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Abstract. Discovering interesting patterns from high-speed data streams is a 
challenging problem in data mining. Recently, the support metric-based fre-
quent pattern mining from data stream has achieved a great attention. However, 
the occurrence frequency of a pattern may not be an appropriate criterion for 
discovering meaningful patterns. Temporal regularity in occurrence behavior 
can be a key criterion for assessing the importance of patterns in several online 
applications such as market basket analysis, gene data analysis, network moni-
toring, and stock market. A pattern can be said regular if its occurrence behav-
ior satisfies a user-given interval in the data steam. Mining regular patterns 
from static databases has recently been addressed. However, even though min-
ing regular patterns from stream data is extremely required in online applica-
tions, no such algorithm has been proposed yet. Therefore, in this paper we de-
velop a novel tree structure called Regular Pattern Stream tree (RPS-tree), and 
an efficient mining technique for discovering regular patterns over data stream. 
Using a sliding window method the RPS-tree captures the stream content, and 
with an efficient tree updating mechanism it constantly processes exact stream 
data when the stream flows. Extensive experimental analyses show that our 
RPS-tree is highly efficient in discovering regular patterns from a high-speed 
data stream. 

Keywords: Data mining, data stream, pattern mining, regular pattern, sliding 
window. 

1   Introduction 

A data stream is a continuous, unbounded, and timely ordered sequence of data ele-
ments generated at a rapid rate. Unlike traditional static databases, stream data, in 
general, has additional processing requirements; i.e., each data element should be 
examined at most once and processed as fast as possible with the limitation of avail-
able memory. Even though mining user-interest based patterns from data stream has 
become a challenging issue, interests in online stream mining for discovering such 
patterns dramatically increased [1], [2], [10], [11], [12].  

Mining frequent patterns [3], [6], from transactional databases has been actively 
and widely studied in stream data mining [2], [10], [11], [12] for over a decade. The 
rationale behind mining frequent patterns is that only patterns occurring at a high 
frequency in a database are of interest to users. Therefore, a pattern is called frequent 
if its occurrence frequency (i.e., support) in the database exceeds the user-given  
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support threshold. However, the occurrence frequency may not always represent the 
significance of a pattern. The other important criterion for identifying the interesting-
ness of a pattern might be the shape of occurrence i.e., whether the pattern occurs 
periodically, irregularly, or mostly in a specific time interval.  

The significance of patterns with temporal regularity can be revealed in a wide 
range of applications where users might be interested on the occurrence behavior 
(regularity) of patterns rather than just the occurring frequency. For example, in a 
retail chain data, some products may be sold more regularly than other products. 
Thus, even though both of the products are sold frequently over the entire selling 
history or for a specific time period (e.g., for a year), the products still need to be 
managed independently. That is, it is necessary to identify a set of items that are sold 
together at a regular interval for a specified time period. Also, to improve web site 
design, a site administrator may be interested in regularly visited web page sequences 
rather than web pages that are heavily hit only for a specific period. As for genetic 
data analysis, the set of all genes that co-occur at a fixed interval in DNA sequence 
may carry more significant information to scientists. Again, in stock market the set of 
stocks indices that rise at a regular interval might be of special interest to stock bro-
kers and traders. The pattern regularity can also be a useful metric among other appli-
cations such as network monitoring, telecommunications or the sensor network. 

Traditional frequent pattern mining techniques fail to uncover such regular pat-
terns because they focus only on the high frequency patterns. Recently, Tanbeer et al. 
[4] studied the pattern appearance behaviour in static transactional databases. With 
the help of a regularity measure determined by the maximum interval at which a 
pattern occurs in a database, the study introduced a tree structure called RP-tree to 
discover regular patterns satisfying a user-given regularity threshold. The RP-tree 
requires two database scans and contains the information for only regular items in the 
database. However, with the recent development of technology several online applica-
tions require to handle a bulk amount of data in the form of data stream. For example, 
retail chains record millions of transactions, telecommunications companies connect 
thousands of calls, and popular web sites log millions of hits at a regular basis. It is, 
therefore, obvious that, because of the two database scans and the prior knowledge 
about the regularity threshold requirements, the RP-tree is inefficient in discovering 
regular patterns in the above data stream scenarios. Hence, to find regular patterns 
efficiently from data streams we require efficient algorithm that can capture the 
stream content with one scan and can competently mine the resultant patterns.  

Motivated from the above demand, we address a new problem of mining regular 
patterns in data streams. We propose a novel single-pass tree structure, called the 
RPS-tree (Regular Pattern Stream tree), to capture the stream contents in a compact 
manner. Using an efficient pattern growth-based mining technique the RPS-tree can 
mine set of the regular patterns in stream data for a user-given regularity threshold. 

