state
s0 and next choosing a path (si →a si+1)0≤i<n it is intended that the state s0
is indeed the first state in the path (si →a si+1)0≤i<n; we use this convention
throughout the paper.

1 This means that we do not obtain CTL by merely setting all Ω, Ω1, Ω2 to A. Other
choices of U are clearly possible without jeopardising our development. The present
choice is from [8].



194 F. Nielson and H. Riis Nielson

Table 1. Satisfaction relation for modal operators of ACTL: s |= φ

s0 |= EXΩ φ iff ∃(si →a si+1)0≤i<n : n > 0 ∧ a0 ∈ Ω ∧ s1 |= φ

s0 |= AXΩ φ iff ∀(si →a si+1)0≤i<n : n > 0 ∧ a0 ∈ Ω ∧ s1 |= φ

s0 |= E[φ1 Ω1UΩ2 φ2] iff ∃(si →a si+1)0≤i<n : ∃k < n :
[ 0≤i<k(ai ∈ Ω1 ∧ si+1 |= φ1) ∧ (ak ∈ Ω2 ∧ sk+1 |= φ2)]

s0 |= A[φ1 Ω1UΩ2 φ2] iff ∀(si →a si+1)0≤i<n : ∃k < n :
[ 0≤i<k(ai ∈ Ω1 ∧ si+1 |= φ1) ∧ (ak ∈ Ω2 ∧ sk+1 |= φ2)]

The modalities AF, EF, AG andEG are derivable in this logic2 in the standard
way. The AG modality is of special interest to us; its derived interpretations is:

s0 |= AGΩ φ iff ∀(si →a si+1)0≤i<n :
0≤i<n

[ai ∈ Ω ⇒ si+1 |= φ]

Example 1. Consider a transition system with states S = {1, 2, 3}, actions A =
{A,B,C,D} and transition relation → given by the diagram to the left:

�1 �2

�3

�
A

� B

�
�

��
C

� �
��D

φ {s | s |= φ}
EXA goal {2, 3}
AXA goal {3}

E[true AUA goal] {1, 2, 3}
A[true AUA goal] {3}

AGA goal {3}
AG{C} goal {1, 2, 3}

The table to the right shows the validity of some formulae when goal is the base
predicate that is only satisfied in the state 3. �

Model Checking. Model checking is the problem of obtaining efficient ways of
computing the set mcφ = {s | s |= φ} of states that satisfy a given modal formula.
In global model checking these algorithms usually proceed in a syntax directed
manner on the formula φ where it is assumed that the sets of satisfying states
have been computed for all sub-formulae. For the base clauses the construction
is immediate; for example, mctrue = S and mcfalse = ∅. For the clauses involving
propositional operators the construction is rather straightforward; for example,
mcφ1∧φ2 = mcφ1 ∩ mcφ2 and mcφ1⇒φ2 = mcφ2 ∪ (S \ mcφ1). For the modal
operators the construction is somewhat more complex and we refer to standard
textbooks like [2] for an overview of existing methods and techniques.

The worst case time complexity of model checking an ACTL formula φ of size
|φ| is O((|T |+ |S|) |φ|) where the transition system (S,A,→) has a state space
of size |S| and a transition relation→ of size |T | and where we assume that the
number of base predicates and actions are constant. This result has been adapted
from the information given in [2] about the time complexity of model checking
CTL (which essentially is ACTL without consideration about the actions).
2 As above we do not get the CTL equivalents simply by setting Ω to A.



Model Checking Is Static Analysis of Modal Logic 195

3 Static Analysis

Flow Logic. The aim of static analysis is to estimate the computational be-
haviour of programs or systems. The idea is to capture the information of interest
by elements of complete lattices; the details of the complete lattices depend on
the actual property of interest. In the Flow Logic approach logical judgements are
used to specify when the analysis information correctly captures the information
of the program or system. The judgements are defined by a set of rules that, in
general, must be interpreted co-inductively; for syntax-directed definitions this
coincides with the traditional inductive interpretations.

The correctness of the analysis is often established as a subject reduction
result – much as one will do for a type system. To ensure that the analysis is
implementable it is customary to establish a Moore family, or model intersection
property. This is one of the important points where Flow Logic distinguishes
itself from traditional type systems as it ensures that we can determine a best
analysis result for all programs – at the same time the result provides a strong
link between Flow Logic and Abstract Interpretation.

Example 2. To illustrate the approach we shall review a small example based on
the λ-calculus; we refer to [17] for more details. So let the expressions e ∈ Exp
be given by

e ::= x | λx.e | e1 e2
where x ∈ Var denotes a variable. The notion of free variables fv(e) are defined as
usual and we shall write v ∈ Val for the set of expressions given by v ::= x | λx.e.

We shall assume that the semantics is given by a labelled transition system
where S = Exp is the set of states, A = Val×Val is the set of actions (recording
the function being applied and its argument) and the transition relation → is
given by the following axioms and rules

(λx.e) v →(λx.e,v) e[v/x]
e1 →β e′1

e1 e2 →β e′1 e2

e2 →β e′2
e1 e2 →β e1 e′2

where e[v/x] is the expression obtained by replacing all free occurrences of x in
e by v. Note that the actions are used to record the redex of the evaluation step.

A typical analysis for the λ-calculus is a control flow analysis. The aim is to ap-
proximate the potential values for each sub-expression and to do so it is necessary
also to approximate the potential values of the variables. In order to obtain an
analysis that is as precise as possible we shall assume that the variables have
been α-renamed apart and furthermore we shall assign unique labels � ∈ Lab
to each sub-expression of the expression of interest; thus expressions (and val-
ues) now take the form e�. The labels only serve as pointers into the syntax;
they simply allow us to pinpoint the various sub-expressions so that we can
speak about their values and thus have no semantic significance. So in particular
we have

((λx.e�
′
)�1 v�2)� →((λx.e

′
) 1 ,v 2 ) (e[v/x])�



196 F. Nielson and H. Riis Nielson

Table 2. Flow Logic for the λ-calculus: C,R � e�

C,R � x� iff R(x) ⊆ C(�)

C,R � (λx.e�′)� iff (C,R � e�′) ∧ (λx.e�′) ∈ C(�)

C,R � (e�1
1 e�2

2 )� iff (C,R � e�1
1 ) ∧ (C,R � e�2

2 ) ∧
∀(λx.e�0

0 ) ∈ C(�1) : (C(�2) ⊆ R(x) ∧ C(�0) ⊆ C(�))

The two complete lattices of interest in our analysis are:

– C : Lab→ P(Val): the expression labelled � may evaluate to a value in C(�),
– R : Var→ P(Val): the variable x may evaluate to a value in R(x).

The analysis is then defined by judgements of the form

C,R � e�

as shown in Table 2. The first clause expresses that any value of x is also a pos-
sible value of the expression x� and hence any information contained in R about
x must also be contained in C(�). The second clause insists that the body of the
λ-expression must be analysable and additionally that the λ-expression itself is
a possible value of the expression (λx.e�

′
)�. The clause for function application

first insists that the operator as well as the operand must be analysable. Ad-
ditionally it says that if the operator (i.e. e�11 ) evaluates to a λ-expression with
formal parameter x and body e�00 then any value that the actual parameter (i.e.
the operand e�22 ) might evaluate to is also a possible value of x and any value
that the body e�00 might evaluate to is also a possible value of the overall function
application (e�11 e�22 )�.

Semantic correctness of this simple analysis amounts to ensuring that the
judgement C,R � e� correctly captures the evaluation of the λ-expression e. We
can express this as a subject reduction result :

Proposition. If C,R � e� and e� →β e′� then C,R � e′�.
We can also express the adequacy of the analysis by stating that C correctly
captures the function applications taking place:

Proposition. If C,R � e� and e� →(v 1
1 ,v 2

2 ) e′� then v1 ∈ C(�1) and v2 ∈ C(�2).
Linking back to ACTL we can use the above propositions to show that

AG{(v 1
1 ,v 2

2 )} (v1 ∈ C(�1) ∧ v2 ∈ C(�2))

is a true formula that describes the overall adequacy of the analysis. It is obser-
vations like this one that has lead some researchers to suggest that static analysis
is an instance of model checking [22,20,21].

In addition to proving semantic correctness of the analysis we shall want it to
satisfy a Moore family, or a model intersection property. Recall, that a Moore
family is a subset of a complete lattice that is closed under greatest lower bounds.



Model Checking Is Static Analysis of Modal Logic 197

Proposition. {(C,R) | C,R � e�} is a Moore family for all e�.
This result ensures that all expressions can be analysed and have a least, or best,
analysis result – this links into the framework of Abstract Interpretation. ��

Alternation-free Least Fixed Point Logic. The Moore family result guar-
antees the existence of best analysis results but in itself it does not provide
any mechanism for constructing the analysis result. Here Alternation-free Least
Fixed Point Logic (ALFP [15]) has proved very useful for obtaining efficient
implementations. It is defined by:

v ::= c | x | f(v1, . . . , vk)

pre ::= R(v1, . . . , vk) | ¬R(v1, . . . , vk) | pre1 ∧ pre2 | pre1 ∨ pre2
| ∀x : pre | ∃x : pre

cl ::= R(v1, . . . , vk) | true | cl1 ∧ cl2 | pre⇒ cl | ∀x : cl

The clauses are interpreted over a non-empty universe U ; indeed, a constant c
is an element of U , a function f has arity U∗ → U , a variable x ranges over U ,
and a relation R is a subset of U∗.

The interpretation of the logic is given in terms of satisfaction relations

(�, σ) sat pre and (�, σ) sat cl

where � is an interpretation of relations and σ is an interpretation of variables
which we extend to operate on values by setting σ(v) = v. The interpretation is
standard. We shall say that a clause is closed if it contains no free variables. For
closed clauses the interpretation σ of the variables is of no importance. Fixing a
specific interpretation σ0 we thus have that (�, σ) sat cl agrees with (�, σ0) sat cl
whenever cl is closed.

The presence of negation in preconditions require some care in order to en-
sure the existence of least models. An occurrence of a relation R in a clause is
a sub-formula of the form R(v1, · · · , vk). It is a negative use if it has the form
¬R(v1, · · · , vk); this necessarily occurs in a precondition, i.e. to the left of an
implication. It is a positive use if it is not a negative use but occurs in a pre-
condition, i.e. to the left of an implication. All other occurrences are definitions
and often occur to the right of an implication.

Example 3. Using the equality predicate EQ the clause

∀s : ∀a : ∀s′ : T (s, a, s′) ∧ ¬EQ(s, s′)⇒ R(s, a, s′)

defines the relation R to be the subset of the labelled transition system repre-
sented by T that contains no self-loops. The occurrence of T is a positive use,
the occurrence of EQ a negative use and the occurrence of R is a definition. ��
A clause cl is stratified if there is a number r, an assignment of numbers called
ranks rankR ∈ {0, · · · , r} to each relation R, and a way to write cl in the form

0≤i≤r cli such that the following holds for all clauses:



198 F. Nielson and H. Riis Nielson

Table 3. Flow Logic in ALFP for the λ-calculus: C , R � e�

C , R � x� iff ∀v : Rx(v) ⇒ C�(v)

C , R � (λx.e�′)� iff (C , R � e�′) ∧ C�(λx.e�′)

C , R � (e�1
1 e�2

2 )� iff (C , R � e�1
1 ) ∧ (C , R � e�2

2 )∧
[∀(λx.e�0

0 ) : [∀v : C�1(λx.e�0
0 ) ∧ C�2(v) ⇒ Rx(v)]∧

[∀v′ : C�0(v
′) ⇒ C�(v′)]]

– if cli contains a definition of R then3 rankR ≥ i;
– if cli contains a positive use of R then rankR ≤ i; and
– if cli contains a negative use of R then rankR < i.

Formulae without any occurrences of negation are clearly stratified as one may
simply choose r = 0. The clause of Example 3 is stratified: simply let EQ and
T have rank 0 and let R have rank 1.

Subject to the choice of ranks made above we can define a lexicographic
ordering, �, on the the interpretations of relations, �, as follows: �1 � �2 if there
exists a rank i ∈ {0, · · · , r} such that (1) �1(R) = �2(R) whenever rankR < i, (2)
�1(R) ⊆ �2(R) whenever rankR = i, and (3) either i = r or �1(R) ⊂ �2(R) for
some R with rankR = i. This turns the set of interpretations of relations into a
complete lattice. From [15] we then have:

Theorem 1. The set {� | (�, σ0) sat cl} is a Moore Family, i.e. is closed under
greatest lower bounds, whenever cl is closed and stratified; the greatest lower
bound �{� | (�, σ0) sat cl} is the least model of cl.

More generally, given �0 the set {� | (�, σ0) sat cl∧�0 � �} is a Moore Family
and �{� | (�, σ0) sat cl ∧ �0 � �} is the least model.

Intuitively, ALFP has been defined to be the largest subset of predicate logic that
allows us to prove the existence of least models; in particular, clauses contain no
disjunction or existential quantification.

Example 4. Following the overall methodology of Flow Logic we shall now refor-
mulate the analysis of Example 2 in ALFP. The idea is to introduce a predicate
Rx for each of the variables x and corresponding to R(x) and similarly a pred-
icate C� for each of the labels � of expressions and corresponding to C(�). The
analysis is then rephrased to use judgements of the form

C,R � e�

and the definition of Table 2 is transformed to be within ALFP as shown in
Table 3. In this case we do not need the full power of ALFP; indeed we are
within the Datalog fragment [5,1]. �

3 This generalises the condition ranki = i considered in [15].



Model Checking Is Static Analysis of Modal Logic 199

The Succinct Solver. The least model guaranteed by Theorem 1 can be con-
structed efficiently as summarised in the following result from [15].

Theorem 2. Under the assumptions of Theorem 1 the least model given by
�{� | (�, σ0) sat cl∧ �0 � �} is computable in time O(|�0| + |U|K |cl|) whenever
|�0| is the size of �0 and |U| is the size of the (necessarily finite) universe U and
finally K is the maximal nesting depth of quantifiers within cl.

The Succinct Solver [15,16] computes the least model guaranteed by Theorem 1
and has a worst case time complexity as given by Theorem 2. For many clauses
the worst case time complexity does not manifest itself and the Succinct Solver
operates in such a way that it may then exhibit a running time substantially
lower than the worst case time complexity. Indeed, [15] gives a formula estimating
the less than worst case time complexity on a given clause.

In essence the Succinct Solver deals with stratification by computing the re-
lations in increasing order on their rank and therefore the negations present no
obstacles. It combines the top-down solving approach of Le Charlier and van
Hentenryck [6] with the propagation of differences [7], an optimisation tech-
nique for distributive frameworks which is also known in the area of deductive
databases [3] or as reduction of strength transformations for program optimi-
sation [19]. Programmed using functional programming its efficient operation is
due to the disciplined use of continuations and memoisation as well as arbitrarily
branching prefix trees as a universal data-structure for storing relations and for
organising sets of waiting consumers. Whenever a new tuple is inserted into a
relation this makes it easy to access the continuation for traversing the parts of
the clause that might be influenced by the tuple.

Example 5. The analysis specified in Table 3 can be solved in time O(N3) where
N is the size of the λ-expression analysed; to see this note that the maximal
nesting depth of quantifiers is 2 and that the clause and universe have (within a
constant factor) the same size as the λ-expression. �

4 Flow Logic for Modal Logic

Returning to ACTL we shall now use the Flow Logic approach to define for each
formula φ a relation Rφ characterising those states where the formula φ holds.
Much as in the above analysis of the λ-calculus we shall use judgements of the
form R � φ to define the relations Rφ of interest. Since the same sub-formula
may occur several times in φ we shall identify each sub-formula with a unique
label �; in examples and explanations where this problem does not arise we shall
dispense with the labels.

We assume that
– for each basic predicate bp we have a corresponding relation Pbp on states,
– for each subset Ω of A we have a relation Ω on actions, and
– the transition relation → is presented by a ternary relation T .



200 F. Nielson and H. Riis Nielson

Table 4. ACTL in ALFP: R � φ� for defining Rφ (part 1)

R � true� iff [∀s : Rtrue (s)]

R � false� iff true

R � bp� iff [∀s : Pbp(s) ⇒ Rbp (s)]

R � (φ�1
1 ∧ φ�2

2 )� iff R � φ�1
1 ∧ R � φ�2

2 ∧ [∀s : R
φ 1
1

(s) ∧ R
φ 2
2

(s) ⇒ R
(φ 1

1 ∧φ 2
2 )

(s)]

R � (φ�1
1 ∨ φ�2

2 )� iff R � φ�1
1 ∧ R � φ�2

2 ∧ [∀s : R
φ 1
1

(s) ∨ R
φ 2
2

(s) ⇒ R
(φ 1

1 ∨φ 2
2 )

(s)]

R � (¬φ�′)� iff R � φ�′ ∧ [∀s : (¬Rφ
′ (s)) ⇒ R(¬φ

′
) (s)]

R � (φ�1
1 ⇒ φ�2

2 )� iff R � φ�1
1 ∧ R � φ�2

2 ∧ [∀s : ¬R
φ 1
1

(s) ∨ R
φ 2
2

(s) ⇒ R
(φ 1

1 ⇒φ 2
2 )

(s)]

Table 5. ACTL in ALFP: R � φ� for defining Rφ (part 2)

R � (EXΩ φ�′)� iff R � φ�′ ∧
[∀s : [∃a : ∃s′ : T (s, a, s′) ∧ Ω(a) ∧ Rφ

′ (s′)]
⇒ R(EX φ

′
) (s)]

R � (AXΩ φ�′)� iff R � φ�′ ∧
[∀s : [∀a : ∀s′ : ¬T (s, a, s′) ∨ (Ω(a) ∧ Rφ

′ (s′))]∧
[∃a : ∃s′ : T (s, a, s′)] ⇒ R(AX φ

′
) (s)]

R � (E[φ�1
1 Ω1UΩ2 φ�2

2 ])� iff R � φ�1
1 ∧ R � φ�2

2 ∧
[∀s : [∃a : ∃s′ : T (s, a, s′) ∧ Ω2(a) ∧ R

φ 2
2

(s′)]

⇒ R
(E[φ 1

1 1U 2 φ 2
2 ])

(s)] ∧
[∀s : [∃a : ∃s′ : T (s, a, s′) ∧ Ω1(a) ∧ R

φ 1
1

(s′)∧
R

(E[φ 1
1 1U 2 φ 2

2 ])
(s′)] ⇒ R

(E[φ 1
1 1U 2 φ 2

2 ])
(s)]

R � (A[φ�1
1 Ω1UΩ2 φ�2

2 ])� iff R � φ�1
1 ∧ R � φ�2

2 ∧
[∀s : [ [∃a : ∃s′ : T (s, a, s′)]∧

[∀a : ∀s′ : ¬T (s, a, s′) ∨ [Ω2(a) ∧ R
φ 2
2

(s′)]∨
[Ω1(a) ∧ R

φ 1
1

(s′) ∧ R
(A[φ 1

1 1U 2 φ 2
2 ])

(s′)] ]

⇒ R
(A[φ 1

1 1U 2 φ 2
2 ])

(s)]

The interpretations of these predicates are fixed and the intention is to define
the judgements R � φ such that s |= φ holds whenever Rφ(s) holds in the
least model satisfying R � φ. The definition is given in Tables 4 and 5 and is
explained below.

The relation Rtrue corresponding to the ACTL formula true should hold for all
states and we express this by the ALFP clause ∀s : Rtrue(s). The relation Rfalse

corresponding to false does not hold on any state so the ALFP clause does not
insist on Rfalse holding on any states; hence we simply use the ALFP clause true
to reflect this meaning that in the least model there are no states where Rfalse

holds. For basic predicates bp we have to make use of the predefined predicate
Pbp and impose the constraint that if Pbp holds on some state s then so does the
relation Rbp.



Model Checking Is Static Analysis of Modal Logic 201

The four clauses for the propositional operators ∧, ∨, ¬ and⇒ follow the same
pattern so let us just explain one of them, namely conjunction φ1 ∧φ2. Here the
conjuncts R � φ1 and R � φ2 ensure that the relations Rφ′ corresponding to
sub-expressions of φ1 and φ2 correctly record which states are acceptable. The
third conjunct ∀s : Rφ1(s) ∧ Rφ2(s) ⇒ Rφ1∧φ2(s) then caters for the relation
Rφ1∧φ2 . Note that in the case of negation and implication we have negative uses
of relations; we shall return to the stratification issues related to this later.

Turning to the modal operators of Table 5 let us first consider EXΩ φ. The
first conjunct ensures that the sub-formula φ is handled correctly. The second
conjunct captures the semantics of the EX construct: for all states s there must
be an action a and a state s′ such that there is a transition in the corresponding
transition system (i.e. T (s, a, s′)), that a is in Ω (i.e. Ω(a)) and furthermore φ
holds in s′, i.e. that Rφ(s′) holds. If these conditions are satisfied then it also
must be the case that REX φ holds on s.

The clause for AXΩ φ is slightly more complicated since we must cater for
the possibility of stuck states in the transition system. The clause in Table 5
reflects that two conditions must be satisfied in order for the formula to hold
on a given state s. First it must be the case that any transition going out of s
must make use of an action from Ω and must lead to a state satisfying φ. The
other conjunct ensures that s is not a stuck state. Only if both conditions are
fulfilled the ALFP clause imposes the requirement that RAX φ holds on s. Note
that also in this case we have a negative use of a relation. Furthermore we are
stepping outside the Datalog [5,1] fragment of ALFP in that we use universal
quantification in a precondition of an implication.

The clause for E[φ1 Ω1UΩ2 φ2] captures two possibilities. There might be a
transition from s using an action from Ω2 and resulting in a state satisfying Rφ2

and if so then RE[φ1 1U 2 φ2] should also hold on s. Alternatively there might be
a transition out of s using an action from Ω1 and in this case it has to lead to a
state satisfying not only Rφ1 but also RE[φ1 1U 2 φ2] – and only if this is the case
we impose the condition that RE[φ1 1U 2 φ2] also holds on s. It is here worth
pointing out that the ALFP clause defining the relation of interest is recursive
in the sense that it contains both uses and definitions of the relation.

Finally let us consider the clause for A[φ1 Ω1UΩ2 φ2]. Here the first component
of the premise of the implication insists that the state s of interest is not a stuck
state. The second component then requires that a transition out of s either
makes use of an Ω2 action and then the next state satisfies Rφ2 or it makes use
of an Ω1 action and then the next state satisfies Rφ1 as well as RA[φ1 1U 2 φ2].
If these premises are all satisfied then the clause expresses that RA[φ1 1U 2 φ2]
should hold on s. This is by far the most complex of the clauses as it makes use
of universal quantification in preconditions, has negative uses of relations and
defines the relation of interest in a recursive manner as discussed above.

In order to complete the presentation of the Flow Logic of Tables 4 and 5 we
should like to establish that the ALFP clause constructed for an ACTL formula
is indeed closed and stratified. We shall do so below and this will allow us to



202 F. Nielson and H. Riis Nielson

make use of Theorem 1 to show that least models exists – and that the Succinct
Solver can be used to compute them.

Example 6. Consider the ACTL formula AFA goal expressing that the tran-
sition system of interest eventually will reach a goal state. It is equivalent to
A[true AUA goal] (omitting annotations) and using the definition in Tables 4 and
5 we obtain the following ALFP clause defining the predicate RA[true AUA goal]:

[∀s : Rtrue(s)] ∧
[∀s : Pgoal(s) ⇒ Rgoal(s)] ∧
[∀s : [ [∃a : ∃s′ : T (s, a, s′)]∧

[∀a : ∀s′ : ¬T (s, a, s′) ∨ Rgoal(s′) ∨ RA[trueAUA goal](s′) ⇒ RA[trueAUA goal](s)]]]

Here we exploit that A holds on all actions and that Rtrue holds on all states. �

Remark. It is instructive to note that we cannot simply define R � AGΩ φ
(omitting annotations) by the conjunction of R � φ and

[∀s : [∀a : ∀s′ : ¬T (s, a, s′) ∨ (RAG φ(s′) ∧ (¬Ω(a) ∨Rφ(s′)))]⇒ RAG φ(s)]

since the above computes the least fixed point rather than the intended greatest
fixed point – which is important for transition systems with loops. Rather we
need to compute the staged relations R � ¬E[trueAUΩ ¬φ] and due to the use
of negation this requires stratification.

Example 7. To illustrate this observation, consider the transition system of Ex-
ample 1 and the formula AG{C} goal (omitting annotations). The above defini-
tion gives rise to the recursive equation

R = {s | ∀s′ : ∀a : s→a s′ ⇒ (R(s′) ∧ (Ω(a)⇒ s′ |= goal))}

The least solution is R = ∅ whereas the correct solution is RAG{ } goal =
{1, 2, 3}. �

Post-order labelling. It is easy to see that the clauses R � φ� defined by Tables
4 and 5 are indeed closed for any ACTL formula φ�. To show that the clauses
are stratified we shall fix the labelling scheme that so far has been unspecified.

To this end we assume that all sub-formula of an ACTL formula are annotated
with their number in a post-order traversal of the formula. To be specific we shall
say that a formula φ is (i, j)-annotated for positive integers i and j if the lowest
annotation occurring within φ is i and the highest is j – since we consider a
post-order traversal the annotation of the formula φ itself will necessarily be j.
As an example the (5,7)-annotated version of the formula A[true AUA goal] is
A[true5 AUA goal6]7.

Proposition 1. For every ACTL formula φ there exists an (1, �)-annotated for-
mula φ� for some �. Furthermore, the ALFP clause R � φ� generated by Tables
4 and 5 from an (1, �)-annotated ACTL formula φ� is closed and stratified.



Model Checking Is Static Analysis of Modal Logic 203

To see the latter assign the relations Pbp, Ω and T the rank 0. We may then
prove by induction on the annotated sub-formulae φ′j of φ� that φ′j is closed
and (i, j)-annotated for some i. Furthermore, the ALFP clause R � φ′j will only
contain definitions of relations of rank in {i, · · · , j}, it will only contain uses of
relations of rank {0} ∪ {i, · · · , j} and all negative uses will involve relations of
rank {0}∪ {i, · · · , j− 1} and thus it is a stratified formula. We shall say that an
ALFP clause is (i, j)-stratified when this is the case.

Correctness and precision. We are now able to establish our main theo-
rem expressing the correctness of the static analysis of the modal logic with
respect to the interpretation of the modal logic; this is along the same lines as
the correctness result exhibited for the analysis of the λ-calculus in Example
2. Additionally, the theorem expresses that the analysis is precise; this is not
usually the case for static analyses but does indeed hold for the so-called collect-
ing semantics analyses that often are the starting point for developing coarser
analyses by Abstract Interpretation.

For the remainder of this section consider some transition system (S,A,→)
and a ranking as described above; we shall restrict ourselves to a finitely branch-
ing transition system. Furthermore assume that U = S, that �0(Ω) = Ω for
all Ω ⊆ A, that �0(T ) = {(s, a, s′) | s →a s′}, and that �0(Pbp) = {s |
bp holds on s}. Then we have the following main result that is proved by struc-
tural induction on the formulae:

Theorem 3. Consider an (i, j)-annotated formula φj in ACTL and the least
model � of R � φ such that � � �0. We then have:

– Correctness of �: if s |= φj then �(Rφ )(s).
– Precision of �: if �(Rφ )(s) then s |= φj .

It follows from Proposition 1 and Theorem 3 that an implementation of the
static analysis of ACTL by means of the Succinct Solver constitutes a model
checker for ACTL.

Complexity. We may estimate the worst case time complexity of model checking
as performed using our static analysis of modal logic. For this assume that S
has size |S| and the transition relation → has size |T |. Next consider an ACTL
formula φ of size |φ|; it is immediate that the ALFP clause R � φ has size O(|φ|)
and nesting depth 3. According to Theorem 2 the worst case time complexity is
O(|T | + bp |Pbp| + 2|A| + |S|3|φ|) where bp ranges over all base predicates.

To compare with more traditional approaches to model checking we shall as-
sume that both the number of base predicates and the number of action labels
(as opposed to actions) is bounded by some constant. In this case we obtain the
worst case time complexity O(|T | + |S|2|φ|) because in this case the calculations
of nesting depth can safely ignore quantifications over actions. Indeed using a
more refined reasoning than that of Theorem 2 we obtain O((|T |+ |S|) |φ|) be-
cause it is clear that the “double quantifications” over states in Table 5 really
correspond to traversing all possible transitions rather than all pairs of states.



204 F. Nielson and H. Riis Nielson

Thus our alternative model checking algorithm has the same complexity as clas-
sical model checking algorithms [2]. And indeed, in our experience the Suc-
cinct Solver operates in such a manner that it will attain this worst case time
complexity.

5 Conclusion

The interplay between static analysis and model checking has intrigued re-
searchers for many years – leading to a growing feeling that the methods are
connected and can be used to strengthen each other.

At the conceptual level a number of papers have argued that various forms
of static analysis are instances of model checking [22,20,21]. Our contribution
completes the circle by showing the close relationship between static analysis and
model checking – to the extent that one may conjecture that they are reducible
to each others.

At the practical level this gives increased faith in exploring the methods and
techniques developed within each of the approaches to strengthen the other. This
is at the core of Research Theme 1 in MT-LAB (see below) where it is hypoth-
esised that “static analysis and model checking fundamentally solve the same
problem but using a different repertoire of techniques that must be combined in
order to produce more powerful analysis techniques.” In future work we hope to
identify concrete methods and techniques that can be transferred between the
two approaches to their mutual benefit.

Acknowledgements. This work has been supported by MT-LAB, a VKR Centre
of Excellence (http://www.mt-lab.dk). The authors would like to thank Kim
Guldstrand Larsen for provoking us to write this paper.

References

1. Apt, K., Blair, H., Walker, A.: A theory of declarative programming. In: Foun-
dations of Deductive Databases and Logic Programming, pp. 89–148. Morgan-
Kaufman, San Francisco (1988)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Balbin, I., Ramamohanarao, K.: A generalization of the differential approach to
recursive query evaluation. Journal of Logic Programming 4(3), 259–262 (1987)

4. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Riis Nielson, H.: Static validation
of security protocols. Journal of Computer Security 13, 347–390 (2005)

5. Chandra, A., Harel, D.: Computable queries for relational data bases. Journal of
Computer and System Sciences 21(2), 156–178 (1980)

6. Le Charlier, B., Van Hentenryck, P.: A universal top-down fixpoint algorithm.
Technical report, CS-92-25, Brown University (1992)

7. Fecht, C., Seidl, H.: Propagating differences: An efficient new fixpoint algorithm
for distributive constraint systems. Nordic Journal of Computing 5(4), 304–329
(1998)



Model Checking Is Static Analysis of Modal Logic 205

8. Hankin, C., Nielson, F., Riis Nielson, H.: Advice from Belnap policies. In: Computer
Security Foundations Symposium. IEEE Computer Society, Los Alamitos (2009)

9. Hecht, M.S.: Flow Analysis of Computer Programs. North Holland, Amsterdam
(1977)

10. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

11. Lamprecht, A.-L., Margaria, T., Steffen, B.: Data-flow analysis as model checking
within the jABC. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp.
101–104. Springer, Heidelberg (2006)

12. De Nicola, R., Vaandrager, F.W.: Action versus state based logics for transition
systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990)

13. Nielson, F., Riis Nielson, H., Hankin, C.: Principles of Program Analysis, 2nd edn.
Springer, Berlin (2005)

14. Nielson, F., Riis Nielson, H., Hansen, R.R.: Validating firewalls using flow logics.
Theoretical Computer Science 283(2), 381–418 (2002)

15. Nielson, F., Riis Nielson, H., Seidl, H.: A succinct solver for ALFP. Nordic Journal
of Computing 9, 335–372 (2002)

16. Nielson, F., Riis Nielson, H., Sun, H., Buchholtz, M., Hansen, R.R., Pilegaard, H.,
Seidl, H.: The Succinct Solver Suite. In: Jensen, K., Podelski, A. (eds.) TACAS
2004. LNCS, vol. 2988, pp. 251–265. Springer, Heidelberg (2004)

17. Riis Nielson, H., Nielson, F.: Flow Logic: a multi-paradigmatic approach to static
analysis. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence
of Computation. LNCS, vol. 2566, pp. 223–244. Springer, Heidelberg (2002)

18. Riis Nielson, H., Nielson, F., Pilegaard, H.: Spatial analysis of BioAmbients. In:
Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 69–83. Springer, Heidelberg
(2004)

19. Paige, R.: Symbolic finite differencing - part i. In: Jones, N.D. (ed.) ESOP 1990.
LNCS, vol. 432, pp. 36–56. Springer, Heidelberg (1990)

20. Schmidt, D.A.: Data flow analysis is model checking of abstract interpretations.
In: POPL 1998, pp. 38–48 (1998)

21. Schmidt, D.A., Steffen, B.: Program analysis as model checking of abstract inter-
pretations. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 351–380. Springer,
Heidelberg (1998)

22. Steffen, B.: Data flow analysis as model checking. In: Ito, T., Meyer, A.R. (eds.)
TACS 1991. LNCS, vol. 526, pp. 346–365. Springer, Heidelberg (1991)



Counting CTL

François Laroussinie1,�, Antoine Meyer2, and Eudes Petonnet1

1 LIAFA, Université Paris Diderot – Paris 7 & CNRS UMR 7089, France
{Francois.Laroussinie,Eudes.Petonnet}@liafa.jussieu.fr

2 LIGM, Université Paris Est – Marne-la-Valle & CNRS UMR 8049, France
Antoine.Meyer@univ-mlv.fr

Abstract. This paper presents a range of quantitative extensions for
the temporal logic CTL. We enhance temporal modalities with the abil-
ity to constrain the number of states satisfying certain sub-formulas
along paths. By selecting the combinations of Boolean and arithmetic
operations allowed in constraints, one obtains several distinct logics gen-
eralizing CTL. We provide a thorough analysis of their expressiveness
and of the complexity of their model-checking problem (ranging from
P-complete to undecidable).

1 Introduction

Among the existing approaches to the formal verification of automated systems,
model checking [7,17] aims at automatically establishing the validity of a certain
formal specification (modeled as a formula in a suitable logic) over the system
under study (modeled for instance as a finite automaton). This set of techniques
is now well-established and successful, with many real-world applications.

To formalize the specification of temporal properties, for instance in the case
of reactive systems, temporal logics (TL) were proposed thirty years ago [16] and
widely studied since. They are today used in many model-checking tools. There
exists a wide variety of temporal logics, differing for instance by the models over
which formulas are interpreted or by the kind of available temporal modalities.
Two well-known examples are LTL in the linear-time framework (where formulas
are interpreted over infinite runs) and CTL for the branching-time case (where
formulas are interpreted over states of Kripke structures). See [8] for a survey of
classical temporal logics for systems specification.

Temporal logics have been extended in various ways in order to increase their
expressive power. For example, while LTL and CTL only contain future operators,
it is also possible to consider past-time modalities to express properties of the
past of a run. One can also extend temporal logics with regular expressions (see
for instance [19,10]). Other extensions were proposed to handle quantitative
aspects of systems. For example, some logics can contain timing constraints to
specify that some event P1 has to occur less than 10 time units before another
event P2. Such temporal logics, like TCTL [2,9], have been especially studied in

� Partly supported by ANR project DOTS and project QUASIMODO (FP7-ICT).

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 206–220, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Counting CTL 207

the framework of timed model checking. Another quantitative extension consists
in probabilistic logics where one can specify probability bounds over the truth of
some property (see for example [4]).

We propose several extensions of CTL with constraints over the number of
states satisfying certain sub-formulas along runs. For example, considering a
model for an ATM, we can express the property “whenever the PIN is locked,
at least three erroneous attempts have been made” by: ¬EF[�error≤2]lock (one
cannot reach a state where the PIN is locked but less than two errors have
occurred). Similarly, ¬EF[�error≥3]money states that three mistakes forbid cash
retrieval. We use subscripts on the temporal modality (as in TCTL) to associate
a constraint with the run for which the modality holds. Note that these two
properties could be clearly stated in CTL by nesting E U modalities, but the
resulting formulas would probably be too big to be easily handled by the user
of a model checker. For each extension we consider, we study its expressiveness
compared to CTL. In some cases, there is no formal gain of expressiveness because
there exist natural translations to obtain equivalent CTL formulas, but these
extensions are often exponentially more succinct than CTL: they allow writing
concise specifications that would require formulas of exponentially larger size
in CTL. In other cases, we show that adding some constraints increases the
expressive power of CTL.

We consider the model checking problem for various sets C of constraints, and
denote by CCTLC the corresponding extension of CTL. We show that polynomial-
time algorithms exist when considering Until modalities with constraints of the
form1

i �ϕi ∼ c with ∼∈ {<,≤,=,≥, >} and c ∈ N. Additionally allowing
Boolean combinations of such constraints or integer coefficients in the sum (or
both) makes model checking ΔP

2 -complete. We also consider the case of diagonal
constraints �ϕ − �ψ ∼ c and their more general form i±�ϕi ∼ c with c ∈ Z

and show that model checking can be done in polynomial time. However, al-
lowing Boolean combinations of such constraints leads to undecidability. Finally
we define a version of CCTL with freeze variables and show that it induces a
complexity blow-up: model checking becomes PSPACE-complete.

Several existing works provide related results. In [10], an extension of LTL
with a kind of regular expressions containing quantitative constraints over the
number of occurrences of sub-expressions is presented. This extension yields al-
gorithms whose time complexity is exponential in the size of formulas and the
value of integer constants. In [11], extensions of CTL are defined including pa-
rameters in constraints. One of these formalisms, namely GPCTL, allows one to
express properties with constraints defined as positive Boolean combinations of
sums of the form i Pi ≤ c where every Pi is an atomic proposition. Model-
checking E U formulas with such a constraint is shown to be NP-complete and a
polynomial algorithm is given for a restricted logic (with parameters). In [20], a
branching-time temporal logic with general counting constraints (using a variant
of freeze variables) is defined to specify event-driven real-time systems. To obtain

1 For complexity results, we always assume that integer constants are encoded in
binary.



208 F. Laroussinie, A. Meyer, and E. Petonnet

decidability, they restrict the analysis to systems verifying some bounded progress
condition. In [6,5], extensions of LTL and CTL with Presburger constraints over
the number of states satisfying some formulas are considered, for some class of
infinite state processes. The complexity of these problems is much higher than
the cases we are concerned with. Finally there also exist timed extensions of CTL
interpreted over Kripke structures (see for instance [9]).

The paper is organized as follows. In Section 2, we introduce the definitions
of the main formalisms we will use. In Section 3, we show that several of our
proposed logics are not more expressive than the classical CTL, yet exponentially
more succinct. In Section 4, we address the model-checking problem and provide
exact complexity results for most of the logics we introduce. Finally we present
in Section 5 a different logic with freeze variables, together with the complexity
of its model-checking problem.

2 Definitions

2.1 Models

Let AP be a set of atomic propositions. In branching-time temporal logics, for-
mulas are interpreted over states of Kripke structures.

Definition 1. A Kripke structure (or KS) S is a tuple 〈Q,R, �〉 where Q is a
finite set of states, R ⊆ Q× Q is a total accessibility relation2and � : Q → 2AP

is a labelling of states with atomic propositions.

A run ρ of S is an infinite sequence of states q0q1q2 . . . such that (qi, qi+1) ∈ R
for every i. We use ρ(i) to denote the state qi and ρ|i to denote the prefix q0 · · · qi
of ρ. Runs(q) denotes the set of runs starting from some state q ∈ Q. We write
σ ≤ ρ when σ is a prefix of ρ.

We will also consider Durational Kripke Structures (DKS), where an integer
duration is associated with every transition. Thus for a DKS S = 〈Q,R, �〉, we
have R ⊆ Q × N × Q. The duration of a transition is also called a weight or a
cost. We use DKS0/1 to denote the DKSs where the durations belong to {0, 1}.
The notion of duration is naturally extended to finite runs of DKSs.

2.2 Counting CTL

We define several extensions of CTL able to express constraints over the number
of times certain sub-formulas are satisfied along a run.

Definition 2. Given a set of atomic propositions AP and a set of constraints
C, we define:

CCTLC 
 ϕ, ψ ::= P | ϕ ∧ ψ | ¬ϕ | EϕU[C]ψ | AϕU[C]ψ

2 By total relation, we mean a relation R ⊆ Q×Q such that ∀p ∈ Q,∃q ∈ Q, (p, q) ∈ R.



Counting CTL 209

where P ∈ AP and C ∈ C. The sets of constraints we consider are defined as
follows, with l, k ∈ N, k′ ∈ Z and ∼∈ {<,≤,=,≥, >}. First we have the sets of
atomic constraints:

C0 
 C ::= �ϕ ∼ k with ϕ ∈ CCTLC0
C1 
 C ::= (Σl

i=1�ϕi) ∼ k with ϕi ∈ CCTLC1
αC1 
 C ::= (Σl

i=1αi · �ϕi) ∼ k with ϕi ∈ CCTLαC1 , αi ∈ N

C2 
 C ::= (�ϕ− �ψ) ∼ k′ with ϕ, ψ ∈ CCTLC2
C3 
 C ::= (Σl

i=1 ± ·�ϕi) ∼ k′ with ϕi ∈ CCTLC3
αC3 
 C ::= (Σl

i=1αi · �ϕi) ∼ k′ with ϕi ∈ CCTLαC3 , αi ∈ Z

Let La be the set {C0, C1, αC1, C2, C3, αC3}. We also consider the set of constraints
B(C) for every C ∈ La, defined as the set of Boolean combinations of atomic
constraints in C with sub-formulas in CCTLB(C). We use Lb for {B(C) | C ∈ La}.
Finally Lcons def= La ∪ Lb.
We make use of the standard abbreviations ∨,⇒,⇔,⊥,�, as well as the ad-
ditional modalities EF[C]ϕ

def= E�U[C]ϕ, AF[C]ϕ
def= A�U[C]ϕ, and their duals

AG[C]ϕ
def= ¬EF[C]¬ϕ and EG[C]ϕ

def= ¬AF[C]¬ϕ. Any formula occurring in a con-
straint C associated with a modality in Φ is considered as a sub-formula of Φ.
The size |Φ| of Φ takes the size of these constraints and their sub-formulas into
account, assuming that integer constants are encoded in binary (unless explicitly
stated otherwise). The DAG-size of Φ is the total number of distinct sub-formulas
of Φ. As model-checking algorithms compute only once the truth value of a sub-
formula, this is generally more relevant to the complexity of model-checking.

The semantics of CCTLC formulas (with C ∈ Lcons) is defined over Kripke
structures as follows:

Definition 3. The following clauses define the conditions for a state q of some
KS S = 〈Q,R, �〉 to satisfy a CCTLC formula ϕ – written q |=S ϕ – by induction
over the structure of ϕ (we omit Boolean modalities):

q |=S EϕU[C]ψ iff ∃ρ ∈ Runs(q), ∃i ≥ 0, ρ(i) |=S ψ, ρ|i−1 |=S C,
and ∀0 ≤ j < i, ρ(j) |=S ϕ

q |=S AϕU[C]ψ iff ∀ρ ∈ Runs(q), ∃i ≥ 0, ρ(i) |=S ψ, ρ|i−1 |=S C,
and ∀0 ≤ j < i, ρ(j) |=S ϕ

Let C ∈ Lcons be a set of constraints and C be a constraint in C, the semantics
of ρ|i |=S C is based on the interpretation of �ϕ over ρ|i, denoted by |ρ|i|ϕ and
defined as: |ρ|i|ϕ def= |{j | 0 ≤ j ≤ i ∧ ρ(j) |=S ϕ}|. Given these values, C is
interpreted in a natural way.

In the following we omit the subscript S for |= when no confusion is possible.
We use ≡ to denote the standard equivalence between formulas.

Remark 1. The classical X operator (“neXt”) can be expressed in CCTLC0 as
EXϕ ≡ EF[��=1]ϕ, and that basic constraints in C0 can be expressed in C2 because



210 F. Laroussinie, A. Meyer, and E. Petonnet

�ϕ ≡ �ϕ−�⊥. Moreover, for CCTLB(C) with C ∈ La, since ϕU[C]ψ ≡ F[C∧�(¬ϕ)=0]ψ
the modality F is sufficient to define U; thus such a logic CCTLB(C) can also be
built from atomic propositions using Boolean operators and modalities EF[C]ϕ
and AF[C]ϕ (or EG[C]ϕ). Note that all these translations are succinct (linear in
the size of formulas) and do not have any impact on complexity results.

Remark 2. The related temporal logic TCTL [2], whose semantics are defined
over timed models, allows one to label temporal modalities with duration con-
straints. For instance, one may write ϕU<kψ to express the fact that ϕ is consis-
tently true until, before k time units have elapsed, ψ eventually holds. When all
transitions in a durational Kripke structure have duration 1 (i.e. the duration of
any run is equal to its length), TCTL (or RTCTL in [9]) formulas can be directly
coded into the logic CCTLC0 by only using the sub-formula � inside constraints.
A similar coding is also possible when one uses a proposition tick to mark time
elapsing as in [15].

2.3 Examples of CCTL Formulas

Consider a model for an ATM, whose atomic propositions include money, reset
and error, with the obvious meaning. To specify that it is not possible to get
money when three mistakes are made in the same session (i.e. with no intermedi-
ate reset), we can use the formula AG ¬EF[�error≥3∧�reset=0]money that belongs
to CCTLB(C0). Note that this could also be expressed by the CCTLC0 formula
AG ¬E(¬reset)U[�error≥3]money .

Consider a mutual exclusion algorithm with n processes trying to reach their
critical section. We can specify that it verifies the bounded waiting property with
bound 10 (i.e. when a process P tries to reach its CS, then at most 10 other
processes can reach theirs before P does) by the following CCTLB(C1) formula:
AG i requesti ⇒ ¬EF[ �= �CS >10∧�CS =0]� .

AG[�send−�receive<0]⊥ belongs to CCTLC2 and states that along any finite run,
the number of receive events cannot exceed the number of send events.

Quantitative constraints can also be useful for fairness properties. For example
AGAF[ 5≤�ϕ ≤10]� expresses that the ϕi’s occur infinitely often along every run
(as stated with the CTL formula i(AGAFϕi)) but it also ensures some constraint
on the number of states satisfying the ϕi’s along every execution: for example,
it is not possible to have a sub-run where ϕ1 holds for 11 states and ϕ2 holds
only for 4 states.

Note that with CCTLαC3 one can express properties over the ratio of two kinds
of states along a run. For example, EF[100·�error−��<0]P is true when there is a
path leading to P such that the rate of error states is less than 1 percent. Thus
constraints of the form “ �P

�P ′ ∼ k” can easily be expressed with this logic.
Finally note that we can use any temporal formula inside a constraint (and

not only atomic propositions). For example, AG(EF[�(EXalarm)≤5]init) states that
it is always possible to reach init with a path along which at most 5 states have
a successor satisfying alarm.



Counting CTL 211

These examples illustrate the ability of CCTL formulas to state properties over
the portion of a run leading to some state. A similar kind of properties could
also be expressed with past-time modalities (like S or F−1), but unlike these
modalities our constraints cannot easily describe the ordering of events in the
past: they “only” allow to count the number of occurrences of formulas. We will
see in the next sections that our extensions do not always induce a complexity
blow-up, while model-checking CTL+F−1 is known to be PSPACE-complete [14].

3 CCTL Expressiveness and Succinctness

When comparing two logics, the first question which comes to mind is the range
of properties they can be used to define, in other words their expressiveness.
When they turn out to be equally expressive, a natural way to distinguish them
is then to ask how concisely each logic can express a given property. This is
referred to as succinctness, and is also relevant when studying the complexity
of model-checking for instance, since it may considerably influence the size of
a formula required to express a given property, and hence the time required to
model-check it. In this section we study the expressiveness of the different logics
defined in the previous section, and provide partial results and comments about
their respective succinctness with respect to CTL.

3.1 Expressiveness

We first show that only allowing boolean combinations and positive sums in
constraints does not allow CCTL to express more properties than CTL.

Proposition 4. Any CCTLB(αC1) formula can be translated into CTL.

Proof (sketch). Let Φ be a CCTLB(αC1) formula of the form EF[C]ϕ whose con-
straint C contains n counting arguments �ϕ1 to �ϕn, each preceded by a multi-
plicative constant αi, and m atomic constraints. We inductively translate Φ to
CTL by building a family of formulas whose intended meaning (up to technical
details) is as follows:

– If constraint C holds with �ϕi = 0 for all i, then ϕ may be true immediately.
– Otherwise, successively check for every i which of the ϕi hold in the current

state, updating constraint C along the way by decreasing by αi the constant
to which ϕi is compared in Φ.

– Once all ϕi have been scanned, proceed to the next state and reevaluate C
for the new values of the constants.

Each of these steps corresponds to a sub-formula of the form ΦC′,i,b in the
CTL translation of Φ, where C′ is the current constraint to be checked, i is the
index of the formula ϕi being scanned, and b is a boolean flag used to enforce
termination, ΦC,0,⊥ being the translation of Φ itself. By counting the number of
distinct ΦC′,i,b, one can show that the DAG-size of ΦC,0,⊥ is O(n.km), where k
is the maximal constant appearing in Φ. A similar argument holds for formulas
of the form EG[C]ϕ with the same resulting DAG-size. ��



212 F. Laroussinie, A. Meyer, and E. Petonnet

Note that the upper bound for the above translation is parametric, and can
be interpreted for all variants of CCTL below CCTLB(αC1). An example of this
translation on a CCTLαC1 formula is given in the next section. In contrast to
this result, introducing subtractions in constraints yields a strict increase in
expressiveness.

Proposition 5. The CCTLC2 formula ϕ = AG[�A−�B<0]⊥ cannot be translated
into CTL.

Proof (sketch). Formula ϕ (already seen in Sec. 2 with different atomic propo-
sitions) states that the number of B-labeled states cannot exceed the number
of A-labeled states along any path. As shown by [3] and also presented in [18],
the set of models of any CTL formula can be recognized by a finite alternating
tree automaton. From such an automaton, one can easily build a finite alternat-
ing automaton over words, whose accepted language is the set of all prefixes of
branches in models of the formula, seen as words over 2AP.

Suppose there exists a CTL formula ϕ′ equivalent to ϕ, and let A be the
alternating tree automaton accepting its set of models. As stated above, from
A one can derive a finite alternating automaton recognizing the set of all words
over 2{A,B} labeling a finite prefix of a branch in a model of ϕ, namely words
whose prefixes contain at most as many B’s as A’s. Since this language is clearly
not regular, this leads to a contradiction. ��

3.2 Succinctness

Our extensions of CTL come with three main sources of possible concision, which
appear to be orthogonal : the encoding of constants in binary, the possibility to
use boolean combinations in the constraints, and the use of sums. However, only
the first two prove out to yield an exponential improvement in succinctness :

Proposition 6. For every formula Φ ∈ CCTLC1 with unary encoding of integers,
there exists an equivalent CTL formula of DAG-size polynomial in |Φ|.
This proposition is a direct consequence of Prop. 4 where m, the number of
atomic constraints, is set to 1. For instance, to translate Φ = EF[Σ =1�p =K]ϕ, we
define ∀0 ≤ k ≤ K the family of CTL formulas:

∀1 ≤ i ≤ n, 0 ≤ j < n, Φi,j,k = (pi ∧ Φi+1,j+1,k) ∨ (¬pi ∧ Φi+1,j,k)
∀1 ≤ j ≤ k, Φn+1,j,k = EXE(¬ n

i=1 pi)U(( n
i=1 pi) ∧ Φ1,0,k−j)

Φn+1,k,k = EXE(¬ n
i=1 pi)Uϕ

∀j > k, Φn+1,j,k = ⊥

By construction, we have Φ ≡ Φ1,0,K . The size of this family is O(n.k), thus
the DAG-size of Φ1,0,K is also polynomial in |Φ|, even if its literal size is expo-
nential. This example relies on the fact that constants are encoded in unary, to
measure the impact of the addition operation in constraints. We now look at the
succinctness gap due to the binary encoding of constants.



Counting CTL 213

Proposition 7. CCTLC0 can be exponentially more succinct than CTL.

Proof. In [15], it is shown that the logic TCTL, when interpreted over Kripke
structures with a special atomic proposition tick used to mark the elapsing of
time, can be exponentially more succinct than CTL. More precisely, the TCTL
formulas EF<nA and EF>nA, which are of size O(log(n)) since n is encoded in
binary, do not admit any equivalent CTL formula of temporal height (and hence
also size) less than n. These formulas express the existence of a path where A
eventually holds and less (resp. more) than n clock ticks are seen until then.
They are clearly equivalent to the O(log(n))-size CCTLC0 formulas EF[�tick<n]A
and EF[�tick>n]A respectively. ��
This exhibits a first aspect in which CCTL logics can be exponentially more
succinct than CTL. However, as expressed in the next proposition, another or-
thogonal feature of the logic may yield a similar blow-up.

Proposition 8. CCTLB(C0) with unary encoding of integers can be exponentially
more succinct than CTL.

Proof. It was shown by [18,1] that any CTL formula ϕ equivalent to the CTL+

formula ψ = E(FP0 ∧ . . . ∧ FPn) must be of length exponential in n. It turns
out ψ is equivalent to the CCTLB(C0) formula ψ′ = EF[ �P ≥1]�, which entails
the result. Note that ψ′ only contains the constant 1, which means that this gap
cannot be imputed to the binary encoding. ��
The intuitive reason for this blow-up is that a CTL formula expressing the prop-
erty that atomic propositions P1 to Pn are each seen at least once along a path
would have to keep track of all possible interleavings of occurrences of Pi’s.

To summarize, we showed that two different aspects of the extensions of CTL
presented in this paper, while not increasing the overall expressiveness of the
logic, may yield exponential improvements in succinctness We still have to study
similar succinctness properties of the remaining CCTL fragments with respect to
CTL and to each other.

4 Model Checking

4.1 Model Checking CCTLC0 and CCTLC1

It turns out that model-checking CCTLC1 is polynomially equivalent to model-
checking CCTLC0 (or CTL), as both problems are P-complete.

Theorem 9. The model-checking problem for CCTLC1 is P-complete.

Proof. P-hardness comes from the P-hardness of CTL model-checking. For mem-
bership in P, we provide polynomial-time procedures to deal with the sub-
formulas EψU[C]ψ

′ and AψU[C]ψ
′ with C

def= Σl
i=1�ϕi ∼ k. Consider a Kripke

structure S = (Q,R, �), and inductively assume that the truth values of ψ, ψ′



214 F. Laroussinie, A. Meyer, and E. Petonnet

and ϕi over each state of S are known: these sub-formulas will be seen as atomic
propositions in the following.

To each state q occurring along a path, we associate a cost |q|C = |{i | q |=
ϕi}|, and note that the value of |q|C is in O(|C|). This cost is additively extended
to paths in the usual way. Deciding the truth value of the path formula ψU[C]ψ

′

over any path ρ verifying ψUψ′ then amounts to checking whether there exists
a finite prefix ρ′q of ρ such that |ρ′|C ∼ k, q |= ψ′ and ∀i ≤ |ρ′|, ρ′(i) |= ϕ.

We reduce this problem to the model-checking of a TCTL formula over a
DKS0/1 (DKS with 0/1-durations) for which there exists a polynomial-time al-
gorithm [15]. We build from S a DKS0/1 S′ = (Q′, R′, �′) as follows: for each
state q ∈ Q with |q|C = n, Q′ contains n + 1 additional states q0, . . . , qn. R′ is
then defined as {q 0−→ q0 | q ∈ Q} ∪ {qi 1−→ qi+1 | q ∈ Q, i < |q|C} ∪ {qn 0−→
q′ | (q, q′) ∈ R, n = |q|C}. Finally, we set �′(qi) = ∅ for all qi ∈ Q′ \ Q and
�′(q) = �(q) ∪ {ok} for all q ∈ Q′ ∩Q, where ok is a new atomic predicate.

To each path ρ = qσq′ in S, we associate the path ρ̃ = qq0 . . . qnσ̃q
′ in S′. It

can now be shown by induction on run lengths that ρ satisfies ψU[C]ψ
′ if and

only if ρ̃ satisfies the TCTL path formula (ok⇒ ψ)U[∼k](ok ∧ ψ′). ��
Since CCTLC0 includes CTL and is included in CCTLC1 , we get:

Corollary 1. The model-checking problem for CCTLC0 is P-complete.

4.2 Model-Checking CCTLB(C0) and CCTLαC1

We now establish the ΔP
2 -completeness of model-checking for the fragments

CCTLB(C0), CCTLαC1 and CCTLB(αC1). Let us first recall the definition of the
complexity class ΔP

2 , one of the classes of the polynomial hierarchy.

Definition 10. ΔP
2 = PNP is the class of problems solvable in polynomial time

with access to an oracle for some NP-complete problem.

We now prove ΔP
2 -hardness of the model-checking problem for CCTLB(C0).

Theorem 11. The model-checking problem for CCTLB(C0) is ΔP
2 -hard.

Proof. We proceed by reduction from the ΔP
2 -complete problem SNSAT [12].

Given p families of variables X1, . . . Xp with Xi = {x1
i , ..., x

m
i } and a set

Z = {z1, . . . , zp} of p variables, an instance I of SNSAT is defined as a collection
of p propositional formulas ϕ1, . . . , ϕp under 3-conjunctive normal form (3-CNF),
where each ϕi involves variables in Xi∪{z1, ..., zi−1}, and the values of each zi is
defined as zi

def= ∃Xi. ϕi(z1, ..., zi−1, Xi). The instance I is positive iff the value
of zp is �. We denote by vI the unique valuation of variables in Z induced by I.

From I, we define the KS described in Figure 1. Every state is labeled by its
name, and in addition every state z̄i is labeled by some new atomic proposition
Pz̄. We use X to denote the set X1 ∪ · · · ∪Xp and V for X ∪ Z. A path ρ from
qp to qF describes the valuation vρ such that vρ(y) = � if ρ visits state y and
⊥ if it visits ȳ for every variable y in V . We use a CCTLB(C0) formula to ensure



Counting CTL 215

z z −1 z1 x1 x2 x1

q q −1 q −2 · · · q1 q0 • • · · · • q

z̄ z̄ −1 z̄1 x̄1 x̄2 x̄1

Fig. 1. Kripke structure associated to an SNSAT problem

that vρ coincides with vI over Z, that is: vρ(zi) = � iff vI(zi) = � for any
i ∈ {1, . . . , p}.

Let ϕi be the formula ϕi where every occurrence of the literal x is replaced
by �x=1. We define the CCTLB(C0) formula Ψ0 as � and for every 1 ≤ k ≤ p, Ψk
as EX E(Pz̄ ⇒ ¬Ψk−1)U[C ]qF , with Ck

def= l≤k (�zl=1)⇒ ϕl ∧ k
j=1 (�q=

j) ⇒ ϕj . The first part of the constraint Ck aims at ensuring that vρ(zl) = �
is witnessed by a valuation for {z1, . . . , zl−1}∪X l satisfying ϕl. The second part
ensures the formula ϕj is satisfied by vρ when Ψk is interpreted from zj or z̄j
(i.e. when the number of qs along the path leading to qF is j). The formula Ψj
holds for a state qi with i ≤ j when vI(zi) is �. The embedding of Ψj−1 inside
Ψj is used to ensure that going through a z̄m with i ≥ m is always necessary
w.r.t. I (i.e. there is no way to satisfy the corresponding ϕm):

Lemma 12. For any i = 1, . . . , p and i ≤ j ≤ p, we have: zi |= Ψj ⇔ vI(zi) = �
and z̄i �|= Ψj ⇔ vI(zi) = ⊥
Now it is sufficient to check whether q0 satisfies Ψp or not, and then deduce the
truth value of vI(zp). ��
Theorem 13. The model-checking problem for CCTLαC1 is ΔP

2 -hard.

Proof. We provide a reduction from the model checking problem for TCTL spec-
ifications over Durational Kripke structures. TCTL formulas allow to deal with
the cost (or duration) of paths (i.e. the sum of the weight of every transition
occurring along the path). This problem is ΔP

2 -complete [13]. Let S = (Q,RS , �)
be a DKS. Let W be the set of weights occurring in S. We define the Kripke
structure S′ = (Q′, RS′ , �′) as follows:

– Q′ def= Q ∪ {(q, d, q′) | ∃(q, d, q′) ∈ RS},
– for any (q, d, q′) ∈ RS , we add (q, (q, d, q′)) and ((q, d, q′), q′) in RS′ ; and
– �′ : Q′ → 2AP′

with AP′ def= AP∪{ok}∪{Pd | d ∈ W} – we assume ok, Pd �∈ AP.
And we have: �′(q) def= �(q) ∪ {ok} for any q ∈ Q, and �′(q, d, q′) = {Pd}.

Now we can easily see that q |=S Φ with Φ ∈ TCTL is equivalent to q |=S′ Φ

where P def= P , ¬ψ def= ¬ψ, ϕ̃ ∧ ψ def= ϕ∧ψ, ˜EϕU∼cψ
def= E(ok⇒ ϕ)U[C(∼c)](ok∧ψ)

and ˜AϕU∼cψ
def= A(ok⇒ ϕ)U[C(∼c)](ok∧ψ) with C(∼ c) def= d∈W d ·�Pd ∼ c. ��

Theorem 14. The model-checking problem for CCTLB(αC1) is in ΔP
2 .



216 F. Laroussinie, A. Meyer, and E. Petonnet

Proof (sketch). Let S = 〈Q,R, �〉 be a KS. For this proof, we only need to provide
NP procedures to deal with sub-formulas of the form EF[C]ϕ and EG[C]ϕ. First let
{C1, . . . , Cl} be the set of αC1 constraints occurring in C. Each Ci is of the form

j≤l α
i
j · �ϕij ∼i di. And let dmax be the maximal integer constant occurring in

C. Now we can present the algorithms:

– Φ
def= EF[C]ψ: If q |= Φ, then there exists a run ρ starting from q and leading to

some q′ such that (1) q′ |= ψ and (2) ρ without q′ satisfies the constraint C.
First note that we can assume that the length of ρ is bounded with respect
to the model and formula: a sequence of |Q| states contributes for at least 1
to some linear expressions in C and then the length of ρ is in O(|Q|.2|C|) due
to the binary encoding of the constants. An easy NP algorithm consists in
guessing the Parikh image of the transitions in ρ, which can be represented
in polynomial size. Moreover it is possible to check (in polynomial time) that
q′ satisfies ψ, ρ without q′ satisfies C, and Fρ corresponds to a path in S.

– Φ
def= EG[C]ψ: For this case we have to find an infinite path ρ satisfying the

property “if the current prefix satisfies the constraint C, then the next state
has to satisfy ψ”. Every constraint Ci ∈ αC1 in C may change its truth
value at most twice along ρ. Therefore ρ can be decomposed in a bounded
number of parts over which the truth value of every constraint is constant.
As previously, the length of every part is bounded and its Parikh image can
be encoded in polynomial size. Moreover it is possible to ensure that the
juxtaposition of all ρm is correct. ��

A direct corollary of Theorems 11, 13 and 14 is:

Corollary 2. The model-checking problem for CCTLC is ΔP
2 -complete for each

C ∈ {αC1,B(C0),B(C1),B(αC1)}.

4.3 Diagonal Constraints

We now show that even if diagonal constraints lead to strictly more expressive
logics than CTL, model checking CCTLC2 and CCTLC3 is not more difficult than
model checking CTL itself.

Theorem 15. The model-checking problem for CCTLC2 is P-complete.

Proof (sketch). P-hardness comes from that of CCTLC0 model-checking. Using
the fact that Aϕ′U[C]ψ

′ ≡ AF[C∧�¬ϕ′=0]ψ
′ ≡ ¬EG[C∧�¬ϕ′=0]¬ψ′, to show mem-

bership in P, we only need to provide polynomial-time procedures to verify
sub-formulas of the form Eϕ′U[C]ψ

′ and EG[C∧�ϕ′=0]ψ
′ with C

def= �ϕ − �ψ ∼ k.
Consider a Kripke structure S def= (Q,R, �). As previously, we associate a “cost”
to each state q ∈ Q. In this case however, |q|C can only be -1, 0 or 1 depending
on the truth values of ϕ and ψ. Inductively assume that the truth values of ϕ,
ψ, ϕ′ and ψ′ over each state of S are known: these sub-formulas will be seen as
atomic propositions in the following. We distinguish the two main cases below:



Counting CTL 217

– Φ
def= Eϕ′U[C]ψ

′: We consider the weighted and directed graph GS = (V,E)
representing the transition relation of S restricted to states verifying the
formula Eϕ′Uψ′, where edges are weighted by the cost of their source state
and where only edges whose source verifies ϕ′ are considered.
If C def= �ϕ − �ψ ≤ k, then the formula holds true on state q if and only
if there exists a state q′ such that q′ |=S ψ′ and either an elementary (i.e.
acyclic) path ρ in GS of weight less than k from q to q′, or a path from q to
some state q′′ appearing on a negative-weight cycle, and from q′′ to q′. Using
a classical reachability algorithm over GS , one can determine the existence
of such paths in polynomial time.
If C def= �ϕ − �ψ = k with k ≥ 0, we will compute the relation Rk over
V 2 denoting the existence of a run of weight k between states q and q′ and
simply test whether (q, q′) ∈ Rk for some q′ verifying ψ′. Using dichotomy
and simple fixed-point computations, we are able to compute Rk in time
polynomial in |Φ|, i.e. logarithmic in k The treatment of negative weights is
omitted.

– Φ
def= EG[C∧�ϕ′=0]ψ

′: We use the weighted and directed graphGS representing
the transition relation of S where edges are weighted by the cost of their
source state, to build a new Kripke structure S′ and a classical CTL formula
Ψ such that S satisfies Φ if and only if S′ satisfies Ψ . ��

By combining the techniques used in the previous construction with those used
in the proof to Theorem 9, we obtain a similar result for the logic CCTLC3 .

Corollary 3. The model-checking problem for CCTLC3 is P-complete.

Proof (sketch). In this setting, each state contributes to the cost of a path by
a certain positive or negative number whose absolute value is bounded by some
integer d. Similarly to the technique used in the proof of Theorem 9, the idea
is to build a durational Kripke structure, this time with weights in {−1, 0, 1},
by adding intermediate states. Once this DKS is built, relations Ri, R+

i and
R−i may be computed as previously, and the satisfaction of the formula under
consideration tested. ��
Theorem 16. The model-checking problem for CCTLB(C2) is undecidable.

Proof (sketch). This is done by reduction from the halting problem of a two-
counter machine M with counters C and D. We define a Kripke structure SM
with one state to simulate each of M’s instructions, plus some auxiliary states.
We use labels ϕ+

X and ϕ−X with X ∈ {C,D} to witness increments and decre-
ments, and additional labels okX , koX to simulate the positive test “X = 0”:
whenever the counter’s value is assumed to be zero, and before simulating the
next instruction, the run goes through an auxiliary state labeled koX whose
unique successor is labeled okX . Hence along any run in SM, a prefix satisfies
�koX > �okX right after counter X was deemed equal to zero, and only then.
By counting occurrences of these predicates, one can write a CCTLB(C2) formula
expressing the fact that M is correctly simulated by SM and never halts. ��



218 F. Laroussinie, A. Meyer, and E. Petonnet

5 Freeze Variables

Instead of using counting constraints associated with temporal modalities, we
now consider freeze variables and explicit constraints inside formulas.

Definition 17. Given a set of atomic propositions AP and a set of variables V ,
we define: CCTLfv 
 ϕ, ψ ::= P | ϕ ∧ ψ | ¬ϕ | z[ψ].ϕ | C | EϕUψ | AϕUψ

where P ∈ AP and C is a constraint l
i=1 αi · zi ∼ c with zi ∈ V , αi ∈ N, c ∈ N

and ∼∈ {<,≤,=,≥, >}.
Intuitively z[ψ].ϕ means that (1) the variable z is reset to zero and associated
with the sub-formula ψ (i.e. z will evolve like �ψ in the future) and (2) given this
semantics for z, ϕ holds for the current state. We say that an occurrence of some
variable z is free in ϕ when this occurrence does not appear in the scope of a
reset operator “.”; a formula without any free variable is closed. For example, the
CCTLB(C0) formula EF[�P≤5∧�P ′>2]P

′′ can be expressed in CCTLv as the formula
z[P ].z′[P ′].EF(z ≤ 5 ∧ z′ > 2 ∧ P ′′).

A CCTLv formula ϕ is interpreted in a state of a KS extended with a valuation
for any free variable in ϕ and an environment associating a sub-formula to any
free variable. We use dom to denote the domain of such functions and ⊥ to
represent undefined values. Given a function f and x ∈ dom(f), we use f [x← a]
to denote the function mapping x to a, and every element y to f(y) if y �= x.
Finally let SubF(ϕ) be the set of all ϕ sub-formulas.

Given a valuation v : V → N∪{⊥} for a set of variables occurring in a CCTLv

formula ϕ, and an environment ε : V → SubF(ϕ) ∪ {⊥} such that dom(v) =
dom(ε), and given a finite run π, we define the valuation (v +ε π) as follows:
(v+ε π)(z) def= ⊥ if z �∈ dom(v), and otherwise (v+ε π)(z) def= v(z)+ |{j | 0 ≤ j ≤
|π| ∧ π(j) |= ε(z)}|. The semantics of CCTLv is defined as follows:

Definition 18. The following clauses define when a state q of some KS S =
〈Q,R, �〉 and a valuation v satisfy a CCTLv formula ϕ in an environment ε –
written (q, v) |=S,ε ϕ – by induction over the structure of ϕ (we omit the cases
of Boolean modalities):

(q, v) |=S,ε EϕUψ iff ∃ρ ∈ Runs(q), v |=ρ,ε ϕUψ

(q, v) |=S,ε AϕUψ iff ∀ρ ∈ Runs(q), v |=ρ,ε ϕUψ

(q, v) |=S,ε z[ψ].ϕ iff (q, v[z ← 0]) |=S,ε[z←ψ] ϕ

(q, v) |=S,ε Σl
i=1αi · zi ∼ c iff Σl

i=1αi · v(zi) ∼ c
where v |=ρ,ε ϕUψ iff ∃i ≥ 0, (ρ(i), v+ε ρ|i−1) |=S,ε ψ and ∀0 ≤ j < i, (ρ(j), v+ε

ρ|j−1) |=S,ε ϕ.

Theorem 19. Model checking closed CCTLv formulas is PSPACE-complete.

