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Message from the DASFAA 2010 Chairs

It is our great pleasure to welcome you to the proceedings of the 15th Interna-
tional Conference on Database Systems for Advanced Applications (DASFAA
2010). DASFAA is an international forum for academic exchange and technical
discussions among researchers, developers, and users of databases from academia,
business, and industry. DASFAA is a leading conference in the areas of databases,
large-scale data management, data mining, and the Web. We are delighted to
have held the 15th conference in Tsukuba during the cherry blossom season –
the very best season of the year.

The call for papers attracted 237 research submissions from 25 countries /
regions (based on the affiliation of the first author). Among them, 55 regular
papers and 16 short papers were selected for presentation after a thorough re-
view process by the Program Committee. The Industrial Committee, chaired by
Hideko S. Kunii and Umesh Dayal, selected 6 industrial papers for presentation
from 15 submissions and organized an industrial invited talk. The conference
program also included 22 demo presentations selected from 33 submissions by
the Demo Committee, chaired by Takahiro Hara and Kian-Lee Tan.

We are proud to have had two distinguished keynote speakers: Gerhard
Weikum (Max-Planck Institute for Informatics) and Raghu Ramakrishnan
(Yahoo! Research). Their lectures were the highlight of this conference. Tu-
torial Co-chairs, Kazutoshi Sumiya and Wookey Lee organized three tutorials
by leading experts: Mining Moving Objects, Trajectory and Traffic Data (by
Jiawei Han, Zhenhui Li, and Lu An Tang), Querying Large Graph Databases (by
Yiping Ke, James Cheng, and Jeffrey Xu Yu), and Introduction to Social Com-
puting (by Irwin King). A stimulating panel was organized by Panel Co-chairs
Yasushi Kiyoki and Virach Sornlertlamvanich. This rich and attractive confer-
ence program boasts conference proceedings that span two volumes in Springer’s
Lecture Notes in Computer Science series.

Beyond the main conference, Masatoshi Yoshikawa and Xiaofeng Meng, who
chaired the Workshop Committee, put together workshops that were of interest
to all. The workshop papers are included in a separate volume of proceedings
also published by Springer in its Lecture Notes in Computer Science series.

DASFAA 2010 was jointly organized by the University of Tsukuba and the
Database Society of Japan (DBSJ). It received in-cooperation sponsorship from
the KIISE Database Society of Korea, the China Computer Federation Database
Technical Committee, ARC Research Network in Enterprise Information In-
frastructure, Asian Institute of Technology (AIT), “New IT Infrastructure for
the Information-explosion Era,” MEXT Grant-in-Aid for Scientific Research on
Priority Areas, Japan, Information Processing Society of Japan (IPSJ), the
Institute of Electronics, Information, and Communication Engineers (IEICE),
Japan PostgreSQL Users Group, MySQL Nippon Association, and the Japanese



VI Message from the DASFAA 2010 Chairs

Firebird Users Group. We are grateful to the sponsors who contributed gener-
ously to making DASFAA 2010 successful. They are Beacon Information Tech-
nology Inc., Mitsubishi Electric Corporation, National Institute for Materials
Science (NIMS), KDDI R&D Laboratories Inc., National Institute of Advanced
Industrial Science and Technology (AIST), Ricoh Co., Ltd., NTT DATA Cor-
poration, Hitachi, Ltd., Ricoh IT Solutions Co., Ltd., SRA OSS, Inc., Japan,
and Nippon Telegraph and Telephone Corporation. We also appreciate financial
support from the Telecommunications Advancement Foundation and Kayamori
Foundation of Informational Science Advancement.

The conference would not have been possible without the support of many
colleagues. We would like to express our special thanks to Honorary Conference
Chair Yoshifumi Masunaga for his valuable advice on all aspects of organiz-
ing the conference. We thank Organizing Committee Chair Masaru Kitsuregawa
and Vice Chair Miyuki Nakano, DBSJ Liaison Haruo Yokota, Publicity Co-chairs
Jun Miyazaki and Hyoil Han, Local Arrangements Committee Chair Toshiyuki
Amagasa, Finance Chair Atsuyuki Morishima, Publication Chair Chiemi
Watanabe, and Web Chair Hideyuki Kawashima. We are grateful for the strong
support from the DASFAA 2010 Geographical Area Chairs: Bonghee Hong
(Korea), Li-Zhu Zhou (China), Jeffrey Xu Yu (Hong Kong), Ming-Syan Chen
(Taiwan), Stéphane Bressan (Singapore), Vilas Wuwongse (Thailand), Krithi
Ramamritham (India), James Bailey (Australia), Chen Li (America), and Peer
Kröger (Europe). Our thanks go to all the committee members and other indi-
viduals involved in putting it all together.

