
H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 399–413, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Mining Regular Patterns in Data Streams

Syed Khairuzzaman Tanbeer, Chowdhury Farhan Ahmed, and Byeong-Soo Jeong

Department of Computer Engineering, Kyung Hee University
1 Sochun-dong, Kihung-eup, Youngin-si, Kyonggi-do, Republic of Korea, 446-701

{tanbeer,farhan,jeong}@khu.ac.kr

Abstract. Discovering interesting patterns from high-speed data streams is a
challenging problem in data mining. Recently, the support metric-based fre-
quent pattern mining from data stream has achieved a great attention. However,
the occurrence frequency of a pattern may not be an appropriate criterion for
discovering meaningful patterns. Temporal regularity in occurrence behavior
can be a key criterion for assessing the importance of patterns in several online
applications such as market basket analysis, gene data analysis, network moni-
toring, and stock market. A pattern can be said regular if its occurrence behav-
ior satisfies a user-given interval in the data steam. Mining regular patterns
from static databases has recently been addressed. However, even though min-
ing regular patterns from stream data is extremely required in online applica-
tions, no such algorithm has been proposed yet. Therefore, in this paper we de-
velop a novel tree structure called Regular Pattern Stream tree (RPS-tree), and
an efficient mining technique for discovering regular patterns over data stream.
Using a sliding window method the RPS-tree captures the stream content, and
with an efficient tree updating mechanism it constantly processes exact stream
data when the stream flows. Extensive experimental analyses show that our
RPS-tree is highly efficient in discovering regular patterns from a high-speed
data stream.

Keywords: Data mining, data stream, pattern mining, regular pattern, sliding
window.

1 Introduction

A data stream is a continuous, unbounded, and timely ordered sequence of data ele-
ments generated at a rapid rate. Unlike traditional static databases, stream data, in
general, has additional processing requirements; i.e., each data element should be
examined at most once and processed as fast as possible with the limitation of avail-
able memory. Even though mining user-interest based patterns from data stream has
become a challenging issue, interests in online stream mining for discovering such
patterns dramatically increased [1], [2], [10], [11], [12].

Mining frequent patterns [3], [6], from transactional databases has been actively
and widely studied in stream data mining [2], [10], [11], [12] for over a decade. The
rationale behind mining frequent patterns is that only patterns occurring at a high
frequency in a database are of interest to users. Therefore, a pattern is called frequent
if its occurrence frequency (i.e., support) in the database exceeds the user-given

400 S.K. Tanbeer, C.F. Ahmed, and B.-S. Jeong

support threshold. However, the occurrence frequency may not always represent the
significance of a pattern. The other important criterion for identifying the interesting-
ness of a pattern might be the shape of occurrence i.e., whether the pattern occurs
periodically, irregularly, or mostly in a specific time interval.

The significance of patterns with temporal regularity can be revealed in a wide
range of applications where users might be interested on the occurrence behavior
(regularity) of patterns rather than just the occurring frequency. For example, in a
retail chain data, some products may be sold more regularly than other products.
Thus, even though both of the products are sold frequently over the entire selling
history or for a specific time period (e.g., for a year), the products still need to be
managed independently. That is, it is necessary to identify a set of items that are sold
together at a regular interval for a specified time period. Also, to improve web site
design, a site administrator may be interested in regularly visited web page sequences
rather than web pages that are heavily hit only for a specific period. As for genetic
data analysis, the set of all genes that co-occur at a fixed interval in DNA sequence
may carry more significant information to scientists. Again, in stock market the set of
stocks indices that rise at a regular interval might be of special interest to stock bro-
kers and traders. The pattern regularity can also be a useful metric among other appli-
cations such as network monitoring, telecommunications or the sensor network.

Traditional frequent pattern mining techniques fail to uncover such regular pat-
terns because they focus only on the high frequency patterns. Recently, Tanbeer et al.
[4] studied the pattern appearance behaviour in static transactional databases. With
the help of a regularity measure determined by the maximum interval at which a
pattern occurs in a database, the study introduced a tree structure called RP-tree to
discover regular patterns satisfying a user-given regularity threshold. The RP-tree
requires two database scans and contains the information for only regular items in the
database. However, with the recent development of technology several online applica-
tions require to handle a bulk amount of data in the form of data stream. For example,
retail chains record millions of transactions, telecommunications companies connect
thousands of calls, and popular web sites log millions of hits at a regular basis. It is,
therefore, obvious that, because of the two database scans and the prior knowledge
about the regularity threshold requirements, the RP-tree is inefficient in discovering
regular patterns in the above data stream scenarios. Hence, to find regular patterns
efficiently from data streams we require efficient algorithm that can capture the
stream content with one scan and can competently mine the resultant patterns.

Motivated from the above demand, we address a new problem of mining regular
patterns in data streams. We propose a novel single-pass tree structure, called the
RPS-tree (Regular Pattern Stream tree), to capture the stream contents in a compact
manner. Using an efficient pattern growth-based mining technique the RPS-tree can
mine set of the regular patterns in stream data for a user-given regularity threshold.

To efficiently handle (or mine) continuously-generated data streams, sliding win-
dows [10], [11], [12] are commonly used because of its flexibility to monitor the
stream data at runtime. As new transactions arrive, the oldest transactions in the slid-
ing window expire. Because of the efficient stream handling mechanism, we will
exploit the sliding window in our approach.