Proof. PSPACE-hardness can be proved by a reduction from QBF. PSPACE-
membership is obtained by considering a non-deterministic algorithm working
in polynomial space to decide whether a CCTLv formula holds for a state q within



Counting CTL 219

a KS S. The main idea is to encode a configuration (q, v, ε) in polynomial size:
this is possible for v since we just have to record the value for the counter z up
to dmax + 1 where dmax is the maximal constant used in a constraint with z. In
order to verify EϕUψ – we assume that ϕ and ψ have already been treated – we
guess, from the current configuration (q, v, ε), the next configuration (q′, v′, ε)
and then we verify that there is a transition in S leading from q to q′ such that
the valuation v is updated with v′ w.r.t. the environment ε. Then it remains to
verify that either ψ or ϕ holds for (q′, v′) (and in the latter case, guess a new
configuration etc.). The same holds for EG. The operator z[ψ].ϕ changes the
environment ε and resets z to zero. And for any configuration one can decide
the truth value of a constraint C. ��

6 Conclusion

In several cases (up to B(αC1) constraints) the logics we introduce are not more
expressive than CTL, but can concisely express properties which would be dif-
ficult to write in that logic. In particular, CCTLC0 and CCTLB(C0) can be expo-
nentially more succinct than CTL. As for the remaining fragments, even though
CCTLC2 is strictly more expressive than CTL, model-checking remains polyno-
mial up to CCTLC3 (complexity results are summarized in Figure 2). Further
work on CCTL will include completing the study of succinctness of its fragments
with respect to each other and to other logics, looking for an upper complexity
bound for the model-checking of CCTLαC3 , as well as investigating new kinds of
constraints and extensions to LTL and CTL∗.

P-complete ΔP
2-complete

undec.

EXPTIME �
ΔP

2-hard

CCTLC0

CCTLC2

CCTLC1

CCTLC3

CCTLαC1

CCTLαC3

CCTLB(C0)

CCTLB(C2)

CCTLB(C1)

CCTLB(C3)

CCTLB(αC1))

CCTLB(αC3)

Fig. 2. Summary of model-checking complexity results



220 F. Laroussinie, A. Meyer, and E. Petonnet

References

1. Adler, M., Immerman, N.: An n! lower bound on formula size. ACM Transactions
on Computational Logic 4(3), 296–314 (2003)

2. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Inf. Com-
put. 104(1), 2–34 (1993)

3. Bernholtz, O., Vardi, M., Wolper, P.: An automata-theoretic approach to
branching-time model-checking. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818,
pp. 142–155. Springer, Heidelberg (1994)

4. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995)

5. Bouajjani, A., Echahed, R., Habermehl, P.: On the verification problem of nonreg-
ular properties for nonregular processes. In: Proc. 10th LICS, pp. 123–133. IEEE
Comp. Soc. Press, Los Alamitos (1995)

6. Bouajjani, A., Echahed, R., Habermehl, P.: Verifying infinite state processes with
sequential and parallel composition. In: Proc. 22nd POPL, pp. 95–106 (1995)

7. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

8. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, vol. B, ch. 16, pp. 995–1072. Elsevier, Amsterdam (1990)

9. Emerson, E.A., Mok, A.K., Sistla, A.P., Srinivasan, J.: Quantitative temporal rea-
soning. Real-Time Systems 4(4), 331–352 (1992)

10. Emerson, E.A., Trefler, R.J.: Generalized quantitative temporal reasoning: An
automata-theoretic approach. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE
1997,andTAPSOFT1997.LNCS,vol. 1214,pp.189–200.Springer,Heidelberg(1997)

11. Emerson, E.A., Trefler, R.J.: Parametric quantitative temporal reasoning. In: Proc.
14th LICS, pp. 336–343. IEEE Comp. Soc. Press, Los Alamitos (1999)

12. Laroussinie, F., Markey, N., Schnoebelen, P.: Model checking CTL+ and FCTL
is hard. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp.
318–331. Springer, Heidelberg (2001)

13. Laroussinie, F., Markey, N., Schnoebelen, P.: Efficient timed model checking for
discrete-time systems. Theor. Comput. Sci. 353(1-3), 249–271 (2006)

14. Laroussinie, F., Schnoebelen, P.: Specification in CTL+Past for verification in
CTL. Inf. Comput. 156(1/2), 236–263 (2000)

15. Laroussinie, F., Schnoebelen, P., Turuani, M.: On the expressivity and complexity
of quantitative branching-time temporal logics. Theor. Comput. Sci. 297(1-3), 297–
315 (2003)

16. Pnueli, A.: The temporal logic of programs. In: Proc. 18th FOCS, pp. 46–57. IEEE
Comp. Soc. Press, Los Alamitos (1977)

17. Queille, J.-P., Sifakis, J.: Specification and verification of concurrent systems in CE-
SAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS,
vol. 137, pp. 337–351. Springer, Heidelberg (1982)

18. Wilke, T.: CTL+ is exponentially more succinct than CTL. In: Pandu Rangan,
C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 110–121.
Springer, Heidelberg (1999)

19. Wolper, P.: Temporal logic can be more expressive. Inf. and Control 56(1/2), 72–99
(1983)

20. Yang, J., Mok, A.K., Wang, F.: Symbolic model checking for event-driven real-
time systems. ACM Transactions on Programming Languages and Systems 19(2),
386–412 (1997)



Algorithmic Metatheorems for Decidable LTL
Model Checking over Infinite Systems

Anthony Widjaja To and Leonid Libkin

LFCS, School of Informatics, University of Edinburgh
{anthony.w.to,libkin}@ed.ac.uk

Abstract. By algorithmic metatheorems for a model checking problem
P over infinite-state systems we mean generic results that can be used to
infer decidability (possibly complexity) of P not only over a specific class
of infinite systems, but over a large family of classes of infinite systems.
Such results normally start with a powerful formalism F of infinite-state
systems, over which P is undecidable, and assert decidability when is re-
stricted by means of an extra “semantic condition” C. We prove various
algorithmic metatheorems for the problems of model checking LTL and
its two common fragments LTL(Fs,Gs) and LTLdet over the expressive
class of word/tree automatic transition systems, which are generated by
synchronized finite-state transducers operating on finite words and trees.
We present numerous applications, where we derive (in a unified man-
ner) many known and previously unknown decidability and complexity
results of model checking LTL and its fragments over specific classes of
infinite-state systems including pushdown systems; prefix-recognizable
systems; reversal-bounded counter systems with discrete clocks and a
free counter; concurrent pushdown systems with a bounded number of
context-switches; various subclasses of Petri nets; weakly extended PA-
processes; and weakly extended ground-tree rewrite systems. In all cases,
we are able to derive optimal (or near optimal) complexity. Finally, we
pinpoint the exact locations in the arithmetic and analytic hierarchies
of the problem of checking a relevant semantic condition and the LTL
model checking problems over all word/tree automatic systems.

1 Introduction

The study of model checking over infinite-state systems is now an active research
area. This can be justified by the plethora of real-world scenarios that can be
more conveniently modeled using infinite-state systems rather than finite-state
systems, e.g., those that typically arise as programs with unbounded data struc-
tures (including stacks, lists, and FIFO queues), numeric variables, and clocks.
To make sense of the problem of verifying infinite-state systems, the systems un-
der consideration need to have some finite representations, e.g., timed automata,
pushdown automata, counter machines, Turing machines, and so forth. Unlike in
the case of finite systems, model checking even the most basic properties, such as
safety and liveness, is already undecidable over infinite-state systems in general.
For this reason, one either adopts non-Turing-powerful formalisms which admit

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 221–236, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



222 A.W. To and L. Libkin

decidability or resorts to semi-algorithms for general formalisms. Examples of
formalisms that admit certain decidable model checking problems include push-
down automata [9], higher-order pushdown automata [20], Petri nets [9], timed
automata [3], lossy channel systems [1, 4], certain subclasses of counter machines
[11, 21, 24], and classes of term/tree rewrite systems [9, 25, 31], to name a few.
On the other hand, various notions of finite-state transducers on words/trees
[2, 7, 12, 15, 29, 34] and certain extensions of counter machines [6, 11] have
emerged as popular general (Turing-powerful) frameworks of infinite-state model
checking, for some of which semi-algorithmic approaches to verifying basic model
checking properties, including safety and liveness, have been proposed (e.g. see
[2, 6, 8] and references therein).

The vast literature of infinite-state model checking in the past decade or so can
be extremely daunting and easily obscure proof patterns that can be reused with
ease to obtain model checking decidability results for seemingly unrelated for-
malisms of infinite-state systems. This issue motivates the study of algorithmic
metatheorems for infinite-state model checking, which are generic results that
can be used in a “plug-and-play” manner for inferring decidability of certain
model checking tasks over a large family of formalisms of infinite-state systems,
instead of doing so for a single formalism at a time. Of course the concept of
algorithmic metatheorems is not new; the classical decidability of S2S can be
viewed as such for MSO model-checking, due to its wide applicability via the
method of interpretations. Other results of this nature include results on flat
counter machines [11, 24], well-structured transition systems [4, 17], and the
extension of the S2S result to Caucal hierarchy [33]. In the finite case, algorith-
mic metatheorems are used extensively to obtain good algorithmic bounds for
evaluating logical formulas over finite structures [19].

In this paper we study generic algorithmic metatheorems for designing effi-
cient algorithms for model checking LTL, together with two of its commonly
considered fragments LTL(Fs,Gs) [31, 32] and LTLdet [27], over infinite-state
systems. Our choice of logic is justified by the fact that LTL, LTL(Fs,Gs), and
LTLdet can express frequently checked properties including safety and liveness,
and that their model checking problems have been frequently studied in the set-
ting of infinite-state systems (e.g. [8, 9, 22, 31]). We will use as our framework
the expressive class of word/tree automatic transition systems [7, 15, 34], which
are generated by synchronized rational transducers [12, 15] over finite words
and finite ranked trees. Such systems subsume many important decidable for-
malisms, including many which we previously mentioned and others, and still
possess desirable closure and decidability properties (e.g. see [7, 12]), many of
which are not satisfied by the general class of rational transducers on words [29].
Since verifying safety and liveness are in general undecidable over automatic
transition systems [7], we will study various “semantic restrictions” for ensuring
decidability of LTL, LTL(Fs,Gs), or LTLdet, without unnecessarily sacrificing
applicability and algorithmic efficiency.

Contributions. We identify semantic conditions on word/tree automatic transi-
tion systems that let us conclude decidability (and complexity) of model-checking.



Algorithmic Metatheorems for Decidable LTL Model Checking 223

We start with a condition (C1) stating that the reachability relation is effectively
computable and given by a synchronized rational word/tree transducer. There are
many examples of classes of systems satisfying this condition (e.g. see Table 1 in
Section 4). Another condition (C2) says that a class of systems is closed under
products with finite systems. We show that under (C1) and (C2), LTL model-
checking is decidable with good complexity bounds: exponential in the formula,
and polynomial in the size of the input automatic presentation of the system, as-
suming an oracle for computing the reachability relation.

While many classes of systems satisfy (C1), extending it to products (con-
dition (C2)) could be problematic. Thus, we study various weakening of (C2)
that could be used to obtain metatheorems for fragments of LTL. In this paper,
we look at the following fragments: (1) LTL(Fs,Gs) with only strict F and G
operators, and (2) LTLdet of [27]. We show that restricting to (C2) to closure
under products with dag-like finite systems, or dropping (C2) altogether at the
expense of a slightly worse complexity bound, decidability (and complexity) re-
sults for LTL(Fs,Gs) and LTLdet model checking could be retained. We also
look at variations of these results for Presburger-definable infinite systems.

We then turn to applications, and show how our metatheorems can be used
to derive (in a unified manner) known asymptotic upper bounds for LTL model-
checking over some classes of systems, or produce new (or improved) complexity
bounds for LTL and its fragment over other classes. Our results are summarized
in Table 1.

Finally, we study the degrees of undecidability for the model checking problem
and the problem of checking a relevant semantic condition over all word/tree
automatic transition systems. We point out their locations in the arithmetic and
analytic hierarchies.

Organization. Definitions and notations are given in Section 2. Metatheorems
are presented in Section 3. Applications are given in Section 4. Undecidability
results are described in Section 5. Due to space limitations, most proofs are
omitted and can be found in the full version.

Related Work. The study of logical structures generated by finite-state automata
and transducers can be traced far back (e.g., [15]). Since then, various models of
finite-state automata and transducers have been studied, e.g., rational transduc-
ers on words (cf. [5, 29]), synchronized rational transducers on words and trees
(cf. [5, 7, 12, 34]), synchronized rational transducers on infinite words and infinite
trees (cf. [5, 7, 8]), and length-preserving synchronized rational transducers on
finite words (cf. [2]). See [5] for a detailed comparison of their expressive power.
In this paper we are concerned only with synchronized rational transducers on
finite words and trees. In the case of length-preserving rational transducers on
finite words, it is easy to show that LTL model checking is decidable under con-
dition (C1) and (C2) (cf. [2]). The difficulty of extending this result to (not
necessarily length-preserving) synchronized rational transducers on finite words
lies in the fact that one has to deal with genuinely infinite execution paths, which
do not visit two states twice, in the transition systems. Such paths do not exist
when the length-preserving restriction is imposed on the transducers.



224 A.W. To and L. Libkin

It is natural to ask whether our results hold in the case of the more general
class of rational transducers or synchronized rational transducers on ω-words
(they are actually incomparable [5]). We do not know the answer to this question
and leave this for future work. We also mention the paper [8], which offers a semi-
algorithmic approach to handling LTL model checking over systems generated
by deterministic-weak synchronized rational transducers on ω-words. Finally, we
mention that even though the aforementioned notions of transducers are Turing-
powerful, they cannot capture all transition systems generated by higher-order
pushdown systems (cf. [5, 20]).

2 Preliminaries

Transition systems, reachability, and recurrent reachability. Let ACT
be a finite set of action labels. A transition system over ACT is given as S =
〈S, (→a)a∈ACT〉, where S is a set of states and each →a is a binary relation on
S, i.e., a subset of S × S. The set S is not required to be finite. We write →
for the union of all transition relations →a (a ∈ ACT) and →+ (resp. →∗) to
denote the transitive (resp. transitive-reflexive) closure of →.

Given a transition system S = 〈S, (→a)a∈ACT〉 and a set X ⊆ S, by
Reach∞(S, X) we denote the set of states s ∈ S from which there exists an
infinite execution path in S visiting X infinitely often, i.e., there exists an infinite
sequence s →+ s0 →+ s1 →+ s2 →+ . . . so that si ∈ X for all i ≥ 0. We refer
to these sets as recurrent reachability sets.

Automata and transducers. We assume basic familiarity with automata
on finite and ω-words. Let Σ be a finite alphabet. Given an automaton A =
(Q, δ, q0, F ) with states Q, initial state q0, final states F and transition function
δ, a run of A on w = a1 . . . an (with n ≤ ω) is a function ρ : {0, . . . , n} → Q with
ρ(0) = q0 that obeys δ, i.e. ρ(i+ 1) ∈ δ(ρ(i), ai+1). The length ‖ρ‖ of ρ is n. We
use abbreviations NWA and NBWA for nondeterministic (Büchi) automata.

We use synchronized rational (letter-to-letter) transducers [7] to define rela-
tions P over Σ-words, i.e., P ⊆ Σ∗ × Σ∗. Such transducers are simply NWA
R over Σ⊥ × Σ⊥, where Σ⊥ := Σ ∪ {⊥} and ⊥/∈ Σ is a padding symbol (so
that the NWA could take two input words of different length). More precisely,
given two words w = a1 . . . an and w′ = b1 . . . bm over the alphabet Σ, we define
a word w ⊗ w′ of length k = max{n,m} over alphabet Σ⊥ × Σ⊥ so that the
ith letter of w ⊗ w′ is a′

b′ , where a′i is ai for i ≤ n, and ⊥ for i > n (and
likewise b′i = bi for i ≤ m and ⊥ for i > m). That is, the shorter word is
padded with ⊥’s, and the ith letter of w ⊗ w′ is then the pair of the ith letters
of padded w and w′. The binary relation “recognized” by the transducer R is
the set {(w,w′) ∈ Σ∗ × Σ∗ : w ⊗ w′ ∈ L(R)}. Such a relation is also called
regular. We refer to such an automaton as a transducer over Σ∗, since it can be
alternatively viewed as mapping words w ∈ Σ∗ nondeterministically into words
w′ so that w ⊗ w′ is accepted by R.



Algorithmic Metatheorems for Decidable LTL Model Checking 225

Likewise we define transducers over finite k-ary trees [7, 12, 34]. In the fol-
lowing, we recall the definition for k = 2. A binary tree T = (D, τ) consists of a
tree domain (a finite prefix-closed subset of {0, 1}∗) and a node labeling function
τ : D → Σ. The notation T = T1⊗T2 is used to refer to a tree over the labeling
alphabet Σ2

⊥ similarly to the definition of w ⊗ w′. That is, the domain of T is
D1∪D2, and the labeling τ : D1∪D2 → Σ2

⊥ is defined as τ(u) = (a1, a2) so that
ai = τi(u) if u ∈ Di and ⊥ otherwise, for i = 1, 2. With this definition, the no-
tion of tree transducers is defined similarly to the notion of word transducers: as
nondeterminsitic tree automata working on T1 ⊗ T2. Binary relations over trees
defined that can be recognized by such transducers are called (tree) regular. In
the sequel, we use NTA (resp. NTT) for tree automata (resp. transducers).

We shall use the notations L(A) (or L(R)) for the language (or relation)
accepted by automaton (or transducer) A (or R).

Automatic presentations of transition systems. We deal with infinite tran-
sition systems that can be finitely presented by automata and transducers. A
word-automatic presentation is ϑ = 〈A; {Ra}a∈ACT〉 where A is an automaton
over some finite alphabet Σ, and each Ra is a transducer over Σ. This presen-
tation generates an automatic transition system Λ(ϑ) = 〈S; {→a}a∈ACT〉, where
S = L(A) and→a:= L(Ra)∩S for each a ∈ ACT. Tree-automatic presentations
and transition systems generated by them are defined similarly except that A is
a tree automaton and Ra’s are tree transducers.

Given a transition system S = 〈S; {→a}a∈ACT〉 generated by a word or a tree-
automatic presentation, each first-order (FO) formula ϕ(x) with one free variable
(resp. ϕ(x, y) with two free variables) can effectively be converted into a word
or tree automaton defining {s ∈ S | S |= ϕ(s)} (resp. word or tree transducer
defining {(s, s′) ∈ S × S : S |= ψ(s, s′)}. This could actually be generalized to k
free variables [7].

We denote by wAutp and tAutp the classes of word-automatic and tree-
automatic presentations, respectively. In the sequel, our metatheorems will talk
about subclasses C ⊆ wAutp or C ⊆ tAutp satisfying certain conditions. The
following several conditions will be tacitly assumed for such C. First, it should be
easy (i.e. in poly-time) to check membership in C. This condition has a standard
complexity-theoretic explanation: checking whether the input encoding of an
instance to a problem is valid should be easily doable. Secondly, we do not
require these classes C to be isomorphism-closed, i.e., there possibly exist two
automatic presentations ϑ ∈ C and ϑ′ ∈ C generating two isomorphic transition
systems Λ(ϑ) and Λ(ϑ′). In fact, asserting closure under isomorphism is too
strong as it is undecidable to check isomorphisms for automatic systems [7].

LTL The syntax of LTL over ACT is

ϕ,ϕ′ := a (a ∈ ACT) | ¬ϕ | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | Xϕ | ϕUϕ′.

We shall use the standard abbreviations: Fϕ for trueUϕ, Gϕ for ¬F¬ϕ, and Fs
and Gs for their strict versions: Fsϕ = XFϕ and Gsϕ = ¬Fs¬ϕ.



226 A.W. To and L. Libkin

Given an ω-word w ∈ ACTω, we define the satisfaction relation w |= ϕ in the
standard way. We write [[ϕ]] for the set of all w ∈ ACTω such that w |= ϕ.

It is well-known [35] that there exists an exponential-time algorithm which,
given an LTL formula ϕ, computes an NBWA Aϕ satisfying L(Aϕ) = [[ϕ]].

Given a transition system S = 〈S, (→a)a∈ACT〉 and a word u = a0a1a2 . . . ∈
ACTω, we say that w0 ∈ S realizes u if there is a sequence of w0, w1, w2, . . . of
elements of S so that wi

a−→ wi+1 for all i ≥ 0. We then define the semantics
of LTL formulas in the standard way: (S, w0) |= ϕ iff every ω-word u ∈ ACTω

realized by w0 satisfies ϕ. We write [[ϕ]]∀S for the set of all w0 ∈ S such that
(S, w0) |= ϕ (where ∀ means that every path starting in w0 satisfies ϕ). We
also write [[ϕ]]∃S for the complement of the set [[¬ϕ]]∀S , i.e., for the set of w0 that
realizes at least one path satisfying ϕ.

3 Metatheorems for LTL and Its Fragments

Since LTL formulas are translated into Büchi automata, a starting point for us is
a known metatheorem that gives a semantic condition which implies bounds (and
structural properties) for recurrent reachability sets. We now define condition
on a class C of presentations in wAutp (resp. in tAutp):

(C1) There exists an algorithm AC which, given an input presenta-
tion ϑ = 〈A; {Ra}a∈ACT〉 ∈ C of the automatic transition system
Λ(ϑ) = 〈S; {→a}a∈ACT〉, computes an NWT (resp. NTT) R+ rec-

ognizing the transitive closure relation →+= a∈ACT →a
+
.

Intuitively, (C1) asserts that the transitive closure relations of systems Λ(ϑ)
with ϑ ∈ C are effectively regular. We denote the running time of AC to be tAC .
The following results state that under (C1), recurrent reachability sets can be
computed with polynomial-time overhead.

Theorem 1 ([34]). Fix any class C ⊆ wAutp (resp. C ⊆ tAutp) satisfying
(C1). Given an automatic presentation ϑ ∈ C and an NWA (resp. NTA) A0,
the set Reach∞(Λ(ϑ), L(A0)) is regular, for which an NWA (resp. NTA) is com-
putable in time polynomial in ‖ϑ‖ + ‖A0‖ + tAC(|ϑ|). In particular, if AC runs
in poly-time, then an NWA (resp. NTA) for Reach∞(Λ(ϑ), L(A0)) is poly-time
computable.

3.1 A Metatheorem for LTL

We now adapt Theorem 1 to produce a metatheorem for LTL. Consider a finite
system F = 〈Q = {q0, . . . , qn}, δ〉, with δ : Q×ACT→ Q. Given a presentation
ϑ ∈ wAutp of the system Λ(ϑ) = 〈S ⊆ Σ∗, {→a}a∈ACT〉, we define F · Λ(ϑ) to
be the automatic transition system 〈S′; {→′a}a∈ACT〉 as follows:

– S′ := QS := {qs : q ∈ Q, s ∈ S}; it is a regular language over S ∪Q.
– qw →′a q′w′ iff q′ ∈ δ(q, a) and w→a w

′.



Algorithmic Metatheorems for Decidable LTL Model Checking 227

It is easy to give an automatic presentation ϑ′ of F · Λ(ϑ) and show that ϑ′ is
poly-time computable. For presentations ϑ ∈ tAutp, we could define F ·Λ(ϑ) in
a similar way (e.g. by defining the domain to be Q(S) = {q(T ) : q ∈ Q, T ∈ S}
where q(T ) is the tree obtained by attaching q to T as a root).

We now define another condition (C2) stating that the class C is closed under
products with finite systems:

(C2) if ϑ ∈ C and F is a finite system then F · Λ(ϑ) ∈ C.
The following theorem is now almost immediate from Theorem 1 and the

standard translation from LTL into Büchi automata. Intuitively, it says that for
automatic presentations satisfying both (C1) and (C2), for LTL model-checking
the overhead (compared to tAC ) is polynomial in the automatic presentation and
exponential in the LTL formula. In particular, if tAC is polynomial itself, then
LTL model-checking is polynomial in the size of the representation of the system
and exponential in the size of the formula.

Theorem 2. Fix any set C ⊆ wAutp (resp. C ⊆ tAutp) satisfying both (C1)
and (C2). Given ϑ ∈ C and an LTL formula ϕ, the set [[¬ϕ]]∃Λ(ϑ) is regu-
lar, for which an automaton is computable in time polynomial in ‖ϑ‖ + ‖A‖ +
tAC(2O(‖ϕ‖) × ‖ϑ‖). Thus, checking whether (Λ(ϑ), v0) |= ϕ can be done in time
polynomial in ‖ϑ‖+ ‖v0‖+ tAC (2O(‖ϕ‖) × ‖ϑ‖).
There are many examples of classes of automatic structures of interest in verifi-
cation that satisfy condition (C1) (see, e.g., [34] for a list). So it is natural to ask
whether having condition (C1) for a class of automatic presentations C implies
having it for products of structures in that class with finite systems. While we
shall see some examples of classes where this happens (e.g., pushdown systems),
in general such an extension is impossible even in very simple cases, e.g., for
single structures, as the result below shows.

Proposition 3. There exist an automatic presentation ϑ satisfying (C1) and
a finite system F so that in F · Λ(ϑ) the reachability relation is not regular (in
fact, not even recursive).

So the applicability of Theorem 2 in full generality may be rather limited. We
thus look at cases when conditions weaker than (C2) will allow us to conclude
the decidability of model-checking. They will not apply to full LTL, but they will
apply to some of its well-studied and important fragments. The distinguishing
feature of these fragments is that formulas expressible in them can be translated
into special types of Büchi automata, whose graph structures are rather nice
(essentially, almost DAGs). We next look at such cases.

3.2 Metatheorems for LTLdet

We first recall the definition of the fragment LTLdet of LTL [27].

ϕ,ϕ′ := p | Xϕ | ϕ ∧ ϕ′ | (p ∧ ϕ) ∨ (¬p ∧ ϕ′) |
(p ∧ ϕ)U(¬p ∧ ϕ′) | (p ∧ ϕ)W(¬p ∧ ϕ′).



228 A.W. To and L. Libkin

Here p is a boolean combination of ACT, and ϕWϕ′ is interpreted as the formula
Gϕ ∨ (ϕUϕ′), i.e., the “weak until” operator.

Formulae in this fragment can be translated into a special kind of automata
called 1-weak NBWAs. Formally, a 1-weak NBWA A = (Σ,Q, δ, q0, F ) is an
NBWA with a partial order � on the set Q such that q′ ∈ δ(q, a) implies q � q′.
Intuitively, the partial order ensures that once A leaves a state q, it will never
be able to come back to q. In other words, graph-theoretically A looks like a dag
possibly with self-loops.

It was shown in [27] that there exists a poly-time algorithm which, given an
LTLdet formula ϕ, computes a 1-weak NBWA A¬ϕ such that L(A¬ϕ) = [[¬ϕ]].
(The running time was not explicitly mentioned in [27], but one can easily check
that it is polynomial).

We now weaken the condition (C2) to the following:

(C2’) if ϑ ∈ C and F is a finite system that is 1-weak then F ·Λ(ϑ) ∈ C.

Combining Theorem 1 with the translation of [27], we may proceed as in the
proof of Theorem 2 and obtain the following theorem.

Theorem 4. Fix any set C ⊆ wAutp (resp. C ⊆ tAutp) satisfying (C1) and
(C2’). Given ϑ ∈ C and an LTLdet formula ϕ, the set [[¬ϕ]]∃Λ(ϑ) is regular, for
which an automaton is computable in time polynomial in ‖ϑ‖+‖A‖+ tAC(‖ϕ‖×
‖ϑ‖). Thus, checking whether (Λ(ϑ), v0) |= ϕ can be done in time polynomial in
‖ϑ‖+ ‖v0‖+ tAC (‖ϕ‖ × ‖ϑ‖).
We now show that decidability can still be obtained without assuming condition
(C2’) but by slightly strengthening condition (C1). Namely, we use a condition
stating that the transitive closure can be computed not only for → but also for
all unions of →a’s:

(C1’) there exists an algorithm AC which, given an input presentation
ϑ = 〈Aδ; {Ra}a∈ACT〉 ∈ C of the automatic transition system
Λ(ϑ) = 〈S; {→a}a∈ACT〉 and each subset ACT′ ⊆ ACT, com-
putes an NWT (resp. NTT) R+

ACT′ recognizing the transitive clo-

sure relation a∈ACT′ →a
+
.

In practice, (C1’) is not much stronger than (C1); all our examples in the
next section which satisfy (C1) also satisfy (C1’). In this case, LTLdet model-
checking can be done in PSPACE assuming an oracle for tAC ; its running time
is only exponential in the the size of the formula.

Theorem 5. Fix any set C ⊆ wAutp (resp. C ⊆ tAutp) satisfying (C1’).
Given a presentation ϑ ∈ C, and an LTLdet formula ϕ, checking whether
(Λ(ϑ), v0) |= ϕ can be done in time polynomial in ‖ϑ‖, ‖v0‖, tAC (‖ϑ‖), and
exponential in ‖ϕ‖. Whenever C ⊆ wAutp, the space consumed by the algorithm
is polynomial in ‖ϑ‖, ‖v0‖, tAC(‖ϑ‖), and ‖ϕ‖.



Algorithmic Metatheorems for Decidable LTL Model Checking 229

3.3 Metatheorems for LTL(Fs, Gs)

Recall that in LTL(Fs,Gs) we use operators Fs and Gs rather than U and X.
It turns out that our conditions (C1) and (C2) imply bounds on LTL(Fs,Gs)
model-checking. We start with the following.

Theorem 6. Fix any set C ⊆ wAutp (resp. C ⊆ tAutp) satisfying (C1) and
(C2). Given a presentation ϑ ∈ C and an LTL(Fs,Gs) formula ϕ, checking
whether (Λ(ϑ), v0) |= ϕ can be done in coNP assuming an oracle for tAC . More
precisely, checking whether (Λ(ϑ), v0) �|= ϕ can be done in nondeterministic time
polynomial in ‖ϑ‖+ ‖v0‖+ tAC (‖ϕ‖ × ‖ϑ‖).
The proof of this result is based on a translation into 1-weak NBWAs extended
with fairness constraints, which are conjunctions of formulas GsFsp, where p
is a disjunction over action labels in ACT [31]. We have to extend translation
results from [31] to obtain more precise information about the structure of the
automata, and then use it to prove the result along the lines of the proof in the
previous subsection. See full version for details.

Our second metatheorem for LTL(Fs,Gs) uses only condition (C1) and pro-
duces slightly higher, but still acceptable, complexity bounds.

Theorem 7. Fix any set C ⊆ wAutp (resp. C ⊆ tAutp) satisfying (C1).
Given a presentation ϑ ∈ C, and an LTL(Fs,Gs) formula ϕ, checking whether
(Λ(ϑ), v0) |= ϕ can be done in time polynomial in ‖ϑ‖, ‖v0‖, tAC (‖ϑ‖), and
exponential in ‖ϕ‖.

3.4 A Metatheorem for Presburger-Definable Systems

In this subsection, we will make an extra assumption that the input presentations
can be given by existential Presburger formulas. More precisely, we consider pre-
sentations of the form ϑ = 〈ϕ(x); {ϕa(x, y)}a∈ACT〉, where x and y are k-tuples
of variables for some k ∈ Z>0 and ϕ’s some existential Presburger formulas.
Such a presentation gives rise to the system Λ(ϑ) = 〈S; {→a}a∈ACT〉, where
S = {a ∈ N

k : (N,+) |= ϕ(a)} and →a= {(a, b) ∈ N
2k : (N,+) |= ϕa(a, b)}. Let

presAutp denote the set of all such presentations. Automatic presentations for
presAutp could be given (cf. [7]).

For sets C ⊆ presAutp (which, as before, need not be isomorphism-closed),
we define a new semantic condition, which is essentially an adaption of (C1’)
to the class of Presburger-definable systems:

(C3) there exists an algorithm AC which, given an input presentation
ϑ = 〈ϕ; {ϕa}a∈ACT〉 ∈ C of the system Λ(ϑ) = 〈S; {→a}a∈ACT〉
and a subset ACT′ ⊆ ACT, computes an existential Presburger
formula R+(x, y) which defines the transitive closure relation

a∈ACT′ →a
+
.

We denote by tAC the running time of AC in (C3). In addition, we require that
the class C satisfy the following monotonicity condition: for every S ∈ C every



230 A.W. To and L. Libkin

a, b ∈ N
k satisfying a � b (i.e. inequality holds component-wise), if a →a a + δ

for some δ ∈ Z
k and a ∈ ACT, then b→a b+ δ. This is a strong condition, but

is still satisfied by any subclass of Petri nets.

Theorem 8. Fix any monotone C ⊆ presAutp satisfying (C3). Given ϑ ∈ C,
v0 ∈ N

k represented in binary, and an LTL(Fs,Gs) or LTLdet formula ψ, check-
ing whether (Λ(ϑ), v0) �|= ψ can be done in nondeterministic time polynomial in
‖ϑ‖, ‖v0‖, tAC(‖ϑ‖) and ‖ϕ‖

4 Applications

In this section we apply our metatheorems from the previous section to obtain
decidability and complexity results for LTL, LTL(Fs,Gs), and LTLdet model
checking over specific classes of infinite systems. In some cases, we re-derive
known results with asymptotically the same complexity bounds; in other cases
we obtain new results. Our results are summarized in Table 1.

Pushdown systems (PDS). A pushdown system [9] is a tuple P =
(ACT, Γ,Q,Δ) where Γ is a stack alphabet, Q a set of states, and Δ is a finite
subset ofQ×Γ×ACT×Q×Γ ∗. LetΔa be the set of tuples (called “rules”) inΔ of
the form (q, σ, a, q′, w). Let Λ(P) be the transition system 〈Q×Γ ∗; {→a}a∈ACT〉,
where →a:= {((q, wσ), (q′, ww′)) : (q, σ, a, q′, w′) ∈ Δa}. It is straightforward
(and in poly-time) to give a word-automatic presentation of P (cf. [34]), and
show that the class PDS of such presentations satisfy (C2). Furthermore, it is
known [10, 34] that PDS satisfies (C1) with polynomial running time.

Combined with our results in the previous section, it follows that model check-
ing LTL, LTL(Fs,Gs), and LTLdet are respectively in EXPTIME, coNP, and
PTIME. It also follows that all these problems are in PTIME when fixing the
formula. It was known (cf. [9]) that the complexity of model checking LTL over
pushdown systems is EXPTIME-complete, and is PTIME for a fixed formula.
On the other hand, the results for LTL(Fs,Gs) and LTLdet are new (in the case
of LTL(Fs,Gs) coNP-hardness can be derived from [32]).

Prefix-recognizable systems (Pref-RS). A prefix-recognizable system (with
states) P is a tuple 〈ACT, Γ,Q,Δ) where ACT, Γ , and Q are defined as in
pushdown systems, whereas Δ is a set of rules of the form ((q, U, V ), a, (q′, V ′)),
where q, q′ ∈ Q; a ∈ ACT; and U ,V , and V ′ are regular languages over Γ
given by NWAs. Let Λ(P) be the transition system S = 〈Q× Γ ∗; {→a}a∈ACT〉,
where →a is the set of tuples ((q, uv), (q′, uv′)) ∈ S × S such that, for some
((q, U, V ), a, (q′, V ′)) ∈ Δa, we have u ∈ U , v ∈ V , and v′ ∈ V ′. It is straightfor-
ward (and in poly-time) to give a word-automatic presentation for P .

Using Theorem 2, we can also rederive the known EXPTIME upper bound
[22] for LTL model checking over prefix-recognizable systems (details are in
the full version). Furthermore, EXPTIME-hardness for model checking a fixed
LTLdet and LTL(Fs,Gs) formula is obtained by reducing from the unreachabil-
ity problem for prefix-recognizable systems, which has recently been proven to
be EXPTIME-complete [18].



Algorithmic Metatheorems for Decidable LTL Model Checking 231

Concurrent pushdown systems (CPDS). A concurrent pushdown sys-
tem (cf. [30]) is a tuple P = (ACT, Γ,Q,Δ0, . . . , ΔN ), where each Pi =
(ACT, Γ,Q,Δi) is a pushdown system. Suppose that Λ(Pi) = 〈Q × Γ ∗;
{→i,a}a∈Γ 〉. Then the transition system Λ(P) generated by P is 〈Q × (Γ ∗)N ;
{→a}a∈Γ 〉, where→a:=

N
i=0 →i,a. Although concurrent pushdown systems are

well-known to be Turing-powerful (so checking safety and liveness is undecid-
able), [23, 30] have shown that reachability is NP-complete if we consider runs
of P with a bounded number k of “context-switches” (k part of the input). In-
tuitively, a context of P is an uninterrupted sequence of actions performed by
exactly one “thread” Pi. A context-switch occurs when P interrupts the execu-
tion of a thread Pi and resumes by executing a (possibly different) thread Pj .
The context-bounded reachability for P is simply the problem of reachability
restricted to executions of P with exactly k context-switches for any given input
k. One could similarly define the context-bounded LTL model checking problem
for concurrent pushdown systems by restricting the executions of P to those
with exactly k context-switches for any given k.

Using the results of [23, 30] and our metatheorems, we can show that
context-bounded model checking LTL, LTL(Fs,Gs), and LTLdet over concurrent
pushdown systems are respectively EXPTIME-complete, coNP-complete, and
coNP-complete. If the formula is fixed, they are all coNP-complete.

Discrete timed counter systems (RCM and d-RCM). Although verifying
safety and liveness for general counter machines is undecidable, it is known that
these problems are decidable (cf. [14, 21]) when all the counters but one are
reversal-bounded (only executions with a fixed number of reversals are consid-
ered). We denote by RCM the class of such machines. The LTL model checking
problem for RCM is also known to be decidable [14], but no complexity analy-
sis was given for their algorithm. Furthermore, it was left as an open question
whether the same result holds for such machines extended with discrete clocks
(in the sense of [3]), for which reachability is known to be decidable [13]. We
write d-RCM for the class of such machines.

We answer this open question positively and give upper bounds for the cases
with and without discrete clocks. Using our metatheorems in combination with
a slightly refined version of the algorithms for computing binary reachability
relations in [13, 21], we can give an algorithm for model checking LTL (resp.
LTLdet and LTL(Fs,Gs)) over RCM that runs in time exponential in the size of
the machine and double exponential (resp. exponential) in the size of the LTL
(resp. LTLdet and LTL(Fs,Gs)) formula. Details of the construction and the
analysis are in the full version.

For d-RCM, we have exactly the same upper bound complexity except that
the algorithms run double exponential in the number of clocks.

Communication-free Petri nets (BPP). Communication-free nets (a.k.a.
BPPs) [16, 28] are Petri nets where each transition has exactly one incoming
arc (and, hence, “communication-free”). The LTL model checking over BPPs
is known to be EXPSPACE-complete when only infinite traces are considered



232 A.W. To and L. Libkin

(cf. [28]). When finite traces are also considered, the problem is still decidable
but no primitive recursive upper bound is known [28], since reachability for Petri
nets could be reduced to this problem.

In contrast, we could show that LTLdet and LTL(Fs,Gs) model checking for
BPPs is coNP-complete even when finite traces are considered. In fact, it is
known that the transitive closure relations for BPPs are semi-linear [16]. Fur-
thermore, one can then adapt the proof of [36, Theorem 4] to show that there
exists a poly-time algorithm computing an existential Presburger formula defin-
ing the transitive closure relation for a given BPP. Since any subclass of Petri
nets is monotone, Theorem 8 (which also holds when finite traces are considered)
implies that LTL(Fs,Gs) and LTLdet model checking over BPPs are in coNP.

Furthermore, a matching lower bound could be easily given for a fixed formula
in LTL(Fs,Gs) and LTLdet by reducing from the non-reachability problem for
BPPs, which is coNP-complete [16].

Weakly extended PA processes (wPA). PA (cf. [26, 28, 31]) is a well-known
process algebra allowing sequential and parallel compositions, but no commu-
nication. It is a common generalization of BPP (with unary representation for
numbers) and the class of pushdown systems with one state (a.k.a. BPA). It is
known (cf. [28, 31]) that LTL model checking over PA is undecidable. It is also
known that decidability could be retained when restricting to LTL(Fs,Gs) and
LTLdet [31]. However, no upper bound to these problems are known.

We can use Theorem 5 and Theorem 7 in combination with the encoding of PA
and their binary reachability relations as tree-automatic systems (cf. [26, 34]) to
give an exponential time upper bound for these problems. They are coNP-hard,
which can be shown by a reduction from non-reachability problem for BPP [16].
The upper bound also holds when we consider weakly extended PA (wPA) [31],
which are simply PA extended with weak finite control (i.e. 1-weak NBWA).

Weakly extended ground-tree rewrite systems (wGTRS). A ground tree
rewrite system (GTRS) (cf. [25, 34]) over Σ-labeled trees is a finite set Δ of
“rules” of the form (t, a, t′) where t, t′ ∈ Tree(Σ) and a ∈ ACT. For a tree T and
a node u in it, let Tu be the subtree of T rooted at u. For a given t ∈ Tree(Σ),
we write T [t/u] for the tree obtained from T by replacing the subtree Tu by t.
The GTRS Δ generates the transition system Λ(Δ) = 〈Tree(Σ); {→a}a∈ACT〉
where T →a T

′ iff there exists a node u in T and a rule (t, a, t′) ∈ Δ such that
Tu = t and T ′ = T [t′/u]. One could easily conclude that LTL model checking
over GTRS is undecidable, using results of [25, 31].

On the other hand, our results imply that decidability is retained when we re-
strict to LTL(Fs,Gs) or LTLdet. This follows from the fact that (C1’) is satisfied
by the class of automatic presentations of GTRSs (cf. [12, 34]). Therefore, we
obtain exponential-time algorithms for model checking LTLdet and LTL(Fs,Gs)
over GTRS, whose complexity becomes polynomial when the formula is fixed.
We could also show that these problems are coNP-hard for non-fixed formulas.

One can also extend these results to GTRSs with weak finite control, as we
did for PA-processes. Details are in the full version.



Algorithmic Metatheorems for Decidable LTL Model Checking 233

Table 1. A summary of combined and data complexity that we obtain. Here, × (resp.
ud) means that the result cannot be obtained using our metatheorems (resp. undecid-
able). Whenever written in bold, the results are new. Also, coNP-h means coNP-hard.

LTL LTL(Fs,Gs) LTLdet

Comb. Data Comb. Data Comb. Data
PDS EXP in P coNP in P in P in P
Pref-RS EXP EXP EXP EXP EXP EXP
CPDS EXP coNP coNP coNP coNP coNP

BPP × × coNP coNP coNP coNP

(w)PA × (ud) × (ud)
in EXP in EXP in EXP in EXP
coNP-h coNP-h coNP-h coNP-h

GTRS × (ud) × (ud)
in EXP

in P
in EXP

in PcoNP-h coNP-h

wGTRS × (ud) × (ud) in EXP in EXP in EXP in EXP
coNP-h coNP-h coNP-h coNP-h

RCM in 2-EXP in EXP in EXP in EXP in EXP in EXP

d-RCM in 2-EXP

5 How Hard Are These Problems in General?

Relevant to condition (C1) is the problem of checking whether the transitive
closure relation of a given automatic presentation is regular, and the problem of
checking whether a given transducer R′ represents the transitive closure relation
of another one R (over the same domain). We shall point out the degrees of
undecidability of such problems in the arithmetic hierarchy. We shall then point
out the degrees of undecidability of the model checking problems in the general
case (i.e. over all word/tree automatic presentations), and compare this with
the length-preserving case. We start with the problems related to “computing”
transitive closure relations.

Theorem 9. – Given two nondeterministic word transducers R and R′,
checking whether R′ is the transitive closure of R is Π0

2 -complete.
– Given a nondeterministic word transducers R, checking whether its transitive

closure is regular is in Σ0
3 and Π0

2 -hard.

We now address the degrees of undecidability for checking recurrent reachabil-
ity and model checking LTL, LTL(Fs,Gs), and LTLdet over automatic tran-
sition systems. Unlike the problem of reachability which can be shown to be
Σ0

1 -complete (cf. [7, 29]), checking liveness is highly undecidable:

Theorem 10. Recurrent reachability for both word and tree automatic transi-
tion systems is Σ1

1-complete, and model-checking LTL, LTL(Fs,Gs), and LTLdet

for them are all Π1
1 -complete.

In fact, Theorem 10 could be shown to also hold when the general class of rational
transducers is used (instead of synchronized rational).



234 A.W. To and L. Libkin

Finally, many examples in the “regular model checking” literature (cf. [2])
deal with the subcase of length-preserving synchronized rational transducers
(i.e., w →a w

′ would imply |w| = |w′|). In this case, the LTL (resp. recurrent
reachability) model checking problem is usually defined with respect to a regular
set Init of initial states with either “existential” (resp. “universal”) semantics in
the following sense: there exists w ∈ Init such that (resp. all w ∈ Init satisfies)
(Λ(ϑ), w) |= ϕ. [Note: when Init is finite, the model checking problems become
decidable since then the set of reachable states from Init is finite.] In contrast
to Theorem 10, we have the following proposition.

Proposition 11. For automatic transition systems with length-preserving
transducers, global recurrent reachability and LTL model checking are all

– Σ0
1 -complete (when existential semantics is considered);

– Π0
1 -complete (when universal semantics is considered).

This result confirms the intuition that checking liveness is much easier when
considering length-preserving transducers.

Acknowledgements. We thank anonymous referees for their helpful comments.
First author was supported by EPSRC grant E005039 and the ORS Award.
Second author was supported by EPSRC grants E005039 and and G049165.

References

1 Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Com-
put. 127(2), 91–101 (1996)

2 Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model
checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
35–48. Springer, Heidelberg (2004)

3 Alur, R., Dill, D.: A theory of timed automata. TCS 126, 183–235 (1994)
4 Baier, C., Bertrand, N., Schnoebelen, P.: On Computing Fixpoints in Well-

Structured Regular Model Checking, with Applications to Lossy Channel Systems.
In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp.
347–361. Springer, Heidelberg (2006)

5 Barany, V.: Automatic Presentations of Infinite Structures. PhD Thesis, RWTH
Aachen (2007)

6 Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: acceleration from theory to
practice. STTT 10(5), 401–424 (2008)

7 Blumensath, A., Grädel, E.: Finite presentations of infinite structures: automata
and interpretations. Theory Comput. Syst. 37(6), 641–674 (2004)

8 Bouajjani, A., Legay, A., Wolper, P.: A Framework to Handle Linear Temporal
Properties in (ω)Regular Model Checking CoRR abs/0901.4080 (2009)

9 Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures.
In: Handbook of Process Algebra. Elsevier, Amsterdam (1999)

10 Caucal, D.: On the regular structure of prefix rewriting. TCS 106, 61–86 (1992)
11 Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and Pres-

burger arithmetic. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279.
Springer, Heidelberg (1998)



Algorithmic Metatheorems for Decidable LTL Model Checking 235

12 Comon, H., et al.: Tree Automata: Techniques and Applications (2007),
http://www.grappa.univ-lille3.fr/tata

13 Dang, Z., Ibarra, O., Bultan, T., Kemmerer, R., Su, J.: Binary reachability analysis
of discrete pushdown timed automata. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 69–84. Springer, Heidelberg (2000)

14 Dang, Z., Ibarra, O., Pietro, P.S.: Liveness verification of reversal-bounded multi-
counter machines with a free counter. In: Hariharan, R., Mukund, M., Vinay, V.
(eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 132–143. Springer, Heidelberg (2001)

15 Elgot, C., Mezei, J.: On relations defined by generalized finite automata. IBM
J. Res. Develop. 9, 47–68 (1965)

16 Esparza, J.: Petri Nets, Commutative Context-Free Grammars, and Basic Parallel
Processes. Fundam. Inform. 31(1), 13–25 (1997)

17 Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1-2), 63–92 (2001)

18 Göller, S.: Reachability on prefix-recognizable graphs. Inf. Process. Lett. 108(2),
71–74 (2008)

19 Grohe, M.: Logic, graphs, and algorithms. In: Logic and Automata - History and
Perspectives, pp. 357–422. Amsterdam University Press (2007)

20 Hague, M., Ong, C.-H.L.: Symbolic Backwards-Reachability Analysis for Higher-
Order Pushdown Systems. LMCS 4(4) (2008)

21 Ibarra, O., Su, J., Dang, Z., Bultan, T., Kemmerer, R.: Counter machines and
verification problems. Theor. Comput. Sci. 289, 165–189 (2002)

22 Kupferman, O., Piterman, N., Vardi, M.: Model checking linear properties of prefix-
recognizable systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 371–385. Springer, Heidelberg (2002)

23 Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural Analysis of Concurrent Pro-
grams Under a Context Bound. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 282–298. Springer, Heidelberg (2008)

24 Leroux, J., Sutre, G.: Flat Counter Automata Almost Everywhere! In: Peled, D.A.,
Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg
(2005)

25 Löding, C.: Infinite Graphs Generated by Tree Rewriting, PhD thesis, RWTH
Aachen (2003)

26 Lugiez, D., Schnoebelen, P.: Decidable first-order transition logics for PA-processes.
Inf. Comput. 203(1), 75–113 (2005)

27 Maidl, M.: The Common Fragment of CTL and LTL. In: FOCS 2000, pp. 643–652
(2000)

28 Mayr, R.: Decidability and Complexity of Model Checking Problems for Infinite-
State Systems. PhD thesis, TU-Munich (1998)

29 Morvan, C.: On rational graphs. In: FOSSACS 2000, pp. 252–266 (2000)
30 Qadeer, S., Rehof, J.: Context-Bounded Model Checking of Concurrent Software.

In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 242–254.
Springer, Heidelberg (2005)

31 Rehak, V.: On Extensions of Process Rewrite Systems, PhD thesis, Masaryk Uni-
versity (2007)

32 Sistla, A.P., Clarke, E.M.: The Complexity of Propositional Linear Temporal Log-
ics. J. ACM 32(3), 733–749 (1985)

33 Thomas, W.: Constructing infinite graphs with a decidable MSO-theory. In: Rovan,
B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 113–124. Springer, Heidel-
berg (2003)

http://www.grappa.univ-lille3.fr/tata


236 A.W. To and L. Libkin

34 To, A.W., Libkin, L.: Recurrent reachability analysis in regular model checking. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330,
pp. 198–213. Springer, Heidelberg (2008)

35 Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of pro-
grams. JCSS 32(2), 183–221 (1986)

36 Verma, K.N., Seidl, H., Schwentick, T.: On the complexity of equational Horn
clauses. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 337–
352. Springer, Heidelberg (2005)



Toward a Compositional Theory of Leftist Grammars
and Transformations�

P. Chambart and Ph. Schnoebelen

LSV, ENS Cachan, CNRS
61, av. Pdt. Wilson, F-94230 Cachan, France

Abstract. Leftist grammars [Motwani et al., STOC 2000] are special semi-Thue
systems where symbols can only insert or erase to their left. We develop a theory
of leftist grammars seen as word transformers as a tool toward rigorous analyses
of their computational power. Our main contributions in this first paper are (1)
constructions proving that leftist transformations are closed under compositions
and transitive closures, and (2) a proof that bounded reachability is NP-complete
even for leftist grammars with acyclic rules.

1 Introduction

Leftist grammars were introduced by Motwani et al. to study accessibility and safety
in protection systems [7]. In this framework, leftist grammars are used to show that re-
stricted accessibility grammars have decidable accessibility problems (unlike the more
general access-matrix model).

Leftist grammars are both surprisingly simple and surprisingly complex. Simplicity
comes from the fact that they only allow rules of the form “a→ ba” and “cd→ d” where
a symbol inserts, resp. erases, another symbol to its left while remaining unchanged.
But the combination of insertion and deletion rules makes leftist grammars go beyond
context-sensitive grammars, and the decidability result comes with a high complexity-
theoretical price [5]. Most of all, what is surprising is that apparently leftist grammars
had not been identified as a relevant computational formalism until 2000.

The known facts on leftist grammars and their computational and expressive power
are rather scarce. Motwani et al. show that it is decidable whether a given word can
be derived (accessibility) and whether all derivable words belong to a given regular
language (safety) [7]. Jurdziński and Loryś showed that leftist grammars can define
languages that are not context-free [6] while leftist grammars restricted to acyclic rules
are less expressive since they can only recognize regular languages. Then Jurdziński
showed a PSPACE lower bound for accessibility in leftist grammars [4], before im-
proving this to a nonprimitive-recursive lower bound [5].

Jurdziński’s results rely on encoding classical computational structures (linear-boun-
ded automata [4] and Ackermann’s function [5]) in leftist grammars. Devising such
encodings is difficult because leftist grammars are very hard to control. Thus, for com-
puting Ackermann’s function, devising the encoding is actually not the hardest part: the

� Work supported by the Agence Nationale de la Recherche, grant ANR-06-SETIN-001.

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 237–251, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



238 P. Chambart and P. Schnoebelen

harder task is to prove that the constructed leftist grammar cannot behave in unexpected
ways. In this regard, the published proofs are necessarily incomplete, hard to follow, and
hard to fully acknowledge. The final results and intermediary lemmas cannot easily be
adapted or reused.

Our Contribution. We develop a compositional theory of leftist grammars and leftist
transformations (i.e., operations on strings that are computed by leftist grammars) that
provides fundamental tools for the analysis of their computational power. Our main
contributions are effective constructions for the composition and the transitive closure
of leftist transformations. The correctness proofs for these constructions are based on
new definitions (e.g., for greedy derivations) and associated lemmas.

A first application of the compositional theory is given in Section 6 where we prove
the NP-completeness of bounded reachability questions, even when restricted to acyclic
leftist grammars.

A second application, and the main reason for this paper, is our forthcoming
construction proving that leftist grammars can simulate lossy channel systems and
“compute” all multiply-recursive transformations and nothing more (based on [3]), thus
providing a precise measure of their computational power. Finally, after our introduction
of Post’s Embedding Problem [1,2], leftist grammars are another basic computational
model that will have been shown to capture exactly the notion of multiply-recursive
computation.

As further comparison with earlier work, we observe that, of course, the complex
constructions in [4,5] are built modularly. However, the modularity is not made fully ex-
plicit in these works, the interfacing assumptions are incompletely stated, or are mixed
with the details of the constructions, and correctness proofs cannot be given in full.

Outline of the Paper. Basic notations and definitions are recalled in Section 2. Section 3
defines leftist grammars and proves a generalized version of the completeness of greedy
derivations. Sections 4 introduces leftist transformers and their sequential compositions.
Section 5 specializes on the “simple” transformers that we use in Section 6 for our
encoding of 3SAT. Finally Section 7 shows that so-called “anchored” transformers are
closed under the transitive closure operation, this in an effective way. For lack of space,
several proofs have been omitted in this extended abstract: they can be found in the long
version of this paper, freely available at the arXiv.

2 Basic Definitions and Notations

Words. We use x,y,u,v,w,α,β, . . . to denote words, i.e., finite strings of symbols taken
from some alphabet. Concatenation is denoted multiplicatively with ε (the empty word)
as neutral element, and the length of x is denoted |x|.

The congruence on words generated by the equivalences a ≈ aa (for all symbols a
in the alphabet) is called the stuttering equivalence and is also denoted≈: every word x
has a minimal and canonical stuttering-equivalent x′ obtained by repeatedly eliminating
symbols in x that are adjacent to a copy of themselves.

We say that x is a subword of y, denoted x� y, if x can be obtained by deleting some
symbols (an arbitrary number, at arbitrary positions) from y. We further write x �Σ y

arXiv


Toward a Compositional Theory of Leftist Grammars and Transformations 239

when all the symbols deleted from y belong to Σ (NB: we do not require y ∈ Σ∗), and
let 	 denote the inverse relation �−1.

Relations and Relation Algebra. We see a relation R between two sets X and Y as a set
of pairs, i.e., some R⊆ X×Y . We write x R y rather than (x,y) ∈ R. Two relations R and

R′ can be composed, denoted multiplicatively with R.R′, and defined by x (R.R′) y
def⇔

∃z. x R z ∧ z R′ y .
The union R + R′, also denoted R∪R′, is just the set-theoretic union. Rn is the n-th

power R.R . . .R of R and R−1 is the inverse of R: x R−1 y
def⇔ y R x. The transitive closure

n=1,2,...R
n of R assumes Y = X and is denoted R+, while its reflexive-transitive closure

is R+∪ IdX , denoted R∗.
Below we often use notations from relation algebra to state simple equivalences. E.g.,

we write “R = R′” and “R ⊆ S” rather than “x R y iff x R′ y” and “x R y implies x S y”.
Our proofs often rely on well-known basic laws from relation algebra, like (R.R′)−1 =
R′−1.R−1, or (R + R′).R′′ = R.R′′+ R′.R′′, without explicitly stating them.

3 Leftist Grammars

A leftist grammar (an LGr) is a triple G = (Σ,P,g) where Σ∪ {g} = {a,b, . . .} is a
finite alphabet, g �∈ Σ is a final symbol (also called “axiom”), and P = {r, . . .} is a set of
production rules that may be insertion rules of the form a→ ba, and deletion rules of
the form cd→ d. For simplicity, we forbid rules that insert or delete the axiom g (this
is no loss of generality [6, Prop. 3]).

Leftist grammars are not context-free (deletions are contextual), or even context-
sensitive (deletions are not length-preserving). For our purposes, we consider them
as string rewrite systems, more precisely semi-Thue systems. Writing Σg for Σ∪{g},
the rules of P define a 1-step rewrite relation in the standard way: for u,u′ ∈ Σ∗g, we
write u⇒r,p u′ whenever r is some rule α→ β, u is some u1αu2 with |u1α| = p and
u′ = u1βu2. We often write shortly u⇒r u′, or even u⇒ u′, when the position or the
rule involved in the step can be left implicit. On the other hand, we sometimes use a
subscript, e.g., writing u⇒G v, when the underlying grammar has to be made explicit.

A derivation is a sequence π of consecutive rewrite steps, i.e., is some u0 ⇒r1,p1

u1⇒r2,p2 u2 · · · ⇒rn,pn un, often abbreviated as u0⇒n un, or even u0⇒∗ un. A subse-
quence (ui−1⇒ri,pi ui)i=m,m+1,...,l of π is a subderivation. As with all semi-Thue sys-
tems, steps (and derivations) are closed under adjunction: if u⇒ u′ then vuw⇒ vu′w.

Two derivations π1 = (u⇒∗ u′) and π2 = (v⇒∗ v′) can be concatenated in the ob-
vious way (denoted π1.π2) if u′ = v. They are equivalent, denoted π1 ≡ π2, if they have
same extremities, i.e., if u = v and u′ = v′.

We say that u ∈ Σ∗ is accepted by G if there is a derivation of the form ug⇒∗ g and
we write L(G) for the set of accepted words, i.e., the language recognized by G.

We say that I ⊆ Σ∗ is an invariant for an LGr G = (Σ,P,g) if u∈ I and ug⇒ vg entail
v∈ I. Knowing that I is an invariant for G is used in two symmetric ways: (1) from u∈ I
and ug⇒∗ vg one deduces v ∈ I, and (2) from ug⇒∗ vg and v �∈ I one deduces u �∈ I.



240 P. Chambart and P. Schnoebelen

Σ g
insertion:

deletion:

Fig. 1. Universal type (schematically)

3.1 Graphs and Types for Leftist Grammars

When dealing with LGr’s, it is convenient to write insertion rules under the simpler
form “a b”, and deletion rules as “d c”, emphasizing the fact that a (resp. d) is not
modified during the insertion of b (resp. the deletion of c) on its left. For a ∈ Σg, we let

ins(a) def= {b | P � (a b)} and del(a) def= {b | P � (a b)} denote the set of symbols
that can be inserted (respectively, deleted) by a. We write ins+(a) for the smallest set
that contains b and ins+(b) for all b ∈ ins(a), while del+(b) is defined similarly. We
say that a is inactive in a LGr if del(a)∪ ins(a) = ∅.

It is often convenient to view LGr’s in a graph-theoretical way. Formally, the graph
of G = (Σ,P,g) is the directed graph τG having the symbols from Σg as vertices and the
rules from P as edges (coming in two kinds, insertions and deletions). Furthermore, we
often decorate such graphs with extra bookkeeping annotations.

We say that G “has type τ” when τG is a sub-graph of τ. Thus a “type” is just a
restriction on what are the allowed symbols and rules between them. Types are often
given schematically, grouping symbols that play a similar role into a single vertex.

For example, Fig. 1 displays schematically the type (parametrized by the alphabet)
observed by all LGr’s.

3.2 Leftmost, Pure and Eager Derivations

We speak informally of a “letter”, say a, when we really mean “an occurrence of the
symbol a” (in some word). Furthermore, we follow letters along steps u⇒ v, identifying
the letters in u and the corresponding letters in v. Hence a “letter” is also a sequence of
occurrences in consecutive words along a derivation.

A letter a is a n-th descendant of another letter b (in the context of a derivation) if a
has been inserted by b (when n = 1), or by a (n−1)-th descendant of b.

Given a step u⇒r,p v, we say that the p-th letter in u, written u[p], is the active letter:
the one that inserts, or deletes, a letter to its left. This is often emphasized by writing
the step under the form (u =)u1au2⇒ u′1au2(= v) (assuming u[p] = a).

A letter is inert in a derivation if it is not active in any step of the derivation. A set
of letters is inert if it only contains inert letters. A derivation is leftmost if every step
u1au2⇒ u′1au2 in the derivation is such that u1 is inert in the rest of the derivation.

A letter is useful in a derivation π = (u⇒∗ v) if it belongs to u or v, or if it inserts
or deletes a useful letter along π. This recursive definition is well-founded: since let-
ters only insert or delete to their left, the “inserts-or-deletes” relation between letters is
acyclic. A derivation π is pure if all letters in π are useful. Observe that if π is not pure,
it necessarily inserts at some step some letter a (called a useless letter) that stays inert
and will eventually be deleted.



Toward a Compositional Theory of Leftist Grammars and Transformations 241

A derivation is eager if, informally, deletions occur as soon as possible. Formally,
π = (u0⇒r1,p1 u1 · · · ⇒rn,pn un) is not eager if there is some ui−1 of the form w1baw2

where b is inert in the rest of π and is eventually deleted, where P contains the rule
a b, and where ri is not a deletion rule.1

A derivation is greedy if it is leftmost, pure and eager. Our definition generalizes [4,
Def. 4], most notably because it also applies to derivations ug⇒∗ vg with nonempty v.
Hence a subderivation π′ of π is leftmost, eager, pure, or greedy, when π is.

The following proposition generalizes [4, Lemma 7].

Proposition 3.1 (Greedy derivations are sufficient). Every derivation π has an equiv-
alent greedy derivation π′.

Proof. With a derivation π of the form u0⇒r1,p1 u1⇒r2,p2 u2 · · · ⇒rn,pn un, we associate

its measure µ(π) def= 〈n, p1, . . . , pn〉, a (n + 1)-tuple of numbers. Measures are linearly
ordered with the lexicographic ordering, giving rise to a quasi-ordering, denoted ≤µ,
between derivations. A derivation is called µ-minimal if any equivalent derivation has
greater or equal measure.

We can now prove Prop. 3.1 along the following lines: first prove that every deriva-
tion has a µ-minimal equivalent, then show that µ-minimal derivations are greedy. ��

Observe that ≤µ is compatible with concatenation of derivations: if π1 ≤µ π2 then
π.π1.π′ ≤µ π.π2.π′ when these concatenations are defined. Thus any subderivation of
a µ-minimal derivation is µ-minimal, hence also greedy.

µ-minimality is stronger than greediness, and is a powerful and convenient tool for
proving Prop. 3.1. However, greediness is easier to reason with since it only involves
local properties of derivations, while µ-minimality is “global”. These intuitions are re-
flected by, and explain, the following complexity results.

Theorem 3.2. 1. Greediness (deciding whether a given derivation π in the context of a
given LGr G is greedy) is in L.
2. µ-Minimality (deciding whether it is µ-minimal) is coNP-complete, even if we restrict
to acyclic LGr’s.

Proof. 1. Being leftmost or eager is easily checked in logspace (i.e., is in L). Checking
non-purity can be done by looking for a last inserted useless letter, hence is in L too.
2. µ-minimality is obviously in coNP. Hardness is proved as Coro. 6.9 below, as a
byproduct of the reduction we use for the NP-hardness of Bounded Reachability. ��

4 Leftist Grammars as Transformers

Some leftist grammars are used as computing devices rather than recognizers of words.
For this purpose, we require a strict separation between input and output symbols and
speak of leftist transformers, or shortly LTr’s.

1 Eagerness does not require that ri deletes b: other deletions are allowed, only insertions are
forbidden.



242 P. Chambart and P. Schnoebelen

A D g

Fig. 2. Type of leftist transformers

4.1 Leftist Transformers

Formally, an LTr is a LGr G = (Σ,P,g) where Σ is partitioned as A�B�C, and where
symbols from A are inactive in P and are not inserted by P (see Fig. 2). This is denoted
G : A � C. Here A contains the input symbols, B the temporary symbols, and C the
output symbols, and G is more conveniently written as G = (A,B,C,P,g). When there
is no need to distinguish between temporary and output symbols, we write G under the

form G = (A,D,P,g), where D
def= B∪C contains the “working” symbols,

A consequence of the restrictions imposed on LTr’s is the following:

Fact 4.1 A∗D∗ is an invariant in any LTr G = (A,D,P,g).

With G = (A,B,C,P,g), we associate a transformation (a relation between words) RG ⊆
A∗ ×C∗ defined by

u RG v
def⇔ ug⇒∗G vg ∧ u ∈ A∗ ∧ v ∈C∗

and we say that G realizes RG. Finally, a leftist transformation is any relation on words
realized by some LTr. By necessity, a leftist transformation can only relate words written
using disjoint alphabets (this is not contradicted by ε RG ε).

Leftist transformations respect some structural constraints. In this paper we shall use
the following properties:

Proposition 4.2 (Closure for leftist transformations). If G : A � C is a leftist trans-
former, then RG = (	A .≈ .RG.≈).

4.2 Composition

We say that two leftist transformations R1 ⊆ A∗1×C∗1 and R2 ⊆ A∗2×C∗2 are chainable
if C1 = A2 and A1∩C2 = ∅. Two LTr’s are chainable if they realize chainable transfor-
mations.

Theorem 4.3. The composition R1.R2 of two chainable leftist transformations is a left-
ist transformation. Furthermore, one can build effectively a linear-sized LTr realizing
R1.R2 from LTr’s realizing R1 and R2.

For a proof, assume G1 = (A1,B1,C1,P1,g) and G2 = (A2,B2,C2,P2,g) realize R1 and
R2. Beyond chainability, we assume that A1∪B1 and B2∪C2 are disjoint, which can be
ensured by renaming the intermediary symbols in B1 and B2. The composed LTr G1.G2

is given by

G1.G2
def= (A1,B1∪C1∪B2,C2,P1∪P2,g).



Toward a Compositional Theory of Leftist Grammars and Transformations 243

A1 D1 (⊇ A2) D2

g
P1 P2

P1 P2

P1

P1

P2

P2

Fig. 3. The type of G1.G2

Σ g A C g

Fig. 4. Types of insertion grammars (left) and simple leftist transformers (right)

This is indeed a LTr from A1 to C2. See Fig. 3 for a schematics of its type. Since G1.G2

has all rules from G1 and G2 it is clear that (⇒G1 +⇒G2)⊆⇒G, from which we deduce
RG1 .RG2 ⊆ RG1.G2 . Furthermore, the inclusion in the other direction also holds:

Lemma 4.4 (Composition Lemma). RG1.G2 = RG1 .RG2 .

Remark 4.5 (Associativity). The composition (G1.G2).G3 is well-defined if and only if
G1.(G2.G3) is. Furthermore, the two expressions denote exactly the same result. ��

5 Simple Leftist Transformations

As a tool for Sections 6 and 7, we now introduce and study restricted families of leftist
grammars (and transformers) where deletion rules are forbidden (resp., only allowed
on A).

An insertion grammar is a LGr G = (Σ,P,g) where P only contain insertion rules.
See Fig. 4 for a graphic definition. For an arbitrary leftist grammar G, we denote with
Gins the insertion grammar obtained from G by keeping only the insertion rules.

The insertion relation IG⊆Σ∗×Σ∗ associated with an insertion grammar G = (Σ,P,g)
is defined by u IG v

def⇔ ug⇒∗G vg. Obviously, IG ⊆�Σ. Observe that IG is not necessar-
ily a leftist transformation since it does not require any separation between input and
output symbols.

A simple leftist transformer is an LTr G = (A,B,C,P,g) where B = ∅ and where no
rule in P erases symbols from C.

See Fig. 4 for a graphic definition. We give, without proof, an immediate conse-
quence of the definition:

Lemma 5.1. Let G = (A,∅,C,P,g) be a simple LTr and assume ug⇒k
G vg for some

u ∈ A∗ and v ∈C∗. Then k = |u|+ |v|.
Given a simple LTr G = (A,∅,C,P,g) and two words u = a1 · · ·an ∈A∗ and v = c1 · · ·cm ∈
C∗, we say that a non-decreasing map h : {1, . . . ,n} → {1, . . . ,m} is a G-witness for u
and v if P contains the rules ch(i) ai and c j+1 c j (for all i = 1, . . . ,n and j = 1, . . . ,m,



244 P. Chambart and P. Schnoebelen

with the convention that cm+1 = g). Finally, we write u ∇G v when such a G-witness
exists. Clearly, ∇G ⊆ RG. Indeed, when G is a simple transformer, ∇G can be used as a
restricted version of RG that is easier to control and reason about.

Lemma 5.2. Let G = (A,∅,C,P,g) be a simple LTr. Then RG = ∇G.IGins .

Combining Lemma 5.2 with IdC∗ ⊆ IGins ⊆ �C, we obtain the following weaker but
simpler statement.

Corollary 5.3. Let G = (A,∅,C,P,g) be a simple LTr. Then ∇G ⊆ RG ⊆ ∇G.�C.

5.1 Union of Simple Leftist Transformers

We now consider the combination of two simple LTr’s G1 = (A,∅,C1,P1,g) and G2 =
(A,∅,C2,P2,g) that transform from a same A to disjoint output alphabets, i.e., with

C1∩C2 = ∅. We define their union with G1 + G2
def= (A,∅,C1∪C2,P1∪P2,g). This is

clearly a simple LTr with (RG1 + RG2)⊆ RG1+G2 . It further satisfies:

Lemma 5.4. If u RG1+G2 v then u (RG1 + RG2) v′ for some v′ � v.

Proof. Assume u RG1+G2 v. With Cor. 5.3, we obtain u ∇G1+G2 v′ for some v′ = c1 · · ·cm

� v. Hence G1 +G2 has insertion rules c j+1 c j for all j = 1, . . . ,m, and deletion rules
of the form ch(i) u[i]. Since C1 and C2 are disjoint, either all these rules are in G1 (and
u ∇G1 v′), or they are all in G2 (and u ∇G2 v′). Hence u (RG1 + RG2) v′. ��

6 Encoding 3SAT with Acyclic Leftist Transformers

This section proves the following result.

Theorem 6.1. Bounded Reachability and Exact Bounded Reachability in leftist gram-
mars are NP-complete, even when restricting to acyclic grammars.

