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Abstract. This paper introduces a formal approach to the definition of cons-
traint-aware model transformations. The proposed approach is based on the Di-
agram Predicate Framework and extends graph transformations with the ability
to handle constraints in the definition and execution of model transformations.
In particular, it uses non-deleting rules that are typed over the metamodel of a
joined modelling language which is constructed from the source and target lan-
guages. Furthermore, the application of transformation rules is formalised as a
pushout construction that creates a model which is typed over the metamodel
of the joined modelling language. Finally, the target model is obtained from the
created model by a pullback construction.

1 Introduction and Motivation

Models are first-class entities of the software development process in Model-Driven
Engineering (MDE) and undergo a complex evolution during their life-cycles. In this
regard, model transformation is one of the key techniques which is used to automate
several model-based activities such as code generation, refactoring, optimisation, lan-
guage translation etc. [23].

A general definition of model transformation given in [11] and further generalised
in [15] is as follows. A transformation is the automatic generation of target models from
source models, according to a transformation definition. A transformation definition is
a set of transformation rules that together describe how a model in the source language
can be transformed into a model in the target language. A transformation rule is a
description of how one or more constructs in the source language can be transformed
into one or more constructs in the target language.

Several classifications of model transformations are given in [4,15]. A first classifi-
cation is based on whether the transformation is used to transform models specified by
one modelling language, called homogeneous transformation, or models specified by
different modelling languages, called heterogeneous transformation. The former class
of transformations is suitable for model refactoring and optimisation [1], while the lat-
ter is suitable for language translation. A second classification is based on whether the
target model is created from scratch, called out-place, or the source model is modified
in order to obtain the target model, called in-place. A third classification is based on the
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Fig. 1. Constraints in MOF-based modelling languages and DPF: (a) structural constraints in
UML (b) attached OCL constraints (c) integration of constraints in DPF

underlying technique which is used to carry out the transformations, e.g. logic program-
ming, functional programming, graph transformation, etc. The approach introduced in
this paper is classified under heterogeneous, out-place and graph-transformation based
transformation.

In the context of MDE, models are typically specified by means of modelling lan-
guages such as the Unified Modeling Language (UML) [17]. Each of these modelling
languages has a corresponding metamodel – a model that defines the abstract syntax
of models which can be specified by the modelling language. These metamodels, in
turn, are specified by means of a metamodelling language called the Meta-Object Fa-
cility (MOF) [16]. MOF-based modelling languages allow the specification of simple
constraints such as multiplicity and uniqueness constraints, hereafter called structural
constraints. These constraints are usually specified by properties of classes in the meta-
model of the modelling language. For instance, the requirement “a person is the child of
exactly two parents” in a UML model can be forced by a multiplicity constraint which
uses the properties lower and upper of the class Property of the UML metamodel
(see Fig. 1a). Instances of the UML model should satisfy this multiplicity constraint.
However, these structural constraints may not be sufficient to meet complex require-
ment’s specifications. Hence, textual constraint languages such as the Object Constraint
Language (OCL) are usually used to define complex constraints, hereafter called at-
tached OCL constraints. For instance, the requirement “a person can not be a child of
her/himself” in a UML model can only be forced by an OCL expression (see Fig. 1b).

While existing model transformation techniques always take into account structural
constraints, they often ignore the attached OCL constraints [14,18]. This is because
model transformation rules are defined over metamodel elements while attached OCL
constraints are defined in a different technical space. This problem is closely related to
the fact that the conformance relation between models and metamodels is not formally
defined for MOF-based modelling languages [5,19], especially when OCL constraints
are involved [2].

In this paper, a solution to this challenge is proposed. The solution is based on the
Diagram Predicate Framework (DPF) [21,20,22] and reuses the diagrammatic formal-
isation of MOF-based modelling languages described in [21]. DPF provides a for-
mal diagrammatic approach to (meta)modelling and model transformation based on
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Fig. 2. Overview of the DPF-based approach to model transformation

category theory [9]. The proposed approach to model transformation provides an ex-
tension to the formal framework of graph transformations [8] in the sense that it can
be used to transform models as well as attached OCL constraints. This is done by in-
tegrating structural constraints and attached OCL constraints in modelling formalisms
which represent the formalisation of MOF-based modelling languages (see Fig. 1c for
an intuition).