Main idea of our RPS-tree is to develop a simple, but yet powerful, tree structure
that captures the stream content for the current window in full with a single scan in a

 Mining Regular Patterns in Data Streams 401

canonical item order. Such construction feature enables its easy maintenance without
any information loss during the slide of window. To the best of our knowledge, RPS-
tree is the first effort to mine regular patterns from data streams. The experimental
analyses on both real and synthetic data show that mining regular patterns from data
streams with our RPS-tree is more efficient than that with the RP-tree.

The rest of the paper is organized as follows. Section 2 summarizes the existing al-
gorithms related to our work. The detail discussion on RP-tree is also presented here.
Section 3 introduces the problem of regular pattern mining in data stream. The struc-
ture and mining of our proposed RPS-tree are given in Section 4. We report our ex-
perimental results in Section 5. Finally, Section 6 concludes the paper.

2 Related Work

Many algorithms have been proposed for mining frequent patterns [3], [8] from static
database, since its introduction by Agrawal et al. [6]. Han et al. [3] proposed the fre-
quent pattern tree (FP-tree) and the FP-growth algorithm to mine frequent patterns
with a pattern growth approach using only two database scans. Even though FP-
growth algorithm has been highly efficient, it is not suitable for mining stream data
because of its two database scans requirement.

A large number of techniques have been developed recently to mine frequent pat-
terns from data stream [2], [10], [11], [12]. Algorithms in [10] and [11] use the sliding
window concept to capture stream content with the help of a tree-based data structure.
To facilitate the efficient mining and tree updating, the DSTree in [11] and the CPS-
tree in [10] are constructed for the full window content. Using the FP-growth [3]
algorithm both approaches discover the exact set of recent frequent patterns from the
data stream with single scan. However, none of the support metric-based frequent
pattern mining models is appropriate for discovering the special occurrence (i.e.,
periodic or cyclic or regular) characteristics of patterns from data stream.

Mining periodic patterns [1], [7], cyclic patterns [7], [9] and regular patterns [4] in
static databases have been well-addressed over the last decade. Periodic pattern min-
ing problem in time-series data focuses on the cyclic behavior of patterns either in the
whole [7] (full periodic patterns mining) or at some point [1] (partial periodic pat-
terns mining) of time-series. Such pattern mining has also been studied as a wing of
sequential pattern mining [5], [9] in recent years. In [9], the authors extended the
basic form of sequential patterns to cyclically repeated patterns. A progressive time
list-based verification method to mine periodic patterns from a sequence of event sets
was proposed in [5]. Ozden et al. [7] proposed a method to discover the association
rules [6] occurring cyclically in a transactional database. Although mining periodic
and cyclic patterns are closely related to our work, these algorithms cannot be directly
applied for finding regular patterns from a data stream because they consider time-
series or sequential data where the database is static.

Recently, Tanbeer et al. [4] proposed the Regular Pattern tree (RP-tree in short) to
exactly mine the regular patterns from static transactional databases. The study de-
fines a new regularity measure for a pattern determined by the maximum interval at
which the same pattern occurs in a database.

402 S.K. Tanbeer, C.F. Ahmed, and B.-S. Jeong

Construction of an RP-tree requires two database scans: one is for collecting the
regularity of all distinct items and the other is for building the tree only for the regu-
lar items in each transaction. To keep track of the occurrence information, RP-tree
explicitly maintains the transaction-ids (tid) of all transactions in the tree structure. It
stores the tid of a transaction only at the last node of the transaction. The other nodes
do not need to carry any occurrence information or support count (as does in FP-tree).

By applying an FP-growth-based [3] efficient pattern growth mining technique and
exploiting the tid-information kept in the tree structure, RP-tree generates the com-
plete set of regular patterns for the user-given regularity threshold. While mining
regular patterns from an RP-tree, the transaction occurrence information maintained
in it is used to calculate the regularity of each generated pattern.

However, as mentioned before, even though RP-tree efficiently finds regular pat-
terns from static transactional databases, it is not suitable for mining regular patterns
from data streams because of its regularity threshold-based tree structure, and two
database scans requirement.

3 Problem Definition

Let L = {i1, i2, … , in} be a set of literals, called items that have been used as a unit
information of an application domain. A set X = {ij, … , ik}⊆ L, where j ≤ k
and , [1,]j k n∈ , is called a pattern (or an itemset). A transaction t = (tid, Y) is a tuple

where tid represents a transaction-id (or time of transaction occurrence) and Y is a
pattern. If X ⊆ Y, it is said that t contains X or X occurs in t. Let size(t) be the size of
t, i.e., the number of items in Y.

A data stream DS can formally be defined as an infinite sequence of transactions,
DS = [t1, t2, … , tm), where ti,],1[mi ∈ is the i-th arrived transaction. A window W can

be referred to as a set of all transactions between the i-th and j-th (where j > i) arrival
of transactions and the size of W is |W| = j – i, i.e., the number of transactions between
the i-th and j-th arrival of transactions. Let each slide of window introduce and expire
slide_size, 1 ≤ slide_size ≥ |W|, transactions into and from the current window.

If X occurs in tj [1, | |]j W∈ , such transaction-id is denoted as X
jt , [1, | |]j W∈ . There-

fore, X
W

T ={ ,..., }X X
j kt t , , [1, | |]j k W∈ and j ≤ k is the set of all transaction-ids where X

occurs in the current window W.