(Exact) Bounded Reachability is the question whether there exists a n-step derivation
u⇒n v (respectively, a derivation u⇒≤n v of non-exact length at most n) between given
u and v. These questions are among the simplest reachability questions and, since we
consider that the input n is given in unary,2 they are obviously in NP for leftist grammars
(and all semi-Thue systems).

Consequently, our contribution in this paper is the NP-hardness part. This is proved
by encoding 3SAT instances in leftist grammars where reaching a given final v amounts
to guessing a valuation that satisfies the formula. While the idea of the reduction is easy
to grasp, the technicalities involved are heavy and it would be difficult to really prove
the correctnessof the reduction without relying on a compositional framework like the
one we develop in this paper. It is indeed very tempting to “prove” it by just running an
example.

2 It is natural to begin with this assumption when considering fundamental aspects of reachabil-
ity since writing n more succinctly would blur the complexity-theoretical picture.



Toward a Compositional Theory of Leftist Grammars and Transformations 245

Rather than adopting this easy way, we shall describe the reduction as a composition
of simple leftist transformers and use our composition theorems to break down the
correctness proof in smaller, manageable parts. Once the ideas underlying the reduction
are grasped, a good deal of the reasoning is of the type-checking kind: verifying that
the conditions required for composing transformers are met.

Throughout this section we assume a generic 3SAT instance Φ = m
i=1 Ci with m

3-clauses on n Boolean variables in X = {x1, . . . ,xn}. Each clause has the form Ci =
3
k=1 εi,kxi,k for some polarity εi,k ∈ {+,−} and xi,k ∈ X . (There are two additional

assumptions on Φ that we postpone until the proof of Coro. 6.5 for clarity.) We use
standard model-theoretical notation like |= Φ (validity), or σ |= Φ (entailment) when σ
is a Boolean formula or a Boolean valuation of some variables.

We write σ[x �→ b] for the extension of a valuation σ with (x,b), assuming x �∈
Dom(σ). Finally, for a valuation θ : X → {�,⊥} and some j = 0, . . . ,n, we write θ j

to denote the restriction θ|{x1,...,x j} of θ on the first j variables.

6.1 Associating an LTr GΦ with Φ

For the encoding, we use an alphabet Σ = {T j
i ,U

j
i ,T

′ j
i ,U

′ j
i | i = 1, . . . ,m∧ j = 0, . . . ,n},

i.e., 4(n + 1) symbols for each clause. The choice of the symbols is that a U means
“Undetermined” and a T means “True”, or determined to be valid.

For j = 0, . . . ,n, let Vj
def= {U j

1 , . . . ,U
j

m,T
j

1 , . . . ,T
j

m}, V ′j
def= {U ′ j1, . . . ,U ′ jm,T ′ j1, . . . ,T ′ jm},

and Wj
def= Vj∪V ′j , so that Σ is partitioned in levels with Σ = n

j=0 Wj. With each x j ∈ X
we associate two intermediary LTr’s:

G�j
def= (Wj−1,∅,Vj,Pj,g), G⊥j

def= (Wj−1,∅,V
′
j ,P
′
j,g)

with sets of rules Pj and P′j. The rules for G�j are given in Fig. 5: some deletion rules are
conditional, depending on whether x j appears in the clauses C1, . . . ,Cm. The rules for
G⊥j are obtained by switching primed and unprimed symbols, and by having conditional

rules based on whether ¬x j appears in the Ci’s. One easily checks that G�j and G⊥j
are indeed simple transformers. They have same inputs and disjoint outputs so that
the union (G�j + G⊥j ) : Wj−1 �Wj is well-defined. Hence the following composition is
well-formed:

GΦ
def= (G�1 + G⊥1 ).(G�2 + G⊥2 ) · · · (G�n + G⊥n ).

We conclude the definition of GΦ with an intuitive explanation of the idea behind the re-
duction. GΦ operates on the word u0 = U0

1 · · ·U0
m where each U0

i stands for “the validity
of clause Ci is undetermined at step 0 (i.e., at the beginning)”. At step j, G�j +G⊥j picks

a valuation for x j: G�j picks “x j =�” while G⊥j picks “x j =⊥”. This transforms U j−1
i

into U j
i , and T j−1

i into T j
i , moving them to the next level. Furthermore, an undetermined

U j−1
i can be transformed into T j

i if Ci is satisfied by x j. In addition, and because G�j
and G⊥j must have disjoint output alphabets, the symbols in the Vj’s come in two copies
(hence the V ′j ’s) that behave identically when they are input in the transformer for the
next step.



246 P. Chambart and P. Schnoebelen

T j
1

U j
1

T j
2

U j
2

· · ·
· · ·

T j
m

U j
m

g

T j−1
1 T ′ j−1

1 T j−1
2 T ′ j−1

2 · · · T j−1
m T ′ j−1

m

U j−1
1 U ′ j−1

1 U j−1
2 U ′ j−1

2 · · · U j−1
m U ′ j−1

m

T j
1

T j
2

...
...

T j
m

U j−1
1

U ′ j−1
1

U j−1
2

U ′ j−1
2

U j−1
m

U ′ j−1
m

(if x j |= C1)

(if x j |= C2)

(if x j |= Cm)

Fig. 5. Pj, the rules for G�J : Fixed part on left, conditional part on right

The reduction is concluded with the following claim that we prove by combining
Corollaries 6.5 and 6.8 below.

Φ is satisfiable iff U0
1 U0

2 · · ·U0
mg⇒2mn

GΦ T n
1 T n

2 · · ·T n
mg

iff U0
1 U0

2 · · ·U0
mg⇒≤2mn

GΦ
T n

1 T n
2 · · ·T n

mg (Correctness)

iff U0
1 U0

2 · · ·U0
mg⇒∗GΦ T n

1 T n
2 · · ·T n

mg.

Observe finally that GΦ is an acyclic grammar in the sense of [6], that is to say,
its rules define an acyclic “may-act-upon” relation between symbols. Such grammars
are much weaker than general LGr’s since, e.g., languages recognized by LGr’s with
acyclic deletion rules (and arbitrary insertion rules) are regular [6].

Remark 6.2. The construction of GΦ from Φ, mostly amounting to copying operations
for the G�j ’s and G⊥j ’s, to type-checking and sets-joining operations for the composition
of the LTr’s, can be carried out in logarithmic space. ��

6.2 Correctness of the Reduction

We say that a word u is j-clean if it has exactly m symbols and if u[i]∈ {T j
i ,T

′ j
i ,U

j
i ,U

′ j
i }

for all i = 1, . . . ,m. It is �-homogeneous (resp. ⊥-homogeneous) if it does not contain
any (resp., only contains) primed symbols.

Let 0 ≤ j ≤ n and θ j be a Boolean valuation of x1, . . . ,x j: we say that a j-clean u
respects (Φ under) θ j when, for all i = 1, . . . ,m, θ j |= Ci when u[i] is determined (i.e.,
∈ T j

i + T ′ ji ). Finally u codes (Φ under) θ j if additionally each u[i] is determined when
θ j |= Ci. Thus, a word u that codes some θ j exactly lists (via determined symbols) the
clauses of Φ made valid by θ j, and the only flexibility in u is in using the primed or the
unprimed copy of the symbols. Hence there is only one j-clean u coding θ j that is �-
homogeneous, and only one that is ⊥-homogeneous. If u respects θ j instead of coding
it, more latitude exists since symbols may be undetermined even if the corresponding
clause is valid under θ j.

Assume that, for some j ∈ {1, . . . ,n}, u j−1 codes θ j−1 and u j codes θ j . Write b for
θ(x j) (NB: b ∈ {�,⊥}).
Lemma 6.3. If u j is b-homogeneous then u j−1 ∇Gb

j
u j.



Toward a Compositional Theory of Leftist Grammars and Transformations 247

Proof. Let h
def= Id{1,...,m}. We claim that h is a Gb

j -witness for u j−1 and u j, i.e., that Gb
j

contains the required insertion and deletion rules.

Insertions. Gb
j has all insertion rules g u j[m] u j[m− 1] . . . u j[1] (leftmost

rules in Fig. 5) since u j is b-homogeneous.

Deletions. Gb
j has all deletion rules u j[i] u j−1[i]. Firstly, both undetermined symbols

Ui
j and U ′ij may delete their counterparts Ui

j−1 and U ′ij−1, and similarly for the deter-
mined symbols (the unconditional deletion rules in Fig. 5). This is used if Ci is not more
valid under θ j than under θ j−1. Secondly, if Ci is valid under θ j but not under θ j−1, then
x j |= Ci (or ¬x j |= Ci, depending on b) and the conditional rules in Fig. 5 allow a deter-

mined T j
i (or T ′ ji depending on b) to delete U j−1

i or U ′ j−1
i . ��

Lemma 6.4. If u j is b-homogeneous, then u j−1g⇒2m
Gb

j
u jg.

Proof. From u j−1 ∇Gb
j

u j (Lemma 6.3) we deduce u j−1 RGb
j

u j, i.e., u j−1g⇒∗
Gb

j
u jg, by

Lemma 5.2, and then u j−1g⇒2m
Gb

j
u jg by Lemma 5.1. ��

Corollary 6.5. If Φ is satisfiable, then U0
1 · · ·U0

mg⇒2mn
GΦ

T n
1 · · ·T n

mg.

Proof. Since Φ is satisfiable, θ |= Φ for some valuation θ. For j = 1, . . . ,m, we write b j

for θ(x j) and let u j be the only j-clean b j-homogeneous word that codes for θ j .
We now make two assumptions on Φ that are no loss of generality. First we require

that no clause Ci contains both a literal and its negation, hence no Ci is tautologically

valid. Then u0
def= U0

1 · · ·U0
m codes the empty valuation θ0. Second, we require that Φ

is only satisfiable with bn = � (which can be easily ensured by adding a few extra
variables). Then necessarily un = T n

1 · · ·T n
m .

Lemma 6.4 gives u0g⇒2m

G
b1
1

u1g⇒2m

G
b2
2

u2g · · · ⇒2m
Gbn

n
ung. Since⇒Gb

j
⊆⇒Gj⊆⇒GΦ for

all b and j, we deduce u0g⇒2mn
GΦ

ung as claimed. ��
Fix some θ, some j ∈ {1, . . . ,n} and let b = θ(x j).

Lemma 6.6. If u respects θ j−1 and u ∇Gb
j

v, then v respects θ j .

Proof. Write l for |v|. From u ∇Gb
j

v (witnessed by some h) we deduce that Gb
j has

insertion rules g v[l] v[l− 1] . . . v[1]. Inspecting Fig. 5, we conclude that
necessarily l ≤ m. Since deletion rules v[h(i)] u[i] are required for all i = 1, . . . ,m,
we further see from Fig. 5 that h is injective, so that l ≥m. Finally l = m, h = Id{1,...,m},
v is j-clean and b-homogeneous.

Now, knowing that Gb
j contains the rules v[i] u[i], we show that v respects θ j.

Suppose, by way of contradiction, that it does not. Thus there is some i ∈ {1, . . . ,m}
with v[i] = T j

i (assuming b =�w.l.o.g.) while θ j �|=Ci (so that θ j−1 �|=Ci). From θ j �|=Ci

we deduce that x j �|= Ci. Hence Gb
j does not have the conditional rules T j

i U j−1
i and

T j
i U ′ j−1

i . Thus u[i] �∈ {U j−1
i ,U ′ j−1

i }. But then u does not respect θ j−1, contradicting
our assumption. ��



248 P. Chambart and P. Schnoebelen

We immediately deduce:

Lemma 6.7. If x RGb
j

y and there is some u � x that respects θ j−1, then there is some

v� y that respects θ j .

Proof. From the Closure Property 4.2, we get u RGb
j

y. Then, from RGb
j
⊆ ∇Gb

j
. �

(Coro. 5.3) we deduce u ∇Gb
j

v for some v� y. Now v respects θ j thanks to Lemma 6.6.
��

Corollary 6.8. If U0
1 · · ·U0

mg⇒∗GΦ
T n

1 · · ·T n
mg, then Φ is satisfiable.

Proof. Write u0 for U0
1 · · ·U0

m and un for T n
1 · · ·T n

m . From the definition of GΦ and the
Composition Lemma 4.4, we deduce that there exist some words u1, . . . ,un−1 such that
u j−1 RG�j +G⊥j

u j for all j = 1, . . . ,n.

With Lemma 5.4, we further deduce that there exist some words u′1, . . . ,u
′
n and

Boolean values b1, . . . ,bn such that u′j � u j and u j−1 R
G

b j
j

u′j for all j = 1, . . . ,n. Hence

also u′j−1 R
G

b j
j

u′j by Prop. 4.2 (and letting u′0 = u0).

Write θ for [x1 �→ b1, . . . ,xn �→ bn]. With Lemma 6.7, induction on j, and since u′0
respects θ0, we further deduce that there exists some words u′′1 , . . . ,u

′′
n such that, for all

j = 1, . . . ,n, u′′j � u′j and u′′j respects θ j. From |u′′n |= m (it respects θ) and u′′n � un, we
deduce that u′′n = un. Finally, θ |= Φ since u′′n respects θ and u′′n = un = T n

1 · · ·T n
m . ��

Corollary 6.9. µ-Minimality of a derivation is coNP-hard.

Proof (Sketch). We define G′Φ by taking GΦ, adding k extra symbols a1, . . . ,ak, and
adding the following two sets of rules:
(1) all ai−1 ai and ai−1 ai for i = 1, . . . ,k (with the convention that a0 is T n

1 );
(2) all ak U0

i for i = 1, . . . ,m.
Observe that G′Φ is acyclic. It has a derivation π : U0

1 · · ·U0
mg⇒2m+2k T n

1 · · ·T n
mg of

the following form:

U0
1 · · ·U0

mg⇒m U0
1 · · ·U0

mT n
1 · · ·T n

mg⇒k U0
1 · · ·U0

makak−1 · · ·a1T n
1 · · ·T n

mg

⇒m akak−1 · · ·a1T n
1 · · ·T n

mg⇒k T n
1 · · ·T n

mg.

This derivation uses the extra symbols to bypass the normal behaviour of Gφ. If k is
large enough, i.e., k > m(n−1), π is µ-minimal if, and only if, Φ is not satisfiable. ��

7 Anchored Leftist Transformers and Their Transitive Closure

When b1,b2 ∈ B are two different working symbols, and (A,B,C,P,g) is a LTr, we
call G = (A,B,C,b1,b2,P,g) an anchored LTr, or shorly an ALTr. With an ALTr G we
associate an anchored tranformation SG ⊆ A∗ ×C∗ defined by

u SG v
def⇔ b1ug⇒∗G b2vg.



Toward a Compositional Theory of Leftist Grammars and Transformations 249

Here the anchors b1,b2 are used to control what happens at the left-hand end of trans-
formed words. Mostly, they ensure that the derivation b1ug⇒∗ b2vg goes all the way to
the left and erases b1 rather than stopping earlier. One intuitive way of seeing SG is that
it is a variant of RG restricted to derivations that replace the anchors.

A first difficulty for building the transitive closure of an anchored transformation
SG ⊆ A∗ ×C∗ is that the input and output sets are disjoint (a requirement that allowed
the developments of Sections 4 and 5). To circumvent this, we assume w.l.o.g. that
A and C are two different copies of a same set, equipped with a bijective renaming
h̄ : C∗ → A∗. Then, the closure SG.(h̄.SG)∗ behaves like we would want S+

G to behave.
For the rest of this section, we assume h is a bijection between C and A. W.l.o.g., we

write A and C under the forms A = {a1, . . . ,an} and C = {c1, . . . ,cn} so that h(ci) = ai

for all i = 1, . . . ,n. Then h is lifted as a (bijective) morphism h̄ : C∗ → A∗ that we
sometimes see as a relation between words.

The exact statement we prove in this section is the following:

Theorem 7.1 (Transitive Closure). Let G : A �C be an ALTr such that SG = SG.�C.
Then there exists an ALTr G(+) : A �C such that SG(+) = SG.(h̄.SG)∗.
Furthermore, it is possible to build G(+) from G using only logarithmic space.

Let b1,b2 �∈ A∪C. The ALTr Rb2,b1

def= (C,b2,b1,A,PR,g) with

PR
def=

g ai,ai a j,ai b1

ai ci,b1 b2
for all i, j = 1, . . . ,n

is called a renamer (of C to A), and often shortly written R. Observe that R : C � A is
indeed an ALTr. It further satisfies SR = ≈ .� .h̄.

We shall now glue an ALTr G : A � C with the renamer R : C � A into some larger
LGr H. But before this can be done we need to put some wrapping control on G (and
on R) that will let us track what comes from G inside H’s derivations.

Formally, given an ALTr G = (A,B,C,b1,b2,P,g) and two new anchor symbols

�1,�2 �∈ Σg, we let Σ�
def= {�1,�2} and define a new ALTr FG,�1,�2 (or shortly just FG)

for “wrapping G with �1,�2”, and given by FG,�1,�2

def= (A,B,C,�1,�2,P′,g) where

– A
def= A∪A′ ∪ {b1,b′1}, A′,b′1 being a copy of A,b1,

– B
def= {�1,�2}∪B �{b1},

– C
def= C∪{b2}∪C′ ∪B′�{b′1}, B′ and C′ being copies of B and C.

Finally, let D
def= C∪B and D′ def= C′ ∪B′. (The copies are denoted by priming the original

symbols, and a primed set like A′ = {a′ | a ∈ A} is just the set of corresponding primed
symbols.) The rules in P′ are derived from the rules of P in the following way.

kept: P′ retains all rules of P that do not erase a letter in A∪{b1},
replace: P′ has a rule d′ a for each rule d a in P that erases a letter in A∪{b1},
mirror: P′ has a rule d d′ for each d ∈D,
clean: P′ has all rules d′ e′ and �2 a′ for d′,e′ ∈ D′�{b′1} and a′ ∈ A′ ∪ {b′1},
b-rules: P′ has the rules �2 �1 and all rules d′ �2 for d′ ∈ D′�{b′1}.
We now relate the derivations in G and the derivations in FG. For this, assume u ∈
(A + b1)∗ and v ∈ (C + b2)+.



250 P. Chambart and P. Schnoebelen

Lemma 7.2. 1. If u.g⇒+
G v.g then for all words α ∈ (A′+ b′1)

∗ there exists a symbol
β ∈C′ ∪ {b′2} such that �1.α.u.g⇒+

FG
�1.α.β.v.g⇒+

FG
�2.β.v.g.

2. Reciprocally, for all α ∈ (A′+ b′1)
∗, for all β ∈ (C′+ b′2)

+ if �1.α.u.g⇒+
FG

�2.β.v.g
then u.g⇒+

G v.g.

Thus we can relate anchored derivations in FG with anchored derivations in G via:

Corollary 7.3. Let u ∈ (A+b1)∗ and v∈ (C+b2)+. Then b1.u.g⇒+
G b2.v.g if and only

if there exists β ∈ (C′ ∪ {b′2}) such that �1.α.b1.u.g⇒+
FG

�2.β.b2.v.g. In other words,
u SG v iff α.b1.u SFG β.b2.v for some β ∈ (C′ ∪ {b′2}).
We may now glue the wrapped versions of G and its associated R. Recall that FG =
(A,B,C,�1,�2,P′,g). We denote the set of new symbols with Σ def= A∪B∪C and observe
that FR (short for FRb2,b1

,�2,�1 ), being some (C∪C′ ∪{b2,b′2},Σ�,A,�2,�1,P′R,g), does

not use more symbols. Let H
def= (Σ,PH ,g) be the LGr such that and PH = P′ ∪P′R. Es-

sentially, H is a union of the two wrapping ALTr’s. Note that H is not a LTr since it
does not respect any distinction between input, intermediary, and output symbols.

Lemma 7.4. Let α,β ∈ A′+ and u,v ∈ A∗. If �1.α.u.g⇒∗H �1.β.v.g and SG = (�A

.SG.�C) then u�A .(SG.h̄)∗ v.

We now extend H to turn it into an ALTr H ′ : Ȧ � A∪A′, introducing again new copies,
denoted ȧ, . . . , of previously used symbols and writing u̇ = ȧ1ȧ2 . . . ȧn for the dotted
copy of some u = a1a2 . . .an. Formally,

H ′ def= (Ȧ,B∪B′ ∪C∪C′ ∪ {�1,�2,�̇1,�̇2},A∪A′,�̇1,�̇2,P
′′,g)

where P′′ extends PH by the rules �̇2 �̇1, �1 �̇2, and all a ȧ for a ∈ A.
The anchored transformation SH′ computed by H ′ is captured by the following:

Lemma 7.5. Let u,v ∈ A∗. Then u̇ SH′ �1.β.v for some β ∈ A′+ iff u [h̄.�A .(SG.h̄)∗] v.

We are nearly done. There only remains to compose H ′ with a LTr that checks for the
presence of �1.β (and then erases it). For this last step, we shall use further dotted
copies Σ̈,

...
Σ , . . . , of the previously used symbols.

Formally, we define two new ALTr’s T1 and T2: see full version. The rules of T1

ensure that it satisfies

u ST1 v iff u = �1.α.b1.u
′ and ü IT ins

1
v. (T1-spec)

Regarding T2, let u ∈ (Ä∪ Ä′ ∪ {b̈1, b̈′1})∗ and v ∈ ...
A∗. If ü′ is the largest subword of u

such that u′ ∈ A∗, then

u ST2 v iff
...
u′ �...

A v. (T2-spec)

Combining (T1-spec) and (T2-spec) we obtain

u ST1 .ST2 v iff u = �1.α.b1.u
′ and

...
u′ �...

A v.

Composing these LTr’s as H ′.T1.T2 yields a resulting G(+) : Ȧ � ...
A, which, up to a bi-

jective change of symbols, is what we need to build to prove Theorem 7.1.



Toward a Compositional Theory of Leftist Grammars and Transformations 251

8 Conclusion

In this paper we introduce a notion of transformations computed by leftist grammars and
define constructions showing how these transformations are effectively closed under
sequential composition and transitive closure.

These operations require that some “typing” assumptions are satisfied (e.g., we only
know how to build a transitive closure on leftist transformers that are “anchored”) which
may be seen as a lack of elegance and generality of the theory, but which we see as an
indication that leftist grammars are very hard to control and reason about.

Anyway, the restrictive assumptions are not a problem for our purposes: we intend
to rely on the compositional foundations for building, in a modular way, complex leftist
grammars that are able to simulate lossy channel systems. Here the modularity is essen-
tial not so much for building complex grammars. Rather, it is essential for proving their
correctness by a divide-and-conquer approach, in the way we proved the correctness of
our encoding of 3SAT instances in Section 6.

As another direction for future work, we would like to mention that the proof that
accessibility is decidable for LGr’s (see [7]) has to be fixed and completed.

Acknowledgements. Sylvain Schmitz helped tremendously with his numerous remarks
and suggestions.

References

1. Chambart, P., Schnoebelen, P.: Post embedding problem is not primitive recursive, with appli-
cations to channel systems. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855,
pp. 265–276. Springer, Heidelberg (2007)

2. Chambart, P., Schnoebelen, P.: The ω-regular Post embedding problem. In: Amadio, R.M.
(ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 97–111. Springer, Heidelberg (2008)

3. Chambart, P., Schnoebelen, P.: The ordinal recursive complexity of lossy channel systems. In:
Proc. LICS 2008, pp. 205–216. IEEE Comp. Soc. Press, Los Alamitos (2008)

4. Jurdziński, T.: On complexity of grammars related to the safety problem. Theoretical Com-
puter Science 389(1-2), 56–72 (2007)

5. Jurdziński, T.: Leftist grammars are nonprimitive recursive. In: Aceto, L., Damgård, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 51–62. Springer, Heidelberg (2008)

6. Jurdziński, T., Loryś, K.: Leftist grammars and the Chomsky hierarchy. Mathematical Systems
Theory 41(2), 233–256 (2007)

7. Motwani, R., Panigrahy, R., Saraswat, V.A., Venkatasubramanian, S.: On the decidability of
accessibility. In: Proc. STOC 2000, pp. 306–315. ACM Press, New York (2000)



Degrees of Lookahead in Regular Infinite Games

Michael Holtmann1, �Lukasz Kaiser2, and Wolfgang Thomas1

1 RWTH Aachen, Lehrstuhl für Informatik 7, D-52056 Aachen
{holtmann,thomas}@automata.rwth-aachen.de

2 RWTH Aachen, Mathematische Grundlagen der Informatik, D-52056 Aachen
kaiser@logic.rwth-aachen.de

Abstract. We study variants of regular infinite games where the strict
alternation of moves between the two players is subject to modifications.
The second player may postpone a move for a finite number of steps,
or, in other words, exploit in his strategy some lookahead on the moves
of the opponent. This captures situations in distributed systems, e.g.
when buffers are present in communication or when signal transmission
between components is deferred. We distinguish strategies with different
degrees of lookahead, among them being the continuous and the bounded
lookahead strategies. In the first case the lookahead is of finite possibly
unbounded size, whereas in the second case it is of bounded size. We show
that for regular infinite games the solvability by continuous strategies
is decidable, and that a continuous strategy can always be reduced to
one of bounded lookahead. Moreover, this lookahead is at most doubly
exponential in the size of the parity automaton recognizing the winning
condition. We also show that the result fails for non-regular games where
the winning condition is given by a context-free ω-language.

1 Introduction

The algorithmic theory of infinite games is a powerful and flexible framework for
the design of reactive systems (see e.g. [1]). It is well known that, for instance, the
construction of a controller acting indefinitely within its environment amounts
to the computation of a winning strategy in an infinite game. For the case of
regular games, algorithmic solutions of this synthesis problem have been devel-
oped, providing methods for automatic construction of controllers. The basis of
this approach is the Büchi-Landweber Theorem, which says that in a regular
infinite game, i.e. a game over a finite arena with a winning condition given
by an ω-regular language, a finite-state winning strategy for the winner can be
constructed [2]. Much work in the past two decades has been devoted to gener-
alizations of this fundamental result. The game-theoretic setting is built on two
components, a game arena or game graph, representing the transition structure
of a system, and a winning condition, usually given by a logic formula or an au-
tomata theoretic condition. Most generalizations address an extension of either
of the two, or both. A rapidly growing literature is thus concerned with the case
of infinite game graphs and non-regular winning conditions [3, 4, 5].

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 252–266, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Degrees of Lookahead in Regular Infinite Games 253

In the present paper we investigate a different kind of generalization of the
basic setting, regarding the possibility to get a lookahead on the moves of the
opponent. To explain this aspect it is convenient to refer to the simplest format
of infinite games, also called Gale-Stewart games [6]. In such a game we abstract
from arenas but just let the two players choose letters from a finite alphabet
in turn. (For notational convenience let us only consider the typical case of the
Boolean alphabet B := {0, 1}.) A play is built up as a sequence a0b0a1b1 · · ·
where ai is chosen by one player and bi by the other. A natural view is to
consider the sequence α = a0a1 · · · as input stream and β = b0b1 · · · as output
stream. Accordingly, the players are called Player Input and Player Output,
or short Player I and Player O. The play is won by Player O if the ω-word
α∧β := a0

b0

a1
b1

a2
b2
· · · ∈ (B2)ω satisfies the winning condition, i.e. if it belongs

to a given ω-regular language L. In the classical setting, a strategy for Player O
is a function f that maps a finite input prefix a0 · · ·ai to the bit bi that is to be
chosen by Player O. Such a strategy induces an operator λ : B

ω → B
ω from input

streams to output streams. In this work we study more generalized operators that
correspond to strategies where the choice of bi depends on a0 · · · aj , for j �= i.
We show results on the existence of such strategies for different conditions on
the relation between i and j.

There are two motivations for the study of such a generalization, a practical
and a theoretical one. In many scenarios, the occurrence of delays (say between
input and output) is realistic, either as a modeling assumption or as a feature
of strategies. For example, the design of a controller may involve a buffer that
allows to store a sequence of input bits of some fixed length d such that the bit
bi of the output sequence is to be delivered with lookahead d, i.e. on the basis of
the input sequence a0 · · · ai+d. Conversely, in the context of networked control
(i.e. systems with components in different locations), there may be a delay d in
the transmission of data, which means that the delivery of bi is due at a point
where only the input bits a0 · · · ai−d are available. It is clear that the occurrence
of lookaheads and delays influences the existence of solutions. In the first case,
we obtain for increasing d an increasing advantage for the output player, whereas
in the second case we obtain an increasing disadvantage. Observe that the cases
are symmetric in the two players, and thus are mutually reducible.

A more theoretical motivation is to explore more comprehensively and sys-
tematically the solution concepts for infinite games. The classical concept of a
strategy gives a very special kind of operator, but there are natural options of
higher generality, well-known already from background fields like descriptive set
theory and topology [6]. Let us mention four fundamental levels of operators,
corresponding to different levels of obligation for Player O to move. The most
general ones are the continuous operators (see e.g. [7, 8]). An operator λ is contin-
uous (in the Cantor space of infinite sequences over B) if in the output sequence
β = λ(α) the bit bi is determined by a finite prefix of α. Referring only to the
length of prefixes, we call an operator uniformly continuous if for some strictly
monotone function h : N → N we have that bi is determined by a0 · · · ah(i). For
fixed h we then speak of h-delay operators. On a further level of specialization,



254 M. Holtmann, �L. Kaiser, and W. Thomas

we are dealing with operators of bounded delay. These are h-delay operators
with h(i) ≤ i+ d, for some d ∈ N. Analogously, if h(i) = i+ d, then we speak of
operators with constant delay d, and finally, the function h(i) = i supplies the
operators induced by standard strategies. All these levels of delay naturally cor-
respond to different types of games; for example, a continuous strategy involves
the moves “wait” or “output b” after each move of the opponent.

Our main result connects the different kinds of operators in the context of infi-
nite games. We show that in a two-person game with regular winning condition,
one can decide whether there is a continuous winning strategy for Player O, and
in this case a strategy of constant delay can be constructed. Moreover, one can
compute a suitable bound d for the delay. Thus, in the first mentioned applica-
tion scenario, if a standard controller for satisfying a regular specification does
not exist then one can decide whether some finite buffer will help, and determine
the needed size of that buffer. We also show that the result fails when passing
to non-regular specifications. However, which functions may be appropriate for
uniformly continuous strategies in the non-regular case is left open. It seems that
for infinite-state (or non-regular) games our result can serve as an entry into a
much wider field of study.

As indicated above, the idea of generalized concepts of strategies is far from
new. An early contribution is found in the (not well-known) paper of Hosch
and Landweber [9]. It deals with constant delay strategies in regular games and
exploits a result of Even and Meyer from Boolean circuit theory to establish a
bound for delays [10]. We obtain this result here as a corollary of the main theo-
rem. The extension of our result over [9] covers three dimensions: the connection
with strategies of unbounded delay, a considerably simplified and transparent
proof of the Hosch-Landweber-Theorem (the construction in [9] is highly com-
plex), and finally better complexity bounds for suitable delays.

This paper is organized as follows. In the next section we introduce nota-
tion. In Section 3 we present several kinds of functions and the operators they
induce. We also bridge from continuous operators to delay operators and intro-
duce games with delay. In Sections 4–6 we prove our main result via a twostage
reduction: In Section 4 we do the first step, switching over to block games. In
Section 5 we deal with notions related to semigroups and define a semigroup
game. This framework is finally used in Section 6 to establish the second step
of the reduction, i.e. the connection between block games and the semigroup
game. Sections 7 and 8 provide evidence that our results cannot be generalized
to ω-context-free specifications and give an outlook on future investigations.

2 Preliminaries

Let Σ be a finite alphabet. By Σ∗ and Σω we denote the sets of finite and
infinite words over Σ. Usually, finite words are denoted u, v, . . . whereas α, β, . . .
are infinite words. By |u| we denote the length of u and Σn := {u | |u| = n} is
the set of words of length n. N is the set of natural numbers and N+ := N \ {0}.
Given n1, n2 ∈ N with n1 < n2 we write Σ[n1,n2] for n1≤n≤n2

Σn.



Degrees of Lookahead in Regular Infinite Games 255

A (deterministic) finite automaton, DFA for short, over Σ is a tuple A =
(Q, q0, δ, F ) where Q is a (non-empty) finite set of states, q0 ∈ Q is the initial
state, δ : Q×Σ → Q is a transition function, and F ⊆ Q is a set of final states.
The run ρu of A on u := u0 · · ·un−1 is the finite sequence ρu(0) · · · ρu(n) with
ρu(0) = q0 and ρu(i+1) = δ(ρu(i), ui) for i = 0, . . . , n−1. We define A to accept
u if and only if ρu(n) ∈ F . The set of all words accepted by A is called the
∗-language of A and denoted L∗(A). Later in our work we need the following
basic property of deterministic finite automata.

Lemma 1. Let A be a DFA with n states and |L∗(A)| =∞. Then, for all i ∈ N,
A accepts a word ui of length i ≤ |ui| ≤ i+ n.

A (deterministic) parity automaton, DPA for short, over Σ is similar to a DFA,
but instead of the set F of final states it has a coloring, i.e. a function c :
Q→ {0, . . . ,m}. A run of a DPA is the natural extension of a run of a DFA to
infinite words. For α ∈ Σω, the set Inf(ρα) is the set of states visited infinitely
often in run ρα. We define the parity automaton A to accept α if and only if
max(Inf(c(ρα))) is even, i.e. the maximal color seen infinitely often in the run
on α is even. Accordingly, the acceptance condition of A is called a max-parity
acceptance condition. The set of all words accepted by A is called the ω-language
of A and denoted Lω(A).

In the sequel, we write L(A) instead of L∗(A) or Lω(A), if it is clear from the
context whether A is a DFA or DPA. It is well-known that the class of languages
accepted by DPA is exactly the class of ω-regular languages (see e.g. [1]).

A parity game Γ = (V, VI , VO, E, c) is played by two players, Player I and
Player O, on a directed graph G = (V,E):

– V = VI ·∪ VO is a partition of V into positions of Player I and Player O,
– E ⊆ V × V is the set of allowed moves, and
– c : V → {0, . . . ,m} is a coloring of V (w.l.o.g. m ∈ 2N).

We assume that for each v ∈ V there is a valid move from v, i.e. vE := {w |
(v, w) ∈ E} �= ∅. A play is an infinite path through G. A (standard) strategy for
Player O is a function f : V ∗VO → V defining, for each position of Player O and
each history v0 · · · vk of the play, her next move. Thus, for each v0 · · · vk (with
(vi, vi+1) ∈ E for all i = 0, . . . , k − 1) and vk ∈ VO, the function f is defined
such that (vk, f(v0 · · · vk)) ∈ E. A play v0v1 · · · is consistent with the strategy
f if for each vi ∈ VO the next position is given by f , i.e. vi+1 = f(v0 · · · vi).

The parity winning condition is again defined so that a play v0v1 · · · is winning
for Player O if and only if the maximal color occurring infinitely often in {c(vi) |
i ∈ N} is even. In the other case the play is winning for Player I. The function f
is called a winning strategy for Player O from v0 if each play starting in v0 that
is consistent with f is winning for Player O, and analogously for Player I. Parity
games, even on infinite graphs, are determined, i.e. for each v either Player I or
Player O has a winning strategy from v (see e.g. [1]).

For the rest of this paper, let us fix {0, 1} as input and output alphabet, i.e.
let ΣI = ΣO := B. All the definitions and results are analogous for other finite
alphabets of size at least two.



256 M. Holtmann, �L. Kaiser, and W. Thomas

3 Operators and Games with Delay

In this section we introduce different kinds of functions and operators, and show
how they induce games with different degrees of lookahead. In the sequel, we
mostly use the term “delay” in place of “lookahead”, following e.g. [9].

3.1 Delay Operators

Let λ denote a function from B
ω to B

ω , also called an operator. We shall distin-
guish the following classes of operators, starting form the most general ones.

(1) continuous operators
(2) uniformly continuous operators
(3) h-delay operators for a fixed h : N→ N

(4) bounded delay operators
(5) d-delay operators for a fixed d ∈ N

An operator λ is continuous if in the output sequence β = λ(α) each bit is
determined by a finite prefix of α. This condition is equivalent to the standard
topological definition, where λ is continuous if the preimage λ−1(U) of every
open set U ⊆ B

ω is open in B
ω. (Here, open sets in B

ω are given by the standard
Cantor topology, i.e. U ⊆ B

ω is open if there exists W ⊆ B
∗ such that U =

{wB
ω | w ∈ W}; for details see e.g. [8].) To formally capture the constraint

that each output bit is determined by a finite prefix of the input, we define
the continuity of λ using a map l that transforms each input bit into either
0 or 1 or � (the latter meaning that the production of the next output bit is
still deferred). The value λ(α) is then obtained from the sequence of l-values by
deleting all entries �.

Definition 2. An operator λ : B
ω → B

ω is continuous if there exists l : B
∗ →

{0, 1,�} such that for all α ∈ B
ω the word l(α) := l(α0)l(α0α1)l(α0α1α2) · · ·

satisfies the following:

(1) l(α) does not end with �ω, and
(2) λ(α) = strip(l(α)) where strip(l(α)) is the word l(α) with all � removed.

Let us now define h-delay and uniformly continuous operators. Let h : N → N

be a strictly monotone function. We say that λ is an h-delay operator if, for each
α ∈ B

ω, the bit (λ(α))i depends only on α0 · · ·αh(i). An operator λ is uniformly
continuous if there exists an h such that λ is an h-delay operator. Observe that
each uniformly continuous operator is indeed continuous; the function h supplies
the information how long the output � should be produced.

For the space B
ω it is known that the converse also holds. This is a consequence

of König’s Lemma, or equivalently of the fact that continuous functions on a
closed bounded space are uniformly continuous.

Lemma 3. For every continuous operator λ : B
ω → B

ω there exists a strictly
monotone function h : N→ N such that λ is an h-delay operator.



Degrees of Lookahead in Regular Infinite Games 257

By the above lemma, the classes of continuous operators B
ω → B

ω and uniformly
continuous operators B

ω → B
ω are exactly the same. A space where this does

not hold is e.g. R := B
ω \ {0ω}. Consider λ1 : R → R with

λ1(α) :=
01ω if α = 0∗10β for some β ∈ B

ω

1ω otherwise

Note that λ1 : R → R is continuous, but not uniformly continuous. Since our
results rely in fact on uniform continuity, we adhere to the space B

ω.
Among the uniformly continuous operators, we distinguish an even more re-

stricted class of bounded delay operators. A function h : N→ N is said to be of
bounded delay if there exist i0, d ∈ N such that h(i) = i+ d for all i ≥ i0, and it
is said to be a d-delay function (or a function of constant delay d) if h(i) = i+ d
for all i ∈ N. The induced operators are named accordingly.

In all definitions above, we assume the delay function h strictly monotone.
For our purpose it is more convenient to consider the function fh : N → N+,
denoting the number of additional input bits until the next output bit:

fh(i) :=
h(0) + 1 if i = 0
h(i)− h(i− 1) if i > 0

In the sequel, we work only with the functions fh. Moreover, we use the special
notation 〈d〉 for the function fh with h of constant delay d: 〈d〉(0) = d + 1 and
〈d〉(i) = 1 for i > 0. From now on, we omit the subscript h in our notation.

3.2 Regular Games with Delay

In this section we introduce the regular infinite game Γf (L). It is induced by an
ω-language L (usually given by a DPA A) over B

2, and a function f : N→ N+.
(Since we focus on the impact of the function f , we omit L if it is clear from
the context and write Γf .) The function f imposes a delay (or lookahead) on
the moves of Player O. This means that in round i Player I has to choose
f(i) many bits, and Player O chooses one bit, afterwards. This way the players
build up two infinite sequences; Player I builds up α and Player O builds up β,
respectively. The corresponding play is winning for Player O if and only if the
word α∧β := a0

b0

a1
b1

a2
b2
· · · is accepted by A. For a DPA A, we say that L(A)

is solvable with finite delay if and only if there exists f : N → N+ such that
Player O wins Γf (L(A)) (analogously for restricted classes of functions).

Observe that the possible strategies for Player O in Γf correspond precisely
to h-delay operators (for f = hΔ), since Player O must output her ith bit after
receiving the next f(i) bits of input. Thus, the question whether there exists
an h-delay operator λ such that { α

λ(α) | α ∈ B
ω} ⊆ L(A) is equivalent to the

question whether there exists a winning strategy for Player O in Γf .
A basic observation is that winning with delay is a monotone property. For two

functions f, g : N→ N+ we write f � g if and only if f(i) ≤ g(i) for all i ∈ N.



258 M. Holtmann, �L. Kaiser, and W. Thomas

Remark 4. If Player O wins Γf0 then she also wins Γf for each f � f0. Analo-
gously, if Player I wins Γg0 then he also wins Γg, for each g � g0.
Example 5. Let L ⊆ (B2)ω be given by the ω-regular expression

0 a
a ∗ Σω +

1 ∗ ∗ b
b ∗ ∗ ∗ Σω

where a, b ∈ B and ∗ denotes any bit. If Player I chooses 0 as his first bit then
Player O needs to know a, so she needs delay one in this situation. Contrary, if
Player I chooses 1 as his first bit then Player O needs delay three to obtain b.
Thus, she wins the game with delay three, but neither with delay two nor one.

In the next sections we prove our main result (see Theorem 14): Let A be a
DPA with n states, m colors, and let n′ := 2(mn)2 . Then, there is a continuous
operator λ with α

λ(α) ∈ L(A) (for all α ∈ B
ω) if and only if there is a (2n′−1)-

delay operator with the same property. To obtain this result we show that L(A)
is solvable with finite delay if and only if L(A) is solvable with delay 2n′ − 1.

4 The Block Game

In this section we make the first step in the proof of our main result, which is
to relax the number of bits Player I can choose in each move. For this reason we
introduce a new game Γ ′f , called the block game.

The game Γ ′f differs from Γf in two ways. Firstly, the lengths of the words
to be chosen by the players are decided by Player I, within certain intervals
determined by f . Secondly, Player I is one move ahead compared to Γf .

A play in Γ ′f is built up as follows: Player I chooses u0 ∈ B
[f(0),2f(0)] and

u1 ∈ B
[f(1),2f(1)], then Player O chooses v0 ∈ B

|u0|. In each round thereafter, i.e.
for i ≥ 2, Player I chooses ui ∈ B

[f(i),2f(i)] and Player O responds by a word
vi−1 ∈ B

|u −1|. The winning condition is defined as before.
We show that Player I wins the game Γf for all functions f if and only if he

wins the block game Γ ′f for all functions f . To this end, for f : N → N+, let f ′

be defined by f ′(0) := f(0) + f(1), and f ′(i) := f(i+ 1) for i > 0.

Proposition 6. Let f : N→ N+. If Player I wins Γf ′ then he also wins Γ ′f .

Proof. Assume Player I has a winning strategy in Γf ′ . For i ∈ N, let ui be the
words chosen by Player I in Γf ′ and u′i the words chosen by Player I in Γ ′f ,
and analogously vi, v′i for Player O. The winning strategy yields u0 ∈ B

f ′(0) as
Player I’s first move. Since f(0) + f(1) = f ′(0) we can choose u′0u

′
1 = u0 as

Player I’s first move in Γ ′f . Player O answers by v′0 ∈ B
|u′

0|. We can use v′0 to
simulate the moves v0, . . . , v|v′0|−1 of Player O in Γf ′ , each of which consists of one
bit. Player I answers by u1, . . . , u|v′0| of lengths f ′(1), . . . , f ′(|v′0|). Since |v′0| ≥ 1,
the sum f ′(1)+· · ·+f ′(|v′0|) is non-empty and at least f ′(1) = f(2). Accordingly,
the word u1 · · ·u|v′0| is long enough to give u′2 with f(2) ≤ |u′2| ≤ 2f(2). We



Degrees of Lookahead in Regular Infinite Games 259

choose u′2 as the prefix of u1 · · ·u|v′0| of length f(2). Player O answers in Γ ′f
by v′1 of length |u′1|, and we can use it to simulate another |v′1| rounds in Γf ′ .
Thereby, we obtain enough bits to give u′3, and so on. This way, we build up the
same plays in Γf ′ and Γ ′f . Since Player I wins Γf ′ , he also wins Γ ′f . ��
For f : N→ N+, let f ′′ be inductively defined by f ′′(0) := f(0) and

f ′′(i+ 1) :=
2(f ′′(0)+...+f ′′(i))

j=0

f(j).

Proposition 7. Let f : N→ N+. If Player I wins Γ ′f ′′ then he also wins Γf .

Proof. Assume Player I has a winning strategy in Γ ′f ′′ . For i ∈ N, let u′i be
the words chosen by Player I in Γ ′f ′′ and ui the words chosen by Player I in
Γf , and analogously v′i, vi for Player O. Player I’s winning strategy yields u′0 ∈
B

[f ′′(0),2f ′′(0)] and u′1 ∈ B
[f ′′(1),2f ′′(1)] as his first move in Γ ′f ′′ . For i ∈ N, let d′i

be the length of u′i. Since

d′0 + d′1 ≥ f ′′(0) + f ′′(1) = f(0) +
2f ′′(0)

j=0

f(j),

we can give the moves u0, . . . , ud′0 of Player I in Γf . This yields Player O’s answers
v0, . . . , vd′0−1, i.e. d′0 bits. We can use them to simulate v′0, i.e. Player O’s first
move in Γ ′f ′′ . Player I’s winning strategy yields u′2 of length f ′′(2) ≤ d′2 ≤ 2f ′′(2).
We need to give another d′1 moves of Player I in Γf to obtain Player O’s answers
vd′0 , . . . , vd′0+d′1−1. For that we need f(d′0 + 1)+ . . .+ f(d′0 + d′1) bits. With u′2 in
our hands we can give these moves, because

d′2 ≥ f ′′(2) = f(0) + . . .+ f(2f ′′(0) + 2f ′′(1))
≥ f(0) + . . .+ f(d′0 + d′1)
≥ f(d′0 + 1) + . . .+ f(d′0 + d′1).

Iterating this we obtain the same plays built up in Γ ′f ′′ and Γf . Since Player I
wins Γ ′f ′′ , he also wins Γf . ��
The following corollary of Propositions 6 and 7 is the first step in our proof.

Corollary 8. Let A be a DPA. Then the following are equivalent:

(1) For all f : N→ N+ Player I wins Γf (L(A)).
(2) For all f : N→ N+ Player I wins Γ ′f (L(A)).

5 The Semigroup Game

In this section we introduce a game which is independent of particular delays. To
define it, we extract from a DPA A two equivalence relations, one for each player,
such that the moves of the players are equivalence classes of these relations. The



260 M. Holtmann, �L. Kaiser, and W. Thomas

first one (for Player O) is denoted ∼ and induces a finite semigroup on (B2)∗. The
second one (for Player I) is denoted ≈ and ranges over B

∗. Roughly speaking,
two (pairs of) words are equivalent if they effect the same behavior on A.

Our approach to transform parity automata into finite semigroups is similar to
the constructions presented in [11, 12]. LetA = (Q, q0, δ, c) be a DPA over B

2. We
use the semiring S := ({⊥}∪c(Q),+, ·) in which addition is defined as maximum,
i.e. x + y := max(x, y) with ⊥ being the least element, and multiplication is
defined as follows:

x · y :=
max(x, y) if x �= ⊥ and y �= ⊥
⊥ otherwise

Note that the set Leq := (B2)∗, i.e. the set of pairs of words of equal length, is
a regular language. With each pair u

v ∈ Leq we associate a matrix μ u
v of size

|Q|2 with entries in S, i.e. μ u
v ∈ SQ×Q, defined as follows:

μ
u

v p,q

:=
⊥ if δ∗ p, u

v �= q

max{c(π)} if δ∗ p, u
v = q and π is the associated A-path

Observe that SQ×Q induces a finite semigroup and μ u
v ·μ u′

v′ = μ uu′

vv′ . Let ∼ be
the equivalence relation on Leq defined by: u

v ∼ u′

v′ if and only if μ u
v = μ u′

v′ .
For each u

v , the equivalence class u
v is identified by a matrix μ ∈ SQ×Q.

Since S and Q are finite, SQ×Q is finite as well, and so the relation ∼ has finite
index, i.e. it has finitely many equivalence classes. We denote the index of ∼
by index(∼). Note that Leq/∼ induces a finite semigroup, and μ is a semigroup
morphism from (Leq/∼, ·) to (SQ×Q, ·).
Lemma 9. Let u

v ∈ Leq. Then, the set u
v is a regular ∗-language over B

2.

Proof. We construct an automaton recognizing u
v as follows: First, we con-

struct for all p, q ∈ Q, k ∈ c(Q) the automaton Ap,q,k recognizing the set of
all words that induce a path from p to q in A where k is the highest color
seen on that path. The idea for this construction is to simulate the behavior
of A while memorizing the highest color seen. To this end, define Ap,q,k :=
(c(Q)×Q,B2, (c(p), p), δ′, {(k, q)}) where

δ′ (k′, p′),
x

y
:= max k′, c δ p′,

x

y
, δ p′,

x

y

for all k′ ∈ c(Q), p′ ∈ Q, x, y ∈ B. The automaton starts in the state (c(p), p)
and simulates the behavior of A on its input. If it stops in state (k, q) then it
accepts. The automaton A[( )] is then obtained as the intersection of all Ap,q,k
for p, q, k such that μ u

v p,q
= k. ��

Since ∼ has finite index, we can find automata for all equivalence classes of
∼ in the following way: For r ∈ N, let A1, . . . ,Ar be the automata already



Degrees of Lookahead in Regular Infinite Games 261

constructed. Then ∼ has index r if and only if i=1,...,r L(Ai) = Leq. This
equality can be effectively checked, and if this test fails, then we repeat the
construction with a word contained in Leq \ i=1,...,r L(Ai).

Let ≈ be the equivalence relation on B
∗ defined by

u ≈ u′ :⇐⇒ ∀ u0

v0
: ∃v :

u

v
∈ u0

v0
⇐⇒ ∃v′ : u′

v′
∈ u0

v0
.

For u ∈ B
∗, the ≈-equivalence class of u, denoted [u], can be identified with a

subset of the set of all ∼-classes. Since ∼ has finite index, we get that ≈ has
finite index as well; more precisely it holds index(≈) ≤ 2index(∼).

Lemma 10. Let u ∈ B
∗. Then, the set [u] is a regular ∗-language over B.

Proof. We construct an automaton recognizing the language [u] as follows: First,
we have to check for which ∼-classes u0

v0
there exists v ∈ B

|u| such that
u
v ∈ u0

v0
. Let B be a DFA recognizing u0

v0
. We take the projection on the

first component (deleting the second component from the transitions of B) and
test whether the resulting automaton, say B′, accepts u. If we do the same for
all ∼-classes, then we obtain r automata B′1, . . . ,B′r accepting u, and s automata
B′r+1, . . . ,B′r+s not accepting u, where r + s = index(∼). From these automata
we can effectively construct an automaton for [u], because

[u] =
i=1,...,r

L(B′i) ∩
j=r+1,...,r+s

L(B′j).

��
We now define the game ΓSG (induced by a DPA A over B

2) where the moves
of the players are classes from B

∗/≈ and Leq/∼, respectively. Accordingly, we
call ΓSG the semigroup game of A.

The game ΓSG is defined similar to the block game Γ ′. The difference is
that the players do not choose concrete words but the respective classes from
the relations ∼ and ≈. A play is built up as follows: Player I chooses infinite
classes [u0], [u1] ∈ B

∗/≈, then Player O chooses a class u0
v0
∈ Leq/∼. In each

round thereafter, i.e. for i ≥ 2, Player I chooses an infinite class [ui] ∈ B
∗/≈ and

Player O chooses a class u −1
v −1

∈ Leq/∼. A play is winning for Player O if and
only if u0

v0

u1
v1

u2
v2
· · · is accepted by A.

Note that B
∗/≈ contains at least one infinite class and that for each class [u]

there exists at least one class in Leq/∼ associated with [u] (by the definition of≈).
Hence, both players can always move. Furthermore, the winning condition of
ΓSG is well-defined because acceptance of A is independent of representatives: If
u
v = u′

v′ for all i ∈ N, then u0
v0

u1
v1
· · · ∈ L(A) ⇐⇒ u′

0
v′0

u′
1
v′1
· · · ∈ L(A).

ΓSG can be modeled by a parity game on a graph of size O(22(mn) mn).
(Thus, its winner is computable [1].) In the vertices we keep track of the ≈-
classes recently chosen by Player I, a color depending on the course of the
play and the current state q of A. The vertex reached by a move u

v of
Player O is colored by μ u

v q,q′ , where q′ is the state reached in A from q when
reading u

v .



262 M. Holtmann, �L. Kaiser, and W. Thomas

6 Connecting the Block Game and the Semigroup Game

In this section we show that Player I wins the block game Γ ′f for all functions
f : N→ N+ if and only if he wins the semigroup game ΓSG. This completes the
reduction and also yields the proof of our main result.

The basic idea of the proof of Theorem 12 (see below) is, for arbitrary f , to
simulate the moves of the players in Γ ′f by the corresponding equivalence classes
of the relations ∼ and ≈, respectively, and vice versa. For the last-mentioned
direction, one has the problem whether a class [ui] contains an appropriate rep-
resentative, i.e. one of length between f(i) and 2f(i). We use Lemma 1 to show
that there exists a particular f such that each function g with g � f indeed has
this property. Then, the following lemma completes the proof.

Lemma 11. Player I wins Γ ′f for all functions f : N→ N+ if and only if there
exists a function g0 : N→ N+ such that Player I wins Γ ′g for all g � g0.
Proof. The direction from left to right is immediate. Conversely, assume there
exists f0 such that Player I does not win Γ ′f0 . Determinacy yields that Player O
wins Γ ′f0 . By Proposition 6 Player O wins Γf ′

0
, and from Remark 4 it follows that

she also wins Γf for all f � f ′0. Proposition 7 yields that Player O wins Γ ′f ′′ , for
all f � f ′0. Towards a contradiction, let g0 be a function such that Player I wins
Γ ′g for all g � g0, and let f∗ be the maximum of g0 and f ′0, i.e. for all i ∈ N

f∗(i) := max{g0(i), f ′0(i)}.
Since f∗ � f ′0 it holds that Player O wins Γ ′f ′′∗

. However, since f ′′∗ � f∗ � g0
Player I must win Γ ′f ′′∗

, by assumption. This yields a contradiction which means
that g0 cannot exist. ��
Lemma 11 and the next theorem establish the second step of our reduction.

Theorem 12. Player I wins ΓSG if and only if there is a function f : N→ N+
such that Player I wins Γ ′g for all g � f .
Proof. We start with the direction from right to left. Let f : N → N+ be a
function such that Player I wins Γ ′g for all g � f . We define a function g0 such
that g0 � f and each word of length g0(i) is contained in an infinite ≈-class,
for all i ∈ N. To this end, let d′ be the length of a longest word in all finite
≈-classes1 and define, for all i ∈ N, g0(i) := max{f(i), d′ + 1}.

Since g0 � f , Player I wins Γ ′g0 by assumption, and a winning strategy yields
his first two moves u0, u1. Both [u0] and [u1] are infinite, and so he can choose
them in ΓSG. We simulate Player O’s answer u0

v0
by choosing v0 in Γ ′g0 , and

Player I’s winning strategy yields u2 with [u2] being infinite. Choosing [u2] in
ΓSG we obtain Player O’s next move u1

v1
, and so on.

We argue that the plays built up have the same maximal color occurring
infinitely often. It suffices to show that in both plays a move of Player O leads
1 If ≈ has no finite equivalence class, then we define d′ := 0.



Degrees of Lookahead in Regular Infinite Games 263

A to the same state, via paths with equal maximal color. Then, the rest follows
by induction. Let qi be the current state of A and ui, ui+1 be the words chosen
by Player I. If Player O chooses u

v in ΓSG, then we reach the state qi+1 :=
δ∗ qi, u

v via the maximal color μ u
v q ,q +1

. The state qi+1 is well-defined

because from qi every u′

v′ ∈ u
v leadsA to the same state, though via different

paths, but with the same maximal color. In Γ ′g0 Player O chooses vi. As in ΓSG,
we reach the state qi+1 via the maximal color μ u

v q ,q +1
.

Conversely, assume that Player I wins ΓSG. Let A1, . . . ,Ar be automata rec-
ognizing all the ≈-classes, and n′ the maximal number of states among these
automata, i.e. n′ := max{n1, . . . , nr}, where nj is the number of states of Aj
(j = 1, . . . , r). Let f be the constant function with f(i) := n′ for all i ∈ N.
We first show that Player I wins Γ ′f : Player I’s winning strategy in ΓSG yields
[u0], [u1]. Since [u0], [u1] are infinite, we can apply Lemma 1. Accordingly, each
Aj accepts a word of length between f and f + nj and thus between f and 2f ,
because nj ≤ f .2 Hence, we can assume w.l.o.g. that f ≤ |u0|, |u1| ≤ 2f . Player I
chooses u0, u1 in Γ ′f and Player O answers by a word v0 with |v0| = |u0|. We
simulate this move by u0

v0
in ΓSG and obtain Player I’s answer [u2], so the

next move of Player I in Γ ′f is u2 (for appropriate u2). Player O chooses v1 with
|v1| = |u1|, and so on.

The plays built up this way have the same maximal color occurring infinitely
often, using the same inductive argument as above. Starting at qi, Player O’s
move vi in Γ ′f has the same effect as the corresponding move u

v in ΓSG, i.e.
we reach the state qi+1 := δ∗ qi, u

v via the maximal color μ u
v q ,q +1

.

We complete the proof by showing that Player I wins Γ ′g for all g � f . Let
|[a, b]| := b−a be the size of the interval [a, b]. If g � f , then (since |[f, 2f ]| = n′)
it holds |[g(i), 2g(i)]| ≥ n′, for all i ∈ N. Hence, to win Γ ′g Player I simply chooses
longer representatives of the ≈-classes than in Γ ′f . ��
A thorough analysis of the constructions of the ∼-classes and ≈-classes, respec-
tively, yields an upper bound for n′. Let n be the number of states of A and m
the number of colors. Let u, v ∈ B

∗ with |u| = |v|. Since A is deterministic, there
is exactly one entry distinct from ⊥ in each of the n rows of μ u

v , and Ap,q,k has
at most mn states. Hence, each A[( )] has at most (mn)n states, i.e. as many as
the product of n (deterministic) automata of size mn. To obtain an automaton
for a class [u] we have to intersect index(∼) languages (cf. page 261). By the
same argument as above, there are at most (mn)n possible matrices identify-
ing all the ∼-classes. Since our construction includes determinization, we obtain
each A[u] having at most k states, where

k ≤ (2(mn) )(mn) = 2(mn)2 .

Next, we obtain our main result showing that in regular games constant delay
is sufficient for Player O to win, if she can win with delay at all.
2 To simplify matters we write f instead of f(i).



264 M. Holtmann, �L. Kaiser, and W. Thomas

Lemma 13. Let n′ be as in the proof of Theorem 12. Then, Player O wins ΓSG

if and only if Player O wins Γ〈2n′−1〉.

Proof. Define f(i) := n′ for all i ∈ N and let w of length d′ be a longest word in
all finite ≈-classes. Moreover, let L(A′) = [w], where A′ has n states. Then we
have d′ < n. Otherwise, the run of A′ on w had a loop, which is a contradiction
to the finiteness of L(A′). Since n ≤ n′ we get d′ < n′ and so d′ + 1 ≤ n′. Thus,
each ≈-class containing a word of length at least f is infinite.

Assume that Player O wins ΓSG. We first show that Player O wins Γ ′f . Let
u0, u1 with n′ ≤ |u0|, |u1| ≤ 2n′ be the first move of Player I in Γ ′f . By the above
remarks [u0], [u1] are infinite, and we can simulate [u0], [u1] in ΓSG. Player O’s
winning strategy in ΓSG yields u0

v0
for some suitable v0. Let him choose v0

in Γ ′f . Then Player I chooses u2 and we simulate [u2] in ΓSG, and so on.
As in the proof of Theorem 12, we obtain plays with the same maximal color

occurring infinitely often, and so Player O wins Γ ′f . Simulating a winning strategy
for Γ ′f she also wins Γ〈2n′−1〉. The factor 2 comes from the fact that we need at
least 2n′ bits when simulating Player I’s first move in Γ ′f .

Conversely, let Player O win Γ〈2n′−1〉 and g(i) := 2n′, for all i ∈ N. Since
g � 〈2n′ − 1〉, Player O wins Γg. Then, by Proposition 7, she also wins Γ ′g′′ .
Given a winning strategy for Player O in Γ ′g′′ we can specify one for her in ΓSG as
follows: A move [ui] of Player I is simulated by ui in Γ ′g′′ , for g′′(i) ≤ |ui| ≤ 2g′′(i).
(By Lemma 1, an appropriate representative ui must exist because g′′ � g, and
so |[g′′(i), 2g′′(i)]| ≥ n′ for all i ∈ N.) We use Player O’s answer vi−1 to choose
u −1
v −1

in ΓSG. This yields a play winning for Player O in ΓSG. ��
With Corollary 8, Lemma 11 and Theorem 12 we have shown that the problem
whether L(A) is solvable with finite delay is reducible to the question whether
Player O wins ΓSG. Finally, Lemma 13 shows that L(A) is solvable with finite
delay if and only if it is solvable with constant delay.

Theorem 14. Let A be a DPA over B
2. Then, L(A) is solvable with finite delay

if and only if L(A) is solvable with delay 2n′−1. There is a continuous operator
λ such that { α

λ(α) | α ∈ B
ω} ⊆ L(A) if and only if there is a (2n′ − 1)-delay

operator with the same property.

We have estimated the size of ΓSG to be O(22(mn) mn). Since it requires only
m colors, its winner can be computed in time O((22(mn) mn)m).

Corollary 15. Let A be a DPA over B
2. The problem whether L(A) is solvable

with finite delay and the problem whether there is a continuous operator λ with
{ α
λ(α) | α ∈ B

ω} ⊆ L(A) are in 2ExpTime.

7 Lookahead in Non-Regular Games

In this section we show that the above results do not hold for context-free ω-
languages (CFLω, for an introduction see e.g. [13]). Let us first recall that it is
undecidable whether a context-free ω-language L ⊆ B

ω is universal, i.e. whether
L = B

ω holds.



Degrees of Lookahead in Regular Infinite Games 265

Theorem 16 (see also [14]). Let L ⊆ (B2)ω be a context-free ω-language.
Then, it is undecidable whether there exists f such that Player O wins Γf (L).

Proof. We make a reduction from the universality problem for context-free ω-
languages. Let LI ∈ CFLω and L := α

β | α ∈ LI , β ∈ B
ω . If LI is universal

then L is universal as well, and Player O wins with any f . Conversely, if LI is
not universal, then Player I wins by playing a word α /∈ LI . There is no response
β such that α

β ∈ L, therefore Player O looses with each f . Altogether, LI is
universal if and only if there exists f such that Player O wins Γf (L). ��
The situation is different for deterministic ω-context-free specifications: in this
case at least the winner of the standard game Γ〈0〉 is decidable [3].

In addition to undecidability for the general case, we show that there exist
context-free specifications which are solvable with finite delay, but not with
constant delay.

Example 17. Let L ⊆ (B2)ω be defined such that if Player I chooses an ω-word
of the form α = 12m00n012m10n1 · · · , for mi, ni ∈ N+, then Player O wins if and
only if he answers by β = 1m00m0+n01m10m1+n1 · · · . This means Player O’s ith
block of 1s must have exactly half the length of Player I’s ith block of 1s, and
both blocks must start at the same position. If α is not of the above form, then
Player O wins as well.

The language L is recognized by a deterministic ω-pushdown automaton. As
long as the input is 1

1 , we push a symbol on the stack. If we read the first 1
0

after 1
1 , we start to pop symbols from the stack. If we reach the initial stack

symbol at the same time as we read the first 0
0 after 1

0 then we are satisfied
and visit a final state.

Observe that Player O wins Γf (L), if f(i) := 2 for all i ∈ N. When she has to
give her ith bit βi she already knows Player I’s (2i)th bit α2i, and that is enough
to decide whether to play 0 or 1.

Let us show that L is not solvable with constant delay. Towards a contradic-
tion, assume Player O wins Γ〈d〉 for some d ∈ N. We construct a winning strategy
for Player I in Γ〈d〉 as follows: Player I chooses 1d+1 as initial move and 1 as
each of his d subsequent moves. Player O must answer each of these d+1 moves
by choosing 1. Otherwise, she loses immediately. Afterwards, Player I chooses
another 1 to complete his block of 1s to even length. (After this move, Player I
has chosen exactly twice as many 1s as Player O.) Whatever Player O answers,
say b, Player I wins by choosing 1− b next. This is due to the fact that the block
of 1s chosen by Player O gets either too short or too long.

8 Conclusion

In this paper we introduced and compared strategies with different kinds of
lookahead in regular infinite games. We showed that continuous strategies can
be reduced to uniformly continuous strategies of a special form, namely strategies
with constant lookahead. This result is a first step into a wider – and it seems



266 M. Holtmann, �L. Kaiser, and W. Thomas

rather unexplored – topic. Let us mention some aspects. First, it is straightfor-
ward to present the results in a set-up that is symmetric in the two players. We
also skipped here a lower bound proof for the double exponential size in Theo-
rem 14. It is also possible to think of “infinite lookahead” where, for instance,
the second player may use information about the first player’s sequence up to a
partition of the space of sequences into regular sets.

We showed that bounded lookahead is not enough for continuous strategies in
non-regular games. It is open which functions may be appropriate for uniformly
continuous operators in such games, in particular for context-free games. Also,
it is open whether solvability with continuous or uniformly continuous strategies
is decidable for these games.

References

[1] Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

[2] Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Transactions of the AMS 138, 295–311 (1969)

[3] Walukiewicz, I.: Pushdown processes: Games and model checking. In: Alur, R.,
Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74. Springer, Heidel-
berg (1996)

[4] Cachat, T.: Higher order pushdown automata, the caucal hierarchy of graphs and
parity games. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 556–569. Springer, Heidelberg (2003)

[5] Bouquet, A.J., Serre, O., Walukiewicz, I.: Pushdown games with unboundedness
and regular conditions. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003.
LNCS, vol. 2914, pp. 88–99. Springer, Heidelberg (2003)

[6] Moschovakis, Y.N.: Descriptive Set Theory. Studies in Logic and the Foundations
of Mathematics, vol. 100. North-Holland Publishing Company, Amsterdam (1980)

[7] Trakhtenbrot, B.A., Barzdin, Y.M.: Finite Automata, Behavior and Synthesis.
North Holland, Amsterdam (1973)

[8] Thomas, W., Lescow, H.: Logical specifications of infinite computations. In: de
Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803,
pp. 583–621. Springer, Heidelberg (1994)

[9] Hosch, F.A., Landweber, L.H.: Finite delay solutions for sequential conditions.
In: Nivat, M. (ed.) Automata, Languages and Programming, Paris, France, pp.
45–60. North-Holland, Amsterdam (1972)

[10] Even, S., Meyer, A.: Sequential boolean equations. IEEE Transactions on Com-
puters C-18, 230–240 (1969)

[11] Perrin, D., Pin, J.: Semigroups and automata on infinite words. In: Fountain, J.
(ed.) NATO Advanced Study Institute Semigroups, Formal Language and Groups,
pp. 49–72. Kluwer Academic Publishers, Dordrecht (1995)

[12] Pin, J.: Finite semigroups and recognizable languages: An introduction (1995)
[13] Cohen, R.S., Gold, A.Y.: Omega-computations on deterministic pushdown ma-

chines. Journal of Computer and System Sciences 16, 275–300 (1978)
[14] Finkel, O.: Topological properties of omega context-free languages. Theoreti-

cal Computer Science 262, 669–697 (2001)



Reachability Analysis of
Communicating Pushdown Systems

Alexander Heußner�, Jérôme Leroux, Anca Muscholl, and Grégoire Sutre

LaBRI, Université Bordeaux, CNRS – France

Abstract. The reachability analysis of recursive programs that commu-
nicate asynchronously over reliable Fifo channels calls for restrictions
to ensure decidability. We extend here a model proposed by La Torre,
Madhusudan and Parlato [16], based on communicating pushdown sys-
tems that can dequeue with empty stack only. Our extension adds the
dual modality, which allows to dequeue with non-empty stack, and thus
models interrupts for working threads. We study (possibly cyclic) net-
work architectures under a semantic assumption on communication that
ensures the decidability of reachability for finite state systems. Subse-
quently, we determine precisely how pushdowns can be added to this
setting while preserving the decidability; in the positive case we obtain
exponential time as the exact complexity bound of reachability. A sec-
ond result is a generalization of the doubly exponential time algorithm
of [16] for bounded context analysis to our symmetric queueing policy.
We provide here a direct and simpler algorithm.

Introduction

The verification of safety properties for distributed programs, e.g., client/server
environments, peer-to-peer networks, or Grid applications, relies on the decid-
ability of the reachability problem. In this paper we reconsider recursive queue-
ing concurrent processes (Rqcp), one possible model for such systems which
was studied recently by LaTorre, Madhusudan, and Parlato [16]. It is a natural
idea to combine peer-to-peer asynchronous communication (via point-to-point,
unbounded, reliable Fifo channels) with some automaton-based model for in-
dividual peers (e.g., pushdown automata or Petri nets). We call such combined
models queueing concurrent processes (Qcp). Since communicating finite-state
automata are the most elementary instantiation of Qcp, reachability is in gen-
eral undecidable [6]. Furthermore, adding recursion (i.e., replacing finite-state by
pushdown automata) yields an additional source of undecidability. One of the
main motivations in this paper is to separate these two sources of undecidabil-
ity: we consider behavioral restrictions for which reachability for communicating
finite-state machines is decidable, and then look under which conditions we can
add recursion to the model. The challenging task is to derive conditions that
conserve the simplicity and expressiveness of the model.

� Work supported by the ANR project AVERISS.

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 267–281, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



268 A. Heußner et al.

In general, there are three main directions to cope with the undecidability
of communicating finite-state machines: restricting the communication architec-
ture, assuming that channels are lossy, or adding semantic restrictions, e.g., that
sending/receiving of messages can be scheduled in such a way that runs can
be executed with channels of bounded size. In this paper we stick to the latter
approach, as described in more detail below. Our point of departure is the work
of La Torre et al. [16], which introduced Rqcp together with a behavioral re-
striction on the combined use of channels and pushdowns. Informally, a Rqcp is
well-queueing if pushdown processes can only dequeue (read) messages when the
stack is empty (they can enqueue messages without restriction). Well-queueing
expresses an event-based programming paradigm: tasks are executed by threads
without interrupt, i.e., a thread accepts the next task only after it finished the
current one. One of the results of [16] is that Rqcp have a decidable reachability
problem if and only if their communication architecture is a directed forest; in
the decidable case, the latter paper provides a doubly exponential upper bound
by a reduction to bounded-phase multi-stack pushdown systems [15].

