
Mining Outliers with Ensemble of

Heterogeneous Detectors on Random Subspaces

Hoang Vu Nguyen, Hock Hee Ang, and Vivekanand Gopalkrishnan

Nanyang Technological University, Singapore

Abstract. Outlier detection has many practical applications, especially
in domains that have scope for abnormal behavior. Despite the impor-
tance of detecting outliers, defining outliers in fact is a nontrivial task
which is normally application-dependent. On the other hand, detection
techniques are constructed around the chosen definitions. As a conse-
quence, available detection techniques vary significantly in terms of ac-
curacy, performance and issues of the detection problem which they ad-
dress. In this paper, we propose a unified framework for combining dif-
ferent outlier detection algorithms. Unlike existing work, our approach
combines non-compatible techniques of different types to improve the
outlier detection accuracy compared to other ensemble and individual
approaches. Through extensive empirical studies, our framework is shown
to be very effective in detecting outliers in the real-world context.

1 Introduction

The problem of detecting abnormal events, also called outliers, has been widely
studied in recent years [1–3]. Researchers have developed several techniques to
mine outliers in static databases and also recently in data streams. Existing out-
lier detection methods can be classified as distance-based [3–5], density-based
[1, 2] and evolutionary-based [6]. There are many ways in practice to define what
outliers exactly are, e.g., r-neighborhood Distance-based Outlier [3], kth Near-
est Neighbor Distance-based Outlier [5] (a.k.a. k-NN) and Cumulative Neigh-
borhood [4]. Since detection methods are usually constructed around specific
outlier notions, their detection qualities vary significantly among datasets. For
example, a recent study [7] shows that the Nearest-Neighbor (NN) method per-
forms well when outliers are located in sparse regions whereas LOF [1] performs
well when outliers are located in dense regions of normal data. Existing tech-
niques usually compute distances (in full feature space) of every data sample
to its neighborhood to determine whether it is an outlier or not [1–3, 6]. This
causes two side-effects. First, for high-dimensional datasets the concept of lo-
cality as well as neighbors becomes less meaningful [8]. Second, not all features
are relevant for outlier mining. More specifically, popular distance functions like
Euclidean and Mahalanobis are extremely sensitive to noisy features [7]. Despite
the presence of the curse of dimensionality, it is difficult in practice to choose a
relevant subset of features for the learning purpose [6, 9, 10].

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 368–383, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Ensemble of Heterogeneous Detectors on Random Subspaces 369

While the nature of data is unpredictable, there is a need for an efficient tech-
nique to combine different outlier detection techniques to overcome the drawback
of each single method and yield higher detection accuracy. The motivation here is
similar to the advent of ensemble classifiers in the machine learning area [9, 11].
With the feasibility of ensemble learning and subspace mining demonstrated,
the natural progression would be to combine them both. Lazarevic and Kumar
[10] propose the first solution for semi-supervised ensemble outlier detection in
feature subspace. That work assumes the existence of outlier scores where a
combine function can be applied directly. However, this is not practically true
since different detection methods can produce outlier scores of different scales.
For example, it can be recognized that the scores produced using kth Nearest
Neighbor Distance-based Outlier [5] are smaller in scale than those using Cu-
mulative Neighborhood [4]. Furthermore, as pointed out in Section 3.3, different
detection techniques also produce different types of score vectors. In particular,
some vectors are real-valued while others are binary-valued. This leads to the
need of a unified notion of outlier score and an efficient technique to specifically
deal with scores’ heterogeneity. The availability of such notion would facilitate
the task of combination.

Problem Statement. Consider a dataset DS with N data samples in dim di-
mensions. While most of the data samples in DS are normal, some are outliers,
and our task is to detect these outliers. While few outliers can be found when
all dimensions are taken into account, most of them can only be identified when
looking at some subsets of features. In addition, some features of DS are noisy,
and cause the full distance computation to be inaccurate if they are included.
Given a set of base outlier detection technique(s), our goal is to build an efficient
method to combine the results obtained from them while overcoming their in-
dividual drawbacks when applying on DS. The ensemble framework should: (a)
alleviate of the curse of dimensionality and noisy features, (b) efficiently combine
outlier score vectors of base techniques having different scales and different char-
acteristics, and (c) provide higher detection quality than each individual base
technique used in the ensemble (when applied on full feature space). In order
to address this problem, we present the Heterogeneous Detector Ensemble on
Random Subspaces (HeDES) framework. The advantage of using HeDES lies in
its ability to incorporate various heuristics for combining different types of score
vectors. The main contributions of this work can be summarized as follows:

– We introduce a unified notion of outlier score function and show how exist-
ing outlier definitions can be represented using it. We demonstrate how to
identify different types of outlier scores in literature by using this new notion
of outlier score function.

– We propose a generalized framework for ensemble outlier detection in feature
subspaces - HeDES. Unlike the existing simple framework [10], HeDES is able
to combine different techniques producing outlier scores of different scales or
even different types of scores (e.g., real-valued v/s. binary-valued).

370 H.V. Nguyen, H.H. Ang, and V. Gopalkrishnan

Through extensive empirical studies, we demonstrate that the HeDES framework
can outperform state-of-the-art detection techniques and is therefore suitable for
outlier detection in real-world applications. The rest of this paper is organized
as follows. Related work and background knowledge are presented in the next
section. Details of our approach are provided in Section 3 and empirical com-
parison with other current-best approaches is discussed in Section 4. Finally, the
paper is summarized in Section 5 with directions for future work.