The DPF-based approach to model transformation introduces the concept of constra-
int-aware model transformation; i.e. a model transformation technique which supports
specifying constraints in input and output patterns and using these constraints to control
(i) which structure to create in the target model and (ii) which constraints to impose on
the created structure. The first step in this approach consists of creating a joined mod-
elling language which consists of a combination of the source and the target modelling
languages; i.e. a joined metamodel is created (see Fig. 2). The second step consists of
defining constraint-aware model transformation rules which are typed over the joined
metamodel. The model transformation is applied in a final step as follows: extending a
source model which conforms to the source metamodel to an intermediate model which
is typed over the joined metamodel, iterative application of the transformation rules,
and projection of a target model which conforms to the target metamodel.

A running example is used to illustrate our approach. It presents a transformation
of an object-oriented structural model to a relational data model. In this example, the
syntax used for the definition of the transformation rules is the same as the syntax used
to specify the (meta)models.

The remainder of the paper is organised as follows. Section 2 reviews our diagram-
matic formalisation of MOF-based modelling languages. Section 3 presents the details
of our model transformation approach. In Section 4, a comparison of our approach with
other graph transformation-based approaches to model transformation is given. Finally,
in Section 5 some concluding remarks and ideas for future work are presented.

2 Diagram Predicate Framework

In DPF, models are formalised as diagrammatic specifications. A diagrammatic spec-
ification S = (GS , CS) consists of an underlying graph GS decorated by a set of
constraints CS . The graph represents the structure of the model, and predicates from
a predefined diagrammatic predicate signature are used to impose constraints on the
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model. In this paper, we use the terms “model” and “specification” interchangeably.
The formal definitions are as follows:

Definition 1 (Signature). A (diagrammatic predicate) signatureΣ := (Π,α) consists
of a collection of predicate symbols Π with a mapping α that assigns a graph to each
predicate symbol p ∈ Π . α(p) is called the arity of the predicate symbol p.

Definition 2 (Constraint). Given a signature Σ = (Π,α), a constraint (p, δ) on a
graphG is given by a predicate symbol p and a graph homomorphism δ : α(p)→ G.

Definition 3 (Σ-specification). Given a signature Σ = (Π,α), a (diagrammatic) Σ-
specification S := (GS , CS) is given by a graphGS and a set CS of constraints (p, δ)
on GS with p ∈ Π .

Example 1. Let us consider an information system for the management of employees
and projects. At any state of the system the following requirements should be satisfied.

1. An employee must work for at least one department.
2. A department may have none or many employees.
3. A project may involve none or many employees.
4. A project must be controlled by at least one department.
5. An employee involved in a project must work in the controlling department.

Project

Department[inv]

empDeps

depEmps

Employee

proEmps proDeps

proDeps;depEmps

[1..∞]

[surj]

[⊑]
[1..∞]

Fig. 3. A Σstruct-specification S = (GS , CS)

Fig. 3 shows a Σstruct-specification S = (GS , CS) which specifies a structural
model compliant with the requirements above. Table 1 shows the signature Σstruct.
Here we present how two of the above mentioned requirements are specified in S
using the predicates from Σstruct. In particular we present a requirement which can
be specified by means of structural constraints in UML syntax; as well as a require-
ment which demands the usage of attached OCL constraints (see [21] for a compari-
son of the UML/OCL- and DPF-based models of a similar system). The requirement
“an employee must work for at least one department” is forced in S by the predicate
[mult(1,∞)] on the arrow empDeps. Furthermore, the requirement “an employee
involved in a project must work in the controlling department” is forced in S by using
the predicates[composition] and[subset] on the arrowsproDeps;depEmps
and proEmps.
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Table 1. The signature Σstruct

p αstruct(p) Proposed visual. Intended semantics

[mult(n,m)] 1
f �� 2 X

f

[n..m]
�� Y ∀x ∈ X : n ≤ |f(x)| ≤ m

[irreflexive] 1
f��

X
f

[irr] ��
∀x ∈ X : x /∈ f(x)