Definition 1 (a period of X in W). Let 1
X
jt + and X

jt [1, (| | 1)]j W∈ − , be two consecutive

transaction-ids in X
W

T . The number of transactions (or the time difference) between

1
X
jt + and X

jt is defined as a period of X, say pX (i.e., pX = 1
X X

jjt t+ − , [1, (| | 1)]j W∈ −). For

Table 1. A transactional data stream (DS)

Id Transaction Id Transaction Id Transaction
1
2
3

a, c, e, f
b, c, f
b, c, f

4
5
6

c, d, e
a, b, c, e
c, d, e

7
8
9

a, c, d, e
c, d, e, f

a, c

 Mining Regular Patterns in Data Streams 403

the simplicity of period computation, a ‘null’ transaction with no item is considered at
the beginning of W, i.e., tf = 0 (null), where tf represents the tid of the first transaction
to be considered. Similarly, tl, the tid of the last transaction to be considered, is the tid
of the |W|-th transaction in the window, i.e., tl = t|W|. For instance, in the stream data in
Table 1, consider the window is composed of eight transactions (i.e., tid = 1 to tid = 8
make the first window, say W1). Then the set of transactions in W1 where pattern

{b,c} appears is
1

{ , }
W

b cT = {2, 3, 5}. Therefore, the periods for {b,c} are 2 (= 2 - tf), 1 (=

3 - 2), 2 (= 5 - 3), and 3 (= tl - 5), where tf = 0 and tl = 8.
The occurrence periods, defined as above, present the exact information about the

appearance behavior of a pattern. A pattern will not be regular if, at any stage in W, it
appears after sufficiently large period. The largest occurrence period of a pattern,
therefore, can provide the upper limit of its periodic occurrence characteristic. Hence,
the measure of the characteristic of a pattern of being regular in a W (i.e., the regular-
ity of that pattern in W) can be defined as follows.

Definition 2 (regularity of pattern X in W). Let for a X
W

T , X
W

P be the set of all peri-

ods of X i.e., PX = 1{ ,..., }X X
sp p , where s is the total number of periods of X in W. Then,

the regularity of X in W can be denoted as regW(X) = 1(, ...,)X X
sMax p p . For example, in

the DS of Table 1
1W

reg (b,c) = 3, since
1

{ , }
W

b cP = Max(2, 1, 2, 3) = 3.

Therefore, a pattern is called a regular pattern in W if its regularity in W is no more
than a user-given maximum regularity threshold called max_reg λ, with 1 ≤ λ ≤ |W |.
The regularity threshold is given as the percentage of window size.

The regular patterns in W, therefore, satisfy the downward closure property [6],
i.e., if a pattern is found to be regular, then all of its non-empty subsets will be regu-
lar. Thus, if a pattern is not regular, then none of its supersets can be regular. Given
DS, |W|, and a max_reg, finding the complete set of regular patterns in W, RW that
have regularity of no greater than the max_reg value is the problem of mining regular
patterns in data stream.

4 RPS-Tree: Design, Construction, and Mining

In this section, we first introduce our RPS-tree for data stream and describe efficient
tree update mechanism for RPS-tree. We also discuss the mining of an RPS-tree here.

4.1 Design of an RPS-Tree

The structure of an RPS-tree consists of one root node referred to as the “null”, a set
of item-prefix sub-trees (children of the root), and an item header table called regular
pattern stream table (RPS-table in short). Similar to an FP-tree [3] and an RP-tree [4],
each node in an RPS-tree represents an itemset in the path from the root up to that
node.

The RPS-tree maintains the occurrence information of all transactions (in the cur-
rent window) in the tree structure. To explicitly track such information, it keeps a list

404 S.K. Tanbeer, C.F. Ahmed, and B.-S. Jeong

of transaction-id information only at the last item-node (say, tail-item) for a transac-
tion. Such list is called a tid-list. Hence, an RPS-tree maintains two types of nodes;
say ordinary nodes and tail-nodes. The former are types of nodes that do not maintain
the tid-list, whereas the following definition describes the latter type.

Definition 3 (tail-node). Let t = {i1, i2,…, in} be a sorted transaction, where in is the
tail-item. If t is inserted into an RPS-tree in this order, then the node of the tree that
represents item in is defined as the tail-node for t. For example, if the first transaction
(i.e., tid = 1) in the DS of Table 1 is inserted into an RPS-tree in lexicographical order,
then the node that represents item ‘f’ (i.e., the tail-item of the transaction) is the tail-
node in the tree for that transaction.

Nodes of both types explicitly maintain parent, children, and node traversal point-
ers. In addition, each tail-node maintains a tid-list and a tail-node pointer. The tail-
node pointer points to either the next tail-node in the tree if any, or ‘null’. Irrespective
of the node type, no node in the RPS-tree maintains a support count value as does in
an FP-tree [3].

The RPS-table consists of each distinct item in the current window with relative
regularity and a pointer pointing to the first node in the RPS-tree that carries the item.
Specifically, the RPS-table of an RPS-tree consists of three fields in sequence (i, r, p);
item name (i), regularity of i (r), and a pointer to the RPS-tree for i (p). The item
name is just a symbol to identify each item. The regularity is calculated by traversing
the RPS-tree after the construction, which is explained in the next subsection. The
item pointer facilitates the fast traversal to the whole tree in the mining phase. In
addition, an RPS-tree maintains a tail-node pointer (say, tnp) to point to the first tail-
node in the tree. These pointers will facilitate fast tree traversal during the regularity
calculation and tree update operation.

4.2 Construction of an RPS-Tree

The construction of the RPS-tree is featured in such a way that it takes only one scan
over the high-speed data stream to capture the full content of the current window. In
the RPS-tree, items are arranged according to any canonical order, which can be de-
termined by the user prior to the tree construction. Once the item order is determined
(say, for the initial window), items will follow this order in our RPS-tree for subse-
quent windows.