2 Literature Review

Distance-based outlier detection techniques in general exploit the distance of
a data sample to its neighborhood to determine whether it is outlier or not.
Distances can be computed either using only one neighbor [5] or using k nearest
neighbors [4]. The notion of distance-based outlier was first introduced by Knorr
and Ng [3] and then refined in [5]. Breunig et al. [1] propose the first notion of
density-based outliers. The outlier score used, called Local Outlier Factor (LOF),
is a measure of difference in neighborhood density of a data sample p and that
of data samples in its local neighborhood. LOF for data samples belonging to
a cluster is approximately equal to 1, while that for outliers should be much
higher. Experimental results from [7] show that LOF outperforms other detection
techniques in most cases. Papadimitriou et al. [2] introduce a new definition of
density-based outliers. Instead of using the k nearest neighbors of a data sample
p in computing its outlier score, they employ the r-neighborhood of p. The
outlier score of each data sample, called MDEF, is used to compare against
the normalized deviation of its neighborhood’s scores and standard-deviation is
employed in the outlier flagging decision. This removes the need of using any
static cutoff or score ranking.

Both distance-based and density-based techniques involve the computation
of distances from each data sample to its neighborhood. However, for high-
dimensional datasets the concept of locality as well as neighbors becomes less
meaningful [8]. This limitation is addressed by an evolutionary-based technique
introduced by Aggarwal and Yu [6]. The method first performs a grid discretiza-
tion of the data by dividing each data attribute into ∅ equi-depth ranges. Then,
a genetic approach is employed to mine subspaces whose densities are in the top
smallest values. Nevertheless, it suffers the intrinsic problems of evolutionary ap-
proaches - its accuracy is unstable and varies depending on the selection of initial
population size as well as the crossover and mutation probabilities. The problem
of mining in subspaces has also been studied in supervised learning [8, 9]. Ho
[9] point out that constructing different classifiers by using randomized initial
conditions or data perturbations cannot ensure high classification accuracy. In-
stead, randomly sampling subsets of feature space (i.e., feature subspaces) for
different classifiers seems to be a very promising solution. Likewise, Lazarevic
and Kumar [10] tackled the outlier detection problem using an ensemble of out-
lier techniques built on the problem subspaces. By assuming that information
about normal behavior in the underlying dataset is known, they reported findings

Ensemble of Heterogeneous Detectors on Random Subspaces 371

similar to that of [9]. Their technique, called Feature Bagging, consists of two
variants of combine functions: Breadth First and Cumulative Sum. The Breadth
First combine method (a) first sorts all outlier score vectors, (b) then takes the
data samples with highest outlier score from all outlier detection algorithms, and
(c) finally appends their indices at the end of the final index vector (and so on).
On the other hand, Cumulative Sum simply sums up all the score vectors and
returns the result as the final outcome. Nevertheless, Feature Bagging does not
specify clearly how to integrate outlier scores with different scales and different
characteristics (e.g. real-valued vector vs. binary vector). Furthermore, Breadth
First is reported to be sensitive to the order of detection algorithms applied
[10]. Another notion of ensemble outlier mining is presented in [12]. However,
like Feature Bagging, no consideration is given to the heterogeneity of outlier
scores produced by different techniques. Furthermore, it lacks of details on how
to process the score vectors to make its proposed combine functions be applica-
ble whereas a direct application is impossible (c.f. Section 3). In addition, several
aspects of the ensemble outlier detection problem (as mentioned in Section 1)
are not discussed.

Abe et al. [13] propose an approach for constructing an ensemble of di-
chotomizers for mining outliers using artificially generated data. Their approach,
called Active Outlier, first reduces the problem of outlier detection to classifi-
cation. Active learning (a form of data sub-sampling) is used to construct a set
of dichotomizers, combined results of which are used to identify outliers. Ac-
tive Outlier is indeed a type of ensemble learning using data sub-sampling. As
mentioned in [9, 10], building ensembles using data perturbation cannot enrich
the homogeneity or de-correlate the relationship among learners in the ensemble
as efficiently as feature sub-sampling. Our empirical studies on real-life datasets
(c.f., Section 4) support this claim.

3 Methodology

The HeDES framework is a generalized framework for mining outliers in sub-
spaces using ensemble of outlier detection techniques (henceforth termed detec-
tors). In the following, we present the details of constructing the ensemble and
explain how it is applied in HeDES.

3.1 Ensemble Construction

The process of constructing the ensemble of detectors is displayed in Algorithm
1. In each of the total R rounds, we first sample a detector T from the pool
of techniques considered (T) on a round-robin basis. Practically, R should be
chosen as a multiple of the pool size. Next, we form a subspace S where T will
operate by randomly choosing Nf features from the full feature space. Here, Nf is
sampled from the uniformly distributed range [�dim/2�, dim−1]. The pair (T, S)
is then added to the ensemble. By sampling Nf from the range [�dim/2�, dim−1]
instead of fixing it to �dim/2� like in [9], we increase the possibility of generating

372 H.V. Nguyen, H.H. Ang, and V. Gopalkrishnan

different subsets of features for each detector in the ensemble. Since the detection
capability of each detector relies on its own notion of dissimilarity measure, this
increases the chance that they generalize their prediction in ways different to each
other. Hence, the above process of constructing the ensemble takes advantage of
high-dimensional feature space and weakens the curse of dimensionality.