Our contribution. We extend the work of LaTorre et al. [16] in several directions.
First, we add a dual notion to well-queueing: a pushdown process can enqueue
(send) messages only with empty stack (but can dequeue messages without re-
striction). Oriented communication architectures, as presented here, combine
these two notions, by fixing the behaviour of the two endpoints of each chan-
nel. This dual notion to well-queueing arises naturally if one wants to model
interrupts: a server might need to accept tasks from high priority clients inde-
pendently of the status of the running task.

Second, we exhibit a precise characterization of those oriented architectures for
which the Rqcp model has a decidable reachability problem over so-called eager
runs. Informally, a run is eager if the sending of a message is immediately followed
by its reception, a notion closely related to existentially 1-bounded communica-
tion [14]. Eagerly communicating finite-state machines are a well-studied model,
enjoying good expressiveness and decidability properties [10]. Here, we use eager
runs in order to rule out undecidability stemming from unbounded channels.
We show that reachability of Rqcp over eager runs is ExpTime-complete in
the decidable case. This result generalizes and improves the doubly exponential
time decision procedure of [16], which holds for architectures without undirected
cycles (polyforest architectures).

Eagerness is a relatively strong requirement, hence, we show how it arises
rather naturally, by imposing a semantic restriction on the communication flow:
the mutex restriction demands that in every reachable configuration there is no
more than one non-empty channel per cycle. In particular, Qcp over polyforest
architectures are mutex. Actually mutex can be seen as a generalization of the
half-duplex restriction studied in [7].

La Torre et al. [16] propose a second approach to solve the reachability problem
for Rqcp, inspired by recent work on reachability with bounded contexts in
the verification of concurrent programs [19]. They show that bounded-context
reachability for well-queueing Rqcp is decidable in time doubly exponential in



Reachability Analysis of Communicating Pushdown Systems 269

the number of contexts. Again, this result is obtained by a reduction to bounded-
phase multi-stack pushdown systems [15]. Our second main contribution is to
extend the bounded-context result to Rqcp that allow for the two dual notions
of well-queueing. Moreover, our algorithm is direct and simpler than the one
involving bounded-phase multi-stack pushdown systems.

A long version of this paper that includes all proofs omitted due to space
limitations can be found at http://hal.archives-ouvertes.fr/hal-00443529/ .

Related work. In the context of thread programming, other notions of syn-
chronization between pushdowns arise naturally. Earlier publications considered
synchronization via shared memory, such as local/global memory in [4,5] or bags
in [20,12]. The paper [4] showed that bounded-context reachability can be solved
in exponential time, whereas [20] provided an exponential space lower bound for
reachability (without context bounds). More recently, synchronization in the
form of state observation was considered in [2]. The latter model was shown
to be decidable only for acyclic architectures, and is strongly related to lossy
systems [3,9].

1 Queueing Concurrent Processes

We write X ·∪X ′ for the disjoint union of X and X ′. Let Σ denote an alphabet
(i.e., a finite set of letters). We write Σ∗ for the set of all finite words (words for
short) over Σ, and we let ε denote the empty word. Moreover, we use standard
complexity classes such as polynomial space (PSpace), deterministic exponential
time (ExpTime), and doubly exponential time (2ExpTime). For more detailed
definitions the reader is referred to textbooks like [18].

A communication architecture T (or architecture for short) is a pair 〈P ,Ch〉 with
a finite non-empty set P of processes and a finite set of point-to-point channels
Ch ⊆ (P × P) \ idP .

Remark 1. Our definition of architecture forbids self-loops, as well as two distinct
channels in the same direction between a pair of processes (without further
restriction, these settings are immediately Turing equivalent).

Definition 1. A system of queueing concurrent processes (Qcp) over a given ar-
chitecture T = 〈P ,Ch〉 is a tuple A = 〈(Sp)p∈P , (Σp)p∈P , (Δp)p∈P , (s0p)p∈P ,M〉
withM a finite message alphabet. For each process p ∈ P, the tuple 〈Sp, Σp, Δp, s

0
p〉

describes a (local) transition system on the state set Sp with actions from Σp =
Σloc
p ·∪Σcom

p , which are either local (i.e., in Σloc
p ) or communication actions in

Σcom
p = {p!q(m) | (p, q) ∈ Ch and m ∈ M} ∪ {p?q(m) | (q, p) ∈ Ch and m ∈ M}.

Local transitions are given by the rules in Δp ⊆ Sp×Σp×Sp, and the initial state
of process p is s0p.

The global state space is S = p∈P Sp and the global initial state is s0 =
(s0p)p∈P ∈ S. By Σ = · p∈PΣp we denote the set of all possible actions in A.
The size of A is p∈P |Δp|.

http://hal.archives-ouvertes.fr/hal-00443529/


270 A. Heußner et al.

As usual, p!q(m) denotes the send of message m from process p to process q,
whereas q?p(m) denotes the matching receive on process q.

Note also that the Sp and hence S need not necessarily be finite. If S is finite,
we will call A a finite Qcp (or communicating finite-state machine, Cfm). The
local transition systems given by 〈Sp, Σp, Δp, s

0
p〉 could be, for example, finite

automata, counter automata (including Petri nets), pushdown automata. As
usual, we define the semantics of A as labeled infinite-state transition system:

Definition 2. A Qcp A represents an LTS �A� = 〈C,Σ,→, c0〉 with configu-
rations C = S × (M∗)Ch and the initial configuration c0 = s0, (ε, . . . , ε) , i.e.,
all channels are initially empty. We write a configuration as c = 〈s, w〉 where
s = (sp)p∈P is the global state and w = (wp,q)(p,q)∈Ch are the channel contents.
Further, for any p ∈ P and a ∈ Σp, 〈s, w〉 a−→〈s′, w′〉 is a transition in C×Σ×C
with s′ = (s′p)p∈P , w′ = (w′p,q)(p,q)∈Ch, if (sp, a, s′p) ∈ Δp and the following holds:

(i) sq = s′q for all q �= p,
(ii) if a ∈ Σloc

p then w = w′,
(iii) if a ∈ Σcom

p with a = p!q(m) then w′p,q = wp,qm and w′s,t = ws,t
for (s, t) ∈ Ch\{(p, q)},

(iv) if a ∈ Σcom
p with a = p?q(m) then wq,p = mw′q,p and w′s,t = ws,t

for (s, t) ∈ Ch\{(q, p)}.
A finite run ρ in the labeled transition system �A� from a configuration c0 to
cn ∈ C is a sequence 〈c0, a1, c1, a2, c2, · · · , an, cn〉 where ci−1

a−→ ci for 1 ≤ i ≤ n.
The length of ρ is n, and a run of length 0 is defined as ρ = 〈c0〉.

A configuration c ∈ C is reachable in the Qcp A if there exists a finite run
ρ = 〈c0, a1, c1, · · · , cn〉 starting in the initial configuration c0 = c0 and ending in
cn = c. We define the reachability set as ReachA = {c ∈ C | c is reachable in A}.
The reachability question asks for a given A and a configuration c ∈ C whether
c ∈ ReachA. Given a state s ∈ S, the control state reachability question asks
whether one can reach a configuration with (control) state component s regard-
less of the channel content, i.e., whether {s} × (M∗)Ch ∩ ReachA �= ∅. Both
questions are undecidable for finite Qcp with at least two processes that are
connected by two channels [6].

The trace of a run ρ = 〈c0, a1, c1, a2, c2, · · · , an, cn〉 is the sequence of actions
tr(ρ) = a1 · · · an ∈ Σ∗. Since channels are Fifo, we can speak about matching
send/receive pairs: ai, aj form such a pair if (1) ai = p!q(m), aj = q?p(m), and
(2) |{� | � ≤ i, a� = p!q(n), n ∈ M}| = |{� | � ≤ j, a� = q?p(n), n ∈ M}|. We
call two runs ρ, ρ′ order-equivalent if they can be transformed one into the other
by iteratively commuting adjacent transitions labeled by a and b, resp., such
that (i) a, b do not belong to the same process, and (ii) a, b are not a matching
send/receive pair.

Lemma 1. If ρ, ρ′ are order-equivalent runs of A starting in the same configu-
ration, then ρ, ρ′ end in configurations with the same control state.

Definition 3. A run ρ with trace tr(ρ) = a1 · · · an is eager if the following
holds: if ai = p!q(m) for some 0 ≤ i < n then either ai+1 = q?p(m) or no action
aj with j > i is a receive on (p, q).



Reachability Analysis of Communicating Pushdown Systems 271

A channel that does not permit further receives is in its “growing phase”.
A Qcp A is eager if each c ∈ ReachA is reachable by some eager run. Eager

runs, modulo the fact that Definition 3 allows for runs which end in a sequence
of (unmatched) send actions, are closely related to globally 1-bounded runs,
whereas eager Qcp are close to existentially globally 1-bounded Cfm [14,11].
The (control-state) reachability question on eager runs asks whether one can
reach a given (control state) configuration by some eager run.

Recursive QCPs and oriented communication architectures. In the following
we introduce Rqcp together with a symmetric version of the “well-queueing”
property from [16]. Informally speaking, Rqcp are Qcp where all basic processes
are pushdown automata.

A recursive Qcp (Rqcp) is a Qcp given by 〈(Sp)p∈P , Σ, (Δp)p∈P , s0,M, Γ 〉
where each process p is a pushdown process over the local states Sp ⊆ Zp × Γ ∗
with a finite set Zp of control states and the content of the pushdown stack
represented by a word over the stack alphabet Γ ; further, the local actions Σloc

p

contain push(γ) and pop(γ) for each γ ∈ Γ , and we assume that in the initial
state all stacks are empty, i.e., s0 ∈ p∈P(Zp × {ε}).

A well-queueing Rqcp in [16] is one where a process can only receive when
its stack is empty. Here, we dualize this concept by also allowing channels where
the sender (but not the receiver) must have an empty stack.

Definition 4. An architecture T = 〈P ,Ch〉 together with a labeling of the chan-
nels Ch = Chs ∪ Chr as “send restricted” (Chs) and / or “receive restricted”
(Chr), is called oriented.

For pushdown networks the previous definition translates, informally speaking,
as follows: a process p can send on a channel (p, q) ∈ Chs only with empty stack.
Symmetrically, p can receive on a channel (q, p) ∈ Chr only with empty stack.
By definition, channels are restricted at least at one end.

The semantics of an Rqcp R is given by a labeled transition system �A� =
〈C,Σ,→, c0〉 analogously to Definition 2 except for transitions (s, w) a−→(s′, w′)
that correspond to a (local) pushdown transition (sp, a, s′p) ∈ Δp:

(i)’ if a ∈ Σloc
p ,

then w = w′ and further push and pop behave as local pushdown actions;
(ii)’ for a = p!q(m) ∈ Σcom

p ,
we demand additionally to (ii) that if (p, q) ∈ Chs then sp ∈ Zp × {ε};

(iii)’ for a = p?q(m) ∈ Σcom
p ,

we demand additionally to (iii) that if (q, p) ∈ Chr then sp ∈ Zp × {ε}.
Given an oriented architecture T = 〈P ,Ch〉 we will use the following notation,
that forgets about the direction of the channels and focuses on the (un)limited
use of pushdowns: for two processes p, q ∈ P we write p •−◦ q if (p, q) ∈ Ch\Chs

or (q, p) ∈ Ch \ Chr. Moreover, we write p ◦−◦ q if (p, q) ∈ Chs ∩ Chr or (q, p) ∈
Chs ∩ Chr.

Informally, p •−◦ q means that for at least one channel between p and q,
process p can use its stack without restriction. Similarly,



272 A. Heußner et al.

p ◦−◦ q means that neither p nor q can use their stacks when communicating.
Finally, p ◦−• q is equivalent to q •−◦p.

As this notation refers implicitly to a given channel between p and q, we might
have both p •−◦ q as well as p ◦−• q (or p ◦−◦ q) — since both channels (p, q) and
(q, p) may exist.

Remark 2. A channel can be both send and receive restricted, but we exclude
— per definition — channels that are unrestricted at both ends, as this leads
immediately to undecidability: one can reduce right away the intersection of two
context-free languages to the reachability question on a topology with a single
channel that is unrestricted at both ends (and eager runs suffice).

2 Decidable Oriented Architectures

Several factors lead to the undecidability of the (control-state) reachability
question for Rqcp. Particularly, the model is already undecidable even with-
out pushdowns. Our actual motivation in this section is therefore to separate
the undecidability which stems from unbounded Fifo queues from the undecid-
ability originating from an unrestricted usage of pushdowns. Hence, we consider
a restricted version of the control state reachability question, namely the one on
eager runs. In the next section, we show how eager Qcp naturally arise from
some natural (and decidable) restrictions on cyclic communication. The most
simple example of an eager Qcp is an Rqcp on a polyforest architecture.

Definition 5. An oriented architecture T = 〈P ,Ch〉 is called confluent if there
exist distinct processes p = r0, r1, . . . , rk, rk+1 = q (k ≥ 1) in T , satisfying the
following conditions: (1) (ri, ri+1) ∈ Ch∪Ch−1 for all 0 ≤ i ≤ k, and (2) p •−◦ r1
and rk ◦−• q.

p r1 r2 r3 . . . rk q

Fig. 1. Example of a confluent architecture (mixing •−◦ and →= Ch notation)

Theorem 1. An oriented architecture T = 〈P ,Ch〉 admits a decidable Rqcp
control-state reachability problem on eager runs if and only if it is non confluent.
Moreover, the problem is ExpTime-complete in the latter case.

The only-if direction of the theorem above is not difficult to show. The if-
direction is based on two main ingredients: first, we show how to reorder runs
such that we can identify subruns on subarchitectures that start and end with
empty stacks; second, we use induction on subarchitectures.

The subsequent lemma is the core of the remaining proof of Theorem 1.

Lemma 2. Let R be an Rqcp over a non-confluent architecture T , and con-
sider an eager run ρ of R starting with all stacks empty. Further assume that
ρ = ρ1a ρ2 b ρ3 with a, b ∈ Σ such that for some process p ∈ P:



Reachability Analysis of Communicating Pushdown Systems 273

(i) the stack of p is continuously empty during both subruns ρ1 and ρ3, and
continuously non-empty during ρ2, respectively;

(ii) there is no eager run ρ′ that is order-equivalent to ρ and has the form
ρ′ = ρ1c ρ

′
2 d ρ3 where c, d ∈ Σ with c �= a or d �= b.

Then, the stacks of all processes occurring in ρ2 are empty after both ρ1 and ρ2.

Proof. By (ii), each process q occurring in ρ2 has a “proof” for its presence in
ρ2. This proof consists of a simple, unoriented path in T between p and q.

We explain this more formally: notice first that a is necessarily a push action
and b its matching pop action on p. Consider now the first action of some q
occurring in ρ2: this is a communication either with p, or with some different
process r. Thus, we can assume inductively that there is a simple unoriented
path between p and r, which can be extended to a path between p and q.

Since p’s stack is continuously nonempty during ρ2, we know that the com-
munication between p and the first node p′ on the path above is on a channel of
type p •−◦p′. Due to the non-confluent property, we cannot have r ◦−• q; hence,
q’s stack must be empty at the beginning of ρ2. A symmetric argument applies
at the end of ρ2. �

Proposition 1. The control-state reachability problem for Rqcp on eager runs
over non-confluent architectures is ExpTime complete.

Proof. For the upper bound we show how to compute inductively in ExpTime all
pairs of global states (s, s′) ∈ S2 such that there is an eager run over T = 〈P ,Ch〉,
starting in s with stacks and queues empty, as well as ending in s′ with possibly
empty stacks and queues. Actually, we need to compute more, namely for which
sets P ⊆ P of connected processes we can reach s′ from s (with empty stacks
and queues). W.l.o.g. we assume that T is connected.

We (arbitrarily) order the processes in P and
choose the first process p ∈ P that has at least one
edge (channel) of type p •−◦∗ in T and at least one
of type either p ◦−•∗ or p ◦−◦∗ (with ∗ denoting an
arbitrary process in P\{p}). Since the architecture is
non confluent, only two cases can occur if such a pro-
cess does not exist: either (i) T contains no •−◦ edge
at all, or (ii) T = 〈P = 〈r, r1, . . . , rk〉,Ch〉, where:

– a channel of type •−◦ is one of (r, ri), for some i,
– a channel of type ◦−◦ is one of (ri, rj), for

some i, j.

r

r1 rkri

Fig. 2. Case (ii)

Let us first consider case (i) where T has no channel of type •−◦, i.e., all channels
in T are of type ◦−◦. In this case we can reorder any eager run into an order-
equivalent eager run where messages alternate with local pushdown runs, each of
them starting and ending with empty stack. This amounts to solving the control-
state reachability problem for one pushdown automaton of size exponential in
|P|, which is possible in ExpTime.



274 A. Heußner et al.

We consider now case (ii). Here, we may assume w.l.o.g. that r •−◦ ri for every
1 ≤ i ≤ k (just add channels of type r •−◦ ri if there is no channel between r and
ri). Assume that there exists an eager run from s to s′, starting with all stacks
empty. For simplicity we also assume that the run ends with all channels empty
(the special case of unmatched sends can be handled similarly). This run can be
reordered into an order-equivalent eager run ρ of the following form:

ρ = σ0α0m1σ1α1m2σ2α2 · · ·mnσnαn (1)
where
– process r does not occur in σ0 · · ·σn,
– each mi is a message (i.e., send/receive pair) between r and some rj ,
– each αi is a sequence of local (pushdown) actions of r,
– each σi (i < n) starts and ends with all stacks of processes rj empty.

We obtain the previous reordering by scheduling the messages between r and
the rj as late as possible. That is, the run starts first with actions not involving
r (subrun σ0), plus some pushdown actions of r (subrun α0). Then the first
message m1 between r and some rj follows. All remaining actions are in the
future of this message, and σ1 is a run over the rj (which may synchronize
among themselves by communication), etc.

We check that the stacks of the rj are always empty at the beginning/end of
each σi by considering the subruns σ0α0m1σ1, σ0α0m1σ1m2α2σ2, etc.: consider
the first occurrence of some process q occurring e.g. in σ1. Either this occurrence
is the message m1 between q and r (so r •−◦ q), or it is a synchronization with
some ri, so ri ◦−◦ q. In particular, q’s stack must be empty at the end of σ0.

The existence of an eager run as above can be checked by first pre-computing
the control-state reachability for T \ r, which corresponds to the first case previ-
ously considered in this proof (recall that we compute summaries, i.e., all pairs of
global states that can be reached starting/ending with empty stacks and queues).
Then the question for T reduces to the control-state reachability of a pushdown
automaton (that of process p) of size exponential in |P|, thus showing the claim.

We now get back to the situation where T contains some process p ∈ P with
at least one channel of type p •−◦∗ in T , and at least one channel of type either
p ◦−•∗, or p ◦−◦∗ in T .

Consider an (eager) run over T , starting (and possibly ending) with all stacks
empty. Again we assume, for convenience, that all channels are empty at the
end. The run can be reordered such that we obtain an order-equivalent run of
the form ρ0σ0ρ1 · · ·σn−1ρn, where:

– every subrun σi (i < n) starts and ends with empty stacks for all processes
q �= p occurring in σi,

– p’s stack is continuously empty during ρi, and continuously non-empty dur-
ing σi, for each i.

We need to explain why we may assume that the subruns σi start / end with
empty stacks for each q �= p. The reason is that we schedule the internal



Reachability Analysis of Communicating Pushdown Systems 275

push / pop actions of p that start / end a phase with non-empty p-stack such
that push actions have lowest priority, and pop ones have the highest one. Such
push / pop pairs on p delimit the subruns σi and Lemma 2 can be applied to
ρ0σ0ρ1, (ρ0σ0ρ1)σ1ρ2, etc.

The existence of suitable subruns σi can be checked inductively: notice that
channels of type p ◦−•∗ and p ◦−◦∗ can be removed from T , since p’s pushdown
is non-empty during every σi, hence such channels are not used. More formally,
we check for each (connected) subset P ⊆ P with p ∈ P , and each pair of
starting/ending states s = (sq)q∈P , s′ = (s′q)q∈P whether there is a run of
processes from P from s to s′ in the modified architecture, starting/ending with
empty stacks and queues.

Consider now a set P corresponding to processes occurring in some run σi.
Notice first that every process in P can be reached from p via messages involving
only P ; symmetrically, every process in P can reach p via messages involving only
P . For each such set P we can introduce new synchronization messages between
processes in P such that we replace σi by a sequence Si of new messages with
the following properties: the first message in Si is sent by p, the last message is
received by p, and every process in P occurs among the receivers in Si. Such a
sequence Si can be used to enforce that processes in Pi go (in a sort of meta-
transition) from state s = (sq)q∈P to state s′ = (s′q)q∈P , thus replacing σi.
We can enforce that the new messages occur only in form of sequences Si, by
encoding Si with message contents. In order to avoid an exponential blow-up
in the size of the Rqcp we record the possible sequences Si separately. Notice
that using these sequences in the base step of the induction does not affect the
ExpTime upper bound.

We can now apply induction on the modified Rqcp in order to check whether
there is some run of the form ρ′ = ρ0S0ρ1S1 . . . Sn−1ρn. The induction is possible
since we can transform the channels of type p •−◦∗ into type ◦−◦ (since p does
not use its pushdown in ρ′).

To summarize, the induction is done on two parameters: either we decrease
the overall number of channels, or we change at least one channel of type •−◦
into type ◦−◦. We first check the existence of runs σi inductively in exponential
time, by computing reachability for every pair of global states and subset of
processes (of which there are exponentially many). Then we modify the Rqcp
according to the previous calls and check inductively the existence of a single
run ρ′ (again, this is done for each pair of global states and set of processes).

Finally, let us comment on the lower bound: It is known (and probably folk-
lore) that the following problem is ExpTime-complete: checking the emptiness
of the intersection of a pushdown with n finite automata. The hardness follows
easily by a reduction from linearly bounded alternating Turing machines. Ac-
tually, a closely related problem is shown to be ExpTime-hard in [8], namely
the reachability problem for pushdowns with checkpoints. Clearly, the intersec-
tion between a pushdown and n finite automata can be simulated on a topology
T = 〈P ,Ch〉 with P = {r, r1, . . . , rn} and r •−◦ ri for each i. �



276 A. Heußner et al.

3 From Mutex QCP to Eager QCP

The previous section showed how to decide the control state reachability for
Rqcp (and therewith finite Qcp) on eager runs. Nevertheless, restricting the
communication to eager runs seems rather strong at first glance. In the following,
we will show how eagerness arises naturally on two practically relevant commu-
nication architectures: polytrees and cyclic architectures with mutex restriction.
Further, we discuss the reduction of the control state reachability problem for
(possibly infinite) mutex Qcp to their underlying local transition systems, like
e.g., Petri nets.

Any communication architecture T can be regarded as directed graph 〈P ,Ch〉;
let UCycle(T ) be the set of its undirected simple cycles. A cycle is undirected
if we ignore the direction of the channels, and simple if it has no subcycle of
smaller length.

Definition 6. A configuration c of a Qcp A is mutex with respect to a given
architecture T if for every cycle α of UCycle(T ) at most one of the channels
occurring in α is non-empty in c. A Qcp A is called mutex with respect to a
given architecture T if every c ∈ ReachA is mutex.

Before discussing mutex Qcp in detail, we first recall two known results that are
subsumed by our definition of mutex:

Remark 3. A special case of mutex Qcp was considered in [16]: polyforest archi-
tectures over finite Qcp, as well as (well-queueing) root-to-leaf directed forests
for Rqcp. Their decidability proof relied on the idea that, on any tree architec-
ture, we can reorder runs such that first all actions of the root process are sched-
uled, and then, in breadth-first order, the actions of all others. Consequently,
each run could be partitioned into a bounded number of contexts (bounded by
|P|) where in each context only one process executes all its actions by reading on
one unique incoming channel from its tree parent (and — in the case of Rqcp—
solely when its local stack is empty). Hence, the decidability problem reduced to
the control state reachability for a bounded-phase multi-stack pushdown system,
which is known to be decidable in doubly exponential time [15].

We will show in the following that mutex Qcp are eager, and, consequently,
apply the results of the previous section to obtain the decidability of control-
state reachability via a direct proof. Moreover, recall that the complexity of the
algorithm of the previous section is ExpTime, so one exponential less than the
positive results of [16].

Remark 4. Runs over an architecture of two finite processes connected by two
channels where each reachable configuration is mutex are known as “half-duplex
communication”. For these, it is known how to decide the (general) reachability
question by computing a recognizable description of the channel contents [7].
Quasi-stable systems are a semantic ad-hoc extension of this idea to larger, cyclic
architectures of finite Qcp [7], which is subsumed by our mutex condition.



Reachability Analysis of Communicating Pushdown Systems 277

Proposition 2. Given a Qcp A that is mutex with respect to a given architec-
ture T , each of its runs has an order-equivalent eager run.

Proof. In the following, we will differentiate the occurrences of one action by
referring to them as events. For each process p ∈ P occurring in ρ there is a first,
initial event w.r.t. ρ which will be abbreviated fp; further, each receive event
has a preceding matching send in ρ. All events that belong to the same process
are totally ordered. Consequently, we define the partial order “before” (denoted
by <) between events as the transitive closure of the previous two cases. In the
following we will focus only on matched communication events, by considering
send actions on channels that already entered their growing phase as internal
actions.

We will inductively define a reordering for a run ρ whose first configuration
c0 = 〈s, w〉 fulfills wp,q = ε if there exists a receive event q?p in ρ.

Assume we have a run ρ from c to c′ and c fulfills the previous property. First,
we pick an initial send event fp on a channel from process p to q which either
(i) has no matching receive in ρ (i.e., it is the first send in a growing phase), or
(ii) its matching receive on process q is also initial, hence, equal to fq. In case
(i) we schedule fp first and reorder inductively the remaining run starting from
c′′ with c f−→ c′′ towards c′. For case (ii) we first schedule fp and then fq before
we inductively reorder the remaining run starting from c′′ with c

f−→ c′′′ f−→ c′′.
Note than in both cases c′′ satisfies our requirement.

Next we have to show that it is always possible to apply cases (i) or (ii)
above, to any run ρ of our mutex Qcp. The general idea is as follows. Suppose
that we pick an initial send event fp0 on process p0 that has a matching receive
ep0 on process p1, but ep0 is not initial. Then we can restart our search for
an initial event from p1 on. If fp1 is a send, then we proceed as for p0; else,
if fp1 is a receive, we continue with its matching send on process p2. As we
only have finitely many processes, an unsuccessful, repeated search leads to a
cycle in UCycle(T ): 〈p0, p1, p2, . . . , pi, pi+1, . . . , pk, pk+1〉 with pk+1 = pi and all
pi (i ≤ k) pairwise different. Moreover, we show the existence of at least two
non-empty channels on this cycle.

In the following, we slightly abuse notation by writing fi and instead of fp
for the initial event of process pi. We focus on the initial events fi, . . . , fk and
their matching events ei, . . . , ek on processes pi+1, . . . , pk, pk+1 = pi. Obviously,
fj+1 < ej for all i ≤ j ≤ k, since both fj+1, ej occur on process pj+1 and fj+1
is initial. We distinguish the following cases:

(a) all initial events fi, . . . , fk are receives (cf. Fig. 3(a)), then ej+1 < fj+1 < ej
for all i ≤ j ≤ k; hence, we arrive at the contradiction ei < ei;

(b) there are at least two sends among the initial actions, for example fj and
fl with i ≤ j < l ≤ k; consequently, c f−→ c′′ f−→ c′′′ leads to a configuration
which is not mutex (cf. Fig. 3(b) ) and, hence another contradiction;

(c) there is only one send event among the initial events of the cycle, say fi.
Then, fi = fk+1 is before ek, and ek is a send event, too (since all fj with
i < j ≤ k are receives). It is easy to see that ek < fk < ek−1 < · · · < fi+1 <
ei. In particular, all events on each of pi+1, . . . , pk are after ek.



278 A. Heußner et al.

1 . . . +1 . . .

(a)

+1

−1

1 . . . +1 . . .

(b)

. . . +1 . . .

(c)

+1

−1

Fig. 3. Cycles in the proof of Lemma 2 (� : events, arrows : messages)

Consider now an event e with fi < e < ek. Notice that e cannot belong
to any of pi+1, . . . , pk, as all events on these processes must take place after
ek (cf. Fig. 3(c) for e on a process p that does not participate in the cycle);
consequently, the configuration obtained after executing all events before ek
is not mutex, as the channels (pi, pi+1) and (pi, pk) are both non-empty. �

Corollary 1. If a Qcp A is mutex with respect to a given architecture T then
A is eager.

Proposition 3. The control state reachability for finite Qcp that are mutex
with respect to the given architecture is Pspace-complete.

Remark 5. Control-state reachability is decidable for particular infinite-state
mutex Qcp. For example, if all local transition systems are Petri nets, then the
control state reachability question reduces to a Petri net reachability question
which is known to be decidable [17,13].

The mutex property can be checked effectively for Qcp.

Proposition 4. It is PSpace-complete to check whether a finite Qcp is mutex
with respect to a given architecture.

4 Bounded Phase Reachability

Besides their proven practical relevance in the verification of concurrent pro-
grams [19], bounded-context reachability allows to attack the (control-state)
reachability problem on Qcp from a different angle. In this section, we neither
restrict the communication architecture, nor constrain the runs to be eager (or
mutex). The price we pay is a (strong) restriction on the form of the possible
runs, by fixing the number of contexts. We present in this section a construc-
tion that subsumes the 2ExpTime algorithm for bounded-context reachability
for well-queueing Rqcp described in [16]. Recall that the latter algorithm is
based on a reduction to bounded-phase reachability for multi-stack systems. In
contrast, our construction below is direct and simpler.



Reachability Analysis of Communicating Pushdown Systems 279

We define a phase in an Rqcp run ρ over an oriented architecture as a (con-
tiguous) subrun of ρ consisting of actions on a unique process, say p, that are
subject to one of the two restrictions below (defining M -phases and N -phases,
resp.):

(M) Receives are from a unique process, say q, with (q, p) ∈ Ch of type p ◦−• q
or p ◦−◦ q. Sends go to (arbitrarily many) processes r with (p, r) ∈ Ch of
type p •−◦ r.

(N) Sends go to a unique process, say q, with (p, q) ∈ Ch of type p ◦−• q or
p ◦−◦ q. Receives come from (arbitrarily many) processes r with (r, p) ∈ Ch
of type p •−◦ r.

Notice that M -phases are precisely the phases (contexts) used in [16], whereas
N -phases represent the dual notion. We will refer below to the channel (q, p)
(M -phase) resp. (p, q) (N -phase) as the special channel of the phase. A run ρ of
an Rqcp is K-bounded, if we can write ρ = ρ1 · · · ρK , with each ρi a phase as
above.

Theorem 2. Given an Rqcp A and an integer K, the K-bounded control state
reachability problem for A can be solved in time doubly exponential in the number
K of phases (but polynomial in the size of A).

Sketch of proof. The basic idea is to decrease the number of phases in a particular
order:M -phases are deleted for right to left (a sort of pre-computation), whereas
N -phases are deleted from left to right (post-computation). Deleting a phase
i belonging to some process p amounts to synchronizing a finite automaton
obtained from Ap and phase i with the current automaton Aq of the process
communicating with p on the special channel of phase i. We obtain this finite
automaton by exploiting the fact that p’s stack is empty while communicating in
phase i on the special channel. In addition we must ensure that the phase i that
we delete starts and ends with empty p-stack. Finally, for a single phase we need
to solve a reachability problem for a single pushdown with doubly exponentially
many states. The details can be found in the long version of this paper.

Remark 6. Adapting proof ideas from [15,1], we can show that the complexity
bound in Theorem 2 is tight.

5 Conclusion

Applications. Qcp combine an automata-based local process model with point-
to-point communication, which results in an intuitive and simple framework.

Since we subsume well-queueing Rqcp, we also inherit their application do-
mains, e.g., event-based programs. The dual restriction to well-queueing (i.e.,
that sending on a channel is only possible if the stack is empty) covers e.g. “in-
terrupt based” programming models, i.e., threads that can receive messages while
still in recursion, as well as extended sensor networks where peers can collect
and send data while using their pushdown for computations.



280 A. Heußner et al.

q1

q2

q3

q4

(a)

p3

p5 p6

p1 p2

p4

p7

p8

(b)

Fig. 4. Non-confluent architectures: (a) ring, and (b) hierarchical master-worker set-
ting — tree-like architecture with •−◦-channels between master and workers (distribute
tasks and collect results while in computation, send result to own master when compu-
tation finished, i.e., stack empty) as well as ◦−◦-channels between workers of the same
master; note the •−◦-cycle on the top level

Fig. 4 (b) shows an example for non-confluent architectures that are on the rise
with the current focus on Grid computing. The topology depicts a hierarchical
overlay network as implemented, for example, in a master-worker protocols. Here,
mutual communication is restricted with respect to the hierarchy (in general: •−◦
top-down and ◦−◦ between siblings). Notice also the use of the dual notion to
well-queueing, when sending information from lower to higher levels.

Proposition 2 allows for further applications, since it does not assume that
the Qcp is finite: we can combine locally decidable models for multi-threaded
programs (with or without local data), as well as local event-based programs
together with eager (or mutex) communication architectures; natural candidates
for local models would be Petri Nets, Wsts, or multi-set pushdown systems [20].

Outlook. We discussed in detail the class of eager Rqcp (as well as mutex Qcp)
which both generalize the current lineup of decidable models for asynchronously
communicating pushdown systems. Further, we presented an optimal decision
procedure for eager Rqcp over non-confluent architectures in ExpTime, as well
as a direct and simpler construction for bounded phase reachability for Rqcp.

This paper dealt with the most basic form of verification, namely control-state
reachability. More general reachability questions (w.r.t. configurations) may be
interesting to consider. Further decision problems for Qcp, like boundedness or
liveness, will be investigated in future work.

References

1. Atig, M.F., Bouajjani, A., Habermehl, P.: Emptiness of multi-pushdown automata
is 2ETIME-complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257,
pp. 121–133. Springer, Heidelberg (2008)

2. Atig, M.F., Bouajjani, A., Touili, T.: On the reachability analysis of acyclic net-
works of pushdown systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR
2008. LNCS, vol. 5201, pp. 356–371. Springer, Heidelberg (2008)

3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Com-
put. 127(2), 91–101 (1996)



Reachability Analysis of Communicating Pushdown Systems 281

4. Bouajjani, A., Esparza, J., Schwoon, S., Strejcek, J.: Reachability analysis of mul-
tithreaded software with asynchronous communication. In: Sarukkai, S., Sen, S.
(eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 348–359. Springer, Heidelberg (2005)

5. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, pp. 473–487. Springer, Heidelberg (2005)

6. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. of the
ACM 30(2), 323–342 (1983)

7. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inf.
Comput. 202(2), 166–190 (2005)

8. Esparza, J., Kucera, A., Schwoon, S.: Model checking LTL with regular valuations
for pushdown systems. Inf. Comput. 186(2), 355–376 (2003)

9. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theo-
retical Computer Science 256(1-2), 63–92 (2001)

10. Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algo-
rithms for existentially bounded communicating automata. Inf. Comput. 204(6),
920–956 (2006)

11. Genest, B., Kuske, D., Muscholl, A.: On communicating automata with bounded
channels. Fundamenta Informaticae 80, 147–167 (2007)

12. Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs. In:
POPL 2007, pp. 339–350. ACM, New York (2007)

13. Rao Kosaraju, S.: Decidability of reachability in vector addition systems. In: STOC
1982, pp. 267–281. ACM, New York (1982)

14. Lohrey, M., Muscholl, A.: Bounded MSC communication. Inf. Comput. 189(2),
160–181 (2004)

15. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS 2007, pp. 161–170. IEEE, Los Alamitos (2007)

16. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 299–314. Springer, Heidelberg (2008)

17. Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM
J. Comput. 13(3), 441–460 (1984)

18. Papadimitriou, C.: Computational Complexity. Addison Wesley, Reading (1994)
19. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.

In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

20. Sen, K., Viswanathan, M.: Model checking multithreaded programs with syn-
chronous atomic methods. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 300–314. Springer, Heidelberg (2006)



The Complexity of Synchronous Notions of
Information Flow Security

Franck Cassez1,�, Ron van der Meyden2,��, and Chenyi Zhang3

1 National ICT Australia & CNRS, Sydney, Australia
2 University of New South Wales, Sydney, Australia

3 University of Luxembourg, Luxembourg

Abstract. The paper considers the complexity of verifying that a finite
state system satisfies a number of definitions of information flow secu-
rity. The systems model considered is one in which agents operate syn-
chronously with awareness of the global clock. This enables timing based
attacks to be captured, whereas previous work on this topic has dealt
primarily with asynchronous systems. Versions of the notions of nond-
educibility on inputs, nondeducibility on strategies, and an unwinding
based notion are formulated for this model. All three notions are shown
to be decidable, and their computational complexity is characterised.

1 Introduction

Information flow security is concerned with the ability for agents in a system
to deduce information about the activity and secrets of other agents. An in-
formation flow security policy prohibits some agents from knowing information
about other agents. In an insecure system, an agent may nevertheless be able
to make inferences from its observations, that enable it to deduce facts that it
is not permitted to know. In particular, a class of system design flaws, referred
to as covert channels, provide unintended ways for information to flow between
agents, rendering a system insecure.

Defining what it is for a system to satisfy an information flow security policy
has proved to be a subtle matter. A substantial literature has developed that
provides a range of formal systems models and a range of definitions of security.
In particular, in nondeterministic systems it has been found necessary to clarify
the attack model, and distinguish between a passive attacker, which merely aims
to deduce secret information from observations it is able to make from its position
outside the security domain to be protected, and a more active attacker, that
may have planted a Trojan Horse in the domain to be protected, and which
seeks to use covert channels to pass information out of this domain. While this
distinction turns out not to matter in asynchronous systems, in synchronous
settings, it leads to two different definitions of security, known as Nondeducibility
� Author supported by a Marie Curie International Outgoing Fellowship within the

7th European Community Framework Programme.
�� Work supported by an Australian Research Council Discovery grant.

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 282–296, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



The Complexity of Synchronous Notions of Information Flow Security 283

on Inputs (NDI), and Nondeducibility on Strategies (NDS). (The term strategies
in the latter refers to the strategies that a Trojan Horse may employ to pass
information out of the security domain.) Considerations of proof methods for
security, and compositionality of these methods, has lead to the introduction of
further definitions of security, such as unwinding relations and the associated
definition of restrictiveness (RES).

One of the dimensions along which it makes sense to evaluate a definition
of security is the practicality of verification techniques it enables. The early
literature on the topic dealt primarily with theorem proving verification methods,
but in recent years the feasibility of automated verification techniques has begun
to be investigated. This recent work on automated verification of security has
dealt primarily with asynchronous systems models. In this paper we investigate
the complexity of automated verification for a range of definitions of information
flow in a synchronous systems model, in which agents are aware of a global clock
and may use timing information in their deductions. This model is significant
in that a number of timing-based attacks have been demonstrated that, e.g.,
enable cryptographic keys to be deduced just from the amount of time taken to
perform cryptographic operations [Koc96]. It is therefore desirable that systems
designs are free of timing-based covert channels; the asynchronous definitions of
security that have been the focus of much of the literature fail to ensure this.

We study three definitions of security in this paper: synchronous versions of
Nondeducibility on Inputs (NDI), Nondeducibility on Strategies (NDS) and an un-
winding based definition (RES). We consider just a two-agent setting, with agents
L for a low security domain and H for a high security domain, and the (clas-
sical) security policy that permits H to know about L’s activity, but prohibits
L from knowing about the activity of H . We show that all three definitions are
decidable in finite state systems, and with complexities of PSPACE-complete for
NDI, EXPSPACE-complete for NDS, and polynomial time for RES.

The structure of the paper is as follows. Section 2 introduces our systems
model, the definitions of security that we study, and states the main results of
the paper. The following sections discuss the proofs of these results. Section 3
deals with Nondeducibility on Inputs, Section 4 deals with Nondeducibility on
Strategies, and Section 5 deals with the unwinding-based definition. Related lit-
erature is discussed in Section 6, and Section 7 makes some concluding remarks.1

2 Semantic Model and Definitions

We work with a synchronous, nondeterministic state machine model for two
agents, H and L. At each step of the computation, the agents (simultaneously)
perform an action, which is resolved nondeterministically into a state transition.
Both agents make (possibly incomplete) observations of the state of the system,
and do so with awareness of the time.

1 Proof details excluded due to space limitations will appear in the full version.



284 F. Cassez, R. van der Meyden, and C. Zhang

A synchronous machine M is a tuple of the form 〈S,A, s0,→, O, obs〉 where

– S is the set of states,
– A = AH ×AL is a set of joint actions (or joint inputs), each composed of an

action of H from the set AH and an action of L from the set AL,
– s0 is the initial state,
– →⊆ S ×A× S defines state transitions resulting from the joint actions,
– O is a set of observations,
– obs : S × {H,L} → O represents the observations made by each agent in

each state.

We write obsu for the mapping obs(·, u) : S → O, and s a−−→ s′ for 〈s, a, s′〉 ∈→.
We assume that machines are input-enabled, by requiring that for all s ∈ S
and a ∈ A, there exists s′ ∈ S such that s a−−→ s′. We write M

s for the set of
synchronous machines.

A run r of M is a finite sequence r = s0a1s1 . . . ansn with: ai ∈ A and
si

a +1−−−→ si+1 for all i = 0 . . . n− 1. We write R(M) for the set of all runs of M .
We denote the sequence of joint actions a1 . . . an in the run r by Act(r). For each
agent u ∈ {H,L} we define pu : A → Au to be the projection of joint actions
onto agent u’s actions. We write Actu(r) for the sequence of agent u’s actions in
Act(r), e.g., if Act(r) = a1 . . . an then Actu(r) = pu(a1) . . . pu(an).

For a sequence w, and 1 ≤ i ≤ |w|, we write wi for the i-th element of w,
and w[i] for the prefix of w up to the i-th element. We assume agents have
a synchronous view of the machine, making an observation at each moment
of time and being aware of each of their own actions (but not the actions of
the other agent, which are given simultaneously and independently). Given a
synchronous machine M , and u ∈ {H,L}, we define the mappings viewu :
R(M)→ O(AuO)∗ by:

viewu(s0a1s1a2 · · · ansn) = obsu(s0) pu(a1) obsu(s2) pu(a2) · · · pu(an) obsu(sn).

Intuitively, this says that an agent’s view of a run is the history of all its state
observations as well as its own actions in the run. We say that a sequence v of
observations and actions is a possible u view in a system M if there exists a run
r of M such that v = viewu(r). The mapping viewu extends straightforwardly
to sets of runs R ⊆ R(M), by viewu(R) = {viewu(r) | r ∈ R}. We define the
length |v| of a view v to be the number of actions it contains.

We remark that the model is sufficiently expressive to represent an alternate
model in which agents act in turn under the control of a scheduler. We say that
a machine is scheduled if for each state s ∈ S either

– for all actions a ∈ AH and b, b′ ∈ AL, and states t ∈ S, s
(a,b)−−−→ t iff s

(a,b′)−−−→ t,
or

– for all actions a, a′ ∈ AH and b ∈ AL, and states t ∈ S, s
(a,b)−−−→ t iff s

(a′,b)−−−→ t.

This definition says that state transitions in a scheduled machine are determined
by the actions of at most one of the agents (the agent scheduled at that state);



The Complexity of Synchronous Notions of Information Flow Security 285

the other agent has no control over the transition. The model involving machines
under the control of a scheduler of [vdMZ08], in which at most one agent acts
at each step of the computation, can be shown to be interpretable as scheduled
synchronous machines.

We consider a number of different notions of information flow security. Each
definition provides an interpretation for the security policy L→ H , which states
that information is permitted to flow from L to H , but not from H to L. Our
definitions are intended for synchronous systems, in which the agents share a
clock and are able to make deductions based on the time. (Much of the prior
literature has concentrated on asynchronous systems, in which an agent may not
know how many actions another agent has performed.) The first definition we
consider states that L should not be able to infer H actions from its view.

Definition 1. A synchronous machine M satisfies Non-Deducibility on Inputs
(M ∈ NDI) if for every possible L view v in M and every sequence of H actions
α ∈ A∗H with |α| = |v|, there exists a run r ∈ R(M) such that ActH(r) = α and
viewL(r) = v.

Intuitively, in a synchronous system, L always knows how many actions H has
performed, since this is always identical to the number of actions that L has itself
performed. In particular, ifL has made view v, thenL knows thatH has performed
|v| actions. The definition says that the system is secure if this is all that L can
learn about what sequence of actions H has performed. Whatever L observes is
consistent with any sequence of actions byH of this length. More precisely, define
KL(v) for an L view v to be the set ofH action sequencesActH(r) for r a run with
v = viewL(r); this represents what L knows about H ’s actions in the run. Then
M ∈ NDI iff for all possible L views v we have KL(v) = A

|v|
H .

The definition of NDI takes the viewpoint that a system is secure if it is not
possible for L to make any nontrivial deductions about H behaviour, provided
that H does not actively seek to communicate information to L. This is an
appropriate definition when H is trusted not to deliberately act so as to com-
municate information to L, and the context is one where H is equally likely to
engage in any of its possible behaviours. In some circumstances, however, NDI
proves to be too weak a notion of security. In particular, this is the case if the
attack model against which the system must be secure includes the possibility of
Trojan Horses at the H end of the system, which must be prevented from com-
municating H secrets to L. The following example, due in essence to Wittbold
and Johnson [WJ90] shows that it is possible for a system to satisfy NDI, but
still allow for L to deduce H information.

Example 1. We present a synchronous machine that satisfies NDI in Fig. 1. We
use the convention in such figures that the observations are shown on a state
s in the form of obsH(s)/obsL(s). Edges are labelled with joint actions (a, b)
where a ∈ AH and b ∈ AL. When a is x this means that there is such an edge
for all a ∈ AH . In this example the action sets are AH = {0, 1}, AL = {0}.
Note that in state s1 and s2, L’s observation in the next state is determined
as the exclusive-or of H ’s current observation and H ’s action. The system is in



286 F. Cassez, R. van der Meyden, and C. Zhang

0/0

s0

0/0

s1

1/0

s2

0/0

s3

0/1

s4

(x, 0)

(x, 0)

(x, 0)

(0, 0)

(0, 0)

(1, 0)

(1, 0)

(x, 0)

(x, 0)

Fig. 1. A synchronous machine in NDI, but not in NDS, where x ∈ {0, 1}

NDI since every H action sequence is compatible with every L view of the same
length. For example, the L view 00000 is consistent with H action sequence x0
(path s0s1s3) and with H action sequence x1 (path s0s2s3). Nevertheless, H
can communicate a bit b of information to L, as follows. Note that H is able
to distinguish between state s1 and s2 by means of the observation it makes
on these states (at time 1). Suppose b = 1, then H chooses action 1 at s1 and
action 0 at s2; in either case the next state is s4, and L observes 1. Alternately,
if b = 0, then H chooses action 0 at s1 and action 1 at s2; in either case the next
state is s3, and L observes 0. Whatever the value of b, H has guaranteed that L
observes b at time 2, so this bit has been communicated. Intuitively, this means
that the system is unable to block Trojan Horses at H from communicating with
L, even though it satisfies NDI. (The structure can be repeated so that H can
communicate a message of any length to L in plaintext.) �	
The essence of this example is that L is able to deduce H secrets based not just
on its knowledge of the system, but also its knowledge that H is following a
particular strategy for communication of information to L. In response to this
example, Wittbold and Johnson proposed the following stronger definition of
security. First, define an H strategy in a system M to be a function π mapping
each possible view of H in M to an H action. Intuitively, H ’s behaviour must
depend on what H has been able to observe in the system. Say that a run
r = s0a1s1 . . . ansn is consistent with an H strategy π if for all i = 0 . . . n − 1,
we have pH(ai+1) = π(viewH(s0a1s1 . . . aisi)). We write R(M,π) for the set of
runs of M that are consistent with the H strategy π.

Definition 2. A synchronous system M satisfies Nondeducibility on Strategies
(M ∈ NDS), if for all H strategies π1, π2 in M , we have viewL(R(M,π1)) =
viewL(R(M,π2)).

Intuitively, this definition says that the system is secure if L is not able to
distinguish between different H strategies by means of its views. In Example 1,
H uses a strategy when b = 1 that produces the L view 00001 that is not
produced when H uses the strategy for b = 0. Thus, the sets of L views differ
for these two strategies, so the system is not in NDS.



The Complexity of Synchronous Notions of Information Flow Security 287

An alternate formulation of the definition can be obtained by noting that for
every possible L view v, there is an H strategy π such that v ∈ viewL(R(M,π)),
viz., if v = viewL(r), we take π to be a strategy that always performs the same
action at each time i < |r| as H performs at time i in r. Thus, we can state the
definition as follows:

Proposition 1. M ∈ NDS iff for all H strategies π in M , we have
viewL(R(M,π)) = viewL(R(M)).

This formulation makes clear that H cannot communicate any information to L
by means of its strategies. It is also apparent that allowing H strategies to be
nondeterministic (i.e., functions from H views to a set of H actions) would not
lead to a different definition of NDS, since the more choicesH has in a strategy the
more L-views are compatible with that strategy. We remark that in asynchronous
systems (in which we use an asynchronous notion of view), similarly defined
notions of non-deducibility on inputs and non-deducibility on strategies turn
out to be equivalent [FG95, vdMZ06]. The example above shows that this is not
the case in synchronous machines, where the two notions are distinct.

Nondeducibility-based definitions of security are quite intuitive, but they turn
out to have some disadvantages as a basis for secure systems development. One
is that they are not compositional: combining two systems, each secure according
to such a definition, can produce a compound system that is not secure [McC88].
For this reason, some stronger, but less intuitive definitions have been advocated
in the literature.

One of these, McCullough’s notion of restrictiveness [McC88], is closely related
to an approach to formal proof of systems security based on what are known as
“unwinding relations.” A variety of definitions of unwinding relations have been
proposed in the literature [GM84, Rus92, Man00b, BFPR03], in the context of
a number of different underlying systems models and associated definitions of
security for which they are intended to provide a proof technique. We propose
here a variant of such definitions that is appropriate to the machine model we
consider in this paper, drawing on definitions proposed by van der Meyden and
Zhang [vdMZ08] for machines acting under the control of a scheduler.

A synchronous unwinding relation on a system M is a symmetric relation
∼⊆ S × S satisfying the following:

– s0 ∼ s0,
– s ∼ t implies obsL(s) = obsL(t).

– s ∼ t implies for all a1, a2 ∈ AH and a3 ∈ AL, if s
(a1,a3)−−−−→ s′ then there

exists a state t′ such that t
(a2,a3)−−−−→ t′, and s′ ∼ t′.

Intuitively, an unwinding relation is a bisimulation-like relation over S that shows
L observations are locally uncorrelated with H actions.

Definition 3. A synchronous machine M satisfies restrictiveness (M ∈ RES),
if there exists a synchronous unwinding relation on M .



288 F. Cassez, R. van der Meyden, and C. Zhang

0/0

s0

0/0

s1

0/0

s2

0/0

s3

0/0

s4

0/1

s5

(0, 0)

(1, 0)

(1, 0)

(x, 0)

(x, 0)

(x, 0)

(x, 0)

(x, 0)

(x, 0)

Fig. 2. A synchronous machine M in NDS, but not in RES, where x ∈ {0, 1}. Every state
s is labelled with a pair obsH(s)/obsL(s).

Part of the significance of RES is that it provides a proof technique for our
notions of nondeducibility, as shown by the following result, which relates the
three notions of security we have introduced:

Theorem 1. The following containments hold and are strict: RES ⊂ NDS ⊂ NDI.

Example 2. We present a machine in fig. 2 that satisfies NDS but does not satisfy
RES. In this system we let AH = {0, 1}, AL = {0}. We use the conventions
from Example 1. One may easily observe that L’s view is in the pattern of
000((00)∗ + (01)∗) all of which are compatible with every possible H strategy.
However, there does not exist a synchronous unwinding relation to relate s0 to
s0. Suppose there were such a relation ∼ such that s0 ∼ s0, then for joint actions

(0, 0) and (1, 0), we have s0
(0,0)−−−→ s1, s0

(1,0)−−−→ s2 and s0
(1,0)−−−→ s3, and we would

require s1 to be related to either s2 or s3. However, neither s2 nor s3 can be
related to s1: from s2 user L can only observe (00)∗ in the future, and from s3
only (01)∗ can be observed by L. Note from s1 both (00)∗ and (01)∗ are possible
for L. �	
Our main contribution in this paper is to characterise the complexity of checking
the three notions of security we have introduced above. The results are given in
the following theorem:

Theorem 2. Restricted to finite state synchronous machines, and with respect
to PTIME reductions,

1. NDI is PSPACE-complete,
2. NDS is EXPSPACE-complete, and
3. RES is in PTIME.

We remark that the lower bound results for NDI and NDS require only scheduled
machines, so these problems are already PSPACE-hard and EXPSPACE-hard,
respectively, on this subclass. We describe the proof of these three claims in the
following three sections, in turn.



The Complexity of Synchronous Notions of Information Flow Security 289

3 Synchronous Nondeducibility on Inputs

In this section we establish the complexity of NDI, Theorem 2(1).

3.1 NDI: Upper Bound

Stating the definition in the negative, a system is not in NDI if there exists an
L view v and a sequence of H actions α with |α| = |v| such that there exists no
run r with ActH(r) = α and viewL(r) = v. We show that NDI is decidable by a
procedure that searches for such an L view v and H action sequence α. The key
element of the proof is to show that we need to maintain only a limited amount
of information during this search, so that we can bound the length of the witness
(v, α), and the amount of space needed to show that such a witness exists.

To show this, given a sequence α ∈ A∗H and a possible L view v, with |α| = |v|,
we define the set K(α, v) to be the set of all final states of runs r such that
ActH(r) = α and viewL(r) = v. For the system M define the labelled transition
system L(M) = (Q, q0,⇒) as follows:

1. Q = S × P(S),
2. q0 = (s0, {s0}),
3. ⇒ is the labelled transition relation on Q with labels in AH × AL × AH ,

defined by (s, T ) ⇒(a,b,a′) (s′, T ′) if a ∈ AH , b ∈ AL, a′ ∈ AH such that

s
(a,b)−−−→ s′ and T ′ = {t′ ∈ S | for some t ∈ T we have t

(a′,b)−−−→ t′ and obsL(t′) =
obsL(s′)}.

Intuitively, the component s in a state (s, T ) ∈ Q is used to ensure that we
generate an L view v that is in fact possible. The components a, b in a transition
(s, T )⇒(a,b,a′) (s′, T ′) represent the actions used to generate the run underlying
v, and the component a′ is used to generate a sequence α. The set T represents
K(α, v). More precisely, we have the following result:

Lemma 1. If q0 ⇒(a1,b1,a
′
1) (s1, T1) ⇒ · · · ⇒(a ,b ,a′ ) (sn, Tn), then the se-

quence v = obsL(s0)b1obsL(s1) . . . bnobsL(sn) is a possible L view, and α =
a′1 . . . a′n is a sequence of H actions such that |v| = |α| and K(α, v) = Tn.

Conversely, for every possible L view v with |v| = n, and sequence of H actions
α = a′1 . . . a

′
n, there exists a path q0 ⇒(a1,b1,a

′
1) (s1, T1)⇒ · · · ⇒(a ,b ,a′ ) (sn, Tn)

such that v = obsL(s0)b1obsL(s1) . . . bnobsL(sn) and K(α, v) = Tn.

We now note that for an H action sequence α and a possible L view v, with
|v| = |α|, there exists no run r such that ActH(r) = α and viewL(r) = v iff
K(α, v) = ∅. The existence of such a pair (α, v), is therefore equivalent, by
Lemma 1, to the existence of a path in L(M) from q0 to a state (s, T ) with
T = ∅. This can be decided in NSPACE(O(|M |)) = DSPACE(O(|M |2)) ⊆
PSPACE. This proves the following theorem.

Theorem 3. M ∈ NDI is decidable in PSPACE.

We note, moreover, that since there are at most |S| × 2|S| states in Q, if there
exists a pair (α, v) witnessing that M �∈ NDI there exists such a pair with |α| ≤
|S| × 2|S|.



290 F. Cassez, R. van der Meyden, and C. Zhang

3.2 NDI: Lower Bound

We show that NDI is PSPACE-hard already in the special case of scheduled ma-
chines. The proof is by a polynomial time reduction from the problem of deciding
if the language L(A) accepted by a nondeterministic finite state automaton A
on alphabet Σ is equal to Σ∗ \ {ε}. This is easily seen to be a PSPACE-hard
problem, since testing L(A) = Σ∗ is known to be PSPACE-hard [SM73].

Let A = 〈Q,Q0, Σ, δ, F 〉 be a nondeterministic finite state automaton (with-
out ε-transitions), with states Q, initial states Q0 ⊆ Q, alphabet Σ, transition
function δ : Q × Σ → P(Q), and final states F . Without loss of generality, we
assume Q0 ∩ F = ∅.2 We define M(A) = 〈S,A, s0,→, obs, O〉 to be a scheduled
machine, and use a function sched : S → {H,L} to indicate the agent (if any)
whose actions determine transitions. In view of this, when sched(s) = u and
a ∈ Au, we may write s a−→ t to represent that s b−→ t for all joint actions b with
pu(b) = a. The components of M(A) are defined as follows.

– S = Q ∪ {s0, s1, s2, s3}, where Q ∩ {s0, s1, s2, s3} = ∅,
– sched(s0) = H and sched(s) = L for all s ∈ S \ {s0},
– A = AH ∪AL where AL = Σ and AH = {h, h′},
– O = {0, 1},
– obs : {H,L}× S → O with obsH(s) = 0 for all s ∈ S and obsL(s) = 0 for all
s ∈ S \ {s2}, and obsL(s2) = 1.

– −→⊆ S × A × S is defined as consisting of the following transitions (using
the convention noted above)

• s0 h−−→ q for all q ∈ Q0, and s0
h′−−→ s1.

• s1 a−−→ s1 and s1
a−−→ s2 for all a ∈ Σ,

• s2 a−−→ s2 for all a ∈ Σ,
• s3 a−−→ s3 for all a ∈ Σ,
• for q, q′ ∈ Q and a ∈ AL = Σ we have q a−−→ q′ for all q′ ∈ δ(q, a)
• for q ∈ Q and a ∈ AL = Σ such that δ(q, a) ∩ F �= ∅, we have q a−−→ s2,
• for q ∈ Q and a ∈ AL = Σ such that δ(q, a) = ∅, we have q a−−→ s3.

The construction of M(A) from A can be done in polynomial time.

Proposition 2. L(A) = Σ∗ \ {ε} iff M(A) ∈ NDI.

Proof. Intuitively, the runs of M(A) produce two sets of L views. Runs in which
H does h′ in the first step produce all L views in 0Σ0(Σ0)∗(Σ1)∗. Runs in which
H does h in the first step correspond to simulations of A and produce L views
in 0Σ0(Σ0)∗ or of the form 0Σ0a10 . . . an−10an1(Σ1)∗ with a1 . . . an ∈ L(A).
Note that L may obtain any view in 0Σ0(Σ0)∗ by means of a run that stays in
Q for as long as possible, and moves to s3 whenever an action is not enabled.
Views in 0Σ0a10 . . . an−10an1(Σ1)∗ come from runs that pass through Q and
then jump to s2. Note that since H is not scheduled after the first step, replacing
2 This is just to let ε �∈ L(A). If not, we apply unfolding on the initial states, and

study the resulting automaton which accepts the language L(A) \ {ε}.



The Complexity of Synchronous Notions of Information Flow Security 291

any action by H after the first step in a run by any other action of H results in
another run, with no change to the L view. Thus the only thing that needs to
be checked to determine whether M(A) ∈ NDI is whether the same can be said
for the first step.

– For the ‘only if’ part, suppose L(A) = Σ∗ \ {ε}. We show that M(A) ∈ NDI.
Let r = s0(b1, a1)t1 . . . (bn, an)tn be a run of M(A), with the bi ∈ AH and
the ai ∈ AL. Let b′1 . . . b

′
n be any sequence of actions in AH . If b′1 = h′,

then it is clear that we can find a run r = s0(b′1, a1)t′1 . . . (b
′
n, an)t

′
n with

viewL(r) = viewL(r′). On the other hand, if b′1 = h then the same is true,
since L(A) = Σ∗ \ {ε}. Thus, the run required by M(A) ∈ NDI has been
shown to exist.

– For the ‘if’ part, suppose there is a word w = a1a2 . . . an �∈ L(A). Then for
an arbitrary a0 ∈ Σ, the L view 0a00a10a2 . . . an1 cannot be obtained from
runs in which the first H action is h, because otherwise w would be accepted
by A. However this view is obtained from a run in which the first action is
h′. Therefore M(A) �∈ NDI. �	

4 Nondeducibility on Strategies

In this section we establish the complexity of NDS, Theorem 2(2).

4.1 NDS: Upper Bound

For the proof that NDS is decidable in EXPSPACE, we show that the problem
is in DSPACE(2O(n)).

We use characterization of NDS given in Proposition 1. Let π be an H strategy,
let α be an H view, and let β be an L view, with |α| ≤ |β|. Say that π excludes
β if there does not exist a run r consistent with π such that β = viewL(r). Since
always R(M,π) ⊆ R(M), by Proposition 1, a system M satisfies NDS if it is not
the case that there exists a possible L view β in M and a strategy π such that π
excludes β. We first give a lemma that enables strategies excluding a particular
L view to be put into a uniform structure.

Given an H view α ∈ viewH(R(M,π)), define K(α, π, β) to be the set of all
final states of runs r consistent with π such that viewH(r) = α and viewL(r) is
a prefix of β.

Lemma 2. If there exists a strategy π that excludes β, then there exists a strat-
egy π′ that also excludes β, and has the property that K(α, π′, β) = K(α′, π′, β)
and |α| = |α′| implies π′(α) = π′(α′) for all H views α and α′.

Proof. Suppose that π excludes β. For purposes of the proof, note that we can
assume without loss generality that β is infinite — this helps to avoid men-
tion of views longer than β as a separate case.3 It is convenient to consider K
3 Note that it is equivalent to say that π excludes some prefix of β.



292 F. Cassez, R. van der Meyden, and C. Zhang

and strategies π to be defined over the larger set P = O(AHO)∗ rather than
viewH(R(M,π)). In case of K, we take K(α, π, β) = ∅ when there is no run r
consistent with π such that viewH(r) = α and viewL(r) is a prefix of β.

Let f be any mapping from P to P such that for all α, α′ ∈ P we have
(1) |f(α)| = |α| and (2) K(α, π, β) = K(f(α), π, β), and (3) if |α| = |α′| and
K(α, π, β) = K(α′, π, β), then f(α) = f(α′). Such a mapping always exists;
intuitively, it merely picks, at each length, a representative f(α) ∈ [α]∼ of the
equivalence classes of the equivalence relation defined by α ∼ α′ if K(α, π, β) =
K(α′, π, β).

Now define the mapping g on P as follows. Let α0 = OH(s0) be the only
possible H view of length 0. For α ∈ P of length 0, we define g(α) = α0 if α = α0
and g(α) = α otherwise. For longer α, we define g(αao) = f(g(α))π(f(g(α))o.
Also, define the strategy π′ by π′(α) = π(f(g(α))).

We claim that for all α ∈ P we have K(α, π′, β) = K(g(α), π, β). The proof is
by induction on the length of α. The base case is straightforward, since α0
is consistent with all strategies, so K(α0, π

′, β) = {s0} = K(α0, π, β), and
K(α, π′, β) = ∅ = K(α, π, β) for α �= α0. Suppose the claim holds for α ∈ P
of length i. Let αao ∈ P . By induction and (2), K(α, π′, β) = K(g(α), π, β) =
K(f(g(α)), π, β). Since action a = π′(α) = π(f(g(α)), K(αao, π′, β) is equal to
K(f(g(α))ao, π, β) = K(g(αao), π, β), as required.

To see that π′ has the required property, if K(α, π′, β) = K(α′, π′, β) with
|α| = |α′|, then we haveK(g(α), π, β) = K(g(α′), π, β). By (3) we have f(g(α)) =
f(g(α′)). Therefore π′(α) = π(f(g(α))) = π(f(g(α′))) = π′(α′) by definition.

Since π excludes β, there exists a length n such that for all α ∈ P with
|α| = n, we have K(α, π, β) = ∅. Thus, we also have for all α of length n that
K(α, π′, β) = K(g(α), π, β) = ∅. This means that π′ also excludes β. �	
Based on Lemma 2, we construct a transition system (Q, q0 ⇒) that simulta-
neously searches for the strategy π and an L view β that is omitted by π. The
states Q are sets of sets k ⊆ S. The initial state q0 is {{s0}}. We use an “up-
date” function δa ,o ,a ,o : P(S) → P(S), for each aL ∈ AL, aH ∈ AH , and
oL, oH ∈ O, defined by

δa ,o ,a ,o (k) = {t ∈ S | there exists s ∈ k with s
(a ,a )−−−−−→ t and

obsH(t) = oH and obsL(t) = oL}.

The transitions are defined as follows: q ⇒(ρ,a ,o ) q′ if ρ : q → AH , aL ∈ AL
and oL ∈ O, and q′ = {δa ,o ,a ,o (k) | k ∈ q and aH = ρ(k) and oH ∈ O}.
Intuitively, each state q represents a collection of all possible knowledge sets
that H can be in at a certain point of time, while attempting to omit some
sequence β. More specifically, each set k in q ∈ Q corresponds to an H view α
such that k = K(α, π, β). In a transition, we both determine the next phase of
π, by extending π so that π(α) = ρ(K(α, π, β)), and extend β to βaLoL.

The following results justify the correspondence between this transition sys-
tem and NDS.



The Complexity of Synchronous Notions of Information Flow Security 293

Lemma 3. There exists a strategy π and a Low view β such that π excludes β,
iff there exists a path q0 ⇒∗ qn = {∅}.
We obtain the claimed complexity bound from Lemma 3, simply by noting that it
reduces NDS to a reachability problem in the transition system. Since the states
of the system can be represented in space |S| · 2|S| = 2O(|S|), we obtain from
Savitch’s theorem that we can do the search in DSPACE(2O(|S|)).

4.2 NDS: Lower Bound

To show that NDS is EXPSPACE-hard, we show how to encode the game BLIND-
PEEK of Reif [Rei84]. We need only scheduled machines for the encoding, so
the problem is EXPSPACE-hard already for this subclass.

BLIND-PEEK is a variant of the two-player game PEEK introduced by Stock-
meyer and Chandra [SC79]. A PEEK game consists of a box with two open sides
and containing horizontally stacked plates; the players sit at opposite sides of
the box. Each plate has two positions, ‘in’ and ‘out’, and contains a knob at one
side of the box, so that this plate can be controlled by one of the players. At
each step, one of the two players may grasp a knob from his side and push it ‘in’
or ‘out’. The player may also pass. Both the top of the box and the plates have
holes in various positions, and each hole is associated to a player. If, just after a
move of player a ∈ {1, 2}, the plates are positioned so that for one of the player’s
holes, each plate has a hole positioned directly underneath that hole, so that the
player can peek through a sequence of holes from the top of the box to the bot-
tom, then player a wins. In PEEK, both players can observe the position of all
plates at all times. BLIND-PEEK [Rei84] is a modification of PEEK in which
player 1’s side of the box is partially covered, so that it is not possible for player
1 to see the positions of the plates controlled by player 2. Deciding whether there
exists a winning strategy for player 1 in a PEEK game is EXPTIME-hard, and
it is EXPSPACE-hard in the case of BLIND-PEEK. We make a reduction from
a BLIND-PEEK game to achieve the lower bound result for NDS.

Due to space limitations, we just give a brief sketch of the construction. Given
an instance G of BLIND-PEEK, we construct a synchronous system M(G), with
the following property: player 1 has a winning strategy in G iff there exists an
L view vL and an H strategy π that excludes vL in M(G). Note that since
player 1 plays blindfold in G, a player 1 strategy can be represented as simply
a sequence of player 1 moves, rather than a function from player 1 views to
player 1 moves. This sequence of player 1 moves will be encoded in the L view
vL. Nondeterminism will be used to represent the universal behaviour of player
2, and also to guess certain aspects of game state transitions. The role of the
H strategy π in the encoding will be to perform certain checking operations.
We make use of the sets K(vH , π, vL) to represent states of G. H will observe
all actions of H and L in the game, so H is always aware of the game state.
However, there remains some uncertainty in H ’s knowledge of the state of the
system M(G) — we use this to represent the positions of the n plates in the
game as a set of n states of the system M(G).



294 F. Cassez, R. van der Meyden, and C. Zhang

5 Synchronous Bisimulation-Based Notions

In this section we establish the complexity of RES, Theorem 2(3). We first note:

Lemma 4. 1. The largest synchronous unwinding relation is transitive.
2. If all states in M are reachable then the largest synchronous unwinding re-

lation ∼ is an equivalence relation.
3. A system satisfies RES iff its restriction to its reachable states satisfies RES.

It is not hard to show that finding the largest synchronous unwinding relation (if
any exists) on the reachable fragment of a machine 〈S,A, s0,→, O, obs〉 can be
done in polynomial time. The following algorithm, which works in O(|S|3×|→|)
time, resembles the algorithm for calculating the relational coarsest partition by
Kanellakis and Smolka [KS83].

Algorithm 1 Let So = {s ∈ S | obsL(s) = o}, and the initial partition P0 =
{So | o ∈ O} ∪ pbad with pbad = ∅. We repeat the following for all i ≥ 0 until
termination. Try every p1, p2 ∈ Pi in the following transformation rules:

1. If there exist s ∈ p1, a1, a2 ∈ AH and a3 ∈ AL such that (1) there exist

s
(a1,a3)−−−−→ t1 and t1 ∈ p2, and (2) s

(a2,a3)−−−−→ t2 implies t2 �∈ p2, then Pi+1 =
Pi \ {p1, pbad} ∪ {p1 \ {s}, pbad ∪ {s}}.

2. If there exist a1 ∈ AH and a2 ∈ AL, and we can split p1 into nonempty sets

p11 and p12 such that (1) for all s1 ∈ p11, {t′ ∈ S | s1 (a1,a2)−−−−→ t′} ∩ p2 �= ∅
and (2) for all s2 ∈ p12, {t′ ∈ S | s2 (a1,a2)−−−−→ t′} ∩ p2 = ∅, then we let
Pi+1 = Pi \ {p1} ∪ {p11, p12}.

When neither transformation rule applies, Pi+1 = Pi, and we return Pi.

The above algorithm produces the coarsest partition over S according to the def-
inition of synchronous unwinding, which yields a relation that is not necessarily
reflexive. If (s0, s0) is within that relation then the system is in RES. In practice,
whether or not (s0, s0) is still within a ‘good’ partition can be checked on-the-fly:
note that once (s0, s0) is moved into pbad, the algorithm can immediately return
false, indicating that the system is not in RES.

