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Foreword

ETAPS 2010 was the 13th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that was
established in 1998 by combining a number of existing and new conferences. This
year it comprised the usual five sister conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 19 satellite workshops (ACCAT, ARSPA-WITS, Bytecode, CMCS,
COCV, DCC, DICE, FBTC, FESCA, FOSS-AMA, GaLoP, GT-VMT, LDTA,
MBT, PLACES, QAPL, SafeCert, WGT, and WRLA) and seven invited lec-
tures (excluding those that were specific to the satellite events). The five main
conferences this year received 497 submissions (including 31 tool demonstration
papers), 130 of which were accepted (10 tool demos), giving an overall accep-
tance rate of 26%, with most of the conferences at around 24%. Congratulations
therefore to all the authors who made it to the final programme! I hope that most
of the other authors will still have found a way of participating in this exciting
event, and that you will all continue submitting to ETAPS and contributing to
make of it the best conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice are
represented, with an inclination toward theory with a practical motivation on the
one hand and soundly based practice on the other. Many of the issues involved
in software design apply to systems in general, including hardware systems, and
the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2010 was organised by the University of Cyprus in cooperation with:

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

and with support from the Cyprus Tourism Organisation.



VI Foreword

The organising team comprised:

General Chairs: Tiziana Margaria and Anna Philippou
Local Chair: George Papadopoulos
Secretariat: Maria Kittira
Administration: Petros Stratis
Satellite Events: Anna Philippou
Website: Konstantinos Kakousis.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Parosh Abdulla (Uppsala), Luca
de Alfaro (Santa Cruz), Gilles Barthe (IMDEA-Software), Giuseppe Castagna
(CNRS Paris), Marsha Chechik (Toronto), Sophia Drossopoulou (Imperial
College London), Javier Esparza (TU Munich), Dimitra Giannakopoulou
(CMU/NASA Ames), Andrew D. Gordon (MSR Cambridge), Rajiv Gupta
(UC Riverside), Chris Hankin (Imperial College London), Holger Hermanns
(Saarbrücken), Mike Hinchey (Lero, the Irish Software Engineering Research
Centre), Martin Hofmann (LM Munich), Joost-Pieter Katoen (Aachen), Paul
Klint (Amsterdam), Jens Knoop (Vienna), Shriram Krishnamurthi (Brown),
Kim Larsen (Aalborg), Rustan Leino (MSR Redmond), Gerald Luettgen
(Bamberg), Rupak Majumdar (Los Angeles), Tiziana Margaria (Potsdam),
Ugo Montanari (Pisa), Oege de Moor (Oxford), Luke Ong (Oxford), Fer-
nando Orejas (Barcelona) Catuscia Palamidessi (INRIA Paris), George Pa-
padopoulos (Cyprus), David Rosenblum (UCL), Don Sannella (Edinburgh), João
Saraiva (Minho), Michael Schwartzbach (Aarhus), Perdita Stevens (Edinburgh),
Gabriele Taentzer (Marburg), and Martin Wirsing (LM Munich).

I would like to express my sincere gratitude to all of these people and
organisations, the Programme Committee Chairs and members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer for agreeing to publish the
ETAPS proceedings in the ARCoSS subline.

Finally, I would like to thank the organising Chair of ETAPS 2010, George
Papadopoulos, for arranging for us to have ETAPS in the most beautiful sur-
roundings of Paphos.

January 2010 Vladimiro Sassone



Preface

This volume contains the papers accepted for presentation at FASE 2010, the
13th International Conference on Fundamental Approaches to Software Engi-
neering, which was held in Paphos, Cyprus, in March 2010 as part of the annual
European Joint Conference on Theory and Practice of Software (ETAPS). As
with previous editions of FASE, this year’s papers present foundational contri-
butions and results on a broad range of topics in software engineering, including
requirements engineering, software architectures, model-based and model-driven
development, program analysis, testing, debugging, verification, and evolution.

This year we received 103 submissions, of which 25 were accepted by the Pro-
gram Committee for presentation at the conference, resulting in an acceptance
rate of 24.3%. The submissions comprise 96 research papers and 7 tool demon-
stration papers, and the Program Committee accepted 24 of the research papers
and 1 of the tool demonstration papers. Each paper received a minimum of
three reviews, and acceptance decisions were reached through email discussions
conducted with the Program Committee. We used the free conference manage-
ment system EasyChair to manage the paper submissions, reviews, and email
communication with the authors and Program Committee.

We are also delighted to have welcomed Mark Harman of King’s College
London as the FASE keynote speaker at ETAPS 2010. Mark is well known as
the pioneer of search-based software engineering, which employs heuristic search
techniques such as genetic algorithms to find efficient solutions for a wide variety
of complex problems in software engineering, as diverse as test suite minimization
and software project staffing.

The success of a conference like FASE 2010 depends on the contribution and
support of many people. First, we thank the authors for continuing to produce
interesting and timely research in software engineering, ensuring that FASE re-
mains a key venue for the most important research results in the field. We also
extend a very warm thanks to our Program Committee, who worked very hard
under a tight schedule to produce thorough, detailed reviews for the authors and
to achieve consensus on paper acceptance decisions. We thank Marsha Chechik
and Vladimiro Sassone, the respective Chairs of the FASE and ETAPS Steering
Committees, for providing all the information and support we needed for our
work as Chairs. We thank the sponsors of ETAPS and FASE, namely EACTS
and EASST. We thank Stefan Jurack and Gerd Wierse for their expert help
in assembling this proceedings, and also the staff at Springer for their helpful
collaboration and quick turnaround on the proceedings. Finally, we extend our
best wishes to the chairs of FASE 2011, Dimitra Giannakopoulou and Fernando
Orejas. We sincerely hope you enjoy these proceedings!

January 2010 David S. Rosenblum
Gabriele Taentzer
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Bernard Lambeau
Ahmed Lamkanfi
Marius Lauder
Sven Lauder
Mark Lawford
Leonardo Mariani
Narciso Marti-Oliet
Maik Merten
Björn Metzler
Gergely Mezei
Patrick Mukherjee
Muhammad Naeem
Johannes Neubauer
Stefan Neumann
Fernando Orejas

Lucian Patcas
Lars Patzina
Patrizio Pelliccione
Gergely Pintér
Matteo Pradella
Zvonimir Rakamaric
Alexander Reder
Sebastian Rose
Thomas Ruhroth
Neha Rungta
István Ráth
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Modeling Concepts

Prescriptive Semantics for Big-Step Modelling Languages . . . . . . . . . . . . . 158
Shahram Esmaeilsabzali and Nancy A. Day

A Modular Model Composition Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Pierre Kelsen and Qin Ma

A Verifiable Modeling Approach to Configurable Role-Based Access
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Dae-Kyoo Kim, Lunjin Lu, and Sangsig Kim

Incremental Consistency Checking of Dynamic Constraints . . . . . . . . . . . . 203
Iris Groher, Alexander Reder, and Alexander Egyed

Verification

Proving Consistency and Completeness of Model Classes Using Theory
Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Ádám Darvas and Peter Müller

Automatic Cross Validation of Multiple Specifications: A Case Study . . . 233
Carlo Ghezzi, Andrea Mocci, and Guido Salvaneschi

An Automata-Theoretic Approach to Hardware/Software
Co-verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Juncao Li, Fei Xie, Thomas Ball, Vladimir Levin, and
Con McGarvey

Program Analysis

Shape Refinement through Explicit Heap Analysis . . . . . . . . . . . . . . . . . . . 263
Dirk Beyer, Thomas A. Henzinger, Grégory Théoduloz, and
Damien Zufferey

Memory Leaks Detection in Java by Bi-abductive Inference . . . . . . . . . . . 278
Dino Distefano and Ivana Filipović
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Why the Virtual Nature of Software Makes It
Ideal for Search Based Optimization

Mark Harman

CREST, King’s College London, Strand, London,
WC2R 2LS, United Kingdom

Abstract. This paper1 provides a motivation for the application of
search based optimization to Software Engineering, an area that has
come to be known as Search Based Software Engineering (SBSE). SBSE
techniques have already been applied to many problems throughout the
Software Engineering lifecycle, with new application domains emerging
on a regular basis. The approach is very generic and therefore finds
wide application in Software Engineering. It facilitates automated and
semi-automated solutions in situations typified by large complex problem
spaces with multiple competing and conflicting objectives. Previous work
has already discussed, in some detail, the advantages of the SBSE ap-
proach for Software Engineering. This paper summarises previous work
and goes further, by arguing that Software Engineering provides the
ideal set of application problems for which optimization algorithms are
supremely well suited.

Keywords: SBSE, Search Based Optimization, Search Based Testing,
Metaheuristic Search, Optimization Algorithms.

1 Introduction

We often speak of ‘Software Engineering’ without thinking too deeply about
what it means to have a discipline of ‘engineering’ that considers the primary
material to be ‘software’. By considering both the ‘engineering’ aspects of ‘Soft-
ware Engineering’ and also the unique properties of ‘software’ as an engineering
material, this paper makes an argument that search based optimization tech-
niques are ideally suited to Software Engineering.

That is, though all other engineering disciplines have also provided rich sources
of application for search based optimization, it is in its application to problems
in Software Engineering that these techniques can find greatest application. This
acts as a secondary motivation for the field of SBSE. The primary motivation
1 This paper is written to accompany the author’s keynote presentation at Fundamen-

tal Approaches to Software Engineering (FASE 2010). The talk provides an overview
of SBSE and its applications and motivation. The paper focuses on the argument
that the virtual nature of software makes it ideal for SBSE, since other aspects of
SBSE mentioned in the FASE keynote have been covered by the author’s previous
keynotes and invited papers.

D.S. Rosenblum and G. Taentzer (Eds.): FASE 2010, LNCS 6013, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 M. Harman

for SBSE comes from the simple observation that these techniques do, indeed,
apply well in other engineering disciplines and that, therefore, should we wish to
regard Software Engineering as truly an engineering discipline, then it would only
be natural to consider the application of search based optimization techniques.
This form of advocacy for SBSE has been put forward by this and other authors
before [CDH+03, HJ01, Har07b, Har07a, Har07c].

The acceptance of SBSE as a well-defined and worthwhile activity within the
rich and diverse tapestry of Software Engineering is reflected by the increasing
number of survey papers on SBSE [ABHPW10, ATF09, HMZ09, McM04, Räi09].
Further evidence for widespread interest and uptake, comes from the many spe-
cial issues, workshops and conferences on the topic. However, this paper seeks
to go a step further. It argues that Software Engineering is not merely an ac-
ceptable subject for the application of search based optimization, but that it is
even better suited than all other areas of engineering activity, as a result of the
very special properties of software as an engineering material.

2 Overview of SBSE

The existing case for SBSE in the literature rests upon the observation that

“Software engineers often face problems associated with the balancing
of competing constraints, trade-offs between concerns and requirement
imprecision. Perfect solutions are often either impossible or impractical
and the nature of the problems often makes the definition of analytical
algorithms problematic.”[HJ01]

The term SBSE was first used by Harman and Jones [HJ01] in 2001. The
term ‘search’ is used to refer to the metaheuristic search–based optimization
techniques. Search Based Software Engineering seeks a fundamental shift of em-
phasis from solution construction to solution description. Rather than devoting
human effort to the task of finding solutions, the search for solutions is automated
as a search, guided by a fitness function, defined by the engineer to capture what
is required rather than how it is to be constructed. In many ways, this approach
to Software Engineering echoes, at the macro level of Software Engineering arte-
facts, the declarative programming approach [DB77], which applies at the code
level; both seek to move attention from the question of ‘how’ a solution is to be
achieved to the question of ‘what’ properties are desirable.

Harman and Jones argued that SBSE could become a coherent field of activity
that combines the expertise and skills of the Metaheuristic Search community
with those of the Software Engineering community. Though there was previous
work on the application of search based optimization to Software Engineering
problems [CCHA94, JES98, TCM98, XES+92], the 2001 paper was the first to
articulate SBSE as a field of study in its own right and to make a case for its
wider study.

Since the 2001 paper, there has been an explosion of SBSE activity, with
evidence for a rapid increase in publications on the topic [HMZ09]. For ex-
ample, SBSE has been applied to testing [BSS02, Bot02, BLS05, GHHD05,
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HHH+04, MHBT06, WBS01], bug fixing [AY08, WNGF09] design, [HHP02,
MM06, SBBP05], requirements, [BRSW01, ZFH08], project management [AC07,
ADH04, KSH02] and refactoring. [OÓ06, HT07]. There have been SBSE special
issues in the journals Information and Software Technology (IST),
Software Maintenance and Evolution (JSME) and Computers and Operations
Research (COR) with forthcoming special issues in Empirical Software Engineer-
ing (EMSE), Software Practice and Experience (SPE), Information and Soft-
ware Technology (IST) and IEEE Transactions on Software Engineering (TSE).
There is also an established Symposium on Search Based Software Engineering
(SSBSE), a workshop on Search Based Software Testing (SBST) and a dedi-
cated track of the Genetic and Evolutionary Computation COnference (GECCO)
on SBSE.

2.1 All You Need Is Love of optimization; You Already Have
Representation and Fitness

Getting initial results from SBSE is relatively straightforward. This has made
SBSE attractive to researchers and practitioners from the Software Engineering
community. Becoming productive as a Search Based Software Engineer does not
required a steep learning curve, nor years of apprenticeship in the techniques,
foundations and nomenclature of Optimization Algorithms. It has been stated
[Har07d, HJ01] that there are only two key ingredients required:

1. The choice of the representation of the problem.
2. The definition of the fitness function.

Of course, a Software Engineer is very likely to have, already at their disposal,
a workable representation for their problem. Furthermore, Harman and Clark
argue that

“Metrics are Fitness functions too”[HC04].

They argue that the extensive body of literature on metrics and software
measurement can be mined for candidate fitness functions. This would allow
Software Engineers to optimize according to software measurements, rather than
merely to passively measure software artefacts. Though every metric may not be
effective, because some may fail to measure what they claim to measure [She95],
this need not be a problem. Indeed, one of the attractive aspects of metrics
as fitness functions, is that such failings on the part of the metrics will become
immediately evident through optimization. Harman and Clark show that there is
a close connection between metrics as fitness functions and empirical assessment
of the representation condition of software measurement.

2.2 Algorithms

The most widely used algorithms in SBSE work have, hitherto [HMZ09], been
local search, simulated annealing genetic algorithms and genetic programming.
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However, other authors have experimented with other search based optimizers
such as parallel EAs [AC08], evolution strategies [AC05], Estimation of Distri-
bution Algorithms (EDAs) [SL08], Scatter Search [BTDD07, AVCTV06, Sag07],
Particle Swarm Optimization (PSO) [LI08, WWW07], Tabu Search [DTBD08]
and Local search [KHC+05].

3 Why Software Engineering is the ‘Killer Application’
for Search Based Optimization

Previous work has considered the motivation for SBSE in terms of the advantages
it offers to the Software Engineer. For instance it has been argued [HMZ09,
Har07b] that SBSE is

1. Scalable, because of the ‘embarrassingly parallel’ [Fos95] nature of the un-
derlying algorithms which can yield orders of magnitude scale up over se-
quential implementations [LB08].

2. Generic, due to the wide prevalence of suitable representations and fitness
functions, right across the Software Engineering spectrum.

3. Robust, due to the ability of search based optimization to cope with noise,
partial data and inaccurate fitness.

4. Insight-rich, as a result of the way in which the search process itself can
shed light on the problems faced by decision makers.

5. Realistic, due to the way in which SBSE caters naturally for multiple com-
peting and conflicting engineering objectives.

These five features of SBSE are important and have been described in more de-
tail elsewhere [HMZ09, Har07b]. However, most are reasons for the use of search
based optimization in general. They apply equally well to any class of optimiza-
tion problems, both within and without the field of Software Engineering. This
does not make them any less applicable to Software Engineering. However, it
does raise the question as to whether there are any special software-centric rea-
sons why SBSE should be considered to be an attractive, important and valuable
field of study in its own right. That is, we ask:

Are there features of Software Engineering problems that make search
based optimization particularly attractive?

Perhaps unsurprisingly, the author’s answer to this question is: ‘yes’. The rest
of this paper seeks to explain why.

In more traditional engineering disciplines, such as mechanical, biomedical,
chemical, electrical and electronic engineering, search based optimization has
been applied for many years [BW96, CHS98, LT92, PCV95]. These applica-
tions denote a wide spectrum of engineering activity, from well-established tra-
ditional fields of engineering to more recent innovations. However, for each, it
has been possible and desirable, to optimize using search based optimization.
This is hardly surprising. After all, surely engineering is all about optimization.
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When we speak of finding an engineering solution, do we not include balanc-
ing competing practical objectives in the best way possible? It should not be
surprising, therefore, that optimization algorithms play a very important role.

In all of these fields of engineering, the application of optimization techniques
provides the engineer with a mechanism to consider many candidate solutions,
searching for those that yield an acceptable balance of objectives. The advent
of automatic high speed computation in the past sixty years has provided a
huge stimulus to the optimization community; it has allowed this search to be
automated. Guided by a fitness function, automated search is one of the most
profitable and archetypal applications of computation. It allows a designer to
focus on the desired properties of a design, without having to care about imple-
mentation details.

It is the advent of software and the platforms on which it executes that has fa-
cilitated enormous breakthroughs in optimization methods and techniques. How-
ever, it is only comparatively recently that Software Engineering has started to
catch up with this trend within the wider engineering community. This seems
curious, since search based optimization can be viewed as a software technology.
Perhaps it reflects the comparatively recent realization that the activity of de-
signing and building software-based systems is, indeed, an engineering activity
and thus one for which an optimization-based world view is important.

When we speak of software we mean more than merely the code. We typically
include requirements, designs, documentation and test cases. We also include the
supporting logical infrastructure of configuration control, development environ-
ments, test harnesses, bug tracking, archives and other virtual information-based
resources that form part of the overall system and its development history. The
important unifying property of all of this information is that it is purely logical
and without any physical manifestation. As every software engineer knows, soft-
ware is different from every other engineering artefact; very different. One cannot
see, hear, smell, touch nor taste it because it has no physical manifestation.

This apparently trite observation is so obvious that its importance can some-
times be overlooked, for it is precisely this virtual nature of software makes it
even better suited to search based optimization than traditional engineering arte-
facts. The materials with which we perform the automated search are made of
the same ‘virtual stuff’ as the artefacts we seek to optimize. This has profound
implications for the conduct of search based optimization because it directly
impacts the two key ingredients of representation and fitness (see Figure 1).

In traditional engineering optimization, the artefact to be optimized is often
simulated. This is typically necessary precisely because the artefact to be op-
timized is a physical entity. For instance, if one wants to optimize an aircraft
engine, one cannot search the space of real engines; building even a small subset
of such candidate engine designs would be prohibitively expensive. Rather, one
builds a model of the engine (in software), capturing, hopefully realistically and
correctly, those aspects of performance that are of interest. Furthermore, in or-
der to compute fitness, some form of simulation of the model is required. This
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Fig. 1. Direct Application of Optimization is Possible with SBSE

allows us to explore the space of possible engine models, guided by a simulation
of their likely real fitness.

Modeling and simulation create two layers of indirection and consequent po-
tential for error. The model may not be entirely accurate. Indeed, if we are able
to build a perfect model, then perhaps we would know so much about the en-
gineering problem that we would be less likely to need to employ optimization.
The fitness of each candidate model considered is calculated indirectly, in terms
of the performance of the model with respect to some simulation of its real world
behaviour. Once again, this introduces indirection and with it, the potential for
error, imprecision and misunderstanding.

Contrast this traditional, physical engineering scenario with that of SBSE.
For instance, consider the widely studied problem of finding test data. Suppose
we wish to find test inputs that traverse a chosen branch of interest [ABHPW10,
HMZ09, McM04]. For this problem there is no need for a model of the software
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to be tested nor the test case to be applied. Rather than modeling the test case,
the optimization is applied directly to a vector which is the input to the program
under test. Furthermore, in order to compute fitness, one need not simulate the
execution, one may simply execute directly.

Of course, some instrumentation is required to facilitate fitness assessment.
This can create issues for measurement if, for example, non–functional properties
are to be optimized [ATF09, HMZ09]. These bear a superficial similarity to those
present with simulations. The instrumented program is not the real program; it
could be thought of as a kind of model. However, the instrumented program is
clearly much closer to the original program under test than a simulation of an
engine is to a real physical engine.

Furthermore, many software testing objectives, such as structural test adequacy
criteria [ABHPW10, HMZ09, McM04], are entirely unaffected by instrumentation
and so there is no indirection at all. This observation applies in many aspects of
software engineering. The problem of finding suitable sets of requirements oper-
ates on the requirements sets themselves. This is also true for optimization of re-
gression test sets and for optimization of project plans and architectures.

Of course, there are some aspects of software systems which are modeled. In-
deed, there is an increasing interest in model driven development. When SBSE
is applied to these models, at the design level [Räi09], it may be the case that
search based optimization for Software Engineering acquires a closer similarity
to search based optimization for traditional engineering. Nevertheless, there will
remain many applications for which SBSE is ideally suited to the problem be-
cause the engineering artefact is optimized directly (not in terms of a model)
and the fitness is computed directly from the artefact itself (not from a simula-
tion thereof).

4 Conclusions

Search Based Software Engineering (SBSE) is a newly emergent paradigm for
both Software Engineering community and the Metaheuristic Search and op-
timization communities. SBSE has had notable successes and there is an in-
creasingly widespread application of SBSE across the full spectrum of Software
Engineering activities and problems. This paper is essentially a ‘position paper’
that argues that the unique ‘virtual’ property of software as an engineering ma-
terial makes it ideally suited among engineering materials for search based opti-
mization. Software Engineers can build candidate Software Engineering artefacts
with comparative ease and little cost compared to traditional engineers, faced
with physical artefact construction and consequent cost. In general, the Software
Engineer can also measure fitness directly, not in terms of a (possibly imprecise
or misrepresented) simulation of real world operation.
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Abstract. This paper introduces a formal approach to the definition of cons-
traint-aware model transformations. The proposed approach is based on the Di-
agram Predicate Framework and extends graph transformations with the ability
to handle constraints in the definition and execution of model transformations.
In particular, it uses non-deleting rules that are typed over the metamodel of a
joined modelling language which is constructed from the source and target lan-
guages. Furthermore, the application of transformation rules is formalised as a
pushout construction that creates a model which is typed over the metamodel
of the joined modelling language. Finally, the target model is obtained from the
created model by a pullback construction.

1 Introduction and Motivation

Models are first-class entities of the software development process in Model-Driven
Engineering (MDE) and undergo a complex evolution during their life-cycles. In this
regard, model transformation is one of the key techniques which is used to automate
several model-based activities such as code generation, refactoring, optimisation, lan-
guage translation etc. [23].

A general definition of model transformation given in [11] and further generalised
in [15] is as follows. A transformation is the automatic generation of target models from
source models, according to a transformation definition. A transformation definition is
a set of transformation rules that together describe how a model in the source language
can be transformed into a model in the target language. A transformation rule is a
description of how one or more constructs in the source language can be transformed
into one or more constructs in the target language.

Several classifications of model transformations are given in [4,15]. A first classifi-
cation is based on whether the transformation is used to transform models specified by
one modelling language, called homogeneous transformation, or models specified by
different modelling languages, called heterogeneous transformation. The former class
of transformations is suitable for model refactoring and optimisation [1], while the lat-
ter is suitable for language translation. A second classification is based on whether the
target model is created from scratch, called out-place, or the source model is modified
in order to obtain the target model, called in-place. A third classification is based on the
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Fig. 1. Constraints in MOF-based modelling languages and DPF: (a) structural constraints in
UML (b) attached OCL constraints (c) integration of constraints in DPF

underlying technique which is used to carry out the transformations, e.g. logic program-
ming, functional programming, graph transformation, etc. The approach introduced in
this paper is classified under heterogeneous, out-place and graph-transformation based
transformation.

In the context of MDE, models are typically specified by means of modelling lan-
guages such as the Unified Modeling Language (UML) [17]. Each of these modelling
languages has a corresponding metamodel – a model that defines the abstract syntax
of models which can be specified by the modelling language. These metamodels, in
turn, are specified by means of a metamodelling language called the Meta-Object Fa-
cility (MOF) [16]. MOF-based modelling languages allow the specification of simple
constraints such as multiplicity and uniqueness constraints, hereafter called structural
constraints. These constraints are usually specified by properties of classes in the meta-
model of the modelling language. For instance, the requirement “a person is the child of
exactly two parents” in a UML model can be forced by a multiplicity constraint which
uses the properties lower and upper of the class Property of the UML metamodel
(see Fig. 1a). Instances of the UML model should satisfy this multiplicity constraint.
However, these structural constraints may not be sufficient to meet complex require-
ment’s specifications. Hence, textual constraint languages such as the Object Constraint
Language (OCL) are usually used to define complex constraints, hereafter called at-
tached OCL constraints. For instance, the requirement “a person can not be a child of
her/himself” in a UML model can only be forced by an OCL expression (see Fig. 1b).

While existing model transformation techniques always take into account structural
constraints, they often ignore the attached OCL constraints [14,18]. This is because
model transformation rules are defined over metamodel elements while attached OCL
constraints are defined in a different technical space. This problem is closely related to
the fact that the conformance relation between models and metamodels is not formally
defined for MOF-based modelling languages [5,19], especially when OCL constraints
are involved [2].

In this paper, a solution to this challenge is proposed. The solution is based on the
Diagram Predicate Framework (DPF) [21,20,22] and reuses the diagrammatic formal-
isation of MOF-based modelling languages described in [21]. DPF provides a for-
mal diagrammatic approach to (meta)modelling and model transformation based on
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category theory [9]. The proposed approach to model transformation provides an ex-
tension to the formal framework of graph transformations [8] in the sense that it can
be used to transform models as well as attached OCL constraints. This is done by in-
tegrating structural constraints and attached OCL constraints in modelling formalisms
which represent the formalisation of MOF-based modelling languages (see Fig. 1c for
an intuition).

The DPF-based approach to model transformation introduces the concept of constra-
int-aware model transformation; i.e. a model transformation technique which supports
specifying constraints in input and output patterns and using these constraints to control
(i) which structure to create in the target model and (ii) which constraints to impose on
the created structure. The first step in this approach consists of creating a joined mod-
elling language which consists of a combination of the source and the target modelling
languages; i.e. a joined metamodel is created (see Fig. 2). The second step consists of
defining constraint-aware model transformation rules which are typed over the joined
metamodel. The model transformation is applied in a final step as follows: extending a
source model which conforms to the source metamodel to an intermediate model which
is typed over the joined metamodel, iterative application of the transformation rules,
and projection of a target model which conforms to the target metamodel.

A running example is used to illustrate our approach. It presents a transformation
of an object-oriented structural model to a relational data model. In this example, the
syntax used for the definition of the transformation rules is the same as the syntax used
to specify the (meta)models.

The remainder of the paper is organised as follows. Section 2 reviews our diagram-
matic formalisation of MOF-based modelling languages. Section 3 presents the details
of our model transformation approach. In Section 4, a comparison of our approach with
other graph transformation-based approaches to model transformation is given. Finally,
in Section 5 some concluding remarks and ideas for future work are presented.

2 Diagram Predicate Framework

In DPF, models are formalised as diagrammatic specifications. A diagrammatic spec-
ification S = (GS , CS) consists of an underlying graph GS decorated by a set of
constraints CS . The graph represents the structure of the model, and predicates from
a predefined diagrammatic predicate signature are used to impose constraints on the
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model. In this paper, we use the terms “model” and “specification” interchangeably.
The formal definitions are as follows:

Definition 1 (Signature). A (diagrammatic predicate) signatureΣ := (Π,α) consists
of a collection of predicate symbols Π with a mapping α that assigns a graph to each
predicate symbol p ∈ Π . α(p) is called the arity of the predicate symbol p.

Definition 2 (Constraint). Given a signature Σ = (Π,α), a constraint (p, δ) on a
graphG is given by a predicate symbol p and a graph homomorphism δ : α(p)→ G.

Definition 3 (Σ-specification). Given a signature Σ = (Π,α), a (diagrammatic) Σ-
specification S := (GS , CS) is given by a graphGS and a set CS of constraints (p, δ)
on GS with p ∈ Π .

Example 1. Let us consider an information system for the management of employees
and projects. At any state of the system the following requirements should be satisfied.

1. An employee must work for at least one department.
2. A department may have none or many employees.
3. A project may involve none or many employees.
4. A project must be controlled by at least one department.
5. An employee involved in a project must work in the controlling department.

Project

Department[inv]

empDeps

depEmps

Employee

proEmps proDeps

proDeps;depEmps

[1..∞]

[surj]

[⊑]
[1..∞]

Fig. 3. A Σstruct-specification S = (GS , CS)

Fig. 3 shows a Σstruct-specification S = (GS , CS) which specifies a structural
model compliant with the requirements above. Table 1 shows the signature Σstruct.
Here we present how two of the above mentioned requirements are specified in S
using the predicates from Σstruct. In particular we present a requirement which can
be specified by means of structural constraints in UML syntax; as well as a require-
ment which demands the usage of attached OCL constraints (see [21] for a compari-
son of the UML/OCL- and DPF-based models of a similar system). The requirement
“an employee must work for at least one department” is forced in S by the predicate
[mult(1,∞)] on the arrow empDeps. Furthermore, the requirement “an employee
involved in a project must work in the controlling department” is forced in S by using
the predicates[composition] and[subset] on the arrowsproDeps;depEmps
and proEmps.
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Table 1. The signature Σstruct

p αstruct(p) Proposed visual. Intended semantics

[mult(n,m)] 1
f �� 2 X

f

[n..m]
�� Y ∀x ∈ X : n ≤ |f(x)| ≤ m

[irreflexive] 1
f��

X
f

[irr] ��
∀x ∈ X : x /∈ f(x)

[injective] 1
f �� 2 X

f

[inj]
�� Y ∀x, x′ ∈ X : f(x) = f(x′) implies

x = x′

[surjective] 1
f �� 2 X

f

[surj]
�� Y f(X) = Y

[jointly-
injective]

1
f ��

g

��

2

3

X
f ��

g

��

[ji]

Y

Z

∀x, x′ ∈ X : f(x) = f(x′) and
g(x) = g(x′) implies x = x′

[inverse] 1
f

��
2

g

�� X

f
��

Y
g

		 [inv] ∀x ∈ X , ∀y ∈ Y : y ∈ f(x) iff
x ∈ g(y)

[composition] 1
f ��

h


�

��
��

��
2
g

��
3

X
f ��

f ;g


�

��
��

��
Y

g

��
Z

∀x ∈ X : f ; g(x) =
⋃{g(y) | y ∈

f(x)}

[subset] 1
f

��

g

�� 2 X

f
��

g

��[�]


Y ∀x ∈ X : f(x) ⊆ g(x)

Note that, any OCL-constraint that can be seen as a “sort-wise” property; i.e. prop-
erties of sets, functions, or diagrams of sets and functions as a whole, can be specified
in DPF. This is because DPF is based on category theory which is centred around sort-
wise properties. A precise characterisation of non-sort-wise OCL-constraints is an open
issue which is part of our current research.

In DPF, we distinguish between two types of conformance relations: typed over and
conforms to. A model is typed over a metamodel if its underlying graph is typed over
the underlying graph of the metamodel; i.e. each model element is assigned a type in
the metamodel by a typing morphism. In contrast, a model is said to conform to a meta-
model if it is typed over the metamodel and, in addition, it satisfies all the constraints
of the metamodel [21].

The definition of typedΣ-specification depends on the definition of Σ-specification
morphisms. These definitions will also be used in Section 3 in our approach to model
transformation. A specification morphism between two Σ-specifications is a graph ho-
momorphism which preserves constraints. In contrast, a typed specification morphism
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between two typedΣ-specifications is a specification morphism which respects the typ-
ing morphisms. The formal definitions are as follows:

Definition 4 (Σ-specification Morphism). A Σ-specification morphism f : S → S′
between two Σ-specifications S = (GS , CS) and S′ = (GS′ , CS′) is a graph homo-
morphism f : GS → GS′ preserving constraints, i.e. (p, δ) ∈ CS implies (p, δ; f) ∈
CS

′
for all constraints (p, δ) ∈ CS .

α(p) δ ��

δ;f ����
��

��
��

GS

f

��

=

GS
′

Definition 5 (TypedΣ-specification). AnH-typedΣ-specification S, i.e. aΣ-specifi-
cation typed over a graph H , is a Σ-specification S together with a graph homomor-
phism tS : GS → H . tS is called a typing morphism.

Definition 6 (Typed Σ-specification Morphism). A typed Σ-specification morphism
between two H-typed Σ-specifications S and S′ is a Σ-specification morphism ψ :
S → S′ such that ψ; tS′ = tS .

H

=

S

tS

��������� ψ �� S′

tS′
���������

In DPF, each modelling language is formalised as a modelling formalism which is
a triple F = (Σ2, S2, Σ3) [21]. The concepts of the modelling language are located
in the Σ3-specification S2; and the constraining constructs which are available for the
users of the modelling language are located in the signature Σ2.

Definition 7 (Modelling Formalism). A modelling formalism F = (Σ2, S2, Σ3) is
given by signatures Σ2 = (Π2, α2) and Σ3 = (Π3, α3), and a Σ3-specification S2 =
(GS2 , CS2). S2 is called the metamodel of F . An F -specification is a Σ2-specification
S1 = (GS1 , CS1) which conforms to S2.

Modelling
Formalism

Specification

Σ3
CS2

CS1

GS1

ιS1

Σ2 GS2

Predicates from the signature Σ3 are used to add constraints to the metamodel S2.
This corresponds to metamodel definition. These constraints should be satisfied by F -
specifications. Moreover, predicates from the signature Σ2 are used to add constraints
to F -specifications. This corresponds to model definition. These constraints should be
satisfied by instances of the F -specifications, in the same way as the F -specifications
should satisfy the metamodel constraints.
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For a given modelling formalism, the semantics of nodes and arrows have to be
chosen in a way which is appropriate for the corresponding modelling environment. For
structural models in object-oriented development, it is appropriate to interpret nodes as

sets and arrows X
f−→ Y as multi-valued functions f : X → ℘(Y ). The powerset

℘(Y ) of Y is the set of all subsets of Y , i.e. ℘(Y ) = {K | K ⊆ Y }. On the other
hand, for relational data models it is appropriate to interpret nodes as sets and arrows as
single-valued functions.

3 Model Transformation

This section describes the DPF-based approach to constraint-aware model transforma-
tion. The first step consists of creating a joined modelling formalism which enables the
specification of both source and target models. One way to achieve this is to construct
the disjoint union of the components of the source and target modelling formalisms.

Roughly speaking, given the source FS = (ΣS2 , S2, Σ
S
3 ) and the target FT =

(ΣT2 , T2, Σ
T
3 ) modelling formalisms (see Fig. 4a and Fig. 4c, respectively), a joined

modelling formalism F J = (ΣJ2 , J2, Σ
J
3 ) will be created (see Fig. 4b). In more de-

tail, the source and target metamodels are joined together to J2 := S2 � K2 � T2,
and the source and target signatures are joined together to ΣJ2 := ΣS2 � ΣT2 and
ΣJ3 := ΣS3 � ΣK3 � ΣT3 , where � denotes the disjoint union operation (see Exam-
ple 2). In J2, the componentK2 represents the correspondence between S2 and T2. In
most cases, the elements inK2 will be arrows connecting nodes in S2 and T2. However,
in some cases it may be convenient to have also auxiliary nodes in K2 and arrows con-
necting these nodes with elements in S2 and/or T2. In ΣJ3 , the componentΣK3 contains
additional predicates which are used to constrain elements of J2. The definitions ofK2
and ΣK3 should be done manually by transformation designers.

Although the transformation designer is free to relate any elements of the source
and target metamodels, there is a projection condition which should be satisfied by the
joined metamodel J2. The condition is that for any F J -specification J1, it should be
possible to construct an FS-specification S1 and an FT -specification T1 by pullback

Modelling
Formalism

Specification

(a)source (b) joined (c) target
ΣS3

CS2

ΣJ3
CS2 CT2

CJ2

ΣT3
CT2

ΣS2

CS1

GS2
jS2

GJ2 GT2
jT2

ΣT2

CT1

ΣJ2
CS1 CT1

CJ1

GS1
πS1

ιS1

GJ1

tJ1

GT1

ιT1

πT1

Fig. 4. Source, target and joined modelling formalisms
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GS2
� � jS2 �� GJ2 GT2� �

jT2��

GS1
� �

πS1
��

ιS1

��

P.B.

GJ1

tJ1

��

GT1� �

πT1
��

ιT1

��

P.B.

Fig. 5. Projection condition for the joined metamodel J2

ΣS
3 ΣJ

3 ΣT
3

ΣS
2 ΣJ

2 ΣT
2

S2 J2 T2

Σstruct⊎Σcorr Σstruct⊎

ΣrelΣstruct⊎

Σstruct Σstruct

Σstruct Σrel

C

R

[bij]

A [=]

T

Col
[1..∞]

DTs
[bij]

DTt

C

R

A

DT

T

Col
[1..∞]

DT

Fig. 6. Joining the modelling formalisms of structural models and relational data models

constructions as depicted in Fig. 5 (see [6] for a description and motivation for using
pullbacks in model transformation). In order to satisfy the projection condition, J2 must
be constrained by predicates from the signatureΣJ3 .

In the next example, we present a joined modelling formalism and show the con-
straints of J2 which are necessary to satisfy the projection condition.

Example 2. Fig. 6 shows a source modelling formalism FS = (ΣS2 , S2, Σ
S
3 ) for speci-

fying structural models; a target modelling formalism FT = (ΣT2 , T2, Σ
T
3 ) for specify-

ing relational data models; and their joined modelling formalism F J = (ΣJ2 , J2, Σ
J
3 ).

In particular, ΣS3 , Σ
T
3 , Σ

S
2 := Σstruct (see the signature Σstruct for structural models

in Table 1); ΣT2 := Σrel (see part of the signature Σrel for relational data models in
Table 2); ΣJ2 := Σstruct � Σrel; and ΣJ3 := Σstruct � Σcorr � Σstruct (see part of
the signature Σcorr for defining correspondence constraints in Table 3). In the source
metamodel S2, the arrows R and A stand for Reference and Attribute, respec-
tively; and the nodes C and DT stand for Class and DataType, respectively. In the
target metamodel T2, the arrow Col stand for Column; and the nodes T and DT stand
for Table and DataType, respectively. Note that the node DT is renamed to DTs and
DTt in the joined metamodel J2 by the disjoint union operation. The projection con-
dition is satisfied by constraining the arrows in J2 by the predicates [bijective]
and [commutative]. This means that for each class, a corresponding table should
be created. In addition, for each attribute belonging to a class, a corresponding column
belonging to the corresponding table should be created.
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Table 2. A part of the signature Σrel

p αrel(p) Proposed visual. Intended semantics

[total] 1
f �� 2 X •

f �� Y ∀x ∈ X : |f(x)| = 1

[primary-key] 1
f �� 2 X

f

[pk]
�� Y f is [total] and [injective]

[foreign-key] 1
f �� 2

3

g

�� X
f �� Y

Z

g

��
[fk] ��

f(X) ⊆ g(Y )

[image-equal] 1
f �� 2

3

g

�� X
f �� Y

Z

g

��
[ie]

f(X) = g(Z)

[join] 1
f �� 2

3
f ′

��

g′

��

4

g

�� X
f �� Y

XZ
f ′

��

g′

��

Z

g

��

[join]

∀x ∈ X , ∀z ∈ Z : (x, z) ∈
XZ iff f(x) = g(z)

3.1 Constraint-Aware Transformation Rules

The second step in our approach is the definition of constraint-aware transformation
rules. In each transformation rule, the input pattern is included in the output pattern.
The input and output patterns are ΣJ2 -specifications which are typed overGJ2 .

Definition 8 (Transformation Rules). Given a joined modelling formalism F J =
(ΣJ2 , J2, Σ

J
3 ), a transformation rule r : L ↪→ R is a GJ2 -typed ΣJ2 -specification

morphism between the input and output patterns L and R, with r being an inclusion.
GJ2

=

L

tL
����������

� � r �� R

tR
����������

In the following example, we illustrate our approach to the definition of transfor-
mation rules. Note that the output patterns of the transformation rules are not only
dependent on the structure of the input patterns, but also on the constraints.

Example 3. Building on Example 2, Table 4 outlines some of the transformation rules
which are used for the transformation of structural models to relational data models.
These rules are typed over the joined metamodel J2 shown in Fig. 6. Note that (1:C)
is a “user-friendly” notation for the typing assignment (t : 1 �→ C). In rule r1, each
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Table 3. A part of the signature Σcorr

p αcorr(p) Proposed visual. Intended semantics

[commutative] 1
f ��

g

��

2

g′

��
3

f ′
�� 4

X
f ��

g

��
[=]

Y

g′

��
Z

f ′
�� Æ

∀x ∈ X : g′(f(x)) = f ′(g(x))

[bijective] 1
f �� 2 X

f

[bij]
�� Y f is [mult(1,1)], [injecti-

ve] and [surjective]

class is transformed to a corresponding table. In rule r2, for each attribute a column is
created. The rules r3 and r4 are used to transform bidirectional references (or a pair of
inverse functions) between two classes to foreign keys between two tables. Notice that
the only difference between the input patterns of the rules r3 and r4 is the constraint
forced by the predicate [mult(0,1)] on the arrow 2:R. This constraint affects the
way in which a match of the input pattern is transformed to a match of the output
pattern. More precisely, since in r3 each 2:C is related to at most one 1:C, a foreign key
column 3:Col will be created which will refer to 1:Col. However, in r4 each 2:C may
be related to many 1:C and vice versa. Therefore, a link table 3:T is created with two
foreign key columns 3:Col and 4:Col. The contents of this link table may be seen as
tuples (1:DTt, 2:DTt).

3.2 Application of Model Transformation

The last step in our approach is the application of model transformation. In this step cat-
egorical constructions [7,9] such as pushout and pullback are exploited. The application
of a model transformation consists of iterative application of transformation rules.

Definition 9 (Application of Transformation Rules). Given a source model J1, an
application 〈r,m〉 of a transformation rule r : L ↪→ R via a matchm : L→ J1, where
m is a GJ2-typed ΣJ2 -specification morphism, is given by the pushout

L

m

��

� � r �� R

m∗

��
J1

� � 〈r,m〉 �� J ′1

P.O.

In the following, the procedure for transforming a source model S1 to a target model
T1 is outlined.

1. Extension of the source model. The source FS-specification S1 is extended to an
intermediate GJ2-typed ΣJ2 -specification J1. This transformation is given by the
composition ιS1 ; jS2 (see Fig. 4) which leads to J1 = S1 �K1 � T1 with bothK1
and T1 being empty specifications.
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2. Iterative application of the transformation rules. Upon the application of a rule
r : L ↪→ R, for a match of the input pattern L in J1 = S1 �K1 � T1, the K1 and
T1 parts will be extended by an appropriate copy of the new elements in R, i.e., by
those elements in R that are not already in L.

3. Obtaining the target model. The iterative application of transformation rules may
stop once an F J -specification J1 is constructed. The projection condition ensures
then that the pullback of the span GJ1 → GJ2 ←↩ GT2 (see Fig. 5) constructs an
FT -specification T1 which may be considered the target model.

In Table 4, we defined the transformation rules which were needed to transform struc-
tural models (with only structural constraints) to relational data models. What remains
to show now is the ability to define transformation rules which enable transformation
of more complex constraints such as the requirement 5 in Example 1.

Example 4. Building on Example 3, Fig. 7 shows the relational data model which
is created by applying the rules in Table 4 and 5 to the Σstruct-specification S
in Fig. 3. Recall that arrows in Σrel-specifications are interpreted as single-valued
functions. Hence, we do not need to add constraints to force single-valued functions.

Table 4. Rules for the transformation of structural models to relational data models

L R

Rule r1. Class to table

1:C 1:C 1:T 1:Col
[pk]

Int:DTt

Rule r2. Attribute to column

1:C

1:A

1:T 1:Col
[pk]

Int:DTt

1:DTs

1:C

1:A

1:T 1:Col
[pk]

2:Col

Int:DTt

1:DTs 1:DTt

Rule r3. Many-to-one reference to foreign key

1:C

1:R

1:T 1:Col
[pk]

Int:DTt

2:C

[0..1]

2:R

2:T 2:Col
[pk]

[inv]

Int:DTt

1:C

1:R

1:T
[pk]

1:Col Int:DT
t

2:C

[0..1]

2:R

1:T 2:Col
[pk]

3:Col

Int:DTt

[inv]
[fk]

Rule r4. Many-to-many reference to link table and foreign keys

1:C

1:R

1:T 1:Col
[pk]

Int:DTt

2:C

2:R

2:T 2:Col
[pk]

[inv]

Int:DTt

1:C

1:R

1:T
[pk]

1:Col Int:DT
t

3:T
•
3:Col

•
4:Col

2:C

2:R

2:T
[pk]

2:Col Int:DT
t

[inv]
[fk]

[fk]

[ji]
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TEmployee Int TDepartment

TProEmp TProDep

Int

TEmpDep

TProject

TProDepEmp

Int
[pk] [pk]

[fk]

[ji] [fk]

[fk] [fk]

[ji] [ji]

[fk]

[fk]

[⊑]

[join]

[ie]

[ie]

[pk]

Fig. 7. The target Σrel-specification resulting from the transformation of the Σstruct-
specification presented in Fig. 3

However, we use the predicate [total] from Σrel to add constraints which force to-
tal functions whenever necessary, for example columns for which a value is required.
The rule r5 in Table 5 is applied to the arrows empDeps and depEmps, and the
predicates [inverse] and [surjective] are transformed to [foreign-key],
[image-equal], [total] and [jointly-injective] on the arrows con-
necting the nodes TEmployee, TEmpDep and TDepartment to Int in Fig. 7.
The predicate [image-equal] is used to force that for any row in the table
TEmployee there is a corresponding row in the table TEmpDep. Moreover, the rule
r6 is applied to the arrows proEmps and proDeps;depEmps, and the predicates
[composition] and [subset] are transformed to [join] and [subset] on
the arrows connected to the node TProDepEmp.

4 Related Work

Several approaches to transform graph-based structures have been developed in the field
of graph grammars and graph transformations. In this section, a short comparison of our
approach to some graph transformation-based approaches is outlined.

Graph Transformation Systems (GTS) [8] are widely used as the formal founda-
tion for model transformation approaches. In GTS, models are represented by typed at-
tributed graphs, and the conformance relation between models and metamodels is given
by a typing morphism. In DPF, models and metamodels are additionally equipped with
a set of constraints, and a model conforms to a metamodel if there exists a typing mor-
phism that satisfies the constraints in the metamodel. In the context of model transfor-
mation, we extend GTS by adding support for transformation of the constraints which
come additional to the graph structure of the models.

Triple Graph Grammar (TGG) [12,7] is a GTS-based approach which is suitable
for language translation. A triple graph consists of a source and a target graph that are
related via a correspondence graph and two graph homomorphisms from the correspon-
dence graph to the source and target graphs. In this way, the source and target graphs
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Table 5. Rules for the transformation of attached constraints

L R

Rule r5. [inverse] and [surjective] to
[foreign-key], [image-equal], [total] and [jointly-injective]

1:C

1:R

[surj]

1:T 1:Col
[pk]

Int:DTt

2:C

2:R

2:T 2:Col
[pk]

[inv]

Int:DTt

1:C

1:R

[surj]

1:T
[pk]

1:Col Int:DT
t

3:T
•
3:Col

•
4:Col

2:C

2:R

2:T
[pk]

2:Col Int:DT
t

[inv]
[fk]

[fk]

[ie]

[ji]

Rule r6. [composition] and [subset] to [join] and [subset]

1:C

1;2:R

3:R
1:R

1:T
[pk]

1:Col Int:DT
t

4:T
•
4:Col

•

5:Col

6:T
•

8:Col

•

9:Col

2:C

2:R

2:T 2:Col
[pk]

Int:DTt

[fk]

[fk]

•
[⊑]

[ji]

5:T
•
6:Col

•
7:Col

3:C 3:T 3:Col
[pk]

Int:DTt

[fk]

[fk]

[ji]

[fk]

[fk]

[ji]

1:C

1;2:R

3:R
1:R

1:T
[pk]

1:Col Int:DT
t

4:T
•
4:Col

•

5:Col

6:T
•

8:Col

•

9:Col

h[⊑]

2:C

2:R

2:T 2:Col
[pk]

Int:DTt f :T

u

v

[jk]

[jk]

•
[⊑]

[i7]

[io7n]

5:T
•
6:Col

•
f :Col

3:C 3:T 3:Col
[pk]

Int:DTt

[jk]

[jk]

[i7]

[jk]

[jk]

[i7]

are joined into a single structure thus providing a basis for consistent co-evolution of
the graphs [7]. The use of correspondence graphs allows to relate a node (arrow) in the
source graph with a node (arrow) in the target graph and to constrain these simple rela-
tions by means of OCL. Similar to TGG, in DPF a joined metamodel is used to describe
relations between the source and target metamodels. The difference is however that we
can define and constrain, in a diagrammatic way, arbitrary complex relations between
source and target metamodel elements, e.g. the commutativity constraint in Fig. 6.

The Visual Modeling and Transformation System (VMTS) [13] is an n-layer meta-
modelling environment which supports editing models according to their metamodels
and allows specifying OCL constraints. VMTS provides a graph transformation-based
approach to model transformations in which models are formalised as directed, labelled
graphs. Moreover, OCL constraints are used to control the execution of transformations.
The input and output patterns of transformation rules use metamodel elements; mean-
ing that an instantiation of the input pattern must be found in the source graph instead
of an isomorphic subgraph of the pattern. These patterns are guarded by pre- and post-
conditions. Before the execution of each transformation rule, the pre-conditions are
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checked and used to narrow down the set of matches. After execution of each rule, the
post-conditions are checked against the output of the rule. In this way, if a rule exe-
cutes successfully it can be asserted that the transformation has resulted in the expected
output. The DPF-based approach is different in that constraints are not used only for
controlling the matches, but they can also be transformed from the source models to
target models. In DPF terms, this means that VTMS can be seen as transforming the set
of constraints CS2 while ignoring CS1 .

An approach to the analysis of graph transformation rules based on an intermedi-
ate OCL representation is presented in [3]. The semantics of rules together with their
properties (such as rule applicability, conflict or independence) are transformed into
OCL expressions. While these OCL expressions are combined with structural- and at-
tached OCL constraints during the analysis process, the attached OCL constraints are
not shown to be transformed. In the DPF-based approach attached OCL constraints
and structural constraints are integrated in modelling formalisms, facilitating a uniform
transformation of these constraints.

The approach proposed in [10] employs transformation rules to preserve the seman-
tics of UML/OCL class diagrams when using the refactoring rule moveAttribute.
The DPF-based approach is more generic in the sense that it can be used for the defini-
tion of transformation rules between constrained models which are specified by differ-
ent modelling languages.

5 Conclusion and Future Work

This paper proposes a formal approach to the definition of constraint-aware model
transformation which is applied to language translation. This is possible due to the di-
agrammatic formalisation of MOF-based modelling languages in which attached OCL
constraints are integrated in modelling formalisms.

In this approach, the process of model transformation is organised into three steps.
Firstly, the source and target modelling languages are joined together; i.e. a joined meta-
model is created. Secondly, the transformation rules are declared as input and output
patterns which are typed over the joined metamodel. The input and output patterns of
the transformation rules are diagrammatic specifications; and the morphisms between
input and output patterns as well as their matches are formalised as constraint- and type
preserving specification morphisms. Hence, constraints can be added to the input pat-
terns, and these constraints can be used to control (i) which structure to create in the
target model and (ii) which constraints to add to the created structure. Thirdly, the model
transformation is applied as follows. The source model is extended to an intermediate
model which is typed over the joined metamodel. Next, the transformation rules are
iteratively applied to the intermediate model. Finally, the target model is obtained by
projection. The approach exploits existing machinery from category theory to formalise
constraint-aware model transformations. More precisely, pushout construction is used
for the application of transformation rules, and pullback construction is used for the
projection of target models.
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In a future study, we will analyse scheduling and controlling application of
constraint-aware transformation rules building upon our previous work described
in [22]. Furthermore, analysing to what extent our approach is suitable for bidirectional
transformations is part of our current research.
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Abstract. This paper explains how the MOMENT2 formal model
transformation framework has been extended to support the formal spec-
ification and analysis of real-time model-based systems. We provide a
collection of built-in timed constructs for defining the timed behavior
of model-based systems that are specified with in-place model trans-
formations. In addition, we show how an existing model-based system
can be extended with timed features in a non-intrusive way (i.e, with-
out modifying the class diagram) by using in-place multi-domain model
transformations supported in MOMENT2. We give a real-time rewrite
formal semantics to real-time model transformations, and show how the
models can be simulated and model checked using MOMENT2’s Maude-
based analysis tools. In this way, MOMENT2 becomes a flexible, effec-
tive, automatic tool for specifying and verifying model-based real-time
and embedded systems within the Eclipse Modeling Framework using
graph transformation and rewriting logic techniques. We illustrate our
approach on a simple round trip time protocol.

1 Introduction

In model-driven engineering (MDE), metamodels provide modeling primitives to
represent software artifacts as models, and model transformations are the core
technique to support software evolution in an automated manner [19]. These
techniques have been applied to the development of real-time and embedded
systems (RTES), such as automotive, avionics, and medical systems. Such RTES
are often hard to design correctly, since subtle timing aspects impact system
functionality, yet are safety-critical systems where a bad design can result in the
loss of revenue and human lives. Therefore, there is a clear need for automated
formal analysis of RTES designs.

Some of the MDE approaches to RTES, such as MARTE [12], provide mod-
eling languages based on UML profiles, others, such as AADL [18], on domain-
specific modeling languages. To enable formal analysis of designs, these languages
typically have to be mapped in an ad hoc way onto external formalisms that sup-
port automated reasoning [1].

In contrast, the approach taken in the MOMENT2 project [6,3] is to formalize
MOF metamodels in rewriting logic, providing for free (i) a formal semantics of
the structural aspects of any modeling language with a MOF metamodel, and
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(ii) automated formal reasoning in the MOMENT2 tool, e.g., to analyze whether
a given model conforms to its metamodel. To provide a generic formal framework
for dynamic system aspect, MOMENT2 has been extended with in-place model
transformations. In this framework, the static semantics of a system is given
as a class diagram describing the set of valid system states, system states are
represented as object diagrams, and the dynamics of a system is defined as an
in-place model transformation where the application of a model transformation
rule involves a state transition in the system. To the best of our knowledge,
MOMENT2 is the first model transformation tool with both simulation and
LTL model checking capabilities that is integrated into EMF.

This paper describes our extension of MOMENT2 to support the formal spec-
ification and analysis of real-time model transformations by providing:

– a simple and expressive set of constructs, defined in an EMF metamodel, for
specifying real-time behaviors;

– a precise formal semantics of real-time model transformation systems as real-
time rewrite theories [13];

– a methodology for formally simulating and model checking such systems
using Maude as a hidden, back-end formal framework; and

– an approach for adding real-time features to model-based systems in a non-
intrusive way, i.e., without modifying their metamodel.

We illustrate our techniques by specifying and analyzing a simple round trip
time protocol. Although this protocol is a software system, we use metamodels
for describing its structural semantics in order to show how our approach can
be applied in the setting of an EMF modeling language.

Our work should be seen as a first step towards an automatic, executable
formalization of systems defined with modeling languages with real-time features
where a class diagram corresponds to a metamodel, an object diagram to a well-
formed model and model transformations specify the behavior of the system.
In this way, a software engineer can use MDA standards and Eclipse Modeling
Framework (EMF) technology to formally define and analyze RTES.

This paper is organized as follows. Section 2 provides some background on
rewriting logic and MOMENT2. Section 3 presents our approach for specifying
real-time model transformations, as well as our example and the formal real-time
rewrite semantics of such transformations. Section 4 shows how our transfor-
mations can be subjected to Maude-based formal analyses. Section 5 discusses
related work and Section 6 gives some concluding remarks.

2 Preliminaries

2.1 Rewriting Logic, Maude, and Real-Time Maude

In rewriting logic [10], a concurrent system is specified as a rewrite theory R =
(Σ, E, R) where:
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– (Σ, E) is a membership equational logic (mel) [11] theory where Σ is an
algebraic signature1, and E is a set of conditional equations t = t′ if cond
and conditional membership axioms t : s if cond stating that the term t
has sort s when cond holds. (Σ, E) specifies the system’s state space as an
algebraic data type.

– R is a set of (possibly conditional) rewrite rules of the form t −→ t′ if cond
that describe all the local transitions in the system; such a rule specifies a
one-step transition from an instance of t to the corresponding instance of t′,
provided the condition holds.

Maude [7] is a high-performance implementation of rewriting logic that provides
a set of formal analysis methods, including: rewriting for simulating one behavior
of the system, reachability analysis for the verification of invariants, and model
checking of linear temporal logic (LTL) properties. The Maude syntax is fairly
intuitive. For example, a function symbol f is declared with the syntax op f :
s1 . . . sn -> s, where s1 . . . sn are the sorts of its arguments, and s is its sort.
Equations are written with syntax eq t = t′, and ceq t = t′ if cond for conditional
equations, and rewrite rules are written with syntax rl [l] : t => t′ and crl [l]
: t => t′ if cond. The mathematical variables in such statements are declared
with the keywords var and vars. We refer to [7] for more details on the syntax
of Maude.

We assume rewrite theories of the form R = (Σ, E ∪ A, R), where A is a set
of axioms, so that both the equations E and the rules R are applied modulo the
axioms A. That is, we rewrite not just terms t but rather A-equivalence classes
[t]A. The axioms A of associativity, commutativity, and identity of set union
define multisets, and rewriting modulo these axioms corresponds to multiset
rewriting that is directly supported in Maude. Rewriting multisets of objects
linked by (possibly opposite) references exactly corresponds to graph rewriting,
a correspondence that is systematically exploited in MOMENT2.

The Real-Time Maude language and tool [14] extend Maude to support the
formal specification and analysis of real-time rewrite theories. The rewrite rules
are divided into ordinary, instantaneous rewrite rules that are assumed to take
zero time, and tick rules of the form crl [l] : {t} => {t′} in time u if cond,
where u is a term (that may contain variables), denoting the duration of the
rewrite, and {_} is a new operator that encloses the global state to ensure that
time advances uniformly in all parts of the system. Real-Time Maude extends
the Maude simulation, reachability, and LTL model checking features to timed
systems, e.g., by providing time-bounded versions of these analysis methods, and
by providing a set of time-sampling strategies to execute time-nondeterministic
tick rules (see [14]).

2.2 MOMENT2: MOF, Models, and Model Transformations

MOMENT2 provides formal support for model-driven engineering by formal-
izing metamodels, defined using the MOF standard [15] and implemented in
1 i.e., Σ is a set of declarations of sorts, subsorts, and function symbols.
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EMF, as membership theories [6], and by formalizing model transformations as
rewriting logic theories in Maude [5]. That is, MOMENT2 provides a simple
well-known interface to software engineers, while providing a variety of formal
analysis methods to analyze models and model transformations.

The algebraic semantics of MOF is defined as a “parametric” membership
equational logic theory �, so that for each MOF meta-model M , we have a mel

specification �(M ), and so that a model M conforms to the meta-model M iff
its Maude representation is a term of sort Model in �(M ). The representation
of models as algebraic terms has the form << OC >>, where OC is a multiset of
objects of the form < O : C | PS >, with O an object identifier, C a class name,
and PS a set of attributes and references between objects. This representation
is automatically generated by MOMENT2 from models in the Eclipse Modeling
Framework (EMF) [8]. A detailed definition of the mapping � is given in [4].

MOMENT2 provides support for developing, executing, and analyzing multi-
model transformations, where several models might be involved. A pair (M , T ),
of a set of MOF metamodels M and a MOMENT2 model transformation defini-
tion T , represents a model transformation, whose semantics is formally defined
by a rewrite theory �(M , T ) that extends the mel theory �(M ).

A model transformation is defined as a set of production rules. Each such rule
l of the form
rl l { nac dl nacl { NAC } such that cond ;. . .

lhs { dl { L } }; rhs { dl { R } }; when cond;. . . }
has a left-hand side L, a right-hand side R, a set of (possibly conditional) neg-
ative application conditions NAC and a condition with the when clause. L,
R, and NAC contain model patterns, where nodes are object patterns and
unidirectional edges are references between objects. For instance, in the pat-
tern A : Class1 { a = V, r = B : Class2 { .. },.. } an object A of type
Class1 has an attribute a, whose value is bound to the variable V2, and has
a reference r that points to an object B of type Class2. Several models can
be manipulated with a single production rule in MOMENT2. To identify which
model should be matched by a given model pattern, we use the notion of domain
that associates an identifier dl to an input model. See Section 3.2 for examples
of model transformation rules.

The semantics of model transformations in MOMENT2 is based on the single-
pushout approach (SPO) for graph transformations [17]. A production rule is
applied to a model when a match is found for the patterns in L, a match is
not found for the patterns in NAC s, and the when clause holds. When a rule is
applied, objects and references in L \ R are removed, objects and references in
R \ L are created and objects and references in L∩R are preserved. According to
the SPO semantics, all dangling edges are removed. In this paper we focus on in-
place (multi-)model transformations, which use the same (multi-)model both as
input and as output of the transformation. Such models usually represent system
states, and the application of production rules correspond to state transitions.

2 Variables are declared without types. The type of the variable is inferred from the
information in the metamodel.
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3 Real-Time Model Transformations in MOMENT2

This section shows how timed behaviors can be added to behavioral specifica-
tions in MOMENT2. Ecore is the modeling language used in EMF to define
metamodels, which we use to specify the static view of a system. We provide a
collection of built-in types for defining clocks, timers, and timed values so that:
(i) the Ecore model M of an RTES can be extended with such types, and (ii) a
system state can contain clocks, timers, and timed values.

In our approach, a timed behavioral specification of a system is given as a
triple (M , T , δ), where M is the structural specification of the system, given as
an Ecore model extended with our built-in timed constructs, T is an in-place
model transformation in MOMENT2 defining the dynamics of the system, and δ
is the time sampling strategy used to decide whether each moment in a discrete
time domain is visited, or only those moments in time when a timer expires.

Section 3.1 introduces the built-in timed constructs and their metamodel.
Section 3.2 illustrates the use of these constructs on a small and simplified, but
prototypical, real-time protocol for finding the message exchange round trip time
between two (in our case neighboring) nodes in a network. Section 3.3 discusses
how we can define real-time behaviors without having to modify the (possibly
“untimed”) metamodel of a system. Section 3.4 defines the formal real-time
rewrite semantics of our model transformations as a mapping

�T : (M , T , δ) �→ (ΣT , ET , RT ),

taking a timed specification (M, T , δ) to a real-time rewrite theory (ΣT , ET , RT ).

3.1 Constructs for Defining Real-Time Model Transformations

The metamodel for the basic built-in constructs provided by MOMENT2 to
support the specification of real-time model transformations is given in Fig. 1.
We below give an intuitive explanation of these constructs, whose formal se-
mantics is given in Section 3.4, and their use. Timed constructs specialize the
TimedConstruct class that has a reference to the EObject class from the Ecore
metamodel. This reference allows our timed constructs to point to any construct
in an EMF model so that time features can be added to system states in a
non-intrusive way as explained in Section 3.3.

Timer. A Timer whose on attribute is true decreases its value according to
the elapsed time. When the value reaches 0, time advance is blocked, forcing
the use of a model transformation rule which also modifies the timer by either
turning off the Timer (that is, the on attribute is set to false), or by resetting
the value attribute to the time until the timer should expire the next time. In
this way, a timer is used to force an action to happen at (or before) a certain
time. The value of a Timer whose on attribute is false does not change when
time advances; neither can such a turned off Timer block time advance.
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Fig. 1. Ecore metamodel of the predefined timed constructs

Clock. The value of a Clock is increased according to the elapsed time. A Clock
with initial value 0, and whose value is not changed by a model transformation
rule, therefore always denotes the current “model time.”

Timed Value. The TimedValue construct is similar to the Clock construct. The
difference is that, whereas the value of a Clock is increased by the amount of
elapsed time, the value of a TimedValue object is increased by the elapsed time
multiplied with the rate, which may be a negative number.

3.2 Example: A Round Trip Time Protocol

For an example that uses both clocks and timers, consider a very simple protocol
for finding the round trip time between two neighboring nodes in a network; that
is, the time it takes for a message to travel from source to destination, and back.

The initiator starts a round of this protocol by sending a request message
to the other node and recording the time at which it sent the request. When
the responder receives the request message, it immediately sends back a reply
message. When the initiator receives the reply message, it can easily compute
the round trip time using its local clock. Since the network load may change,
and messages may get lost, the initiator starts a new round of the protocol every
50 time units. We assume that the message transmission time is between 2 and
8 time units; in addition, any message could be lost for some reason.

Figure 2 shows the structural model for this example as a class diagram,
defined as an Ecore model in EMF. The attribute rtt of a Node denotes the
latest computed round trip time value; lastSentTime denotes the time that
the last request message was sent; roundTimer points to the timer upon whose
expiration the node starts another round of the RTT protocol; and the Clock
denotes the local clock of the node.

To model the fact that the transmission delay of a message is between 2 and
8 time units, each message has an associated clock (to avoid that the message is
read too early) and a timer (to ensure that the message is not read too late).
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Fig. 2. Class diagram for the RTT example

The following rule models the transformation when an active round timer of a
node A expires (that is, equals 0). As seen in the right-hand side of the rule, the
node then sets the value of lastSentTime to the current time (as given by its
local clock), resets its timer to expire in 50 time units, and generates a request
message. The generated message sets its age clock to 0, and sets its timer to 8,
ensuring that the message is read (or lost) within 8 time units3:

rl sendRequest {

lhs { model {

A : Node {

clock = C : Clock { value = TIME },

neighbor = B : Node { },

roundTimer = RT : Timer { value = 0 , on = true } }

}};

rhs { model {

A : Node {

clock = C : Clock { value = TIME },

neighbor = B : Node { },

roundTimer = RT : Timer { value = 50, on = true },

lastSentTime = TIME }

M : Message {

age = MA : Clock { value = 0 },

sender = A : Node {},

receiver = B : Node { },

remMaxDelay = RMD : Timer { value = 8, on = true },

type = "request" }

}}; }

The next rule models the reception (and consumption) of a request message.
Since message transmission takes at least 2 time units, this can only happen
when the age clock of the message is greater than or equal to 2. As a result of
applying this rule, a reply message is created, and sent back to the node A:

3 Variable names are capitalized in our model transformation rules.
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rl replyRequest {

lhs { model {

B : Node { }

M : Message {

age = MA : Clock { value = MSGAGE },

sender = A : Node { },

receiver = B : Node { },

type = "request" }

} };

rhs { model {

B : Node { }

NEW-MSG : Message {

age = MA2 : Clock { value = 0 },

sender = B : Node { },

receiver = A : Node { },

remMaxDelay = RMD : Timer { value = 8, on = true },

type = "reply" }

} };

when MSGAGE >= 2; }

The following rule models the reception of the reply message. The receiver
A defines the round trip time rtt to be the difference between the current time
(as given by its local clock) and the value of lastSentTime:

rl getReplyAndComputeRtt {

lhs { model {

A : Node {

lastSentTime = LASTTIME,

clock = C : Clock { value = TIME } }

M : Message {

age = MA : Clock { value = MSGAGE },

receiver = A : Node { },

type = "reply" }

} };

rhs { model {

A : Node {

lastSentTime = LASTTIME,

clock = C : Clock { value = TIME },

rtt = TIME - LASTTIME }

} };

when MSGAGE >= 2; }

The last rule models the possibility of a message being lost in transition:

rl messageLoss {

lhs { model { M : Message { } } };

rhs { model { } }; }
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Fig. 3. Intrusive and non-intrusive approaches for adding time features

3.3 Non-intrusive Model-Based Real-Time Behavioral Specification

The presented approach might not seem the most suitable to specify a system
that has been deployed, since it requires changing the structural design of the
application, so that timer and clock objects can be defined in the state. We
refer to this approach as intrusive. We therefore also provide a non-intrusive
approach, in which the user-defined metamodel of the system is not modified.
These two approaches are illustrated in Fig. 3 and explained below.

In the intrusive approach, the user-defined metamodel imports the built-in
timed constructs. In this case, the extension of the system with time features is
performed internally in the system by modifying the classes that constitute the
static view of the system. For example, in the metamodel each node can have a
clock. A state of such a system is a self-contained model that may contain time
features. The behavioral specification can then be defined as an in-place model
transformation with one single domain.

In the non-intrusive approach, the user-defined metamodel is not modified
and remains agnostic from timed constructs. The extension of a system with
time features is performed at the model level by defining an external model time
that contains timed constructs. These timed constructs are related to objects in a
model by means of owner external references. The timed behavioral specification
of the system is defined with a multi-model transformation with two domains,
one for the model and one for the time model that extends the initial model.
Therefore, a system state consists of two separate model: base and time.

We next present a non-intrusive version of our round trip time protocol. Since
the base system is not aware of time features, two steps are needed in order
to attach real-time features to the objects: (i) a new independent model with
timers and clocks extends the base model that corresponds to the initial state
of the system; and (ii) the behavioral specification of the system is given as an
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in-place multi-model transformation, where both the base model and the time
model constitute the system state.

In the initial state of the RTT protocol, a clock and a timer are associated to
the sender. We present the getReplyAndComputeRtt rule in the model transfor-
mation. The left-hand side pattern consists of two domains: in the base domain
the pattern matches a reply message M that is sent to a node A, and in the time
domain the pattern matches a clock C that is owned by the node A, a clock MA
that is owned by the message M, the round trip time value of the node A and the
last time a message was sent by A. The values for the round trip time and the last
time a message was sent are stored in external objects in the time domain. In
the right-hand side of the rule, the message M is removed from the base domain
and the new round trip time value is computed in the time domain:

rl getReplyAndComputeRtt {

lhs {

base { M : Message { receiver = A : Node { }, type = "reply" }}

time { C : Clock { value = TIME, owner = A : Node{}}

RTT : TimedConstruct { value = RTT, owner = A : Node{}}

LST : TimedConstruct { value = LASTTIME, owner = A : Node{}}

MA : Clock { value = MSGAGE, owner = M : Message { }}}};

rhs {

base { A : Node { } }

time { C : Clock { value = TIME, owner = A : Node{}}

RTT : TimedConstruct { value = TIME - LASTTIME, owner = A : Node{}}

LST : TimedConstruct { value = LASTTIME, owner = A : Node{}}}};

when MSGAGE >= 2 ; }

3.4 Formal Semantics of Real-Time Model Transformations

This section presents the formal real-time rewriting logic [13] semantics of real-
time model transformations in MOMENT2. As mentioned, our semantics ex-
tends the (untimed) rewriting logic semantics of model transformations given
in [5]. In particular, all data types and rewrite rules defining the semantics of
model transformations are inherited. Those rewrite rules are now considered to
be instantaneous rewrite rules modeling instantaneous change. The real-time
rewrite semantics adds the single tick rule

crl [tick] : {<< OC >>} => {<< delta(OC, X) >>} in time X if X <= mte(OC)

where OC is a variable of the sort ObjCol denoting multisets of objects repre-
senting instances of classes in the rewrite semantics of model transformations,
and X is a variable of the sort T ime denoting the time domain.

Following the guidelines given in [14] for defining object-oriented real-time
systems, the function delta defines the effect of time elapse on a system, and
the function mte defines the maximum t ime elapse possible in a system before
some action must be taken. These functions are defined as follows:
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op delta : ObjCol Time -> ObjCol .

var OC : ObjCol . var O : Oid . var G : Int . var PS : PropertySet .

vars T T’ : Time . var vTimer : Timer . var vTDV : TimedValue . var vClock : Clock .

eq delta(< O : vTimer | property : "value" = T’, property : "on" = true, PS > OC, T ) =

< O : vTimer | property : "value" = (T’ monus T) , property : "on" = true, PS >

delta(OC, T) .

The above equation defines the effect of the elapse of time T on a collection
of objects consisting of a Timer object, whose on attribute is true, and other
objects (captured by the variable OC). The effect of the time elapse is to decrease
the value of the timer by T,4 and to recursively apply the function delta to the
remaining objects OC.

Likewise, the effect of the elapse of time T on a Clock object is to increase its
value by T, and the effect of that time elapse on a TimedValue object with rate
G is to increase the value by G ∗ T:

eq delta(< O : vClock | property : "value" = T’, PS > OC, T) =

< O : vClock | property : "value" = (T’ + T) , PS > delta(OC, T) .

eq delta(< O : vTDV | property : "value" = T’, property : "rate" = G , PS > OC, T ) =

< O : vTDV | property : "value" = (T’ + (G * T)) , property : "rate" = G, PS >

delta(OC, T) .

The following equation matches “otherwise” (owise), that is, when none of
the above equations can be applied. In those cases, time elapse has no effect on
a collection of objects. In particular, time does not effect user-defined objects:

eq delta(OC, T) = OC [owise] .

The function mte should ensure that time does not advance beyond the expi-
ration time of an active timer. Therefore, mte of a collection of objects returns
the smallest value of the active Timers in the state (INF denotes “infinity”):

op mte : ObjCol -> TimeInf .

eq mte(< O : vTimer | property : "value" = T , property : "on" = true , PS > OC ) =

minimum(T , mte(OC)) .

eq mte(OC) = INF [owise] .

Although timed MOMENT2 model transformations have a real-time rewriting
semantics, the current implementation of MOMENT2 is not based on the Real-
Time Maude tool. Nevertheless, Real-Time Maude features such as, e.g., select-
ing the time sampling strategy with which to execute tick rules, and performing
time-bounded reachability and LTL model checking analyses, are available in
MOMENT2. For example, the tool allows the user to choose between advancing
time by one time unit in each application of the tick rule, or advancing time
until a timer expires.

4 The function monus is defined by x monus y = max(0, x − y).
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4 Formal Analysis

The MOMENT2 tool provides a spectrum of formal analysis methods, in which a
model transformation system can be subjected to Maude analyses such as simula-
tion, reachability analysis, and linear temporal logic (LTL) model checking. Sim-
ulation explores one sequence of model transformations from an initial model.
Reachability analysis analyzes all possible model transformation sequences from
an initial model to check whether some model pattern can be reached, and LTL
model checking analyzes whether all such sequences satisfy a given LTL formula.

Since the MOMENT2 implementation does not target Real-Time Maude, the
above analysis methods are all untimed. Nevertheless, we can also easily perform
time-bounded analyses by just adding a single unconnected Timer—whose initial
value is the time bound—to the initial state. When this timer expires, time will
not advance further in the system, since no rule resets or turns off the timer.
The ability to perform time-bounded analysis is not only useful per se, but also
makes (time-bounded) LTL model checking analysis possible for systems with
an infinite reachable state space, such as our RTT example, that can otherwise
not be subjected to LTL model checking.

4.1 Formal Analysis of the RTT Protocol

In MOMENT2, the model instance that corresponds to the initial state is used as
input model for model transformations. To analyze our round trip time protocol
specification, we have added a timer set to 500 to the initial model instance. The
reachable state space is therefore restricted to those states that are reachable
within 500 time units. Without such a restriction, the reachable state space
would be infinite, since the clock values can grow beyond any bound.

We use MOMENT2’s search command to verify the safety property that the
recorded rtt value of a node is either 0 (reply message not yet received) or is
some value in the interval [4, 16]. This property can be verified (for behaviors
up to 500 time units) by searching for a reachable state where the recorded rtt
value is not within the desired set of values; that is, by searching for a node
N : Node { rtt = RTT } whose round trip time value is RTT <> 0 and (RTT
< 4 or RTT > 16). We search for one counterexample, and without any bound
on the depth of the search tree ([1,unbounded]):

search [1,unbounded] =>*

domain model { N : Node { rtt = RTT } }

such that RTT <> 0 and (RTT < 4 or RTT > 16)

We use time-bounded LTL model checking to verify the stability property that
once an rtt value in the desired range [4, 16] has been recorded, the value of the
rtt attribute stays in this interval. We first define a parametric state proposition
okRTTValue, so that okRTTValue(n) holds in states where the recorded round
trip time value of a node n is in the interval [4, 16]:

domain model { N : Node { rtt = RTT, name = ID } } |= okRTTValue(ID)

= (RTT >= 4 and RTT <= 16) ;
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We can then model check the following LTL formula to verify our desired
stability property for node "A":

[] (okRTTValue("A") -> [] (okRTTValue("A")))

5 Related Work

A prominent early work in the closely related field of timed graph transforma-
tions is the work by Gyapay, Varró, and Heckel in [9], where the authors define
a model of timed graph transformations based on a timed version of Petri nets.
In their model (the “GVH model”), each object has an associated time stamp,
called chronos, denoting the last time the object participated in a transition. All
transitions are eager and have durations.5 This is quite different from our model,
where transitions are non-eager and instantaneous, and where timeliness of de-
sired actions is achieved by using timers. Another difference is that in the Petri-
net-based semantics of the GVH model, executions may be time-inconsistent in
that a transition firing at time t1 may take place after a transition firing at a
later time t2 > t1. However, in [9] it is shown that such time-inconsistent execu-
tions can be rearranged to “equivalent” time-consistent executions. Our real-time
model transformations have a real-time rewrite theory semantics, where all com-
putations are time-consistent [13]. Comparing the “timed” expressiveness of the
two approaches is nontrivial. On the on hand, each GVH-execution cannot be
“directly” simulated in our framework, since we cannot have time-inconsistent
computations in real-time rewrite theories. Likewise, we do not know whether
there exists a semantics-preserving encoding of our models as GVH-models.

Becker and Giese use a timed extension of graph transformation systems for
verifying RTES [2], where clocks are used as attributes in graphs. Their work
focuses on inductively verifying safety properties over all possible states in a
system, as opposed to automatically verifying the system from a given initial
state as in model checking approaches like ours, where more expressive linear
temporal logic properties can be verified.

A recent paper by Rivera, Vicente-Chicote, and Vallecillo [16] also advocates
the use of in-place model transformations to complement metamodels with timed
behavioral specifications. However, the time models are completely different. In
their approach, they do not add any explicit constructs for defining time behavior
(so as not to modify metamodels); instead the transformation rules have time
intervals denoting the duration interval of each local action. In our approach,
timed constructs are included in the system state but their semantics is encoded
in MOMENT2, providing a simpler setting in which time does not have to be
explicitly manipulated in the behavioral specification of the system. Despite
this simplicity, we have shown how our approach allows us to consider timed
requirements in a non-intrusive way through multi-model transformations.

5 Alternatively, one may view transitions as instantaneous transitions that apply at
time Δ after becoming enabled.
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In [20], Syriani and Vangheluwe model the PacMan as graph transformations
extended with time. The timed behavior of their model is that the system re-
mains in a state as long as specified by time-advance of that state, or until
some input is received in some port. The system then performs a transition.
This time behavior falls within our timed model, where timed-advance is simply
modeled as a timer. The paper [20] presents no formal model of their frame-
work, and the only form of analysis is simulation using a tool implemented
in Python.

Using meta-models for Giotto and the E-Machine in the GME toolkit, Szeme-
thy used the GReAT untimed graph rewrite system to transform time-triggered
Giotto source code into schedule-carrying E-Machine code [21].

Several approaches use a model-driven development methodology for mod-
eling real-time systems. For instance, AADL [18] and MARTE [12] are used
for safety-critical avionics and automotive systems. These approaches only con-
sider the specification of RTES, and formal analysis is provided by translating
the model of a system into an external formalism with verification capabili-
ties. Our work provides an automatic, direct mechanism to formalize and an-
alyze model-based RTES by means of in-place model transformations in MO-
MENT2. MOMENT2 encodes the metamodels and model transformation into
rewriting logic and leverages Maude verification techniques to analyze model
transformations.

6 Concluding Remarks

This paper has shown how the formal model transformation specification and
analysis tool MOMENT2 has been extended to real-time model transformations
by providing a few simple and intuitive constructs for describing timed behavior.
We have also shown how the multi-modeling capabilities of MOMENT2 can be
exploited to define timed behaviors in a non-intrusive way; i.e., without changing
the given metamodel to specify real-time behaviors. We have given a real-time
rewrite semantics to real-time model transformation systems, and have shown
how such systems can be subjected to (unbounded and time-bounded) reach-
ability and LTL model checking analyses. We believe that our timed model is
easy to understand and is suitable to define advanced real-time model trans-
formations, as indicated by our example. In addition, and in contrast to most
competing approaches, both simulation and LTL model checking are integrated
into our tool. Furthermore, through MOMENT2, our methods can be automat-
ically applied to EMF-based systems and modeling languages so that rewriting
logic techniques are made available in mainstream model-driven development
processes for analysis purposes.
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Abstract. Model transformations are indispensable to model-based de-
velopment (MBD) where they act as translators between domain-specific
languages (DSLs). As a result, transformations must be verified to ensure
they behave as desired. Simultaneously, transformations may be reused
as requirements evolve. In this paper we present novel algorithms to de-
termine if a reused transformation preserves the same properties as the
original, without expensive re-verification. We define a type of behavioral
equivalence, called lifting equivalence, relating an original transformation
to its reused version. A reused transformation that is equivalent to the
original will preserve all compatible universally quantified properties.
We describe efficient algorithms for verifying lifting equivalence, which
we have implemented in our FORMULA [1, 2] framework.

1 Introduction

Model-based development (MBD) utilizes domain-specific languages (DSLs) and
model transformations to support formal modeling [3–6] . DSLs are used to (1)
capture vertical abstraction layers, (2) separately specify design concerns, and (3)
provide convenient modeling notations for complex problem domains [7]. Model
transformations act as bridges between DSLs in order to (1) incrementally refine
models through abstraction layers, (2) compose models into a consistent whole
or evolve them as requirements evolve [2], and (3) capture operational semantics
as sequences of transformation steps [8].

Consequently, composition, verification, and reuse of DSLs/transformations
are essential operations. Informally, a DSL X exposes an abstract syntax S(X),
and a model transformation τ is a mapping across syntaxes. A verified trans-
formation is a mapping guaranteed to exhibit certain properties, such as every
well-formed input yields a well-formed output. Transformations are reused when-
ever a new transformation τ ′ is built from parts of an existing τ . We explore
whether the properties of τ also hold in the reused transformation τ ′.

For example, consider a DSL for a non-deterministic finite state automa-
ton (NFA) abstraction. An important operation on NFAs is the synchronous
product ⊗, which creates product NFAs where states have internal structure
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c© Springer-Verlag Berlin Heidelberg 2010



Reusing Model Transformations While Preserving Properties 45

(i.e. pairs of product states). Let ProdNFA be the DSL for product NFAs, then
the τ⊗ transformation is a mapping from S(NFA) × S(NFA) to S(ProdNFA).
It can be verified that τ⊗ has the property: ∀x1, x2 #states(τ⊗(x1, x2)) =
#states(x1) × #states(x2), i.e. products grow combinatorially in size. This
convenient transformation can be reused to create products of product NFAs:
τ ′
⊗ : S(ProdNFA) × S(ProdNFA) → S(ProdNFA). We would like to know if

the previous property holds in the new context without reproving it.
In this paper we present a novel approach to avoid expensive re-verification

when a model transformation is reused in a new context. Our approach is to
fix an auxiliary class of transformations Trw, which we call rewriting procedures.
Whenever a transformation is reused in a new context, an attempt is made
to discover a rewriting procedure from the new to the old context. A reused
transformation τ ′ lifts τ if it is equivalent to a rewriting procedure followed
by an application of the original transformation τ . If this is the case, then all
(compatible) first-order universally quantified properties of τ also hold for τ ′, but
with dependencies on the rewriting procedures. Finally, for reasonable choices of
Trw, these rewriting procedures can be eliminated from lifted properties resulting
in an equivalent property that lives completely within the new context. We
have implemented this approach in our formula framework [2]: Static analysis
automatically rejects reused transformations that should maintain properties,
but for which lifting cannot be verified.

This paper is divided into the following sections: Section 2 describes related
work. Section 3 presents a general formal framework. Section 4 explains our
implementation of the general framework. We conclude in Section 5.

2 Related Work

Much work on transformation reuse is targeted at the automated or semi-
automated evolution of transformations in response to either refactored models
or language constructs. For instance, [9] describes how the evolution of models
may break transformations intended to operate on these models. The solution
is to capture model refactorings as transformations, which can then be used
to upgrade transformations that are unaware of these refactorings. [10] deals
the evolution of transformation context through user-defined rules relating the
constructs in the original meta-models with those in the evolved meta-models.
These rules are used to upgrade the transformation as much as possible.

Functional programming solves a related reuse problem: Given a function
f : X → Y , can f be applied to new recursive data structures containing data
of type X? For example, if f : Z → Z, determine a function f ′ : Lists(Z) → Z
from lists of integers to integers that generalizes f . In this case, the lifted f ′ is
not behaviorally equivalent to f , but may preserve properties of f depending
on the choice of f ′. The Bird-Meertens [11] formalism enumerates patterns of
recursive data types that can be used to generalize f automatically. See [12]
for a catalog of these recognizable patterns and the formal properties of these
generalizations. The main application of this work has been to automatically
parallelize functional programs [13].
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There is also an important body of work on transformation verification. Verifi-
cation of model transformations can be performed point-wise, on the input/output
pairs of a transformation, or on the transformation itself. The former is known as
instance-based verification. [14] describes an approach where each execution of the
transformation is verified by checking whether the output model bi-simulates the
input model. [15] uses a set of graph transformation rules to describe the opera-
tional semantics of a DSL and then generates a transition system for each
well-formed model of the language. A model checker is used to provide formal ver-
ification and check dynamic properties of the models.

[16] is an example of verifying the action of a transformation τ over its entire
domain. Here, it is assumed that the behaviors of source and target models are
defined by simulation rules (which are also transformations). A transformation is
correct/complete if for every input model the output model includes the behav-
iors of the input, and vice versa. This is verified by examining the effects of τ on
the simulation rules. Modular verification of model refactorings is also described
in [17, 18]. The authors show that once a behavioral semantics is fixed for models
of a DSL (e.g. models may correspond to CSPs), then model refactorings can be
shown to preserve behavior under certain conditions.

3 General Framework

3.1 Transformations and Reuse Scenarios

We begin with a general discussion of DSLs and transformations. For our pur-
poses, a DSL X is an object providing a set S(X), called the abstract syntax of
X . A model x is instance of the abstract syntax; equivalently x is an element
of S(X). A model transformation τ is a map from n input models to m output
models:

τ : S(X1)× . . .× S(Xn)→ S(Y1)× . . .× S(Ym) (1)

The domain/range of τ form its context. A transformation is defined via a set of
rules R, which match patterns in input models to build output models. A trans-
formation terminates when no more rules can be applied. Rules are variously
specified as graph-rewrite rules [3] [19], declarative relations [20], term-rewrites
rules [21], logic programs [2], and even blocks of imperative code [22]. A set of
rules R is converted to a mapping τ by a formal semantics � �, which also takes
into account the input/output DSLs:

�R, X, Y � �→ τ, where X = [X1, . . . , Xn] and Y = [Y1, . . . , Ym]. (2)

Since rules operate on abstract syntax, the context (X, Y ) is required to bind
patterns in the rules with elements of the sytnax. We do not hypothesize on
the framework-independent properties of � �, other than to assume that, when
defined, τ is a function whose signature is given by (1). Later in the paper we
investigate � � for a particular transformation framework.
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Using this notation, we study reuse scenarios where the rules R are interpreted
in a new context (X ′, Y ′):

�R, X ′, Y ′� �→ τ ′, where X ′ = [X ′
1, . . . , X

′
n] and Y ′ = [Y ′

1 , . . . , Y ′
m]. (3)

We provide static analysis to decide if τ ′ preserves the properties of τ with-
out expensive re-verification. Several important scenarios are included in this
definition:

Example 1. Transformation Evolution. A transformation is defined and ver-
ified, but changes in requirements necessitate changes in DSL syntax [10]. In this
case τ evolves to τ ′, where each X ′

i (or Y ′
j ) is either the original Xi (or Yj) or a

modified version X∗
i (or Y ∗

j ).

X ′
i =

{
X∗

i if requirements change
Xi otherwise

, Y ′
j =

{
Y ∗

j if requirements change
Yj otherwise

. (4)

Example 2. DSL Composition. A DSL X may represent one aspect or archi-
tectural facet of a multi-faceted design problem. In this case, a complete abstrac-
tion is formed by composing X with another DSL X∗ to obtain X ′ = X ⊕X∗.
The DSL composition operator ⊕ varies across tools from UML package merge
to eBNF grammar composition [23]. It is then necessary to reuse τ across com-
posite DSLs.

X ′
i =

{
Xi ⊕X∗

i if composed
Xi otherwise

, Y ′
j =

{
Yj ⊕ Y ∗

j if composed
Yj otherwise

. (5)

3.2 Properties of Transformations

A quantifier-free formula over τ is a well-formed formula consisting of variables,
function applications, and τ applications; the following pseudo-grammar pro-
vides a sketch:

expr ::= Var | app | (expr).
app ::= τ(x1, . . . , xn) | Func(expr1, . . . , exprk).
Var ::= {u, v, w, x, y . . .}.
Func ::= {f, g, h,∧,∨,¬ . . .}.

(6)

(Note that τ applications are normalized so τ is only applied to variables.) Let
ϕτ [V ] be a quantifier-free formula containing one or more applications of τ ; V
is the set of variables appearing in ϕ. We refer to a (first-order) universally
quantified property of τ as a statement of the form:

Definition 1. Universally quantified property of τ

∀x1 ∈ Q1 . . . ∀xk ∈ Qk ϕτ [x1, . . . , xk]. (7)

where every variable xi is universally quantified over an input syntax Qi =
S(Xj). We write τ  p if property p can be deduced from τ . For the remainder
of this paper we deal with this restricted class of properties, which encompasses
a number of important examples:
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Example 3. Static Correctness. As in traditional programming languages, an
instance of DSL syntax x ∈ S(X) is not guaranteed to be semantically mean-
ingful. A compiler performs static analysis, e.g. type-checking, to check that x
is meaningful. Let checkX(·) be a predicate evaluating to true when a model
is statically correct. Then a transformation τ : S(X) → S(Y ) preserving static
correctness has the following property [1]:

∀x ∈ S(X), checkX(x)⇒ checkY (τ(x)). (8)

This property generalizes to transformations with multiple inputs/outputs. Let
πi be a projection operator; when applied to an n-tuple it returns the ith coor-
dinate. Let τ be an transformation with n inputs and m outputs.

∀x1 ∈ S(X1)
...

∀xn ∈ S(Xn)

∧
1≤i≤n

checkXi(xi)⇒
∧

1≤j≤m

checkYj(πj(τ(x1, . . . , xn))) . (9)

Example 4. Behavioral Correspondence. Let ∼ ⊆ S(X)× S(Y ) be a simu-
lation relation over models of X and Y . A transformation preserves behavioral
correspondence [14] if the output simulates the input, whenever the input is
meaningful.

∀x ∈ S(X), checkX(x)⇒ checkY (τ(x)) ∧ x ∼ τ(x). (10)

Behavioral correspondence can also be generalized to multiple inputs/outputs
according to a family of simulation relations.

In order to develop general theorems about property preservation, some assump-
tions on abstract syntaxes are required. We shall make the assumption that every
S(X) is disjoint from every other S(Y ). Under this assumption, a property p
must satisfy simple compatibility conditions before it can be lifted to another
context. Properties that are incompatible with a context do not hold there. Of
course, when deeper knowledge about of syntax structure is available, then these
compatibility conditions can be augmented appropriately.

Definition 2. Compatible Properties. Let τ  p where τ has context (X, Y ).
Let τ ′ be a reused transformation with context (X ′, Y ′). A property p is compat-
ible with the context (X ′, Y ′) if whenever a variable x appears as the ith and jth

argument to a τ application then X ′
i = X ′

j.

Example 5. Let τ : S(X)× S(X)→ S(Y ) and τ ′ : S(U)× S(W )→ S(Z). Then
the property ∀x1, x2 ∈ S(X) τ(x1, x2) = τ(x2, x1) is not compatible in the new
context because S(U) ∩ S(W ) = ∅.

3.3 A General Scheme for Property Preserving Reuse

We wish to determine if all compatible properties satisfied by τ are also satisfied
by τ ′. This is accomplished by establishing a behavioral equivalence between τ ′

and τ , which we call lifting equivalence. Assume τ : S(X) → S(Y ). We say τ ′

lifts τ if the following procedures are equivalent:
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1. Calculate y′ = τ ′(x′), and then rewrite y′ ∈ S(Y ′) to y ∈ S(Y ).
2. Rewrite x′ ∈ S(X ′) to x ∈ S(X), and then calculate y = τ(x).

If τ ′ lifts τ , then τ ′ can be viewed as syntactic rewriting step followed by an
application of τ . This scheme requires fixing a class Trw of transformations, which
we call rewriting procedures. Let Trw(X ′, X) be the (possibly empty) subset of
rewriting procedures from X ′ to X. Formally, τ ′ lifts τ if for every rewriting
procedure Λ on the inputs, there exists a rewriting procedure Γ on the outputs
such that the diagram in Figure 1 commutes. In other words, there is no wrong
choice for Λ. To simplify construction of rewriting procedures, Trw must satisfy
a decomposition criterion:

Definition 3. Class of Rewriting Procedures. A class of rewriting pro-
cedures Trw is a class of functions of the form Λ : S(X ′

1) × . . . × S(X ′
n) →

S(X1)× . . .× S(Xn). Every Λ can be decomposed into a direct product of unary
rewrites:

Λ = 〈Λ1, . . . , Λn〉 and Λi : S(X ′
i)→ S(Xi) ∈ Trw. (11)

In other words, Λ(x′
1, . . . , x

′
n) can be calculated by point-wise rewriting each x′

i

with Λi. The decomposition also agrees on how to perform rewrites: If compo-
nents Λi and Λj have the same signature, then they are the same unary rewriting
procedure.

Definition 4. Lifting Equivalence. Let Trw be a class of rewriting procedures.
Then τ ′ lifts τ if both transformations have n-inputs/m-outputs and:

∀Λ ∈ Trw(X ′, X) ∃Γ ∈ Trw(Y ′, Y ) τ ◦ Λ = Γ ◦ τ ′. (12)

Claim. If τ  p, τ ′ lifts τ , and p is compatible with τ ′, then τ ′  p′ where p′ is
constructed by the following procedure:

1. Pick any Γ and Λ satisfying Equation (12).
2. Replace every occurrence of τ(xc1 , . . . , xcn) in p with Γ (τ ′(x′

c1
, . . . , x′

cn
)).

3. Replace every remaining occurrence of xi with Λxi(x′
i) where Λxi is any

well-typed unary rewrite from the decomposition of Λ.
4. Quantify each variable x′

i over a well-typed Q′
i = S(X ′

j), which must exist.

∏
i

S(Xi)
∏
j

S(Yj)

τ ′ = � R,X ′, Y ′ �
∏

i

S(X ′
i)

∏
j

S(Y ′
j )

Λ Γ

τ = � R,X, Y �

Fig. 1. A commuting diagram for lifting equivalence
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We denote this replacement procedure by:

∀x′
1 ∈ Q′

1, . . . , ∀x′
k ∈ Q′

k ϕ[x1/Λx1(x
′
1), . . . , xk/Λxk

(x′
k), τ/(Γ ◦ τ ′)]. (13)

where ϕ[x1, . . . , xk] is the original formula appearing in p.

Example 6. Lifting Static Correctness. Given τ : S(X)→ S(Y ), τ ′ : S(X ′)→
S(Y ′). If τ ′ lifts τ and τ preserves static correctness, then p′ becomes:

∀x′ ∈ S(X ′), checkX(Λ(x′))⇒ checkY (Γ (τ ′(x′))). (14)

Theorem 1. Property lifting. If τ  p, τ ′ lifts τ , and p is compatible with τ ,
then τ ′  p′ where p′ is constructed according to (13). We say p′ is a lifting of p.

Proof. Observe that for every variable xi quantified over Qi there is at least one
component Λxi : S(X ′)→ Qi. This is due to the compatibility condition (Defi-
nition 2) and the requirement that variables are quantified over input syntaxes
(Definition 1). Since p holds for all values of xi, replace every occurrence of xi

with Λxi(x′
i) where x′

i is a fresh variable. Each x′
i is quantified over dom Λxi ,

which we denote Q′
i yielding the property:

∀x′
1 ∈ Q′

i, . . . , ∀x′
k ∈ Q′

k ϕτ [x1/Λx1(x
′
1), . . . , xk/Λxk

(x′
k)]. (15)

This property still has occurrences of τ . However, since the τ applications in
p were normalized to τ(xc1 , . . . , xcn), then every application in (15) has the
form τ(Λxc1

(x′
c1

), . . . , Λxcn
(x′

cn
)). This can be rewritten (τ ◦ Λ)(x′

c1
, . . . , x′

cn
).

Applying Equation (12), this is equivalent to (Γ ◦ τ ′)(x′
c1

, . . . , x′
cn

), which yields
Γ (τ ′(x′

c1
, . . . , x′

cn
)). Thus, we obtain a property over τ ′ according to (13). ��

3.4 Summary of the Approach

Our approach relies on a class of rewriting procedures as a basis for comparing an
original transformation with its reused version. Given τ ′ and τ , our algorithms
characterize the set of rewriting procedures for reconciling the context of τ ′

with the context of τ . If no procedures can be found, then the contexts are
too different and no guarantees can be provided about property preservation. If
rewriting procedures exist, then it must be ensured that diagram 1 commutes
for any choice of procedure, guaranteeing that lifted properties hold regardless of
this choice. If this can be verified, then every compatible property p holding for
τ also holds for τ ′ (in the sense of Theorem 1) even if p is not explicitly known
to hold for τ . This is due to the behavioral equivalence that exists between the
two transformations.

The effectiveness of this approach depends crucially on the choice for Trw.
If the class is too complicated, then it may be computationally prohibitive to
verify that τ ′ lifts τ . If the class is too simple, then either most contexts cannot
be reconciled or occurrences of rewriting procedures cannot be eliminated from
lifted properties. In other words, lifted properties may indirectly depend on the
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original context through the rewriting procedures. Fortunately, for some lifted
properties it is possible to remove these occurrences, thereby obtaining an equiv-
alent property with no dependency on the original context. For the remainder
of this paper we show a reasonable choice for Trw that leads to computation-
ally efficient algorithms and to lifted properties where elimination of rewriting
procedures can be automated.