After identifying all the detectors to be used in the ensemble, we adjust their
weights by running the ensemble against an unlabeled training set. The intuition
behind this weight-adjust is that some detection techniques are more powerful
than others on some certain types of data. For example, recent study by Lazare-
vic et al. [7] shows that the Nearest-Neighbor (NN) method outperforms LOF
when outliers are located in sparse regions whereas LOF [1] yields higher per-
formance than NN when outliers are located in dense regions of normal data.
Even though the detectors in the ensemble are applied on the same dataset dur-
ing testing, the subspaces where they operate are homogeneous. Furthermore,
subspace distributions are different whereas detectors’ prediction performance is
dependent on their respective subspace. Thus, our argument on detectors’ supe-
riority over the others in some certain data still holds in our ensemble learning.
Since the nature of subspaces is unpredictable, assigning fixed weights for de-
tectors is not a good solution. Intuitively, had we known which detectors would
work better, we would give higher weights to them. In the absence of this knowl-
edge, a possible strategy is to use the result of detectors on a separate validation
dataset, or even their performance on the training dataset, as an estimate of
their future performance.

Algorithm 1. Constructing HeDES

for i = 1 to R do1

Choose a detector Ti ∈ T2

Randomly sample Nf from [�dim/2�, dim − 1]3

Randomly sample a subset of features Si of size Nf from the feature set of4

DS
Add (Ti, Si) into the ensemble5

Apply the ensemble to the synthetic training dataset6

Adjust the weight of each detector in the ensemble7

This paper, similar to AdaBoost [14], employs the latter strategy. However,
since the training set is unlabeled, a direct weight-adjust is not straightforward.
To overcome this problem, we construct a labeled synthetic training dataset
from the original (unlabeled) one by applying the technique presented in [13].
In brief, the synthetic set is comprised of normal data drawn from the original
one and artificially generated outliers. The artificial outliers here are created by
using a uniform distribution U that is defined within a bounded subspace whose
minimum and maximum are limited to be 10% beyond the observed minimum
and maximum, respectively. Let the original training set be Str, we construct the
set of artificial outliers Sout of size |Str| according to U on the bounded domain.

Ensemble of Heterogeneous Detectors on Random Subspaces 373

Algorithm 2. Mining Outliers with HeDES

Normalize DS1

foreach detector type j do2

TV Sj = ∅3

for i = 1 to R do4

Choose the detector (Ti, Si) from the ensemble5

j = type of Ti6

RV Si = apply Ti to DS projected on Si7

TV Sj = TV Sj ∪ {RV Si}8

foreach detector type j do9

V Sj = SUBCOMBINE(TV Sj)10

V SF INAL = COMBINE(V S1, V S2, . . .)11

The synthetic training set is then set to be Str ∪ Sout. More details are given in
[13]. The use of this set helps us estimate the performance of each detector in the
ensemble and adjust its weight correspondingly despite the lack of knowledge on
anomalous behavior. Since outlier detectors in the ensemble are unsupervised,
they are less susceptible to the overfitting problem. In other words, the weights
trained are loosely coupled with the synthetic training set. Furthermore, this
artificial data generation has been shown to be successful in training highly
accurate classifiers [13]. Thus, the weights obtained in the training phase are
likely to have very high generalization capability on unseen test data. By using
the weight-adjusted scheme, the effect of detection techniques that are not as
relevant as the others can be reduced. This becomes even more critical when
irrelevant techniques may lead to a significantly wrong assignment of outlier
score (c.f., Section 4).

3.2 HeDES Framework

Our proposed approach, HeDES, is described in Algorithm 2, and functions as
follows. The testing dataset is passed through the ensemble. For every pair (T, S)
in the ensemble, we apply T to DS projected on subspace S and obtain a raw
vector score. This raw vector score is stored together with other vector scores
generated by the same detector type j in TV Sj . After finishing R rounds, each set
of vector scores (vectors in the same set are of the same type) are combined sep-
arately using SUBCOMBINE function to yield a vector score V Sj . Finally, the
COMBINE function is invoked using all the V S’s obtained to produce the final
vector score V SFINAL. The interpretation (combination) of V S and V SFINAL

depends on the specific combine functions utilized which are explored in detail
in Section 3.4. Note that the two most important components in this framework
are: (a) the outlier score function, and (b) the (SUB)COMBINE functions. The
main difference between the simple subspace ensemble framework in [10] and
our generalized framework lies in the multi-staged combine function which al-
lows much more flexible integration among the heterogeneous types of outlier

374 H.V. Nguyen, H.H. Ang, and V. Gopalkrishnan

detection techniques. It is highlighted that similar to other ensemble classifiers
[9, 14], ensemble outlier detection method is a parallel learning algorithm [10].
Since each round of running is independent of the other, a parallel implementa-
tion can be employed for faster learning.

3.3 Outlier Score Function

Assume a metric distance function D exists on DS, using which we can measure
the dissimilarity between two arbitrary data samples in any arbitrary subspace.
A general approach that has been used by most of the existing outlier detection
methods [1, 3, 6] is to assign an outlier score (based on the distance function)
to each individual data point, and then design the detection process based on
this score. The use of the outlier score is analogous to the mapping of multi-
dimensional datasets to R space (the set of real numbers). In other words, we
can define the outlier score function (Fout) which maps each data sample in DS
to a unique value in R. Intuitively, to create an outlier score function, we first
identify a set of measurements based on some specified criteria, then define a
mechanism g for combining them, and finally generate a function (Fout) based on
g. Most the existing techniques utilize only a single measurement, i.e., g becomes
a uni-variable function that is related directly to the only measurement taken
into account. With reference to the k-NN [5], let the measurement considered
be the distance from a data pattern p to its kth nearest neighbor (Dk), then a
possible choice of Fout is Fout = g(Dk) = Dk.