[injective] 1
f �� 2 X

f

[inj]
�� Y ∀x, x′ ∈ X : f(x) = f(x′) implies

x = x′

[surjective] 1
f �� 2 X

f

[surj]
�� Y f(X) = Y

[jointly-
injective]

1
f ��

g

��

2

3

X
f ��

g

��

[ji]

Y

Z

∀x, x′ ∈ X : f(x) = f(x′) and
g(x) = g(x′) implies x = x′

[inverse] 1
f

��
2

g

�� X

f
��

Y
g

		 [inv] ∀x ∈ X , ∀y ∈ Y : y ∈ f(x) iff
x ∈ g(y)

[composition] 1
f ��

h


�

��
��

��
2
g

��
3

X
f ��

f ;g


�

��
��

��
Y

g

��
Z

∀x ∈ X : f ; g(x) =
⋃{g(y) | y ∈

f(x)}

[subset] 1
f

��

g

�� 2 X

f
��

g

��[�]




Y ∀x ∈ X : f(x) ⊆ g(x)

Note that, any OCL-constraint that can be seen as a “sort-wise” property; i.e. prop-
erties of sets, functions, or diagrams of sets and functions as a whole, can be specified
in DPF. This is because DPF is based on category theory which is centred around sort-
wise properties. A precise characterisation of non-sort-wise OCL-constraints is an open
issue which is part of our current research.

In DPF, we distinguish between two types of conformance relations: typed over and
conforms to. A model is typed over a metamodel if its underlying graph is typed over
the underlying graph of the metamodel; i.e. each model element is assigned a type in
the metamodel by a typing morphism. In contrast, a model is said to conform to a meta-
model if it is typed over the metamodel and, in addition, it satisfies all the constraints
of the metamodel [21].

The definition of typedΣ-specification depends on the definition of Σ-specification
morphisms. These definitions will also be used in Section 3 in our approach to model
transformation. A specification morphism between two Σ-specifications is a graph ho-
momorphism which preserves constraints. In contrast, a typed specification morphism
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between two typedΣ-specifications is a specification morphism which respects the typ-
ing morphisms. The formal definitions are as follows:

Definition 4 (Σ-specification Morphism). A Σ-specification morphism f : S → S′
between two Σ-specifications S = (GS , CS) and S′ = (GS′ , CS′) is a graph homo-
morphism f : GS → GS′ preserving constraints, i.e. (p, δ) ∈ CS implies (p, δ; f) ∈
CS

′
for all constraints (p, δ) ∈ CS .

α(p) δ ��

δ;f ����
��

��
��

GS

f

��

=

GS
′

Definition 5 (TypedΣ-specification). AnH-typedΣ-specification S, i.e. aΣ-specifi-
cation typed over a graph H , is a Σ-specification S together with a graph homomor-
phism tS : GS → H . tS is called a typing morphism.

Definition 6 (Typed Σ-specification Morphism). A typed Σ-specification morphism
between two H-typed Σ-specifications S and S′ is a Σ-specification morphism ψ :
S → S′ such that ψ; tS′ = tS .

H

=

S

tS

��������� ψ �� S′

tS′
���������

In DPF, each modelling language is formalised as a modelling formalism which is
a triple F = (Σ2, S2, Σ3) [21]. The concepts of the modelling language are located
in the Σ3-specification S2; and the constraining constructs which are available for the
users of the modelling language are located in the signature Σ2.

Definition 7 (Modelling Formalism). A modelling formalism F = (Σ2, S2, Σ3) is
given by signatures Σ2 = (Π2, α2) and Σ3 = (Π3, α3), and a Σ3-specification S2 =
(GS2 , CS2). S2 is called the metamodel of F . An F -specification is a Σ2-specification
S1 = (GS1 , CS1) which conforms to S2.