We use an example to illustrate the step-by-step construction process of an RPS-
tree for the DS in Table 1. Let us assume that the RPS-tree is constructed in lexico-
graphic order and each window is composed of eight transactions (i.e., the initial
window, W1 contains tids from 1 to 8) as shown in Fig. 1(a).

The construction of an RPS-tree is similar to that of an FP-tree [3]. Initially, the
RPS-tree is empty (i.e., starts with a ‘null’ root node). To simplify the figures, we do
not show the node traversal pointers in the trees, although they are maintained as in an
FP-tree.

The first transaction to be inserted is {a, c, e, f} (i.e., tid = 1). As shown in
Fig. 1(b), the transaction is inserted in the lexicographic order. Notice that ‘f’ is the
tail-item of the transaction and the tail-node “f:1” explicitly maintains the tid informa-
tion in its tid-list. Also, tnp points to the first tail-node “f:1” in the tree (as shown by
dotted arrow in the figure). Fig. 1(c) shows the status of the RPS-tree after inserting

 Mining Regular Patterns in Data Streams 405

the second transaction (i.e., tid = 2) in similar fashion. The tail-node pointer is up-
dated to point to the next tail-node “f:2” as shown in the figure. The RPS-tree after
capturing all transactions of W1 is presented in Fig. 1(d). Notice that the RPS-tree in
Fig. 1(d) captures the complete information of W1 in a compact fashion. However, the
regularity of items in the RPS-table has not been computed yet.

To assist the regularity calculation, each item in the RPS-table is assigned a tempo-
rary array. Then, starting from the tnp, and following tail-node pointers we visit each
tail-node and accumulate the tid(s) available in its tid-list in the respective temporary
arrays for every item from that tail-node up to the root. For example, after visiting the
first two tail-nodes of “f:1” and “f:2,3” in the RPS-tree of Fig. 1(d), the contents of the
temporary arrays for items ‘a’, ‘b’, ‘c’, ‘e’, and ‘f’ (i.e., items from tail-nodes up to
the root) are Ta = {1}, Tb = {2, 3}, Tc = {1, 2, 3}, Te = {1}, and Tf = {1, 2, 3}.

Therefore, after finishing the traversal for all tail-nodes, we obtain the complete list
of tids for each item in its respective temporary array. Thus, for instance, the set of
transactions for item ‘a’ we obtain, Ta = {1, 5, 7}. Then, it is rather simple calculation
to find the Pa from Ta, which gives 1 ()Wreg a = 4. The process of accumulating the

Fig. 1. Construction and update of an RPS-tree for the DS in Table 1

(f) RPS-tree after deleting tid = 1

RPS-table
p

a
i r

b
c
d
e
f

(g) RPS-tree for Window 2

RPS-table
p

a 4
i r

b 4
c 1
d 3
e 3
f 5
tnptnp

{ }

a

b

c

c

e:4

b
c

f:1,2

c

e:3,5

f:7

d

e:6

d

{ }

a

b

c

c:8

e:4

b
c

f:1,2

c

e:3,5

f:7

d

e:6

d

(c) RPS-tree after
inserting tid = 2

(a) A data stream (DS)

6. c, d, e
7. a, c, d, e

1. a, c, e, f
2. b, c, f
3. b, c, f

5. a, b, c, e

9. a, c
8. c, d, e, f

4. c, d, e

S
tream

 flow

(b) RPS-tree after
inserting tid = 1

{ }

a

c

e

f:1

b
c

f:2

RPS-table
p

a
i r

b
c
d
e
f

Window Size |W| = 8

w
in

do
w

 1
w

in
do

w
 2 RPS-table

p
a
i r

b
c
d
e
f

{ }

a

f:1

c

e

tnp tnp

tid transactions

(d) RPS-tree after inserting tid = 8

{ }

a

b

c e

c

f:1e:5

b
c

f:2,3

c

e:4,6

f:8

RPS-table
p

a
i r

b
c
d
e
f

d

e:7

tnp

(e) RPS-tree for Window 1

RPS-table
p

a 4
i r

b 3
c 1
d 4
e 3
f 5
tnp

d

{ }

a

b

c e

c

f:1e:5

b
c

f:2,3

c

e:4,6

f:8

d

e:7

d

406 S.K. Tanbeer, C.F. Ahmed, and B.-S. Jeong

tids and calculating the regularity of items in the RPS-table is termed as refreshing
the RPS-table. Finally, Fig. 1(e) shows the final status of the RPS-tree and the RPS-
table with the regularity of each item after the RPS-table refreshing operation. The
RPS-tree in Fig. 1(e) is ready for mining the set of regular patterns from it upon
request.

4.3 Updating the RPS-Tree

The simple construction feature of the RPS-tree enables it to delete the oldest and
insert new transactions in an efficient manner. Because our RPS-tree keeps the tail-
node pointers, one can easily locate the transaction(s) to be removed. To illustrate the
RPS-tree updating mechanism, we use our running example of RPS-tree construction.

Suppose the window slides transaction-by-transaction (slide_size = 1) i.e., each
slide of window expires the oldest and inserts one new transactions. Therefore, in this
example, tid = 1 expires and a new transaction tid = 9 appears with the sliding of
window.