To efficiently handle (or mine) continuously-generated data streams, sliding win-
dows [10], [11], [12] are commonly used because of its flexibility to monitor the 
stream data at runtime. As new transactions arrive, the oldest transactions in the slid-
ing window expire. Because of the efficient stream handling mechanism, we will 
exploit the sliding window in our approach. 

Main idea of our RPS-tree is to develop a simple, but yet powerful, tree structure 
that captures the stream content for the current window in full with a single scan in a 
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canonical item order. Such construction feature enables its easy maintenance without 
any information loss during the slide of window. To the best of our knowledge, RPS-
tree is the first effort to mine regular patterns from data streams. The experimental 
analyses on both real and synthetic data show that mining regular patterns from data 
streams with our RPS-tree is more efficient than that with the RP-tree. 

The rest of the paper is organized as follows. Section 2 summarizes the existing al-
gorithms related to our work. The detail discussion on RP-tree is also presented here. 
Section 3 introduces the problem of regular pattern mining in data stream. The struc-
ture and mining of our proposed RPS-tree are given in Section 4. We report our ex-
perimental results in Section 5. Finally, Section 6 concludes the paper. 

2   Related Work 

Many algorithms have been proposed for mining frequent patterns [3], [8] from static 
database, since its introduction by Agrawal et al. [6]. Han et al. [3] proposed the fre-
quent pattern tree (FP-tree) and the FP-growth algorithm to mine frequent patterns 
with a pattern growth approach using only two database scans. Even though FP-
growth algorithm has been highly efficient, it is not suitable for mining stream data 
because of its two database scans requirement.  

A large number of techniques have been developed recently to mine frequent pat-
terns from data stream [2], [10], [11], [12]. Algorithms in [10] and [11] use the sliding 
window concept to capture stream content with the help of a tree-based data structure. 
To facilitate the efficient mining and tree updating, the DSTree in [11] and the CPS-
tree in [10] are constructed for the full window content. Using the FP-growth [3] 
algorithm both approaches discover the exact set of recent frequent patterns from the 
data stream with single scan. However, none of the support metric-based frequent 
pattern mining models is appropriate for discovering the special occurrence (i.e., 
periodic or cyclic or regular) characteristics of patterns from data stream. 

Mining periodic patterns [1], [7], cyclic patterns [7], [9] and regular patterns [4] in 
static databases have been well-addressed over the last decade. Periodic pattern min-
ing problem in time-series data focuses on the cyclic behavior of patterns either in the 
whole [7] (full periodic patterns mining) or at some point [1] (partial periodic pat-
terns mining) of time-series. Such pattern mining has also been studied as a wing of 
sequential pattern mining [5], [9] in recent years. In [9], the authors extended the 
basic form of sequential patterns to cyclically repeated patterns. A progressive time 
list-based verification method to mine periodic patterns from a sequence of event sets 
was proposed in [5]. Ozden et al. [7] proposed a method to discover the association 
rules [6] occurring cyclically in a transactional database. Although mining periodic 
and cyclic patterns are closely related to our work, these algorithms cannot be directly 
applied for finding regular patterns from a data stream because they consider time-
series or sequential data where the database is static. 

Recently, Tanbeer et al. [4] proposed the Regular Pattern tree (RP-tree in short) to 
exactly mine the regular patterns from static transactional databases. The study de-
fines a new regularity measure for a pattern determined by the maximum interval at 
which the same pattern occurs in a database. 
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Construction of an RP-tree requires two database scans: one is for collecting the 
regularity of all distinct items and the other is for building the tree only for the regu-
lar items in each transaction. To keep track of the occurrence information, RP-tree 
explicitly maintains the transaction-ids (tid) of all transactions in the tree structure. It 
stores the tid of a transaction only at the last node of the transaction. The other nodes 
do not need to carry any occurrence information or support count (as does in FP-tree). 

By applying an FP-growth-based [3] efficient pattern growth mining technique and 
exploiting the tid-information kept in the tree structure, RP-tree generates the com-
plete set of regular patterns for the user-given regularity threshold. While mining 
regular patterns from an RP-tree, the transaction occurrence information maintained 
in it is used to calculate the regularity of each generated pattern.  

However, as mentioned before, even though RP-tree efficiently finds regular pat-
terns from static transactional databases, it is not suitable for mining regular patterns 
from data streams because of its regularity threshold-based tree structure, and two 
database scans requirement. 

3   Problem Definition 

Let L = {i1, i2, … , in} be a set of literals, called items that have been used as a unit 
information of an application domain. A set X = {ij, … , ik}⊆ L, where j ≤ k 
and , [1, ]j k n∈ , is called a pattern (or an itemset). A transaction t = (tid, Y) is a tuple 

where tid represents a transaction-id (or time of transaction occurrence) and Y is a 
pattern. If X ⊆ Y, it is said that t contains X or X occurs in t. Let size(t) be the size of 
t, i.e., the number of items in Y.  