Modelling
Formalism

Specification

Σ3
CS2

CS1

GS1

ιS1

Σ2 GS2

Predicates from the signature Σ3 are used to add constraints to the metamodel S2.
This corresponds to metamodel definition. These constraints should be satisfied by F -
specifications. Moreover, predicates from the signature Σ2 are used to add constraints
to F -specifications. This corresponds to model definition. These constraints should be
satisfied by instances of the F -specifications, in the same way as the F -specifications
should satisfy the metamodel constraints.
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For a given modelling formalism, the semantics of nodes and arrows have to be
chosen in a way which is appropriate for the corresponding modelling environment. For
structural models in object-oriented development, it is appropriate to interpret nodes as

sets and arrows X
f−→ Y as multi-valued functions f : X → ℘(Y ). The powerset

℘(Y ) of Y is the set of all subsets of Y , i.e. ℘(Y ) = {K | K ⊆ Y }. On the other
hand, for relational data models it is appropriate to interpret nodes as sets and arrows as
single-valued functions.

3 Model Transformation

This section describes the DPF-based approach to constraint-aware model transforma-
tion. The first step consists of creating a joined modelling formalism which enables the
specification of both source and target models. One way to achieve this is to construct
the disjoint union of the components of the source and target modelling formalisms.

Roughly speaking, given the source FS = (ΣS2 , S2, Σ
S
3 ) and the target FT =

(ΣT2 , T2, Σ
T
3 ) modelling formalisms (see Fig. 4a and Fig. 4c, respectively), a joined

modelling formalism F J = (ΣJ2 , J2, Σ
J
3 ) will be created (see Fig. 4b). In more de-

tail, the source and target metamodels are joined together to J2 := S2 � K2 � T2,
and the source and target signatures are joined together to ΣJ2 := ΣS2 � ΣT2 and
ΣJ3 := ΣS3 � ΣK3 � ΣT3 , where � denotes the disjoint union operation (see Exam-
ple 2). In J2, the componentK2 represents the correspondence between S2 and T2. In
most cases, the elements inK2 will be arrows connecting nodes in S2 and T2. However,
in some cases it may be convenient to have also auxiliary nodes in K2 and arrows con-
necting these nodes with elements in S2 and/or T2. In ΣJ3 , the componentΣK3 contains
additional predicates which are used to constrain elements of J2. The definitions ofK2
and ΣK3 should be done manually by transformation designers.

Although the transformation designer is free to relate any elements of the source
and target metamodels, there is a projection condition which should be satisfied by the
joined metamodel J2. The condition is that for any F J -specification J1, it should be
possible to construct an FS-specification S1 and an FT -specification T1 by pullback

Modelling
Formalism

Specification

(a)source (b) joined (c) target
ΣS3

CS2

ΣJ3
CS2 CT2

CJ2

ΣT3
CT2

ΣS2

CS1

GS2
jS2

GJ2 GT2
jT2

ΣT2

CT1

ΣJ2
CS1 CT1

CJ1

GS1
πS1

ιS1

GJ1

tJ1

GT1

ιT1

πT1

Fig. 4. Source, target and joined modelling formalisms
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GS2
� � jS2 �� GJ2 GT2� �

jT2��

GS1
� �

πS1
��

ιS1

��

P.B.

GJ1

tJ1

��

GT1� �

πT1
��

ιT1

��

P.B.

Fig. 5. Projection condition for the joined metamodel J2
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3 ΣT
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S2 J2 T2

Σstruct⊎Σcorr Σstruct⊎
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Σstruct Σstruct

Σstruct Σrel

C

R

[bij]

A [=]

T

Col
[1..∞]

DTs
[bij]

DTt

C

R

A

DT

T

Col
[1..∞]

DT

Fig. 6. Joining the modelling formalisms of structural models and relational data models

constructions as depicted in Fig. 5 (see [6] for a description and motivation for using
pullbacks in model transformation). In order to satisfy the projection condition, J2 must
be constrained by predicates from the signatureΣJ3 .