4 Implementing Lifting Analysis

For the remainder of this paper we apply these techniques to strongly-typed rule-
based systems where models are instances of recursive data types. We develop
a useful class of rewriting procedures for algebraic data types, called collapsing
morphisms.

4.1 Example: Reuse in FORMULA

We motivate the following sections by illustrating lifting analysis in our for-

mula framework, beginning with the classic non-deterministic finite state au-
tomata (NFA) abstraction specified with formula. The left side of Figure 2
shows the syntax and static semantics for the NFA DSL. The domain keyword
declares a DSL called NFA (line 1). DSL syntax is defined via a set of record
constructors. For example, line 3 defines a record constructor State, which takes
an integer ID and returns a State record with that ID. Record constructors can
have more complex type constraints; e.g. the Transition constructor takes two
State records an an Event record as input. Equality is defined over records; two
records are the same if both were constructed by the same constructor using

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.

domain NFA

{

  State : (id: Integer).

  Event : (id: Integer).

  [relation]

  Transition : (src: State,

   trg : Event, dst: State).

  [relation]

  Initial    : (state: State).

 

  //At least one initial state.

  conforms :? i is Initial.

}.

 

 

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

domain ProdNFA

{

  State    : (id: StateLbl).

  StateLbl : Integer + Pair.

  Pair     : (p1: ProdLbl,

              p2: ProdLbl),

  ProdLbl  : State + Pair.

  Event    : (id: Integer).

  [relation]

  Transition : (src: State,

   trg : Event, dst: State).

  [relation]

  Initial    : (state: State).

  conforms   :? i is Initial.

}.

Fig. 2. (Left) Simple automata DSL, (Right) Product automata DSL
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the same arguments (i.e. structural equality). An instance x of DSL syntax is a
finite set of finite records:

x = {State(1), State(2), Event(3), T ransition(State(1), Event(3), State(2))}
(16)

A formula specification also contains static semantics for the DSL. The anno-
tations on lines 5, 8 require Transition and Initial records to behave like relations
over states and events. Line 12 is an explicit conformance rule requiring at least
one initial state (i.e. at least one Initial record).

The NFA DSL contains just enough elements to express the most basic of
NFAs. For example, it is inconvenient to express products of NFAs, because
the State constructor cannot hold the IDs of product states. The ProdNFA do-
main remedies this situation by defining states with more complex IDs (line 18).
Now, IDs are instances of the StateLbl type, which is a union of the Integer and
Pair types. In turn, a Pair constructor accepts either a State or another Pair.
Consequently, State is a recursive data type permitting IDs such as:

State

(
Pair

(
Pair(State(1), State(2)), Pair(State(3), State(4))

))
(17)

At this point, the formula compiler does not know that these two DSLs are
related.

The two DSLs can be explicitly related by a transformation taking two NFAs
and returning their synchronous product. Such a transformation has the
signature:

transform SProd (NFA as in1, NFA as in2) returns (ProdNFA as out) {...}

The identifiers in1, in2, and out are special variables that hold the input and
output models during execution of the transformation. Two NFAs can be com-
posed with SProd, but further composition is not possible since SProd does not
accept ProdNFA models as inputs. Intuitively, the rules defining SProd should
behave similarly in the context X ′ = [ProdNFA, ProdNFA], Y ′ = [ProdNFA]. This
intuition can be stated using the following one line declaration.

transform SProd2 lifts SProd overrides (ProdNFA as in1, ProdNFA as in2).

The SProd2 transformation interprets the rules from SProd in a new context
according to the list of overrides. formula accepts this declaration if it can be
verified that SProd2 lifts SProd, in which case the lifted transformation also lifts
properties. Otherwise, an error is emitted.

The lifting analysis employs a class of rewriting procedures that we call col-
lapsing morphisms. This class allows automatic elimination of rewrites appearing
in lifted properties. For example, we know that:

∀x1, x2 ∈ S(NFA), #states(SProd(x1, x2)) = #states(x1)×#states(x2) .

Assume SProd2 lifts SProd, then the lifted property is:

∀x′
1, x

′
2 ∈ S(ProdNFA), #states(Γ (SProd2(x′

1, x
′
2))) = #states(Λx1(x

′
1)))×

#states(Λx2(x′
2)))

.
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If Γ and Λ are collapsing morphisms, then the rewrites can be immediately
eliminated, yielding:

∀x′
1, x

′
2 ∈ S(ProdNFA), #states(SProd2(x′

1, x
′
2))= #states(x′

1)×#states(x′
2) .

4.2 Collapsing Morphisms as Rewriting Procedures

Instances of algebraic data types with structural equality can be formalized as
either terms over a term algebra or as ordered trees [24]. We describe the ordered
tree representation as it simplifies description of algorithms. An ordered tree is a
tree where the children of node v are ordered 1 to kv. A record s instantiated by
f(s1, . . . , sn) produces an ordered tree where the root is labeled by the construc-
tor f and the ith child is the root of the ith subtree si. Syntactically, a model
x ∈ S(X) is a set of ordered trees; the left-hand side of Figure 3 shows the set
of ordered trees corresponding to (16) from the previous section. (By convention
children are drawn in order from left to right.) Note that every internal node
must be labeled by a record constructor and every leaf node must be a value,
such as the integer 3. (We treat nullary constructors as user-defined values.)

From this perspective, rewriting procedures must reconcile the legal trees of
S(X ′) with the legal trees of another syntax S(X). Our approach is to preserve
subtrees that are common to both syntaxes, while collapsing new types of sub-
trees from S(X ′) into arbitrary values. The right side of Figure 3 illustrates this.
On one hand, there is a complex State record from the ProdNFA domain. The
rewriting procedure Λ transforms the root node into an equivalent node in the
NFA domain, because the State constructor is common to both domains. How-
ever, the ID of the State record is rooted by a Pair node, which does not exist
in the NFA domain. This entire subtree is collapsed into a single value σ ∈ ΣX ,
where ΣX is the set of all values that can appear in the trees of X . The re-
sult is a well-typed tree in the original syntax that preserves as much common
structure as possible, and disguises foreign subtrees as values. A tree s is legal in
S(X) if s ∈ ΣX or s is rooted by the constructor f and its children satisfy the
type-constraints of this constructor. Let Trees(X) be the set of all legal finites
trees of DSL X , then S(X) = P(Trees(X)) is all finite sets of such trees.

Event State State Trans.

State Event State

3 1 2 1 3 2

State

Pair

State Pair

State

σ ∈ Σ

Λ

Λ

Fig. 3. (Left) Instance of syntax as set of ordered trees, (Right) Action of collapsing
morphism Λ on trees
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The motivation for this class of rewriting procedures is based on the following
observation: Many transformation rules do not require full examination of record
structure. Consider the rule for constructing product states; in pseudo-code:

Pattern: Match State s1 from input1, match State s2 from input2.
Action: For every match, create State(x) where x = Pair(s1.id, s2.id); add it to
the output.

This rule uses the IDs to distinguish one state from another and to name product
states, but the internal structural of the IDs is not important. Thus, we expect
this rule to behave equivalently whether IDs are integers or trees of pairs. In
fact, given two ProdNFA models as inputs, the product states could be calculated
by first collapsing state IDs into distinct integers and then running the original
SProd transformation. At the end replace these integers with their corresponding
subtrees to obtain to correct result.

Rewriting procedures of this form do not exist between all pairs (S(X ′), S(X)).
It must be the case that: (1) Record constructors common to both syntaxes have
the same arity, though type-constraints can differ. (2) Every legal finite tree in
S(X ′) can be rewritten into a legal finite tree in S(X), taking into account
collapsing of foreign subtrees. (3) For every finite set of legal finite trees the col-
lapsing action must be in one-to-one correspondence. We formalize this in two
parts by first characterizing morphisms over trees, and then generalizing these
to finite sets of trees. Let Cons(X) be the set of record constructors for DSL X .

Definition 5. Collapsing Tree Morphism. Given X ′ and X such that com-
mon constructors agree on arity, then a collapsing tree morphism λ : Trees(X ′)→
Trees(X) has the following properties:

1. Common values are fixed: λ(s) = s if s = σ ∈ (ΣX ∩ΣX′).
2. A tree rooted with a shared constructor is preserved: λ(s) = f(λ(s1), . . . , λ(sn))

if s = f(s1, . . . , sn) and f ∈ (Cons(X) ∩ Cons(X ′)).
3. All other trees are collapsed to a value: λ(s) = σ and σ ∈ ΣX if neither (1)

nor (2) apply.

If collapsing tree morphisms exist, then trees from X ′ can always be rewritten to
X . However, this does not guarantee that distinct trees can always be collapsed
into distinct constants, which requires a finite inverse condition.

Definition 6. Collapsing Morphism. Given X ′ and X, then a collapsing
morphism Λ : S(X ′)→ S(X) maps finite sets of trees so that distinct collapsed
subtrees are mapped to distinct values. Specifically, applying Λ to a set x′ is
equivalent to extending a collapsing tree morphism over this set:

∀x′ ∈ S(X ′) ∃λx′ , Λ(x′) =
⋃

s∈x′
λx′(s). (18)

Every λx′ is one-to-one for the subtrees of x′:

∀s1, s2 ∈ x′ ∀t1 � s1, t2 � s2 (λx′(t1) = λx′(t2))⇒ (t1 = t2), (19)

where t � s indicates that t is an ordered subtree of s.
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Collapsing morphisms establish global relationships between syntaxes, so it is
not surprising that they can often be eliminated from lifted properties. In the
interest of space, we present one example of this elimination. Given a DSL X ,
a counting function #f(x) counts the number of trees rooted by constructor
f ∈ Cons(X) occurring in the set x. (We already made use of the #State
counting function.)

Theorem 2. Eliminating Rewrites from Counting Functions. Given a
subformula #f(Λ(x′)), where x′ ∈ S(X ′) and Λ is a collapsing morphism from
S(X ′) to S(X):

#f(Λ(x′)) =
{

0 if f /∈ Cons(X ′)
#f(x′) otherwise

(20)

As a final note, we have described unary collapsing morphisms. An arbitrary
rewrite Λ is decomposable into a direct product of unary rewrites, so these
results generalize immediately.

4.3 Calculating Collapsing Morphisms

We now turn our attention to calculating the set of collapsing morphisms,
CM(X ′, X), between DSLs X ′ and X . Our algorithm represents CM(X ′, X)
by a mapping from types declared in X ′ to type declarations compatible with X
such that every collapsing tree morphism λ must respect this type map. If the
algorithm fails to map every type in X ′, then no λ exists and CM(X ′, X) = ∅.
The success of this algorithm guarantees the existence of λ’s, but it does not
guarantee the existence of a Λ : S(X ′) → S(X) satisfying the finite inverse
condition. Fortunately, it can be constructively shown that Λ’s exist by solv-
ing a maximum bipartite matching problem between a finite number of trees in
Trees(X ′) and Trees(X).

A type declaration d can be any of the following: (1) A record constructor f:
(T1,. . .,Tn). (2) A finite enumeration of values e: {σ1,. . .,σn}. (3) A (non-disjoint)
union of types u: T1 + . . . + Tn. Each Ti is the name of some type, and all DSLs
share (order-sorted) infinite alphabets of values, e.g. Tinteger, Tstring. The type
Tbasic is the set of all values. Every type accepts a set of ordered trees, denoted
Trees(T ). In our algorithms we use the fact that inclusion and equality testing
between types is decidable and the type system is closed under union, intersec-
tion, and complement. In fact, every type is equivalent to a tree automaton that
accepts exactly the set Trees(T ), so operations on types correspond to opera-
tions on tree automata [24]. (The details of tree automata algorithms are outside
the scope of this paper.) Algorithm 1 tries to build a re-declaration map, called
redecl, from type names in X ′ to declarations/alphabets compatible with X .

If Algorithm 1 succeeds, then redecl characterizes how every collapsing tree
morphism behaves. Algorithm 2 ensures that the finite inverse condition can
hold by checking if an invertible λ exists even under worst case conditions. The
algorithm constructs a matching problem whenever a finite non-enumeration
type T ′ must collapse into another finite type T . It succeeds if this matching
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Algorithm 1. Compute Re-declaration Map
1: for all f ′ ∈ (Cons(X ′) − Cons(X)) do
2: update redecl(Tf ′) := Tbasic
3: for all T ′ ∈ Types(X ′) where T ′ ⊆ Tbasic do
4: if T ′ is declared to be a finite enumeration e′ : {σ1, . . . , σn} then
5: update redecl(T ′) := e : {σ1, . . . , σn}
6: else
7: update redecl(T ′) := Ta // T ′ must be a built-in alphabet Ta

8: for all f ∈ (Cons(X ′) ∩ Cons(X)) do
9: lookup declarations d′ = f : (T ′

1, . . . , T
′
n) and d = f : (T1, . . . , Tn)

10: for all pairs (T ′
i , Ti) do

11: for all T ′′ ∈ Types(X ′) where T ′′ ⊆ T ′
i and T ′′ � Ti do

12: if T ′′ ⊆ Tbasic or T ′′ = Tg where g ∈ (Cons(X ′) ∩ Cons(X)) then
13: return false
14: else if T ′′ = Tg′ where g′ ∈ (Cons(X ′) − Cons(X)) then
15: let Told = redecl(Tg′)
16: update redecl(Tg′) := (Told ∩ Ti)
17: return true

problem has a perfect matching, which is decidable in polynomial time (e.g. via
the Hopcroft-Karp algorithm [25]). Note that Values(X ′) is the set of all values
that could appear as an argument to any constructor of X ′. A full complexity
analysis is outside the scope of this paper. However, the following theorem is
immediate from the algorithm:

Algorithm 2. Check Finite Inverses
1: update match := {} // Initialize a map called match to the empty map.
2: for all (T ′, T ) where redecl(T ′) = T do
3: if |T ′| > |T | then
4: return false
5: if T ′ is a finite non-enumeration type and T is a finite enumeration then
6: for s ∈ Trees(T ′) do
7: if s is not in the domain of match then
8: update match(s) := (Trees(T )− Values(X ′))
9: else

10: let matchold = match(s)
11: update match(s) := (Trees(T )∩ matchold)
12: return HasPerfectMatching(match)

Theorem 3. Construction of Collapsing Morphisms. The set of collaps-
ing tree morphisms CM(X ′, X) can be characterized with a polynomial number
of type comparisons (e.g. tree automata operations) and a maximum bipartite
matching problem of size c(|Types(X ′)|+ |Types(X)|) where c is the size of the
largest finite enumeration.
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Surprisingly, the calculation of collapsing morphisms is the primary task to check
if τ ′ lifts τ . After CM(X ′, X) is calculated, static analysis determines if the
diagram in Figure 1 commutes. This verification can be accomplished fairly
easily, because the compiler knows that τ ′ and τ were generated by the same
rule set. Static analysis examines the interpretation of each rule in the new and
original contexts, and checks if any rule patterns are sensitive to the choice of
Λ. All formula rules are strongly typed during compile time, so a simple type
comparison is required to test if a pattern might be sensitive to this choice.

5 Conclusion

We presented a novel framework for deciding if a reused transformation pre-
serves properties. The key idea is to relate a reused transformation with its orig-
inal version through an automatically deducible rewriting procedure. A reused
transformation preserves compatible properties if it is behaviorally equivalent to
a rewrite followed by the original transformation. We formalized a class of useful
rewriting procedures, called collapsing morphisms, which can be automatically
derived. Furthermore, properties lifted using collapsing morphisms are amenable
to automatic elimination of rewrites. These procedures have been implemented
in our formula framework.
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Abstract. Traces of the evolution of software systems are left in a number of
different repositories, such as configuration management systems, bug tracking
systems, and mailing lists. Developers use e-mails to discuss issues ranging from
low-level concerns (bug fixes, refactorings) to high-level resolutions (future plan-
ning, design decisions). Thus, e-mail archives constitute a valuable asset for un-
derstanding the evolutionary dynamics of a system.

We introduce metrics that measure the “popularity” of source code artifacts,
i.e., the amount of discussion they generate in e-mail archives, and investigate
whether the information contained in e-mail archives is correlated to the defects
found in the system. Our hypothesis is that developers discuss problematic en-
tities more than unproblematic ones. We also study whether the precision of
existing techniques for defect prediction can be improved using our popularity
metrics.

1 Introduction

Knowing the location of future defects allows project managers to optimize the re-
sources available for the maintenance of a software project by focusing on the prob-
lematic components. However, performing defect prediction with enough precision to
produce useful results is a challenging problem. Researchers have proposed a number
of approaches to predict software defects, exploiting various sources of information,
such as source code metrics [1,2,3,4,5], code churn [6], process metrics extracted from
versioning system repositories [7,8], and past defects [9,10]. A source of information
for defect prediction that was not exploited so far are development mailing lists.

Due to the increasing extent and complexity of software systems, it is common to
see large teams, or even communities, of developers working on the same project in a
collaborative fashion. In such cases e-mails are the favorite media for the coordination
between all the participants. Mailing lists, which are preferred over person-to-person
e-mails, store the history of inter-developers, inter-users, and developers-to-users dis-
cussions: Issues range from low-level decisions (e.g., bug fixing, implementation issues)
up to high-level considerations (e.g., design rationales, future planning).

Development mailing lists of open source projects are easily accessible and they con-
tain information that can be exploited to support a number of activities. For example,
the understanding of software systems can be improved by adding sparse explanations
enclosed in e-mails [11]; the rationale behind the system design can be extracted from
the discussions that took place before the actual implementation [12]; the impact of
changes done on the source code can be assessed by analyzing the effect on the mailing
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list [13]; the behavior of developers can be analyzed to verify if changes follow discus-
sion, or vice-versa; hidden coupling of entities that are not related at code level can be
discovered if often mentioned together in discussions.

One of the challenges when dealing with mailing lists as a source of information is
to correctly link an e-mail to the source code entities it discusses. In previous work we
specifically tackled this issue [14], and using a benchmark of a statistically significant
size, we showed that lightweight grep-based techniques reach an acceptable level of
precision in the linking task.

Why would one want to use e-mails for defect prediction? The source code of soft-
ware systems is only written by developers, who must follow a rigid and terse syntax
to define abstractions they want to include. On the other hand of the spectrum, mailing
lists, even those specifically devoted to development, archive e-mails written by both
programmers and users. Thus, the entities discussed are not only the most relevant from
a development point of view, but also the most exploited during the use of a software
system. In addition, e-mail are written using natural language. This does not require the
writer to carefully explain all the abstractions using the same level of importance, but
easily permits to generalize some concepts and focus on others. For this reason, we ex-
pect information we extract from mailing lists to be independent from those provided by
the source code analysis. Thus, they can add valuable information to software analysis.

We present “popularity” metrics that express the importance of each source code en-
tity in discussions taking place in development mailing lists. Our hypothesis is that such
metrics are an indicator of possible flaws in software components, thus being correlated
with the number of defects. We aim at answering the following research questions:

– Q1: Does the popularity of software components in discussions correlate with soft-
ware defects?

– Q2: Is a regression model based on the popularity metrics a good predictor for
software defects?

– Q3: Does the addition of popularity metrics improve the prediction performance of
existing defect prediction techniques?

We provide the answers to these questions by validating our approach on four different
open source software systems.

2 Methodology

Our goal is first to inspect whether popularity metrics correlate with software defects,
and to study whther existing bug prediction approaches can be improved using such
metrics. To do so, we follow the methodology depicted in Figure 1:

- We extract e-mail data, link it with source code entities and compute popularity
metrics. We extract and evaluate source code and change metrics.

- We extract defect data from issue repositories and we quantify the correlation
of popularity metrics with software defects, using as baseline the correlation between
source code metrics and software defects.

- We build regression models with popularity metrics as independent variables and
the number of post-release defects as the dependent variable. We evaluate the perfor-
mance of the models using the Spearman’s correlation between the predicted and the
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reported bugs. We create regression models based on source code metrics [3,4,5,10]
and change metrics [7,8] alone, and later enrich these sets of metrics with popularity
metrics, to measure the improvement given by the popularity metrics.

Modeling. Using the tool inFusion1, we extract FAMIX-compliant object-oriented mod-
els of the source code of the systems we want to analyze. FAMIX is a language inde-
pendent meta-model of object oriented code [15].

Computing Source Code Metrics. Once we obtain the FAMIX model of a software
system, we compute a catalog of object oriented metrics, listed in Table 1. The catalog
includes the Chidamber and Kemerer (CK) metrics suite [16], which was already used
for bug prediction [1,17,3,4], and additional object oriented metrics.

Computing Change Metrics. Change metrics are “process metrics” extracted from ver-
sioning system log files (CVS and SVN in our experiments). Differently from source
code metrics which measure several aspects of the source code, change metrics are mea-
sures of how the code was developed over time. We use the set of change metrics listed
in Table 2, which is a subset of the ones used in [7].

To use change metrics in our experiments, we need to link them with source code
entities, i.e., classes. We do that by comparing the versioning system filename, including
the directory path, with the full class name, including the class path. Due to the file-
based nature of SVN and CVS and to the fact that Java inner classes are defined in the
same file as their containing class, several classes might point to the same CVS/SVN
file. For this reason, we do not consider inner Java classes.

1 http://www.intooitus.com/inFusion.html

http://www.intooitus.com/inFusion.html
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Table 1. Class level source code metrics

CK metrics Other OO Metrics
WMC Weighted Method Count FanIn Number of other classes that reference the class
DIT Depth of Inheritance Tree FanOut Number of other classes referenced by the class
RFC Response For Class NOA Number of attributes
NOC Number Of Children NOPA Number of public attributes
CBO Coupling Between Objects NOPRA Number of private attributes
LCOM Lack of Cohesion in Methods NOAI Number of attributes inherited

LOC Number of lines of code
NOM Number of methods
NOPM Number of public methods
NOPRM Number of private methods
NOMI Number of methods inherited

Table 2. Class level change metrics

NR Number of revisions NREF Number of times file has been refactored
NFIX Number of times file was involved in bug-fixing NAUTH Number of authors who committed the file
CHGSET Change set size (maximum and average) AGE Age of a file
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Computing Popularity Metrics. The extraction of popularity metrics, given a software
system and its mailing lists, is done in two steps: First it is necessary to link each class
with all the e-mails discussing it, then the metrics must be computed using the links ob-
tained. In the following, we briefly present the technique to link e-mails to classes, then
we discuss the popularity metrics we propose to answer our research questions. Figure 2
shows the process used to prepare the data for evaluating the popularity metrics.

First, we parse the target e-mail archive to build a model according to an e-mail
meta-model we previously defined [14]. We model body and headers, plus additional
data about the inter messages relationships, i.e., thread details. Then, we analyze the
FAMIX model of the target source code release to obtain the representation of all the
classes. Subsequently, we link each class with any e-mail referring it, using lightweight
linking techniques based on regular expressions, whose effectiveness was validated in
a previous work [14]. We obtain an object-oriented FAMIX model enriched with all the
connections and information about classes stored in the e-mail archive. Through this
model we can extract the following popularity metrics:
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POP-NOM (Number of E-Mails): To associate the popularity of a class with discus-
sions in mailing lists, we count the number of mails that are mentioning it. Since we are
considering development mailing lists, we presume that classes are mainly mentioned
in discussions about failure reporting, bug fixing and feature enhancements, thus they
can be related to defects. Thanks to the enriched FAMIX model we generate, it is sim-
ple to compute this metric. Once the mapping from classes to e-mails is completed, and
the model contains the links, we count the number of links of each class.

POP-NOCM (Number of Characters in Mails): Development mailing lists can also
contain other topics than technical discussions. For example, while manually inspecting
part of our dataset, we noticed that voting about whether and when to release a new
version occurs quite frequently in Lucene, Maven and Jackrabbit mailing lists. Equally,
announcements take place with a certain frequency. Usually this kind of messages are
characterized by a short content (e.g., “yes” or “no” for voting, “congratulations” for
announcements). The intuition is that e-mails discussing flaws in the source code could
present a longer amount of text than mails about other topics. We consider the length of
messages taking into account the number of characters in the text of mails: We evaluate
the POP-NOCM metric by adding the number of characters in all the e-mails related to
the chosen class.

POP-NOT (Number of Threads): In mailing lists discussions are divided in threads.
Our hypothesis is that all the messages that form thread discuss the same topic: If an
author wants to start talking about a different subject she can create a new thread. We
suppose that if developers are talking about one defect in a class they will continue
talking about it in the same thread. If they want to discuss about an unrelated or new
defect (even in the same classes) they would open a new thread. The number of threads,
then, could be a popularity metric whose value is related to the number of defects. After
extracting e-mails from mailing lists, our e-mail model also contains the information
about threads. Once the related mails are available in the object-oriented model, we
retrieve this thread information from the messages related to each class and count the
number of different threads. If two, or more, e-mails related to the same class are part
of the same thread, they are counted as one.

POP-NOMT (Number of Mails in Threads): Inspecting sample e-mails from the
mailing lists which form our experiment, we noticed that short threads are often char-
acteristic of “announcements” e-mails, simple e-mails about technical issues experi-
mented by new users of the systems, or updates about the status of developers. We
hypothesize that longer threads could be symptom of discussions about questions that
raise the interest of the developers, such as those about defects, bugs or changes in the
code. For each class in the source code, we consider the thread of all the referring mails,
and we count the total number of mails in each thread. If a thread is composed by more
than one e-mail, but only one is referring the class, we still count all the e-mails inside
the thread, since it is possible that following e-mails reference the same class implicitly.

POP-NOA (Number of Authors): A high number of authors talking about the same
class suggests that it is subject to broad discussions. For example, a class frequently
mentioned by different users can hide design flaws or stability problems. Also, a class
discussed by many developers might be not well-defined, comprehensible, or correct,
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thus more defect prone. For each class, we count the number of authors that wrote in
referring mails (i.e., if the same author wrote two, or more, e-mails, we count only one).

Extracting Bug Information. To measure the correlation of metrics with software de-
fects, and to perform defect prediction, we need to link each problem report to any class
of the system that it affects. We link FAMIX classes with versioning system files, as we
did to compute change metrics, and the files with bugs retrieved from a Bugzilla2, or
Jira3, repository. Figure 3 shows the bug linking process.

A file version in the versioning system contains a developer comment written at
commit time, which often includes a reference to a problem report (e.g., “fixed bug
123”). Such references allow us to link problem reports with files in the versioning sys-
tem, and therefore with source code artifacts, i.e., classes. However, the link between
a CVS/SVN file and a Bugzilla/Jira problem report is not formally defined, and to find
a reference to the problem report id we use pattern matching techniques on the devel-
oper comments, a widely adopted technique [18,10]. Once we have established the link
between a problem report and a file version, we verify that the bug has been reported
before the commit time of the file version.

To measure the correlation between metrics and defects we consider all the defects,
while for bug prediction only post-release defects, i.e., the ones reported within a six
months time interval after the considered release of the software system4. The output of
the bug linking process is, for each class of the considered release, the total number of
defects and the number of post-release defects.

3 Experiments

We conducted our experiment on the software systems depicted in Table 3.
We considered systems that deal with different domains and have distinct charac-

teristics (e.g., popularity, number of classes, e-mails, and defects) to mitigate some of
the threats to external validity. These systems are stable projects, under active develop-
ment, and have a history with several major releases. All are written in Java to ensure
that all the code metrics are defined identically for each system. By using the same

2 http://www.bugzilla.org
3 http://www.atlassian.com/software/jira
4 Six months for post release defects was also used by Zimmermann et al. [10].

http://www.bugzilla.org
http://www.atlassian.com/software/jira
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Table 3. Dataset

System Description Classes Maiiling lists Bug Tracking Syystems
URL

Creation
E-MMails

Time period
Number of

Creation
Total Linked

Time period
defects

Equinox
eclipse.org/equinox

Plugin system for the Eclipse project 439 Feb 2003 5,575 2,383 Feb 2003 - Jun 2008 1,554

Jackrabbit Implementation of the Content Repository 
1 913 Sep 2004 11 901 3 358

Sep 2004 - Dec 2008 674
jackrabbit.apache.org

p p y
for Java Technology API (JCR)

1,913 Sep 2004 11,901 3,358
Sep 2004 - Aug 2009 975

Lucene Text search engine library 1 279 Sep 2001 17 537 8 800
Oct 2001 - May 2008 751

lucene.apache.org
Text search engine library 1,279 Sep 2001 17,537 8,800

Oct 2001 - Sep 2009 1,274

Maven Tool for build automation and management 
301 Nov 2002 65 601 4 616

Apr 2004 - Sep 2008 507
maven.apache.org

g
of Java projects

301 Nov 2002 65,601 4,616
Apr 2004 - Aug 2009 616

parser, we can avoid issues due to behavior differences in parsing, a known issue for
reverse engineering tools [19].

Public development mailing lists used to discuss technical issues are available for
all the systems, and are separated from lists specifically thought for system user issues.
We consider e-mails starting from the creation of each mailing list until the date of
each release considered. Messages automatically generated by bug tracking and revision
control systems are filtered out, and we report the resulting number of e-mails and the
number of those referring to classes according to our linking techniques. All systems
have public bug tracking systems, that were usually created along with the mailing lists.

3.1 Correlations Analysis

To answer the research question Q1 “Does the popularity of software components corre-
late with software defects?”, we compute the correlation between class level popularity
metrics and the number of defects per class. We compute the correlation in terms of
both the Pearson’s and the Spearman’s correlation coefficient (rprs and rspm, respec-
tively). The Spearman’s rank correlation test is a non-parametric test that uses ranks
of sample data consisting of matched pairs. The correlation coefficient varies from 1,
i.e., ranks are identical, to -1, i.e., ranks are the opposite, where 0 indicates no correla-
tion. Contrarily to Pearson’s correlation, Spearman’s one is less sensitive to bias due to
outliers and does not require data to be metrically scaled or of normality assumptions
[20]. Including the Pearson’s correlation coefficient augment the understanding about
the results: If rspm is higher than rprs, we might conclude that the variables are con-
sistently correlated, but not in a linear fashion. If the two coefficients are very similar
and different from zero, there is indication of a linear relationship. Finally, if the rprs

value is significantly higher than rspm, we can deduce that there are outliers inside the
dataset. This information first helps us to discover threats to construct validity, then put
in evidence single elements that are heavily related. For example, a high rprs can in-
dicate that, among the classes with the highest number of bugs, we can find also the
classes with the highest number of related e-mails.

We compute the correlation between class level source code metrics and number of
defects per class, in order to compare the correlation to a broadly used baseline. For
lack of space we only show the correlation for the source code metric LOC, as previous
research showed that it is one of the best metrics for defect prediction [4,21,22,23].



66 A. Bacchelli, M. D’Ambros, and M. Lanza

Table 4. Correlation coefficients

System
POP-NOM POP-NOCM POP-NOT POP-NOTM POP-NOA LOC
rspm rprs rspm rprs rspm rprs rspm rprs rspm rprs rspm rprs

Equinox .52 .51 .52 .42 .53 .54 .52 .48 .53 .50 .73 .80
Jackrabbit .23 .35 .22 .36 .24 .36 .23 -.02 .23 .34 .27 .54

Lucene .41 .63 .38 .57 .41 .57 .42 .68 .41 .54 .17 .38
Maven .44 .81 .39 .78 .46 .78 .44 .81 .45 .78 .55 .78

Table 4 shows the correlation coefficients between the different popularity metrics and
the number of bugs of each system.

We put in bold the highest values achived for both rspm and rprs, by system. Re-
sults provides evidence that the two metrics are rank correlated, and correlations over
0.4 are considered to be strong in fault prediction studies [24]. The Spearman correla-
tion coefficients in our study exceed this value for three systems, i.e., Equinox, Lucene,
and Maven. In the case of Jackrabbit, the maximum coefficient is 0.24, which is sim-
ilar to value reached using LOC. The best performing popularity metric depends on
the software system: for example in Lucene, POP-NOTM, which counts the length of
threads containing e-mails about the classes, is the best choice, while POP-NOT, num-
ber of threads containing at least one e-mail about the classes, is the best performing for
other systems.

3.2 Defect Prediction

To answer the research question Q2 “Is a regression model based on the popularity met-
rics a good predictor for software defects?” , we create and evaluate regression models
in which the independent variables are the class level popularity metrics, while the de-
pendent variable is the number of post-release defects per class. We create regression
models based on source code metrics and change metrics alone, as well as models in
which these metrics are enriched with popularity metrics, where the dependent variable
is always the number of post-release defects per class. We then compare the predic-
tion performances of such models to answer research question Q3 “Does the addition
of popularity metrics improve the prediction performance of existing defect prediction
techniques?” We follow the methodology proposed by Nagappan et al. [5] and also
used by Zimmermann et al. [24], consisting of: Principal component analysis, building
regression models, evaluating explanative power and evaluating prediction power.

Principal Component Analysis is a standard statistical technique to avoid the prob-
lem of multicollinearity among the independent variables. This problem comes from
intercorrelations amongst these variables and can lead to an inflated variance in the es-
timation of the dependent variable. We do not build the regression models using the
actual variables as independent variables, but instead we use sets of principal compo-
nents (PC). PC are independent and do not suffer from multicollinearity, while at the
same time they account for as much sample variance as possible. We select sets of PC
that account for a cumulative sample variance of at least 95%.
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Building Regression Models. To evaluate the predictive power of the regression mod-
els we do cross-validation: We use 90% of the dataset, i.e., 90% of the classes (training
set), to build the prediction model, and the remaining 10% of the dataset (validation set)
to evaluate the efficacy of the built model. For each model we perform 50 “folds”, i.e.,
we create 50 random 90%-10% splits of the data.

Evaluating Explanative Power. To evaluate the explanative power of the regression
models we use the adjusted R2 coefficient. The (non-adjusted) R2 is the ratio of the
regression sum of squares to the total sum of squares. R2 ranges from 0 to 1, and the
higher the value is, the more variability is explained by the model, i.e., the better the
explanative power of the model is. The adjusted R2, takes into account the degrees of
freedom of the independent variables and the sample population. As a consequence,
it is consistenly lower than R2. When reporting results, we only mention the adjusted
R2. We test the statistical significance of the regression models using the F-test. All our
regression models are significant at the 99% level (p < 0.01).

Evaluating Prediction Power. To evaluate the predictive power of the regression mod-
els, we compute Spearman’s correlation between the predicted number of post-release
defects and the actual number. Such evaluation approach has been broadly used to as-
sess the predictive power of a number of predictors [21,22,23]. In the cross-validation,
for each random split, we use the training set (90% of the dataset) to build the regression
model, and then we apply the obtained model on the validation set (10% of the dataset),
producing for each class the predicted number of post-release defects. Then, to evaluate
the performance of the performed prediction, we compute Spearman’s correlation, on
the validation set, between the lists of classes ranked according to the predicted and
actual number of post-release defects. Since we perform 50 folds cross-validation, the
final values of the Spearman’s correlation and adjusted R2 are averages over 50 folds.

Results. Table 5 displays the results we obtained for the defect prediction, considering
both R2 adjusted values and Spearman’s correlation coefficients.

The first row shows the results achieved using all the popularity metrics defined in
Section 2. In the following four blocks, we report the prediction results obtained through
the source code and change metrics, first alone, then by incorporating each single pop-
ularity metric, and finally incorporating all the popularity metrics. For each system and
block of metrics, when popularity metrics augment the results of other metrics, we put
in bold the highest value reached.

Analyzing the results of the sole popularity metrics, we notice that, in terms of corre-
lation, Equinox and Maven still present a strong correlation, i.e., higher than .40, while
Lucene is less correlated. The popularity metrics alone are not sufficient for perform-
ing predictions in the Jackrabbit system. Looking at the results obtained by using all
the metrics, we first note that Jackrabbit’s results are much lower if compared to those
reached in other systems, especially for the R2, and partly for the Rspm. Only change
metrics reach a good Rspm value in this system.

Going back to the other systems, the R2 adjusted values are always increased and
the best results are achieved when using all popularity metrics together. The increase,
with respect to the other metrics, varies from 2%, when other metrics already reach
high values, up to 107%. Spearman’s coefficients also increase by using the information
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Table 5. Defect prediction results

Metrics
R2adj Rspearman

Equinox Jackrabbit Lucene Maven Avg Equinox Jackrabbit Lucene Maven Avg

All Popularity Metrics .23 .00 .31 .55 .27 .43 .04 .27 .52 .32

All Change Metrics .55 .06 .43 .71 .44 .54 .30 .36 .62 .45
All C.M. + POP-NOM .56 .06 .43 .71 .44 .53 .32 .38 .69 .48
All C.M. + POP-NOCM .58 .06 .43 .70 .44 .57 .31 .43 .60 .48
All C.M. + POP-NOT .56 .06 .43 .71 .44 .54 .31 .39 .59 .46
All C.M. + POP-NOMT .56 .06 .43 .70 .44 .53 .29 .41 .60 .46
All C.M. + POP-NOA .56 .06 .43 .70 .44 .58 .29 .37 .43 .42
All C.M. + All POP .61 .06 .45 .71 .46 .52 .30 .38 .43 .41

Improvement 11% 0% +5% 0% +4% +7% +7% +19% +11% +11%

Source Code Metrics .61 .03 .27 .42 .33 .51 .17 .31 .52 .38
S.C.M. + POP-NOM .62 .03 .33 .59 .39 .53 .14 .35 .52 .38
S.C.M. + POP-NOCM .62 .04 .32 .56 .38 .51 .15 .36 .60 .41
S.C.M. + POP-NOT .61 .03 .31 .57 .38 .49 .15 .38 .52 .38
S.C.M. + POP-NOMT .62 .03 .35 .60 .40 .55 .14 .33 .43 .36
S.C.M. + POP-NOA .61 .04 .30 .56 .38 .53 .12 .38 .70 .43
S.C.M. + All POP .62 .03 .37 .61 .41 .58 .14 .32 .52 .39

Improvement +2% +25% +37% +45% +27% +14% -12% +23% +35% +15%

CK Metrics .54 .01 .39 .28 .31 .51 .13 .36 .60 .40
CK + POP-NOM .56 .02 .40 .54 .38 .48 .13 .35 .69 .41
CK + POP-NOCM .57 .02 .40 .50 .37 .50 .17 .33 .42 .35
CK + POP-NOT .56 .01 .40 .51 .37 .53 .13 .34 .52 .38
CK + POP-NOMT .57 .01 .40 .56 .39 .52 .14 .25 .49 .35
CK + POP-NOA .56 .02 .40 .51 .37 .52 .14 .41 .53 .40
CK + All POP .57 .02 .42 .58 .40 .51 .16 .30 .52 .37

Improvement +6% +50% +8% +107% +43% +4% +31% +14% +15% +16%

All Source Code Metrics .66 .04 .44 .45 .40 .48 .15 .35 .36 .33
All S.C.M. + POP-NOM .67 .04 .45 .60 .44 .59 .15 .34 .62 .43
All S.C.M. + POP-NOCM .66 .04 .45 .56 .43 .51 .16 .30 .31 .32
All S.C.M. + POP-NOT .66 .04 .44 .57 .43 .50 .14 .35 .52 .38
All S.C.M. + POP-NOMT .67 .04 .44 .62 .44 .53 .14 .35 .34 .34
All S.C.M. + POP-NOA .66 .04 .44 .57 .43 .51 .15 .34 .43 .36
All S.C.M. + All POP .67 .04 .46 .63 .45 .51 .16 .33 .52 .38

Improvement +2% 0% +5% +40% +12% +23% +7% +0% +72% +26%

given by popularity metrics: Their values augment, on average, more than fifteen per-
cent. However, there is not a single popularity metric that outperforms the others, and
their union does not always give the best results.

4 Discussion

Popularity of software components do correlate with software defects. Three software
systems out of four show a strong rank correlation, i.e., coefficients ranging from .42 to
.53, between defects of software components and their popularity in e-mail discussions.
Only Jackrabbit is less rank correlated with a coefficient of .23.

Popularity can predict software defects, but without major improvements over previ-
ously established techniques. In the second part of our results, consistently with the cor-
relation analysis, the quality of predictions done by Jackrabbit using popularity metrics
are extremely low, both for the R2 adjusted values and for the Spearman’s correlation
coefficients. On the contrary, our popularity metrics applied to the other three systems
lead to different results: Popularity metrics are able to predict defects. However, if used
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alone, they do not compete with the results obtained through other metrics. The best
average results are shown by the Change Metrics, corroborating previous works stating
the quality of such predictors [7,8].

Popularity metrics do improve prediction performances of existing defect prediction
techniques. The strongest results are obtained integrating the popularity information
into other techniques. This creates more reliable and complete predictors that signifi-
cantly increase the overall results: The improvements on correlation coefficients are, on
average, more than fifteen percent higher, with peaks over 30% and reaching the top
value of 72%, to those obtained without popularity metrics. This corroborates our ini-
tial assumption that popularity metrics measure an aspect of the development process
that is different from those captured by other techniques. Our results put in evidence
that, given the considerable difference of the prediction performance across different
software projects, bug prediction techniques that exploit popularity metrics should not
be applied in a “black box” way. As suggested by Nagappan et al. [5], the prediction
approach should be first validated on the history of a software project, to see which
metrics work best for predictions for the system.

5 Threats to Validity

Threats to construct validity. A first construct validity threat concerns the way we link
bugs with versioning system files and subsequently with classes. In fact, the pattern
matching technique we use to detect bug references in commit comments does not
guarantee that all the links are retrieved. We also made the assumption that commit
comments do contain bug fixing information, which limits the application of our bug
linking approach only to software projects where this convention is used. Finally, a
commit that is referring to a bug can also contain modifications to files that are unre-
lated to the bug. However, this technique is the current state of the art in linking bugs to
versioning system files, widely used in literature [18]. The noise affecting issue repos-
itories constitutes another construct validity threat: Even though we carefully removed
all the issue reports not marked as “bug” (e.g., “New Feature”, “Improvement”, “Task”)
from our dataset, Antoniol et al. showed that a relevant fraction of issues marked as
“bugs” in Bugzilla (according to their severity) are not actually related to corrective
maintenance [25]. As part of our future work, we plan to apply the approach proposed
by Antoniol et al. to filter “non bugs” out. Another threat concerns the procedure for
linking e-mails to discussed classes. We use linking techniques whose effectiveness was
measured [14], and it is known that they cannot produce a perfect linking. The enriched
object-oriented model can contain wrongly reported links or miss connections that are
present. We alleviated this problem manually inspecting all the classes that showed an
uncommon number of links, i.e., outliers, and, whenever necessary, adjusted the regu-
lar expressions composing the linking techniques to correctly handle such unexpected
situations. We removed from our dataset any e-mail automatically generated by the bug
tracking system and the revision control system, because they could bias the results.

Threats to statistical conclusion validity. In our experiments all the Spearman corre-
lation coefficients and all the regression models were significant at the 99% level.
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Threats to external validity. In our approach we analyze only open-source software
projects, however the development in industrial environment may differ and conduct
to different comportments in the developers, thus to different results. Another external
validity threat concerns the language: all the software systems are developed in Java.
Although this alleviates parsing bias, communities using other languages could have
different developer cultures and the style of e-mails can vary. To obtain a better gener-
alization of the results, in our future work, we plan to apply our approach to industrial
systems and other object-oriented languages.

6 Related Work

Mining Data From E-Mail Archives. Li et al. first introduced the idea of using the in-
formation stored in the mailing lists as an additional predictor for finding defects in
software systems [26]. They conducted a case study on a single software system, used a
number of previously known predictors and defined new mailing list predictors. Mainly
such predictors counted the number of messages to different mailing lists during the de-
velopment of software releases. One predictor TechMailing, based on number of mes-
sages to the technical mailing list during development, was evaluated to be the most
highly rank correlated predictor with the number of defects, among all the predictors
evaluated. Our works differs in genre and granularity of defects we predict: We concen-
trate on defects on small source code units that can be easily reviewed, analyzed, and
improved. Also Li et al. did not remove the noise from the mailing lists, focusing only
on source code related messages. Pattison et al. were the first to introduce the idea of
studying software entity (function, class etc.) names in emails [13]. They used a link-
ing based on simple name matching, and found a high correlation between the amount
of discussions about entities and the number of changes in the source code. However,
Pattison et al. did not validate the quality of their links between e-mails and source
code. To our knowledge, our work [14] was the first to measure the effectiveness of
linking techniques for e-mails and source code. This research is the first work that uses
information from development mailing lists at class granularity to predict and to find
correlation with source code defects. Other works also analyzed development mailing
lists but extracting a different kind of information: social structures [27], developers
participation [28] and inter-projects migration [29], and emotional content [30].

Change Log-based Defect Prediction Approaches use information extracted from the
versioning system to perform defect prediction. Nagappan and Ball performed a study
on the influence of code churn (i.e., the amount of change to the sytem) on the defect
density in Windows Server 2003 [6]. Hassan introduced a measure of the complexity of
code changes [31] and used it as defect predictor on 6 open-source systems. Moser et al.
used a set of change metrics to predict the presence/absence of bugs in files of Eclipse
[7]. Ostrand et al. predict faults on two industrial systems, using change and previous
defect data [9]. The approach by Bernstein et al. uses bug and change information in
non-linear prediction models [8].

Single-version Defect Prediction Approaches employ the heuristic that the current
design and behavior of the program influence the presence of future defects, assum-
ing that changing a part of the program that is hard to understand is inherently more
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risky than changing a part with a simpler design. Basili et al. used the CK metrics on 8
medium-sized information management systems [1]. Ohlsson et al. used several graph
metrics including the McCabe cyclomatic complexity on a telecom system [2]. Subra-
manyam et al. used the CK metrics on a commercial C++/Java case study [3], while
Gyimothy et al. performed a similar analysis on Mozilla [4]. Nagappan et al. used a
catalog of source code metrics to predict post release defects at the module level on five
Microsoft systems, and found that it was possible to build predictors for one individual
project, but that no predictor would perform well on all the projects [5]. Zimmermann
et al. applied a number of code metrics on the Eclipse IDE [10].

Other Approaches. Ostrand et al. conducted a series of studies on the whole history
of different systems in order to analyze how the characteristics of source code files can
predict defects [21,22,23]. On this basis, they proposed an effective and automatable
predictive model based on such characteristics (e.g., age, lines of code) [23]. Zimmer-
mann and Nagappan used dependencies between binaries to predict defect [24]. Marcus
et al. used a cohesion measurement based on LSI for defect prediction on C++ systems
[32]. Neuhaus et al. used a variety of features of Mozilla to detect vulnerabilities, a sub-
set of bugs with security risks [33]. Wolf et al. analyzed the network of communications
between developers (i.e., interactions) to understand how they are related to issues in
integration of modules of a system [34]. They conceptualized communication as based
on developer’s comments on work items. Finally, Sarma et al. proposed a tool to visu-
ally explore relationships between developers, issue reports, communication (based on
e-mail archives and comments and activity on issue reports), and source code [35].

7 Conclusion

We have presented a novel approach to correlate popularity of source code artifacts
within e-mail archives to software defects. We also investigated whether such metrics
could be used to predict post-release defects. We showed that, while there is a significant
correlation, popularity metrics by themselves do not outperform source code and change
metrics in terms of prediction power. However, we demonstrated that, in conjunction
with source code and change metrics, popularity metrics increase both the explanative
and predictive power of existing defect prediction techniques.

Acknowledgments. We gratefully acknowledge the financial support of the Swiss Na-
tional Science foundation for the project “DiCoSA” (SNF Project No. 118063).
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Abstract. Existing version control systems are often based on text
line-oriented models for change representation, which do not facilitate
software developers in understanding code evolution. Other advanced
change representation models that encompass more program semantics
and structures are still not quite practical due to their high computa-
tional complexity. This paper presents OperV, a novel operation-based
version control model that is able to support both coarse and fine levels
of granularity in program source code. In OperV, a software system is
represented by a project tree whose nodes represent all program entities,
such as packages, classes, methods, etc. The changes of the system are
represented via edit operations on the tree. OperV also provides the al-
gorithms to differ, store, and retrieve the versions of such entities. These
algorithms are based on the mapping of the nodes between versions of the
project tree. This mapping technique uses 1) divide-and-conquer tech-
nique to map coarse- and fine-grained entities separately, 2) unchanged
text regions to map unchanged leaf nodes, and 3) structure-based simi-
larity of the sub-trees to map their root nodes bottom-up and then top-
down. The empirical evaluation of OperV has shown that it is scalable,
efficient, and could be useful in understanding program evolution.

1 Introduction

Software development is a dynamic process in which the software artifacts con-
stantly evolve. Understanding code evolution is crucial for developers in the de-
velopment process. However, most of the existing version control tools are text
line-oriented which report the changes in term of added, deleted, or modified
text regions. Those line-oriented models for changes disregard the logical struc-
ture of a program file. However, programmers, as well as compilers and program
analysis tools, generally view a program as a structure of program elements,
especially the fine-grained entities such as classes, methods, statements, expres-
sions, etc. When a programmer modifies a program, (s)he always maintains in
his/her mind the intention to change such elements. Therefore, reporting the
changes in term of lines in existing version control tools would be less useful in
analysis and understanding the program’s evolution. A versioning tool that can
support change operations on fine-grained program entities is desirable.

Recognizing that importance, researchers have proposed several models and
tools for version control of fine-grained program entities [11–14]. Those
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approaches, however, do not scale well because they generally rely on total ver-
sioning [16], which requires to store all versions of any entity for its own version
history. In total versioning, a version of a compound entity refers to the versions
of its constituent entities. Thus, as a new version is created for an entity, the
corresponding new versions for all of its ancestors need to be created as well.
Because fine-grained entities usually have many ancestors and are modified fre-
quently, the versioning tools might need to create a huge number of versions of
their ancestors. For example, when a variable is renamed, the enclosing state-
ment(s), block(s), method, class, and package(s) are also considered as changed,
and the new versions for all of them need to be created. This problem, called
version proliferation, though might not involve physical copying, creates cogni-
tive overhead and makes fine-grained versioning complicated. Consequently, it
terribly affects the scalability of those fine-grained versioning tools [16].

Fortunately, version proliferation could be avoided using project versioning
approach [2, 5, 16]. In project versioning, instead of storing the history of in-
dividual entity, the versioning tool stores only the history of the entire project.
Any change committed to the repository will create a new version of the entire
project. Then, the project’s history is used to re-construct the histories of only
requested entities. This improves the scalability over total versioning since the
tool does not waste time and space for versions of non-involved entities.

In this paper, we propose OperV, a novel operation-based version control
model that is able to support both coarse and fine levels of granularity in pro-
gram source code. The key idea is the combination of project versioning and
operation-based approaches. In OperV, a system is represented by a tree-based
hierarchy (called project tree) of logical entities, such as packages, classes, meth-
ods, expressions, statements, etc. Changes to the system are represented via tree
edit operations on the project tree. Only the project tree and its changes are
stored. Versions and changes of the finer entities are re-constructed on demand.

To do those tasks, OperV provides the algorithms for identifying, differencing,
storing, and retrieving the versions of program entities. All of those algorithms
are based on the basis task: mapping the nodes of two versions of the project
tree. Since a project tree is too large to be efficient for general tree edit script
algorithms, we designed a mapping algorithm using several divide-and-conquer
techniques specialized toward source code. The first technique is to separate
between processing coarse- and fine-grained entities. The coarse-grained entities
are processed first. Then, each coarse entity is considered as an independent sub-
tree and is used for mapping of the finer-grained entities. The second technique
is the mapping process with bottom-up and top-down phases, in which two
nodes are considered as the candidates for mapping only if they have mapped
descendants or ancestors. Candidate nodes are compared based on the structural
similarity to find the mapped ones. The third technique is the localization of the
mappings of leaf nodes based on their texts. The observation is that the leaf nodes
belonging to an unchanged text region is considered as unchanged. Therefore,
OperV maps a leaf node to the corresponding leaf node (in the other tree) if
they belong to the corresponding changed or un-changed text regions.
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Fig. 1. OperV Concepts

The key contributions of our paper include
1. A scalable version control model that combines project versioning and

operation-based approaches to support version control for both fine-grained and
coarse-grained entities in a software system,

2. The associated algorithms for identifying, differencing, storing, and retriev-
ing the versions of the system and the entities, and

3. An empirical evaluation to show the quality of OperV and its algorithms.
Section 2 describes the formulation of our model. Sections 3 and 4 present the

details of the algorithms in OperV. Sections 5 discusses the evaluation. Section 6
presents related work and conclusions appear last.

2 Formulation

2.1 Concepts

Entity and Project Tree. In OperV, a software system is modeled as a project.
A project is a hierarchical tree-based structure of packages and compilation units.
A package could consist of other packages and/or compilation units. Each compi-
lation unit is also a hierarchical structure of classes, methods, and other program
units as in an abstract syntax tree (AST). The entities within a compilation unit
are called fine-grained, and the other entities are coarse-grained. Thus, a system
is represented by an ordered, attributed tree, called project tree, in which each
node represents an entity and the parent-children relation of the nodes repre-
sents the containment relation between them. Figure 1a) shows an example of
the project tree, the coarse-grained and fine-grained entities are illustrated with
round and normal rectangles, respectively.

The properties of the entities and the structure of the project tree are repre-
sented by the attributes of the nodes. Among the attributes, Id is a unique and
persistent identification of the corresponding entity. Parent, Right, and Children
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Table 1. Tree Edit Operations

Operation Description

Insert(u, v, k) Insert u as the kth child of v

Move(u, v, k) Move u as the kth child of v
Delete(u) Delete u and insert its children as the new children of its parent node
Update(u, a, x) Change the attribute a of u with new value x

IF

EXPR > ASGN

ID a ID b ID a EXPR -

ID bID a

ASGN

ID ok LIT   true

IF

EXPR > ASGN

ID a ID b ID a EXPR +

ID a LIT 1 update

T T'

E E'A A'

delete insert

insert

Legend
IF: if statement
EXPR : expression
ASGN: assignment
ID: identifier
LIT: literal

  if (a>b)
    a = a + 1;

   if (a>b)
     a = a - b;
  else
     ok = true;

insert insert

Fig. 2. Edit Operations on AST

respectively refer to the parent node, the right sibling node, and the ordered set
of children nodes of the entity. Type is the type of the entity (e.g. Class, Method,
etc). Content is the attribute representing the associated content of the entity.
For example, if the entity is a variable, its Content contains the variable’s name.

Change, Operation, and Version. The system and its entities evolve over
time. In OperV, the change to a system is represented as tree edit operations
on the project tree. Table 1 shows the list of operations including inserting,
deleting, moving, and updating an attribute of a node (e.g. Content). Figures 1a)
and b) illustrate such a change with corresponding operations. Figure 2 illus-
trates the similar operations on fine-grained entities in a program.

An entity is considered to be changed if and only if that entity or one of its
descendants is affected by the operations of the changes. In other words, if any
node of the sub-tree is affected by an operation, the entity corresponding to its
root node is considered to be changed. A change of an entity is represented as the
operations on the nodes of the corresponding sub-tree. The states of an entity
between changes are called its versions and the changes are called deltas. In
OperV, a delta is represented as a sequence of operations, i.e. an editing script.

Version Relation and Version Graph. The versions of an entity (including
entire project tree) have the following relations:

1) revision-of: v is a revision of u if v is modified from u as in a sequential
line of evolution.

2) variant-of (branch-of): v′ is a variant of v if v′ is interchangeable and differ
with v in some aspects of function, design, or implementation.

3) merge-from: w is a merge from v if w is created by merging v with another
version v′. The merge of versions is used in the situation that different changes
made to the same version need to be combined.
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The versions of an entity and their relations are represented via its version
graph, in which the nodes represent versions and the edges represent the changes
between the versions. Figure 1c) shows an example of a version graph.

2.2 Problems

OperV needs to provide the algorithms for the following problems:
1. Storage: storing the changes to a system, i.e. all states and changes to the

project tree and entities.
2. Retrieval: retrieving a version of a project and that of any entity.
3. Differencing: reporting the changes between any two versions of an entity.
4. Merging: merging two versions of an entity into a single one.
Because the operation-based program merging techniques have been well stud-

ied in the literature [27–29], we will describe only the algorithmic solutions for
the first three problems in the next sections.

3 Mapping Entities on Project Tree

Because OperV is based on project versioning, any change(s) to one or multiple
entities committed to the repository will create a new version of entire project.
Only the changes and states (i.e. the version graph) of the project, however, are
stored. The version graph of other entities will be re-constructed and processed
on demand, using the stored version graph of the project tree. Therefore, the
basis task to solve the aforementioned problems is to compute the changes of
the project tree. This is in fact the tree editing problem, i.e. the problem of
mapping the nodes of two project trees representing two consecutive versions of
the system and deriving an edit script that transforms one tree into the other.

Since the project tree is huge, optimal tree editing algorithms are too com-
putationally expensive. In [19], we developed Treed, a tree editing algorithm to
compute an editing script for two ASTs representing for any two cloned frag-
ments. In this paper, we generalize it to work for two project trees. In general,
the algorithm has two steps. First, it determines a one-to-one mapping between
the nodes of two project trees, in which any two mapped nodes represent two
versions of the same entity and unmapped nodes represent deleted/inserted en-
tities. Then, it derives the editing operations based on the recovered mapping.

This section presents the mapping step. Section 4 discusses how edit scripts
are derived and used to solve the problems of storage, retrieval, and differencing.

3.1 Mapping Strategy

In Treed, the mapping step is designed based on the following observations:
O1) Leaf nodes of ASTs belonging to unchanged text regions are unchanged.
O2) If two nodes u and v are mapped, their ancestors and descendants are

likely to be mapped.
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O3) Two versions of a compound entity generally have similar structures.
Thus, if the sub-tree rooted at u is highly similar to the sub-tree rooted at v,
then u and v are likely to be mapped.

To measure the structural similarity of the (sub)trees, Treed uses Exas [1]
characteristic vectors, which are shown in our previous work to be efficient and
accurate in capturing the structure of trees and graphs. Using Exas, each tree
is assigned an occurrence-counting vector of its structural features, such as the
label sequences of its paths. For any two trees with two vectors x and y, their
structural similarity is defined as 1 − 2‖x−y‖

‖x‖+‖y‖ . That is, the smaller their vector
distance is, the more similar they are. Larger trees (i.e. having large vectors) are
allowed to have a larger distance within the same level of similarity. More details
on Exas could be found in [1].

We customize Treed to work on the project tree with the following divide-
and-conquer principle. That is, instead of processing the whole project tree, we
divide it into two levels: coarse-grained and fine-grained levels. The mapping
will be first applied for the parts of project trees containing only coarse-grained
entities. Then, each pair of mapped coarse-grained entities is then processed
independently to map their finer-grained entities. In practice, the coarse-grained
entities, i.e. compilation units and packages, are generally stored as source files
and directories. Therefore, this strategy would facilitate the storage of both
coarse-grained and fine-grained entities in a conventional file system.

Nevertheless, two mapping processes for coarse-grained and fine-grained en-
tities have the same phases: 1) initial mapping, 2) bottom-up mapping, and
3) top-down mapping. First, OperV initially maps as many tree nodes at the
lowest level as possible (file/directory nodes at the coarse granularity level and
leaf nodes at the fine granularity level). Then using such initial mapping, Op-
erV maps the nodes at higher levels in a bottom-up manner, using the above
observations to find the candidates and to choose mapped nodes based on their
structural similarity. After going up to the root node, the algorithm goes top-
down, trying to map the unmapped descendants of the mapped nodes, based on
the similarity of their structure or contents.

3.2 Initial Mapping

Initial mapping for coarse-grained entities is based on name and location. Two
coarse-grained entities (e.g. file, directory) having the same name and the same
location in the tree will be mapped, i.e. be considered as the two versions of the
same entity. For finer-grained entities, the initial mapping is much more complex
because OperV does not directly store them (due to the huge size of the project
tree). To map the finer-grained entities in two versions of a compilation unit, the
corresponding source files are first parsed into ASTs. Then, the initial mapping is
applied for the leaf nodes of those ASTs based on observation O1 in Section 3.1.
This observation suggests the use of text-based differencing to divide the text
un-parsed from an AST into the changed and unchanged text segments and to
map leaf nodes into only the nodes in the corresponding segments. Therefore,
the initial mapping for ASTs works in the two following steps:
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Fig. 3. Initial Mapping and Top-Down Mapping

Map Leaf Nodes of Unchanged Text Segments. First, two ASTs are un-
parsed into text-based versions. (Treed uses the unparsed text instead of the
original text to discard the differences in formatting and other cosmetic changes).
Then, text-based differencing, with the longest common subsequence (LCS) al-
gorithm, is applied to compare two sequences of text lines in order to detect
and align the unchanged text lines. The alignment of unchanged text lines will
partition the text lines into (un)changed segments as in Figure 3a). If Content

of a leaf node belongs to more than one segment, those segments will be joined.
The joined segment will be considered as changed if it is joined from a changed
segment. With this process, each leaf node will belong to only one segment.

Then, Treed traverses two trees, exports their sequences of leaf nodes, and
marks the leaf nodes belonging to unchanged segments as “unchanged”. Such
unchanged leaf nodes in two sequences are mapped one-by-one in order. In Fig-
ure 2, two sequences of leaf nodes are [a, b, a, a, 1] and [a, b, a, a, b, ok, true]. Be-
cause the first two nodes of those sequences belong to an unchanged text line
(if (a > b)), they are mapped one to one: a→ a, b→ b.

Map Leaf Nodes of Changed Text Segments. Next, Treed maps the leaf
nodes belonging to the changed text segments. Such segments contain all changed
leaf nodes and might contain unchanged leaf nodes. For example, in Figure 3,
two sequences of nodes [a, a, 1] and [a, a, b, ok, true] correspond to changed text
segments. However, the first node a is unchanged in the statement a = a + 1.

To find the mapped nodes, for each pair of the aligned segments of changed
lines in the two versions, Treed finds the LCS between the corresponding se-
quences of leaf nodes. Two nodes are considered as matched if they have the same
Type and Content. The matched nodes of resulting subsequences are mapped to
each other as unchanged leaf nodes. In the above sequences, Treed finds the
common subsequences [a, a] and maps the corresponding nodes [a, a].

3.3 Bottom-Up Mapping

Treed maps the inner nodes in the bottom-up manner as follows. If an inner
node u has a descendant u1 mapped to v1, u will be compared to any ancestor
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of v1. Then, u will be mapped to a candidate node v if the subtrees rooted
at u and v are sufficiently similar in structure and type (measured via Exas
method, see Section 3.1). If no such v exists, u is considered as unmapped. For
example, In Figure 2, both E′ and T ′ contain the mapped nodes to the nodes
in E. However, because E is identical to E′, they are mapped to each other.
Similarly, A is mapped to A′, although they are not identical in structure.

3.4 Top-Down Mapping

The bottom-up process might be unable to map some nodes, such as the relo-
cated nodes and renamed identifier ones. Thus, after bottom-up mapping, Treed
examines the two trees in the top-down fashion and maps those not yet mapped
nodes based on the already mapped nodes. Given a pair of mapped nodes u and v
from the bottom-up pass, Treed proceeds the mapping between their descendant
nodes by the following mechanism:

Firstly, Treed performs a greedy algorithm to find additional mapped nodes
between the children nodes of u and v. The already mapped nodes are kept. If
unmapped children nodes are inner ones, their descendants are compared based
on Exas structural similarity as in the previous step. If they are unmapped leaf
nodes, Treed computes their similarity based on their attributes. For AST leaf
nodes, since their Contents are generally identifiers and literals, such attributes
are first separated as the sequences of words, using well-known naming conven-
tions such as Hungarian or Camel. For example, “getFileName” is separated
into “get”, “file”, and “name”. The similarity of two words is computed via the
Levenshtein distance, a string-based similarity measure.

After the children nodes are mapped, the LCS algorithm is run on those two
sequences of mapped nodes. The mapped nodes not belonging to the resulting
LCS are considered to be moved, such as node 4 in Figure 3.

3.5 Complexity Analysis

Given two trees T1 and T2, let |T | be the number of nodes and n = max(|T1|,|T2|).
The above mapping algorithm contains the following sequential steps. First,
building the text lines from the leaves of the trees takes O(|T1|+ |T2|), which is
O(n). Then, the unchanged lines are located using the longest common subse-
quence algorithm between two lists of lines. Thus the complexity of this step is
O(m1m2) < O(n2), where mi is the number of lines built from tree Ti, respec-
tively. Mapping the leaf nodes on those (un)changed lines takes at most O(n2)
because of the use of the longest common subsequence algorithm between two
lists of nodes. Computing characteristic vectors for all AST nodes is done incre-
mentally from the leaf nodes to the root node, therefore it takes O(n) [1]. Note
that the accessing and comparing time of those vectors do not depend on the
size of the tree since the features are extracted using n-paths in Exas, in which
the lengths of vectors depend only on the number of AST nodes’ types and the
maximum size of the n-paths [1].
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In the bottom-up mapping, each node v in one tree has at most lvh candidate
nodes to map in the other tree, where lv is the number of children of v and h
is the maximum height of T1 and T2. Therefore, the complexity of this step is
O(

∑
v1∈T1

lv1h +
∑

v2∈T2
lv2h) = O(h

∑
v1∈T1

lv1 + h
∑

v2∈T2
lv2) = O(h|T1| +

h|T2|) = O(hn). In the top-down mapping, for each pair of mapped nodes v1
and v2, the matching between the two lists of their children can be done with
O(lv1 lv2). Since a node in one tree is mapped to only one node in the other tree,
the complexity of this step is O(

∑
v1∈T1

lv1 lv2) = O(
∑

v1∈T1
lv1

∑
v2∈T2

lv2) =
O(|T1||T2|) = O(n2). Finally, traversing the trees to derive the editing script is
in O(n). In total, the complexity of the mapping algorithm is O(n2).

4 Differencing, Storage, and Retrieval

4.1 Deriving Editing Script from Mapping

After having the mapping for all nodes of the project tree, Treed could derive
the edit operations for each node. For example, if a node is not mapped into
any node in the new (old) version, it is deleted (inserted). If it is mapped but
has different location with the mapped node, it is considered to be moved. If
its attributes change, it is considered to be updated. Then, the editing script
for the project tree could be generated via a top-down traversal. At each node,
OperV exports the Update, Move, Delete, and Insert operations on its children,
and then, derives recursively the editing script for its mapped children.

Treed is able to find the changes not only to fine-grained entities but also to
coarse-grained ones. For example, by top-down mapping from the root node of
the project tree, Treed could find two files having different names but identi-
cal structures, and determine them to be two versions of a renamed file. Note
that due to the divide-and-conquer technique which separates between process-
ing coarse-grained and finer-grained entities, Treed does not detect the moving
operations across coarse-grained entities.

4.2 Storage

OperV uses the backward delta mechanism [16] to store the version graph of
the system. That is, only the latest versions of all the branches in the version
graph (i.e. sink nodes), together with all editing scripts (i.e. edges of the version
graph) are stored. Note that, the individual changes of other entities are not
stored. Because of the backward delta storage, an editing script is the script
that transforms the later version of the project tree into an earlier one.

As a new version vn+1 of the project is committed to the repository, OperV
first maps and computes the difference of vn+1 to the current version vn. It stores
the computed script, and then replaces vn by vn+1 as the latest version. Along
with the editing script, it stores also the set of changed, coarse-grained entities
(called a change set) for efficiency of future retrieval tasks.
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4.3 Retrieval

The retrieval requests could 1) check out a version of the entire project; 2)
retrieve a version of an entity; or 3) retrieve the history (i.e. version graph) of
an entity.

Type 1: From the stored (latest) version of the project, OperV will gradually
apply the backward deltas as the editing scripts on the current project tree
to re-construct the previous versions. In other words, OperV re-constructs and
traverses the version graph of the project from its sink nodes (i.e. latest versions)
and edges (i.e. deltas) to the desired version.

Types 2 and 3: OperV re-constructs the version graph of a requested entity
in a similar way. The process is as follows. First, OperV extracts the latest
version v of the requested entity e from the project tree. Then, OperV gradually
processes the backward deltas until a requested version. For each delta d, OperV
checks whether e was changed, i.e. affected by d. If e is a coarse-grained entity,
OperV checks the corresponding change set (i.e. the set of changed, coarse-
grained entities), which was stored along with d. If e is a fine-grained entity,
OperV checks whether d contains any operation on e or a descendant of e.

Then, if e is unchanged, OperV continues processing the next delta. Otherwise,
the operations of d affecting on e and its descendants will be applied on v. If
such operation involves another entity u, e.g. an operation moving a variable
node from a statement v to another statement u, the current version of u will be
requested to be extracted. After all operations are applied on v, OperV has the
previous version of e, and the next delta will be processed using that version.
Note that, when extracting or editing a version of an entity, OperV builds only
the part of the project tree related to that entity. For example, if the entity is a
method, OperV parses only the source file containing that method, rather than
parsing all files to build the entire project tree. This on-demand scheme enables
an efficient version retrieval for any fine-grained entities.

4.4 Tool Implementation

We have implemented a prototype of OperV with all aforementioned algorithms.
In the implementation, logical entities are mapped to physical files in a file
system: projects and packages are mapped to directories, classes are mapped
to files. Finer-grained entities (corresponding to the AST nodes of a class) are
parsed from source files. The tool provides the following functions:

1. Check-out the entire system at a version (this involves version retrieval),
2. Commit a new version of the entire system (this task involves version

identification, differencing, and storage),
3. Display a version of a fine-grained entity (this involves version retrieval),
4. Display the version log of an entity in term of its version graphs, and
5. Compute and display the change of any two versions of an entity (i.e.

differencing). If the entity is coarse-grained, the change is displayed in term of
the file/directory operations. For a fine-grained entity in an AST, the change is
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shown as AST operations. This function is done via mapping and differencing
algorithms on the sub-trees corresponding to two versions of that entity.

5 Empirical Evaluation

5.1 Scalability and Efficiency in Differencing

To evaluate our tree editing algorithm, we compared it to one of the state-of-the-
art optimal algorithms proposed by Zhang and Shasha [21, 23]. Two algorithms
were run on a set of changed source files in a range of revisions of subject systems
(Table 2). Then, the lengths of the output edit scripts and running time of two
algorithms were compared. All experiments were carried out on a Windows XP
computer with Intel Core 2 Duo 2Ghz CPU, 3GB RAM, and 80GB HDD.

Table 2 shows the results. Column Revision is the range of revisions of subject
systems in our experiments. Column File is the number of modified files under
processing (the added and deleted files were not processed since they are of
trivial cases). Columns Size and Size∗ show their average sizes in term of AST
nodes before and after the changes, respectively. In this experiment, we set the
limit for the file size of less than 2,000 nodes due to the scalability problem in the
optimal algorithm. Columns LOperV and Lopt show the average lengths of the
output scripts of our algorithm and the optimal one, respectively. The columns
labelled with Δ show the percentages of the cases in which the differences in
the lengths of scripts are zero, between 1 and 3, and more than 3 operations,
respectively. Columns TOperV and Topt show the average running time for each
pair of files in two algorithms.

The result implies that, our algorithm outputs the scripts with the optimal
lengths in 70-85% cases. In half of the remaining cases, the scripts are a bit
longer with a few operations. Such little sacrifice in accuracy brings large saving
on time efficiency. It could be seen that, the saving ratios are from 50 - 500 times.

5.2 Scalability in Storing

Table 3 shows the result of our experiment on the scalability of OperV the storing
task. In this experiment, since only OperV was operated, we did not set the limit
for file sizes, and we ran on wider ranges of revisions. For each subject system,
we stored the initial version, continuously committed the successive versions and
measured the total processing time (including parsing, differencing, and storing)

Table 2. Comparison to Optimal Algorithm on Running Time and Script Length

Project Revision File Size Size* LOperV Lopt Δ=0 Δ=1-3 Δ >3 TOperV (s) Topt(s)
ArgoUML 5000-5100 135 422 417 21 20 84% 6% 10% 0.19 13.1
Columba 200-300 208 513 516 45 43 73% 14% 13% 0.11 15.3
GEclipse 1800-2000 138 624 647 53 50 69% 10% 21% 0.13 25.3
jEdit 4000-4100 158 921 931 39 37 70% 13% 17% 0.13 50.3
ZK 5000-5400 284 272 277 16 15 85% 8% 7% 0.13 20.7
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Table 3. Time and Space Costs

Project Revision File MaxSize Time (s) Project(MB) Delta(MB) Delta/version
ArgoUML 5000-6000 1297 19044 0.7 14.7 8.1 0.06%
Columba 200-300 1549 4081 0.4 12.1 1.2 0.10%
GEclipse 1000-2000 779 10563 0.2 9.2 12.6 0.14%
jEdit 4000-5000 394 24660 1.7 7.8 16.1 0.21%
ZK 5000-6000 991 8287 0.3 8.3 2.9 0.03%

[Columba v252-v253] LocalCalendarStoreTest.java
Event model = new Event(); String uuid = new UUIDGenerator().newUUID();
model.setSummary(“summary”); Event model = new Event(uuid);
model.setDescription(“description”); model.setSummary(“summary”);
String uuid = new UUIDGenerator().newUUID(); model.setDescription(“description”);
storage.add(model); storage.add(model);

Fig. 4. Example of Change in Object Usage

[Columba v213-v214] TittleBar.java
if ( active ) {
...

g2.setPaint(firstHalf); g2.setPaint(firstHalf);
g2.fillRect(0, 0, w, h); g2.fillRect(0, 0, w, h);

} else {
g2.setColor(fillColor);
g2.fillRect(0,0,w,h);

Fig. 5. Example of Change in Control Flow

and storage space. In the table, Column T ime shows the average processing time
for each revision. Columns Project and Delta show the total space for the initial
version and all deltas, respectively. Column MaxSize shows the maximum file
size in term of AST nodes on each system.

It could be seen that OperV is highly scalable. Processing time of each version
generally costs less than 1 second on large-scale systems which could contain
thousands of files with the sizes up to tens of thousands of nodes. For jEdit,
although the number of files is less than in the other projects, the sizes of its files
are generally larger. This makes processing time for jEdit a bit longer because
OperV’s differencing algorithm has a quadratic complexity on file size.

The storage cost is reasonable. For example, at revision 4000, jEdit has size
of 7.8MB. After checking-in 1,000 versions, OperV needs extra 16.1MB to store
1,000 deltas. Thus, on average, each delta costs about 0.21% of the project size.

5.3 Anecdotal Evidence of Usefulness

Figure 4 shows an interesting example that OperV reported when running on
Columba v252-v253. In this case, a developer moved the initialization statement
for uuid, and used uuid as a parameter of a constructor call for an Event object.
This example shows that OperV is able to detect the change in the usage of
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objects, which is one kind of semantic change. Thus, it provides more useful in-
formation for developers to understand code evolution than text-based changes.

OperV is also able to detect changes in a control flow. For example, in Figure 5,
it was able to report the addition of branching to a block of code. Similarly,
it found another case in which the statement if (services.length > 1) was
changed to if ((services != null) && (services.length > 1)). It was able to
report the insertion of that new control condition.

In another example in WorkflowJobEditPart.java of GEclipse v1803-v1804,
OperV reported the renaming of two variables: workflowJobNameFigure0 to
workflowJobNameFigure and workflowJobDescriptionFigure1 to
workflowJobDescriptionFigure several times. This result suggests that OperV
could be used as a foundation for the “renaming” refactoring recovery tools.

6 Related Work

The source code versioning and differencing approaches could be classified based
on the abstraction level in the program representations of their tools. Generally,
they could be classified into lexical (text-based), structural (often tree-based),
syntactical (AST-based), or semantic approaches.

Traditional version control tools (CVS [3], RCS [4], SVN [5]) use the text-
based differencing approaches (such as text diff [6]), which consider a program
as a set of text lines and often use the longest common subsequence technique
to calculate the inserted, deleted, and modified lines. Ldiff [7] was built upon
text diff to track the changes to lines including line addition, removal, or moving.
This type of approaches does not work well when developers care more about the
changes in code structure. Moreover, the reported changes in term of text lines
do not fit well with automated program analysis tools for software evolution.

Structural versioning and differencing tools assume that software documents
are stored in a fine-grained and structural manner (e.g. XML). Algorithms
for such structural differencing include [8–10]. POEM [11] provides tree-based
version control for functions and classes [16]. The principles of the tree-based
COOP/Orm framework [12] include the sharing of unchanged tree nodes among
versions and change propagation. Unified Extensional Versioning Model [13]
supports fine-grained versioning for a tree-structured document by compos-
ite/atomic nodes and links. Each atomic node is represented by a text file. In
Coven [14], a versioned fragment could be entire method for C++ and Java pro-
grams, or text paragraph in LATEX documents. In Ohst’s model [15], fine-grained
changes are managed within contexts of UML tools and design transactions.
Maletic and Collard [39] also used text diff to locate changed entities in an
XML representation of code. However, their goal was not to derive edit scripts.

In general, those approaches heavily rely on the total versioning scheme with
the technical drawback of the version proliferation problem [16] as described
earlier. In contrast, the generic tree-based differencing algorithms [20–22] are too
computationally expensive for source code evolution because they consider two
arbitrary trees as the inputs, rather than two revisions of the same program [17].
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OperV uses project versioning to avoid version proliferation and Treed makes it
efficient due to its specialization toward source code with the divide-and-conquer
strategy. SVN [5] also uses project versioning but with a text-based approach.

Our tree edit algorithm, Treed, belongs to the syntactical category. Treed
is similar in nature to ChangeDistiller [17], a tree-based differencing and code
change extracting tool. However, the first key departure point is the divide-
and-conquer approach that helps Treed reduce the complexity of mapping the
corresponding nodes in two versions. It takes into account the fact that the align-
ment of unchanged text regions between two revisions will partition the texts
of two revisions into smaller and corresponding segments. Thus, it could apply
its mapping procedure on smaller segments. ChangeDistiller does not use the
alignment of un-changed texts in two versions for divide-and-conquer. Another
key difference is the use of Exas [1], a vector-based structure similarity measure
for trees. Exas [1] has been shown to perform better than the subtree similarity
measure used in Chawathe et al. [18], which was also used in ChangeDistiller.
Exas’ characteristic features capture the structure via the paths in a tree, while
Chawathe’s approach relies only on the number of matched nodes in two trees.

Other syntactical, tree-based differencing approaches were also used in pro-
gram differencing and merging tools [24, 25]. Their goals were not to detect
editing operations. The tree matching techniques for AST were used in tree-
based clone detection tools as well [19, 30–32]. Those algorithms include suffix
tree [30], maximum common subtree isomorphism [31], or dice coefficient [32].

Our model is the first to combine the strength of both project versioning and
operation-based approaches for fine-grained versioning. Operation-based model
represents the changes between versions as explicit operations. However, sim-
ilar to other syntactical approaches, OperV requires software artifacts to be
parseable. Robbes and Lanza [26] advocate for an approach to analyze software
evolution using semantic changes. Our work is similar to their analysis tool with
the use of tree edit operations for change representation. They define semantic
changes as well. The key difference is that OperV is a complete version model
that combines versioning for entire project with the operation-based approach.
Their evolution analysis approach will benefit from versioning tools built from
OperV. Operation-based approach had also been used in software merging [27–
29]. Ekman and Asklund [29] presented a refactoring-aware versioning system.

Semantic-based program versioning and differencing approaches often rely
on graph-based techniques. They represent the behavior of a program via a
graph (e.g. program dependence graph, program slice as in [33], control flow
graph as in [34], semantic-graph as in [35]), and detect the changed entities in
the graph. Those approaches provide more semantic information than OperV,
however, they are more computationally expensive.

There exists version control models that are change-based ([36–38]). That is,
in change-based models, the changes are first-class entities with unique identifiers
that are used to compose the system at different time. Comparing to change-
based models, OperV is still state-based because the revisions have identifiers
and the changes (as operations) are computed via our tree edit script algorithm.
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7 Conclusions

This paper presents OperV, a novel operation-based, fine-grained version con-
trol model and tool for source code. The key idea is the combination between
project versioning and operation-based approaches. In OperV, a software system
is represented by a project tree whose nodes represent all program entities at
both coarse-grained and fine-grained levels. The changes of the system are rep-
resented via edit operations on the tree. OperV also provides the algorithms for
storing, retrieving, and differencing between the versions of such entities. These
algorithms are designed based on several heuristics to improve scalability and
efficiency. The empirical evaluation of the model showed that OperV is scalable,
efficient, and could be useful for developers in understanding of code evolution.
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Abstract. A software project often contains a large amount of “ho-
mologous code”, i.e., similar code fragments distributed in different ver-
sions or “species” sharing common ancestry. Code homology typically
arises when the code is inherited, duplicated, and patched. In this pa-
per, we propose an automated method for detecting and tracking ho-
mologous code in genealogy of evolving software using fine-grained tree
differencing on source code. Such a tool would help software developers/
maintainers to better understand the source code and to detect/prevent
inconsistent modifications that may lead to latent errors. The results of
experiments on several large-scale software projects are reported to show
the capability of the method, including BIND9 DNS servers, a couple of
Java software systems jEdit and Ant, and the entire Linux device driver
subsystem.

1 Introduction

A large software system often contains a large number of similar code fragments
across many versions or branches. They are typically introduced when the code
is inherited from previous versions, duplicated for programming convenience,
and patched to correct common defects. We call such correspondence in the
code descended from a common ancestry homology of code, by analogy with
biology [1].

Homologous code fragments or homologues may evolve in uniform or divergent
manner as the development proceeds. If the evolution is uniform, it is likely that
there exists a common programming logic and extra maintenance efforts are
necessary [2] since further changes must be replicated on each code fragment
to keep the system consistent. Even when the evolution is divergent, common
characters of the code remain in later developments [3].

Locating homologous code and tracking their course of change would help
software developers/maintainers to better understand the source code and to
detect/prevent inconsistent modifications that may lead to latent errors. The
task can be difficult even when a versioning system such as CVS is in place to
record change descriptions since such information is too coarse to compare and

D.S. Rosenblum and G. Taentzer (Eds.): FASE 2010, LNCS 6013, pp. 91–106, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



92 M. Hashimoto and A. Mori

usually not associated with reference to concrete source code entities such as
functions and methods [2].

The analysis of code clones is a well-researched topic related to code homology.
Many algorithms and tools have been proposed for detecting code clones [4].
However, those methods are not well-suited for analyzing how clone regions
evolve over time since maintaining clone relations is difficult when regions go
through different modifications and do not remain the same. Clone detection
must be performed on each version and discovered clone regions must be tracked
in the later versions. To distinguish newly introduced clone regions from those
lasting from previous versions involves an awkward task of adjusting similarity
thresholds by heuristics [3]. The method for tracking cloned code is relatively
less explored with several exceptions [5,3,6,7,8] despite its practical importance.

Fig. 1. Types of Code Homology

In this paper, we propose an automated
method for detecting and tracking homo-
logues in genealogy of evolving software us-
ing a fine-grained tree differencing tool called
Diff/TS[9] for source code. Tree differencing
is used for calculating edit sequences on ab-
stract syntax trees that transform one revision
into another. It also computes node mappings
up to relabeling for tracking source code enti-
ties across revisions. The method allows us to
identify inconsistent changes on homologues
by comparing semantic change histories recon-
structed from raw edit sequences.

By following ideas from biology, we clas-
sify homology into three categories: orthology,
paralogy, and xenology. Orthology describes
homology arising from branching activity,
xenology from exchange of code across differ-
ent branches, and paralogy from duplication in a single branch. See Fig. 1 for
illustration.

According to the classification, we implemented procedures for analyzing ho-
mologues. To show the capability of the method, the results of experiments on
several large-scale software are reported including BIND9 DNS servers, a couple
of Java software systems jEdit and Ant, and Linux device drivers. Xenology is
investigated with BIND9 and paralogy is investigated with jEdit, Ant, and Linux
device drivers.

The results shows that the proposed method is efficient enough to analyze
the entire device driver subsystems in 32 versions of Linux from 2.6.0 to 2.6.31,
each of which consists of millions of lines of source code. Several inconsistencies
in Linux serial drivers have been detected that violate a crucial development
policy change concerning kernel locking. It is also shown that the method pro-
duces better analysis results compared to existing code clone trackers. In fact,



A Method for Analyzing Code Homology in Genealogy of Evolving Software 93

the system could track not only all clone regions reported in the previous liter-
ature [5,6,3,7,8], but also regions that escaped from previous analysis [6].

To summarize, the contributions of the paper are:

– proposal of the notion of code homology to categorize similar code in geneal-
ogy of evolving software,

– development of an automated method for detecting and tracking homologues,
and

– development of an automated method for reconstructing and comparing fine-
grained change histories for homologues.

The rest of the paper is organized as follows. Prerequisites for tree differencing
used in code homology analysis are explained in Sect. 2. Section 3 describes the
method for code homology analysis. The results of the experiments is reported
in Sect. 4. After related work is reviewed in Sect. 5, we conclude in Sect. 6.

2 Tree Differencing

We regard a version of a software system as a set of abstract syntax trees (ASTs)
which correspond to source files (compilation units) and also as a directory
tree which consists of source files. Tree differencing plays an important role in
code homology analysis, which consists of three steps: detecting homologous
code, tracking homologous code, and tracking changes of homologous code. We
enumerate below the required functions in each step, whose details are explained
in Sect. 3. Tree differencing is responsible for 1-(a), 1-(b), 2-(a), and 3-(a) in code
homology analysis.

1. Homologous code detection
(a) discovering common structures between a pair of ASTs — for orthologues
(b) differencing a pair of ASTs — for xenologues
(c) detecting code clones — for paralogues

2. Code fragment tracking
(a) mapping nodes in one AST to corresponding nodes in another AST
(b) detecting cloning activities
(c) mapping line ranges in source code to the corresponding sub-ASTs and

vice versa
3. Change history reconstruction

(a) deriving higher level descriptions from low level descriptions for changes
between a pair of ASTs

A fundamental function of a tree differencing algorithm is to calculate a se-
quence of edit operations (called edit sequences) that transforms T1 into T2 for a
given pair of trees T1 and T2. The basic edit operations include 1) relabeling, 2)
deletion, and 3) insertion of nodes, and 4) moves of subtrees. An edit sequence
between two ASTs may be regarded as difference or similarity between them.
Tree differencing also computes a set of matched pairs of nodes between target
trees. We call such a set of matched pairs of nodes a node map, which may be
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regarded as a (partial) finite mapping. Note that labels of a matched pair of
nodes do not necessarily coincide. Node maps are constrained to preserve the
structure of target trees up to relabeling. A common part of a pair of ASTs
T1 and T2 with respect to a node map M between them is defined as a pair
of sets of nodes (dom(M), cod(M)), where dom(X) and cod(X) denote domain
and codomain of mapping X , respectively.

We can use any tree differencing algorithms or tools that satisfy the require-
ments for code homology analysis described above. In this study, we used a tree
differencing system called Diff/TS [9]. Diff/TS approximates and extends an op-
timal tree comparison algorithm with heuristics driven control configurable for
multiple programming languages. Diff/TS is capable of processing Python, Java,
C and C++ projects, and provides all required functions but 3-(a). In order to
reconstruct higher level description of source code changes from low level edit
sequences computed by tree differencing, we developed a module for classifying
changes in C programs into approximately 80 change types following the ideas
of Fluri and Gall [2]. Change types are defined according to edit operations and
syntactical information embedded in ASTs. For example, a change type func-
tion call inserted is defined as insertion of a subtree corresponding to function
call and return value changed as some edit operation(s) on AST node(s) in
a subtree corresponding to a return value.

3 Code Homology Analysis

This section presents procedures for detecting and tracking homologous code in
a given set of branches. An overview of our key techniques for code homology
analysis is also provided.

The tree differencing algorithm allows us to distinguish between the preserved
portion (up to relabeling) and the added/deleted portion between a pair of ver-
sions, and to compute edit operations which transform the one into another. We
employ a “double-differencing” technique to identify xenologues. First, we pair-
wise compute preserved portions between relative versions and conclude that the
preserved portion found closest to the most recent common ancestor represents
orthologues. Then, we compute differences between preserved portions to identify
added code fragments as xenologues. See Fig. 2 for illustration, where version A
branches into versions B and C, which then evolve into B1 and C1, respectively.
A vertical dashed line denotes difference, in which a black triangle represents
code addition and a white triangle represents code deletion. A horizontal dashed
line denotes common code segments, i.e., homologues between relative versions.
Segments that have been newly added in the homologues suggest existence of
merged or patched code, which we call xenologues (e.g., a shaded black triangle
in Fig. 2). Other segments that have disappeared from the homologues suggest
existence of individually modified code. In general, we cannot decide whether
xenologues are originated from code exchange or simultaneous patch applica-
tion without manually inspecting available documents such as change-logs or
development histories.
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Fig. 2. Double-Differencing Between Branches

Paralogues, that is, code clones or duplicated code, are detected in a different
manner. For the (given) initial version of the software, we apply existing code
clone detection tools and accept the outputs as clone groups generated before
the first version. For identifying cloning activities after the first version, we first
compute added code fragments by tree differencing, and then find its potential
duplication origins in the previous versions. A common token sequence matching
algorithm is used for this.

We introduce several notations and terms needed for the rest of the paper. The
set of nodes in A is denoted by N (A). By I(A), we denote the set of post-order
indexes of an AST A. We identify nodes with their post-order indexes. Let v be
a version of software system. We denote the set of ASTs corresponding to source
files contained in v by A(v). For a tree A and S ⊆ N (A), A|S denotes the tree
obtained from A by removing all nodes that do not belong to S. We introduce two
wrapper functions of Diff/TS denoted by Δ for ASTs and Δd for directory trees.
For ASTs A1 and A2, Δ(A1, A2) computes a triple (M, D, I), where M denotes
a node map such that M ⊆ I(A1) × I(A2), D a set of deleted components,
and I a set of inserted components. For versions v1 and v2, Δd(v1, v2) computes
(M, D, I), where M denotes a node map such that M ⊆ A(v1) × A(v2), D a
set of deleted source files, and I a set of inserted source files. Note that internal
nodes (directories) are omitted from M . We extend the domain of Δ to the
set of versions: Δ(v1, v2) = {(A1, A2, M, D, I)|(M, D, I) = Δ(A1, A2), where
(A1, A2) ∈Md, (Md, Dd, Id) = Δd(v1, v2)}.

In order to detect homologues, we compute common code structures (CCSs)
between versions. A CCS between two ASTs A1 and A2 with respect to a node
map M , denoted by CCS

M
(A1, A2), is defined as a pair of trees (S1, S2) where

S1 = A1|dom(M) and S2 = A2|cod(M). A CCS between two versions is defined
as a set of CCSs between ASTs which corresponds to source files matched
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Fig. 3. Detecting Homologues

by Δd. We can compute a CCS between versions v1 and v2 by first comput-
ing (Md, Dd, Id) = Δd(v1, v2), and then computing (M, D, I) = Δ(A1, A2) and
(A1|dom(M), A2|cod(M)), for each (A1, A2) ∈Md.

3.1 Detecting Homologues

An orthologue is defined between versions of different branches. For a pair of
branches BL and BR diverged from a common ancestor, an orthologue between
the oldest versions of BL and BR is defined as a CCS between the oldest ver-
sions. See Fig. 3, where CL0R0 and OtL0R0 denote a CCS and an orthologue
between versions vL0 and vR0 of branches BL and BR. Once we have obtained
an orthologue between the oldest versions, orthologues between other versions
of BL and BR is obtained by tracking the oldest orthologue. Our method of
tracking code fragments is described in Sect. 3.2.

In order to detect xenologues, we must perform differencing one more time
on CCSs. Let BL and BR be branches that stem from a common ancestor (See
Fig. 4). For versions vLb and vRb, we compute Xn(vLb, vRb) which denotes the set
of xenologues between vLb and vRb. We let Δd(vLb, vRb) = (MLbRb, DLbRb, ILbRb)
where MLbRb = {(1, 1), (5, 3)}, where nodes are indicated by indexes (by post-
order traversal). Similarly, for (vLa, vRa), (vLa, vLb), and (vRa, vRb), we let
MLaRa = {(1, 1), (3, 3)}, MLaLb = {(1, 2), (3, 5)}, and MRaRb = {(3, 3)}. Among
the pairs contained in MLbRb, only (5, 3) = (ALb5, ARb3) is able to form a com-
mutative diagram consisting of dashed arrows in Fig. 4. Similarly in MLaRa, only
(ALa3, ARb3) form a diagram. We apply Δ to (ALb5, ARb3) and (ALa3, ARa3) to
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Fig. 4. Differencing Common Code Structures

obtain CCSs for them. Let Mb = MLb5Rb3 and Ma = MLa3Ra3 be node maps
obtained from the applications, respectively. By definition, CCSMb

(ALb5, ARb3)
= (ALb5|dom(Mb), ARb3|cod(Mb)) and similarly we have CCS

Ma
(ALa3, ARa3)

= (ALa3|dom(Ma), ARa3|cod(Ma)). We let CLb5Rb3 = ALb5|dom(Mb) and CLa3Ra3 =
ALa3|dom(Ma). Finally, we apply Δ to CLa3Rb3 and CLb5Rb3. Let (M, D, I) =
Δ(CLa3Rb3, CLb5Rb3). I corresponds to Xn(ALb5, ARb3) and D “degenerated”
homologues between ALb5 and ARb3, denoted by Dg(ALb5, ARb3). Note that we
can choose ARb3|cod(Mb) for CLb5Rb3 or ARa3|cod(Ma) for CLa3Ra3 since we ignore
the difference of node labels in the node maps.

As mentioned in the beginning of Sect. 3, it is impossible to determine the
origin of xenologues in general. For example, in Fig. 3, suppose that there exists
some a ∈ XnL3R4 and it also exists vL3 through vL4, and vR1 through vR6. We
can not decide whether a is introduced by simultaneous patch application to vL3
and vR1 or by copying some part from a revision between vR1 and vR6 to vL3.

We use existing tools for identifying paralogues (code clones) in the initial
version of the given software versions. For the versions descending from the
initial versions, we use a code tracking method described in the next section for
detecting cloning activities.

3.2 Tracking Code Fragments

Once the occurrence of a homologue is discovered, we look into a code continuum
to inspect developments in the subsequent versions. A code continuum is a data
structure created by composing differencing results across versions to record
entire lifetime of a source code entity. A code continuum can be illustrated by
a set of node continua, that is, threads representing the lifetime of AST nodes
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Fig. 5. Code Continuum

Alg. 1. Continuum Construction

1: procedure ConstCTM(〈T0, T1, . . . Tn〉, K)
2: K ← ∅
3: for 0 ≤ i ≤ n − 1 do
4: Mi = M(Ti, Ti+1)
5: Mapped ← ∅
6: for k = 〈N0, . . . , Nl〉 ∈ K do
7: k ← 〈N0, . . . , Nl, Mi(Nl)〉
8: Mapped ← Mapped ∪ {Nl}
9: end for

10: for x ∈ dom(Mi) do
11: if x �∈ Mapped then
12: K ← K ∪ {〈ε, . . . , ε︸ ︷︷ ︸

i times

, x, Mi(x)〉}

13: end if
14: end for
15: end for
16: end procedure

over time as in Fig. 5, where the beginning and the ending of a thread indicate
the introduction and the removal of the AST node, respectively.

A node continuum is constructed for each AST node. For the same reason
as we perform directory tree differencing, we construct a file continuum for
each source code file. Each node/file continuum stores trace information of an
AST node and a source file, respectively. A continuum for versions v0, . . . , vn

is represented by a sequence of names 〈N0, . . . , Nn〉, where Ni(0 ≤ i ≤ n) is
a name of the node/file in version vi. The node name is given by its index
in post-order traversal and the file name by its path name. Non-existence of
the node/file is represented by an empty name ε for convenience. An algorithm
for constructing continua is shown in Alg. 1. In the description of continuum
construction algorithm,M denotes a wrapper function of Diff/TS. For a pair of
trees T1 and T2,M(T1, T2) computes a tree map between T1 and T2. The result
is stored in K.

Fig. 6. Cloning Activity Detection

Since our AST nodes contain loca-
tion information such as file names,
line numbers, column positions and
file offsets, continua make various
analysis tasks easy including tracking
corresponding source code entities on
texts and reconstructing change se-
quences for a given code segment ac-
cording to the results of source code
tree differencing.

3.3 Detecting Cloning Activities

While traditional clone detection tools can discover code clones among given
sets of software versions, they do not support tracking discovered code clones
in the subsequent versions of software. To cope with the problem, we utilize
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code continua for identifying cloning activities by looking for the original code
of cloning in the previous version by way of token based sequence matching.

Suppose that we analyze a sequence v0, v1, v2, . . . , vn of software versions.
Clones that exist already in the initial version v0 are marked using existing
tools such as SimScan1 for Java code and CCFinder [10] for C code. Cloning
activities taking place between vi−1 and vi (i ≥ 1) are identified by the following
procedure:

1. collect node continua starting from vi to form a tree T included in the AST
of vi,

2. convert T into a sequence p of tokens by pre-order traversal,
3. compare p with token sequences obtained from ASTs in vi−1 by pre-order

traversal using an O(ND) algorithm [11],
4. compute a score for each match by (number of matched tokens)/(number of

tokens in p),
5. select the maximum score s and if it exceeds the pre-defined threshold, con-

cludes that T is cloned from vi−1.

The procedure is illustrated in Fig. 6. Note that code continua is collected to
align pre-defined boundaries such as functions, methods, and classes to form
subtrees.

3.4 Constructing and Comparing Change Histories

A change history for a code fragment is a sequence of change types obtained
by accumulating change types whose locations are contained in the range of the
fragment. In order to detect inconsistent changes, we define a similarity score
between change histories as 2m/t, where m is the number of matches calcu-
lated by a sequence matching algorithm and t is the total number of change
types in both histories. We regard a pair of code fragments as inconsistently
modified if and only if either of the change histories is non-empty and the
similarity score between the change histories is less than a specified similarity
threshold.

4 Experiments

In this section, we present the results of code homology analysis on several open
source software projects including BIND9 daemon (for xenologue detection), a
couple of Java projects, jEdit2 and Ant3 (for paralogue detection and tracking),
and the Linux kernel driver subsystem (for change history construction). The
experiments are conducted in the following manner:

1 http://www.blue-edge.bg/simscan/simscan help r1.htm
2 http://www.jedit.org/
3 http://ant.apache.org/
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Table 1. Sample Projects

lang. # of ver. versions # of src files kSLOC

BIND9 C 26 9.0.0 - 9.5.0-P2 767 - 1,186 153 - 260
jEdit Java 56 3.2.2 - 4.3.0pre17 279 - 532 55 - 108
Ant Java 41 1.1 - 1.7.1 87 - 1,220 9 - 125
Linux C 32 2.6.0 - 2.6.31 12,424 - 23,752 3,626 - 7,337
(drivers) (3,285 - 8,116) (1,778 - 4,106)

1. Fill the local software repository with revisions of target software.
2. Xenologues are calculated by double-differencing (BIND9 only) and par-

alogues are calculated by backward code matching. Code clones detected
in the first version are also treated as paralogues.