Finally, we thank the DASFAA Steering Committee, especially the immediate
past Chair, Kyu-Young Whang, and current Chair, Katsumi Tanaka, for their
leaderships and encouragement.

April 2010 Hiroyuki Kitagawa
Yoshiharu Ishikawa

Qing Li
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Uwe Röhm University of Sydney, Australia
Shourya Roy Xerox India Innovation Hub, India
Yasushi Sakurai NTT Communication Science Laboratories, NTT

Corporation, Japan
Simonas Saltenis Aalborg University, Denmark
Monica Scannapieco University of Rome, Italy
Markus Schneider University of Florida, USA
Heng Tao Shen University of Queensland, Australia
Hyoseop Shin Konkuk University, Korea
Atsuhiro Takasu National Institute of Informatics, Japan
Kian-Lee Tan National University of Singapore, Singapore
David Taniar Monash University, Australia
Egemen Tanin University of Melbourne, Australia
Jie Tang Tsinghua University, China
Yufei Tao Chinese University of Hong Kong, China
Vincent S. Tseng National Cheng Kung University, Taiwan
Anthony K.H. Tung National University of Singapore, Singapore
Vasilis Vassalos Athens University of Economics and Business,

Greece
Guoren Wang Northeastern University, China
Jianyong Wang Tsinghua University, China
Jiying Wang City University of Hong Kong, China
Wei Wang University of New South Wales, Australia
Raymond Chi-Wing Wong Hong Kong University of Science and Technology,

China
Vilas Wuwongse Asian Institute of Technology, Thailand
Jianliang Xu Hong Kong Baptist University, China
Haruo Yokota Tokyo Institute of Technology, Japan
Ge Yu Northeastern University, China
Jeffrey Xu Yu Chinese University of Hong Kong, China
Rui Zhang University of Melbourne, Australia
Aidong Zhang University at Buffalo, SUNY, USA
Yanchun Zhang Victoria University, Australia
Aoying Zhou East China Normal University, China



Organization XIII

Industrial Committee

Rafi Ahmed Oracle, USA
Edward Chang Google, China and University of California Santa

Barbara, USA
Dimitrios Georgakopoulos CSIRO, Australia
Naoko Kosugi NTT Corporation, Japan
Kunio Matsui Nifty Corporation, Japan
Mukesh Mohania IBM Research, India
Yasushi Ogawa Ricoh Co. Ltd., Japan
Makoto Okamoto Academic Resource Guide, Japan
Takahiko Shintani Hitachi, Ltd., Japan

Demo Committee

Lin Dan Missouri University of Science and Technology,
USA

Feifei Li Florida State University, USA
Sanjay Kumar Madria Missouri University of Science and Technology,

USA
Pedro Jose Marron University of Bonn, Germany
Sebastian Michel Max-Planck-Institut für Informatik, Germany
Makoto Onizuka NTT CyberSpace Laboratories, NTT Corporation,

Japan
Chedy Raissi National University of Singapore, Singapore
Lakshmish Ramaswamy The University of Georgia, Athens, USA
Lidan Shou Zhejiang University, China
Lei Shu Osaka University, Japan
Tomoki Yoshihisa Osaka University, Japan
Koji Zettsu National Institute of Information and

Communications Technology, Japan
Xuan Zhou CSIRO, Australia

Workshop Committee

Qiang Ma Kyoto University, Japan
Lifeng Sun Tsinghua University, China
Takayuki Yumoto University of Hyogo, Japan

Local Arrangements Committee

Kazutaka Furuse University of Tsukuba, Japan
Takako Hashimoto Chiba University of Commerce, Japan
Yoshihide Hosokawa Gunma University, Japan
Sayaka Imai Sagami Women’s University, Japan