To reflect the deletion of the oldest transaction we avoid the costly tree traversal
operation. Rather following the tail-node pointers we visit only the tail-nodes in the
RPS-tree and adjust only the tid-lists of each tail-node in the tree for deleted transac-
tion(s). We delete the tids in the tid-list of each tail-node if their values are less than
or equal to the slide_size; otherwise, we decrement them by slide_size. In process, we
delete a tail-node and its path towards the root if its tid-list becomes empty. For ex-
ample, we delete the tail-node “f:1” and its parent node “e”, since after adjusting the
tids, the tid-list of “f:1” becomes empty. However, we avoid deleting nodes (toward
the root) at the parent of “e”, since it (the parent) has a child other than “e”. Such
operation ensures the deletion of only the expired transactions from the tree. The
RPS-tree after deleting the oldest transaction (i.e., tid = 1) from the RPS-tree of W1
and adjusting the tid-lists in all tail-nodes is shown in Fig. 1(f). For the simplicity of
figures we avoid showing the tail-node pointers in the figures. However, they are
maintained as explained above.

Notice that the RPS-tree in Fig. 1(f) is ready to capture the new incoming transac-
tion(s) in the sliding window. New transactions can be easily added to the RPS-tree
by using the same technique as illustrated in Figs. 1(b) – (d). Usually, the regularity
of patterns may change with the sliding of window (i.e., with the deletion and inser-
tion of old and new transactions). For example, with λ = 3, and |W| = 8 for the DS in
Fig. 1(a) the regular patterns {b}, and {b,c} in W1 become irregular (i.e., a pattern
whose regularity is greater than max_reg) in W2. Again, the irregular patterns {d}
and {c,d,e} in W1 become regular in W2. Therefore, to reflect the correct regularity of
each item in the current window, we perform the RPS-table refreshing operation at
each window. Fig. 1(g) shows the status of the RPS-tree in W2 after inserting new
transaction and refreshing the RPS-table. Similar to the RPS-tree in Fig. 1(e), the
complete set of regular patterns for the current window then can be mined from the
RPS-tree in Fig. 1(g).

Based on the RPS-tree construction technique discussed above, we have the fol-
lowing property and lemma on the completeness of an RPS-tree. Let for each transac-
tion t in a window W, item(t) be the set of all items in t and is called the full item
projection of t.

 Mining Regular Patterns in Data Streams 407

Property 1: An RPS-tree contains item(t) for each transaction in a window only once.

Lemma 1: Given a stream database DS and a sliding window W, item(t) of all trans-
actions in W can be derived from the RPS-tree for the W.

Proof: Based on the RPS-tree construction and updating mechanism and Property 1,
item(t) of each transaction t is mapped to only one path in the RPS-tree and any path
from the root up to a tail-node maintains the complete projection for exactly n trans-
actions (where n is the total number of entries in the tid-list of the tail-node). ■

One may assume that the structure of an RPS-tree may not be memory efficient, since
it explicitly maintains tids of each transaction in the tree structure. But we argue that
the RPS-tree achieves the memory efficiency by keeping such transaction information
only at the tail-nodes and avoiding the support count field at each node in the tree.
Moreover, keeping the tid information in tree structure has also been found in litera-
ture for efficiently mining frequent patterns [2], [8]. To a certain extent, some of those
studies additionally maintain support count and/or the tid information [2], [8] in each
tree node. Furthermore, with modern technology, main memory space is no longer a
big concern. Hence, we made the same realistic assumption as in many studies [11]
that we have enough main memory space (in the sense that the trees can fit into the
memory).

Since each transaction t in W contributes at best one path of size(t) to an RPS-tree,
the total size contribution of all transactions in W can be at best∑ ∈ || |)(|Wt tsize . How-

ever, because there are usually many common prefix patterns among the transactions,
the size of an RPS-tree is normally much smaller than∑ ∈ || |)(|Wt tsize .

It may be assumed that RPS-table refreshing mechanism of RPS-tree may require
higher computation cost compared to scanning the stream data twice as in RP-tree. But,
we argue that the cost of refreshing the RPS-table by traversing the paths from the tail-
nodes up to the root of the RPS-tree is much less than that by scanning the database a
second time, since reading transactions from the memory-resident tree is much faster
than scanning them from the database. Also note that, while accumulating the tids from
a tail-node during refreshing the RPS-table, we process as many transactions at a time
as the size of its tid-list. This multiple transactions processing technique further re-
duces the RPS-table refreshing cost compared to obtaining the regularity of items
through a second scan of the stream data. In the next subsection, we discuss the regular
pattern mining process from the RPS-tree constructed for the current window.

4.4 Mining the RPS-Tree

Similar to the FP-growth [3] mining approach, we recursively mine the RPS-tree of
decreasing size to generate regular patterns by creating conditional pattern-bases (PB)
and corresponding conditional trees (CT) without additional database scan. Before
discussing the mining process we explore the following important property and
lemma of an RPS-tree.

Property 2: Each tail-node in an RPS-tree maintains the occurrence information of all
nodes in the path (from that tail-node up to the root) in the transactions of its tid-list.

408 S.K. Tanbeer, C.F. Ahmed, and B.-S. Jeong

Lemma 2: Let Z = {a1, a2, ….., an} be a path in an RPS-tree where node an, being the
tail-node, carries the tid-list of the path. If the tid-list is carried to node an-1, then node
an-1 maintains the occurrence information of path Z′ = {a1, a2, ..., an-1} for the same set
of transactions in the tid-list without any loss.