A data stream DS can formally be defined as an infinite sequence of transactions, 
DS = [t1, t2, … , tm), where ti, ],1[ mi ∈ is the i-th arrived transaction. A window W can 

be referred to as a set of all transactions between the i-th and j-th (where j > i) arrival 
of transactions and the size of W is |W| = j – i, i.e., the number of transactions between 
the i-th and j-th arrival of transactions. Let each slide of window introduce and expire 
slide_size, 1 ≤ slide_size ≥ |W|, transactions into and from the current window. 

If X occurs in tj [1, | |]j W∈ , such transaction-id is denoted as X
jt , [1, | |]j W∈ . There-

fore, X
W

T ={ ,..., }X X
j kt t , , [1, | |]j k W∈  and j ≤ k is the set of all transaction-ids where X 

occurs in the current window W. 

Definition 1 (a period of X in W). Let 1
X
jt +  and X

jt  [1, (| | 1)]j W∈ − , be two consecutive 

transaction-ids in X
W

T . The number of transactions (or the time difference) between 

1
X
jt + and X

jt is defined as a period of X, say pX (i.e., pX = 1
X X

jjt t+ − , [1, (| | 1)]j W∈ − ). For 

Table 1. A transactional data stream (DS)

Id Transaction Id Transaction Id Transaction
1 
2 
3 

a, c, e, f 
b, c, f 
b, c, f 

4
5
6

c, d, e 
a, b, c, e 
c, d, e 

7
8
9

a, c, d, e 
c, d, e, f 

a, c 
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the simplicity of period computation, a ‘null’ transaction with no item is considered at 
the beginning of W, i.e., tf = 0 (null), where tf represents the tid of the first transaction 
to be considered. Similarly, tl, the tid of the last transaction to be considered, is the tid 
of the |W|-th transaction in the window, i.e., tl = t|W|. For instance, in the stream data in 
Table 1, consider the window is composed of eight transactions (i.e., tid = 1 to tid = 8 
make the first window, say W1). Then the set of transactions in W1 where pattern 

{b,c} appears is 
1

{ , }
W

b cT = {2, 3, 5}. Therefore, the periods for {b,c} are 2 (= 2 - tf), 1 (= 

3 - 2), 2 (= 5 - 3),  and 3 (= tl - 5), where tf  = 0 and tl  = 8. 
The occurrence periods, defined as above, present the exact information about the 

appearance behavior of a pattern. A pattern will not be regular if, at any stage in W, it 
appears after sufficiently large period. The largest occurrence period of a pattern, 
therefore, can provide the upper limit of its periodic occurrence characteristic. Hence, 
the measure of the characteristic of a pattern of being regular in a W (i.e., the regular-
ity of that pattern in W) can be defined as follows. 

Definition 2 (regularity of pattern X in W). Let for a X
W

T , X
W

P be the set of all peri-

ods of X i.e., PX = 1{ ,..., }X X
sp p , where s is the total number of periods of X in W. Then, 

the regularity of X in W can be denoted as regW(X) = 1( , ..., )X X
sMax p p . For example, in 

the DS of Table 1
1W

reg (b,c) = 3, since 
1

{ , }
W

b cP =  Max(2, 1, 2, 3) = 3. 

Therefore, a pattern is called a regular pattern in W if its regularity in W is no more 
than a user-given maximum regularity threshold called max_reg λ, with 1 ≤ λ ≤ |W |. 
The regularity threshold is given as the percentage of window size. 

The regular patterns in W, therefore, satisfy the downward closure property [6], 
i.e., if a pattern is found to be regular, then all of its non-empty subsets will be regu-
lar. Thus, if a pattern is not regular, then none of its supersets can be regular. Given 
DS, |W|, and a max_reg, finding the complete set of regular patterns in W, RW that 
have regularity of no greater than the max_reg value is the problem of mining regular 
patterns in data stream. 

4   RPS-Tree: Design, Construction, and Mining 

In this section, we first introduce our RPS-tree for data stream and describe efficient 
tree update mechanism for RPS-tree. We also discuss the mining of an RPS-tree here. 

4.1   Design of an RPS-Tree 

The structure of an RPS-tree consists of one root node referred to as the “null”, a set 
of item-prefix sub-trees (children of the root), and an item header table called regular 
pattern stream table (RPS-table in short). Similar to an FP-tree [3] and an RP-tree [4], 
each node in an RPS-tree represents an itemset in the path from the root up to that 
node. 