3. Paralogues are checked for inconsistent changes descending from the origin
of the paralogues, which often account for latent bugs. Checking is done at
the level of change type sequences described in Sect. 2 (except BIND9).

4. Discovered homologues and change histories go through human inspection
for validation.

We used a PC with a pair of quad-core Intel Xeon CPU (3.0GHz) with 16GB
RAM running under Linux kernel 2.6.24 for these experiments.

The programming languages used for the software, the numbers and the ranges
of analyzed versions, the numbers of source files, and kSLOC (ignoring com-
ments and blank lines) of the initial and the latest versions of the target systems
are shown in Table 1. For Linux, data for drivers subsystem are shown in
parentheses.

4.1 BIND9

The main purpose of this experiment is to ascertain that our analysis can actu-
ally detect xenologues corresponding to merged or patched code fragments. ISC
BIND (Berkeley Internet Name Domain) is an implementation of the Domain
Name System (DNS) protocols. As of October, 2008, three release branches of
BIND9, namely 9.2.x, 9.3.x, and 9.4.x are actively maintained. We selected 26
versions for analysis and our system detected 215 orthologues. We found that
about 30% of them are degenerating, that is, decreasing in size. This indicates
that 30% of commonly inherited code was modified in one or more branches and
70% of it is stable for generations. The system also detected 8,948 xenologues
most of which (98.27%) are relatively small in size (< 64 nodes).

In the case of BIND9, it is likely that xenologues are introduced by patch ap-
plications such as security patches since multiple releases have been maintained
in parallel. For example, a modification “Query id generation was cryptograph-
ically weak.” (RT#16915) is commonly included in CHANGES files contained in
releases 9.2.8-P1, 9.3.4-P1, and 9.4.1-P1. As we expected, several xenologues
in dispatch.c, out of 34 xenologues among 9.2.8-P1, 9.3.4-P1, and 9.4.1-P1,
appear to be strongly related to that modification.
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4.2 jEdit and Ant

We collected 56 versions of jEdit from release 3.2.2 to 4.3pre17, and 41 versions
of Ant from release 1.1 to 1.7.1. First, we compare the paralogue (code clone)
tracking ability of our method with that of Duala-Ekoko and Robillard [6]. They
implemented a system called CloneTracker which is capable of tracking code
clones detected by clone detection tools. It identifies clone regions at the granu-
larity of code blocks using heuristics based on the structural properties, lexical
layout, and similarities of the clone region. They provided case studies of jEdit
and Ant. A clone detection tool called SimScan was used to detect code clones
in the initial versions. Then, they selected five clone groups, which were tracked
across the subsequent versions. They also manually inspected changes made in
the tracked clone groups.

We have tracked the clone groups detected by SimScan including the five
clone groups above and reconstructed change histories for them by our method.
We used SimScan with the same settings as that of Duala-Ekoko and Robil-
lard’s experiment, namely volume=medium, similarity=fairly similar, and
speed=fast. Our tracking results were consistent with their results except for
a clone region that they could not track. Our system was able to track the
clone region up to the most recent version. All reported changes collected by
their manual inspection were automatically reconstructed by our change history
construction method briefly described in Sect. 3.4.

We also pairwise compared reconstructed change histories of code fragments
in tracked clone groups. We set the similarity threshold to 0.5. For lack of space,
we only report the results of Ant. 537 clone pairs out of 1,078 initial clone pairs
detected by SimScan were inconsistently modified without disappearing before
the latest version, while 340 pairs disappeared before the latest version. Our
system also detected 1,247 additional clone pairs after the initial version. Among
them, 272 pairs were inconsistently modified (excluding 369 disappeared clone
pairs). Note that detected inconsistent changes do not immediately account for
bugs. There is a possibility that clones are intentionally modified differently [12].
It took our system 60 and 70 minutes to complete the whole analysis of jEdit
and Ant, respectively.

In our system, cloning activities can be visualized using continua. Figures 7
and 8 show file and code (MiscUtilities.java) continua for jEdit. Each horizontal
line represents a file (node) continuum and each polygon a group of file (node)
continua that begin at the same version. In each polygon, continua are sorted by
terminating versions and colors represent the percentage of continua generated
by cloning activities in the corresponding group. We can see that a couple of
versions introduced numerous clones.

4.3 Linux Device Drivers

A case study is reported, in which investigation of inconsistent changes detected
by our system has led to a certain contribution to an open source community.
We collected and analyzed 32 versions of Linux 2.6 kernel source code from 2.6.0
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Fig. 7. File Continua of jEdit

0 10 20 30 40 50
version (generation)

0

1000

2000

3000

4000

5000

6000

n
u
m
b
e
r
o
f
n
o
d
e
c
o
n
ti
n
u
u
m
s
(g
ro
u
p
e
d
)

jedit (3-2-2 --> 4-3-pre17)

0

10

20

30

40

50

60

70

80

90

100

p
e
rc
e
n
ta
g
e
o
f
c
lo
n
in
g

Fig. 8. Node Continua of jEdit
(MiscUtilities.java)

to 2.6.31. We first detected and tracked the paralogues in the entire kernel source
code. Then we constructed fine-grained change histories for the paralogues in the
drivers subsystem and inspected the histories to detect inconsistent changes.
The drivers subsystem itself is a large code base as it occupies more than 70%
of modern operating systems in volume and accounts for the vast majority of
bugs as reported by Chou and others [13].

In order to detect initial clones in the initial version 2.6.0, we used CCFinder
with the default setting. After CCFinder had detected 2,851 clone pairs, we set
the similarity threshold between change histories to 0.9999 and ran the system.
It took three days to detect additional clone pairs and to track all paralogues.
It then took two more days to construct change histories for paralogues in the
drivers subsystem. The system detected 814 additional clone pairs (cloning
activities) after version 2.6.0, and 1,441 and 385 inconsistently modified pairs
out of the initial and the additional clone pairs, respectively. After automated
analysis is completed, we manually inspected inconsistent changes with similarity
scores more than or equal to 0.9. It should be noted that overlooking changes
such as argument deleted and parameter type changed leads to compiler
errors, and hence immediate regression faults. Overlooking protocol changes such
as function call inserted, however, often causes latent errors difficult to detect.
Thus we focused on insertion of statements.

We were able to find approximately 10 inconsistent changes involving inser-
tions of function calls to lock kernel that remained in the latest version 2.6.31.
An inconsistent change involving lock kernel detected by the system is shown
in Fig. 9, where a clone pair in synclinkmp.c and synclink cs.c was incon-
sistently modified. Their change type sequences were mostly the same, which
means that they almost consistently co-evolved, but differ in only one change.
In this experiment, we observed a number of clone pairs that evolved almost con-
sistently. Among them, a pair of change histories that shares 178 change types
in common with a similarity score of 0.98 was discovered.

By further inspection, we found that the inconsistency relates to similar
inconsistencies observed in Linux serial drivers violates a development policy
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*** detected pair [1482] (historical similarity: 0.972973) ***
ORIGIN: "linux-2.6.0/drivers/char/synclinkmp.c":1129-1172 --

"linux-2.6.0/drivers/char/pcmcia/synclink_cs.c":2616-2659
LATEST: "linux-2.6.31/drivers/char/synclinkmp.c":1052-1096 --

"linux-2.6.31/drivers/char/pcmcia/synclink_cs.c":2439-2481
total significance of history1: 32 (max=4)
total significance of history2: 30 (max=4)

--- 1 changes found only in "linux-2.6.0/drivers/char/synclinkmp.c":1129-1172:

@"linux-2.6.25/drivers/char/synclinkmp.c":1109-1151
@"linux-2.6.26/drivers/char/synclinkmp.c":1111-1155
[statement inserted] (significance=2)
[Statement.Expression(Expression.Call()){lock_kernel}[(<call>(lock_kernel,<args>))]]
@Definition(wait_until_sent)(1108L,0C-1167L,0C(30773-32316))
@Definition(wait_until_sent)(1124L,1C-14C(31088-31101))

Fig. 9. An Example of Inconsistent Change

concerning kernel locking known as BKL (big kernel lock) pushdown. The BKL
was introduced to make the kernel work on multi-processor systems. The role
of the BKL, however, has diminished over years since fine-grained locking has
been implemented throughout the kernel for better throughput. Although some
attempts to entirely remove the BKL have been made, progress in that direction
has been slow in recent years.

It was not long before the BKL accounted for a performance regression. At
last, some of the developers decided to go a step further in versions 2.6.26 and
2.6.27. They began with serial drivers. In order to remove upper-level acquisition
of the BKL in the control flows, they attempted to push the acquisition down to
the device specific code level, where they expected BKL removal to be achieved.
Indeed, numerous lock kernel calls were (almost blindly for safety) inserted into
serial driver code including synclinkmp.c at version 2.6.26, and then the upper-
level call (in fs/char dev.c) was removed at version 2.6.27. However, during
the pushdown, synclink cs.c was left unchanged, which led to an inconsistent
change detected by our system.

Although the inadvertency itself does not cause errors, we could promote the
BKL pushdown policy. In response to our report on the inconsistent change, the
author of synclinkmp.c pointed out that the lock kernel calls in the driver
can be safely removed. We submitted a patch removing the BKL related calls
from synclinkmp.c and its variations. It was acknowledged by the author of
the driver.

5 Related Work

There is a large body of studies on code clones and related detection tools [4].
Code clone detection and source code differencing are two complementary tech-
niques for analyzing relationship among software products. Although code clone
detection tools may well be able to discover homologous code, they may not be
suitable for precisely tracking life cycles of such code in the long evolution of the
software as it requires consistently identifying changed and unchanged parts. It
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usually takes awkward steps of taking difference by way of clone detection. Since
code clone detection methods can analyze clones across different and unrelated
software products, it would be an interesting topic to combine these two meth-
ods. One idea is to use clone detection tools first to reduce the size and the scope
of the problem, and then to apply tree differencing tools for detailed analysis.

Kim and others [7] proposed a method for inferring high-level description of
structural changes based on the first-order logic in order to determine method
level matches between versions of Java programs. While their method is special-
ized for Java programs, their idea of aggregating low-level description of changes
seems applicable to our system. Kim and Notkin apply clone detection techniques
to understand evolution of code clones [5] in Java software. They rely on location
overlapping relationship to track code snippets across multiple versions of a pro-
gram. While their analysis is simple and fast, it may not be able to extract how
such code snippets changes over time from the source code. Duala-Ekoko and
Robillard [6] proposes a code tracking method tailored for Java. Although the
method is driven by heuristics and suitable for interactive use, the lack of preci-
sion in syntactic analysis may limit the ability of the tool. Godfrey and Zou [14]
developed a set of techniques for detecting merging/splitting of functions and
files in software systems. They presented a set of merge/split patterns and em-
ployed call relationships to aid in detecting their occurrence, which are also useful
for our analysis. Aversano and others [15] proposed a method of investigating
how clones are maintained over time. In order to derive evolution patterns of
clones, they rely on fast but coarse line-by-line differencing to track clones.

In Sect. 3, we implicitly assumed that the genealogies of target software sys-
tems are given. However, without any development history or any explicit record
of tagging or version copying operations, it may be difficult to determine the
origin of branching, notably the version from which a development branch is
duplicated. In such situations, we can reconstruct the genealogies by utilizing
tree differencing and tools for phylogeny [9].

6 Conclusion

We have proposed an automated method for analyzing code homology in geneal-
ogy of evolving software based on fine-grained tree differencing. Homologues can
be introduced through various activities: branching/forking in software projects
(orthologues), code exchange between neighboring branches such as code import/
merging and common bug-fix patches (xenologues), and code duplication within
branches (paralogues or code clones). As the development proceeds, homologues
can incur additional maintenance efforts. We have developed a method for de-
tecting and tracking such distinctive pieces of code by exploiting fine-grained
tree differencing. Detecting and tracking homologues along evolution branches
enable us to reconstruct and to compare change histories of homologues, which
leads us to detect inconsistent changes. Results of experiments conducted on sev-
eral large-scale software including BIND9 DNS servers, a couple of Java software
jEdit and Ant, and Linux device drivers have been reported to show the capability
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of the method. Having scalable and precise tree differencing engines helped us
to analyze a large-scale software project such as the Linux kernel consisting of
several millions of SLOC.

Future work includes the following:

1. to improve processing speed by further exploiting parallelism and by elimi-
nating redundant computation,

2. to build a database for efficiently storing and retrieving various (intermedi-
ate) results computed by the system, together with comprehensive graphical
user interface, and

3. to apply our analysis to:
(a) change pattern mining and future modification prediction,
(b) language-aware merging, and
(c) the concrete problem of generating generic patches [16] that cover wide

range of Linux device drivers.
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Abstract. Good resource scheduling plays a pivotal role in successful software 
development projects. However, effective resource scheduling is complicated 
by such disruptions as requirements changes, urgent bug fixing, incorrect or un-
expected process execution, and staff turnover. Such disruptions demand im-
mediate attention, but can also impact the stability of other ongoing projects.  
Dynamic resource rescheduling can help suggest strategies for addressing such 
potentially disruptive events by suggesting how to balance the need for rapid 
response and the need for organizational stability. This paper proposes a multi-
objective rescheduling method to address the need for software project resource 
management that is able to suggest strategies for addressing such disruptions.  
A genetic algorithm is used to support rescheduling computations. Examples 
used to evaluate this approach suggest that it can support more effective re-
source management in disruption-prone software development environments.  

Keywords: Disruption, rescheduling, multi-objective, genetic algorithm. 

1   Introduction 

Software development processes are highly dependent upon human resources [1, 25]. 
Thus a key problem in software project management is appropriate human resource 
scheduling. Effective resource scheduling should ensure that assigned resources have 
the capability and capacity to execute their assigned tasks, that resource contention is 
minimized, project efficiency is maximized, and that organizational value and cus-
tomer satisfaction are increased [3, 28, 29].  

But disruptive events such as requirements changes, needs for fixing important 
bugs, incorrect or unexpected process execution, and staff turnover can create uncer-
tainty that complicates resource scheduling [13, 21]. A particularly vexing aspect of 
this problem is how to balance the need to respond effectively to disruptive events 
against the need to be sure that this response does not create other (perhaps even more 
severe) disruptions by destabilizing other ongoing projects. There are risk manage-
ment approaches that suggest how to anticipate and address some kinds of such  
disruptive events, but unexpected events simply cannot be predicted with sufficient 
accuracy, thus suggesting the need for a dynamic rescheduling approach.  
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Answers to the following four questions are needed to support this approach:  

(1) Under what circumstances should a rescheduling be executed? That is, how 
can the problems caused by disruptions and the current state of the process 
execution be used to suggest when a rescheduling should be undertaken?  

(2) Which activities should be covered by the rescheduling? That is, what activi-
ties should be within the scope of the rescheduling when rescheduling is un-
dertaken? 

(3) How can the approach to rescheduling be tailored to accommodate different 
kinds of disruptions? What kinds of measures can be used to support finding a 
balance between dealing with current disruptions and avoiding the creation of 
excessive new disruptions in doing so?  

(4) What kind of scheduling algorithm should be used? Which algorithm can pro-
vide as optimal a scheduling result as possible for costs in time and computing 
power that are as minimal as feasible? 

This paper proposes a software process rescheduling method to address the issues 
of software project management in these kinds of dynamic disruption-prone environ-
ments. Articulate process and resource models are used to support this method. The 
value obtained from proposed reschedulings is computed using a function that 
weights both how well the rescheduling addresses the disruption (utility) and how 
little it creates new disruptions (stability). To address the problems posed by the high 
degree of complexity of such a rescheduling problem, a genetic algorithm (GA) [14] 
is adopted as the basis for our rescheduling approach.  

The paper provides the following contributions: 

(1) A procedure for performing resource rescheduling in response to the oc-
currence of disruptive events that assumes pre-specified responses to disrup-
tions, and tackles the problems caused by executing these responses.  

(2) A multi-objective value function for evaluating rescheduling results that 
takes into consideration the need for both high stability and high utility.  

(3) A GA based rescheduling method that seems to be effective both in deliver-
ing good results and efficient in keeping costs modest. 

Section 2 analyzes uncertainties and process change in software development, and 
describes the rescheduling approach we use to address disruptions. Section 3 presents 
the models used as the bases for both the rescheduling and the evaluation of the multi-
objective function used to evaluate the rescheduling. Section 4 provides an initial 
demonstration of this method. Section 5 describes some related work, and section 6 
presents conclusions and suggests future work. 

2   A Rescheduling Approach to Responding to Dynamic Change  

Software development managers need to make resource rescheduling decisions to 
respond to disruptions [15] such as: 

(1) Requirement velocity: Requirements continually change during process execu-
tions [12, 16]. To address these changes, new activities may be inserted into 
development processes, requiring assigning resources to these activities. 



Dynamic Resource Scheduling in Disruption-Prone Software Development Environments 109 

(2) Sudden arrival of urgent activities: New activities may be needed to address 
urgent problems (e.g. serious bugs in delivered software) [20]. Although such 
events might not be unexpected, it may be hard to predict when they occur, 
and thus the changes they require may cause disruption to schedule or cost [5]. 

(3) Deviations in process execution: Inaccuracies in project cost estimates, incor-
rect performance of tasks by project personnel, the unexpected need for re-
work, or the occurrence of process exceptions may cause a project to fail to 
proceed as planned thus necessitating the rescheduling of project resources. 

(4) Staff turnover: The software industry experiences high personnel mobility and 
staff turnover that create disruptions that typically require rescheduling [7].  

This paper presents a resource rescheduling method designed to tackle the impact 
of these kinds of disruptions in dynamic environments.  The first step in our method 
entails determining the changes to process execution needed to respond to the occur-
rence of disruptive events. These changes may include either the insertion of new 
process activities, the deletion of activities that were present in the initial process, or 
the addition or deletion of resources that had been in the initial resource set. Any of 
these changes triggers resource rescheduling.  

The second step entails determining the scope of the resource rescheduling, namely 
identification of the activities and resources to be involved in a rescheduling. There 
are a number of reasons why rescheduling does not necessarily entail reconsideration 
of all the activities and resources in an entire software organization. One such reason 
is that process changes may occur in only one project or even in only a part of one 
project, and the needed resource scheduling adjustments might be readily restricted to 
this range. Moreover, we note that if rescheduling spans the entirety of a long term 
process, the rescheduling might itself introduce more disruptions than it addresses. In 
this paper the scope of a rescheduling is restricted to only a subset of the projects 
being performed by an organization at the time of the rescheduling.  

Third, we construct the constraints and value objectives for rescheduling. The goal 
of rescheduling is to obtain optimal organizational value while conforming to various 
constraints. Since resource scheduling decisions are usually made under conflicting 
goals, a value function that can balance the goals is needed in rescheduling.  This 
paper uses as an example addressing the conflicting goals of stability and utility. 

Fourth, we seek value function optimization by using GA. This optimization prob-
lem has a high level of complexity, so we use GA as the scheduling approach, hoping 
to achieve near-optimal results at acceptable costs. 

Section 3 describes our approaches to the problems arising in doing these steps.  

3   Multi-objective Resource Rescheduling Using a GA 

3.1   Project, Activity and Resource Models Used in Scheduling  

3.1.1   Project Model 
Software organizations are usually performing a group of projects, each described by 
basic information, constraints, and its value objectives. Thus we define a project as: 
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Definition 1. ),,( PWSetConSetBasicAttrP = , where, 

• BasicAttr describes such basic attributes as name, generation, descriptions, etc.  
• ConSet is the set of all project level constraints (e.g. cost and time). Violation 

of each constraint will incur some quantified penalty.  
• PWSet is a preference weight set. Each project in a multi-project environment is 

assigned a priority weight relative to the other projects. This weight is used to 
evaluate the importance of the resource requirements of each project.  Note that 
this weight may change dynamically (e.g. to emphasize the importance of re-
sponding to the need to fix an important bug).  

3.1.2   Activity Model 
Precision and specificity in evaluating competing resource schedules are enhanced 
through the use of a project specification notation that is more precise and detailed. 
Thus, the Little-JIL process definition language [26] is used in this paper to define 
software development project activities, their dependencies upon each other, and their 
needs for resources. This language offers simplicity, semantic richness and expres-
siveness, and a formal and precise, yet graphical, syntax. 

 

Fig. 1. Project development process described by Little-JIL 

Fig. 1 shows a Little-JIL definition of a process for carrying out two software de-
velopment projects in parallel. The “=” sign in the “ProjectDevelopment” root step 
indicates that its substeps (Project1 and Project2) are performed in parallel. Projects 
are decomposed into requirement analysis (RA), development (Develop), and testing 
(TST), which are executed sequentially (represented by “ ” sign). Development is 
further decomposed into design (AD), implementation (IMP), and write test case 
(WTC). WTC is executed parallel with AD and IMP, which are executed sequentially.  

Requests for resources are represented iconically by the dot atop the step, and are 
described as required skills, skill levels, and required quantities of skills. 

Fig. 2 shows an example of how an activity may be added to a process to respond 
to a disruption. Thus Project3 executes RA, IMP, and TST sequentially to realize a 
changed requirement and Project4 and Project5 use IMP and TST sequentially to  
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Fig. 2. Combine new project activities with initial project development process 

realize urgent bug fixing. All are executed in parallel with Project1 and Project2. This 
process definition is used to select the activities that will be included in the scope of 
the rescheduling. This is done using graph searching algorithms whose details are 
omitted due to space constraints.  In the work described here, all steps that are fewer 
than some previously fixed number of steps beyond the currently executing step(s) are 
included in the rescheduling. Details of how this is done can be found in [27].  Other 
criteria could be used to determine the steps in this rescheduling “window”.  

3.1.3   Resource Model 
The human resource model proposed in [29] is used to describe human resources. 
Each human resource is described by its identification (ID), executable activity type 
set (EATS), skill set (SKLS), experience data (EXPD), schedulable time and work-
load (STMW), together with salary per person-hour (SALR). EATS, SKLS and 
EXPD are capability attributes, and STMW is the capacity attribute. 

Resources available for the rescheduling are preserved in a resource repository. 
The set of resources that are candidates to perform a step are those such that 1) the 
work type of the step is included in the EATS attribute of the resource, 2) the skills 
described in the step’s requirements are also in the resource’s SKLS attribute, and 3) 
the resource has a higher skill level than is required by the step.  Note that when there 
is resource turnover, the resource repository is changed accordingly.  

3.2   Multi-objective Value Measure of Rescheduling  

A rescheduling may have different objectives that conflict with each other. Thus, for 
example, attaching a high priority to fixing a bug in one project indicates that this bug 
fix will return high value to the organization. But this may require using the resources 
of a different project, causing disruption to that project and loss of value to the or-
ganization. Thus rescheduling must be measured against a possible multiplicity of 

objectives. Assume a rescheduling has n objectives, nooo ,...,, 21 , each having weight 

wi , then the value of the rescheduling is defined to be ∑
=

=
n

i
ii owMO

1

*  

Note that each objective in this function can be further decomposed into  
sub-objectives, each having its own importance weight. This paper presents, as an 
example, two resource rescheduling objectives to define the value function. The first 
(stability) weights the importance of keeping the rescheduled process similar to  
the initial process. The second (utility) weights the importance of responding to the 
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disruption. Though the examples in this paper assume the existence of only two ob-
jectives, the approach scales up to consideration of any number of objectives.  

3.2.1   Stability Value 
Process stability is measured using two factors, change in the scheduling of each 
activity and change in human resource assignments to each of the activities.  Schedule 
changes can reduce project commitment and customer satisfaction. Resource assign-
ment changes can necessitate more communication effort, more training time, and 
waste of previous preparations, reducing the value of a project. 

Schedule deviation is measured by the differences between initial process and re-
scheduled process start times and end times. Let the start time before and after re-

scheduling of an activity ACT be ACTts  and '
ACTts respectively, the end time of ACT 

be ACTte  and '
ACTte  respectively. Since impact of start time and end time deviations 

may differ, let impact coefficients be α and β respectively. Then the deviation of ACT 
is defined to be '' ** ACTACTACTACT tetetsts −+− βα , and the total deviation of the ac-

tivities in ActivitySet due to rescheduling is: 

∑
∈

−+−=
tActivitySe

ACTACTACTACT tetetstsSDeviation
ACT

'' )**( βα  

Note that in this example only the activities in the initial process are used to com-
pute schedule deviation. Section 3.1.2 suggest how these activities are identified, and 
more complete details can be found in [27]. Other measures can also be defined. 

To measure human resource changes, workload changes for each human resource 
scheduled to an activity are accumulated. Assume a human resource set HRS repre-
sents all the human resources assigned to an activity ACT in either the initial or the 
rescheduled process. For each hr ∈ HRS, assume the workload allocated to ACT be-
fore rescheduling is b

hrE , and after rescheduling is a
hrE . If hr is not in ACT before re-

scheduling, b
hrE is zero. If hr is not in ACT after rescheduling, a

hrE is zero. Then total 

human resource changes are defined to be: ∑
∈

−=
ACTHRS

a
hr

b
hr EEnHRDeviatio

hr

 

Schedule deviation and resource change may have different impacts on stability, 
and so HC, a coefficient of human resource change is used to compute total deviation. 

∑ ∑
∈ ∈

−+−+−=
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hr

b
hrACTACTACTACT
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EEHCtetetstsDeviation
ACT hr

'' )***( βα  

The goal of stable rescheduling is to minimize the above stability loss. Therefore, 
total stability value is StabilityValue = C-DP*Deviation, where DP is the deviation 
penalty coefficient and constant C causes the stability value to be positive. 

3.2.2   Utility Value 

Utility describes the value obtained from a project that satisfies its constraints at its 
conclusion. If the project succeeds and satisfies its constraints, benefits will be ob-
tained. If the project is delayed, penalties are incurred. The schedule utility of a pro-
ject is defined by comparing the actual finishing date to the constraint finishing date. 
Let the actual finishing date and the constraint finishing date of a project be AFD and 
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CFD respectively. Let benefit of finishing one day ahead the constraint be SB, and the 
penalty for a one day delay be SP. The schedule utility is defined to be: 

}0),max{(*}0),max{(* AFDCFDSPCFDAFDSBSUtility −−−=  

Since the cost of developers is the primary cost in software development, our 
method only takes human resource cost into consideration. This cost is the total over 
all activities of the product of the salary rate of each human resource multiplied by the 
workload required. Assume the cost of a project is CST and cost constraint of this 
project is CCST, then cost utility of this project is: CSTCCSTCUtility −=  

Weighting schedule and cost preference by coefficients SWeight and CWeight re-
spectively, project utility is: CUtilityCWeightSUtilitySWeightPU ** +=  

The preference weights of projects vary. For example, an urgent bug fix project 
may be very important and should have a high priority for resources.  Thus a project 
preference weight (PPW) is set for each project and the utility value for all projects in 
an organization is defined by: ∑

∈

=
ProjectSetP

PP PUPPWueUtilityVal )*(  

Now finally, assume the stability and utility objectives for a scheduling are given 
weights 

sw  and 
uw  respectively.  Then a rescheduling’s value is computed by: 

ueUtilityValwalueStabilityVwValue us ** +=  

3.3   Rescheduling Using a GA  

3.3.1   Encoding and Decoding 
The first step in using GA as a problem solver is to represent the problem as a chro-
mosome. In the activity model described by Little-JIL, non-leaf steps are used to 
represent scopes and to group certain kinds of activities, but only leaf steps represent 
actual project performance activities. Thus, once the scope of rescheduling has been 
determined as described in section 3.1.2 (and in more detail in [27]), only the leaf 
steps in that scope are selected for GA encoding. Assume the N steps, 

NSSS ,...,, 21
 are 

selected, and the human resources capable of executing step Si are HRi,1, HRi,2, ..., 
HRi,ti. We construct a resource queue HR1,1, HR1,2, ..., HR1,t1, ..., HRN,1, ..., HRN,,tN, 
consisting of all resources that are schedulable to activities in the rescheduling scope. 
The first part of the chromosome (shown as the left part of Fig. 3) is generated by 

creating a gene for each step, as just described.  The length of this part is: ∑
=

=
N

i
itT

1

. 

Once GA has run, if a gene has value “1” the corresponding human resource has been 
scheduled to the corresponding step. The value “0” means the corresponding human 
resource is not scheduled to the step.  

0/1 0/1...0/10/1...0/10/1...... ......0/1...0/1

S1 ...... SN

0/1...0/1

Priority for S1 Priority for SN......
Human resource genes Priority genes

Size = g Size = g
HR1,1  HR1,2  ...  HR1,t1 ......      HRN,1  HRN,2 ...  HRN,tN

 

Fig. 3. Structure of the Chromosome 
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The chromosome also contains priority genes (shown on the right of Fig. 3) to rep-
resent the priority weight of each project. A priority weight is a binary number. If the 
GA assigns a human resource to more than one step, the step with highest priority 
value is assigned the human resource. Therefore, the length of the chromosome is: 

gNTCL ∗+= , where g is the base 2 logarithm of the maximum priority level. 

After GA has been run, a chromosome is decoded into a schedule as follows. First, 
sort all the steps involved in the rescheduling into a queue. In this queue, steps that 
precede others are placed in front of those that follow. If steps do not have a prece-
dent/succedent relationship, steps with higher priority are placed in front of those with 
lower priority. Second, assign each resource whose gene has the value “1” to the 
corresponding step in the queue. If a step requires only a certain number of resources, 
then at most that number of resources are assigned. Third, allocate the schedulable 
workload of the assigned resources to each step and update the availability state of the 
resources. Finally, set the start time of the step so that it is the earliest time that is not 
earlier than the end time of all of its preceding steps. 

Constraint satisfaction: Rescheduling constraints are built into the encoding and 
decoding process. During encoding, candidate resources for each step are determined 
to have the capability to execute the step. In the decoding process, only resources that 
have available workload are scheduled, and they are scheduled only at times when 
they are available and when the activity is actually executable. Other constraints could 
also be defined and used to assure that more qualified resources (e.g. those with 
higher skill levels) are favored for assignment over less qualified resources.  

3.3.2   Running GA 

The initial population of the GA is generated by creating chromosomes as described 
above. Evolution is realized by using predefined crossover and mutation rates, for 
each population generation. The fitness of each chromosome is evaluated by the value 
function presented in section 3.2 and chromosomes with higher fitnesses are selected 
for each succeeding generation. Evolution continues for a predetermined number of 
generations, and the chromosome with the highest fitness in the last generation is 
selected as the solution. Full details of the steps used in executing GA are omitted 
here due to space limitations. These details can be found, however, in [28].  

4   Demonstration of the Use of This Approach 

To evaluate our method, we used it to simulate the allocation of resources by a soft-
ware company engaged in two different projects.  We hypothesize that each of the 
two projects is addressing requirements for a group of modules, and that both are 
doing so by performing the process shown in Fig. 1. 

Resources available to the company are listed in Table 1 and the leaf activities of 
the two projects are described in Table 2. Due to space constraints, in the human re-
source description in Table 1 we show only productivity (obtained from experience 
data) and salary rates for each resource. We assume human resources are available 
only on workdays from 1 January 2009 through 31 December 2010 and each workday  
 



Dynamic Resource Scheduling in Disruption-Prone Software Development Environments 115 

Table 1. Human resource information of initial process 

Human 
resource 

Executable activity and 
corresponding productivity 

(KLOC/Person-Hour) 

Salary 
rate 

(RMB)

Human 
resource

Executable activity and 
corresponding productivity 

(KLOC/Person-Hour) 

Salary 
rate 

(RMB) 
HR1 RA/0.06 60 HR8 IMP/0.025 40 
HR2 RA/0.04 45 HR9 IMP/0.02 35 
HR3 RA/0.05 50 HR10 IMP/0.015 35 
HR4 AD/0.06 60 HR13 WTC/0.05; TST/0.04 45 
HR5 AD/0.05 60 HR14 WTC/0.045; TST/0.035 45 
HR6 AD/0.05 50 HR15 WTC/0.035; TST/0.03 45 
HR7 IMP/0.03 45 HR16 WTC/0.03; TST/0.03 40 

Table 2. Activity information of initial process 

Activity Candidate resources Size 
(KLOC)

Initial allocated 
resources  [Start, End] 

RA1 HR1, HR2, HR3 20 HR1, HR2 [2009-05-01, 2009-06-05] 
AD1 HR4, HR5, HR6 20 HR4, HR5 [2009-06-08, 2009-07-08] 

IMP1a HR7, HR8, HR9, HR10 12 HR7, HR8 [2009-07-09, 2009-08-17] 
IMP1b HR7, HR8, HR9, HR10 8 HR9, HR10 [2009-07-09, 2009-08-18] 
WTC1 HR13, HR14, HR15, HR16 20 HR13, HR14 [2009-06-08, 2009-07-23] 
TST1 HR13, HR14, HR15, HR16 20 HR13, HR14 [2009-08-19, 2009-10-5] 
RA2 HR1, HR2, HR3 16 HR1, HR3 [2009-05-21, 2009-06-24] 
AD2 HR4, HR5, HR6 16 HR5, HR6 [2009-06-25, 2009-07-30] 

IMP2a HR7, HR8, HR9, HR10 10 HR7, HR8 [2009-08-18, 2009-09-17] 
IMP2b HR7, HR8, HR9, HR10 6 HR9, HR10 [2009-08-19, 2009-09-17] 
WTC2 HR13, HR14, HR15, HR16 16 HR15, HR16 [2009-06-25, 2009-08-11] 
TST2 HR13, HR14, HR15, HR16 16 HR15, HR16 [2009-09-18, 2009-11-4] 

has 8 person-hour workloads available. In the activity description shown in Table 2, 
we show only the candidate resources, size, initial allocated resources, and the start 
and end time for each activity execution. The candidate resources are identified by 
matching activity resource requests to human resource capabilities. 

We now assume that after resources have been scheduled to the projects’ activities 
three new requirements are issued. One is an upgrade requirement that is addressed by 
the process specified as Project3 in Fig. 2, and the other two are to address the sudden 
arrival of urgent bug fixing requests to be done as specified by Project4 and Project5 
in Fig. 2. Leaf activities of these projects are described in Table 3. 

Table 3. Activity information of added process 

Activity Candidate resources Size (KLOC)
RA3 HR1, HR2, HR3 14 

IMP3 HR4, HR5, HR6 14 
TST3 HR13, HR14, HR15, HR16 14 
IMP4 HR7, HR8, HR9, HR10 10 
TST4 HR13, HR14, HR15, HR16 10 
IMP5 HR7, HR8, HR9, HR10 8 
TST5 HR13, HR14, HR15, HR16 8 

Rescheduling is required in order to provide resources to address these new re-
quirements. For this example we assume that rescheduling parameters of the multi-
objective value function are set as shown in Table 4 and parameters used for comput-
ing project utility are set as shown in Table 5.  
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Table 4. Parameters of multi-objective value function 

α/ β/ HC 1 / 1 / 1 
C 600,000 

DP 300 

Table 5. Parameters of projects used for computing utility  

 Project1 Project2 Project3 Project4 Project5 
Constraint start and 

finish date 
[2009-05-01, 
2009-10-30]

[2009-05-21, 
2009-11-31]

[2009-06-01, 
2009-8-31]

[2009-07-01, 
2009-9-20] 

[2009-08-01, 
2009-10-30] 

Constraint cost 200000 150000 120000 90000 90000 
Schedule benefit/penalty 100 / 200 100 / 200 200 / 400 200 / 400 200 / 400 

Schedule/Cost weight 1 / 1 1 / 1 2 / 1 2 / 1 2 / 1 
Project weight 1 1 2 3 4 

For the GA examples presented here, we set population scale to 60, crossover rate 
to 0.8, mutation rate to 0.02, and generation number to 500. 

4.1   The Need for Rescheduling  

We begin by computing an initial resource assignment plan for Project1 and Project2 
assuming that there will be no disrupting events. This plan is shown in Fig. 4. 

 

Fig. 4. Initial scheduling result 

We then hypothesize the need to provide resources for Project3 starting on 1 June 
2009. Activity RA3 has three candidate resources, and let us assume that it is decided 
that HR1 and HR2 are to be allocated to it. Thus its execution would require 18 work-
days, from June 1 to June 24. Then IMP3 would need to be executed starting on June 
25. IMP3 has four candidate resources and let us further assume that HR7 and HR8 
are selected. Thus IMP3’s execution would require 32 workdays, from June 25 to 
August 7. Finally, TST3 would need to be executed starting on August 8. However, 
note that from June 1 to June 5, HR1 and HR2 are occupied by RA1 and from June 1 
to June 24, HR1 and HR3 are occupied by RA2, thus RA3 could not obtain the  
resources it needs without disrupting other projects. In addition, from July 9 to  
September 17, all resources able to execute IMP3 are occupied performing Project1 
and Project2.  Thus either Project3 must wait or other projects must be disrupted.  
Organizational value is lost in either case. Therefore, a rescheduling is indicated. 
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Once the scope of rescheduling has been determined, all the activities in this scope 
will be encoded in the chromosome, and used in the GA based rescheduling.  

4.2   Results under a Specific Stability and Utility Weight Configuration 

We start exploring the efficacy of our approach by examining the consequences of 
two rescheduling approaches, where stability is the only objective, and where utility is 
the only objective. Fig. 5 shows the rescheduling plan where stability is the only con-
sideration (stability and utility weights are set to 1 and 0 respectively). The start/end 
times of activities in Project1 and Project2 are not changed, nor are scheduled human 
resources. The new added activities are executed only when resources are available, 
causing delay and low utility for Project3. 

Fig. 6 shows the rescheduling plan where only utility value is considered (the sta-
bility and utility weights are set to 0 and 1 respectively). This schedule causes Pro-
ject3 to have higher utility, but the start/end times and scheduled resources of most 
activities in Projects 1 and 2 are changed causing substantial reduction in organiza-
tional value. This case study and others not shown due to space constraints indicate 
that our approach supports scheduling resources to address stability and utility objec-
tives. We now suggest how this capability can help project managers. 

 

Fig. 5. Rescheduled plan when stability is 1 Fig. 6. Rescheduled plan when stability is 0 

4.3   Results under Different Stability and Utility Weights 

Using a multi-objective value function to evaluate rescheduling can help support 
exploring the way that different balances between stability and utility can affect or-
ganizational value. To demonstrate this we varied the stability and utility weights for 
a series of reschedulings. Fig. 7 shows the different values of the schedules obtained. 
As expected increasing the stability weight causes a consequent increase in stability 
value while utility value decreases. Conversely increasing the utility weight causes 
utility value to increase while decreasing stability value. Of perhaps more interest, 
however, is that the maximum total of the two values is obtained over a broad range 
of stability weights, and dips only when the stability weight is near either 0 or 1. This 
suggests that moderation in addressing disruption is likely to be the best course of  
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Fig. 7. Stability and utility value under different stability and utility weights (results are aver-
ages of 10 different simulations) 

action, but the precise relatively weighting of the importance of stability and utility 
may not be particularly important. 

4.4   A Series of Reschedulings to Tackle Multiple Disruptions 

The foregoing suggests that our approach could help in deciding how to deal with a 
single disruptive event. But most software organizations experience a continuing flow 
of disruptions. Thus next we used our approach to seek a strategy for dealing with such 
sequences of disruptions. To do this we ran three sets of simulations using the same 
stability and utility weight combination, but different strategies for handling the disrup-
tions.  The first strategy involves one rescheduling, done on June 1, with all three pro-
jects initiated simultaneously. The second strategy involves two reschedulings, one on 
June 1 when Project3 is initiated; and the second on July 1 when Project4 and Project5 
are initiated. The third strategy involves initiating one new project on June 1, one on 
July 1, and one on August 1. We computed utility values for each strategy, where for 
each we increased the stability weight from 0 to 1 in increments of one tenth. Fig. 8 
suggests that none of the approaches seems to offer clear advantages over the others, 
but that for all total value remains high, and roughly constant when the stability value 
increases from 0.0 to 0.5, but drops sharply at values higher than 0.5.  This result  
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seems to confirm the importance of responding promptly to disruptions, but also sug-
gests that a “drop everything” approach seems to offer little advantage over a more 
measured response. 

More generally, this case study seems to us to indicate that our rescheduling ap-
proach offers promise of being a useful tool in formulating and analyzing various 
strategies for dealing with various kinds and scenarios of disruption. 

4.5   Discussion  

The above case studies show that our proposed method can provide useful reschedul-
ing results using different combinations of objectives, some of which might entail 
conflicts. Project managers can compare these results and use them to support their 
resource allocation decisions by suggesting alternatives to decisions the might have 
been planned by the human manager. 

Currently our method still has some limitations. Some of them are: 
The scale of the scheduling problem affects the running time and may make it im-

practical or impossible to obtain optimal results. If the problem is too large, dividing 
it into several smaller ones might help. 

Different GA parameter settings affect whether optimal or near-optimal reschedul-
ing results can be obtained. Different scheduling problems may suggest the use of 
different GA parameters.  

Additional types of constraints could be used to improve the quality of schedules. 

5   Related Work 

Researchers have observed that software development project disruptions can be due 
to uncertainties in requirements, process execution, and human resources. Ebert et al. 
[1] analyze requirement uncertainties and provide problems that are caused by them. 
Li et al. [16] use rough set analysis to solve problems caused by requirement uncer-
tainties. Pfahl et al. [22] and Liu et al. [17] use simulation to explain some effects 
arising from requirements volatility. Cass et al. [8] indicate that rework is an ongoing 
problem in software development. Melo et al. [19] point out that resource change is a 
key factor in maintenance schedule postponement and cost overrun. Dynamic re-
scheduling is not suggested as a way to deal with any of these different kinds of un-
certainties. 

Software process scheduling has been explored by quite a few researchers. Some 
methods provide schedules that are based upon the assumption of accurate human 
resource specifications, such as skills, productivity, and availability, and are thus able 
to satisfy constraints and obtain optimal scheduling values [3, 6, 9, 11]. However, 
these methods only address scheduling problems that arise in response to specifically 
anticipated activities and resource changes.  Unlike our approach, they cannot dy-
namically respond during actual process execution to disruptions caused by unantici-
pated events.   

To address uncertainties in software development and maintenance processes, An-
toniol et al. [4] present a scheduling method that combines a genetic algorithm and 
queue simulation. Though the method realizes scheduling under some uncertainties, 
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issues such as stability are not taken into account. Other methods tackle uncertainties 
by introducing probability into scheduling. Liu et al. [18] suggest a probability based 
two stage scheduling method. Though the method uses probability of commitment 
satisfaction in scheduling, dynamic changes still lead schedule disruption. 

There are a lot of rescheduling methods in the manufacturing domain [2, 10, 23, 
24]. These methods use rescheduling to achieve both makespan and stability value. 
However, the resources in manufacturing are usually machines, which do not pose 
problems such as volatility and skill level change that are characteristics of human 
resources.  This limits the applicability of this work to software development 

6   Conclusions and Future Work 

This paper has presented a multi-objective software process resource rescheduling 
method using a GA. We identified some conditions that can necessitate rescheduling 
and introduced models to describe projects, activities, and resources. We then used 
these models to define some rescheduling problems, and presented a multi-objective 
value function that weights stability and utility to compute rescheduling value. The 
evaluation of our method shows that this multi-objective value function can be used to 
guide rescheduling, and might help managers to balance potentially conflicting objec-
tives in making resource rescheduling decisions. 

Future work 
Continuous rescheduling: In our case study, we used examples for which relatively 
accurate parameter estimates are available. However, such estimates usually change 
during process execution. Thus process delay and activity completion date changes 
happen frequently. In future work, such continuous changes and reschedulings will be 
taken into consideration. 

More constraints: This paper only models capability constraints, availability con-
straints, and activity execution order constraints in scheduling. Other constraints, such 
as different activities needing the same resource, will be modeled in future work. 

Analysis of different objectives and their importance: The activities on a critical 
path have more impact on the stability of a project. Thus it seems more critical to 
schedule these activities than to schedule other activities. Furthermore, there are many 
other kinds of objectives in rescheduling. In future work, more objectives and more 
details of these objectives will be analyzed and used in rescheduling.  
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Abstract. Services provide access to software components that can be
discovered dynamically via the Internet. The increasing number of ser-
vices a requester may be able to use demand support for finding and
selecting services. In particular, it is unrealistic to expect that a sin-
gle service will satisfy complex requirements, so services will have to be
combined to match clients’ requests.

In this paper, we propose a visual, incremental approach for the com-
position of services, in which we describe the requirements of a requester
as a goal which is matched against multiple provider offers. After every
match with an offer we decompose the goal into satisfied and remain-
der parts. We iterate the decomposition until the goal is satisfied or we
run out of offers, leading to a resolution-like matching strategy. Finally,
the individual offers can be composed into a single combined offer and
shown to the requester for feedback.

Our approach is based on visual specifications of pre- and postcon-
ditions by graph transformation systems with loose semantics, where a
symbolic approach based on constraints is used to represent attributes
and their computation in graphs.

1 Introduction

Service-oriented Architecture (SOA)[1] supports dynamic discovery and binding
based on matching requesters’ requirements with providers’ offers. Both require-
ments and offers can be expressed as specifications of the (expected or given)
semantics of a service’s operations in terms of their pre- and postconditions. At
a technical level this is supported by semantic web technologies (e.g. OWL-S [2],
WSML [3]), at modeling level visual contracts have been suggested to describe
service semantics [4].
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However, expecting to find a single service for each requirement is unrealis-
tic. Often services need to be combined to satisfy the demands of clients. For
example, let us consider a scenario, where a requester is looking to book a trip
for attending a conference. The requester may be interested in flight and hotel
reservation. Rather than using a single service, the requester may have to use
two separate service providers.

In this paper we propose an incremental approach for service composition,
where we assume that the requirements are expressed by a single goal stating
pre- and postconditions. A variety of offers could contribute to the goal, each
described by pre- and postconditions as well. We propose a notion of partial
matching of offers with goal. After every partial match we compute the remaining
requirements by decomposition of the original goal into the satisfied subgoal and
its remainder. We iterate this process until the goal is achieved or we do not
have any more offers.

As a result of this procedure we produce a combined offer which can be visu-
alized and reviewed by the client. Our approach thus supports semi-automatic
service composition.

2 Related Work

As motivated above, we work on the assumption that it is unrealistic to expect
a single offer to be sufficient to satisfy a goal, i.e., several offers will have to be
combined. This raises the first three of the following questions to serve as criteria
for approaches to dynamic service composition. The fourth question derives from
the desired integration into mainstream modelling techniques such as the UML,
which use diagrammatic languages to specify software. For service specification
to be integrated into standard software engineering processes, they have to use
compatible visual notations.

– Partial Match: Does the approach support partial matching of an offer with
a goal, or is full satisfaction of all requirements necessary for each match?

– Flexibility: Does the approach allow to match offers in flexible order or
does it follow a given control flow?

– Completeness: Is the approach decidable, i.e., does it provide a complete
and terminating procedure to find out if there are combinations of offers
satisfying a goal?

– Visualisation: Does the approach provide a visual language for service spec-
ification and feedback on the result of the matching?

While there are many approaches to composition of services, we limit our discus-
sion to semantics-based approaches using pre- and postconditions, disregarding
process or workflow-based orchestration, see [5,6] for a more complete picture.
We summarise the results of our analysis in Table 1.

In [7] the authors propose a semi-automatic approach for filtering and com-
position of services using OWL and DAML-S. An inference engine performs an
exact match with available services and shows the resulting list to the user who
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Table 1. How existing approaches realize the proposed requirements

Approach of: Language Partial Match Flexibility Completeness Feedback
[7] OWL, DAML-S � × × �
[8] DAML-S, SHOP-2 � � � ×
[9] FOL � � × ×
[10] WSML � � � ×

Our Approach Graph Theory, GTS � � � �

selects the ones to be composed. The approach is highly dependent on user in-
put and so avoids the need for a decidable composition procedure required for
automation. In contrast, we would require feedback on the end result of the
automated composition only.

In a number of works, AI planning models are used to construct process models
from goals and operations described by pre- and postconditions. For example, [8]
is based on DAML-S. Their approach is decidable for a finite number of services
/ operations. Partial matching is possible based on the semantic description. The
main difference with our approach is the use of logic-based (rather than visual)
descriptions, which makes it difficult to provide feedback on the result of the
composition to domain and business experts.

The work in [9] is representative of approaches based on first-order specifica-
tion of goals and services. It allows partial matching and flexibility in ordering in
addition to goal templates which abstract from the actual input parameters for
invoking services and can thus be matched at design time. Our goals are at the
level of goal templates in [9] in that they are generic with regard to the actual
parameters.

Approaches such as [10] use semantic service web markup languages such as
WSML-MX that are both specialised for the task of service description and
matching and limited in expressiveness to guarantee computability.

3 Graphical Service Specification and Matching

Following [4,11], in this section we review the basic notions of service specification
and matching used in the rest of the paper.

Visual Service Specification. According to [12], a web service describes a col-
lection of operations that are network accessible, each specified by a pre- and
a postcondition. As usual, a precondition denotes the set of states where that
operation is applicable and the postcondition describes how any state satisfying
the given precondition is changed by the operation. In our case the states can be
seen as typed attributed graphs. This means graphs that may include values (the
attributes) in their nodes or edges, all typed by a fixed type graph. For instance,
Fig. 1 describes the type graph of the running example of a travel agency that
we will use along the paper and Fig. 3 is an example of an attributed (instance)
graph typed over that type graph after booking a flight.
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Fig. 1. Type Graph

Fig. 2. BookF light Operation for Travel Agency (Provider)

In [4,11] the specification of an operation Op, denoted Op : PRE ⇒ POST is
given by typed attributed graphs, PRE and POST related by an injective partial
graph morphism represented as a pair of injective morphisms, pre : COM →
PRE and post : COM → POST . Here COM provides the intersection of PRE
and POST , and pre, post are the corresponding injections into PRE and POST .
Usually, attributed graphs PRE, POST and COM include variables, values
or complex expressions as attributes. However, in this paper attributes will be
restricted to variables and basic values only, ruling out complex expressions.
These will be captured, together with other constraints, by a formula α which
constrains the possible values of the variables occurring as attributes in a graph
G and we call (G, α) a constrained graph. In our case the graphs of an operation
have a common condition α relating the variables occurring in PRE and POST .
Hence, an operation specification is denoted by a pair 〈PRE ⇒ POST, α〉 (or
〈PRE

pre← COM
post→ POST, α〉 if we are interested in the intersection COM).

For instance, Fig. 2 describes an operation BookF light for booking a flight with
a travel agency service.

In the example, graphs PREP and POSTP are the pre- and postconditions
for operation BookF light whereas graph COMP represents the intersection of
PREP and POSTP . Condition α constrains the operation to be flexible enough
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to choose the departure date f.dep within the range of t.dep min and t.dep max
as well as the arrival date f.arr within t.arr min and t.arr max. This way of
dealing with attributed graphs, introduced in [13], has proved essential in order
to support the declarative (as opposed to computational) description of attribute
operations appropriate to the use of graphs as pre- and postconditions (rather
than rewrite rules only). In particular, we allow attributed graphs representing
states to include variables and conditions on attributes, rather than just values,
thus providing a symbolic representation where not all the attributes are fully
evaluated. We refrain from the use of application conditions [14] in the specifica-
tion of operations to keep the presentation simple, but believe that they would
not add an essential difficulty.

The semantics of the operation 〈PRE
pre← COM

post→ POST, α〉 is described
using graph transformation. More precisely, given an attributed graph 〈G, α′〉
representing the current state and given a matching morphism m : PRE → G
such that α′ implies m(α), with m(α) the formula obtained by replacing each
variable X in α by its image m(X), the result will be the attributed graph 〈H, α′〉
with H defined by the following double pushout:

PRE

pom

��

COM

po

pre�� post ��

��

POST

��
G D�� �� H

Intuitively, graph D is obtained by deleting from G all the elements (nodes,
edges, or attributes) which are matched by an element that is present in PRE
but not in COM . Then, the graph H is obtained adding to D all the elements
which are present in POST , but not in COM . For instance, if we apply the
operation BookF light to graph G in the left of Fig. 3, the result will be the
graph H in the right of Fig. 3. Notice that, for readability, these graphs include
some values, such as 200, instead of a variable X and the equality X = 200
included in the associated formula.

A requester looking for a service must specify the operations they want to use.
Requester specifications have the same form as provider specifications. They are
seen as inquiries that the requester is making, with the aim of entering into
a contract with the provider. In particular, PRE would denote the data and
resources that the requester would accept to provide and POST would describe
the expected result of the operation. In this use case, the semantics of these

Fig. 3. Transformation due to BookF light of Travel Agency
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specifications is a different one because the requester may not (need to) know
all the details of the provider state and cannot thus describe completely all
the changes caused by the operation. Such a semantics has been studied for
graph transformations in terms of double pullbacks [15]. More precisely, given
an attributed graph 〈G, α′〉 and a matching morphisms m : PRE → G such that
α′ implies m(α), a graph H is the result of a double pullback transition if we
can build a double pullback diagram of the same shape like the double pushout
above, but replacing the po by pb squares.

Intuitively, in a double pullback transition, the rule PRE ⇒ POST describes
a lower bound to the effects the operation should cause when applied to G. This
means, if an element a is present in PRE but not in COM , then m(a) must be
deleted from G, and if a is present in POST , but not in COM , then it must be
added to G. And if a is present in COM , then it must remain unchanged. However,
G may suffer other changes not specified by the operation. For instance, if the
specification of the operation BookF light in Fig. 2 would be part of a requester
specification, then applying that operation to the graph G in Fig. 3 could yield
the graph H in Fig. 3 as a result of a double pullback transition.

Matching Visual Contracts. In order to match the requirements for an operation
OpR = 〈PRER ⇒ POSTR, αR〉 of a requestor against a description OpP =
〈PREP ⇒ POSTP , αP 〉 supplied by a provider, we have to guarantee that all
effects required by OpR are implemented by OpP . More precisely, assuming that
〈G, α〉 represents the given state, the following conditions must be satisfied:

a) Whenever a transition for OpR can take place, a corresponding transforma-
tion associated to OpP must be possible.

b) If OpR prescribes that some element must be deleted from the current state,
that element must also be deleted by OpP .

c) If OpR prescribes that some element must be added to the current state,
that element must also be added by OpP .

d) If OpR prescribes that some element remain in the current state, that element
should be part of COMP .

Technically, this means to ask for the existence of three injective morphisms
hPRE : PREP → PRER, hCOM : COMR → COMP , and hPOST : POSTR →
POSTP , such that αR implies hPRE(αP ), hPRE and preR are jointly surjective1,
diagram (1) commutes, and diagram (2) is a pullback.

PRER

(1)

COMR

(2)

preR�� postR ��

hCOM

��

POSTR

hPOST

��
PREP

hP RE

��

COMPpreP�� postP �� POSTP

In particular, given 〈G, α〉, the existence of hPRE : PREP → PRER such
that αR implies hPRE(αP ) ensures that if there is a match m : PRER → G

1 This means that every element in PRER is the image of an element in COMR or of
an element in PREP .
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Fig. 4. BookF light Operation of Requester

such that α implies m(αR) then we also have a corresponding match hPRE ◦m :
PREP → G such that α implies hPRE(m(αP )). In addition if an element is in
PRER but not in COMR, that element should also be in PREP , because hPRE

and preR are jointly surjective, but not in COMP since diagram (1) commutes.
Then, according to both rules, OpR and OpP , that element must also be deleted.
If an element is in POSTR but not in COMR then that element should also be
in POSTP but not in COMP because diagram (2) is a pullback. Finally, if an
element is in COMR its image through hCOM would also be in COMP .

In our example the specification in Fig. 2 matches the specification in Fig. 4. All
the elements in PREP , COMR, and POSTR have an image in PRER, COMP ,
and POSTP respectively. So there exist three injective morphisms [16,14] between
PREP and PRER, COMP and COMR, and POSTR and POSTP .

We have discussed how to match a request with a service offered by a provider
in an ideal situation, where the granularity of requirements and offered services
coincide and the matching is complete. However, such a lucky outcome is unlikely
in practice.

On one hand, as seen above, a service precondition must describe the data and
resources that may be needed to run that service (and, in addition, through the
associated condition αR, it may also describe the conditions under which a given
service is considered to be acceptable, e.g. its cost). This means to assume that
the requester knows, a priori, all the data and resources that may be required
to satisfy his needs. This may be unrealistic in many cases. For instance, when
booking a trip, the requester may describe in its precondition some basic data,
like their name, date and destination of the travel, credit card or bank account
number, etc. In addition, the requester may specify an overall budget for the
travel. However the provider may also need to know the age of the traveller, to
see if some discount applies, or whether the requester has a discount bonus that
would be consumed when using the service.

On the other hand, the postcondition describes the effect of using a given
service. In this sense, the requester will describe everything they expect to get
when binding to a certain service. However, there may be two problems here.
First, there may not be a single provider that offers a service covering all the
requester needs. For instance, the requester for a travel may want, not only to
book a flight and a hotel, but also to get tickets for a play and to have a dinner
in a well-known restaurant. Then, there may be no travel agency that can take
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care of all these activities. And, second, the specification level of the requester
and the provider may have different granularity. In particular, a requester may
describe as a single operation booking a flight and a hotel room, while a given
provider, in his specifications, may consider these two bookings as independent
operations. Then, matching this request would mean for that provider finding an
appropriate combination of the two operations that satisfies the customer needs.

So, we believe there is a need for matching a request with multiple offers. In
the next section we discuss such an incremental procedure for the composition
of services, where we will discuss the partial match of single requester operation
with multiple provider offers.

4 Incremental Service Composition

Given a goal of a requester as well as a set of provider offers, both expressed
by pre- and postconditions, first we select an offer providing a partial match
of the goal. Then, we compute the remainder of the goal with respect to this
offer, containing all the requirements not yet satisfied, and post the result as a
new goal. We iterate these steps until all requirements are satisfied or we run
out of offers to match. Finally, we compose all offers used into one global offer
summarising the overall effect of the combined services. Next we describe this
approach in detail.

Partial Matching. Given a request 〈PRER ⇒ POSTR, αR〉 a partial match with
a provided description 〈PREP ⇒ POSTP , αP 〉 is given by a partial embedding
of PREP into PRER and of a partial embedding of POSTR into POSTP . Fol-
lowing the previous discussion, the idea is that, on the one hand, not everything
included in the provider’s precondition needs to be present in the requester’s
precondition, since the latter may have to be completed later. On the other
hand, not everything in the requester’s postcondition needs to be present in the
provider’s postcondition, since not every effect demanded by the requester may
be covered by a single provided operation.

Definition 1. (partial match, common suboperation) Given requester and
provider operations OpR = 〈PRER

preR← COMR
postR→ POSTR, αR〉 and OpP =

〈PREP
preP← COMP

postP→ POSTP , αP 〉 a partial match m consists of
embeddings:

PRER

(1)

COMR

(2)

preR�� postR �� POSTR

PREC

(3)mP REP

��

mPRER

��

COMC

(4)

preC�� postC
��

mCOMP

��

mCOMR

��

POSTC

mPOSTP

��

mP OSTR

��

PREP COMPpreP�� postP �� POSTP

such that diagram (3) commutes, and diagrams (1), (2), and (4) are pullbacks.
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Fig. 5. Requester goal jointly matched by two consecutive offers

The operation OpC = 〈PREC
preC← COMC

postC→ POSTC , αC〉, where αC

is a condition such that αR and αP imply mPRER(αC) and mPREP (αC), re-
spectively, is called a common suboperation of the provider and the requester
operations, since it can be considered to be embedded in both operations. For ex-
ample, the common suboperation is shown by unshaded background in Fig. 5 in
both embeddings, where the circled arrows denote the partial embeddings between
the providers and requesters pre and postconditions.

The condition αC is obtained from αP when some of its free variables are not
present. In particular, αC may be ∃XαP or some stronger condition, where X
is the set of variables included in the provided operation which are not present
in the common suboperation. The fact that we do not ask diagram (3) to be a
pullback, while we ask diagrams (1), (2), and (4) to be so, is a consequence of
the fact that we want to express the condition that OpP implements partially
the effects of OpR on their common elements. This means, on one hand, that if
a common element is deleted by OpP then that element must also be deleted by
OpR, but not necessarily the other way round. Conversely, this means that every
common element preserved by OpR must also be preserved by OpC (and hence
by OpP ), which means that (1) is a pullback. However, the fact that not every
common element preserved by OpP must also be preserved by OpR means that
(3) is not necessarily a pullback. On the other hand, (2) and (4) are pullbacks,
because we consider that if a common element in POSTC is produced by OpP ,
then it should also be produced by OpR, and vice versa, That is, it makes no
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sense to think that an element that is considered to be information used by the
requester’s rule is produced by the provider’s rule, or the other way round.

The common suboperation of OpP and OpR, while being embedded into both
operations, does not implement their common behaviour. When OpC is applied
to a given state 〈G, α〉, it adds all common elements added by both OpP and OpR,
but it only deletes common elements that are deleted by OpR, but not necessarily
by OpP . For instance in Figure 5, the requestor goal requires the deletion of
b : Bonus but Prov1 :: FlightRes does not. The common suboperation of
Prov1 :: FlightRes and Req :: FlightRes is constituted by all elements of
Prov1 :: FlightRes not shaded in grey. Hence, b : Bonus is in the precondition
of the common common suboperation but not in the postcondition, i.e., it is
deleted. However, we are interested in a common operation that describes the
shared effects of OpP and OpR, i.e., that deletes all elements deleted by both
OpP and OpR and adds all elements added by both operations.

Definition 2. (shared behaviour suboperation) Given requester and provider
operations OpR and OpP , and given their common suboperation OpC with respect
to a partial match m, we define the shared behaviour operation of OpR and OpP

with respect to m as OpSB = 〈PREC
preSB← COMSB

postSB→ POSTSB, αC〉, where
COMSB and POSTSB are given by the following pullback and pushout diagrams:

PREC

pbmPREP

��

COMSBpreSB��

mCOMSB

��

COMC

pomCOMC

��

postC �� POSTC

mP OSTC

��
PREP COMPpreP�� COMSB postSB

�� POSTSB

with mCOMC defined by the universal property of the pullback defining COMSB.

Intuitively, COMSB includes the elements which are shared by PREP and
PRER and are not deleted by OpP , and POSTSB includes all the elements of
POSTC plus the elements that are not deleted by OpSB. Fig. 6 depicts the shared
behaviour suboperation based on the requestor goal and Prov1 :: FlightRes and
their common sub operation (shown in Fig. 5).

Fig. 6. Shared behaviour operation of goal and Prov1::FlightRes of Fig. 5
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We may consider several special kinds of partial matches which are of interest.

Definition 3. (classes of partial matches) Given a partial match m as
above:

– m provides positive progress if postC is not an isomorphism (or, equiva-
lently, if postSB is not an isomorphism).

– m provides negative progress if preSB is not an isomorphism.
– m provides progress if m provides positive progress or negative progress.
– m is demanding if mPREP is not an isomorphism.
– m is weakly complete if mPOSTR is an isomorphism.
– m is complete if diagram (3) is a pullback, mPRER and preR are jointly

surjective, and mPOSTR is an isomorphism.

Two completely unrelated rules may be bound by a trivial partial match. For
instance, a partial match where the common rule is empty, or if the precondition
and the postcondition of the common rule coincide. In this sense, the first three
cases describe partial matches where the provider’s rule satisfies partially some
of the goals of the requester. In particular, if m provides positive progress this
means that the provider’s rule produces some of the elements that the requester
asks to be produced. Similarly, if m provides negative progress then the provider’s
rule consumes some of the elements that the requester asks to be consumed.
Finally, m provides progress if it provides any progress at all.

If m is weakly complete then this means that the provider’s rule produces all
the elements that are asked by the requester but it may not consume all the
elements that are specified to be consumed. If m is complete and not demanding
this means that the provider’s rule fully satisfies the requester’s needs, i.e. m is a
match. A partial match is demanding if the provider’s rule demands the requester
to strengthen its precondition. Conversely, this means that if m is not demanding
then the provider’s precondition is embedded in the requester’s precondition,
which means that the former can be considered stronger than the latter. This
kind of situation may be part of a negotiation between the provider and the
requester: the contract defined by the requester has specified some resources
to satisfy his needs, but the provider is answering that, to satisfy this needs
more resources are needed. If m is weakly complete then the provider’s rule
produces everything that the requester’s rule asks to be produced. So this means
that the requester’s postcondition is embedded in the provider’s postcondition.
However, notice that this not necessarily means that the provider’s rule consumes
everything that the requester’s rule asks to be consumed. This only happens if, in
addition, diagram (3) is a pullback and mPRER and preR are jointly surjective,
i.e. m is complete. In particular, the condition that diagram (3) is a pullback
ensures that a common element cannot be preserved by OpP and be deleted by
OpR, and the condition that mPRER and preR ensures that there are no elements
in PRER which are deleted by OpR and which are not common elements (and,
hence, cannot be deleted by OpP ).
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Remainder of Requester Operation. If the match is not complete, then we may
want to know what remains to be done to satisfy the rest of the requester’s
needs. In particular, the provider may want to use other operations to satisfy
their requirements. This can be done by computing what we call the remainder
of the requester’s rule with respect to the shared behaviour rule.

Definition 4. (Remainder of an operation) Given operation specifications
OpR = 〈PRER ⇒ POSTR, αR〉 and OpP = 〈PREP ⇒ POSTP , αP 〉, we define
the remainder of OpR with respect to OpP and a partial match m as the oper-
ation 〈PRERem ⇒ POSTR, αR〉, where PRERem is the result of applying the
operation OpSB to PRER with match mPRER .

The idea is quite simple. We know that PRER denotes the class of states where
OpR is expected to be applicable, but also that OpSB specifies the shared be-
haviour of OpP and OpR, i.e., all the deletions and additions which are shared by
both operations. Then, PRERem would describe the states after these deletions
and additions, and 〈PRERem ⇒ POSTR, αR〉 would specify the effects that are
yet to be implemented by another provider operation.

For example in Fig. 5, the left-hand side PRERem of the remainder rule is
obtained by applying the shared behaviour suboperation (shown in Fig. 6) to the
left-hand side PRER of the goal, while the remainder’s postcondition is POSTR.
OpRem may be matched with Prov2 :: HotelRes in the same way, leaving empty
remainder.

It is not difficult to prove that the remainder is the trivial operation, i.e.
PRERem = POSTR, if and only if the match m is complete. Moreover, we

Fig. 7. Composed Operation of both Provider Offers
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can also prove that if a provider operation Op1
P can be partially matched via

m1 to a request OpR leaving OpRem as a remainder, and if another provider
operation Op2

P can be partially matched via m2 to OpRem leaving as a new
remainder Op′Rem, then we can compose Op1

P and Op2
P to form a new operation

Op3
P = 〈PRE3

P ⇒ POST 3
P , α3

P 〉 that can be partially matched to OpR via
m3, which is built from m1 and m2, directly leaving as a remainder Op′Rem.
This means that the global effect of this new operation is the same one as the
sequential application of Op1

P and Op2
P . In particular, this means that if m2 is

complete then m3 is also complete.
The operation Op3

P is built analogously to the so-called concurrent rule for
the consecutive application of two graph transformation rules [16]: Intuitively,
PRE3

P is the union of PRE1
P and (PRE2

P minus POST 1
P ) and POST 3

P is the
union of POST 2

P and (POST 1
P minus PRE2

P ), where in each case elements from
different graphs are identified if they are mapping to the same elements of the
requester specification. As for conditions, α3

P is the conjunction of α1
P , α2

P , and
all equations x1 = x2, for all variables x1 from α1

P and x2 from α2
P which are

bound to the same variable x from αR via m1 and m2, respectively. For our
example, Fig. 7 shows the resulting composed operation.

Finding Complete Solutions. We describe a resolution-like procedure for building
a complete match to a requester specification. This procedure is terminating,
correct and complete, i.e., given a requester operation OpR, if at all possible this
procedure will combine suitable provider operations into a single composed one
which forms a complete match for the requestor’s goal. Moreover, this is done in
a finite number of steps. The procedure is presented as an inference rule whose
application is non-deterministic, although in practice we could use heuristics to
guide the search and to produce first the results which are considered better
according to some criteria.

Let us describe this procedure in detail. We describe the computation states of
our procedure as 3-tuples 〈OpP , m, OpRem〉, where OpP is a provider operation
(perhaps built from more basic operations), m is a partial match from OpP to
OpR, and OpRem is the remainder associated to m. Intuitively, OpP represents the
partial solution that we have built up to that point, m is the partialmatch that tells
us in which way OpP partially satisfies the request, and OpRem is the the part of
the request that we still have to satisfy. In this context, we consider that the initial
state is the 3-tuple 〈Triv, triv, OpR〉, where Triv is the trivial (empty) operation,
triv is the trivial empty match and, obviously, the remaining part to satisfy is the
whole request. Then, the procedure is based on the following inference rule:

〈Op1
P , m1, Op1

Rem〉
〈Op2

P , m2, Op2
Rem〉

If there is a provider operation Op3
P , and a partial match m3 from Op3

P to
Op1

Rem, such that m3 provides progress, Op2
Rem is the remainder associated

to m3, and Op2
P and m2 are, respectively, the composition of Op1

Rem and
Op3

Rem and the associated partial match from Op2
P to OpR.
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An execution of this procedure is a sequence:

〈Triv, triv, OpR〉 =⇒ 〈Op1
P , m1, Op1

Rem〉 =⇒ . . . =⇒ 〈Opn
P , mn, Opn

Rem〉

where, for each i, 〈Opi+1
P , mi+1, Opi+1

Rem〉 can be inferred from 〈Opi
P , mi, Opi

Rem〉.
Then, an execution is successful if the final match mn is complete.

It is not difficult to show that the above procedure is correct, complete and ter-
minating. In particular, it is sound in the sense, for every i, mi is a partial match
from Opi

P to OpR, and Opi
Rem is the corresponding remainder. It is complete in

the sense that if there is a way of satisfying completely the request by applying
a sequence of provider operations then there exists an execution that will return
a composed operation, together with a complete match. Finally the procedure is
terminating, i.e. there are no executions of infinite length and, moreover, there
is a finite number of executions, provided that the graphs involved are finite and
that there is a finite number of provider operations. This is due to the fact that
the number of additions and deletions requested in a goal is finite. Since we are
assuming that all the matchings involved provide progress, the length of each
execution is bounded by the number of additions and deletions specified in the
request. Moreover, with a finite number of provider operations and finite graphs
only, there is a finite number of partial matches between requester operation and
provider operations.

5 Conclusion

In this paper, we have proposed an approach to the incremental composition of
services using visual specifications of pre- and postconditions. The procedure is
based on the repeated partial matching of provider offers with a requestor goal,
which is reduced in the process until all requirements are satisfied or there are no
more offers to consider. As a result, the procedure constructs a combined offer,
which can be presented to the requestor to confirm if it is acceptable.

The formalization of these notions and constructions is provided in the ap-
pendix for information. In summary, the main theoretical results are as
follows.

1. A definition of partial matching allowing the comparison of individual offers
of services with the global goal of the requestor.

2. An incremental matching procedure based on the construction of a remain-
der of a goal with respect to a chosen partial match. Assuming a finite num-
ber of offers, the incremental matching procedure terminates. Thus, partial
matching is decidable.

3. Each combined offer constructed as result of the matching has the same
overall effect as executing the sequence of offers from which the combined
offer is derived. That means, for each sequence of applications of individual
offer rules there exists an application of the combined offer rule with the
same effect, and vice versa.
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In general, there will be several combined offers computed for a given request.
These could be presented to the client to let them choose the most suitable
one. Alternatively, the selection could be automated based on a specification of
preferences (non-functional properties) by the client. Once an offer is computed
it can be stored in the repository of services, such that new requests can be served
more quickly, matching them against existing combined offers. Future work will
address the use of non-functional requirements for the selection of offers, as well
as a proof-of-concept implementation of the approach.
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Abstract. Self-healing (SH-)systems are characterized by an automatic
discovery of system failures, and techniques how to recover from these
situations. In this paper, we show how to model SH-systems using alge-
braic graph transformation. These systems are modeled as typed graph
grammars enriched with graph constraints. This allows not only for for-
mal modeling of consistency and operational properties, but also for their
analysis and verification using the tool AGG. We present sufficient static
conditions for self-healing properties, deadlock-freeness and liveness of
SH-systems. The overall approach is applied to a traffic light system
case study, where the corresponding properties are verified.

1 Introduction

The high degree of variability that characterizes modern systems requires to
design them with runtime evolution in mind. Self-adaptive systems are a vari-
ant of fault-tolerant systems that autonomously decide how to adapt the sys-
tem at runtime to the internal reconfiguration and optimization requirements
or to environment changes and threats [1]. A classification of modeling dimen-
sions for self-adaptive systems can be found in [2], where the authors distinguish
goals (what is the system supposed to do), changes (causes for adaptation),
mechanisms (system reactions to changes) and effects (the impact of adaptation
upon the system). The initial four self-* properties of self-adaptive systems are
self-configuration, self-healing1, self-optimization, and self-protection [4]. Self-
configuration comprises components installation and configuration based on
some high-level policies. Self-healing deals with automatic discovery of system
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1 Following [3] we consider self-healing and self-repair as synonymous.
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failures, and with techniques to recover from them. Typically, the runtime
behavior of the system is monitored to determine whether a change is needed.
Self-optimization monitors the system status and adjusts parameters to in-
crease performance when possible. Finally, self-protection aims to detect external
threats and mitigate their effects [5].

In [6], Bucchiarone et al. modeled and verified dynamic software architectures
and self-healing (SH-)systems (called self-repairing systems in [6]), by means of
hypergraphs and graph grammars. Based on this work, we show in this paper
how to formally model (SH-)systems by using algebraic graph transformations [7]
and to prove consistency and operational properties. Graph transformation has
been investigated as a fundamental concept for specification, concurrency, dis-
tribution, visual modeling, simulation and model transformation [7,8].

The main idea is to model SH-systems by typed graph grammars with three
different kinds of system rules, namely normal, environment, and repair rules.
Normal rules define the normal and ideal behavior of the system. Environment
rules model all possible predictable failures. Finally, for each failure a repair rule
is defined. This formalization enables the specification, analysis and verifica-
tion of consistency and operational properties of SH-systems. More precisely, we
present sufficient conditions for two alternative self-healing properties, deadlock-
freeness and liveness of SH-systems. The conditions can be checked statically
for the given system rules in an automatic way using the AGG2 modeling and
verification tool for typed attributed graph transformation systems.

Summarizing, the contribution of this paper is twofold: (i) we propose a way
to model and formalize SH-systems; (ii) we provide tool-supported static veri-
fication techniques for SH-system models. The theory is presented by use of a
running example, namely an automated traffic light system controlled by means
of electromagnetic spires that are buried some centimeters underneath the as-
phalt of car lanes.

The paper is organized as follows: Section 2 motivates the paper comparing
it with related work. Section 3 presents the setting of our running example.
Section 4 introduces typed attributed graph transformation as formal basis to
specify and analyze SH-systems. In Section 5 we define consistency and oper-
ational system properties. Static conditions for their verification are given in
Section 6 and are used to analyze the behavior and healing properties of the
traffic light system. We conclude the paper in Section 7 with a summary and
an outlook on future work. For full proofs of the technical theorems and more
details of our running example, the reader is referred to our technical report [9].

2 Motivation and Related Work

Focusing on modeling approaches for SH-systems, the Software Architecture ap-
proach (SA) [10], has been introduced as a high-level view of the structural
organization of systems. Since a self-healing system must be able to change at
runtime, Dynamic Software Architectures (DSAs) have shown to be very useful
2 AGG (Attributed Graph Grammars): http://tfs.cs.tu-berlin.de/agg.
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to capture SA evolution [11,12,13]. Aiming at a formal analysis of DSAs, differ-
ent approaches exist, either based on graph transformation [6,14,15,16,17,18,19]
or on temporal logics and model checking [20,21,22]. In many cases, though, the
state space of behavioral system models becomes too large or even infinite, and
in this case model checking techniques have their limitations. Note that static
analysis techniques, as applied in this paper, do not have this drawback. In addi-
tion to graph transformation techniques, also Petri nets [23] offer static analysis
techniques to verify liveness and safety properties. But in contrast to Petri nets,
graph transformation systems are well suited to model also reconfiguration of
system architectures which is one possible way to realize system recovery from
failures in self-healing (SH-)systems.

In the community of Service Oriented Computing, various approaches sup-
porting self-healing have been defined, e.g. triggering repairing strategies as a
consequence of a requirement violation [24], and optimizing QoS of service-based
applications [25,26]. Repairing strategies could be specified by means of policies
to manage the dynamism of the execution environment [27,28] or of the context
of mobile service-based applications [29].

In [30], a theoretical assume-guarantee framework is presented to efficiently
define under which conditions adaptation can be performed by still preserving
the desired invariant. In contrast to our approach, the authors of [30] aim to
deal with unexpected adaptations.

In contrast to the approaches mentioned above, we abstract from particular
languages and notations. Instead, we aim for a coherent design approach allowing
us to model important features of SH-systems at a level of abstraction suitable
to apply static verification techniques.

3 Running Example: An Automated Traffic Light System

In an automated Traffic Light System (TLS), the technology is based upon elec-
tromagnetic spires that are buried some centimeters underneath the asphalt of
car lanes. The spires register traffic data and send them to other system compo-
nents. The technology helps the infraction system by making it incontestable. In
fact, the TLS is connected to cameras which record videos of the violations and
automatically send them to the center of operations. In addition to the normal
behavior, we may have failures caused by a loss of signals between traffic light
or camera and supervisor. For each of the failures there are corresponding repair
actions, which can be applied after monitoring the failures during runtime. For
more detail concerning the functionality of the TLS, we refer to [9].

The aim of our TLS model is to ensure suitable self-healing properties by
applying repair actions. What kind of repair actions are useful and lead to con-
sistent system states without failures? What kind of safety and liveness proper-
ties can be guaranteed? We will tackle these questions in the next sections by
providing a formal modeling and analysis technique based on algebraic graph
transformation and continue our running example in Examples 1 – 6 below.
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4 Formal Modeling of Self-Healing Systems by Algebraic
Graph Transformation

In this section, we show how to model SH-systems in the formal framework of
algebraic graph transformation [7]. The main concepts of this framework which
are relevant for our approach are typed graphs, graph grammars, transformations
and constraints. Configurations of an SH-System are modeled by typed graphs.

Definition 1 (Typed Graphs). A graph G = (N, E, s, t) consists of a set of
nodes N , a set of edges E and functions s, t : E → N assigning to each edge
e ∈ E the source s(e) ∈ N and target t(e) ∈ N .

A graph morphism f : G→ G′ is given by a pair of functions f = (fN : N →
N ′, fE : E → E′) which is compatible with source and target functions.

A type graph TG is a graph where nodes and edges are considered as node and
edge types, respectively. A TG-typed, or short typed graph G = (G, t) consists
of a graph G and a graph morphism t : G→ TG, called typing morphism of G.
Morphisms f : G→ G′ of typed graphs are graph morphisms f : G→ G′ which
are compatible with the typing morphisms of G and G′, i.e. t′ ◦ f = t.

For simplicity, we abbreviate G = (G, t) by G in the following. Moreover, the
approach is also valid for attributed and typed attributed graphs where nodes and
edges can have data type attributes [7], as used in our running example.

Example 1 (Traffic Light System). The type graph TG of our traffic light system
TLS is given in Fig. 1. The initial state is the configuration graph in Fig. 2 which
is a TG-typed graph where the typing is indicated by corresponding names, and
the attributes are attached to nodes and edges. The initial state shows two traffic
lights (TL), two cameras, a supervisor, and a center of operations, but no traffic
up to now.

The dynamic behavior of SH-systems is modeled by rules and transformations
of a typed graph grammar in the sense of algebraic graph transformation [7].

Fig. 1. TLS type graph TG
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Definition 2 (Typed Graph Grammar)
A typed graph grammar GG = (TG, Ginit,Rules) consists of a type graph TG,
a TG-typed graph Ginit, called initial graph, and a set Rules of graph transfor-
mation rules. Each rule r ∈ Rules is given by a span (L ← I → R), where L, I
and R are TG-typed graphs, called left-hand side, right-hand side and interface,
respectively. Moreover, I → L, I → R are injective typed graph morphisms where
in most cases I can be considered as intersection of L and R. A rule r ∈ Rules
is applied to a TG-typed graph G by a match morphism m : L → G leading to
a direct transformation G

r,m
=⇒ H via (r, m) in two steps: at first, we delete the

match m(L) without m(I) from G to obtain a context graph D, and secondly,
we glue together D with R along I leading to a TG-typed graph H.

More formally, the direct transformation
G

r,m
=⇒ H is given by two pushout diagrams

(1) and (2) in the category GraphsTG of TG-
typed graphs, where diagram (1) (resp. (2))
corresponds to gluing G of L and D along I
(resp. to gluing H of R and D along I).

N

q
|

���
�

���
���

L

(1)m

��

nac�� I

(2)

l�� r ��

��

R

m∗

��
G D�� �� H

Note that pushout diagram (1) in step 1 only exists if the match m satisfies a
gluing condition w.r.t. rule r which makes sure that the deletion in step 1 leads to
a well-defined TG−typed graph D. Moreover, rules are allowed to have Negative
Application Conditions (NACs) given by a typed graph morphism nac : L→ N .
In this case, rule r can only be applied at match m : L→ G if there is no injec-
tive morphism q : N → G with q ◦nac = m. This means intuitively that r cannot
be applied to G if graph N occurs in G. A transformation G0

∗=⇒ Gn via Rules
in GG consists of n ≥ 0 direct transformations G0 =⇒ G1 ⇒ ...⇒ Gn via rules
r ∈ Rules. For n ≥ 1 we write G0

+=⇒ Gn.

Example 2 (Rules of TLS) . A rule r = (L ← I → R) of TLS with NAC
nac : L → N is given in Fig. 3 (interface I is not shown and consists of the
nodes and edges which are present in both L and R, as indicated by equal
numbers). For simplicity, we only show the part of the NAC graph N which
extends L. All graph morphisms are inclusions. Rule r can be applied to graph
G in Fig. 2 where the node (1:TL) in L is mapped by m to the upper node TL in

Fig. 2. TLS initial state Ginit
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Fig. 3. TLS rule ArrivalCarsOne

Ginit. This leads to a graph H where the attributes of TL are changed and the
node Cars of R is attached to TL. Altogether, we have a direct transformation
G

r,m
=⇒ H .

In order to model consistency and failure constraints of an SH-system, we use
graph constraints. A TG-typed graph constraint is given by a TG-typed graph C
which is satisfied by a TG-typed graph G, written G |= C, if there is an injective
graph morphism f : C → G. Graph constraints can be negated or combined
by logical connectors (e.g. ¬C). Now we are able to define SH-systems in the
framework of algebraic graph transformation (AGT). An SH-system is given by a
typed graph grammar where four kinds of rules are distinguished, called system,
normal, environment and repair rules. Moreover, we have two kinds of TG-typed
graph constraints, namely consistency and failure constraints.

Definition 3 (Self-healing System in AGT-Framework)
A Self-healing system (SH-system) is given by SHS = (GG, Csys), where:

– GG = (TG, Ginit, Rsys) is a typed graph grammar with type graph TG,
a TG-typed graph Ginit, called initial state, a set of TG-typed rules Rsys

with NACs, called system rules, defined by Rsys = Rnorm ∪ Renv ∪ Rrpr,
where Rnorm (called normal rules), Renv (called environment rules) and
Rrpr (called repair rules) are pairwise disjoint.

– Csys is a set of TG-typed graph constraints, called system constraints, with
Csys = Cconsist∪Cfail, where Cconsist are called consistency constraints and
Cfail failure constraints.

For an SH-system, we distinguish reachable, consistent, failure and normal
states, where reachable states split into normal and failure states.

Definition 4 (Classification of SH-System States)
Given an SH-system SHS = (GG, Csys) as defined above, we have

1. Reach(SHS) = {G | Ginit
∗=⇒ G via Rsys }, the reachable states consisting

of all states reachable via system rules,
2. Consist(SHS) = {G | G ∈ Reach(SHS) ∧ ∀C ∈ Cconsist : G � C}, the

consistent states, consisting of all reachable states satisfying the consistency
constraints,

3. Fail(SHS) = {G | G ∈ Reach(SHS) ∧ ∃C ∈ Cfail : G � C}, the failure
states, consisting of all reachable states satisfying some failure constraint,
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4. Norm(SHS ) = {G | G ∈ Reach(SHS) ∧ ∀C ∈ Cfail : G � C}, the normal
states, consisting of all reachable states not satisfying any failure constraint.

Example 3 (Traffic Light System as SH-system). We define the Traffic Light SH-
system TLS = (GG, Csys) by the type graph TG in Fig. 1, the initial state Ginit

in Fig. 2, and the following sets of rules and constraints:

– Rnorm = {ArrivalCarsOne, ArrivalCarsTwo , RemoveCarsOne, Remove-
CarsTwo, InfractionOn, InfractionOff },

– Renv = {FailureTL,FailureCam},
– Rrpr = {RepairTL,RepairCam},
– Cconsist = {¬allGreen, ¬allRed},
– Cfail = {TLSupFailure,CamSupFailure}.

The normal rule ArrivalCarsOne is depicted in Fig. 3 and models that one
or more cars arrive at a traffic light (1:TL) while all of the crossing’s lights are
red. The NAC in Fig. 3 means that in this situation, no cars arrive at the other
direction’s traffic light (3:TL). Applying this rule, the traffic light in the direc-
tion of the arriving cars (1:TL) switches to green. Rule ArrivalCarsTwo (see
Fig. 4) models the arrival of one or more cars at a red traffic light (2:TL) where
no cars have been before, while at the same time the traffic light for the other
direction (3:TL) shows green and there are already cars going in this direction.
This rule causes a change of the traffic light colors in both directions. Rules
RemoveCarsOne and RemoveCarsTwo are the inverse rules (with L and R ex-
changed) of the arrival rules in Fig. 3 and 4, and model the reduction of traffic
at a traffic light. Rule InfractionOn is shown in Fig. 5 and models the situa-
tion that a car is passing the crossroad at a red light: the signal infraction of
both the supervisor and the center of operations is set to true and the corre-
sponding camera is starting to operate. The rule ensures that the corresponding
camera is connected, using the edge attribute signal = true for edge 13:CamSup.
Rule InfractionOff (not depicted) models the inverse action, i.e. the infraction
attribute is set back to false, and the camera stops running.

The environment rules are shown in Fig. 6. They model the signal disconnec-
tion of a traffic light and a camera, respectively. The repair rules (not depicted)
are defined as inverse rules of the environment rules and set the signal attributes
back to true.

Fig. 4. TLS rule ArrivalCarsTwo
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Fig. 5. Normal rule InfractionOn of TLS

Fig. 6. Environment rules FailureTL and FailureCam of TLS

Fig. 7. Consistency constraint graphs of TLS

The consistency constraints model the desired properties that we always want
to have crossroads with at least one direction showing red lights (¬ allGreen) and
avoiding all traffic lights red when there is traffic (¬ allRed). The corresponding
constraint graphs (without negation) are shown in Fig. 7. The failure constraints
TLSupFailure and CamSupFailure express that either a traffic light or a camera
is disconnected (the constraint graphs correspond to the right-hand sides of the
environment rules in Fig. 6).

5 Consistency and Operational Properties of SH-Systems

In this section, we define desirable consistency and operational properties of
SH-Systems. We distinguish system consistency, where all reachable states are
consistent, and normal state consistency, where the initial state Ginit and all
states reachable by normal rules are normal states. Environment rules, however,
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may lead to failure states, which should be repaired by repair rules. We start
with consistency properties:

Definition 5 (Consistency Properties) . An SH-System SHS is called

1. system consistent, if all reachable states are consistent, i.e.
Reach(SHS) = Consist(SHS);

2. normal state consistent, if the initial state is normal and all normal rules
preserve normal states, i.e.
Ginit ∈ Norm(SHS) and ∀G0

p
=⇒ G1 via p ∈ Rnorm

[ G0 ∈ Norm(SHS)⇒ G1 ∈ Norm(SHS) ]

Example 4 (Consistency Properties of TLS) The SH-System TLS is system con-
sistent, because for all C ∈ Cconsist Ginit |= C and for all G0

p
=⇒ G1 via p ∈ Rsys

and G0 ∈ Consist(SHS) we also have G1 ∈ Consist(SHS). Similarly, TLS is
normal state consistent, because Ginit ∈ Norm(SHS) and for all G0

p
=⇒ G1

via p ∈ Rnorm for all C ∈ Cfail [ G0 �|= C ⇒ G1 �|= C ]. In both cases this can
be concluded by inspection of the corresponding rules, constraints and reachable
states. Moreover, there are also general conditions, which ensure the preservation
of graph constraints by rules, but this discussion is out of scope for this paper.

Now we consider the operational properties: one of the main ideas of SH-Systems
is that they are monitored in regular time intervals by checking, whether the
current system state is a failure state. In this case one or more failures have
occurred in the last time interval, which are caused by failure rules, provided
that we have normal state consistency. With our self-healing property below we
require that each failure state can be repaired leading again to a normal state.
Moreover, strongly self-healing means that the normal state after repairing is
the same as if no failure and repairing would have been occurred.

Definition 6 (Self-healing Properties). An SH-System SHS is called

1. self-healing, if each failure state can be repaired, i.e.
∀Ginit ⇒∗ G via (Rnorm ∪Renv) with G ∈ Fail(SHS)
∃ G⇒+ G′ via Rrpr with G′ ∈ Norm(SHS)

2. strongly self-healing, if each failure state can be repaired strongly, i.e.
∀Ginit ⇒∗ G via (p1 . . . pn) ∈ (Rnorm ∪Renv)∗ with G ∈ Fail(SHS)
∃ G⇒+ G′ via Rrpr with G′ ∈ Norm(SHS) and
∃ Ginit ⇒∗ G′ via (q1 . . . qm) ∈ R∗

norm,
where (q1 . . . qm) is subsequence of all normal rules in (p1 . . . pn).

Remark 1 . By definition, each strongly self-healing SHS is also self-healing, but
not vice versa. The additional requirement for strongly self-healing means, that
the system state G′ obtained after repairing is not only normal, but can also be
generated by all normal rules in the given mixed sequence (p1 . . . pn) of normal
and environment rules, as if no environment rule would have been applied. We
will see that our SH-System TLS is strongly self-healing, but a modification
of TLS, which counts failures, even if they are repaired later, would only be
self-healing, but not strongly self-healing.
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Another important property of SH-Systems is deadlock-freeness, meaning that
no reachable state is a deadlock. A stronger liveness property is strong cyclicity,
meaning that each pair of reachable states can be reached from each other.
Note that this is stronger than cyclicity meaning that there are cycles in the
reachability graph. Strong cyclicity, however, implies that each reachable state
can be reached arbitrarily often. This is true for the TLS system, but may be false
for other reasonable SH-Systems, which may be only deadlock-free. Moreover,
we consider “normal deadlock-freeness” and “normal strong cyclicity”, where we
only consider normal behavior defined by normal rules.

Definition 7 (Deadlock-Freeness and Strong Cyclicity Properties). An
SH-System SHS is called

1. deadlock-free, if no reachable state is a deadlock, i.e.
∀G0 ∈ Reach(SHS) ∃ G0

p
=⇒ G1 via p ∈ Rsys

2. normal deadlock-free, if no state reachable via normal rules is a (normal)
deadlock, i.e. ∀Ginit ⇒∗ G0 via Rnorm ∃ G0

p
=⇒ G1 via p ∈ Rnorm

3. strongly cyclic, if each pair of reachable states can be reached from each other,
i.e. ∀G0, G1 ∈ Reach(SHS) ∃ G0 ⇒∗ G1 via Rsys

4. normally cyclic, if each pair of states reachable by normal rules can be reached
from each other by normal rules, i.e.
∀Ginit ⇒∗ G0 via Rnorm and Ginit ⇒∗ G1 via Rnorm we have ∃ G0 ⇒∗ G1
via Rnorm

Remark 2 . If we have at least two different reachable states (rsp. reachable by
normal rules), then “strongly cyclic” (rsp. “normally cyclic”) implies “deadlock-
free” (rsp. “normal deadlock-free”). In general properties 1 and 2 as well as 3
and 4 are independent from each other. But in Thm. 3 we will give sufficient
conditions s.t. “normal deadlock-free” implies “deadlock-free” (rsp. “normally
cyclic” implies “strongly cyclic” in Thm. 4).

6 Analysis and Verification of Operational Properties

In this section, we analyze the operational properties introduced in section 5
and give static sufficient conditions for their verification. The full proofs of our
theorems are given in [9].

First, we define direct and normal healing properties, which imply the strong
self-healing property under suitable conditions in Thm. 1. In a second step we
give static conditions for the direct and normal healing properties in Thm. 2,
which by Thm. 1 are also sufficient conditions for our self-healing properties. Of
course, we have to require that for each environment rule, which may cause a
failure there are one or more repair rules leading again to a state without this
failure, if they are applied immediately after its occurrence. But in general, we
cannot apply the repair rules directly after the failure, because other normal and
environment rules may have been applied already, before the failure is monitored.
For this reason we require in Thm. 1 that each pair (p, q) of environment rules p



Formal Analysis and Verification of of Self-Healing Systems 149

and normal rules q is sequentially independent. By the Local Church-Rosser the-
orem for algebraic graph transformation [7](Thm 5.12) sequential independence
of (p, q) allows one to switch the corresponding direct derivations in order to
prove Thm. 1. For the case with nested application conditions including NACs
we refer to [31]. Moreover, the AGG tool can calculate all pairs of sequential
independent rules with NACs before runtime.

Definition 8 (Direct and Normal Healing Properties). An SH-System
SHS has the

1. direct healing property, if the effect of each environment rule can be repaired

directly, i.e. ∀G0
p

=⇒ G1 via p ∈ Renv ∃ G1
p′

=⇒ G0 via p′ ∈ Rrpr

2. normal healing property, if the effect of each environment rule can be repaired
up to normal transformations, i.e. ∀G0

p
=⇒ G1 via p ∈ Renv ∃ G1 ⇒+ G2

via Rrpr s.t. ∃ G0 ⇒∗ G2 via Rnorm

Remark 3 . The direct healing property allows one to repair each failure caused
by an environment rule directly by reestablishing the old state G0. This is not
required for the normal healing property, but it is required only that the repaired
state G2 is related to the old state G0 by a normal transformation. Of course,
the direct healing property implies the normal one using G2 = G0.

Theorem 1 (Analysis of Self-healing Properties). An SH-System SHS is

I. strongly self-healing, if we have properties 1, 2, and 3 below
II. self-healing, if we have properties 1, 2 and 4 below

1. SHS is normal state consistent
2. each pair (p, q) ∈ Renv × Rnorm is sequentially independent
3. SHS has the direct healing property
4. SHS has the normal healing property

In the following Thm. 2 we give static conditions for direct and normal healing
properties. In part 1 of Thm. 2 we require that for each environment rule p the
inverse rule p−1 is isomorphic to a repair rule p′. Two rules are isomorphic
if they are componentwise isomorphic. For p = (L ← I → R) with negative
application condition nac : L → N it is possible (see [7] Remark 7.21) to
construct p−1 = (R ← I → L) with equivalent nac′ : R → N ′. In part 2
of Thm. 2 we require as weaker condition that each environment rule p has a
corresponding repair rule p′, which is not necessarily inverse to p. It is sufficient
to require that we can construct a concurrent rule p ∗R p′ which is isomorphic to
a normal rule p′′. For the construction and corresponding properties of inverse
and concurrent rules, which are needed in the proof of Thm. 2 we refer to [7].

Theorem 2 (Static Conditions for Direct/Normal Healing Properties)

1. An SH-System SHS has the direct healing property, if for each environment
rule there is an inverse repair rule, i.e. ∀p ∈ Renv ∃ p′ ∈ Rrpr with p′ ∼= p−1
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Fig. 8. Dependency Matrix of TLS in AGG

2. An SH-System SHS has the normal healing property if for each environment
rule there is a corresponding repair rule in the following sense:
∀p = (L← K → R) ∈ Renv we have
a) repair rule p′ = (L′ ←l′ K ′ →r′

R′) with l′ bijective on nodes, and
b) an edge-injective morphism e : L′ → R leading to concurrent rule

p ∗R p′, and
c) normal rule p′′ ∈ Rnorm with p ∗R p′ ∼= p′′

Remark 4 . By combining Thm. 1 and Thm. 2 we obtain static conditions ensur-
ing that an SH-System SHS is strongly self-healing and self-healing, respectively.

Example 5 (Direct Healing Property of TLS). TLS has direct healing property
because “RepairTL” rsp. “RepairCam” are inverse to “FailureTL” resp. “Failure-
Cam” and each pair (p, q) ∈ Renv×Rnorm is sequentially independent according
to the dependency matrix of TLS in Fig. 8.

In the following Thm. 3 and Thm. 4 we give sufficient conditions for deadlock-
freeness and strong cyclicity which are important liveness properties. Here we
mainly use a stepwise approach. We assume to have both properties for nor-
mal rules and give additional static conditions to conclude the property for all
system rules. The additional conditions are sequentially and parallel indepen-
dence and a direct correspondence between environment and repair rules, which
should be inverse to each other. Similar to sequential independence, also parallel
independence of rules (p, q) can be calculated by the AGG tool before runtime.

Theorem 3 (Deadlock-Freeness). An SH-System SHS is deadlock-free, if

1. SHS is normally deadlock-free, and
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2. Each pair (p, q) ∈ (Renv ∪Rrpr) × Rnorm is sequentially and parallel inde-
pendent.

Theorem 4 (Strong Cyclicity). An SH-System SHS is strongly cyclic, given
I. properties 1 and 2, or
II. properties 1, 3 and 4 below.

1. For each environment rule there is an inverse repair rule and vice versa.
2. For each normal rule there is an inverse normal rule.
3. SHS is normally cyclic.
4. Each pair (p, q) ∈ (Renv ∪Rrpr) × Rnorm is sequentially independent.

Remark 5 . In part I of Thm. 4, we avoid the stepwise approach and any kind
of sequential and parallel independence by the assumption that also all normal
rules have inverses, which is satisfied for our TLS.

Example 6 (Strong Cyclicity and Deadlock-Freeness of TLS)
We use part I of Thm. 4 to show strong cyclicity. Property 1 is satisfied because
“FailureTL” and “RepairTL” as well as “FailureCam” and “RepairCam” are
inverse to each other. Property 2 is satisfied because “ArrivalCarsOne(Two)”
and “RemoveCarsOne(Two)” as well as “InfractionOn” and “InfractionOff” are
inverse to each other. Moreover, deadlock-freeness of TLS follows from strong
cyclicity by remark 2. Note that we cannot use part II of Thm. 4 for our ex-
ample TLS, because e.g. (“RepairTL”, “ArrivalCarsOne”) is not sequentially
independent.