6 Related Work

In asynchronous machines the verification complexities of NDI and NDS are
both PSPACE-complete, and RES (based on asynchronous unwinding) is in
polynomial time [FG95, FG96, vdMZ07]. Interestingly, PSPACE is also the com-
plexity result for verifying Mantel’s BSP conditions [Man00a] on asynchronous
finite state systems. For (asynchronous) push-down systems, the verification
problem is undecidable [DHK+08].

A number of works have defined notions of security for synchronous or timed
systems, but fewer complexity results are known. Köpf and Basin [KB06] define



The Complexity of Synchronous Notions of Information Flow Security 295

a notion similar to RES and show it is PTIME decidable. Similar definitions are
also used in the literature on language-based security [Aga00, VS97].

Focardi et al [FGM00] define a spectrum of definitions related to ours in a
timed process algebraic setting, and state a decidability result for one of them,
close to our notion tNDS. However, this result concerns an approximation to
the notion tBNDC that is their real target, and they do not give a complexity
result. Beauquier and Lanotte defined covert channels in timed systems with
tick transitions by using strategies [BL06]. They prove that the problem of the
existence of a covert channel in such systems is decidable. However, their defini-
tion of covert channel requires that H and L have strategies to enforce a system
into sets of runs with projections into disjoint sets of L views. Intuitively, the
induced definition on free of covert channels turns out to be a weaker notion
than NDS.

7 Conclusion

We remarked above that nondeducibility-based notions of security may have
the disadvantage that they do not readily support a compositional approach
to secure systems development, motivating the introduction of unwinding-based
definitions of security. The complexity results of the present paper can be inter-
preted as lending further support to the value of unwinding-based definitions.
We have found that the two nondeducibility notions we have considered, while
both decidable, are intractable. On the other hand, the unwinding-based notion
of synchronous restrictiveness has tractable complexity. This makes this defi-
nition a more appropriate basis for automated verification of security. Even if
the desired security property is nondeducibility on inputs or nondeducibility on
strategies, it is sufficient to verify that a system satisfies synchronous restrictive-
ness, since this is a stronger notion of security. It remains to be seen whether
there is a significant number of practical systems that are secure according to the
nondeducibility-based notions, but for which there does not exist a synchronous
unwinding. If so, then an alternate methodology needs to be applied for the
verification of security for such systems.

References

[Aga00] Agat, J.: Transforming out timing leaks. In: Proc. ACM Symp. on Principles
of Programming Languages, pp. 40–53 (2000)

[BFPR03] Bossi, A., Focardi, R., Piazza, C., Rossi, S.: Bisimulation and unwinding for
verifying possibilistic security properties. In: Proc. Int. Conf. on Verication,
Model Checking, and Abstract Interpretation, pp. 223–237 (2003)

[BL06] Beauquier, D., Lanotte, R.: Hiding information in multi level security sys-
tems. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.)
FAST 2006. LNCS, vol. 4691, pp. 250–269. Springer, Heidelberg (2007)

[DHK+08] D’Souza, D., Holla, R., Kulkarni, J., Ramesh, R.K., Sprick, B.: On the
decidability of model-checking information flow properties. In: Proc. Int.
Conf. on Information Systems Security, pp. 26–40 (2008)



296 F. Cassez, R. van der Meyden, and C. Zhang

[FG95] Focardi, R., Gorrieri, R.: A classification of security properties for process
algebras. Journal of Computer Security, 5–33 (1995)

[FG96] Focardi, R., Gorrieri, R.: The compositional security checker: A tool for
the verification of information flow security properties. Technical Report
UBLCS-96-14, Università di Bologna (August 1996)

[FGM00] Focardi, R., Gorrieri, R., Martinelli, F.: Information flow analysis in a
discrete-time process algebra. In: Proc. Computer Security Foundation
Workshop, pp. 170–184 (2000)

[GM84] Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: Proc.
IEEE Symp. on Security and Privacy, p. 75 (1984)

[KB06] Köpf, B., Basin, D.A.: Timing-sensitive information flow analysis for syn-
chronous systems. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ES-
ORICS 2006. LNCS, vol. 4189, pp. 243–262. Springer, Heidelberg (2006)

[Koc96] Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

[KS83] Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and
three problems of equivalence. In: Proc. 2nd Annual ACM Symp. on Prin-
ciples of Distributed Computing, New York, NY, pp. 228–240 (1983)

[Man00a] Mantel, H.: Possiblistic definitions of security – an assembly kit. In: Proc.
Computer Security Foundations Workshop, pp. 185–199 (2000)

[Man00b] Mantel, H.: Unwinding security properties. In: Cuppens, F., Deswarte, Y.,
Gollmann, D., Waidner, M. (eds.) ESORICS 2000. LNCS, vol. 1895, pp.
238–254. Springer, Heidelberg (2000)

[McC88] McCullough, D.: Noninterference and the composability of security proper-
ties. In: Proc. IEEE Symp. on Security and Privacy, pp. 177–186 (1988)

[Rei84] Reif, J.H.: The complexity of two-player games of incomplete information.
Journal of Computer and System Science 29(2), 274–301 (1984)

[Rus92] Rushby, J.: Noninterference, transitivity, and channel-control security poli-
cies. Technical report, SRI international (December 1992)

[SC79] Stockmeyer, L.J., Chandra, A.K.: Provably difficult combinatorial games.
SIAM Journal of Computing 8(2), 151–174 (1979)

[SM73] Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time
(preliminary report). In: Proc. ACM Symp. on Theory of computing, pp.
1–9 (1973)

[vdMZ06] van der Meyden, R., Zhang, C.: A comparison of semantic models for non-
interference. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider,
S. (eds.) FAST 2006. LNCS, vol. 4691, pp. 235–249. Springer, Heidelberg
(2007)

[vdMZ07] van der Meyden, R., Zhang, C.: Algorithmic verification on noninterference
properties. ENTCS 168, 61–75 (2007)

[vdMZ08] van der Meyden, R., Zhang, C.: Information flow in systems with schedulers.
In: Proc. Computer Security Foundation Symp., June 2008, pp. 301–312
(2008)

[VS97] Volpano, D.M., Smith, G.: A type-based approach to program security. In:
Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT
1997. LNCS, vol. 1214, pp. 607–621. Springer, Heidelberg (1997)

[WJ90] Wittbold, J.T., Johnson, D.M.: Information flow in nondeterministic sys-
tems. In: Proc. IEEE Symp. on Security and Privacy, pp. 144–161 (1990)



Monads Need Not Be Endofunctors

Thorsten Altenkirch1, James Chapman2, and Tarmo Uustalu2

1 School of Computer Science, University of Nottingham
2 Institute of Cybernetics, Tallinn University of Technology

txa@cs.nott.ac.uk, {james,tarmo}@cs.ioc.ee

Abstract. We introduce a generalisation of monads, called relative mon-
ads, allowing for underlying functors between different categories. Exam-
ples include finite-dimensional vector spaces, untyped and typed
λ-calculus syntax and indexed containers. We show that the Kleisli and
Eilenberg-Moore constructions carry over to relative monads and are
related to relative adjunctions. Under reasonable assumptions, relative
monads are monoids in the functor category concerned and extend to
monads, giving rise to a coreflection between monads and relative mon-
ads. Arrows are also an instance of relative monads.

1 Introduction

Monads are the most successful programming pattern arising in functional pro-
gramming. Apart from their use to model a generic notion of effect they also
serve as a convenient interface to generalized notions of substitution. Research
in the area on the border between category theory and functional programming
focusses on unveiling new programming and reasoning constructions similar to
monads, such as comonads [18], arrows [9] and idioms (closed functors) [13].
Indeed, especially when working in an expressive and total language with de-
pendent types, such as Agda [3], we can exploit monads not only as a way to
structure our programs but also their verification.

The present paper is concerned with a generalisation of monads which arises
naturally in dependently typed programming, namely monad-like entities that
are not endofunctors. Consider the following example, which arose when im-
plementing notions related to quantum programming, namely finite-dimensional
vector spaces [19,4]. (See also Piponi [15] for this and other interesting uses of
vector spaces in functional programming.)

Example 1. In quantum computing, we consider complex vector spaces, but
for the present development any semiring (R,+, 0,×, 1) is sufficient. Finite-
dimensional vector spaces can be given by:

Vec ∈ |Fin| → |Set|
Vecm=df Jf m→ R
η ∈ Πm∈|Fin|Jf m→ Vecm
ηm (i ∈ m) =df λj ∈ m. if i = j then 1 else 0
(−)∗ ∈ Πm,n∈|Fin|(Jf m→ Vecn)→ (Vecm→ Vecn)
A∗ x=df λj ∈ n. i∈m x i×A i j

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 297–311, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



298 T. Altenkirch, J. Chapman, and T. Uustalu

Here Fin is the category of finite cardinals (the skeletal version of finite sets).
The objects are natural numbers m ∈ N and the maps between m and n are
functions between m and n where m=df {0, 1, . . . ,m− 1}. By Jf ∈ Fin → Set
we mean the natural embedding Jf m=dfm. The finite summation is just the
finite iteration of + over 0. Indeed ηm is just the unitm×m-matrix (alternatively,
a function assigning to every coordinate i ∈ m the corresponding unit vector)
and A∗ x corresponds to the product of the matrix A with the vector x, where
both matrices and vectors are described as functions.

By the types of its data, the structure (Vec, η, (−)∗) looks suspiciously like a
monad, except that Fin is not Set and in the types for η and (−)∗ we have used
the embedding Jf to repair the mismatch. It is easy to verify that the structure
also satisfies the standard monad laws, modulo the same discrepancy.

The category of finite-dimensional vector spaces arises as a kind of Kleisli cat-
egory. Its objects are m ∈ N, understood as finite coordinate systems (describing
vector spaces), and its morphisms are functions Jfm→ Vecn, i.e., matrices (de-
scribing linear transformations).

The structure cannot generally be pushed to a monad on Set. (−)∗ requires
that we can sum over a set. Summation over general index sets is not available,
if R is just a semiring. Also, in a constructive setting, η requires that the set has
a decidable equality, which is not the case for general sets.

We view Vec as a relative monad on the embedding Jf ∈ Fin → Set. Other
examples of relative monads include untyped and simply typed λ-terms and the
notions of indexed functors and indexed containers as developed in [14].

Overview of the paper. In Sect. 2 we develop the notion of relative monads on
a functor J ∈ J → C, showing that they arise from relative adjunctions, and
generalize Kleisli and Eilenberg-Moore constructions to relative monads.

Since monads on C correspond to monoids in the endofunctor category [C,C],
a natural question is whether a relative monad on J gives rise to a monoid in
the category [J,C]. If J is small and C is cocomplete (e.g., Set), the left Kan
extension along J exists and give rise to a lax monoidal structure where the unit
is J and the tensor is given by F ·J G =df LanJ F · G. Indeed, relative monads
give rise to lax monoids in this lax setting (Sect. 3).

Going further, we identify conditions on the functor J , under which the lax
monoidal structure induced by LanJ is properly monoidal. In this case, we obtain
a proper monoid in the category of functors. Moreover, relative monads extend
to monads via LanJ and we get a coreflection between monads and relative
monads (Sect. 4). In the example of vector spaces, LanJ Vec is the monad whose
Kleisli category is that of vector spaces over general sets of coordinates where a
vector over an infinite set of coordinates may only have finitely many non-zero
components. However, it is worthwhile not to ignore the non-endofunctor case,
because frequently this is the structure we actually want to use. E.g., in quantum
computing we are interested in dagger compact closed categories [2].

Finally, we show that arrows are relative monads (Sect. 5) on the Yoneda
embedding. This leads to the, maybe surprising, outcome that while arrows
generalize ordinary monads, they are actually a special case of relative monads.



Monads Need Not Be Endofunctors 299

Related work The untyped λ-calculus syntax as has been identified as a monoid
in [Fin,Set] by Fiore et al. [7]. Heunen and Jacobs [8] have shown that arrows on
C are actually monoids in the category [Cop×C,Set] of endoprofunctors; Jacobs
et al. have proved the Freyd construction of [16] is, in a good sense, the Kleisli
construction for arrows. Spivey [17] has studied a generalization of monads,
which differs from ours, but is similar in spirit and related (see Conclusion). That
the monoid nature of monads is important in developing applications of monads,
was recently shown by Jaskelioff in his work on modular monad transformers [11].

Notation. We will be using a mixture of categorical and type-theoretic notation.
In particular we will be using λ-calculus notation for defining functions (maps
in Set or subcategories). Customarily for both category theory and type theory,
we often hide some arguments of patterns and function applications (normally
subscripted arguments, e.g., an object a natural transformation is applied to).

We write |C| for the objects of C and C (X,Y ) for the homsets. Given cate-
gories C,D we write the functor category as [C,D]. We write id, ◦ for the identities
and composition of maps and I, · for the identities and composition of functors.

2 Relative Monads and Relative Adjunctions

We start by defining relative monads. Then we give some examples and show
how the theory of ordinary monads carries over to the relative case.

2.1 Relative Monads

Rather than being defined for a category C like a monad, a relative monad is
defined for a functor J between two categories J and C.

Definition 1. A (Manes-style [12]) relative monad on a functor J : J → C is
given by

– an object mapping T ∈ |J| → |C|,
– for any X ∈ |J|, a map ηX ∈ C (J X, T X) (the unit),
– for any X,Y ∈ |J| and k ∈ C (J X, T Y ), a map k∗ ∈ C (T X, T Y ) (the

Kleisli extension)

satisfying the conditions

– for any X,Y ∈ |J|, k ∈ C (J X, T Y ), k = k∗ ◦ η,
– for any X ∈ |J|, η∗X = idTX ∈ C (T X, T X),
– for any X,Y, Z ∈ |J|, k ∈ C (J X, T Y ), � ∈ C (J Y, T Z), (�∗ ◦ k)∗ = �∗ ◦ k∗.

The data and laws of a relative monad are exactly as those of a monad, except
that C has become J in some places and, to ensure type-compatibility, some
occurrences of J have been inserted.

Although this is not stated in the axioms, they imply that T is functorial:
T ∈ J → C. Indeed, for X,Y ∈ |J|, f ∈ J (X,Y ), we can define a map



300 T. Altenkirch, J. Chapman, and T. Uustalu

T f ∈ C (TX, TY ) by T f =df (η ◦ Jf)∗ and this satisfies the functor laws.
Also, η and (−)∗ are natural.

A definition of relative monads based on a multiplication μ rather than a
Kleisli extension (−)∗ is not immediately available: the simple functor compo-
sition T · T is not well-typed. In the next section, we will show that a suitable
notion of functor composition is available under a condition.

Clearly, monads are a special case of relative monads via J =df C, J =df IC.
For general J, C and J , we always have that T X =df J X is a relative monad

with ηX=df idJX and k∗=df k. A whole class of examples of relative monads on J
is given by restricting monads on C (the relative monad J arises from restricting
the monad IC).

Theorem 1. For any J ∈ J → C, a monad (T, η, (−)∗) on C restricts to a
relative monad (T �, η�, (−)(∗ )) on J , defined by T �X =df T (J X), η�X =df ηJ X ,
k(∗ ) =df k

∗.

As a first truly non-trivial example, we saw the relative monad of finite-dimensional
vector spaces in the introduction. Here are some further examples.

Example 2. The syntax of untyped (but well-scoped) λ-calculus is a relative
monad on Jf ∈ Fin → Set, as the finite-dimensional vector spaces relative
monad, i.e., we have J=df Fin, C=df Set, J=df Jf . We view Fin as the category
of nameless untyped contexts. The set of untyped λ-terms LamΓ over a context
Γ satisfies the isomorphism

LamΓ ∼= Jf Γ + LamΓ × LamΓ + Lam (1 + Γ )

The summands correspond to variables from the context (seen as terms), appli-
cations, and abstractions (their bodies are terms over an extended context). The
functor Lam ∈ Fin → Set is defined as the carrier of the initial algebra of the
functor F ∈ [Fin,Set]→ [Fin,Set] defined by

F GΓ =df Jf Γ +GΓ ×GΓ +G (1 + Γ )

Lam is a relative monad. The unit η ∈ Jf Γ → LamΓ is given by variables-as-
terms and the Kleisli extension takes a finite substitution rule k ∈ Jf Γ → LamΔ
to the corresponding substitution function k∗ ∈ LamΓ → LamΔ.

This example was described as a relative monad (under the name Kleisli
structure) by Altenkirch and Reus [5]. Fiore et al. [7] described it as a monoid in
a monoidal structure on [Fin,Set]. Their account of this example is an instance
of our general description of relative monads as monoids from Section 4.

Example 3. Typed λ-terms form a relative monad in a similar fashion. Let Ty
be the set of types (over some base types), which we see as a discrete category.
We take J to be Fin ↓ Ty, which is the category whose objects are pairs (Γ, ρ)
where Γ ∈ |Fin| and ρ ∈ Γ → Ty (typed contexts) and maps from (Γ, ρ) to
(Γ ′, ρ′) are maps f ∈ Fin (Γ, Γ ′) such that ρ = ρ′ ◦ f (typed context maps).



Monads Need Not Be Endofunctors 301

We further take C to be the functor category [Ty,Set] and let J ∈ Fin ↓ Ty→
[Ty,Set] be the natural embedding defined by J (Γ, ρ) σ =df {x ∈ Γ | ρ x = σ}.

Now, for (Γ, ρ) ∈ |Fin ↓ Ty| and σ ∈ Ty, the set of typed λ-terms TyLam (Γ, ρ)σ
has to satisfy the isomorphism

TyLam (Γ, ρ)σ ∼= J (Γ, ρ)σ
+ Στ∈TyTyLam (Γ, ρ) (τ ⇒ σ)× TyLam (Γ, ρ) τ

+ if σ is of the form τ ⇒ τ ′ then TyLam (1 + Γ,
inl ∗ 	→ τ
inr x 	→ ρ x

) τ ′

The functor TyLam ∈ Fin ↓ Ty→ [Ty,Set] is given by an initial algebra. It is a
monad on J , with the unit and Kleisli extension given by variables-as-terms and
substitution, like in the case of Lam. Fiore et al. [6] studied TyLam as a monoid
in [Fin ↓ Ty, [Ty,Set]].

Note that choosing J to be [Ty,Fin] rather than Fin ↓ Ty would have given
contexts possibly supported by infinitely many types: in every type there are
finitely many variables, but the total number of variables can be infinite.

Example 4. Morris and Altenkirch [14] investigated generalization of the notion
of containers [1] to a dependently typed setting and used it to show that strictly
positive families can be reduced to W-types. Relative monads played a central
role in this development.

Let U ∈ Set together with El ∈ U → Set be a universe of small sets. This
induces a category U with |U| =df U and U (a, b) =df Ela → El b. The functor
JU ∈ U → Cat is given by JU a =df Ela on objects and the identity on maps
(viewing El a as a discrete category). We assume that U is locally cartesian
closed, i.e., the universe is closed under dependent product and function types
as well as equality types.

As ordinary containers represent endofunctors on U (or any other locally
cartesian closed category), indexed containers represent functors from a slice
over a given a ∈ U , we define the category IF a of indexed functors over a by
IF a=df [[El a,U],U]. The functor IF ∈ U→ Cat is a relative monad on JU. The
unit ηa ∈ JU a → IF a is defined by ηa x =df λf. f x and the Kleisli extension
k∗ ∈ IF a → IF b of k ∈ JU a → IF b is defined by k∗Gf = G (λx.k x f). The
definitions clearly resemble the continuation monad apart from the size issue.

The main result of [14] was that strictly positive families (SPF) can be inter-
preted as indexed functors by via indexed containers (IC). Just as IF, both SPF
and IC are relative monads on JU and the interpretations preserve this structure,
i.e., are relative monad maps.

2.2 Relative Adjunctions

As ordinary monads are intimately related to adjunctions, relative monads are
related to a corresponding generalization of adjunctions.

Definition 2. A relative adjunction between J ∈ J → C and D is given by
two functors L ∈ J → D and R ∈ D → C, and a natural isomorphism φ ∈
C (J X,RY ) ∼= D (LX, Y ).



302 T. Altenkirch, J. Chapman, and T. Uustalu

As expected, ordinary adjunctions are a special case of relative adjunctions with
J =df C, J =df I. Just like any adjunction defines a monad, relative adjunctions
define relative monads.

Theorem 2. Any relative adjunction (L,R, φ) between a functor J ∈ J → C

and category D gives rise to a relative monad, defined by T X=dfR (LX), ηX=df
φ−1 (idLX), k∗ =df R (φk).

D

R ��
J

L

��

J ��

T

��
C

If a relative monad T on J is related to a relative adjunction (L,R, φ) between J
and some category D in the above way, we call the relative adjunction a splitting
of the relative monad via D.

2.3 Kleisli and Eilenberg-Moore Constructions

For monads we know that they split into an adjunction in two canonical ways:
the Kleisli and Eilenberg-Moore constructions. Moreover, the splittings form a
category where the Kleisli and EM splittings are the initial and terminal objects.
We shall now establish that the same holds in the relative situation.

The Kleisli category Kl(T ) of a relative monad T has as objects the objects of
J and as maps between X , Y the maps between J X , T Y of C: |Kl(T )|=df |J|
and Kl(T ) (X,Y ) =df C (J X, T Y ). The identity and composition (we denote
them by idT , ◦T ) are defined by idTX =df ηX and � ◦T k =df �

∗ ◦ k.
The Kleisli relative adjunction between J and Kl(T ) is defined by LX=dfX ,

Lf =df η ◦ Jf (note that L is identity-on-objects), RX =df T X , Rk =df k
∗

and φ is identity. This relative adjunction is a splitting: it is immediate that
R (LX) = T X , ηX = φ−1 (idTLX), k∗ = R (φk).

The Eilenberg-Moore (EM) category EM(T ) is given by EM-algebras and
EM-algebra maps of the relative monad T . Since the usual definition of an EM-
algebra refers to μ, which is not immediately available, we generalize a version
based on (−)∗. For ordinary monads this is equivalent to the standard definition.

Definition 3. An EM-algebra of a relative monad T on J ∈ J → C is given
by an object X ∈ |C| and, for any Z ∈ |J|, a map function χ ∈ C (J Z,X) →
C (T Z,X), satisfying the conditions

– for any Z ∈ |J|, f ∈ C (J Z,X), f = χ f ◦ η,
– for any Z,W ∈ |J|, k ∈ C (J Z, T W ), f ∈ C (J W,X), χ (χ f ◦ k) = χ f ◦ k∗.

These conditions ensure, among other things, that χ is natural.
An EM-algebra map from (X,χ) to (Y, υ) is a map h ∈ C (X,Y ) satisfying

– for any Z ∈ |J|, f ∈ C (J Z,X), h ◦ χ f = υ (h ◦ f).

The identity and composition of EM(T ) are inherited from C.



Monads Need Not Be Endofunctors 303

The Eilenberg-Moore relative adjunction between J and EM(T ) is defined by
LY =df (T Y, (−)∗), Lf =df T f , R (X,χ) =df X , Rh=df h (so R is identity-on-
maps), φX,(Y,υ) f =df υ f and φ−1

X,(Y,υ) h=df h ◦ ηX . This is also a splitting.

Theorem 3. The splittings of a relative monad T on J ∈ J → C form a cate-
gory. An object is given by a category D and an adjunction (L,R, φ) splitting T
via D. A splitting morphism between (D, L,R, φ) and (D′, L′, R′, φ′) is a func-
tor V ∈ D → D

′ such that V · L = L′, R = R′ · V , and V φX,Y = φ′X,V Y .
The Kleisli construction is the initial and the Eilenberg-Moore construction the
terminal splitting.

Example 5. The Kleisli category of Vec has as objects the objects of Fin un-
derstood as finite coordinate systems (describing vector spaces). The maps are
maps Jf m → Vecn, i.e., m × n-matrixes (describing linear transformations).
The identities are the unit m×m-matrices, the composition is multiplication of
matrices.

Example 6. The Kleisli category of Lam has as objects the objects of Fin under-
stood as untyped contexts. The maps are maps Jf Γ → LamΔ, i.e., substitution
rules (assignments of terms over Δ to the variables in Γ ). The identities are the
trivial substitution rules. The composition is composition of substitution rules.

3 Relative Monads as Lax Monoids

A monad on C is the same as a monoid in the endofunctor category [C,C]. It
has a monoidal structure given by the identity functor I and composition of
functors ·, which are strictly unital and associative. A monad can be specified
by an object T ∈ |[C,C]| and maps η ∈ [C,C] (I, T ) and μ ∈ [C,C] (T · T, T )
satisfying the laws of a monoid in the strict monoidal category ([C,C], I, ·).

Can we similarly define a relative monad on J ∈ J → C as a monoid in
the functor category [J,C]? This requires a monoidal structure on [J,C], ideally
similar to that on [C,C]. The functor J is a good candidate for the unit, but the
tensor is problematic, as functors J→ C cannot be composed by simple functor
composition. We shall use a left Kan extension to overcome the difficulty and
obtain a lax monoidal structure where relative monads are lax monoids.

3.1 Left Kan Extensions

Left Kan extensions are one of the two canonical constructions for extending
functors. The left Kan extension along J ∈ J → C extends functors J → D to
functors C→ D.

D

J

F ��

J �� C

Lan F��



304 T. Altenkirch, J. Chapman, and T. Uustalu

It is defined as the left adjoint (if it exists) of the restriction functor − · J ∈
[C,D]→ [J,D]. By definition, it is given by a functor LanJ ∈ [J,D]→ [C,D] and
a natural isomorphism

[J,D] (F,G · J) ∼= [C,D] (LanJ F,G)

While it is possible to work directly with this definition of left Kan extension,
we use an alternative definition, based on the coend formula

LanJ F X ∼=
Y ∈|J|

C (J Y,X) • F Y

Accordingly, we take that a left Kan extension of a functor F ∈ J → D along
J ∈ J→ C to be given by

– an object function LanJ F ∈ |C| → |D|,
– for any X ∈ |C|, a natural transformation
ιF,X ∈ [Jop,Set] (C (J −, X),D (F −,LanJ F X)),

– for any X ∈ |C|, Y ∈ |D| and θ ∈ [Jop,Set] (C (J −, X),D (F −, Y )), a map
[θ] ∈ D (LanJ F X, Y ).

satisfying the conditions [θ] ◦ ι g = θ g, [ι] = id and f ◦ [θ] = [λg.f ◦ θ g].
Left Kan extensions LanJ F X are functorial in both arguments F and X ,

i.e., LanJ ∈ [J,D]→ [C,D]. For any F ∈ |[J,D]|, X,Y ∈ |C|, f ∈ C (X,Y ),

LanJ F f ∈ D (LanJ F X,LanJ F Y )
LanJ F f =df [λg. ι (f ◦ g)]

And for any F,G ∈ |[J,D]|, τ ∈ [J,D] (F,G), X ∈ |C|, we have

LanJ τ X ∈ D (LanJ F X,LanJ GX)
LanJ τ X =df [λg. ι g ◦ τ ]

In general LanJ ∈ [J,D]→ [C,D] exists, if J is small and D is cocomplete.

3.2 [J, C] Is Lax Monoidal

If LanJ ∈ [J,C] → [C,C] exists, we can turn any functor F ∈ |[J,C]| to one in
|[C,C]|. Hence we can define a composition-like operation

(·J ) ∈ |[J,C]| × |[J,C]| → |[J,C]|
F ·J G=df LanJ F · G

This is our candidate for the tensor on [J,C]. We also need the unital and
associative laws. We define several families of maps indexed by X ∈ |C|:

λX ∈ C (LanJ J X,X)
λX =df [λg. g]
αF,G,X ∈ C (LanJ (F ·G)X,F (LanJ GX))
αF,G,X =df [λg. F (ι g)]
αF,G,X ∈ C (LanJ (LanJ F ·G)X,LanJ F (LanJ GX))
αF,G,X =df αLan F,G = [λg. [λg′. ι (ι g ◦ g′)]]

All these families are natural in X , hence maps in |[C,C]|.



Monads Need Not Be Endofunctors 305

From these we further define our candidate unital and associative laws.

ρF ∈ [J,C] (F, F ·J J)
ρF =df ι id
λF ∈ [J,C] (J ·J F, F )
λF =df λ · F
αF,G,H ∈ [J,C] ((F ·J G) ·J H,F ·J (G ·J H))
αF,G,H =df αF,G ·H

It turns out that the data so defined provide a structure that is almost
monoidal, but not quite. It is lax monoidal: λ, ρ, α are generally not isomor-
phisms. In the next section we will identify conditions on J that enable us to con-
struct the inverses, turning the lax monoidal structure into properly monoidal.

Theorem 4. If LanJ ∈ [J,C] → [C,C] exists, then ([J,C], J, ·J , λ, ρ, α) is a lax
monoidal category, i.e., ·J is functorial, λ, ρ, α are natural and the following
diagrams commute:

J ·J J
λ

���
��

�

J

ρ 		����
J

(F ·J J) ·J G α �� F ·J (J ·J G)
F · λ



F ·J G
ρ · G

��

F ·J G

(J ·J F ) ·J G
λ · G ��������

α �� J ·J (F ·J G)

λ ·������

F ·J G

(F ·J G) ·J J α �� F ·J (G ·J J)

F ·J G
ρ ·

��������
F · ρ

��������

(F ·J (G ·J H)) ·J K
α · �� F ·J ((G ·J H) ·J K)

F · α


((F ·J G) ·J H) ·J K
α · K

��

α · �� (F ·J G) ·J (H ·J K)
α · �� F ·J (G ·J (H ·J K))

3.3 Relative Monads Are the Same as Lax Monoids in [J, C]

With a lax monoidal structure present on the functor category [J,C], we should
expect that relative monads on J are the same thing as lax monoids in this
structure, generalizing the case of ordinary monads on C and the strict monoidal
structure on the endofunctor category [C,C]. This is indeed the case.

Theorem 5. Assume that LanJ ∈ [J,C]→ [C,C] exists.

1. Given a relative monad (T, η, (−)∗) on J , define, for any X ∈ |J|, a map
μX ∈ C (LanJ T (T X), T X) by μX =df [(−)∗]. This is well-defined, since
(−)∗ is natural: (−)∗ ∈ [Jop,Set] (C (J −, T X),C (T −, T X)).
Then (T, η, μ) is a lax monoid in the lax monoidal category ([J,C], J, ·J , λ, ρ, α):
we have that T ∈ |[J,C]|, η ∈ [J,C] (J, T ) and μ ∈ [J,C] (T ·J T, T ), and the
following diagrams commute in [J,C]:



306 T. Altenkirch, J. Chapman, and T. Uustalu

T ·J J T · η �� T ·J T
μ

��

T

�����������

�����������

ρ
��

T

J ·J T λ ��

η· T
��

T

��
��

��
��

��
��

��
��

T ·J T μ �� T

T ·J (T ·J T )
T · μ �� T ·J T

μ

��

(T ·J T ) ·J T
α �������

μ· T ��
T ·J T μ �� T

2. Given a lax monoid (T, η, μ) in ([J,C], J, ·J , λ, ρ, α), define, for any X,Y ∈
|J|, a function (−)∗ ∈ C (J X, T Y )→ C (T X, T Y ) by k∗ =df μY ◦ ι k. Then
(T, η, (−)∗) is a relative monad on J .

3. The above correspondence is bijective.

The bijective correspondence between relative monads on J and lax monoids in
[J,C] extends to an equivalence of categories, but we must omit the details here
(we have defined neither relative monad maps nor lax monoid maps).

Moreover, just as the availability of LanJ ∈ [J,C] → [C,C] allows us to
define relative monads based on μ rather than (−)∗, it also facilitates a more
traditional-style definition of EM-algebras; we must omit the details.

4 Well-Behaved Relative Monads

It is somewhat unsatisfactory to obtain that [J,C] is just lax monoidal, rather
than properly monoidal. This begs the question: would some conditions on J
ensure a properly monoidal structure? The answer is affirmative. Mild conditions
turn the lax monoidal structure of [J,C] into properly monoidal. What is more,
the same conditions also make relative monads on J extend to monads on C.

4.1 Well-Behavedness Conditions

We define three well-behavedness conditions on J . They are additional to the
existence of LanJ ∈ [J,C] → [C,C] and require the constituent maps of three
canonical families, which are actually natural, to be isomorphisms. For our pur-
poses, these conditions are mild.

Definition 4. J ∈ J → C is well-behaved, if not only does LanJ ∈ [J,C] →
[C,C] exist, but also the following three conditions hold:

1. J is fully faithful, i.e., for any X,Y ∈ |J|, there is an inverse to the map

JX,Y ∈ J (X,Y )→ C (J X, J Y )
JX,Y f =df J f

2. J is dense, i.e., for any X,Y ∈ |C|, there is an inverse to the map

KX,Y ∈ C (X,Y )→ [Jop,Set] (C (J −, X),C (J −, Y ))
KX,Y f =df λg. f ◦ g

i.e. K ∈ C→ [Jop,Set], with KX =df C (J −, X), is fully faithful.



Monads Need Not Be Endofunctors 307

3. For any F ∈ J→ C, X ∈ |J|, Y ∈ |C|, there is an inverse to the map

LFX,Y ∈ LanJ (C (J X,F−))Y → C (J X,LanJ F Y )
LFX,Y =df [λg. λg′. ι g ◦ g′]

Example 7. The functor Jf ∈ Fin → Set is well-behaved. The functor JU ∈
U → Cat of Example 4 is well-behaved, if the type-theoretic universe U ∈
Set,El ∈ U → Set is is closed under dependent products (categorically this
corresponds to the induced category U being cartesian).

From the well-behavedness of Jf , it follows that [Fin,Set] is monoidal and
Lam is a monoid. These facts were proved by Fiore et al. [7].

4.2 [J, C] Is Monoidal

Our well-behavedness conditions suffice to ensure that the unital and associativ-
ity laws of the lax monoidal structure on [J,C] are isomorphisms. Specifically,
the existence of inverses of J,K,L ensures that ρ, λ, α (and consequently also λ,
α) have inverses too.

Theorem 6. If J ∈ J→ C is well-behaved, then

1. for any F ∈ J→ C, X ∈ |J|, the map ρ−1
F,X ∈ C (LanJ F (J X), F X) defined

by ρ−1
F,X =df [λg. F (J−1 g)] is an inverse of ρF,X ;

2. for any X ∈ |J|, the map λ̄−1
X ∈ C (X,LanJ J X) defined by λ̄−1

X =dfK
−1 ιJ,X

is an inverse of λX ;
3. for any F,G ∈ J→ C, X ∈ |J|, the map

ᾱ−1
F,G,X ∈ C (LanJ F (LanJ GX),LanJ (LanJ F ·G)X) defined by ᾱ−1

F,G,X=df

[λg. [λg. λg′. ι g ◦ ι g′] (L−1 g)] is an inverse of αF,G,X.

Hence, the category ([J,C], J, ·J , λ, ρ, α) is monoidal.

As an immediate corollary, we get that, in the well-behaved case, relative monads
are proper monoids in a properly monoidal structure.

Corollary 1. If J→ C is well-behaved, then a relative monad (T, η, (−)∗) is the
same as a monoid (T, η, μ) in the monoidal category ([J,C], J, ·J , λ, ρ, α).

4.3 Relative Monads Extend to Monads

As a pleasant bonus, the well-behavedness conditions also ensure that a relative
monad extends to an ordinary monad. Crucial here is that, if J is well-behaved,
we have that λ and α are isomorphisms.

Theorem 7. If J ∈ J → C is well-behaved, then a monoid (T, η, μ) in [J,C]
(equivalently, a relative monad on J) extends to a monoid (T#, η#, μ#) in [C,C]
(equivalently, a monad on C), defined by

T# =df LanJ T

η# =df I
λ̄−1

�� LanJ J
Lan η �� LanJ T

μ# =df LanJ T · LanJ T
ᾱ−1

�� LanJ (LanJ T · T )
Lan μ�� LanJ T



308 T. Altenkirch, J. Chapman, and T. Uustalu

We see that, in the well-behaved case, we can not only restrict monads to rela-
tive monads but also extend relative monads to monads. Thanks to ρ being an
isomorphism, this correspondence is an embedding-projection pair.

Theorem 8. If J ∈ J → C is well-behaved, then the correspondence between
monoids in [J,C] (equivalently, relative monads) and monoids in [C,C] (equiva-
lently, monads) given in Theorems 7 and 1 is an embedding-projection pair up to
the natural isomorphism ρ: If (T, η, μ) is a monoid in [J,C], then ρT is a monoid
isomorphism between (T, η, μ) and (T#�, η#�, μ#�), i.e., ρT ∈ [J,C] (T, T#�) is
an isomorphism and the following diagrams in [J,C] commute:

J
η ��

η# �������� T
ρ



T#�

T ·J T μ ��

ρ · ρ 



T
ρ



T#� ·J T#�
μ#

�� T#�

In fact, (−)� extends to a functor from the category of monads on C to relative
monads on J ; (−)# is its left adjoint. The relative monad maps ρT
∈ [J,C] (T,LanJ T · J) give the unit of the adjunction; the fact that it is a nat-
ural isomorphism strengthens the adjunction into a coreflection. Remarkably,
this adjunction is a lifting from functors to relative monads of the adjunction
LanJ 
 − · J between [C,C] and [J,C], the defining adjunction of LanJ .

The counit of the adjunction is (T ·λ) ◦αT,J ∈ [C,C] (LanJ (T ·J), T ). Unlike
the unit, it is generally not an isomorphism, so the adjunction is not also a
reflection. For example, for C =df Set, J =df Fin, J =df Jf , the counit is an
isomorphism if and only if the monad T is finitary. This is important for us: the
categories of monads on C and relative monads on J are generally not equivalent.

Example 8. For the powerset monad P on Set, we have that P X is the powerset
of a setX , P�X=dfP (Jf X) is the powerset of a finite cardinalX , and P�#X=df
LanJf P#X is the finitary powerset (the set of finite subsets) of a (possibly
infinite) setX . The difference between P and P�# arises because P is not finitary.

Example 9. For the relative monad Vec on Jf , Vec#X is the space of vectors
over a possibly infinite coordinate system X that may only have finitely many
non-zero components.

Example 10. For the relative monad Lam on Jf , we have that LamX is the set
of λ-terms over a finite, nameless context X and Lam#X is given by the set of
λ-terms over a possibly infinite, name-carrying context X . The functor Lam#

is the carrier of the initial algebra of the functor F ∈ [Set,Set] → [Set,Set]
defined by F GX =df X +GX ×GX +G (1 +X).

For the relative monad Lam∞ the picture is different. Lam∞X is the set of
non-wellfounded λ-terms over a finite, nameless context, but Lam∞#

X is the
set of non-wellfounded λ-terms using a finite number of variables from a possibly
infinite, name-carrying context. This differs from the non-finitary carrier of the
final coalgebra of F , capturing general non-wellfounded λ-terms that may use
infinitely many variables.



Monads Need Not Be Endofunctors 309

5 Arrows as a Special Case of Relative Monads

We now turn to a whole class of examples, Hughes’s arrows [9]. As we shall
see, arrows are relative monads on the Yoneda embedding. Arrow are commonly
perceived as a generalization of monads. With relative monads, this relationship
is turned upside down!

The rigorous definition of arrows by Heunen and Jacobs [8] is as follows:1

Definition 5. A (Set-valued) arrow on a category J is given by

– a function R ∈ |J| × |J| → |Set|,
– for any X,Y ∈ |J|, a function pure ∈ J (X,Y )→ R (X,Y ),
– for any X,Y, Z ∈ |J|, a function (≪) ∈ R (Y, Z)×R (X,Y )→ R (X,Z),

satisfying the conditions

– pure (g ◦ f) = pure g ◦ pure f ,
– s≪ pure id = s,
– pure id≪ r = r,
– t≪ (s≪ r) = (t≪ s)≪ r.

It follows from the conditions that R is functorial (contravariantly in the first
argument), i.e., R : J

op × J → Set, which is the same as to say that R is an
endoprofunctor on J, and pure and≪ are natural/dinatural.

A monad (T, η, (−)∗) on J defines an arrow (R, pure,≪) on J by R (X,Y )=df
Kl(T ) (X,Y ), pure f =df Lf and �≪ k =df � ◦T k where L is the left adjoint in
the Kleisli adjunction and ◦T is the Kleisli composition.

We show now that an arrow on J is the same thing as a relative monad on
the Yoneda embedding Y ∈ J→ [Jop,Set] defined by YX Y =df J (Y,X).

Theorem 9. 1. An arrow (R, pure,≪) on J gives rise to a relative monad
(T, η, (−)∗) on Y defined by T X Y =df R (Y,X), T f r=df r≪ f , η f =df
pure f , k∗ r =df k id≪ r.

2. A relative monad (T, η, (−)∗) on Y gives rise to an arrow (R, pure,≪) on
J defined by R (X,Y ) =df T Y X, pure f =df η f , s≪ r =df (λf. T f s)∗r.
(The last item is well-defined, as λf. T f s is natural.)

3. The above is a bijective correspondence.

The arrows on J and relative monads on Y form categories and the bijection
between them extends to an equivalence of their categories.

It is easy to verify that the Freyd category of an arrow is the Kleisli category
of the corresponding relative monad. Jacobs et al. [10] have previously proved
that “Freyd is Kleisli for arrows” taking “Kleisli for arrows” to mean a construc-
tion that is Kleisli-like under a 2-categorical view of the Kleisli construction for
monads. We can take it to mean “Kleisli for arrows as relative monads”.

1 Since we compare arrows to monads, not strong monads, we mean “weak” arrows
here: J does not have to be symmetric monoidal and no first operation is required.



310 T. Altenkirch, J. Chapman, and T. Uustalu

The Yoneda embedding is well-behaved. We reconstruct the result of Heunen
and Jacobs [8] about arrows being monoids as an instance of a generality.

Theorem 10. If J is small, then Y is well-behaved, hence the category
[J, [Jop,Set]] is monoidal. An arrow on J is a monoid in this category.

Jacobs and Heunen considered the special case of arrows and showed an arrow
to be a monoid in [Jop × J,Set] (the category of endoprofunctors on J) as a
monoidal category, which is an equivalent statement.

6 Conclusions and Further Work

We have introduced a generalisation of monads, relative monads, which is moti-
vated by examples and subsumes arrows, a well-known generalisation of monads.
Indeed, when moving to a more precise type discipline, the illusion that every-
thing takes place in only one ambient category (say, Set) can no longer be
maintained and as a consequence we have to revisit the categorically inspired
concepts of functional programming. We believe that our examples demonstrate
that monad-like entities which are not endofunctors are natural; fortunately,
they are precisely monoids in the functor category. We also suggest that our
presentation of relative monads given in Sect. 2.1 is accessible for functional
programmers, indeed it does not differ substantially from ordinary monads.

Our development is only the first step. Due to lack of space, we have not
written about monad maps; we did not comment on the relationship between
relative adjunctions and adjunctions etc.; strong monads (esp. versus strong
arrows) are a further additional topic. We will elsewhere comment on the relation
of our relative monads to the the recent generalization of monads by Spivey [17]
that was also motivated by programming examples: he fixes a functorK ∈ C→ J

(notice the direction) to then look for monad-like structures with an underlying
functor J → C. With Paul Levy we have checked that a fair amount of monad
theory transfers to his generalized monads, but they are not monoids in [J,C]
unless K has a left adjoint, in which case they are equivalent to relative monads.

It seems clear that many of the concepts known from ordinary monads carry
over to the relative setting. We have already mentioned Jaskelioff’s work on
monad transformers which is expressed in a general monoidal setting and hence
carries over to relative monads. We hope that this generalisation of the monadic
approach leads to new programming structures supporting a greater reusability
of concepts and programs.

Acknowledgements. We are grateful to Paul Levy for valuable comments and
hints. T. Altenkirch was supported by the Engineering and Physical Sciences Re-
search Council (EPSRC) grant no. EP/G034109/1. J. Chapman and T. Uustalu
were supported by the Estonian Centre of Excellence in Computer Science,
EXCS, financed by the European Regional Development Fund. T. Uustalu was
also supported by the Estonian Science Foundation grant no. 6940.



Monads Need Not Be Endofunctors 311

References

1. Abbott, M., Altenkirch, T., Ghani, N.: Containers—constructing strictly positive
types. Theor. Comput. Sci. 342(1), 3–27 (2005)

2. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proc.
of 19th Ann. IEEE Symp. on Logic in Computer Science, LICS 2004, pp. 415–425.
IEEE CS Press, Los Alamitos (2004)

3. Agda team: Agda (2009),
http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php

4. Altenkirch, T., Green, A.: The Quantum IO Monad. In: Gay, S., McKie, I. (eds.)
Semantic Techniques in Quantum Computation, pp. 173–205. Cambridge Univ.
Press, Cambridge (2009)

5. Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized
inductive types. In: Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS,
vol. 1683, pp. 453–468. Springer, Heidelberg (1999)

6. Fiore, M.: Semantic analysis of normalisation by evaluation for typed lambda calcu-
lus. In: Proc. of 4th ACM SIGPLAN Conf. on Principles and Practice of Declarative
Programming, PPDP 2002, pp. 26–37. ACM Press, New York (2002)

7. Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding. In: Proc.
of 14th Ann. IEEE Symp. on Logic in Computer Science, LICS 1999, pp. 193–202.
IEEE CS Press, Los Alamitos (1999)

8. Heunen, C., Jacobs, B.: Arrows, like monads, are monoids. In: Brookes, S., Mislove,
M. (eds.) Proc. of 22nd Ann. Conf. on Mathematical Foundations of Programming
Semantics, MFPS XXII. Electron. Notes in Theor. Comput. Sci, vol. 158, pp. 219–
236. Elsevier, Amsterdam (2006)

9. Hughes, J.: Generalising monads to arrows. Sci. of Comput. Program. 37(1-3),
67–111 (2000)

10. Jacobs, B., Heunen, C., Hasuo, I.: Categorical semantics for arrows. J. of Funct.
Program. 19(3-4), 403–438 (2009)

11. Jaskelioff, M.: Lifting of Operations in Modular Monadic Semantics. PhD thesis,
University of Nottingham (2009)

12. Manes, E.G.: Algebraic Theories. Springer, Heidelberg (1976)
13. McBride, C., Paterson, R.: Applicative programming with effects. J. of Funct.

Program. 18(1), 1–13 (2008)
14. Morris, P., Altenkirch, T.: Indexed containers. In: Proc. of 24th Ann. IEEE Symp.

on Logic in Computer Science, LICS 2009, pp. 277–285. IEEE CS Press, Los Alami-
tos (2009)

15. Piponi, D.: Commutative monads, diagrams and knots. In: Proc. of 14th Int. Conf.
on Functinal Programming, ICFP 2009, p. 231. ACM Press, New York (2009) (see
the video)

16. Power, J., Robinson, E.: Premonoidal categories and notions of computation. Math.
Struct. in Comput. Sci. 7(5), 453–468 (1997)

17. Spivey, J.M.: Algebras for combinatorial search. J. of Funct. Program. 19(3-4),
469–487 (2009)

18. Uustalu, T., Vene, V.: Comonadic notions of computation. In: Adamék, J., Kupke,
C. (eds.) Proc. of 9th Int. Wksh. on Coalgebraic Methods in Computer Science,
CMCS 2008. Electron. Notes in Theor. Comput. Sci., vol. 203(5), pp. 263–284.
Elsevier, Amsterdam (2008)

19. Vizzotto, J.K., Altenkirch, T., Sabry, A.: Structuring quantum effects: Superoper-
ators as arrows. Math. Struct. in Comput. Sci. 16(3), 453–468 (2006)

http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php


CIA Structures and the Semantics of Recursion�

Stefan Milius1,��, Lawrence S. Moss2, and Daniel Schwencke1

1 Institut für Theoretische Informatik, Technische Universität Braunschweig, Germany
mail@stefan-milius.eu, schwencke@iti.cs.tu-bs.de

2 Department of Mathematics, Indiana University, Bloomington, IN, USA
lsm@cs.indiana.edu

Abstract. Final coalgebras for a functor serve as semantic domains for state
based systems of various types. For example, formal languages, streams, non-
well-founded sets and behaviors of CCS processes form final coalgebras. We
present a uniform account of the semantics of recursive definitions in final coal-
gebras by combining two ideas: (1) final coalgebras are also initial completely it-
erative algebras (cia); (2) additional algebraic operations on final coalgebras may
be presented in terms of a distributive law λ. We first show that a distributive law
leads to new extended cia structures on the final coalgebra. Then we formalize
recursive function definitions involving operations given by λ as recursive pro-
gram schemes for λ, and we prove that unique solutions exist in the extended cias.
We illustrate our results by the four concrete final coalgebras mentioned above,
e. g., a finite stream circuit defines a unique stream function and we show how to
define new process combinators from given ones by sos rules involving recursion.

Keywords: recursion, semantics, completely iterative algebra, coalgebra, dis-
tributive law.

1 Introduction

Recursive definitions are a useful tool to specify infinite system behavior. For example,
Milner [21] proved that in his calculus CCS, one may specify a process uniquely by
the equation P = a.(P |c) + b. More generally, such recursive equations have unique
solutions whenever each recursion variable is in the scope of some action prefix. An-
other example is the shuffle product on streams of real numbers uniquely defined by
r.σ⊗ s.τ = rs.(r.σ⊗ τ +σ⊗ s.τ). And as a third example consider non-well-founded
sets [2, 10], a framework originating as a semantic basis for circular definitions. Here
we can solve recursive function definitions such as g(x) = {g(P(x))× x, x} uniquely.
It is the aim of this paper to develop abstract tools and results that explain why there
exist unique solutions to all the aforementioned equations.

The key observation is that streams, non-well-founded sets and process behaviors
constitute final coalgebras for certain functors on appropriate categories. Furthermore,
the structure c : C → HC of a final coalgebra is an isomorphism [14], and the H-
algebra (C, c−1) is the initial completely iterative algebra (cia) for H [18]; cias are

� In this extended abstract all proofs are omitted. They can be found in the full version of our
paper at www.stefan-milius.eu.

�� Supported by the German Research Foundation (DFG) under the project MI 717/2–1.

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 312–327, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



CIA Structures and the Semantics of Recursion 313

algebras in which recursive (function) definitions involving the operations given by
c−1 can be solved uniquely. However, cia structures for H are not sufficient to yield
the existence and uniqueness of solutions in our motivating examples; these involve
additional algebraic operations not captured byH . For example, |,+ in CCS, the stream
addition +, and powerset and cartesian product P ,× in the example from non-well-
founded set theory.

Additional algebraic operations are often presented by distributive laws in various
guises. In process algebra one defines operations such as | or + by structural opera-
tional semantics (sos) [1]. Plotkin and Turi [22] showed how to capture sos rules as
a distributive law of the functor (or monad) M describing the desired algebraic oper-
ations over the “behavior” functor H . This distributive law then induces an algebraic
structure forM on the final H-coalgebraC. Other instances of distributive laws are be-
havioral differential equations in stream calculus, see [24], and definitions of operations
on non-well-founded sets.

Bartels systematically studies definition formats giving rise to distributive laws in
his thesis [9] (see also [8]) and shows how to solve parameter-free first order recursive
equations involving operations presented by a distributive law.

After recalling his results in Section 2 we extend them in Section 3 by combining
them with our previous work in [3, 18, 19]. We first prove (Theorems 3.2 and 3.3) that
the final H-coalgebra carries the structure of a cia for HM and for MHM . These
results show how to construct new structures of cias on C out of the initial one using
a distributive law. This improves Bartels’ result in the sense that first order recursive
definitions may employ constant parameters in the final coalgebra. This also explains
why recursively defined operations may be used in subsequent recursive definitions.

In Section 4 we obtain new ways to provide the semantics of recursive definitions
by applying the existing solution theorems with the new cia structures, and in Section 5
we turn our attention to functional recursive definitions like the above shuffle product
or the above function g on non-well-founded sets. We introduce for a distributive law
λ the notion of a recursive program scheme (λ-rps, for short). Our main result is that
any λ-rps has a unique solution in the final coalgebra C. Moreover, we show that these
solutions extend the cia structure ofC, which means that they can be used in subsequent
recursive definitions. This compositionality of taking solutions of recursive equations
does not appear in any previous work in this generality. In fact, we believe that our
result is the first one that allows to obtain recursively defined operations directly as the
unique solutions of their specifications.

Finally, in Section 6 we demonstrate the value of our results by instantiating them
in four different concrete applications: (1) CCS-processes—we explain how Milner’s
solution theorem from [21] arises as a special case of Theorem 3.3, and we also show
how to define new process combinators recursively from given ones; (2) streams of real
numbers—here we prove that every finite stream circuit defines a unique stream func-
tion; (3) non-well-founded sets—we prove that operations on non-well-founded sets
are uniquely determined as solutions of λ-rps’s; (4) formal languages—here we show
how operations on formal languages like union, concatenation, complement, etc. arise
step-by-step using the compositionality of unique solutions of λ-rps’s.



314 S. Milius, L.S. Moss, and D. Schwencke

Related Work. The work in [22] was taken further by Lenisa, Power and Watanabe
in [15, 16]. Jacobs [13] shows how to apply Bartels’ result to obtain the (first order) so-
lution theorems from [3, 18]. Capretta et al. [11] work in a dual setting and generalize
the results of [8] beyond terminal coalgebras and they also obtain the (dual of) the solu-
tion theorem from [3, 18] by an application of their general results. Our Theorems 3.2
and 3.3 are similar to results in [11] but extend the ones of [8] in a different direction by
considering parameters in recursive definitions. So our results in the present paper go
beyond what can be accomplished with previous work. For example, while [16] gives
an abstract explanation of adding operations to a process calculus, it gives no account
of the kind of compositionality we have in our results.

2 Distributive Laws and Bialgebras

We shall assume some familiarity with basic notions from category theory such as func-
tors, (initial) algebras and (final) coalgebras, monads, see e. g. [17, 23, 5].

Suppose we are given an endofunctorH on some categoryA describing the behavior
type of a class of systems. In our work we shall be interested in additional algebraic
operations on the final coalgebra C for H . The type of these algebraic operations is
given by an endofunctor M on A. Specification of algebraic operations by sos rules
is abstractly captured by giving a distributive law of M over H , see e. g. [22, 8, 13].
Often M comes with the extra structure of a pointed endofunctor or a monad. Our goal
is to provide a setting in which recursive equations involving the algebraic operations
described by M can be uniquely solved.

Assumption 2.1. Throughout this section we assume that H : A → A is a functor,
and that c : C → HC is a final coalgebra. In addition, we assume that M is a pointed
endofunctor on A, i. e., M comes equipped with a natural transformation η : Id→M .

Definition 2.2. (1) An algebra for (M,η) is a pair (A, a) where A is an object of A
and a : MA→ A is a morphism satisfying the unit law a · ηA = idA.

(2) A distributive law of M over H is a natural transformation λ : MH → HM such
that we have

Hη = (H
ηH

��MH
λ ��HM ) .

Remark 2.3. (1) In most concrete examples, M in Definition 2.2 is part of a monad
(M,η, μ). Then any distributive law for the monad M over H is obviously also a dis-
tributive law for the pointed endofunctorM overH : in fact, recall that a distributive law
of the monad M over H is a distributive law as in Definition 2.2(2) above additionally
satisfying one obvious law concerning compatibility of λ and μ.

(2) Suppose that M is a free monad K on an endofunctor K : A → A given ob-
jectwise by free K-algebras KX . Bartels [9] (Lemma 3.4.24) shows that distributive
laws λ : KH → HK (of the monad K over H) correspond to natural transformations
� : KH → HK . Indeed, given λ we get � = λ · κH , where κ : K → K is the
universal natural transformation of the free monad. Conversely, let η and μ be the unit



CIA Structures and the Semantics of Recursion 315

and multiplication of the free monad K. Given �, we see that HμX · �KX : KHKX
→ HKKX → HKX is an algebra forK . Thus, by the freeness of the algebraKHX ,
there exists a unique K-algebra homomorphism λX : KHX → HKX extending
HηX , i. e., such that λX · ηHX = HηX . One readily shows that λ is a distributive law
of K over H .

Construction 2.4. [8, 9] Let λ : MH → HM be a distributive law of the pointed
endofunctor M over H . By using coinduction (i. e., the universal property of the final
coalgebra) we define an M -algebra structure on C as the unique coalgebra homomor-
phism b from the coalgebra λC · Mc : MC → HMC to the final coalgebra, i. e.,
b : MC → C is such that

c · b = Hb · λC ·Mc . (2.1)

Bartels [8] showed that (C, b) is indeed an algebra for M . Moreover, if M is a monad
and λ a distributive law ofM overH , then (C, b) is an Eilenberg-Moore algebra for the
monad M .

Definition 2.5. For every distributive law λ we call b : MC → C from Construc-
tion 2.4 the λ-interpretation in C. In the case described in Remark 2.3(2), where λ is
induced by �, we shall also say that b is the �-interpretation in C.

Examples 2.6. We review a couple of examples of interest in this paper where A =
Set. We shall elaborate these examples in Section 6.

(1) Formal languages. Consider the endofunctor HX = XA × 2, where 2 = { 0, 1 }.
Coalgebras for H are precisely the (possibly infinite) deterministic automata over the
setA (as an alphabet). The final coalgebra c : C → HC consists of all formal languages
with c(L) = (λa.Da(L), i) with i = 1 iff the empty word ε is in L and whereDa(L) =
{w | aw ∈ L }.

To specify e. g. the intersection of formal languages via a distributive law, let KX =
X ×X and let � : KH → HK be given by �X((f, i), (g, j)) = (〈f, g〉, i∧ j) where ∧
denotes the “and”-operation on { 0, 1 }. Take M = K + Id and λ = can · (�+ idH) :
MH → HM , where can = [H inl, H inr] : HK + H → H(K + Id). Then the λ-
interpretation b : C ×C +C → C has its left-hand component given by intersection of
formal languages.

(2) Streams have been studied in a coalgebraic setting by Rutten [24]. Here we take
the functor HX = R ×X whose final coalgebra (C, c) is carried by the set R

ω of all
streams over R and c = 〈hd, tl〉 : R

ω → R × R
ω is given by the usual head and tail

functions on streams.
Consider the functorKX = R×X+X×X corresponding to the signatureΣ with

a unary operation symbol r.(−) for every real number r and with a binary operation
symbol zip. Now zip is defined by the behavioral differential equation zip(r.x, s.y) =
(r, zip(s.y, x)). This can conveniently be expressed as a natural transformation � :
KH → HK, where K is the free monad on K (recall that KX is the set of all Σ-
terms on the set X of variables). Indeed, define � for the two coproduct components of
KHX = R×HX +HX ×HX by �X(r, (s, x)) = (r, s.x) and �X((r, x), (s, y)) =
(r, zip(s.y, x)), and note that the right-hand sides are pairs in R×KX . The �-interpre-
tation b : KC → C interprets Σ-terms built from the operation symbols as expected.



316 S. Milius, L.S. Moss, and D. Schwencke

(3) Processes. We shall be interested in Milner’s CCS [21]. Let κ be a regular cardinal
and Pκ be the functor assigning to the set X the set of all subsets Y with |Y | < κ. Here
we consider the functorHX = Pκ(A×X) whereA is some fixed alphabet of actions.
Following Milner [21], we assume that for every a ∈ A we also have a complement
ā ∈ A (so that ¯̄a = a) and a special silent action τ ∈ A.

Recall that the final coalgebra for the finite power set functor Pfin was described
by Worrell [27]: it is carried by the set of all strongly extensional finitely branching
trees, where an unordered tree t is called strongly extensional if two subtrees rooted at
distinct children of some node of t are never bisimilar. Similarly, the final coalgebra
for the countable power set functor Pc is carried by the set of all strongly extensional
countably branching trees, see [25]. The technique by which this result is obtained in
loc. cit. generalizes to the functor Pκ(A × X) from above: its final coalgebra C turns
out to consist of all strongly extensional κ-branching trees with edges labelled in A;
strongly extensional has the analogous meaning as above: two subtrees rooted at distinct
children of some node are never bisimilar if both edges to the children carry the same
label. The elements of C can be considered as (denotations of) CCS-agents modulo
strong bisimilarity.

Notice that the inverse c−1 : Pκ(A × C) → C assigns to a set {(ai, Ei) | i < κ}
of pairs of actions and agents the agent i<κ ai.Ei. The usual process combinators
“a.−” (prefixing), “|” (composition), “ i<κ” (sum), −[f ] (relabelling) and “−\L”
(restriction) are given by sos rules. Let E, E′, F , F ′ be agents and a ∈ A some action,
then these rules are:

E→E′

E|F→E′|F
F→F ′

E|F→E|F ′
E→E′ F

¯→F ′

E|F→E′|F ′ (a�=τ)

a.E→E
E →E′

( E )→E′ (j<κ) E→E′

E[f ]
( )→ E′[f ]

E→E′

E\L→E′\L (a,ā�∈L)

Now let K be the polynomial functor for the signature given by taking the combinators
as operation symbols. Then the above rules are easily seen to give a natural transforma-
tion � : KH → HK, and the �-interpretation b : KC → C in C evaluates all terms
built from the considered combinators in C. Further details are presented in Section 6.1.

Our first result (Theorem 3.2) improves a result from [8, 9] that we now recall. We
are interested in λ-bialgebras for a distributive law λ : MH → HM . We shall not
recall the formal definition here since it is not needed for this paper. We only note that
for the λ-interpretation b : MC → C the triple (C, b, c) is a λ-bialgebra; in fact, it is
the final one, see [9], Corollary 3.4.12).

Definition 2.7. A λ-equation is an HM -coalgebra; that is, a morphism of the form
e : X → HMX . A solution of e in the λ-bialgebra (C, b, c) is a morphism e† : X → C
such that the following equation holds: c · e† = Hb ·HMe† · e.
Theorem 2.8. [8, 9] Let A be a cocomplete category, and let λ be a distributive law
of the pointed endofunctor M over H . Then every λ-equation has a unique solution
in (C, b, c).

Bartels proved a version of this theorem in the setting where the functor M is not
necessarily pointed. So this result is just a slight variation on Bartels’ Theorem 4.2.2.



CIA Structures and the Semantics of Recursion 317

It is worthwhile to note that Bartels’ work also contains a similar result for the case
where M is a monad and where λ is a distributive law of M over H , see [9], Corol-
lary 4.3.6. In that case the assumption that A is cocomplete is not necessary. This last
result is the dual of a result obtained independently and at the same time by Uustalu,
Vene and Pardo (see [26], Theorem 1), and in [11] Capretta, Uustalu and Vene general-
ize this work further obtaining Theorem 2.8 as a special case.

3 Completely Iterative Algebras

In addition to our assumptions in 2.1 we assume from now on that our base categoryA
is cocomplete.

It is our aim in this section to extend Theorem 2.8 so as to obtain several new struc-
tures of completely iterative algebras (for functors other than H) on C. We briefly
recall the basic definitions and one example; more details and examples can be found
in [18, 7, 19].

Definition 3.1. [18] A flat equation morphism in an objectA (of parameters) is a mor-
phism e : X → HX + A. An H-algebra a : HA → A is called completely iterative
(or a cia, for short) if every flat equation morphism in A has a unique solution, i. e., for
every e : X → HX +A there exists a unique morphism e† : X → A such that

e† = (X e ��HX +A
He†+A

��HA+A
[a,A]

��A).

Recall that the inverse of the structure c : C → HC of the final coalgebra is, equiv-
alently, an initial cia for H , see [18]. The following show that the distributive law λ
induces further structures of completely iterative algebras on C.

Theorem 3.2. Consider the algebra k = (HMC
Hb−−→ HC

c−1−−→ C), where b :
MC → C is the λ-interpretation in C. Then (C, k) is a cia for the composite func-
tor HM .

Theorem 3.3. (Sandwich Theorem) Consider the algebra k′ = MHMC
Mk−−→MC

b−→
C, where b : MC → C is the λ-interpretation inC and k = c−1 ·Hb as in Theorem 3.2.
Then (C, k′) is a cia for the composite functor MHM .

These two results extend Theorem 2.8 in two important ways. Firstly, the structure of a
cia allows one to reuse solutions of given recursive specification by using constants inC
on the right-hand sides of recursive equations, i. e., in a cia we can solve open recursive
equations not just closed ones. This gives a clear explanation of why it is possible to use
recursively defined objects (streams, processes, etc.) in subsequent recursive definitions.
This kind of compositionality of the unique solutions is a useful and desired property
often employed in specifications.

Secondly, Theorem 3.3 permits the right-hand sides of recursive specifications to be
from a wider class. For example, Milner’s solution theorem for CCS (see [21], Chap-
ter 4, Proposition 14) allows recursion over process terms E in which the recursion
variables occur within the scope of some prefixing combinator a.−. This combinator
can occur anywhere within E, not necessarily at the head of that term. Hence, The-
orem 3.3 allows us to obtain Milner’s result as a special case, directly. This will be
explained in detail in Section 6.1.



318 S. Milius, L.S. Moss, and D. Schwencke

4 Solution Theorems for Free

Using the new cia structures obtained from Theorems 3.2 and 3.3, the existing body of
results on the semantics of recursion in cias [3, 18, 19] now gives us further theorems.

We begin with a terse review of some terminology from the area [3, 18, 19]. We as-
sume that, in addition to the finalH-coalgebraC, for every objectX the final coalgebra
THX for H(−) + X exists, i. e., in the terminology of loc. cit., H is iteratable. Our
examples in 2.6 are all iteratable endofunctors of Set.

The inverse of the final coalgebra structure THX → HTHX +X gives morphisms
ηHX : X → THX and τHX : HTHX → THX . It is proved in [18] that (THX, τHX ) is
a free cia on X with the universal arrow ηHX . From this it easily follows that TH is the
object assignment of a monad and that ηH and τH are natural transformations. Denote
by κH the natural transformation τH ·HηH : H → TH .

Let (A, a) be a cia for H . Then there is a unique homomorphism a : THA → A of
H-algebras such that a ·ηHA = idA. We call a the evaluation morphism associated to A.
Notice that a · κHA = a.

In our previous work we have shown how to obtain unique solutions of more general
(first-order) recursive equations than the flat ones appearing in the definition of a cia:

Definition 4.1. [3, 18] An equation morphism is a morphism of the form e : X →
TH(X + A). It is called guarded if there exists a factorization f : X → HTH(X +
A) +A such that e = [τHX+A, η

H
X+A · inr] · f .

A solution of an equation morphism e in a cia (A, a) is a morphism e† : X → A
such that the following equation holds: e† = a · TH([e†, idA]) · e.

Theorem 4.2. [18] Let (A, a) be a cia for H . Then every guarded equation morphism
has a unique solution in A.

An even more general property of cias was proved in [19]; one can solve recursive
function definitions uniquely in a cia. We recall the respective result.

Definition 4.3. Let V be an endofunctor such that H + V is iteratable. A recursive
program scheme (rps, for short) is a natural transformation e : V → TH+V . It is
called guarded if there exists a natural transformation f : V → HTH+V such that
e = τH+V · (inlTH+V ) · f , where inl : H → H + V .

Now let (A, a) be a cia for H . An interpreted solution of e in A is a V -algebra
structure e‡A : V A → A giving rise to an Eilenberg-Moore algebra structure β :
TH+VA→ A (i. e., β · κH+V

A = [a, e‡A]) such that we have e‡A = β · eA.

Theorem 4.4. [19] In a cia, every guarded rps has a unique interpreted solution.

We are now able to prove more:

Theorem 4.5. Let e : V → TH+V be a guarded rps, and let a : HA → A be a
cia. Then the interpreted solution e‡A : V A → A extends the cia structure on A; more
precisely, the algebra [a, e‡A] : (H + V )A→ A is a cia for H + V .



CIA Structures and the Semantics of Recursion 319

The last result implies that operations obtained as solutions of recursive program schemes
can be used in subsequent recursive function definitions, which will still have unique
solutions. For the special case of interpreted rps solutions in cias this strengthens the
results in [20].

Now assume that the compositeHM is iteratable. By applying the above two Theo-
rems 4.2 and 4.4 to the cia k : HMC → C from Theorem 3.2 we get two more solu-
tions theorems for free, and two similar theorems hold for the cia k′ : MHMC → C
obtained from Theorem 3.3:

Corollary 4.6. Every guarded equation morphism e : X → THM (X + C) has a
unique solution in the cia (C, k).

Corollary 4.7. Every guarded rps e : V → THM+V has a unique interpreted solution
in the cia (C, k).

5 Recursive Function Definitions over the Behavior

All results we have seen so far do not allow us to obtain functions such as the shuffle
product on streams (see introduction) as a unique solution since its definition refers to
the behavior of the arguments of the function. In this section we introduce a special form
of recursive program schemes called λ-rps’s which accommodate such examples. We
prove that every λ-rps has a unique solution in the final coalgebra C, and this solution
extends the cia structure for HM on C given by Theorem 3.2—this is a composition-
ality result similar to the one given in Theorem 4.5 for ordinary rps.

We show that every λ-rps easily gives rise to a distributive law, and so the results in
this section are essentially an application of the work in [8] and our results in Section 3.
However, to prove the uniqueness of solutions we need that free algebras can always be
constructed as colimits of transfinite chains. Hence, the following

Assumption 5.1. We assume that our base category A is Set, and in this section we
only consider endofunctors on Set that are accessible, i. e., they preserve α-filtered co-
limits for some regular cardinal α. This implies that they are iteratable.

We further assume that the functor M = K is the free monad on some endofunctor
K and that λ : KH → HK arises from some natural transformation � : KH → HK
as explained in Remark 2.3(2).

Notation 5.2. (1) Recall that for an accessible endofunctor F : Set → Set the free
monadF does indeed exist and is given objectwise by the free F -algebras onX , see [4].
We denote by ϕX : FFX → FX the structure of this algebra and by uX : X →
FX the universal morphism. We abuse notation and write ϕX and uX for different
functors F .
(2) For any F -algebra a : FA → A we denote the corresponding Eilenberg-Moore
algebra for F by a : FA→ A. Observe that a is the unique F -algebra homomorphism
with a · uA = idA.
(3) Let b : KC → C be the λ-interpretation in C. We denote by b0 the corresponding
K-algebra structure b0 = b · ϕC ·KuC . Then clearly we have b = b0.



320 S. Milius, L.S. Moss, and D. Schwencke

Definition 5.3. A recursive program scheme w. r. t. λ (shortly, λ-rps) is a natural trans-
formation e : V H → HK̂ + V .

An interpreted solution of e in C is a V -algebra structure s : V C → C such that

s · V c−1 = c−1 ·H [̂b0, s] · eC : V HC → C.