The RPS-tree maintains the occurrence information of all transactions (in the cur-
rent window) in the tree structure. To explicitly track such information, it keeps a list  
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of transaction-id information only at the last item-node (say, tail-item) for a transac-
tion. Such list is called a tid-list. Hence, an RPS-tree maintains two types of nodes; 
say ordinary nodes and tail-nodes. The former are types of nodes that do not maintain 
the tid-list, whereas the following definition describes the latter type.  

Definition 3 (tail-node). Let t = {i1, i2,…, in} be a sorted transaction, where in is the 
tail-item. If t is inserted into an RPS-tree in this order, then the node of the tree that 
represents item in is defined as the tail-node for t. For example, if the first transaction 
(i.e., tid = 1) in the DS of Table 1 is inserted into an RPS-tree in lexicographical order, 
then the node that represents item ‘f’ (i.e., the tail-item of the transaction) is the tail-
node in the tree for that transaction. 

Nodes of both types explicitly maintain parent, children, and node traversal point-
ers. In addition, each tail-node maintains a tid-list and a tail-node pointer. The tail-
node pointer points to either the next tail-node in the tree if any, or ‘null’. Irrespective 
of the node type, no node in the RPS-tree maintains a support count value as does in 
an FP-tree [3]. 

The RPS-table consists of each distinct item in the current window with relative 
regularity and a pointer pointing to the first node in the RPS-tree that carries the item. 
Specifically, the RPS-table of an RPS-tree consists of three fields in sequence (i, r, p); 
item name (i), regularity of i (r), and a pointer to the RPS-tree for i (p). The item 
name is just a symbol to identify each item. The regularity is calculated by traversing 
the RPS-tree after the construction, which is explained in the next subsection. The 
item pointer facilitates the fast traversal to the whole tree in the mining phase. In 
addition, an RPS-tree maintains a tail-node pointer (say, tnp) to point to the first tail-
node in the tree. These pointers will facilitate fast tree traversal during the regularity 
calculation and tree update operation. 

4.2   Construction of an RPS-Tree 

The construction of the RPS-tree is featured in such a way that it takes only one scan 
over the high-speed data stream to capture the full content of the current window. In 
the RPS-tree, items are arranged according to any canonical order, which can be de-
termined by the user prior to the tree construction. Once the item order is determined 
(say, for the initial window), items will follow this order in our RPS-tree for subse-
quent windows.  

We use an example to illustrate the step-by-step construction process of an RPS-
tree for the DS in Table 1. Let us assume that the RPS-tree is constructed in lexico-
graphic order and each window is composed of eight transactions (i.e., the initial 
window, W1 contains tids from 1 to 8) as shown in Fig. 1(a).  

The construction of an RPS-tree is similar to that of an FP-tree [3]. Initially, the 
RPS-tree is empty (i.e., starts with a ‘null’ root node). To simplify the figures, we do 
not show the node traversal pointers in the trees, although they are maintained as in an 
FP-tree.  

The first transaction to be inserted is {a, c, e, f} (i.e., tid = 1). As shown in  
Fig. 1(b), the transaction is inserted in the lexicographic order. Notice that ‘f’ is the 
tail-item of the transaction and the tail-node “f:1” explicitly maintains the tid informa-
tion in its tid-list. Also, tnp points to the first tail-node “f:1” in the tree (as shown by 
dotted arrow in the figure). Fig. 1(c) shows the status of the RPS-tree after inserting  
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the second transaction (i.e., tid = 2) in similar fashion. The tail-node pointer is up-
dated to point to the next tail-node “f:2” as shown in the figure. The RPS-tree after 
capturing all transactions of W1 is presented in Fig. 1(d). Notice that the RPS-tree in 
Fig. 1(d) captures the complete information of W1 in a compact fashion. However, the 
regularity of items in the RPS-table has not been computed yet. 

To assist the regularity calculation, each item in the RPS-table is assigned a tempo-
rary array. Then, starting from the tnp, and following tail-node pointers we visit each 
tail-node and accumulate the tid(s) available in its tid-list in the respective temporary 
arrays for every item from that tail-node up to the root. For example, after visiting the 
first two tail-nodes of “f:1” and “f:2,3” in the RPS-tree of Fig. 1(d), the contents of the 
temporary arrays for items ‘a’, ‘b’, ‘c’, ‘e’, and ‘f’ (i.e., items from tail-nodes up to 
the root) are Ta = {1}, Tb = {2, 3}, Tc = {1, 2, 3}, Te = {1}, and Tf = {1, 2, 3}. 