XIV Organization

Kaoru Katayama Tokyo Metropolitan University, Japan
Shingo Otsuka National Institute for Materials Science, Japan
Akira Sato University of Tsukuba, Japan
Tsuyoshi Takayama Iwate Prefectural University, Japan
Hiroyuki Toda NTT Corporation, Japan
Chen Han Xiong University of Tsukuba, Japan

External Reviewers

Sukhyun Ahn
Muhammed Eunus Ali
Mohammad Allaho
Parvin Asadzadeh
Seyed Mehdi

Reza Beheshti
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of Entity-Relationship Facts

Gerhard Weikum

Max-Planck Institute for Informatics
Saarbruecken, Germany
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Abstract. The proliferation of knowledge-sharing communities like Wikipedia
and the advances in automatic information extraction from semistructured and
textual Web data have enabled the construction of very large knowledge bases.
These knowledge collections contain facts about many millions of entities and
relationships between them, and can be conveniently represented in the RDF data
model. Prominent examples are DBpedia, YAGO, Freebase, Trueknowledge, and
others.

These structured knowledge collections can be viewed as “Semantic
Wikipedia Databases”, and they can answer many advanced questions by
SPARQL-like query languages and appropriate ranking models. In addition, the
knowledge bases can boost the semantic capabilities and precision of entity-
oriented Web search, and they are enablers for value-added knowledge services
and applications in enterprises and online communities.

The talk discusses recent advances in the large-scale harvesting of entity-
relationship facts from Web sources, and it points out the next frontiers in building
comprehensive knowledge bases and enabling semantic search services. In par-
ticular, it discusses the benefits and problems in extending the prior work along
the following dimensions: temporal knowledge to capture the time-context and
evolution of facts, multilingual knowledge to interconnect the plurality of lan-
guages and cultures, and multimodal knowledge to include also photo and video
footage of entities. All these dimensions pose grand challenges for robustness and
scalability of knowledge harvesting.
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Raghu Ramakrishnan
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Abstract. In this talk, I will present an overview of cloud computing at Yahoo!,
in particular, the data management aspects. I will discuss two major systems in
use at Yahoo!–the Hadoop map-reduce system and the PNUTS/Sherpa storage
system, in the broader context of offline and online data management in a cloud
setting.

Hadoop is a well known open source implementation of a distributed file sys-
tem with a map-reduce interface. Yahoo! has been a major contributor to this
open source effort, and Hadoop is widely used internally. Given that the map-
reduce paradigm is widely known, I will cover it briefly and focus on describing
how Hadoop is used at Yahoo!. I will also discuss our approach to open source
software, with Hadoop as an example.

Yahoo! has also developed a data serving storage system called Sherpa (some-
times referred to as PNUTS) to support data-backed web applications. These ap-
plications have stringent availability, performance and partition tolerance require-
ments that are difficult, sometimes even impossible, to meet using conventional
database management systems. On the other hand, they typically are able to trade
off consistency to achieve their goals. This has led to the development of special-
ized key-value stores, which are now used widely in virtually every large-scale
web service.

Since most web services also require capabilities such as indexing, we are
witnessing an evolution of data serving stores as systems builders seek to balance
these trade-offs. In addition to presenting PNUTS/Sherpa, I will survey some of
the solutions that have been developed, including Amazon’s S3 and SimpleDB,
Microsoft’s Azure, Google’s Megastore, the open source systems Cassandra and
HBase, and Yahoo!’s PNUTS, and discuss the challenges in building such sys-
tems as ”cloud services”, providing elastic data serving capacity to developers,
along with appropriately balanced consistency, availability, performance and par-
tition tolerance.
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Abstract. Skyline queries play an important role in applications such as multi-
criteria decision making and user preference systems. Recently, more attention
has been paid to the problem of efficient skyline computation in the P2P systems.
Due to the high distribution of the P2P networks, the skyline computation incurs
too many intermediate results transferred between peers, which consumes mass
of the network bandwidth. Additionally, a large number of peers are involved in
the skyline computation, which introduces both heavy communication cost and
computational overhead. In this paper, we propose a novel Distributed Caching
Mechanism (DCM) to efficiently improve the performance of the skyline calcu-
lation in the structured P2P networks, using a Distributed Caching Index (DCI)
scheme and an advanced cache utilization strategy. The DCI scheme is employed
to efficiently locate the cache that can properly answer a future skyline query.
Exploring the property of entended skyline, we can optimize the utilization of
the cached results for answering future skyline queries. Extensive evaluations on
both synthetic and real dataset show that our approach can significantly reduce
both bandwidth consumption and communication cost, and greatly shorten the
response time.