Proof: Based on Property 2, the tid-list in node an explicitly maintains the occurrence
information of Z′ for the same set of transactions. Therefore, the same tid-list at node
an-1 exactly maintains the same information for Z′ without any loss. ■

Using the features revealed by the above property and lemma and based on the
downward closure property [6], we proceed to mining the RPS-tree for only regular
items starting from the bottom up to the top in the RPS-table. If an item i in the RPS-
table is an irregular item, we ignore mining for it. However, following the node tra-
versal pointers we only visit each node Ni for i in the RPS-tree and carry (i.e, copy)
Ni’s tid-list to its parent Np. Therefore, the parent node Np is temporarily converted to a
tail-node if it was an ordinary node; otherwise (i.e., if Np is a tail-node), the tid-list is
added with its previous tid-list. At the same time, from Ni we delete the tid-list it bor-
rowed as a parent node from its children (if any). This process of carrying the tid-list
of a (temporary) tail-node to its parent node is termed as carry-tid and the set of tid(s)
carried to the parent is called as carried-tid.

We use our running example to illustrate the mining on an RPS-tree. Consider min-
ing the RPS-tree of Fig. 1(e) for λ = 3. Since ‘f’, the bottommost item in the RPS-
table, is not regular (i.e., 1 ()Wreg f > 3), we only perform the carry-tid operation for

each of its nodes in the RPS-tree. Fig. 2(a) shows the status of the RPS-tree after the
carry-tid operation for ‘f’. The tids shown in dark box in the figure are carried-tids.

Mining for each regular item i in the RPS-table, on the other hand, is performed by
constructing the conditional pattern-base PBi for i by projecting only the prefix sub-
paths of Ni in the RPS-tree with the tid-list of Ni. During this projection, we only in-
clude regular items. Determination of whether an item is regular can be easily done
by a simple look-up (an O(1) operation) at the RPS-table. There is no worry about
possible omission or doubly counting of items. While visiting each Ni, we perform the
carry-tid operation for the node as well.

To store the regularity of items with i, a small RPS-table, say RPS-tablei, is main-
tained for PBi. While constructing PBi, to compute the regularity of each item j in the
RPS-tablei, based on Property 2 we map all Ni’s tid-lists to all items in the respective
path explicitly in temporary arrays (one for each item). Once the PBi is constructed,
the contents of the temporary array for j in the RPS-tablei represent the Tij (i.e., set of
all tids where items i and j occur together) in PBi. Therefore, it is a rather simple cal-
culation to compute regW(j) from Tij by generating Pij. The conditional tree for i CTi is,
then, constructed from its PBi by removing all irregular items and their respective
nodes from the RPS-tablei and PBi, respectively. If the deleted node is a tail-node,
based on Lemma 2 its tid-list is pushed-up to its parent node.

Let j be the bottommost item in RPS-tablei of CTi. Then the pattern {i,j} is gener-
ated as a regular pattern with the regularity of j in the RPS-tablei. The same process
of creating a conditional pattern-base and its corresponding conditional tree is re-
peated for further extensions of pattern {i,j}.

 Mining Regular Patterns in Data Streams 409

The next item in the RPS-table in Fig. 2(a) (i.e., ‘e’) is a regular item (i.e.,

1 ()Wreg e ≤ 3). Therefore, we construct the PBe, and then CTe. We also perform the

carry-tid operation while constructing the PBe. The structure of the RPS-tree after the
carry-tid operation for ‘e’ is illustrated in Fig. 2(b). Fig. 2(c) shows the structure of
the PBe. The CTe is constructed by removing all irregular items and their respective
nodes from the RPS-tablee and PBe. The CTe in Fig. 2(d) is, therefore, constructed by
deleting all entries for irregular item ‘b’. The set of all regular patterns mined from
the CTe is given in Fig. 2(e). The value after ‘:’ indicates the regularity of individual
pattern. The whole process is repeated until the top of the RPS-table (i.e., ‘a’).

Notice that after each successful carry-tid operation any node in the RPS-tree re-
tains its original status of either as an ordinary node or a tail-node (e.g., nodes “e” and
“e:4,6” from Fig. 2(a) to Fig. 2(b)). Also, since we start mining from the bottommost
item in the RPS-tree, there is no scope of missing any tid-list in the whole tree from
carrying upward. It can be noticed that, when mining for all items in the RPS-table is
completed, the carry-tid operations will accumulate a copy of all tids at the root node.
It is then rather a trivial task to remove them from the root to make the tree consistent
to be updated for the next window content.

Therefore, from the above mining process we can say that for a given max_reg and
W the RW can be generated from an RPS-tree constructed on the window contents. In
the next section, we evaluate the performance of our RPS-tree.

5 Experimental Analyses

In this section, we present the experimental results and related analysis on the com-
parison of proposed RPS-tree with its state-of-the-art counterparts. To the best of our
knowledge, the RPS-tree is the first effort to address the problems of regular pattern
mining in data stream. Therefore, we compare its performance with that of the RP-
tree [4], the existing algorithm available for regular pattern mining. All programs are

Fig. 2. Mining the RPS-tree of Fig. 1(e) for λ = 3

(c) PBe for ? = 3

{ }

b

c:5

c:1,4,6,7,8i r
b 5
c 3

RPS-tablee

p

{ }

c:1,4,5,6,7,8
RPS-tablee

(d) CTe for ? = 3

i r
c 3

p

(a) RPS-tree after traversing for ‘f’ (b) RPS-tree after constructing PBe

:1 8

:4,6,8

:5 :7

{e : 3}
{c,e : 3}

(e) regular patterns generated from CTe

tid= carried-tid

RPS-table
p

a 4
i r

b 3
c 1
d 4
e 3
f 5
tnp

{ }

a

b

c e
c

f:1e:5

b
c

f:2,3

c

e:4,6,

f:8

d

e:7

d:2,3 :1

RPS-table
p

a 4
i r

b 3
c 1
d 4
e 3
f 5
tnp

{ }

a

b

c e
c

f:1e:5

b
c

f:2,3

c

e:4,6,

f:8

d

e:7

d:2,3

λλ

410 S.K. Tanbeer, C.F. Ahmed, and B.-S. Jeong

written in Microsoft Visual C++ 6.0 and run with Windows XP on a 2.66 GHz ma-
chine with 1GB of main memory. The runtime specifies the total execution time, i.e.,
CPU and I/Os.