Theorem 5.4. For every λ-rps there exists a unique interpreted solution s in C. In
addition, s extends the cia structure on C, i. e., the following is the structure of a cia for
HK̂ + V on C:

HK̂ + V (C)
H [̂b0,s]

��HC
c−1

��C . (5.1)

Notice again that the fact that the unique solution s of a λ-rps extends the cia struc-
ture on C means that the operations on C defined in this way may be part of recursive
definitions according to the Corollaries 4.6, 4.7 (where M = K̂ + V ) and also Theo-
rem 5.4 (where K is now replaced by K + V ). We will make use of this feature in our
applications below.

Theorem 5.5. Let ei : ViH → HK̂ + Vi, i = 1, 2, be two λ-rps’s. Then the cia
structure on C extended by the unique solutions si : ViC → C of the ei is independent
of the order of extension.

More precisely, we may first take s1 : V1C → C to obtain an extended cia structure as
in (5.1), and then take the solution of s2 in the new cia, or vice versa. Either way, the

resulting extended cia structure is c−1 ·H ̂[b0, s1, s2] : H( ̂K + V1 + V2)(C)→ C.

6 Applications

6.1 Process Algebras

Recall Example 2.6(3) where HX = Pκ(A×X). We shall first explain more in detail
how the natural transformation � is obtained. Recall that K is the polynomial functor
corresponding to the types of the CCS combinators, i. e., KX is a coproduct of the
following components: A ×X for agent expressions a.x, n<κX

n for agent expres-
sions n

i=1 xi, X ×X for x1|x2, f X , where f ranges over functions on the action

set A \ {τ} with f(a) = f(ā), for renaming x[f ], and L⊆A\{ τ }X , for restriction

x\L. The natural transformation � : KH → HK is given by the sos rules in 2.6(3)
in terms of the components of the coproductKH , i. e., for each combinator separately.
The first component �X(a, S), for S ⊆ A × X , is (a, (a ,x )∈S(ai.xi)), the sec-
ond one is for every n < κ and every family (Si)i<n with Si ⊆ A × X given by
�X((Si)i<κ) = i<κ Si. The third one �X(S1, S2), where S1, S2 ∈ HX , is the union
of three sets: (i) all (a, x|( (a ,x )∈S2

(ai.xi))), where (a, x) ranges through S1, (ii) all
(a, ( (a ,x )∈S1

(ai.xi))|x), where (a, x) ranges through S2, and (iii) all (τ, x|y) where
for some a ∈ A \ {τ} we have (a, x) ∈ S1 and (ā, y) ∈ S2. The remaining two com-
ponents are �X(S) = {(f(a), x[f ]) | (a, x) ∈ S} (here we mean f(τ) = τ , of course)
and �X(S) = {(a, x\L) | (a, x) ∈ S, a, ā 	∈ L}. The form of these definitions is very



CIA Structures and the Semantics of Recursion 321

similar to the ones given by Aczel [2] in the setting of non-well-founded set theory. We
already mentioned the �-interpretation b : KC → C giving the desired operations on
agents, and this gives the two new cia structures forHK andKHK as in Theorems 3.2
and 3.3.

Remark 6.1. If we replaced the second component n<κX
n of K by PκX we still

have a distributive law. Furthermore, in both cases the induced (binary) operation of
summation is automatically commutative, associative and idempotent: these three laws
that have to be proved in process theory come “for free” by encoding them in the dis-
tributive law using the union operation.

Now let us recall Milner’s solution theorem for CCS agents from [21]. Suppose thatEi,
i ∈ I , are agent expressions with the free variables xi, i ∈ I . Suppose further that each
variable xj in each Ei, i, j ∈ I is weakly guarded, i. e., it only occurs within the scope
of some prefix combinator a.−. Then there is a unique solution of the recursive system
xi = Ei of equations. More precisely, let∼ denote strong bisimilarity, and letEi[P /x]
denote simultaneous substitution of Pj for xj for every j. Then we have

Theorem 6.2. [21] There exist unique CCS agents Pi such that Pi ∼ Ei[P /x] holds
for each i ∈ I .

It is easy to see that this theorem is a consequence of our Theorem 3.3; to give a sys-
tem xi = Ei where each variable is weakly guarded is the same as to give a map
X → KHKX , where X = {xi | i ∈ I}. This map can be extended to a flat equa-
tion morphism X → KHKX + C, which has a unique solution in C. Actually, the
extra summand C allows us to use constant agents in recursive specifications. So, for
example, we can obtain the agent P as the unique solution of x = a.(x|c) + b in the
introduction and then use it in a system like x = b.(x + y), y = P which has a unique
solution by Theorem 3.3.

Finally, suppose we want to define the new combinators op1 and op2 by the rule

E
a→ F

op1(E) a→ F |op2(F + E) op2(E) a→ F + op1(F |E)
.

Then Theorem 5.4 tells us that this rule uniquely determines the two combinators. In-
deed, we translate the rule into a λ-rps: let V = Id+ Id (two unary combinators are de-
fined) and let e : V H → HK̂ + V be given by e(S) = {(a, x|op2(x+ (a,x)∈S a.x)) |
(a, x) ∈ S} on the first component and e(S) = {(a, x + op1(x| (a,x)∈S a.x)) |
(a, x) ∈ S} on the second one. The unique solution of e gives us two new unary com-
binators on C extending its cia structure. This means that Theorem 6.2 remains true for
the extended calculus, without further work.

6.2 Streams

Recall from Example 2.6(2) that here we take HX = R × X and we have C = R
ω

with the structure given by 〈hd, tl〉 : C → R × C. Recursive function definitions in
this realm are often given in terms of stream circuits, and we show how this arises as a



322 S. Milius, L.S. Moss, and D. Schwencke

special case of our results. Stream circuits are usually defined as pictorial compositions
of the following basic stream circuits

r r-multiplier +��

��
adder

C ��
�� copier r register

The r-multiplier multiplies all elements in a stream by r ∈ R, the adder performs com-
ponentwise addition, the copier yields two copies of a stream, and the register prepends
r ∈ R to a stream σ to yield r.σ. The stream circuits are then built from the basic cir-
cuits by plugging wires together, and there may also be feedback (loops). For example
the following picture shows a simple stream circuit:

σ +
1

C f(σ)�� �� ��

��
��

(6.1)

Now let K be the signature functor associated to the signature Σ given by r-multi-
plication, the adder and the register operations (copying will be implicit via variable
sharing). In symbols, KX = R×X +X ×X + R×X . These operations are defined
by so-called behavioral differential equations [24] with σ0 = hd(σ) and σ′ = tl(σ):

(rσ)0 = rσ0 (rσ)′ = rσ′

(σ + τ)0 = σ0 + τ0 (σ + τ)′ = σ′ + τ ′

(r.σ)0 = r (r.σ)′ = σ

These definitions are easily seen to give rise to a natural transformation � : KH →
HK, for example the middle component (R × X)2 → R × KX is given by
�X((r, x), (s, y)) = (r + s, x + y) where r + s ∈ R and x + y is a Σ-term. We then
get the �-interpretation in C and the corresponding extended cia structures by Theo-
rems 3.2 and 3.3. Recall that a stream circuit is called valid if every loop passes through
at least one register. It is well-known that every closed valid stream circuit defines a
unique stream at every output wire, see [24]. Our Theorem 5.4 now also implies that
open circuits define unique stream functions. To our knowledge, this is a new result in
coalgebraic stream calculus.

Theorem 6.3. Every finite valid stream circuit defines a unique stream function.

Moreover, the fact that the unique solution of a λ-rps extends the cia structure on C ex-
plains why stream circuits can be used as building blocks as if they were basic operations
in subsequent stream circuits. And Theorem 6.3 remains valid for the extended circuits.

The proof of 6.3 essentially gives a translation of an arbitrary valid stream circuit
into a λ-rps. Instead of giving the full proof here, we demonstrate this on the circuit
given in (6.1) above. First we introduce for the output a function symbol f and for the
register output the function symbol g. To determine their arity we count the number of
input wires which have a (directed) path to the register and the output, respectively. In
both cases the arity is one. Now we must give a definition of f(r.x) and g(r.x) for an
abstract input stream with head r ∈ R. These definitions are each given by a pair (s, t)



CIA Structures and the Semantics of Recursion 323

where s ∈ R and t is a term in the one variable x over operations corresponding to the
basic circuits and f , g. We define

g(r.x) = (1, r.x+ g(r.x)) f(r.x) = (r + 1, x+ (r.x+ g(r.x)) .

For g(r.x) we take the value 1 of the register as first component, and the right-hand
term is obtained as follows: we follow all paths from the register backwards until we
find an input or a register. Since the given circuit is valid, all such paths are finite and
there are only finitely many of them. So we get a finite tree or, equivalently, the desired
term. For f(r.x) we first follow all paths to inputs and registers backwards to get the
term t′ = xI + xR, where xI represents the input and xR the register. For the first
component of f(r.x) we evaluate t′ with the head r of the input and the initial value 1 of
the register, and for the second component we replace in t′ the input by x and the register
by the second component of its function g(r.x). The two equations above are easily seen

to yield a λ-rps e : V H → HK̂ + V , where V = Id + Id is the polynomial functor for
the signature with two unary symbols f and g. The unique solution of e gives two unary
operations (for f and g) onC, and the one for f is precisely the function computed by the
circuit (6.1). Since these new unary operations onC extend the cia structure, we can use
f (and also g) as “black-boxes” in subsequent recursive definitions or stream circuits.

6.3 Non-Well-Founded Sets

For background on non-well-founded sets, the antifoundation axiom (AFA), and
classes, please see the books [2, 10]. We work here on the category C of classes. Ob-
serve first that even though we are working in a different category than Set, the results
of Section 5 hold true for C. This is because the construction of free algebras for a
functor as colimits of transfinite chains works in C, see [6].

Consider P : C → C taking a class X to the class PX of subsets of X . AFA is
equivalent to the assertion that (V, c) is a final coalgebra, where V is the class of all
sets, and c : V → PV takes a set and considers it a set of sets. (That is, c(s) = s for all
s.) Let us note some natural transformations:

p : P → PP op : Id× Id→ PP cp : P × P → P(Id× Id)
pX(x) = P(x) opX(x, y) = {{x}, {x, y}} cpX(x, y) = x× y

Also note that c−1 is the operation on V taking a family x ⊆ V of sets to the set
{ y | y ∈ x }.

We will now define three additional operations on V : the powerset operation b1 :
x �→ { y | y ⊆ x }, the Kuratowski pair b2 : (x, y) �→ {{ x }, { x, y}} and the cartesian
product b3 : (x, y) �→ x×y. So letK be the functor Id+(Id×Id)+(Id×Id)+P+P2;
its first three components represent (the type of) our three desired operations, the fourth
componentP represents c−1 and the fifth one represents c−1 ·Pc−1—the latter two are
needed for the definition of the former three. We write the coproduct injections of K
as inj1, . . . , inj5. We define a natural transformation � : KP → PK componentwise,
using P inj4 · p : P → PK , P inj5 · opP : P × P → PK , P inj2 · cp : P × P →
PK , P inj4 : PP → PK and P inj5 : PPP → PK . Then � lifts to a distributive
law λ = can · (� + idP) of the free pointed endofunctor M = K + Id over P . Let



324 S. Milius, L.S. Moss, and D. Schwencke

b : MV → V be the λ-interpretation in V . Let us write b1, . . . , b5 for the components
of b corresponding to the left-hand component K of M , so bi = b · inl · (inji)V . To
obtain explicit formulas for these, we use equation (2.1) and the above definitions to
write:

c · b1 = Pb4 · pV · c
c · b2 = Pb5 · opPV · (c× c)
c · b3 = Pb2 · cpV · (c× c)

c · b4 = Pb4 · Pc
c · b5 = Pb5 · P2c

We check easily that b4 = c−1 and b5 = c−1 · Pc−1 satisfy the last two equations.
From these we see that b1 = c−1 · Pc−1 · pV · c, b2 = c−1 · Pb5 · opPV · (c× c), and
b3 = c−1 · Pb2 · cpV · (c× c). In words, b4 and b5 are the identity, and b1, b2 and b3 are
as desired.

By Theorem 3.2, we have a cia structure (V, c−1 · Pb) for the composite PM .

Remark 6.4. We could have obtained the various operations on V in a step by step
fashion starting with b4 and b5 and then defining b1, b2, b3 by successive applications
of Theorem 5.4. We decided against this, to keep the presentation short. But in the next
section on formal languages we follow this approach.

Continuing our discussion of non-well-founded sets, we may solve systems of equations
which go beyond what one finds in the standard literature on non-well-founded sets [2,
10]. For example, one may solve the system x = {P(y)}, y = {y × y, ∅}. Further, one
may uniquely solve recursive function definitions such as g(x) = {g(P(x)) × x, x}
from the introduction. Indeed, for W = Id this equation yields a λ-rps e : WP →
PK̂ +W whose unique solution given by Theorem 5.4 is a function gV : V → V
behaving as specified.

6.4 Formal Languages

Recall Example 2.6(1); here we have HX = XA × 2 on Set. A coalgebra x : X →
XA×2 forH is precisely a deterministic automaton with the (possibly infinite) state set
X . Here C = P(A∗), and the unique homomorphism h : (X,x) → (C, c) assigns to
each state the language it accepts. We shall now show how various operations on formal
languages can be defined in a compositional way using Theorem 5.4. It is well-known
that such operations can be defined as interpretations of one distributive law in C, see
e. g. [12]. However, the previous bialgebraic account does not explain why one may
define these operations in a step-by-step fashion by subsequent recursive definitions.
This is the added value of Theorem 5.4.

We start with the functor K0 = C∅ (that means, we start from scratch with no given
operations) and with �0 : C∅H → HC∅ = H given by the empty maps. So the cor-
responding distributive law λ0 is the identity on H , and its interpretation is the iden-
tity on C. Thus, the cia structure for HK0 on C given by Theorem 3.2 is simply the
initial cia (C, c−1) for H . At each subsequent step we are given a functor Ki with
�i : KiH → HKi with its interpretation bi : KiC → C. We then give a λi-rps
ei : ViH → HK̂i + Vi and its unique solution si : ViC → C extends the cia structure
as follows: letKi+1 = Ki+Vi and let �i+1 = [H inl·�i, ei] : Ki+1H → HK̂i+1, where

inl : Ki → K̂i+1 is the monad morphism induced by inl : Ki → Ki+1. By induction



CIA Structures and the Semantics of Recursion 325

it is easy to see that the �i+1-interpretation is bi+1 = ̂[sj ]j=0,...,i : K̂i+1C → C. And

this gives an extended cia c−1 ·Hbi+1 : HK̂i+1(C)→ C by Theorem 3.2.
As a first step we define constants in C for ∅, {ε}, and {a} for each a ∈ A, and the

operation I = c−1 : CA × 2 → C as solutions of a λ0-rps. (Note that I((La)a∈A, j)
is the language L = a∈A{a}La if j = 0 and L ∪ {ε} otherwise.) We express this
as a λ0-rps as follows: take the functor V0X = 1 + 1 + A + XA × 2 expressing
the above constants and the operation I . We define e0 : V0H → HK̂0 + V0 = HV0
componentwise. We write for every set X , ∅ for inj1(∗) ∈ V0X , ε for inj2(∗) ∈ V0X .
Then e0(∅) = ((∅)a∈A, 0), e0(ε) = ((∅)a∈A, 1), e0(a) = ((tb)b∈A, 0) with tb = ε for
b = a and tb = ∅ otherwise, and finally, e0((pa)a∈A, j) = ((Ipa)a∈A, j) where each
pa ∈ XA×2. It is now straightforward to check that the unique solution s0 of e0 yields
the desired operations on C extending the cia structure.

Next we add the operations of union, intersection and language complement to the
cia structure. Let K1 = K0 + V0 and let �1 as above with interpretation b1 = s0. Let
V1X = X ×X +X ×X +X be the polynomial functor corresponding to two binary
symbols ∪ and ∩ and one unary one (−). We give the λ1-rps e1 : V1H → HK̂1 + V1
componentwise in the form of the three assignments (where a ranges over A):

((xa), j) ∪ ((ya), k) �→ ((xa ∪ ya), j ∨ k) ((xa), j) �→ ((xa,¬j)
((xa), j) ∩ ((ya), k) �→ ((xa ∩ ya), j ∧ k)

where ∨, ∧ and ¬ are the evident operations on 2 = {0, 1}. The corresponding unique
solution s1 : V1C → C is easily checked to provide the desired operations extending
the cia structure on C.

The next step adds concatenation to the cia structure on C. For this let V2X =
X × X and e2 is given by the assignment ((xa), j) · ((ya), k) �→ ((ta), j ∧ k) where
ta = (xa · I((ya), k)) ∪ ya if j = 1 and ta = xa · I((ya), k) otherwise. Its unique
solution s2 : C × C → C is the concatenation operation.

As the final step we add the Kleene star operation by taking V3X = X and e3
given by e3((xa), j) = ((xa · (I((xa), j)∗), 1). Notice that this definition makes use of
concatenation which was a solution at the previous stage and concatenation makes use
of union which was a solution at stage 1.

7 Conclusions

In many areas of theoretical computer science, one is interested in recursive defini-
tions of functions on final coalgebras C for various functors H . This paper provides
a more comprehensive foundation for recursive definitions than had been presented up
until now. The overall idea is to present operations in terms of a distributive law λ of a
pointed endofunctorM over H . We proved that λ induces new completely iterative al-
gebra structures forHM andMHM onC. As a result, we are able to define operations
with useful algebraic properties such as commutativity or associativity “for free”. We
also introduced the notion of a λ-rps and showed how to uniquely solve recursive func-
tion definitions in C which are given by a λ-rps. Our results explain why taking unique



326 S. Milius, L.S. Moss, and D. Schwencke

solutions of such equations is a compositional process. And we have seen that our re-
sults can be applied to provide the semantics of recursive specifications in a number of
different areas of theoretical computer science.

References

[1] Aceto, L., Fokking, W., Verhoef, C.: Structural Operational Semantics. In: Handbook of
Process Algebra. Elsevier, Amsterdam (2001)

[2] Aczel, P.: Non-Well-Founded Sets. CLSI Lecture Notes, vol. 14. CLSI Publications, Stan-
ford (1988)

[3] Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative theories:
A coalgebraic view. Theoret. Comput. Sci. 300, 1–45 (2003)

[4] Adámek, J.: Free algebras and automata realizations in the language of categories. Com-
ment. Math. Univ. Carolin. 15, 589–602 (1974)

[5] Adámek, J.: Introduction to coalgebra. Theory Appl. Categ. 14, 157–199 (2005)
[6] Adámek, J., Milius, S., Velebil, J.: On coalgebras based on classes. Theoret. Com-

put. Sci. 316, 3–23 (2004)
[7] Adámek, J., Milius, S., Velebil, J.: Elgot algebras. Log. Methods Comput. Sci. 2(5:4), 31

(2006)
[8] Bartels, F.: Generalized coinduction. Math. Structures Comput. Sci. 13(2), 321–348 (2003)
[9] Bartels, F.: On generalized coinduction and probabilistic specification formats. PhD thesis,

Vrije Universiteit Amsterdam (2004)
[10] Barwise, J., Moss, L.S.: Vicious circles. CLSI Publications, Stanford (1996)
[11] Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. Inform. and Com-

put. 204, 437–468 (2006)
[12] Jacobs, B.: A bialgebraic review of deterministic automata, regular expressions and lan-

guages. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Com-
putation. LNCS, vol. 4060, pp. 375–404. Springer, Heidelberg (2006)

[13] Jacobs, B.: Distributive laws for the coinductive solution of recursive equations. In-
form. and Comput. 204(4), 561–587 (2006)

[14] Lambek, J.: A fixpoint theorem for complete categories. Math. Z. 103, 151–161 (1968)
[15] Lenisa, M., Power, A.J., Watanabe, H.: Distributivity for endofunctors, pointed and co-

pointed endofunctors, monads and comonads. In: Reichel, H. (ed.) Proc. Coalgebraic Meth-
ods in Computer Science. Electron. Notes Theor. Comput. Sci., vol. 33. Elsevier, Amster-
dam (2000)

[16] Lenisa, M., Power, A.J., Watanabe, H.: Category theory for operational semantics. Theo-
ret. Comput. Sci. 327, 135–154 (2004)

[17] MacLane, S.: Categories for the working mathematician, 2nd edn. Springer, Heidelberg
(1998)

[18] Milius, S.: Completely iterative algebras and completely iterative monads. Inform. and
Comput. 196, 1–41 (2005)

[19] Milius, S., Moss, L.S.: The category theoretic solution of recursive program schemes. The-
oret. Comput. Sci. 366, 3–59 (2006) (fundamental study)

[20] Milius, S., Moss, L.S.: Equational properties of recursive program scheme solutions.
Cah. Topol. Gèom. Diffèr. Catèg. 50, 23–66 (2009)

[21] Milner, R.: Communication and Concurrency. International Series in Computer Science.
Prentice Hall, Englewood Cliffs (1989)

[22] Plotkin, G.D., Turi, D.: Towards a mathematical operational semantics. In: Proc. Logic in
Computer Science, LICS (1997)



CIA Structures and the Semantics of Recursion 327

[23] Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249(1),
3–80 (2000)

[24] Rutten, J.J.M.M.: A coinductive calculus of streams. Math. Structures Comput. Sci. 15(1),
93–147 (2005)

[25] Schwencke, D.: Coequational logic for accessible functors. Accepted for publication in
Inform. and Comput. (2009)

[26] Uustalu, T., Vene, V., Pardo, A.: Recursion schemes from comonads. Nordic J. Com-
put. 8(3), 366–390 (2001)

[27] Worrell, J.: On the final sequence of a finitary set functor. Theoret. Comput. Sci. 338, 184–
199 (2005)



Coalgebraic Correspondence Theory

Lutz Schröder1,� and Dirk Pattinson2,��

1 DFKI Bremen and Department of Computer Science, Universität Bremen
2 Department of Computing, Imperial College London

Abstract. We lay the foundations of a first-order correspondence the-
ory for coalgebraic logics that makes the transition structure explicit in
the first-order modelling. In particular, we prove a coalgebraic version of
the van Benthem/Rosen theorem stating that both over arbitrary struc-
tures and over finite structures, coalgebraic modal logic is precisely the
bisimulation invariant fragment of first-order logic.

Introduction

Viewing modal logic as a sub-language of first-order logic via the standard trans-
lation is the starting point of modal correspondence theory. One of the core re-
sults of this area, van Benthem’s theorem [22], states that modal logic is precisely
the bisimulation invariant fragment of first-order logic over relational structures.
This result has been extended to finite structures by Rosen [18], and special
frame classes have been considered in [5]. Results of this kind characterize the
expressive power of modal logic – slightly reworded, they state that modal logic
can express the same bisimulation-invariant properties as first-order logic.

Here, we extend these results to coalgebraic modal logic [16], thus making
initial forays into coalgebraic correspondence theory. Coalgebraic modal logic
is a generic framework for modal logics that captures a wide range of modal
logics from the literature, e.g. the modal logic of neighbourhood frames (called
classical modal logic in [3]), normal modal logics [2], graded and probabilistic
modal logics [7,14,12], and various conditional logics [3]. The parameters of the
framework are a type functor, whose coalgebras serve as models, and a choice of
predicate liftings defining the modal operators. The predicate liftings act as an
interface to the type functor, and as such form an integral part of the semantics.

Our correspondence language is a multi-sorted first-order logic, inspired by
the correspondence language for neighbourhood frames of [11]. It includes a
dedicated sort to represent the type functor and thus provides a full model of
coalgebras. Moreover, the language explicitly incorporates predicate liftings, fol-
lowing the semantic principles outlined above. We adapt the method of Rosen
(and a related proof by Otto [15]) to prove that, under suitable assumptions,
coalgebraic modal logic is, both over finite and over arbitrary structures, pre-
cisely the fragment of the coalgebraic correspondence language characterized
� Work performed as part of the DFG project Generic Algorithms and Complexity

Bounds in Coalgebraic Modal Logic (SCHR 1118/5-1).
�� Partially supported by EPSRC grant EP/F031173/1.

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 328–342, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Coalgebraic Correspondence Theory 329

by invariance under behavioural equivalence. As Rosen’s method avoids com-
pactness and saturation, which feature prominently in the original proof of van
Benthem’s theorem, we can deal also with classes of coalgebras that fail to be
first-order axiomatizable, which is a fairly typical phenomenon.

To show that a first-order formula that is invariant under behavioural equiv-
alence can be characterized by a finitary formula, we have to assume that the
underling signature functor preserves finite sets. This covers Kripke and neigh-
bourhood semantics, as well as the selection function semantics of conditional
logic and a bounded version of graded modal logic, but excludes e.g. graded and
probabilistic modal logic. For the general case, we do provide a characterization
result in terms of bounded-rank modal formulas with infinitary conjunction, and
a counter-example showing that equivalence to a finitary modal formula fails in
general. This result applies to essentially all logics of interest, and indeed covers
most of the way to the finitary result in terms of its proof, as the latter is an easy
corollary to it in the case of finite signatures. As an application, we obtain e.g.
that every formula in a natural first order logic with counting quantifiers over
multigraphs that is invariant under behavioural equivalence over finite structures
is equivalent to a possibly infinitary formula of bounded depth in graded modal
logic. Although similar results have previously been obtained over the class of
all structures [6], our result seems to be the first Rosen-type result for graded
modal logic over finite structures.

We note that the design of the correspondence language used as the setting
for our results is a delicate affair: the translation of coalgebraic semantics, like
already the translation of neighbourhood semantics used in [11], needs to include
a sort of neighbourhoods, i.e. subsets of the state space. On the other hand, we
need to avoid the full expressive power of monadic second order logic, in which
the van Benthem/Rosen theorem fails to hold, as it contains the μ-calculus
(which, in the standard relational case, is in fact its bisimulation-invariant frag-
ment [13]). This forces us to adopt a relaxed interpretation of the neighbourhood
sort by suitable subsets of the full powerset. In our setup, the key to a suitable
notion of model in this sense is the inclusion of explicit distinguished supports
in the language; a particularly pleasant effect of this language extension is that
it simultaneously acts as the key to enabling the use of Gaifman locality.

1 Coalgebra and Modal Logic

Throughout the paper, we fix a modal similarity type Λ consisting of modal
operators with associated arities. As we will be considering models rather than
frames, we express propositional variables as nullary modal operators. The set
F(Λ) of Λ-formulas is then given by the grammar

F(Λ) � φ, ψ ::= ⊥ | φ ∧ ψ | ¬φ | ♥(φ1, . . . , φn)

where♥ ∈ Λ is n-ary. We denote the language that admits arbitrary conjunctions
of sets of formulas rather than just binary conjunctions by F∞(Λ). We write
rank(φ) for the maximal nesting depth of modal operators in the formula φ,



330 L. Schröder and D. Pattinson

defined formally as rank(⊥) = 0, rank( Φ) = supφ∈Φ rank(φ), rank(¬φ) =
rank(φ) and rank(♥(φ1, . . . , φn)) = 1+max{rank(φ1), . . . , rank(φn)}. Thus, the
rank of a formula in F∞(Λ) may be infinite.

Formulas over Λ are interpreted over coalgebras with respect to a Λ-structure
that consists of an endofunctor T : Set → Set on the category of sets, together
with an assignment

�♥� : Qn → Q ◦ T
of natural transformations (the predicate liftings) where Q : Setop → Set is the
contravariant powerset functor. The functor T is called the underlying functor of
the structure, and we usually refer to the structure just in terms of its underlying
functor, leaving the assignments of predicate liftings implicit.

Assumption 1. We assume w.l.o.g. that T preserves injective maps [1]. For ease
of notation, we will in fact sometimes assume that subset inclusions X ↪→ Y are
mapped to subset inclusions TX ↪→ TY . Moreover, we assume w.l.o.g. that T is
non-trivial, i.e. TX = ∅ =⇒ X = ∅ (otherwise, TX = ∅ for all X).

Using the above assumption, we can give a simple definition of support, which
will play a role in our correspondence language:

Definition 2. A set A ⊆ X is a support of t ∈ TX if t ∈ TA.

Support has played a role in various coalgebraic model constructions, see e.g. [21].
We keep the notion of support as broad as possible, and in particular do not
insist on minimality, as set of supports of t ∈ TX does not necessarily have a
smallest element with respect to subset inclusion [9].

Given a Λ-structure T , a T -coalgebra is a pair (C, γ) where C is a set (of
states) and γ : C → TC is a (transition) function. We identify T -coalgebras
(C, γ) with their carrier set C in case the transition function is clear from the
context. The semantics �φ�C ⊆ C of a Λ-formula φ with respect to a T -coalgebra
(C, γ) is given inductively by

�♥(φ1, . . . , φn)�C = γ−1 ◦ �♥�C(�φ1�C , . . . , �φn�C)

where ♥ ∈ Λ is n-ary, together with the usual clauses for the propositional
connectives. We write (C, c) |= φ if c ∈ �φ�C .

Example 3. The following logics are covered by the coalgebraic approach.

1. Kripke models over a set P of propositional variables are triples (W,R, σ)
where W is a set, R ⊆ W ×W is a binary relation, and σ : P → P(W ) is a
valuation of propositional variables. It is easy to see that Kripke models are in
1-1 correspondence with T -coalgebras for TX = P(X) × P(P). The syntax of
the modal logic K comes about via the similarity type Λ = {♦} ∪ P where ♦
is unary and each p ∈ P doubles as a nullary modality. The language F(Λ) is
interpreted over T -coalgebras by virtue of the structure

�♦�X (A) = {(B,C) ∈ TX | B ∩A �= ∅} �p�X = {(B,C) ∈ TX | p ∈ C}.
Clearly this semantics coincides with the standard textbook semantics of K [2].



Coalgebraic Correspondence Theory 331

2. The modal logic of neighbourhood frames (classical modal logic in [3])
arises via the same similarity type, but is interpreted over neighbourhood models,
i.e. coalgebras for the functor TX = Q(Q(X))× P(P) where again P is a set of
propositional variables and Q denotes contravariant powerset. For a T -coalgebra
(C, γ), we say that A ⊆ C is a neighbourhood of c ∈ C if γ(c) = (N,B) where
A ∈ N . The interpretation of propositional constants (nullary modalities) is as
above and the semantics of classical modal logic arises via the lifting

���X(A) = {(N,B) ∈ TX | A ∈ N}
which again gives rise to the standard semantics.

3. Monotone modal logic has the same syntax as classical modal logic, but is
interpreted over monotone neighbourhood models, i.e. coalgebras for the functor

TX = {A ∈ PP(X) | A upwards closed} × P(P)

where upwards closure refers to subset inclusion.
4. Conditional logic [3] has a binary modal operator⇒ that we write in infix

notation. Conditional models over a set P of propositional variables come about
as coalgebras for the functor

TX = {f : P(X)→ P(X) | f a function} × P(P)

(again, the powerset on the left of the function space is contravariant) where
propositional constants are interpreted as above and the lifting

�⇒�X(A,B) = {(f,D) ∈ TX | f(A) ⊆ B}
induces the standard semantics of conditional logic.

5. The similarity type of graded modal logic features, apart from proposi-
tional constants, an indexed collection of operators ♦k for k ∈ ω. The intuitive
reading of ♦kφ is that φ holds in more than k successors. To retain naturality
of predicate liftings, we slightly deviate from the traditional semantics [7] and
interpret graded modal logic over coalgebras of the functor T (left) where we
use the liftings [[♦k]] (right)

TX = {f : X → ω} × P(P) �♦k�X(A) = {(f,D) ∈ TX | x∈A f(x) > k}
to interpret modal operators. In other words, we interpret graded modal logic
over multigraphs [4] where the graded modalities refer to the weighted sum of
successors. This semantics is equivalent to the standard Kripke semantics w.r.t.
satisfiability of formulas, as multigraphs can be converted to Kripke frames by
inserting the appropriate number of copies for each successor [19].
A variation of graded modal logic arises by limiting the overall (weighted) sum
of successor states. If we consider the sub-functor

TkX = {f ∈ TX | x∈X f(x) ≤ k} × P(P)

for some k ≥ 0, we may describe k-bounded multigraphs as T -coalgebras, and
interpret the sub-language that only features the modalities ♦i for i < k.



332 L. Schröder and D. Pattinson

6. For probabilistic logics, we prefer to work with subprobabilities for tech-
nical reasons, where a subprobability distribution P on a set X is a discrete
measure on X with P (X) ≤ 1. The similarity type of the modal logic of sub-
probabilities, a variant of probabilistic modal logic [12], contains, apart from
propositional variables, the modal operators Mp for rational p ∈ [0, 1] ∩ �. This
language is interpreted over T -coalgebras where TX is the set of finitely sup-
ported subprobability distributions over X , that is,

TX = {μ : X → [0, 1] | x∈X μ(x) ≤ 1} × P(P)

where the modalities Mp, read as “with probability of more than p”, are in-
terpreted via the liftings �Mp�X(A) = {(μ,D) ∈ TX | x∈A μ(x) > p} which
induces, up to the move to subprobabilities, the standard semantics.

We note that all similarity types except that of (unbounded) graded modal logic
and the modal logic of subprobabilities are finite, provided that we only have
finitely many propositional variables.

The aim of this work is to characterize the expressive power of F(Λ) as the
fragment of first-order logic that is invariant under behavioural equivalence.
The latter is best described in terms of coalgebra homomorphisms. A morphism
between T -coalgebras (C, γ) and (D, δ) is a function f : C → D such that
δ ◦ f = Tf ◦ γ. Given T -coalgebras (C, γ) and (D, δ), two states (c, d) ∈ C ×D
are called behaviourally equivalent, written C, c ≈ D, d, if they can be identified
by a morphism of T -coalgebras, i.e. there are morphisms f : (C, γ)→ (E, ε) and
g : (D, δ) → (E, ε) into a T -coalgebra (E, ε) such that f(c) = g(d). Formulas of
F(Λ) are invariant under behavioural equivalence:

Lemma 4. Let C,D be T -coalgebras and let (c, d) ∈ C × D be behaviourally
equivalent. Then c |= φ iff d |= φ for all φ ∈ F(Λ).

In other words, modal formulas are invariant under behavioural equivalence. Our
main theorem extends [22] to a coalgebraic setting and establishes that all first
order formulas in a suitable correspondence language with this property are in
fact equivalent to modal formulas. The proof follows Rosen [18] and Otto [15],
and in particular makes use of the stratification of behavioural equivalence that
explicitly accounts for the number of transition steps. From a coalgebraic per-
spective, this comes about by considering the projections of (states of) coalge-
bras into the so-called terminal sequence of the underlying functor (see [17] for a
detailed exposition from the logical viewpoint). The objects of the terminal se-
quence are given by T0 = 1 for an arbitrary one-element set and Tn = T (Tn−1),
and are connected by functions pn : Tn+1 → Tn where p0 : T1 → 1 is uniquely
determined and pn = Tpn−1. Every T -coalgebra (C, γ) defines a cone over the
terminal sequence by γ0 : C → 1 and γn = Tγn−1 ◦ γ : C → Tn. Given two
T -coalgebras C and D, we can now call a pair (c, d) ∈ C ×D n-step equivalent,
in symbols C, c ≈n D, d, if γn(c) = δn(d). The following lemma relates n-step
equivalence and behavioural equivalence:



Coalgebraic Correspondence Theory 333

Lemma 5. Let C,D be T -coalgebras, and let n ≥ k ∈ ω. For (c, d) ∈ C × D,
c ≈ d implies that c ≈n d, and c ≈n d implies that c ≈k d.
The converse is true if modal operators distinguish “enough” successor states.

Definition 6. The Λ-structure T is separating if, for all sets X , every t ∈ TX
is uniquely determined by {(♥, A) | ♥ ∈ Λ n-ary, A ∈ P(X)n, t ∈ �♥�X(A)}.
Separation is sufficient to establish the Hennessy-Milner property for coalgebraic
modal logics [17,20], and all the structures in Example 3 are indeed separating.
In particular, we obtain characteristic formulas for n-step equivalence.

Lemma 7. If the Λ-structure T is separating and (C, γ) is a T -coalgebra, every
≈k-equivalence class is definable by a formula in F∞(Λ) of modal rank ≤ k.

2 From Coalgebraic Models to First-Order Structures

The characterization of (coalgebraic) modal logic as a fragment of first-order
logic stands or falls with the first-order correspondence language. In general, one
needs to balance expressivity of the correspondence language against the char-
acterization results, and the value of our results increases with the expressive
power of the correspondence language. The first-order correspondence language
that we use here is inspired by [11] as it is multi-sorted and includes specific
sorts for states and neighbourhoods. However, it also includes a third sort for
structured successors, i.e. elements of the set TS where S is the state set. This is,
to our taste, not only the most natural first-order modelling of coalgebras, but
also strengthens our main result as it increases the expressivity of the correspon-
dence language. Even more expressivity is owed to a slightly surprising feature,
whose motivation is more technical in nature: one needs expressive means for
the notion of support (Definition 2), which serves the dual purpose of restrict-
ing neighbourhoods (thus keeping the logic away from full monadic second-order
logic) and on the other hand to avoid vacuity of Gaifman locality (see Remark 10
for details). The following non-essential assumption simplifies the presentation.

Assumption 8. We assume that T ∅ has a distinguished element ⊥T , and hence
that every set TX has a distinguished element T i(⊥T ), also denoted ⊥T , where
i : ∅ → X is inclusion. Moreover, we assume that ⊥T /∈ [[♥]]∅(∅, . . . , ∅) for every
k-ary operator ♥ ∈ Λ, and hence, by naturality, that ⊥T /∈ [[♥]]X(A1, . . . , Ak)
for all sets X and all A1, . . . , Ak ⊆ X . This is mainly for the sake of readability,
as it makes the definition of the standard translation more straightforward. In
our running examples, ⊥T can be taken to be

– ⊥T = ∅ ∈ P(∅) for the modal logic K (presented in terms of ♦);
– ⊥T = ∅ ∈ P(P(∅)) for classical and monotone modal logic;
– ⊥T = λA. ∅ ∈ P(∅)→ P(∅) for conditional logic.
– ⊥T = λx. 0 for graded modal logic (presented in terms of the ♦k);
– ⊥T = λx. 0 for the modal logic of subprobabilities.



334 L. Schröder and D. Pattinson

Definition 9. The (coalgebraic) correspondence language associated with the
modal similarity type Λ is the first order language with equality L(Λ) over
three sorts s, t, n of states, successor structures, and neighbourhoods, respectively,
consisting of the sorted relation symbols

– tr : s× t (the coalgebraic transition structure)
– ♥ : t× n× · · · × n (k copies of n) for all k-ary ♥ ∈ Λ (the modal operators)
– ∈: s× n (membership of points in neighbourhoods)
– supp : t× n (support, see Definition 2)

The relation tr represents the transition structure, and is notionally treated
as a partial map where undefined represents absence of successors. Whenever
we use the term tr(x) for some x, we implicitly assume that tr(x) is defined.
The (functional) relation supp encodes a particular choice of support for every
x : t. Given a first-order L(Λ)-structure M , we denote the constituents of M by
indexing as usual; e.g. Ms is the state set of M , and Mtr the successor relation.
We say that M is based on a T -coalgebra (C, γ) if the following holds.

– Ms = C, Mt ⊆ TC and Mn ⊆ P(C)
– The relation Mtr is right-unique, and hence will be written as a partial map.

It represents the transition structure γ with default value ⊥T ; i.e. for each
c ∈ C, γ(c) = Mtr(c) whenever Mtr(c) is defined, and γ(c) = ⊥T otherwise.

– The relation Msupp is functional, and will also be written as a map. It picks a
distinguished support (Definition 2) for every μ ∈Mt, i.e. μ ∈ T (Msupp(μ)).

– The relations M♥ represent the predicate liftings for every ♥ ∈ Λ relative
to the support, i.e. M♥ = {(μ,A1, . . . , An) ∈ Mt × P(Msupp(μ))n | μ ∈
�♥�Msupp(μ)(A1, . . . , An)} for ♥ ∈ Λ.

– M∈ is membership: M∈ = {(s,A) ∈ C ×Mn | s ∈ A} .

We write Mod(L(Λ)) for the class of all L(Λ)-structures that are based on some
T -coalgebra, briefly referred to as T -structures. As every T -structure induces a
uniquely defined T -coalgebra (C, γ) we occasionally regard T -structures as T -
coalgebras, and in particular use notions such as behavioural equivalence. If M
is a first-order structure for L(Λ) and φ(x) ∈ L(Λ) is a formula with at most one
free variable x of sort s, we write M,m |= φ(x) if the structure M with the free
variable interpreted as m satisfies the formula φ(x), and [[φ(x)]]M is the set of
all m such that M,m |= φ(x). We say that φ(x) is invariant under behavioural
equivalence if M,m |= φ whenever N,n |= φ and N,n ≈M,m.

Our main interest in the present work is to establish results following van Ben-
them [22] and Rosen [18] which state that every first-order formula which is
invariant under behavioural equivalence is equivalent to a modal formula, valid
over the class of all structures and over the class of all finite structures, respec-
tively. Occasionally we shall refer to results of the former kind as van-Benthem-
type theorems, and to results of the latter kind as Rosen-type theorems.

Remark 10. Some explanations are in order concerning some aspects of the
above definition. We first note that it is crucial that we do not require that



Coalgebraic Correspondence Theory 335

the sort n of neighbourhoods is interpreted by the entire powerset of states.
Otherwise, we would essentially arrive at monadic second-order logic, and hence
invalidate the main theorem already for the case of the modal logic K as the
bisimulation-invariant fragment of monadic second-order logic is the μ-calculus
rather than the basic modal logic K [13]. Definition 9 restricts the interpretation
of n only by the clause on the interpretation of the modal operators. Technically,
this makes less formulas invariant under behavioural equivalence, as the inter-
pretation of n may differ among behaviourally equivalent models. This is the
first effect of support: without support, the interpretation of ♥ ∈ Λ would need
to be defined as something like M♥ = {(μ, (A1, . . . , An)) ∈ Mt × P(C)n | μ ∈
�♥�r (μ)(A1, . . . , An)} which would constrain the interpretation of n much more
strongly, and e.g. in the case of the modal logic K (with ♥ = ♦) would imply
A ∈Mn for every A ∈ P(C) containing some state that has a predecessor.

The second technical point where support is needed is the following. The core
of the proof of Rosen’s theorem, as adapted below, is locality. In particular, we
use Gaifman’s theorem stating that every first-order formula is essentially local
(see Section 3). Without support, however, locality becomes a void notion in
many logics. E.g. in the extension of classical modal logic with necessitation, i.e.
with an axiom ��, any two points in the model would be connected by a path
of length 3 (via the successor structure of the first point and the neighbourhood
�). The formalization of support as a functional relation therefore pre-empts
this trivialization. As support has already played an important technical role in
other contexts [21], and is also at the heart of our unravelling construction, we
are beginning to believe it may be more than just a technical nuisance.

Finally, the purpose of the default value in the above definition of T -structure
is to deal with substructures that arise by cutting off transitions after a fixed
number of steps. In the setting of Kripke frames, this corresponds to all successors
of a node x being lost in a substructure, so that x has the empty successor set,
and hence fails to satisfy diamond formulas. This notion of cutting off transitions
is made explicit by our default mechanism.

The correspondence language contains standard or natural correspondence lan-
guages when applied to the running examples, as illustrated next. In most cases,
the generic language is even substantially more expressive than the ‘natural’ cor-
respondence language, and van Benthem/Rosen-type results become stronger in
the context of more expressive languages, as they apply to more formulas. Some
of the examples moreover highlight the importance of support.

Example 11. 1. The coalgebraic correspondence language for K differs
rather substantially from the standard first-order correspondence language, the
language with a unary predicate p for every propositional variable p and a bi-
nary predicate R for the transition relation — it does not explicitly talk about
the transition relation, and instead has types for successor sets and neighbour-
hoods (one of which could be dispensed with in this case). Crucially, the stan-
dard correspondence language can be embedded into the language used here, so
that our characterization result established in Section 4 does reprove, and in fact
strengthen, the classical van Benthem/Rosen theorem. The embedding is defined



336 L. Schröder and D. Pattinson

by mapping atomic formulas xRy in the standard correspondence language to
the formula ∃A. (tr(x)♦A ∧ ∀z. (z ∈ A↔ z = y)).

2. In the case of classical modal logic with neighbourhood frame semantics,
our correspondence language has a sort s of states, a sort t of sets of neigh-
bourhoods, and a sort n of neighbourhoods, with the successor map tr which
maps states to sets of neighbourhoods, the relation � which represents the �
relation between sets of neighbourhoods and neighbourhoods, membership ∈ be-
tween states and neighbourhoods, and additionally the support map supp from
set of neighbourhoods to neighbourhoods. Superficially, this appears to be an ex-
tension of the correspondence language for neighbourhood frames used in [11],
which has two sorts of states and neighbourhoods, respectively, corresponding
to our sorts s and n, and two relations, corresponding to the composite tr;�
and to ∈, respectively, in our setting. However, the two languages have a sub-
tly different semantics in that in our language, the sets required to be present
in the neighbourhood type are determined by the support, while in [11], the
neighbourhood type contains precisely the image of the neighbourhood relation
between states and neighbourhoods. At present, it is unclear whether one lan-
guage can be embedded in the other so that the van Benthem-type result of [11]
remains independent of our characterization theorem result below (there is no
correspondent in [11] to our Rosen-type result).

We emphasize that our results will apply without further ado to extensions
of classical modal logic by rank-1 frame conditions, i.e. axioms where the nest-
ing depth of modal operators is uniformly equal to 1. A simple example is
the monotonicity axiom �(a ∧ b) → �a, which axiomatizes monotone neigh-
bourhood frames (Example 3.3). It is unclear to what extent this is possible
following [11]. In particular, one cannot interpret the type of neighbourhoods
as the set of all sets that are a neighbourhood of some state, as the induced
logic would be able to express some (if not all) μ-calculus formulas, such as
(��∧¬�¬�⊥)→ μX.p∧�X : as soon as the antecedent ��∧¬�¬�⊥ is satis-
fied, there is a state which has ∅ as a neighbourhood, so that the neighbourhood
type would contain all sets of states by monotonicity, thus allowing us to define
the fixpoint above by quantification over neighbourhoods. As formulas of this
type are invariant under behavioural equivalence but not equivalent to any modal
formula, the analogue of the van Benthem/Rosen theorem fails. In the approach
presented here, the notion of support enables sufficiently small interpretations
of the neighbourhood type and handles rank-1 frame conditions smoothly.

3. One natural correspondence language for graded modal logic, interpreted
over multigraphs (thus recovering invariance under behavioural equivalence,
which fails over the relational semantics) is an extension of first order logic
with counting quantifiers where the counting is relative to local weights in-
duced by the weighting of successors in a multigraph. This induces counting
quantifiers ∃x>ky. φ read ‘in the local weighting at x, there exist more than k
y satisfying φ’. This language can be mapped into our language by a recursive
translation ( )t, where the clause for a counting quantifier is (∃x> ky. φ)t = (∃A :
n. tr(x)♦kA∧∀y. (φ)t ↔ y ∈ A). Support is uncritical in this case (as already for



Coalgebraic Correspondence Theory 337

item 1), as the first-order language with counting quantifiers does not contain a
sort for neighbourhoods. The standard translation factors through the language
of counting quantifiers via translations ( )sx taking ♦kφ to ∃x>ky. (φ)ty. As a con-
sequence, the characterization results proved below apply a forteriori also to the
language with counting quantifiers.

4. Similarly, the correspondence language for the modal logic of subproba-
bilities contains a sublanguage that speaks about locally determined weights of
formulas: borrowing notation from Halpern’s first-order logic of so-called type-1
probability structures [10] (which we extend from a single, global probability
distribution to Markov chains, i.e. local (sub-)probability distributions), we may
write wxy (φ) ≥ p to denote that the set of all y satisfying φ has, in the local
distribution at x, probability at least p.

5. The correspondence language for conditional logic contains the following
more natural language, consisting of three sorts s, t, n for states, selection func-
tions, and neighbourhoods, respectively, unary state predicates for the propo-
sitional variables, and a ternary relation R of type s × n × s giving for each
neighbourhood a transition relation on states. As neighbourhoods are explicit,
we need to retain the support function supp. This corresponds to the view of a
selection function model as a multi-relational Kripke model where relations are
indexed over propositions, i.e. a structure of the type (X, (RA ⊆ X ×X)A⊆X),
where we retain information only about those RA for which A is in the neigh-
bourhood type. Here, it is again crucial that the neighbourhood type is required
to contain only those sets that are contained in the support of some element –
without the support, neighbourhoods would be the full powerset, thus afford-
ing the full expressive power of monadic second order logic, as every selection
function on a set C is contained in [[⇒]](A,C) for every A ∈ P(C).

The translation of modal formulas to first-order logic takes the following form:

Definition 12. The standard translation STx(φ) of a modal formula φ ∈ F(Λ)
is a first-order formula with one free variable x : s of sort s defined inductively
by commutation with all boolean operators and

STx(♥(φ1, . . . , φk)) = ∃A1, . . . , Ak : n. (tr(x)♥(A1, . . . , Ak)∧
k
i=1 ∀y : s. (y ∈ Ai ↔ y ∈ supp(tr(x)) ∧ STy(φi))).

The default value ⊥T is compatible with the above definition:
STx(♥(φ1, . . . , φk)) is not satisfied in case tr(x) is undefined, which agrees
precisely with the behaviour of the default value ⊥T inserted as the successor
structure of x in this case. Correctness is a straightforward calculation:

Lemma 13. Suppose φ = STx(ψ) for a modal formula ψ ∈ F(Λ). Let M be a
first-order structure based on a coalgebra C. Then [[φ]]M = [[ψ]]C . In particular,
φ is invariant under behavioural equivalence.

Remark 14. Unlike Rosen’s proof [18], the original proof of van Benthem’s
characterization result, as well as e.g. the van-Benthem-type result proved



338 L. Schröder and D. Pattinson

for neighbourhood structures in [11], rely on standard machinery from first-
order logic, in particular compactness. There are at least two sources of non-
compactness in the overall setup used here: one, of course, rests in the fact that
we are aiming for a Rosen-type theorem over finite models ; and the other is the
functor T . Not only may T impose finite branching; e.g. in case T is the prob-
ability distribution functor, the set of formulas {¬L0¬p} ∪ {M1−1/np | n ∈ �}
for a propositional variable p is finitely satisfiable but not satisfiable, no matter
what type of model (finite, infinite, finitely or infinitely branching) we consider.

3 Gaifman’s Theorem and Coalgebraic Unravelling

We recall Gaifman’s locality theorem [8], and derive a simple corollary that as-
serts locality of coproduct-invariant formulas (we claim no originality here). The
basic idea is taken from [15], where the same statement is proved as Lemma 3.5
for at most binary relational structures. We apply a simpler if somewhat whole-
sale argument using Gaifman locality.

Definition 15. The Gaifman graph of a relational structure A is the graph
whose nodes are the elements of A and contains and edge from a to b iff a and b
occur together in one of the tuples in the interpretations of the relation symbols
in A. (E.g., the Gaifman graph of a single-relation Kripke structure is just its
symmetric closure.) Gaifman distance is graph distance in the Gaifman graph.
For l ≥ 0, the l-neighbourhood NA

l (a) of a ∈ A is the induced substructure
of A containing all points with Gaifman distance at most l from a. A first-
order formula φ(x) with a single free variable x is l-local if for every relational
structure A and every a ∈ A, A, a |= φ(x) iff NA

l (a), a |= φ(x). Moreover, φ(x) is
Gaifman l-local if for any two points a, b ∈ A with isomorphic l-neighbourhoods,
A, a |= φ(x) iff A, b |= φ(x).

Gaifman locality is weaker than locality in that it admits statements about the
global structure of models. We need a special case of Gaifman’s theorem:

Theorem 16 (Gaifman [8]). Every first-order formula φ(x) is Gaifman l-local
for some l ≥ 0, exponentially bounded in the quantifier rank of φ.

Gaifman’s theorem is usually formulated in single-sorted logic, but readily ex-
tends to multiple sorts, with the obvious definition of Gaifman distance, using
the standard encoding of multiple sorts as unary predicates in single-sorted logic.

Definition 17. A formula φ(x) with a single free variable x is invariant under
coproducts if for all relational structures A,B and all points a ∈ A, A, a |= φ(x)
iff A+B, a |= φ(x), where A+B is the coproduct (disjoint union) of A and B.

Corollary 18. If φ(x) is invariant under coproducts, then φ(x) is l-local for
some l ≥ 0, exponentially bounded in the quantifier rank of φ(x).

The previous does not immediately apply to our framework, as neighbourhoods
in T -structures are not in general T -structures. The following lemma brings us
back into the realm of T -structures, thanks to the default element ⊥T ∈ T ∅.



Coalgebraic Correspondence Theory 339

Lemma 19. Let A be a T -structure, let a be a state in A, and let k ≥ 0. Then
N3k(a) is a T -structure.

We proceed to develop some facts concerning (partial) tree unravellings of
coalgebras, in generalization of corresponding techniques for Kripke frames,
including a not entirely trivial coalgebraic generalization of the fact that on
trees, behavioural equivalence is equivalent to bounded behavioural equivalence
(Lemma 21). The basic notion underlying these concepts is the following.

Definition 20. Let A be a T -structure for the correspondence language. The
supporting Kripke frame of A relates states a, b ∈ As iff b ∈ Asupp(Aγ(a)); i.e.
its transition relation is Aγ ;Asupp;A� where A� is the inverse relation of A∈. If
this Kripke frame is a tree of depth l (with root a), i.e., is loop-free and every
state is reachable from a by a unique path of length at most l, and moreover all
leaves of this tree have the default successor structure (i.e. they do not have an
R-successor) then we say that A (or (A, a)) is a tree of depth l.

Lemma 21. Let A,B be T -structures with states a ∈ A, b ∈ B. If (A, a) and
(B, b) are trees of depth at most l, then A, a ≈ B, b iff A, a ≈l B, b.

The core construction is described in the following lemma.

Lemma 22 (Unravelling). Let A be a T -structure, let a be a state in A, and
let k ≥ 0. Then there exists a T -structure B and b ∈ B such that A, a ≈ B, b,
and moreover (NB

3k(b), b) is a tree of depth at most k.

Finally, we note that bounded behavioural equivalence is indeed local.

Lemma 23. Let A be a T -coalgebra, let a ∈ A, and let k ≥ 0. Then A, a ≈k
NA

3k(a), a.

4 A Coalgebraic van Benthem/Rosen Theorem

The core result proved in relational versions of the van Benthem/Rosen theorem
is that every bisimulation-invariant formula can be expressed by a collection of
modal formulas of bounded rank. In the relational case, this immediately implies
equivalence to a single modal formula, as the set of modal formulas of a given
maximal rank is finite up to logical equivalence. Coalgebraically, the situation
turns out to be the same as long as the modal similarity type is finite. For infinite
modal similarity types, the infinitary version of the van Benthem/Rosen theorem
cannot be improved, as we demonstrate by means of a simple counterexample
later. We thus tend to regard the infinitary version, stated next, as the most
fundamental incarnation of the van Benthem/Rosen theorem. We emphasize
that the bound on the rank in the statement of the theorem is the core of
the result – without it, the claim is a trivial consequence of the (coalgebraic)
Hennessy-Milner property for infinitary languages [17]. As in [15], the theorem
below has two readings, for finite and infinite models.



340 L. Schröder and D. Pattinson

Theorem 24 (Coalgebraic van Benthem/Rosen theorem, infinitary
version). Let Λ be separating. A first-order formula φ(x) over T with a sin-
gle free variable x is invariant under behavioural equivalence (over finite models)
iff it is equivalent (over finite models) to a modal formula in F∞(Λ) with finite
modal rank.

The proof uses the Lemmas established in Section 3 in sequence. As announced,
the finitary version of the theorem follows immediately for finite similarity types:

Corollary 25 (Coalgebraic van Benthem/Rosen theorem, finitary ver-
sion). Let Λ be finite and separating. Then a first-order formula φ(x) over T
with a single free variable x is invariant under behavioural equivalence (over fi-
nite models) iff it is equivalent (over finite models) to a modal formula in F(Λ).

For the logics introduced in Example 3, the situation is as follows.

Example 26. Theorem 24 applies to all logics of Example 3, and Corollary 25
applies to those logics that only have finitely many modalities, i.e. all of them
except (unbounded) graded modal logic and probabilistic modal logic; we note
that Corollary 25 does apply to our bounded version of graded modal logic. We
emphasize that Theorem 24 does yield a characterization of the behavioural-
equivalence-invariant fragment of a first-order logic with counting quantifiers;
while a similar van Benthem-type result is known [6], our result seems to be the
first Rosen-type result (i.e. over finite structures) for graded modal logic.

As indicated above, a simple example shows that in the full correspondence
language for an infinite modal similarity type, one can express properties which
are invariant under behavioural equivalence but not expressible by a finitary
modal formula, even in the standard coalgebraic modelling of Kripke models
with infinitely many variables; in other words, the infinitary version of the van
Benthem/Rosen theorem cannot be improved for infinite modal similarity types.
Example 27. Recall that standard Kripke models over the set P of variables are
modelled by the functor TX = P(X)×P(P) (Example 3.1). Then the following
formula is invariant under behavioural equivalence:

∃y, z : s, Y, Z,A : n. (∀w : s. ((w ∈ Y ↔ w = y) ∧ (w ∈ Z ↔ w = z) ∧ w ∈ A)
∧ tr(x)♦Y ∧ tr(x)♦Z ∧ tr(y)¬♦A ∧ tr(z)¬♦A ∧ tr(y) �= tr(z))

This formula states that x has two successors y, z which are both deadlocks
but disagree on the value of at least one propositional variable. This formula is
evidently not equivalent to any finitary modal formula. However, it is expressible
by the infinitary modal formula p∈P(♦(p ∧ ¬♦�) ∧ ♦(¬p ∧ ¬♦�)), which has
modal depth 2, thus illustrating Theorem 24.

Note that proofs of the Rosen theorem in a relational setting begin with a (triv-
ial) reduction to finitely many variables, which is possible precisely because the
standard correspondence language does not allow one to say that two states agree
on all propositional variables. Of course, the example above depends heavily on
the use of equality on t. We state the following nagging open question:



Coalgebraic Correspondence Theory 341

Problem 28. Let Λ be separating. Is every formula of the correspondence lan-
guage that is invariant under behavioural equivalence and does not mention
equality on t equivalent to a finitary modal formula?

We note that in the case of infinite collections of independent modal opera-
tors, such as infinitely many propositional variables, or boxes for infinitely many
unrelated agents, the question is answered positively by a trivial reduction to
the finite case. The problematic case are infinite collections of interdependent
operators as, e.g., in graded modal logic.

5 Conclusions and Related Work

We have introduced a correspondence language for coalgebraic modal logic, and
proved two van Benthem/Rosen type theorems using this language: an infinitary
version which applies to every separating coalgebraic modal logic, and states that
every formula which is invariant under behavioural equivalence is equivalent to
an infinitary modal formula of bounded depth; and, as an easy corollary to this,
a finitary version which improves this to equivalence to a finitary modal formula
for finite modal similarity types, a condition which in connection with sepa-
ration implies that the type functor preserves finite sets. The infinitary result
yields e.g. that a formula in a natural first order logic of multigraphs with count-
ing quantifiers is invariant under behavioural equivalence iff it is equivalent to a
bounded-depth infinitary graded modal formula. The finitary result yields char-
acterizations of conditional logic, classical modal logic, monotone modal logic,
and a bounded version of graded modal logic as the invariant fragment under
behavioural equivalence in the respective correspondence languages.

It remains an open problem to extend the finitary result to infinite modal sim-
ilarity types; a simple example shows that this can work only for a restricted cor-
respondence language that excludes equality on the type of successor structures.
This would in particular imply finitary van Benthem/Rosen theorems for graded
and probabilistic modal logic. The former would complement a van Benthem-
type result for graded modal logic proved in [6] by a Rosen-type result (i.e. over
finite structures). A further interesting direction for future investigation is to
extend the ambient logic, in particular to obtain a coalgebraic analogue of the
characterization of the modal μ-calculus as the bisimulation-invariant fragment
of monadic second order logic due to Janin and Walukiewicz [13].

Acknowledgement. The authors wish to thank Helle Hvid Hansen for useful
discussions and pointers, and Erwin R. Catesbeiana for suggesting the use of ⊥.

References

1. Barr, M.: Terminal coalgebras in well-founded set theory. Theoret. Comput.
Sci. 114, 299–315 (1993)

2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)



342 L. Schröder and D. Pattinson

3. Chellas, B.: Modal Logic. Cambridge University Press, Cambridge (1980)
4. D’Agostino, G., Visser, A.: Finality regained: A coalgebraic study of Scott-sets and

multisets. Arch. Math. Logic 41, 267–298 (2002)
5. Dawar, A., Otto, M.: Modal characterisation theorems over special classes of

frames. In: Panangaden, P. (ed.) Logic in Computer Science, LICS 2005, pp. 21–30.
IEEE Computer Society, Los Alamitos (2005)

6. de Rijke, M.: A note on graded modal logic. Stud. Log. 64, 271–283 (2000)
7. Fine, K.: In so many possible worlds. Notre Dame J. Formal Logic 13, 516–520

(1972)
8. Gaifman, H.: On local and non-local properties. In: Logic Colloquium 1981, pp.

105–135. North Holland, Amsterdam (1982)
9. Gumm, H.P.: From T -coalgebras to filter structures and transition systems. In:

Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005.
LNCS, vol. 3629, pp. 194–212. Springer, Heidelberg (2005)

10. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46, 311–
350 (1990)

11. Hansen, H.H., Kupke, C., Pacuit, E.: Bisimulation for neighbourhood structures.
In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS,
vol. 4624, pp. 279–293. Springer, Heidelberg (2007)

12. Heifetz, A., Mongin, P.: Probabilistic logic for type spaces. Games and Economic
Behavior 35, 31–53 (2001)

13. Janin, D., Walukiewicz, I.: Automata for the modal µ-calculus and related results.
In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 552–562.
Springer, Heidelberg (1995)

14. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inform. Com-
put. 94, 1–28 (1991)

15. Otto, M.: Bisimulation invariance and finite models. In: Logic Colloquium 2002.
Lect. Notes Log., vol. 27, pp. 276–298. ASL (2006)

16. Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability
of local consequence. Theoret. Comput. Sci. 309, 177–193 (2003)

17. Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction.
Notre Dame J. Formal Logic 45, 19–33 (2004)

18. Rosen, E.: Modal logic over finite structures. J. Logic, Language and Informa-
tion 6(4), 427–439 (1997)

19. Schröder, L.: A finite model construction for coalgebraic modal logic. J. Log. Al-
gebr. Prog. 73, 97–110 (2007)

20. Schröder, L.: Expressivity of coalgebraic modal logic: The limits and beyond. The-
oret. Comput. Sci. 390, 230–247 (2008)

21. Schröder, L., Pattinson, D.: Strong completeness of coalgebraic modal logics. In:
Albers, S., Marion, J.-Y. (eds.) Theoretical Aspects of Computer Science, STACS
2009, Leibniz International Proceedings in Informatics, pp. 673–684. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl (2009)

22. van Benthem, J.: Modal Correspondence Theory. PhD thesis, Department of Math-
ematics, University of Amsterdam (1976)



Untyped Recursion Schemes and Infinite
Intersection Types

Takeshi Tsukada and Naoki Kobayashi

Tohoku University

Abstract. A new framework for higher-order program verification has
been recently proposed, in which higher-order functional programs are
modelled as higher-order recursion schemes and then model-checked.
As recursion schemes are essentially terms of the simply-typed lambda-
calculus with recursion and tree constructors, however, it was not clear
how the new framework applies to programs written in languages with
more advanced type systems. To circumvent the limitation, this paper
introduces an untyped version of recursion schemes and develops an in-
finite intersection type system that is equivalent to the model checking
of untyped recursion schemes, so that the model checking can be re-
duced to type checking as in recent work by Kobayashi and Ong for
typed recursion schemes. The type system is undecidable but we can
obtain decidable subsets of the type system by restricting the shapes of
intersection types, yielding a sound (but incomplete in general) model
checking algorithm.

1 Introduction

Model checking of recursion schemes [1, 2] has recently been applied to higher-
order program verification [3, 4]. A recursion scheme is a grammar for generating
a possibly infinite tree; from a programming language point of view, it is a term
of the simply-typed λ-calculus with recursion and tree constructors. The idea
of the higher-order program verification is to transform a higher-order program
into a recursion scheme that generates a tree representing event sequences of the
program, so that temporal properties of the program can be verified by model-
checking the recursion scheme. The main advantage of the verification method
is that it is sound and complete for a certain class of higher-order programs –
the simply-typed λ-calculus with recursion and finite base types.

There is however a gap between the class of higher-order programs that can
be handled directly by the above method (the simply-typed λ-calculus with finite
base types) and the class of programs written in real programming languages.
One of the main restrictions on the former class is that programs must be simply-
typed. It was unclear how the method above can be applied to programs that
use more advanced types, such as polymorphism and recursive types.

To address the problem above, we remove the restriction that recursion schemes
must be simply-typed, by extending Kobayashi and Ong’s type-based approach to
model-checking recursion schemes [3, 5]. Instead of considering each extension of

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 343–357, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



344 T. Tsukada and N. Kobayashi

the simple type system (such as ML type system and System F with/without re-
cursive types), we study the most expressive type system – an infinite intersection
sort system for recursion schemes, and develop a type-based method for model-
checking intersection-typed recursion schemes. (The infinite intersection sort sys-
tem is the most expressive in the sense that all untyped recursion schemes that
generate valid trees are typable in the type system.) Since various type systems,
possibly with polymorphic and recursive types, can be regarded as restricted forms
of the intersection type system, our studies of the intersection-typed recursion
schemes can serve as a common foundation for recursion schemes extended with
various type systems.

In the paper, in Section 3, we first give an intersection sort system that exactly
characterizes the (untyped) recursion schemes that generate well-ranked trees,
in the sense that a recursion scheme is well-sorted if and only if it generates a
well-ranked tree. We then (in Section 4) introduce an intersection type system,
parameterized by a Büchi automaton A with a trivial acceptance condition,
such that a recursion scheme is well-typed if and only if it generates a well-
ranked tree accepted by A. One of the main results, presented in Section 5,
is that if a recursion scheme is well-sorted under a sort environment Γ , the
recursion scheme is well-typed if and only if it is so under a refinement of Γ .
Thus, although the infinite intersection type system is undecidable in general,
it is decidable whether, given a recursion scheme well-sorted under a finite sort
environment, the recursion scheme is well-typed. As a consequence, the model
checking of recursion schemes with ML-style polymorphism is decidable. Model
checking of recursion schemes with more advanced type systems is undecidable,
but we can still obtain a sound and decidable (but incomplete) type system by
restricting the syntax of intersection types so that there can be finitely many
refinements for each sort environment.

For the space restriction, we omit some proofs. They are found in a longer
version available from http://www.kb.ecei.tohoku.ac.jp/~tsukada/papers/
fossacs10-full.pdf.

2 Preliminaries

Trees Let T ⊆ (ω − {0})∗ be a subset of finite sequences of natural numbers
without 0. T is a tree if it satisfies the following conditions: (i) ε ∈ T , (ii) if
pi ∈ T for p ∈ (ω − {0})∗, i ∈ ω − {0}, then p ∈ T , and (iii) if pi ∈ T for
p ∈ (ω − {0})∗, i ∈ (ω − {0}), then pj ∈ T for every 1 ≤ j ≤ i. Note that 0 is
not used as an index of trees; This convention makes some definitions and proofs
simple. If p, pi ∈ T , we say p is the parent of pi and pi is a child of p. The rank of
the node p, written #T (p), is the cardinality of the set of its children. Note that
for every p ∈ T , #T (p) ≤ ω. We omit the subscript T when it is clear from the
context. We assume that the elements of the set (ω − {0})∗ are ordered by the
prefix ordering, i.e., p0 ≤ p1 if and only if there is some p′1 such that p1 = p0p

′
1.

Let A be an alphabet (i.e. a set of symbols). An A-labeled tree is a function
r : T → A from a tree T to the alphabet A. Let Σ be a ranked alphabet,

http://www.kb.ecei.tohoku.ac.jp/~tsukada/papers/fossacs10-full.pdf
http://www.kb.ecei.tohoku.ac.jp/~tsukada/papers/fossacs10-full.pdf


Untyped Recursion Schemes and Infinite Intersection Types 345

i.e. a map from an alphabet A to ω ∪ {ω}. Σ is finitely ranked if Σ(a) < ω for
every a ∈ dom(Σ). By abuse of notation, we often write a ∈ Σ for a ∈ dom(Σ).
A dom(Σ)-labeled tree r is also called a Σ-labeled tree. It is well-ranked if for
every p ∈ dom(r), Σ(r(p)) = #p.

Trivial Automata. A Büchi tree automatonA with a trivial acceptance condition
(called a trivial automaton, for short) is a quadruple (Q,Σ, qS , Δ)1 where Q is a
finite set of states, Σ is a finitely-ranked alphabet, qS ∈ Q is an initial state, and
Δ ⊆ Q × Σ × Q∗ is a transition relation. The transition relation must respect
the rank, i.e., if (q, a, q1, . . . , qn) ∈ Δ, then n = Σ(a). A trivial automaton is
deterministic if, for each pair (q, a) ∈ Q× dom(Σ), there is at most one element
of the form (q, a, q1, . . . , qn) in Δ.

For a well-ranked Σ-labeled tree r : T → Σ, a run of A on r is a Q-labeled
tree � : T → Q, satisfying (�(p), r(p), �(p1), . . . , �(pn)) ∈ Δ for each p ∈ T ,
where n = Σ(r(p)).

For a state q, a Σ-labeled well-ranked tree r is accepted by A from the state
q, if there is a run � of A that satisfies �(ε) = q. We write LA(q) for the set of
trees accepted from q. The language recognized by A, written LA, is LA(qS).

We assume that there is one distinguished element ⊥ ∈ Σ with Σ(⊥) = 0,
and for any state q of any trivial automata, (q,⊥) ∈ Δ. Intuitively, ⊥ is the
undefined tree, which is accepted from any state.

Recursion Schemes. An (untyped) recursion scheme G is a quadruple (Σ,N ,R, S),
where: (i)Σ is a ranked alphabet with a distinguished element⊥ of rank 0. An ele-
ment ofΣ is called a terminal ; (ii)N is a finite set of symbols called non-terminals;
(iii) S ∈ N is the start symbol ; and (iv) R is a set of rewriting rules of the form
{F1x̃1 → t1, . . . , Fnx̃n → tn}. Here, Fi is a nonterminal, x̃ abbreviates a sequence
of variables and ti is an applicative term over N ∪ (Σ − {⊥}) ∪ {x̃i} (i.e. a term
constructed fromN ∪ (Σ−{⊥})∪{x̃i} and applications). There must be exactly
one rule for each non-terminal. If (F x̃→ t) ∈ R, we writeR(F ) = λx̃.t, where λx̃
abbreviates a sequence of lambda abstractions. We identify an applicative term
over X with an X-labeled tree in the standard manner: a term x t1 . . . tn (where
x ∈ X) as a tree whose root is labeled by x, having t1, · · · , tn as subtrees.