7 Conclusion

In this paper, we have modeled and analyzed self-healing systems using algebraic
graph transformation and graph constraints. We have distinguished between con-
sistency properties, including system consistency and normal state consistency,

Fig. 9. Operational properties of self-healing systems
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and operational properties, including self-healing, strongly self-healing, deadlock-
freeness, and strong cyclicity. The main results concerning operational properties
are summarized in Fig. 9, where most of the static conditions in Thms. 1- 4 can
be automatically checked by the AGG tool.

All properties are verified for our traffic light system. Note that in this paper,
the consistency properties are checked by inspection of corresponding rules, while
the operational properties are verified using our main results. Work is in progress
to evaluate the usability of our approach by applying it to larger case studies. As
future work, we will provide analysis and verification of consistency properties
using the theory of graph constraints and nested application conditions in [31].
Moreover, we will investigate how far the techniques in this paper for SH-systems
can be used and extended for more general self-adaptive systems.

References

1. Brun, Y., Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M., Müller,
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1 Introduction

Stochastic graph transformation systems (SGTS) [1] support integrated mod-
elling of architectural reconfiguration and non-functional aspects such as per-
formance and reliability. In its simplest form a SGTS is a graph transformation
system (GTS) where each rule name is associated with a rate of an exponential
distribution governing the delay of its application. However, this approach has
its limitations. Model checking with explicit states does not scale well to models
with large state space. Since performance and reliability properties often depend
on the behaviour of large populations of entities (network nodes, processes, ser-
vices, etc.), this limitation is significant. Also, exponential distributions do not
always provide the best abstraction. For example, the time it takes to make a
phone call or transmit a message is more likely to follow a normal distribution.

To counter these limitations, generalised SGTS [2] allow for general distribu-
tions dependent on rule - match pairs (rather than just rule names). Generalised
semi-Markov processes provide a semantic model for such systems, supporting
stochastic simulation. Rather than model checking, simulations provide a more
flexible tradeoff between analysis effort and confidence in the result and so allow
to verify soft performance targets in large-scale systems.

We present a tool called GraSS, for Graph-based Stochastic Simulation, to
enable the analysis of such processes. The tool is developed in Java-Eclipse,
extending the VIATRA model transformation plugin with a control based on the
SSJ library for Stochastic Simulation in Java. The main performance challenge,
in finding, at each state of the simulation, all matches for all rules, is alleviated by
VIATRA’s RETE-style incremental pattern-matching approach [3], which stores
precomputed matching information and updates it during transformation. We
illustrate and evaluate the application of the tool by the simulation of the original
P2P reconfiguration model as well as an improved and scaled-up version.

2 A P2P Network Model

As a test case we use an example of a SGTS modelling reconfigurations in a
P2P network [1]. Generating the state space of the model for up to seven peers,

D.S. Rosenblum and G. Taentzer (Eds.): FASE 2010, LNCS 6013, pp. 154–157, 2010.
� Springer-Verlag Berlin Heidelberg 2010



Stochastic Simulation of Graph Transformation Systems 155

in [1] we used stochastic model checking to analyse, e.g., the probability of the
network being fully connected, so that each participant can communicate with
every other one.

The GTS below models basic P2P network reconfigurations. Rule new on the
left adds a new peer, registers it and links it to an existing peer. Rule kill deletes
a peer with all links attached. Predicate disconnected checks if there are two
nodes that are not connected by a path of links labelled l.

The two rules on the right create redundant links to increase reliability in
case a peer is lost. Rule random creates a link between p2 and p3 unless there
is one already or the number of additional connections of either p2 or p3 is
greater than two. Rule smart creates a link if there is no two-hop path between
p2 and p3 apart from the one via p1. We consider two families of systems,
SGTSrandom,x and SGTSsmart,x. The former has rules {new, kill, random} and
rates σ(new) = σ(kill) = 1 and σ(random) = x. In the latter, random is
replaced by smart with σ(smart) = x. In both cases x ranges from 1 to 10,000
to test different ratios between basic and redundancy rules.

3 Simulating Stochastic Graph Transformations

In order to define a general interface between the stochastic control component
of the simulation and existing graph transformation tools used for executing
rules, we define SGTS for a generic notion of graph transformation. Refining [4],
a graph transformation approach is given by a class of graphs G, a class of rules
R, and a R× G-indexed family of sets of rule matches Mr,G for rule r into graph
G. Transformation is defined by a family of partial functions⇒r,m: G → G, such
that ⇒r,m (G) is defined if and only if m ∈ Mr,G. This captures the idea that
rule application is well-defined and deterministic if m is a match for r in G.

For a set of rules R, ER is the set of events, i.e., compatible pairs 〈r, m〉.
S = 〈R, G0, F 〉 is a stochastic graph transformation system with set of rules R,
initial graph G0, and F : ER → (R → [0, 1]) assigning each event a continuous
distribution function such that F (e)(0) = 0.

We encode SGTS into generalised semi-Markov schemes (GSMS), a generali-
sation of Markov chains associated with generalised semi-Markov processes [5].
Here transitions are independent of past states, but unlike Markov chains they
may depend on the time spent in the current one, i.e., interevent times may be
non-exponentially distributed. Formally, a GSMS is a structure

P=〈 S, E, act : S → ℘(E), trans : S×E → S, δ : E → (R → [0, 1]), init : S 〉



156 P. Torrini, R. Heckel, and I. Ráth

where S is a set of states (given by all graphs reachable in S), E is a set of
events (the rule matches ER), init is the initial state (graph G0), act gives the
set of events (rule matches) enabled in a state (graph), trans is the transition
function (given by trans(G, 〈r, m〉) = ⇒r,m (G)), and δ defines the probability
distribution for each event (given by F ).

The simulation component uses VIATRA as a graph transformation tool to
implement the elements of the GSMS that depend on the representation of states
and events, notably S, E, act, trans, init, i.e., GTSs are represented as a VIATRA
models. Definitions of distributions F are loaded from an XML file. Based on
this data, a GSMS simulation in GraSS consists of the following steps

1. Initialisation — the simulation time T is initialised to 0 and the set of the
enabled matches (active events) is obtained from the graph transformation
engine. For each active event, a scheduling time te is computed by a random
number generator (RNG) based on the probability distribution assigned to
the event. Timed events are collected as a list ordered by time (state list).

2. At each simulation step
(a) the first element k = (e, t) is removed from the state list
(b) the simulation time is increased to t
(c) the event e is executed by the graph transformation engine
(d) the new state list s′ is computed, by querying the engine, removing all

the elements that have been disabled, adding to the list an event for each
newly enabled match m with time t = T + d, where d is provided by the
RNG depending on F (m), and reordering the list with respect to time

GT rules with empty postconditions are used as probes — statistics about
occurrence of precodition patterns are computed as SSJ tally class reports, giving
average values over runs. One can specify the number of runs per experiment
(esp. useful to reduce the biasing effect of runs truncated by deletion of all
elements) and their max depth (either by number of steps or simulation time).

4 Evaluation

In order to validate the correctness and scalability of the tool we run a number
of experiments based on the P2P model of Section 2. We do not expect to repli-
cate exactly the results reported in [1] because (1) we remove the restriction to
7 nodes that was used to guarantee a finite (and manageable) state space; (2)
unlike in [1] where states and transitions were presented up to isomorphism, our
simulation deals with concrete graphs and transitions. A detailed comparison of
the underlying mathematical models is beyond the scope of this paper, but it
appears that, since the Markov chain is constructed from a more abstract tran-
sition system in [1], the two are not in stochastic bisimulation. Thus, evaluating
the same properties on both models may lead to different results. As in [1] we
run experiments with 10 different models, 5 versions each of using random and
smart rules, with rates ranging through x ∈ {1, 10, 100, 1000, 10000}.
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We perform 5 runs each with a simulation time bound of 10s for each exper-
iment — i.e. no run exceeds 10s regardless of the number of steps. The table
below gives the output of an experiment, indicating the version of the model
(1st column) followed by the percentage of disconnected states encountered, the
average number of steps performed per run, the average maximal extension of
the network, and the average time taken for each run.

Model: P2P Disconnected Number of steps Max number of peers Runtime
random:1 0.46 33 6 5
random:10 0.62 71 8 8
random:100 0.55 86 8 7
random:1000 0.89 284 20 10
random:10,000 0.46 116 8 9
smart:1 1.33 18 5 1
smart:10 0.01 90 8 4
smart:100 0.00 3561 48 10
smart:1000 0.00 998 24 10
smart:10,000 0.00 62 8 3

Such results confirm the inverse dependency observed in [1] between the rate
of the smart rule and the probability of being disconnected, whereas for the
random rule an increased rate does not lead to any significant change in relia-
bility — as confirmed by the average number of disconnections modulo square
of node number (not shown). The performance (number of simulation steps per
sec) is limited by the complexity of pattern disconnect which, in a network of
n peers, checks for (non-) existence of n2 paths. This can be hard due to tran-
sitive closure. As a simpler reliability measure, the proportion of peers with at
least two connections (hence less vulnerable to loss of connectivity) can do. A
simulation of 5 runs with a time limit of 10s has always been carried out in less
than a minute. Reliance on incremental pattern matching means model size only
affects simulation up to number of RNG calls, whereas increase in number and
complexity of the rules can add to the cost of graph transformation, too.
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Abstract. A big-step modelling language (BSML) is a language in
which a model can respond to an environmental input via a sequence
of small steps, each of which may consist of the concurrent execution of
a set of transitions. BSMLs are a popular class of modelling languages
that are regularly reincarnated in different syntactic and semantic vari-
ations. In our previous work, we deconstructed the semantics of many
existing BSMLs into eight high-level, conceptually intuitive semantic as-
pects and their semantic options, which together constitute a semantic
design space for BSMLs. In this work, we describe a parametric semantic
definition schema based on this deconstruction for defining formally the
semantics of a wide range of BSMLs. A semantic definition in our frame-
work is prescriptive in that the high-level semantic aspects of a BSML
are manifested clearly as orthogonal parts of the semantic definition.
Our goal is to produce a formal semantic definition that is accessible to
various stakeholders of the semantics.

1 Introduction

In this paper, we describe a formal framework to define the semantics of Big-
step Modelling Languages (BSMLs) [1,2]. BSMLs are a popular, effective class of
behavioural modelling languages in which a modeller can specify the reaction of
a system to an environmental input as a big step, which consists of a sequence of
small steps, each of which may contain a set of concurrent transitions. There is
a plethora of BSMLs, many with graphical syntax (e.g., statecharts variants [3,
4] and Argos [5]), some with textual syntax (e.g., Reactive Modules [6] and
Esterel [7]), and some with tabular format (e.g., SCR [8, 9]).

In our previous work, we deconstructed the semantics of BSMLs into eight
mainly orthogonal semantic aspects and their corresponding semantic options [1,
2]. The semantic aspects distill the semantic concerns of different BSMLs into
high-level semantic concepts. The combinations of the semantic options establish
a semantic design space that includes the semantics of many existing BSMLs,
as well as new BSML semantics. Our deconstruction is conceptually intuitive
because the semantic aspects characterize a big step as a whole, rather than
only considering its constituent transitions operationally.

D.S. Rosenblum and G. Taentzer (Eds.): FASE 2010, LNCS 6013, pp. 158–172, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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Our contribution in this paper is the formalization of a wide range of BSML
semantics in a manner that follows our deconstruction. Our semantic definition
framework consists of a semantic definition schema, which has a set of param-
eters. By instantiating the parameters of the semantic definition schema, an
operational BSML semantics is derived. The semantic definition schema, its pa-
rameters, and the values of the parameters are specified in standard logic and set
theory. The semantic aspects of BSMLs correspond to disjoint parameters of the
semantic definition schema, and the semantic options of each semantic aspect
correspond to the possible values for the parameters. Thus, we achieve a formal
semantics without sacrificing the intuitiveness achieved in our deconstruction.

A key insight in our formalization is the recognition, and separation, of the
distinct roles in the formal definition for the semantic aspects of concurrency,
small-step consistency, preemption, and priority. We call these parameters struc-
tural parameters, because they affect the meaning of the hierarchial structure of
a model. Structural parameters are distinct from the more common dynamic pa-
rameters found in other formalizations, which specify how the state of the model
changes from one small step to the next. We believe we are the first to separate
these structural parameters disjointly in a manner that matches the factoring
into aspects from our high-level deconstruction of the semantics of BSMLs.

In formal semantics, there are two approaches in using formalism: descriptive
vs. prescriptive [10, 11]. Our semantic definition framework is a prescriptive ap-
proach to define BSML semantics. A prescriptive semantic definition uses the
formalism in an active role, to prescribe a semantics that is already known to
the semanticist. A descriptive semantic definition uses the formalism in a passive
role to describe, what seems like, the discovery of a semantics in the world of
all possible semantics. A prescriptive semantic method can provide insights and
guidance about what is a good semantics, whereas a descriptive semantics can-
not. For example, BNF is a prescriptive method for defining syntax, as opposed
to pre-BNF methods, which were descriptive [10]. “In general, the descriptive
approach aims for generality even at the expense of simplicity and elegance,
while the prescriptive approach aims for simplicity and elegance even at the
expense of generality.” [11, p.284]. A semantic definition produced by our se-
mantic definition schema is prescriptive in that the high-level semantic aspects
of a BSML chosen by its various stakeholders are manifested clearly as orthogo-
nal parts of the semantic definition. A result of our semantic deconstruction and
its formalization is a clear scope for the BSML family of modelling languages.

The remainder of the paper is organized as follows. In Section 2, we first
describe the common syntax that we use for BSMLs, and then describe our
deconstruction of BSML semantics using a feature diagram. In Section 3, we
describe our semantic definition schema, by presenting its common elements, its
structural and dynamic parameters, and their possible values. We also specify the
scope of BSML semantics that our framework covers. In Section 4, we consider
the related work, comparing our work with other semantic definition frameworks,
including those used in tool-support generator frameworks. In Section 5, we
conclude our paper and discuss future work.
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2 Background

In Section 2.1, we describe our normal form syntax for BSMLs, and in Section 2.2,
we describe our deconstruction of BSML semantics [1,2]. We adopt few syntactic
definitions from Pnueli and Shalev’s work [12].

2.1 Normal Form Syntax

As is usual when studying a class of related notations, we introduce a normal
form syntax [13], which is expressive enough for representing the syntax of many
BSMLs [1,2]. In our normal form syntax, a model consists of: (i) a hierarchy tree
of control states, and (ii) a set of transitions between the control states. Fig. 1
shows the BNF for the hierarchy tree of a model and its transitions, which
permits an arbitrary hierarchy of And and Or control states, with Basic control
states appearing at the leaves.1 The symbol “transitions” in the rules is a set of
transitions. The highest level control state in a hierarchy tree is called the root,
which is an Or control state with an empty set of transitions.

〈root〉 → 〈Orstate〉
〈Orstate〉 → Or 〈states〉 〈transitions〉
〈Andstate〉 → And 〈states〉 〈transitions〉
〈Basicstate〉 → Basic
〈states〉 → 〈state〉 | 〈states〉 〈state〉
〈state〉 → 〈Orstate〉 | 〈Andstate〉 | 〈Basicstate〉

Fig. 1. The BNF for the hierarchy tree of control states and their transitions

An Or or an And control state, s, has children, children(s). For a control
state s, children∗(s) is the set of all control states that are children of s either
directly or by transitivity. We denote children+(s) = children∗(s)∪s. Similarly,
we use the parent, ancestor, and descendant relations with their usual meanings.
An Or control state s has a default control state, default(s), which is one of its
children. A Basic control state can be designated as stable or non-stable.2

A transition t has a source control state, src(t), and a destination control
state, dest(t). Additionally, it can have four optional parts: (i) an event trigger,
trig(t), which is a conjunction of events, pos trig(t), and negations of events,
neg trig(t); (ii) a guard condition, cond(t), which is a boolean expression over a
set of variables; (iii) a sequence of assignments, asn(t); and (iv) a set of generated
events, gen(t).

The least common ancestor of two control states s and s′, lca(s, s′), is the
lowest control state (closest to the leaves of the hierarchy tree) in the hierarchy
tree such that: s, s′ ∈ children∗(lca(s, s′)). Given a transition t, we assume a
1 Normally, a control state has a name, but we do not need it in our formalization.
2 For example, a stable control state can be used to model non-pseudo control states of

compound transitions in UML StateMachines [14] or pause commands in Esterel [7].
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parsing mechanism that associates t with control state lca(src(t), dest(t)). Two
control states s and s′ are orthogonal, s ⊥ s′, if neither is an ancestor of the
other and lca(s, s′) is an And control state. We call two transitions t and t′

orthogonal, t ⊥ t′, if src(t) ⊥ src(t′) and dest(t) ⊥ dest(t′). The arena of a
transition t, arena(t), is the lowest Or control state in the hierarchy tree such
that: src(t), dest(t) ∈ children∗(arena(t)). The source scope of a transition t,
ss(t), specifies the highest control state that t exits upon execution. If src(t) ∈
children+(dest(t)), then ss(t) is dest(t), and if dest(t) ∈ children+ (src(t)), then
ss(t) is src(t). Otherwise, ss(t) is the highest control state such that: src(t) ∈
children+(ss(t)) and dest(t) /∈ children+(ss(t)). Similarly, the destination scope
of a transition t, ds(t), is defined.

A transition t is an interrupt for transition t′, t�t′, if the sources of the transi-
tions are orthogonal, and one of the following conditions holds: (i) the destination
of t′ is orthogonal with the source of t, and the destination of t is not orthog-
onal with the sources of either transitions (Fig. 2(a)); or (ii) the destination of
neither transition is orthogonal with the sources of the two transitions, but the
destination of t is a descendant of the destination of t′ (Fig. 2(b)). (In Fig. 2, a
dashed line separates the children of an And control state, and an arrow without
a source signifies the default control state of an Or control state.) We use the
interrupt for relation to model the notion of preemption [7,5].3 For a set of tran-
sitions τ , its set of interrupted transitions, interr(τ) ⊂ τ , consists of transitions
t′ such that for each t′ ∈ interr(τ) there is a t ∈ τ and t�t′.

2.2 BSML Semantics

Initially, a model resides in the default control state of each of its Or control
states, its variables have their initial values, and its events are not present. Fig. 3
depicts the structure of a big step, operationally. A big step is the reaction of
a model to an environmental input, which consists of an alternating sequence
of small steps and snapshots. An environmental input, e.g., I in Fig. 3, consists
of a set of environmental input events, I.events, and a set of variable assign-
ments, I.asns. In some BSMLs, a sequence of small steps are grouped together
3 For example, in Esterel [7], the concurrent execution of a statement and an exit

statement is modelled by the interrupt for relation according to condition (i) above,
and the concurrent execution of two exits is modelled by condition (ii) above.
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into a combo step, which hides some of the effects of its small steps from one
another (e.g., [15, 16]). A snapshot is a collection of snapshot elements, each of
which is a collection of related information about the execution of a model. For
example, there is a snapshot element, Sc, which maintains the set of current con-
trol states that a model resides in. We follow the convention of using sp itself,
or sp with a superscript, as the name of a snapshot; e.g., sp and sp′. Also, we
follow the convention of always using a subscript to name a snapshot element.
To access a snapshot element in a snapshot, we annotate the snapshot element
name with the superscript of the snapshot; e.g., Sc and S′

c access the snapshot
element Sc in snapshots sp and sp′, respectively.

The execution of a transition in a small step includes exiting a set of control
states and entering a set of control states. The exited control states of transition
t, exited(t) = children+(ss(t)), specify the control states that could be exited
upon execution of t, based on the current control states, Sc, which the model
resides in. The entered control states of transition t, entered(t), specifies exactly
the control states that are entered upon execution of t. A control state s belongs
to entered(t) if s ∈ children+(ds(t)) and one of the following three conditions
holds: (i) dest(t) ∈ children+(s); (ii) there exists a control state s′ ∈ entered(t)
such that, (a) either s′ is an And control state and s ∈ children(s′), or s′ is
an Or control state and s = default(s′), and (b) lca(s, dest(t)) is not an Or
control state; or (iii) there exists a control state s′ ∈ entered(t) such that, (a)
either s′ is an And control state and s ∈ children(s′), or s′ is an Or control state
and s = default(s′), and (b) s′ ∈ children+(dest(t)). For example, in Fig. 2(b),
dest(t) = S′

22, ds(t) = S′, and entered(t) = {S′, S′
1, S

′
2, S

′
11, S

′
22}. Therefore, the

execution of a small step τ removes the set of control states
⋃

t∈τ exited(t) from
Sc, and adds the set of control states

⋃
t∈(τ−interr(τ)) entered(t) to it.

Semantic Deconstruction. Fig. 4 shows our deconstruction of BSML seman-
tics into eight semantics aspects, and their semantic options [1,2], as a feature
diagram [17]. The Sans Serif and Small Caps fonts represent the semantic
aspects and the semantic options, respectively. The feature diagram in Fig. 4
enumerates the BSML semantics that arise from our deconstruction.4 A simple
subtree in the feature diagram is an and choice: if the parent is chosen, all of its
children, except for the optional children that are distinguished by a small circle
attaching to them must be chosen. An arced subtree in the feature diagram is
an exclusive or choice: if the parent is chosen, exactly one of its children can
be chosen, which might be an optional feature. For example, a BSML semantics
must subscribe to exactly one semantic option of the Big-Step Maximality.

Semantic Aspects. The Big-Step Maximality semantic aspect specifies when a
big step concludes, meaning the model can sense the next environmental input.
Similarly, the Combo-Step Maximality semantic aspect specifies when a combo
step concludes, and the effect of the execution of the small steps of the combo
4 There are few semantic dependencies between the choices of semantic options [1,2],

but we do not consider them here, and assume that they are satisfied.
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step that has been hidden during the combo step becomes available. The Event
Lifeline semantic aspect specifies the sequence of snapshots of a big step in which
a generated event can be sensed as present by a transition.5 The Enabledness
Memory Protocol semantic aspect specifies the snapshots of a big step from which
the values of the variables of the guard condition (GC) of a transition are ob-
tained. Similarly, the Assignment Memory Protocol semantic aspect specifies the
snapshots of a big step from which the values of the variables in the right-hand
side (RHS) of the assignments of a transition are obtained. The Order of Small
Steps semantic aspect determines how potential small steps at a snapshot are
ordered. The Concurrency and Consistency semantic aspect consists of three sub-
aspects. The Concurrency sub-aspect specifies whether one or more than one
transition can be taken in a small step. If more than one transition can be taken
in a small step, the Small-Step Consistency sub-aspect specifies the criteria for
including a set of transitions in a small step. The Preemption sub-aspect specifies
whether two transitions where one is an interrupt for the other can be included
in a small step, or not. Lastly, the Priority semantic aspect assigns relative pri-
ority to a pair of transitions that can replace one another in a small step. As an
example, the semantics of Statemate [16] is characterized by the Take Many,
Combo Take One, Next Combo Step, GC Combo Step, RHS Combo

Step, None, Single, and Hierarchical semantic options.

3 Semantic Definition Schema

In this section, we present our method for the formalization of BSML seman-
tics. A BSML semantic definition is an instantiation of our semantic definition
schema. The semantic definition schema is a set of parametric definitions in stan-
dard logic and set theory. Fig. 5 shows the structure of the semantic definition
schema, whose elements we describe throughout this section. An arrow between
two nodes in the figure specifies that the element in the source of the arrow uses
the element in the destination of the arrow. The highest level predicate is NBig,
which is a relation between two snapshots sp0 and sp, and an input I. Predicate
NBig characterizes the big steps of the model.

The leaf nodes in Fig. 5 are the parameters of the schema. We distinguish
between a structural parameter and a dynamic parameter. A structural param-
eter deals with the structure of the hierarchy tree of a model, as opposed to a
dynamic parameter. The corresponding semantic aspect of a structural param-
eter is a structural semantic aspect, and the corresponding semantic aspect of a
dynamic parameter is a dynamic semantic aspect. In Fig. 4, we use rectangles
and rounded rectangles to distinguish between structural and dynamic aspects,
respectively. Similarly, In Fig. 5, we use rectangles and rounded rectangles to
distinguish between structural and dynamic parameters, respectively.

A value for a structural parameter is a predicate that specifies how enabled
transitions together can form a small step. A value for a dynamic parameter is
a set of snapshot elements, which is usually a singleton. A snapshot element x1

5 Our deconstruction does not include asynchronous events, which use buffers.
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is characterized by its type, and three predicates, which are each parameters: (i)
reset x1, which specifies how x1 changes at the beginning of a big step when an
environmental input is received; (ii) next x1, which specifies how the value of x1
is changed when a small step is executed; and (ii) en x1, which specifies the role
of x1 in determining a transition as enabled. We denote the set of all snapshot
elements that are used by a BSML semantics as SpEl = {x1, x2, · · · , xn}.

The remainder of this section is organized as follows. Section 3.1 describes
the common, non-parametric elements of the semantic definition schema. Sec-
tions 3.2 and 3.3 present the possible values for the structural and dynamic
parameters, respectively. Section 3.4 describes the scope of our formalization.

3.1 Common Elements

Fig. 6 shows the semantic definition schema. Definitions in lines 1-5 specify how
a big step is formed from small steps. Line 1 specifies predicate NBig, which
creates a big step by sensing the environmental input I at snapshot sp0 (via
predicate reset), taking k small steps (via predicate N), and concluding the big
step at snapshot sp′, when there are no further small steps to be taken, i.e., when
enabled(root, sp′) = ∅. The reset predicate in line 2, is the conjunction of the
“reset” predicates of the snapshot elements of a BSML semantics; it specifies
the effect of receiving the environmental input I. Line 5 specifies the operation
of a small step through the Nsmall predicate, which itself is the conjunction of
the “next” predicates of the snapshot elements of a BSML semantics. The effect
of executing a small step is captured in the destination snapshot of the small
step. The Nsmall predicates are chained together via the N relation to create a
sequence of small steps, as shown in lines 3 and 4.

Definitions in lines 6-9 determine the set of potential small steps at a snapshot
by walking over the hierarchy tree of a model, according to the BNF in Fig. 1,
in a bottom-up way. At a snapshot sp, enabled(root, sp) provides a set of sets of
transitions, one of which is non-deterministically chosen as the next small step.
For readability, we have used a pair of brackets “[ ]” to separate the syntactic
parameter of the predicates from the snapshot parameter sp. Parameter Tr is the
set of transitions of an And or Or control state. Line 9 specifies how transitions
of the children of an And control state can be executed in a small step: the static
parameter ‖, which is associated with the Concurrency semantic aspect, specifies
whether one or more than one transition can be executed in a small step.

Line 14 defines the merge operator, used in lines 6 and 8, which depends on
static parameters C, P , and Π . At each level of the hierarchy tree of a model, the
merge operator decides how to choose from the set of sets of enabled transitions
at the lower level of the tree (parameter T), and the transitions at the current
level of the tree (parameter T ′). Parameter T is in a special font because its
type is set of sets of transitions, as opposed to a set of transitions such as T ′.
The result of a merge operation is a new set of sets of transitions. A transition
belonging to a set of transitions T1 ∈ T is included in the corresponding new
set of transitions for T1, unless it is replaced with a transition in the current
level. Similarly, a transition t ∈ T ′ in the current level is included in a new set
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1. NBig(sp0, I, sp′) ≡ reset(sp0, I, sp) ∧ (∃k ≥ 0 · Nk(sp, sp′))
∧ enabled(root, sp′) = ∅

2. reset(sp0, I, sp) ≡
∧

1≤i≤n

reset xi(sp0, I, sp)

3. N0(sp, sp′) ≡ sp = sp′

4. Nk+1(sp, sp′) ≡ ∃τ, sp′′ · NSmall(sp, τ, sp′′) ∧ Nk(sp′′, sp′)
5. NSmall(sp, τ, sp′) ≡

∧
1≤i≤n

next xi(sp, τ, sp′) ∧ τ ∈ enabled(root, sp)

6. enabled([Or, 〈s1, s2, · · · , sm〉, T r], sp) = enabled or([〈s1, s2, · · · , sm〉]) �
enabled transitions([Tr], sp)

7. enabled or([〈s1, s2, · · · , sm〉], sp) = enabled([s1], sp) ∪
enabled or([〈s2, · · · , sm〉], sp)

8. enabled([And, 〈s1, s2, · · · , sm〉, T r], sp) = enabled and([〈s1, s2, · · · , sm〉], sp) �
enabled transitions([Tr], sp)

9. enabled and([〈s1, s2, · · · , sm〉], sp) = enabled([s1], sp) ‖
enabled and([〈s2, · · · , sm〉], sp)

10. enabled transitions([Tr], sp) = {t : Tr| evaluate([cond(t)],Vcond) ∧
([src(t)] ∈ Sc) ∧ ([neg trig(t)] ∩ E = ∅)
([pos trig(t)] ⊆ E)

∧
1≤i≤n

en xi([t], sp)}

11. enabled([Basic], sp) = ∅
12. enabled or(〈〉, sp) = ∅
13. enabled and(〈〉, sp) = ∅
Where evaluate evaluates a variable expression with respect to a snapshot element,
and operators ‖ and � are concurrency and merger operators, respectively.

14. T� T ′ = { T1 − T ′
1 ∪ T ′′| T1 ∈ T ∧ T ′

1 ⊆ T1 ∧ T ′′ ⊆ T ′∧
(∀t′ : (T1 ∪ T ′) · t′ ∈ (T ′−T ′′) ⇔ ∃t ∈ (T1−T ′

1 ∪ T ′′) · ¬C(t′, t) ∧ ¬P (t′, t))∧
(∀t : (T1 ∪ T ′) · t ∈ T ′

1 ⇔ ∃t′ ∈ T ′′ · ¬C(t, t′) ∧ ¬P (t, t′)) ∧ Π(T, T ′, T1, T
′
1, T

′′) }

Fig. 6. Semantic definition schema
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of transitions unless it is replaced by a transition at the current or lower level. A
new set of transitions is maximal in that no more transitions can be added to it
without violating the Small-Step Consistency, Preemption, or Priority semantics,
represented by parameters C, P , and Π , respectively.

Line 10 specifies if a transition t is enabled, by checking whether: cond(t) is
true with respect to the values of the variables, src(t) is in the set of current
control states, which the model resides in, trig(t) is satisfied with respect to the
statuses of events, and the “en” conditions of all snapshot elements are satisfied.
Lines 11-13 are the base cases of the recursive definitions.

The dynamic parameters Vasn, Vcond, E are the names of snapshot elements
in SpEl that determine: the values of variables for evaluating the RHS of assign-
ments, the values of variables for evaluating the GC of transitions, the statuses
of events for evaluating the triggers of transitions, respectively. The value of
each of these parameters is determined by the choice of a semantic option for
its corresponding semantic aspect. Parameter Vasn is used in the formalization
of the Assignment Memory Protocol, which, for the sake of brevity, we do not
consider its formalization in this paper.

3.2 Structural Parameters

A value for a structural parameter is a predicate that specifies an aspect of
how a small step is formed. In this section, we describe the possible values for
parameter ‖, and parameters C, P , and Π of the merge operator �.

Table 1 specifies the values for the concurrency operator ‖, based on the
semantic options of the Concurrency semantic sub-aspect. The Single semantics
allows exactly one transition per small step, where as the Many semantics allows
all of the children of an And control state to have transitions in a small step.

Table 2 specifies the values for parameters C and P of the merge operator,
which are determined by the Small-Step Consistency and Preemption semantic
sub-aspects, respectively. These two semantic sub-aspects are relevant only for
the Many concurrency semantics. When the Single concurrency semantics is
chosen, both C and P are false. For two distinct t and t′ to be included in
a small step, the Arena Orthogonal semantics requires their arenas to be
orthogonal, and the Source/ Destination Orthogonal semantics requires
the transitions themselves to be orthogonal. For two transitions t and t′ where
one is an interrupt for another, the Non-Preemptive semantics allows them
to be taken in the same small step, but the Preemptive semantics does not.

Table 1. Concurrency semantics

Semantic Option Parameter Value
Single T ‖ T′ = T ∪ T′

Many T ‖ T′ = {T1 ∪ T ′
1| T1 ∈ T ∧ T ′

1 ∈ T′}
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Table 2. Small-Step Consistency and Preemption semantics

Semantic Option Parameter Value
Small-Step Consistency

Arena Orthogonal C(t, t′) ≡ arena(t) ⊥ arena(t′)
Source/Destination Orthogonal C(t, t′) ≡ t ⊥ t′

Preemption
Non-Preemptive P (t, t′) ≡ (t�t′) ∨ (t′�t)
Preemptive P (t, t′) ≡ false

Table 3. Priority semantics

Semantic Option Parameter Value
No Priority Π(T, T ′, T1, T

′
1, T

′′) ≡ true

Child Arena Π(T, T ′, T1, T
′
1, T

′′) ≡ T ′
1 = ∅

Table 3 specifies two possible values for parameter Π . For the sake of brevity,
we consider only two Hierarchical semantic options, but there are more Prior-
ity semantic options [1,2]. The Child Arena semantics assigns a higher priority
to a transition whose arena is lower in the hierarchy tree.

As an example, for the semantics that follow the Many, Arena Orthog-

onal, Preemptive, and No Priority semantic options, the merge operator
can be simplified to T � T ′ = T ∪ {{t}| t ∈ T ′}.

3.3 Dynamic Parameters

A value for a dynamic parameter is a set of snapshot elements, possibly a sin-
gleton, which accomplish the semantics of a corresponding semantic option. For
a snapshot element x1 ∈ SpEl, the reset x1(sp0, I, sp) predicate specifies the
effect of receiving environmental input I in snapshot sp0 on snapshot element
x1, which is captured in snapshot sp. The en x1(sp, t) predicate specifies if tran-
sition t is enabled with respect to snapshot element x1. If en x1 is not specified,
then it is true. The next x1(sp, τ, sp′) predicate specifies the effect of executing
small step τ in snapshot sp, which is captured in snapshot sp′. We annotate the
name of the snapshot element that represents a semantic option with a subscript
that is the same as the name of the semantic option.

In this section, for the sake of brevity, we consider the values of the dynamic
parameters for the Event Lifeline semantic aspect only. The corresponding snap-
shot elements for the semantic options of other semantic aspects are defined
similarly and independent of each other, except for the combo-step semantic
options (cf., the formalization of the Next Combo Step semantics below).

Event Lifeline. There are three semantic options for the Event Lifeline seman-
tic aspect. The Remainder, Next Combo Step, and Next Small Step
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reset ERemainder(sp0, I, sp) ≡ ERemainder = I.events
next ERemainder(sp, τ, sp′) ≡ E′

Remainder
= ERemainder ∪ gen(τ )

reset ENext Combo Step(sp0, I, sp) ≡ ENext Combo Step = I.events
next ENext Combo Step(sp, τ, sp′) ≡ E′

Next Combo Step
= if EndC then

ECollect ∪ gen(τ )
else

ENext Combo Step

reset ECollect(sp0, I, sp) ≡ Ecollect = ∅
next ECollect(sp, τ, sp′) ≡ E′

collect = if EndC then
∅

else
ECollect ∪ gen(τ )

EndC ≡ (�τ ′ · τ ′ ∈ enabled(root, sp′ ⊕ Cs))
reset ENext Small Step(sp0, I, sp) ≡ ENext Small Step = I.events
next ENext Small Step(sp, τ, sp′) ≡ E′

Next Small Step
= gen(τ )

Fig. 7. Snapshot elements for Event Lifeline semantics

semantics require a generated event to be present after it is generated in the
remainder of the big step, in the next combo step, and in the next small step,
respectively. Fig. 7 presents the snapshot elements for formalizing each semantic
option. The value of parameter E , in Fig. 6, is ERemaindeer, ENext Combo Step, or
ENext Small Step, based on the chosen Event Lifeline semantics.

In the Next Combo Step semantics, the last small step of a combo step must
be identified so that the statuses of events are adjusted at the end of the combo
step. The EndC predicate in Fig. 7 identifies the last small step of a combo
step. Its definition relies on the set of snapshot elements, Cs, which is the set
of snapshot elements that specify the notion of combo step in a semantics. For
example, if the Next Combo Step semantic option alone is chosen, then Cs =
{ENext Combo Step, ECollect}. If the GC Combo Step semantic option is also
chosen, then Cs also includes its corresponding snapshot elements. The override
operator, ⊕, replaces the corresponding snapshot elements of its first parameter,
which is a snapshot, with the snapshot elements in the second parameter. Thus,
sp′ ⊕ Cs is a new snapshot, replacing the corresponding snapshot elements of
sp′ with the ones in Cs from snapshot sp. Without Cs, the definitions of the
snapshot elements of two combo-step semantic options become cyclic.

3.4 Scope of Formalization

We call a BSML semantics a forward-referencing semantics if the enabledness
of a transition depends on the execution of other transitions in the current or
future small steps. For example, in the Event Lifeline semantics, another semantic
option is that an event generated by a transition in a future small step is sensed
as present by the current small step [1,2]. Our current semantic definition schema
does not cover the forward-referencing semantics because they convolute the role
of structural and dynamic parameters.
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4 Related Work

Our work is related to tool-support generator frameworks (TGFs) that take the
definition of a notation, including its semantics, as input, and generate tool
support, such as model checking and simulation capability, as output [18, 19,
20,21,22,23,24,25]. TGFs differ in the semantic input formats (SIF) they use,
and the procedure by which they obtain tool support for a notation. By being
able to specify the semantics of various notations, an SIF is comparable with
our semantic definition schema. An SIF can be an existing formalism, such as
higher-order logic [19], structural operational semantic format [20], or a new
formalism, such as template semantics [21]. While TGFs and their SIFs strive for
flexibility and extensibility, to accommodate for new notations, we have strived
for creating a semantic definition framework that produces semantic definitions
whose elements can be identified as high-level semantic concepts. We believe
that the former approach is in the spirit of descriptive semantics, where as ours
is in the spirit of prescriptive semantics. This is because we observe that TGFs
often aim for almost open-ended extensibility and flexibility, and aim to support
an unclear, broad range of semantics, which leads to a general, descriptive style
of semantic definition. If an SIF is used in a prescriptive way, then there should
exist a clear scope of notations in mind so that the formalism can be used in an
active way to define a semantics prescriptively. But such a clear scope contradicts
the open-ended extensibility and flexibility goals of a TGF. We suggest that for
the SIF of a TGF to produce prescriptive semantics a task similar to what we
undertook for BSMLs in our previous work [1, 2] should be carried out first.
This task also serves to define a suitable SIF itself, as well as the scope of the
flexibility and extensibility of the TGF.

The mechanism by which we define our semantics is influenced by that of
template semantics [21]. In template semantics, a semantics is defined by: (i) in-
stantiating values for the template parameters of its snapshot elements, and (ii)
choosing, or defining, a set of composition operators. In particular, (i) we have
adopted lines 1-5 in Fig. 6 from the definition of macro step in template se-
mantics; and (ii) we have adapted the notion of snapshot elements in template
semantics to model the dynamic parameters of a BSML semantics. We do not
need the notion of a composition operator because the characteristics of a com-
position operator are manifested in our structural parameters. Compared to the
template parameters of template semantics, the parameters of our semantic def-
inition schema correspond to higher level semantic concerns, while having fewer
dependencies among them.

Our semantic definition schema can be compared with general semantic defi-
nition methods that organize a semantic definition into a hierarchy of concepts,
such as modules and sub-modules, in Action Semantics [26], or theories that are
related by linkings, in Unifying Theories of Programming [13]. These methods
promote modularity and orthogonality in semantic definition. In comparison, we
have developed a specialized framework for BSML semantics whose concepts are
parameters that correspond to our semantic aspects.
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Lastly, our work is comparable to that of Huizing and Gerth [27]. Huizing
and Gerth taxonomize and specify the semantics of events in BSMLs, cover-
ing the semantic options of our Event Lifeline semantic aspect in this paper. In
comparison, we consider additional semantic aspects.

5 Conclusion and Future Work

We presented a prescriptive, parametric semantic definition framework for defin-
ing the semantics of big-step modelling languages (BSMLs). We showed how the
semantics of a wide range of BSMLs, as identified in our previous work [1, 2],
can be formally specified by our semantic definition schema. Because of the high
level semantic aspects and the orthogonality of their corresponding semantic pa-
rameters in the semantic definition schema, we believe that our framework is a
prescriptive way to define a BSML semantics, which produces an understandable
semantic definition for the various stakeholders of the semantics. A key contri-
bution of our formalization is a parameterization that matches the structural
parameters into Concurrency and Consistency and Priority semantic aspects.

In our previous work [1,2], we analyzed the advantages and disadvantages of
each semantic option in isolation, but not as a whole when considered together.
We plan to use our formal semantic definition schema to identify useful BSML
semantic properties, and the class of BSML semantics that satisfy each of them.
We are also interested in developing a tool-support generator framework that re-
spects the structure of our semantic definitions, so that we can inspect, or verify,
the correctness of the implementation with respect to a semantic definition.
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Abstract. Model composition is a technique for building bigger models
from smaller models, thus allowing system designers to control the com-
plexity of a model-driven design process. However many current model
composition techniques are themselves complex in the sense that they
merge the internal elements of the participating models in non-trivial
ways. In this paper we apply some of the ideas from modular program-
ming to reduce the complexity of model compositions. Indeed we propose
a model composition technique with a modular flavor that treats the
participating models as black boxes. Our technique has several desirable
features: it is simple, it does not require a separate language for express-
ing the composition, and the understanding of the resulting composed
model is made easier by the modular nature of the model composition.

1 Introduction

Models are the primary artifacts in a model-driven software development pro-
cess. Models help in dealing with the complexity of the underlying domains by
abstracting away irrelevant details. The models themselves can become quite
large, at least if we try to represent complex problem or solution domains. Thus
we need techniques for tackling model complexity.

One such technique is model composition. By composing large models from
smaller models the large models should become easier to understand and to
maintain. Most current model composition techniques permit the specification
of rather complex composition operations. This is shown in the fact that many
techniques are based on a separate language for specifying the composition (such
as weaving models in AMW [1] or the Epsilon Merging Language in [10]). Be-
cause these model compositions can be complex, separate model transformations
need to be defined to perform them: in [1], for instance, this transformation is
generated from the weaving model. Furthermore a system specified by using
complex model compositions is difficult to understand.

The main contribution of this paper is a model composition technique that
has the following desirable features:

– it is simple: the composition is specified by mapping elements of one distin-
guished model (called a fragment) to elements of the other models;
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– it is modular: the participating models in the composition are equipped
with an interface: only the elements in the interface can be mapped to by
the fragment

– no additional language is required to express compositions
– it is formally defined

The presentation of this paper is as follows: in the next section we present a run-
ning example that will serve to illustrate the concepts in this paper. In section 3
we introduce formal definitions of models, metamodels and model conformance.
We then introduce the notion of fragment metamodels in section 4. In section 5
we equip models with an interface that will support modularity via information
hiding. We present our model composition technique in section 6. We show that
this technique yields hierarchies of models in section 7. The final two sections dis-
cuss the contributions and put them into the context of existing work (section 8)
and present concluding remarks (section 9).

2 A Running Example: The EP Language

In this paper we illustrate our model composition technique using the EP mod-
eling language. EP is a language that allows the specification of the structure
and behavior of a software systems at a platform-independent level [6,8,7]. The
central concepts are events - modeling elements that are used to model behavior -
and properties - which are use to model the structure of the state. A metamodel
of the EP language is given in figure 1. We will also use a model conforming
to this metamodel for illustrative purposes: the model describes a document
management system. This model will be first introduced in section 6.

3 Basic Definitions: Models and Metamodels

To formally define our model composition technique, we first need to give for-
mal definitions of metamodels, models and model conformance. We extend the
definitions of [2] by formalizing both models and metamodels as graphs, and the
mapping between a model to its metamodel as graph morphism.

Conventions

1. In the following formal narrations, for any pair p, we use fst(p) to denote its
first element and snd(p) to denote its second element.

2. For any function f , we use range(f) to denote its co-domain.

3.1 Metamodels

A metamodel consists of a set of classes, a set of associations and a set of
inheritance relations; all sets are assumed to be finite.
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Definition 1 (Metamodel). A metamodel M = (N, E, H) is a tuple:

– N is a set of nodes, representing the set of classes.
– E ⊆ (N × μ) × (N × μ), where μ = Int × {Int ∪ {∞}}. It represents the

set of associations, with the two N ’s being the types of association ends, and
the two μ’s being the corresponding multiplicities. We refer to the first end
of the edge the source, and the second the target.

– H ⊆ N × N denotes the inheritance relation among classes, where for a
given h ∈ H, fst(h) inherits from (i.e. is a sub-type of) snd(h).

We note that the above definition of a metamodel makes the simplifying as-
sumption that the metamodel does not contain additional constraints beyond
those expressed by association and inheritance relationships or multiplicity con-
straints. An example of a metamodel is that of the EP-language given in figure
1 (ignore for the moment the fragmentation edges indicated by the parallel lines
intersecting the associations).

3.2 Models

Models are built by instantiating the constructs, i.e. classes and associations, of
a metamodel.

Definition 2 (Model). A model is defined by a tuple M = (N, E,M, τ) where:

– M is the metamodel in which the model is expressed.
– N is a set of nodes. They are instances of nodes in the metamodel M, i.e.

NM.
– E ⊆ N ×N is a set of edges. They are instances of edges in the metamodel
M, i.e. EM. Edges in models are often referred to as links.

– τ is the typing function: (N → NM) ∪ (E → EM). It records the type
information of the nodes and links in the model, i.e. of which metamodel
constructs the nodes and links are instances.

3.3 Model Conformance

Not all models following the definitions above are valid, or “conform to” the
metamodel: typing and multiplicity constraints need to be respected.

Definition 3 (Model conformance). We say a model M = (N, E,M, τ) con-
forms to its metamodel M or is well-formed when the following two conditions
are met:

1. type compatible: ∀e ∈ E, τ(fst(e)) ≤ fst(fst(τ(e))) 1 and τ(snd(e)) ≤
fst(snd(τ(e))). Namely, the types of the link ends must be compatible with
(being sub-types of) the types as specified in the corresponding association
ends.

1 ≤ denotes the subtyping relation.
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2. multiplicity compatible: ∀n ∈ N, eM ∈ EM,
if τ(n) ≤ fst(eM),
then �{e | e ∈ E and τ(e) = eM and fst(e) = n} ∈ snd(snd(eM)) 2;
if τ(n) ≤ snd(eM),
then �{e | e ∈ E and τ(e) = eM and snd(e) = n} ∈ snd(fst(eM)).
Namely, the number of link ends should conform to the specified multiplicity
in the corresponding association end.

As an example of model conformance consider the model named Log in the upper
right part of figure 4: it conforms to the metamodel of the EP-language given in
figure 1 (if we ignore the interface definition).

4 Fragment Metamodels

Our model composition approach will make use of partial models as the glue to
unite the participant models. These partial models, which will be called frag-
ments, have external links to other models. At the level of the metamodel we
need to indicate which associations can be instantiated into external links of
fragments. For this purpose we introduce the notion of fragmentation edges.

Definition 4 (Fragmentation edges of a metamodel). A fragmentation
edge a of a metamodel M = (N, E, H) satisfies the following conditions:

1. a ∈ E.
2. snd(fst(a)) = ( ,∞), where represents any integer whose value is irrelevant

for this definition.

In other words an association edge in the metamodel is a fragmentation edge
if the maximum multiplicity of its source is not constrained. The intuition be-
hind this definition is as follows: if an association a from node A to node B is a
fragmentation edge then any B-instance can be the target of an arbitrary num-
ber of links (instances of this association) from A-instances. Thus if we add to
existing models external links (instances of association a) from a fragment this
will not violate the multiplicity constraint of the association. In a later section
(section 6) this observation will be instrumental in proving that the result of the
composition with a fragment is a model conforming to the original metamodel.

Figure 1 gives an example of a metamodel for the executable modeling
language EP (from [7,8]) together with nine fragmentation edges indicated by
parallel lines crossing the associations. These fragmentation edges have been
identified in accordance with the above definition. For instance the association
named target from ImpactEdge (right side of diagram) to LocalProperty (at the
top of the diagram) has an unconstrained source multiplicity (indicated by ’*’) -
it is therefore marked as a fragmentation edge.

The central concept of our model composition technique is that a fragment
which is essentially a partial model that has some external links that are typed
2 � returns the size of a set.
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Fig. 1. A metamodel and its fragmentation edges

by fragmentation edges. Because of these external links fragments of a model
conforming to a metamodel MM do not conform to MM. In order to be able to
treat fragments also as models (which is desirable in a model-driven approach)
we introduce the notion of a fragment metamodel. The basic idea is to replace
the external links of a fragment by links to referential nodes which represent a
node in another model. At the level of metamodels this is achieved by replacing
the endpoint of each fragmentation edge by a new class having two subclasses:
one subclass represents normal instances of the original endpoint class while
the other subclass represents referential nodes. A simple example of a fragment
metamodel is given in figure 2. On the left side of that figure a metamodel
is shown with two fragmentation edges. On the right side the corresponding
fragment metamodel is given. A more involved example is shown in figure 3.
This example will be discussed in more detail at the end of this section.

After this informal discussion we define fragment metamodels formally.

Definition 5 (Fragment metamodel). The fragment metamodel M =
(N, E, H) is a metamodel, written MF = (NF , EF , HF ). It is constructed as
follows:

1. N ⊆ NF , H ⊆ HF .
2. ∀e ∈ E,

if e is not a fragmentation edge of M,
then e ∈ EF ;
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Fig. 2. A metamodel and its fragment metamodel

else (that is the target of the given edge e, i.e. snd(e) can be “referential”),
let n = snd(e),
(a) if n is not yet cloned, i.e. the referential counterpart does not exist yet,

then create a new node nR. We call nR the referential node of n. More-
over, also create a new node nF (nF is an abstract node in the sense
that no instances can be made from it), and let (n, nF ) ∈ HF and
(nR, nF ) ∈ HF .
else i.e. n is already cloned, i.e. nF , nR exist, then do nothing.

(b) Create a new edge eR called the referential edge of e of the following form
(fst(e), (nF , snd(snd(e)))), eR ∈ EF .

The fragment metamodel of the example from figure 1 is given in figure 3. We
highlight all the changes with respect to the original metamodel in figure 1: The
target class of a fragmentation edge in the original metamodel is now extended
into a set of three classes indicated by the dashed contours, in which two new
classes, namely, the referential counterpart class following the naming convention
“XXXR” where “XXX” is the original name, and the common abstract super
class with name “XXXF”, are added. Moreover, the targets of fragmentation
edges in the original metamodel are modified accordingly, leading to the newly
added abstract super classes.

Definition 6 (Fragment). A fragment is a model that conforms to a fragment
metamodel. Moreover, there is at least one referential instance (or place-holder).

5 Model Interfaces

One way to reduce the complexity of the model composition is information hid-
ing. This has been used successfully at the programming level and was introduced
in the seminal paper of David Parnas [12]. The basic idea of information hiding is
to separate the code into disjoint pieces called modules that expose only a small
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Fig. 3. A fragment metamodel of the EP metamodel

subset of their internal elements to the other modules via interfaces. Modular
programming offers several advantages: modules can be developed and tested
independently, they can be reused more easily and they can be changed in more
flexible ways.

In this section we apply the principle of information hiding to models. We do
this by equipping the models with an interface which will be defined below.

Definition 7 (Modules). A module is a model with an interface.

A module interacts with its context via its interface. Module interfaces are spec-
ified in terms of a set of pairs of form (a, i : C), where C is the name of a
metamodel class, i denotes an instance of C in the module, and a is the name
of a metamodel association of which C is (a sub-class of) the target class. Note
that i is optional. In case of absence, all instances in the module that are of type
C are considered.

Definition 8 (Module interface). An interface of a module specifies a set of
pairs of form (a, i : C), where i is optional. Moreover, a is a fragmentation edge
of the metamodel in which the module is expressed and C ≤ snd(a).
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Without explicit specification, each module is equipped with a default interface
which is the set of all the fragmentation edges of the metamodel together with
the corresponding target classes. The default interface exposes all the instances
of the target class of some fragmentation edge of the metamodel with respect to
the corresponding association indicated by the fragmentation edge.

If we view models as components, it is worthwhile noting that our approach
differs from the classical definition of information hiding in component-based sys-
tems in terms of import and export interfaces. In our framework models simply
do not have import interfaces but only export interfaces (as defined above). That
is, models cannot access features that they do not ”implement”; only fragments
have this capability.

On the right side of figure 4, we show two modules - named Document and Log
- of the EP metamodel (from figure 1) that are part of a document management
system: their interfaces are shown at the bottom of each model. As an example
consider the pair (type, Document : Interface) that is part of the interface of
the Document module. The presence of this pair means that a fragment can
have as external link a type link to the Document interface of the Document
module. Here type is the fragmentation edge from PropertyTarget (a superclass
of Property, itself a superclass of LocalProperty) to Type in the EP-metamodel
(see at the top of figure 1). In other words a fragment can use elements of type
Document; in the example we see indeed that the fragment DocumentLog uses a
property document of type Document.

6 Model Integration

We call our model composition technique model integration. We perform model
integration using a set of modules and a fragment by mapping all the referential
edges of the fragment to instances of some participant modules. Moreover, the
mapping should meet two conditions (which will be more precisely defined in
definition 9):

1. typing is respected, in the sense that the type of the target of the mapped
referential edge should be a sub-type of the type of the referential instance;

2. interfaces of the modules are respected, in the sense that if an instance is
not exposed with respect to an association in the interface, it is forbidden
to map a referential edge to it that is typed by the referential counterpart
of the association.

An example of a model integration scenario is shown in figure 4. In this example
the fragment (shown at left) has five external links into the Log module and
one external link into the Document module. The referential instances of the
fragment, which are the source nodes of the dashed arrows, are all mapped
to some type compatible instances that are exposed in the interfaces of the
participant models.
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Fig. 4. Model integration of a fragment (left) and two modules (right)

Module integration is formally defined as follows.

Definition 9 (Integration Mapping). An integration mapping of a fragment
F over a set of modules {M1 : I1, . . . , Mk : Ik} having a common metamodel M
is a function mapping each referential edge er = (n, nr) of the fragment to some
instance ni of some model Mi such that

1. if the type of nr is the referential class node of a class node nM in the
metamodel M, then the type of ni is a subtype (direct or indirect) of nM.

2. if τF (er) is the referential association edge of an association eM in the meta-
model M, we have (eM, ni : nM) ∈ Ii.

To illustrate this definition consider the fragment DocumentLog in figure 4. The
integration mapping over modules Log and Document is indicated by the dotted
edges. For instance the referential edge (: PushEdge, : EventTargetR) (at top
of figure) is mapped to element clearLog of type Event. This is consistent with
the definition since first EventTargetR is a referential class of EventTarget and
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Event is a subtype of EventTarget and second (target,Event) is in the interface
of module Log.

Definition 10 (Module integration: syntax). An integration is defined over
a set of valid modules {M1 : I1, . . . , Mk : Ik}, via a fragment F = (NF , EF ,
MF , τF ), with respect to a mapping function ρ, where:

1. Ii is the interface of module Mi, i = 1, . . . , k.
2. Mi = (Ni, Ei,Mi, τi), i = 1, . . . , k, have the same metamodel M.
3. The metamodel of F i.e. MF is the fragment metamodel of M.
4. ρ is an integration mapping of F over module set {M1 : I1, . . . , Mk : Ik}.

To define the semantics of model integration, we define the result of integrating
models M1, . . . , Mk conforming to metamodelM with fragment F to be another
model M conforming to the same metamodelM as the participating models Mi.
Informally this result model is defined by identifying (collapsing) the endpoint
of a referential edge with the instance which the referential edge is mapped to.
To illustrate this, consider the module integration depicted in figure 4: the edge
named target from : PushEdge to referential node : EventTargetR and the
dotted edge from : EventTargetR to clearLogEvent will be collapsed into an
edge from : PushEdge to clearLogEvent named target. This transformation is
repeated for all referential edges leaving the fragment. This is expressed formally
in the following definition:

Definition 11 (Model integration: semantics). The semantics of an inte-
gration returns a model M = (N, E,M, τ), where:

1. N = (
⋃

i=1,...,k Ni) ∪ (NF \Nr), and

τ(n) =

{
τi(n) n ∈Mi

τF (n) n ∈ NF

2. E = (
⋃

i=1,...,k Ei)∪ {v(eF ) | eF ∈ EF }, where τ(ei) = τi(ei) for all ei ∈ Ei,
and
(a) if τF (eF ) ∈ EO

MF
, then v(eF ) = eF and τ(v(eF )) = τF (eF );

(b) otherwise, i.e. τF (eF ) ∈ ER
MF

,
i. if snd(eF ) �∈ Nr, then v(eF ) = eF ;
ii. otherwise v(eF ) = (fst(eF ), ρ(snd(eF ), eF )).
And in both cases τ(v(eF )) = ori(τF (eF )).

It follows from this definition that the result model of model integration is a
well defined model according to Definition 2. The following theorem shows that
it is also a valid one, i.e., it conforms to the same metamodel as the models that
participate in the module integration.

Theorem 1. The result model M = (N, E,M, τ) of an integration over a set
of disjoint Mi = (Ni, Ei,M, τi), 1 ≤ i ≤ k, via F = (NF , EF ,MF , τF ), with
respect to ρ, is a valid model conforming to the metamodel M.

Proof. See [9].
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7 Integration Hierarchies

By repeatedly applying model integration steps we can build up, starting from
a set of disjoint modules, a hierarchy of modules which we now formally define.

Definition 12 (Module Hierarchy). A module hierarchy is a directed acyclic
graph whose nodes are either modules or fragments, such that:

1. all sink nodes (i.e., nodes with no outgoing edges) and source nodes (i.e.,
nodes without incoming edges) are modules;

2. each node that is a fragment has as successors a set of modules and has an
associated integration mapping over these modules;

3. each node that is a module has either no successors (representing a unit
module), or it has as successor a single fragment (representing a model that
is derived by integrating the fragment with its successor modules).

The following theorem holds.

Theorem 2. All the models that correspond to the module nodes in a module
hierarchy are valid models conforming to the original metamodel.

Proof. See [9].

The system model is represented by the union of all the top models, i.e., those
corresponding to the source nodes in the hierarchy. Moreover, the system model
is also a valid model conforming to the original metamodel.

Theorem 3. The union of all the models that correspond to the source nodes
in a module hierarchy is a valid model conforming to the original metamodel.

Proof. This theorem holds as a corollary of Theorem 2, if we consider that there
exists a special empty fragment that integrates all these top models.

We introduce a more compact representation of module hierarchies called inte-
gration hierarchies.

Definition 13 (Integration hierarchy). The integration graph for a module
hierarchy is obtained by collapsing each edge in the module hierarchy graph that
leads from a module node to a fragment node into the fragment node.

In figure 5 we give an example of an integration hierarchy for a document
management system. The three nodes at the bottom represent disjoint models
representing the graphical user interface (Gui), the document business domain
(Document) and the logging (Log). One level up in the figure the DocumentGui
fragment integrates the Gui and Document models: it represents the graphical
user interface adapted to managing documents. At the same level the Docu-
mentLog fragment integrates the Document and Log models; it provides logging
facilities for the Document model. At the top level the fragment named DMS
integrates the lower level models into a complete document management system.
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Fig. 5. Model integration of a fragment (left) and two modules (right)

At this point we would like to briefly explain why our approach facilitates
model comprehension. First note that the base models (at the lowest level of the
integration hierarchy) are self-contained. We can express this using terminology
of component-based systems by saying that our models have only an export
interface but not an import interface. At higher levels we hook up a fragment
to the export interfaces of lower level models. The fragment uses a language
(the fragment metamodel) very similar to the metamodel of the participant
models. Furthermore the composition mechanism itself is quite simple: it consists
in simply identifying referential nodes of the fragment with instances in the
interface of the participant modules (as described in the previous section).

8 Discussion and Related Work

We start by reviewing the main contributions of this paper. These are, as claimed
in the introduction, the following features of the composition technique: (a)
it is simple, (b) it is modular, (c) it does not require an additional language
to express composition, and (d) it is formally defined. As far as simplicity is
concerned we note that the input to the composition are the fragment, a set of
modules, and a mapping of the referential edges in the fragment to instances of
the models. The actual composition (expressed in definition 11) simply collapses
the referential edge with the target instance, a straightforward transformation.
The modularity of our approach is based on the idea of equipping models with
interfaces hiding some of the elements inside the model from the view of the
fragment. The resulting concept of a module was presented in section 5. Because
of the simplicity of the composition mechanism (described above) we do indeed
not require a separate language for expressing the composition. Finally we have
given formal definitions of the concepts related to model integration, underlining
its formal foundation.
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We now consider related work. Only fairly recently a common set of definitions
for model composition was proposed and a set of requirements for model com-
position languages and tools was derived [2]. The definitions in that paper are
based on examining three model composition frameworks: the Glue Generator
Tool [2,3], the Epsilon Merging Language [10], and the Atlas Model Weaver [1].
The model composition techniques expressible in these frameworks may be called
white-box model composition techniques: they are usually based on having full
access to the modelling elements within each model. They also differ from our
approach by allowing composition operations of high complexity to be specified.
Of course this also means that these techniques are more expressive than ours:
in particular they do not restrict participating models to conform to the same
metamodel.

A model composition technique with a more modular flavor that treats the
component models as black boxes was defined in [11]: their approach, named the
Collaborative Component Based Model approach (CCBM) leverages software
component principles and focuses on the specification of how models collaborate
with each other. The Collaborative Component Based Model approach achieves
black-box reuse of unmodified models and preserves them. Thus, in CCBM,
models are units of reuse and integration is modular and incremental, just as for
software components in Component Based Software Engineering (CBSE) [4].

In our paper we propose a model composition technique similar in spirit to
the CCBM approach described above. It is also not based on transforming the
component models but rather provides additional plumbing - the fragments -
that connects the component models without changing them. Our approach
differs from the CCBM approach in two ways: first the glue models used for
composing models have a metamodel (the fragment metamodel) closely related
to the metamodel of the participant models while in the CCBM approach another
language (JPDD) is used for specifying the glue between the participant models.
Furthermore their composition mechanism is less general in the sense that it only
addresses how operations of the participant models collaborate.

Another work [13] addresses the problem of information hiding at the level
of metamodels that are instances of MOF. Besides its focus on metamodels
this work differs from our approach in the way it expresses information hiding:
it assumes that each metamodel has import and export interfaces. Metamodel
composition is expressed by binding elements in import interfaces to elements in
export interfaces. In our framework, on the other hand, models have only export
interfaces. Composition is realized by combining export interfaces via fragments.

The authors of [5] develop a theory of model interfaces and interface com-
position in the context of dealing with soft references across XML models, i.e.,
untyped, string-based references between XML documents. Their definition of
model interfaces is heavily influenced by the assumption that models are stored
as XML files: their interfaces are based on the attribute names of the XML mod-
els and are not applicable to the more general setting underlying our approach.
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9 Conclusion

In this paper we have presented a modular technique for composing models con-
forming to the same metamodel. It differs from most existing model composition
techniques in three important ways: first, information hiding is realized by each
model offering an export interface (using terminology from component-based sys-
tems) but no import interface. This means that models are really self-contained:
they cannot access features that they do not ”implement”. Second, a separate
language for expressing the composition is not required since the composition
only requires mapping referential nodes in the fragment to instances in the par-
ticipating models. Third, for the reason just given the composition itself is quite
simple. All of these differences help in reducing the coupling between the partic-
ipant models and the composed model, thus facilitating the comprehension and
maintenance of the composed model.

In this paper we have only taken into account metamodels that are expressed
visually using the class diagram notation. Further textual constraints (expressed
for instance in OCL) have not been taking into account. Considering additional
constraints not expressed visually will likely lead to a more complicated definition
of fragmentation edges. This will be the subject of future work.

Another line of future investigations concerns the model comprehension as-
pects of our model composition technique. The benefits for model comprehension
are addressed rather summarily in the present paper (at the end of section 7).
Future work will address this question in more detail. In particular we are inter-
ested in the reverse process of building model hierarchies. Suppose we have an
existing model. Can we decompose it into a model hierarchy, thereby facilitating
the comprehension of the initial model?
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Abstract. Role-based access control (RBAC) is a popular access control
model for enterprise systems due to its economic benefit and scalability.
There are many RBAC features available, each providing a different fea-
ture. Not all features are needed for an RBAC system. Depending on
the requirements, one should be able to configure RBAC by selecting
only those features that are needed for the requirements. However, there
have not been suitable methods that enable RBAC configuration at the
feature level. This paper proposes an approach for systematic RBAC
configuration using a combination of feature modeling and UML model-
ing. The approach describes feature modeling and design principles for
specifying and verifying RBAC features and a composition method for
building configured RBAC. We demonstrate the approach by building
an RBAC configuration for a bank application.

1 Introduction

RBAC [1] is an efficient and scalable access control model that governs access
based on user roles and permissions. RBAC consists of a set of features (compo-
nents), each providing a different access control function. There have been many
RBAC features proposed. The NIST RBAC standard [1] presents features of core
RBAC, hierarchical RBAC, static separation of duties, and dynamic separation
of duties. Researchers have proposed other features such as temporal access con-
trol [2] and privacy-aware policies [3]. Not all these features are needed for an
RBAC system. Depending on the requirements, one should be able to configure
RBAC features by selecting only those that are needed for the requirements.
For example, in commercial database management systems, Informix Online
Dynamic Server 7.2 does not support static separation of duties, while Sybase
Adaptive Server release 11.5 does. Informix, however, supports dynamic sepa-
ration of duties, while Oracle Enterprise Server Version 8.0 does not [4]. If the
requirements involve time-dependent access control (e.g., periodicity, duration),
the temporal feature can be chosen.

In this paper, we present a modeling approach that enables systematic and
verifiable configuration of RBAC features. This approach is motivated to reduce
the development overheads and complexity of application-level RBAC systems
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(where access control is tightly coupled with application functions) by separating
access control from application functions and configuring RBAC features on a
need basis. Configured RBAC is used as a base for the functional design of the
application. In the approach, RBAC features and their relationships are captured
by feature modeling [5]. Rigorous design principles based on the Unified Modeling
Language (UML) [6] are presented for specifying RBAC features in a form that
facilitates their reuse. The design principles also serve as verification points to
ensure the correctness of RBAC feature specifications. The approach defines a
composition method for building configured RBAC by composing the features
that are necessary for the given requirements. We demonstrate the approach by
configuring RBAC for a bank application and show how the configured RBAC
can be instantiated to the application.

The rest of the paper is organized as follows. Section 2 gives an overview of
related work. Section 3 describes RBAC feature modeling. Section 4 describes the
formal basis of design principles for RBAC features. Section 5 presents RBAC
feature specifications built upon the design principles. Section 6 describes the
composition method for RBAC features. Section 7 demonstrates how RBAC
features can be configured for a bank application. Section 8 concludes the paper.

2 Related Work

There is some work on using UML to describe access control models. The work
can be categorized into two approaches. One is using the UML notation to de-
scribe the structure of an access control model and its constraints. Shin and
Ahn [7] use UML class diagrams to describe the structure of RBAC and the
Object Constraint Language (OCL) [8] to define RBAC constraints. Our previ-
ous work [9] uses object diagrams to visualize RBAC constraints. Priebe et al.
[10] view an access control model as a design pattern and use the Gang-of-Four
(GoF) pattern template [11] to describe RBAC. The other approach uses UML
profiles, an extension mechanism in the UML, to define access control concepts.
Jurjens [12] proposed a UML profile called UMLsec for modeling and evaluating
security aspects for distributed systems based on the multi-level security model
[13]. Similarly, Lodderstedt et al. proposed a UML profile called SecureUML [14]
for defining security concepts based on RBAC. Doan et al. [15] extend the UML,
not by a profile, but by directly incorporating security aspects of RBAC and
MAC into UML model elements.

Composition of RBAC features in this work is related to model composition
in aspect-oriented modeling (AOD) (e.g., [16,17,18,19]). In AOD, cross-cutting
concerns are designed as design aspects that are separated from functional as-
pects (called primary models). Clarke and Walker [16] proposed composition
patterns to compose design aspects described in UML templates with a primary
model through parameter binding. Straw et al. [19] proposed a set of composition
directives (e.g., creating, adding) for aspect composition. Similar to Clarke and
Walker’s work, Reddy et al. [17] use sequence diagram templates for specifying
behaviors of design aspects and use tags for behavior composition. An aspect
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may include position fragments (e.g., begin, end) which constrain the location
of fragment interactions to be inserted in a sequence diagram. The composition
method in their work, however, is not rigorously defined, and thus it is difficult
to verify resulting models. Their position fragments influenced join points in our
work. Song et al. [18] proposed a composition method for composing a design
aspect with an application design. They verify composed behaviors described
in OCL by discharging a set of proof obligations. However, their verification is
limited to OCL expressions, and the entire composed model cannot be verified.

3 RBAC Feature Modeling

Feature modeling is a design method for modeling commonality and variability
of an application family [5]. A feature model consists of mandatory features
capturing commonality and optional features capturing variability. Features are
organized into a tree-like hierarchy. Fig. 1 shows a simplified feature model for
RBAC.

SoD

RBAC

Core Hierarchy Privacy Temporal

AdvancedLimitedGeneral DSDSSD

Fig. 1. RBAC Feature Model

We design an RBAC feature in the way that it encapsulates those and only
those properties that pertain to the functions of the feature. In Fig. 1, filled circles
represent mandatory features, while empty circles represent optional features.
The empty triangle underneath the Hierarchy feature denotes an alternative
group constraining that only one of the General and Limited features can be
selected from the group. The filled triangle beneath the SoD feature denotes an
or group constraining that at least one of the SSD and DSD features must be
selected from the group.

The Core feature captures the essential RBAC functions that all RBAC sys-
tems must possess. The Hierarchy feature enables roles to be structured in a
hierarchy in which permissions are inherited bottom-up and users are inherited
top-down. A hierarchy can be either General or Limited. A general hierarchy
allows a role to have more than one descendant, while a limited hierarchy is
limited to only one descendant. The optional Advanced feature provides admin-
istrative functions for managing roles in a hierarchy. The SoD feature enforces
Separation of Duty (SoD) constraints which divide responsibility for accessing
sensitive information. SoD constraints are divided into Static Separation of Duty
(SSD) and Dynamic Separation of Duty (DSD). The model can be extended with
consideration of other features (e.g., [2,3]).
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4 Partial Inheritance
The Core feature forms the basis of all configurations, and other features (hence-
forth, referred to as component features) add additional properties to Core or
redefine its existing properties. This establishes inheritance relationships between
Core and component features. However, unlike the traditional inheritance where
all properties are inherited, component features may inherit only those that are
needed for their functions. Partial inheritance for class diagrams and sequence
diagrams is defined below.

An operation op with name o, formal parameter types p1, . . . , pn , and return
value type r is denoted o(p1, . . . , pn)  r . Let Pre(op) and Post(op) be pre-
condition and post-condition of op. Let Inv(c) be invariant of a class c and T1 ⊆
T2 denote that T1 is a subtype of T2. An operation opp = op(p1, . . . , pn)  r
in class cp is said to redefine an operation opc = oc(p′

1, . . . , p′
m)  r ′ in class

cc iff O1: op = oc , O2: n = m, O3: ∀ i ∈ 1..n, p′
i ⊆ pi , O4: r ⊆ r ′, O5:

Pre(opc) ∧ Inv(cp)⇒ Pre(opp), O6: Pre(opc) ∧ Post(opp)⇒ Post(opc) [20].
The cardinality of a relationship rel at an end e is an interval of positive

integers and it is denoted as bounds(rel(e)). The containment relationship be-
tween intervals are defined as usual. That is, 〈l1, u1〉 ⊆ 〈l2, u2〉 iff l1 ≥ l2 and
u1 ≤ u2. The intersection of two intervals 〈l1, u1〉 and 〈l2, u2〉 is 〈l1, u1〉∩〈l2, u2〉 =
〈max (l1, l2),min(u1, u2)〉. The set of traces of a sequence diagram SD is denoted
T (SD). A trace s is a sub-sequence of another trace t , denoted s � t iff s can
be obtained from t by removing zero or more events. We say a class cp in a
component feature fp is inherited from fc if cp has the same name as a class cc
in fc and we call cc the parent of cp .

Definition 1. A component feature fp partially inherits the Core feature fc iff

1. At least one class in fp is inherited from fc .
2. Each group of inherited classes preserves all relationships between their par-

ents. A relationship relc in fc is preserved iff there is a relationship relp in fp
that has the same name and the same ends as relc and for all relationship
end e, bounds(relp(e)) ⊆ bounds(relc(e)).

3. For each inherited class cc and its parent cp , ∃−Y •Inv(cp)⇒ ∃−Y •Inv(cc)
where Y is the set of properties shared by cc and cp and ∃−Y •P is defined
as ∃ z1. · · · ∃ zn •P and {z1, · · · , zn} contains all those variables in P that are
not in Y .

4. For each inherited class cc and its parent cp , each inherited operation opp

in cp redefines the corresponding operation opc in cc.
5. If a sequence diagram SDc in fc and a sequence diagram SDp in fp have the

same name, then every trace of SDc is a sub-sequence of some trace of SDp :
∀ t ∈ T (SDc) • ∃ s ∈ T (SDp) • (t � s).

5 Specifying RBAC Features

RBAC features are specified based on partial inheritance using the UML. Due to
the limited space, we present only the Core, General hierarchy and DSD features
where General and DSD are designed to be partial inheritance of Core.
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Core feature. The Core feature defines the properties that are required by all
RBAC systems. Fig. 2 shows the structure and behaviors of the Core feature. The
symbol “|” in the diagram denotes parameters to be instantiated after configu-
ration. Although the operations in the class diagram are self-descriptive, their
semantics should be defined clearly. We use the Object Constraint Language
(OCL) [8] to define operation semantics. The following defines the semantics of
addActiveRole():

context Session:: addActiveRole(r:Role)
pre : true
post: let auth:OclMessage=User^authorizedRoles() in
Auth: auth.hasReturned() and auth.result() = ars and
Cond: if ars → includes(r) then active in = active in@pre → including(r)

else active in = active in@pre endif

The postcondition specifies that an invocation of the operation results in invoking
authorizedRoles() which returns a set of authorized roles for the user, and the
requested role is activated only if it is included in the authorized roles. Auth and
Cond are labels to be used later in this section for proving design correctness.

1

ref

:|User

AuthorizedRoles

|monitors_object

0..*

|executed_on
1

0..*
|Object

0..*

1

|Operation

0..*

|getAactiveRoles(): Set(|Role)
|dropActiveRole(|r:|Role)

|Session

|addActiveRole(|r:|Role)

|monitors_operation

|User

0..*

1

|creates

0..* 0..*

|Permission
|given_to

0..*

RBAC::Core

|authorizedRoles(): Set(|Role)
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:|Session
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1
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1
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1
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|deassignUser(|u:|User)
|assignUser(|u:|User)

|authorizedUsers(): Set(|User)

|Role
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|monitors_role

0..*

|monitors_session

0..*

|assigned_to

0..*

0..*

|active_in

0..*

0..*

Fig. 2. RBAC Core Feature

General hierarchy feature. General hierarchy allows a role to have one or more
immediate ascendants and descendants for inheriting user memberships and per-
missions from multiple sources. Fig. 3 shows the General hierarchy feature. Based
on Definition 1, it contains only the properties that are needed for role hierarchy.
The General hierarchy feature redefines several operations in the Core feature
which are in bold. For example, authorizedRoles() and createSession() in the
User class are redefined to include the roles that are inherited by the directly



A Verifiable Modeling Approach to Configurable Role-Based Access Control 193

assigned roles. addActiveRole() in the Session class is redefined to activate inher-
ited roles when the requested role is activated in a session. The new semantics
of addActiveRole() is defined as follows:

context Session:: addActiveRole(r:Role)
pre : true
post: let auth:OclMessage=User^authorizedRoles(),

desc: OclMessage = Role^descendants() in
Auth: auth.hasReturned() and auth.result() = ars and
Desc: desc.hasReturned() and desc.result() = descnd and
Cond: if ars → includes(r) then active in = active in@pre → including(r)

and descnd → forAll(d| active in = active in@pre → including(d)
else active in = active in@pre endif

|ars=|get()

AddActiveRole

opt

add(r)

dr=descendants()

loop [i<dr.size()]
join DSD::CheckDSD

|add(|dr[i])

[|ars−>includes(|r)]

:|Session :|User |ars[i]:|Role |r:|Role

|addActiveRole(|r)
|ars=|authroizedRoles() ref AuthorizedRoles

1..*

ascendant

descendant

1..*

1..*
|addInheritance(|r1:|Role,|r2:|Role)
|deleteInheritance(|r1:|Role,|r2:|Role)

|deassignUser(|u:|User)

|authorizedUsers(): Set(|User)

|addAscendant(|ascnt:|Role)
|addDescendant(|ascnt:|Role)

|ascendants(): Set(|Role)
|descendants(): Set(|Role)

0..*
0..*

|assigned_to

active_in
1

|addActiveRole(|r:|Role)

|Session

|creates
0..*
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0..*
|createSession()
|authorizedRoles(): Set(|Role)

|User |Role
|senior1..*

|junior

|RoleHierarchy

RBAC::Hierarchy::General
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|authroizedRoles()

loop
|descnd=|descendants()

[i<|rs.size()]

AuthorizedRoles

|authzd=|add(|descnd)

|ars+|authzd

|rs[i]:|Role

Fig. 3. General Hierarchy Feature

deassignUser() and authorizedUser() in the Role class are redefined to consider
whether inherited roles should be also deassigned when a directly assigned role
is deassigned, and whether the user can activate only the directly assigned roles
or also inherited roles.

In the analysis of feature behaviors, an interference is found between the
General hierarchy feature and the DSD feature when inherited roles also exist
in DSD relations. To avoid the interference, inherited roles should be checked
against DSD constraints before they can be activated in the same session. To
handle this, we use a join point to designate where in interaction DSD con-
straints should be checked. The filled rectangle in the loop fragment in the
AddActiveRole sequence diagram denotes a join point. The syntactic definition
of join points is defined as follows based on the UML metamodel:



194 D.-K. Kim, L. Lu, and S. Kim

follows <Construct>
in <FragmentOperator> join [<Qualification>]::<Joint>
precedes <Construct>

<Construct> ::= Message | InteractionUse | CombinedFragment | “None”
<Joint> ::= Message | Interaction | InteractionUse | CombinedFragment
<FragmentOperator> ::= InteractionOperator
<Qualification> ::= Feature | Feature:<Qualification>

Given the syntax, a join point can be defined between messages, fragments,
or combinations of both. If a behavior should be placed at the beginning of a
sequence, the None construct is used in the follows condition. Similarly, None is
used if a behavior should be placed at the end of a sequence. The Qualification
construct represents the ownership of the joining construct. That is, the join
point is effective only when the feature specified in the qualification is in use.

DSD feature. The DSD feature enforces DSD relations constraining that two
conflicting roles cannot be activated within the same session. Fig. 4 shows the
DSD feature. In the figure, the DSDRole class represents a single DSD relation,
and the cardinality attribute specifies the number of roles to which a user can
be assigned in an DSD relation. The DSDRoleSet class represents the set of
DSD relations. The multiplicity n on the Role class denotes the DSD cardinal-
ity which must match the value of cardinality. createSession() in the User class
and addActiveRole() in the Session class are redefined to take into account DSD
constraints. The new semantics of addActiveRole() is defined below, checking if
the requested role has an DSD relation with any active role in the session:

context Session:: addActiveRole(r:Role)
pre : true
post: let auth:OclMessage=User^authorizedRoles(),
dsd: OclMessage = Role^DSDRoles(),
violateDSD: active in→ exists (ar|ar.constrained by DSD→ includes(r)) in
Auth: auth.hasReturned() and auth.result() = ars and
DSD: dsd.hasReturned() and dsd.result() = dr and
Cond: if ars → includes(r) then active in = active in@pre → including(r)

and not violateDSD else active in = active in@pre endif

To verify the correctness of the specifications, their conformance to Definition 1
must be checked. The partial inheritance between Core and DSD can be verified
as follows by discharging the proof obligations in the definition:

– The first proof obligation is proved by the presence of the inherited classes
User, Role, and Session in the DSD feature and the fact that the relationships
assigned to, creates, and active in have the same ends and multiplicities.

– There are two classes (User, Session) in the DSD feature that have the same
set of properties as the corresponding classes in the Core feature, and the
second proof obligation can be proved by Inv(UserDSD ) ⇒ Inv(UserCore)
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Fig. 4. DSD Feature

and Inv(SessionDSD )⇒ Inv(SessionCore), which are both trivially true since
there is no invariant defined for the User and Session classes in both Core
and DSD .

– The third proof obligation must be discharged for every operation rede-
fined in the inherited classes. As an example, addActiveRole() in the DSD
feature redefines that of the Core feature, since they both have the same
name, the same parameter type, and no return type. This satisfies the con-
straints O1, O2, O3, and O4. Based on the OCL semantics of the addAc-
tiveRole() operations, O5 and O6 can be proved by (1) (true∧ true)⇒ true,
which is trivially true, and (2) (true ∧ (AuthDSD ∧DSDDSD ∧CondDSD ))⇒
AuthCore ∧ CondCore . The second condition is proved as follows: Let a =
(ars → includes(r)), b = (active in = active in • pre → including(r)),
d = (active in = active in • pre), and e = violateDSD . Let CondDSD =
((a ⇒ (b ∧ ¬e)) ∨ d) and CondCore = ((a ⇒ b) ∨ d). It suffices to prove
that (AuthDSD ∧ CondDSD ) ⇒ (AuthCore ∧ CondCore) since (AuthDSD ∧
DSDDSD ∧ CondDSD ) ⇒ (AuthDSD ∧ CondDSD ). Since (b ∧ ¬e) ⇒ b, we
have (a ⇒ (b ∧ ¬e))⇒ (a ⇒ b) which implies CondDSD ⇒ CondCore which
in turn implies (AuthDSD ∧ CondDSD )⇒ (AuthCore ∧CondCore). Other op-
erations can be proved similarly.

– The fourth proof obligation is concretized as ∀ t ∈ T (AddActiveRoleCore) •
∃ s ∈ T (AddActiveRoleDSD ) • (t � s) for the AddActiveRole sequence dia-
gram. There are two traces involved in T (AddActiveRoleCore), <addActiveR-
ole(), authorizedRoles()> and <addActiveRole(), authorizedRoles(), add(r)>.
The first one exists in T (AddActiveRoleDSD ) and the second one is a sub-
sequence of <addActiveRole(), authorizedRoles(), getActiveRoles(),DSDRol -
es(),DSDRoles(), add()> which also exists in T (AddActiveRoleDSD ). Thus,
the proof obligation is discharged.
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The partial inheritance between the Core feature and the General hierarchy
features can be verified similarly.

6 Composition Method

The partial inheritance of RBAC features enables step-wise composition, which
allows verification of immediate impact of selected features. The Core feature is
selected by default as the first configuration. The nth configuration is built upon
the (n−1)th configuration by adding or redefining the properties of the selected
feature. We view this approach a special kind of multiple inheritance where the
elements having the same name get composed rather than renamed as in the
traditional multiple inheritance. Fig. 5 illustrates the approach.

partial inheritance

component
feature2

component
feature1

configurations

config2

Core
(config1)

config3

Fig. 5. Multiple Inheritance of Configura-
tions

We define feature composition in
the view of multiple inheritance as re-
finement as follows.

Relationship composition. In compo-
sition of class diagrams CD1 and CD2,
relationship a1 from CD1 is composed
with relationship a2 from CD2 if a1
and a2 have the same name and same
relationship ends. The composed re-
lation denoted a1 ⊕ a2 has the same
name and relationship ends as a1
and a2 and bounds((a1 ⊕ a2)(e)) =
bounds(a1(e)) ∩ bounds(a2(e)) for
each relationship end e. This ensures

that the resulting end has the maximal bound interval that conforms to the end
of both a1 and a2.

Operation composition. Operation o(p1, . . . , pn)  r is said to match with opera-
tion o′(p′

1, . . . , p
′
m)  r ′ iff (1) o = o′, (2) n = m, (3) ∀ i ∈ 1..n, p′

i ⊆ pi ∨pi ⊆ p′
i ,

(4) r ⊆ r ′∨r ′ ⊆ r . The composition of two matching operations op1 and op2 is de-
noted op1⊕op2. Let op1 = o(p11, . . . , p1n)  r1 and op2 = o(p21, . . . , p2n)  r2.
We require that op1 ⊕ op2 be an operation (o(p′

1, . . . , p
′
n)  r ′) that satisfies

P1 ∀ i ∈ 1..n, p′
i = lub(p1i , p2i) where lub is the least upper bound operation;

P2 r ′ = glb(r1, r2) where glb is the greatest lower bound operation;
P3 Pre(op1) ∧ Pre(op2) ∧ Inv(c′)⇒ Pre(op′);
P4 Pre(op1) ∧ Pre(op2) ∧ Post(op′)⇒ Post(op1) ∧ Post(op2).

P1 ensures that composed operations can take any parameter valid for compo-
nent operations. P2 postulates that the return value of composed operations be
of the type that conforms to the return type of component operations. Consistent
with P1 and P2, P3 enforces that the precondition of composed operations must
not be stronger than that of component operations. P4 constrains that the post-
condition of composed operations must not be weaker than that of component
operations.
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Class composition. Class c1 in class diagram CD1 is composed with class c2
in class diagram CD2 if they have the same name. Let OP(c) be the set of
operations in class c. Class c′ = c1 ⊕ c2 is the composition of c1 and c2 iff

C1 Inv(c′)⇒ Inv(c1) ∧ Inv(c2);
C2 ∀ op ∈ OP(c1) ∪OP(c2) • ∃ op′ ∈ OP(c′) • name(op) = name(op′);
C3 op1 ⊕ op2 ∈ OP(c′) iff op1 ∈ OP(c1), op2 ∈ OP(c2) and op1 matches op2.

C1 ensures that the invariant of the classes that are composed is preserved
in the resulting class. C2 requires that the resulting class have the operations
of both the classes composed. C3 ensures that only matching operations can be
composed. We are now ready to define composition operations on class diagrams.
Let E(CD) be the set of classes and relationships of class diagram CD .

Definition 2. An operation ⊕ on class diagrams is a composition operation iff

– ∀ e1 ∈ E(CD1) • [∀ e2 ∈ E(CD2) • (name(e1) �= name(e2)
⇒ e1 ∈ E(CD1 ⊕ CD2)] and ∀ e2 ∈ E(CD2) • [∀ e1 ∈ E(CD1) • (name(e1) �=
name(e2))⇒ e2 ∈ E(CD1 ⊕ CD2)];

– ∀ e1 ∈ E(CD1) • ∀ e2 ∈ E(CD2) • (name(e1) = name(e2)
⇒ ∃ e ′ ∈ E(CD1 ⊕ CD2) • e ′ = e1 ⊕ e2)

An operation on sequence diagrams ⊕ is a composition operation if each trace
of SD1⊕ SD2 can be obtained by interleaving a trace of SD1 and a trace of SD2
and all traces of SD1 and SD2 are used. The interleave of two traces of events is
the set of traces obtained by interleaving the two traces in all possible ways. Let
x , y be events and μ, ν traces. The following definition of the interleave operator
||| is adapted from [21].

ε ||| μ = μ

μ ||| ε = μ

x μ ||| xν = {x} × ((μ ||| xν) ∪ (x μ ||| ν) ∪ (μ ||| ν))
x μ ||| yν = {x} × (μ ||| yν) ∪ {y} × (x μ ||| v) for x �= y

Note that the above definition allows us to replace two consecutive occurrences
of the same event by a single occurrence if they arise from different traces that
are interleaved.

Definition 3. A composition operation ⊕ on sequence diagrams is defined iff

1. ∀ t ∈ T (SDi) • ∃ t ′ ∈ T (SD1 ⊕ SD2) • (t � t ′) for i = 1, 2;
2. ∀ t ′ ∈ T (SD1 ⊕ SD2) • ∃ t1 ∈ T (SD1) • ∃ t2 ∈ T (SD2) • t ′ ∈ (t1 ||| t2) where

t1 ||| t2 is the set of traces obtained from interleaving t1 and t2 in all possible
ways.

7 Configuring RBAC

To demonstrate RBAC configuration, we use a banking application taken from
[22]. The application requires the following RBAC policies:
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R1: A teller can modify deposit accounts.
R2: A customer service representative can create or delete deposit accounts.
R3: An accountant can create general ledger reports.
R4: An accounting manager can modify ledger-posting rules.
R5: A loan officer can create and modify loan accounts.
R6: The customer service representative role is senior to the teller role.
R7: The accounting manager role is senior to the accountant role.
R8: A user may be assigned the customer service representative role and the

loan officer role, but they cannot be activated simultaneously.

R1-5 describe general authorization requirements for roles, which can be ad-
dressed by the Core feature. R6-7 describe role hierarchies, which can be satisfied
by the General hierarchy feature. R8 describes a dynamic SoD requirement to
be addressed by the DSD feature. The selection is assumed to be in the order of
Core, General hierarchy, and DSD, but it can be in any order by partial inher-
itance. The Core feature itself forms the first configuration by the composition
method.

7.1 Second Configuration

The second configuration is built by composing the Core and General hierarchy
features, which involves 1) adding the RoleHierarchy class and its associated
relationships to the Core feature, 2) composing the co-existing classes of User,
Session, and Role, and 3) composing the matching operations in other classes
(e.g., authorizedRoles(), addActiveRole()). Based on the composition method,
two operations are composed by conjoining preconditions and postconditions.
Due to partial inheritance, the composition of the addActiveRole() operations
results in the same operation as that of the General hierarchy feature. Thus, the
composed operation satisfies the constraints P1− 4 in Section 6.

The AddActiveRole sequence diagrams are composed by adding the ars[i]:Role
and r:Role lifelines to the AddActiveRole sequence diagram in Core for check-
ing authorized descendant roles. The loop fragment from the General hierarchy
feature is added to check violation of DSD policies in the descendant roles. The
fragment is enabled only when the DSD feature is used. Note that the compo-
sition results in the same sequence diagram as the one in the General hierarchy
feature. This is because of the constraint 4 in Definition 1 requiring that a com-
ponent feature include every trace of the Core feature, which is consistent with
Definition 3. Thus, the resulting configuration also conforms to the composition
method. This is true for every sequence diagram in the second configuration,
provided that component features conform to Definition 1. The AuthorizedRole
operations can be composed similarly.

7.2 Third Configuration

The final configuration is built by composing the second configuration Config2
with the DSD feature. The composition is carried out by 1) adding the DSDRole
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Fig. 6. Partial Composition of Config2 with DSD Feature

and DSDRoleSet classes and their associated relationships to Config2, and 2)
composing the co-existing classes of User, Role, and Session. Fig. 6 shows the
DSD properties added to the Config2 class diagram.

The composition of the addActiveRole() operations in Config2 and the DSD
feature results in an operation with the following semantics which checks DSD
policies for the requested role and its inherited roles to active roles:

context Session:: addActiveRole(r:Role)
pre : true
post: let auth:OclMessage=User^authorizedRoles(),
desc: OclMessage = Role^descendants(),
dsd: OclMessage = Role^DSDRoles(),
violateDSD: active in → exists (ar|ar.constrained by DSD → includes(r)) in
Auth: auth.hasReturned() and auth.result() = ars and
Desc: desc.hasReturned() and desc.result() = descnd and
DSD: dsd.hasReturned() and dsd.result() = dr and
Cond: if ars → includes(r) then

(active in = active in@pre → including(r) and
descnd → forAll(d| active in = active in@pre → including(d)) and
not violateDSD else active in = active in@pre endif

The resulting semantics conforms to the definition of operation composition in
Section 6 as follows:

– P1 and P2 are trivially true, since the composed operation has the same
name and parameter type (Role) and no return type as that of Config2 and
the DSD feature.

– P3 is true since (true ∧ true ∧ true)⇒ true.
– P4 is true by true ∧ true ∧ AuthConfig3 ∧ DescConfig3 ∧ DSDConfig3 ∧

CondConfig3 ⇒ (AuthConfig2 ∧ DescConfig2 ∧ CondConfig2) ∨ (AuthDSD ∧
DSDDSD ∧ CondDSD ) where Config3 signifies the third configuration.
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The AddActiveRole sequence diagram in Config2 is redefined to enforce DSD poli-
cies. The getActiveRoles() message, the CheckDSD fragment, and the ar[i]:Role
and :DSDRole lifelines of the DSD feature are added to Config2 to check DSD
policies for active roles. The composition also introduces another CheckDSD frag-
ment at the place of the join point on the Session lifeline, which is responsible for
checking DSD policies for the descendant roles of the requested role.

The composed sequence diagram conforms to Definition 3 as follows: Ev-
ery trace of the sequence diagram in Config2 with the join point expanded
is a sub-sequence of a trace of the sequence diagram in Fig. 6; and every
trace of the AddActiveRole sequence diagram of the DSD feature is a sub-
sequence of a trace of the sequence diagram in Fig. 6. Thus, the postulate (1)
is satisfied. Now consider the postulate (2). Let m0 = addActiveRole(r), m1 =
autorizedRoles(), m2 = getActiveRoles(), m3 = add(r), m4 = descendants(),
m5[i ] = add(dr [i ]) and n = dr .size(). Then the traces of the sequence di-
agram in Fig. 6 are of these forms: m0m1, m0m1m2σ0, m0m1m2σ0m3m4σ1,
m0m1m2σ0m3m4σ1m5[1]σ2, . . ., m0m1m2σ0m3m4σ1m5[1] . . .m5[i − 1]σi for 2 ≤
i ≤ n and m0m1m2σ0m3m4σ1m1

5 . . .m5[i − 1]σi . . . σnm5[n] where each σj for
0 ≤ j ≤ n is a trace of the CheckDSD sequence diagram. The traces that end
with σj result from violations of the DSD constraint. Each of the above traces
can be obtained by interleaving a trace of the AddActiveRole sequence diagram of
Config2 with the join point expanded and a trace of the AddActiveRole sequence
diagram in the DSD feature.

Fig. 7 shows partial instantiation of the third configuration in the context
of the bank application. The instantiation is carried out based on a mapping
between RBAC elements and application concepts. For example, Object and

1
|checkAccess(o:BankObject,t:Transaction):Boolean

ReferenceMonitor

0..*

1

activated_in
0..*

assigned_to

0..*

BankUser

authorizedRoles(): Set(BankRole)
createSession()

addActiveRole(r:BankRole)
dropActiveRole(r:BankRole)
activeRoles(): Set(BankRole)

BankSession

0..*

monitors_session

0..*

creates

0..*

1

RBAC::Hierarchy::General
RBAC::Core::Required

RBAC::SoD::DSD

Permission

Delete

Create

ModifyBankObject Transaction

LedgersPostingRule GeneralLedgerReport

regulates **

Account

LoanAccountCustomerAccount

0..*

descendent

ascendent

1..*

1..*

0..*

assignUser(u:BankUser)
DSDRoles(): Set(BankRole)

deassignUser(u:BankUser)
grantPermission(p:Permission)
revokePermission(p:Permission)
authorizedUsers(): Set(BankUser)
permissions(): Set(Permission)
addAscendant(ascnt:BankRole)
addDescendant(ascnt:BankRole)
ascendents(): Set(BankRole)
descendents(): Set(BankRole)

BankRole

11

0..*

monitors_role

constrained

0..*

DSDCardinality(): Integer

consists_of

1

DSDRole

deleteDSDRoleMember(r:BankRole)
addDSDRoleMember(r:BankRole)

cardinality: Integer

setDSDCardinality(card:Integer)
DSDRoles(): Set(BankRole)

0..*

createDSD()
deleteDSD()
DSDRoleSets(): Set(DSDSet)

addInheritance(r1:BankRole,r2:BankRole)
deleteInheritance(r1:BankRole,r2:BankRole)

RoleHierarchy
1..*

1..*

DSDRoleSet

monitors_object

0..* 0..*0..*

executed_on

0..* 0..*

1 1

0..*

monitors_operation isInput

|given_to 0..*

Fig. 7. Instantiation of RBAC Configured with Core, General hierarchy, and DSD
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Operation in RBAC are mapped, respectively, to the hierarchy of bank objects
such as Account and LedgersPostingRule and transaction operations such as Cre-
ate and Modify. The instantiation lends itself as an initial design model for the
application addressing access control concerns.

8 Conclusion

We have described a feature-based modeling approach for configuring RBAC to
support the need-based development of access control systems. This approach
enables fine-grained configuration of RBAC at the feature level in a systematic
manner, which helps to lower development complexity and reduce potential er-
rors by excluding unnecessary features. The composition method allows one to
rigorously verify RBAC configurations. We have developed a prototype tool that
supports feature selection and composition and instantiation of configurations.
The tool is developed as an eclipse plug-in on top of Rational Rose Architects
(RSA). We have also used the approach for Mandatory Access Control (MAC)
and Discretionary Access Control (DAC). We found the approach less appealing
for these models because of their low variability. However, our pilot study shows
that the approach is useful for building hybrid models of RBAC and MAC which
are often used in the military domain to support polices at different levels of se-
curity per role. Configuring a hybrid model requires a comprehensive analysis
of both domains to identify possible conflicts in combined use of heterogeneous
features.
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Abstract. Software design models are routinely adapted to domains, companies, 
and applications. This requires customizable consistency checkers that allow 
engineers to dynamically adapt model constraints. To benefit from quick design 
feedback, such consistency checkers should evaluate the consistency of such 
changeable constraints incrementally with design changes. This paper presents 
such a freely customizable, incremental consistency checker. We demonstrate that 
constraints can be defined and re-defined at will. And we demonstrate that its 
performance is instant for many kinds of constraints without manual annotations 
or restrictions on the constraint language used. Our approach supports both model 
and meta-model constraints and was evaluated on over 20 software models and 24 
types of constraints. It is fully automated and integrated into the IBM Rational 
Software Modeler tool.  

Keywords: consistency checking, dynamic constraints, incremental checking. 

1   Introduction 

Design constraints are an important means of evaluating the correctness (consistency) 
of a model. While it is acceptable to tolerate design errors [1], engineers should be 
aware of them to avoid follow-on errors – or risk having to revisit and fix the follow-
on errors at a later time. Violations of design constraints should thus be detected 
quickly, preferably instantly, and continuously tracked throughout the software life 
cycle – ideally in a non-intrusive manner that does not obstruct the natural workflow 
of the engineer.  