In the next example, we present a joined modelling formalism and show the con-
straints of J2 which are necessary to satisfy the projection condition.

Example 2. Fig. 6 shows a source modelling formalism FS = (ΣS2 , S2, Σ
S
3 ) for speci-

fying structural models; a target modelling formalism FT = (ΣT2 , T2, Σ
T
3 ) for specify-

ing relational data models; and their joined modelling formalism F J = (ΣJ2 , J2, Σ
J
3 ).

In particular, ΣS3 , Σ
T
3 , Σ

S
2 := Σstruct (see the signature Σstruct for structural models

in Table 1); ΣT2 := Σrel (see part of the signature Σrel for relational data models in
Table 2); ΣJ2 := Σstruct � Σrel; and ΣJ3 := Σstruct � Σcorr � Σstruct (see part of
the signature Σcorr for defining correspondence constraints in Table 3). In the source
metamodel S2, the arrows R and A stand for Reference and Attribute, respec-
tively; and the nodes C and DT stand for Class and DataType, respectively. In the
target metamodel T2, the arrow Col stand for Column; and the nodes T and DT stand
for Table and DataType, respectively. Note that the node DT is renamed to DTs and
DTt in the joined metamodel J2 by the disjoint union operation. The projection con-
dition is satisfied by constraining the arrows in J2 by the predicates [bijective]
and [commutative]. This means that for each class, a corresponding table should
be created. In addition, for each attribute belonging to a class, a corresponding column
belonging to the corresponding table should be created.
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Table 2. A part of the signature Σrel

p αrel(p) Proposed visual. Intended semantics

[total] 1
f �� 2 X •

f �� Y ∀x ∈ X : |f(x)| = 1

[primary-key] 1
f �� 2 X

f

[pk]
�� Y f is [total] and [injective]

[foreign-key] 1
f �� 2

3

g

�� X
f �� Y

Z

g

��
[fk] ��

f(X) ⊆ g(Y )

[image-equal] 1
f �� 2

3

g

�� X
f �� Y

Z

g

��
[ie]

f(X) = g(Z)

[join] 1
f �� 2

3
f ′

��

g′

��

4

g

�� X
f �� Y

XZ
f ′

��

g′

��

Z

g

��

[join]

∀x ∈ X , ∀z ∈ Z : (x, z) ∈
XZ iff f(x) = g(z)

3.1 Constraint-Aware Transformation Rules

The second step in our approach is the definition of constraint-aware transformation
rules. In each transformation rule, the input pattern is included in the output pattern.
The input and output patterns are ΣJ2 -specifications which are typed overGJ2 .

Definition 8 (Transformation Rules). Given a joined modelling formalism F J =
(ΣJ2 , J2, Σ

J
3 ), a transformation rule r : L ↪→ R is a GJ2 -typed ΣJ2 -specification

morphism between the input and output patterns L and R, with r being an inclusion.
GJ2

=

L

tL
����������

� � r �� R

tR
����������

In the following example, we illustrate our approach to the definition of transfor-
mation rules. Note that the output patterns of the transformation rules are not only
dependent on the structure of the input patterns, but also on the constraints.

Example 3. Building on Example 2, Table 4 outlines some of the transformation rules
which are used for the transformation of structural models to relational data models.
These rules are typed over the joined metamodel J2 shown in Fig. 6. Note that (1:C)
is a “user-friendly” notation for the typing assignment (t : 1 �→ C). In rule r1, each
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Table 3. A part of the signature Σcorr

p αcorr(p) Proposed visual. Intended semantics

[commutative] 1
f ��

g

��

2

g′

��
3

f ′
�� 4

X
f ��

g

��
[=]

Y

g′

��
Z

f ′
�� Æ

∀x ∈ X : g′(f(x)) = f ′(g(x))