In the definition of standard recursion schemes [2], there are additional con-
ditions that each symbol or variable is assigned a simple type (with o, the type
of trees, as a unique base type), and that both the left- and right-hand sides of
each rule must have type o. In this paper, we call the standard recursion schemes
(simply-)typed recursion schemes, and call recursion schemes without the typing
constraint untyped recursion schemes or simply recursion schemes.

The rewriting relation −→G is defined inductively by: (i) F s̃ −→G [s̃/x̃]t, if
R(F ) = λx̃.t, and (ii) if t −→G t′, then ts −→G t′s and st −→G st′.

For a term t, we define t⊥ by: (i) a⊥ = a for each terminal a; (ii) (t1t2)⊥ =
t⊥1 t⊥2 if t⊥1 �= ⊥; and (iii) t⊥ = ⊥ otherwise. The partial order 	 on Σ is defined
as a 	 b if and only if a = b or a = ⊥. We extend this ordering to the ordering

1 A trivial automaton is a Büchi automaton where all the states are final.



346 T. Tsukada and N. Kobayashi

on Σ-labeled trees by: r1 	 r2 if and only if T1 ⊆ T2 and r1(p) 	 r2(p) for every
p ∈ T1. The value tree of G, written [[G]], is {t⊥ | S −→∗G t}, where S is the
least upper bound with respect to 	. The value tree is always well-defined, as
the rewriting relation is confluent.

In this paper, we are interested in the model checking problem:
“Given a recursion scheme G and a trivial automaton A, does [[G]] ∈ LA hold?”
In the case of simply-typed recursion schemes, the problem is known to be decid-
able [2].2 In the case of untyped recursion schemes, however, the model checking
problem above (or, even the problem of checking whether the value tree is well-
ranked) is undecidable, as the untyped recursion schemes are essentially terms
of the untyped λ-calculus (with uninterpreted function symbols).

Remark 1. The reader may wonder why we have recursion as primitives, even
though a fixed-point combinator can be encoded in the untyped λ-calculus. That
is because we later impose various type constraints corresponding to those of
advanced type systems (e.g. a type system with ML polymorphism), in which
a fixed-point combinator may no longer be encoded. Note that our main in-
terests are in extending Kobayashi and Ong’s type-based method [3, 5] for
model-checking simply-typed recursion schemes to handle recursion schemes with
various advanced type systems, and that we study infinite intersection type sys-
tems for untyped recursion schemes to establish common foundations.

3 Infinite Intersection Sorts

The goal of this section is to characterize the class of recursion schemes whose
value trees are well-ranked. For this purpose, we construct an intersection type
system in which a recursion scheme is well-typed if, and only if, the value trees
of recursion schemes are well-ranked. In the following, we call this type system
the sort system to avoid confusion with the type system for model checking
introduced in Section 4.

In the sort system, intersection types are infinite both in width (i.e. we
allow i<ω κi) and in depth (i.e. we allow sorts having infinite paths, like
o → o → o → · · ·). Note that such infinite intersection types are necessary
for the complete characterization of recursion schemes that generate well-ranked
trees: See Remark 2.

As defined below, a sort is a (possibly infinite) tree labeled by o, →, and ∧.
The sort o (i.e. a tree consisting of a single node labelled by o) describes trees.
The other constructors → and ∧ describe functions and intersections as usual;
for example, (o ∧ (o → o))→ o describes a function that takes as input a term
that can be both used as a tree and a tree function, and returns a tree.

Definition 1 (sorts). Let K = {(o, 0), (→, 2)} ∪ {(∧α, α) | α ≤ ω} be a ranked
alphabet. A sort κ is a well-ranked K-labeled tree that satisfies: (i) κ(ε) ∈ {o,→};
2 Ong [2] proved the decidability for a more general case, where A is an alternating

parity tree automaton.



Untyped Recursion Schemes and Infinite Intersection Types 347

(ii) If κ(p) = →, then κ(p1) = ∧α and κ(p2) ∈ {o,→}; and (iii) If κ(p) = ∧α,
then κ(pi) ∈ {o,→} for every i such that pi ∈ dom(κ).

We often omit the superscript and simply write ∧ for ∧α. When κi’s (i < α)
are sorts, we write i<α κi for the tree whose root is labelled by ∧α and whose
children are κi’s. We write � for the empty intersection i<0 κi. Similarly, we
write i<α κi → κ for the sort whose root is labelled by →, and whose children
are i<α κi and κ. When α = 1, we just write κ0 → κ for i<α κi → κ (e.g.
(o → o)→ o for i<1 κi → o where κ0 = o → o). We give a higher precedence
to ∧ than to →.

The three conditions in the definition above are imposed just for a technical
convenience (more specifically, for removing the introduction and elimination
rules for intersection types). Note that, for example, (κ1 → κ2) → κ3 (which
is prohibited by the restriction (ii)) can be represented as i<1 κ

′
i → κ3, where

κ′0 = κ1 → κ2. A similar restriction on the syntax of types has been used for
finite intersection type systems [6].

A type environment, denoted by Γ , is a (possibly infinite) set of bindings of
the form x:τ (where non-terminals of recursion schemes are treated as variables).
We often omit the curly brackets, and simply write x1 : κ1, . . . , xn : κn for {x1 :
κ1, . . . , xn : κn}. Note that we allow multiple bindings for the same variable, as
in {x :κ1, x :κ2}. We abbreviate {x :κi | i < α} as x : i<α κi. We write dom(Γ )
for the set {x | ∃τ.(x : τ ∈ Γ )}.

We fix a finitely ranked alphabet Σ below. The typing rules for λ-terms are
given as follows:

Γ, x : κ  x : κ

Γ  a : o→ · · · → o

Σ(a)

→ o

Γ  λx.t : o

Γ  t1 : i<α κi → κ
Γ  t2 : κi(for every i < α)

Γ  t1t2 : κ

Γ ∪ {x : κi | i < α}  t : κ
x �∈ dom(Γ )

Γ  λx.t : i<α κi → κ

The rules above are standard, except the rule on the left bottom. It is due
to our definition of the value tree of a recursion scheme. To see why, consider
the recursion scheme G, consisting of the two rules S → F and F x → a. The
rewriting of S gets stuck as S → F , so that the value tree of G is ⊥. Since ⊥ is
a well-ranked tree, F (which is essentially λx.a) should be assigned type o.

A recursion scheme G = (N , Σ,R, S) is well-typed under Γ , written  G : Γ ,
if dom(Γ ) ⊆ N , Γ  R(F ) : τ holds for every F : τ ∈ Γ , and S : o ∈ Γ . We write
 G if there exists Γ such that  G : Γ .

The following theorem states soundness and completeness of the sort system.

Theorem 1. For any recursion scheme G, [[G]] is well-ranked if and only if  G.



348 T. Tsukada and N. Kobayashi

Proof. A special case of Theorems 2 and Theorem 3 in Section 4, where the

automaton A is ({o}, Σ, o,Δ) such that (o, a,
n

o, . . . , o) ∈ Δ for every a ∈ Σ of
rank n. �

Remark 2. As already mentioned, intersection sorts in our type system may be
infinite both in width and depth, and non-regular (i.e. may not be expressed by
finite recursive types). The following observations explain why simpler intersec-
tion sorts are insufficient. First, intersection types that are infinite in width but
finite in depth guarantee that λ-terms are strongly normalizing [7]; thus the Y
combinator (which can be defined by Y f → (Af)(Af) and Af x → f (xx))
would not be typable. Secondly, the restriction of intersection sorts to finite re-
cursive types (i.e. sorts that are finite in width and infinite but regular in depth)
is also insufficient. This is because under this restriction, the typability would
be recursively enumerable,3 but the well-rankedness of the tree generated by an
untyped recursion scheme is not. The latter can be easily proved, for example,
by a reduction from the halting problem of a Minsky machine [8]. A Minsky ma-
chine consists of two counters holding natural numbers, and has instructions for
counter increment/decrement, conditional/unconditional jumps, and halting [8].
We can use the standard Church encoding for natural numbers and booleans
to simulate those instructions, and replace the halt command with a term gen-
erating an ill-ranked tree. The resulting untyped recursion scheme generates a
well-ranked tree if and only if the Minsky machine does not halt.

4 Type System for Model Checking Untyped Recursion
Schemes

In this section, we extend Kobayashi’s type system [3] (for model-checking re-
cursion schemes wrt safety properties) to deal with untyped recursion schemes.

Let A = (Q,Σ, qS, Δ) be a trivial automaton. We shall extend the sort system
of the previous section by refining the sort o into a type of the form {q1, . . . , qk}
where q1, . . . , qk ∈ Q. Intuitively, a state q of the automaton is regarded as a
type that describes the trees accepted by A from the state q, i.e., t has type q if
and only if [[t]] ∈ LA(q).

Definition 2 (Types). Let T = {(q, 0) | q ∈ Q} ∪ {(→, 2)} ∪ {(∧α, α) | α ≤
ω} be the set of ranked alphabets. A type τ is a well-ranked T -labeled tree that
satisfies the following conditions: (i) τ(ε) �= ∧ (ii) If τ(p) =→, then τ(p1) = ∧,
τ(p2) �= ∧, and (iii) If τ(p) = ∧, then τ(pi) �= ∧ for every i ∈ ω − {0}.
The typing rules are almost the same as the sorting rules, except that the type
of a terminal is determined by the transition function of the automaton.

Γ, x : τ A x : τ
(q, a, q1, . . . , qn) ∈ Δ

Γ A a : q1 → · · · → qn → q Γ A λx.t : q

3 Note that since the set of finite recursive sorts is recursively enumerable, the set of
valid type judgements is also recursively enumerable.



Untyped Recursion Schemes and Infinite Intersection Types 349

Γ A t1 : i<α τi → τ
Γ A t2 : τi for all i < α

Γ A t1 t2 : τ

Γ ∪ {x : τi | i < α} A t : τ
x /∈ dom(Γ )

Γ A λx.t : i<α τi → τ

We write A G : Γ if (i) dom(Γ ) ⊆ N , (ii) Γ A R(F ) : τ holds for every
F : τ ∈ Γ , and (iii) S : qS ∈ Γ .

4.1 Soundness of the Type System

We use the following lemma to establish the soundness of our type system.

Lemma 1 (Subject Reduction). Suppose A G : Γ . If Γ A t : τ and t →∗G
t′, then Γ A t′ : τ .
Theorem 2 (Soundness). Let G be a recursion scheme and A be a trivial
automaton. If A G, then [[G]] is accepted by A.

Proof Sketch. It suffice to show that if S →∗G t, then t⊥ is accepted by A.
Assume S →∗G t. By the definition of A G, there is a type environment such
that A G : Γ . By Lemma 1, we get Γ A t : qS , from which t⊥ ∈ LA follows. �

4.2 Completeness of the Type System

We show that our type system is complete in the sense that a recursion scheme is
well-typed if its value tree is accepted byA. The overall idea of the proof is similar
to the completeness proof of Kobayashi and Ong’s type system for the modal
μ-calculus model checking of typed recursion schemes [5]; Type information is
extracted from a reduction sequence of the recursion scheme, by observing how
each non-terminal is used in the reduction. Some non-trivial adjustments are
necessary, however, since sorts (which are called kinds in [5]) are infinite (thus,
we cannot use induction on sorts unlike in [5]).

Theorem 3 (Completeness). Let G be a recursion scheme and A be a trivial
automaton. If [[G]] is well-ranked and accepted by A, then A G.
We fix below a recursion scheme G and a trivial automatonA. By the assumption
that [[G]] is accepted by A, there is a run tree of A over [[G]] whose root is labeled
by qS . We fix such a run tree r below.

We shall define a reduction tree T ∞, which expresses the process of the value
tree of G being constructed in a reduction sequence. In the reduction tree, each
term is annotated with a label to keep track of the origin of the term. The set
TermL of annotated terms, ranged over by u, is given by:

u ::= xl | al | F l | (u1u2)l,

where l ⊆ ω∗ × ω. Intuitively, ul with (p, n) ∈ l means that the term u has
occurred in the node p of T ∞, in the form c · · · u un−1 · · · u1 (where c is a non-
terminal or a terminal). We often write ul for u when the outermost label is l.



350 T. Tsukada and N. Kobayashi

We define (ul)+(p,i) as ul∪(p,i). We write �(u) for the term obtained by removing
all the labels from u. We omit some of the labels of an annotated term when
they are not important. The substitution of annotated terms is defined as a
homomorphism satisfying [vl/x](xl

′
) = vl∪l

′
.

The expansion relation  on (finite and unranked) (ω∗×TermL)-labelled trees
is the least relation that satisfies the following condition.

If T is a (ω∗ × TermL)-labelled tree with T (p) = (p′, c un . . . u1), where
c ∈ Σ ∪ N , and there is no child of p in T , then:
1. If c = F l and R(F ) = λxn . . . xk.s and k ≥ 1, then

TT∪{(p1, (p′, ([u+(p,n)
n . . . u

+(p,k)
k /xn . . . xk]s)u

+(p,k−1)
k−1 . . . u

+(p,1)
1 ))}

2. If c = al (which implies n = Σ(a)), then:

T  T ∪ {(pi, (p′i, u+(p,n−i+1)
n−i+1 ))) | 1 ≤ i ≤ n}

In a label of the form (p′, u), the annotated term u represents the term being
reduced, and p′ represents the corresponding position in the value tree of G. In
other words, the subtree of [[G]] at position p′ will be generated by reducing u.

The reduction tree T ∞ is the (ω∗×TermL)-labelled tree obtained by an infinite
expansion of (ε, S{ }), i.e. T ∞ = {T | { (ε, S{}) } ∗ T }.

It is easy to see that T ∞ is well-defined. Note that V = {(p′, a) | ∃p ∈
ω∗, T∞(p) = (p′, a un . . . u1))} is essentially equal to the value tree [[G]]. The only
difference is that if [[G ]] (p′) = ⊥, then V (p′) is undefined.

Example 1. Let G0 = (Σ, {S, F},R, S), where Σ = {(br, 2), (a, 1), (b, 1), (c, 0)},
R = {S → F c, F x→ br c (a(F (b(x))))}. The reduction tree T ∞ is shown in
Figure 4.2. We have T ∞(1121) = (21, · · ·c(1,1) · · · ), which means this occurrence
c appears at 1 as the 1st argument (counting from right to left). The node at
112 is of the form (2, a u), which means [[G0 ]] (2) = a. �

Lemma 2. Let ul11 be an annotated term occurring in T ∞, i.e., there exists a
path p1 such that T ∞(p1) = (p′1, u) and ul11 is a subterm of u. If (p, n) ∈ l1 then
T ∞(p) = (p′, v vln . . . v1) with ul11 = vl∪l

′
n for some l′.

We define θ(∧,p,i) and θ(→,p,i) as the (possibly infinite) trees that satisfy the
following equations.

θ(∧,p,i) = {θ(→,p0,n) | T ∞(p0) = (p′0, u
l un . . . u1) and (p, i) ∈ l}

θ(→,p,i) = θ(∧,p,i) → · · · → θ(∧,p,1) → r(p′)
where T ∞(p) = (p′, u) and r is the run tree.

In the first equation, we assume that θ(→,p0,i)’s are ordered according to a certain
linear order among elements of (ω−{0})∗. Thus, θ(∧,p,i) and θ(→,p,i) are uniquely
determined, and every θ(→,p,i) is a type.

Let Γ rG be {F : θ(→,p,n) | T ∞(p) = (p′, F l un . . . u1)}. We show that Γ rG is the
witness of well-typing of G, i.e.  G : Γ rG .

We first show that each term occurring in T ∞ is well-typed under Γ rG .



Untyped Recursion Schemes and Infinite Intersection Types 351

(ε, S) : ε

(ε, F c) : 1

(ε,br c (a(F (b(c(1,1))))) ) : 11

�������

�������

(1, c(11,2)) : 111 (2, (a(F (b(c(1,1)))))(11,1) ) : 112

(21, (F (b(c(1,1)))))(112,1) ) : 1121

(21, br c (a(F (b (b(c(0,1)))(1121,1) )))) ) : 11211

...

Fig. 1. T ∞ for G0. We omit the empty annotation. Here p of (p0, u) : p is the path of
the node (p0, u), hence they are not a part of the nodes.

Lemma 3. If T ∞(p) = (p′, uun . . . u1), then Γ rG  �(u) : θ(→,p,n).

The following lemma is a kind of the inverse of the substitution lemma; we derive
a typing for t from that of [sl11 . . . s

l
k /x1 . . . xl ]t. Recall that Γ, x : i<α τi A

t : τ is the abbreviation of Γ, x : τ0, x : τ1, · · · A t : τ . We define Γ A t : i<α τi
as the abbreviation of Γ A t : τi for all i < α.

Lemma 4. Suppose that T ∞(p) = (p′, u un . . . u1) andu = [sl11 . . . s
l
k /x1 . . . xk]v,

with (pi, ji) ∈ li for each i ∈ {1, . . . , k}. Let Γ be x1 : θ(∧,p1,j1), . . . , xk : θ(∧,p ,j ).
Then Γ rG , Γ A �(v) : θ(→,p,n).

Proof. By induction on the structure of v.
– Case where v does not contain xi for any i: Immediate from Lemma 3.
– Case v = xi: Note that T ∞(p) = (p′, sli u1 . . . un). By the assumption

(pi, ji) ∈ li and the definition of θ(∧,p ,j ), we have x : θ(→,p,n) ∈ Γ . So, by using
(T-Var), we obtain Γ rG , Γ  xi : θ(→,p,n) as required.

– Case v = v00v01: Let u0j = [s1 . . . sk/x1 . . . xk]vj for j = 0, 1 and l be
the outermost label of v01, i.e., vl01. Note that u = u00u01 and T ∞(p) =
(p′, ul0000 u

l01
01 un . . . u1). By the induction hypothesis, Γ rG , Γ A �(v00) : θ(→,p,n+1).

Because θ(→,p,n+1) = θ(∧,p,n+1) → θ(→,p,n), what we should show is Γ rG , Γ A
�(v01) : θ(∧,p,n+1). Let p0 be any path such that T ∞(p0) = (p′0, v′l

′
v′m, . . . , v′1)

and (p, n + 1) ∈ l′. By Lemma 2, we obtain v′l
′

= u
l01∪l′01
01 . Therefore v′l

′
=

[s1 . . . sk/x1 . . . xk](v
l∪l′01
01 ). By using induction hypothesis, we have Γ rG , Γ A

�(v01) : θ(→,p0,m). So by the definition of θ(∧,p,n+1), we obtain Γ rG , Γ A �(v00) :
θ(∧,p,n+1) as required. �

We are now ready to prove the completeness of the type system.

Proof of Theorem 3. It is easy to see that S : qS ∈ Γ rG . Thus, it remains to show
that Γ rG  R(F ) : τ holds for each F : τ ∈ Γ rG . By the construction of Γ rG , there



352 T. Tsukada and N. Kobayashi

is a path p that satisfies T ∞(p) = (p′, F lun . . . u1) and τ = θ(∧,p,n) → · · · →
θ(∧,p,1) → r(p′). Suppose F : τ ∈ Γ rG and R(F ) = λxnλxn−1 . . . λxk.s (here, k
may be a negative integer).

– Case k ≤ 0: By using (T-Bot), we obtain Γ rG ∪ {xi : θ(∧,p,i) | 1 ≤ i ≤ n} 
λx0λx−1 . . . λxk.s : r(p′). By using (T-Abs), we obtain Γ rG  λxn . . . λxk : τ .

– Case k > 0: By the definition of T ∞, we have:

T ∞(p1) = (p′, ([u+(p,n)
n . . . u

+(p,k)
k /xn . . . xk]s)u

(p,k−1)
k−1 . . . u

(p,1)
1 ).

By Lemma 4, Γ rG , {xi : θ(∧,p,i) | k ≤ i ≤ n}  s : θ(∧,p,k−1) → · · · → θ(∧,p,1) →
r(p′). By using (T-Abs), we obtain Γ rG  λxn . . . λxk.s : θ(∧,p,n) → · · · →
θ(∧,p,1) → r(p′) as required. �

5 Theory of Refinement

The purpose of this section is to develop a theory for applying our type system
to verification of recursion schemes that model programs written in typed pro-
gramming languages. The soundness and completeness theorems in the previous
section imply that our type system for untyped recursion schemes is undecid-
able in general (as the model-checking problem is undecidable). Note, however,
that a recursion scheme obtained from a typed program is well-typed under a
certain type system. Thus, we are interested in the model checking problem:
“Given a recursion scheme G that is well-typed in a type system T , is the value
tree G accepted by A?” Note that the type system T may ensure, in addition
to the well-rankedness, certain properties of the value tree, like “every child of
the node labelled by cons is true or false” (e.g. when the source program has
type bool list). Thus, the type system T can be regarded as a restricted form
of the intersection type system TA′ for another automaton A′. Therefore, the
above model checking problem is refined to:

Given a recursion scheme G well-typed in a certain restriction of TA′ , is
the value tree G accepted by A (or equivalently, is G well-typed in TA)?

Because of the assumption that G is well-typed, the model checking problem can
be solved in certain cases. For example, Kobayashi and Ong’s work [3, 5] can
be considered as studies of a special case of the problem above, where A′ is the
Büchi automaton with a single state o, and sorts are restricted to simple and
finite ones (without intersections). The main result of this section (Theorem 5)
is that if G is well-typed in TA′ , then G is well-typed in TA if, and only if, G is
so under certain restricted type environments of TA, so that the model checking
problem can sometimes be solved effectively. Below we focus on the case where
there is an automata homomorphism from A to A′.
Definition 3. Let A1 = (Q1, Σ, q1S , Δ

1) and A2 = (Q2, Σ, q2S , Δ
2) be trivial

automata. A homomorphism f : A1 → A2 of automata is a map from the states
of A1 to the states of A2 satisfying the following conditions: (i) f maps the
initial state to the initial state, i.e. f(q1S) = q2S. (ii) f respects the transitions,
i.e. (q, a, q1, . . . , qn) ∈ Δ1 implies (f(q), a, f(q1), . . . , f(qn)) ∈ Δ2.



Untyped Recursion Schemes and Infinite Intersection Types 353

For a given homomorphism f : A1 → A2 of automata, we extend this function
to a map f̂ from types of TA1 to those of TA2 , by:

f̂(τ)(p) =
f(τ(p)) (if τ(p) ∈ Q1)
τ(p) (if τ(p) =→ or ∧)

and we define f̂(Γ ) by f̂({F1 : τ1, . . . }) = {F1 : f̂(τ1), . . . }. Then we can see
that any homomorphism f preserves typability.

Theorem 4. Let A1 and A2 be automata, G be a recursion scheme and f :
A1 → A2 be a homomorphism of automata. If Γ A1 G, then f(Γ ) A2 G.
Note that the sort system given in Section 3 is the same as TA� , where A
 is the

trivial automaton ({o}, Σ, o,Δ) such that (o, a,
n

o, . . . , o) ∈ Δ for every a ∈ Σ
of rank n. Moreover, for any trivial automaton A, f : A → A
 : q �→ o is a
(unique) homomorphism.

The main goal of this section is to establish a “backward” property. Given a
homomorphism f : A1 → A2, we want to derive a property about the typability
of G in TA1 , assuming that Γ A2 G. For that purpose, we define a refinement
relation 	f between types of A1 and those of A2.

Definition 4. The binary relation 	 on types is the largest relation that satisfies
the following conditions: (i) If τ 	 q, then τ = q. (ii) If τ 	 j<β σj → σ′,
then τ = i<α τi → τ ′, with τ ′ 	 σ′ and ∀i < α.∃j < β.τi 	 σj. Given a
homomorphism f : A1 → A2, we define the refinement relation τ1 	f τ2 by
f(τ1) 	 τ2.
The refinement relation can be considered as a generalization of the kinding
relation τ ::κ (which means “a type τ has sort κ”) used in Kobayashi and Ong’s
type systems [3, 5]. Note that the relation 	 is not a subtyping relation; the
type constructor → is covariant wrt 	.

Example 2. 	 is reflexive and transitive. If q1 �= q2, q1 → q 	 (q1∧q2)→ q holds
but (q1 ∧ q2) → q 	 q1 → q does not. If f(q1) = f(q2) = q, then (q1 ∧ q2) →
q1 	f q → q. �

We write Γ1 	 Γ2 if for each F : τ ∈ Γ1, there exists F : σ ∈ Γ2 such that τ 	 σ.
The definition of Γ1 	f Γ2 is similar. The following is a key lemma to obtain
the main result.

Lemma 5. Let A be a deterministic trivial automaton and G be a recursion
scheme. If G is typable in TA, then Γ rG (where r is a run tree of A over [[G]],
which is unique by the assumption that A is deterministic) is the minimum type
environment in {Γ | A G : Γ} with respect to 	.

Proof Sketch. Assume A G : Γ . By the proof of Lemma 1 (which is constructive
in the sense that it gives a procedure to construct a derivation tree for t′ from that



354 T. Tsukada and N. Kobayashi

of t), we can construct a type derivation for each term occurring in T ∞ (recall
that T ∞ is a tree representing an infinite reduction sequence). For T ∞(p) =
(p′, uvn . . . v1)), let φ(p,n) be the type assigned to the term u. Then, we can prove
by co-induction that θ(→,p,n) 	 φ(p,n) holds for every p and n. Let T −1(F ) =
{(p, n) | T ∞(p) = (p′, Fun . . . u1)}. Thus, we have:

Γ rG = {F : θ(→,p,n) | (p, n) ∈ T −1(F )} 	 {F : φ(p,n) | (p, n) ∈ T −1(F )} ⊆ Γ
as required. �

The following main result implies that if Γ A2 G, then it suffices to consider
only refinements of Γ to check whether G is well-typed in TA1 .

Theorem 5. Let A1 be a trivial automaton, A2 be a deterministic trivial au-
tomaton, G be a recursion scheme and f : A1 → A2 be a homomorphism of
automata. Assume Γ A2 G. Then, G is typable in TA1 iff G is so under some
type environment Γ ′ such that Γ ′ 	f Γ .

Proof. The “if” direction is trivial. To prove the converse, assume G is well-typed
in TA1 . By the soundness of the type system, [[G]] ∈ LA1 holds, i.e. there exists
a run tree r1 of A1 over [[G]]. Let r2 be a unique run tree of A2 over [[G]]. It
is easy to show that r2(p) = f(r1(p)). Then, by the definition of Γ r1G and Γ r2G ,
f(Γ r1G ) 	 Γ r2G . By Lemma 5, for any type environment Γ such that Γ A2 G, we
have f(Γ r1G ) 	 Γ r2G 	 Γ , which implies Γ r1G 	f Γ . �

As the sort system is equivalent to the type system for the automaton A
 and
there are only finitely many refinements of a finite sort, we obtain:

Corollary 1. If G is a finitely sorted recursion scheme (i.e. the sort of every
non-terminal in G is finite), then it is decidable whether [[G]] is accepted by A.

We can obtain a model checking algorithm by modifying Kobayashi’s algo-
rithm [9] for simply-typed recursion schemes.

6 Applications

We now discuss how the foregoing theory can be applied to verification of func-
tional programs written in languages with advanced type systems (like polymor-
phism and recursive types). As shown in [3, 4], a higher-order functional program
can be easily transformed into a recursion scheme that simulates the output or
the event sequences of the source program, and then model-checked. Since the
recursion scheme thus obtained is well-sorted under a similar type system, we
focus here on model-checking of recursion schemes that are well-sorted under
advanced type systems.

As already mentioned, polymorphic types and recursive types may be regarded
as restricted forms of infinite intersection types (or sorts). For example, a (pred-
icative) polymorphic type ∀α.τ can be regarded as {[σ/α]τ | σ is a finite sort}



Untyped Recursion Schemes and Infinite Intersection Types 355

with infinite width, and a recursive sort μX.o → X as a sort o → o → . . .
with an infinite path. Thus, the model-checking problem of interest is: “Given
a recursion scheme G well-sorted under a certain fragment S of the sort system
of Section 3 and an automaton A, is [[G]] accepted by A?” We discuss below
decidable and undecidable fragments of the sort system.

Decidable fragments. By Corollary 1, if S allows only finite sorts (intersection
sorts with finite width and depth), then the model-checking problem is decidable.
The ML-style let-polymorphism (where the set of rewriting rules is of the form
F1 x→ t1; · · · ;Fm x→ tm;S → tm+1 and Fi can have polymorphic sorts only in
tj(j > i)) satisfies this condition. It is easy to see that if F1 x→ t1; · · · ;Fm x→
tm;S → tm+1 is well-typed under the ML-style polymorphic type system, then
the recursion scheme is well-sorted by using only finite sorts.

Another fragment that has only finite sorts is the system S studied in [10].
As system S contains rank-2 intersection with polymorphic recursion (I2 +
REC-INT, for which the typability is undecidable [11]) as a subsystem, this
is an interesting example for which well-sorting is undecidable, but the model-
checking problem for well-sorted recursion schemes is decidable. We do not know
whether the model-checking problem is decidable for the fragment with Milner-
Mycroft-style polymorphic recursion.

Remark 3. Note that if a recursion scheme is well-sorted by using finite sorts,
then it can be transformed into an equivalent, simply-typed recursion scheme.
(To see why, observe that a function of sort τ1∧τ2 → τ can be transformed into a
function of sort τ1 → τ2 → τ). Thus, extending simply-typed recursion schemes
to those with finite intersection sorts does not increase the expressive power of
recursion schemes. Our approach of using intersection sorts would, however, be
more efficient, as the transformation from a finitely-sorted recursion scheme into
a simply-typed recursion scheme will blow up the size of the recursion scheme.

Undecidable Fragments. The model-checking problem is undecidable for
fragments that contain either recursive types or System F-style polymorphic
types. With System F-style (impredicative) polymorphism, we can encode a nat-
ural number as a term of type ∀α.(α→ α)→ α→ α and express the successor,
predecessor, and zero-equality test on natural numbers. Thus, by a combination
with recursion,4 we can encode a Minsky machine [8] M into a recursion scheme
G such that M halts if and only if [[G]] contains a terminal h. A similar reasoning
applies to recursion schemes with recursive types.

For these undecidable fragments, we can still obtain a sound but incomplete
model-checking algorithm, by restricting the refinement. For example, for recur-
sive sorts, we can restrict their refinements to recursive types (i.e. regular infinite
intersection types) of a fixed size, so that the number of possible refinements for
each recursive sort is finite. Then Theorem 5 can be used to obtain a sound
model-checking algorithm.
4 Note that although terms of System F are strongly normalizing, we have recursion

as a primitive.



356 T. Tsukada and N. Kobayashi

7 Related Work

The model checking of recursion schemes has been studied extensively
[1, 2, 5, 12, 13], and applied to higher-order program verification [3, 4, 9]. Knapik
et al. [1] showed the decidability of the modal μ-calculus model-checking of safe
recursion schemes, and Ong [2] showed the decidability for arbitrary (typed) re-
cursion schemes. Kobayashi and Ong [3, 5] recently proposed type-based model
checking algorithms for recursion schemes. To our knowledge, all the previous
studies dealt with simply-typed recursion schemes (simply-typedness was a part
of the definition of recursion schemes).

Infinite intersection types have been studied by Leivant [7] and Bonsangue
and Kok [14]. One of the main advantages of their type systems is that infinite
intersection types give a “natural master formalism” [7] for various type disci-
plines. It is for this reason that we have introduced infinite intersection types
for recursion schemes. To our knowledge, the previous type systems [7, 14] do
not allow types having infinite paths (like the type τ defined by τ((11)∗) =→,
τ((11)∗1) = ∧1, and τ((11)∗2) = o).

There may be some connection between our work and studies on infinitely
λ-calculi [15–17], where infinite objects generated by infinite reductions of λ-
terms are considered. Note that the model checking of recursion schemes is also
concerned about properties of the infinite objects generated by λ-terms. Direct
connection is however unclear, since different properties of the infinite objects are
considered. Tatsuta [16] showed that there is no decidable type system that char-
acterizes the class of hereditary head-normalizing terms (λ-terms whose Böhm
trees do not have ⊥), and also gave a type-based characterization of that class
by using an intersection type system with a countably infinite set of types.

8 Conclusion

We have developed an infinite intersection type system that is equivalent to the
model-checking of untyped recursion schemes for safety properties (the proper-
ties expressed by trivial automata). Future work includes an extension of the
type system to deal with the full modal μ-calculus, along the line of Kobayashi
and Ong’s work for typed recursion schemes [5]. It is also left for future work
to find good decidable restrictions of the infinite intersection type system and
apply them to verification of programs written in a language with polymorphic
and/or recursive types.

Acknowledgments. We would like to thank anonymous referees for useful
comments. This work was partially supported by Kakenhi 20240001.

References

1. Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In:
Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222.
Springer, Heidelberg (2002)



Untyped Recursion Schemes and Infinite Intersection Types 357

2. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS 2006, pp. 81–90. IEEE Computer Society Press, Los Alamitos
(2006)

3. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. In: Proceedings of ACM SIGPLAN/SIGACT Symposium on Prin-
ciples of Programming Languages, pp. 416–428 (2009)

4. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree trans-
ducers and recursion schemes for program verification. In: POPL, pp. 495–507
(2010)

5. Kobayashi, N., Ong, C.-H.L.: A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In: Proceedings of LICS 2009,
pp. 179–188. IEEE Computer Society Press, Los Alamitos (2009)

6. van Bakel, S.: Intersection type assignment systems. Theor. Comput. Sci. 151(2),
385–435 (1995)

7. Leivant, D.: Discrete polymorphism. In: LISP and Functional Programming, pp.
288–297 (1990)

8. Minsky, M.L.: Computation: Finite and infinite Machines. Prentice-Hall, Engle-
wood Cliffs (1967)

9. Kobayashi, N.: Model-checking higher-order functions. In: Proceedings of PPDP
2009. ACM Press, New York (2009)

10. Hallett, J.J., Kfoury, A.J.: Programming examples needing polymorphic recursion.
Electr. Notes Theor. Comput. Sci. 136, 57–102 (2005)

11. Terauchi, T., Aiken, A.: On typability for rank-2 intersection types with poly-
morphic recursion. In: LICS, pp. 111–122. IEEE Computer Society, Los Alamitos
(2006)

12. Knapik, T., Niwinski, D., Urzyczyn, P.: Deciding monadic theories of hyperalge-
braic trees. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 253–267.
Springer, Heidelberg (2001)

13. Aehlig, K., de Miranda, J.G., Ong, C.-H.L.: The monadic second order theory of
trees given by arbitrary level-two recursion schemes is decidable. In: Urzyczyn, P.
(ed.) TLCA 2005. LNCS, vol. 3461, pp. 39–54. Springer, Heidelberg (2005)

14. Bonsangue, M.M., Kok, J.N.: Infinite intersection types. Inf. Comput. 186(2), 285–
318 (2003)

15. Berarducci, A., Dezani-Ciancaglini, M.: Infinite lambda-calculus and types. Theor.
Comput. Sci. 212(1-2), 29–75 (1999)

16. Tatsuta, M.: Types for hereditary head normalizing terms. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 195–209. Springer,
Heidelberg (2008)

17. Tatsuta, M.: Types for hereditary permutators. In: LICS, pp. 83–92. IEEE Com-
puter Society, Los Alamitos (2008)



Solvability in Resource Lambda-Calculus�

Michele Pagani and Simona Ronchi della Rocca

Dipartimento di Informatica – Università di Torino
C.so Svizzera 185 – 10149 Torino (IT)

{pagani,ronchi}@di.unito.it

Abstract. The resource calculus is an extension of the λ-calculus allow-
ing to model resource consumption. Namely, the argument of a function
comes as a finite multiset of resources, which in turn can be either linear
or reusable, giving rise to non-deterministic choices, expressed by a for-
mal sum. Using the λ-calculus terminology, we call solvable a term that
can interact with the environment: solvable terms represent meaningful
programs. Because of the non-determinism, different definitions of solv-
ability are possible in the resource calculus. Here we study the optimistic
(angelical, or may) notion, and so we define a term solvable whenever
there is a simple head context reducing the term into a sum where at
least one addend is the identity. We give a syntactical, operational and
logical characterization of this kind of solvability.

1 Introduction

The resource calculus (Λr) is an extension of the λ-calculus allowing to model
resource consumption. Namely, the argument of a function comes as a finite mul-
tiset of resources, which in turn can be either linear or reusable. A linear resource
needs to be used exactly once, while a reusable one can be called ad libitum. In
this setting the evaluation of a function applied to a multiset of resources gives
rise to different possible choices, because of the different possibilities of distribut-
ing the resources among the occurrences of the formal parameter. So the calculus
is not deterministic, but no internal choice is performed actually, the result being
a formal sum of all the possible cases. In case of a multiset of linear resources,
also a notion of crash arises, whenever the cardinality of the multiset does not
fit exactly the number of occurrences. Then the resource calculus is a useful
framework for studying the notions of linearity and non-determinism, and the
relation between them.
Λr is an evolution of the calculus of multiplicities, this last introduced by

Boudol in order to study the semantics of the lazy λ-calculus [1]. Ehrhard and
Regnier designed the differential λ-calculus [2], drawing on insights gained from
an analysis of some denotational models of linear logic. As the authors remarked
the differential λ-calculus seemed quite similar to Boudol’s calculus of multiplic-
ities. Indeed this was formalized by Tranquilli, which defined the Λr syntax, and
� Partially founded by the Italian MIUR project CONCERTO, and the French ANR

projet blanc CHOCO, ANR-07-BLAN-0324.

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 358–373, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Solvability in Resource Lambda-Calculus 359

showed a Curry-Howard correspondence between this calculus and Ehrhard and
Regnier’s differential nets [3]. The main differences between Boudol’s calculus
and Λr are that the former is equipped with explicit substitution and lazy oper-
ational semantics, while the latter is a true extension of the classical λ-calculus.

One way to appreciate the resource calculus is by observing the various sub-
calculi it contains. Clearly, usual λ-calculus can be embedded into Λr translating
the application MN into M [N !], where [N !] represents the multiset containing
one copy of the resource N , which is reusable (see the grammar of Figure 1(a)).
Forbidding linear terms but allowing non-empty finite multisets of reusable terms
yields a purely non-deterministic extension of λ-calculus, which recalls de Liguoro
and Piperno’s λ⊕-calculus [4]. On the other side, allowing only multisets of linear
terms gives the linear fragment of Λr, used by Ehrhard and Regnier for giving a
quantitative account to λ-calculus β-reduction through Taylor expansion [5, 6].

The aim of this paper is to study the operational behaviour of the full resource
calculus. It has been already proved that it enjoys the properties of confluence
and a sort of standardization [7]. In particular confluence does not clash with
non-determinism since the sum carries all the possibilities. Here we study the
solvability property. Namely, following the λ-calculus terminology, we use the
word solvable in order to denote a term that can interact operationally with the
environment, i.e., that can produce a given output when inserted into a context
supplying it with suitable resources. According to this definition, in a computer
science setting the solvable terms represent the meaningful programs.

Let us recall that in the λ-calculus a term M is defined to be solvable if
and only if there is a context C(·) (of a non constant behaviour) such that
C(M) reduces to the identity. λ-solvability has been completely characterized, by
different points of view. Syntactically a term is solvable if and only if it reduces to
a head-normal form [8], operationally if and only if the head reduction strategy
applied to it eventually stops [8], logically if and only if it can be typed in a
suitable intersection type assignment system [9], denotationally if and only if its
denotation is not minimal in a suitable sensible model [10, 11]. Our aim is to
characterize the notion of solvability in Λr following the same lines.

The first problem we meet is the definition of solvability in Λr. In this paper
we decided to follow an optimistic (angelical, or may) approach, and so we define
a term to be solvable whenever there is a context, of a non constant behaviour,
that, when filled by the term, reduces to a sum of terms, at least one of these
being the identity. Other possible definitions of solvability (on which we are
currently working) are discussed in the conclusion of the paper.

Our result is a characterization of solvability in Λr from a syntactical, oper-
ational and logical point of view (Theorem 19). It turns out that an extended
notion of head-normal form can be defined, such that a term is solvable if and
only if it can reduce to a term of such form. From an operational point of view,
we use the notion of outer-reduction strategy, defined in [7], where no reduction
is made inside reusable resources, and we prove that in order to reach the head-
normal form we can restrict ourselves to use just reduction strategies of this
kind. Moreover we give also a logical characterization of solvability, through a



360 M. Pagani and S. Ronchi della Rocca

Λr: M, N, L ::= x | λx.M | MP terms

Λ(!): M (!), N (!) ::= M | M ! resources

Λb: P, Q, R ::= [M (!)
1 , . . . , M

(!)
n ] bags

Λ(b): A, B ::= M | P expressions

M, N ∈ N〈Λr〉 P, Q ∈ N〈Λb〉 A, B ∈ N〈Λ(b)〉 := N〈Λr〉 ∪ N〈Λb〉 sums

(a) Grammar of terms, bags, expressions, sums.

λx.( i Mi) := i λx.Mi ( i Mi)P := i MiP M( i Pi) := i MPi

[( i Mi)]·P := i[M ]i ·P [( i Mi)!]·P := [M !
1, . . . , M

!
k]·P

(b) Notation on N〈Λ(b)〉.

Fig. 1. Syntax of resource calculus. The symbol N denotes the set of natural numbers,
N〈Λr〉 (resp. N〈Λb〉) denotes the set of finite formal sums of terms (resp. bags), with
0 referring to the neutral element.

type assignment system, assigning to terms suitable non-idempotent intersection
types. All these characterizations are conservative with respect to the λ-calculus.

The type assignment system we define is strongly related to the relational
semantics of linear logic. It can be seen, basically, as an extension to Λr of the
type system introduced by de Carvalho in the restricted case of λ-calculus [12].
We plan to continue our investigation in the direction of giving a clear setting
where our type assignment can be presented as a logical description of a de-
notational model for the resource calculus, where all the unsolvable terms are
equated. Indeed such a goal seems to us non immediate, since a quantitative
account of resources does not fit well with the contextual closure of the interpre-
tation function. For a discussion about this point see [12]. A possible solution
might be achieved following the ideas in [13].

The paper is organized as follows. Section 2 contains a syntactical description
of the resource calculus. Section 3 is dedicated to the definition of solvability
and of head-normal form. In Section 4 the intersection type assignment system
is presented and its properties are stated. In Section 5 there is the proof of
the main theorem, showing all the characterizations of solvability. In Section 6
alternative notions of solvability are discussed.

2 Resource Calculus

Syntax. Basically, we have three syntactical sorts: terms, that are in functional
position, bags, that are in argument position and represent multisets of resources,
and finite formal sums, that represent the possible results of a computation.



Solvability in Resource Lambda-Calculus 361

y〈N/x〉 :=
N if y = x,

0 otherwise,

[M ]〈N/x〉 := [M〈N/x〉],

[M !]〈N/x〉 := [M〈N/x〉, M !],

(λy.M)〈N/x〉 := λy.(M〈N/x〉),
(MP )〈N/x〉 := M〈N/x〉P + M(P 〈N/x〉),

1〈N/x〉 := 0,

(P ·R)〈N/x〉 := P 〈N/x〉·R + P ·R〈N/x〉.

Fig. 2. Linear substitution, in the abstraction case we suppose y /∈ FV(N) ∪ {x}

Precisely, Figure 1(a) gives the grammar for generating the set Λr of terms and
the set Λb of bags (which are in fact finite multisets of resources Λ(!)) together
with their typical metavariables. A resource can be linear (it must be used exactly
once) or not (it can be used ad libitum), in the last case it is written with a !
apex. Bags are multisets presented in multiplicative notation, so that P ·Q is the
multiset union, and 1 = [ ] is the empty bag. It must be noted though that we
will never omit the dot ·, to avoid confusion with application. An expression
(whose set is denoted by Λ(b)) is either a term or a bag. Though in practice only
sums of terms are needed, for the sake of the proofs we also introduce sums
of bags. In writing N〈Λ(b)〉 we are abusing the notation, as it does not denote
the N -module generated over Λ(b) = Λr ∪ Λb but rather the union of the two
N -modules. This amounts to say that sums may be taken only in the same sort.

The grammar for terms and bags does not include sums in any point, so that
in a sense they may arise only on the “surface”. However as an inductive notation
(and not in the actual syntax) we extend all the constructors to sums as shown
in Figure 1(b). In fact all constructors but the (·)! are, as expected, linear. Notice
the similarity between the equation [(M +N)!] = [M !]·[N !] and ex+y = ex ·ey:
this is far from a coincidence, as Taylor expansion and linear logic semantics
show well [6]. We adopt the usual λ-calculus conventions as in [8]. Also we use
the following notation for terms useful to build examples:

I := λx.x , F := λxy.y , Δ := λx.x[x!] , Ω := Δ[Δ!] .

There is no technical difficulty in defining α-equivalence and the set FV(A)
of free variables as in ordinary λ-calculus. Due to the presence of two kinds of
resources, we need two different notions of substitutions, so to capture both the
linear and non linear behaviour. Moreover we define also a resource substitution,
which is expressed in function of the first two, useful for defining the reduction.

Definition 1 (Substitutions). We define the following substitution operations.

1. A {N/x} is the usual λ-calculus (i.e. capture free) substitution of N for x. It
is extended to sums as in A {N/x} by linearity in A

1 and using the notations
of Figure 1(b) for N. The form A {x+N/x} is called partial substitution.

1 F (A) (resp. F (A,B)) is extended by linearity (resp. bilinearity) by setting
F i Ai = i F (Ai) (resp. F i Ai, j Bj = i,j F (Ai, Bj)).



362 M. Pagani and S. Ronchi della Rocca

2. A〈N/x〉 is the linear substitution defined inductively in Figure 2. It is
extended to A〈N/x〉 by bilinearity in both A and N.

3. Resource substitution A〈〈N (!)/x〉〉 is the disjoint union of the partial and
linear substitutions, i.e. A〈〈N/x〉〉 := A〈N/x〉 and A〈〈N !/x〉〉 := A {N + x/x}.

Roughly speaking, the linear substitution corresponds to the replacement of the
resource to exactly one linear occurrence of the variable. In the presence of mul-
tiple occurrences, all the possible choices are made, and the result is the sum
of them. For example (y[x][x])〈M/x〉 = y[M ][x] + y[x][M ]. Indeed linear sub-
stitution bears resemblance to differentiation, as it is in Ehrhard and Regnier’s
differential λ-calculus [2]. We refer to [3, 14] for the mathematical intuitions
underlying the resource calculus. The following are examples with sums

(x[x!])〈M+N/x〉 = (x[x!])〈M/x〉 + (x[x!])〈N/x〉
= M [x!] + x[M,x!] +N [x!] + x[N, x!],

(x[x!]) {M +N/x}= (M +N)[(M +N)!] = M [M !, N !] +N [M !, N !].

Substitutions commute as stated in the following.

Lemma 2 ([2, 3, 14]). For A a sum of expressions, M,N sums of terms and
x, y variables such that y /∈ FV(M) ∪ FV(N), we have

A〈N/y〉 〈M/x〉 = A〈M/x〉 〈N/y〉+ A〈N〈M/x〉/y〉
A {y + N/y} 〈M/x〉 = A〈M/x〉 {y + N/y}+ A〈N〈M/x〉/y〉 {y + N/y} .

In particular if x /∈ FV(N) then the second addend of both sums is 0 and the two
substitutions commute.

Furthermore we have, if x /∈ FV(M) ∪ FV(N),

(A {x+ M/x}) {x+ N/x} = A {x+ M + N/x} = (A {x+ N/x}) {x+ M/x} .

Reductions. A (monic) context C(·) is a term that uses a distinguished free
variable called its hole exactly once. Formally, the set of simple contexts is
given by the following grammar

Λ(·) : C(·), D(·) ::= (·) | λx.C(·) | C(·)P |M [C(·)]·P |M [(C(·))!]·P
A context C(·) is a simple context in Λ(·) summed to any sum in N〈Λr〉. The
expression C(M) denotes the result of blindly replacing M to the hole (allow-
ing variable capture) in C(·). We generalize to sums applying the notations of
Figure 1(b). For example C(·) := λx.y[(·)!] and D(·) := λx.y[(·)] are simple
contexts. If M = x+ y, then C(M) = λx.y[x!, y!] and D(M) = λx.y[x] + λx.y[y].

A relation r in Λr×N〈Λr〉 is extended to one in N〈Λr〉×N〈Λr〉 by context
closure2 by setting: M r̃ N iff ∃C(·) and M ′ r N

′ s.t. M = C(M ′),N = C(N′).
2 In [3, 14] bag contexts are defined too, so that context closure extends a relation to
N〈Λ(b)〉 × N〈Λ(b)〉. In fact we prefer to introduce the term contexts only, making
clear that the set N〈Λr〉 is the actual protagonist of the calculus. However our choice
is a matter of taste, affecting no main property of the calculus.



Solvability in Resource Lambda-Calculus 363

(λx.x[Δ!])[Δ!, I] (λx.(Δ + x)[Δ!])[I] (λx.x[Δ!])[I] (λx.I[Δ!])1

I[Δ!] (λx.Δ)1

Δ

b b b

b
b

b

g

g

Fig. 3. An example of baby- and giant-step reductions. We use the notation of Fig.
1(b): after the first b-step the term (λx.(Δ + x)[Δ!])[I] stands for (λx.Δ[Δ!])[I] +
(λx.x[Δ!])[I], and the term after the following step is equal to 0+(λx.x[Δ!])[I]. In fact
0 is the neutral element of the sum and (λx.Δ[Δ!])[I] b→ 0.

A context is linear if its hole is not under the scope of a ( )! operator. Linear
contexts can be defined inductively omitting the M [(C(·))!]·P generation rule in
the simple context definition. A head context is a context having the hole not
in a bag. Head contexts can be defined inductively omitting the rules M [C(·)]·P
and M [(C(·)!)]·P in the simple context definition. Notice that the composition
C(D(·)) of two head (resp. linear) contexts C(·), D(·) is head (resp. linear).

We introduce two kinds of reduction rule, baby-step and giant-step reduction,
the former being a decomposition of the latter. Both are meaningful: baby-step
is more atomic, performing one substitution at a time, while the giant-step is
closer to λ-calculus β-reduction, wholly consuming its redex in one shot.

Definition 3 ([3, 14]). The baby-step reduction b→ is defined by the context
closure of the following relation (supposing x not free in N):

(λx.M)1 b→M {0/x} (λx.M)[N ]·P b→ (λx.M〈N/x〉)P

(λx.M)[N !]·P b→ (λx.M {N + x/x})P
The giant-step reduction

g→ is defined by the context closure of the following
relation, for n ≥ 0: (λx.M)[N (!)

1 , . . . , N
(!)
n ]

g→M〈〈N (!)
1 /x〉〉 . . . 〈〈N (!)

n /x〉〉 {0/x}.
For any reduction x→, we denote by x+→ and x∗→ its transitive and reflexive-

transitive closure respectively.

Notice that giant-step reduction is defined independently of the ordering of the
resource substitutions, as shown by the substitution commutations stated above.
Baby-step and giant-step reductions are clearly related each other.

Proposition 4 ([3, 14]). We have
g→ ⊂ b∗→ ⊂ g∗→ g∗←, where the last denotes the

composition between
g∗→ and its inverse

g∗←.

Figure 3 shows an example of baby-step and giant-step reduction sequences.
The reader can check, in this example, that the two reductions are related as
stated in Proposition 4. By the way, let us mention that although giving the
same normal forms, baby-step and giant-step reductions might have different



364 M. Pagani and S. Ronchi della Rocca

properties: for example, the starting term in the Figure 3 is strongly normalizing
for giant-step but only weakly normalizing for baby-step reduction (an infinite
reduction sequence can be obtained by firing the Δ[Δ!] redex in the first addend
of (λx.(Δ + x)[Δ!])[I]).

3 Solvability

Using the λ-calculus terminology, we will call solvable the terms representing
meaningful programs, i.e., the ones that can interact with the environment. Let
us recall that in λ-calculus a term is solvable whenever there is a head con-
text reducing it to the identity [8]. In resource calculus terms appear in formal
sums, where repetitions do matter, hence various notions of solvability can arise,
depending on the number of times one gets the identity. This paper deals exten-
sively with the weakest notion of solvability, which asks that a term is solvable
whenever a suitable context filled with it reduces to a sum, where at least one
addend is the identity. This notion is related in some sense to a may-semantics
of Λr, which arises naturally because of the definition of 0 as the neutral element
of the sum. However different notions of solvability could be proposed, and we
will discuss them in Section 6.

Definition 5. A term M is solvable whenever there are a head simple context
C(·) and a sum of terms N, possibly 0, such that C(M)

g∗−→ I + N.

The above definition considers giant-step reduction, however one can replace it
with baby-step reduction, obtaining an equivalent notion of solvability, as easily
argued from Proposition 4. Instead, it is crucial the restriction to simple and head
contexts: there are general contexts reducing constantly to I, disregarding the
term they are applied to. For example consider the head but non-simple context
I+(·)[I1] or the simple but non-head context (λx.I)[(·)!]: we have C(M)

g−→ I for
every term M .

One major outcome of this paper is the characterization of solvability by
means of the following notion of head-normalizability (see Theorem 19).

Definition 6. A term is a head-normal form, hnf for short, if it has no redex
but under the scope of a ( )!. The set of hnf can be defined inductively as follows.

λx.M is hnf if M is hnf,
xP1 . . . Pp is hnf if p ≥ 0 and ∀i ≤ p, every linear resource in Pi is a hnf.

A sum M of terms is a head-normal form whenever it contains an addend in
head-normal form. A term M is head-normalizable iff it is reducible to a hnf.

Notice that for the resource terms corresponding to λ-terms these notions coin-
cide with the usual ones.

The term λx.y1[x!,Ω!] is a hnf, and it is solvable via (λy.(·))[F]: indeed,
(λy.(λx.y1[x!,Ω!]))[F]

g→ λx.F1[x!,Ω!]
g→ λx.I[x!,Ω!]

g→ I + λx.Ω. The terms



Solvability in Resource Lambda-Calculus 365

x : σ � x : σ
v � 1 : ω

1
Γ � A : π, B �= 0

Γ � A + B : π
⊕

Γ, x : σ1, . . . , x : σn � M : τ, x �∈ d(Γ )
Γ � λx.M : σ1 ∧ . . . ∧ σn → τ

→I
Γ � M : π → τ Δ � P : π

Γ, Δ � MP : τ
→E

Γ � M : σ Δ � P : π
Γ, Δ � [M ]·P : σ ∧ π

�
Γi � M : σi, for 1 ≤ i ≤ n Δ � P : π

Γ1, . . . , Γn, Δ � [M !]·P : σ1 ∧ ... ∧ σn ∧ π
!

Fig. 4. The type assignment system �. The rules →In and !n are parametrized by a
natural number n, their 0-ary versions →I0 and !0 yield ω → τ and π respectively.

F[x!,Ω!], I[x!,Ω!] are not hnf but both are head-normalizable (the former re-
ducing to I, the latter to x+ Ω); both are clearly solvable, also. The terms F[x]
or I[Ω!] are not head-normalizable: they reduce to 0 and Ω, respectively. The
notion of head-reduction is extended in this non-deterministic setting as follows.

Definition 7 ([7]). Let ε ∈ {b, g}. The outer ε-reduction oε−→ is the closure
to linear contexts of the ε steps given in Definition 3.

4 An Intersection Type Assignment System

In this section we present an intersection type system assigning types to all and
only the expressions having head-normal form (Theorem 19). This system lacks
idempotency (σ∧σ �= σ): in fact we use the intersection as logical counterpart of
the multiset union. The system has some similarities with that one in [15], which
supplies a logical semantics of the language in [1]. The main logical difference
between the two systems is that the one in [15] is affine and describes a lazy oper-
ational semantics. In the restricted setting of λ-calculus similar non-idempotent
systems have been considered starting from [16], e.g. [17, 18, 19, 12].

Definition 8. The set of types is the union of the set of linear types and that
of intersection types, given by the following grammars

σ, τ ::= a | π → σ linear types
π, ζ ::= σ | ω | π ∧ ζ intersection types

where the variable a varies on an infinite set of atoms and ω is a constant. We
consider types modulo the equivalence ∼ generated by the following rules:

π ∧ ζ ∼ ζ ∧ π, π ∧ ω ∼ π, π1 ∧ (π2 ∧ π3) ∼ (π1 ∧ π2) ∧ π3.

The last two rules allow us to consider n-ary intersections σ1 ∧ . . .∧ σn, for any
n ∈ N , ω being the 0-ary intersection.



366 M. Pagani and S. Ronchi della Rocca

A basis is a finite multiset of assignments of the shape x : σ, where x is a
variable and σ is a linear type. Capital Greek letters Γ , Δ range over bases. We
denote by d(Γ ) the set of variables occurring in Γ and by Γ,Δ the multiset union
between the bases Γ and Δ. A typing judgement is a sequent Γ � A : π.

The � type assignment system derivates typing judgements for N〈Λ(b)〉. Its
rules are defined in Figure 4. Capital Greek letters Φ, Ψ range over derivations,
Φ :: Γ � A : π denoting a derivation Φ with conclusion Γ � A : π.

Rule ⊕ assigns to a sum the type of one of its addends, and it reflects the
may-semantics we chose. The condition B �= 0 is not necessary for characterizing
head-normalizable terms, but it is useful to avoid redundant applications of⊕. In
the rule !n the parameter n takes into account the number of times the reusable
resource M ! will be called, whereas the rule � assigns just one type to the linear
resource M . Note that any bag containing only reusable resources can be typed
by ω using the rules 1 and !0. All other rules are almost standard.

Let us recall that types are modulo the equivalence ∼, which means that all
the rules of Figure 4 must be considered closed under the ∼.

Definition 9. The measure of a derivation Φ is the number m(Φ) of axioms
(i.e. v and 1 rules) in Φ. The measure m(A) of a sum of expressions A is

m(A) := inf{m(Φ) ; Φ :: Γ � A : π, for Γ a basis and π a type}.

The following lemmata (Lemma 10-14) state basically that the typing system
behaves well with respect to the substitutions of resource calculus. They are
needed to prove Proposition 15: typing judgements are invariant under baby
and giant-step reductions.

Lemma 10 (Linear Substitution). Let Φ :: Γ, x : τ � A : π and Ψ :: Δ �
N : τ . There is a derivation L(Φ, Ψ) :: Γ,Δ � A〈N/x〉 : π with m(L(Φ, Ψ)) =
m(Φ) + m(Ψ)− 1.

Proof (Sketch). By induction on Φ, splitting depending on its last rule. We treat
in detail only the case of a terminal !n rule. The base of induction is trivial: v
is immediate, while 1 does not meet the condition of having x : τ in the basis.
The cases →In, ⊕ are immediate consequences of the induction hypothesis, the
cases →E, � are easier variant of the !n case. So let us assume

Φ :=

.... Φi
Γi �M : σi, for 1 ≤ i ≤ n

.... ΦP
ΓP � P : ζ

Γ1, . . . , Γn, ΓP � [M !]·P : σ1 ∧ . . . ∧ σn ∧ ζ
!

We suppose the underlined hypothesis x : τ is in Γ1, i.e. Γ1 = Γ ′1, x : τ (the case
x : τ is in another Γi or in ΓP being an easy variant). Notice that supposing
x : τ in Γ1 entails n ≥ 1. By induction there is L(Φ1, Ψ) :: Γ ′1, Δ �M〈N/x〉 : σ1

s.t. m(L(Φ1, Ψ)) = m(Φ1) + m(Ψ) − 1. Let M〈N/x〉 = k
j=1 Lj . In order to

be typable M〈N/x〉 must have an addend (i.e. k > 0), say L1, and a proof
Φ′1 :: Γ ′1, Δ � L1 : σ1 s.t. m(Φ′1) = m(L(Φ1, Ψ)). We define



Solvability in Resource Lambda-Calculus 367

L(Φ, Ψ) :=

.... Φ
′
1

Γ ′1, Δ � L1 : σ1

.... Φi
Γi �M : σi, for 2 ≤ i ≤ n

.... ΦP
ΓP � P : ζ

Γ2, . . . , Γn, ΓP � [M !]·P : σ2 ∧ . . . ∧ σn ∧ ζ
! −1

Γ ′1, Δ, Γ2, ..., Γn, ΓP � [L1,M
!]·P : σ1 ∧ ... ∧ σn ∧ ζ

�

Γ ′1, Δ, Γ2, . . . , Γn, ΓP � k
j=1[Lj,M

!]·P : σ1 ∧ ... ∧ σn ∧ ζ
⊕

where by definition [M〈N/x〉,M !] ·P = k
j=1[Lj,M

!]·P , and if k = 1 the last
⊕ rule is omitted. Moreover, m(L(Φ, Ψ)) = m(Φ′1) + m(ΦP ) + n

i=2 m(Φi) =
m(L(Φ1, Ψ))+m(ΦP )+ n

i=2 m(Φi) = m(Φ1)+m(Ψ)−1+m(ΦP )+ n
i=2 m(Φi) =

m(Φ) + m(Ψ)− 1. ��
Lemma 11 (Linear Expansion). Let Φ :: Γ � A〈N/x〉 : π. There are a linear
type τ and derivations Φ1 :: Γ1, x : τ � A : π and Φ2 :: Γ2 � N : τ with
Γ = Γ1, Γ2.

Proof (Sketch). By structural induction on A, splitting depending on the top
level constructor. We detail the case A = [M !] ·P , the other cases being easy
variants. If A〈N/x〉 = [M〈N/x〉,M !]·P + [M !]·P 〈N/x〉, then Φ types only one
addend of the sum A〈N/x〉 through a ⊕ rule. Let us suppose this addend is
in [M〈N/x〉,M !] ·P (the case it is in [M !] ·P 〈N/x〉 being easier), so being of
the form [M ′,M !] ·P , with M〈N/x〉 = M ′ + M. By inspecting the rules in
Figure 4 one can deduce from Φ a derivation Φ

1
:: Γ 1 �M ′ : σ and a derivation

Φ
2

:: Γ 2 � [M !] ·P : π s.t. Γ = Γ 1, Γ 2, π = σ ∧ π and Φ
2

ends in a !n rule
with n premises typing M and one premise typing P . Possibly applying one
⊕ rule to Φ

1
we get a derivation of Γ 1 � M〈N/x〉 : σ, hence by induction

hypothesis we have Φ
1
1 :: Γ 1

1 , x : τ �M : σ and Φ
1
2 :: Γ 1

2 � N : τ . Then we define
Φ1 :: Γ1, x : τ � [M !]·P : π as a !n+1 rule with premise Φ

1
1 plus the premises of

the !n rule ending Φ
2
, and Φ2 as Φ

1
2. ��

Lemma 12 (Partial Substitution). Let m ≥ 0, Φ :: Γ, x : σ1, . . . , x : σm � A :
π and ∀i ≤ m, Ψi :: Δi � N : σi with Δ = Δ1, . . . , Δm. There is P(Φ, Ψi≤m) ::
Γ,Δ � A {(N + x)/x} : π with m(P(Φ, Ψi≤m)) = m(Φ)−m+ m

i=1 m(Ψi).

Proof (Sketch). Like in the proof of Linear Substitution (Lemma 10) we do
induction on Φ, splitting depending on its last rule. We detail only the case of a
terminal !n rule, the other cases being immediate or easier variants. So let

Φ :=

.... Φj
Γj , Γ

x
j �M : τj , for 1 ≤ j ≤ n

.... Φn+1

Γn+1, Γ
x
n+1 � P : ζ

Γ, x : σ1, . . . , x : σm � [M !]·P : τ1 ∧ . . . ∧ τn ∧ ζ
!

where Γ = Γ1, . . . , Γn+1 and x : σ1, . . . , x : σm = Γ x1 , . . . , Γ
x
n+1. Notice m(Φ) =

n+1
j=1 m(Φj). For every j ≤ n+1, let Ij be the set of i ≤ m s.t. x : σi is in Γ xj ,mj

being the cardinality of Ij , possibly 0. Noticem = n+1
j=1 m

j . LetΔI be the mul-
tiset union of the Δi bases with i ∈ Ij .We apply the induction hypothesis to each
pairΦj and Ψi∈I , getting a derivationP(Φj , Ψi∈I ) :: Γj , ΔI �M {N + x/x} : τj



368 M. Pagani and S. Ronchi della Rocca

for every j ≤ n, and P(Φn+1, ΨI +1) :: Γn+1, ΔI +1 � P {N + x/x} : ζ, such that
m(P(Φj , Ψi∈I )) = m(Φj)−mj + i∈I m(Ψi) for every j ≤ n+ 1.

As always, M {N + x/x} (resp. P {N + x/x}) is in general a sum k
h=1Mh

(resp. P). Let us suppose k ≥ 2, the case k = 0 not holding since M {N + x/x}
is typed and the case k = 1 being immediate. By inspecting the rules of Figure 4,
we obtain a function f : {0, . . . , n − 1} → {0, . . . , k − 1}, an addend P ′ in P,
and a family of derivations Φ′j :: Γj , ΔI � Mf(j) : τj for j ≤ n, and Φ′n+1 ::
Γn+1, ΔI +1Δi � P ′ : ζ, s.t. m(P(Φj , Ψi∈I )) = m(Φ′j) for j ≤ n + 1. For every
h ≤ k, let Jh = f−1(h), and lh be the cardinality of Jh; for h, 0 ≤ h < k,
let π0 = ζ, πh+1 = πh ∧ j∈f−1(h+1) τj , and Γ 0 = Γn+1, Γh+1 = Γ h, Γf−1(h),
and Δ0 = ΔI +1 , Δh+1 = Δh, Δj∈f−1(h)

i∈I
, where, consistency as before, Γf−1(h)

(resp. Δj∈f−1(h)
i∈I

) denotes the multiset union of the Γj (resp. Δi) bases with

j ∈ f−1(h) (resp. i ∈ j∈f−1(h) I
j). Recalling πk = τ1 ∧ . . .∧ τn ∧ ζ = π, we have

P(Φ, Ψi≤m) :=

.... Φ
′
j

Γj , ΔI �Mk : τk, for j∈Jk

.... Φ
′
j

Γj , ΔI �M1 : τj , for j∈J1

.... Φ
′
n+1

Γn+1, ΔI +1 � P ′ : ζ
Γ 1, Δ1 � [M !

1]·P ′ : π1

! 1

....
Γ k−1, Δk−1 � [M !

1, ...,M
!
k−1]·P ′ : πk−1

Γ,Δ � [(M {N + x/x})!]·P ′ : τ1 ∧ . . . ∧ τn ∧ ζ
!

Γ,Δ � [(M {N + x/x})!]·P : τ1 ∧ . . . ∧ τn ∧ ζ
⊕

We have m(P(Φ, Ψi≤m)) = n+1
j=1 m(φ′j) = n+1

j=1 m(P(Φj , Ψi∈I )) =
n+1
j=1 m(Φj) + i∈I m(Ψi) − n+1

j=1 m
j = m(Φ) −m+ m

i=1 m(Ψi). ��
The next lemmata have proofs similar to the previous ones (by induction on A

or Φ). We omit to sketch their proofs.

Lemma 13 (Partial Expansion). Let Φ :: Γ � A {N + x/x} : π, then there is
a number m ≥ 0, linear types τ1, . . . , τm and derivations Φ1 :: Γ1, x : τ1, . . . , x :
τm � A : π and Ψi :: Δi � N : τi for i ≤ m and Γ = Γ1, Δ1, . . . , Δm.

Lemma 14. Let x /∈ d(Γ ), then for every Φ :: Γ � A : π there is Ψ :: Γ �
A {0/x} : π with m(Φ) = m(Ψ), and vice versa.

Proposition 15. Let ε ∈ {b, g} and M ε→ M, then M and M share the same
judgements, i.e. Γ �M : τ iff Γ �M : τ . Also, M

og−→M entails m(M) > m(M).

Proof (Scketch). The proof is by structural induction on M . The induction step
splits depending on the top-level constructor of M . All cases are easy conse-
quences of the induction hypothesis, taking into account that, whenever the re-
dex is inside a reusable resource N ! (so the reduction is not outer) the measure
m may not decrease since (the bag containing) N ! may be typed by ω.

The base of induction is when M is the redex fired by the reduction M ε→M.
One can consider only the baby-step cases, the giant one will follow since it cor-
responds to a sequence of baby-steps. In particular one proves that the measure



Solvability in Resource Lambda-Calculus 369

.... Ψ1

Γ1, x : τ, �x : �τ � L : σ

Γ1 � λx.L : τ ∧ ζ → σ
→I

.... Ψ2

Γ2 � N : τ

.... Ψ3

Γ3 � P : ζ

Γ2, Γ3 � [N ]·P : τ ∧ ζ
�

Γ � (λx.L)[N ]·P : σ
→E

(a) definition of Ψ

.... Φ1

Γ1, Γ2, �x : �τ � L : σ

Γ1, Γ2 � λx.L : ζ → σ
→I

.... Φ3

Γ3 � P : ζ

Γ � (λx.L)P : σ
→E

Γ � (λx.L〈N/x〉)P : σ
⊕

(b) definition of Φ

Fig. 5. Definition of the derivations Ψ and Φ used in the proof of Proposition 15

m is monotone strictly decreasing on every baby-step but the one choosing a
bang element from the bag, in which case m is monotone decreasing. Then m
strictly decreases on giant-steps since they correspond to sequences of baby-steps
ending always in an empty bag baby-step.

The baby-step has three cases (recall Definition 3), depending on the resource
involved in the reduction. The case of the empty bag is proven using Lemma 14,
the case of the bag having one underlined linear resource uses Lemma 10 and 11,
and the last case of a bag having one underlined reusable resource uses Lemma 12
and 13. We detail only the linear resource case. Let M = (λx.L)[N ] ·P b→
(λx.L〈N/x〉)P = M and suppose Ψ :: Γ � (λx.L)[N ]·P : σ. By inspecting the
rules of Figure 4 we can assume Ψ to be as in Figure 5(a), where by �x : �τ we are
meaning x : τ1, . . . , x : τm, and ζ is τ1∧. . .∧τm (in casem = 0, ζ = ω). By Linear
Substitution (Lemma 10) we get L(Ψ1, Ψ2) :: Γ1, �x : �τ, Γ2 � L〈N/x〉 : σ, with
m(L(Ψ1, Ψ2)) = m(Ψ1) + m(Ψ2)− 1. As usual, we should notice that L〈N/x〉 : σ
might not be a simple term but a sum: in that case L(Ψ1, Ψ2) ends in a ⊕ rule
with premise a derivation Φ1 :: Γ1, �x : �τ , Γ2 � L : σ with L a simple term in the
sum L〈N/x〉 and m(Φ1) = m(L(Ψ1, Ψ2)). Then we define Φ as in Figure 5(b),
with Φ3 = Ψ3. We remark that m(Φ) = m(Φ1) + m(Φ3) = m(L(Ψ1, Ψ2)) +
m(Ψ3) = m(Ψ) − 1. We conclude that every type of (λx.L)[N ]·P is also a type
of (λx.L〈N/x〉)P and m((λx.L)[N ]·P ) ≥ m((λx.L〈N/x〉)P ) + 1.