This stands in stark contrast to the often individualistic nature in which modeling 
languages are used. Today, it is common practice to adapt modeling languages to 
specific domains, companies, and even applications under development. The benefits 
range from increased utility to better automation. Design constraints are not immune 
to this push to individualism. It implies that engineers must be allowed to define new 
or adapt existing design constraints at will – ideally without having to know the 
internals of the consistency checker. Even more importantly, feedback on design 
correctness should be provided incrementally with model changes without any 
manual overhead (since the learning curve would hinder its adoption) or observable 
computation delay (since noticeable delays obstruct the engineers’ work flow).  
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Unfortunately, few existing approaches to consistency checking are readily 
extendable to allow the incremental, on-the-fly definition of new constraints or the 
customization of existing constraints without having to restart the consistency 
checker. The few approaches that support the addition of new constraints are either 
not incremental or require the engineers to manually annotate constraints in ways that 
are beyond their ability – a manual, error-prone process that provides some 
performance benefits but fails to scale for large design models [2], severely restricts 
the expressiveness of constraints via a limited constraint language [3] or requires the 
engineer to manually re-write a constraint for as many times as there are model 
changes affecting it [4]. Also, many existing approaches are typically tied to a specific 
modeling language and/or constraint language. 

This paper presents an approach to the incremental consistency checking of 
dynamically definable and modifiable design constraints. Engineers can define 
constraints in a language of their choice (e.g. we have done so for Java, C#, and OCL 
[5]) and for any modeling language of their choice (e.g. we have used UML 1.3, UML 
2.1, Matlab/Stateflow, and a domain specific language [6]). Our approach works for 
both model and meta-model constraints, neither of which must be manually annotated 
or rewritten. In which can be defined, redefined, or deleted at will throughout the 
development life cycle. Meta model constraints refer to constraints that hold for all 
instances of a certain type of model element. For example, in a home automation 
system, we could define a meta constraint that every light has to be connected to at 
least one light switch. Model constraints, on the other hand, refer to specific model 
elements. As such, we could add a constraint for a specific light to have at least two 
such switches.  

We observed that engineers are willing and capable of defining both meta model 
and model constraints but we also observed that it is not reasonable to assume that (1) 
engineers are capable of defining how incremental changes affect such constraints and 
(2) all such constraints are known ahead time. Rather, they are discovered 
incrementally during modeling and the engineer should be able to add or change them 
as necessary. For example, in the middle of the design, an engineer could introduce 
the model-view-controller pattern [7] into our home automation system and desire to 
automatically enforce the constraints associated with that pattern. We could also 
change the constraint that every light has to be connected to a light switch in a way 
that a light either has to be connected to a light switch or to a motion sensor.  

Today constraint changes typically require the complete re-evaluation of a design 
model which is equivalent to restarting of the constraint checker. We will see that our 
approach is capable of keeping up with the engineer in real time for both constraint 
and model changes for scalable constraints. Scalable constrains refer to constraints 
that are local, i.e. their evaluation does not require traversing large parts of the model. 
For scalable constraints our approach performs much better than existing approaches 
and for non-scalable constraints our approach performs no worse. Our approach is 
fully tool supported and integrated with the modeling tool IBM Rational Software 
Modeler [8]. The computational efficiency and scalability of our approach and tool 
were evaluated through the empirical analysis or 20 industrial software models and 24 
different constraints.  
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2   Illustrative Example 

In the following, we illustrate our approach on a simple home automation system [9]. 
In homes there are a wide range of electrical and electronic devices such as lights, 
thermostats, electric blinds, fire and smoke detection sensors, white goods such as 
washing machines, as well as entertainment equipment. The home automation system 
connects those devices and enables inhabitants to monitor and control them from a 
single GUI. The home network also allows the devices to coordinate their behavior in 
order to fulfill complex tasks without human intervention.  

Fig. 2 presents a simple structural model of a home automation system. The 
MyHouse building consists of two floors, Cellar and GroundFloor. Two rooms, 
WorkRoom and LivingRoom, are located on the floors, each containing a light. The 
lights are connected to a light switch and to a motion sensor respectively. The 
sequence diagram in Fig. 3 describes the process of turning on the light in the work 
room. The user first gets a list of available devices in the room and presses the light 
switch. The light switch invokes the turnOn method on the light object. Stereotypes 
denote the different devices present in the house. Stereotypes are a common way of 
adding domain-specific extensions to UML.  

Fig. 3 describes four sample constraints (using an OCL-like syntax) for the home 
automation system model. Constraint C1 is a standard UML consistency rule, 
constraints C2 and C3 are domain-specific meta model constraints, and C4 is an 
application-specific model constraint (we will discuss later the difference between 
application and domain/meta model constraints). C1 describes how UML sequence 
diagrams relate to UML class diagrams. It states that the name of a message must 
match a method in the receiver’s class. The constraint is a general-purpose meta 
model constraint because it holds for all messages in sequence diagrams across all 
UML models. If the constraint is evaluated on the 2nd message in the sequence 
diagram in Fig. 3 (the press message) then the condition first computes the set of 
methods defined in the base class of the receiver object. The receiver object is 
lightSwitch and its base class is LightSwitch. The set of methods defined in the 
LightSwitch class is {press()}. The condition returns true because the set of methods 
contains a method with the name equal the message name press. 

 

Fig. 1. Home automation system model 
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Fig. 2. Sequence diagram – User turns the work room light on 

C2 and C3 describe domain-specific, meta model constraints. C2 ensures that 
every light is connected to at least one light switch. Clearly, this constraint no longer 
applies to any UML model. The condition computes the number of the switches 
attached to a light which must be greater than zero. C3 ensures that staircases only 
connect floors at neighboring levels. It compares the level number of the upper floor 
to the level number of the lower floor. Finally, C4 describes a domain-specific, model 
level constraint. It holds only for the model element WorkroomThermostat defined in 
the model in Fig.2. The constraint ensures that the current temperature is above 5 
degrees for that room only.  

 

C1 
Name of message must match an operation in receiver’s class 
methods = message.receiver.base.methods 
return (methods->name->contains(message.name)) 

C2 
Every light must at least be connected to one light switch 
return light.switches.size > 0 

C3 
Staircase must only connect floors at neighboring levels 
return staircase.upperFloor.level = staircase.lowerFloor.level + 1 

C4 Thermostat in the work room must always be above 5 degrees 
return workroomThermostat.currentTemp > 5 

Fig. 3. Sample constraints 

A constraint is typically defined from a particular point of view – a context element 
– to ease its design and maintenance [10]. A constraint is thus the tuple <context 
element, condition>. The context element defines for what model element a constraint 
applies. The condition is a statement that, evaluated on the context element, returns 
true if consistent or else false. Meta model constraints (C1-C3) define types of model 
elements as context elements (e.g., a Message) whereas model constraints (C4) define 
specific model elements as context elements (the class WorkroomThermostat).  

The constraints in Fig.4 are merely a small sample of constraints that arise during 
the modeling of that kind of system. In summary, it is important to note that some 
constraints are generic (e.g., C1) whereas others only apply to a particular domain 
and/or application (e.g., C2). The former can be built into design tools but the latter 
not (these have to be user definable!). It is also important to note that some 
constraints are written from the perspective of the meta model (C1, C2, and C3) while 
others are written from the perspective of the application model (C4). With this 
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freedom to define constraints arbitrarily, it is obvious that incremental consistency 
checking not only has to deal with model changes but also constraint changes (C2-C4 
could change at any time). Next, we discuss how our approach is able to do both. 

3   Dynamic Constraints 

3.1   Background  

In previous work, we have demonstrated that our approach provides instant design 
feedback for changeable models but non-changeable constraints without requiring 
manual annotations of any kind [2, 13]. The instant checking of meta model 
constraints was achieved by observing the consistency checker to see what model 
elements it accessed during the validation of a constraint. To that extend, we built a 
model profiler to monitor the interaction between the consistency checker and the 
modeling tool. 

It is important to note that our approach treats every evaluation of a meta model 
constraint separately. We thus distinguish between a constraint and its instances. The 
constraint defines the condition (Fig. 4) and its context. It is instantiated for every 
model element it must evaluate (the ones identified through the context). For 
example, the meta model constraint that checks whether a light is connected to at least 
one light switch is instantiated for every light in the model – and each instance checks 
the validity of the constraint for its light only. For the house model presented in Fig.2 
with its two light switches, our approach thus maintains two constraint instances, one 
for WorkroomLight and one for LivingroomLight. All instances are evaluated 
separately as they may differ in their findings. The instance evaluated for 
LivingroomLight is currently inconsistent because it is attached to a motion sensor 
instead of a light switch.  

The role of the model profiler is thus to observe which model elements are 
accessed by which constraint instances. The model elements accessed by a constraint 
instance during its evaluation are referred to as the scope of a constraint instance. 
Only these model elements are relevant for computing the truth value of the constraint 
instance. And, more importantly, only changes to these model elements can trigger 
the re-evaluation of its constraint instance. Since the scope is maintained separately 
for every constraint instance, we are thus able to precisely identify what constraint 
instances to re-evaluate on what context elements when the model changes. In [10], 
we showed that our scope is complete in that it contains at least the model elements 
that affect a constraint instance’s truth value. It is not necessarily minimal in that it 
may contain more elements than needed - thus also causing some, but fairly few 
unnecessary re-evaluations of constraint instances. 

Both the monitoring of constraint instances during constraint checking and the 
deciding what constraints to re-evaluate are done fully automatically. Since our 
approach never analyzes the constraints, any constraint language can be used. This 
gives the engineers considerable freedom in how to write constraints. Furthermore, 
since our approach does not require constraints to be annotated, this greatly simplifies 
the writing of constraints. 
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3.2   Contribution of This Work 

The research community at large has focused on a limited form of consistency 
checking by assuming that only the model but not the constraints change (the latter 
are pre-defined and existing approaches typically require a complete, exhaustive re-
evaluation of the entire model if a constraint changes!). The focus of this work is on 
how to support dynamically changeable constraints – that is constraints that may be 
added, removed, or modified at will without losing the ability for instant, incremental 
consistency checking and without requiring any additional, manual annotations. Such 
dynamic constraints arise naturally in many domain-specific contexts (cf. the example 
in the home automation domain described in Section 2). In addition to meta model 
constraints, this work also covers application-specific model constraints that are 
written from the perspective of a concrete model at hand (rather than the more generic 
meta model). We will demonstrate that model constraints can be directly embedded in 
the model and still be instantly and incrementally evaluated together with meta model 
constraints based on the same mechanism. For dynamic constraints, any constraint 
language should be usable. We demonstrate that our approach is usable with 
traditional kinds of constraint languages (e.g., OCL [5]) and even standard 
programming languages (Java or C#). Furthermore, our approach is independent of 
the modeling language used. We implemented our approach for UML 1.3, UML 2.1, 
Matlab/Stateflow and a modeling language for software product lines [6]. 

3.3   Meta Model and Model Constraints (+ Their Instances) 

Fig. 4 illustrates the relationships between the meta model/model constraints and their 
instances.  
 

Constraint = < condition, context element> 
Meta Model Constraint: context element is element of meta model 
Model Constraint: context element is element of model 

 

Meta model constraints are written from the perspective of a meta model element. 
Many such constraints may exist in a meta model. Their conditions are written using 
the vocabulary of the meta model and their context elements are elements of the meta 
model. For example, the context element of constraint C1 in Fig. 3 is a UML Message 
(a meta model element). This implies that this constraint must be evaluated for every 
instance of a Message in a given model. In Fig.3 there are three such messages. 
Model constraints, on the other hand, are written from the perspective of a model 
element (an instance of a meta model element). Hence, its context element is a model 
element. For example, C4 in Fig. 3 applies to the WorkroomThermostat only – a 
specific model element. 

Fig. 4 shows that for every meta model constraint a number of constraint instances 
are instantiated (top right) – one for each instance of the meta model element the 
context element refers to. On the other hand, a model constraint is instantiated exactly 
once – for the model element it defines.  

 

Constraint Instance = <constraint, model element > 
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Fig. 4. Relationship between meta model and model constraint definitions and constraints 

While the context elements differ for model and meta model constraints, their 
instances are alike: the instances of meta model constraints and the instances of model 
constraints have model elements as their context element. The only difference is that a 
meta model constraint results in many instances whereas a model constraint results in 
exactly one instance. Since the instances of both kinds of constraints are alike, our 
approach treats them in the same manner. Consequently, the core of our approach, the 
model profiler with its scope elements and re-evaluation mechanism discussed above, 
functions identical for both meta model constraints and model constraints as is 
illustrated in Fig. 4. The only difference is in how constraints must be instantiated. 
This is discussed further below in more detail.  

As discussed above, we support the definition of both meta model and model 
constraints in Java, C#, and OCL. These languages are vastly different but our 
approach is oblivious of these differences because it cares only about a constraint’s 
evaluation behavior and not its definition. The key to our approach is thus in the 
model profiling which happens during the evaluation of a constraint. During the 
evaluation, a constraint accesses model elements (and their fields). For example, if C1 
defined in Fig. 3 is evaluated on message turnOn() in Fig.3 (a constraint instance 
denoted in short as <C1, turnOn>), the constraint starts its evaluation at the context 
element – the message. It first accesses the receiver object light and asks for the base 
class of this object, WorkroomLight. Next, all methods of this class are accessed 
({isOn, turnOn, turnOff, setLevel}) and their names are requested. This behavior is 
observed and recorded by the model profiler. We define the model elements accessed 
during the evaluation of a constraint as a scope of that constraint. Our approach then 
builds up a simple database that correlates the constraint instances with the scope 
elements they accessed (<Model Element, Constraint Instance> pairs) with the simple 
implication that a constraint instance must be re-evaluated if and only if an element in 
its scope changes: 
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.  

ScopeElements(Constraint Instance)=Model Elements accessed during Evaluation 
ReEvaluatedConstraints(ChangedElement) = all CI where ScopeElements(CI) 

includes ChangedElement 
.  

Next, we discuss the algorithm for handling model changes analogous to the 
discussion above. Thereafter, we discuss the algorithm for handling constraint 
changes which is orthogonal but similar in structure.  

3.4   Model Change 

If the model changes then all affected constraint instances must be re-evaluated. 
Above we discussed that our approach identifies all affected constraint instances 
through their scopes, which are determined through the model profiler. In addition to 
the model profiler, we also require a change notification mechanism to know when 
the model changes. Specifically, we are interested in the creation, deletion, and 
modification of model elements which are handled differently. Fig. 5 presents an 
adapted version of the algorithm for processing model changes published in [10]. If a 
new model element is created then we create a constraint instance for every constraint 
that has a type of context element equal to the type of the created model element. The 
constraint is immediately evaluated to determine its truth value. If a model element is 
deleted then all constraint instances with the same context element are destroyed. If a 
model element is changed then we find all constraint instances that contain the model 
element in their scope and re-evaluate them. A model change performed by the user 
typically involves more than one element to be changed at the same time (e.g. adding 
a class also changes the ownedElements property of the owning package). We start 
the re-evaluation of constraints only after all changes belonging to a group are 
processed, i.e. similar to the transactions concept known in databases. Since the 
model constraints and meta model constraints are alike, our algorithm for handling 
model changes remains the same. This algorithm is discussed in [10] in more detail.  
 

.  

processModelChange(changedElement) 
 if changedElement was created 
  for every definition d where type(d.contextElement)=type(changedElement) 
   constraint = new <d, changedElement>  
   evaluate constraint 
 else if changedElement was deleted 
  for every constraint where constraint.contextElement=changedElement 
   destroy <constraint, changedElement> 
 for every constraint where constraint.scope contains changedElement 
  evaluate <constraint, changedElement> 

Fig. 5. Adapted algorithm for processing a model change instantly (adapted from [10]) 

3.5   Constraint Change 

With this paper, we introduce the ability to dynamically create, delete, and modify 
constraints (both meta model and model constraints). The algorithm for handling a 
constraint change is presented in Fig. 6. If a new constraint is created then we must 
instantiate its corresponding constraints:  
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1) for meta model constraints, one constraint is instantiated for every model 
element whose type is equal to the type of the constraint’s context element. For 
example, if the meta model constraint C1 is created anew (Fig. 3 ) then it is 
instantiated three times – once for each message in Fig.3 (<C1, getDevices>, 
<C1, press>, <C1, turnOn>) because C1 applies to UML messages as defined in 
its context element. 

2) for model constraints, exactly one constraint is instantiated for the model 
element of the constraint’s context element. For example, if the model 
constraint C4 is defined anew (Fig. 3) then it is instantiated once for the 
WorkroomThermostat as defined in Fig.2 (<C4, workroomThermostat>) 
because this constraint specifically refers to this model element in its context. 

 

Once instantiated, the constraints are evaluated immediately to determine their truth 
values and scopes. If a constraint is deleted then all its instances are destroyed. If a 
constraint is modified all its constraints are re-evaluated assuming the context element 
stays the same. If the context element is changed or the constraint is changed from a 
meta model to a model constraint or vice versa, then the change is treated as the 
deletion and re-creation of a constraint (rather than its modification). 

 
processConstraintChange(changedDefinition) 
 if changedDefinition was created 
  for every modelElement of type/instance changedDefinition.contextElement 
   constraint = new <changedDefinition, modelElement> 
   evaluate constraint 
else if changedDefinition was deleted 
  for every constraint of changedDefinition, destroy constraint 
else if condition of changedDefinition was modified 
  for every constraint of changedDefinition, evaluate constraint  
else 
  for every constraint of changedDefinition, destroy constraint 
  for every modelElement of type/instance changedDefinition.contextElement 
   constraint = new <changedDefinition, modelElement> 
   evaluate constraint 

Fig. 6. Algorithm for Processing a Constraint Change Instantly 

4   Model Analyzer Tool 

Our approach was implemented as a plugin for the IBM Rational Software Modeler 
[8]. The incremental change tracker for the IBM Rational Software Modeler is partly 
provided by Eclipse EMF [11] though we also implemented this approach for non-
EMF technologies such as the Dopler product line tool suite [6] and IBM Rational 
Rose [12]. Fig. 7 depicts two screenshots of the tool. The right shows the IBM 
Rational Software Modeler. An inconsistency is highlighted in red. The tool displays 
the deployed constraints (bottom left) and constraints (bottom right shows the 
constraints for the selected constraint). The left shows a constraint in more detail. A 
constraint is defined by its name, context element, and OCL/Java code.  
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Fig. 7. Snapshot of the Model Analyzer tool  

5   Validation 

We empirically validated our approach on 24 constraints covering mostly the 
coherence between UML class, sequence, and state diagrams including well-
formedness rules, consistency rules, completeness rules, and general “good practice” 
rules. The constraints defined in Fig. 3 are examples of the kinds of constraints 
included in this study. In total, the constraints were evaluated on 20, mostly third-
party models with the models ranging in sizes between a few hundred elements to 
over 100,000 elements. 

5.1   Scalability Drivers 

To determine the computational complexity of our approach we need to distinguish 
between the initial cost of creating/changing a constraint and the incremental cost of 
maintaining it thereafter (with model changes). The initial cost for meta model 
constraints is a factor of the number of instances per constraint (#C) times the number 
of scope elements they will access during their evaluation (#SE). In other words, a 
new meta model constraint requires the instantiation of #C instances, and each 
instance must then be evaluated which results in #SE model elements to be looked at. 
A changed condition of a meta model constraint does not require the re-instantiation 
of constraints but requires their re-evaluation only. Since the cost of instantiating a 
meta model constraint is small and a constant (it is the same for every constraint 
irrespective of the complexity of the condition), we ignore it. The computational 
complexity for creating and modifying meta model constraints is thus O(#C * #SE). 
In the case of model constraints we need to create and modify a single instance per 
constraint (O(#SE)). 

The computational cost of constraint changes is different from the computational 
cost of model changes. A constraint as a whole is not re-evaluated with model 
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changes. Rather, some of its instances may be. Changing the model thus affects a 
subset of the instances of all meta model constraints: This subset #A must then be re-
evaluated by accessing in average the same number of scope elements #SE as above. 
The computational complexity of re-evaluating the consistency after a model change 
is thus O(#A * #SE). We will demonstrate next that #C increases linearly with the size 
of the model (but not the number of constraints), #A increases linearly with the 
number of constraints (but not the size of the model), and #SE is essentially constant 
(affected by neither the size of the model nor the number of constraints). We will also 
demonstrate that this cost still allows for quick, instant evaluations of models. 

Our approach scales well for local constraints. Local constraints refer to constraints 
that must investigate a small number of model elements to determine their truth 
values. Our approach performed much better than traditional approaches for local 
constraints and no worse for global constraints. The 24 constraints we evaluated in 
our study were all local constraints.  

Fig. 8 shows the evaluation times associated with creating/modifying meta model 
constraints and maintaining them thereafter. We see that the cost of creating or 
modifying a constraint increases linearly with the size of the model. The figure 
depicts the evaluation time in milliseconds for changing a single meta model 
constraint. Still, the cost is reasonable because it is a onetime cost only and we see 
that this one-time cost is less than 1 second for most constraints (note the error bar 
which indicates this onetime cost for all 24 constraints with a confidence interval of 
95%). Since constraints do not get changed nearly as often as the model, this cost is 
acceptable and causes minor delays only.  
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Fig. 8. Eval. time for Meta Model Constraint Changes and corresponding Model Changes 

More important is the cost of maintaining a constraint with model changes. Model 
changes are recurring (not onetime) and frequent (happen within seconds). Its cost 
must thus be much smaller than the cost of changing a constraint for our approach to 
be reasonable. After instantiation and evaluation, a new constraint is evaluated exactly 
like discussed in [10]. Each constraint has a chance for it to be affected by a model 
change. In practice, however, few constraints and few of its instances are affected. 
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Fig. 8 shows the evaluation time associated with maintaining a single meta model 
constraint with model changes. Since a model change affects only very few instances 
of a constraint, we see that the evaluation time is in average less than 1ms per model 
change and constraint. This obviously implies that the evaluation time of a model 
change increases linearly with the number of constraints but given its little cost, we 
could maintain hundreds of constraints (of similar complexity) with ease. 

The evaluation efficiency of constraint changes is affected by the size of the model 
whereas the evaluation efficiency of model changes is affected by the number of 
constraints. Both cases are several orders magnitude more efficient than traditional 
batch processing, especially in large models.  

Fig. 9 shows the evaluation times associated with creating/modifying model 
constraints and maintaining them thereafter. Model constraints were also evaluated on 
the same set of 20 UML models; however, since many of these models did not 
contain model constraints, we added them through random seeding. The seeded model 
constraints where derived from the meta model constraints and their complexity is 
thus analogous to them (and thus directly comparable). In our experience, model 
constraints are no more complex than meta model constraints – the findings presented 
next are thus applicable under this assumption. We see that the cost of creating or 
modifying a model constraint stays constant with the size of the model. The figure 
depicts the evaluation time in milliseconds for changing a single model constraint. 
Note that Fig. 9 shows the evaluation time associated with maintaining a single model 
constraint with model changes. Since, in average, a model constraint accesses a small 
number of scope elements only, the probability that a model change affects one of 
these scope elements is small. The larger the model, the smaller the probability gets. 
This obviously implies that the evaluation time of a model change decreases linearly 
with the size of the model. However, our experience is that unlike meta model 
constraints, the number of model constraints is expected to increase linearly with the 
size of the model. Thus, a larger model likely contains more model constraints than a 
smaller model. The data in Fig. 9 shows that the number of model elements is allowed 
to increase linearly with the model size for the cost of a model change to become 
constant (as in Fig. 8).   

 
Fig. 9. Evaluation time for Model Constraint Changes and corresponding Model Changes 
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5.2   Memory Consumption  

The memory consumption required for storing the scopes of constraints is the same as 
presented in [10]. The memory cost grows linear with the size of the model and the 
number of constraints. It is thus reasonable.  

5.3   Threats to Validity 

We evaluated our approach on 24 constraints. All of them were scalable which is a 
good indication that many constraints in general are scalable. However, this does not 
proof that all constraints are scalable. The works of [13, 14] show that certain kinds of 
model checking can be exponentially (non linear) expensive. In such cases, our 
approach would still perform better (certainly no worse) then batch or type-based 
triggered checkers [2, 3, 8].  

It is important to observe that the third-party model we used in our evaluation did 
not contain model constraints. We therefore used random seeding of meta model 
constraint instances to evaluate the scalability of model constraints. We believe that 
this is valid because in our experience, model constraints are no more 
complex/elaborate than the meta model constraints, which were used for seeding. 

6   Related Work  

Existing approaches can be characterized based on how they evaluate a model when 
the constraint or model changes. We see a division between those that perform 
batch consistency checking and those that perform change-triggered consistency 
checking. It is also worthwhile distinguishing those that check the model directly 
[2, 3, 8] and those that check the model after transforming it to a third, usually 
formal representation [13, 15, 16]. The latter group is more problematic for 
incremental checking because they also require incremental transformation in 
addition to checking. And, finally, we see a division between those that allow 
constraints to be defined/modified at will and those that require constraints to be 
pre-defined. Most approaches do allow constraints to be added/removed, however, 
they also require the design model to be recheck in their entirety rather than 
checking the impact of the constraint change. The approach presented in [17] 
requires only parts of OCL constraints to be re-evaluated after model changes but 
works for model constraints only. 

Modeling tools such as the IBM Rational Software Modeler [8] or ArgoUML [2] 
allow engineers to define custom constraints. They even have a notion of incremental 
checking but both require the engineer to annotate constraints with model element 
types where the constraint is re-evaluated if any instance of those types changes. We 
refer to these kinds of approaches as type-based triggering mechanisms because the 
manual annotation essentially defines what type of change should trigger what types 
of constraint re-evaluations. This mechanism is essentially a coarse-grained filter that 
improves the performance of batch consistency checking, however, this mechanism 
still does not scale because the bigger the model, the more instances of the triggering 
types it contains.  
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xLinkIt [3], a XML-based environment for checking the consistency of XML 
documents, is perhaps the only other technology in existence today that is capable of 
incremental consistency checking without additional manual overhead. However, the 
scalability data published in [3] shows a non-instant performance and thus the 
technology is likely not usable in our context where we care to provide design 
feedback instantly in real time. Moreover, xLinkIt defines a constraint language that 
is limited in its expressiveness. This is necessary because the approach analyzes the 
constraint itself to calculate its triggering conditions which is a complex task. 

Incremental consistency checking requires reasoning over design changes rather 
than reasoning over the entire model state. An explicit emphasis on changes is not 
new. For example, version control systems such as CVS [18] or SVN [19] deal with 
changes and they are capable of identifying some form of constraint violations. 
However, version control systems can at most enforce static, syntactic checks (often 
referred to as conflicts where multiple stakeholders manipulated the same element) 
but cannot ensure the rich set of semantic constraints in existence today. More recent 
work on operations-based model checking [4] shows that there is an increasing 
emphasis on change during consistency checking. However, their work also appears 
to require manual annotations to relate changes to constraints (or constraints are 
required to be re-written from the perspective of changes). 

Related to detecting inconsistencies is fixing inconsistencies. This latter issue is out 
of scope of this paper but it has been demonstrated in [20, 21] it is possible to use the 
technology for detecting inconsistencies for fixing them at a later time. 

7   Conclusion 

This paper introduced an approach for the instant checking of dynamic constraints. 
Engineers can define and modify both meta model and model constraints whenever 
and wherever necessary and immediately benefit from their instant checking. 
Engineers need to provide the constraints only – no annotations or any other manual 
overhead are required. The results of our evaluation demonstrate that our approach is 
scalable even for large models with tens of thousands of model elements. Our 
approach provides instant or near-instant error feedback regardless of model and 
constraint changes. 
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Abstract. Abstraction is essential in the formal specification of pro-
grams. A common way of writing abstract specifications is to specify im-
plementations in terms of basic mathematical structures. Specification
languages like JML offer so-called model classes that provide interfaces
to such structures. One way to reason about specifications that make use
of model classes is to map model classes directly to structures provided
by the theorem prover used for verification. Crucial to the soundness
of this technique is the existence of a semantic correspondence between
the model class and the related structure. In this paper, we present a
formal framework based on theory interpretation for proving this corre-
spondence. The framework provides a systematic way of determining the
necessary proof obligations and justifies the soundness of the approach.

1 Introduction

Abstraction is essential in the formal specification of programs because it allows
one to write specifications in an implementation-independent way, which is in-
dispensable for information hiding. Furthermore, abstraction facilitates the read-
ability and maintainability of specifications. A common way of writing abstract
specifications is to specify implementations in terms of well-known mathemati-
cal structures, such as sets and relations. This technique is applied, for instance,
in VDM [10], Larch [8], and OCL [19]. While these approaches describe the
mathematical structures in a language that is different from the underlying pro-
gramming language, another approach is that of the Java Modeling Language
(JML) [13], which simplifies the development of specifications by describing the
structures through model classes [2]. Model classes are immutable and are used
only for specification purposes. They provide object-oriented interfaces for es-
sential mathematical structures through their side-effect free (pure) methods.

Specifications can be written in an abstract way by expressing properties in
terms of model classes and their operations. Fig. 1 shows a class SingletonSet
specified in JML using the model class JMLObjectSet (presented in Fig. 2), which
represents a mathematical set of objects. To use the model class, we declare the
public specification-only model field set. The field represents the abstraction of
an instance of type SingletonSet as specified by the private ���������� clause:
a singleton set containing the object referenced by the private field value. Given
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����� SingletonSet {

�����	
 Object value;

//@ ������ ��
� JMLObjectSet _set;

//@ �����	
 �
��
�
�	� _set <- �
� JMLObjectSet(value);

//@ 
����
� _set.has(o);

������ ���� setValue(Object o)

{ value = o; }

} // other constructors and methods are omitted for brevity

Fig. 1. Specifying class SingletonSet using model class JMLObjectSet. JML annota-
tion comments start with an at-sign (@).

model field set and JMLObjectSet’s public pure method has, which checks
for set membership, one can specify SingletonSet’s setValue method in an
abstract way, in particular, without referring to the private field value.

While model classes provide a powerful means for writing abstract specifi-
cations, they pose a problem for static verification: program verifiers have to
encode specification expressions in the logic of the underlying theorem prover,
in particular, calls to the pure methods of model classes.

Previous work proposes to map model classes and their methods directly
to structures and function symbols provided by the theories of the underlying
theorem prover [1,11,12,4]. Calls to model-class methods are encoded as applica-
tions of these function symbols. For instance, if JMLObjectSet’s method has is
mapped to symbol ’∈’ denoting set membership of a particular structure, then
every call to has is encoded as an application of ’∈’. Such an encoding leads
to proof obligations that are handled well by theorem provers, which typically
provide theories with numerous theorems for elementary structures.

Crucial to the soundness of this technique is to ensure that the mapping is
faithful, that is, the semantics of related model classes and structures match.
However, previous work mostly discusses the mapping of method signatures,
but ignores their contracts. With this approach, for instance, the meaning of
method has is given by the definition of symbol ’∈’ of the given theory, and
not by the contract of has. This is problematic if there is a mismatch between
the contract and the semantics of the operation given by the theorem prover:
(1) program verifiers might produce results that come unexpected for one who
relies on the contract, (2) results may vary between different theorem provers,
which define certain operations slightly differently, and (3) the result of runtime
assertion checking might differ from that of static verification if the model-class
implementation used by the checker is based on contracts.

Our previous work takes the contracts of model classes into account and de-
scribes the main ideas behind an approach that checks if the mapping of a model
class to a mathematical structure is faithful [4]. In this paper, we present a for-
mal framework for checking the faithfulness of mappings. This framework defines
precisely the proof obligations needed to show faithfulness and guarantees sound-
ness. Our framework applies the concept of theory interpretation [22,24,5], which
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allows one to compare the “strength” of two theories, T and T ′, whose language
(i.e., set of nonlogical symbols) possibly differ. A theory interpretation of T in
T ′ is based on a syntactic notion, a standard translation Φ between the terms
and formulas of T and T ′. Φ is a standard interpretation of T in T ′ if Φ(φ) is a
theorem of T ′ for each theorem φ of T . A theorem important for our purposes
is that if there is a standard interpretation of T in T ′, and T ′ is consistent, then
T is consistent.

Our approach applies the concept of theory interpretation in three stages. In
the first stage, we specify the mapping of a model class to an existing theory of
the underlying theorem prover. In the second stage, we attempt to formally prove
that the specified mapping of a model class defines a standard interpretation of
the theory formed by the specification of the model class in the theory of the
corresponding structure. If the proof attempt succeeds then consistency of the
model-class specification is guaranteed. Although consistency is only relative to
the consistency of the target theory, theorem provers are unlikely to contain
inconsistent theories. We will refer to this stage as the consistency proof.

In the third stage, we attempt to “reverse” the specified mapping and attempt
to prove that the reverse mapping defines a standard interpretation of the target
theory in the specification of the model class. If the proof attempt succeeds then
completeness of the model-class specification is guaranteed. Again, completeness
is only relative to the corresponding theory, but theorem provers typically define
theories with rich sets of properties. In contrast to our earlier work, we define a
condition that ensures the existence of a suitable reverse mapping. We will refer
to the third stage as the completeness proof.

We have presented the main idea of faithfulness proofs earlier [4]. However,
the precise conditions that are necessary to ensure soundness are subtle, and our
previous work did not contain a soundness argument. The advantage of building
our approach on the well-studied concept of theory interpretation is that the
correctness of our approach is guaranteed by the correctness of the concept. In
particular, theory interpretation takes the universes of structures into account,
which is crucial for the soundness of the mapping of model classes [3] and is not
present in previous work.

Although we use JML as specification language and Isabelle [18] as theorem
prover in this paper, the presented approach is applicable to any combination of
specification language and theorem prover, for instance, Eiffel [17] and PVS [20].

Outline. The next section introduces a model class that will serve as running
example and the specification means for mapping model classes. Sections 3, 4,
and 5 present the formal details of faithfulness proofs: the way universe predi-
cates are defined, the consistency proof, and the completeness proof. In Sec. 6,
we discuss related work and conclude. We refer the reader to the PhD disser-
tation of Darvas [3] for a case study of the presented approach, an extension
to mappings whose target structure is defined inductively, and practical consid-
erations for the case when related model classes and structures do not match
perfectly.
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//@ ���
��	�("Isabelle", "HOL/Set", "α set");

/*@ ��	���
 ���
 @*/ ������ ����� JMLObjectSet {

//@ ���
��	�("Isabelle", "{}");

������ JMLObjectSet() { ... }

//@ ���
��	�("Isabelle", "insert e {}");

������ JMLObjectSet(Object e) { ... }

//@ ���
��	�("Isabelle", "elem : this");

������ ����
�� has(Object elem) { ... }

//@ ���
��	�("Isabelle", "this = s2");

������ ����
�� equals(Object s2) { ... }

/*@ 
����
� (\������ Object e;

\�
���	.has(e) == (	���.has(e) || e == elem)); @*/

//@ ���
��	�("Isabelle", "insert elem this");

������ JMLObjectSet insert(Object elem) { ... }

//@ ���
��	�("Isabelle", "this - (insert elem {})");

������ JMLObjectSet remove(Object elem) { ... }

//@ ���
��	�("Isabelle", "this Un s2");

������ JMLObjectSet union(JMLObjectSet s2) { ... }

//@ ���
��	�("Isabelle", "this - s2");

������ JMLObjectSet difference(JMLObjectSet s2) { ... }

}

Fig. 2. Signatures and mappings of JMLObjectSet’s constructors and methods that we
consider in this paper. Implementations are omitted.

2 Encoding of Model Classes

Model Class ��	
�������. The class is part of JML’s model library and
encodes sets of objects: it provides the usual operations of mathematical sets;
equality over the set-elements is based on Java’s reference equality (“==”). Fig. 2
presents those constructors and methods that are discussed in the sequel.

The class is specified to be pure (meaning that all instance methods are pure)
and immutable. It is specified by invariants and method specifications. The in-
variants of model classes are special in that they do not restrict the state space of
model-class instances as invariants usually do. Instead, they give equational laws
about their operations, thus they play a similar role as method specifications.
Therefore, for brevity, we omit the handling of invariants here, but see [3].

A sample method specification is given in Fig. 2 for method insert. The pro-
posed mapping of the class and its operations to one of Isabelle’s set structures
is given by mapped to clauses that we introduce below.
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Specifying the Mapping. In the first stage of a faithfulness proof, one specifies
the mapping of the model class at hand. In our previous work [4], we introduced
the mapped to clause for this purpose. The mapping of a model class is specified
by a mapped to clause attached to the class. The first argument of the clause
specifies the target theorem prover, the second the target theory, and the third
the specific type (if any) in the theory to which the model class is mapped.
Similarly, a method can be mapped to a term of the target theory of a given
theorem prover by a mapped to clause attached to it. The term must be well-
typed and may only mention logical and nonlogical symbols of the target theory
and parameters (including the explicit receiver) of the specified constructor or
method. Only one clause per target theorem prover may be specified both for a
model class and for a method.

For instance, in Fig. 2 class JMLObjectSet is mapped to type α set in the
HOL/Set theory of Isabelle; and method has is mapped to the term elem : this ,
meaning that the method corresponds to Isabelle’s set membership operator “:”.

We permit one to write arbitrarily complex terms in mapped to clauses, which
allows us to support model methods with functionality that is not directly pro-
vided by the target prover. This flexibility is necessary to handle, for example,
JMLObjectSet’s remove method, which removes a single element of a set. Theory
HOL/Set does not provide a corresponding operation but provides set difference,
which allows one to express the meaning of method remove.

As different theorem provers provide different theories with different symbols
and semantics, we allow mappings to multiple provers. Thus, the faithfulness
proof has to be carried out in every target prover specified in mapped to clauses.

Contexts and Auxiliary Functions. The contexts in which the consistency
and the completeness proofs are carried out are not the same. The context of the
former is that of the target theory T , for instance, Isabelle’s HOL/Set theory. The
context of the latter will be denoted by M̂ , which is the logical encoding of model
class M ’s specification. The encoding allows one to carry out the completeness
proof in a formal system, like Isabelle or PVS [20]. Note that merely analysing
the encoded specification in context M̂ would not be sufficient for the sound use
of the mapped to clause for verification purposes, because only consistency of
the specification could be shown; its semantic correspondence to target theory
T could not be justified.

We introduce function γ that encodes JML specification expressions in context
M̂ . The function takes a JML expression and yields a first-order term or formula
(denoted by FOL) in M̂ . Its signature is γ: Expr → FOL

M̂
. Note that γ takes

no argument for the state. This is because instances of model classes behave like
mathematical values rather than heap-allocated objects. The definition of the
function for a small but representative subset of JML is the following [3]:

γ(E � F ) � γ(E) Tr(�) γ(F ), if � ∈ {&&, ||, ==>, ==, !=, +, -, /, %}
γ(v) � v

γ(!E) � ¬ γ(E)
γ(E.m(F)) � m̂(γ(E), γ(F ))

γ(�
� C(E)) � Ĉ(γ(E))
γ((\������ T x. E)) � ∀ x. γ(E)
γ((\
���	� T x. E)) � ∃ x. γ(E)
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An application of a binary JML operator � is encoded by an application of the
corresponding operator in the underlying logic yielded by function Tr to the
encoding the two operands. Tr is a function that maps the binary operators of
JML to their equivalents in first-order logic (i.e., ∧, ∨, ⇒, =, �=, etc.). Calls to
methods and constructors are encoded by applications of uninterpreted function
symbols. We will use the convention that a method m is encoded by symbol m̂.
Note that the encoding of old-expressions (used in postconditions to refer to
values in the pre-state of the specified method) is not given. This is because
old-expressions are not meaningful in model-class specifications.

Next, we introduce function ν. A standard translation Φ of T in T ′ is a pair
(U , ν), where U is a closed unary predicate, the universe predicate, and ν is
a function that maps all nonlogical symbols of T to a λ-expression of T ′ [5].
Given U and ν, the translation of terms and formulas of T can be defined in a
straightforward way [5].

Following this notation, we use function ν to map methods and constructors
to λ-functions of the target theory. As mapped to clauses contain exactly that
information, function ν essentially captures the content of these clauses. For
instance, in model class JMLObjectSet we have:1

ν(remove) ≡ λ{ this , elem . this − (insert elem {}) }
The purpose of the universe predicate and the way it is specified in model classes
is described in the next section.

3 Specifying the Universe

When relating two theories, it is possible that the set of possible elements (the
universe) of the source and the target theory differ. In such cases, the scope of
quantifiers and, therefore, the semantics of quantified formulas possibly differs
in the two theories. The concept of theory interpretation solves this problem
by introducing the unary universe predicate U , which yields true if and only if
its argument denotes an element of the target structure that is meant to be in
the scope of quantifiers, and thereby, in the scope of translation Φ. Given the
universe predicate, translation Φ “relativizes” quantifiers:

Φ(∀x. φ) � ∀x. U(x)⇒ Φ(φ) and Φ(∃x. φ) � ∃x. U(x) ∧ Φ(φ)
The dissertation of Darvas [3, Example 9.1] demonstrates the need for relativiza-
tion in the context of mapping model classes to mathematical theories.

To allow users to specify the set of operations that should form the universe
predicate of a model class, we introduce the ���������� modifier that may
be attached to constructors and methods. The universe predicate is the same for
the consistency and for the completeness proofs, only the context in which the
predicate is expressed differs: When proving consistency, the context is that of
the target theory T ; when proving completeness, the context is M̂ . Accordingly,
we will denote the predicates by UT and UM̂ .

1 As a second argument, ν should take the name of the target theorem prover. For
simplicity, we omit this argument as the target prover will be Isabelle in the sequel.
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Given a model class M with l methods and constructors marked with modifier
����������, the resulting universe predicate is a disjunction with l disjuncts.
The disjunct of the universe predicate UM̂ (x) for a ���������� method m
with one implicit and n explicit parameters, and precondition P is:

∃ s, e1, . . . , en. UM̂ (s) ∧ UM̂ (e1) ∧ . . . ∧ UM̂ (ek) ∧
γ(P ) ∧ êquals(x, m̂(s, e1, . . . , en))

where k ≤ n and where we assume for simplicity that parameters e1, . . . , ek are
of the enclosing type, while the others are not. The construction of predicate UT

is analogous in the context of T :

∃ s, e1, . . . , en. UT (s) ∧ UT (e1) ∧ . . . ∧ UT (ek) ∧
ΦM (P ) ∧ ΦM (x.equals(s.m(e1, . . . , en)))

where ΦM is the translation function between JML expressions and the target
context. The function is precisely defined in the next section.

The treatment of constructors is analogous. As an example, if the parameter-
less constructor and method insert of model class JMLObjectSet are marked
as ���������� then we get the following universe predicates:

UM̂ (x) � êquals(x, ̂JMLObjectSet()) ∨ (∃ s, e. UM̂ (s) ∧ êquals(x, însert(s, e)))

UT (x) � x = {} ∨ (∃ s, e. UT (s) ∧ x = (insert e s))

If no method is marked as ���������� then the universe predicate is true.
This is the case when the source and the target universe is the same.

4 Proving Consistency of a Model Class

In the second stage of the faithfulness proof, we prove consistency of the map-
ping: we show that there is a standard interpretation of M ’s theory in theory
T . To do so, first we define the translation of JML expressions in the context
of T based on mapped to clauses. The resulting translation function will be de-
noted by ΦM . Second, we attempt to prove that ΦM is a standard interpretation.

Definition of ΦM . The function takes a JML expression and yields a term
or formula in the target context. Its signature is ΦM : Expr → FOLT and its
definition is presented in Fig. 3. For simplicity, the definition for method and
constructor calls, for keyword \������, and for keyword ���� in the postcon-
dition of constructors is presented for methods with one explicit parameter p.
Note that terms ν(m)(this , p) and ν(C)(p) denote the terms that are defined by
the mapped to clause of the corresponding method and constructor.

Proving that ΦM is a Standard Interpretation. To prove that translation
function ΦM is a standard interpretation of M ’s theory in theory T , we need to
prove that three sufficient obligations hold [5].

Axiom Obligation. The obligation requires that the translation of every axiom of
M is a theorem of T . The “axioms” of a model class are its method specifications.
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ΦM (E � F ) � ΦM (E) Tr(�) ΦM (F ), if � ∈ {&&, ||, ==>, ==, !=, +, -, /, %}
ΦM (!E) � ¬ΦM (E)
ΦM (E.m(F)) � ν(m)(ΦM (E), ΦM (F ))
ΦM (�
� C(E)) � ν(C)(ΦM (E))
ΦM (\�
���	) � ν(m)(this, p), where m is the enclosing method
ΦM (	���) � ν(C)(p) , if 	��� occurs in the postcondition of constructor C

ΦM (v) � v , if v is a parameter or literal other than \�
���	 and 	��� in
postconditions of constructors

ΦM ((\������ T x. E)) � ∀ x. UT (x) ⇒ ΦM (E)

ΦM ((\
���	� T x. E)) � ∃ x. UT (x) ∧ ΦM (E)

where the shaded parts are added only if the quantified
variable is of a model type.

Fig. 3. Definition of translation ΦM

Their translation is straightforward, only the free variables have to be bound by
universal quantifiers since these quantifications are implicit in method specifica-
tions. The specification of a method of class C with one explicit parameter p of
type T , precondition P , and postcondition Q is translated to:

ΦM ((\������ C 	���. (\������ T p. P ==> Q)))

which is equivalent to:

∀ this , p. (UT (this)⇒ ( UT (p)⇒ ΦM (P ==> Q) )),

where the shaded part is only added if p is of a model type. The formulas are
turned into lemmas and have to be proved in the target theory.

Universe Nonemptiness Obligation. The obligation requires that the universe
of the translation is nonempty: ∃x. UT (x). This is usually trivial to prove.
For instance, for class JMLObjectSet, picking {} for x trivially discharges the
obligation for the universe predicate presented on the facing page.

Function Symbol Obligation. The obligation requires that for each symbol f of
the source theory, the interpretation of f is a function whose restriction to the
universe takes values in the universe. When applying the obligation to meth-
ods of model classes, the only difference is that preconditions have to be taken
into account. We have to prove for each model-class method m with n explicit
parameters and precondition P that the following holds in the target theory:

∀ t, x1, . . . , xn. UT (t)⇒ UT (x1)⇒ . . .⇒ UT (xk)⇒
ΦM (P (t, x1, . . . , xn))⇒ UT (ΦM (t.m(x1, . . . , xn)))

(1)

where k ≤ n and where we assume that x1, . . . , xk are of model types, while the
others are not. The proof obligations for constructors are analogous.
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The second stage of the faithfulness proof is successfully completed if the three
obligations can be proven. Based on the concept of theory interpretation, we
can then conclude that the specification of the model class at hand is consistent
provided that the target theory is consistent.

Having proved consistency of the specification of a model class ensures that
it can be safely used for reasoning about client code. However, the consistency
proof does not ensure that specified mapped to clauses can be used for verifica-
tion purposes [4]. Assume method m of a model class was mapped to symbol
f , which was specified to possess properties that m did not. The verification of
specifications that rely on m may lead to results that are not justified by the
model-class specifications because, after having mapped method m to symbol
f , the method would be endowed with all the additional properties that f pos-
sessed. The results may also diverge between different theorem provers, which
define certain operations slightly differently. Furthermore, the results of runtime
assertion checking might diverge from the results of static verification if the
model class implementation used by the runtime assertion checker is based on
the model class contract.

To fix this issue, we need to show that method m indeed possesses all endowed
properties. Thus, proving completeness of a model class with respect to a theory
does not just show that the specification of the class is strong enough relative
to the theory, but is crucial for the sound use of mapped to clauses during the
verification of client code.

5 Proving Completeness of a Model Class

In the third stage of the faithfulness proof, we prove completeness of the map-
ping, that is, we show that there is a standard interpretation of theory T in M ’s
theory. To do so, first we define function ΦS that translates terms and formulas
of the target theory in the context of the model class. Second, we attempt to
prove that ΦS is a standard interpretation.

Issues of Reverse Mappings. The mapped to clauses provide the basis for
the translation of JML expressions to terms and formulas of the target context.
However, for the completeness proof, we need a translation in the other direction.
In the following, we show that translation ΦS may not be an arbitrary translation
for which we can show that it is a standard interpretation. The translation should
be one that is derived from the mapping prescribed by mapped to clauses. That
is, we need a way to reverse the specified mapping, which is not trivial.

Assume that in the above example not only m, but another method n was
mapped to symbol f . When proving completeness of the mapping, we would
need to show that not only m, but also n possesses all properties that f has.
Otherwise, n might be endowed with properties that it does not possess when
the method is mapped to f .
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For instance, consider symbol insert of theory HOL/Set, which is mapped to
both by method insert and by the one-argument constructor of model class
JMLObjectSet. Therefore, the translation of a formula that contains an applica-
tion of the symbol should consider mapping the symbol both to the method and
to the constructor. Although this seems to be doable by defining ΦS such that all
possible reverse mappings of a symbol must be taken into account, clearly, such a
translation would not be standard anymore (as ν would not be a function). Fur-
thermore, since ν(JMLObjectSet(e))(e) ≡ insert e {},2 the translation of the
general term insert x Y to the constructor is only valid under the condition that
Y corresponds to the empty set. This condition would need to be added to the
translated formula, again showing that the translation would not be standard.
Consequently, the concept of theory interpretation would not apply.

Moreover, the problem is not merely that the resulting reverse translation
would not be standard: the conditions under which certain mappings are valid
may alter the semantics and satisfiability of the original formula. It is well-
known that a condition over a universally bound variable has to be added as the
premise of an implication, otherwise the condition has to be added as a conjunct.
However, if a condition contains both an existentially and a universally quantified
variable then the condition can be added neither as a premise, nor as a conjunct.

To sum up, the general reversal of translation ΦM would not be standard,
would considerably change the structure of translated formulas, and (in certain
cases) would alter the semantics of translated formulas. Thus, it would be dif-
ficult to reason that the resulting translation is indeed the one we are looking for.

Our Pragmatic Approach. To resolve the problem, we take a pragmatic ap-
proach and pose a requirement on the user-defined mappings. In practice, the
requirement typically does not constrain the way model classes may be written
and mapped, but it ensures that the “reverse” translation of ΦM is a standard
translation and can be easily derived from ΦM .

Besides the requirement, a number of proof obligations will be posed on the
operations of the model class at hand. In the remainder of this section, we for-
malize the requirement, the translation ΦS , and the necessary proof obligations.

Requirement. The requirement we pose on specified mapped to clauses is that
each symbol of the target theory T should be mapped to by at least one model
method unconditionally. Formally:

For each n-ary function and predicate symbol f of T and variables
x1, . . . , xn there is at least one method m or constructor C, and
expressions e1, . . . , ek with free variables x1, . . . , xn such that either
ΦM (e1.m(e2, . . . , ek)) = f(x1, . . . , xn) or
ΦM (��� C(e1, e2, . . . , ek)) = f(x1, . . . , xn) holds. (2)

Although the requirement does not hold for arbitrary mappings, it typically holds
for model classes. Conditional mappings are typically needed when a model class
2 We will write JMLObjectSet(e) to refer to the one-argument constructor even when

only a method or constructor name is expected, like the argument of function ν.
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ΦS(V ar) � V ar

ΦS(f(t1, . . . , tn)) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ(e1.m(e2, . . . , ek)), if there is a method m and
expressions e1, . . . , ek such that:
ΦM (e1.m(e2, . . . , ek)) = f(t1, . . . , tn)

γ(�
� C(e1, e2, . . . , ek)), if there is a constructor C and
expressions e1, . . . , ek such that:
ΦM (�
� C(e1, e2, . . . , ek)) = f(t1, . . . , tn)

ΦS(t1 = t2)) � ΦS(t1) = ΦS(t2), if t1 and t2 are not of model type;
otherwise handled the same way as predicate symbols

ΦS(¬φ) � ¬ΦS(φ) ΦS(true) � true ΦS(false) � false

ΦS(φ1 ◦ φ2) � ΦS(φ1) ◦ ΦS(φ2), if ◦ ∈ {∧,∨,⇒}
ΦS(∀ x. φ) � ∀ x. UM̂ (x) ⇒ ΦS(φ) ΦS(∃x. φ) � ∃ x. UM̂ (x) ∧ ΦS(φ)

where the shaded parts are added only if the quantified
variable is of the type to which the model class was mapped.

Fig. 4. Definition of translation ΦS

offers methods that are redundant in the sense that they are equivalent to some
compound expression consisting of calls to more basic methods. For instance,
method remove is equivalent to set difference with a singleton set as second
argument. Such methods make the use of model classes more convenient, whereas
mathematical structures typically avoid this redundancy.

The requirement would not hold, for instance, if class JMLObjectSet provided
method remove, but not method difference.

Definition of ΦS. The reverse translation ΦS is a transformer between terms
and formulas of context T and M̂ . Its signature is ΦS : FOLT → FOL

M̂
. Given

requirement (2), it can be easily defined. The definition of translation ΦS for
the standard syntax of first-order logic is presented in Fig. 4. Translation ΦS

is identical to translation Φ described in the literature [22,5], except that the
translation of function and predicate symbols is not based on function ν but on
the reversal of translation ΦM , as expressed by the condition.

If there are multiple methods or constructors that satisfy the condition then
any of them can be selected since their equivalence has to be formally proven,
as we will see below.

Note that the translation of operator “=” is different if the operands are of
model types and if they are of some other type. In the former case, the definition
over function and predicate symbols apply: to which model method the operator
is mapped depends on the user-specified mapping. In practice, it is typically (but
not necessarily) the equals method.

If the operands are not of model type, then “=” is translated to “=” (or
the equivalent symbol of the target prover). Although this is in line with the
definition of function Φ, it might not be the desired translation: one might want
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to define equality over the elements of a model class by the equals method of
the specific element type at hand, and not by reference equality. For brevity, we
omit this issue here and refer to the dissertation of Darvas [3] for a solution.

Proof Obligations. The requirement on mappings prescribes that there should
be at least one unconditional mapping for each symbol of T . However, it does
not rule out methods with mappings that can be reversed only conditionally,
such as the reverse mapping of symbol insert to the one-argument constructor.
Therefore, what remains to be shown is that the functionalities of methods that
are mapped to the same symbol of T are equivalent provided that the condition
(if any) under which their mapping can be reversed holds.

For instance, we need to prove that the functionality of a call to the one-
argument constructor JMLObjectSet(e) is equivalentwith that ofmethod insert
provided that the receiver object of the method denotes the empty set.

This kind of proof obligations can be formalized as follows. Assume that for
some symbol f , method m fulfills requirement (2). Then for each method n that
is also mapped to symbol f (even if n also fulfills the requirement), we have to
show that the following holds in context M̂ :

∀x1, . . . , xp, y1, . . . , yq.

ΦS(t1m = t1n) ∧ . . . ∧ ΦS(tkm = tkn) ⇒ m̂(x1, . . . , xp)
eq
= n̂(y1, . . . , yq)

where (1) symbol
eq
= denotes operator “=” if the operands are not of model type,

otherwise an application of the hat-function to which symbol “=” is translated
by ΦS (i.e., typically function êquals); and (2) the tim = tin equalities are derived
by applying translation function ΦM on methods m and n, and taking pairwise
the i-th arguments of the resulting function applications. Formally:

ΦM (x1.m(x2, . . . , xp)) = f(t1m, . . . , tkm)
ΦM (y1.n(y2, . . . , yq)) = f(t1n, . . . , tkn)

Proving that ΦS is a Standard Interpretation. It remains to prove that
ΦS is a standard interpretation. The procedure is the same as for translation
ΦM : we have to show that the three sufficient obligations hold for the standard
translation ΦS .

First, the context and theory in which the obligations are to be proven needs
to be constructed. As noted above, the context is denoted by M̂ , and the theory
is formed by the axiom system that is extracted from the specification of model
class M . In the sequel, we will call this theory the model theory and assume that
method signatures in M only refer to the enclosing type and type Object. In
practice, this is typically the case for methods and constructors that correspond
to the operations of the mathematical structure that M represents.

The model theory is obtained in three simple steps for a model class M :

1. Two new types are declared: Object and M .
2. Each method m of M is turned into a function symbol m̂ and its signature

is declared based on m’s signature using the two newly declared types.
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3. Each method specification of M is turned into an axiom. For the specification
of method m with parameter p, precondition P , and postcondition Q, the
axiom is: ∀ this, p. γ(P ==> Q[����.m(p)/\������]).

For a constructor C, the substitution to perform on Q is C(p)/����.

Once the model theory is created, we have to show that the formulas that corre-
spond to the three sufficient obligations for ΦS are theorems of the model theory.
The obligations are analogous to those of the consistency proof. To prove the
axiom obligation, we have to show that for every axiom and definition φ of T ,
formula ΦS(φ) is a theorem of the model theory.

The universe nonemptiness obligation requires one to prove that universe
UM̂ is nonempty: ∃x. UM̂ (x). As for the consistency proof, the obligation is
typically trivially provable. The function symbol obligation is analogous to the
corresponding obligation (1) on page 225 for the consistency proof. Predicate P
corresponds to the domain restriction (if any) of the function at hand.

The third stage of the faithfulness proof is successfully completed if the three
obligations can be proven. Based on the concept of theory interpretation, we
can then conclude that all theorems of the target theory follow from the speci-
fication of the model class. That is, the specification is complete relative to the
target theory. As discussed before, completeness allows a program verifier to
prove properties in the target theory without creating results that cannot be ex-
plained by the model class specification. Moreover, failing to prove completeness
typically indicates that the model-class specification is not complete. By adding
the missing cases, the quality of the model-class specification improves.

6 Related Work and Conclusion

The concept of theory interpretation has already been used for formal pro-
gram development. For instance, Levy applied theory interpretation to formally
show the correctness of compiler implementations [14]; the work of Maibaum
et al. (e.g., [15]) and the Specware tool [23] applies the concept together with
other formal machinery for the construction of formal specifications and their
refinement into programs; and the theorem prover Ergo applies the concept to
maximize theory reuse [9].

The idea of using function symbols that are understood by the back-end theo-
rem prover directly on the specification level is already present in ESC/Java [7],
which uses such function symbols instead of pure-method calls in specifications.
However, the meaning of the symbols is hidden on the specification level, and
the tool does not give support for showing consistency of their definitions.

Similarly, Caduceus [6] allows one to declare predicates that can be defined or
axiomatized either on the source level or in the back-end prover [16]. However,
there is no consistency proof for the user-provided definitions and axioms.

Schoeller et al. developed a model library for Eiffel [21]. They address the
faithfulness issue by equipping methods of model classes with specifications that
directly correspond to axioms and theorems taken from mathematical textbooks.
A shortcoming of this approach is that the resulting model library has to follow
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exactly the structure of the mimicked theory. This limits the design decisions
one can make when composing the model library and it is unclear how one
can support multiple theorem provers. Our approach allows more flexibility by
allowing mapped to clauses to contain arbitrary terms of the target context.

Charles [1] proposes the introduction of the native keyword to JML with
the meaning that methods marked as native introduce uninterpreted function
symbols that can be defined on the level of the underlying theorem prover.
Furthermore, the native keyword may also be attached to classes meaning that
such classes get mapped to corresponding data types of the underlying prover.

Charles’ approach differs from ours in two ways. First, our approach ensures
faithfulness of the mapping. There is no attempt to do so in the work of Charles.
Second, mapped to clauses allow one to specify the mapping on the specification
language level. Furthermore, properties of model classes are specified in JML,
which typically provides easier understanding (for programmers) of the semantics
than definitions given directly on the level of a theorem prover.

Leavens et al. [12] identify the problem of specifying model classes as a re-
search challenge. They propose two possible solution approaches that are related
to our work and summarize the open problems for both of them. One approach
considers automatic translations between model classes and mathematical struc-
tures, and the authors argue why such translations are difficult. We deal with
these problems by specifying the mapping manually and proving faithfulness of
the mapping. The other approach is similar to the work by Schoeller and Charles.

Conclusion. We presented a formal framework for faithfulness proofs based on
theory interpretation. Proving faithfulness of model classes ensures consistency
of model class specifications, prevents unexpected results from program verifiers,
and also improves the overall quality of model class specifications.
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We thank Reiner Hähnle, Gary T. Leavens, and the anonymous reviewers for
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BIUS project.
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Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 22–27. Springer, Heidelberg
(2008)

21. Schoeller, B., Widmer, T., Meyer, B.: Making specifications complete through mod-
els. In: Reussner, R., Stafford, J.A., Szyperski, C. (eds.) Architecting Systems with
Trustworthy Components. LNCS, vol. 3938, pp. 48–70. Springer, Heidelberg (2006)

22. Shoenfield, J.R.: Mathematical Logic. Addison-Wesley, Reading (1967)
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Abstract. The problem of formal software specification has been ad-
dressed and discussed since the infancy of software engineering. How-
ever, among all the proposed solutions, none is universally accepted yet.
Many different formal descriptions can in fact be given for the same
software component; thus, the problem of determining the consistency
relation among those descriptions becomes relevant and potentially crit-
ical. In this work, we propose a method for comparing two specific kinds
of formal specifications of containers. In particular, we check the consis-
tency of intensional behavior models with algebraic specifications. The
consistency check is performed by generating a behavioral equivalence
model from the intensional model, converting the algebraic axioms into
temporal logic formulae, and then checking them against the model by
using the NuSMV model checker. An automated software tool which en-
codes the problem as model checking has been implemented to check the
consistency of recovered specifications of relevant Java classes.

1 Introduction and Motivations

Given a software component, its specification is a description of its functionality,
guaranteed by its provider, upon which clients can rely [1]. Although the problem
of formally and precisely specifying software has been discussed through all the
history of software engineering, none of the proposed solutions has been univer-
sally accepted yet. For almost every specification methodology, it is possible to
distinguish between a syntactic part, which describes the component’s signature,
and a semantic part, which describes the behavior of the component in terms of
visible effects for the clients. The difficult problems are in the semantic part.

Different descriptions can in fact be given for the same software component.
A possible classification of specifications distinguishes between operational and
descriptive specifications [2]. An operational specification describes the desired
behavior by providing a model implementation of the system, for example by
using abstract automata. Examples of operational specifications are state ma-
chine models (e.g. [3]). Another different specification style is through descriptive
� This research has been partially funded by the European Commission, Programme
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specifications, which are used to state the desired properties of a software com-
ponent by using a declarative language, for example by using logic formulae.
Examples of such notations are JML [4] or algebraic specifications [5]. Different
specification styles (and languages) may differ in their expressiveness and very
often their use depends on the preference and taste of the specifier, the avail-
ability of support tools, etc. Moreover, sometimes different specifications for the
same piece of software are provided to describe different viewpoints. Living with
multiple specifications of the same entity, however, can be dangerous. In particu-
lar, a question naturally arises about their consistency or even their equivalence.
Intuitively, let us consider two specifications A and B. We say that A is con-
sistent with B if all the behaviors specified by A are also specified by B. The
equivalence problem can be stated as mutual consistency, that is, we consider A
and B equivalent if and only if A is consistent with B and vice-versa. In general,
it is not possible to formally state a precise definition of consistency without
instantiating the specific formalisms used to express A and B. Another relevant
problem of software specification is that its production might be as expensive as
coding. This difficulty is why specifications are often partial, given informally,
or they are completely absent. To address this issue, recent research [6,7,8] has
proposed several techniques for automatic recovery.

This paper casts the general problem of automatically comparing two formal
specifications of stateful components into two instance specification languages.
It proposes an automated methodology to check algebraic specifications against
intensional behavior models [9] by using symbolic model checking [10]. For both
specification techniques, inference methods and tools are available: algebraic
specifications can be recovered with a tool named Heureka [8] and intensional
behavior models can be inferred by our recent work Spy [7]. However, the pos-
sibility to extract the specifications is not essential to the proposed approach; it
will be used only to leverage an empirical evaluation of the contribution based
on recovered specifications. Even if the specification comparison methodology is
not restricted to any particular kind of software components, the specifications
styles are particularly suitable for classes implementing containers. For this rea-
son, we will consider containers as the case study entities for which we apply our
specification consistency method. Containers are rather complex abstract data
types, implemented by components with infinite states. For instance, consider a
set of strings. Let strings be defined over a finite alphabet I; their cardinality is
|I∗| = |�|. If we now consider containers implementing sets of strings in I∗, their
cardinality is |℘(�)|. Thus, when dealing with containers, we are possibly deal-
ing with components with a number of states which may be non-denumerable.
To avoid intrinsic unmanageable complexity, in this paper we address the prob-
lem of specification consistency with a specific limitation. We do not aim at
finding a proof of consistency of two specifications, which may require complex
formalisms and would hardly be automated. Instead, we cast the problem by
providing an automatic way of comparing the behavioral information prescribed
by the specifications under a finite subset of the behaviors of the component,
and we guarantee that under that limit the specifications are either consistent
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or not. Intuitively, the proposed approach instantiates an intensional behavior
model as a finite state machine (a BEM, Behavioral Equivalence Model), whose
states represent behaviorally equivalent classes of component instances, and al-
gebraic specifications are finitized and translated into temporal logic formulae.
Algebraic specifications play the role of properties to be verified against a lim-
ited and partial model of the component. This approach has been implemented
and extensively tested; in particular, we verified the consistency of specifications
recovered from relevant number of classes coming from the Java library.

A justification for the analysis of such complex specifications by instantiating
them to finite models can be found in the so-called small scope hypothesis [11].
This hypothesis is fundamental when dealing with large state spaces; intuitively,
it states that most bugs have small counterexamples. Within our context, the
hypothesis can be formulated as follows: if the specifications are not consistent,
a counterexample which shows the inconsistency is likely to be found in small and
partial models of the specifications. Conversely, if the analysis does not show any
counterexample, in theory we cannot conclude anything about their consistency,
but in practice it is very unlikely that the two specifications are inconsistent.

This paper is organized as follows. Section 2 illustrates algebraic specifications
and intensional behavior models and details the problem of comparing those two
specification techniques. Section 3 describes the proposed approach for checking
algebraic specifications against intensional behavior models. Section 4 provides
empirical evaluation of the methodology. Section 5 discusses related work in the
state of the art. Finally, Section 6 outlines conclusions and future work.

2 Specifying Containers

This section illustrates two different techniques, intensional behavior models
and algebraic specifications, that can be used to specify the behavior of stateful
components. Both techniques focus on software components implementing con-
tainers. Such components are designed according to the principle of information
hiding, that is, clients cannot access the data structures internal to the compo-
nent, but they must interact with it by using a set of methods which define the
interface of the component. To illustrate the two specification techniques, we
refer to the Deque container, which is inspired by the ArrayDeque class of the
Java library. Essentially, the class is a double-ended queue, that is, a queue that
also supports LIFO removal through the pop operation. Figure 1 illustrates the
interface of this data abstraction when strings are used as contained objects.

public class Deque {
public Deque ( ) { . . } public void push ( St r ing elem ) { . . }
public St r ing pop ( ) { . . } public St r ing deq ( ) { . . }
public I n t e g e r s i z e ( ) { . . }

}
Fig. 1. The public interface of Deque
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sorts : Deque, String, Boolean, Integer
operations :
deque : → Deque
push : Deque × String → Deque; size : Deque → Integer
deq.state : Deque → Deque; deq.retval : Deque → String ∪ {Exception}
pop.state : Deque → Deque; pop.retval : Deque → String ∪ {Exception}
axioms : ∀x ∈ Deque e, f ∈ String

pop.state(push(x, e)) = x; pop.retval(push(x, e)) = e
pop.state(Deque()) = Deque(); pop.retval(Deque(), e) � Exception
deq.state(push(push(x, e), f)) = push(deq(push(x, e)), f)
deq.state(push(Deque(), e)) = Deque()
deq.state(Deque()) = Deque(); deq.retval(push(Deque(), e)) = e
deq.retval(push(push(x, e), f)) = deq.retval(push(x, e))
deq.retval(Deque()) � Exception
size(Deque()) = 0; size(push(x, e)) = size(x) + 1

Fig. 2. An algebraic specification of the Deque data abstraction

According to the classification scheme of [1], a method can be a constructor, an
observer or a modifier. A constructor is a method that produces a new instance
of the class. An observer is a method that returns a values expressing some
information about the internal state of the object (e.g., the size of a container),
while a modifier is a method that changes the internal state of the object. In
practice, a method can play both roles of observer and modifier. It is therefore
useful to distinguish between impure and pure observers; that is, observers that
modify the internal state or not, respectively. In the case of the Deque data
abstraction on Fig. 1, the method Deque() is a constructor; method size() is a
pure observer, method push(String) is a modifier and methods pop() and deq()
are both observers and modifiers.

Section 2.1 briefly introduces algebraic specifications, while Section 2.2 illus-
trates intensional behavior models. Thus, we proceed to introduce how those
models can be compared.

2.1 Algebraic Specifications

Algebraic specifications (ASs), initially investigated in [5], are nowadays sup-
ported by a variety of languages, such as [12]. ASs model a component’s hidden
state implicitly by specifying axioms on sequences of operations. An algebraic
specification Σ = (Π, E) is composed of two parts: the signature Π and the set
of axioms E. Formally, a signature Π = (α, Ξ, F ) is a tuple where α is the sort
to be defined by the specification, Ξ is the set of the external sorts, and F is a
set of functional symbols fi, describing the signatures of operations. Each func-
tional symbol has a type, that is, a tuple t ∈ ({α} ∪ Ξ)+. The length nt of each
t specifies the arity of the functional symbol; the first nt − 1 elements specify
the domain of the functional symbol while the last element denotes its range; we
denote each functional symbol as fi : ξ1, . . . , ξnt−1 → ξnt (where ξi ∈ ({α}∪Ξ))
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to clearly distinguish domain and range. Each axiom is a universally quantified
formula expressing an equality among terms in the algebra. Fig. 2 shows the AS
for our illustrating example, the Deque described in Fig. 1. The notation used
in this specification explicitly manages the case of impure observers by using
two different implicitly defined operations, one for the returned value (e.g., the
pop.retval operation) and one for the sort to be defined (e.g., the pop.state op-
eration). Moreover, we model exceptions as particular values of the codomain of
observers. In the case of impure observer, we specify the exception as a particu-
lar returned value and we state that its occurrence does not modify the internal
state. For example, see the definition of the impure observer pop in Figure 2.

In this paper, we consider a particular class of ASs, called linear specifica-
tions. An algebraic specification is linear when its signature is linear. A sig-
nature defining a sort α is linear if the following conditions hold: (i) there is
exactly one constant f :→ α; (ii) Every non-costant function is in the form
f : α, ξ2, . . . , ξnt−1 → ξnt , with ξi<nt ∈ Ξ and ξnt ∈ ({α} ∪ Ξ). For simplicity,
we also require axioms to not include hidden functions and conditional axioms.
The set of axioms defines the properties that the specified data abstraction
should exhibit. Formally, the concept of algebra is used to assign semantics to
signatures and specifications. An algebra is composed of a set, the carrier set of
the algebra, and a family of functions on that set. An algebra A is a Π-algebra,
that is, it satisfies the signature Π , if it gives an interpretation of the sorts
and the functional symbols in the signature. Moreover, an algebra A is also a Σ-
Algebra, that is, it satisfies the whole specification Σ, if A gives an interpretation
of the signature Π which also satisfies the set of axioms. The actual semantics
prescribed by the set of axioms depends on the semantics given by the equal-
ity relation of them. Given a possible implementation of the data abstraction
adhering to a specification Σ, which is by definition a Σ-algebra, the equality
relation expressed with the set of axioms can be interpreted as a specification
of which sets of instances are in the same abstract state [1]. Different definitions
of this concept exist in the literature. The most commonly used is based on the
concept of behavioral equivalence [13]. Given two objects o1 and o2 instances of
a class C, o1 and o2 are behaviorally equivalent if for any sequence of operations
t of C ending with an observer, the objects o1.t and o2.t obtained by invoking t
are themselves behaviorally equivalent. For observers returning primitive types,
they are behaviorally equivalent if their values are the same.

Heureka [8] is a tool for recovering ASs for Java classes. Heureka leverages
on the concept of behavioral equivalence to infer which sequence of method
invocations produce instances that are likely to be behaviorally equivalent. Thus,
the equations produced by this step are generalized into likely algebraic axioms.

2.2 Intensional Behavior Models

Another possible way to specify the behavior of stateful components is by using
behavior models. Essentially, a behavior model is a finite state automaton where
each state is labeled with observer return values and each transition represents
a modifier invocation. Behavioral equivalence models (BEM) [7] are particular
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Fig. 3. A Bem of the Deque container

kind of behavior models, where each state represents a set of behaviorally equiv-
alent instances of a data abstraction. A Bem is defined by choosing a finite set
of actual parameters for each method. Figure 3 shows a possible Bem for the
ArrayDeque data abstraction when a and b are used as actual parameters for the
push method. Thus, each transition modeling the behavior of the push method
is labeled with either push(a) or push(b). Each state is labeled with observer
return values. Obviously, a finite state machine cannot describe every possible
behavior of the Deque data abstraction, even if we limit the inserted elements
to two possible strings. For example, the Bem of Figure 3 models the behavior
of the data abstraction only up to size 2.

To overcome this limitation, we proposed intensional behavior models [9], and
a corresponding recovery technique, called Spy [7]. The key idea is to inten-
sionally describe every possible Bem of the data abstraction. Since Bems are
finite-state automata, they can be viewed as graphs, with nodes labeled with
observer return values. Attributed graph transformation systems (Gts) [14] can
be used to intensionally describe the generation of a set of attributed graphs. In
this way, we can specify how to generate all possible Bems corresponding to all
possible instances of the container class of interest.

A Gts is composed of a set of rules, as in a classic Chomsky grammar. In
a GTS, rules describe how a graph is modified by their application. Each rule
is described by three graphs, the negative application condition (NAC), the left
hand side graph (LHS), and the right hand side graph (RHS), and a set of
attribute conditions AC. Figure 4 describes the intensional behavior model of
the Deque data abstraction. A rule can be applied when the following conditions
hold for a source graph. The LHS describes which topological conditions must
be matched by a subgraph of the source graph to make the rule applicable. The
application of the rule replaces such subgraph with the subraph described by
the RHS. NACs express conditions that must not be matched for the rule to be
applied. Both LHS and NAC nodes and arcs are labeled with variables on the
domain of attributes. The AC set is composed of binary predicates on variables
defined on the LHS attribute variables.

For example, Figure 4(a) describes the rule for the constructor of the Deque
data abstraction. Consider an initial empty graph. The LHS of the constructor
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Fig. 4. Deque Intensional Behavior Model

rule is trivially matched because the graph is empty and the LHS is empty, and
the NAC is not matched since the empty graph does not contain any Deque
node. Thus, the constructor rule is applicable. The RHS graph describes how
the matching subgraph must be modified if the rule is applied; in the case of
the constructor rule, it introduces an initial Deque node representing the empty
deque. As for the push rule of Figure 4(b), note that integer numbers are used
to establish a correspondence between nodels of LHS and RHS. If the ap-
plicability conditions are verified, the rule transforms the source graph into a
new graph. The resulting graph is built by replacing the LHS subgraph with
RHS. Numbered nodes in the LHS are replaced by identically numbered nodes
in RHS. Attributes are modified according to functions labeling nodes in the
RHS. Referring to the push rule in Figure 4(b), the application of RHS adds
a new state representing the state obtained after a push application, and a
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transition labeled with the modifier. The newly introduced state represents a
new set of behaviorally equivalent instances built through sequences of appli-
cations of operations. The NAC prevents further applications of the push rule
with the same LHS and the same string as a parameter. If we have two String
objects on the graph representing the instance pool to generate a Bem, the rule
can be applied two times, generating two states representing a stack with a single
element. It is then possible to apply the rule in Figure 4(d), corresponding to a
pop method, by matching states 1 and 3 of the rule with the empty stack and
the stack containing a single element.

The Spy [7] tool implements intensional behavior model recovery from dynamic
analysis. It exploits the same notion of behavioral equivalence asHeureka. It first
starts by recovering a Bem for the class to be analized, and then tries to generalize
its transitions by recovering intensional behavior model rules. We do not include
details on the recovery approach in this paper; the reader who is interested in more
details can refer to [7].

2.3 Outline of the Validation Approach

We now provide an intuitive description of the foundations of the proposed vali-
dation approach. The aim of the proposed method is to validate an AS against an
intensional behavior model, both modeling the behavior of a container. Figure 5
describes a workflow of the proposed approach through its constituent steps. In
an ideal world, given a specification Σ and an intensional behavior model I, it
would be desirable to check that the (possibly infinite-state) Bem generated
by I satisfies the specification Σ, that is, the set of states, together with the
transition function and the state labelling are a Σ-algebra. However, we already
emphasized that containers have a state space that may be infinite, and in gen-
eral not even denumerable, as in the case of the Deque data abstraction over
the set of all possible strings on a finite alphabet.

We therefore limit the analysis as follows. First, we require the analyzer to
provide interpretations of the external sorts in the ASs; we require that those
sorts, together with the operations among them, have a finite carrier set. Those
external sorts define the so-called instance pools, that is, the set of actual param-
eters for methods, that are used to generate a Bem from the intensional behavior
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model. As already stated, limiting the instance pools to be finite does not imply
that the container has a finite number of states; for this reason, we also limit the
rule application to generate a finite-state Bem. In this case, verifying the consis-
tency of the specification Σ to such a finite-state model, boils down to verifying
that the algebra determined by those limitations is a Σ-algebra. Since we want
to verify that the algebra determined by the Bem is a Σ-algebra, we must pre-
cisely interpret the symbols of the specification with the mathematical definition
of the Bem. Let us consider a linear specification Σ = (Π, E). A Bem over the
same signature Π is a tuple BΠ = 〈Q, I, δ, q0, Ψ〉, composed of a set of states Q,
an initial state q0, an input set I, a transition function δ, and a set Ψ of state
labelling functions representing observer return values. The input set of the Bem

is the set of instantiated modifiers I = M̄Π . Moreover, the set Ψ is composed
as follows: for every observer functional symbol fo : α, ξ1, . . . , ξnt−1 → ξnt ∈ F ,
there is a Ψfo : Q × ŌΠ → ξnt , which is a state labelling function representing
return values for the set of instantiated observers ŌΠ .

The sets of instantiated modifiers M̄Π and observers ŌΠ are defined as
follows. Let us consider the provided instance pools, IP (ξi), for each exter-
nal sort ξi ∈ Ξ. Thus, the sets of instantiated modifiers and observer return
values are defined as tuples whose first element is the functional symbol and
the other elements are elements from the instance pools. For a given modifier
fm : α, ξ1, . . . , ξnt−1 → α ∈ F , the possible invocations of the modifier with the
specified instance pools are: M̄fm = {〈fm, e1, . . . , ent〉|ei ∈ IP (ξi)}. As of the
push method, the instantiated modifiers with IP (String) = {a, b}, are 〈push, a〉
and 〈push, b〉. The whole set of possible modifier invocations, that is, the in-
put set of the Bem, is the union of the instantiated modifiers for each modifier:
M̄Π =

⋃
fm
M̄fm . Similarly, we define instantiated observer set Ōfo for a given

observer fo and the whole set of possible observer invocations ŌΠ . We are now
ready to define A(BΠ), that is, the Π-algebra over the Bem:

– The carrier sets for each external sort ξi ∈ Ξ are the instance pools IP (ξi);
– The carrier set for the defined sort α is the set of states Q;
– For each functional symbol f ∈ F of the signature Π , we defined the inter-

pretation fA(BΠ) as follows:
• Since Π is linear, there is only one constructor fc, for which f

A(BΠ)
c = q0;

• For every modifier fm : α, ξ1, . . . , ξnt−1 → α ∈ F , f
A(BΠ)
m = δ|I∈M̄fm

;
• For every observer fo : α, ξ1, . . . , ξnt−1 → ξnt ∈ F ,

f
A(BΠ)
o (q, e1, . . . ent−1) = Ψfo(q, 〈e1, . . . ent−1〉).

At this point, the core of our approach relies on validating the axioms of the
specification Σ over the Bem Π-algebra A(BΠ). Given the interpretations pro-
vided by the Bem Π-algebra, axioms can be rewritten accordingly, and they
become simple properties of the transition and labeling function of the Bem.
Let us consider the simple Bem on Figure 3, and consider the following ax-
iom: ∀s ∈ Deque, e ∈ String : pop(push(s, e)).state = s. With the chosen
instance pools and the given interpretation, the axiom becomes: ∀s ∈ Q, e ∈
IP (String) : δ(δ(s, 〈push, e〉), 〈pop〉) = s. Since IP (String) is finite, the axiom
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can be instantiated for every external sort: ∀s ∈ Q, δ(δ(s, 〈push, a〉), 〈pop〉) =
s ∧ δ(δ(s, 〈push, b〉), 〈pop〉) = s.

The last step is the precise definition of the validity of axioms in our model.
The only quantified values in this case can be elements of the specified sort, that
is, states of the Bem. Theoretically, it would be possible to verify directly those
axioms by proving that for every possible valuation of variables in the model.
However, since the Bem is finite, the interpreted functions might be partial, and
thus most of the axioms could be not verified just because the model is finite.
Instead, we would like to verify that in all the cases on which the interpreted
functions are defined on the Bem, the axioms hold. For example, the axiom
above cannot hold in any finite Bem of the Deque, since there does not exist a
finite Bem where the push operation is defined in every state. Thus, our problem
reduces to verifying the axioms in all the valuations of the variables for which the
transition function δ is defined, and we consider the axiom holding precisely in
these cases. Fortunately, an explicit management of this problem can be avoided
by a proper encoding of the Bem, which will be clear in the following section.

3 Validating Axioms through Model Checking

In the previous section, consistency of an algebraic specification with an in-
tensional behavior model has been reduced to determining if the axioms of an
algebraic specification Σ are verified in the Bem Π-algebra A(BΠ). Axioms can
be interpreted as properties of the transition relation δ and the observer labeling
functions Ψfo . In this section, we will show how this problem can be reduced to
checking temporal logic formulae derived from the algebraic axioms, as they are
interpreted in the Bem Π-algebra A(BΠ), against a Kripke structure derived
by the Bem. To prove this, we encode the Bem as a Kripke structure and the
property over the infinite traces as an LTL formula. The approach is realized in
two steps, which correspond to the structure of this section:

1. Formal Bem encoding: the Bem is encoded into a Kripke structure;
2. Axiom rewriting: algebraic axioms are translated into temporal formulae

expressed in LTL, by following certain translation patterns.

Formal Bem Encoding. A Bem is encoded into a Kripke structure which can
be directly used to generate an equivalent model in the input language of the
NuSMV model checker. A Kripke structure is similar to a nondeterministic finite
state automaton, where each state is labeled with a set of atomic propositional
formulae Φ. Formally, the Kripke structure is composed of a Frame F and an
evaluation function V . The frame is a tuple F = 〈S,S0,R〉, where S is a set
of states, S0 ⊆ S are the inital states of the frame, and R ⊆ S × S is the
reachability relation between states. The evaluation function V : Φ → ℘(S)
essentially defines which atomic formulae are true in which states. In fact, for
each formula φ ∈ Φ, V (φ) is the set of states where φ is true. Our encoding of a
Bem as a Kripke structure prescribes that each state of the frame corresponds
to a state of the Bem together with an operation, that is, to a pair 〈q, i〉 with
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q ∈ Q ∧ i ∈ I. Formally, the set S of states of the frame is defined as S =
{〈q, i〉 : q ∈ Q ∧ i ∈ I ∧ ∃q′ ∈ Q : δ(q, i) = q′}; the set of initial states is
defined as S0 = {〈q, i〉 : 〈q, i〉 ∈ S ∧ q = q0}. In other words, each state on the
frame models a state of the Bem where an existing transition, corresponding
to a given modifier, is enabled. Thus, we encode the reachability relation as
follows: 〈q, i〉R〈q′, i′〉 ⇔ δ(q, i) = q′. This encoding is a classic way to translate
a deterministic transition-labeled automaton into a Kripke structure where non-
determinism models the possible operation choice. Practically, from each state
of the frame, the next reachable states always represent the state reached by
applying a given transition on the Bem, but they differ with respect to the next
possibly enabled operation.

In almost any existing model checker, the frame is defined by means of some
temporal logic axioms or some operational constructs, whose semantics implicitly
defines the structure of the frame, that is, its states and its reachability relation.
Thus, the encoding is based on the direct use of the set of atomic formulae Φ
and axioms based on them. We can split the set of atomic formulae Φ in three
different sets to encode the Kripke structure defined above:

– ΦS , the set of atomic formulae representing states of the Bem;
– ΦI , the set of atomic formulae representing enabled transitions;
– ΦO, the set of atomic formulae representing observer return values.

ΦS has the same cardinality as the set of states Q of the Bem. It contains
a set of mutually exclusive propositions, each being true iff the current state
of the frame models a given state of the Bem. If we define a representation
bijection μS : ΦS → Q, then ∀φS ∈ ΦS : V (φS) = {〈μS(φS), i〉 ∈ S}. The same
encoding is applied to transitions (i.e., instantiated modifiers). That is, if we
define a representation bijection μI : ΦI → I, then the evaluation function V
is defined as follows: ∀φI ∈ ΦI : V (φI) = {〈q, μI(φI)〉 ∈ S}. Finally, we must
encode observer return values with ad-hoc propositional formulae. Consider any
observed pair of instantiated observer and return value present in the Bem:
〈ō, ent〉, such that ō ∈ Ōfo ∧ ∃q ∈ Q : Ψfo(q, ō) = ent . For any of these pairs, we
define a specific propositional formula, defined by a representation bijection μO.
Then, ∀φO ∈ ΦO : μO(φO) = 〈ō, ent〉 ⇒ V (φO) = {(q, i) ∈ S : Ψfo(q, ō) = ent}.
In practice, we encode each observer - return value pair in the Bem as an atomic
formula in the Kripke structure. At this point, we have defined every possible
atomic formula used in the encoding of the Bem. As stated above, we need to
encode the frame structure described previously as a set of axioms. For space
reasons, we omit the actual encoding; the reader can find them in [15].

Rewriting Axioms as LTL Formulae. To explain the rationale behind the
translation of algebraic axioms into LTL formulae, consider the axiom ∀x ∈
Deque, e ∈ String : pop.state(push(x, e)) = x and its equivalent property on
the δ function derived by interpreting the Bem: ∀s ∈ Q, e ∈ IP (String) :
δ(δ(s, 〈push, e〉), 〈pop〉) = s. Consider all the possible infinite traces of the Bem,
that is, all the ω-words defined in the alphabet M̄Π , and the generalized tran-
sition function δ∗ : Q × M̄∗

Π → Q. Suppose that the axiom above holds in the
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model. Given any infinite trace x ∈ M̄ω
Π , if the axiom holds, then for every

finite prefix x̄ of x such that x̄ = x̄0〈push, a〉〈pop〉 or x̄ = x̄0〈push, b〉〈pop〉,
then the state reached by the sequence of operations x̄0 is the same as the
one reached by x̄, that is, δ∗(q0, x̄0) = δ∗(q0, x̄). In practice, the traces we
are interested in all the ones generated by the transitions where the δ func-
tion of the Bem has been defined. The encoding we defined above guaran-
tees that the traces generated by the Kripke structure are exactly those. Each
state of the frame encodes both the current state of the Bem, that is, a for-
mula in ΦS , and the current operation applied, that is, a formula in ΦI , to-
gether with formulae encoding the current return values of observers. Thus, a
property about the traces of the Bem model like the one we defined for the
axiom above, can be written as an LTL formula. In the case above, the corre-
sponding LTL formula is: ∀φS ∈ ΦS : G(φS ∧ μI(〈push, a〉) ∧ X(μI(〈pop〉)) ⇒
X2φS)∧G(φS ∧ μI(〈push, b〉)∧X(μI(〈pop〉)⇒ X2φS). A pattern for axioms in
this form is the the following:

Pattern 1. Any axiom in the following form:∀x ∈ α : mj(. . . m1(m0(x)) . . .) =
x where mi, ni ∈ M̄Π , is translated to the following LTL formula: ∀φs ∈ ΦS :
G(φs ∧ μ−1

I (m0) ∧X(μ−1
I (m1)) ∧ . . . ∧Xj(μ−1

I (mj))⇒ Xj+1φs)

Please note that a formal proof of the correspondence expressed by this pattern
cannot be included for space limitations. However, the reader can find proofs
in [15]. We identified several patterns for translating algebraic axioms to LTL
formulae, based on the approach described above, but for space reasons we are
not able to show all the patterns.

4 Evaluation

Both the NuSMV encoding of the Bem and the algebraic axiom translation
have been implemented as a software tool. We now proceed to empirically eval-
uate the performance of the encoding and model checking as prescribed by the
proposed approach. In Section 1, we illustrated one of the possible applications
of our validation approach in the context of specification recovery. In this paper,
we proposed a solution to an instance of the general problem of automatic com-
parison of recovered formal specifications of containers, that is, the problem of
checking algebraic specifications against intensional behavior models. Moreover,
the tools and the extracted specifications are particularly suitable for classes
implementing containers. Thus, an empirical assessment may compare algebraic
specifications and intensional behavior models as recovered from the respective
extraction tools, for relevant containers such as the ones implemented in the
Java library. We selected a set of container classes implemented in the java.util
package of the Java library, and extracted both algebraic specifications with
Heureka and the intensional behavior models with Spy. We report here two
different evaluation experiments. For both the experiments, we generated a ran-
dom set of instance pools to instantiate the algebraic axioms and generate a
Bem of the class to be analyzed. In the first experiment, we used the same set
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Table 1. Empirical Results

Experiment I Experiment II
Class Axioms Performance Axioms Performance

Ver. Not Ver. Time Mem. Ver. Not Ver. Time Mem.
(mm:ss) (MB) (mm:ss) (MB)

ArrayDeque Exh. 20 0 00:04.30 63.68 10 3 00:04.30 52.4
32 states BMC 1 0 00:11.4 74.40 0 1 00:01.12 44.40

PriorityQueue Exh. 13 0 00:03.50 30.01 7 4 00:02.10 23.01
37 states BMC 1 0 00:14.40 57.92 0 0 − −

Stack Exh. 11 0 00:07.90 68.68 4 0 00:02.90 40.58
157 states BMC 1 0 00:09.40 60.92 1 0 00:09.40 60.92

TreeMap Exh. 21 0 07:06.00 274.87 12 6 04:06.00 204.87
64 states BMC 1 0 01:00.20 269.26 0 0 − −
TreeSet Exh. 23 0 03:05.20 69.64 13 7 01:35.20 49.64
33 states BMC 3 0 41:42.50 511.12 1 0 12:21.53 317.14

of test cases as inference basis for both the extraction methods. The inference
basis was manually checked to be relevant in the sense that it included all the
interesting behaviors of the component; the testing approach was similar to the
simpler one used to assess the Spy method [7]. The rationale behind this choice
is that we expect the two specifications to be coherent. Instead, the second ex-
periment uses on purpose two different inference bases. We choose to use the
same inference basis of the first experiment for the intensional model, and in-
stead use a smaller inference basis for Heureka. The smaller inference basis has
been chosen to not include some behaviors of the component. We expect that
some of the recovered algebraic axioms could be wrong; thus, some of the prop-
erties expressed by these axioms should not be verified by the model checker.
The reason for this choice is simply to verify that our approach is able to detect
inconsistency behind recovered specifications. Table 1 shows empirical results of
the validation approach for both the experiments. The first column include the
name of the checked class and immediately below the number of states of the
generated Bem. The second column contains the number of axioms that have
been checked, showing verified and not verified axioms. The last two columns
include the total time and memory needed for the verification. The experiments
have been performed in a Intel R© Core DuoTM machine at 2.16 Ghz with 2 Gb
of RAM. In the general case, we tried to verify each axiom with the exhaustive
search, based on BDDs [10]. For each class, the first row of the table illustrates
the empirical results for axioms for which the exhaustive verification was possi-
ble under reasonable amounts of time (i.e., within an hour of execution time).
In some cases, expecially with patterns involving two sequences of operations,
exhaustive search could be too expensive in terms of execution time and memory
consumption, up to unfeasibility with the used resources. For such axioms, we
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used the Bounded Model Checking (BMC) [16] feature of NuSMV, based on
SAT solving techniques. Essentially, BMC limits the search up to a given depth.
Results of the first experiment on Table 1 show that every axiom has been veri-
fied in the intensional behavior model, that is, that the specification recovered by
Heureka does not contradict the model inferred by Spy. Instead, the results of
the second experiment show that some of the axioms were not verified, and thus
our approach is able to detect inconsistencies between algebraic specifications
and intensional behavior models.

5 Related Work

This paper proposed a methodology to cross-validate intensional behavior models
and algebraic specifications by using model checking. The use of model check-
ing is justified because it is inherently a methodology for cross-validation of
specifications. In fact, model checking consists in general in the problem of
checking if an operational description satisfies a set of properties expressed in
temporal logic. Both the operational description and the temporal logic prop-
erties can be considered as specifications, and the process of model checking
can be seen as a method to validate their consistency. In particular, a recent
advance [17] introduces multi-valued model checking, which explicitly manages
situations like uncertainty and inconsistency. Other related works come from the
algebraic specification community; for example, HetCASL [18] is a framework
for the formal analysis of heterogeneous algebraic specifications by means of
theorem proving. Several related state-of-the-art techniques come from require-
ments engineering community, that is, from methodologies involving discovery
and management of inconsistent requirements within the context of multiple
viewpoints or requirement-related artifacts. A recent advance [19] proposed goal
model checking over operational descriptions derived from scenarios. Finally,
some relevant related works include techniques for model comparison to support
software evolution analysis, such as [20]. However, those techniques are used to
compare the same software artifacts during their evolution, and not to compare
different software artifacts.

6 Conclusions

We illustrated a method for comparing specifications of classes implementing
containers by using model checking. In particular, we proposed a model-checking
based technique to check the consistency of intensional behavior models against
algebraic specifications. In fact, the former can be used to generate a particular
finite-state model, the behavioral equivalence model, while the latter plays the
role of a set of properties to be verified. To perform model checking, we provided
a formal encoding of the Bem as a Kripke structure and a practical encoding in
the source code of the NuSMV model checker. Moreover, we identified a com-
prehensive set of patterns to translate algebraic specifications to LTL formulae.
We showed that it is possible to check algebraic specifications against intensional
behavior models in reasonable amounts of time and occupied memory.



Automatic Cross Validation of Multiple Specifications: A Case Study 247

References

1. Guttag, J.V., Liskov, B.: Program Development in Java: Abstraction, Specification
and Object-Oriented Design. Addison-Wesley, Reading (2001)

2. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering.
Prentice Hall PTR, Upper Saddle River (2002)

3. Harel, D., Gery, E.: Executable object modeling with statecharts. In: ICSE 1996:
18th International Conference on Software Engineering (1996)

4. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A notation for detailed design. In: Be-
havioral Specifications of Businesses and Systems, pp. 175–188. Kluwer, Dordrecht
(1999)

5. Guttag, J.V., Horning, J.J.: The algebraic specification of abstract data types.
Acta Informatica 10(1) (1978)

6. Ernst, M.D.: Dynamically Discovering Likely Program Invariants. Ph.D. thesis,
University of Washington, Seattle, Washington (August 2000)

7. Ghezzi, C., Mocci, A., Monga, M.: Synthesizing intensional behavior models by
graph transformation. In: ICSE 2009: Proc. of 31st Int. Conf. on Soft. Eng. (2009)

8. Henkel, J., Reichenbach, C., Diwan, A.: Discovering documentation for Java con-
tainer classes. IEEE Trans. Software Eng. 33(8), 526–543 (2007)

9. Baresi, L., Ghezzi, C., Mocci, A., Monga, M.: Using graph transformation systems
to specify and verify data abstractions. In: Proc. of GT-VMT 2008 (2008)

10. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2)

11. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

12. Mosses, P.D. (ed.): CASL Reference Manual. LNCS (IFIP Series), vol. 2960.
Springer, Heidelberg (2004)

13. Doong, R., Frankl, P.G.: The ASTOOT approach to testing object-oriented pro-
grams. ACM Trans. on Soft. Eng. and Meth. 3(2) (1994)

14. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in TCS. Springer, Heidelberg (2005)

15. Spy Checker Website (2009), http://home.dei.polimi.it/mocci/spy/check/
16. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.

In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

17. Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-valued symbolic
model-checking. ACM Tr. Softw. Eng. Methodol. 12(4) (2003)
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Abstract. In this paper, we present an automata-theoretic approach to Hardware/
Software (HW/SW) co-verification. We designed a co-specification framework
describing HW/SW systems; synthesized a hybrid Büchi Automaton Pushdown
System model for co-verification, namely Büchi Pushdown System (BPDS), from
the co-specification; and built a software tool for deciding reachability of BPDS
models. Using our approach, we succeeded in co-verifying the Windows driver
and the hardware model of the PIO-24 digital I/O card, finding a previously
undiscovered software bug. In addition, our experiments have shown that our
co-verification approach performs well in terms of time and memory usages.

1 Introduction

Computer systems are pervasive, ranging from embedded control to banking to edu-
cation. Users demand high-confidence in these systems, and high-confidence is tradi-
tionally achieved by extensive testing which is becoming increasingly cost-prohibitive.
As a result, formal verification such as model checking [1] is playing a greater role in
verifying the correctness of these systems. In practice, engineers typically attempt to
verify hardware and software independently. In order to verify complete systems, the
correctness of the Hardware/Software (HW/SW) interfaces must be established.

HW/SW co-verification, verifying hardware and software together, is essential to es-
tablishing the correctness of HW/SW interfaces. One major challenge in co-verification
is the integration of hardware and software representations within the same formal
model. Hardware and software verification utilize different models. For verification of
software implementations, one of the most popular models has been pushdown systems
whose semantics closely resemble the semantics of software programs which are often
infinite systems. Hardware designs are finite-state and often modeled as some kind of
finite-state state machines. However, for co-verification it is not desired to model both
hardware and software as pushdown systems or finite state machines (see related work).

In this paper, we present an automata-theoretic approach to HW/SW co-verification.
The foundation of this approach is a hybrid Büchi Automaton Pushdown System as
a unifying model for HW/SW co-verification, namely the Büchi Pushdown System
(BPDS). It synchronizes a single Pushdown System (PDS) that has an unbounded stack

D.S. Rosenblum and G. Taentzer (Eds.): FASE 2010, LNCS 6013, pp. 248–262, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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and a Büchi Automaton (BA). The co-verification flow as supported by this approach is
shown in Figure 1. The main components of this flow include:

Fig. 1. Co-verification flow

– Co-specification. Co-specification is essential in order to present system designs at
proper levels of details. We developed a co-specification framework that describes
the hardware model, the software model, and the HW/SW interface.

– Co-verification model. We designed a formal co-verification model, BPDS, to
capture hardware and software designs, as well as their concurrent executions and
interactions. The core contribution is our process for constructing a BPDS by syn-
chronizing a BA that abstracts hardware and a PDS that abstracts software.