1 Introduction

Peer-to-peer (P2P) computing and its applications have attracted much attention re-
cently. Due to its advanced features like scalability, flexibility, computing and storage
capability, it has been widely employed in various applications such as resource shar-
ing, distributed data management [9]. In the field of data management, P2P systems
have been successfully exploited to support different types of queries, such as conven-
tional SQL queries [9] and range queries [10]. Presently, skyline computation against
a large-scale multi-dimensional data in P2P networks has gained increasing interests
[3,5,15], since the skyline operator [2] has widely been applied in data mining, multi-
criteria decision making and user preference systems.

A skyline query over a set of d-dimensional data, selects the points which are not
dominated by any other point in the database. A point p1 dominates another point p2, if

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 3–18, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



4 L. Chen et al.

p1 is no worse than p2 in any dimension and is better than p2 in at least one dimension.
Generally, the skyline query is evaluated based on every dimension of the database.
However, in the real applications, users may have specific interests in different subsets
of dimensions. Thus skyline queries are often performed in an arbitrary subspace ac-
cording to users’ preferences. We refer to this type of query as Subspace Skyline Query,
and focus on the problem about the subspace skyline query cache mechanism in this
paper.

There is a long stream of research on solving the skyline query problem, and many al-
gorithms have been developed for this purpose on either centralized, distributed or fully-
decentralized P2P environment [2,3,5,15]. However, no one has utilized any caching
mechanism to improve the performance of the skyline computation. The caching mech-
anisms are widely used to facilitate the query processing in the P2P networks [10,14].
The query results are cached at peers and used to answer future skyline queries, which
can significantly reduce the response time and communication cost. However, the sky-
line query is very different from the conventional SQL query and similarity query,
which can be split into sub-queries and whose results can be combined from sub-queries
or overlapped queries. Taking range query as example, we can find the caches cover-
ing or overlapping the query range to obtain the answer. On the contrary, it is difficult
to share the result sets with the skyline queries on different subspaces, because of the
characteristic of the skyline query. In other words, the cache for a certain query result
can only be used to answer the query which is exactly same as the cached one (on same
subspace), which abates the efficiency of the existing caching methods tremendously.

On the other side, we can expect that the use of the cache mechanism for our P2P
skyline computation can gain significant benefits for the following two reasons. First, in
the skyline computation, almost all of peers in the P2P network will be involved. Even
some progressive algorithms still have to access a huge number of peers. Therefore,
the cache mechanism has potential to enhance the skyline computation in the P2P net-
works. Second, given a d-dimensional dataset, there are 2d−1 different skyline queries
over any of the non-empty subspaces of the whole space. Each skyline query demands
an individual result with a set of skyline points, i.e., there are 2d−1 different skyline re-
sults in total respecting to d-dimensional space. Assume that all these results have been
cached, then any query can be answered with a marginal cost to locate the cache and
fetch the answer. The scalability and huge storage capability features of P2P systems
make it possible for the assumption.

In this paper, we propose a novel approach to efficiently improve the performance of
the skyline computation in a structured P2P network using Distributed Caching Mech-
anism (DCM). Specifically, we design a Distributed Caching Index (DCI) method to
manage the distributed caches. Thus the query peer can locate the promising cache ef-
ficiently and an advanced cache utilization strategy can exploit the caches containing
answers when no exactly matched cache is found. Our approach has two advantages:
(1) our DCM approach is overlay independent, as the index value for a certain query
result is unique for the skyline query, and this value can be used to locate the peer which
indexes the value. The index value is single dimensional and hence can be easily sup-
ported by any type of structured P2P overlay; (2) our caching mechanism is orthogonal
to the query algorithm. The purpose of the query algorithm here is to conduct the skyline
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query when the cache which contains the answer is not available. Videlicet, any skyline
computation algorithm can be adapted to our DCM in P2P networks.

In this work, we focus on providing a general solution for caching skyline query in a
structured P2P overlay and contribute to its advancements with the following:

– We propose a novel Distributed Caching Mechanism, which explores the Dis-
tributed Caching Index technique to maintain the distributed result caches. The
DCI is well adapted to the structured P2P network and can locate the cached result
progressively.