Conversely, assume Φ :: Γ � (λx.L〈N/x〉)P : σ. We can suppose Φ as in
Figure 5(b), where as above �x : �τ denotes the basis x : τ1, . . . , x : τm with ζ =
τ1∧ . . .∧τm, and in case L〈N/x〉 is a simple term the terminal ⊕ rule is omitted.
By possibly adding one ⊕ rule to Φ1 one get Φ1 :: Γ1, Γ2, �x : �τ � L〈N/x〉 : σ.
Applying Linear Expansion (Lemma 11) we have Ψ1 :: Γ1, �x : �τ , x : τ � L : σ and
Ψ2 :: Γ2 � N : τ (where we recall x /∈ FV(N)). Then we set Ψ as in Figure 5(a).
This proves that the types of (λx.L〈N/x〉)P are also of (λx.L)[N ]·P . ��

5 Main Theorem

We prove the equivalence among solvability, typability and head-normalizability
(Theorem 19). As a byproduct we achieve also an operational characterization
through the notion of outer reduction (Definition 7). In various calculi the im-
plication typable ⇒ head-normalizable is often proven using suitable notions
of computability (e.g. [20]) or reducibility candidates (e.g. [21]), whereas the



370 M. Pagani and S. Ronchi della Rocca

implication solvable ⇒ head-normalizable is argued through a standardization
theorem (e.g. [8]). Our proof is instead based on a different method, namely both
implications are easy consequences of Lemma 16, which is argued by induction
on the measure on the type derivations given in Definition 9. In the λ-calculus
setting, a similar approach can be found in [22]. More in general, the idea of
measuring quantitative properties of terms using non-idempotent intersection
types can be found also in [12, 23].

Lemma 16. Let M be a resource term and C(·) be a simple head context. If
C(M) is typable, then M is reducible to a hnf by outer reduction.

Proof. We do induction on m C(M) , which is a finite number, being C(M)
typable. If M is a hnf we are done. Otherwise it has an outer redex, so let
M

og−→M. Since C(·) is a head context, every outer redex of M is outer in C(M),
hence we have C(M)

og−→ C(M). By Proposition 15 m C(M) > m C(M) . Let
M = M ′ + M

′′ be such that m C(M ′) = m C(M) : the fact that M ′ exists is
due to C(·) being simple, as every addend in C(M) is obtained by plugging an
addend of M in C(·). By induction hypothesis M ′ is outer reducible to a hnf L.
We conclude by context closure: M

og−→M ′ + M
′′ og∗−−→ L + M

′′. ��
Lemma 17. Every term in head-normal form is solvable.

Proof. By structural induction on a hnf M . The case M = λx.M ′ with M ′ hnf
is a trivial consequence of the induction hypothesis. The case M = xP1 . . . Pp
splits in two subcases, depending whether P1 contains linear resources.

Case I: P1 = [L]·P 1. We do induction on L and xP 1P2 . . . Pp, which are hnf by
definition. Thus we obtain two simple head contexts C(·) and D(·) s.t. C(L)

g∗−→
I+GC and D(xP 1P2 . . . Pp)

g∗−→ I+GD. Let H be the simple term λy.C(y)[x[y!]],
we haveH [L]·P 1

g−→ C(L)[xP 1]+GH
g∗−→ (I+GC)[xP 1]+GH

g→ xP 1+GC [xP 1]+
GH , where GH is the garbage, possibly 0, generated by putting an element of
the bag P 1 into C(·), instead of L. Then define E(·) := (λx.(·))[H,x! ] and notice
E(x[L]·P 1P2 . . . Pp)

g→ H [L]·P1P2 . . . Pp+GE , where GE is the garbage, possibly
0, obtained by linearly substituting H for some free occurrence of x in one Pi’s.
Finally, we define the context F (·) := D(E(·)), which is simple and head, being
the composition of simple and head contexts. We have F (x[L]·P 1P2 . . . Pp)

g∗−→
D(H [L]·P 1P2 . . . Pp) + G

′ g∗−→ D(xP 1P2 . . . Pp) + G
′′ g∗−→ I + G

′′′, where, noted
in passing, G

′ = D(GE), G
′′ = G

′ + D((GC [xP 1] + GH)P2 . . . Pp) and finally
G
′′′ = G

′′ + GD.

Case II: No linear resource in P1. We do induction on xP2 . . . Pp, thus
getting a simple head context D(·) reducing xP2 . . . Pp to a sum containing the
identity. We set F (·) := (λx.(·))[λy1 . . . yp.D(x[y!

2] . . . [y
!
p]), x

!]. Easily one checks

F (xP1P2 . . . Pp)
g∗−→ D(xP2 . . . Pp) + G

g∗−→ I + G
′, for suitable G, G

′. ��
In the λ-calculus the above lemma is trivial since contexts can reduce a head-
normal form into the identity simply replacing the head variable with a term



Solvability in Resource Lambda-Calculus 371

erasing all its resources. In the resource calculus this is not possible, because of
the linear resources, that cannot be erased but must be used.

Lemma 18. Every head-normal form is typable.

Proof. By structural induction on a hnf M. The only interesting case is when M is
of the form xP1 . . . Pp with each Pi of the form [Mi,1, . . . ,Mi,m ]·[N !

i,1, . . . , N
!
i,n ],

with mi, ni ≥ 0 and for each j ≤ mi, Mj,m hnf. By induction hypothesis we
have derivations Ψi,j :: Γi,j � Mi,j : τi,j for each i ≤ p, j ≤ mi hence we can
construct a derivation Φi :: Γi,1, . . . , Γi,m � Pi : τi,1 ∧ . . . ∧ τi,m by applying a
tree of mi rules � having as premises the Ψi,1, . . . , Ψi,m respectively and, as the
rightmost leaf, a derivation of � [N !

i,1, . . . , N
!
i,n ] : ω made of ni rules !0 and one

rule 1. Similarly we get a derivation typing xP1 . . . Pp by applying a tree of p
rules →E having as premises the Φi’s derivations and, as the leftmost leaf, a v
rule typing x with ( j≤m1

τ1,j)∧ . . .∧ ( j≤m τp,j)→ σ, for a linear type σ. ��
Theorem 19. Given a resource term M , the following are equivalent:

1. M is head-normalizable,
2. M is typable by �,
3. M is reducible to a hnf by outer reduction,
4. M is solvable.

Proof. 1⇒ 2: by Prop. 15 and Lemma 18. 2⇒ 3: by Lemma 16, merely taking
the hole as the simple head context. 3 ⇒ 4: by Lemma 17 and context closure.
4⇒ 1: if there is a head simple context C(·) s.t. C(M) has a hnf, by the already
proven implication 1⇒ 2, C(M) is typable, we conclude by Lemma 16. ��
The implication 1 ⇒ 3 can also be argued as a corollary of the standardiza-
tion proven in [7]. However our proof uses the type assignment system, namely
Lemma 16, so it adopts a different approach with respect to the techniques in [7].

6 Concluding Remarks

Theorem 19 achieves a weak operational characterization of solvability. In fact,
the non-deterministic nature of the calculus makes terms having different outer
reduction sequences, some terminating in a (head-)normal form, others infinite.
Take for example I[(I[x])!, (Ω[I1])!]: a first outer step gives I[x] + Ω[I1], from
which starts an outer reduction terminating in x (i.e. I[x]+Ω[I1]

g→ I[x]+Ω[0] =
I[x]

g→ x), as well as infinite outer reductions looping on the head-normal form
x+ Ω[I1] or looping on I[x] + Ω[I1].

As already mentioned, other notions of solvability are meaningful, depending
on the number of times one requires the identity in the resulting sum. The
following two seem quite interesting:

– a termM is must-solvable whenever there are an applicative simple context
C(·) and n > 0 such that C(M)

g∗−→ nI;



372 M. Pagani and S. Ronchi della Rocca

– a term M is exactly-solvable whenever there is an applicative simple con-
text C(·) such that C(M)

g∗−→ I

Clearly exact-solvability implies must-solvability, which in its turn implies the,
let us say, may-solvability of Definition 5. Also, these three notions do not collapse
one another: for example, the term I[I!,Ω!] is may-solvable but not must- nor
exactly-solvable, in fact I[I!,Ω!]

g→ I + Ω; the term I[I!, I!] is may- and must-
solvable, but not exactly-solvable, in fact I[I!, I!]

g→ 2I; the term I[I, I!] is exactly
solvable, hence also may and must solvable, in fact I[I, I!]

g→ I. We will give an
analysis of all these kinds of solvability in a future work.

Acknowledgements. We are grateful to Rocco De Nicola, Giulio Manzonetto,
Mauro Piccolo and Paolo Tranquilli for useful discussions and hints.

References

[1] Boudol, G.: The Lambda-Calculus with Multiplicities. INRIA Report 2025 (1993)
[2] Ehrhard, T., Regnier, L.: The Differential Lambda-Calculus. Theor. Comput.

Sci. 309(1), 1–41 (2003)
[3] Tranquilli, P.: Intuitionistic Differential Nets and Lambda-Calculus. Theor. Com-

put. Sci. (2008) (to appear)
[4] de’Liguoro, U., Piperno, A.: Non Deterministic Extensions of Untyped Lambda-

Calculus. Inf. Comput. 122(2), 149–177 (1995)
[5] Ehrhard, T., Regnier, L.: Böhm trees, Krivine’s Machine and the Taylor Expansion

of Lambda-Terms. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.)
CiE 2006. LNCS, vol. 3988, pp. 186–197. Springer, Heidelberg (2006)

[6] Ehrhard, T., Regnier, L.: Uniformity and the Taylor Expansion of Ordinary
Lambda-Terms. Theor. Comput. Sci. 403(2-3), 347–372 (2008)

[7] Pagani, M., Tranquilli, P.: Parallel Reduction in Resource Lambda-Calculus. In:
Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 226–242. Springer, Heidelberg
(2009)

[8] Barendregt, H.: The Lambda-Calculus, its Syntax and Semantics, 2nd edn. Stud.
Logic Found. Math., vol. 103. North-Holland, Amsterdam (1984)

[9] Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Functional Characters of Solvable
Terms. Zeitschrift für Mathematische Logik 27, 45–58 (1981)

[10] Hyland, J.M.E.: A Syntactic Characterization of the Equality in Some Models of
the Lambda Calculus. J. London Math. Soc. 2(12), 361–370 (1976)

[11] Ronchi Della Rocca, S., Paolini, L.: The Parametric λ-Calculus: a Metamodel for
Computation. EATCS Series. Springer, Berlin (2004)

[12] de Carvalho, D.: Execution Time of λ-Terms via Denotational Semantics and
Intersection Types (2009) (submitted for publication)

[13] Bucciarelli, A., Ehrhard, T., Manzonetto, G.: Not Enough Points Is Enough. In:
Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 298–312.
Springer, Heidelberg (2007)

[14] Tranquilli, P.: Nets between Determinism and Nondeterminism. Ph.D. thesis, Uni-
versità Roma Tre/Université Paris Diderot (Paris 7) (April 2009)

[15] Boudol, G., Curien, P.L., Lavatelli, C.: A Semantics for Lambda Calculi with
Resources. MSCS 9(5), 437–482 (1999)



Solvability in Resource Lambda-Calculus 373

[16] Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Principal Type Schemes and
Lambda-Calculus Semantics. In: To H.B. Curry, (ed.) Essays on Combinatory
Logic, Lambda-calculus and Formalism, pp. 480–490. Academic Press, London
(1980)

[17] Kfoury, A.J.: A Linearization of the Lambda-Calculus and Consequences. Journal
of Logic and Computation 10(3), 411–436 (2000)

[18] Wells, J.B., Dimock, A., Muller, R., Turbak, F.: A Calculus with Polymorphic
and Polyvariant Flow Types. J. Funct. Program. 12(3), 183–227 (2002)

[19] Neergaard, P.M., Mairson, H.G.: Types, Potency, and Idempotency: why Nonlin-
earity and Amnesia Make a Type System Work. In: ICFP, pp. 138–149. ACM,
New York (2004)

[20] Coppo, M., Dezani-Ciancaglini, M., Zacchi, M.: Type Theories, Normal Forms
and D∞-Lambda-Models. Inf. Comput. 72(2), 85–116 (1987)

[21] Girard, J.Y.: Interprétation Fonctionnelle et Élimination des Coupures de
l’Arithmétique d’Ordre Supérieur. Thèse de doctorat, Université Paris 7 (1972)

[22] Valentini, S.: An elementary proof of strong normalization for intersection types.
Archive for Mathematical Logic 40(7), 475–488 (2001)

[23] de Carvalho, D., Pagani, M., Tortora de Falco, L.: A Semantic Measure of the
Execution Time in Linear Logic. Theor. Comput. Sci. (2008) (to appear)



A Hierarchy for Delimited Continuations
in Call-by-Name

Alexis Saurin

PPS & INRIA πr2�

saurin@pps.jussieu.fr

Abstract. Λμ-calculus was introduced as a Böhm-complete extension
of Parigot’s λμ-calculus. Λμ-calculus, contrarily to Parigot’s calculus, is a
calculus of CBN delimited control as evidenced by Herbelin and Ghilezan.
In their seminal paper on (CBV) delimited control, Danvy and Filinski
introduced the CPS Hierarchy of control operators (shifti/reseti)i∈ω.

In a similar way, we introduce in the present paper the Stream Hi-
erarchy, a hierarchy of calculi extending and generalizing Λμ-calculus.
The (Λn)n∈ω-calculi have Church-Rosser and Böhm theorems. We then
present sound and complete CPS translations for the hierarchy. Next, we
investigate the operational content of the hierarchy through its abstract
machines, the (Λn)n∈ω-KAM. Finally, we establish that the Stream hi-
erarchy is indeed a CBN analogue to the CPS hierarchy.

Keywords: Λμ-calculus, delimited control, CPS hierarchy, Böhm theo-
rem, CPS translation, Abstract machine, Streams.

1 Introduction

Curry-Howard in Classical Logic, λμ-calculus and Separation. Curry-
Howard correspondence [17] was first designed as a correspondence between intu-
itionistic natural deduction (NJ) and simply typed λ-calculus. The extension of
the correspondence to classical logic resulted in strong connections with control
operators in functional languages as first noticed [15] by Griffin who analysed the
logical interpretation of Felleisen’s C operator [12]. Shortly after Griffin, Parigot
introduced λμ-calculus [27] as an extension of λ-calculus corresponding to min-
imal classical natural deduction [1,26] in which one can encode usual control
operators. λμ-calculus became one of the most widely studied classical λ-calculi,
both in the typed and untyped setting, for several reasons: it naturally extends
λ-calculus while retaining most of λ-calculus standard properties and intuitionis-
tic natural deduction in a straightforward way. However, a fundamental property
of pure λ-calculus, known as separation property (or Böhm theorem [6]), does
not hold for λμ-calculus [29,9]. In a previous work, we introduced Λμ-calculus,
an extension to λμ-calculus, for which we proved that separation holds [31].

� This work was partially funded by the french foreign office with the support of a
Bourse Lavoisier.

L. Ong (Ed.): FOSSACS 2010, LNCS 6014, pp. 374–388, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



A Hierarchy for Delimited Continuations in Call-by-Name 375

Delimited control and the CPS hierarchy. Delimited control refers to a
class of control operators which are much more expressive than non-delimited
control operators (like call/cc for instance) in that they allow to simulate
various side-effects [13], the monadic side-effects. In their seminal paper on
shift/reset [7], Danvy and Filinski defined shift/reset delimited-control op-
erators by their CPS semantics. They also introduced a hierarchy of such control
operators, (shifti/reseti)i∈ω, which are obtained by iterating CPS transla-
tions and that is known as the CPS hierarchy. Delimited control and the CPS
hierarchy found applications in linguistics, normalization by evaluation, partial
evaluation or concurrency. While the emphasis was traditionally given to the
delimited-control languages in call-by-value, recent works [16,21] have advocated
the reasons for studying CBN delimited control.

In this paper, we develop a CBN analogue to the CPS hierarchy, based on Λμ-
calculus. We develop our work on the strong connections between Λμ-calculus
and calculi with delimited continuations in call-by-name evidenced by Herbelin
and Ghilezan [16].

Structure of the Paper. In Section 2, we first review Parigot’s λμ-calculus
and Λμ-calculus as well as the main properties of those calculi. In Section 3, we
motivate and define the (Λn)n∈ω-calculi which we refer to as the stream hier-
archy. We establish two essential results of its meta-theory: Church-Rosser and
Böhm theorems. Section 4 is concerned with translations of the stream hierar-
chy into λ-calculus which are sound and complete and we develop in Section 5
Krivine’s style abstract machines [23] for the hierarchy. Finally, Section 6 makes
precise the relationships between the Stream hierarchy and the CPS hierarchy.
A long version of this paper can be found on the author’s webpage [30].

2 Background and Notations: From λμ to Λμ.

In this section, we recall some background on Λμ-calculus: starting with Parigot’s
λμ, we introduce Λμ-calculus via the property of Separation.

Parigot’s Original Calculus: λμ. In 1992, Parigot proposed an extension of
λ-calculus providing “an algorithmic interpretation of classical natural deduc-
tion” [27]: λμ-calculus is in Curry-Howard correspondence [17] with classical
natural deduction [26,27]. Although initially motivated by the correspondence
with classical logic, λμ-calculus is now widely studied in its untyped version as
we do in the rest of this paper.

Definition 1. λμ-terms (t, u, v, · · · ∈ Σλμ) are defined by the following syntax:

Σλμ t, u ::= x | λx.t | (t)u | μα.(t)β

with x ∈ V and α, β ∈ Vc, V and Vc being two disjoint infinite sets of variables.



376 A. Saurin

In μα.(t)β, variable β is in the scope of μα. For t ∈ Σλμ, (t)α is not in Σλμ,
but we refer to such it as a named term and generically write n (and thus we
write μα.n). The set of closed λμ-terms is denoted by Σc

λμ.

Remark 1. The reader may have noticed that we use an alternative notation for
λμ-terms that we introduced and justified in previous works [31,33], writing (t)α
instead of the more common [α]t (this shall later be extended to the (Λi)i∈ω).

In this paper, we shall use Krivine’s notation [22] for terms of λ-calculus
and its various extensions considered here: we write (t)u for λ-application (in-
stead of (MN)). As usual we consider λ-application to be left-associative, that
is (t)u1 . . . uk−1uk shall be read as (. . . ((t)u1) . . . uk−1)uk. This notation is ex-
tended to variables of Vc (and later on to the variables of the hierarchy). For
instance, we shall write μα.(t)uβ instead of μα.((t)u)β.

Definition 2. λμ-reduction, written −→λμ, is induced by the following rules:

(λx.t)u −→β t {u/x} (μα.n)β −→ρ n {β/α}
(μα.n)u −→μ μα.n {(v)uα/(v)α} μα.(t)α −→θ t if α �∈ FV (t)

n {(v)uα/(v)α} substitutes (without variable-capture) every named term (v)α
in n by (v)uα. This substitution is called structural substitution [27].

A λμ-calculus Satisfying Böhm Theorem: Λμ-calculus. λμ satisfies stan-
dard properties of λ-calculus such as confluence [27,29], subject reduction [27]
and SN [28]. However, Böhm theorem fails in λμ-calculus (more precisely in its
extensional version, λμη-calculus [29,9]). This led us [31] to define an extension
to λμη, Λμ-calculus, for which we proved Böhm theorem: the more liberal syntax
of Λμ makes new contexts available and thus achieves a Böhm Out.

Definition 3. Λμ-terms (t, u, v · · · ∈ ΣΛμ) are defined by the following syntax:

ΣΛμ t, u ::= x | λx.t | (t)u | μα.t | (t)α
where x (resp. α) ranges over an infinite set Vt (resp. Vs) of term (resp. stream)
variables. Vt and Vs are disjoint. The set of closed Λμ-terms is denoted by Σc

Λμ.

Remark 2. Since α �∈ ΣΛμ, it is clear that notations (t)α and (t)u are not
ambiguous. Notice that Σλμ � ΣΛμ and that named terms of definition 1 are now
elements of ΣΛμ. Moreover, terms such as μα.μβ.t or λx.(t)αy are in ΣΛμ\Σλμ.
Definition 4. Λμ-reduction, written −→Λμ, is induced by the following rules:

(λx.t)u −→β t {u/x} λx.(t)x −→η t if x �∈ FV (t)
(μα.t)β −→β t {β/α} μα.(t)α −→η t if α �∈ FV (t)

μα.t −→fst λx.μα.t {(v)xα/(v)α} if x �∈ FV (t)

Remark 3. Notice that μ is not part of Λμ-calculus reduction system. It can
indeed be simulated by a sequence of fst and βT -reduction; see [31,33] for details.
Names for reductions in Λμ come from the stream interpretation of Λμ: VS-
variables are place-holders for streams of Λμ-terms; see next section for details.



A Hierarchy for Delimited Continuations in Call-by-Name 377

The Böhm theorem for Λμ is stated with respect to a set of canonical normal
forms (corresponding to βη-normal forms in λ-calculus), which are terms in
βT ηTβSηS-normal form such that no fst -reduction step creates a non-fst redex:

Definition 5. A Λμ-term t is in canonical normal form (CNF) if it is
βT ηTβSηS-normal and if it contains no subterm of the form (λx.u)α nor (μα.u)v.

Theorem 4 (Böhm theorem [31]). Let t, t′ ∈ Σc
Λμ in CNF. If t �=Λμ t

′, then
there exists a context1 C[] st. C[t] −→Λμ λx.λy.x and C[t′] −→Λμ λx.λy.y.

Confluence holds in Λμ [32,34] under the same hypothesis as in λμη-calculus:

Theorem 5. ∀t, t′, t′′ ∈ Σc
Λμ, ∃u ∈ ΣΛμ s.t. t −→	

Λμ t
′, t′′ ⇒ t′, t′′ −→	

Λμ u.

3 λ, μ and Beyond: The Stream Hierarchy

In the present section, we introduce the (Λn)n∈ω-calculi that we refer to as
the stream hierarchy. This hierarchy of calculi is intended to be a call-by-name
analogous to the CPS hierarchy. We first motivate our approach before defining
the hierarchy and focusing on the metatheory of (Λn)n∈ω-calculi (they satisfy
confluence and separation). In the following sections, we shall then study CPS
translations and abstract machines for the hierarchy and finally, we shall estab-
lish that the Stream Hierarchy is indeed a CBN analogue to the CPS hierarchy
in the final section of the paper.

3.1 Motivating the Stream Hierarchy

Λμ-calculus, a CBN calculus of delimited control. Separation theorem
for Λμ-calculus can be seen as a consequence of the fact that Λμ-calculus ad-
mits more contexts than Parigot’s λμ. As a consequence, it allows for a more
powerful exploration of terms. Typical contexts used in the separation proofs
are []u1 . . . umβuv1 . . . vnβv. This exploits the fact that a context of the form
[]u1 . . . umβu delimits the part of the environment that can be passed through
the left-most μ-abstracted variable (i.e. α) when term μα.μα′.t is placed in the
hole. As a result, one can access to the second μ-abstracted variable α′ thanks
to the second portion of the context, v1 . . . vnβv.

Based on this fact, Herbelin and Ghilezan [16] evidenced strong connections
between Λμ-calculus and calculi with delimited continuations in the spirit of
Danvy and Filinski shift/reset operators [7] using the calculus λμ̂tp. In its call-
by-value version, λμ̂tp is equivalent to Danvy-Filinski’s shift/reset operators
while in its call-by-name version the calculus is equationally correspondent to
Λμ-calculus. This led Herbelin & Ghilezan to assert that Λμ-calculus is a CBN
calculus of delimited control.

1 The context may be asked to be “stream applicative”, ie. of the form:
[]t1,1 . . . t1,n1α1 . . . tk,1 . . . tk,n αk.



378 A. Saurin

CPS Hierarchy. In their seminal paper on shift/reset [7], Danvy and Filin-
ski introduced a hierarchy of control operators, (shifti/reseti)i∈ω , which are
obtained by iterated CPS translations. This is known as the CPS hierarchy.
In the following, we shall refer to it as the CPS hierarchy or λSn and adopt
Kameyama’s terminology [19]:

Definition 6 (λSn)

ΣλS t, u ::= x | λx.t | (t)u | 〈t〉i | Sik.t 1 ≤ i ≤ n
Eiv ::= [] | (Eiv)t | (V )Eiv | 〈Eiv〉j 1 ≤ j ≤ i

V ::= x | λx.t

(λx.t)V −→ t {V/x}
〈V 〉i −→ V
〈Ej−1

v [Sjk.t]〉i −→ 〈t
{

λx.〈Ej−1
v [x]〉j/k

}〉i

While the emphasis was traditionally given to the delimited-control languages
in call-by-value, recent works have advocated the interest of studying call-by-
name delimited control [16,21], although CBN delimited control behaves quite
differently from call-by-value. In particular, in pursuing the investigation of call-
by-name delimited control, it is quite natural to wonder whether an analogous
to the CPS hierarchy exists in the call-by-name world.

Λμ-calculus, Streams and Infinitary λ-calculi. The fst -rule allows for an
operational interpretation of Λμ-calculus as a stream calculus with the ability
to abstract over streams of Λμ-terms. With this interpretation of VS-variables
as place-holders for streams of Λμ-terms:

– the effect of the fst -rule is to instantiate the first elements of a stream:

μα.t −→	
fst λx1 . . . λxn.μα.t {(v)x1 . . . xnα/(v)α}

– μα is considered as an abstraction over streams of terms
(λxα1 . . . xαn . . . .t) while (t)α can be seen as the construction passing a
stream as an argument to t ((t)xα1 . . . xαn . . . );

– βS and ηS are respectively the corresponding of β-reduction and η-reduction
for streams (or an infinite reduction sequence of β, resp η) and rule fst
corresponds to popping the first element of a stream (or matching it);

– actually, Λμ-calculus can be seen as a core functional language for stream,
this direction being investigated in a current work with M. Gaboardi (see
long version of the paper for details).

Parigot already noticed some (weak) form of this in his seminal paper where “the
operator μ looks like a λ having potentially infinite number of arguments” [27].
Viewing μ as an operator iterating λ-abstraction until limit ordinal ω, the par-
allel with infinitary λ-calculi is natural. Such infinitary calculi have been con-
sidered in the literature [3,4,20] both to study infinite structures arising in lazy



A Hierarchy for Delimited Continuations in Call-by-Name 379

languages or to study consistency problems in λ-calculus. Though, infinitary
λ-calculi have been designed in a much different way from the infinitary calculus
underlying Λμ-calculus: while a reduction sequence may have transfinite length,
depths of terms are bounded by ω (that is any subterm of an infinite term is at
finite depth): subterms at transfinite depths are considered meaningless. On the
contrary, with Λμ-calculus, limit ordinal ω is reached by one μ-abstraction which
is a limit ordinal construction: μα.μβ.λx.x would correspond to transfinite term
λx0, x1 . . . xω , xω+1 . . . xω2.xω2 in which λxω2.xω2 is at depth ω2.

Even though we will not pursue this direction in this paper, this theme has
been extremely influential in developing the stream hierarchy. Indeed, once a
transfinite calculus is unveiled, the question of the ordinal by which it is indexed
(if any) is pending: λ-calculus corresponds to ordinal ω while Λμ-calculus cor-
responds to ordinal ω2 but what about other ordinals such as ω3 for instance?
The stream hierarchy is actually related to this question.

3.2 Definition of the Hierarchy of (Λn)n∈ω-calculi

Definition 7. Let V be a countable set of variables (x, y, · · · ∈ V). For any
i ∈ ω, one considers a copy of V, named V i (xi, yi, . . . denoting the elements of
V i), those copies being pairwise disjoint. Λω-terms (t, u, v, · · · ∈ ΣΛ ) are defined
by the following grammar (closed Λω-terms are denoted by Σc

Λ ):

ΣΛ t, u ::= x0 | λ0x.t | (t)u
| λix.t | (t)xi for any i > 0

In λix.t (resp xi), i is the level of the abstraction (resp. variable) and λix binds
every variable xi which is free in t. An α-equivalence straightforwardly follows.

Definition 8. For n ∈ ω, ΣΛ (resp. Σc
Λ ) is the restriction of ΣΛ (resp. Σc

Λ )
to terms with binders and variables of level lower or equal to n, for i ≤ n.
Definition 9. For n ∈ ω, −→Λ is the reduction on ΣΛ induced by rules:

(λ0x.t)u −→β0 t
{

u/x0
}

(λix.t)yi −→β t
{

yi/xi
}

if 0 < i ≤ n
(λix.t)u −→μ 0 λix.t

{

(v)uxi/(v)xi
}

if 0 < i ≤ n
(λix.t)yj −→μ λix.t

{

(v)yjxi/(v)xi
}

if 0 < j < i ≤ n

Definition 10. For n ∈ ω, −→Λ is the reduction on ΣΛ induced by rules:

(λ0x.t)u −→β0 t
{

u/x0
}

(λix.t)yi −→β t
{

yi/xi
}

if 0 < i ≤ n
λix.(t)xi −→η t if xi �∈ FV (t), 0 ≤ i ≤ n
λix.t −→fst λjx.λix.t

{

(v)xjxi/(v)xi
}

if xj �∈ FV (t) and 0 ≤ j < i ≤ n

Proposition 1. For any 0 ≤ j < i ≤ n, μi/j can be derived from fsti/j and βj.



380 A. Saurin

Definition 11. We consider the following subsystems of Λnη -reduction:

– β (resp. η) is the subsystem of reductions (βi)0≤i≤n (resp. (ηi)0≤i≤n);
– fst is the subsystem made of reductions (fsti/j)0≤j<i≤n;
– β0

var is the restriction of β0 to redex where the argument is a level-0 variable;
– βvar is the subsystem made of reductions β0

var and (βi)1≤i≤n.

Example 1. Λ0 and Λ1 are respectively λ-calculus and Λμ-calculus.
We shall consider here an example in Λi which is a CBN correspondent to the

level i Shift of the CPS-hierarchy S = λ0x.λiy.(x0)λ0z.(z0)yi.
Consider C<i = []ut1,1 . . . t1,n1x

j1
1 . . . tk,1 . . . tk,n xjk such that for all l ≤ k,

jl < i, we have C<i(S) −→	
Λ λiy.(u)λ0z.(z0)t1,1 . . . t1,n1x

j1
1 . . . tk,1 . . . tk,n xjk y

i

that is S stores any context of level strictly less than i in a continuation that
can later be manipulated (for instance it can be composed with itself if u =
λ0x.(u′)λ0y.(x0)(x0)y0). The flow of control is given to u only once an argument
of level i (or higher) is reached, in which case λiy is destroyed.

3.3 Meta-theory of the Stream Hierarchy

In this section, we state two essential theorems of Λn-calculi: confluence and
separation. More details can be found in [30].

Confluence theorem. Confluence holds on closed terms. Such a restriction
is necessary: (λ2y.x)z2 reduces to x and to (λ0y.λ1y′.λ2y′′.x)z2 which cannot
reduce to the same term.

Theorem 6. For any n ∈ ω and any t, u, v ∈ Σc
Λ , if t −→	

Λ u, v then there
exists w ∈ Σc

Λ such that u, v −→	
Λ w.

As a corollary, Λj is a conservative extension of Λi, for any i < j:

Corollary 1. Let i < j ∈ ω and t, u ∈ Σc
Λ . Then t =Λ u iff t =Λ u.

Böhm theorem. To state the separation theorem (aka Böhm theorem) for the
stream hierarchy, we first define canonical normal forms for the hierarchy using
the notion of pre-redex.

Definition 12. t ∈ ΣΛ is a pre-redex if it is of the form (λix.t)yj or (λix.t)u
for 0 ≤ i, j ≤ n.
Canonical normal forms (Λn-CNF) can be considered as those terms containing
only fst-redexes such that a fst-reduction does not create any redex other than
fst-redexes:

Definition 13. A Λn-CNF is a βη-normal form with no pre-redex.

We can now state the separation result:

Theorem 7. Let n ∈ ω, t, u ∈ Σc
Λ . If t, u are non fst-equivalent Λn-CNF then

there exists a context C[] st. C[t] −→	
Λ λ0x, y.x0 and C[u] −→	

Λ λ0x, y.y0.



A Hierarchy for Delimited Continuations in Call-by-Name 381

4 Translating the Stream Hierarchy into λ-Calculus

We define in this section sound and complete translations of the stream hier-
archy into λ-calculus with pairs. These translations are inspired by the recent
CPS translation for λμ̂tp-calculus by Herbelin and Ghilezan [16]. Several trans-
lations into λ-calculus have been proposed for λμ-calculus in the literature. de
Groote [10] was the first to study CPS translations for λμ-calculus. Lafont, Reus
and Streicher [24] proposed a CPS translation for λ-calculus into λ-calculus with
pairs which later led to a continuation semantics for λμ-calculus[36] and is very
much related to CPS translations for λμ-calculus by Fujita [14] or Lassen [25].
A by-product of this section is to provide a sound and complete CPS translation
for Λμ-calculus. We recall the definition of the λ-calculus with pairs.

Definition 14. Terms of λ-calculus with pairs are given by the following
syntax:

Σλπ t, u ::= x | λx.t | (t)u | 〈t, u〉 | (π1)t | (π2)t

Definition 15. Equations of λπ are βη (equationally) plus the following:

(π1)〈t1, t2〉 =π1 t1 (π2)〈t1, t2〉 =π2 t2 〈(π1)t, (π2)t〉 =SP t

Definition 16. We assume that the set of variables of λ-calculus with pairs is
V = {k}�V0�· · ·�Vn and we define a translation [−] : ΣΛ −→ Σλπ as follows:

[

x0
]

= λk.(x0)k
[

λix.t
]

= λk.((λxi. [t])(π1)n−i+1k)〈. . . 〈(π2)(π1)n−ik, (π2)(π1)n−i−1k〉 . . . , (π2)k〉
[

(t)xi
]

= λk.([t])〈. . . 〈〈xi, (π1)n−ik〉, (π2)(π1)n−i−1k〉 . . . , (π2)k〉
[(t)u] = λk.([t])〈. . . 〈〈[u] , (π1)nk〉, (π2)(π1)n−1k〉 . . . , (π2)k〉

with 0 ≤ i ≤ n for
[

λix.t
]

and 0 < i ≤ n for
[

(t)xi
]

.

Remark 8. In the previous definition, we abbreviated (πi)(πi) . . . (πi)t as (πi)nt.
The definition for [(t)u] when u = x0 corresponds to instantiating the defini-

tion for
[

(t)xi
]

with i = 0. An alternative definition for [(t)u] is thus possible:
[(t)u] =

[

(t)x0
] {

[u] /x0
}

if x0 �∈ FV (t), if clause for
[

(t)xi
]

is extended to i = 0.

Example 2. Consider t = λ1y0 . . . yn.(x0)t1 . . . tm ∈ ΣΛ1 . Then one has:

[t] −→	

λk.(x0)〈〈[t1] , . . . 〈[tm] , (π1)(π2)m+1k〉〉, (π2)m+2k〉{(π1)(π2)ik/y1
i , 0 ≤ i ≤ m}

The translation is sound and complete with respect to Λnη -equational theory:

Theorem 9. For any n ∈ ω, t, u ∈ Σc
Λ , t =Λ u iff [t] =βηπSP [u] .

For the completeness part, we study the image of ΣΛ terms by the translation
which is characterized by the terms T defined by the following grammar:



382 A. Saurin

Definition 17. The target of the CPS can be defined by the following grammar:

T,K0 ::= x0 | λk.(T )Kn+1 | (λxi.T )Ki | (π1)K1 (for 0 ≤ i ≤ n)
Ki ::= xi | 〈Ki−1,Ki〉 | (π2)Ki | (π1)Ki+1 (for 0 < i ≤ n)
Kn+1 ::= k | 〈Kn,Kn+1〉 | (π2)Kn+1

Proof. We only sketch the proof, more details are available in appendix and in
the long version. Soundness is obtained by induction on the length of a proof of
equality between t and u. Completeness is more involved. It mainly amounts to
the following arguments:

– an inverse translation, _�, is defined from the target language of Λn to Λn+1;
– one proves that the inverse translation preserves equality in Λn+1, and thus:

if [t] =βηπSP [u], then [t]� =Λ +1 [u]�;

– one then shows that [t]� =Λ +1 t so that we can deduce that t =Λ +1 u and
– finally we conclude thanks to the fact that Λn+1

η is a conservative extension
of Λnη (corollary 1): t =Λ u. �

Remark 10. It shall be noted that the proof of completeness is greatly simplified
by the use of the hierarchy in the sense that the inverse translation translates
back to Λn+1 and not to Λn. Indeed, it can take advantage of the regularity of
the structure of the n+ 1th continuation used in the translation.

A sound and complete CPS translation for Λμ-calculus, []Λμ, is obtained by
instantiating the previous result with n = 1. We have the following corollary:

Corollary 2. For any t, u ∈ Σc
Λμ, t =Λμ u if, and only if, [t]Λμ =βηπSP [u]Λμ .

5 An Operational Investigation of the Stream Hierarchy

In the final section of his seminal paper, Parigot outlined an abstract machine
for λμ-calculus. Later, de Groote [11] and Streicher and Reus [36] studied ab-
stract machines for λμ-calculus. We shall be interested in this section in abstract
machines for the Stream hierarchy. We shall now define abstract machines which
compute Λn-head normal forms. In the following, we do not consider extension-
ality rules which are not necessary to compute head normal forms.

Definition 18. Λn-head normal forms are defined by the following grammar:

h ::= g | λix.h for 0 ≤ i ≤ n
g ::= x0 | (g)t | (g)xi for 0 < i ≤ n, t denotes an arbitrary Λn-term

In the next definition we introduce constants representing variables in order to
compute head normal forms (and not only weak head normal forms).



A Hierarchy for Delimited Continuations in Call-by-Name 383

Definition 19. Let 0 ≤ i ≤ n. Constants of level i are defined as

ci = xiρ | v(cj)iρ
with x ∈ V, i < j and ρi a finite sequence of integers k, 0 ≤ k < i (ε denotes
the empty sequence). We shall also consider particular constants which shall
represent empty contexts: ⊥i, 0 ≤ i ≤ n+1. The structure of constants takes into
account the need for treating the case of fst-rules. For instance xjε will represent
the variable xj in the left-hand side of λjx.t −→fst λiy.λjx′.t′, while v(xjε)iε
and xj[i] will respectively represent variable yi and x′j in the right-hand side.

Moreover, the following notions are needed to define the machine:

Definition 20. We define by mutual recursion contexts of level i, 0 ≤ i ≤
n+ 1, closures and environments:

– a closure is a pair of a term t and an environment e, denoted t[e];
– an environment e is a partial function which, when defined, associates to a

variable of level i a context of level i;
– a context S0 of level 0 is defined as follows: S0 ::= ⊥0 | c0 | u[e];
– a context Si of level i (i ≥ 1) is defined as follows: Si ::= ⊥i | ci | Si−1 · Si.

We set ⊥i · Si+1 to be equal to Si+1, and (S1
i · . . . (Sni · ⊥i+1)) · (Si+1 · Si+2) to

(S1
i · . . . (Sni ·Si+1)) ·Si+2. These equalities allow us to assume that if S is of the

form (((S1
i · . . . (Sni · ⊥i+1)) · Si+2) . . . Sk), then either ∀j, i+ 2 ≤ j ≤ k, Sj = ⊥j

or it is of the form ((((((S1
i · . . . (Sni · ⊥i+1)) · ⊥i+2) . . .⊥j−1) · cjρ) ·Sj+1) . . . Sk).

Definition 21. We define popi(Sn+1) and push(Si, Sn+1) as follows:

– push(Si, Sj) (with i < j):
• push(⊥i, Sj) = Sj;
• push(Si,⊥j) = ((Si · ⊥i+1) · · · · ⊥j) if Si �= ⊥i;
• push(Si, cjρ) = ((Si · ⊥i+1) · · · · ⊥j−1) · cjρ if Si �= ⊥i;
• push(Si, Si+1) = (Si · Si+1) if Si �= ⊥i;
• push(Si, Sj · Sj+1) = (push(Si, Sj) · Sj+1) if Si �= ⊥i.

– popi(Sn+1) = popi,n+1(Sn+1) with popi,j(Sj) (for i < j):
• popi,j(⊥j) = (⊥i,⊥j);
• popi,j(cjρ) = (v(cjρ)

i

ε
, cjρ·i);

• popi,j+1(((S1
i−1 ·. . . Sni−1·⊥i)·⊥i+1)·. . .⊥j+1) = (S1

i−1·. . . Sni−1·⊥i,⊥j+1);
• popi,j+1(((((S1

i−1 · . . . Sni−1 ·⊥i) · · · ·⊥k−1) · ckρ) ·Sk+1) · · · ·Sj+1) = (S1
i−1 ·

. . . Sni−1 · v(ckρ)iε, ((ckρ·i · Sk+1) . . . Sj+1)). Otherwise, one has:
• popi,j+1(Sj · Sj+1) = (S′i, S

′
j+1) if popi,j(Sj) = (S′i, S

′′
j ) and S′j+1 =

push(S′′j , Sj+1).

We now define the Λn-KAM:

Definition 22. States of Λn-KAM have the form λi1x1
i1
ε . . . . λ

i xn
i
ε .〈t, [e],

Sn+1〉 where t ∈ ΣΛ , e is an environment and Sn+1 is a context of level n + 1.
States are abbreviated as

−→
λ 〈t[e] Sn+1〉 when the prefix of abstractions is irrelevant.

An initial state of Λn-KAM is of the form 〈t, [∅],⊥n+1〉.



384 A. Saurin

Definition 23. The transitions of the machines are the following:
−→
λ 〈x0 [e] S〉 −→ −→

λ 〈t [e′] S〉 if e(x0) = t[e′]−→
λ 〈(t)u [e] S〉 −→ −→

λ 〈t [e] S′〉 with S′ = push(u[e], S)−→
λ 〈(t)xi [e] S〉 −→ −→

λ 〈t [e] S′〉 with S′ = push(e(xi), S)−→
λ 〈λix.t [e] S〉 −→ −→

λ 〈t [e′] S′〉 if popi(S) = (S′
i, S

′), e′ = [e, xi = S′
i]

and S′
i �= S1

i−1 · . . . (Sn
i−1 · ⊥i)−→

λ 〈λix.t [e] S〉 −→ −→
λ λixi

ε.〈t [e′] ⊥n+1〉 if popi(S) = (S1
i−1 · . . . (Sn

i−1 · ⊥i),⊥n+1)
and e′ = [e, xi = S1

i−1 · . . . (Sn
i−1 · xi

ε)]

The only case when the machine cannot reduce is when the machine state is in
case λi1xi11ε. . . . λi xinε.〈x0, [e], S〉 and x0 is associated by e to a variable constant
of level 0, c0, and not to a closure t[e′] since there is no rule for reducing this
case (it is easy to check that when the initial state is made of a closed term,
this is indeed the only case which can stop the machine). The final states of the
machine are thus of the form:

λi1xi11ε. . . . λ
i xinε.〈c0, [e], S〉

In that case, we have reached the head variable and obtained the head normal
form, the prefix of λixiε which has been gathered during the computation is the
prefix of abstractions of the head normal form (up to some fst-reduction which
have been lazily performed in the term and shall be propagated during the
reconstruction of the Λn-term). One actually has the following:

Theorem 11. If t is a closed Λn-term, Λn-KAM stops after a computation from
initial state 〈t[∅],⊥n+1〉 if and only if t has a head normal form.

Moreover, from the constant of level 0 which is the left-component of the final
state, one can compute the head variable of the head normal form and recursively
the complete head normal form.

6 Relating the Stream Hierarchy and the CPS Hierarchy

The aim of this section is to make clear how the Stream hierarchy relates to
Danvy & Filinski’s CPS hierarchy and to actually show that the Stream hierarchy
is indeed a call-by-name analogous to the CPS hierarchy, that is a CBN hierarchy
of delimited continuations. For this purpose, we first introduce a new hierarchy of
calculi, the λμ̂tpn-calculi that we use as mediators between the two CBN/CBV
hierarchies, following a method recently developed by Herbelin and Ghilezan.

6.1 λμ ̂tpn-calculi

Definition 24 (λμ ̂tpn-calculi). Let n ∈ ω. λμ ̂tpn-terms (t, u, v, · · · ∈ Σλμ̂tp )
are defined by the following syntax (with q ::= α | ̂tp):

Σλμ̂tp t, u ::= x | λx.t | (t)u | μiq.ci ci ::=
[

qi
]

t (1 ≤ i ≤ n)



A Hierarchy for Delimited Continuations in Call-by-Name 385

CBV and CBN λμ̂tpn-calculi can be naturally considered. In the CBV case,
values and evaluation contexts are defined as V ::= x | λx.t and Eiv ::= [] |
(Eiv)t | (V )Eiv | μj ̂tp.

[

qj
]

Eiv, 1 ≤ j < i while in the CBN case, every term is a
value and evaluation contexts are Ei ::= [] | (Ei)t | μj ̂tp.

[

qj
]

Ei, 1 ≤ j < i.

Definition 25 (CBN/CBV λμ ̂tpnequational theories)
CBV λμ̂tpn equational theory (written =

λμ̂tp ) is defined by the following rules:

(βv) (λx.t)V = t {V/x} (ηv) λx.(V )x = V if x �∈ FV (V )
(ηi

̂tpv) μ
i
̂tp.

[

̂tp
i
]

V = V (ηiμ) μ
iα.

[

αi
]

t = t if αi �∈ FV (t)

(μi
̂tp)

[

̂tp
i
]

μi ̂tp.ci = ci (μiv)
[

qi
]

Ei−1
v

[

μiα.ci
]

= ci
{[

qi
]

Ei−1
v [u]/

[

αi
]

u
}

(βiΩ) (λx.Eiv [x])μ
i
̂tp.ci = Eiv

[

μi ̂tp.ci
]

(μ′i
̂tp)

[

̂tp
l
]

μiα.ci =
[

̂tp
l
]

μi ̂tp.ci
{

̂tp
i
/αi

}

(i ≤ l)
(μilet) μ

jα.
[

qj
]

(λx.t)μi ̂tp.ci = (λx.μjα.
[

qj
]

t)μi ̂tp.ci (j ≤ i+ 1)

=λμ̂tp is defined by keeping only rules βv, ηv, μiv, μîtp, η
i
̂tpv and ηiμ, by consider-

ing every terms as a value, Ei as evaluation contexts and constraining qi to be
αi. CBN rules are denoted by droping the v subscripts in the rule names.

Definition 26 (Translations between λSn and λμ ̂tpn)

|〈t〉i|S〉̂tp = μi ̂tp.[̂tp
i
]|t|S〉̂tp |Sik.t|S〉̂tp = μiα.[̂tp

i
](λk.|t|S〉̂tp)λx.μi ̂tp.[αi]x

|μi ̂tp.ci|̂tp〉S = 〈|ci|̂tp〉S〉i |μiα.ci|̂tp〉S = Sikiα.|ci|̂tp〉S
|[̂tpi]t|̂tp〉S = |t|̂tp〉S |[αi]q|̂tp〉S = (kiα)|t|̂tp〉S

Definition 27 (Translations between Λn and λμ ̂tpn)

|λix.t|Λ〉̂tp = μiαx.[̂tp
i
]|t|Λ〉̂tp |μi ̂tp.ci|̂tp〉Λ = |ci|̂tp〉Λ |μiα.ci|̂tp〉Λ = λixα.|ci|̂tp〉Λ

|(t)xi|Λ〉̂tp = μi ̂tp.[αix]|t|Λ〉̂tp |[̂tpi]t|̂tp〉Λ = |t|̂tp〉Λ |[αi]t|̂tp〉Λ = (|t|̂tp〉Λ)xiα

Theorem 12. For any n ∈ ω, Λn is in eq. correspondence with CBN λμ̂tpn:
let t, u ∈ Σc

Λ , t =Λ u⇒ |t|Λ〉̂tp =
λμ̂tp |u|Λ〉̂tp

let t, u ∈ Σc
λμ̂tp , t =

λμ̂tp u⇒ |t|̂tp〉Λ =Λ |u|̂tp〉Λ

In order to study the correspondence with CPS hierarchy, we recall Kameyama’s
axiomatization of λSn [19]:

Definition 28. =λS is defined as:

(βv) (λx.t)V = t {V/x}
(ηv) λx.(V )x = V if x �∈ FV (V )
(βΩ) (λx.E0

v [x])t = E0
v [t] if x �∈ FV (E0

v )
(Reset− V alue) 〈V 〉i = V
(Reset− lift) 〈(λx.t)〈u〉i〉j = (λx.〈t〉j)〈u〉i j ≤ i
(S − reset) Sik.〈t〉i = Sik.t
(S − elim) Sik.(k)〈t〉i−1 = 〈t〉i−1 k �∈ FV (t)
(S − lift) 〈Ej−1

v [Sjk.t]〉i = 〈t{λx.〈Ej−1
v [x]〉j/k

}〉i x �∈ FV (kEj−1
v )



386 A. Saurin

Theorem 13. For any n ∈ ω, CBV λμ̂tpn simulates λSn: let t, u ∈ Σc
λS ,

t =λS u⇒ |t|S〉̂tp =
λμ̂tp |u|S〉̂tp.

Remark 14. If we have only implication ⇒ and not the converse, it is solely
because λμ̂tpn makes use of structural substitution and thus that some reductions
are anticipated in λμ̂tpn compared to the reduction in λSn. This already occurs
at the first level of the hierarchy [16] and is analyzed in [2].

7 Conclusion

In this paper we introduced a new hierarchy of calculi, the (Λn)n∈ω-calculi, called
the stream hierarchy. This hierarchy generalizes both λ-calculus and Λμ-calculus.
(Λn)n∈ω-calculi have layered, or hierarchical, abstractions as well as variables
with levels and its reduction system naturally extends the one for Λμ-calculus.
The main related works are the CBV studies of delimited continuations and of
the CPS hierarchiy and most notably works by Danvy, Filinski, Hasegawa and
Kameyama [5,8,13,18,19] and the works on CBN delimited control by Ghilezan,
Herbelin and Kiselyov [16,21]. The main results of the paper are:

– Church-Rosser and Böhm theorem for the hierarchy which ensures that the
hierarchy is well-structured;

– sound and complete CPS translations for the hierarchy. The completeness
proof strongly relies on conservativity results between different layers of the
hierarchy allowing for simpler completeness proofs compared to more tradi-
tional translations as Fujita’s CPS adapted to Λμ-calculus;

– an operational semantics for the hierarchy obtained by constructing ab-
stract machines, the Λn-KAM, inspired from Krivine abstract machine for
λ-calculus. The Λn-KAMs compute Λn-head normal forms;

– finally, we established that the stream hierarchy is indeed a hierarchy of
delimited continuations in call-by-name, by mediating between the CPS hi-
erarchy and the stream hierarchy thanks to the λμ̂tpn-calculi.

As a conclusion, we have developed a(n almost) complete study of the stream
hierarchy. Our contribution evidences that the Stream hierarchy is a CBN hi-
erarchy of delimited continuations and that fruitful connections exist between
delimited control and infinitary calculi which underly Λμ-calculus and the entire
stream hierarchy. However, some more developments are still to be done, which
are left for future work:

– the CPS translations for the hierarchy can be used for a semantical study
of the hierarchy. However, we are also interested in developping Böhm tree
semantics for Λμ-calculus and the stream hierarchy;

– the CPS translations and the abstract machines considered in this paper
have many similarities. It would be of interest to study how the abstract
machines can be generated from the CPS semantics;

– the Λn-KAM has a structure (states and reductions) very similar to abstract
machines for the CPS hierarchy [8,5]. We shall make this relation clear;



A Hierarchy for Delimited Continuations in Call-by-Name 387

– we developed an untyped study of the stream hierarchy but a typed study
of the hierarchy would also be of interest;

– the stream hierarchy that we considered here is indexed by ω. However, it
can straightforwardly be made more general by indexing the hierarchy by a
larger ordinal while preserving most results. We limited our presentation to
ω for two reasons: for simplicity, first, but also because the CPS hierarchy
is itself limited to ω. We conjecture that the CPS hierarchy can as well be
extended above ω which could actually be interesting for several applications
of the hierarchy where it might be of interest to have a delimiter that can
delimit an infinite number of different shift operators;

– the Stream interpretation of Λμ-calculus and the links with infinitary calculi
have been very influential. We shall develop these directions in future works.
See [35] for some early developments.

Finally, we think that the ability to develop the stream hierarchy as a natural
generalization of Λμ-calculus is a hint of the fact that Λμ-calculus is a calculus
with a strong structure: this hierarchical extension could not have been developed
based on Parigot’s syntax for instance (but for adding a dynamically bound
variable as we did with λμ̂tpn-calculi).

Acknowledgments. The author wishes to thank Hugo Herbelin, Luca Paolini,
Mauro Piccolo, Kazushige Terui and Simona Ronchi della Rocca for helpful
discussions and fruitful comments as well as the anonymous reviewers.

References

1. Ariola, Z., Herbelin, H.: Minimal classical logic and control operators. In: Baeten,
J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS,
vol. 2719. Springer, Heidelberg (2003)

2. Ariola, Z., Herbelin, H.: Control Reduction Theories: the Benefit of Structural
Substitution. In: JFP. Includes a Historical Note by Matthias Felleisen (2007)

3. Berarducci, A.: Infinite λ-calculus and non-sensible models. In: Logic and Algebra
1994. Lect. Notes in Pure and App. Math. Series, vol. 180. Marcel Dekker, New
York (1996)

4. Berarducci, A., Dezani, M.: Infinite λ-calculus and types. TCS, 212 (1999)
5. Biernacka, M., Biernacki, D., Danvy, O.: An operational foundation for delimited

continuations in the CPS hierarchy. Logical Meth. in Comp. Science 1(2) (2005)
6. Böhm, C.: Alcune proprietà delle forme βη-normali nel λK-calcolo. Publicazioni

dell’Istituto per le Applicazioni del Calcolo 696 (1968)
7. Danvy, O., Filinski, A.: Abstracting control. In: LISP and Funct. Prog. (1990)
8. Danvy, O., Yang, Z.: An operational investigation of the CPS hierarchy. In: Swier-

stra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 224–242. Springer, Heidelberg
(1999)

9. David, R., Py, W.: λμ-calculus and Böhm’s theorem. J. of Symb. Logic (2001)
10. de Groote, P.: A CPS-translation of the λμ-calculus. In: Tison, S. (ed.) CAAP

1994. LNCS, vol. 787, pp. 85–99. Springer, Heidelberg (1994)
11. de Groote, P.: An environment machine for the λ-calculus. MSCS 8 (1998)



388 A. Saurin

12. Felleisen, M., Friedman, D.P., Kohlbecker, E.E., Duba, B.F.: A syntactic theory of
sequential control. TCS 52, 205–237 (1987)

13. Filinski, A.: Representing monads. In: POPL 1994, pp. 446–457. ACM, New York
(1994)

14. Fujita, K.: A sound and complete cps-translation for λ-calculus. In: TLCA (2003)
15. Griffin, T.: A formulae-as-types notion of control. In: POPL. IEEE, Los Alamitos

(1990)
16. Herbelin, H., Ghilezan, S.: An approach to CBN delimited continuations. In: POPL.

ACM Sigplan, New York (2008)
17. Howard, W.A.: The formulae-as-type notion of construction, 1969. In: Essays in

Comb. Logic, λ-Calculus, and Formalism, pp. 479–490. Academic Press, London
(1980)

18. Kameyama, Y., Hasegawa, M.: A Sound and Complete Axiomatization of Delimited
Continuations. In: ICFP 2003, pp. 177–188. SIGPLAN Notices (2003)

19. Kameyama, Y.: Axioms for control operators in the cps hierarchy. In: HOSC (2007)
20. Kennaway, R., Klop, J.W., Sleep, M.R., de Vries, F.-J.: Infinitary lambda calculus.

TCS 175(1), 93–125 (1997)
21. Kiselyov, O.: Call-by-name linguistic side effects. In: ESSLLI 2008 Workshop on

Symmetric calculi and Ludics for the semantic interpretation (2008)
22. Krivine, J.-L.: Lambda-calculus, Types and Models. Ellis Horwood (1993)
23. Krivine, J.-L.: A call-by-name lambda-calculus machine. In: HOSC (2005)
24. Lafont, Y., Reus, B., Streicher, T.: Continuations semantics or expressing implica-

tion by negation. Tech. Rep. 9321, Ludwig-Maximilians-Universität (1993)
25. Lassen, S.: Head normal form bisimulation for pairs and the λ-calculus. In: Logic

In Computer Science. IEEE Computer Society Press, Los Alamitos (2006)
26. Parigot, M.: Free deduction: An analysis of "computations" in classical logic. In:

Voronkov, A. (ed.) RCLP 1990 and RCLP 1991. LNCS (LNAI), vol. 592, pp. 361–
380. Springer, Heidelberg (1992)

27. Parigot, M.: λμ-calculus: an algorithmic interpretation of classical natural deduc-
tion. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624. Springer, Heidelberg
(1992)

28. Parigot, M.: Proofs of strong normalisation for second order classical natural de-
duction. Journal of Symbolic Logic 62(4), 1461–1479 (1997)

29. Py, W.: Confluence en λμ-calcul. PhD thesis, Université de Savoie (1998)
30. Saurin, A.: A hierarchy for delimited continuations in call-by-name. long version

at, http://www.pps.jussieu.fr/~saurin/Publi/LM_hierarchy_long.pdf
31. Saurin, A.: Separation with streams in the Λμ-calculus. In: LICS. IEEE, Los Alami-

tos (2005)
32. Saurin, A.: On the relations between the syntactic theories of λμ-calculi. In: Kamin-

ski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 154–168. Springer, Hei-
delberg (2008)

33. Saurin, A.: Une étude logique du contrôle, appliquée à la programmation fonction-
nelle et logique. PhD thesis, École Polytechnique (September 2008)

34. Saurin, A.: Typing streams in the Λμ-calculus. ACM ToCL (to appear)
35. Saurin, A.: Standardization and Böhm trees for Λμ-calculus. In: FLOPS 2010.

LNCS, vol. 6009. Springer, Heidelberg (to appear, 2010)
36. Streicher, T., Reus, B.: Classical logic, continuation semantics and abstract ma-

chines. Journal of Functional Programming 8(6), 543–572 (1998)

http://www.pps.jussieu.fr/~saurin/Publi/LM_hierarchy_long.pdf


Author Index

Acciai, Lucia 146
Altenkirch, Thorsten 297
Andova, Suzana 79
Asarin, Eugene 64

Bejleri, Andi 128
Birkedal, Lars 2
Boreale, Michele 146

Cassez, Franck 282
Chambart, Pierre 237
Chane-Yack-Fa, Raphaël 64
Chapman, James 297

Demri, Stéphane 176
Deniélou, Pierre-Malo 128

Egger, Jeff 18

Fontaine, Gaëlle 161

Georgievska, Sonja 79
Gunter, Elsa L. 109

Henzinger, Thomas A. 94
Heußner, Alexander 267
Holtmann, Michael 252
Hu, Raymond 128

Kaiser, �Lukasz 252
Kobayashi, Naoki 343

Laroussinie, François 206
Leroux, Jérôme 267
Libkin, Leonid 221

Meyer, Antoine 206
Milius, Stefan 312
Møgelberg, Rasmus Ejlers 18
Moss, Lawrence S. 312
Murawski, Andrzej S. 33
Muscholl, Anca 267

Nielson, Flemming 191

Pagani, Michele 358
Pattinson, Dirk 328
Petonnet, Eudes 206
Popescu, Andrei 109
Pottier, François 2

Reus, Bernhard 2
Riis Nielson, Hanne 191
Ronchi della Rocca, Simona 358

Sangnier, Arnaud 176
Saurin, Alexis 374
Schnoebelen, Philippe 237
Schröder, Lutz 328
Schwencke, Daniel 312
Schwinghammer, Jan 2
Simpson, Alex 18
Staton, Sam 48
Stirling, Colin 1
Sutre, Grégoire 267

ten Cate, Balder 161
Thomas, Wolfgang 252
To, Anthony Widjaja 221
Tsukada, Takeshi 343
Tzevelekos, Nikos 33

Uustalu, Tarmo 297

van der Meyden, Ron 282
Varacca, Daniele 64

Wies, Thomas 94

Yang, Hongseok 2
Yoshida, Nobuko 128

Zavattaro, Gianluigi 146
Zhang, Chenyi 282
Zufferey, Damien 94


	Title Page
	Foreword
	Preface
	Organization
	Table of Contents
	FoSSaCS 2010 Invited Talk
	Introduction to Decidability of Higher-Order Matching
	References


	Semantics of Programming Languages
	A Semantic Foundation for Hidden State
	Introduction
	Semantic Setup
	Semantic Triples, Anti-frame Rule and Frame Rules
	A Concrete Model with Recursively Defined Worlds
	Program Logic
	Conclusion and Future Work
	References

	Linearly-Used Continuations in the Enriched Effect Calculus
	Introduction
	The Enriched Effect Calculus
	Linearly-Used Continuations
	Models
	Dual Models
	References

	Block Structure vs. Scope Extrusion: BetweenInnocence and Omniscience
	Introduction
	Syntax
	Game Semantics
	From Omniscience to Innocence
	Decidability of a Finitary Fragment of $IA_{cbv}$
	Summary
	References

	Completeness for Algebraic Theories of Local State
	Introduction
	Presentations of Enriched Algebraic Theories and Strong Monads
	Simple Meta-language for a Strong Monad

	Rudiments of Nominal Sets
	A Theory of Local State
	Algebras for Local State

	Completeness
	Completeness when the Storable Values Are Infinite
	An Additional Axiom when the Set of Values Is Finite

	Comparison with the Theory of Plotkin and Power
	References


	Probabilistic and Randomised Computation
	Fair Adversaries and Randomization in Two-Player Games
	Introduction
	Infinite Games on Finite Graphs
	Preliminaries
	Two-Player Games
	Winning Conditions
	Probabilistic Models
	Banach-Mazur Games

	ABM Games
	Definitions
	Traps and Attractors
	Positional Strategies
	ABM Games Are Not Determined
	Finite Memory

	Fairness as Randomization
	The Parity Case
	$\omega$-Regular Conditions

	Related and Future Work
	References

	Retaining the Probabilities in Probabilistic Testing Theory
	Introduction
	Contributions

	Preliminaries
	Model
	Testing Preorder
	Resolving Internal Nondeterminism
	Definition of the Testing Preorder

	Characterizing the Testing Preorder as a Probabilistic Ready-Trace Preorder
	Related Work
	Conclusion
	References


	Concurrency and Process Theory
	Forward Analysis of Depth-Bounded Processes
	Introduction
	Preliminaries
	The $\pi$-Calculus and Depth-Bounded Processes
	WQOs, BQOs, andWSTSs

	The Covering Problem for Depth-Bounded Processes
	An Adequate Domain of Limits
	Limit Configurations
	Tree Encoding of Depth-Bounded Configurations
	Limit Configurations as Ideal Completions

	Forward Analysis of Depth-Bounded Processes
	Conclusion
	References

	Incremental Pattern-Based Coinduction for Process Algebra and Its Isabelle Formalization
	Introduction
	Syntax and Operational Semantics of Processes
	The Raw Coinductive Proof System
	Deduction of Universally Quantified Bisimilarity Equations
	Concluding Remarks
	References

	Parameterised Multiparty Session Types
	Introduction
	Types and Processes for Parameterised Multiparty Sessions
	Global Types
	Process Syntax and Semantics
	Processes for Parameterised Multiparty Protocols

	Typing Parameterised Multiparty Interactions
	End-Point Types and End-Point Projections
	Type System
	Typing Processes
	Properties of Typing
	Type Soundness and Progress
	Typing Examples

	Related Work
	References

	On the Relationship between Spatial Logics and Behavioral Simulations
	Introduction
	Spatial Transition Systems
	Basic Definitions
	Concrete Instances of sts

	The Logics $\mathcal{L}$ and $\mathcal{L}_{0}$
	Definitions and Examples
	Undecidability of $\mathcal{L}$

	Decidability of $\mathcal{L}_{0}$
	Well-Structured Spatial Transition Systems
	Decidability of $\mathcal{L}_{0}$ for Effective ws-sts
	Decidability in Concrete Instances

	A Hennessy-Milner Theorem for $\mathcal{L}_{0}$
	Undecidability of the Spatial-Behavioral Preorder
	Conclusion
	References


	Modal and Temporal Logics
	An Easy Completeness Proof for the Modal $\mu$-Calculus on Finite Trees
	Syntax, Semantics and Axiomatization
	Rank of a Formula
	Completeness for Generalized Models
	Completeness for Finite Tree Models
	Adding Shallow Axioms to K$^{\mu} + \mux.{\Box}x$
	Graded $\mu$-Calculus
	Further Work
	References

	When Model-Checking Freeze LTL over Counter Machines Becomes Decidable
	Introduction
	Standard Classes of Counter Machines
	Counter Machines
	Reversal-Bounded Counter Machines

	LTL with the Freeze Operator
	Preliminary Results
	Purification, or How to Get Rid of Control States
	Restricting the Atomic Formulae to Control States
	Existing Results for Two Subclasses

	Nondeterministic Counter Machines
	Deterministic Counter Machines
	Flat Freeze LTL
	A Detour to Counter Machines with Parameterized Tests
	Flat Formulae and Parameterized Counter Machines
	Decidability Results

	Concluding Remarks
	References

	Model Checking $Is$ Static Analysis of Modal Logic
	Introduction
	Modal Logic
	Static Analysis
	Flow Logic for Modal Logic
	Conclusion
	References

	Counting CTL
	Introduction
	Definitions
	Models
	Counting CTL
	Examples of CCTL Formulas

	CCTL Expressiveness and Succinctness
	Expressiveness
	Succinctness

	Model Checking
	Model Checking CCTL$_{C_{0}}$ and CCTL$_{C_{1}}$
	Model-Checking CCTL$_{B(C_{0})}$ and CCTL$_{\alphaC_{1}}$
	Diagonal Constraints

	Freeze Variables
	Conclusion
	References

	Algorithmic Metatheorems for Decidable LTL Model Checking over Infinite Systems
	Introduction
	Preliminaries
	Metatheorems for LTL and Its Fragments
	A Metatheorem for LTL
	Metatheorems for LTL_{det}
	Metatheorems for LTL(F_{s},G_{s})
	A Metatheorem for Presburger-Definable Systems

	Applications
	How Hard Are These Problems in General?
	References


	Verification
	Toward a Compositional Theory of Leftist Grammars and Transformations
	Introduction
	Basic Definitions and Notations
	Leftist Grammars
	Graphs and Types for Leftist Grammars
	Leftmost, Pure and Eager Derivations

	Leftist Grammars as Transformers
	Leftist Transformers
	Composition

	Simple Leftist Transformations
	Union of Simple Leftist Transformers

	Encoding 3SAT with Acyclic Leftist Transformers
	Associating an LTr $G_\Phi$ with $\Phi$
	Correctness of the Reduction

	Anchored Leftist Transformers and Their Transitive Closure
	Conclusion
	References

	Degrees of Lookahead in Regular Infinite Games
	Introduction
	Preliminaries
	Operators and Games with Delay
	Delay Operators
	Regular Games with Delay

	The Block Game
	The Semigroup Game
	Connecting the Block Game and the Semigroup Game
	Lookahead in Non-Regular Games
	Conclusion
	References

	Reachability Analysis of Communicating Pushdown Systems
	Queueing Concurrent Processes
	Decidable Oriented Architectures
	From Mutex QCP to Eager QCP
	Bounded Phase Reachability
	Conclusion
	References

	The Complexity of Synchronous Notions of Information Flow Security
	Introduction
	Semantic Model and Definitions
	Synchronous Nondeducibility on Inputs
	NDI: Upper Bound
	NDI: Lower Bound

	Nondeducibility on Strategies
	NDS: Upper Bound
	NDS: Lower Bound

	Synchronous Bisimulation-Based Notions
	Related Work
	Conclusion
	References


	Categorical and Coalgebraic Methods
	Monads Need Not Be Endofunctors
	Introduction
	Relative Monads and Relative Adjunctions
	Relative Monads
	Relative Adjunctions
	Kleisli and Eilenberg-Moore Constructions

	Relative Monads as Lax Monoids
	Left Kan Extensions
	[$\mathbb{J, C}$] Is Lax Monoidal
	Relative Monads Are the Same as Lax Monoids in [$\mathbb{J, C}$]

	Well-Behaved Relative Monads
	Well-Behavedness Conditions
	[$\mathbb{J, C}$] Is Monoidal
	Relative Monads Extend to Monads

	Arrows as a Special Case of Relative Monads
	Conclusions and Further Work
	References

	CIA Structures and the Semantics of Recursion
	Introduction
	Distributive Laws and Bialgebras
	Completely Iterative Algebras
	Solution Theorems for Free
	Recursive Function Definitions over the Behavior
	Applications
	Process Algebras
	Streams
	Non-Well-Founded Sets
	Formal Languages

	Conclusions
	References

	Coalgebraic Correspondence Theory
	Coalgebra and Modal Logic
	From Coalgebraic Models to First-Order Structures
	Gaifman’s Theorem and Coalgebraic Unravelling
	A Coalgebraic van Benthem/Rosen Theorem
	Conclusions and Related Work
	References


	Lambda Calculus and Types
	Untyped Recursion Schemes and Infinite Intersection Types
	Introduction
	Preliminaries
	Infinite Intersection Sorts
	Type System for Model Checking Untyped Recursion Schemes
	Soundness of the Type System
	Completeness of the Type System

	Theory of Refinement
	Applications
	Related Work
	Conclusion
	References

	Solvability in Resource Lambda-Calculus
	Introduction
	ResourceCalculus
	Solvability
	An Intersection Type Assignment System
	MainTheorem
	Concluding Remarks
	References

	A Hierarchy for Delimited Continuations in Call-by-Name
	Introduction
	Background and Notations: From $\lambda{\mu}$ to $\Lambda{\mu}.$
	$\lambda, \mu$ and Beyond: The Stream Hierarchy
	Motivating the Stream Hierarchy
	Definition of the Hierarchy of $(\Lambda^{n})_{n\in{\omega}}$-calculi

	Translating the Stream Hierarchy into $\lambda$-Calculus
	An Operational Investigation of the Stream Hierarchy
	Relating the Stream Hierarchy and the CPS Hierarchy
	$\lambda{\mu}\^{tp}_{n} -calculi

	Conclusion
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