Therefore, after finishing the traversal for all tail-nodes, we obtain the complete list 
of tids for each item in its respective temporary array. Thus, for instance, the set of 
transactions for item ‘a’ we obtain, Ta = {1, 5, 7}. Then, it is rather simple calculation 
to find the Pa from Ta, which gives 1 ( )Wreg a  = 4. The process of accumulating the 

Fig. 1. Construction and update of an RPS-tree for the DS in Table 1 
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b
c
d
e
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tids and calculating the regularity of items in the RPS-table is termed as refreshing 
the RPS-table. Finally, Fig. 1(e) shows the final status of the RPS-tree and the RPS-
table with the regularity of each item after the RPS-table refreshing operation. The 
RPS-tree in Fig. 1(e) is ready for mining the set of regular patterns from it upon  
request. 

4.3   Updating the RPS-Tree 

The simple construction feature of the RPS-tree enables it to delete the oldest and 
insert new transactions in an efficient manner. Because our RPS-tree keeps the tail-
node pointers, one can easily locate the transaction(s) to be removed. To illustrate the 
RPS-tree updating mechanism, we use our running example of RPS-tree construction. 

Suppose the window slides transaction-by-transaction (slide_size = 1) i.e., each 
slide of window expires the oldest and inserts one new transactions. Therefore, in this 
example, tid = 1 expires and a new transaction tid = 9 appears with the sliding of 
window. 

To reflect the deletion of the oldest transaction we avoid the costly tree traversal 
operation. Rather following the tail-node pointers we visit only the tail-nodes in the 
RPS-tree and adjust only the tid-lists of each tail-node in the tree for deleted transac-
tion(s). We delete the tids in the tid-list of each tail-node if their values are less than 
or equal to the slide_size; otherwise, we decrement them by slide_size. In process, we 
delete a tail-node and its path towards the root if its tid-list becomes empty. For ex-
ample, we delete the tail-node “f:1” and its parent node “e”, since after adjusting the 
tids, the tid-list of “f:1” becomes empty. However, we avoid deleting nodes (toward 
the root) at the parent of “e”, since it (the parent) has a child other than “e”. Such 
operation ensures the deletion of only the expired transactions from the tree. The 
RPS-tree after deleting the oldest transaction (i.e., tid = 1) from the RPS-tree of W1 
and adjusting the tid-lists in all tail-nodes is shown in Fig. 1(f). For the simplicity of 
figures we avoid showing the tail-node pointers in the figures. However, they are 
maintained as explained above. 

Notice that the RPS-tree in Fig. 1(f) is ready to capture the new incoming transac-
tion(s) in the sliding window. New transactions can be easily added to the RPS-tree 
by using the same technique as illustrated in Figs. 1(b) – (d). Usually, the regularity 
of patterns may change with the sliding of window (i.e., with the deletion and inser-
tion of old and new transactions). For example, with λ = 3, and |W| = 8 for the DS in 
Fig. 1(a) the regular patterns {b}, and {b,c} in W1 become irregular (i.e., a pattern 
whose regularity is greater than max_reg) in W2. Again, the irregular patterns {d} 
and {c,d,e} in W1 become regular in W2. Therefore, to reflect the correct regularity of 
each item in the current window, we perform the RPS-table refreshing operation at 
each window. Fig. 1(g) shows the status of the RPS-tree in W2 after inserting new 
transaction and refreshing the RPS-table. Similar to the RPS-tree in Fig. 1(e), the 
complete set of regular patterns for the current window then can be mined from the 
RPS-tree in Fig. 1(g). 

Based on the RPS-tree construction technique discussed above, we have the fol-
lowing property and lemma on the completeness of an RPS-tree. Let for each transac-
tion t in a window W, item(t) be the set of all items in t and is called the full item 
projection of t.  
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Property 1: An RPS-tree contains item(t) for each transaction in a window only once. 

Lemma 1: Given a stream database DS and a sliding window W, item(t) of all trans-
actions in W can be derived from the RPS-tree for the W. 

Proof: Based on the RPS-tree construction and updating mechanism and Property 1, 
item(t) of each transaction t is mapped to only one path in the RPS-tree and any path 
from the root up to a tail-node maintains the complete projection for exactly n trans-
actions (where n is the total number of entries in the tid-list of the tail-node).             ■ 
 
One may assume that the structure of an RPS-tree may not be memory efficient, since 
it explicitly maintains tids of each transaction in the tree structure. But we argue that 
the RPS-tree achieves the memory efficiency by keeping such transaction information 
only at the tail-nodes and avoiding the support count field at each node in the tree. 
Moreover, keeping the tid information in tree structure has also been found in litera-
ture for efficiently mining frequent patterns [2], [8]. To a certain extent, some of those 
studies additionally maintain support count and/or the tid information [2], [8] in each 
tree node. Furthermore, with modern technology, main memory space is no longer a 
big concern. Hence, we made the same realistic assumption as in many studies [11] 
that we have enough main memory space (in the sense that the trees can fit into the 
memory). 