[bijective] 1
f �� 2 X

f

[bij]
�� Y f is [mult(1,1)], [injecti-

ve] and [surjective]

class is transformed to a corresponding table. In rule r2, for each attribute a column is
created. The rules r3 and r4 are used to transform bidirectional references (or a pair of
inverse functions) between two classes to foreign keys between two tables. Notice that
the only difference between the input patterns of the rules r3 and r4 is the constraint
forced by the predicate [mult(0,1)] on the arrow 2:R. This constraint affects the
way in which a match of the input pattern is transformed to a match of the output
pattern. More precisely, since in r3 each 2:C is related to at most one 1:C, a foreign key
column 3:Col will be created which will refer to 1:Col. However, in r4 each 2:C may
be related to many 1:C and vice versa. Therefore, a link table 3:T is created with two
foreign key columns 3:Col and 4:Col. The contents of this link table may be seen as
tuples (1:DTt, 2:DTt).

3.2 Application of Model Transformation

The last step in our approach is the application of model transformation. In this step cat-
egorical constructions [7,9] such as pushout and pullback are exploited. The application
of a model transformation consists of iterative application of transformation rules.

Definition 9 (Application of Transformation Rules). Given a source model J1, an
application 〈r,m〉 of a transformation rule r : L ↪→ R via a matchm : L→ J1, where
m is a GJ2-typed ΣJ2 -specification morphism, is given by the pushout

L

m

��

� � r �� R

m∗

��
J1

� � 〈r,m〉 �� J ′1

P.O.

In the following, the procedure for transforming a source model S1 to a target model
T1 is outlined.

1. Extension of the source model. The source FS-specification S1 is extended to an
intermediate GJ2-typed ΣJ2 -specification J1. This transformation is given by the
composition ιS1 ; jS2 (see Fig. 4) which leads to J1 = S1 �K1 � T1 with bothK1
and T1 being empty specifications.
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2. Iterative application of the transformation rules. Upon the application of a rule
r : L ↪→ R, for a match of the input pattern L in J1 = S1 �K1 � T1, the K1 and
T1 parts will be extended by an appropriate copy of the new elements in R, i.e., by
those elements in R that are not already in L.

3. Obtaining the target model. The iterative application of transformation rules may
stop once an F J -specification J1 is constructed. The projection condition ensures
then that the pullback of the span GJ1 → GJ2 ←↩ GT2 (see Fig. 5) constructs an
FT -specification T1 which may be considered the target model.

In Table 4, we defined the transformation rules which were needed to transform struc-
tural models (with only structural constraints) to relational data models. What remains
to show now is the ability to define transformation rules which enable transformation
of more complex constraints such as the requirement 5 in Example 1.

Example 4. Building on Example 3, Fig. 7 shows the relational data model which
is created by applying the rules in Table 4 and 5 to the Σstruct-specification S
in Fig. 3. Recall that arrows in Σrel-specifications are interpreted as single-valued
functions. Hence, we do not need to add constraints to force single-valued functions.

Table 4. Rules for the transformation of structural models to relational data models

L R

Rule r1. Class to table

1:C 1:C 1:T 1:Col
[pk]

Int:DTt

Rule r2. Attribute to column

1:C

1:A

1:T 1:Col
[pk]

Int:DTt

1:DTs

1:C

1:A

1:T 1:Col
[pk]

2:Col

Int:DTt

1:DTs 1:DTt

Rule r3. Many-to-one reference to foreign key

1:C

1:R

1:T 1:Col
[pk]

Int:DTt

2:C

[0..1]

2:R

2:T 2:Col
[pk]

[inv]

Int:DTt

1:C

1:R

1:T
[pk]

1:Col Int:DT
t

2:C

[0..1]

2:R

1:T 2:Col
[pk]

3:Col

Int:DTt

[inv]
[fk]

Rule r4. Many-to-many reference to link table and foreign keys

1:C

1:R

1:T 1:Col
[pk]