Outlier score function classification. Among existing approaches to outlier
detection problem, we can classify Fout into global and local score functions. An
outlier score function is called global when the value it assigns to a data sample
p ∈ DS can be used to compare globally with other data samples. More specif-
ically, for two arbitrary data samples p1 and p2 in DS, Fout(p1) and Fout(p2)
can be compared with each other, and if Fout(p1) > Fout(p2), p1 has a larger
possibility than p2 to be an outlier. The definitions proposed by Angiulli et al.
[4], Breunig et al. [1], and Ramaswamy et al. [5] straightforwardly adhere to this
category. On the other hand, the definition of Knorr and Ng [3] can be con-
verted to this category by taking the inverse of the number of neighbors within
distance r of each data point. In contrast, a local outlier score function assigns
to each data sample p, a score that can only be used to compare within some
local neighborhood. Example of such a function is proposed in [2], where the
local comparison space is the set of data samples lying within the circle centered
by p and the radius is user-defined. The choice of a global or local outlier score
function clearly affects later stages of the algorithm design process.

A classification of detection techniques using Fout. Using the notion of
Fout defined above, existing outlier detection techniques can be classified into two
types: (a) Threshold-based where a local Fout is usually used, and (b) Ranking-
based where a global Fout is employed, (c.f., Definitions 1 and 2, respectively).
According to this classification, the methods proposed in [4–6] using global score
functions are classified as Ranking-based. On the other hand, LOCI [2] with local

Ensemble of Heterogeneous Detectors on Random Subspaces 375

score function is classified as Threshold-based. Although the technique in [3]
utilizes a global Fout, it is classified as Threshold-based by letting Fout(p) = 1

|S(p)|
and choosing t = 1

1−P . In this case, a data sample p ∈ DS is an outlier if
Fout(p) > t , i.e., Fout(p) > 1

1−P . Note that the threshold t in LOCI [2] is
dynamic, whereas that of [3] is static (dependant on the pre-defined variable P).

Definition 1. [Threshold-based] Given a (dynamic or static) threshold t, a
data sample p is an outlier of DS if Fout(p) > t.

Definition 2. [Ranking-based or Top-n-outlier] Given a positive integer
n, a data sample p is an nth outlier of DS if no more than n − 1 other points
in DS have a higher value of Fout than p. An algorithm based on this definition
outputs the top n outliers.

When Fout is global, a Ranking-based technique is normally preferred since the
assigned score values of data samples can be compared globally to produce the
top points with largest scores. The resultant score vector is then real-valued and
identical to the values that Fout assigns to data samples. On the other hand,
if Fout is a local one, a Threshold-based approach becomes a reasonable choice.
As a consequence, the score vector obtained contains only binary values (0 for
non-outliers and 1 for outliers) since the scores produced by Fout are already
discretized through a threshold-based test. Therefore, score vectors produced
by different detection techniques are heterogeneous and need to be processed
carefully to facilitate the COMBINE process.

Issue of converting Fout to the posterior probabilities. Assume by apply-
ing an outlier detector T with outlier score function Fout onto DS, we obtain
the score vector: RV S = {Fout(p1), Fout(p2), . . . , Fout(pN)}. The problem of out-
lier detection is equivalent to a binary classification problem with two classes:
O (outlier class) and M (normal class). One important question which has not
been addressed well by the research community is how to compute the poste-
rior probability P (O|Fout(pi)) using the knowledge on RV S. Gao and Tan [15]
propose two methods attempting to solve this problem. The first method bases
on the assumption that the posterior probabilities follow a logistic sigmoid func-
tion and the normal and anomalous samples have similar forms of outlier score
distribution (same covariance matrix). It then tries to learn the function’s pa-
rameters using RV S. The second learner on the other hand models the likelihood
probability distributions P (Fout(pi)|O) and P (Fout(pi)|M) as a Gaussian and an
exponential distribution, respectively. The posterior probabilities are then com-
puted using Bayes theorem. Among the two methods, mixture modeling is more
suitable for ensemble learning as demonstrated in [15].

The main intuition leading to this mixture model is derived from the empirical
studies using k-NN [5] as the score function. However, the argument used in [15]
does not hold for density-based approaches, such as LOF, where density of a data
sample is compared (divided) to that of its neighbors. Because of limited space,
we omit the demonstration here. Our empirical studies (c.f., Section 4) point out
that processing the outlier scores directly (like in HeDES and Feature Bagging)
instead of converting to posterior probabilities will yield better detection results.