– Model-checking BPDS. We developed a method for checking reachability proper-
ties of a BPDS and analyzed its complexities. To evaluate the effectiveness of our
approach, we implemented an automatic verification tool for BPDS.

Another component of this flow is abstraction, which we will elaborate in another paper.

Related work. Kurshan, et al. presented a co-verification framework that models hard-
ware and software designs using finite state machines [2]. Xie, et al. extended this
framework to hardware and software implementations and improves its scalability via
component-based co-verification [3]. However, finite state machines are limited in mod-
eling software implementations, since they are not suitable to represent software fea-
tures such as a stack.

Another approach to integrating hardware and software within the same model is
exemplified by Monniaux in [4]. He modeled a USB Open Host Controller Interface
(OHCI) device using a C program and instrumented the device driver, another C pro-
gram, in such a way as to verify that the USB OHCI controller driver correctly interacts
with the device. The hardware and software were both modeled by C programs, thus
formally Pushdown Systems (PDS). However, straightforward composition of the two
PDSs to model the HW/SW concurrency is problematic, because it is known, in general,
that verification of reachability properties on concurrent PDS with unbounded stacks is
undecidable [5]. Based on an approximation of the OHCI HW/SW interface, Monni-
aux merges the C program models of both hardware and software into one sequential
program, formally a single PDS. Monniaux’s approach has three key drawbacks: (1)
programming languages such as C do not have semantics for concurrency, so the con-
current nature of hardware is not fully modeled; (2) the HW/SW concurrency is not
accurately modeled; (3) the complexity of checking the resulting PDS is often unnec-
essarily high, due to the way hardware and concurrency is modeled in the PDS.

Schwoon used a combination of PDS and BA to verify Linear Temporal Logic (LTL)
properties of PDS and his approach has been implemented in the Moped tool [6]. A LTL
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formula is first negated and then represented as a BA. Moped combines the BA and
PDS in such a way that the BA monitors the state transitions of the PDS, so the model-
checking problem is to compute if the BA has an accepting run. Schwoon’s goal was
to verify software only; however, our goal is to co-verify safety properties of HW/SW
systems. We will discuss more details about Schwoon’s work in Section 3.1.

Outline. The rest of this paper is organized as follows. In Section 2, we present our co-
specification framework, which is illustrated by a Windows PCI device driver example.
In Section 3, we introduce our co-verification model, BPDS. In Section 4, we describe
how to construct a BPDS by synchronizing a BA and a PDS. In Section 5, we discuss
how to conduct reachability analysis on a BPDS. In Section 6, we present the evaluation
and experimental results. In Section 7, we conclude and discuss future work.

2 Co-specification

Co-specification describes the HW/SW system to be verified. The essential parts include
the hardware model, the software model, and the HW/SW interface. The level of detail
varies due to (1) platform differences, e.g., embedded system or PC; (2) verification
foci, e.g., verifying software by providing hardware models, verifying hardware using
software models, or verifying both. As an example, we show how to specify the HW/SW
interface for the verification of a device driver implementation and its device model.
The goal of this specification is to verify if the driver implementation is correct in
terms of the HW/SW interface properties. In order to facilitate the understanding of
our modeling approach, we first introduce a simple Windows PCI driver example.

2.1 A Windows PCI Driver Example

Device drivers check device status or send commands to devices by reading or writ-
ing device registers, and receive notification of state changes from devices through
interrupts. In Windows [7], device drivers are organized through driver stacks. Each
layer of a driver stack services a specific type of device in the corresponding hard-
ware stack. Usually, different driver layers have different I/O interfaces. In this paper,
we utilize PCI (Peripheral Component Interconnect) device drivers as an example. PCI
drivers read/write device registers using functions such as READ REGISTER UCHAR,
WRITE REGISTER UCHAR, READ PORT UCHAR, WRITE PORT UCHAR, etc. Depe-
nding on whether a driver uses memory or port mapped I/O to represent its device
interface registers in virtual memory, the functions are different.

Figure 2 shows excerpts from an Open System Resources (OSR) sample driver for
a PCI device, Sealevel PIO-24 digital I/O card. The card has three 8-bit ports (namely,
A, B, and C) for input or output. When the interrupt is enabled and Port A has an input,
the card fires a data-ready interrupt. The driver reads data when the data-ready interrupt
fires and outputs data by writing to the port registers. DioEvtDeviceControl is the
callback function that handles device control commands and DioIsr is the Interrupt
Service Routine (ISR).
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VOID DioEvtDeviceControl( . . . ) {
. . .
switch(IoControlCode) {

. . .
// Waits for an interrupt to occur, and when it does,
// ISR/DPC will read the contents of PortA.
case IOCTL WDFDIO READ PORTA AFTER INT:
. . .
// If PortAInput is true, the interrupt is enabled
if (devContext->PortAInput == FALSE) {

status = STATUS INVALID DEVICE STATE;
} else {

// Store the I/O request to CurrentRequest
devContext->CurrentRequest = Request;

// Tell ISR: we’re waiting for an interrupt
P1: devContext->AwaitingInt = TRUE;

. . .
return;

}
break;
. . .

}
. . .

}

BOOLEAN DioIsr( . . . ) {
. . .
// Check if we have an interrupt pending
data = READ REGISTER UCHAR(

devContext->BaseAddress +
DIO INTSTATUS OFFSET );

if(data & DIO INTSTATUS PENDING) {

// Are we waiting for this interrupt
P2: if(devContext->AwaitingInt) {

// Read the contents of PortA
data = READ REGISTER UCHAR(

devContext->BaseAddress +
DIO PORTA OFFSET );

// Store it in our device context
// DPC will send the data to users
devContext->PortAValueAtInt = data;
devContext->AwaitingInt = FALSE;

}

// Request our DPC
P3: WdfInterruptQueueDpcForIsr( Interrupt );

// Tell WDF, and hence Windows, this is our interrupt
return(TRUE);

}
return(FALSE);

}

Fig. 2. Excerpts from OSR sample driver code for PIO-24 digital I/O card

2.2 Language Features for Co-specification

In our example, the C program of the driver is the software model. Next, we focus on
the hardware model and the HW/SW interface.

We specify the hardware model and hardware-related parts of the HW/SW interface
using the Verilog hardware description language [8]. There are two major reasons be-
hind using Verilog for models related to hardware. First, Verilog is a popular language
for hardware design. Lots of existing hardware has been designed using Verilog. Sec-
ond, Verilog supports the concurrent semantics of hardware. A key feature is parallel
assignments (a.k.a. nonblocking assignments that use the operator “<=” in the exam-
ples), which capture the simultaneous updates of register states through state transitions.

The hardware model describes behaviors of the device as state transitions. Different
from the commonly used clock-driven semantics of Verilog, a state transition of our
hardware model represents an arbitrarily long but finite sequence of clock cycles. This
preserves hardware design logic that is externally visible to software, but hides details
only necessary for synthesizable Register Transfer Level (RTL) design. Figure 3 shows
the hardware model of the PIO-24 digital I/O card. The model simply fires an interrupt
when it is in an interrupt-enabled state and Port A has an input. We define rand as
a function that returns a non-deterministic value in the given range. There are three
tasks: reset, environment, and random. The environment task is executed
non-deterministically to simulate inputs from the environment to the device, e.g., the
physical reset event that clears all registers. Depending on the properties to be verified,
hardware models may be extended to exhibit more behaviors. Our model in Figure 3 has
been simplified to one aspect of the device to illustrate the device/driver interactions.
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begin hardware model
// declare registers
reg [7:0] PortA, IntConfg;
. . .
// declare the tasks
task reset; begin // clears all registers

PortA <= 8’h0;
. . .

end endtask
// model the inputs from the environment
task environment; begin

// non-deterministically reset the hardware
if(rand(0,1)) reset;
// if the interrupt is enabled but not fired,
// non-deterministically input to PortA.
else if((IntConfg & 8’h4) && (IntStatus==0))

PortA <= rand(8’h0, 8’hFF);
. . .

end endtask
. . .
// assign non-deterministic value to registers
task random; begin

PortA <= rand(8’h0, 8’hFF);

. . .
Ctrl <= rand(8’h0, 8’hFF) & 8’h9B;
IntConfg <= rand(8’h0, 8’h07);
IntStatus <= rand(8’h0, 8’h01);

end endtask

// initial state of the device: non-deterministically initialized
initial random;
// non-deterministically execute the environment
if( rand(0,1) ) begin

// low level triggers the interrupt
if( (IntConfg == 8’h04) && ((PortA & 8’h01)==0) )
begin

IntStatus <= 1; // set the interrupt status
INTR <= 1; // set the interrupt pending status to SW

end
// high level triggers the interrupt
if( (IntConfg == 8’h05) && ((PortA & 8’h01)==1) )
begin IntStatus <= 1; INTR <= 1; end
. . .

end
else environment;

end hardware model

Fig. 3. Hardware model for PIO-24 digital I/O card device

The interface specification describes the HW/SW interface. Hardware and software
run asynchronously and only communicate through their interface. The HW/SW inter-
face includes two parts: shared interface states and interface events. Interface states are
state variables provided either by hardware or software and accessible to both; inter-
face events have two types: hardware or software. A hardware interface event happens
when hardware updates the software interface states, and vice versa. A typical example
of hardware interface events is an interrupt which causes context switches in software.
However, it is possible that in a HW/SW system, software provides shared memory for
hardware to access. In this case, a hardware interface event (e.g., write to the shared
memory) will not cause any context switch in software. In summary, interface events
identify the situations when both software and hardware must transit synchronously.

Modern system designs usually have software and hardware aligned as layers in a
stack, different layers of software work with their corresponding layers of hardware to-
gether to deliver certain functionalities. For example, PCI bus and USB bus are different
HW/SW layers in a PC system. Interface specification needs to describe the HW/SW
interface behaviors in order to hide the implementation details of other hardware and
software layers that lie in between the hardware and software layers to be verified.

For the PIO-24 digital I/O device/driver, the device provides interface registers for
the driver to operate the device. In order for the driver to access the interface regis-
ters, the Windows OS maps the device interface registers into virtual memory through a
technique called Memory Mapped I/O (MMIO). When the driver writes to/reads from a
mapped memory address by calling register operation functions, the corresponding in-
terface register will be updated by the OS. How the register should be updated depends
on the HW/SW interface protocol. We need to specify (1) the virtual memory alignment
for the mapped interface registers, so a specific memory address is related to the proper
interface register; (2) how interface registers should be updated when the driver ac-
cesses the registers, i.e., when software interface events happens. On the other side, the
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device communicates with the driver through interrupts, i.e., hardware interface events.
When hardware fires an interrupt, the Windows OS sets its internal interrupt pending
status to be true and schedules the driver-provided ISR to service the interrupt.

Figure 4 shows the HW/SW interface specification for the PIO-24 digital I/O de-
vice/driver: (1) resource mappings for the driver. The PIO-24 device is mapped as
MMIO. The resource mapping type indicates the set of interface register functions used
by the driver; (2) interface declaration, which declares the device interface registers
with their sizes and mapped address offsets in virtual memory, software interface events
when the driver writes/reads a specific interface register, and hardware interface events
when hardware fires interrupts; (3) implementation of software interface events. Each
interface register is associated with two software interface event functions: read and
write. The functions describe device interface state transitions when read/write events
happen on the registers. Hardware interface events are defined by connecting the inter-
rupts to the corresponding ISRs that are implemented in the driver model.

begin interface
// resource mappings: Memory Mapped I/O
use MMIO;

// interface declaration
// syntax: <offset(byte), length(byte)> -->
// name, read event, write event;
<0x00, 1> --> PortA, read PortA(), write PortA(VAR);
. . .
<0x04, 1> --> IntConfg, read IntConfg(),

write IntConfg(VAR);
<0x05, 1> --> IntStatus, read IntStatus(),

write IntStatus(VAR);
interrupt INTR: // interrupt pending status

void FireISR(); // the ISR connected to this interrupt

// implementation of software interface events
write IntConfg(val) {

if( ((val==4) && (PortA & 8’h1)!=0) ||
((val==5) && (PortA & 8’h1)==0) ||
(val==6) || (val==7) || (val==0) )

IntConfg <= val;
}
read IntStatus() { // clear the interrupt status when read

reg [7:0] retreg;
retreg <= IntStatus;
IntStatus <= 0;
return retreg; // return the register value to software

}
. . .

end interface

Fig. 4. Interface specification for PIO-24 digital I/O card device/driver

3 Co-verification Model: Büchi Pushdown System

We propose a hybrid Büchi Automaton Pushdown System, namely Büchi Pushdown
System (BPDS) to represent both hardware and software in co-verification. Before we
present BPDS, we first review the fundamentals of Büchi Automata (BA) and Pushdown
Systems (PDS).

3.1 Background

Büchi Automata as Hardware Models. A Büchi Automaton B, as defined in [9], is
a non-deterministic finite state automaton accepting infinite input strings. Formally, B
is a tuple (Σ, Q, δ, q0, F ), where Σ is the input alphabet, Q is the finite set of states,
δ ⊆ (Q×Σ ×Q) is the set of state transitions, q0 ∈ Q is the initial state, and F ⊆ Q
is the set of final states. B accepts an infinite input string if and only if it has a run over
the string to visit at least one of the final states infinitely often. A run of B on an infinite
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string s is a sequence of states visited by B when taking s as the input. We use q
σ→ q′

to denote a transition from state q to q′ with the input symbol σ.

Pushdown Systems as Software Models. A Pushdown System, as defined in [6], is
a tuple P = (G, Γ, Δ, 〈g0, ω0〉) where G is a finite set of global states (a.k.a. control
locations), Γ is a finite stack alphabet, and Δ ⊆ (G × Γ ) × (G × Γ ∗) is a finite set
of transition rules. 〈g0, ω0〉 is the initial configuration. A PDS transition rule is written
as 〈g, γ〉 ↪→ 〈g′, ω〉, where ((g, γ), (g′, ω)) ∈ Δ. A configuration of P is a pair 〈g, ω〉,
where g ∈ G is a global state and w ∈ Γ ∗ is a stack content. The set of all configu-
rations is denoted by Conf(P). If 〈g, γ〉 ↪→ 〈g′, ω〉, then for every v ∈ Γ ∗ the con-
figuration 〈g, γv〉 is an immediate predecessor of 〈g′, ωv〉 and 〈g′, ωv〉 is an immediate
successor of 〈g, γv〉. The reachability relation⇒ is the reflexive and transitive closure
of the immediate successor relation. Given a set C ⊆ Conf(P), the forward reacha-
bility analysis, post∗(C), computes the successors of elements of C. Schwoon [6] has
designed algorithms to check both reachability and LTL properties on PDS. For com-
puting post∗ on P , the time and space complexities are both (|G|+ |Δ|)3. The Moped
tool implements all these algorithms.

3.2 Büchi Pushdown System

We synthesize a BPDS BP by building the synchronization of a BA B and a PDS P .
Let B = (Σ, Q, δ, q0, F ) represent hardware, where Σ is the power set of the set of
propositions that may hold on a configuration of P (i.e. a symbol of Σ is a set of propo-
sitions). In other words, the state transition of B is constrained by the current configura-
tion of P . We extend the definition of a pushdown system as P = (I, G, Γ, Δ, 〈g0, ω0〉)
representing software, where I is the power set of the set of propositions that may
hold on a state of B, G is a finite set of global states, Γ is a finite stack alphabet, and
Δ ⊆ (G×Γ )×I×(G×Γ ∗) is a finite set of transition rules. We write 〈g, γ〉 τ

↪→ 〈g′, w〉
as a rule ((g, γ), τ, (g′, w)) ∈ Δ. 〈g0, w0〉 is the initial configuration. It is important to
note that we extend the pushdown system so that the transition rules in Δ are all labeled
by τ ∈ I , i.e., the state transition of P is constrained by the current state of B.

To define the BPDS, BP, for co-verification, we first define two labeling functions:

– LP2B : (G × Γ )→ Σ, which associates a configuration of P , 〈g, γ〉 ∈ (G × Γ ),
with the set of propositions that hold on it.

– LB2P : Q→ I , which associates a state of B with the set of propositions that hold
on it.

BP = ((G × Q), Γ, Δ′, 〈(g0, q0), ω0〉, F ′) is constructed by taking the Cartesian
product of B and P : 〈(g, q), γ〉 ↪→BP 〈(g′, q′), ω〉 ∈ Δ′, where q

σ→ q′ ∈ δ, σ ⊆
LP2B(〈g, γ〉) and 〈g, γ〉 τ

↪→ 〈g′, w〉 ∈ Δ, τ ⊆ LB2P(q). A configuration of BP is
referred to as 〈(g, q), ω〉 ∈ (G × Q) × Γ ∗. The set of all configurations is denoted as
Conf(BP). The labeling functions defines how B and P synchronize with each other.
〈(g0, q0), ω0〉 is the initial configuration. 〈(g, q), ω〉 ∈ F ′ if q ∈ F .

If 〈(g, q), γ〉 ↪→BP 〈(g′, q′), ω〉 ∈ Δ′, then for every v ∈ Γ ∗ the configuration
〈(g, q), γv〉 is an immediate predecessor of 〈(g′, q′), ωv〉, and 〈(g′, q′), ωv〉 is an
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immediate successor of 〈(g, q), γv〉. A trace of BP is a sequence of configurations
〈(g0, q0), ω0〉, 〈(g1, q1), ω1〉, . . . , 〈(gi, qi), ωi〉, . . . such that 〈(gi, qi), ωi〉 is an immedi-
ate predecessor of 〈(gi+1, qi+1), ωi+1〉, where i ≥ 0. The reachability relation,⇒BP ,
is the reflexive and transitive closure of the immediate successor relation. Given a set
C ⊆ Conf(BP), the forward reachability analysis, post∗(C), computes the succes-
sors of elements of C. In this paper, we are concerned with the reachability properties
of BP, i.e., given a configuration c and the initial configuration c0 = 〈(g0, q0), ω0〉, we
want to check if c ∈ post∗({c0}).

4 Constructing BPDS from Co-specification

In this section, we discuss how to construct a BPDS model from the co-specification
presented in Section 2. We assume that the hardware and software models in the co-
specification are amenable to abstraction into BA and PDS. Without loss of generality,
we describe the state space of the BPDS model using Boolean variables. Before we dis-
cuss how to construct the BPDS model, we introduce two tools for conducting predicate
abstractions of hardware and software, respectively. The predicate abstraction tools help
scale the verification but only preserve the safety properties of a system design, so we
restrict the generated BPDS model for reachability analysis. It is important to note that
(1) this approach is only one example on constructing BPDS and (2) the BPDS model
proposed in Section 3 is not restricted to safety properties only.

4.1 Background

Predicate Abstraction of RTL Designs. Jain, et al. have presented a predicate abstrac-
tion algorithm for verifying RTL designs in Verilog [10]. The algorithm computes the
abstraction of a Verilog module given certain predicates. The VCEGAR toolkit based
on this algorithm generates hardware abstractions in the form of Boolean expressions
(see example in Figure 6). This is one representation of state transition relations.

Predicate Abstraction of C Programs. Ball, et al. have shown Boolean programs to
be effective abstractions of C programs in the SLAM project [11]. A Boolean program,
conceptually a PDS, is essentially a C program in which the only data type available is
Boolean. Given predicates, C2BP, the abstraction tool of SLAM, builds Boolean pro-
grams from C programs.

4.2 From Co-specification to BPDS

There are four steps to construct a BPDS model from the co-specification: (1) instru-
menting the software model based on the HW/SW interface; (2) predicate abstraction of
the instrumented software model using C2BP based on manually provided predicates;
(3) instrumenting the hardware model based on the HW/SW interface; (4) predicate ab-
straction of the instrumented hardware model using VCEGAR based on manually pro-
vided predicates. The PDS (as a result of C2BP) and the BA (as a result of VCEGAR)
are readily synchronized due to the instrumentation, thus forming a BPDS model.
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UCHAR READ REGISTER UCHAR
(PUCHAR Register) {

switch(Register) {
case BASE ADDRESS+0x0: return read PortA();
. . .
case BASE ADDRESS+0x4: return read IntConfg();
case BASE ADDRESS+0x5: return read IntStatus();
default: abort “Register address error.”; return 0;
}
}

VOID WRITE REGISTER UCHAR
(PUCHAR Register, UCHAR Value) {

switch(Register) {
case BASE ADDRESS+0x0: write PortA(Value); return;
. . .
case BASE ADDRESS+0x4: write IntConfg(Value); return;
case BASE ADDRESS+0x5: write IntStatus(Value); return;
default: abort “Register address error.”; return;
}
}

Fig. 5. Redirecting read/write register calls to software interface events

At the software side, the instrumentation has three steps. First, we add the signatures
of the software interface events into the driver program. Since the header of a software
interface event is declared the same way as a C function, the signature of the interface
event is simply its type signature. Second, we instrument the driver program to redi-
rect the calls to the register read/write functions to the corresponding software interface
events. Third, we instrument the driver to respond to the hardware interface events. Fig-
ure 5 shows an example instrumenting the PIO-24 digital I/O card driver, where the calls
to two register read/write functions are replaced by calls to software interface events. As
discussed in Section 2.2, the OS maintains a variable (INTR in the interface specification
example) to indicate the interrupt pending status. When hardware fires an interrupt, i.e.,
a hardware interface event happens, the interrupt pending status is set true, so the OS
schedules the ISR. We instrument the driver with a guarded expression at each program
statement so that “if the interrupt pending status is true, non-deterministically call ISR”.
As a result, the context switch to ISR is simulated in the sequential software model. In
a uni-processor system, the completeness of this approach is based on the assumption
that the ISR cannot be switched out during execution. This is true for most Windows
device drivers such as the PIO-24 digital I/O card driver. It is easy and theoretically
sound to extend the instrumentation to support multiple ISRs with different priorities,
because the number of ISRs in a system are finite. In the last step of software abstrac-
tion, we use C2BP to generate Boolean programs from the instrumented C programs.
We convert the Boolean programs to PDS using Moped [6].

At the hardware side, we first convert the hardware model and the implementation of
software interface events into Verilog modules. The non-deterministic function (rand)
used in Figure 3 is not directly supported by Verilog. Since input variables of Verilog
modules are treated as non-deterministic by VCEGAR, we construct non-deterministic
functions using input variables. Second, we utilize VCEGAR to generate the predicate
abstraction of the state transition relation for the hardware design (in the form of Ver-
ilog modules). Third, we then construct the BA as follows: (1) the alphabet Σ is the
power set of the set of propositions induced by the software interface events; (2) the
set of states Q are defined by the Boolean variables from the predicate abstraction; (3)
the transition relation δ is the predicate abstraction, whose transitions are labeled with
input symbols from Σ; (4) the set of final states F is set to Q, since we are interested in
reachability only. As an example, Figure 6 shows the abstraction of the software inter-
face events read IntStatus and write IntConfg, as hardware state transitions.
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// predicates for read IntStatus
decl b0; // stands for {IntStatus == 1}
decl b1; // stands for {retreg==1}

read IntStatus
begin

TRANS ( !next(b0) )
TRANS ( (!b0 & !next(b1))

| (b0 & next(b1)) )
end

// predicates for write IntConfg
decl b0; // stands for {(4 & IntConfg) == 0}
decl b1; // stands for {(1 & PortA) == 0}
decl b2; // stands for {val == 5}

write IntConfg
begin

TRANS ( (!b1 & b0 & b2 & next(b0)) | (b1 & b0 & b2 & !next(b0))
| (!b0 & b2 & !next(b0)) | (!b2) )

end

Fig. 6. Abstraction of software interface events as state transitions in the form of Boolean expres-
sions (TRANS). The transitions are labeled corresponding to their software events respectively.

The constructed BPDS BP contains a PDS P representing software, a BA B repre-
senting hardware, and their synchronization, whereP is from software abstraction, B is
from hardware abstraction, and the synchronization by interface events is from the ab-
straction of the HW/SW interface (through instrumentation). The interface events have
two directions, from P to B (referred to as software interface events) and from B to
P (referred to as hardware interface events). In the formal model, the transitions of B
are labeled corresponding to the software interface events and the transitions of P are
labeled corresponding to the hardware interface events. Thus, we are able to synchro-
nize B and P . Before software abstraction, the signatures of software interface events
are merged into the program, so P already contains the signatures. During the state
transitions of P , a software interface event happens when its dedicated stack symbol is
reached. The BA transition that is enabled will be executed with the next PDS transi-
tion. The PDS transition also needs to be enabled by the current state ofB. For example,
when P inputs from B, the transition will depend on the state of B. A hardware inter-
face event happens when B transits to a state, which may cause a context switch in P .
BecauseP is a sequential PDS, we model the context switch by calling the function that
services the hardware event, which is done during the step of software instrumentation.

Because the transitions of hardware and software are normally asynchronous except
at their synchronization points, non-deterministic delays of either B or P should be
allowed in the BPDS. Conceptually, the delays are introduced as self-loop transitions
on the states of B or P where no interface event happens. When an interface event
happens, both hardware and software have to transit synchronously.

5 Reachability Checking of BPDS

We have developed a tool, CoVer, for checking reachability properties of BPDS. As
shown in Figure 7, CoVer has two components: (1) BPDS2PDS, which converts a BPDS
model BP into a PDS model P ′; and (2) Moped [6], which checks reachability proper-
ties of P ′. Different from the PDS P in BP, the new PDS model P ′ is a standard PDS
in the sense that P ′ does not have inputs. The properties to be checked are provided to
Moped through labeling states in the software PDS P and/or the hardware BA B.

First, we present the conversion algorithm, BPDS2PDS, and argue that the conver-
sion preserves the reachability properties of BP. Second, we analyze the complexity of
the conversion, the size of P ′ compared to BP, and the verification complexity.
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Fig. 7. CoVer: reachability checking of BPDS

5.1 Converting BPDS to PDS

The conversion works in such a way that the transition rules of B and P are selected
and merged inP ′ depending on whether or not an interface event happens. We represent
hardware transition rules as the union of two groups as δ = Rmodel ∪ Revt. Rmodel is
the set of rules that are not associated with software interface events. Revt is the set of
rules associated with software interface events. We define two functions: (1) HWevt(τ)
checks if the transition label τ of a rule in P is true for a hardware interface event. If
yes, this rule services the hardware interface event, for instance, calling the ISR; (2)
SWevt(γ) checks if γ is the stack symbol of a software interface event.

Algorithm 1 converts BP (given δ as rules of B and Δ as rules of P) into a PDS
P ′ with its rules as Δ′. Algorithm 1 explores the rules of P and B to build new PDS
rules of P ′ based on the synchronization of P and B. It terminates when all rules in
δ and Δ are processed. For each transition rule in Δ, the algorithm has three choices:
(1) if the transition handles a hardware interface event, the transition is merged with its
corresponding transition in B to form a transition of P ′; (2) if it is a software interface
event, the transition is merged with its corresponding transition in B as well. Hardware
and software should always be synchronous on interface events; (3) when no interface
event happens, the loop between lines 15-18 merges the transition of P with transitions
of B. Because hardware and software are asynchronous, the transition labels of P and

Algorithm 1. BPDS2PDS(δ = Rmodel ∪Revt, Δ)
1: Δ′ ← ∅
2: for all 〈g, γ〉 τ

↪→ 〈g′, ω〉 ∈ Δ do
3: if HWevt(τ) then
4: {If this PDS rule handles a hardware interface event}
5: for all q

σ→ q′ ∈ Rmodel and σ ⊆ LP2B(〈g, γ〉) and τ ⊆ LB2P(q) do
6: Δ′ ← Δ′ ⋃{〈(g, q), γ〉 ↪→ 〈(g′, q′), ω〉}
7: end for
8: else if SWevt(γ) then
9: {Else if this is a software interface event}
10: for all q

σ→ q′ ∈ Revt and σ ⊆ LP2B(〈g, γ〉) and τ ⊆ LB2P(q) do
11: Δ′ ← Δ′ ⋃{〈(g, q), γ〉 ↪→ 〈(g′, q′), ω〉}
12: end for
13: else
14: {For transitions with no interface event}
15: for all q

σ→ q′ ∈ Rmodel do
16: Δ′ ← Δ′ ⋃{〈(g, q), γ〉 ↪→ 〈(g, q′), γ〉}
17: Δ′ ← Δ′ ⋃{〈(g, q), γ〉 ↪→ 〈(g′, q), ω〉}
18: end for
19: end if
20: end for
21: return Δ′
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B trivially hold on each other. There are four types of rules that can be generated for
P ′ in the third condition: (1) P self-loops on its current state while B transits, which
occurs in line 16; (2) B self-loops on its current state while P transits, which occurs in
line 17; (3) Both B and P self-loop; (4) Both B and P transit. Rule (3) is trivial and can
be eliminated. Rule (4) equals to consecutive transitions by Rules (1) and (2), because
hardware and software execute asynchronously when no interface event happens.

P ′ preserves the reachability property of BP. (1) The state space of P ′ equals to that
of BP; (2) The initial state of P ′ is the initial state of BP; (3) We do not utilize the final
states F ′ (the BA constraints) of BP in the reachability checking; (4) In Algorithm 1,
it is clear that P ′ preserves all the transitions of both B and P . Self-loop transitions are
introduced for states of both B and P to model the asynchronous transitions between
hardware and software. They do not affect the correctness of reachability checking.

5.2 Complexity Analysis

Algorithm 1 generates O(|Δ| × |δ|) PDS rules and has a time complexity of O(|Δ| ×
|δ|). The number of rules in P ′ is equal to the number of rules of BP, because we
add a rule to P ′ only if there is a corresponding rule in BP. P ′ and BP have the
same configurations because their state space is identical. We use Schwoon’s post∗

algorithm [6] (implemented in Moped) to solve the reachability problems of P ′, so the
time and space model-checking complexities on P ′ are O((|G ×Q|+ |Δ× δ|)3).

6 Evaluation

We first show an overall evaluation of our co-verification framework, where we suc-
ceeded in verifying the Windows driver and the hardware model of the PIO-24 digi-
tal I/O card, finding a previously undiscovered software bug – an “invalid read” bug.
Then we discuss our experiments on evaluating the model-checking performance of our
BPDS model. All experiments were run on a workstation with Intel Xeon 3GHz dual
core CPU and 2GB physical memory.

For PIO-24, we abstract the hardware model (269 lines), the driver program (1724
lines), and the interface specification into a BPDS model. The verification detects a bug
using 12 predicates and 4165 peak live Binary Decision Diagram (BDD) nodes in 0.02
seconds. The falsifying path that combines the execution of both hardware and software
leads to a violation where a Deferred Procedure Call1 (DPC) finishes the input request
in success without actually reading the data from the device. As shown in Figure 2, the
“invalid read” bug occurs when DioIsr interrupts DioEvtDeviceControl at P1,
where CurrentRequest and AwaitingInt become inconsistent. DioIsr will
not execute the if block at P2 because AwaitingInt is FALSE. Later the DPC is
requested at P3. The DPC sends data back to the application that generated the I/O
request if CurrentRequest is not null, but the data is never actually read from the
device. It is important to note that this bug cannot be detected when using a sequential
model because the inconsistency of variable states only happens in HW/SW concurrent

1 We omit the DPC implementation due to page limitation.
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executions, as represented in our approach. Furthermore, because our approach to co-
verification includes both hardware and software models, certain kinds of false bugs
will not appear. For example, if the device’s status is always interrupt-disabled as the
driver reaches P1, the above described “invalid read” bug cannot happen. On the other
hand, the verification of this property costs one person about 6 hours’ manual efforts to
construct the BPDS model. In order to avoid this overhead, the abstraction/refinement
process needs to be fully automated (see Section 7).

We present an evaluation of the BPDS model based on synthetic programs derived
from the template T shown in Figure 8 and hardware models derived from the template
H shown in Figure 9. T is similar to the evaluation template used in [12] and later in [6].
The difference is that T operates a hardware counter which has global state. The tem-
plates allow us to generate a Boolean program T (N) and its corresponding hardware
model H(N) for N > 0. T (N) and H(N) together have four global variables2, where
there are three variables (a, b, and c) representing the states of the hardware counter.
T (N) has 2N + 2 procedures including software interface events: main as program
entry point, rd reg as a software interface event that returns the value of the most
significant bit of the counter, N software interface events of the form inc reg<i>,
and N procedures of the form level<i> that call rd reg and inc reg<i>, where
0 < i ≤ N . For 0 < j < N , the instances of <stmt> in the body of proce-
dure level<j> are replaced by a call to procedure level<j+1>. The instances of
<stmt> in the body of procedure level<N> are replaced by skip. H(N) provides
hardware transitions corresponding to the N software interface events inc reg<i>,
where the transitions increase the hardware counter by one. To further increase the
complexity of the model for purposes of testing, we define an environment model that
non-deterministically left-shifts the hardware counter by one bit. Templates T and H
cover common scenarios where software operates hardware via interface events.

We compare the two approaches that model hardware using BA or using PDS. When
using PDS, we model both hardware and software using a sequential program, similar to
Monniaux’s approach [4]. We model the environment and interface events as procedures
such as environment() and inc reg<i>(). The procedure environment is
called after each software interface event to simulate the input from environment.

Table 1 shows the statistics on the co-verification models generated from Figure 8
and Figure 9, where the counter’s size varies from 3 to 5 bits (i.e., the number of Boolean
variables used by the counter). We force the reachability checking to be exhaustive, so
the results represent the worst case performance. Statistics show that the PDS hardware
model adds significant overhead to co-verification compared to the BA hardware model.
For example, when N = 4000 and the counter has 5-bit size, the PDS hardware model
generates 148k transition rules and has 22383 peak live BDD nodes, compared to 76k
transition rules and 2115 peak live BDD nodes for the BA hardware model.

Table 2 shows the statistics on the model when interrupt checking is enabled. Com-
pared to the result in Table 1, we use one more global variable to track whether an inter-
rupt has fired. Similar to the procedure environment(), the ISR (not shown) calls
interface events to left-shift the counter by one bit. The statistics show that although the

2 Actually, we use three groups of templates. They differ in the size of the counter. For a counter
with 3, 4, or 5 bits, we have 4, 5, or 6 global variables.
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// a, b, c represent
// the hardware counter
decl g, a, b, c;
void main()
begin

level1();
level1();
if (!g) then

reach: skip;
else

skip;
fi

end

void level<i>()
begin

decl t;
t := 0;
if(g) then

while(!t) do
inc reg<i>();
t := rd reg();

od
else
<stmt>; <stmt>;

fi
g := !g;

end

bool rd reg()
begin

return c;
end

// Büchi automaton
// as hardware model
void inc reg<i>()
begin

skip;
end

// Using PDS as hardware model
void inc reg<i>()
begin

if (!a) then
a := 1;

elsif (!b) then
a,b := 0,1;

elsif (!c) then
a,b,c := 0,0,1;

else
a,b,c := 0,0,0;

fi
end

Fig. 8. Boolean program template T for evaluating the BPDS model

decl a,b,c;

inc reg<i>
begin

TRANS ( (!a & !b & !c & next(a) & !next(b) & !next(c))
| (!a & !b & c & next(a) & !next(b) & next(c))
| (!a & b & !c & next(a) & next(b) & !next(c))
| (!a & b & c & next(a) & next(b) & next(c))
| (a & !b & !c & !next(a) & next(b) & !next(c))
| (a & !b & c & !next(a) & next(b) & next(c))
| (a & b & !c & !next(a) & !next(b) & next(c))
| (a & b & c & !next(a) & !next(b) & !next(c)) )

end

// Run non-deterministically
environment
begin

TRANS( (b & next(a)) |
(!b & !next(a)) )

TRANS( (c & next(b)) |
(!c & !next(b)) )

TRANS( !next(c) )
end

// Using PDS as
// hardware model
bool environment()
begin

l0: if(*) then
a,b,c := b,c,0;
goto l0;

fi
end

Fig. 9. Hardware model template H for evaluating the BPDS model

Table 1. Comparison of co-verification statis-
tics with BA and PDS hardware models (hard-
ware does not interrupt software, and the size of
global counter varies from 3 to 5 bits)

Time usage with Time usage with
N BA HW model (Sec) PDS HW model (Sec)

3 bits 4 bits 5 bits 3 bits 4 bits 5 bits

1k 0.42 0.72 1.28 2.47 8.08 35.62
2k 0.91 1.47 2.64 5.09 16.31 71.83
3k 1.42 2.33 4.08 8.14 25.42 109.33
4k 1.91 3.11 5.50 10.75 33.70 144.22

Table 2. Statistics when interrupt checking
is enabled (one more Boolean variable is
used to track the interrupt status)

Time usage (Sec) Peak live BDD nodes
N 3 bits 4 bits 5 bits 3 bits 4 bits 5 bits

1k 1.67 3.31 6.98 2335 5129 10325
2k 3.70 6.97 14.42 2335 5129 10337
3k 6.12 11.19 22.76 2335 5129 10325
4k 8.30 15.61 30.41 2335 5129 10337

full HW/SW concurrency is checked, as expected the verification complexities grow in
the same order of magnitude as Table 1, where the complexities depend on the numbers
of both global states and rules (the sizes of the program and hardware design). It can
be inferred from Table 1 and Table 2 that using PDS as the hardware model without in-
terrupt checking performs even worse than when using BA as the hardware model with
interrupt checking. The time usage of Algorithm 1 that converts a BPDS to a PDS rep-
resentation is very low. In our experiments, the maximum time usage is 0.45 seconds.
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7 Conclusion and Future Work

In this paper, we have presented an automata-theoretic approach to co-verification. The
core of this approach is a formal model for co-verification, the Büchi Pushdown Sys-
tem (BPDS). We have designed a co-specification framework for HW/SW interfaces
and demonstrated a process of constructing a BPDS from the abstraction of hardware,
software, and their interface specification. A BPDS can be converted to a PDS with the
same complexities, so reachability analysis algorithms for PDS can be readily utilized
to analyze BPDS. The evaluation has shown that BPDS is an effective model for co-
verification. For the next step, we plan to automate the abstraction/refinement process
of co-verification by integrating the abstraction/refinement engine of SLAM (C2BP for
abstraction and Newton [11] for refinement) and the VCEGAR engine. One challenge
for this integration is how to automatically propagate the predicates discovered by one
engine across the HW/SW boundary to the other engine.
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Grégory Théoduloz4, and Damien Zufferey3

1 Simon Fraser University, B.C., Canada
2 University of Passau, Germany

3 IST Austria (Institute of Science and Technology Austria)
4 EPFL, Switzerland

Abstract. Shape analysis is a promising technique to prove program properties
about recursive data structures. The challenge is to automatically determine the
data-structure type, and to supply the shape analysis with the necessary infor-
mation about the data structure. We present a stepwise approach to the selection
of instrumentation predicates for a TVLA-based shape analysis, which takes us
a step closer towards the fully automatic verification of data structures. The ap-
proach uses two techniques to guide the refinement of shape abstractions: (1) dur-
ing program exploration, an explicit heap analysis collects sample instances of
the heap structures, which are used to identify the data structures that are manip-
ulated by the program; and (2) during abstraction refinement along an infeasible
error path, we consider different possible heap abstractions and choose the coars-
est one that eliminates the infeasible path. We have implemented this combined
approach for automatic shape refinement as an extension of the software model
checker BLAST. Example programs from a data-structure library that manipulate
doubly-linked lists and trees were successfully verified by our tool.

1 Introduction

Proving the safety of programs that use dynamically-allocated data structures on the
heap is a major challenge due to the difficulty of finding appropriate abstractions. For
cases where the correctness property intimately depends on the shape of the data struc-
ture, researchers have over the last decade designed abstractions that are collectively
known as shape analysis. One approach that has been particularly successful is based
on the representation of heaps by three-valued logical structures [17]. The abstraction
is specified by a set of predicates over nodes (unary and binary) representing core facts
(e.g., points-to and field predicates) and derived facts (e.g., reachability). The latter
category of predicates is called instrumentation predicates. Instrumentation predicates
are crucial to control the precision of the analysis. First, they can keep track of rele-
vant properties; second, they allow for more precise successor computations; and third,
when used as abstraction predicates, they can control node summarization.
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In our previous work, we combined shape analysis with an automatic abstraction-
refinement loop [4]. If a chosen abstraction is too coarse to prove the desired correctness
property, a spurious counterexample path is identified, i.e., a path of the abstract pro-
gram which witnesses a violation of the property but has no concrete counterpart. We
analyzed such counterexample paths in order to determine a set of additional pointers
and field predicates which, when tracked by the abstraction, remove the spurious coun-
terexample. These core predicates are then added to the analysis, and a new attempt is
made at proving the property. A main shortcoming of that work is that the refinement
loop never automatically discovers the shape class (e.g., doubly-linked list, binary tree)
that is suitable for proving the desired property, and it never adds new instrumentation
predicates to the analysis. Consequently, programs can only be verified if all necessary
shape classes and instrumentation predicates are “guessed” by the verification engineer
when an abstraction is seeded. In the absence of such a correct guess, the method will
iteratively track more and more core predicates, until either timing out or giving up
because no more relevant predicates can be found.

In this work, we focus on the stepwise refinement of a TVLA-based shape analysis by
automatically increasing the precision of the shape classes via instrumentation predi-
cates. Suppose that counterexample analysis (e.g., following [4]) indicates that we need
to track the heap structure to which a pointer p points, in order to verify the program.
We can encounter two situations: (1) we do not yet track p and we do not know to which
kind of data structure p points; or (2) we already track the shape of the heap structure to
which p points but the tracked shape class is too coarse and may lack some necessary
instrumentation predicates. We address situation (1) by running an explicit heap analy-
sis in order to identify the shape of the data structure from samples, and situation (2) by
selecting the coarsest refinement from a lattice of plausible shape classes. Our imple-
mentation provides such plausible shape classes by default for standard data structures
like lists and trees, but also supports a flexible way to extend the existing shape classes.

Example. We illustrate our method on a simple program that manipulates doubly-linked
lists (cf. Fig. 1(a)). First, two (acyclic) doubly-linked lists of arbitrary length are gen-
erated (alloc list); then the two lists are concatenated; finally, the program checks
if the result is a valid doubly-linked list (assert dll). Our algorithm automatically
verifies that no assertion in this program is violated. The algorithm starts with a trivial
abstraction, where no predicates are tracked, and the reachability analysis using this ab-
straction finds an abstract error path. The algorithm checks whether this abstract error
path corresponds to a concrete error path of the program by building a path formula (i.e.,
a formula which is satisfiable iff the path is a concrete error path). The path formula of
the first abstract error path is unsatisfiable; therefore, this is an infeasible error path (also
called spurious counterexample), and the abstraction is refined using an interpolation-
guided refinement process. The following atoms occur in interpolants for the first path
formula: pointer equalities among l1, l2, and p; l1->succ = p; and l2->pred
= p. Since the interpolants mention pointers of a recursive data structure, we need to
observe them via a shape analysis tracking l1, l2, and p (and their aliases).

But it is not enough to know which pointers to analyze; we also need to know their
data structures, in order to determine the shape abstraction (so-called shape class), be-
cause different data structures require different instrumentation predicates. Since it is
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1 typedef struct node {
2 int data;
3 struct node *succ, *prev;
4 } *List;
5 List alloc_list() {
6 List r = (List) malloc(...);
7 List p = r;
8 if (r == 0) exit(1);
9 while (*) {

10 List t = (List) malloc(...);
11 if (t == 0) exit(1);
12 p->succ = t; t->pred = p;
13 p = p->succ;
14 }
15 return r;
16 }
17 void assert_dll(List p) {
18 while ((p != 0) && (p->succ != 0)) {
19 assert(p->succ->pred == p);
20 p = p->succ;
21 }
22 }
23 void main() {
24 List l1 = alloc_list();
25 List l2 = alloc_list();
26

27 List p = l1;
28 while (p->succ != 0) p = p->succ;
29 p->succ = l2; l2->pred = p;
30

31 assert_dll(l1);
32 }

(a) Example C program
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Fig. 1. Example program, two list abstractions, and hierarchy of data structures

the first time we encounter this data structure, our algorithm uses an explicit heap anal-
ysis to collect explicit heap samples that would occur during program execution. We
graphically illustrate an explicit heap that is collected by the explicit heap analysis in
Fig. 1(b). A node (rectangle with three boxes) represents one structure element; the first
box represents the integer value for the field data; the second and third box represent
the pointer values of the fields succ and prev, respectively. An arrow represents a
pointer valuation. A symbol$ in a box represents an unknown value. When a threshold
is hit (e.g., once we have collected explicit heaps with at least 5 nodes each), we stop
the explicit heap analysis, and extract the shape class from the explicit heap samples
by checking which data structure invariants they satisfy. In the example heap, all nodes
satisfy the invariant for acyclic singly-linked lists for each field individually, and the
invariant for doubly-linked lists (for every node n, the predecessor of the successor of n
is n itself), but not the invariant for binary trees (acyclic graph formed by the two field
pointers). Knowing that the data structure is not a tree, and because both fields pred
and succ occur in interpolants, we restrict the search for a shape abstraction to those
suitable for doubly-linked lists. We refine the shape abstraction by choosing the coarsest
shape class for doubly-linked lists, i.e., in addition to points-to predicates, we track two
binary predicates for the fields pred and succ, and no instrumentation predicates.

The refined abstraction is still not fine enough to prove the program safe, because we
find a new abstract error path. Its path formula is unsatisfiable, but the interpolant-based
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analysis of the abstract error path does not yield any new predicates. Therefore, we have
to search for a finer shape class that contains instrumentation predicates as well. From
the previous analysis we know that we have a doubly-linked list. We use a binary search
to find, in the given lattice, the coarsest abstraction specification that eliminates the ab-
stract error path. In our example, the tool discovers the necessity to track the unary in-
strumentation predicates cancel [succ,pred] and cancel [pred,succ] in addition to
previously tracked predicates. For a node v, the predicate cancel [f1, f2](v) holds if the
following condition is fulfilled: if the field f1 of an element represented by v points to an
element represented by some node v′, then the field f2 of the element represented by v′

points back to the element represented by v. After this last refinement step, the abstract
reachability analysis proves that no assertion is violated. Figure 1(c) shows a shape
graph that is reachable at the entry point of function assert dll. A node represents a
single structure element, and a summary node (drawn as a double circle) represents one
or more structure elements. Unary predicate valuations are represented by arrows (or
the absence of arrows) from predicates to nodes; binary predicate valuations are repre-
sented by arrows between nodes, labeled with the predicate. We can observe that the
instrumentation predicates cancel [succ,pred] and cancel [pred,succ] have a val-
uation of 1 for all nodes in the data structure. Due to the information carried by those
instrumentation predicates, we are able to prove the program safe.

Related Work. Counterexample-guided abstraction refinement (CEGAR) [7] is used in
several predicate-abstraction based verifiers [6,1,3]. Attempts to apply CEGAR to other
abstract domains exist. For instance, Gulavani and Rajamani proposed CEGAR-based
widening operators in the general context of abstract interpretation [9]. Refinement of
shape analysis in particular has also been studied: Loginov et al. proposed a technique
to learn new instrumentation predicates from imprecise verification results [13]. In our
previous work [4], we studied how to combine nullary predicate abstraction and shape
analysis, and how to refine shape analysis by discovering new core predicates.

Our current work is also in the tradition of combining symbolic and explicit analy-
ses for program verification. In particular, combinations of symbolic abstraction meth-
ods with concrete program execution (testing) to build safety proofs have received
much attention recently. Such techniques have been applied in the context of predi-
cate abstraction-based model checkers to accelerate the state construction and guide the
refinement [8,2,12,18], and in the context of constraint-based invariant generation [10].
We explored in previous work the use of precision adjustment to switch between explicit
and symbolic steps during a reachability analysis [5]. To the best of our knowledge, no
existing technique uses explicit heaps to guide the refinement of a shape abstraction.

2 Preliminaries

2.1 Programs

In this exposition, we consider flat programs (i.e., programs with a single function).
Our tool implementation supports interprocedural analysis [15, 11, 16]. We formalize
programs using control-flow automata. A control-flow automaton (CFA) is a directed,
labeled graph (L, E), where the set L of nodes represents the control locations of the
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program (program-counter values), and the set E ⊆ L × Ops × L of edges represents
the program transfers. Each edge is labeled with a program operation that can be either
an assignment or an assume predicate. The program operations are based on a set X
of identifiers to identify program variables, and a set F of identifiers to identify fields.
Variable identifiers and field identifiers can be either of type integer (denoted by int)
or of type pointer to a (possibly recursive) structure (denoted by a C struct type). A
structure is a set of field identifiers. We use a C-like syntax to denote program opera-
tions; in particular, p->field denotes the content of the field field in the structure pointed
to by variable p. A program (G, l0 ) consists of a CFA G = (L, E) and an initial control
location l0 ∈ L. A program path t of length n is a sequence (op1 : l1); . . . ; (opn : ln)
of operations, such that (li−1, opi, li) ∈ E for all 1 ≤ i ≤ n. A program path is feasible
if there exists a concrete program execution with matching locations. The verification
problem (G, l0 , lerr ) is constituted by a program (G, l0 ) and an error location lerr . The
answer to the verification problem is SAFE if there exists no feasible path t that ends
in location lerr , and UNSAFE otherwise. In the following two subsections we present
the two abstract domains that our model-checking algorithm uses to compute an over-
approximation of reachable states: explicit-heap abstraction and shape abstraction.

2.2 Explicit-Heap Abstraction

Explicit heap analysis stores concrete instances of data structures in its abstract states.
Each abstract state represents an explicit, finite part of the memory. An abstract state
H = (v, h) of explicit heap analysis consists of the following two components: (1) the
variable assignment v : X → Z� is a total function that maps each variable identifier
(integer or pointer variable) to an integer (representing an integer value or a structure
address) or the special value $ (representing the value ’unknown’); and (2) the heap
assignment h : Z ⇀ (F → Z�) is a partial function that maps every valid structure ad-
dress to a field assignment, also called structure cell (memory content). A field assign-
ment is a total function that maps each field identifier of the structure to an integer, or the
special value$. We call H an explicit heap. The initial explicit heap H0 = (v0, ∅), with
v0(x) = $ for every program variable x, represents all program states. Given an explicit
heap H and a structure address a, the depth of H from a, denoted by depth(H, a), is
defined as the maximum length of an acyclic path whose nodes are addresses and where
an edge from a1 to a2 exists if h(a1)(f) = a2 for some field f , starting from v(a). The
depth of H , denoted by depth(H), is defined as maxa∈X depth(H, a).

The explicit-heap abstraction is a mapping Θ : L → 2X , which assigns to each
program location a subset of variables from X . Only the variables in the subset are
tracked by the explicit heap analysis, i.e., the variable assignment of an abstract heap at
location l maps every variable not in Θ(l) to $. The abstract post operator reflects the
effect of applying an operation on the explicit heap, provided it affects a data structure
pointed to by a variable in the explicit-heap abstraction. Figure 1(b) graphically depicts
an explicit heap (v, h) with v = {l1 �→ 1} and h = {1 �→ {data �→ �, prev �→ 0, succ �→
2}, 2 �→ {data �→ �, succ �→ 3, prev �→ 1}, 3 �→ {data �→ �, succ �→ 4, prev �→ 2}, 4 �→
{data �→ �, succ �→ 5, prev �→ 3}, 5 �→ {data �→ �, prev �→ 4, succ �→ 0}}.
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2.3 Shape Abstraction

Shape abstraction symbolically represents instances of data structures in its abstract
states. We use a shape abstraction that is based on three-valued logic [17]. The notions
of shape class, tracking definition, and shape-class generator are taken from lazy shape
analysis [4]. We model the memory content by a set V of heap nodes. Each heap node
represents one or more structure cells. Properties of the heap are encoded by predicates
over nodes. The number of nodes that a predicate constrains is called the arity of the
predicate, e.g., a predicate over one heap node is called unary predicate and a predicate
over two heap nodes is called binary predicate. A shape class S = (Pcore , Pinstr , Pabs)
consists of three sets of predicates over heap nodes: (1) a set Pcore of core predicates,
(2) a set Pinstr of instrumentation predicates with Pcore ∩ Pinstr = ∅, where each
instrumentation predicate p ∈ Pinstr has an associated defining formula ϕp over pred-
icates, and (3) a set Pabs ⊆ Pcore ∪ Pinstr of abstraction predicates [17]. We denote
the set of shape classes by S. A shape class S refines a shape class S′, written S � S′,
if (1) P ′

core ⊆ Pcore , (2) P ′
instr ⊆ Pinstr , and (3) P ′

abs ⊆ Pabs . The partial order �
induces a lattice of shape classes. We require the set Pcore of core predicates to con-
tain the (special) unary predicate sm. For a heap node v, the predicate sm(v) has the
value false if v represents exactly one structure cell, and the value 1/2 if v represents
one or more structure cells. In the latter case, the heap node is called summary node. In
the following, we make use of the following two families of core predicates. A points-
to predicate ptx (v) is a unary predicate that is true if pointer variable x points to a
structure cell that is represented by v, and false otherwise. A field predicate fdφ(v) is a
unary predicate that is true if field assertion φ holds for all structure cells that are rep-
resented by heap node v, and false otherwise. A field assertion is a predicate over the
field identifiers of a structure. Therefore, field predicates represent the data content of a
structure, rather than the shape of the structure. A shape graph s = (V, val ) for a shape
class S = (Pcore , Pinstr , Pabs) consists of a set V of heap nodes and a valuation val in
three-valued logic of the predicates of S: for a predicate p ∈ Pcore ∪ Pinstr of arity n,
val(p) : V n → {0, 1, 1/2}.

The shape abstraction is a function Ψ : L→ 2S that maps each control location to a
set of shape classes (different shape classes can be used to simultaneously track different
data structures). The Ψ -abstraction, i.e., the result of applying a shape abstraction Ψ , is
an abstract state, called shape region. A shape region G = {(S1, S1), ..., (Sn, Sn)}
consists of a set of pairs (Si, Si) where Si is a shape class and Si is a set of shape
graphs for Si. The abstract post operator for shape graphs is defined as in TVLA [17].

Tracking definitions and shape-class generators. Instead of directly considering
shape classes, we separate two aspects of shape classes. First, a tracking definition pro-
vides information about which pointers and which field predicates need to be tracked on
a syntactic level. Second, given a tracking definition, a shape-class generator determines
which predicates are actually added to the shape class.

A tracking definition D = (T, Ts, Φ) consists of (1) a set T of tracked pointers,
which is the set of variable identifiers that may be pointing to some node in a shape
graph; (2) a set Ts ⊆ T of separating pointers, which is the set of variable iden-
tifiers for which we want the corresponding predicates (e.g., points-to, reachability)
to be abstraction predicates (i.e., precisely tracked, no value 1/2 allowed); and (3) a
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set Φ of field assertions. A tracking definition D = (T, Ts, Φ) refines a tracking def-
inition D′ = (T ′, T ′

s, Φ
′), if T ′ ⊆ T , T ′

s ⊆ Ts and Φ′ ⊆ Φ. We denote the set of all
tracking definitions by D. The coarsest tracking definition (∅, ∅, ∅) is denoted by D0.

A shape-class generator (SCG) is a function m : D → S that takes as input a track-
ing definition and returns a shape class, which consists of core predicates, instrumen-
tation predicates, and abstraction predicates. While useful SCGs contain points-to and
field predicates for pointers and field assertions from the tracking definition, and the
predicate sm, other predicates need to be added by appropriate SCGs. An SCG m refines
an SCG m′ (denoted by m � m′) if m(D) � m′(D) for every tracking definition D.
We require that the set of SCGs contains at least the coarsest element m0, which is a
constant function that generates for each tracking definition the shape class (∅, ∅, ∅).
Furthermore, we require each SCG to be monotonic: given an SCG m and two tracking
definitions D and D′, if D � D′, then m(D) � m(D′).

A shape type T = (σ, m, D) consists of a structure type σ, an SCG m, and a
tracking definition D. For example, consider the type struct node {int data;
struct node *succ;}; and the tracking definition D = ({l1, l2}, {l1}, {data =
0}). To form a shape type for a singly-linked list, we can choose an SCG that takes a
tracking definition D = (T, Ts, Φ) and produces a shape class S = (Pcore , Pinstr , Pabs)
with the following components: the set Pcore of core predicates contains the default
unary predicate sm for distinguishing summary nodes, a binary predicate succ for rep-
resenting links between nodes in the list, a unary points-to predicate for each variable
identifier in T , and a unary field predicate for each assertion in Φ. The set Pinstr of
instrumentation predicates contains for each variable identifier in T a reachability pred-
icate. The set Pabs of abstraction predicates contains all core and instrumentation pred-
icates about separating pointers from Ts. More precise shape types for singly-linked
lists can be defined by providing an SCG that adds more instrumentation predicates
(e.g., cyclicity).

A shape-abstraction specification is a function Ψ̂ that assigns to each control location
a set of shape types. The specification Ψ̂ defines a shape abstraction Ψ in the following
way: a pair (l, {T1, . . . , Tk}) ∈ Ψ̂ yields a pair (l, {S1, . . . , Sk}) ∈ Ψ with Si =
Ti.m(Ti.D) for all 1 ≤ i ≤ k. (We use the notation X.y to denote the component y

of a structure X .) Given a program P , the initial shape-abstraction specification Ψ̂0 is
defined as the set {(σ, m0, D0) | σ is a structure type occurring in P}; the initial shape
region G0 consists of one pair (∅, ∅) for every shape type in Ψ̂0. Region G0 does not
constrain the state space; it represents all program states.

3 Shape Analysis with Abstraction and Refinement

We introduce a new verification algorithm that is based on abstraction and refinement.
Shape types can be refined in two different ways: either we refine the shape type’s
tracking definition, or we refine the shape type’s SCG. In both cases, the resulting shape
class is guaranteed to be finer, because SCGs are monotonic. Previous work has shown
how tracking definitions can be refined, by extracting information from infeasible error
paths using interpolation [4]. Our approach is based on this algorithm, and proposes a
novel technique to refine SCGs, by combining information from two sources. The first
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source of information is explicit heaps and is used to restrict the refinement to SCGs that
are designed to support the kind of data structure (e.g., doubly-linked list, binary tree)
that the program manipulates. When we discover pointers to data structures for the first
time, we run an explicit heap analysis of the program until we encounter explicit heaps
with a depth that exceeds a given threshold. The explicit heaps that have been computed
are queried for data structure invariants, and are then abstracted to shape graphs. The
second source of information is infeasible error paths. We simulate shape analysis with
different SCGs along the path to determine the coarsest SCG that is able to eliminate
the infeasible path. A library of SCGs that supports standard data structures like lists
and trees is available in BLAST.

3.1 Model-Checking Algorithm (ModelCheck)

Our analysis algorithm operates on an abstract reachability tree (ART), whose nodes
contain two abstract states: one abstract state models the heap memory explicitly (us-
ing explicit heaps), and the other abstract state models the heap memory symbolically
(using shape graphs). Formally, an abstract reachability tree (ART) [3] is a tree that
fulfills the following properties. Every node n is a tuple n = (l, H, G) which con-
sists of a control-flow location l, an explicit heap H , and a shape region G. The root
node n0 = (l0, H0, G0) consists of the initial control-flow location l0, the initial ex-
plicit heap H0, and the initial shape region G0. An edge (n, n′) in the ART means that
node n′ is the abstract successor of node n, i.e., the edge ((l, H, G), (l′, H ′, G′)) exists
in the ART if l′ is a successor location of l in the CFA, H ′ is the abstract explicit-heap
successor of explicit heap H , and G′ is the abstract shape successor of shape region G.
A node n is covered if there exists another node n′ in the ART for the same location
and all concrete states represented by n are represented by n′.

Algorithm ModelCheck (Alg. 1) takes as input a program P , an error location lerr
of P , and a lattice M of SCGs. The algorithm tries to prove (or disprove) that lerr is
not reachable in any concrete program execution. It keeps track of the current abstrac-
tion, i.e., an explicit-heap abstraction and shape-abstraction specification. In addition, it
maintains a mapping from program types to sets of enabled SCGs (subsets of M ). Only
enabled SCGs are considered during refinement. In a first step, the algorithm initializes
the abstractions for each control location of the input program P with trivial abstrac-
tions. All SCGs are initially enabled, and the ART A is initialized as a tree with a single
node representing the initial program states. Then a check-refine loop is executed until
either the program is declared safe or a feasible path to the error location is found.

In each iteration, we first call procedure BuildART to extend the given ART A for
the given program P and the current abstractions Θ and Ψ̂ , towards a resulting ART
that is closed under abstract successors. Procedure BuildART (not shown in pseudo-
code) takes as input a program P , an error location lerr , an ART A, an explicit-heap
abstraction Θ, and a shape abstraction specification Ψ̂ . If the procedure stops, it returns
a pair (A, n) consisting of the ART and its last processed (leaf) node. It operates on the
ART nodes and performs a waitlist-based reachability analysis to explore the abstract
state space that Θ and Ψ̂ define. Children of nodes are computed until every leaf of the
ART is covered, i.e., the ART is complete. The procedure stops if one of the following
conditions is fulfilled: (a) The reachability analysis encounters a node n whose location



Shape Refinement through Explicit Heap Analysis 271

Algorithm 1. ModelCheck (P, lerr , M)
Input: a program P , an error location lerr of P ,

a lattice M of SCGs with finite height
Output: either an ART to witness safety,

or an error path to witness the existence of a feasible error path
Variables: an explicit-heap abstraction Θ, a shape-abstraction specification Ψ̂ , an ART A,

a mapping E from types to sets of enabled SCGs
for each location l of P do

Ψ̂(l) := Ψ̂0; Θ(l) := ∅;
for each pointer type σ in P do

E(σ) := M
A = {(l0, H0, G0)};
while true do
(A, n) := BuildART (P, lerr , A, Θ, Ψ̂);
if n is not an error node then // ART A is safe, i.e., A contains no error node

if A is complete then
print “Yes. The program is safe. Certificate:” A; stop;

else // threshold exceeded, switch off explicit tracking
(A,Θ, Ψ̂ , E) := Abstract (A,n, Θ, Ψ̂ , M, E);

else // n is an error node, i.e., n = (lerr , ·, ·)
let t be the path in A from the root to n
if PathFormula(t) is satisfiable then // t is feasible; the error is really reachable

print “No. The program is unsafe. Counterexample path:” t; stop;
else // t is infeasible due to a too coarse abstraction
(A,Θ, Ψ̂ , E) := Refine(A, n, Θ, Ψ̂ , M, E);

is the error location. Then the last computed node contains the error location. (b) The
reachability analysis completes the ART, i.e., all leaf nodes of the ART are covered
and the ART does not contain any node with the error location — the ART is safe,
and complete. (c) The depth of the last explicit heap that the procedure has computed
exceeds a given threshold. The last computed node contains an explicit heap suitable
for abstraction.

Algorithm ModelCheck distinguishes the different outcomes of BuildART based on
the ART properties safe and complete. (1) If the ART is safe and complete, the over-
all algorithm can stop and report that the program is safe. (2) If the ART is safe but
not complete, then the threshold for the explicit heap analysis was reached at node n,
in other words, the explicit heap analysis has collected enough information to guide
the refinement of the shape-abstraction specification. Procedure Abstract is called to
analyze explicit heaps to restrict enabled SCGs, refine SCGs in the shape-abstraction
specification, and replace explicit heaps in the ART by shape graphs. (3) If n represents
an error location and the path from the root of A to n is feasible, then the overall al-
gorithm can stop and report an error. (4) If n represents an error location but the path
from the root of A to n is infeasible, then the path was encountered due to a too coarse
abstraction, and procedure Refine will try to find a more suitable abstraction. Procedure
Refine may fail due to the absence of a suitable, fine-enough SCG in the lattice of SCGs.
Note that Algorithm ModelCheck may not terminate, in case it produces finer and finer
abstractions to rule out longer and longer infeasible error paths.
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Algorithm 2. Abstract(A, n, Θ, Ψ̂ , M, E)

Input: an ART A, an ART node n, an abstraction consisting of Θ and Ψ̂ ,
a set M of SCGs, and a type-to-SCGs mapping E

Output: an ART, an abstraction consisting of Θ and Ψ̂ , and a type-to-SCGs mapping E
let n = (l ,H,G)
let pointer p ∈ Θ(l) s.t. depth(H,p) > k

let σ = type(p); choose (σ, m, D) ∈ Ψ̂(l)
// evaluate invariants on explicit heap, and update abstractions
E(σ) := E(σ) ∩ SCGsFromExplicit(H,p)
let m′ be the coarsest SCG in E(σ)
replace (σ, m, D) by (σ, m′, D) in Ψ̂(l)
remove all x from Θ(l) s.t. type(x) = type(p)
// remove explicit heap info and update shape graphs in ART
for each node n = (l ,H,G) in A do

n′ = (l , H0, G
′) with G′ = HeapToShape(H, Ψ̂(l))

replace n by n′ in A
return (A, Θ, Ψ̂ , E)

3.2 Algorithm for Abstraction from Explicit Heaps (Abstract)

When the explicit heap analysis has generated sufficiently large explicit heaps, Algo-
rithm Abstract (Alg. 2) is called to extract information from explicit heaps in order to
choose a suitable SCG, and explicit heaps are abstracted to shape graphs. The algorithm
takes as input an ART A, a leaf node n of the ART, the current abstraction specified
by an explicit-heap abstraction Θ and a shape-abstraction specification Ψ̂ , a lattice of
SCGs, and a mapping E from types to sets of enabled SCGs. Upon termination, the
algorithm returns the updated ART, abstraction, and mapping.

The algorithm first determines a pointer to the data structure whose depth exceeds
the threshold k. Function SCGsFromExplicit analyzes an explicit heap and returns all
relevant SCGs: Every SCG is annotated with a set of invariants that must be fulfilled
by explicit heaps for the SCG to be relevant (e.g., all SCGs generating instrumenta-
tion predicates for trees are annotated with the tree-ness invariant). For each SCG m,
function SCGsFromExplicit evaluates the invariants of m on explicit heap H , and if
all those invariants are fulfilled, the function enables m for its structure type. Then the
abstraction is updated: pointer p and all other pointers of the same type are removed
from the explicit-heap abstraction, and we refine the SCG of the chosen shape type to
be the coarsest enabled SCG for the structure type. After the refinement of the SCG, we
erase the explicit heap in the ART node, and replace the corresponding shape region by
the result of abstracting the explicit heap to shape graphs (function HeapToShape). The
result of HeapToShape has a single shape graph for each shape class that results from
applying the newly refined SCG to the current tracking definitions. For example, the
shape graph represented in Fig. 1(c) is a possible abstraction of the explicit heap rep-
resented in Fig. 1(b). In the next iteration of reachability, the construction of the ART
continues from the newly computed shape graphs. Note that converting an explicit heap
to a shape graph is significantly less expensive than obtaining the shape graph via ab-
stract post computations, and is similar to dynamic precision adjustment [5].
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Algorithm 3. Refine(A, n, Θ, Ψ̂ , M, E)

Input: an ART A, an ART node n, an abstraction consisting of Θ and Ψ̂ ,
a set M of SCGs, and a type-to-SCGs mapping E

Output: an ART, an abstraction consisting of Θ and Ψ̂ , and a type-to-SCGs mapping E
Variables: an interpolant map Π

let t = (op1 : l1); . . . ; (opk : lk) be the program path from n to the root of A;
Π := ExtractInterpolants (t);
for i := 1 to k do

choose (σ, m, D) from Ψ̂(li), with D = (T, Ts, P )
// Step 1: Refine the tracking definitions
for each atom φ ∈ Π(li) do

if some pointer p occurs in φ, and type(p) matches σ then
add p and all elements of alias(p) to D.T
add p to D.Ts

if pointer p is dereferenced in φ then
add to D.P the field assertion corresponding to φ

// Step 2: Start explicit heap analysis or refine the SCG
for each pointer p in D.T do

if p �∈ Θ(li) and m = m0 then
// p was not analyzed before, switch to explicit heap analysis mode
add p to Θ(li)

if p �∈ Θ(li) and m �= m0 then
// in shape analysis mode: binary-search refinement
m′ := FineTune(t,m, E(σ))
if m = m′ then // the binary search cannot refine; extend the search

add to E(σ) every m′′ ∈ M s.t. m �� m′′

m′ := FineTune(t, m, E(σ))
replace (σ, m, D) by (σ, m′, D) in Ψ̂(li)

if Θ(li) or Ψ̂(li) was changed then
remove from A all nodes with location li and their children

if Ψ̂ and Θ did not change then
print “Refinement failed on path:” t; stop;

return (A, Θ, Ψ̂ , E)

3.3 Algorithm for Shape Refinement (Refine)

When an infeasible error path is found in the ART, it is due to a shape abstraction that
is not fine enough. Algorithm Refine tries to produce a finer shape abstraction such that
the infeasible error path does not occur in the ART built using the refined abstraction.
Algorithm Refine (Alg. 3) takes as input an ART A, a leaf node n of the ART, the
current abstraction specified by an explicit heap abstraction Θ and a shape-abstraction
specification Ψ̂ , a lattice of SCGs, and a mapping from types to set of enabled SCGs.
The algorithm assumes that the location of n is the error location and that the path from
the root of A to n is infeasible. Upon termination, a refined ART, a refined abstraction,
and a (possibly updated) mapping from types to set of enabled SCGs is returned.

The first step of the algorithm analyzes the infeasible error path. We compute the
(inductive) interpolants of the (unsatisfiable) path formula corresponding to the path
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from the root to node n, for every location on the path (ExtractInterpolants). We use
the interpolants to check whether we can find new pointers or field assertions to track
by analyzing all atoms occurring in interpolants. If we find a pointer that we have to
track, we add it to the set of tracked separating pointers, and add all its aliases to the set
of tracked pointers. If it is the first time we encounter a pointer, we need to know which
kind of data structure it is pointing to in order to enable only a subset of SCGs. To
discover this information, we cannot rely exclusively on syntactical type information.
For example, the types for doubly-linked lists and binary trees (without parent pointers)
have the same syntactical structure. We enable an explicit heap analysis of the data
structure by adding the pointer to the abstraction of the explicit heap analysis, and
the SCG is the trivial SCG m0. If we considered the pointer before, then the explicit
analysis was switched on, and we refined the SCG to a non-trivial SCG. In this case, the
explicit heap analysis need not be run again because it will not provide new information.
Instead, we decide to fine-tune the SCG by using a binary-search-like exploration of the
lattice of enabled SCGs. If the fine-tuning fails to yield a finer SCG, it may still be the
case that there exists a fine-enough SCG in the lattice of all SCGs that is prevented to
be found because the explicit heap analysis over-restricted the set of enabled SCGs. In
this case, we extend the set of enabled SCGs to include all SCGs from the set M of
SCGs that are not coarser than the current SCG.

Procedure FineTune takes as input an infeasible program path t, the current SCG m
and a lattice M of SCGs. The procedure searches for the coarsest SCG m′ such that m′

rules out path t, i.e., the abstract strongest postcondition of the program path represents
no states when SCG m is replaced by m′ in the shape-abstraction specification. Note
that we only compute shape regions along the given path t at this point, not along any
other program path. To make the search more efficient, we try to prune in each iteration
approximately half of the candidate SCGs. Because of the monotonicity of SCGs, if
a given SCG cannot rule out t, then no coarser SCG can. The algorithm maintains a
set C of candidates. The set C is initialized with all SCGs in M that are finer than m.
We repeat the following steps until no more SCGs can be removed from C. We select
a subset S of SCGs as small as possible such that the set of SCGs coarser than some
SCG in S contains as many elements as the set of SCGs finer than some SCG in S. If
no SCG in S rules out t, we remove from C all SCGs coarser or equal to a SCG in S;
otherwise, we keep in C only those SCGs that are coarser or equal to some SCG in S
that rules out t. When the loop terminates, if C = ∅, then the fine-tuning failed and we
return m; otherwise, we choose one SCG m′ in C that generates the fewest predicates
when applied to the current tracking definition, and return m′.

4 Experimental Evaluation

Implementation. Our new algorithm is implemented as an extension of BLAST 3.0,
which integrates TVLA for shape transformations and the FOCI library [14] for formula
interpolation. In addition to the algorithm discussed in this paper, our implementation
supports nullary-predicate abstraction and refinement based on interpolants.

The SCG library provided with BLAST supports singly-linked lists, doubly-linked
lists, and trees with and without parent pointers. The library is based on well-known
instrumentation predicates from the literature [17]: for singly-linked lists, reachability
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(unary) and cyclicity (unary); for doubly-linked lists, reachability (unary and binary),
cyclicity (unary), and cancellation (unary, holds for a given node when the node pointed
to by the forward pointer has its backward pointer pointing to the given node); for trees
(with and without parent pointers), down pointer and its transitive closure (binary),
downward reachability (unary), downward acyclicity (binary), and in addition, for trees
with a parent pointer, cancellation for left and right (unary, holds for a given node when
the node pointed to by the left, respectively right, pointer has its parent pointer pointing
to the given node).

The library of SCGs is implemented in BLAST using a domain-specific language
(DSL), in order to decouple the specification of SCGs from the verification and refine-
ment engine. Should the verification engineer need to verify a program that uses a data
structure that is not yet supported in BLAST’s default SCG lib, the DSL makes it easy
to add support for different data structures and other instrumentation predicates. Each
DSL entry corresponds to a data structure. Instead of specifying all SCGs in the lattice,
the DSL entry specifies the most refined SCG, and coarser SCGs are derived by con-
sidering subsets of predicates. Moreover, a refinement relation between different data
structures is specified separately.

Example Programs. We evaluate our technique on the open-source C library for data-
structures GDSL 1.4 1. We consider non-trivial low-level functions operating on doubly-
linked lists and trees. Each function is inserted in client code, non-deterministically
simulating valid uses of the function. The client code inputs arbitrary valid data struc-
tures to the function, and on return, checks that a given property is preserved. The
benchmarks cancel * and acyclic * operate on doubly-linked lists, and check,
respectively, for the preservation of the structure of a doubly-linked list (i.e., the back-
ward pointer of the node pointed to by a given node’s forward pointer points back to the
given node, and vice versa), and for acyclicity following forward pointers. The bench-
marks bintree * and treep * operate on binary trees, and check, respectively, for
the preservation of acyclicity following left and right pointers, and for the validity of
parent pointers with respect to left and right pointers.

Results. All examples could be proved safe by BLAST after a few refinement steps.
Table 1 reports the execution time of BLAST on a GNU/Linux machine with an Intel
Core Duo 2 6700 and 4 GB of memory. The first part of the table reports the results
with the most refined (maximal) SCGs used for all pointers in the program, and there-
fore no refinement is needed. The first column reports the kind of data structure and
the number of instrumentation predicate families used by the SCG. The second column
reports the verification time. The second part of the table reports the results when re-
finement is used. The first column of this part of the table reports the SCG and number
of enabled instrumentation predicates families (compared to maximum). The second
column reports the number of each kind of refinements: the first kind (td) corresponds
to the refinement of a tracking definition (i.e., a new pointer or a new field predicate
is discovered), and the second kind (scg) corresponds to the refinement of SCGs (i.e.,
new instrumentation predicates are introduced). The information in the first and second
columns is identical for both configurations with refinement. To evaluate the impact of

1 Available at http://home.gna.org/gdsl/
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Table 1. Runtime of BLAST on functions from the GDSL library, using (a) maximal SCG, or
shape refinement with (b) program annotations or (c) explicit heap analysis to determine the SCG

Maximal SCG SCG / #instr. pred. With refinement
Program SCG Time families/max #refines Annotation Explicit
cancel list link dll/3 10.04 s dll / 1/3 1 td, 1 scg 12.65 s 13.76 s
cancel list insert after dll/3 23.62 s dll / 1/3 1 td, 1 scg 24.41 s 26.82 s
cancel list insert before dll/3 30.90 s dll / 3/3 2 td, 2 scg 69.01 s 77.22 s
cancel list remove dll/3 4.42 s dll / 2/3 1 td, 1 scg 28.49 s 29.05 s
acyclic list link dll/3 11.57 s sll / 2/2 1 td, 1 scg 6.32 s 6.49 s
acyclic list insert after dll/3 24.21 s sll / 2/2 1 td, 1 scg 23.57 s 26.06 s
acyclic list insert before dll/3 34.53 s dll / 3/3 2 td, 2 scg 80.81 s 88.21 s
acyclic list remove dll/3 4.23 s sll / 2/2 1 td, 2 scg 96.77 s 99.75 s
bintree rotate left tree+p/5 >9000 s tree / 2/4 3 td, 2 scg 414.28 s 521.31 s
bintree rotate right tree+p/5 >9000 s tree / 2/4 3 td, 1 scg 419.24 s 437.30 s
bintree rotate left right tree+p/5 >9000 s tree / 2/4 2 td, 2 scg 7023.41 s 7401.74 s
treep rotate left tree+p/5 >9000 s tree+p / 2/5 4 td, 2 scg 180.58 s 66.63 s
treep rotate right tree+p/5 >9000 s tree+p / 2/5 4 td, 2 scg 402.70 s 384.19 s
treep rotate left right tree+p/5 >9000 s tree+p / 2/5 4 td, 2 scg 1175.14 s 1189.42 s

the explicit heap analysis on performance, we replace in one experimental setting the
procedure Abstract by a procedure that enables the suitable set of SCGs based on our
knowledge of the data structures, encoded as annotations for BLAST in the code. There-
fore, the third column reports verification times for the experiments when using anno-
tations to determine the type of data structures (explicit heap analysis disabled), and
the fourth column, when using the explicit heap analysis to infer the type of data struc-
tures. We run the explicit heap analysis until five different samples of data structures
containing (at least) four structure nodes are collected. In all examples, both tracking
definitions and SCGs are refined. In most examples, the finest SCG is not needed (only
a subset of available predicates is used). Note that for three out of four acyclic *
benchmarks, a shape class for singly-linked lists (considering only the forward pointer)
is sufficient to prove safety.

The explicit heap analysis correctly identifies the data-structure in every example.
The run time for explicit-heap based refinement is comparable to annotation-guided
refinement. The variations between the two result from two sources: (1) the overhead
of performing the explicit heap analysis, and (2) the abstraction from explicit heaps to
shape graphs and the subsequent ART extension. On all examples, the explicit heap
analysis accounts for a negligible fraction of the execution time. Most of the runtime
is consumed by (symbolic) shape operations in TVLA. On the one hand, some shape-
graph computations are saved. But on the other hand, depending on how large the ART
is when Abstract is executed, many explicit heaps may abstract to the same shape graph,
subsequently causing an overhead. Infeasible error paths may also have different lengths
resulting in different interpolation and refinement timings. On small examples, the re-
finement contributes most of the total execution time (up to nearly 50%): most of the
time is spent in the path simulations of FineTune. On larger examples, most of the time
is spent in the final iteration of the reachability analysis, in particular, while comput-
ing abstract shape successors using TVLA. Overall, we conclude that the explicit heap
analysis provides reliable information for the refinement, for a reasonable overhead.
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Our refinement strategy outperforms the direct use of the most refined SCG on large
examples (involving trees), because the refinement allows for the use of significantly
less instrumentation predicates, compared to the most refined SCGs. On smaller ex-
amples, though, the run time can be larger if refinement is used, due to the high por-
tion of time spent on refinement and the high number of instrumentation predicates
we need, compared to the most refined case. The final reachability analysis sometimes
takes significantly less time if the most refined SCG is used; one particular case is the
two list remove examples. The reason is that the SCG discovered by our refine-
ment strategy (which only tracks the forward pointer) happens to generate more differ-
ent shape graphs than the most refined SCG (which tracks both pointers), although the
former generates less predicates than the latter.
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Bi-abductive Inference

Dino Distefano and Ivana Filipović
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Abstract. This paper describes a compositional analysis algorithm for
statically detecting leaks in Java programs. The algorithm is based on
separation logic and exploits the concept of bi-abductive inference for
identifying the objects which are reachable but no longer used by the
program.

1 Introduction

In garbage collected languages like Java the unused memory is claimed by the
garbage collector, thus relieving the programmer of the burden of managing
explicitly the use of dynamic memory. This claim is only partially correct: tech-
nically, the garbage collector reclaims only allocated portions of memory which
have become unreachable from program variables, and often, this memory does
not entirely correspond to the unused memory of the system. For instance, it is
quite common that memory is allocated, used for a while, and then no longer
needed nor used by the program. However, some of this memory cannot be freed
by the garbage collector and will remain in the state of the program for longer
than it needs to be, as there are still references to it from some program vari-
ables. Even though this phenomenon, typical of Java and other garbage collected
languages like Python, defines a different form of “memory leakage” than in tra-
ditional languages like C, its results are equally catastrofic. If an application
leaks memory, it first slows down the system in which it is running and even-
tually causes the system to run out of memory. Many memory-leak bugs have
been reported (e.g., bug #4177795 in the Java Developer’s Connection[13]) and
experiments have shown that on average 39% of space could be saved by freeing
reachable but unneeded objects [24,22].

There are two main sources of memory leaks in Java code [20,14,18]:

– Unknown or unwanted object references. As commented above, this happens
when some object is not used anymore, however the garbage collector cannot
remove it because it is pointed to by some other object.

– Long-living (static) objects. These are objects that are allocated for the entire
execution of the program.

These two possibilities appear in different forms. For example, a common simple
error, such as forgetting to assign null to a live variable pointing to the object
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not needed anymore, leads to a memory leak. Such a leak can have serious
consequences if the memory associated to it is substantial in size. Some more
sophisticated examples discussed in literature are:

– Singleton pattern, Static references and Unbounded caches. The Singleton
pattern [8] ensures that a class has only one instance and provides a global
access point to it. Once the singleton class is instantiated it remains in
memory until the program terminates. However, the garbage collector will
not be able to collect any of its referants, even when they have a shorter
lifetime than the singleton class [18]. Most caches are implemented using the
Singleton pattern involving a static reference to a top level Cache class.

– Lapsed listener methods. Listeners are commonly used in Java programs in
the Observer pattern [8]. Sometimes an object is added to the list of listeners,
but it is not removed once it is no longer needed [20]. Here, the collection
of listeners may grow unboundedly. The danger with such listener lists is
that they may grow unboundendly causing the program to slow down since
events are propagated to continuously growing set of listeners. Swing and
AWT are very prone to this kind of problems.

– Limbo. Memory problems can arise also from objects that are not necessarily
long-living but that occupy a consistent amount of memory. The problem
occurs when the object is referenced by a long running method but it is not
used. Until the method is completed, the garbage collector is not able to
detect that the actual memory occupied by the object can be freed [7].

In this paper we propose a static analysis algorithm able to detect, at particular
program points, the objects that are reachable from program variables but not
further used by the program. This allows the possibility to free the unnecessary
occupied memory. Our technique is based on the concept of footprint: that is,
the part of memory that is actually used by a part of the program. Calculating
the footprint of a piece of code singles out those allocated objects that are really
needed from those that are not. The synthetization is done using bi-abduction [2],
a recent static analysis technique which has been shown useful for calculating
the footprint of large systems. Because it is based on bi-abduction our analysis is
compositional (and therefore it has potential to scale for realistic size programs
as shown in [2]) and it allows to reason about leaks for incomplete piece of
code (e.g., a class or a method in isolation from others). This paper shows how
bi-abduction is a valuable notion also in the context of garbage collection.

Throughout the paper we consider a running example given in Figure 1. The
program uses a bag of integers and two observers for each bag, that register
when an object is added to or removed from the bag, and consequently perform
certain actions. The leaks here are due to live variables not being assigned null
when they are no longer needed. Also, with the Observer pattern, a common
mistake is not to remove the observers when they are no longer used. This is
also illustrated by the example.
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public class Driver {

public static void main( String [] args ) {

1. BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

2. System.out.print("Enter numbers [-1 to finish]");

3. IntegerDataBag bag = new IntegerDataBag(); //new bag is allocated

4. IntegerAdder adder = new IntegerAdder( bag ); //the observers are added

5. IntegerPrinter printer = new IntegerPrinter( bag ); //to the bag

6. Integer number = -1;

7. try{ number = Integer.parseInt(br.readLine()); }

catch (IOException ioe) {

System.out.println("IO error trying to read input!");

System.exit(1);

}

8. while (number >= 0) { //reading the input

try { //and filling the bag

bag.add(number);

number = Integer.parseInt(br.readLine());

} catch (IOException ioe) {

System.out.println("IO error trying to read input!");

System.exit(1);

}

}

9. bag.printBag();

10. ArrayList rlist = new ArrayList();

11. rlist = bag.reverseList(); //after this point bag is no longer used

12. IntegerDataBag revbag = new IntegerDataBag(); //new bag

13. IntegerAdder adderr = new IntegerAdder(revbag); //and its observers

14. IntegerPrinter printerr = new IntegerPrinter(revbag); //but observers

15. Iterator i = rlist.iterator(); //are not used

16. while (i.hasNext()){

revbag.add((Integer) i.next());

}

18. Integer s=revbag.sum();

19. Integer m=revbag.mult();

20. System.out.print("The sum and the product are: "+s+" "+m+"\n");

}

}

Fig. 1. Running example - Driver.java

2 Informal Description of the Algorithm for Discovering
Memory Leaks

Our algorithm for memory leak detection is two-fold. It runs two shape analy-
ses1: a forward symbolic execution of the program and a backwards precondition
calculation. The memory leak at each program point is obtained by comparing
the results of the two analyses. More precisely:

1. For each method of each class (apart from the main method) we calculate
its specifications. The specifications describe the minimal state necessary to
run the method safely (i.e., without NullPointerException).

1 Shape analyses, introduced in [21], are program analyses that establish deep prop-
erties of the program heap such as a variable point to a cyclic/acyclic linked list.
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2. Using the results obtained in the previous step, we calculate the precondition
of each subprogram of the main method. Here, the subprogram is defined
with respect to the sequential composition. The calculation of the precondi-
tion of each subprogram is done in a backwards manner, starting from the
last statement in the program. The results are saved in a table as (program
location, precondition) pairs.

3. Using the forward symbolic execution, intermediate states at each program
point are calculated and added to the results table computed in step 2.

4. The corresponding states obtained in steps 2 and 3 are compared, and as
the preconditions obtained by the backwards analysis are sufficient for safe
execution of the program, any excess state that appears in the corresponding
precondition obtained by the forward analysis, is considered a memory leak.

3 Basics

3.1 Programming Language

The programming language we consider here is a while java-like language [4].

s ::= x = E | x.〈C : t f〉 = E | x = E.〈C : t f〉 | x = new C(v) | return E
| invoke x.〈C : t m〉(v) | x = invoke y.〈C : t m〉(v) | if B then c
| while B do c

c ::= s | c; c

Let FN, CN, TN and MN be countable sets of field, class, type and method names
respectively. A signature of an object field/method is a triple 〈C : t f〉 ∈ CN×
TN × (FN ∪ MN) indicating that the field f in objects of class C has type t.
We denote a set of all signatures by Sig . Here, E ∈ Pvar ∪ {nil} and Pvar is a
countable set of program variables ranging over x, y, . . ., while v denotes a list
of actual parameters. Basic commands include assignement, update and lookup
of the heap, allocation, return from a method and method invocation. Programs
consist of basic commands, composed by the sequential composition.

3.2 Storage Model and Symbolic Heaps

Let LVar (ranged over by x′, y′, z′, . . . ) be a set of logical variables, disjoint from
program variables PVar , to be used in the assertion language. Let Locs be a
countably infinite set of locations, and let Vals be a set of values that includes
Locs . The storage model is given by:

Heaps def= Locs ⇀fin Vals Stacks def= (PVar ∪ LVar)→ Vals
States def= Stacks ×Heaps ,

where ⇀fin denotes a finite partial map.
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Program states are symbolically represented by special separation logic for-
mulae called symbolic heaps. They are defined as follows:

E ::= x | x′ | nil Expressions
Π ::= E=E | E �=E | true | p(E) | Π ∧Π Pure formulae
S ::= s(E) Basic spatial predicates
Σ ::= S | true | emp | Σ ∗Σ Spatial formulae
H ::= ∃x′. (Π ∧Σ) Symbolic heaps

Expressions are program or logical variables x, x′ or nil. Pure formulae are con-
junctions of equalities and inequalities between expressions, and abstract pure
predicates p(E) describe properties of variables (E denotes a list of expressions).
They are not concerned with heap allocated objects. Spatial formulae specify
properties of the heap. The predicate emp holds only in the empty heap where
nothing is allocated. The formula Σ1 ∗ Σ2 uses the separating conjunction of
separation logic and holds in a heap h which can be split into two disjoint parts
H1 and H2 such that Σ1 holds in H1 and Σ2 in H2. In symbolic heaps some (not
necessarily all) logical variables are existentially quantified. The set of all sym-
bolic heaps is denoted by SH. In the following we also use a special state fault,
different from all the symbolic heaps, to denote an error state. S is a set of basic
spatial predicates. The spatial predicates can be arbitrary abstract predicates
[19]. In this paper, we mostly use the following instantiations of the abstract
predicates x.〈C : t f〉 �→E, ls(E, E) and lsn(E, E, E). The points-to predicate
x.〈C : t f〉 �→E states that the object denoted by x points to the value E by the
field f . We often use the notation x.f �→E when the class C and type t are clear
from the context. Also, if the object has only one field, we simplify notation by
writing x �→ . Predicate ls(x, y) denotes a possibly empty list segment from x to
y (not including y) and it is defined as:

ls(x, y) ⇐⇒ (x = y ∧ emp) ∨ (∃x′.x �→x′ ∗ ls(x′, y))

Predicate lsn(O, x, y) is similar to ls(x, y), but it also keeps track of all the
elements kept in the list. This is done by maintaining a set O of all the values.

lsn(O, x, y) ⇐⇒ (x = y ∧ emp ∧O = ∅) ∨
(∃x′, o′, O′.union(o′, O′) = O ∧ x �→ o′, x′ ∗ lsn(O′, x′, y))

Here union is an abstract predicate indicating the union of its arguments. We
do not write the existential quantification explicitly, but we keep the convention
that primed variables are implicitly existentially quantified. Also, we use a field
splitting model, i.e., in our model, objects are considered to be compound entities
composed by fields which can be split by ∗2. Notice that if S1 and S2 describe
the same field of an object then S1 ∗ S2 implies false. A fundamental rule which
gives the bases of local reasoning in separation logic is the following:

{H1} C {H2}
{H1 ∗H} C {H2 ∗H} Frame Rule

2 An alternative model would consider the granularity of ∗ at the level of objects. In
that case, objects cannot be split by ∗ since they are the smallest unit in the heap.
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where C does not assign to H ’s free variables [17]. The frame rule allows us to
circumscribe the region of the heap which is touched by C, (in this case H1),
perform local surgery, and combine the result with the frame, i.e. the part of the
heap not affected by the command C (in this case H).

3.3 Bi-abduction

The notion of bi-abduction was recently introduced in [2]. It is the combination
of two dual notions that extend the entailment problem: frame inference and
abduction. Frame inference [1] is the problem of determining a formula F (called
the frame) which is needed in the conclusions of an entailment in order to make
it valid. More formally,

Definition 1 (Frame inference). Given two heaps H and H ′ find a frame F
such that H  H ′ ∗ F.

In other words, solving a frame inference problem means to find a description of
the extra parts of heap described by H and not by H ′.

Abduction is dual to frame inference. It consists of determining a formula A
(called the anti-frame) describing the pieces of heap missing in the hypothesis
and needed to make an entailment H ∗ A  H ′ valid. In this paper we use
abduction in the very specific context of separation logic.

Bi-abduction is the combination of frame inference and abduction. It consists
in deriving at the same time frames and anti-frames.

Definition 2 (Bi-Abduction). Given two heaps H and H ′ find a frame F and
an anti-frame A such that H ∗ A  H ′ ∗ F

Many solutions are possible for A and F. A criterion to judge the quality of
solutions as well as a bi-abductive prover were defined in [2]. In this paper we
use bi-abduction to find memory leaks in Java programs.

4 Detecting Memory Leaks

Algortihm 1 computes allocated objects that can be considered memory leaks, at
particular program points. Firstly, the program is labelled using the LabelPgm()
function (described in more details below). Secondly, the specs of all the meth-
ods in the program are computed using the function CompSpecs(). Using these
specs, ForwardAnalysis() performs symbolic execution of the program (see Sec-
tion 4.1). The result of the analysis are assertions, obtained by symbolically
executing the program which represent an over-approximation of all the possible
states the program can be at each location. These assertions, together with the
program locations to which they correspond, are recorded in an array LocPre.
Next, BackwardAnalysis () is performed, again using the calculated specs of the
methods. At each program point an assertion is obtained, that represents a pre-
conditions for a subprogram starting at that program location. These results are
written in an array LocFp indexed by the locations. Finally, for each program
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Table 1. Algorithm 1 LeakDetectionAlgorithm(Prg)

Plocs := LabelPgm(1, P rg);
Mspecs := CompSpecs();
LocPre := ForwardAnalysis(Mspecs);
LocFp := BackwardAnalysis(Mspecs);
forall loc ∈ Plocs do

Pre := LocPre(loc);
Fp := LocFp(loc);
MLeak(loc) := {R | H1 � H2 ∗ R ∧ H1 ∈ Pre ∧ H2 ∈ Fp}

end for

point, the results, i.e. the preconditions obtained in these two ways are com-
pared by solving a frame inference problem. The solution frame corresponds to
the memory leaked at that location.

Labelling program points. The program is labeled only at essential program
points. A program point is considered essential only if

– it is a basic command not enclosed within a while or if statement,
– or, if it is the outer-most while-statement or the outer-most if -statement.

This means that we do not consider essential those statements within the body
of while and if statements, either basic or compound. Function LabelPgm ,

LabelPgm(i, s) = (i : s) LabelPgm(i, s; c) = (i : s);LabelPgm(i + 1, c)

takes a program and an integer, and returns a labelled program. We labelled our
running example (Fig. 1) according to the labelling algorithm. Memory leaks
are sought for only at the essential program locations. The rationale behind this
choice can be understood as follows. If a new unnamed cell is assigned in each
iteration to a variable then the garbage collector can claim the object before the
iteration during the execution of the loop (if there are no references to it). For
example this is the case of the Integer.parseInt(br.readLine()) in the body
of the while loop at location 8 in Fig. 1. The other possibility is when objects
used in the body of the while-loop are potentially used in each iteration and
could become a memory leak only upon the exit from the loop; for example a
data structure is created, traversed or manipulated during the execution of the
loop. Such structure is not a leak as long as the loop is executing (for example
the bag in the body of the loop at location 8). Only if the structure is not used
anymore after the loop has terminated, but the variable holding the structure is
not set to null, then it is considered to be a leak and should be detected.

4.1 Forward and Backward Shape Analyses

Our algorithm is based on two existing shape analyses [3,2] which can be seen
as attempts to build proofs for Hoare triples of a program. We provide brief and
rather informal summary of both.
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Forward Shape analysis. The forward shape analylsis consists of three main
steps: symbolic execution, heap abstraction and heap rearrangement. Symbolic
execution implements a function exec : Stmts × SH → P(SH) ∪ {fault}. It takes
a statement and a heap and returns a set of resulting heaps after the execution
of the statement or the special element fault indicating that there is a possible
error. For example, the result of the execution of a statement x.〈C: t f〉 = E2,
which assigns value E2 to the field f of object x, in a heap H ∗ x.〈C: t f〉 �→E1
is H ∗ x.〈C: t f〉 �→E2.

Abstraction implements the function abs : SH→ SH which helps to keep the
state space small. abs is applied after the execution of any command.

The rules of symbolic execution work at the level of the object fields which
is the most basic entity considered in the analysis. In other words, the rules
manipulate only points to predicate �→ , but they cannot be applied to com-
posite abstract predicates or inductive predicate like ls(x, y). In case the field
object that needs to be accessed by symbolic execution is hidden inside one of
these composite/inductive predicates, rearrangement is used to expose this field.
Rearrangement implements function rearr : Heaps ×Vars × Sig → P(SH).

Forward shape analysis can be defined as the composition of rearrangement,
symbolic execution and abstraction F = abs ◦ exec ◦ rearr. The forward analysis
is sound since it computes, at any program point, an over-approximation of the
set of all states in which the program can be in any possible run [3]. Complete
formal description of the forward shape analysis used here, as well as the tool
jStar implementing it, can be found in [3,4].

Compositional backward shape analysis. Backward analysis is achieved
using bi-abduction which allows to construct shape analysis in a compositional
fashion. Given a class composed of methods m1(x1), . . . , mn(xn) the proof
search automatically synthesizes preconditions P1, . . . , Pn, and postconditions
Q1, . . . , Qn such that the following are valid Hoare triples:

{P1}m1(x1) {Q1}, . . . , {Pn}mn(xn) {Qn}.

The triples are constructed by symbolically executing the program and by com-
posing existing triples. The composition (and therefore the construction of the
proof) is done in a bottom-up fashion starting from the leaves of the call-graph
and then using their triples to build other proofs for methods which are on a
higher-level in the call-graph. To achieve that, the following rule for sequential
composition —called the Bi-Abductive Sequencing Rule— is used [2]:

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ∗ A}C1; C2 {Q2 ∗ F} Q1 ∗ A  P2 ∗ F

(BA-seq)

This rule is also used to construct a proof (triple) of a method body in composi-
tional way. In that case the specifications that are used refer to commands (e.g.,
statements) or (previously proved) methods in case of a method call. BA-seq can
be used to analyze the program either composing specifications “going forward”
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1: OneFieldClass x = new OneFieldClass();

2: OneFieldClass y = new OneFieldClass();

3: x.update(val)

{emp}c1{x �→ }
{emp}c2{y �→ }
{x �→ }c3{x �→ val}

Fig. 2. Example code (left) and statements specifications (right)

or “going backward”. Here, we use it as a core rule for the definition of our
backward analysis.3 A tool implementing bi-abductive analysis exists [2].

Forward and Backward analyses in action. In this section we exemplify
forward and backward analysis by applying them to an example. Let us consider
a program consisting of three labelled commands shown on the left of Fig. 2. For
succinctness, let us denote the statements above as c1, c2 and c3. The specifica-
tions of the statements are given on the right of the figure. In forward analysis,
the program is executed symbolically, starting from an empty state. During the
execution the memory is accumulated in the program state and a post-state of
each statement is a pre-state of the following statement. Let us first consider
what assertions at each program point we get by executing the forward analysis.

{emp}c1{x �→ }c2{x �→ ∗ y �→ }c3{x �→ val ∗ y �→ }

We observe that the preconditions for the corresponding program points are:

1 : emp 2 : x �→ 3 : x �→ ∗ y �→ .