Since each transaction t in W contributes at best one path of size(t) to an RPS-tree, 
the total size contribution of all transactions in W can be at best∑ ∈ || |)(|Wt tsize . How-

ever, because there are usually many common prefix patterns among the transactions, 
the size of an RPS-tree is normally much smaller than∑ ∈ || |)(|Wt tsize . 

It may be assumed that RPS-table refreshing mechanism of RPS-tree may require 
higher computation cost compared to scanning the stream data twice as in RP-tree. But, 
we argue that the cost of refreshing the RPS-table by traversing the paths from the tail-
nodes up to the root of the RPS-tree is much less than that by scanning the database a 
second time, since reading transactions from the memory-resident tree is much faster 
than scanning them from the database. Also note that, while accumulating the tids from 
a tail-node during refreshing the RPS-table, we process as many transactions at a time 
as the size of its tid-list. This multiple transactions processing technique further re-
duces the RPS-table refreshing cost compared to obtaining the regularity of items 
through a second scan of the stream data. In the next subsection, we discuss the regular 
pattern mining process from the RPS-tree constructed for the current window. 

4.4   Mining the RPS-Tree  

Similar to the FP-growth [3] mining approach, we recursively mine the RPS-tree of 
decreasing size to generate regular patterns by creating conditional pattern-bases (PB) 
and corresponding conditional trees (CT) without additional database scan. Before 
discussing the mining process we explore the following important property and 
lemma of an RPS-tree. 

Property 2: Each tail-node in an RPS-tree maintains the occurrence information of all 
nodes in the path (from that tail-node up to the root) in the transactions of its tid-list. 
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Lemma 2: Let Z = {a1, a2, ….., an} be a path in an RPS-tree where node an, being the 
tail-node, carries the tid-list of the path. If the tid-list is carried to node an-1, then node 
an-1 maintains the occurrence information of path Z′ = {a1, a2, ..., an-1} for the same set 
of transactions in the tid-list without any loss. 

Proof: Based on Property 2, the tid-list in node an explicitly maintains the occurrence 
information of Z′ for the same set of transactions. Therefore, the same tid-list at node 
an-1 exactly maintains the same information for Z′ without any loss.           ■ 
 
Using the features revealed by the above property and lemma and based on the 
downward closure property [6], we proceed to mining the RPS-tree for only regular 
items starting from the bottom up to the top in the RPS-table. If an item i in the RPS-
table is an irregular item, we ignore mining for it. However, following the node tra-
versal pointers we only visit each node Ni for i in the RPS-tree and carry (i.e, copy) 
Ni’s tid-list to its parent Np. Therefore, the parent node Np is temporarily converted to a 
tail-node if it was an ordinary node; otherwise (i.e., if Np is a tail-node), the tid-list is 
added with its previous tid-list. At the same time, from Ni we delete the tid-list it bor-
rowed as a parent node from its children (if any). This process of carrying the tid-list 
of a (temporary) tail-node to its parent node is termed as carry-tid and the set of tid(s) 
carried to the parent is called as carried-tid. 

We use our running example to illustrate the mining on an RPS-tree. Consider min-
ing the RPS-tree of Fig. 1(e) for λ = 3. Since ‘f’, the bottommost item in the RPS-
table, is not regular (i.e., 1 ( )Wreg f > 3), we only perform the carry-tid operation for 

each of its nodes in the RPS-tree. Fig. 2(a) shows the status of the RPS-tree after the 
carry-tid operation for ‘f’. The tids shown in dark box in the figure are carried-tids. 

Mining for each regular item i in the RPS-table, on the other hand, is performed by 
constructing the conditional pattern-base PBi for i by projecting only the prefix sub-
paths of Ni in the RPS-tree with the tid-list of Ni. During this projection, we only in-
clude regular items. Determination of whether an item is regular can be easily done 
by a simple look-up (an O(1) operation) at the RPS-table. There is no worry about 
possible omission or doubly counting of items. While visiting each Ni, we perform the 
carry-tid operation for the node as well. 

To store the regularity of items with i, a small RPS-table, say RPS-tablei, is main-
tained for PBi. While constructing PBi, to compute the regularity of each item j in the 
RPS-tablei, based on Property 2 we map all Ni’s tid-lists to all items in the respective 
path explicitly in temporary arrays (one for each item). Once the PBi is constructed, 
the contents of the temporary array for j in the RPS-tablei represent the Tij (i.e., set of 
all tids where items i and j occur together) in PBi. Therefore, it is a rather simple cal-
culation to compute regW(j) from Tij by generating Pij. The conditional tree for i CTi is, 
then, constructed from its PBi by removing all irregular items and their respective 
nodes from the RPS-tablei and PBi, respectively. If the deleted node is a tail-node, 
based on Lemma 2 its tid-list is pushed-up to its parent node.  