376 H.V. Nguyen, H.H. Ang, and V. Gopalkrishnan

3.4 COMBINE Functions

As discussed in Section 2, Lazarevic and Kumar [10] introduce two combine func-
tions (Cumulative Sum and Breadth First) which have been successfully used in
ensemble-based outlier mining. Here, we present three novel combine functions
which are Weighted Sum, Weighted Majority Voting and OR Voting. Unlike
Breadth First, these functions are invariant to the order of the detectors. Since
accuracy is the most critical factor in ensemble learning, this property becomes
an advantage of our approach. Among them, the first two functions are shown
to be very efficient in ensemble classification and have been widely employed in
many practical applications [14, 16]. The intuition for utilizing weighted com-
bine functions were also discussed in details above. Weighted Majority Voting is
known to excel in combining class labels assigned by different classifiers in the
ensemble. On the other hand, Weighted Sum in classification is normally applied
on posterior probabilities [9]. Conversely, in HeDES, it is used to combine nor-
malized outlier scores produced by different detectors of the ensemble. Finally,
Or Voting is a natural combine function for integrating heterogeneous types of
output scores as demonstrated later. It is important to note here that exploring
all possible combine functions is not a focus in this paper. Nevertheless, our
chosen combine functions are still able to encompass almost all available types
of outlier scores in the field.

Although HeDES provides an easy extension to score vectors of various types
(depending on the purpose of learners), in this paper score vectors are either real-
valued or binary-valued. An natural approach (Ensemble Voting) to combine
different types of score vectors is to simply normalize and discretize the real-
valued score vectors (convert all score vectors to the same type), and thereafter
integrate all the binary-valued score vectors (inclusive of the discretized real-
valued score vectors) using Weighted Majority Voting. However, such a natural
approach is not sufficient and does not produce good results (c.f., Section 4). The
set of input score vectors to the (SUB)COMBINE function is classified into two
groups in which the first group contains score vectors (TV SR) resulting from
applying Ranking-based techniques, whereas the second group contains score
vectors (TV ST) of Threshold-based ones. Our strategy is to apply some combine
function on TV SR and TV ST separately to obtain V SR and V ST . Finally, a
special combine function is used to integrate V SR and V ST to produce the
final score vector V SFINAL. It is noted that the problem of combining results
of Ranking-based and Threshold-based techniques here is very similar to the
problem of combining detection results of categorical and continuous features
in mixed-attribute datasets as addressed in [17]. In both cases, we process real
values and binary/categorical values separately. Eventually, a heuristic is used
to integrate the results obtained. This is the base intuition for our Or Voting
combine function.

Processing outlier score vectors. Because of the different nature be-
tween Ranking-based and Threshold-based techniques, outlier score vectors pro-
duced by them need different treatments. Assume the data samples in DS are
p1, p2, . . . , pN . A detection technique T using a specific score function Fout is

Ensemble of Heterogeneous Detectors on Random Subspaces 377

applied to identify outliers in DS. We denote T ’s resultant score vector as
RV S = {Fout(p1), Fout(p2), . . . , Fout(pN)}.

If T is a Ranking-based technique: Vectors of different Ranking-based tech-
niques may have different scales [5]. Hence, to apply combine functions, real-
valued vectors need to have equivalent scale. In other words, normalization is
necessary. In HeDES, RV S is normalized using the standardization technique.
One of the most important characteristics of this normalization technique is
its ability to maintain the detectability of extreme values after performing nor-
malization [18]. As argued in [10], this facilitates combining real-valued vectors
since a data sample receiving a high score value by one detector, after sum-
ming up its score with those produced by other detectors, may still have large
values and be flagged as outliers. We define the normalized value of Fout(pj)
in RV S as: Scorenorm(pj) = Fout(pj)−m

s where m = 1
N (

∑N
i=1 Fout(pi)) and

s = 1
N (

∑N
i=1 |Fout(pi) − m|). By applying normalization, the range of outlier

score becomes independent of the technique used. Since all normalized vectors
score have comparable scale, it is feasible to integrate them.

If T is a Threshold-based technique: We preserve RV S as it is. This is because
each individual element in RV S already indicates the posterior probability of
being outlier for data points. Thus, if an ensemble employs techniques from
both Ranking-based and Threshold-based, we need a special combine function.
Since Cumulative Sum and Breadth First functions ignore the score vectors’
heterogeneity, they are not suitable for use.

Weighted Sum. This function is used for vectors in TV SR. Let us denote the
weight of the detector Ti ∈ T at round i with score vector RV Si as Wi. The
final score vector of all vectors in TV SR is defined as: V SR =

∑
i Wi × RV Si.

Weighted Sum is in fact a modified version of Cumulative Sum proposed in [10].
However, the weight-based strategy helps boost the performance of more efficient
detectors. This cannot be obtained in equi-weight schemes.

Weighted Majority Voting. This combine function is used for processing
vectors in TV ST . Although similar to most of the existing ensemble classifiers
[9, 14], the problem here is much simpler since we are only interested in two
classes of data: normal (class M) and outlier (class O). Since all vectors in TV ST

only contain binary values, they are suitable for Weighted Majority Voting. As
in the case of Weighted Sum, the weight of each vector is determined by the
performance of the corresponding detection technique on training datasets.

OR Voting. This function is used for combining V SR and V ST . However, its
input vectors must contain only binary values. Therefore, we perform a dis-
cretization process on V SR where its top values are converted to 1, and the rest
are converted to 0. Under this scheme, we have: V SFINAL = V SR ∨ V ST where
“∨” is the usual Boolean operator.

Interpretation of V SFINAL. If the pool of detection techniques T contains
only Ranking-based techniques, we then flag those data samples having high-
est scores in V SFINAL as outliers. In case T contains only Threshold-based

378 H.V. Nguyen, H.H. Ang, and V. Gopalkrishnan

techniques, outliers are those points having score in V SFINAL equal to 1. Fi-
nally, if T contains both Ranking-based and Threshold-based methods, outliers
are those whose scores equal to 1 in V SFINAL. Thus, the flagging mechanism
for “mixed” T is similar to that of an ensemble containing only Threshold-based
methods. This is because by applying the OR function, the real-valued vector
V SR is already converted to a binary-valued one. Similar to [10], the number of
outliers to flag for Ranking-based methods depends on the specific dataset used.