We use several real and synthetic datasets (as in Table 2) which are frequently used
in frequent pattern mining experiments, since they maintain the characteristics of
transactional data. The first two datasets were obtained from [14]. BMS-POS contains
several years worth of point-of-sale data from a large electronics retailer. Kosarak is a
dataset of click-stream data from a Hungarian on-line news portal. T10I4D100K, de-
veloped by [13], is a synthetic dataset. In all experiments, we consider slide_size = 1.
In the first experiment, we study the compactness of our RPS-tree in stream data.

5.1 Memory Efficiency

We conducted experiments to verify the memory requirements for our RPS-tree on
different datasets by varying the window size. Since RPS-tree is a regularity threshold
independent tree structure, the regularity threshold values do not influence on its
memory requirements. Therefore, in this experiment, the reported required memory
represents the size of the underlying tree structure after capturing only the complete
sliding window content. Because RP-tree is a regularity threshold-based tree struc-
ture, we do not compare its memory requirement with RPS-tree.

Table 3 reports RPS-tree’s memory requirement (on average for all window for a
fixed window size) in several datasets with the variation of window size at each case.
In BMS-POS, for example, when the window size is 100K (i.e., |W|1 = 100K), the
required memory is on an average 13.81 MB in each window. Again, in the same
dataset RPS-tree consumes on an average 33.51 MB memory when |W|4 = 400K.

Hence, from the data in Table 3 it can be observed that when capturing the stream
data of different characteristics, an RPS-tree is memory efficient for the available
memory now-a-days. In the next experiment, we compare execution time between our
RPS-tree and existing RP-tree.

Table 2. Dataset characteristics

Dataset #Trans.(T) #Items(I) MaxTL(MTL) AvgTL(ATL)
BMS-POS
Kosarak
T10I4D100K

515,597
990,002
100,000

1,657
41,270

870

164
2,498

29

6.53
8.10

10.10

Table 3. Memory requirement (MB) with window size variation in RPS-tree

For window size Dataset with different window sizes
|W|1 |W|2 |W|3 |W|4 |W|5

BMS-POS (|W|1 = 100K, |W|2 = 200K, |W|3 =
300K, |W|4 = 400K)

13.81 22.26 29.97 33.51 -

Kosarak (|W|1 = 100K, |W|2 = 300K, |W|3 = 500K,
|W|4 = 700K, |W|5 = 900K)

55.67 84.92 130.41 159.24 228.97

T10I4D100K (|W|1 = 30K, |W|2 = 50K, |W|3 = 70K,
|W|4 = 90K)

3.51 5.09 6.96 8.93 -

 Mining Regular Patterns in Data Streams 411

5.2 Runtime Efficiency

To study the runtime performance experiments were conducted with a mining request
at each window by varying the max_reg values for each dataset while the window
size |W| was kept fixed at reasonably high values. The results of the experiment are
shown in Fig. 3. The time shown on the y-axes are the total time for scanning the
window content, tree construction, tree update and RPS-table refreshing time (only
for RPS-tree), and mining. Notice that mining data stream with RP-tree requires scan-
ning each window content twice, since it was originally proposed for static databases.

As shown in Fig. 3, the higher the max_reg values, the longer the overall time re-

quired by both trees. The reason is that, the higher the max_reg value, the greater the
number of regular patterns can be generated from the current window. However, the
results clearly demonstrate that RPS-tree outperforms RP-tree in terms of overall
runtime by multiple orders of magnitude for both high and low max_reg values. The
key to this performance gain of RPS-tree is its efficient tree updating mechanism that
only scans the new incoming transaction(s) once, while RP-tree requires scanning the
whole window content twice. The gain of RPS-tree over the RP-tree becomes more
prominent when the window size is larger. We also evaluated RPS-tree’s performance
on the variation of window size, as shown in the next experiment.

5.3 Window Size

Because RPS-tree captures the full window content, its performance may vary de-
pending on the window size i.e., |W|. Hence, to determine the effect of changes in
window size on the runtime of RPS-tree, we analyzed its performance by varying |W|
over different datasets while keeping the max_reg value fixed. The graphs presented
in Fig. 4 show the results on BMS-POS for max_reg = 0.16%, and Kosarak for
max_reg = 0.06%. The y-axes in the graphs represent the average total time (including
construction time, tree update time for the RPS-tree only, and mining time) required
in all active windows.