Let us now consider what happens when we combine the triples using the Bi-
Abductive Sequencing Rule in a backwards manner. Firstly, the triples of the
last two labelled statements in the program are combined, and a new triple for
the subprogram consisting of these two statements is obtained. That triple is
used further to be combined with the previous statement in the program, and
so on, until the beginning of the program is reached. If we apply the rule to
specifications for c2 and c3, we get

{emp} c2 {y �→ } {x �→ } c3 {x �→ val}
{x �→ } c2; c3 {x �→ val ∗ y �→ } y �→ ∗ x �→  x �→ ∗ y �→

Here, A = x �→ and F = y �→ . Now, we combine the obtained triple for c2; c3
with the triple for c1.

{emp} c1 {x �→ } {x �→ } c2; c3 {x �→ val ∗ y �→ }
{emp} c1; c2; c3 {x �→ val ∗ y �→ } emp ∗ A  x �→ ∗ y �→ ∗ F

Here, A = emp and F = emp. In this case, the preconditions for the corresponding
program points are

1 : emp 2 : x �→ 3 : x �→
3 In the special case of while-loop the rule is used in a forward way combined with the
abstraction mechanism which ensure convergence of the analysis [2].
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Note that in the backward analysis state is accumulated in the postcondition.
However, this does not pose any problem as it is the precondition that describes
what state is necessary for safely running the program. The postcondition de-
scribes what is accumulated after the execution is finished (when starting from
the inferred precondition).

Soundness of the algorithm. Our algorithm is sound in the sense that it only
classifies as leaks a subset of those parts of memory which are allocated but not
used anymore. This is stated in the following result.4

Theorem 1. The LeakDetectionAlgorithm only identifies real leaks.

5 Examples

In this section we illustrate how our algorithm works on several examples. Firstly,
we revisit our running example given in Fig. 1 and show in detail how our
algorithm operates on actual code. Then, we examine two more examples that
reflect other causes of memory leaks discussed in introduction.

For the sake of succinctness, we use a special predicate ∀∗x ∈ X.p(x), which
states that property p holds for each element x of X separately. For instance, if
X = {x1, . . . , xn} then ∀∗x ∈ X.p(x) stands for p(x1) ∗ . . . ∗ p(xn).

5.1 Running Example

Our algorithm first applies the two analyses to our example. Here, we compare
the results obtained by the forward and backward analyses and infer which
portion of the program state can be considered a memory leak. The results of
the analyses and all the necessary specification of the underlying classes in our
example can be found in a technical report [5].

At label 1 of the program, the precondition obtained in both forward and
backward analysis is emp, and so there is no memory leak before the execution
of the program has started, as expected. In fact, class Driver does not leak any
memory upto label 9. There, forward analysis finds that the symbolic state

∃O. br �→ ∗ bag.list �→x′ ∗ bag.observers �→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o.bag �→ bag)

describes a precondition for label 9. This precondition is a result of the symbolic
execution of the program up-to that point, and so, it reflects the actual program
state. That is: this precondition contains all the memory allocated and reachable
in the execution of the program so far. Backward analysis, on the other hand,
calculates that the precondition at this point is

bag.list �→x′ ∗ ls(x′, nil).

4 The proof is reported in [5].
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Backward analysis pinpoints the exact memory necessary for safe execution of
the program. So the subprogram starting at label 9 needs nothing more and
nothing less than this precondition in order to execute safely (without crashing).

Our algorithm now uses frame inference to compare these two preconditions
and concludes that the state

∃O. br �→ ∗ bag.observers �→ y′ ∗ lsn(O, y′, nil) ∗ (∀∗o ∈ O.o.bag �→ bag)

is not necessary for the execution of the rest of program, and hence, it is a leak.
During the execution of the program memory accumulates unless it is ex-

plicitelly freed, by say, setting certain variables to null and waiting for the
garbage collector to reclaim the objects that are no longer refered to by variables.
In our running example, no memory is freed, and the most dramatic memory leak
appears towards the end of the program. At label 18, forward analysis produces
the following symbolic state as precondition:

∃O, O′. br �→ ∗ bag.list �→x′ ∗ bag.observers �→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o.bag �→ bag) ∗ rlist �→ z′ ∗ ls(z′, nil) ∗ revbag.list �→u′∗

revbag.observers �→ v′ ∗ ls(u′, nil) ∗ lsn(O′, v′, nil) ∗ (∀∗o ∈ O′.o.bag �→ bag).

However, the backward analysis finds that the precondition corresponding to the
same label is

revbag.list �→x′ ∗ ls(x′, nil).

This leaves a substantial ammount of memory to lie around in the program state,
while it is not needed by the program:

∃O, O′. br �→ ∗ bag.list �→x′ ∗ bag.observers �→ y′ ∗ ls(x′, nil) ∗ lsn(O, y′, nil)∗
(∀∗o ∈ O.o.bag �→ bag) ∗ rlist �→ z′ ∗ ls(z′, nil)
∗revbag.observers �→ v′ ∗ lsn(O′, v′, nil) ∗ (∀∗o ∈ O′.o.bag �→ bag).

{emp}
myClass()
{this.myContainer �→x′}

{this.myContainer �→x′ ∗ ls(x′, nil)}
leak(i)
{this.myContainer �→x′ ∗ ls(x′, nil)}

{MyClass.myContainer �→x′ ∧ x′ = nil}
MyClass myObj = new Myclass();
{myObj.myContainer �→x′ ∧ x′ = nil}
myObj.leak(100000);
{MyClass.myContainer �→x′ ∗ ls(x′, nil)}
{MyClass.myContainer �→x′ ∗ ls(x′, nil)}
System.gc();
{MyClass.myContainer �→x′ ∗ ls(x′, nil)}
//do some other computation
//not involving myContainer
{p∗MyClass.myContainer �→x′∗ls(x′, nil)}

Fig. 3. Specifications (left) and forward analysis (right) of MyClass
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5.2 Examples on Other Sources of Leakage

We now illustrate two examples demonstrating some of the possible causes of
memory leaks discussed in the introduction. The following example illustrates
a memory leak caused by a static reference. Here, we have a huge static object
LinkedList which is allocated when the program starts executing. Even though
it is not used anymore after a certain point in the program, because it is not ex-
plicitely set to null and it is referenced by a static variable, the garbage collector
will not be able to reclaim its memory

public class Myclass {

static LinkedList myContainer = new LinkedList();

public void leak(int numObjects) {

for (int i = 0; i < numObjects; ++i) {

String leakingUnit = new String("this is leaking object: " + i);

myContainer.add(leakingUnit);}

}

public static void main(String[] args) throws Exception {

{ Myclass myObj = new Myclass();

myObj.leak(100000); // One hundred thousand }

System.gc();

// do some other computation not involving myObj

}

}

Specifications of the methods and forward analysis applied to the main()method
are given in Fig. 3. Here, p denotes a predicate describing the postcondition of the
program and not mentioning any memory given by MyClass.myContainer �→x′∗
ls(x′, nil). Since the code does not use any memory referenced by myContainer
upon the exit from the local block, the backward analysis finds that myContainer
is last used inside this block. Hence our algorithm discovers that at the end of
this local block the memory referenced by myContainer is leaked.

In the last example we consider the phenomenon of Limbo, discussed in the
introduction. The code of program and the forward analysis of main() (assuming

public static voin main(String args[]){
int big list = new LinkedList();

//populate the list

populate(big list);

// Do something with big list

int result=compute(big list);

//big list is no longer needed but

//it cannot be garbage collected.

//Its reference should be set

//to null explicitly.

for (;;) handle input(result); }

{emp}
int big list = new LinkedList();
{big list �→ x′ ∧ x′ = nil}
populate(big list);
{big list �→ x′ ∗ ls(x′, nil)}
intresult = compute(big list);
{big list �→ x′ ∗ ls(x′, nil)}
for(; ; )handleinput(result);
{big list �→ x′ ∗ ls(x′, nil)}

Fig. 4. Example of Limbo: code (left), and forward analysis (right)
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that for handling input no memory is needed) are reported in Fig. 4. The pro-
gram first allocates a very big list and does some computation over its elements.
Then, it starts handling some input, which might last for very long (possibly
forever). At the end of main(), the memory referenced by the list would be
garbage collected, but as the input handling might last very long, this could
lead to running out of memory. Our backward analysis discovers that the last
point where big list is used is int result=compute(big list). There our
algorithm discovers that the code leaks the memory referenced by this variable.

6 Related Work

The paper [15] introduces a backwards static analysis which tries to disprove
the assumption that the last statement has introduced a leak. If a contradiction
is found, then the original assumption of the leak was wrong. Otherwise, the
analysis reports a program trace that leads to the assumed error. Like ours, this
analysis allows to check incomplete code. However, it can only detect memory
objects that are not referenced anymore, therefore this analysis is not suitable
for detecting the kind of leaks (Java leaks) we are concerned with in this paper.
The same limitation applies to the techniques described in [12,9]. Similarly, the
static analyses described in [6,26] aim at detecting leaks caused by objects not
reachable from program variables. Therefore they cannot detect the kind of leaks
we aim at with our analysis. The paper [22] introduces a static analysis for finding
memory leaks in Java. This technique is tailored for arrays of objects. On the
contrary, our framework works for different kind of data structures representable
by abstract predicates.

A static analysis for detecting unused (garbage) objects is introduced in [25].
This analysis is similar to ours in its aim. However, the two approaches are sub-
stantially different. The authors use finite state automata to encode safety prop-
erties of objects (for example “the object referenced by y can be deallocated at
line 10”). The global state of program is represented by first-order logical struc-
tures and these are augmented with the automaton state of every heap-allocated
object. This shape analysis is non compositional and works globally. Our tech-
nique instead is compositional (since based on bi-abduction) and exploits local
reasoning (since based on separation logic). Compositional shape analyses based
on bi-abduction and separation logic have a high potential to scale as demon-
strated in [2]. Moreover, their approach employs an automaton for each property
at a program point, whereas our approach simultaneously proves properties for
many objects at all essential program points in a single run of the algorithm.

Different from static approaches as the above and ours there are dynamic
techniques for memory leak detection [10,16,11,23]. The main drawback with
dynamic techniques is that they cannot give guarantees. Leaks that do not occur
in those runs which is checked will be missed and remain hidden in the program.
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7 Conclusion

Allocated but unused objects reachable from program variables cannot be re-
claimed by the garbage collector. These objects can be effectively considered
memory leaks since they often produce the same catastrophic problems that
leaks have in languages like C: applications irreversibly slow down until they
run out of memory. In this paper we have defined a static analysis algorithm
which allows the detection of such allocated and unused objects which cannot
be freed by the garbage collector. Our technique exploits the effectiveness of
separation logic to reason locally about dynamic allocated data structures and
the power of bi-abductive inference to synthesize the part of allocated memory
truly accessed by a piece of code. The paper shows how separation logic based
program analyses and bi-abduction can be combined to reason statically about
memory leaks in garbage collected languages. We have shown the effectiveness
of our technique on examples involving different sources of leakage among which
the Observer pattern, that is one of the most used design patterns in real life.

All the technology for implementing this algorithm exists, and this will be our
natural next step.
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Abstract. We introduce a technique for debugging multi-threaded C programs
and analyzing the impact of source code changes, and its implementation in the
prototype tool DIRECT. Our approach uses a combination of source code instru-
mentation and runtime management. The source code along with a test harness is
instrumented to monitor Operating System (OS) and user defined function calls.
DIRECT tracks all concurrency control primitives and, optionally, data from the
program. DIRECT maintains an abstract global state that combines information
from every thread, including the sequence of function calls and concurrency prim-
itives executed. The runtime manager can insert delays, provoking thread inter-
leavings that may exhibit bugs that are difficult to reach otherwise. The runtime
manager collects an approximation of the reachable state space and uses this ap-
proximation to assess the impact of change in a new version of the program.

1 Introduction

Multi-threaded, real-time code is notoriously difficult to develop, since the behavior of
the program depends in subtle and intricate ways on the interleaving of the threads,
and on the precise timing of events. Formal verification provides the ultimate guarantee
of correctness for real-time concurrent programs. Verification is however very expen-
sive, and quite often infeasible in practice for large programs, due to the complexity of
modeling and analyzing precisely and exhaustively all behaviors. Here, we aim for a
more modest goal: we assume that a program works reasonably well under some con-
ditions, and we provide techniques to analyze how the program behavior is affected by
software modifications, or by changes in the platform and environment in which the
program executes. Our techniques perform sensitivity analysis of the code with respect
to its environment, and impact analysis for software changes [2]. These analyses assist
software designers to answer two important questions: (1) Is the program robust? Can
small changes in platform, compiler options and libraries affect the program’s behavior
in an important way? (2) Does a program change introduce unexpected behaviors?

We propose to instrument a program and run it one or multiple times. At certain
points in the program, called observable statements, the instrumentation code collects
information about the state of the execution, which we call global state. Observable
statements include OS primitives such as lock and semaphore management, scheduling
and timer calls. To perform sensitivity analysis the program is run again, but this time
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the instrumentation code simulates changes in the platform. To perform change impact
analysis, the versions of source code before and after a change are instrumented and run
to compare the set of collected global states. These uses are described in Section 3.

We present the tool DIRECT, which implements these analyses for real-time embed-
ded code written in C, including programs that run on embedded platforms with only
limited memory available. The instrumentation stage is implemented relying on the CIL
toolset [14]. The effectiveness of DIRECT is shown via two case studies: a C version of
dining philosophers, and an implementation of the network protocol ‘adhoc’ for Lego
robots. Specifically, we show how DIRECT can be used to (a) expose a bug in a new
version of the adhoc protocol, (b) debug a deadlock in a naive implementation of din-
ing philosophers, (c) compare different fork allocation policies in dining philosophers
with respect to resource sharing and equity. We also report on how sensitivity analysis
increases thread interleavings and hence the number of unique global states that can be
observed for a fixed program and test.

Related work. Change impact analysis is well studied in software engineering [2]. For
example, [15,16,17] consider change impact analysis of object-oriented programs writ-
ten in Java. They use static analysis to determine changes in the implementation of
classes and methods and their impact on test suites, to aid users understand and debug
failing test cases. Change impact analysis is related to program slicing [19] and incre-
mental data-flow analysis [10]. While there is a large body of work analyzing change
impact from the perspective of testing and debugging of imperative, object-oriented
and aspect-oriented programs, there is not much literature in change impact analysis
for multi-threaded programs. There is work analyzing the impact of change on test se-
lection and minimization [6] and in using runtime information to compute the impact
set of a change [9]. Several research efforts study the impact of change based on revi-
sion histories. For example, [7] use machine learning techniques to mine source code
repositories, trying to predict the propensity of a change in source code to cause a bug.

CHESS [12] explores the problem of coverage in multi-threaded programs attempt-
ing to expose bugs by exhaustive thread interleaving. Our work differs from [12] in that
we study the impact of change between two versions of a program, whereas CHESS ex-
plores only the state space of a single program. Moreover, CHESS borrows techniques
from model-checking and it is not easily applicable to the online testing of embed-
ded systems. ConTest [5] explores testing multi-threaded Java programs by placing
sleep statements conditionally, producing different interleavings via context switches.
ConTest is a Java testing tool, that requires test specification that include the expected
outcome. DIRECT does not require test specifications and it is designed to study the
impact of change between two versions of a program, while [5] focuses on a single
program and test. Moreover, DIRECT targets embedded C programs.

The work closest to ours is [3], that uses runtime, static and source code change infor-
mation to isolate sections of newly added code that are likely causes of observed bugs.
However, [3] does not address concurrent programs, and requires programmer interac-
tion or test specifications to detect “faulty” behavior. In [3] program changes are tracked
using information from a version control system. DIRECT accumulates the information
at runtime, alleviating the need to rely on sometimes expensive static analysis. This
way, we readily obtain a fully automatic tool for embedded systems.
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2 Definitions

In this section we present a model of multi-threaded C programs. We consider interleav-
ing semantics of parallel executions, in which the underlying architecture runs a single
thread at any given time. This semantics is conventional for most current embedded
platforms. The extension to real concurrency (with multi-cores or multi-processors) is
not difficult but rather technical, and it is out of the scope of this paper. We now present
the formal definitions of our model.

Programs and statements. The dynamics of a program P consist of the execution of
a set T = {Ti | 0 ≤ i ≤ m} of threads; we take [T ] = {1, 2, . . . , m} as the set of
indices of the threads in P . Let Stmts be the set of statements of P . We distinguish
a set of observable statements. This set includes all user defined function calls within
the user program, as well as all the operating system (OS) calls and returns, where
the OS may put a thread to sleep, or may delay in a significant way the execution
of a thread. In particular, observable statements include invocations to manage locks
and semaphores, such as mutex lock, semaphore init and thread delay. We associate
with each statement a unique integer identifier, and we denote by S ⊂ N the set of
identifiers of all observable statements. We use F to denote the set of all user-defined
functions in the program and we define F : S �→ {⊥} ∪ F to be the map that for every
statement s ∈ S gives the function being invoked in s, if any, or⊥ if s is not a function
call. Finally, we define the scope of a statement s to be the user-defined function that
contains s, and represent the scope of s as sc(s).
Runtime model. The program is first instrumented with a test harness, and then com-
piled into a self-contained executable that implements the functionality of the orig-
inal program together with the testing infrastructure. A run is an execution of such
a self-contained executable. A thread state is a sequence of observable statements
(s0, s1, . . . , sn) where sn represents an observable statement, and s0, s1, . . . , sn−1 the
function invocations in the call stack (in the order of invocation) at the time sn is
executed. Precisely, a thread state σ = (s0, s1, . . . , sn) ∈ S ∗ is such that each s0,
. . . , sn−1 is a call statement and for all 0 < i ≤ n, the scope of si is si−1, that is:
sc(si) = F(si−1). In particular, sc(s0) is the function in which the thread is created,
typically main . A block of code is the sequence of instructions executed between two
consecutive thread states. A joint state of the program P is a tuple (k, σ0, σ1, . . . , σm, t)
where,

1. k ∈ [T ] is the thread index of the current active thread,
2. for 0 ≤ i ≤ m, the sequence σi ∈ S ∗ is the thread state of the thread Ti, and
3. t is defined as follows: let σk = (sk

0 , sk
1 , . . . , s

k
n) be the thread state of the current

active thread. If sk
n is not an OS function call then t is user , if sk

n is an OS function
call, then t is call immediately preceding the execution of statement sk

n, and is ret
when the OS function returns.

We refer to the joint states of the program as abstract global states or simply as global
states. The set of all global states is represented by E .

We illustrate these definitions using Program 1. This program consists of two threads:
T0 that executes infa (on the left); and T1 that executes infb (on the right). Each thread
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Program 1. A simple application with two threads
1 void infa(void) {
2 while (1) {
3 if (exp) {
4 mutex_lock(b);
5 mutex_lock(a);
6 // critical section
7 mutex_unlock(a);
8 mutex_unlock(b);
9 } else {
10 mutex_lock(c);
11 mutex_lock(a);
12 // critical section
13 mutex_unlock(a);
14 mutex_unlock(c);
15 }
16 }
17 }

21 void infb(void) {
22 while (1) {
23 mutex_lock(a);
24 mutex_lock(b);
25 // critical section
26 mutex_unlock(b);
27 mutex_unlock(a);
28 }
29 }

is implemented as an infinite loop in which it acquires two mutexes before entering its
critical section. The calls mutex lock and mutex unlock are the OS primitives that
request and release a mutex respectively. For simplicity, assume that the identifier of a
statement is its line number. Let s0 be the statement that launched thread T0. The state of
thread T0 executing statement mutex lock(b) at line 4 in function infa is (s0, 4). Simi-
larly, the thread state of T1 that corresponds to line 23, is (s1, 23), where s1 is the state-
ment that launched thread T1. An example of a global state is (1, (s0, 4), (s1, 23), call),
produced when thread T1 is in thread state (s1, 23) and the OS function call at line 23 is
about to be executed, indicating mutex a is yet to be acquired, with T0 being at (s0, 4).
A possible successor is (1, (s0, 4), (s1, 23), ret), produced when thread T1 is in thread
state (s1, 23), the OS function call at line 23 has returned, indicating mutex a has been
acquired, with T0 remaining at (s0, 4).

3 Sensitivity Analysis and Change Impact Analysis

Changes involved during software development and maintenance of concurrent pro-
grams can induce subtle errors by adding undesirable executions or disallowing impor-
tant behaviors. Our goal is to facilitate the discovery of the changes in the behavior of
the system due to changes in the source code, or in the execution platform, compiler or
libraries. We consider the following sources of differences:

1. Changes in platform. When a program is run on a different platform, the execution
of each code block may vary due to changes in the target processor.

2. Changes in compiler options and libraries. When included libraries or compiler
options change, the execution time of each code black may vary.

3. Source code changes. Changes in the source code can affect resource interactions
and scheduling of the various threads beyond the running time of code blocks.
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The goal of DIRECT is to enable the analysis of the above changes, in terms of program
behavior. DIRECT operates in two stages. First the system is exercised one or multiple
times and the reached states are collected. These runs are called the reference runs and
the union G of all the reached states is called the reference set. Then, a new run R of the
program is obtained after the program is affected by some of the above changes. This
new run is called the test run. The reference set G can be thought of as an approximation
of the reachable state space in lieu of a formal specification. If during R a global state e
is observed that was not seen in G, DIRECT outputs e along with a trace suffix leading
to e. By examining the trace, developers can gain insight into how code changes or
environment changes can lead to behavior changes.

Changes in platform, compiler options, and libraries. To analyze the effect of
changes in platform, compiler options and libraries, the reference set G and the test
run R are obtained from the same program source. G is generated by running the orig-
inal program with an instrumentation that just collects events. A test run is obtained
using DIRECT to modify in an appropriate fashion the duration of the code blocks. This
comparison performs sensitivity analysis, aimed at discovering the effect of minor tim-
ing changes with respect to the reference set. DIRECT can be instructed to modify the
block duration in three ways:

– Proportional delays, to approximate the effect of changes in platform.
– Random delays, to simulate the effect of interrupt handling, included libraries and

other characteristics of the hardware.
– Constant delays, to simulate the effect of the different latencies of OS calls.

Delay changes can lead to behavior changes in multiple ways. For example, a delay may
cause a sleeping thread to become enabled, so that the scheduler can choose this thread
to switch contexts. For each of the three delay insertion mechanisms given above, DI-
RECT can do selective sensitivity analysis, where a subset of the threads in the program
are subjected to delay insertion.

Changes in source code. To analyze the effects of source code changes, the test run R
is obtained using the new version, with or without the injection of delays. For change
impact analysis DIRECT compares every global state seen in the test run R of the modi-
fied program against the reference set G collected for the original program. Only events
in R that correspond to statements of the original program are compared against the set
G; events in R corresponding to statements introduced in the new program are trivially
not in G. Since we use the set G as an approximation to a formal specification, we are
interested in reporting new interleavings with respect to statements that were present
in the original program due to source code changes. The instrumentation introduced by
DIRECT keeps track of the corresponding statements in the two programs, making a
behavioral comparison possible.

Changes in the source code typically involve some change in the logic of the pro-
gram, brought about by insertion of new code, deletion of code or relocation of some
sections of code. In order to analyze the impact of such change between two versions
P and P ′ of a program, it is necessary to relate observable statements corresponding to
sections of the code that did not change from P to P ′.
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Fig. 1. DIRECT tool flow

Consider again Program 1. If the expression exp in the if condition at line 3 is not
always false a deadlock can occur if Thread T0 acquires resource a and then Thread T1
acquires resource b. T1 cannot release resource b until it completes its critical section,
which requires resource a held by T0. One fix for this problem consists in switching
the order in which the mutexes a and b are acquired by T0. Taking line numbers as the
identifiers of all observable statements, we notice that the calls to acquire resources a
and b are statements 5 and 4 before the change and 4 and 5 after the change. To analyze
the impact of this code change, it is necessary to preserve the integer identifiers of these
statements during program transformation, even though these statements have moved
in the course of the transformation.

4 Implementation

We discuss now the relevant implementation issues.

4.1 Program Instrumentation

Fig. 1 shows the program instrumentation flow of DIRECT. DIRECT relies on the CIL
toolset [14] to parse and analyze the program under consideration, and to insert instru-
mentation in the code. The instrumented version of the program is compiled and linked
with a runtime manager to produce the final executable. The application can then be run
just like the original user program. The runtime manager is a custom piece of software
that gains control of the user application before and after each observable global state.
The instrumentation step performs two tasks:

– replace observable statements with appropriate calls to the resource manager, al-
lowing the tracking of visible statements and the insertion of delays.

– wrap every call to a user defined function with invocations to the run-time manager
that keep track of the call stack.

Instrumenting observable statements. DIRECT reads a configuration file that specifies
the set of functions to track at runtime. This set typically includes OS primitives such
as mutex and semaphore acquisitions and releases, and other timing and scheduling-
related primitives. Each observable statement s is replaced by a call to a corresponding
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Program 2. man mutex lock replaces mutex lock in the source code

void man_mutex_lock (int statement_id, resource_t a) {
// Gets the current thread id from the set of registered threads.
int thread_id = self_thread_id();

// Injects pre-call delays for sensitivity analysis.
injectDelay(thread_id, Pre);

// Generates \ProgramEvent before the OS function call.
registerJointState(thread_id, statement_id, call);

// Calls the actual OS primitive.
mutex_lock(a);

// Injects post-call delays for sensitivity analysis.
injectDelay(thread_id, Post);

// Generates \ProgramEvent after the OS function call.
registerJointState(thread_id, statement_id, ret);

// Stores the start time of the subsequent block of code.
storeBlockStartTime(thread_id);

}

function in the runtime manager. The function in the runtime manager performs the
following tasks:

1. First, an optional delay can be introduced to simulate a longer run-time for the code
block immediately preceding the observable statement.

2. The internal representation of the thread state is updated, due to the occurrence of
the observable statement s.

3. The original observable statement s (such as an OS call) is executed.
4. An optional delay can be introduced, to simulate a longer response time from the

OS, or the use of modified I/O or external libraries.
5. Finally, the internal representation of the thread state is again updated, indicating

the completion of the statement s.

Note that DIRECT updates the thread state twice: once before executing s, another when
s terminates. Distinguishing these two states is important. For example, when the thread
tries to acquire a lock, the call to mutex lock indicates the completion of the previous
code block and the lock request, while the completion of mutex lock indicates that the
thread has acquired the lock. Program 2 illustrates the implementation of the runtime
manager function man mutex lock that replaces the OS primitive mutex lock. The first
argument in all calls to runtime manager functions that replace OS functions is s ∈ S .
The subsequent arguments are the actual arguments to be passed to the OS primitive.

Tracking thread states. DIRECT also tracks the call stack to perform context-sensitive
analysis, distinguishing calls to the same function that are performed in different stack
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configurations. To this end, DIRECT wraps each function call in a push-pop pair. If i is
the integer identifier of the call statement, the push instrumentation call adds i to the
call stack, and the pop call removes it.

Preserving accurate timing. The instrumentation code, by its very existence, causes
perturbations in the original timing behavior of the program. To eliminate this unde-
sirable effect, DIRECT freezes the real-time clock to prevent the runtime processing
overhead from affecting the timing of the application code. The current version of DI-
RECT implements this freezing as a modified version the Hardware Abstraction Layer
(HAL) in the eCos synthetic target running on Ubuntu 8.04. In this manner, the ex-
posed bugs are not caused by artificial interleavings created by the effect of the runtime
manager, and they are more likely to correspond to real bugs.

Tracking corresponding pieces of code. To perform change impact analysis, it is
important to identify the common, unchanged portions of P and P ′. A transforma-
tion from P to P ′ may involve (a) sections of new code that are inserted, (b) sec-
tions of code that are deleted, and (c) sections of code that have moved either as a
consequence of insertions and deletions or as a consequence of code re-organization.

<Block>
<Loop>
<If>
<Block>

cyg_mutex_lock(& a);
cyg_mutex_lock(& b);
cyg_mutex_unlock(& b);
cyg_mutex_unlock(& a);

<Block>
cyg_mutex_lock(& c);
cyg_mutex_lock(& a);
cyg_mutex_unlock(& a);
cyg_mutex_unlock(& c);

Fig. 2. A summary snippet

DIRECT deals with these variations by
first generating a text dump summariz-
ing the CFG of P and P ′. The key
problem in tracking code changes is that
of variations in coding style; syntacti-
cally identical program fragments may
still be very different based on the use
of indentation, line breaks, space char-
acters and delimiters. Our CFG sum-
maries preserve instructions (assignments
and function calls) exactly, but summarize
all other statements (blocks, conditionals,
goto statements etc.) This summarization
is done to remove artifacts such as labels
introduced by CIL that may change from
P to P ′, but have no bearing on tracking

statements. Fig. 2 shows the summary generated for the program fragment on the left
of Program 1. Given two CFG summaries, DIRECT identifies sections of code that have
been preserved using a text difference algorithm [18,13,4]. Given two text documents
D and D′, this algorithm extracts a list of space, tab and newline delimited words from
each document. The list of words are compared to produce a set of insertions, deletions
and moves that transform D to D′. We use the set of moves generated by the algorithm
to relate the set of statements in P that are also in P ′.

Tracking additional components of the program joint state. DIRECT supports the
following extensions to the joint state of a program.

– Resource values. Resources are often managed and synchronized using concur-
rency control primitives. Since DIRECT captures these control primitives the pre-
cise values of the resources can be accessed by the runtime manager with total
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precision. Let R be the set of all resources, including mutexes and semaphores.
Every resource has an associated value, that has the range {0, 1, 2, . . . , max(r)},
where max(r) = 1 for all mutexes and max(r) > 0 for all counting semaphores.

– Global variables. DIRECT can also track global variables, but these values are not
tracked whenever they change but only when an observable statement is reached.

– Extending observable statements. Users can expand on the set of OS primitives or
library functions to track.

– Block execution times. Average block execution times of each block in each thread
can be tracked to later perform proportional delay injection.

4.2 Detecting New Events Efficiently

To perform sensitivity and change impact analysis, it is crucial to test efficiently whether
an observed event is a member of a given state set. Time efficiency is needed to scale to
large programs. Space efficiency is especially important in the study of embedded soft-
ware. Even though the set of states represented can be very large, an embedded software
implementation can only use a very limited amount of memory. To achieve the desired
efficiency, DIRECT stores the set of reachable states as a Bloom filter [11], a proba-
bilistically correct data-type that implements sets of objects, offering two operations:
insertion and membership checking.

Bloom filters guarantee that after inserting an element, checking membership of that
element will return true. However, a membership query for an element that has not been
inserted in the Bloom filter is only guaranteed to respond false (the correct answer)
with a high probability. That is, Bloom filters allow some false positive answers for
membership queries. This fact implies that DIRECT may (rarely) miss new global states,
but that every new global state found by DIRECT is guaranteed to be new.

The performance of Bloom filters depends on the use of good (independent) hash
functions, which are difficult to design. DIRECT uses double-hashing [8] to obtain k
(good) hash functions from 2 (good) hash functions. Therefore, the cost of an operation
is virtually that of the computation of two hash-functions, so all operations run in almost
constant time.

5 Case Studies

We report two case studies: a solution to the dining philosophers problem and an adhoc
protocol for legOS, adapted to run in an eCos [1] environment.

5.1 An Adhoc Protocol

We analyzed a multi-threaded implementation of an ad-hoc network protocol for Lego
robots. As illustrated in Fig. 3, the program is composed of five threads, represented by
ovals in the figure, that manage four message queues, represented by boxes. Threads
user and generator add packets to the input queue. Thread router removes packets
from the input queue, and dispatches them to the other queues. Packets in the user
queue are intended for the local hardware device and hence are consumed by the user
thread. Packets in the broadcast queue are intended for broadcast, and they are moved
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Fig. 3. Scheme of an ad-hoc network protocol implementation

Program 3. A snippet of code from the packet router thread
1 semaphore_wait(&bb_free_sem);
2 semaphore_wait(&bb_mutex);
4 // code that forms a new packet and copies it into
5 // the free slot in the broadcast queue

...
40 semaphore_post(&bb_mutex);

...
50 semaphore_post(&bb_els_sem);

...

to the output queue by the delay thread, after a random delay, intended to avoid packet
collisions during broadcast propagation. Packets in the output queue are in transit to
another node, so they are treated by the sender thread. Notice that if the sender fails to
send a packet on the network, it reinserts the packet back in the broadcast queue (even
if it is not a broadcast packet), so that retransmission will be attempted after a delay.
Each queue is protected by a mutex, and two semaphores that count the number of
empty and free slots, respectively. The reference implementation has no non-blocking
resource requests. Program 3 shows a snippet of the router code. It first checks whether
the broadcast queue is free by trying to acquire the semaphore bb free sem at line 1. If
the semaphore is available, the router acquires a mutex, bb mutex that controls access
to the broadcast queue, before inserting a packet in the queue. Then, the router posts the
semaphore bb els sem indicating that the number of elements in the queue has increased
by one.

A very subtle bug is introduced by replacing the call to acquire the semaphore
bb free sem by a non-blocking call. The change is itself quite tempting for a devel-
oper as this change improves CPU utilization by allowing the router not to block on a
semaphore, continuing instead to process the input queue while postponing to broadcast
the packet. Program 4 shows the snippet of code that incorporates this change. The bug
is exhibited when the the block of code that should execute when the semaphore is suc-
cessfully acquired, terminates prematurely. Specifically, the call to post the semaphore
bb els sem at line 51 should only occur when the call at line 1 to acquire bb free sem
succeeds. This bug goes undetected as long as the call to acquire bb free sem always
succeeds. Two other threads, besides the router, access the semaphore bb free sem: the
delay thread and the send thread. Notice that as long as the send thread succeeds, it does
not try to place the packet back on the broadcast queue and the bug goes undetected. If
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Program 4. The router thread after changing to a non-blocking call (trywait)
1 if (semaphore_trywait(&bb_free_sem)) {
2 semaphore_wait(&bb_mutex);
4 // code that forms a new packet and copies it into
5 // the free slot in the broadcast queue

...
40 semaphore_post(&bb_mutex);
41 }

...
51 semaphore_post(&bb_els_sem);

...

the send thread fails to send the packet, acquires bb free sem and causes the broadcast
queue to fill up, the router fails to get bb free sem, exposing the bug that eventually
leads to a deadlock, where packets can no longer be routed. In one of our tests for this
program, we model failure to send a packet using randomization; each attempt to send
a packet has an equal chance at success and failure. This test exposed the bug. Specifi-
cally, the new global state observed corresponds to an invocation to post bb els sem at
line 51 in Program 4. In the Appendix, we show the last two global states in the suffix of
states that lead to this new state. The global state immediately preceding the new state
is one where the non-blocking semaphore request in the packet router fails. DIRECT

reports a trace to the new global state (the bug) and tools to visualize this trace.

5.2 Dining Philosophers

Program 5 shows an implementation of a philosopher in a proposed solution to the din-
ing philosophers problem analyzed using DIRECT. The numbers on the left are iden-
tifiers of observable statements. A naive implementation lets each philosopher pick up
her left fork first leading to a deadlock; each philosopher is holding her left fork and
none can get an additional fork to eat. Table 1, shows the tail-end of the sequence of
states of a system with 5 dining philosophers. Each line shows a global state containing
the index of the active thread, the state of each thread, the resource values, the set of
resources held by the active thread and whether the event corresponds to a function call
or return. The transition from state 5 to state 6 is the one where the fifth philosopher
(thread T4) acquires her left fork. As evidenced in state 6 all resources have been allo-
cated with each philosopher holding one fork. This state inevitably leads to a deadlock,
shown in the final state, where all philosophers are waiting at statement 3, that corre-
sponds to a request for the second fork in Program 5. When we fix the deadlock using
monotonic locking and run the program again, we notice that the new state is one where
the fifth philosopher is denied her first fork, avoiding the deadlock.

We found that the sequences of states generated serve another useful purpose, namely
analyzing waiting times for philosophers and checking whether the fork allocation poli-
cies are philosopher agnostic. We analyzed the sequence of states generated after fixing
the deadlock. We noticed that a simple analysis on the sequence shows that the ob-
servable statement 4 where the philosophers have acquired both forks, occurs half the
number of times for the first and last philosophers compared to the others. If we change
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Program 5. Dining philosopher
void philosopher(int philosopher_id) {
int first_fork, second_fork;

// fork assignment policy
first_fork = philosopher_id;
second_fork = (philosopher_id + 1) % N_PHILS;

if (first_fork > second_fork) {
first_fork = second_fork;
second_fork = philosopher_id;

}
while (1) {

0 thread_delay(20); // thinking phase

// eating phase
1 semaphore_wait(&forks[first_fork]); // pick first fork
2 thread_delay(2); // pause
3 semaphore_wait(&forks[second_fork]); // pick second fork
4 thread_delay(20); // eating phase
5 semaphore_post(&forks[second_fork]); // replace second fork
6 thread_delay(2); // pause
7 semaphore_post(&forks[first_fork]); // replace first fork

}
}

the implementation so that all the even numbered philosophers pick their left fork first
and the odd numbered philosophers pick their right fork first, they all get to eat virtually
the same number of times. The latter implementation may cause livelocks under certain
schedulers, but is equitable to the philosophers when compared to monotonic locking.
The asymmetry in the implementation for the last philosopher turns out to be the cul-
prit. Since the last philosopher always wishes to pick up her right fork first which is
also the first fork that the first philosopher needs, they end up waiting for each other to
finish. The last philosopher cannot pick up her left fork till she gets her right fork and
vice versa for the first philosopher. This asymmetry favors the other philosophers. In
fact, philosophers T0 and T4 acquire their first fork roughly half the number of times
that the others do, and have the largest wait times for their forks when compared to the
others.

5.3 Increasing Coverage with Random Delays

An interesting question in change impact analysis is that of coverage. Given a program,
a test and a platform, how do we generate as many global states as possible? The larger
the number of states that the tool exercises, the more likely it is that a state observed
in a test run, that does not occur in any reference run, point to a potential bug or other-
wise interesting new global state. Towards this end, DIRECT provides the mechanism
of injecting random delays, in user specified ranges, that increases context switching
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Table 1. A sequence leading to a deadlock in a naive implementation of dining philosophers

State Thread Philosopher threads Res values Res held (c)alls/
no. index T0 T1 T2 T3 T4 (r)ets

1 3 (0, 2) (0, 2) (0, 2) (0, 1) (0, 0) (0, 0, 0, 1, 1) () c
2 3 (0, 2) (0, 2) (0, 2) (0, 1) (0, 0) (0, 0, 0, 0, 1) (3) r
3 3 (0, 2) (0, 2) (0, 2) (0, 2) (0, 0) (0, 0, 0, 0, 1) (3) c
4 4 (0, 2) (0, 2) (0, 2) (0, 2) (0, 0) (0, 0, 0, 0, 1) () r
5 4 (0, 2) (0, 2) (0, 2) (0, 2) (0, 1) (0, 0, 0, 0, 1) () c
6 4 (0, 2) (0, 2) (0, 2) (0, 2) (0, 1) (0, 0, 0, 0, 0) (4) r
. . . . . .
16 4 (0, 3) (0, 3) (0, 3) (0, 3) (0, 2) (0, 0, 0, 0, 0) (4) r
17 4 (0, 3) (0, 3) (0, 3) (0, 3) (0, 3) (0, 0, 0, 0, 0) (4) c
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Fig. 4. Number states observed as running time increases, with and without random delays

between threads, producing new states. We studied the effect of injecting random de-
lays in the ranges [1..5], [5..20] and [20..50] clock ticks in all threads for the two case
studies presented in this section. We plot the results in Figure 4a and Figure 4b, where
the x-axis represents run durations in clock ticks and the y-axis reports the log of the
number of unique states observed. In this study, we ran each program for a set of dura-
tions. In each run, we first measured the number of unique states without random delay
injection; the Reference line in the graphs. For each duration, we then ran the same
application, injecting random delays and took the union of the set of states seen in the
reference run and the set of states seen with random delay injection. The size of these
sets, for each run duration, are shown by the points along the lines labeled with ran-
dom delays in the graphs. For dining philosophers, we noticed that the number of new
states in the reference run is zero after 200 clock ticks, but using random delays we see
an increase in the number of new states for each run duration as shown in Figure 4a.
Since code blocks take longer to execute with delay injection, the total number of global
states diminishes with longer delays, reducing the number of unique states seen. This
phenomenon is also witnessed by the increase in states seen with smaller delay ranges.
For the adhoc protocol, we noticed that the number of new states observed in the refer-
ence run decreases as the duration of the runs increase, but the number of new states are
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consistently higher with random delay injection just as in the case of dining philoso-
phers. We also observed that in this case, changing the range of the random delays does
not produce any significant change in the number of new states seen, unlike in the case
of dining philosophers. These results on our case studies give us strong evidence that
random delay injection is a good mechanism to increase the number of observed states
for a given program and test. We note here that the techniques proposed in CHESS [12]
or [5] can be used in addition to random delay injection to get a better approximation
of the reachable state space.

6 Conclusions

This paper reports on techniques for the change impact and sensitivity analysis of con-
current embedded software written in the C programming language. These techniques
are prototyped in a tool called DIRECT, that uses a combination of static analysis and
runtime monitoring. The static analysis determines instrumentation points, generates
the monitoring code, and establishes the difference between two versions of a given
program. The runtime manager is executed before and after every concurrency primitive
and user defined function, and computes at each instrumentation point an abstraction of
the current state. The runtime manager also keeps a sequence of abstract global states
leading to the current state.

For sensitivity analysis, the runtime manager also inserts delays to simulate differ-
ences between platforms, libraries and operating systems. For change impact analy-
sis, the runtime manager collects an approximation of the set of reached states of the
original program. Exhaustive exploration techniques like [12,5] can approximate more
accurately the reachable state space, but they are not directly suitable for embedded
systems, and to perform (online) change impact analysis. The states reached during the
executions of the new version are then compared against the set of reached states of
the original program. The prototypes were developed in a modified version of the eCos
environment in which the instrumented code was executed with the real-time clock
stopped, so that the execution of the runtime manager incurred no additional delay. We
presented two case studies to illustrate how the techniques described in this paper can
help capture bugs in concurrency programs.

There are some limitations of the work presented here that we plan to study in future
research. First, we would like to apply DIRECT to large programs to see how well our
techniques scale with program size. Second, the indication of a new global state may
not correspond to a real bug but just a false positive. While we did not encounter such
false positives in our case studies, we plan to study the number of false positives as
the program size increases and steps to minimize them. Finally, the current sensitivity
analysis can only insert delays in execution blocks. We would like to extend it with the
ability to accelerate blocks (negative delays), whenever it is safe to do so.

We also plan to extend the techniques reported here in two directions. First, we will
use DIRECT in real embedded systems, where the illusion of instantaneous execution
time of the manager that we obtained via simulation is not accurate. Second, we will
explore the design of schedulers that try to maximize the set of global states reached.
Unlike in CHESS [12] we plan to proceed in several rounds, where the scheduler of the
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next round is obtained using the set of global states obtained in the previous runs with
some static analysis.
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Abstract. Actor programs consist of a number of concurrent objects
called actors, which communicate by exchanging messages. Nondetermin-
ism in actors results from the different possible orders in which available
messages are processed. Systematic testing of actor programs explores
various feasible message processing schedules. Dynamic partial-order re-
duction (DPOR) techniques speed up systematic testing by pruning parts
of the exploration space. Based on the exploration of a schedule, a DPOR
algorithm may find that it need not explore some other schedules. How-
ever, the potential pruning that can be achieved using DPOR is highly
dependent on the order in which messages are considered for processing.
This paper evaluates a number of heuristics for choosing the order in
which messages are explored for actor programs, and summarizes their
advantages and disadvantages.

1 Introduction

Modern software has several competing requirements. On one hand, software
has to execute efficiently in a networked world, which requires concurrent pro-
gramming. On the other hand, software has to be reliable and dependable, since
software bugs could lead to great financial losses and even loss of lives. However,
putting together these two requirements—building concurrent software while en-
suring that it be reliable and dependable—is a great challenge. Approaches that
help address this challenge are in great need.

Actors offer a programming model for concurrent computing based on message
passing and object-style data encapsulation [1, 2]. An actor program consists of
several computation entities, called actors, each of which has its own thread of
control, manages its own internal state, and communicates with other actors by
exchanging messages. Actor-oriented programming systems are increasingly used
for concurrent programming, and some practical actor systems include Actor-
Foundry, Asynchronous Agents Framework, Axum, Charm++, Erlang, E, Jet-
lang, Jsasb, Kilim, Newspeak, Ptolemy II, Revactor, SALSA, Scala, Singularity,
and ThAL. (For a list of references, see [16].)

A key challenge in testing actor programs is their inherent nondeterminism:
even for the same input, an actor program may produce different results based on
the schedule of arrival of messages. Systematic exploration of possible message
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arrival schedules is required both for testing and for model checking concurrent
programs [3–5, 7, 10–12, 18, 21, 22]. However, the large number of possible mes-
sage schedules often limits how many schedules can be explored in practice. For-
tunately, such exploration need not enumerate all possible schedules to check the
results. Partial-order reduction (POR) techniques speed up exploration by prun-
ing some message schedules that are equivalent [7, 10, 12–14, 18, 22]. Dynamic
partial-order reduction (DPOR) techniques [10, 18, 19] discover the equivalence
dynamically, during the exploration of the program, rather than statically, by
analyzing the program code. The actual dynamic executions provide more pre-
cise information than a static analysis that needs to soundly over-approximate
a set of feasible executions. Effectively, based on the exploration of some mes-
sage schedules, a DPOR technique may find that it need not explore some other
schedules.

It turns out that pruning using DPOR techniques is highly sensitive to the
order in which messages are considered for exploration. For example, consider a
program which reaches a state where two messages, m1 and m2, can be delivered
to some actors. If a DPOR technique first explores the possible schedules after
delivering m1, it could find that it need not explore the schedules that first
deliver m2. But, if the same DPOR technique first delivers m2, it could happen
that it cannot prune the schedules from m1 and thus needs to perform the entire
exhaustive exploration. We recently observed this sensitivity in our work on
testing actor programs [16], and Godefroid mentioned it years ago [12]. Dwyer
et al. [8] evaluate the search order for different exploration techniques. However,
we are not aware of any prior attempt to analyze what sorts of message orders
lead to better pruning for DPOR.

This paper addresses the following questions:

– What are some of the natural heuristics for ordering scheduling decisions in
DPOR for message-passing systems?

– What is the impact of choosing one heuristic over another heuristic?
– Does the impact of these heuristics depend on the DPOR technique?
– Can we predict which heuristic may work better for a particular DPOR

technique or subject program?

The paper makes two contributions. First, it presents eight ordering heuristics
(Sect. 5) and evaluates them on seven subject programs (Sect. 6). We compare
the heuristics for two DPOR techniques: one based on dynamically computing
persistent sets [10, 12] and the other based on dCUTE [18] (Sect. 2). As our
evaluation platform, we use the Basset system [16]. The results show that dif-
ferent heuristics can lead to significant differences in pruning, up to two orders
of magnitude. Second, the paper summarizes the advantages and disadvantages
of various heuristics. In particular, it points out what types of programs, based
on the communication pattern of the actors, may benefit the most from which
heuristics. This provides important guidelines for exploring actor programs in
practice: based on the type of the program, the user can instruct an exploration
tool to use a heuristic that provides better pruning, resulting in a faster explo-
ration and more efficient bug finding.
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2 Actor Language and Execution Semantics

For illustrative purposes, we describe an imperative actor language ActorFoundry
that is implemented as a Java framework [15]. A class that describes an actor
behavior extends osl.manager.Actor. An actor may have local state comprised
of primitives and objects. The local state cannot be shared among actors. An
actor can communicate with another actor in the program by sending asyn-
chronous messages using the library method send. The sending actor does not
wait for the message to arrive at the destination and be processed. The library
method call sends an asynchronous message to an actor but blocks the sender
until the message arrives and is processed at the receiver. An actor definition
includes method definitions that correspond to messages that the actor can ac-
cept and these methods are annotated with @message. Both send and call can
take arbitrary number of arguments that correspond to the arguments of the
corresponding method in the destination actor class. The library method create

creates an actor instance of the specified actor class. It can take arbitrary num-
ber of arguments that correspond to the arguments of the constructor. Message
parameters and return types should be of the type java.io.Serializable. The
library method destroy kills the actor calling the method. Messages sent to the
killed actor are never delivered. Note that both call and create may throw a
checked exception RemoteCodeException.

We informally present semantics of relevant ActorFoundry constructs to be
able to more precisely describe the algorithms in Sect. 3. Consider an Actor-
Foundry program P consisting of a set of actor definitions including a main
actor definition that receives the initial message. send(a, msg) appends the con-
tents of the message msg to the message queue of actor a. We will use Qa

to denote the message queue of actor a. We assume that at the beginning of
execution the message queue of all actors is empty.

The ActorFoundry runtime first creates an instance of the main actor and
then sends the initial message to it. Each actor executes the following steps in a
loop: remove a message from the queue (termed as an implicit receive statement
from here on), decode the message, and process the message by executing the
corresponding method. During the processing, an actor may update the local
state, create new actors, and send more messages. An actor may also throw an
exception. If its message queue is empty, the actor blocks waiting for the next
message to arrive. Otherwise, the actor nondeterministically removes a message
from its message queue. The nondeterminism in choosing the message models
the asynchrony associated with message passing in actors. An actor executing a
create statement produces a new instance of an actor.

An actor is said to be alive if it has not already executed a destroy statement
or thrown an exception. An actor is said to be enabled if the following two
conditions hold: the actor is alive, and the actor is not blocked due to an empty
message queue or executing a call statement.

A variable pca represents the program counter of the actor a. For every actor,
pca is initialized to the implicit receive statement. A scheduler executes a loop
inside which it nondeterministically chooses an enabled actor a from the set P .
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It executes the next statement of the actor a, where the next statement is ob-
tained by calling statement at(pca). During the execution of the statement, the
program counter pca of the actor a is modified based on the various control flow
statements; by default, it is incremented by one.

The concrete execution of an internal statement, i.e., a statement not of the
form send, call, create, or destroy, takes place in the usual way for imperative
statements. The loop of the scheduler terminates when there is no enabled actor
in P . The termination of the scheduler indicates either the normal termination
of a program execution, or a deadlock state (when at least one actor in P is
waiting for a call to return).

3 Automated Testing of ActorFoundry Programs

To automatically test an ActorFoundry program for a given input, we need to
explore all distinct, feasible execution paths of the program. A path is intuitively
a sequence of statements executed, or as we will see later, it suffices to have just a
sequence of messages received. In this work, we assume that the program always
terminates and a test harness is available, and thus focus on exploring the paths
for a given input. A simple, systematic exploration of an ActorFoundry program
can be performed using a näıve scheduler: beginning with the initial program
state, the scheduler nondeterministically picks an enabled actor and executes
the next statement of the actor. If the next statement is implicit receive, the
scheduler nondeterministically picks a message for the actor from its message
queue. The scheduler records the ids of the actor and the message, if applicable.
The scheduler continues to explore a path in the program by making these choices
at each step. After completing execution of a path (i.e., when there are no new
messages to be delivered), the scheduler backtracks to the last scheduling step
(in a depth-first strategy) and explores alternate paths by picking a different
enabled actor or a different message from the ones chosen previously.

Note that the number of paths explored by the näıve scheduler is exponential
in the number of enabled actors and the number of program statements in all
enabled actors. However, an exponential number of these schedules is equivalent.
A crucial observation is that actors do not share state: they exchange data and
synchronize only through messages. Therefore, it is sufficient to explore paths
where actors interleave at message receive points only. All statements of an actor
between two implicit receive statements can be executed in a single atomic step
called a macro-step [2, 18]. At each step, the scheduler picks an enabled actor and
a message from the actor’s message queue. The scheduler records the ids of the
actor and the message, and executes the program statements as a macro-step. A
sequence of macro-steps, each identified by an actor and message pair (a, m), is
termed a macro-step schedule. At the end of a path, the scheduler backtracks to
the last macro-step and explores an alternate path by choosing a different pair
of actor and message (a, m).

Note that the number of paths explored using a macro-step scheduler is ex-
ponential in the number of deliverable messages. This is because the scheduler,
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scheduler(P )
pca1 = l

a1
0 ; pca2 = l

a2
0 ; . . . ; pcan = lan

0 ;
Qa1 = [ ]; Qa2 = [ ]; . . . ; Qan = [ ];
i = 0;
while (∃a ∈ P such that a is enabled)

(a,msg id) = next(P);
i = i + 1;
s = statement at(pca);
execute(a, s, msg id);
s = statement at(pca);
while (a is alive and s �= receive(v))

if s is send(b, v)
for all k ≤ i

such that b == path c[k].receiver
and canSynchronize(path c[k].s, s)

// actor a′ “causes” s
path c[k].Sp.add((a′, ));

execute(a, s, msg id);
s = statement at(pca);

compute next schedule();

compute next schedule()
j = i − 1;
while j ≥ 0

if path c[j].Sp is not empty
path c[j].schedule =

path c[j].Sp.remove();
path c = path c[0 . . . j];
return;

j = j − 1;
if (j < 0) completed = true;

next(P)
if (i ≤ |path c|)

(a,msg id) = path c[i].schedule;
else

(a,msg id) = choose(P);
path c[i].schedule = (a,msg id);
path c[i].Sp.add((a, ));

return (a,msg id);

Fig. 1. Dynamic partial-order reduction algorithm based on persistent sets

for every step, executes all permutations of actor and message pairs (a, m) that
are enabled before the step. However, messages sent to different actors may be
independent of each other, and it may be sufficient to explore all permutations
of messages for a single actor instead of all permutations of messages for all
actors [18].

The independence between certain events results in equivalent paths, in which
different orders of independent events occur. The equivalence relation between
paths is exploited by dynamic partial-order reduction (DPOR) algorithms to
speed-up automatic testing of actor programs by pruning parts of the explo-
ration space. Specifically, the equivalence is captured using the happens-before
relation [9, 18], which yields a partial order on the state transitions in the pro-
gram. The goal of DPOR algorithms is to explore only one linearization of each
partial order or equivalence class.

We next describe two stateless DPOR algorithms for actor programs: one
based on dynamically computing persistent sets [10] (adapted for testing actor
programs), and the other one used in dCUTE [18].

DPOR based on Persistent Sets

Flanagan and Godefroid [10] introduced a DPOR algorithm that dynamically
tracks dependent transitions and computes persistent sets [12] among concur-
rent processes. They presented the algorithm in the context of shared-memory
programs. Figure 1 shows our adaptation of their algorithm for actor programs,
which also incorporates the optimization discussed by Yang et al. [23].

The algorithm computes persistent sets in the following way: during the initial
run of the program, for every scheduling point, the scheduler nondeterministi-
cally picks an enabled actor (call to the choose method, which is underlined) and
adds all its pending messages to the persistent set Sp. It then explores all permu-
tations of messages in the persistent set. During the exploration, if the scheduler
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scheduler(P )
pca1 = l

a1
0 ; pca2 = l

a2
0 ; . . . ; pcan = lan

0 ;
Qa1 = [ ]; Qa2 = [ ]; . . . ; Qan = [ ];
i = 0;
while (∃a ∈ P such that a is enabled)

(a,msg id) = next(P);
i = i + 1;
s = statement at(pca);
execute(a, s, msg id);
s = statement at(pca);
while (a is alive and s �= receive(v))

if s is send(b, v)
for all k ≤ i

such that b == path c[k].receiver
and canSynchronize(path c[k].s, s)

path c[k].needs delay = true;
execute(a, s, msg id);
s = statement at(pca);

compute next schedule();

compute next schedule()
j = i − 1;
while j ≥ 0

if path c[j].next schedule �= (⊥,⊥)
(a, m) =path c[j].schedule;
(b, m′) =path c[j].next schedule;
if a == b or path c[j].needs delay

path c[j].schedule =
path c[j].next schedule;

if a �= b
path c[j].needs delay = false;

path c = path c[0 . . . j];
return;

j = j − 1;
if (j < 0) completed = true;

next(P)
if (i ≤ |path c|)

(a,msg id) = path c[i].schedule;
else

(a,msg id) = choose(P);
path c[i].schedule = (a,msg id);

path c[i].next schedule = next(a,msg id);
return (a,msg id);

Fig. 2. Dynamic partial-order reduction algorithm for the dCUTE approach

encounters a send(a, v) statement, say at position i in the current schedule, it
analyzes all the receive statements executed by a earlier in the same execution
path (represented as path c). If a receive, say at position k < i in the schedule,
is not related to the send statement by the happens-before relation (checked in
the call to method canSynchronize), the scheduler adds pending messages for a
new actor a′ to the persistent set at position k. The actor a′ is “responsible” for
the send statement at i, i.e., a receive for a′ is enabled at k, and it is related to
the send statement by the happens-before relation.

DPOR in dCUTE

Figure 2 shows the DPOR algorithm that is a part of the dCUTE approach for
testing open, distributed systems [18]. (Since we do not consider open systems
here, we ignore the input generation from dCUTE.) It proceeds in the following
way: during the initial run of the program, for every scheduling point, the sched-
uler nondeterministically picks an enabled actor (call to the choose method,
which is underlined) and explores permutations of messages enabled for the ac-
tor. During the exploration, if the scheduler encounters a send statement of the
form send(a, v), it analyzes all the receive statements seen so far in the same
path. If a receive statement is executed by a, and the send statement is not
related to the receive in the happens-before relation, the scheduler sets a flag at
the point of the receive statement. The flag indicates that all permutations of
messages to some other actor a′ (different from a) need to be explored at the
particular point. The exploration proceeds in a nondeterministic fashion again
from there on. A more detailed discussion of the algorithm can be found in [18].

Note that the algorithms discussed above re-execute the program from the
beginning with the initial state in order to explore a new program path. The
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algorithms can be easily modified to support checkpointing and restoration of
intermediate states, since these operations do not change DPOR fundamentally.

4 Illustrative Example

To illustrate key DPOR concepts and how different message orderings can affect
the exploration of actor programs, we use a simple example actor program that
computes the value of π. It is a porting of a publicly available [17] MPI example,
which computes an approximation of π by distributing the task among a set of
worker actors.

Figure 3 shows a simplified version of this code in ActorFoundry. The Driver

actor creates a master actor that uses a given number of worker actors to carry
out the computation. The Driver actor sends a start message to the master
actor which in turn sends messages to each worker, collects partial results from
them, reduces the partial results, and after all results are received, instructs the
workers to terminate and terminates itself.

Figure 4 shows the search space for this program with master actor M and two
worker actors A and B. Each state in the figure contains a set of messages. A
message is denoted as XY where X is the actor name and Y uniquely identifies
the message to X . We assume that the actors are created in this order: A, B, M .
Transitions are indicated by arrows labeled with the message that is received,
where a transition consists of the delivery of a message up to the next delivery.

The boxed states indicate those states that will be visited when the search
space is explored using a DPOR technique, and when actors are chosen for
exploration according to the order in which the receiving actors are created.
Namely, the search will favor exploration of messages to be delivered to A over
those to be delivered to B or M , so if in some state (say, the point labeled
K) messages can be delivered to both A and B, the search will first explore
the delivery to A and only after that the delivery to B. To illustrate how this
ordering affects how DPOR prunes execution paths, consider the state at point
G. For this state, the algorithm will first choose to deliver the message B1. While
exploring the search space that follows from this choice, all subsequent sends to
actor B are causally dependent on the receipt of message B1. This means that
DPOR does not need to consider delivering the message MA before B1. This
allows pruning the two paths that delivering MA first would require. Similar
reasoning shows that DPOR does not need to consider delivering B2 before A2
at points S and T , and that it does not need to consider delivering B1 at point
K. In total, this ordering prunes 10 of 12 paths, i.e., with this ordering, only 2
of 12 paths are explored.

The shaded states indicate those states that will be visited when the search
space is explored using the same DPOR, but when actors are chosen for explo-
ration according to the reverse-order in which the receiving actors are created.
This means that the search will favor exploration of messages to be delivered
to M over those to be delivered to B or A. This reverse-ordering causes DPOR
to prune execution paths differently. Consider the state at point H . For this
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class Master extends Actor {
ActorName[] workers;
int counter = 0;
double result = 0.0;
public Master(int N) {

workers = new ActorName[N]
for (int i = 0; i < N; i++)

workers[i] =
create(Worker.class, i, N);

}
@message void start() {

int n = 1000;
for (ActorName w: workers)

send(w,”intervals”, self(), n);
}
@message void sum(double p) {

counter++;
result += p;
if (counter == workers.length) {

for (ActorName w: workers)
send(w,”stop”);

destroy(”done”);
}

}
}

class Worker extends Actor {
int id;
int nbWorkers;
public Worker(int id, int nb) {

this.id = id;
this.nbWorkers = nb;

}
@message void intervals(ActorName master, int n) {

double h = 1.0 / n; double sum = 0;
for (int i = id; i <= n; i += nbWorkers) {

double x = h * (i - 0.5);
sum += (4.0 / (1.0 + x*x));

}
send(master, ”sum”, h * sum);

}
@message void stop() {destroy(”done”);}

}

class Driver extends Actor {
static void main(String[] args) {

ActorName master =
create(Master.class, args[0]);

send(master, ”start”);
}

}

Fig. 3. ActorFoundry code for the pi example
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state, the algorithm will first choose to deliver the message MB. Following this
path, it comes to point J , where the delivery of message A1 results in message
MA being sent. This send to actor M is not causally dependent on the receipt
of message MB. This means that the DPOR also needs to consider delivering
the message A1 before MB at point H . As the search continues, it discovers
that it does not need to consider delivering A2 before B2 at points U , V , and
W ; and also it does not need to consider delivering A1 at point K. In total,
the reverse-ordering prunes 9 of 12 paths, which is one fewer than when the
messages are selected in the order in which the receiving actors are created. As
shown in Sect. 6, this difference in the number of paths pruned increases as the
number of worker actors increases.

5 Heuristics

The example in Sect. 4 illustrates the idea that scheduling decisions may affect
the efficiency of DPOR techniques. In the algorithms presented in Sect. 3, the
scheduling choices are represented by the calls to the choose method (under-
lined). Observe that these DPOR algorithms first collect all possible messages
for an actor at a given state, and then explore some orders for processing this
set of messages. The key question, therefore, is how to order these messages for
a given state.

We present eight possible heuristics for ordering messages:

1. Earliest created actor (ECA) sorts the enabled actors by their creation time
in the ascending order. The intuition is to capture the “asymmetry” between
some actors in terms of the communication pattern.

2. Latest created actor (LCA) is similar to ECA but sorts the enabled actors
by their creation time in the descending order.

3. Queue (FIFO) sorts the actors based on the time of the earliest message
sent to them, in the ascending order. This heuristic captures the common
implementation order of choosing messages from a scheduling queue.

4. Stack (LIFO) sorts the actors based on the time of the last message sent to
them, in the descending order.

5. Lowest number of deliverable messages (LDM) sorts the actors by the number
of messages in their respective message queue, in the ascending order. The
intuition is that the actors that have received more messages are more likely
to receive more messages later in the computation.

6. Highest number of deliverable messages (HDM) sorts the actors by the num-
ber of messages in their respective message queue, in the descending order.

7. Highest average messages sent (HMS) prioritizes the actors which have been
sending the highest number of messages per received message, based on the
exploration history. The intuition is that the actors that have been sending
more messages in the past are more likely to send more messages in the
future.
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8. Send graph reachability (SGR) is based on information collected during prior
executions. Specifically, it maintains a directed graph where nodes represent
actors and edges indicate that a message was sent from the first node to the
second at some point in the exploration. Now, consider two messages: one to
actor A, and one to actor B. If actor B is reachable in the graph from actor
A and no such path exists from actor B to actor A, then SGR will prioritize
actor A over actor B. The intuition is that actor B is less likely to cause a
message to be sent to actor A.

These eight heuristics capture some intuition based on the functioning of the
DPOR algorithms and on the patterns of communication in actor programs.
While our list of heuristics is not complete by any means, we believe that it is
sufficiently representative to help us answer the questions raised by our study
(Sect. 1).

6 Evaluation

To evaluate the different heuristics for dynamic partial-order reduction, we con-
ducted experiments using two different DPOR techniques. The heuristics and
DPOR techniques are implemented in the Basset framework [16]. Basset pro-
vides an extensible environment for exploration of Java-based actor programs.
It is built on top of Java PathFinder (JPF), a popular explicit state model
checker for Java bytecode [20].

We first describe the subject programs used to quantitatively evaluate the
heuristics. We then present experimental results comparing the different heuris-
tics for the two DPOR techniques. All experiments are performed using Sun’s
JVM 1.6.0 16-b01 on a 2.80GHz Intel Core2 Duo running Ubuntu release 9.04.

6.1 Subject Programs

Our experiments use the seven actor programs listed in Table 1. All of these
subjects are either originally written using the ActorFoundry library [1, 2] or
ported to that environment.

The pi subject is the example described in Sect. 4. However, the results shown
here are for a configuration using five worker actors. Two of the subjects imple-
ment more complex algorithms previously used in the dCUTE study [18]: leader
is an implementation of a leader election algorithm; and shortpath is an imple-
mentation of the Chandy-Misra’s shortest path algorithm [6]. The shortpath

subject appears twice in the results: once for a graph with 4 nodes (shortpathA),
and again for a graph with 5 nodes (shortpathB). Note that the two graphs are
dissimilar. The fibonacci subject computes the n-th element in the Fibonacci
sequence. quicksort is an implementation of a distributed sorting algorithm
that use a standard divide-and-conquer strategy to carry out the computation.
pipesort is a modified version of the sorting algorithm used in the dCUTE
study [18]. chameneos is an implementation of the chameneos-redux benchmark
from the Great Language Shootout (http://shootout.alioth.debian.org).

http://shootout.alioth.debian.org
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Table 1. Comparison of different ordering heuristics. (The best result is bold.)

dCUTE Persistent dCUTE Persistent
# of time # of time # of time # of time

Heur. Subject Paths [sec] Paths [sec] Subject Paths [sec] Paths [sec]
ECA 3821 300 19683 1474 288 22 288 23
LCA 216 19 216 20 5970 441 5970 453
FIFO 972 75 3240 267 1794 128 1791 138
LIFO chameneos 2031 142 4899 320 pipesort 1080 77 1080 78
LDM 753 67 3375 279 size=4 384 33 384 32
HDM 3821 312 19683 1626 2072 154 1480 126
HMS 3691 301 19683 1639 307 25 307 26
SGR 3821 280 19683 1422 288 24 288 24

ECA 684 65 327 31 7038 514 3822 327
LCA 16 5 16 5 32 6 32 6
FIFO 68 9 40 7 572 48 368 31
LIFO fib(5) 81 12 81 13 quicksort 243 26 243 25
LDM 508 51 261 28 size=6 6390 512 2502 206
HDM 526 59 263 31 5118 424 2804 250
HMS 82 12 66 10 195 21 183 21
SGR 684 70 327 34 7038 514 3822 325
ECA 101 9 101 9 516 32 392 25
LCA 188 16 188 15 680 43 640 33
FIFO 122 12 119 12 360 24 238 18
LIFO leader 125 11 125 11 shortpath 859 48 750 36
LDM 133 12 133 12 graph A 585 42 492 33
HDM 88 9 88 9 562 39 419 30
HMS 141 14 126 12 540 35 453 32
SGR 101 9 101 10 516 33 392 25
ECA 120 25 120 22 7216 397 2658 127
LCA 945 142 19845 2921 7462 570 1865 109
FIFO 120 22 120 22 3488 244 528 41
LIFO pi 945 149 19845 2833 shortpath 6472 489 2638 167
LDM 5 workers 120 23 120 24 graph B 7326 509 1178 71
HDM 706 120 3424 614 13438 1111 2756 273
HMS 945 179 19845 3542 3618 268 783 44
SGR 153 29 567 77 7940 493 3349 186

6.2 Results and Observations

Table 1 shows the results of experiments comparing the different heuristics for
both the DPOR based on persistent sets and the one used for dCUTE. For each
heuristic, we tabulate the total number of paths executed and the total explo-
ration time in seconds. The results suggest that the efficiency of the two DPOR
techniques is greatly dependent on the order in which messages are selected for
exploration.

Recall the four research questions posed in Sect. 1. The first question is dis-
cussed in Sect. 5 where we describe some intuitive ordering heuristics to guide
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DPOR algorithms. We address the remaining three questions now by making
observations on the results in Table 1.

1. What is the impact of choosing one heuristic over another heuristic?

The table shows that for 6 out of 8 experiments, one of the heuristics (but
not necessarily the same) performs the best, i.e., there is no tie for the best
performing heuristic. In the case of pipesort the tie between ECA and SGR
is due to the relationship between the two heuristics. Specifically, ECA is the
tie-breaking heuristic for SGR.

SGR performs the same as ECA for 6 out of 8 experiments. However, for the
remaining two experiments, SGR performs worse than ECA. This suggests that
the SGR heuristic, despite its usage of additional information, does not offer any
advantage over ECA.

We also observe that the difference between the best and the worst heuristic
can be very large. For example, for the quicksort subject sorting an array of size 6
and dCUTE DPOR, the best heuristic (LCA) has 2 orders of magnitude (more
precisely, 220X) fewer executions than the worst performing heuristic (ECA).
Note that both these heuristics are natural orders on the scheduling queue. In
fact, the dCUTE DPOR algorithm as originally presented [18] employs the ECA
ordering. The second best performing heuristic (HMS) for quicksort still explores
6 times as many executions as the best heuristic. For the other subjects, the ratio
between the number of executions in the worst and the best case ranges from
2X (for leader) to 91X (for chameneos).

In general, the exploration time strongly correlates with the number of exe-
cuted paths. This observation suggests that the better heuristics do not have a
significant computation cost, and thus their reduction in the number of execu-
tions directly translates into savings in the exploration time. There are excep-
tions: for the subject shortpathB, the exploration time does not correlate with
the number of paths executed as closely as other experiments. We believe that
this is due to our experiments using Basset which is built on top of JPF and uses
checkpointing and restoring to explore different paths, rather than re-execution.
Hence, the time may relate more to the number of states visited instead of the
number of executions, or stated differently, the time may depend more strongly
on the length of executions instead of the number of executions.

2. Does the impact of these heuristics depend on the DPOR technique?

Although the results differ between the two DPOR algorithms for the experi-
ments, the results exhibit a similar ranking of heuristics for both algorithms.
In other words, for a given subject, heuristics that perform well for one DPOR
technique tend to perform well for the other. Similarly, a heuristic that performs
poorly typically does so for both DPOR algorithms.
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It is evident from the table that for all 8 experiments, the best heuristic
exactly matches for both DPOR algorithms. Moreover, even the worst heuristic
matches for 7 out of 8 experiments.

3. Can we predict which heuristic may work better for a particular DPOR tech-
nique or subject program?

We found that which heuristic performs the best relates to the communication
patterns employed by the program. For example, in a pipelined computation, it
is more efficient to schedule first the actors that represent the early stages in the
pipeline. On the other hand, in a divide-and-conquer tree, it is more efficient to
schedule child actors before the parent actor.

Indeed, the ECA heuristic is the best performing heuristic for pipesort. ECA
prioritizes actors in the early stages of a pipeline, and this enables the DPOR
algorithms to collect all possible messages for actors in the later stages of the
pipeline.

For 3 out of 8 subjects, the LCA heuristic performs the best among all heuris-
tics. Two of these subjects—fib and quicksort—employ a divide-and-conquer
approach. The remaining subject, chameneos, has a request-reply pattern be-
tween a broker and many clients. LCA allows the DPOR algorithm to collect
all possible messages sent from the clients to the broker before exploring all the
permutations of this set of messages.

For subjects with arbitrary graphs and communication patterns, the FIFO
heuristic outperforms the remaining heuristics. For instance, the input graphs
for shortpathA and shortpathB are dissimilar, and the effectiveness of several
heuristics varied between the two experiments. Yet, the FIFO heuristic is the
most effective heuristics for both inputs.

We performed some additional experiments for shortpath (not shown in the
table) to identify how much the choice of heuristic depends on the program input
rather than program code. In particular, the input to shortpath is a graph, and
the messages exchanged depend on the topology of this graph. We considered
seven more graphs (all with four or five nodes) in addition to the two for which
the results are shown. While there is some variation of the results, in all the cases,
FIFO is the best heuristic, either by itself, or together with some other heuristics
(e.g., for a graph that is a list, there is only one execution path for any heuristic).
These results are not conclusive, but they strongly suggest that the choice of
heuristic depends on the program (and its communication pattern) more than
on the input. Ideally, we would like to evaluate how shortpath performs for all
graphs of a given size (but some explorations time out after an hour even for
graphs of size just four). We would also like to evaluate sensitivity of heuristics
to the inputs for other programs. We leave that as future work.

In summary, the results suggest the following set of guidelines for selecting a
heuristic before the exploration of a program. (1) If there is no well-defined topol-
ogy and communication pattern in the program (or if this communication pattern
is not known a priori), then the default heuristic should be FIFO, since it is never
the worst and sometimes is even the best heuristic. (2) If the communication
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pattern is a pipeline, then ECA should be used. (3) If the communication pat-
tern is a divide-and-conquer tree, then LCA should be used.

7 Conclusions

Systematic exploration of message schedules is a viable approach to address the
important but challenging problem of testing actor programs. Dynamic partial-
order reduction (DPOR) techniques can significantly speed up systematic explo-
ration, but they are highly sensitive to the order in which messages are explored.
We described and compared several heuristics that can be used for ordering mes-
sages. Our results show up to two orders of magnitude difference in the number
of executions explored. Moreover, our analysis of the results discovered guide-
lines that, based on the type of program, can aid selection of a good heuristic
before the exploration. There has been recent work on combining DPOR tech-
niques with stateful exploration [24, 25], and we plan to evaluate the effectiveness
of heuristics for such approaches. Similarly, we plan to evaluate the impact of
heuristics on DPOR algorithms based on sleep sets [12].
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Abstract. Concurrent programs often exhibit bugs due to unintended interfer-
ences among the concurrent threads. Such bugs are often hard to reproduce be-
cause they typically happen under very specific interleaving of the executing
threads. Basically, it is very hard to fix a bug (or software failure) in concur-
rent programs without being able to reproduce it. In this paper, we present an
approach, called ConCrash, that automatically and deterministically reproduces
concurrent failures by recording logical thread schedule and generating unit tests.
For a given bug (failure), ConCrash records the logical thread scheduling order
and preserves object states in memory at runtime. Then, ConCrash reproduces
the failure offline by simply using the saved information without the need for
JVM-level or OS-level support. To reduce the runtime performance overhead,
ConCrash employs a static data race detection technique to report potential
possible race conditions, and only instruments such places. We implement the
ConCrash approach in a prototype tool for Java and experimented on a num-
ber of multi-threaded Java benchmarks. As a result, we successfully reproduced
a number of real concurrent bugs (e.g., deadlocks, data races and atomicity vio-
lation) within an acceptable overhead.

1 Introduction

The increasing popularity of concurrent programming has brought the issue of concur-
rent defect analysis to the forefront. Concurrent programs often exhibit wrong behaviors
due to unintended interferences among the concurrent threads. Such concurrent failures
or bugs - such as data races and atomicity violations - are often difficult to fix without
being able to reproduce them. However, in a multi-threaded concurrent program, the
number of possible interleavings is huge, and it is not practical to try them all. Only a
few of the interleavings or even one specific interleaving actually produce the failure;
thus, the probability of reproducing a concurrent failure is extremely low. A traditional
method of reproducing concurrent failure is to repeatedly execute the program with the
hope that different test executions will project in different interleavings. Unfortunately
this approach is proved to be neither efficient nor reproducible in practice. Firstly, ex-
ecution result of a concurrent program depends on the underlying operating system or
the virtual machine for thread scheduling - it does not try to explicitly control the thread
schedules; therefore, executions often end up with the same interleaving many times,

D.S. Rosenblum and G. Taentzer (Eds.): FASE 2010, LNCS 6013, pp. 323–337, 2010.
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which means getting an access to the buggy interleaving is always a time-consuming
task. Moreover, many concurrent applications (like servers) often run a long time and
serve for specific users. So it would be extremely hard to reproduce such environmental
dependent bugs in off-line testing.

The high cost of reproducing concurrent failures has motivated the development of
sophisticated and automated analysis techniques, such as [6–8, 10, 11, 14, 16, 18,
19]. Of particular interest for our work is the ReCrash approach proposed by Artzi
et al [5]. ReCrash monitors every execution of the target (sequential) program, stores
partial copies of method arguments, and converts a failing program execution into a
set of deterministic unit tests, each of which reproduces the problem that causes the
program to fail. The ReCrash approach is designed for sequential programs. However,
the non-determinism in a multi-threaded concurrent program might disallow the unit
tests generated by ReCrash to reproduce a concurrent failure.

The work described in this paper aims to reduce the amount of time a developer
spends on reproducing a concurrent failure. A key element in designing such an ap-
proach is the ability to provide a deterministic thread executing order of a non-determi-
nistic execution instance. In this paper, we propose ConCrash, an automated concurrent
failure reproducing technique for Java. ConCrash handles all threads and concurrent
constructs in Java, except for windowing events, I/O inputs and network events which
are topics of our future work.

The ConCrash approach adapts the concept of logical thread schedule as described
in [7]. It monitors each critical event to capture the thread execution order during one
execution of a multi-threaded program. When the concurrent program fails, ConCrash
saves both information about thread scheduling and current object states in memory and
automatically generates an instrumentation scheme and a set of JUnit tests. The instru-
mentation scheme records the thread schedule information during the failing execution
as pure text, and then enforces the exact same schedule when replaying the execution,
while the JUnit tests captures the failed method invocation sequences. The ConCrash
approach can be used on both client and developer sides. When a concurrent failure oc-
curs, the user could send an instrumentation scheme as well as generated JUnit tests to
developers. While developers could use a ConCrash-enabled environment to replay the
thread execution order, step through execution, or otherwise investigate the root cause
of the failure.

Unlike most of the existing replay techniques like [7], our ConCrash approach
does not depend on JVM modification or existing OS-level support for replay. Instead,
ConCrash instruments the compiled class files by modifying their bytecode. To reduce
the runtime performance overhead, ConCrash also employs a static data race detec-
tion technique [14] to find potential possible race conditions, and only instruments such
places. While starting to reproduce a failure, ConCrash eliminates the nondeterminacy
of the program caused by JVM scheduler by transforming the compiled nondetermin-
istic multi-threaded program into a deterministic sequential program without changing
the semantics.

We implement the ConCrash approach in a prototype tool for Java and experi-
mented on a number of multi-threaded Java benchmarks. We successfully reproduced a
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number of real concurrent bugs (e.g., deadlocks, data races, atomicity violation) within
an acceptable overhead. The main contributions of this paper are:

– A lightweight and portable technique that efficiently captures and reproduces multi-
threaded concurrent failures, which can be integrated with various static analysis
tools.

– Implementation of a prototype tool for Java. For the sake of applicable in long-
running multi-threaded programs, we employ and extend a testing framework to
support automatic generation of multi-threaded JUnit test cases.

– An empirical evaluation that shows the effectiveness and efficiency of ConCrash
approach on Java benchmarks and real-world applications.

The rest of this paper is organized as follows. In Section 2, we give an overview of
the ConCrash approach using a simple motivating example. We describe the details
of the ConCrash approach in Section 3. In Section 4, we describe the implementation
issues of ConCrash approach for Java and the results of our experiments, respectively.
Related work is discussed in Section 5 followed by conclusion and future work.

2 Motivating Example

In this section, we use a real-world program to give an overview of our approach. Con-
sider the two-threaded program snippet taken from hedc benchmark [14] in Fig. 1.

Two threads executing the code of MetaSearchResearch.java and Task.java

have one shared variable thread . There could be an unsynchronized assignment of
null to field thread (line 55 in Task.java), which could cause the program to crash
with a NullPointerException (line 53 in MetaSearchResult.java) if the Task
completes just as another thread calls Task.cancel().

      public synchronized void cancel() {

          ...

52      if(thread_ != null) {

53

54      }

          ...

       }

49    public void run(){

50        try{runImpl()};

51        catch(Exception e){

52            Messages.warm(-1, "Task:run exception=%1", e");

53            e.printStachTrace();

54        }

55        thread_ = null;

56    }

if(thread_ != null) {

 thread_ = null;

 thread_.interrupt();

Normal Interleaving Buggy Interleaving

Thread-1in MetaSearchResult.java Thread-2 in Task.java

Fig. 1. A Motivating Example

In this case, it would be nearly impossible to reproduce the failure by repeatedly
executing the original program due to the huge volume of different thread execution
orders. Moreover, since in typical OS and JVM design, the thread scheduler is nearly
deterministic, executing the same program many times does not help, because the same
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interleaving is usually created. Actually, in our experiment environment (Section 4), ex-
ecuting the original program for more than 300 times could reproduce only one failure.

Suppose that the motivating example is running in a ConCrash-enabled environ-
ment. ConCrash first uses an existing static data race detection technique [14] to pre-
process this program to find all possible race conditions (it is a one time cost). ConCrash
then instruments the program at the reported race conditions. In this example, line 53 in
MetaSearchResult.java and line 55 in Task.java are reported to be potential race
conditions and ConCrash instruments these two statements to monitor the thread exe-
cution logical order. For each method invoked, ConCrash also maintains a state copy
of the method receiver and arguments.

As soon as the (instrumented) program crashes, ConCrash will generate an instru-
mentation scheme and a set of JUnit tests. The user could send the scheme and tests
with the initial bug report to developers. Upon receiving such a scheme and tests, the
developer could use ConCrash (we provide an instrumentation tool in ConCrash de-
sign) to instrument the original program to resume the original thread schedule order.
After that, the developer could run tests under a debugger to easily reproduce the failure
and locate its cause.

For this motivating example, one of the generated JUnit test case is shown in Fig. 2.
In lines 2 - 6 of Fig. 2, ConCrash first reads the current object (thisObject) from
a trace file to resume the state. ConCrash then reads other thread objects from the
recorded file (lines 7 and 8), and synchronizes them to restart at a certain checkpoint
before the crash occurs (lines 9 and 10). Finally, ConCrash invokes the crashed method
(and loads augments if there is any) on the deterministic replay program version.

1. public voidtest_MetaSearchResult_cancel_3()throws Throwable {
2. //Read object from trace file
3. //adpated from ReCrash implementation
4. TraceReader.setMethodTraceItem(3);
5. MetaSearchResult thisObject =
6. (MetaSearchResult)TraceReader.readObject(0);

// Resume thread execution orders
7. ThreadEntity te = TraceReader.getStackTraceItem().threadEntity;
8. Monitor.restartThreads(te.checkPoints,3);
9. Monitor.waitForThreads();

// Method invocation
10. thisObject.cancel();
11. }

Fig. 2. A generated test case by ConCrash to reproduce the hedc failure

3 Approach

In this section we discuss our ConCrash approach in detail. The overview of our ap-
proach is shown in Fig. 3. Our approach consists of three stages: getting instrumentation
sites (Section 3.1), instrumenting original program to generate record & replay version
(Section 3.2), and generating JUnit test cases after a crash (Section 3.3).
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Static Datarac e

Detec tion
Class Ins trum entation

JUnit tes ts

T hread Sc hedule

Rec ording

Ins trum entation

Points

JUnit T es ts

Generation

Multithreaded Java Program

Ins trum ented

Vers ion

T hread Exec ution Order

& objec t s tate

Exec ute Program

Developers : exec ute JUnit tes ts to

reproduc e c onc urrent failures

Program Crashes

Preproc ess ing

Capture & replay

Offline analys is

Fig. 3. An overview of the ConCrash approach

3.1 Stage One: Getting Instrumentation Sites

It is obviously not practical to instrument every statement in a program, because that
would incur a huge slow down rate. Based on a recent study [12], most concurrent bugs
can be categorized as data race, atomicity violation and dead lock. While data race
bugs always have certain execution orders of raced statements, dead lock and atomic-
ity violation1 bugs also have specific orders of lock acquire/release operations. After
recording such orders we would be able to replay those defects. We next present differ-
ent strategies for handling these different types of concurrent bugs.

3.1.1 Statements Involved in Data Races
A data race condition is defined as two accesses to a shared variable in different threads
without holding a common lock, at least one of which is a write. A data race condi-
tion often causes non-predictable behavior of a program and is usually considered as a
defect. We are concerned about the execution order of the two accesses in a data race
pair and employ a static race detection tool called Chord [14] to detect possible data
race pairs. Chord reads the source code of a program and bytecode, performs four stage
analysis and outputs the results in files. Though it reports some false positives, the ex-
periments show that Chord is applicable for static race detection for most programs. We
take the result of Chord as a part of our instrumentation sites.

�Example. In Fig. 1 Chord reports all those three shadowed lines as potential data
race pairs. Then we instrument the program before the shadowed lines in the next
stage. �

3.1.2 Lock Acquire and Release Operations
Atomicity violation bugs [10] are caused by concurrent non-atomic execution of a code
region which was intended to run atomically. Admittedly a large part of atomicity vi-
olation are caused by data races, however, being data race free would not guarantee
atomicity violation free. When the remote and local accesses in a atomicity violation
are all well synchronized, it will not count for a data race. To address such problems,

1 Here we refer to the part of atomicity violations that do not count for data races.
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we also record the global order of lock acquire/release operations. With this informa-
tion we should be able to reproduce atomicity violation bugs which are not reported by
data race detection tools.

A critical event [7] is usually defined as a shared variable access or a synchronization
event. Here we adapt this concept to the union set of the above two instrumentation
sites. In our record and replay analysis, we only consider the temporal execution order
of those points.

            Thread 1

void deposit(int x){

    int temp = val ;

    temp = temp + x;

    val = temp;

}

            Thread 2

void withdraw(int x){

    int temp = val ;

    temp = temp - x;

    val = temp;

}

int temp = val ; int temp = val ;

val = temp; val = temp;

(i) Data race example (ii) Atomicity violation example

(iii) Deadlock example

            Thread 1

void deposit(int x){

   synchronized(o){

    int temp = val ;

   }

    temp = temp + x;

    synchronized(o){

    val = temp;

    }

}

            Thread 2

void withdraw(int x){

   synchronized(o){

    int temp = val ;

   }

    temp = temp - x;

    synchronized(o){

    val = temp;

    }

}

synchronized(o){

    int temp = val ;

   }

synchronized(o){

    int temp = val ;

   }

synchronized(o){

   val = temp;

   }

synchronized(o){

   val = temp;

   }

            Thread 1

void deposit(int x){

   synchronized(o){

      temp = temp + x;

      synchronized(p){

      val = temp;

      }

   }

}

            Thread 2

void withdraw(int x){

   synchronized(p){

      temp = temp - x;

      synchronized(o){

      val = temp;

      }

   }

}

synchronized(o){ synchronized(p){

synchronized(p){ synchronized(o){

Buggy Interleaving

Fig. 4. Three different types of concurrency bugs and our instrumentation sites

�Example. Fig. 4 is a frequently used example in concurrency testing. In the first data
race example, our instrumentation points consist of the four shadowed statements in-
volved in the race. With execution order information among these statements we would
be able to reproduce this data race bug. In the other two examples, the order of ac-
quire/release lock operation is recorded, which consists of all the synchronized oper-
ations in shadowed lines. With the exact order of acquiring or releasing a lock the other
two bugs could be also reproduced in following stages. �

3.1.3 Test Case Generation Points
Like ReCrash [5], we instrument a part of all the methods in the program at their entry
and exit points. The purpose of this instrumentation is to get a copy of receiver object
and method invocation arguments, which are used to generate test cases after a program
crash. Each Test Case Generation Point information (TCGP in short) is pushed into a
stack at the entry point of a method. It is then popped at the exit point after successful
execution of the method. See Fig. 5 for an example. A large part among all methods,
like non-public methods and simple getter/setter methods are excluded because they are
considered less likely to expose a bug, and also because of the concern about runtime
performance.
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We extend this technique to apply in multi-threaded program, that is, in each test
case generation point we also make a copy of the TCGP stack of all other live threads.
In the generated test cases this information is used to recreate all threads to simulate the
crash scenario.

Tester.java

public void run(){

<---- Push TCGP 1

...                                                         

MetaSearchRequest m = new

MetaSearchRequest(null, msi_, parameters);

                                                                   

...

<---- Pop TCGP 1

}

m.go();
MetaSearchRequest.java

public void go() throws Exception {

<---- Push TCGP 2

...

...

<---- Pop TCGP 2

}
MetaSearchImpl.java

public long search(...) throws IOException {

<---- Push TCGP 3

...

 ...

<---- Pop TCGP 3

}

MetaSearchResult.java

public synchronized void cancel(){

<---- Push TCGP 4

...

if(thread_ != null)

 ...

<---- Pop TCGP 4

}

size_ = msi_.search(params_, wrt_, this);

((Task) e.next()).cancel();

In this case, we will automatically
generate four test cases when the
program crashes at the last highlight
point

 thread_.interrupt(); //Potential crash point

Fig. 5. An example of test case generation points

3.2 Stage Two: Instrumenting the Original Program to Generate Record and
Replay Version

After getting all instrumentation sites from the previous stage, we instrument the byte-
code of a program at those sites to capture the logical thread schedule order for deter-
ministic record and replay.

3.2.1 Logical Thread Schedule
Capturing the actual physical thread schedule information is neither feasible nor useful
in our approach. Rather than doing so, we record the ’Lamport clock’ of the thread as
a logical thread schedule. As shown in [7], a logical thread schedule is used to record
the begin and the end time stamps of a few of consecutive critical events in one thread,
as the form <FirstCriticalEvent, LastCriticalEvent>. The interval in every tuple is the
logical running time of the thread before a thread switch occurs.

3.2.2 Thread Execution Order Record and Replay
The Java record/replay algorithm in [7] could produce sufficient trace information to de-
terministically replay a multi-threaded program execution. Based on this algorithm [7],
rather than extending a specific JVM, we instrument on bytecode level. From the view
point of bytecode level, the different types of critical event can be divided into
putfield, getfield instructions and monitorenter, monitorexit instructions.
Our instrumentation is based on these individual bytecode instructions. Details of this
technique can be found in following algorithms.
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Input: number of interval, global clock, local clock
RecordOnStmt():1
Enter monitor2
Get thread entity for current thread3
gc copy = global clock4
if thread entity.local clock < global clock then5

Update FirstCriticalEvent and LastCriticalEvent array for current thread number of interval =6
number of interval + 1

end7
Execute critical event8
global clock = global clock + 19
thread entity.local clock = gc copy10

Exit monitor11

Algorithm 1. Recording execution order of critical events

Input: number of interval, global clock, local clock
ReplayOnStmt():1
Enter monitor2
Get thread entity for current thread3
gc copy = global clock4
while global clock < FirstCriticalEvent[number of interval] do5

Wait for the execution of other threads6
end7
Execute critical event8
global clock = global clock + 19
if global clock >= LastCriticalEvent[number of interval] then10

number of interval = number of interval + 111
end12
thread entity.local clock = gc copy13
Notify all other threads14

Exit monitor15

Algorithm 2. Algorithm for replaying critical events

3.2.3 Discussions about Effects of Instrumentation
Instrumentation is intrusive, which means that it could potentially affect the behavior of
the original threads. However, the instructions we added only operate on their own data
structures, and therefore would not change the control flow of the original program. The
main impact is that it could possibly change the time slice allocated to a thread by the
scheduler. Thus, as our algorithm only captures the linear order of shared variable (data
race pairs) accesses and lock acquire/release operations of the original program, this
linear order is also a legal order of the execution of the original program. Proof with
details can be found in [9]. Time and space overhead of the instrumented program will
be discussed in Section 4.

3.3 Stage Three: Generating JUnit Test Cases after a Crash

Testing long running multi-threaded programs is always a difficult task because of its
inherent non-determinism and its expensive tracing overhead. ConCrash extends a unit
test case generation framework to support multi-threaded application, which utilizes
logical thread schedule information to deterministically trigger program crashes.

Specifically, we augment the unit tests generation technique in [5] to handle concur-
rent features. In ConCrash, the method call stack data is captured and used for tests
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generation when a crash happens. Whenever a method is called, it pushes the receiver
object and parameters onto stack and then pop this information after normal exit of the
method. After a crash happens, ConCrash can simply generate test cases by passing the
same receiver object and method parameters, which are serialized to the disk before.

As ReCrash only monitors the execution of the main thread, if an exception is
thrown in the run() method of another thread it would not be recorded. Instead
ConCrash also supports concurrent features in Java by wrapping each run() method
in a try block to capture exceptions thrown by each individual thread.

�Example. As seen in Fig. 6, two JUnit test cases are automatically generated after
crash. Inside the method invocation Monitor.restartThreads(te.TCGP stack,

2) another thread is created to simulate the behavior of thread 1 based on the time
schedule. We use the argument TCGP stack to pass all the necessary information. For
example, in the search test case, thread 1 will be recreated and executed Task.run()
afterwards concurrently with thread 2, while in another test case SohoSynoptic.run-
Impl() will be invoked. All the classes loaded in the two test cases are the replay
version of the program, which forces them to execute with the same logical order when
a crash happened. �

MetaSearchImpl.search(h, r)

MetaSearchResult.cancel()

Task.run()

SohoSynoptic.runImpl()

Crash Point

Thread 1 Thread 2

void test_MetaSearchImpl_search(){

 ...      

   Monitor.restartThreads(te.TCGP_stack, 2);

   Monitor.waitForThreads();

   thisObject.search(h, r);

  ...

}
Inside Thread Execution

Thread Switch

L
o
g
ic
a
l 
T
im
e

T2_TCGP_1

T2_TCGP_2

T1_TCGP_1

T1_TCGP_2

void test_MetaSearchResult_cancel(){

    ...        

   Monitor.restartThreads(te.TCGP_stack, 3);

   Monitor.waitForThreads();

   thisObject.cancel();

   ...

}

Automaticall
y

 generate afte
r c

rash

Distance to the Crash Point

Fig. 6. An example of multi-threaded JUnit test cases generation

The last issue we care about is how to recreate all corresponding threads in the gen-
erated test cases. Since JUnit does not support multi-threaded test cases up to now,
we use a WrapperThread to achieve the goal. By using Java Reflection APIs, the
WrapperThread has the ability to dynamically invoke the specified method when
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needed. After loading information such as method name and arguments from trace files,
a WrapperThread is started at specific TCGP.

3.3.1 Discussions about the Effectiveness of Generated Test Cases
To our intuition, the closer the start point of a test case to the fault locality, the more
useful it is in the debugging process. As shown in Fig. 6 we use a term Distance to the
Crash Point to indicate the distance for the test case to reach the crash point. Due to
the selective instrumentation of ConCrash, a small set of test cases which are too far
away from the crash point could possibly fail in reproducing that crash. In the worst
case there is only one alive thread t at one TCGP, but after that a lot of new threads are
created. If t crashes sometime later, then the test case generated at that specific TCGP
could not be able to reproduce that crash, since it does not know which thread would
be created in future. Our approach, though not sound, is demonstrated to be practically
useful. In our experiment in Section 4, we show that the ’nearest’ test cases are strongly
guaranteed to reproduce crashes.

4 Implementation and Evaluation

We have implemented our approach for concurrent Java programs using the Chord static
datarace detection tool [14], ReCrash tool [5], XStream [3] framework, and Soot anal-
ysis toolset [2]. The current implementation of our approach supports Java version 1.6.
The preprocessing stage (includes identifying data race and lock/release operations) are
built on top of Soot and Chord. We also use Soot to instrument all the class files con-
taining instrumentation sites. By modifying reCrashJ [1] we implement ConCrash to
support multi-threaded features. Like reCrashJ, the ConCrash implementation uses
the stored shadow stack to generate a suite of JUnit tests. Each test in the suite invokes
all alive threads at each TCGP and loads the receiver and method arguments from the
serialized shadow stack.

To evaluate the effectiveness and efficiency of our proposed technique, we experi-
mented on a number of multi-threaded Java benchmarks. Table 1 summarizes the de-
tails about each benchmark. Most of the benchmarks and failures are representative
and frequently used in previous work [10] [6] [18] [14]. All the failures could not be
reproduced by ReCrash, for it does not support multi-threaded applications.

Table 1. Subject Programs

Programs #Loc #Classes #Methods #Threads Bug type Brief description
XtangoAnimator 2088 31 220 3 Deadlock Animation library

ftp 21897 118 1114 3 Data race Apache ftp server
raytracer 1308 21 72 3 Data race Ray tracing program

Hedc 29948 136 1552 6 Data race Web crawler
Shop 299 3 11 3 Atomicity Simulated shop

Pingpong 303 4 12 3 Data race Simulated ball game
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4.1 Procedure

We focus on the crash reproducibility and performance overhead of ConCrash in the
evaluation. For each subject program, we first use Chord and Soot to get all instru-
mentation sites, then instrument the program and deploy it into a ConCrash-enabled
environment.

Most of the bugs in the subject programs happen in very rare situations: 100 times
of normal execution will not manifest those bugs. We seed a few sleep() operations
in the program in the recording phase to trigger specific bugs. As demonstrated in [9],
the thread schedule of seeded version is also a legal schedule of the original program,
which guarantees the buggy schedule we capture could also happen in production run.
When the program crashes within an exception, ConCrash outputs an instrumentation
scheme which captures the thread execution orders (when failure occurs), and a set of
JUnit tests. We then construct the replay version by using the instrumentation scheme,
and then run all generated JUnit tests on it.

To measure the recording overhead we run each benchmark for a certain task for 100
times and compare the execution time of the original program with the execution time
of the recorded version. The average time cost is taken between all the runs. At the same
time the size of trace files are also recorded.

4.2 Results

The results for the experiments of concurrent crash reproducibility and performance
overhead are shown in Tables 2 and 3, respectively. The experiments were done on a
3.00 GHz machine with 1GB memory and Sun JVM 1.6.0 in Windows XP system. In
Table 2, we list the number of instrumentation sites and the crash type for each buggy
program. To evaluate the effectiveness of ConCrash, we count the number of generated
JUnit test cases with regard to the reproducible ones and reproduce rate. In Table 3 we
compare the running time of the original program with instrumented ones. The time
was measured in realtime execution time, and network related benchmarks (like ftp and
hedc) were set in a local network to reduce the effects of web transmission. Slow down
rate and the size of the trace files are also considered.

Table 2. Crash reproducibility study result

Programs #Instrumentation sites Exception type # generated # reproducible
data race/lock release test cases test cases

XtangoAnimator N.A.1 49 CustomException 1 1
ftp 51 61 NullPointerException 4 2

raytracer 52 17 AssertionError 1 1
Hedc 19 394 NullPointerException 4 3
Shop 10 3 ArrayOutOfIndex 3 2

Pingpong 4 0 NullPointerException 2 2

1Chord does not terminate after 10 hours in XtangoAnimator
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4.2.1 Failure Reproducibility
We can observe from Table 2 that ConCrash was able to reproduce all three kinds of
typical concurrent crashes (atomicity violation, deadlock, and data race) in the subject
programs investigated.