4 Experimental Evaluation

To verify the effectiveness of the proposed combination framework, we conducted
the experiments on several real datasets which are taken from UCI Machine
Repository 1. These datasets are used widely in outlier detection as well as in
rare class mining [10], and are summarized in Table 1. The setup procedure
(converting datasets into binary-class sets, etc.) employed here follows exactly
that of Feature Bagging. In the field of outlier detection, ROC curve (as well
as AUC) is an important metric used to evaluate detection quality. Similar to
[4, 7, 10, 15], AUC (area under the ROC curve) was chosen as performance
benchmark in this paper because of its proved relevance for outlier detection
[7, 10]. In each experiment, due to space limitation, we only report how AUC
changes when the number of rounds R is varied for KDD Cup 1999 dataset. This
dataset is chosen as it has the largest number of instances as well as attributes
among all the datasets considered, and hence is a good representative. For other
sets, the results are similar and average AUC with R = 10 is presented (setting
R to 10 was suggested in [10, 15]). For every dataset, each reported result is
a 95% confidence interval of the AUC obtained by averaging the outcomes of
running the algorithms 10 times on each of its generated binary-class sets. In our
empirical studies, two different base detectors are considered: LOF [1] and LOCI
[2], and are tested using full feature space. The former is known to be one of the
best Ranking-based techniques [7] while the latter is a well-known Threshold-
based technique [2]. By choosing these high quality base detectors, we are able
to highlight the improvement of HeDES in detection accuracy. For LOF, the
parameter MinPts was set to 20. For LOCI, we chose nmin = 20, nmax = 50,
α = 1/2, and kα = 3. Those values were derived from the corresponding papers
[1, 2]. Apart from the two base techniques, we compared our approach with
other ensemble approaches including: Feature Bagging [10], Active Outlier [13],
Mixture Model [15], and Ensemble Voting (c.f., Section 3.4). Feature Bagging
uses two combine functions: Cumulative Sum and Breadth First. For each dataset
under consideration, we choose to display the highest AUC value among the
two for Feature Bagging. Active Outlier constructs an ensemble after t rounds
of training, i.e. the ensemble contains t detectors. Here, t was set to R for fair
comparison. Since Active Outlier does not use any base detector, its performance
remains the same regardless of which base detector is chosen for other ensemble
techniques.
1 http://www.ics.uci.edu/ mlearn/MLRepository.html

Ensemble of Heterogeneous Detectors on Random Subspaces 379

Table 1. Characteristics of datasets used for measuring accuracy of techniques

Dataset Classes Attributes Instances Outlier v/s. Normal

Ann-thyroid 1 3 21 3428 class 1 v/s. 3

Ann-thyroid 2 3 21 3428 class 2 v/s. 3

Lymphography 4 18 148 merged class 2 & 4 v/s. rest

Satimage 7 36 6435 smallest class v/s. rest

Shuttle 7 9 14500 class 2, 3, 5, 6, 7 v/s. 1

KDD Cup 1999 2 42 60839 class U2R v/s. normal

Breast Cancer 2 32 569 class 2 v/s. 1

Segment 7 19 2310 each class v/s. rest

Letter 26 16 6238 each class v/s. rest

Experiment on Ranking-based technique. This experiment aims to inves-
tigate the performance of the our proposed combine function, Weighted Sum,
when applied to the Ranking-based technique. We compared our method against
LOF, Feature Bagging (FB), Mixture Model (MM), and Active Outlier (AO).
The results are shown in Figure 1 and Table 2. It can be observed that Weighted
Sum strategy yields very good results in all test cases. Even in the case where
the base technique, LOF, performs no better than random guessing due to high
dimensionality of the dataset (Satimage), our approach is still able to bring very
good improvement. The results also indicate that using full feature space in out-
lier detection may yield low accuracy, especially when the number of features is
large and it is likely that some features are noisy. The performance of Mixture
Model over the datasets used is worse than Active Outlier and Feature Bag-
ging. This agrees with our argument about the applicability of Mixture Model
on other notions of outliers. In particular, the outlier score proposed in LOF is
density-based whereas k-NN is distance-based. Extensive studies in the field have
pointed out the significant differences between these two notions. These in addi-
tion to the results obtained show that the assumption made in Mixture Model
is not flexible enough to encompass the scores produced by LOF. For all en-
semble techniques considered (including our approach), AUC value increases as
the number of detectors included in the ensemble increases. However, Weighted
Sum and Feature Bagging tend to work better than AO. This can be attributed
to the fact that ensemble learning by subspace sampling produces more efficient
learners than data sub-sampling one [9].