Let j be the bottommost item in RPS-tablei of CTi. Then the pattern {i,j} is gener-
ated as a regular pattern with the regularity of j in the RPS-tablei. The same process 
of creating a conditional pattern-base and its corresponding conditional tree is re-
peated for further extensions of pattern {i,j}.  
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The next item in the RPS-table in Fig. 2(a) (i.e., ‘e’) is a regular item (i.e., 

1 ( )Wreg e  ≤ 3). Therefore, we construct the PBe, and then CTe. We also perform the 

carry-tid operation while constructing the PBe. The structure of the RPS-tree after the 
carry-tid operation for ‘e’ is illustrated in Fig. 2(b). Fig. 2(c) shows the structure of 
the PBe. The CTe is constructed by removing all irregular items and their respective 
nodes from the RPS-tablee and PBe. The CTe in Fig. 2(d) is, therefore, constructed by 
deleting all entries for irregular item ‘b’. The set of all regular patterns mined from 
the CTe is given in Fig. 2(e). The value after ‘:’ indicates the regularity of individual 
pattern. The whole process is repeated until the top of the RPS-table (i.e., ‘a’). 

Notice that after each successful carry-tid operation any node in the RPS-tree re-
tains its original status of either as an ordinary node or a tail-node (e.g., nodes “e” and 
“e:4,6” from Fig. 2(a) to Fig. 2(b)). Also, since we start mining from the bottommost 
item in the RPS-tree, there is no scope of missing any tid-list in the whole tree from 
carrying upward. It can be noticed that, when mining for all items in the RPS-table is 
completed, the carry-tid operations will accumulate a copy of all tids at the root node. 
It is then rather a trivial task to remove them from the root to make the tree consistent 
to be updated for the next window content. 

Therefore, from the above mining process we can say that for a given max_reg and 
W the RW can be generated from an RPS-tree constructed on the window contents. In 
the next section, we evaluate the performance of our RPS-tree. 

5   Experimental Analyses 

In this section, we present the experimental results and related analysis on the com-
parison of proposed RPS-tree with its state-of-the-art counterparts. To the best of our 
knowledge, the RPS-tree is the first effort to address the problems of regular pattern 
mining in data stream. Therefore, we compare its performance with that of the RP-
tree [4], the existing algorithm available for regular pattern mining. All programs are 

Fig. 2. Mining the RPS-tree of Fig. 1(e) for λ = 3 
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written in Microsoft Visual C++ 6.0 and run with Windows XP on a 2.66 GHz ma-
chine with 1GB of main memory. The runtime specifies the total execution time, i.e., 
CPU and I/Os. 

We use several real and synthetic datasets (as in Table 2) which are frequently used 
in frequent pattern mining experiments, since they maintain the characteristics of 
transactional data. The first two datasets were obtained from [14]. BMS-POS contains 
several years worth of point-of-sale data from a large electronics retailer. Kosarak is a 
dataset of click-stream data from a Hungarian on-line news portal. T10I4D100K, de-
veloped by [13], is a synthetic dataset. In all experiments, we consider slide_size = 1. 
In the first experiment, we study the compactness of our RPS-tree in stream data.  

5.1   Memory Efficiency 

We conducted experiments to verify the memory requirements for our RPS-tree on 
different datasets by varying the window size. Since RPS-tree is a regularity threshold 
independent tree structure, the regularity threshold values do not influence on its 
memory requirements. Therefore, in this experiment, the reported required memory 
represents the size of the underlying tree structure after capturing only the complete 
sliding window content. Because RP-tree is a regularity threshold-based tree struc-
ture, we do not compare its memory requirement with RPS-tree. 

Table 3 reports RPS-tree’s memory requirement (on average for all window for a 
fixed window size) in several datasets with the variation of window size at each case. 
In BMS-POS, for example, when the window size is 100K (i.e., |W|1 = 100K), the 
required memory is on an average 13.81 MB in each window. Again, in the same 
dataset RPS-tree consumes on an average 33.51 MB memory when |W|4 = 400K. 

Hence, from the data in Table 3 it can be observed that when capturing the stream 
data of different characteristics, an RPS-tree is memory efficient for the available 
memory now-a-days. In the next experiment, we compare execution time between our 
RPS-tree and existing RP-tree. 