In most cases, the generated tests of ConCrash could reproduce concurrent failures.
As mentioned before, we do not record for every operation but rather for a small part
of them. The failed cases are always because of the long distance between the TCGP
to the crash point. However, our results showed that in our experiments all the failures
could be reproduced by the last two closest test cases.

Table 3. Performance overhead study

Programs Original(ms) Instrumented(ms) Slow down File size(kb)
data race/lock release/All

XtangoAnimator 367.1 N.A. 439 439 19.6% 1.52
ftp 3206 3946 4009 4565 42.4% 45.2

raytracer 47 75 51 78 66% 1.4
Hedc 1501.4 1676.5 1701.6 1731.3 15.3% 27.9
Shop 278.1 335.8 309.3 367.1 32% 3.1

Pingpong 315.6 367.2 N.A.1 367.2 16.3% 2.34

1There is no lock acquire/release operations in Pingpong

4.2.2 Performance Overhead
We compare the execution time of the original program and ConCrash-instrumented
version in Table 3. All the applications are set for a certain task, except for ftp we wrote
a test harness program to start a new user and download a specific file. The data is then
collected in 100 times’ normal runs for each program. We also provide a comparison
between different instrumentation strategies. Our results showed ConCrash has a run-
time overhead from 15% to 66%. We believe such overhead is acceptable for real-world
use, though there is still improvement space if more selective instrumentation strategies
are adapted. We also believe that the performance of ConCrash could be further im-
proved with the integration of better data race/atomicity violation detection tools.

The size of the trace files is relatively small - 45kb for the largest benchmark, includ-
ing both schedule files and JUnit tests. It could be easily sent via Internet to developers
when a crash happens.

4.3 Threats to Validity

Like any empirical evaluation, this study also has limitations which must be considered.
Although we have experimented with several well-known multi-threaded Java bench-
marks, in which the largest one is over 30KLOC, they are smaller than traditional Java
software systems. For this case, we can not claim that these experiment results can be
necessarily generalized to other programs. On the other hand, the systems and crashes
we chose to investigate might not be representative. Though we experimented on repro-
ducing several typical concurrent failures, such as data race, deadlock, and atomicity
violation, we still can not claim ConCrash could reproduce an arbitrary concurrent
crash.
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Another threat is that we have not conducted any readability study about the gen-
erated test case on software developers (though the readability of the test case is sec-
ondary to reproducibility). For this reason, we might not be able to claim ConCrash

can be applied to real-world development process.
The final threat to internal validity maybe mostly lies with possible errors in our tool

implementation and the measure of experiment results. To reduce these kind of threats,
we have performed several careful checks.

4.4 Discussion

When designing the ConCrash approach, we choose bytecode level instrumentation
to make concurrent failure be deterministically reproduced. If we use OS-level sup-
port or JVM-level capture and replay, ConCrash would have to be deployed on a
specific environment, which will deteriorate the portability of our approach. In cur-
rent ConCrash implementation, no other program or configuration is needed, and the
pre-instrumentation also permits the high comparability of ConCrash-enabled
environment.

When using Chord to report potential data races, the coverage of Chord (or other
analysis techniques used for preprocessing) might affect the precision/effectiveness
of the ConCrash approach. Investigating the tradeoffs would be one of our future
directions.

Current implementation of ConCrash uses shallow (depth-1) copying strategy as
default mode like [5]. However, in some cases (e.g., the Hedc benchmark) an argument
is side-effected, between the method entry and the crash point, in such a way that will
prevent the crash from reproducing.

5 Related Work

In this section, we discuss some closely related work in the areas of multi-threaded
program analysis, testing, and debugging. We also compare several similar tools in
Table 4.

Much research has been done on testing and debugging multi-threaded programs.
Researchers have proposed analysis techniques to detect deadlocks [15], data races [14],
and atomicity violations [10]. The problem of generating different interleavings for the
purpose of revealing concurrent failures [15] and record/replay techniques [7, 13, 17,
20] have also been examined. Moreover, systematic and exhaustive techniques, like
model checking [11], have been developed recently. These techniques exhaustively ex-
plore all interleavings of a concurrent program by systematically switching threads at
synchronization points.

Choi et al. [7], presented the concept of logical thread schedule and proposed an
approach to deterministically replay a multi-threaded Java program. They are able to
reproduce race conditions and other non-deterministic failures. However, Their method
relies on the modification of the underlying JVM, while our method uses bytecode
level instrumentation to capture the thread execution orders. Moreover, our approach
generates a series of JUnit tests, which help developers to debug the program.
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Recently, Park et al. [17] also proposed the idea of deterministic replay of concur-
rency bugs. They used the feedback of previous failed replay attempt of the program
to reproduce concurrency bugs. They also presented five sketching methods for record-
ing the execution of concurrent programs, while our approach employs a static analysis
tool as frontend to identify recording points. ConCrash tries to reproduce concurrency
failures with JUnit tests at those points, which is also different from their feedback
approach.

The most similar work to us is the ReCrash approach [5] proposed by Artzi et al..
ReCrash generates tests by utilizing partial snapshots of the program states captured on
each method execution in the case of a failure. The empirical study shows that ReCrash
is easy to implement, scalable to large program, and generate simple but helpful tests.
Our work on ConCrash aims to handle concurrent failures. We use the concept of
logical thread schedule to capture the execution order, making the behavior of multi-
threaded program deterministic when reproducing the concurrent failure.

Table 4. A comparison between closely related testing tools for concurrent programs

Items Instrumentation Running Deterministic replay in Unit test cases
level environment1 multi-threaded programs generation

ReCrash [5] byte code both No Yes2

DejaVu [7] JVM developer site Yes No
RaceFuzzer [19] byte code developer site No3 No

ConTest [9] source code developer site Yes No
ConCrash byte code both Yes Yes

1 Running environment consists of user site and developer site
2 ReCrash’s generated test cases could not be applied in multi-threaded programs
3 Depends on RaceFuzzer’s random scheduler

6 Conclusions and Future Work

In this paper, we presented a lightweight and portable approach, called ConCrash, to
making concurrent failures reproducible. ConCrash records the logical thread schedul-
ing order and preserves object states in memory at runtime. When a crash occurs, it
reproduces the failure offline by simply using the saved information without the need
for JVM-level or OS-level support. To reduce the runtime overhead, ConCrash uses an
effective existing data race detection technique to report all potential race conditions,
and only instruments such places plus lock acquire/release points. We implemented
the ConCrash approach in a prototype tool for Java. Our experiments on several well-
known multi-threaded Java benchmarks indicate that ConCrash is effective in repro-
ducing a number of typical concurrent bugs within an acceptable overhead.

We recommend the ConCrash approach be an integrated part of the existing
ReCrash technique. As our future work, we would like to examine alternative tech-
niques like dynamic program slicing [4] to improve the performance of ConCrash. We
also intend to investigate the cost/effectiveness tradeoffs when reproducing concurrent
failures at the application level.
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Abstract. Runtime assertion checking is useful for debugging programs
and specifications. Existing tools check invariants as well as method pre-
and postconditions, butmostly ignore ���������� (or 	
������) clauses,
which specify the heap locations a method is allowed to assign to. A way
to abstract from implementation details is to specify ���������� clauses
using datagroups, which represent sets of concrete memory locations.
Efficient runtime checking of ���������� clauses with datagroups

is difficult because the members of a datagroup may change over time
and because datagroups may get very large, especially for recursive data
structures. We present the first algorithm to check ���������� clauses
in the presence of datagroups. The key idea is to compute the set of
locations in a datagroup lazily, which requires data structures that re-
flect when the contents of a datagroup change during the execution of
a method. We implemented our approach in a prototypical runtime as-
sertion checker for the Java Modeling Language (Jml); our experiments
show that the runtime overhead is moderately small.

1 Introduction

To verify interesting program properties, it is important to know the side effects
of a method. To this end, frame properties define which heap locations a method
may modify, and, more importantly, that everything else in the heap stays un-
changed. In Jml, a method specification expresses such frame properties by the
use of the ���������� clause. This clause declares the heap locations that may
be updated during method execution.

To achieve information hiding, we can mention datagroups in ����������

clauses to abstract away from concrete locations [7,8]. For any field of an object,
we can specify which datagroup(s) it belongs to. A datagroup is static if it only
contains fields of the same object. Otherwise, the datagroup is dynamic.

Dynamic datagroups are crucial to specify frame properties for aggregate or
recursive data structures. In our example in Fig. 1, we introduce a class Store
that manages items. Dynamic datagroups allow us to specify that method add
changes at most the internal data structure of the store.

To check a program against its specification, we can either use a static veri-
fication tool or we equip the code with runtime assertion checks that fail if an
illegal operation is about to happen. Both approaches have already been taken
to check ���������� clauses, however datagroups pose a problem on both sides.

D.S. Rosenblum and G. Taentzer (Eds.): FASE 2010, LNCS 6013, pp. 338–352, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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���� Item {

JMLDataGroup footprint; // 0

�

���� selected; // 1

String name; //@ �� footprint; // 2

��� price; //@ �� footprint; // 3

/*@ ���������� ����.footprint, other.selected; */

�
�� copy(Item other){

����.name = other.name;

����.price = other.price;

other.selected = �����;

}

}

���� Node {

JMLDataGroup struct; // 0

Node left; //@ �� struct; // 1

/*@ 	��� left.struct ���
 struct; */

Node right; //@ �� struct; // 2

/*@ 	��� right.struct ���
 struct; */

Item data; // 3

/*@ ���������� ����.struct; */

�
�� replace(Node 
��, Node ���){ [��.] }

}

���� Store {

JMLDataGroup struct; // 0

Node root; //@ �� struct; // 1

/*@ 	��� root.struct ���
 struct; */

/*@ ���������� ����.struct; */

�
�� add(Item i){ [��.] }

}

Fig. 1. A store that contains items, using a tree as internal data structure. Store
and Node objects contain a field struct, whose datagroup contains the fields left

and right of the same object, and the struct datagroup of the children. The struct
datagroup allows us to refer to all locations of the data structure without exposing
implementation details. The number behind each field declaration will be used later
when we explain our algorithm.
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Many static verification tools [1,3,5,9,10,11] support ���������� clause to
some extent; some partly support static datagroups, but no static verification
tool currently supports dynamic datagroups. To precisely reason about dynamic
datagroups, a verification environment produces proof obligations that have to
be discharged manually, as checking the containment in a dynamic datagroup
is essentially a reachability problem, which is not handled well by SMT solvers.
Existing static analyses can only provide an over-approximation that is too im-
precise to be useful.

The situation for runtime assertion checkers (RAC) is similar: The RAC for
Jml presented in Cheon’s dissertation [4] does not provide checks for ����������
clauses. Ye [12] adds limited support for static datagroups only. Jml’s semantics is
to determine upon method invocation the set of locations in the datagroups. The
number of locations in a dynamic datagroup is unknown at compile time and can
grow as fast as the heap itself. Therefore, a näıve implementation of the semantics
would lead to a large memory and time overhead.

We present an algorithm to efficiently check ���������� clauses at runtime.
The motivation for such checks is twofold: First, we can use a RAC to check a
program’s validity with little effort and small annotation overhead before starting
to prove its correctness in an interactive theorem prover. In this way, we find bugs
early and reduce the risk of getting stuck in an expensive manual proof. Second,
if we use an automatic verification tool, we often get spurious error messages
because of under-specification or deficiencies of the prover. In this case, we can
use RAC to see if the program really violates the specification for the given input
values. In order to achieve our goal we attack the problem from three sides.

(1) We provide efficient implementations of two operations that are heavily
used in our algorithm: checking if an ���������� clause mentions a certain lo-
cation or datagroup, and collecting all static datagroups that contain a location.
We introduce new data structures for assignable maps and for static datagroups
based on bitset operations to achieve this goal.

(2) We reduce memory consumption by introducing the concept of lazy unfold-
ing of dynamic datagroups to avoid unnecessary overhead. Instead of unfolding
the datagroups of an ���������� clause in the pre-state of the method, we
track the changes to dynamic datagroups during method execution and only
store the difference between the pre-state and the current state. We can decide
at compile time, which operations trigger a change to the dynamic datagroups
and instrument the code at that point to store the changes.

(3) We optimize time complexity by caching the result of checking whether a
location is assignable, as this information can be reused within the same method.

2 Prerequisites

In this section, we introduce the notations and semantics of locations, method
call stacks, ���������� clauses, and datagroups.
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Locations. At runtime, a field of an object is called a location. For convenience,
we define a function obj (·) that yields the object of a location. For example,
obj (o.f ) yields o.

Method Call Stack. We introduce the binary relation m1 ↪→ m2 which states
that method m2 is called by m1 at runtime. We also introduce the reflexive
transitive closure: m1 ↪→∗ m2, meaning, m1 is m2 or m1 is a direct or transitive
caller of m2.

Assignable Clauses. We can specify the frame of a method using the clause
���������� l1,. . .,ln;, where li has the form o.f to refer to a field of an object.
Jml provides several other forms to specify assignable locations, but these are
not relevant for this paper.

The semantics of an ���������� clauses is defined as follows. The fields
mentioned in the clause are evaluated to a set of locations. This evaluation is
performed in the pre-state of the method, that is, upon method invocation. The
���������� clause only restricts assignment to locations that already existed
in the pre-state of the method.

Let Am be the set of locations from the ���������� clause of method m.
Furthermore, let F�

m be the set of locations that have been freshly allocated
during the execution of m. The little triangle � indicates that this set contains
the locations that have been freshly allocated in m and all methods directly or
transitively called by m.

Let’s assume a method m that is called by m′ (i.e., m′ ↪→ m). According to
the Jml semantics, a location is assignable in m if it is either freshly allocated
or it is in the set of locations evaluated from the ���������� clause of m and
it was already assignable in m′. We can write this condition as follows:

Aeff

m = F�
m ∪ (Am ∩ Aeff

m′).

An important consequence of JML’s semantics is that a runtime assertion checker
needs to consider the ���������� clauses of all methods on the call stack to
determine whether a location is assignable. An alternative to this expensive
check would be to enforce for each call that the ���������� clause of the callee
denotes a subset of the locations that are assignable in the caller. However, such
a requirement would be overly conservative since it rejects certain calls based on
the ���������� clause of the callee rather than its actual behavior. Therefore,
our checker actually inspects the call stack when necessary.

Datagroups. Datagroups are sets of locations. Every field of a program defines
its own datagroup that initially contains only the field itself.

If we are not interested in the value of the field but only its datagroup, Jml

provides a special type JMLDataGroup to indicate that the field just serves as a
declaration of the corresponding datagroup.

To add all locations in the datagroup of a location o.f to a datagroup of the
same object o, Jml uses the �� clause at the field declaration. In the class Item
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in Fig. 1, the two fields name and price are declared to be in the datagroup of
the field footprint. We declare footprint of type JMLDataGroup, since we are
interested in its datagroup, but not its value.

To add all locations in the datagroup of a location o.f to a datagroup of
another object p, Jml uses the 	�
� ... ���� clause. For instance in class Node in
Fig. 1, we add left.struct to the datagroup of struct. The field left is called
a pivot field, as an update of left changes the contents of datagroup struct.
Since left.struct also has a datagroup itself, we essentially nest datagroups in
our example. Adding locations from other objects makes a datagroup dynamic;
the set of locations in the datagroup now depends on the program state.

Upon evaluation of an ���������� clause in method m, the semantics states
that each datagroup mentioned in the ���������� clause is evaluated to a set
of locations. We call this process unfolding of the datagroup. Datagroups that
contain nested datagroups do not evaluate to nested sets of locations, but result
in one single set of locations which is added to the set Am.

Fig. 2. A set of Node objects. Shapes depict the struct datagroups. Objects within
the shape contain fields that the datagroup contains. Arrows depict references. Left:
The situation in the pre-state of a call to a.replace(c,b). Right: The post-state of
the call.

Fig. 2 shows the dynamic datagroup of a.struct in light gray. One can see
that a.struct also contains all locations that are mentioned in nested data-
groups, depicted by a darker gray. The left picture shows the initial state where
the pivot field a.left points to node c, the right picture depicts the datagroup
of a.struct after executing the statement a.left = b. White shapes depict
datagroups that are not in a.struct. This example illustrates that dynamic
datagroups may contain different locations in different program states.

3 Checking Assignable Clauses with Static Datagroups

In a first step, we present an algorithm to check ���������� clauses in the
presence of static datagroups only. This part of the algorithm serves as a basis
for checking ���������� clauses with dynamic datagroups, as presented in the
next section.
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3.1 Data Structures

Our goal is to check ���������� clauses in the presence of static datagroups in
constant time. The following operations are involved in the check for field updates
and we want them to perform in constant time: (1) lookup of all assignable fields
of a given object without unfolding datagroups, (2) lookup of all datagroups that
contain a location, and (3) the decision if the intersection between two sets of
fields of an object is empty.

Field Identifiers. We assign a number to each field of a class such that at
runtime, in the presence of inheritance, every field of an object has a unique
number. In Fig. 1 we show these numbers in comments behind field declarations.

Assignable Locations. As explained in Sec. 2, the evaluation of ����������
clauses leads to a set of locations. We give this set some structure and represent
it as a map from objects to bitsets, in which the keys of the map are the objects
of the locations, and each bit of the bitset correspond to a field of that object.
Furthermore, as opposed to the semantical description of datagroups in Sec. 2,
we do not unfold the static datagroups mentioned in such sets and instead deal
with unfolding of datagroups on demand.

For method copy of class Item in Fig. 1, we represent the set Acopy by
{this �→ [� · · · ] , other �→ [ · � · · ]}, where the fields receive their indices
in the bitset in order of presence, as shown in the code, i.e., the first bit in the
bitset of object this represents field footprint and the second bit in the bitset
of object other represents field selected.

To retrieve the bitset of a given object o in a setA, we writeA[o]. For example,
Acopy[other] yields [ · � · · ]. If the map does not contain o, A[o] yields an
empty bitset. To store object o with bitset bs in A, we write A[o]← bs .

This design allows us to perform the operation (1) in constant time, as we
can use HashMaps as the underlying data structure.

Fresh Locations. If an object is newly created, all locations of that object are
fresh. To represent the set of fresh locations F�, we need to save only the set of
newly allocated objects, which implicitly gives us the set of fresh locations. The
query F�[o] simply yields true if the object o is freshly allocated in the current
method execution, and false otherwise.

Static Datagroups. For each field, we use a bitset to represent the datagroup(s)
the field belongs to. That is, we equip every class with an array of bitsets. For class
Item, we represent the static datagroups by the following array.

footprint
selected
name
price

⎡⎢⎢⎣
[� · · · ]
[ · � · · ]
[� · � · ]
[� · · � ]

⎤⎥⎥⎦
To access the datagroups that statically contain field f of class c, we write
D st[c@f ]. For instance, D st[Item@name] yields [� · � · ], which means that name
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is in the datagroup of footprint (the first bit) and of course in its own data-
group (the third bit). For simplicity, we may also write D st[o.f ] to get the static
datagroups of field f of class c, where o is of type c.

We set up the data structures for static datagroups such that we can perform
the second and third operation described at the beginning of this section in
constant time. Operation (2) involves an array access, and operation (3) involves
computing the intersection of two bitsets, which is possible in constant time.

3.2 Code Instrumentation

An ���������� clause restricts assignments throughout a method execution.
This implies that checks of the ���������� clause need to be performed through-
out a method execution and not only in pre- and post-states. In the following,
we present the code instrumentation to build up the necessary data structures
and to check the validity of a field update. The relevant statements are: field
updates (as these might violate the ���������� clause), object creation (to
track fresh locations), method invocation (to evaluate ���������� clauses in
the pre-state of a method and merge assignable sets), and method return (to
update the assignable sets from the caller).

Field Update. Updating a field is the only way to violate an ����������

clause. Before an update of a location o.f in a method m called by m′, we need
to check if o.f (hereafter referred to as loc) is in the set Aeff

m. According to the
semantics defined in Sec. 2, this is the case if either (1) the object of the location
o has been freshly allocated during the execution of m and therefore is a member
of the set F�

m, or (2) loc is assignable in m′ and the ���������� clause of m
either mentions the location itself or at least one datagroup that contains loc.
Therefore, we need to check:

loc ∈ F�
m ∨ loc ∈ (Am ∩ Aeff

m′).

As explained in Sec. 3.1, we use maps of bitsets to represent sets of assignable lo-
cations and we do not unfold the datagroups. Checking if loc is in a set of fresh
locations F�

m is performed by F�
m[o]. Checking if loc is in a set of assignable

locations Am is performed by Am[o] ∩ D st[loc] �= ∅. That is, we get the bitset
representing the fields of object o in Am and intersect it with the bitset rep-
resenting the datagroups that contain loc. If the intersection of the two bitsets
is not empty, either Am contains loc or it contains at least one datagroup that
contains loc. We maintain the set Aeff

m′ explicitly, as we explain below. This gives
us the the following assertion that needs to hold at runtime:

F�
m[o] ∨ (Am ∩Aeff

m′)[o] ∩ D st[loc] �= ∅

All of these operations can be performed in constant time, which means that
we can check the ���������� clauses for field updates in constant time in the
presence of static datagroups only.
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Object Creation. On creation of a new object o in method m, all locations
of o are fresh in m and in every transitive caller mi of m. According to the
semantics of fresh sets, we would have to add all fields of o to F�

m as well as to
each F�

mi
. Since any caller of m can observe newly allocated locations only after

m returns, we add o only to F�
m and update the callers later.

Because of this simplification, the instrumentation of object creation can be
performed in constant time and produces a memory overhead linear in the num-
ber of newly allocated objects.

Method Invocation. On invocation of method m, we evaluate the ����������
clause of m to the set Am. For all location o.f in the ���������� clause, we
enable the bit that represents f in the bitset Am[o]. To do this, we perform
the following update: Am[o] ← Am[o] ∪ B(f) where B(f) is the bitset in which
only the bit for field f is enabled. Furthermore, we compute the intersection
A = (Am ∩ Aeff

m′) because we need this set at every field update within the
method and because this set does not change during method execution. We call
this computation merging of assignable locations because we merge caller and
callee. Our data structures allow efficient merging as follows: for each object that
is a key in the maps of both Am and Aeff

m′ , we compute the intersection of the
corresponding bitsets, bs = Am[o] ∩Aeff

m′ [o]. If bs �= ∅, we add it to the resulting
set A[o]← bs , otherwise we just drop it.

The time and memory overhead at method invocation is linear in the number
of objects that contain assignable fields.

Method Return. Before a method m may return to its caller m′ the set of
fresh locations F�

m needs to be added to F�
m′ .

This operation can be done with time overhead linear in the number of objects
in F�

m and does not increase the memory overhead as F�
m will be consumed by

the garbage collector.

4 Checking Assignable Clauses with Dynamic Datagroups

We extend the algorithm for checking ���������� clauses to deal with dynamic
datagroups, that is, datagroups that contain fields from other objects and there-
fore depend on the heap. We optimize our algorithm to cope well with situations
that match the following two observations we made.

(1) A dynamic datagroup typically contains many locations through nested
datagroups in recursive or aggregate data structures, whereas a location is typ-
ically only in a few datagroups of other objects. In our example in Fig. 1, the
datagroup struct in class Store contains the field root and the fields struct,
left, and right of all n nodes in the store, that is, 3×n locations. By contrast,
the field struct of a node is dynamically contained in no more than log2(n)
datagroups, namely in the datagroups struct of all ancestors, assuming that
the tree is balanced.
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(2) ���������� clauses are often quite unspecific, yet useful. This implies that
the set of assignable locations is often very large although only a few locations
actually get assigned to. An example supporting this observation is method add
in class Store. As we do not want to reveal the internal data structure of the
store, we specify that add is only allowed to assign to the datagroup struct
of the store, i.e., the root field of the store and all struct, left, and right
fields of the nodes. In other words, method add cannot change the content of
any existing item, but may for instance balance the tree.

Because of these two observations, we do not unfold datagroups into sets of
locations in the pre-state of a method as described in the semantics, which is
potentially very expensive in both time and space. This decision raises three
issues:

(1) We have to spent more effort to check if a field is assignable, as the
information is not directly available.

(2) We can no longer merge sets of assignable locations of callers and callees
upon method invocations. If we had to merge two sets that contain partially
overlapping dynamic datagroups we would have to unfold the datagroups to
find out which locations are in the intersection. Since we decide not to unfold
datagroups, we cannot merge anymore.

(3) As the content of dynamic datagroups may change over time, we need
to keep track of all changes in dynamic datagroups in order to reconstruct the
assignable locations as of the pre-state of the method.

In the following sections, we explain how we can efficiently cope with these issues.

4.1 Data Structures

We do not change any of the existing data structures for checking assignable
clauses, but add data structures to represent dynamic datagroups. We design
our data structures such that it is possible to quickly find all datagroups that
dynamically contain a location.

Dynamic Datagroups. To represent dynamic datagroups, we add an array
of sets of locations to each object to store for each field of the object a set of
datagroups that dynamically contain the field. We call these back-links, from the
location back to the datagroup. For the object g of class Node (see Fig. 2), we
therefore represent the dynamic datagroups by the following array, in which only
the entry for field struct contains a back-link.

struct
left
...

⎡⎢⎣{c.struct}{}
...

⎤⎥⎦
To access the set of datagroups that dynamically contain location loc in heap h
over one pivot field, we write D dyn

h [loc]. Furthermore, we write D*dyn

h [loc] for the re-
flexive transitive closure of D dyn

h [loc]. Implicitly, we also unfold static datagroups
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to calculate those sets. Since we evaluate dynamic datagroups in the pre-state of
a method, we introduce the notation h0(m) to refer to the pre-heap of method m.

In our example in Fig. 2, D dyn

h0(replace)
[g.struct] yields the set {c.struct},

whereas D*dyn

h0(replace)
[g.struct] yields the set {g.struct, c.struct, a.struct}.

Assignable Stack. Since we no longer merge ���������� clauses, we now
have to check for each field update whether the updated location is assignable in
each method on the call stack. To enable this check, we provide access to the sets
of assignable and fresh locations for all methods on the call stack by passing a
stack of assignable maps to the callee (rather than one merged assignable map).

Using stacks results in a memory footprint for storing assignable locations
that grows linearly in the number of methods on the call stack.

4.2 Code Instrumentation

In order to support dynamic datagroups, we need to change the code instrumen-
tation for field updates and method invocations, whereas object creation and
method return stay unchanged.

Field Update. We reuse the efficient check of field updates for ����������

clauses with static datagroups, but have to do additional work. Again, we need
to check before updating a location o.f (referred to as loc) in method m, if it
is in Aeff

m. Without merging assignable sets of locations, we do the following: for
every method mi that is in the call stack of m, we check that the location loc
is either fresh in mi or contained in the assignable set of locations of mi. More
formally:

∀mi ·mi ↪→∗ m =⇒ loc ∈ F�
mi
∨ loc ∈ Ami .

Since we do not update the set of fresh locations for all transitive callers of m,
we need to add some extra logic to find out if loc is fresh in mi. This is the case
if loc has been freshly allocated during execution of mi, that is, either in mi itself
or some callee of mi. We can express this by ∃mk ·mi ↪→∗ mk ∧F�

mk
[o]. Although

this looks more complicated, it actually allows us to simplify the implementation
considerably.

Since we do not unfold dynamic datagroups, we need to perform some compu-
tation to check if loc is assignable. loc is in Ami , if we find a datagroup dg that
both dynamically contains the location loc, and is mentioned in the ����������
clause. We write this as ∃dg ·dg ∈ D*dyn

h0(mi)
[loc]∧dg ∈ Ami . We reuse our technique

from the static datagroups to replace dg ∈ Ami by Ami [obj (dg)] ∩ D st[dg ] �= ∅,
see Sec. 3.2.

The time complexity for finding a datagroup that dynamically contains loc
is linear in the size of D*dyn[loc] multiplied by the number of methods on the
call stack. However, we can dramatically speed up this lookup by introducing
caches for finding dynamic datagroups, see Sec. 5. So in summary, we check the
following assertion at runtime:
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∀mi ·mi ↪→∗ m =⇒
∃mk ·mi ↪→∗ mk ∧ F�

mk
[o] ∨

∃dg · dg ∈ D*dyn

h0(mi)
[loc] ∧ Ami [obj (dg )] ∩ D st[dg ] �= ∅

Updating a Pivot Field. Whenever we update a pivot field of a datagroup, we
change the content of the datagroup. This is a problem because upon a method
call, we do not unfold the datagroups mentioned in the ���������� clause of
the callee, even though the semantics of ���������� clauses prescribes that the
set of assignable locations is to be determined in the pre-state of the method.
Consequently, any change to a datagroup mentioned in an ���������� clause
needs to be tracked in order to be able to reconstruct the situation in the pre-
state of a method.

We apply a technique that we call lazy unfolding. If we update a pivot field
of a datagroup that is contained in an assignable map, we perform two opera-
tions. (1) We add the old location that was contained in the datagroup via the
pivot field before the update directly to the assignable map. By doing this, the
location stays assignable although it is not in the datagroup anymore. (2) We
add additional information to the assignable map, stating that the back-link of
the new location that is contained in the datagroup via the pivot field after the
update should not be considered when we check whether a location is assignable.
By doing this, we can cut away parts of datagroups in assignable maps.

Note that this information needs to be stored per assignable map and not per
datagroup as every assignable map is evaluated in a different state, and thus has
a different set of assignable locations for the same datagroup.

Fig. 3. The same situation as in Fig. 2. Dashed arrows depict the back-links from
locations to datagroups. The cross depicts the back-link that has been invalidated in
the assignable map of method replace.

Fig. 3 shows how the lazy unfolding works in our running example. On the
left side, we see again the situation in the pre-state, the locations in the gray
shapes are assignable. On the right side, we see the datagroups after the update
a.left = b. To preserve the assignable locations of the pre-state, we add
c.struct explicitly to the assignable map, which preserves the assignability
of the locations of objects c and d. Furthermore, we mark the back-link from
b.struct to a.struct in the assignable map as invalid, which essentially ren-
ders the locations of objects b, e, and f not assignable. Looking at the locations
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in the gray shapes, one can see that we effectively preserved the assignability of
locations in the pre-state on the left-hand side although the datagroup changed
in the meantime.

Method Invocation. On invocation of method m, we evaluate the ����������
clause of m to the set Am as described in Sec. 3.2, but we do not merge the
assignable sets of the caller and the callee. Instead, we add the sets of assignable
and fresh locations from method m to the stack of assignable maps.

5 Introducing Caches

As we have shown in the last section, the time overhead to check if a location loc
is assignable depends on the height of the call stack and on the size of the set of
dynamic datagroups D*dyn[loc]. For every update of location loc, we check if loc
is assignable in all assignable maps on the stack. This involves to compute the
set D*dyn[loc] and to check for each datagroup in that set whether it is mentioned
in the assignable map or not. That is, we spend a considerable effort to check if
a location is assignable.

In this process of checking, we gain a lot of additional information. We learn
which datagroups in D*dyn[loc] are mentioned in what assignable map, and we
also learn which datagroups in D*dyn[loc] are not assignable. We can reuse all this
information since the set of locations of an ���������� clauses is computed in
the pre-state and does not change during method execution.

We equip each assignable map with a cache that stores all the additional
information from the queries since the method invocation. The information in
the cache is valid for this assignable map as long as the corresponding method
executes. Caches become especially useful if we assign to the same set of locations
several times in a method, for instance when doing a computation in a loop.

6 Evaluation

6.1 Experimental Results

As a proof of concept, we implemented the algorithm described in this paper to
check ���������� clauses in Java programs.

To test the efficiency of our algorithm, we chose a doubly-linked list, where
the nesting of datagroups is as deep as the number of nodes in the list: every
node is equipped with a struct datagroup that contains the next and previous
fields and dynamically contains the struct field of the successor node.

We performed experiments with different list operations to measure the per-
formance of our algorithm1. The most interesting experiment has been to reverse
large doubly-linked list, which involves operations on every node of the list and
changes the structure of the dynamic datagroups completely. In fact, every pivot

1 On a desktop computer with a single core 3.4 GHz CPU.
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field gets assigned to, which leads to a complete unfolding of the datagroup. This
is the worst case scenario for our algorithm, which tries to avoid unfolding as
much as possible.

Surprisingly, we need only a bit more than one seconds to add 10’000 nodes
to a list and reverse it with the runtime assertion checker enabled. We spend
around 80% of the time to add the nodes, and 20% of the time to reverse the
list. The memory footprint is around 20MB before reversing the list and grows
to 25MB during reversing because of the caches that get filled in the process.
If we switch off runtime assertion checking for the same example, the program
terminates within half a second and uses around 2.5MB. When repeating the
experiment with 20’000 nodes, time and memory consumption doubles for both
versions.

For the doubly-linked list, the runtime overhead of our checker is a factor of
2 and the memory overhead is a factor of 10. For the main applications of run-
time assertion checking (to prepare static verification and to reproduce possibly
spurious verification errors), we consider this overhead acceptable, especially for
recursive data structures such as our doubly-linked list. We expect the overhead
to be significantly smaller for non-recursive aggregate structures, where dynamic
datagroups are not nested as deeply.

6.2 Theoretical Results

Our algorithm depends mainly on the following factors: the size of the set of
dynamic datagroups that contain a location (|D*dyn|), the size of the assignable
sets (|A|), and the size of the call stack (|cs|),

Time Complexity. Field update is the only operation that may generate a
significant time overhead. The check if a location is assignable has a time com-
plexity of O(|D*dyn| × |cs|) if the result is not cached in any assignable map, and
O(|cs|) if the result is cached in all assignable maps. That is, the caches have a
big impact on the performance if we have a deep nesting of ���������� clauses.
We also see that we do not have a good solution for recursive method calls, where
|cs| gets big.

In our running example, |D*dyn| is logarithmic to the number of nodes in the
tree, which leads to a very good performance.

Memory Overhead. The data structures that produce a significant mem-
ory overhead are the ones for storing the sets of assignable locations, including
caches. That is, the memory overhead depends on the number of assignable
locations mentioned in the ���������� clauses, the amount of lazy unfolding
and of course the number of methods on the call stack. We get an overhead of
O(|A| × |cs|), where the size of A depends on how much unfolding happened
already.

In our running example, if we have a method with an ���������� clause
stating ‘a.struct’ |A| initially contains only the location a.struct and our
memory overhead is very small. For each left or right pointer that we assign
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to in a method, we add one more location to that set, and, if we completely
reorder the whole tree, end up in a complete unfolding of the datagroup.

7 Related Work

Cheon’s runtime assertion checker for Jml [4] provides data structures to rep-
resent ���������� clauses and datagroups but does not generate checks for it.
Ye uses those data structures in his thesis [12] to implement an ����������

clause checker in the presence of static datagroups only. The checks have a time
overhead linear in the size of the set of locations from the ���������� clause,
whereas our algorithm for static datagroups works in constant time.

The Chase tool [3] provides a simple means to discover common specification
mistakes, but is not designed to be sound. It performs a purely syntactic check
on ���������� clauses, ignores aliasing, and does not support datagroups.

Spoto and Poll [10] formalized a trace semantics for a sound reasoning on
���������� clauses. Their approach takes aliasing into account, but datagroups
are not supported. They conclude that Jml’s ���������� clause may be un-
suited for a precise and correct static analysis.

The Loop tool [11] generates PVS proof obligations for a given Jml annotated
Java program. It is mainly used to prove non-trivial properties of JavaCard
applications. Loop can deal with ���������� clauses, but datagroups are not
taken into account.

Krakatoa [9] is a verification tool for Java. The specification language of
Krakatoa is similar to Jml and contains an assigns clause to specify a list of
locations that can be assigned. Again, it is not possible to apply information
hiding by using datagroups.

The KeY system [1] allows one to verify Java programs against Jml specifi-
cations. KeY handles ���������� clauses, but not datagroups.

ESC/Java2 supports most Jml annotations, including ���������� clauses
and datagroups. However, ESC/Java2 fails to give a precise and correct answer
on ���������� clauses that mention datagroups.

Spec#[2] does not provide datagroups, but instead uses a hierarchical heap
model to provide abstraction; if a modifies clause allows modification of an object
o then all (committed) objects that have o as (transitive) owner can be modified
as well. This is similar to declaring a datagroup in each object that contains
the locations of that object and all (transitively) owned objects. Therefore, we
expect that our algorithm, especially the idea of lazy unfolding, can also be
applied to Spec#.

8 Conclusion

We presented an algorithm to check ���������� clauses in the presence of static
and dynamic datagroups. Our algorithm performs well, in particular, on recursive
data structures with large and deeply nested dynamic datagroups by introducing
the concept of lazy unfolding of datagroups. We provide the foundation to close
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a big gap in the runtime assertion checker of Jml. The algorithm has been
tested against recursive data structures with a prototypical implementation of a
runtime assertion checker.

We plan to prove correctness of our algorithm by adding an operational se-
mantics to our Jml formalization in Coq [6] that includes the runtime asser-
tion checks and show that the algorithm enforces the semantics of ����������
clauses. Moreover, we intend to contribute our algorithm to the OpenJML project
and to use that implementation for larger experiments.

Acknowledgments. We are grateful to Alex J. Summers and the anonymous
reviewers for helpful comments.
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Abstract. Context-awareness is becoming a first class attribute of software sys-
tems. In fact, applications for mobile devices need to be aware of their context
in order to adapt their structure and behavior and offer the best quality of service
even in case the (software and hardware) resources are limited. Although perfor-
mance is a key non-functional property for such applications, existing approaches
for performance modeling and analysis fail to capture the characteristics related
to the context, thus resulting not suited for this domain.

In this paper we introduce a framework for modeling and analyzing the per-
formance of context-aware mobile software systems. The framework allows to
model: the software architecture, the context management, the adaptable behav-
iors and the performance parameters. Such models can then be transformed into
performance models for analysis purposes. We tailor an integrated environment
for modeling these elements in UML, and we show how to use it for performance
analysis purposes. The modeling environment description and the performance
analysis are driven by an example in the eHealth domain.

1 Introduction

The rapid evolution of portable devices and their increasing pervasiveness in everyday
life have motivated, in the last few years, a growing interest for methodologies, tech-
niques and tools that allow to effectively develop and analyze software systems running
on such devices.

The main characteristics of portable devices are: mobility and limitation of hardware
resources. Both features obviously claim for specific requirements of the deployed soft-
ware systems that have to be taken into account along the whole software lifecycle.

Mobility can either physical or logical [18]. Physical mobility regards the transfers
of a portable device among a certain number of physical locations. Logical mobility
takes into account the re-deployment actions that certain software components can be
subject to.

The limitation of hardware resources has brought to develop specific releases of soft-
ware products for portable devices that require limited amounts of resources. However,
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some resources not only are limited, but their available amounts can change during the
device usage. Hence, more recently this limitation has been tackled by providing to
software the ability of adapting to changes in the environment.

Mobility and context-awareness (and, as a consequence, adaptation) obviously
have a large impact on the performance of software systems. Their bad effects on per-
formance are today passively accepted as unavoidable fees to pay in the domain of
advanced portable systems. As opposite, if opportunely managed, they can become
powerful instruments in the hands of software developers to maintain an acceptable
level of user-perceived performance even in presence of changes and degradations in
the surrounding environment [16].

Goal of this paper is to introduce a framework to model and analyze performance
of context-aware mobile software systems. The framework is aimed at producing UML
models that embed, besides mobility and context-awareness facets, the parameters that
allow an automated model-based performance analysis of the system. The elements that
build up a context-aware mobile software system model are: the software architecture,
the context management, the adaptable behaviors and the performance parameters.

Within this framework different types of mobility and context-awareness can be
modeled and, if needed, combined. The rationale behind an uniform modeling of such
aspects is that the runtime behavior of a mobile/adaptable software system can be driven
both by a mobility event and a change in its computational environment that lead to
changes in the software itself, namely adaptation actions. However, besides the spe-
cific characteristics of mobility and context-awareness, the interdependencies between
them can be captured, and the cross-effects on the system performance can be taken
into account. Thus certain types of analysis that were not feasible with specific models
(for mobility or context-awareness) can be carried out in our integrated framework. The
framework is based on an existing UML tool (i.e. MagicDraw) and on existing UML
profiles, such as the UML profile for Modeling and Analyzing Real-Time Embedded
Systems (MARTE) [17].

The paper is organized as follows: Section 2 introduces some related work and places
our contribution with respect to the existing literature, in Section 3 we present our
framework under the guideline of a reference example in the eHealth domain, in Sec-
tion 4 we show how different types of awareness can be merged together into an unique
model, Section 5 shows the results of performance analysis experiments and highlights
the potential of our approach, and finally in Section 6 we conclude the paper and discuss
possible future work.

2 Related Work

Several approaches have been introduced in the last few years to manage mobility and
adaptation at the middleware level. Among these, very relevant work has been done
within the framework of the MUSIC project [13]. The MUSIC middleware monitors
the context and the resources to catch their changes and adapts the application to fulfill
the users’ QoS requirements. The approach uses QoS predictors and utility functions
to support the adaptation process. The adaptation is based on the concept of service
plan [15], i.e. a platform-independent specification containing information on service
configurations, its dependencies on the environment and its QoS.
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All the MUSIC contributions can be used at run time given that the application has
been developed to be context-aware and QoS validated. As assessed in [15], the infor-
mation the MUSIC middleware needs is specified in the service plan, but such infor-
mation is collected at the design time. As opposite to MUSIC project, we provide a
support to model and analyze performance properties of such systems before their im-
plementation and deployment. For example, with our framework it would be possible
to automatically generate the (MUSIC) service plan and provide the QoS models that
work as predictors in the MUSIC adaptation process.

Another interesting project is DiVA [2], which aims at providing an integrated frame-
work for managing dynamic variability in adaptive systems. DiVA exploits both Model-
Driven and Aspect-Oriented technologies to define an architectural model (including
base, variant and adaptation models) at design time. The composition and validation at
runtime of alternative models allow: (i) the choice of the system configuration that best
adapts to the changed execution context, and (ii) the deployment and execution of the
chosen configuration supported by a reflective middleware. However, such approach
does not provide any support for non-functional analysis.

Grassi et al. in [8] have proposed a modeling framework for QoS-aware self-adaptive
software applications that present several similarities with our framework. Such frame-
work, based on the definition of an intermediate pivot language (i.e. D-KLAPER), is
aimed at providing instruments to transform software models into non-functional mod-
els and analyze QoS characteristics while changes in the application and/or its environ-
ment may occur.

Our work improves the approach in [8] for several aspects: (i) context-awareness
and mobility are based in our approach on a set of attributes whose evolution is mod-
eled through Statecharts, whereas in [8] a set of triggers has to be specified in isolation;
(ii) the previous difference allows us to introduce dependencies among events that can-
not apparently modeled with D-KLAPER; (iii) we have implemented our approach in
UML, so to prove that such language has the potential to represent triggers and (simple)
adaptation mechanisms, whereas this part of D-KLAPER still does not find any corre-
spondence in UML. However, on the other side, the work in [8] also presents some
advantages, such as: (i) to explicit represent adaptation actions, (ii) to take into account
the non-functional costs of such actions, (iii) to generate a Markov Reward Model that
allows to study non-functional properties even in non steady states of the system.

Finally, our idea of managing all context- and mobility-related aspects with state-
charts is very close to the concept of modes. Modes has been proposed in [11] to extend
the Darwin ADL for modeling Service Oriented Computing systems. Modes are also
language primitives in the Architecture&Analysis Description Language (AADL) [1]
for modeling Real-Time&Embedded Systems. In both cases they can be used to model
the structural evolution of software architecture at runtime. Besides components, AADL
allows the modal specification of all its modeling elements like system, connectors and
properties. Thus, our logical mobility and hardware managers can be modeled as AADL
component’s modes whereas the overall context manager as system’s modes. In AADL,
it is also possible to model the physical mobility by means of system’s modes. However,
in this case, it can’t be associated to a system user as we do associating the manager
to UML Actors. Therefore, differently to AADL, our UML-based modeling approach
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can be (i) ”sized” for different definitions of context and (ii) used as a general ”modal-
based” modeling approach for software system of multiple domain.

3 Modeling Performance-Annotated Context-Aware Software
Systems

In this section we describe our approach for designing UML models of context-aware
software systems that embed performance annotations. The description is driven by
a reference example in the eHealth domain. In [4] an extended description of our ap-
proach has been reported, where more technical details are provided and a general scope
of the approach is illustrated.

The envisaged eHealth service supports the doctor’s everyday activities, such as the
retrieval of mixed media information on his patients that combines text with or without
different kinds of images referring to their personal data, their medical histories and
patient-related diseases. The results can be displayed on the doctor’s handheld device.

The UML model we devise is organized in three views:
The Service View (SV) represents the services provided by the software system as

perceived and used by external actors (Use Case Diagram, UCD) along with their be-
havioral specifications (Sequence Diagram, SD). A Physical Mobility Manager (Stat-
echart, SC) is assigned to each nomadic user that exploits the system services while
moving with his mobile device [9][6].

The Component View (CV) represents a software architecture (Component Dia-
gram, CD) integrated with mobility annotations that allow to distinguish logically mo-
bile from fixed software artifacts. A Logical Mobility Manager is associated to each
component whose implementation is (even partially) mobile [9] .

The Deployment View (DV) represents: (i) the current/allowed allocation of soft-
ware artifacts on execution environments (e.g. handheld devices) that can physically
move across different places (Dynamic Deployment Diagram, dynDD), and (ii) several
detailed hardware device specifications (Hardware Deployment Diagram, hwDD). A
Hardware Configuration Manager is associated to each resource whose state (that may
represent its current amount) may vary at runtime.

To enable model-based performance analysis the UML model has to be annotated
with additional information coming from several profiles. We have adopted the UML
Profile for Modeling and Analysis of Real-Time Embedded Systems (MARTE) [17]
and the UML Profile for Mobile Systems [9]. In addition, we have defined a Context
Modeling profile to model the managers that handle the different types of awareness.
The driving criterion in our profiling task has been to re-use existing profiles wherever
possible1.

1 Hereafter we denote with typewritten words model variables whereas with the itali-
cized ones the stereotypes of profiles. Note, however, that the UML diagrams have been
suitably tailored to fit the page limitation and to preserve their readability, whereas a
machine-readable complete UML model of our eHelath example can be downloaded at
http://www.di.univaq.it/cortelle/docs/eHealthSystemModelASE.rar.
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Fig. 1. The Dynamic Deployment Diagram

3.1 Modeling the Software Architecture

The retrieval of patient related information (that hereafter we refer as RequestPatientIn-
foPages) is supposed to be the most frequently invoked service (basing on the user
profile). In our modeling approach, each service is provided by a component-based sys-
tem whose architectural description is given by a Component Diagram (CD). The CD
identifies the software components, their interconnections and the executable artifacts
implementing them. Moreover, it specifies which component is mobile and the perfor-
mance parameters needed for the analysis.

In Figure 1 the dynamic DD of the application is shown. It is inspired by the diagram
introduced in [9], as it basically contains two types of information: (i) the allocation of
the software artifacts (SchedulableResources) on the execution environments (GaEx-
ecHost) through deployment relationships (CurrentDeployment, AllowedDeployment)
that go from the Software Artifact level to the Hosts level, and (ii) the positioning of
the execution hosts (e.g. PDA) on different physical locations using associations (Cur-
rentLocation, AllowedLocation) that go from the Hosts level to the Physical Locations
level. The dynamic nature of dynDD derives from the need to change the current and
allowed relationships between levels whenever logical and/or physical mobility events
take place.

Looking at Figure 1 we deduce that the RequestPatientInfoPages service is avail-
able if the user PDA is able to connect to a WAN network (hwMedia). Different Places
can provide different types of network connections (i.e. typed Ports of Places), but
some of them might not be exploitable by the service (such as the white-colored port
802.11n:LAN at Doctor’s Home) due to particular design choices and/or hardware
limitations.
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3.2 Modeling the Context-Awareness

In this section we model the context-awareness of the eHealth application, whereas in
Section 3.3 we describe how this awareness can influence the service behavior. Each
type of awareness is handled by a manager modeled as an UML Statechart.

Physical Location-Awareness
The modeling of the Physical Location Awareness takes inspiration from previous
works [6][9]. We define a Physical Mobility Manager for each nomadic user (i.e. the
doctor in our case).

An UML Statechart is defined for each manager, where a state represents the current
physical location and the resources in the surroundings (together referred as physical
configuration, PhyConfig) at the time when users demand for services. The transitions
are triggered either by physical moves of the nomadic users or by changes in physi-
cal resources in the surroundings. Figure 2(a) shows the doctor mobility pattern (i.e.
the one of his PDA) where the physical transfer from his home to the patient’s one is
highlighted along with the probabilities of the moves2). Hence each PhyConfig refers
to some platform device (in this case the PDA), and to the deployment diagram that
embeds it. A PhyConfig state determines the ends of the Current- and AllowedNodeLo-
cations relationships among mobile execution hosts and places on dynDD (Figure 1.

Logical Location-Awareness
Logical mobility is informally defined as the capability to dynamically change the bind-
ings between code fragments and the location where they are executed [7]. We adopt
the solution proposed in [9] that is based on an UML Statechart called Logical Mo-
bility Manager. In a Logical Mobility Manager a state corresponds to the current al-
location (CurrentDeployment) of the software components (MobileCode) to the proper
execution platforms (GaExecHost in Figure 1). State transitions represent the possi-
ble re-deployments of mobile software artifacts through the communication channels
(HwMedia in Figure 1) to other platform devices (AllowedDeployment).

For example, when the client artifact (i.e. client.exe in Figure 1) actually runs on the
PDA, it can migrate back and forth to the application host due to some design reason
(e.g. performing heavy tasks on the server side when resources on the PDA are scarce).

Hardware Platform Awareness
The third dimension of the context-awareness, as defined in this paper, takes into ac-
count the detailed hardware specification of the execution environment. We illustrate in
Figure 2 the Hardware Configuration Managers for hardware resources whose internal
configuration HwConfig can influence the service behavior (see [4] for a detail of these
resources).

Figure 2(b) illustrates the CPU, BATTERY and DISPLAY managers as separate
UML Statecharts that model the states and transitions of corresponding hardware com-
ponents. Each state specifies a set of nfpConstraints (based on variables defined on the
configured hardware component) [17] to be held in the current configuration HwConfig.

2 For each state the probabilities of the outgoing transitions at most sum to 1, where the gap to
1 implicitly corresponds to the probability of the self-transition.
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In addition, a remote firing transition (i.e. BATTERY2LowPowerDowngrade) is il-
lustrated to highlight how the remaining BATTERY capacity (currCapacity) can
influence the configuration of the CPU by firing a remote transition that limits its clock
frequency (currFrequency).

Fig. 2. Physical and Hardware Configuration Managers

3.3 Modeling the Service Behaviors

The eHealth modeling is completed by the specification of service’s behaviors.
The left side of Figure 3 shows an UML Sequence Diagram associated to the Re-

questPatientInfoPages service. When the doctor, once logged in, invokes the distributed
service, the server-side components are in charge of retrieving data from a local (i.e.
connected by LAN) database and, if suited, from a remote (i.e. connected by WAN) im-
age server for patients’ x-rays or disease-related images. Finally the result is displayed
on the client.

The service behavior can be determined by the current context conditions defined by
the values of the managers’ model variables. Figure 3 represents indeed an Interaction
Overview Diagram (IOD) that models the behavior alternatives and the conditions that
determine the current behavior, as expressed at the topmost branching point of the fig-
ure. Hence, the same service can have multiple implemented behaviors whose activation
is driven by the logics expressed within the managers.

Besides the StandardBehavior described above, the right side of Figure 3 reports
a box for a ResourceConstrained behavior that will be executed in case of scarce re-
sources and that excludes the interactions with the image server (i.e. the white lifeline
and the bold labeled messages in Figure 3)3.

3 For sake of readability, in Section 5 we simplify the conditions for the activation of Resource-
Constrained behavior by basing only on the display characteristics.
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Fig. 3. The context-aware RequestPatientInfoPages service behavior

3.4 Adding Performance Annotations

The eHealth model described so far also contains additional information related to per-
formance. Such information is necessary to obtain performance models through au-
tomated model-to-model transformations [5]. In particular, the previously illustrated
diagrams include:

– The workload (GaWorkloadEvent) for each service (Figure 3).
– The resource demand vector (GaAcqStep) that represents the amount of resources

that an operational step needs to be completed (Figure 3); in particular, a resource
demand vector provides values (i.e.resUnits tag of GaAcqStep 4) for the ordered list
(acqRes) of available logical resources (i.e. Instr, DbAx, and Msg ResourceUsage
in Figure 3) necessary to execute the step.

– The multiplicity, service time and scheduling policy of each hardware resource
such as CPUs, DISKs and NETWORKs (e.g. wanBandwidth in Figure 1).

Resource demand vectors represent the platform-independent annotations related to
performance, in that they are abstract quantifications of resource consumption. In order
to associate these annotations to platform specifications and build a solvable perfor-
mance model (following the approach in [19]), the characteristics of platform devices
have to be also specified (see [4]).

In a context-aware domain the platform device characteristics can change depend-
ing on the context. In our case, for example, the available network connections can

4 We assume that the resource units are implicitly released at the end of each step.
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have different non functional properties that affect the quality of the service provision.
In particular, the RequestPatientInfoPages performance can be affected by the network
bandwidth wanBandwidth (Figure 1) whose value is bound to the CurrentNodeLo-
cation association and varies when the doctor moves across the other allowed physical
locations (i.e. AllowedNodeLocation).

4 An Unique Model for Mobility and Context-Awareness

On the basis of the modeling approach introduced above, all considered awareness
(in this paper the physical location-, the logical location- and the hardware platform-
awareness) must be properly combined. Each of them can be defined in isolation or,
through remote firing, can affect the other ones. For sake of performance analysis they
can be considered together or in isolation, depending on the facets of interest of the
software system. For example, one can investigate only the performance degradation
due to an extremely high physical mobility of users without considering at all the states
of resources on portable devices.

Therefore the types of statecharts that model the evolution of context dimensions, as
the ones described in Section 3, can be lumped when necessary for analysis purposes
in one statechart that models the runtime evolution of a mobile context-aware software
system.

Each state of such statechart (that we call superstate) represents a possible context,
and it is obtained from the combination of a certain number of states (in this paper three
states), one for each statechart modeling a context dimension evolution (in this paper
physical mobility, logical mobility, hardware platform evolution). Obviously not all the
combinations are allowed, for example a certain configuration of hardware devices can-
not allow a certain deployment of software components to devices. Therefore, in order
to build a consistent unique model, only superstates that are feasible combinations of
states have to be considered.

Once this set of superstates has been defined, a list of provided services and their cor-
responding behaviors have to be associated to each state. In fact, if multiple behaviors
for some services are available, then the behavior to be adopted must be specified in
each superstate where the service can be provided. We remark that this type of associa-
tion does not need human processing, as it can be automated by parsing an Interaction
Overview Diagram (see Figure 3). The latter, in fact, represents the behavior alternatives
guarded by predicates over model variables. A superstate is uniquely characterized by
the values assumed from model variables. Hence, the model variable values that deter-
mine a certain superstate drives the choice towards the appropriate behavior alternative
among the ones modeled in the Interaction Overview Diagram.

Transitions have to be defined in this unifying statechart. Being each superstate ob-
tained by lumping a certain number of states of respective statecharts, the transitions
outgoing these latter states have to be opportunely combined (along with their probabil-
ities) to build up transitions outgoing the superstate. The Harel’s theory on statecharts
[10], along with the Hermanns et al.’s work on stochastic statecharts [14], provide suf-
ficient results to automate this step in most cases.

In Figure 4 we report the unifying statechart obtained by lumping some of the aware-
ness managers introduced in Section 3.2. In particular, we have considered the doctor’s
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Physical Mobility Manager and the PDA Display Hardware Configuration Manager
(Figure 2). This choice allows, on one end to keep the example as simple as possible,
and on the other end to keep into account two different types of awareness, as we will
show in Section 5.

<<CtxConfig>>

SR
{hwConfigs = B/W, 
phyConfig = Surgery} {prob = "0.4"}

<<CtxConfig>>

HS

<<CtxConfig>>

OR
<<CtxConfig>>

HR
<<CtxConfig>>

PR

<<CtxConfig>>

OS
<<CtxConfig>>

PS

<<CtxConfig>>

SS

{prob = "0.1"}

{prob = "0.1"}

{prob = "0.4"}

Fig. 4. The eHealth system unifying statechart

The lumping process of these
two managers brings to an uni-
fying statechart where all eight
potential superstates are feasible
(i.e. the cartesian product of the
manager state spaces). In Fig-
ure 4 each superstate is a dif-
ferent context CtxConfig, and is
labeled with two letters: the first
one recalls the state of the Phys-
ical Mobility Manager it comes
from (i.e. H for Home, O for
OpenAir, S for Surgery and P

for PatientHome), the second one recalls the behavior adopted in the state as a con-
sequence of the Display state (i.e. S means StandardBehavior, that is adopted when
the display is in Color state, whereas R means ResourceConstrainedBehavior, adopted
when the display is in B/W). For sake of illustration the SR superstate has been com-
pletely represented, along with example probabilities on its outgoing transitions.

5 Performance Analysis

Several interesting experiments can be conducted on the model that we have built to
study the system performance vs different model parameters. For example, the utiliza-
tion of a certain platform device can be analyzed while varying the intensity of traffic
due to user mobility, or the response time of a certain service can be analyzed in differ-
ent superstates (or across superstates).

In fact, as outlined in Section 3.4, our model embeds all the performance parameters
necessary to apply an automated transformation that generates a performance model,
such as a Stochastic Petri Net or a Queueing Network. In this specific case we have
used the approach illustrated in [5] 5.

In Figure 5 an Execution Graph [19] of the RequestPatientInfoPages service has been
reported as obtained through a model transformation of the Sequence Diagram in Figure
3. An Execution Graph is a platform-independent model that represents the software
dynamics along with its requests of resources. In Figure 5 square blocks represent the
basic operations that the components perform to provide the service. Beside each block
a demand vector is shown that reports (from the annotations of the Sequence Diagram)
the amount of logical resources that are required to complete the block (see Section 3.4).
In particular: (i) Instr represents the number of high-level instructions to be executed
from a CPU, (ii) DbAx represents the number of mass memory blocks to be acceded on

5 For sake of space we do not enter into technical details of such transformations; readers inter-
ested can refer to [3] for a recent survey on this topic.
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Fig. 5. Execution Graph of RequestPatientInfoPages service

DISK (each block is sized 32 bytes), and (iii) Msg represents the number of bytes to be
exchanged on the network (i.e. WAN/LAN).

Decision points have been generated in Figure 5 to embed the (bold labeled) blocks
that are executed only in the StandardBehavior (similar labeling of the Sequence Di-
agram). The topmost labels indicates the names of the components that execute the
underlying blocks.

The last block before the end of the graph represents the return of patient data to the
doctor’s PDA. The demand vector of such block cannot be uniquely identified, in that
it brings over the WAN (connecting PDA and AppHost) the data retrieved. These data
are different depending on the behavior executed. Therefore an X value is placed in the
Msg field of this block demand vector, and X holds either 272kB or 1.772MB in case
of, respectively, Resource Constrained and Standard Behavior6.

The platform characteristics that we have considered in all experiments are reported
in [4].

We have considered three scenarios for our software system, namely: Basic, High
Mobility and Powerful Display. In the Basic scenario we devise a low mobility of the
doctor (and hence of his PDA) that for most of time operates in the Surgery room, and
an equal probability for the display to be color or b/w (i.e. equal probability for the
two service behaviors). In the High Mobility scenario we introduce frequent doctor’s
relocations with respect to the Basic scenario. In the Powerful Display scenario, re-
ported in [4], we instead introduce, with respect to the Basic scenario, a much higher
probability for the Display to be in Color state (i.e. higher probability of adopting a
StandardBehavior).

6 These X values are obtained by summing up the amount of bytes of Msg fields of blocks
executed in the two different behaviors.
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5.1 A Basic Scenario

The transition probabilities for the Physical Mobility Manager and the Display Hard-
ware Configuration Manager in the Basic scenario are annotated in Figure 2.

In consequence of the lumping operation, the transition probabilities of the unifying
statechart of Figure 4 for the Basic scenario are the ones reported in Table 1. It is easy to
observe that each probability has been obtained by multiplying the probabilities of the
corresponding transitions in the original manager statecharts, following the canonical
theory of merging probabilistic statecharts [14].

Table 1. Transition probabilities for the unify-
ing statechart in the Basic scenario

HS OS SS PS HR OR SR PR

HS 0.05 0.45 0.05 0.45
OS 0.05 0.05 0.35 0.05 0.05 0.05 0.35 0.05
SS 0.05 0.45 0.05 0.45
PS 0.45 0.05 0.45 0.05
HR 0.05 0.45 0.05 0.45
OR 0.05 0.05 0.35 0.05 0.05 0.05 0.35 0.05
SR 0.05 0.45 0.05 0.45
PR 0.45 0.05 0.45 0.05

Table 2. Steady-state probabilities of super-
states in the Basic scenario

HS OS SS PS
0.0067 0.0608 0.4250 0.0067

HR OR SR PR
0.0067 0.0608 0.4250 0.0067

The statechart shown in Figure 4 can
be interpreted as a Markov Model that de-
scribes the stochastic behavior of a soft-
ware system with respect to its mobility
and context-awareness. Hence, the solu-
tion of such model provides, among other,
the steady-state probabilities of each su-
perstate [20]. This result represents a
measure of how often the system will be
in a certain superstate, and it is therefore a
crucial parameter for many types of non-
functional analysis. The solution of such
Markov Model in the Basic scenario leads
to the steady-state probabilities reported
in Table 2.

We have considered the response time
of the RequestPatientInfoPages service as
the performance index of interest in our
experiments. Minimum, maximum and
average values of such index are evaluated overall the superstates for each scenario.
Note, however, that since scenarios differ from each other only for transition proba-
bilities (while keeping software and platform characteristics unchanged), the minimum
and maximum response times are invariant across scenarios. As opposite, the average
response time is computed as the weighted sum of response time in each superstate,
where the weights are the steady-state probabilities. Therefore different values of aver-
age response time are obtained in different scenarios.

In order to obtain the response time in each superstate the Execution Graph shown
in Figure 5 has to be synthesized to obtain an unique demand vector for each Execution
Host [19]. For example, the demand vectors of the four blocks executed by Database
System in Figure 5 have to be summed up to obtain the demand of resources addressed
to DbHost where Database System is deployed. Thereafter, each synthesized demand
vector has to be combined with the corresponding platform characteristics specified in
[4] to obtain the amount of time spent in each platform device to complete the service.

Summarizing, on the basis of the Steady-state probabilities of superstates (Table 2),
the Demand vectors synthesized from the Execution Graph (Figure 5), and the Platform
characteristics (see [4]), the response time values of RequestPatientInfoPages service in
the Basic scenario are reported in Table 3, where values are expressed in seconds.
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Table 3. Response time values in the
Basic scenario

Max Min Average
Response Time 82.069 1.17 14.59

Superstate OS SR -

Since minimum and maximum values are in-
variant with respect to the scenario, the two left-
most values reported in Table 3 also hold for the
other two scenarios. For these values we have
reported in the bottommost row of Table 3 the
superstate name where this value is achieved. A
maximum response time of 82.069 seconds is obtained when the doctor’s PDA is in
OpenAir and its display works in color (i.e. OS state), whereas a minimum response
time of 1.17 seconds is obtained when the doctor’s PDA is in Surgery and its display
works in black and white (i.e. SR state).

The average response time obviously depends on the steady-state probabilities. In
particular, as it can be observed in Table 2, in this case most of time is spent in Surgery
(i.e. either SS or SR state) where the network bandwidth is quite large ([4]). Therefore
the average response time is much closer to its lower bound than its upper bound.

5.2 High Mobility Scenario

The transition probabilities of the Physical Mobility Manager in the High Mobility
scenario are reported in Table 4, whereas the probabilities for the Display Hardware
Configuration Manager are the ones adopted in the Basic scenario.

Table 4. Transition probabilities for Physical
Mobility Manager in the High Mobility scenario

Home OpenAir Surgery PatientHome

Home 0.5 0.5
OpenAir 0.25 0.25 0.25 0.25
Surgery 0.5 0.5

PatientHome 0.5 0.5

Table 5. Steady-state probabilities of super-
states in the High Mobility scenario

HS OS SS PS HR OR SR PR
0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1

Similarly to the Basic scenario, after
the lumping operation and the solution
of the corresponding Markov Model, the
steady-state probabilities of the High Mo-
bility scenario are reported in Table 5.

For this scenario we have obtained
an average response time of RequestPati-
entInfoPages service of RT = 26.32 sec-
onds.

This value of the response time is quite
larger than the one obtained in the Basic
scenario, and this is mainly due to the fol-
lowing reason. In this scenario the doctor
moves more often than in the Basic sce-

nario, and therefore it experiences very different network bandwidths in a quite homo-
geneous distribution.

From a qualitative viewpoint this result is quite obvious, but we like to remark that
our approach allows to quantify such differences among performance indices, and hence
it represents a powerful instrument in the hands of software designers to support their
decisions. For example, sensitivity analysis can be conducted on response time while
varying the probability of moving among pairs of locations.

6 Conclusions

We have introduced a framework for modeling and analyzing the performance of context-
aware mobile software systems. Context-awareness is intended to be a composite



366 L. Berardinelli, V. Cortellessa, and A. Di Marco

concept, with different types of awareness concurring to its definition. No assumption un-
derlies our framework about the types of awareness that can be modeled, as each aware-
ness is simply represented by a statechart whose states and transitions are based on model
variables.

Three main aspects represent the potential of our framework: (i) the rigorous defi-
nition in UML 2 of all necessary instruments to build a model of such an application
is mostly based on reusing existing profiling, thus it does not represent ”yet another
profile” for context, but a promising approach to the modeling of context-related con-
cepts, (ii) the process of lumping statecharts together in an unique stochastic model for
context-awareness and mobility represents a powerful unifying approach to the more
general modeling and analysis of non-functional properties, (iii) the existing mature
approaches for automation in the performance model generation and solution allow to
conceive, even in this specific domain, the performance analysis a viable and effective
activity in the daily practice of software designers. Besides, our definition of context is
extensible and/or shrinkable because any set of system attributes can enter the context
as long as a manager statechart is defined for it.

This work opens the view on a plethora of problems that can be faced and solved on
the basis of the promising results shown here.

First of all the validation of such approach against real case studies would lead feed-
back on its actual usability and effectiveness to capture performance issues.

Performance models that represent the resource contention should be addressed (pos-
sibly using existing model transformation approaches) in order to conduct a sensitivity
study of such models vs. increases of system workload (i.e. a large number of users).
Yet other types of performance indices could be useful in this domain, such as the uti-
lization of certain devices across contexts.

However our models at the moment have some limitations on which we are working.
First, certain scenarios involving remote firing transitions are complex to be managed in
the lumping operation. We are working on parallel compositions of stochastic processes
to remove this complexity. Besides, due to intrinsic constraints of UML 2, in our models
the managers cannot change state during the execution of a service, but only between
one invocation and another. We are trying to introduce this characteristic in our frame-
work without needing a heavyweight extension of the UML metamodel. Moreover we
are looking at more complex forms of adaptation that, for example, completely replace
the internal structure and behavior of a certain component if needed [12].

We retain that such type of analysis, as well as the analysis of other non-functional
attributes like reliability, can be of great support to the decision of system modelers. As
shown also in our example, the validation of certain non-functional properties over a
system model allows not only to qualitatively validate possible modelers’ intuitions, but
also to quantitatively study the trends of non-functional metrics depending on context
changes.
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Abstract. The problem of interpreting the results of software perfor-
mance analysis is very critical. Software developers expect feedbacks in
terms of architectural design alternatives (e.g., split a software compo-
nent in two components and re-deploy one of them), whereas the results
of performance analysis are either pure numbers (e.g. mean values) or
functions (e.g. probability distributions). Support to the interpretation
of such results that helps to fill the gap between numbers/functions and
software alternatives is still lacking. Performance antipatterns can play
a key role in the search of performance problems and in the formulation
of their solutions. In this paper we tackle the problem of identifying,
among a set of detected performance antipatterns, the ones that are the
real causes of problems (i.e. the “guilty” ones). To this goal we intro-
duce a process to elaborate the performance analysis results and to score
performance requirements, model entities and performance antipatterns.
The cross observation of such scores allows to classify the level of guilti-
ness of each antipattern. An example modeled in Palladio is provided to
demonstrate the validity of our approach by comparing the performance
improvements obtained after removal of differently scored antipatterns.

Keywords: Software Performance Engineering, Antipatterns, Feedback,
Performance Analysis.

1 Introduction

The problem of interpreting the results of performance analysis and providing
feedback to software designers to overcome performance issues is probably the
most critical open issue today in the field of software performance engineering.
A large gap in fact exists between the representation of analysis results and the
feedback expected by software designers. The former usually contains numbers
(such as mean response time and throughput variance), whereas the latter should
embed architectural design suggestions useful to overcome performance problems
(such as modifying the deployment of certain software components).
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A consistent effort has been made in the last decade to introduce automation
in the generation of performance models from software models [1], whereas the
reverse path from analysis results back to software models is still based on the
capabilities of performance experts to observe the results and provide solutions.
Automation in this path would help to introduce performance analysis as an
integrated activity in the software life cycle, without dramatically affecting the
daily practices of software engineers.

Strategies to drive the identification of performance problems and to generate
feedback on a software model can be based on different elements that may depend
on the adopted model notation, on the application domain, on environmental
constraints, etc. Our approach rests on the capability to automatically detect and
solve performance antipatterns. In general, antipatterns [3] document common
mistakes (i.e. “bad practices”) made during software development as well as
their solutions: what to avoid and how to solve the problems. In particular,
performance antipatterns [11] describe recurring software performance problems
and their solution.

In Figure 1 the process that we propose is reported: the goal is to modify a
software system model in order to produce a new model where the performance
problems of the former one have been removed. Boxes in the figure represent
data, and segments represent steps.

Fig. 1. Performance analysis interpretation

The left hand side of Figure 1,
represented with solid arrows, is
the part of the process that is based
on antipatterns and is the object
of this paper. Other techniques can
be used to solve performance prob-
lems and are represented on the
right hand side of Figure 1. In this
side a list of existing alternatives
can contain a number of options
for what could be changed in the
software system model. From this
list, alternatives can be chosen to
directly create a new software sys-
tem models [9]. Alternatives to ap-
ply can be chosen randomly, man-
ually by software architects based
on their experience, or based on
heuristics. These techniques are out
of the scope of this paper, thus the
right-hand path is represented with
dashed arrows in Figure 1.

The inputs of our process are: a
software system model and a set of performance requirements. The software sys-
tem model contains all information required for an automated transformation
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into a performance analysis model, that basically is: resource demands of soft-
ware services, control flow, allocation of software services to hardware processors,
workload and operational profile of the system. The requirements represent what
end-users expect from the system and thus represent the target performance
properties to be fulfilled.

First, the performance indices of the current software system model are de-
termined in a performance analysis step. We obtain two types of results from
this step: (i) an annotated system model, which is the current software model
annotated with performance results, and (ii) a list of violated requirements as
resulting from the analysis. If no requirement is violated by the current software
system then the process terminates here. Antipattern rules represent a system-
independent input that enters the process at the second step. They formalise
known performance antipatterns so that they can be automatically detected
by a rule engine (see, for example, [10,12])(1). Antipattern rules are applied to
the annotated model to detect all performance antipatterns and list them in a
complete antipatterns list.

Then we compare the complete antipatterns list with the violated require-
ments. We obtain a filtered antipatterns list, where antipatterns that do not
affect any violated requirement have been filtered out. In the following step, on
the basis of relationships observed before, we estimate how guilty an antipat-
tern is with respect to a violated requirement by calculating a guiltiness score.
As a result, we obtain a ranked antipatterns list for each violated requirement.
Finally, a new improved software system model can be built by applying to the
current software system the solutions of one or more high-ranked antipatterns
for each violated requirement.

In this paper we focus on the process steps that take place between the shaded
boxes of Figure 1. We assume that the performance analysis of the initial model
has identified a list of violated requirements, and we also assume that a rule en-
gine has parsed the current software system model to build a complete antipat-
terns list [4]. The questions tackled in this paper are the following: (i) “What
are the most guilty antipatterns?” and (ii) “How much does each antipattern
contribute to each requirement violation?”. The contribution of this paper is
a technique to rank antipatterns in the model on the basis of their guiltiness
for violated requirements. Such ranked list will be the input to the solution
step that can use it to give priorities to certain antipattern solutions. Without
such ranking technique the antipattern solution process can only blindly move
among antipattern solutions without eventually achieving the desired result of
requirements satisfaction.

The paper is organized as follows. Section 2 describes our approach to the
antipattern ranking, in section 3 we illustrate the application of our approach
to a case study (i.e. a web reporting system) in the Palladio Component Model
(PCM) [2], Section 4 focuses on the open issues of the proposed approach, Section
5 presents the related work, and finally in Section 6 conclusions are provided.

1 We have introduced a technique based on first-order logic to specify such rules [5].
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2 Our Approach for Antipattern Ranking

In this section we provide a detailed description of our approach shown in the
shaded boxes of Figure 1. The input data for our approach are a set of violated
requirements (Section 2.1) and a complete antipatterns list for the system under
study (Section 2.2). In the first step, we filter out antipatterns that do not affect
any requirements and obtain a matrix of filtered antipatterns (Section 2.3). In the
second step, we assign a guiltiness score for the filtered antipatterns with respect
to each violated requirement (Section 2.4). The resulting ranked antipatterns list
for each requirement can be used to decide which antipattern solution(s) to apply
in order to obtain an improved software system model.

2.1 Violated Requirements

The performance requirements that, upon the model analysis, result to be vi-
olated represent very likely the effects (to be removed) of some antipatterns,
therefore we focus on them.

System requirements are classified on the basis of the performance indices they
address and the level of abstraction they apply. Here we consider requirements
that refer to the following performance indices [8](2):

- Response time is defined as the time interval between a user request of a
service and the response of the system. Usually, upper bounds are defined
in “business” requirements by the end users of the system.

- Utilisation is defined as the ratio of busy time of a resource and the total
elapsed time of the measurement period. Usually, upper bounds are defined in
“system” requirements by system engineers on the basis of their experience,
scalability issues, or constraints introduced by other concurrent software
systems sharing the same hardware platform.

- Throughput is defined as the rate atwhich requests can be handled by a system,
and is measured in requests per time. Throughput requirements can be both
“business” and “system” requirements, depending on the target it applies; for
the same motivation it can represent either an upper or a lower bound.

Various levels of abstraction can be defined for a requirement: system, processor,
device (e.g., CPU, Disk), device operation (e.g., read, write), software compo-
nent, basic and composed services. In the following, by “basic service” we denote
a functionality that is provided by a component without calling services of other
components. By “composed service”, we denote a functionality that is provided
by a component and involves a combination of calls to services of other com-
ponents. Both types of services can be offered to the end user at the system
boundary, or be internal and only used by other components.

However, we do not consider all possible combinations of indices and levels of
abstraction. Our experience on system requirements leads us to focus on the most
frequent types of requirements, that concern: utilisation of processors, response
time and/or throughput of basic and composed services.
2 Note that the values of all these indices depend on the system workload.
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Table 1 contains simplified examples of performance requirements and their ob-
served values. Each requirement is represented by: (i) an identifier (ID), (ii) the
type of requirement (Requirement) that summarizes the performance index and
the target system element, (iii) the required value of the index (Required Value),
(iv) the maximum system workload for which the requirement must hold (System
Workload), and (v) the observed value as obtained from the performance analysis
(Observed Value). In Table 1 three example requirements are reported. The first
one refers to the utilisation index (i.e., U): it requires that processor Proc1 is not
utilised more than 70% under a workload of 200 reqs/sec, while it shows an ob-
served utilisation of 64%. The second one refers to the response time index (i.e.,
RT ) and the third one refers to the throughput index (i.e., T ) of certain software
services. Requirements R2 and R3 are violated, whereas R1 is satisfied.

Table 1. Example of Performance Re-
quirements

Requi- Required System Observed
ID rement Value Workload Value

R1 U(Proc1) 0.70 200 reqs
sec 0.64

R2 RT(CSy) 2 sec 50 reqs
sec 3.07 sec

R3 T(BSz) 1.9 reqs
sec 2 reqs

sec 1.8 reqs
sec

... ... ... ... ...

Table 2. Details of Violated Require-
ments

ID Involved Entities

R2 Compx.BSa, Compy.BSb, Proc2

R3 Compw.BSz, Proc3
... ...

Violated requirements are further detailed by specifying the system entities
involved in them. For utilisation requirements, we only consider as involved the
processor for which the requirement is specified. For example, if a utilisation re-
quirement has been specified for processing node Proc2, we consider only Proc2
to be involved. For requirements on services (i.e. response time and through-
put requirements), all services that participate in the service provisioning are
considered as involved. For example, if a violated requirement is specified for a
service S1, and S1 itself calls services S2 and S3, we consider all three services
S1, S2 and S3 to be involved. Furthermore, all processing nodes hosting the com-
ponents that provide involved services are considered as involved (3). Namely, if
the component providing service S1 is deployed on a processing node Proc1, and
the component(s) providing S2 and S3 are deployed on a processor Proc2, we
additionally consider Proc1 and Proc2 to be involved. With this definition we
want to capture the system entities that are most likely to cause the observed
performance problems.

In Table 2, the involved services of two violated requirements are reported: R2
involves all basic services participating in the composed service CSy (i.e., BSa,
BSb) prefixed by the names of components that provide them (i.e., Compx,
Compy respectively), whereas R3 only involves the target basic service BSz

3 The allocation of services to processing nodes is part of the Software System Model
(see Section 1).
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similarly prefixed. The list of involved entities is completed by the processors
hosting these components.

2.2 Complete Antipatterns List

We assume that a rule engine has parsed the annotated system model and has
identified all performance antipatterns occurring in it. All detected performance
antipatterns and the involved system entities are collected in a Complete Antipat-
terns List. An example of this list is reported in Table 3(a): each performance
antipattern has an identifier (ID), the type of antipattern (Detected Antipattern),
and a set of system entities such as processors, software components, composed
and basic services, that are involved in the corresponding antipattern (Involved
Entities). In [11] a list of types of antipatterns is reported.

Note that the detection process takes into account only the annotated software
system model and the antipattern rules and thus it is independent of the violated
requirements.

Table 3. Example: Antipatterns Lists

(a) Complete Antipatterns List
Detected Involved

ID Antipattern Entities

PA1 Blob Compx

Concurrent
PA2 Processing Proc1

Systems Proc2

PA3 Circuitous Compt.BSz

Treasure Hunt
... ... ...

(b) Filtered Antipatterns List.

Requirements

R1 R2 . . . Rj

Anti-
patterns

PA1 Compx

PA2 Proc1

. . .

PAx e1, .., ek

2.3 Filtering Antipatterns

The idea behind the step that filters the list of detected antipatterns is very sim-
ple. For each violated requirement, only those antipatterns with involved entities
in the requirement survive, whereas all other antipatterns can be discarded.

A filtered list is shown in Table 3(b): rows represent performance antipatterns
taken from the complete list (i.e. Table 3(a)), and columns represent violated
performance requirements (i.e. Table 2). A non-empty (x, j) cell denotes that
the performance antipattern PAx is a candidate cause for the violation of the
requirement Rj . In particular, the (x, j) cell contains the intersection set of
system entities {e1, .., ek} that are involved in the antipattern PAx and the
violated requirement Rj . We will refer to this set as involvedIn(PAx, Rj) in the
following. Antipatterns that do not have any entity in common with any violated
requirement do not appear in this list.

This filtering step allows to reason on a restricted set of candidate antipatterns
for each requirement. In Section 2.4 we illustrate how to use a filtered antipattern
list to introduce a rank for each antipattern that allows to estimate its guiltiness
vs. a requirement that has been violated.
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2.4 Ranking Antipatterns

The goal of ranking antipatterns is to introduce an order in the list of filtered
antipatterns for each requirement, where highly ranked antipatterns are the most
promising causes for the requirement violation. The key factor of our ranking
process is to consider the entities involved in a violated requirement. We first
assign a score to each entity, and then we rank an antipattern on the basis of a
combination of the scores of its involved entities, as follows.

In Table 4 we have summarized all equations that we introduce to assign scores
to system entities involved in a violated requirement. As outlined in Section 2.1,
the requirements that we consider in this paper are: utilisation of processors,
response time and throughput of composed and basic services.

Table 4. How to rank performance antipatterns

Type Equation

Utilisation scorei,j = (observedUtili − requiredUtilj )

Response time scorei,j =
ownComputationi

maxOwnComputationj

· observedRespTimej − requiredRespTimej

observedRespTimej

Throughput scorei,j =

⎧⎪⎨⎪⎩
requiredT hrpj−observedT hrpj

requiredT hrpj
if workloadi > observedThrpi

or isClosed(systemWorkload)
0 else

Utilisation. The violation of an utilisation requirement can only target (in this
paper scope) a processor. For each violated requirement Rj , we introduce a
utilisation score to the involved processor Proci as reported in the first row of
Table 4. scorei,j represents a value between 0 and 1 that indicates how much
the Proci observed utilisation (observedUtili) is higher than the required one
(requiredUtilj).

Response time. The violation of the response time in composed services involves
all services participating to that end-user functionality. For each violated require-
ment Rj , we introduce a response time score to the involved service Si as re-
ported in the second row of Table 4. We quantify how far the observed response
time of the composed service CSj (observedRespT imej) is from the required one
(requiredRespT imej). Additionally, in order to increase the guiltiness of services
that mostly contribute to the response time of the composed service, we introduce
the first multiplicative factor of the equation. We denote with ownComputationi

the observed computation time of a service Si participating in the composed ser-
vice CSj . If service Si is a basic service, ownComputationi equals the response
time RT (Si) of service Si. However, composite services can also consist of other
composite services. Thus, if service Si is a composite service that calls services S1
to Sn with probability P (S1) to P (Sn), ownComputationi is the response time of
service Si minus the weighted response time of called services:
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ownComputationi = RT (Si)−
∑

1≤c≤n

P (Sc)RT (Sc)

We divide by the maximum own computation over all services participating in
CSj , which we denote by maxOwnComputationj . In this way, services with
higher response time will be more likely retained responsible for the requirement
violation.

The violation of the response time in basic services involves just the referred
service. The same equation can be used, where in this case the first multiplicative
factor is equal to 1 as ownComputationi corresponds to maxOwnComputationj .

Throughput. The violation of the throughput in composed services involves all
services participating to the end-user functionality. For each violated requirement
Rj , we introduce a throughput score to each involved service Si as reported
in the third row of Table 4. We distinguish between open and closed work-
loads here. For an open workload (isOpen(systemWorkload)), we can identify
bottleneck services Si that cannot cope with their arriving jobs (workloadi >
observedThrpi). To these services a positive score is assigned, whereas all other
services are estimated as not guilty for this requirement violation and a score
of 0 is assigned to them. For closed workloads (isClosed(systemWorkload)),
we always observe job flow balance at the steady-state and thus for all services
workloadi = observedThrpi holds. Thus, we cannot easily detect the bottleneck
service and we assign a positive score to all involved services. For the positive
scores, we quantify how much the observed throughput of the overall composed
service (observedThrpj) is far from the required one (requiredThrpj).

The violation of the throughput in basic services involves just this one service.
We can use the previous equation as it is, because the only involved service is
the one under stress.

Combining the scores of entities. Finally, we rank the antipatterns filtered for each
violated requirement Rj . To each antipattern PAx that shares involved entities
with a requirement Rj is assigned a guiltiness degree GDPAx(Rj) that measures
the guiltiness of PAx for Rj . We consider system entities involved in both PAx

and Rj , as reported in the filtered antipatterns matrix involvedIn(PAx, Rj). We
define the guiltiness degree as the sum of the scores of all involved entities:

GDPAx(Rj) =
∑

i∈involvedIn(PAx ,Rj)

scorei,j

Thus the problematic entities that have a high score contribute to consistently
raise the overall score of the antipatterns they appear in.

3 Experimenting the Approach

In this section we report the experimentation of our approach on a business
reporting system case study. First, we describe the example system and the per-
formance analysis with the Palladio approach [2]. Then, we propose the stepwise
application of our approach.
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3.1 The Business Reporting System (BRS)

The system under study is the so-called Business Reporting System (BRS),
which lets users retrieve reports and statistical data about running business
processes from a data base. Figure 2 shows an overview of the software system
model, visualized in an UML-like diagram, and some labels indicate the detected
antipatterns (4).

Proc4

Proc1 Proc2

Proc3

Core
Reporting
Engine

Cache

Scheduler

Database

Graphical
Reporting

Online
Reporting

PA5: Empty Semi Trucks

PA3: Blob

PA4: One-Lane Bridge

PA7: Extensive
Processing

PA1: Circuitous
Treasure Hunt

PA2: Concurrent Processing Systems

PA8: The Ramp

User
Management

PA6:
The Ramp

Webserver

graphicalReport
onlineReport

maintain

Fig. 2. Case Study: BRS Software System Model

The BRS is a 4-tier sys-
tem consisting of several
software components, as de-
scribed in the following.
The WebServer handles
user requests for generat-
ing reports or viewing the
plain data logged by the
system. It delegates the
requests to a Scheduler,
which in turn forwards the
requests. User management
functionality (login/logout)
is directed to the UserMgmt,
whereas report and view re-
quests are forwarded to the
OnlineReportingor Graph-
icalReporting, depending
on the type of request. Both
components make use of a

CoreReportingEngine for the common report generation functionality. The
CoreReportingEngine accesses the Database, for some request types using an
intermediate Cache.

The system supports seven use cases: users can login, logout and request both
reports or views, each of which can be both graphical or online; administrators
can invoke the maintenance service. Note that in Figure 2, we only depict those
services we specified requirements for.

The PCM model of BRS contains the static structure, the behaviour spec-
ification of each component annotated with resource demands and a resource
environment specification. For performance analysis, the PCM software system
model is transformed automatically into an Extended Queueing Network model
suited for simulation with SimuCom [2]. SimuCom is a discrete-event simulator
and collects arbitrarily distributed response time, throughput and utilisation for
all services of the system.

4 All detailed Palladio models and the description of performance antipat-
terns have been omitted for brevity here, but can be accessed at palladio-
approach.net/ AntipatternGuiltiness as well as the configuration of the BRS model
(i.e. workload, usage profile, etc.).
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3.2 Our Approach in Practice

The results of the performance analysis of the BRS model are reported in Table 5,
where the focus is on performance requirements and their observed values. ID’s
of violated requirements are typed as bold (i.e. R2, R5, R6, R7, R9). In the
following, we will concentrate on solving the shaded R5 requirement in order to
illustrate our approach.

Table 5. BRS - Performance requirement
analysis

Required Observed
ID Requirement Value Value

R1 U(Proc1) 0.50 0.08

R2 U(Proc2) 0.75 0.80

R3 U(Proc3) 0.60 0.32

R4 U(Proc4) 0.40 0.09

R5 RT(CSgraphicalReport) 2.5 sec 4.55 sec

R6 T(CSgraphicalReport) 0.5 req/sec 0.42 req/sec

R7 RT(CSonlineReport) 2 sec 4.03 sec

R8 T(CSonlineReport) 2.5 req/sec 2.12 req/sec

R9 RT(BSmaintain) 0.1 sec 0.14 sec

R10 T(BSmaintain) 0.3 req/sec 0.41 req/sec

Table 6. BRS - Violated Require-
ments

ID Involved Entities

R2 Proc2
WebServer, Scheduler,

UserMgmt, GraphicalReport,
CoreReportingEngine,

R5 Database, Cache
WebServer, Scheduler,

UserMgmt, GraphicalReport,
CoreReportingEngine,

R6 Database, Cache
WebServer, Scheduler,

UserMgmt, OnlineReport,
CoreReportingEngine,

R7 Database, Cache

R9 CoreReportingEngine

The violated requirements are further detailed with their involved system en-
tities in Table 6. Following our approach, the detected performance antipatterns
occurring in the software system are collected in the Complete Antipatterns List,
as shown in Table 7. These antipatterns have been also annotated in Figure 2
on the system model.

Table 7. BRS- Complete Antipatterns List

Detected
ID Antipattern Involved Entities

Circuitous Database.getSmallReport, Database.getBigReport
PA1 Treasure Hunt Proc3, CoreReportingEngine.getReport, Proc4

Concurrent
PA2 Processing Systems Proc1, Proc2

PA3 Blob Scheduler, Proc2

PA4 One-Lane Bridge Database, Proc3
OnLineReporting.viewOnLine, Proc2, Proc4

PA5 Empty Semi Trucks CoreReportingEngine.prepareView, CoreReportingEngine.finishView

PA6 Ramp Database, Proc3

PA7 Extensive Processing GraphicalReporting, OnLineReporting, Proc2

PA8 Ramp Cache, Proc4
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The combination of violated requirements and detected antipatterns produces
the ranked list of BRS antipatterns shown in Table 8. It represents the result of
our antipatterns ranking process, where numerical values are calculated accord-
ing to the equations reported in Table 4, whereas empty cells contain a value 0
by default, that is no guiltiness.

Table 8. BRS - Ranked Antipatterns List

Requirements

R2 R5 R6 R7 R9

Anti-
patterns

PA1 0.558 0.122 0.633

PA2 0.054

PA3 0.054 0.051 0.135 0.032

PA4 0.616 0.161 0.689

PA5 0.054

PA6 0.616 0.161 0.689

PA7 0.054 0.125 0.135 0.06

PA8 0.003 0.015 0.03

Table 8 can be analyzed by columns
or by rows. Firstly, by columns, we
concentrate on a certain requirement,
for example R5, and we look at the
scores of antipatterns. Our approach
indicate which antipatterns are more
guilty for that requirement violation
(i.e., PA4 and PA6) and which is the
less guilty one (i.e., PA8). As another
example, four antipatterns affect the
requirement R2, but none of them is
apparently more guilty than the other
ones. So, in this case our approach is
able to identify the antipatterns in-
volved without providing a distinction
between them. Yet for the require-
ment R9 no detected antipattern has

a non-zero guiltiness. This means that the violation of R9 cannot be associated to
any known antipattern. In such a case, further performance improvements could
be obtained manually, or the requirement has to be relaxed as it is infeasible.

Observing the table by rows, instead, we can distinguish either the antipat-
terns that most frequently enter the violation of requirements (i.e. PA3 and PA7
in this case) or the ones that sum up to the highest total degree of guiltiness
(i.e. PA4 and PA6 in this case). Different types of analysis can originate from
these different views of the ranked list, however for sake of space in what follows
we perform an analysis by columns on requirements R5 and R7.

In order to satisfy R5, on the basis of information in Table 8 we have decided
to separately solve one-by-one the following antipatterns: PA4, PA6, and as
counterexample, PA8.

PA4 is a “One-Lane Bridge” in the Database. To solve this antipattern, we
increase the level of parallelism in the Database, thus at the same time multiple
threads can access concurrently. PA6 is a “Ramp” in the Database. Here, the
data access algorithms have to be optimised for larger amounts of data. This
can be solved with a reduced resource demand of the database. In our example,
we assumed that the resource demand is halved. PA8 is a “Ramp” in the Cache.
The latter accumulates more and more information over time and is slowed
down. This can be solved with a reduced resource demand of the Cache. In our
example, we assumed again that the resource demand is halved.

The results of the new software systems (i.e., BRSPAx , the BRS initial system
with PAx solved) are collected in Table 9. It can be noticed that the high
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Table 9. RT(CSgraphicalReport) across different software system models

Observed Value
Required

ID Requirement Value BRS BRSP A4 BRSPA6 BRSPA8

R5 RT(CSgraphicalReport) 2.5 sec 4.55 sec 2.14 sec 2.06 sec 4.73 sec

guiltness degrees of PA4 and PA6 have provided a relevant information because
their removal consistently improves the response time. After the removal of PA8,
instead, the requirement R5 is still violated because it has been removed a cause
that affects much less the violated requirement considered.

In Figure 3 we summarize our experiments on the requirement R5. The target
performance index of R5 (i.e. the response time of the graphicalReport service) is
plotted on the y-axis, whereas on the x-axis the degree of guiltiness of antipatterns
is represented. The horizontal bottommost line is the requirement threshold, that
is the response time required, whereas the horizontal topmost line is the observed
value for the original BRS system before any modification. Single points repre-
sent the response times observed after the separate solution of each performance
antipatterns, and they are labeled with the ID of the antipattern that has been
solved for that specific point. Of course, the points are situated, along the x-axis,
on the corresponding guiltiness degree of the specific antipattern.
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Fig. 3. RT(CSgraphicalReport) vs the guiltness degree of an-
tipatterns

What is expected to
observe in such repre-
sentation is that the
points approaches (and
possibly go below) the
required response time
while increasing their
guiltiness degree, that
is while moving from
left to right on the
diagram. This would
confirm that solving a
more guilty antipattern
helps much more than
solving a less guilty
one, thus validating our
guiltiness metric.

All antipatterns with non-zero guiltiness have been solved, one by one, to
study their influence on the requirement R5. Figure 3 very nicely validates our
hypothesis, in that very guilty antipatterns more dramatically affect the response
time, and their solution leads towards the requirement satisfaction. The same
considerations made above can be reiterated for the other requirements (5).

5 Figures summarizing our experiments on requirements R2, R6 and R7 are reported
in palladio-approach.net/ AntipatternGuiltiness.
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4 Discussion

The experimentation in Section 3 shows promising results for the example that
we have considered and the types of requirements introduced. This is a proof of
concept that such a ranking approach can help to identify the causes of perfor-
mance problems in a software system. The experimentation phase has been very
important to refine our approach, in fact by observing the performance analysis
results we have fine tuned the equations that represent the antipattern ranking.

However, this is only a first step in this direction, and several issues are yet
to be addressed. We discuss some of them in this section, as they also represent
the main topics of our current and future work in this field.

Refinement of scores and ranking. Although we have obtained promising
results in our experiments, the score model can certainly be improved and needs
more experimentation on models of different application domains. First, other
types of requirements, among the one listed in Section 2, may need appropriate
formulas for scoring the entities involved in them. Second, nested requirements
could be pre-processed to eliminate from the list of violated requirements those
that are dominated from other ones. Third, more experience could lead to re-
fine the antipattern scoring on the basis of, let say, the application domain (e.g.
web-based application) or the adopted technology (e.g. Oracle DBMS). For ex-
ample, a detected “Circuitous Treasure Hunt” might be of particular interest in
database-intensive applications, whereas a detected “Concurrent Processing Sys-
tems” might be more important for web-based applications. Finally, to achieve
more differentiation in the scoring process for guilty performance antipatterns,
negative scores to the entities involved in satisfied requirements can be devised.

Lack of model parameters. The application of this approach is not limited
(in principle) along the software lifecycle, but it is obvious that an early usage
is subject to lack of information because the system knowledge improves while
the development process progresses. Lack of information, or even uncertainty,
about model parameter values can be tackled by analyzing the model piecewise,
starting from complete sub-models. This type of analysis can bring insight on
the missing parameters.

Lack of performance indices. In the same situation as above, performance
analysis could not produce all indices needed to apply the process. For example,
internal indices of subsystems that are not yet designed in details cannot be
collected. In this case we can plan a successive (possibly goal-oriented) analysis
to collect the lacking performance indices.

Influence of operational profile. Different operational profiles usually give rise
to different analysis results that, in turn, may result in different antipatterns iden-
tified in the system. This is a critical issue and, as usually in performance analysis
experiments, the choice of the operational profile(s) must be carefully conducted.

Influence of other software layers. The performance model that we have con-
sidered here only takes into account the software application and the hardware
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platform. Between these two layers there are other components, such as middle-
ware and operating system, that can embed performance antipatterns. The ap-
proach shall be extended to these layers for a more accurate analysis of the system.

5 Related Work

In this section we discuss the related work that deals with automated approaches
to improve the performance of software systems based on analysis results.

Xu et al. [12] present a semi-automated approach to find configuration and
design improvement on the model level. Based on a Layered Queueing Network
model, two types of performance problems are identified in a first step: bottle-
neck resources and long paths. Then, rules containing performance knowledge
are applied to solve the detected problems. The approach is notation-specific,
because it is based on LQN rules, and also it does not incorporate heuristics to
speed-up the search of solutions, as suggested in this paper.

Parsons et al. [10] present a framework for detecting performance antipat-
terns in Java EE architectures. The method requires an implementation of a
component-based system, which can be monitored for performance properties.
It uses the monitoring data to construct a performance model of the system
and then searches for EJB-specific performance antipatterns in this model. This
approach cannot be used for performance problems in early development stages,
but it is limited to implemented and running EJB systems.

Diaz Pace et al. [7] have developed the ArchE framework. ArchE assists the
software architect during the design to create architectures that meet quality
requirements. Currently, only rules to improve modifiability are supported. A
simple performance model is used to predict performance metrics for the new
system with improved modifiability.

In our previous work [6], we have proposed an approach for automated feed-
back generation for software performance analysis. The approach relies on the
manual detection of performance antipatterns in the performance model. There
is no support to rank and solve antipatterns. More recently, in [4] we have pre-
sented an approach to automatically detect performance antipatterns based on
model-driven techniques.

In another previous work we have proposed a complementary approach to
improve software performance for component-based software systems based on
metaheuristic search techniques [9]. We proposed to combine random moves, as
shown on the right hand side of Figure 1, and heuristic rules to search the given
design space.

6 Conclusion

In this paper we have shown an approach to rank possible causes of performance
problems (i.e.antipatterns)depending on their guiltiness forviolated requirements.
This work, as shown in Figure 1, is embedded in a wider research area that is the
interpretation of performance analysis results and the generation of feedback.
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The approach presented here is being integrated with the other work that we
have conducted up today in this area. In particular, upstream in Figure 1 we
have built a parser (based on XML technologies) that retrieve all antipatterns
in a software model. Such parser produces the complete antipattern list that
is one of the input of the process presented here. We are tackling the same
problem, in parallel, with a model-driven approach. Downstream in Figure 1
we are facing the problem of using the ranked antipattern list to decide the
most promising model changes that can rapidly lead to remove performance
problems. In this direction several interesting issues have to be faced, such as
the simultaneous solution of multiple antipatterns. This research direction can
benefit from techniques introduced in model co-evolution.

Finally, we are working to the combination of antipattern-driven approaches,
that is the leftmost side of Figure 1, and meta-heuristic approach that run on
the rightmost side of the same figure.
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