Experiment on Threshold-based technique. In this experiment, we study
the effect of our proposed combine function, Weighted Majority Voting (WMV),
for Threshold-based techniques. Thus, LOCI is selected as the base detector.
Our approach’s performance is assessed against LOCI, Feature Bagging (FB,
also utilizes LOCI), and Active Outlier (AO). Mixture Model is omitted here
since the posterior probabilities can be derived directly from the binary-valued
scores. In fact, the results achieved by Mixture Model under this setting are
the same as that of Feature Bagging. From Figure 1 and Table 3, it can be
seen that Weighted Majority Voting yields the best or nearly best results in

380 H.V. Nguyen, H.H. Ang, and V. Gopalkrishnan

Table 2. Ranking-based technique: AUC values of LOF, Feature Bagging, Mixture
Model, Active Outlier, and Weighted Sum (R = 10)

Dataset LOF FB MM AO WS

Ann-thyroid 1 0.869 0.869 ± 0.015 0.855 ± 0.021 0.856 ± 0.023 0.892 ± 0.005

Ann-thyroid 2 0.761 0.769 ± 0.003 0.759 ± 0.007 0.753 ± 0.009 0.798 ± 0.008

Lymphography 0.924 0.967 ± 0.009 0.921 ± 0.001 0.843 ± 0.041 0.984 ± 0.004

Satimage 0.510 0.558 ± 0.031 0.562 ± 0.025 0.646 ± 0.024 0.703 ± 0.022

Shuttle 0.825 0.839 ± 0.004 0.724 ± 0.017 0.843 ± 0.006 0.861 ± 0.002

Breast Cancer 0.805 0.825 ± 0.022 0.758 ± 0.012 0.822 ± 0.015 0.866 ± 0.017

Segment 0.820 0.847 ± 0.017 0.798 ± 0.005 0.836 ± 0.002 0.882 ± 0.003

Letter 0.816 0.821 ± 0.003 0.722 ± 0.014 0.824 ± 0.002 0.848 ± 0.001

 0.6

 0.65

 0.7

 0.75

 0.8

 10 20 30 40 50

A
cc

ur
ac

y

Number of Rounds (R)

AO
FB

LOF
MM
WS

(a) Ranking-based

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 10 20 30 40 50

A
cc

ur
ac

y

Number of Rounds (R)

AO
FB

LOCI
WMV

(b) Threshold-based

 0.68

 0.7

 0.72

 0.74

 0.76

 10 20 30 40 50
A

cc
ur

ac
y

Number of Rounds (R)

AO
EV
FB
ME
MM

(c) Ranking-based &
Threshold-based

Fig. 1. AUC values of all competing approaches on the KDD Cup 1999 dataset

all cases (the margin with respect to the best one is negligible). For Feature
Bagging, neither Cumulative Sum nor Breadth First works well in combining
vectors of Threshold-based techniques. This indicates that specialized schemes
are required. With the results achieved in this test, Weighted Majority Voting
is shown to be a promising candidate.

Overall, we can observe that ensemble outlier detection (Feature Bagging,
Weighted Majority Voting, Active Outlier) results in good improvements over the
base technique. We again observe the same pattern as in the previous experiment:
the accuracy of ensemble techniques grows as the number of detectors increases
and that of Active Outlier is dominated by our approach’s and Feature Bagging’s.

Experiment on Ranking-based & Threshold-based techniques. So far in
our empirical studies, the ensemble contains either only Ranking-based (LOF) or
only Threshold-based (LOCI) detection techniques. We now investigate our last
proposed combine strategy, the OR Voting, in an ensemble where both types of
techniques are considered. Therefore, in this experiment, both LOF (Ranking-
based) and LOCI (Threshold-based) are employed. We call our method under
this setting Mixed Ensemble (ME). More specifically, we use Weighted Sum
for Ranking-based technique whereas with Threshold-based technique, we ap-
ply Weighted Majority Voting. The results from each group are combined using
the OR Voting. Our proposed approach is compared against Feature Bagging

Ensemble of Heterogeneous Detectors on Random Subspaces 381

Table 3. Threshold-based technique: AUC values of LOCI, Feature Bagging, Active
Outlier, and Weighted Majority Voting (R = 10)

Dataset LOCI FB AO WMV

Ann-thyroid 1 0.871 0.873 ± 0.003 0.856 ± 0.023 0.872 ± 0.021

Ann-thyroid 2 0.747 0.754 ± 0.026 0.753 ± 0.009 0.812 ± 0.015

Lymphography 0.892 0.932 ± 0.007 0.843 ± 0.041 0.987 ± 0.003

Satimage 0.529 0.535 ± 0.022 0.646 ± 0.024 0.654 ± 0.024

Shuttle 0.822 0.856 ± 0.011 0.843 ± 0.006 0.873 ± 0.004

Breast Cancer 0.801 0.827 ± 0.002 0.822 ± 0.015 0.842 ± 0.001

Segment 0.835 0.852 ± 0.002 0.836 ± 0.002 0.850 ± 0.014

Letter 0.811 0.834 ± 0.016 0.824 ± 0.002 0.872 ± 0.004

Table 4. Ranking-based & Threshold-based techniques: AUC values of Feature Bag-
ging, Mixture Model, Active Outlier, Ensemble Voting, and Mixed Ensemble (R = 10)

Dataset FB MM AO EV ME

Ann-thyroid 1 0.870 ± 0.015 0.813 ± 0.013 0.856 ± 0.023 0.832 ± 0.012 0.883 ± 0.020

Ann-thyroid 2 0.768 ± 0.031 0.684 ± 0.001 0.753 ± 0.009 0.754 ± 0.012 0.792 ± 0.004

Lymphography 0.955 ± 0.033 0.735 ± 0.002 0.843 ± 0.041 0.901 ± 0.235 0.952 ± 0.014