 

Table 2. Dataset characteristics

Dataset #Trans.(T) #Items(I) MaxTL(MTL) AvgTL(ATL) 
BMS-POS 
Kosarak 
T10I4D100K 

515,597
990,002
100,000

1,657
41,270

870

164
2,498

29

6.53 
8.10 

10.10 

Table 3. Memory requirement (MB) with window size variation in RPS-tree 

For window size Dataset with different window sizes 
|W|1 |W|2 |W|3 |W|4 |W|5

BMS-POS (|W|1 = 100K, |W|2 = 200K, |W|3 = 
300K, |W|4 = 400K) 

13.81 22.26 29.97 33.51 -

Kosarak (|W|1 = 100K, |W|2 = 300K, |W|3 = 500K, 
|W|4 = 700K, |W|5 = 900K) 

55.67 84.92 130.41 159.24 228.97

T10I4D100K (|W|1 = 30K, |W|2 = 50K, |W|3 = 70K, 
|W|4 = 90K) 

3.51 5.09 6.96 8.93 -
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5.2   Runtime Efficiency 

To study the runtime performance experiments were conducted with a mining request 
at each window by varying the max_reg values for each dataset while the window 
size |W| was kept fixed at reasonably high values. The results of the experiment are 
shown in Fig. 3. The time shown on the y-axes are the total time for scanning the 
window content, tree construction, tree update and RPS-table refreshing time (only 
for RPS-tree), and mining. Notice that mining data stream with RP-tree requires scan-
ning each window content twice, since it was originally proposed for static databases. 

 
As shown in Fig. 3, the higher the max_reg values, the longer the overall time re-

quired by both trees. The reason is that, the higher the max_reg value, the greater the 
number of regular patterns can be generated from the current window. However, the 
results clearly demonstrate that RPS-tree outperforms RP-tree in terms of overall 
runtime by multiple orders of magnitude for both high and low max_reg values. The 
key to this performance gain of RPS-tree is its efficient tree updating mechanism that 
only scans the new incoming transaction(s) once, while RP-tree requires scanning the 
whole window content twice. The gain of RPS-tree over the RP-tree becomes more 
prominent when the window size is larger. We also evaluated RPS-tree’s performance 
on the variation of window size, as shown in the next experiment. 

5.3   Window Size 

Because RPS-tree captures the full window content, its performance may vary de-
pending on the window size i.e., |W|. Hence, to determine the effect of changes in 
window size on the runtime of RPS-tree, we analyzed its performance by varying |W| 
over different datasets while keeping the max_reg value fixed. The graphs presented 
in Fig. 4 show the results on BMS-POS for max_reg = 0.16%, and Kosarak for 
max_reg = 0.06%. The y-axes in the graphs represent the average total time (including 
construction time, tree update time for the RPS-tree only, and mining time) required 
in all active windows. 

Larger window sizes resulted in a longer total tree construction time for both trees. 
However; the overall runtime required by RPS-tree is small enough to handle larger 

Fig. 3. Runtime comparison 
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windows in different datasets. For RP-tree, in contrast, a sharp increase in runtime 
according to an increase in window size was observed. As a result, the performance 
gaps between the two tree structures widen for larger windows. For example, in Ko-
sarak for max_reg = 0.06% when |W| = 100K, RPS-tree’s gain is not much prominent 
(Fig. 4(b)). However, for |W| = 900K RPS-tree achieves a significant improvement in 
overall runtime. Similar results we obtained in BMS-POS as well. Therefore, these 
results show that RPS-tree is better than RP-tree in handling larger windows and pro-
ducing the exact set of regular patterns within a reasonable amount of time over data 
streams. 

The above experiments demonstrate that RPS-tree outperforms the state-of-the-art 
algorithms in mining regular patterns from data streams of various characteristics 
(refer to Table 2). The easy and simple maintenance phase of the RPS-tree has been 
the key to its significant performance gain. 

6   Discussions and Conclusions 

In this paper, we define the regularity of a pattern by its maximum occurrence inter-
val (in a window) calculated from its tids (Definition 2) obtained during mining. 
However, other parameters such as the arithmetic mean or variance of occurrence 
intervals can also be considered as regularity measures for finding interesting patterns 
from data streams. Since RPS-tree maintains the exact occurrence information for all 
transactions in the current window, and the mining phase provides the complete tids 
for each pattern, computing such parameters can also be simple similar to computing 
the maximum occurrence interval for a pattern. 

In conclusions, we introduced a new concept of mining interesting patterns (called 
regular patterns) that occur with a temporal regularity in high-speed data streams. We 
proposed a novel tree structure, RPS-tree, to capture the stream content in memory-
efficient manner and to enable regular pattern mining from it. To obtain the fast and 
interesting results RPS-tree can be updated efficiently for the current content of the 
stream. The experimental analysis reveals that RPS-tree is significantly faster than 
other algorithm that can be used in mining regular patterns from a data stream. 

Fig. 4. RPS-tree’s performance on size of W
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