Int:DTt

2:C

2:R

2:T 2:Col
[pk]

[inv]

Int:DTt

1:C

1:R

1:T
[pk]

1:Col Int:DT
t

3:T
•
3:Col

•
4:Col

2:C

2:R

2:T
[pk]

2:Col Int:DT
t

[inv]
[fk]

[fk]

[ji]
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TEmployee Int TDepartment

TProEmp TProDep

Int

TEmpDep

TProject

TProDepEmp

Int
[pk] [pk]

[fk]

[ji] [fk]

[fk] [fk]

[ji] [ji]

[fk]

[fk]

[⊑]

[join]

[ie]

[ie]

[pk]

Fig. 7. The target Σrel-specification resulting from the transformation of the Σstruct-
specification presented in Fig. 3

However, we use the predicate [total] from Σrel to add constraints which force to-
tal functions whenever necessary, for example columns for which a value is required.
The rule r5 in Table 5 is applied to the arrows empDeps and depEmps, and the
predicates [inverse] and [surjective] are transformed to [foreign-key],
[image-equal], [total] and [jointly-injective] on the arrows con-
necting the nodes TEmployee, TEmpDep and TDepartment to Int in Fig. 7.
The predicate [image-equal] is used to force that for any row in the table
TEmployee there is a corresponding row in the table TEmpDep. Moreover, the rule
r6 is applied to the arrows proEmps and proDeps;depEmps, and the predicates
[composition] and [subset] are transformed to [join] and [subset] on
the arrows connected to the node TProDepEmp.

4 Related Work

Several approaches to transform graph-based structures have been developed in the field
of graph grammars and graph transformations. In this section, a short comparison of our
approach to some graph transformation-based approaches is outlined.

Graph Transformation Systems (GTS) [8] are widely used as the formal founda-
tion for model transformation approaches. In GTS, models are represented by typed at-
tributed graphs, and the conformance relation between models and metamodels is given
by a typing morphism. In DPF, models and metamodels are additionally equipped with
a set of constraints, and a model conforms to a metamodel if there exists a typing mor-
phism that satisfies the constraints in the metamodel. In the context of model transfor-
mation, we extend GTS by adding support for transformation of the constraints which
come additional to the graph structure of the models.

Triple Graph Grammar (TGG) [12,7] is a GTS-based approach which is suitable
for language translation. A triple graph consists of a source and a target graph that are
related via a correspondence graph and two graph homomorphisms from the correspon-
dence graph to the source and target graphs. In this way, the source and target graphs
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Table 5. Rules for the transformation of attached constraints

L R

Rule r5. [inverse] and [surjective] to
[foreign-key], [image-equal], [total] and [jointly-injective]

1:C

1:R

[surj]

1:T 1:Col
[pk]

Int:DTt

2:C

2:R

2:T 2:Col
[pk]

[inv]

Int:DTt

1:C

1:R

[surj]

1:T
[pk]

1:Col Int:DT
t

3:T
•
3:Col

•
4:Col

2:C

2:R

2:T
[pk]

2:Col Int:DT
t

[inv]
[fk]

[fk]

[ie]

[ji]

Rule r6. [composition] and [subset] to [join] and [subset]

1:C

1;2:R

3:R
1:R

1:T
[pk]

1:Col Int:DT
t

4:T
•
4:Col

•

5:Col

6:T
•

8:Col

•

9:Col

2:C

2:R

2:T 2:Col
[pk]

Int:DTt

[fk]

[fk]

•
[⊑]

[ji]

5:T
•
6:Col

•
7:Col

3:C 3:T 3:Col
[pk]

Int:DTt

[fk]

[fk]

[ji]

[fk]

[fk]

[ji]

1:C

1;2:R

3:R
1:R

1:T
[pk]

1:Col Int:DT
t

4:T
•
4:Col

•

5:Col

6:T
•

8:Col

•

9:Col

h[⊑]

2:C

2:R

2:T 2:Col
[pk]

Int:DTt f :T

u

v

[jk]

[jk]