Satimage 0.531 ± 0.003 0.517 ± 0.043 0.646 ± 0.024 0.544 ± 0.007 0.780 ± 0.005

Shuttle 0.853 ± 0.028 0.729 ± 0.013 0.843 ± 0.006 0.827 ± 0.024 0.871 ± 0.016

Breast Cancer 0.824 ± 0.013 0.755 ± 0.023 0.822 ± 0.015 0.837 ± 0.017 0.864 ± 0.015

Segment 0.845 ± 0.007 0.792 ± 0.016 0.836 ± 0.002 0.840 ± 0.004 0.852 ± 0.006

Letter 0.841 ± 0.004 0.785 ± 0.011 0.824 ± 0.002 0.836 ± 0.003 0.877 ± 0.018

(FB), Mixture Model (MM), Active Outlier (AO) and the natural combination
approach (Ensemble Voting, a.k.a. EV). Ensemble Voting, similar to ensemble
classifier using weighted majority voting (e.g., AdaBoost), is shown to yield very
high accuracy in the classification problem [14]. However, through this experi-
ment we point out that it is not very applicable for ensemble outlier detection.
For Cumulative Sum of Feature Bagging, we simply sum up all score vectors
after performing normalization. The AUC values of all methods are presented in
Figure 1 and Table 4. Our approach (Mixed Ensemble) once again performs very
well compared to other techniques. The results also show that when an ensemble
contains both Ranking-based and Threshold-based techniques, natural sum-up
scheme of Cumulative Sum as well as usual ensemble learning based on Weighted
Majority Voting does not help much. Instead, we need special combine functions
to deal specifically with different types of score vectors.

5 Conclusions and Future Work

In this paper, the problem of ensemble outlier detection in high-dimensional
datasets were studied in detail. A formal notion of outlier score which helps to

382 H.V. Nguyen, H.H. Ang, and V. Gopalkrishnan

identify different types of outlier score vectors was introduced. Using the new
notion, we presented a heterogeneous detector ensemble on random subspaces
(HeDES) framework using different relevant combine functions to tackle the
problem of heterogeneity of techniques. Extensive empirical studies on several
popular real-life datasets show that our approach can outperform contemporary
techniques in the field. In future work, we are considering a systematic exten-
sion to test all possible combine functions. Furthermore, we intend to expand
the scope of our empirical studies by performing experiments on more large and
high-dimensional datasets with different base outlier detection techniques. These
will bring us a better understanding about the benefit of ensemble outlier detec-
tion for real-world applications. Last but not least, we would like to investigate
how the selection of subspaces and base outlier detection techniques affects the
detection accuracy of the ensemble.

References

1. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: Identifying density-based
local outliers. In: SIGMOD, pp. 93–104 (2000)

2. Papadimitriou, S., Kitagawa, H., Gibbons, P.B., Faloutsos, C.: LOCI: Fast outlier
detection using the local correlation integral. In: ICDE, pp. 315–324 (2003)

3. Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large
datasets. In: VLDB, pp. 392–403 (1998)

4. Angiulli, F., Basta, S., Pizzuti, C.: Distance-based detection and prediction of
outliers. IEEE Transactions on Knowledge and Data Engineering 18(2), 145–160
(2006)

5. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers
from large data sets. In: SIGMOD, pp. 427–438 (2000)

6. Aggarwal, C.C., Yu, P.S.: An effective and efficient algorithm for high-dimensional
outlier detection. VLDB J. 14(2), 211–221 (2005)

7. Lazarevic, A., Ertöz, L., Kumar, V., Ozgur, A., Srivastava, J.: A comparative study
of anomaly detection schemes in network intrusion detection. In: SDM (2003)

8. Beyer, K.S., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neigh-
bor” meaningful? In: ICDT, pp. 217–235 (1999)

9. Ho, T.K.: The random subspace method for constructing decision forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

10. Lazarevic, A., Kumar, V.: Feature bagging for outlier detection. In: KDD, pp.
157–166 (2005)

11. Kong, E.B., Dietterich, T.G.: Error-correcting output coding corrects bias and
variance. In: ICML, pp. 313–321 (1995)

12. He, Z., Deng, S., Xu, X.: A unified subspace outlier ensemble framework for outlier
detection. In: Fan, W., Wu, Z., Yang, J. (eds.) WAIM 2005. LNCS, vol. 3739, pp.
632–637. Springer, Heidelberg (2005)

13. Abe, N., Zadrozny, B., Langford, J.: Outlier detection by active learning. In: KDD,
pp. 504–509 (2006)

14. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences 55(1),
119–139 (1997)

Ensemble of Heterogeneous Detectors on Random Subspaces 383

15. Gao, J., Tan, P.N.: Converting output scores from outlier detection algorithms into
probability estimates. In: ICDM, pp. 212–221 (2006)

16. Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combin-
ing multiple partitions. Journal of Machine Learning Research 3, 583–617 (2003)

17. Otey, M.E., Ghoting, A., Parthasarathy, S.: Fast distributed outlier detection in
mixed-attribute data sets. Data Mining and Knowledge Discovery 12(2-3), 203–228
(2006)

18. Hawkins, D.M.: Identification of Outliers. Chapman and Hall, London (1980)

	Mining Outliers with Ensemble of Heterogeneous Detectors on Random Subspaces
	Introduction
	Literature Review
	Methodology
	Ensemble Construction
	HeDES Framework
	Outlier Score Function
	COMBINE Functions

	Experimental Evaluation
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