Larger window sizes resulted in a longer total tree construction time for both trees.
However; the overall runtime required by RPS-tree is small enough to handle larger

Fig. 3. Runtime comparison

BMS-POS (|W| = 300K)

0

200

400

600

0.1 0.12 0.14 0.16 0.2
max_reg (%)

T
im

e
(S

ec
.) RP-tree

RPS-tree

(a) On BMS-POS (|W| = 300K) (b) On Kosarak (|W| = 500K)

Kosarak (|W| = 500K)

0

50

100

150

200

0.02 0.04 0.06 0.08 0.1
max_reg (%)

T
im

e
(S

ec
.) RP-tree

RPS-tree

412 S.K. Tanbeer, C.F. Ahmed, and B.-S. Jeong

windows in different datasets. For RP-tree, in contrast, a sharp increase in runtime
according to an increase in window size was observed. As a result, the performance
gaps between the two tree structures widen for larger windows. For example, in Ko-
sarak for max_reg = 0.06% when |W| = 100K, RPS-tree’s gain is not much prominent
(Fig. 4(b)). However, for |W| = 900K RPS-tree achieves a significant improvement in
overall runtime. Similar results we obtained in BMS-POS as well. Therefore, these
results show that RPS-tree is better than RP-tree in handling larger windows and pro-
ducing the exact set of regular patterns within a reasonable amount of time over data
streams.

The above experiments demonstrate that RPS-tree outperforms the state-of-the-art
algorithms in mining regular patterns from data streams of various characteristics
(refer to Table 2). The easy and simple maintenance phase of the RPS-tree has been
the key to its significant performance gain.

6 Discussions and Conclusions

In this paper, we define the regularity of a pattern by its maximum occurrence inter-
val (in a window) calculated from its tids (Definition 2) obtained during mining.
However, other parameters such as the arithmetic mean or variance of occurrence
intervals can also be considered as regularity measures for finding interesting patterns
from data streams. Since RPS-tree maintains the exact occurrence information for all
transactions in the current window, and the mining phase provides the complete tids
for each pattern, computing such parameters can also be simple similar to computing
the maximum occurrence interval for a pattern.

In conclusions, we introduced a new concept of mining interesting patterns (called
regular patterns) that occur with a temporal regularity in high-speed data streams. We
proposed a novel tree structure, RPS-tree, to capture the stream content in memory-
efficient manner and to enable regular pattern mining from it. To obtain the fast and
interesting results RPS-tree can be updated efficiently for the current content of the
stream. The experimental analysis reveals that RPS-tree is significantly faster than
other algorithm that can be used in mining regular patterns from a data stream.

Fig. 4. RPS-tree’s performance on size of W

(a) On BMS-POS (max_reg = 0.16%)

BMS-POS (max_reg = 0.16%)

0

100

200

300

400

500

100 200 300 400
Window size (K)

T
im

e
(S

ec
.) RP-tree

RPS-tree

(b) On Kosarak (max_reg = 0.06%)

Kosarak (max_reg = 0.06%)

0

100

200

300

400

100 300 500 700 900
Window size (K)

T
im

e
(S

ec
.) RP-tree

RPS-tree

 Mining Regular Patterns in Data Streams 413

References

1. Han, J., Dong, G., Yin, Y.: Efficient Mining of Partial Periodic Patterns in Time Series Da-
tabase. In: 15th ICDE, pp. 106–115 (1999)

2. Zhi-Jun, X., Hong, C., Li, C.: An Efficient Algorithm for Frequent Itemset Mining on Data
Streams. In: ICDM, pp. 474–491 (2006)

3. Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns without Candidate Generation. In: ACM
SIGMOD Int. Conf. on Management of Data, pp. 1–12 (2000)

4. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Mining Regular Patterns in Transac-
tional Databases. IEICE Trans. on Inf. & Sys. E91-D(11), 2568–2577 (2008)

5. Huang, K.-Y., Chang, C.-H.: Mining Periodic Patterns in Sequence Data. In: Kambayashi,
Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 401–410. Springer,
Heidelberg (2004)

6. Agrawal, R., Srikant, R.: Fast algorithms for Mining Association Rules in Large Data-
bases. In: VLDB, pp. 487–499 (1994)

7. Ozden, B., Ramaswamy, S., Silberschatz, A.: Cyclic Association Rules. In: 14th ICDE, pp.
412–421 (1998)

8. Zaki, M.J., Hsiao, C.-J.: Efficient Algorithms for Mining Closed Itemsets and Their Lattice
Structure. IEEE Trans. Knowl. Data Eng. 17(4), 462–478 (2005)

9. Toroslu, I.H., Kantarcioglu, M.: Mining Cyclically Repeated Patterns. In: Kambayashi, Y.,
Winiwarter, W., Arikawa, M., et al. (eds.) DaWaK 2001. LNCS, vol. 2114, pp. 83–92.
Springer, Heidelberg (2001)

10. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Sliding Window-based Frequent
Pattern Mining over Data Streams. Information Sciences 179, 3843–3865 (2009)

11. Leung, C.K.-S., Khan, Q.I.: DSTree: A Tree Structure for the Mining of Frequent Sets
from Data Streams. In: ICDM, pp. 928–932 (2006)

12. Li, H.-F., Lee, S.-Y.: Mining Frequent Itemsets over Data Streams Using Efficient Win-
dow Sliding Techniques. Expert Systems with Applications 36, 1466–1477 (2009)

13. IBM, QUEST Data Mining Project, http://www.almaden.ibm.com/cs/quest
14. Frequent Itemset Mining Dataset Repository,

 http://fimi.cs.helsinki.fi/data/

	Mining Regular Patterns in Data Streams
	Introduction
	Related Work
	Problem Definition
	RPS-Tree: Design, Construction, and Mining
	Design of an RPS-Tree
	Construction of an RPS-Tree
	Updating the RPS-Tree
	Mining the RPS-Tree

	Experimental Analyses
	Memory Efficiency
	Runtime Efficiency
	Window Size

	Discussions and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