•
[⊑]

[i7]

[io7n]

5:T
•
6:Col

•
f :Col

3:C 3:T 3:Col
[pk]

Int:DTt

[jk]

[jk]

[i7]

[jk]

[jk]

[i7]

are joined into a single structure thus providing a basis for consistent co-evolution of
the graphs [7]. The use of correspondence graphs allows to relate a node (arrow) in the
source graph with a node (arrow) in the target graph and to constrain these simple rela-
tions by means of OCL. Similar to TGG, in DPF a joined metamodel is used to describe
relations between the source and target metamodels. The difference is however that we
can define and constrain, in a diagrammatic way, arbitrary complex relations between
source and target metamodel elements, e.g. the commutativity constraint in Fig. 6.

The Visual Modeling and Transformation System (VMTS) [13] is an n-layer meta-
modelling environment which supports editing models according to their metamodels
and allows specifying OCL constraints. VMTS provides a graph transformation-based
approach to model transformations in which models are formalised as directed, labelled
graphs. Moreover, OCL constraints are used to control the execution of transformations.
The input and output patterns of transformation rules use metamodel elements; mean-
ing that an instantiation of the input pattern must be found in the source graph instead
of an isomorphic subgraph of the pattern. These patterns are guarded by pre- and post-
conditions. Before the execution of each transformation rule, the pre-conditions are
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checked and used to narrow down the set of matches. After execution of each rule, the
post-conditions are checked against the output of the rule. In this way, if a rule exe-
cutes successfully it can be asserted that the transformation has resulted in the expected
output. The DPF-based approach is different in that constraints are not used only for
controlling the matches, but they can also be transformed from the source models to
target models. In DPF terms, this means that VTMS can be seen as transforming the set
of constraints CS2 while ignoring CS1 .

An approach to the analysis of graph transformation rules based on an intermedi-
ate OCL representation is presented in [3]. The semantics of rules together with their
properties (such as rule applicability, conflict or independence) are transformed into
OCL expressions. While these OCL expressions are combined with structural- and at-
tached OCL constraints during the analysis process, the attached OCL constraints are
not shown to be transformed. In the DPF-based approach attached OCL constraints
and structural constraints are integrated in modelling formalisms, facilitating a uniform
transformation of these constraints.

The approach proposed in [10] employs transformation rules to preserve the seman-
tics of UML/OCL class diagrams when using the refactoring rule moveAttribute.
The DPF-based approach is more generic in the sense that it can be used for the defini-
tion of transformation rules between constrained models which are specified by differ-
ent modelling languages.

5 Conclusion and Future Work

This paper proposes a formal approach to the definition of constraint-aware model
transformation which is applied to language translation. This is possible due to the di-
agrammatic formalisation of MOF-based modelling languages in which attached OCL
constraints are integrated in modelling formalisms.

In this approach, the process of model transformation is organised into three steps.
Firstly, the source and target modelling languages are joined together; i.e. a joined meta-
model is created. Secondly, the transformation rules are declared as input and output
patterns which are typed over the joined metamodel. The input and output patterns of
the transformation rules are diagrammatic specifications; and the morphisms between
input and output patterns as well as their matches are formalised as constraint- and type
preserving specification morphisms. Hence, constraints can be added to the input pat-
terns, and these constraints can be used to control (i) which structure to create in the
target model and (ii) which constraints to add to the created structure. Thirdly, the model
transformation is applied as follows. The source model is extended to an intermediate
model which is typed over the joined metamodel. Next, the transformation rules are
iteratively applied to the intermediate model. Finally, the target model is obtained by
projection. The approach exploits existing machinery from category theory to formalise
constraint-aware model transformations. More precisely, pushout construction is used
for the application of transformation rules, and pullback construction is used for the
projection of target models.
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In a future study, we will analyse scheduling and controlling application of
constraint-aware transformation rules building upon our previous work described
in [22]. Furthermore, analysing to what extent our approach is suitable for bidirectional
transformations is part of our current research.
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