– A concept of extended skyline [13] which is the superset of skyline, is used for
cache in our caching mechanism. Exploring the property of the extended skyline, we
propose an advanced cache utilization strategy to optimize the DCM by maximizing
the utilization of the existing caches. We are able to use the cached query results to
the best of its abilities when no exactly matched cache is found. Thus the expensive
skyline query processing can be avoided as much as possible.

– We conduct extensive experiments on both real and synthetic datasets to evalu-
ate the performance of the proposed caching mechanism. Particularly, we exploit
the SSP [15] and TDS [16] skyline query algorithm as the baseline approaches.
We adopt the BATON [8] structure, which is used in SSP [15], as the P2P over-
lay. The same experimental platform can fairly evaluate the effect of our caching
mechanism. Our results show that the DCM can greatly reduce the network traffic
consumption and shorten the response time.

The rest of this paper is organized as follow. The preliminaries of the work are re-
viewed in Section 2. Section 3 presents our Distributed Caching Mechanism, including
the challenges, index strategy and skyline calculation algorithms. The extensive exper-
imental study is reported in Section 4, and finally we conclude the paper in Section 5.

2 Preliminaries

In this section, we first discuss the related work, followed by the notations and defini-
tions in this paper.

2.1 Related Work

Skyline query processing was first introduced into database systems by Borzonyi et
al. [2], with the Block Nested Loop (BNL) and Divide-and-Conquer algorithms. Most
early researches on the skyline query are focused on the traditional centralized database.
Chomicki et al. [4] proposed a Sort-Filter-Skyline algorithm as a variant of BNL. God-
frey et al. [7] provided a comprehensive analysis of those aforementioned algorithms
without indexing support, and proposed a new hybrid method Linear Elimination Sort
for Skyline. Yuan et al. [16] investigated the subspace skyline computation. It utilizes
two sharing strategy based algorithms, Bottom-Up and Top-Down algorithms, to com-
pute all possible non-empty subset skyline points of a given set of dimensions. The
skyline computation in both distributed and fully-decentralized P2P systems has at-
tracted more attention recently. Wang et al. [15] proposed the Skyline Space Partitioning
(SSP) approach to compute skylines on the BATON [8]. Vlachou et al. [13] proposed



6 L. Chen et al.

a threshold based algorithm called SKYPEER, to compute subspace skyline queries
on a super-peer architecture P2P network. It use extended skyline to share subspace
skyline results from all peers. But every peer in the network should pre-computes all
extended subspace skyline results of its data. In this paper, we are the first to combine
the cache mechanism and extended skyline. All peers in our network need not to do
pre-computation as SKYPEER did. And our aim is to minimize the skyline computa-
tion processing at peers, which is a heavy and costly task. What’s more, our approach
can be applied to any structured P2P networks.

Another area relevant to our work is caching query results in the P2P systems. The
caching mechanism is essential to improve the query performance in the P2P systems,
as it can significantly shorten the response time and reduce the communication cost.
For decentralized unstructured P2P systems, Wang et al. [14] proposed a distributed
caching mechanism that distributes the cache results among neighboring peers. For
structured P2P systems, Saroiu et al. [12] investigated a content caching mechanism
for KaZaA [1] P2P network, which shows a great effect on the search performance.
Sahin et al. [10] employed caching to improve range queries on the multidimensional
CAN [11] P2P system, based on Distributed Range Hashing (DRH). To the best of our
knowledge, there is no previous research work on the skyline query caching in the P2P
networks, and we cannot simply adopt any existing cache mechanism in this scenario
due to the characteristic of the skyline query.

2.2 Notations and Definitions

Without loss of generality, we make two assumptions: 1) all values are numeric; and
2) the larger values on each dimension are preferred by users in their skyline queries.
In practice, we can easily apply our proposal to the cases where the smaller values
are preferred by adding a negative sign to each values on the relevant dimensions. All
notations used throughout this paper are listed in Table 1.

Table 1. Notations Used in Discussions

Symbol Description
d Data space dimensionality
Ω Unit hypercube [0, 1]d

P A peer in the P2P system
D Dataset stored in the P2P system
O A data object in D

Definition 1. (Dominating Relationship) Let the data space be a d-dimensional hy-
percube Ω = [0, 1]d, and the dataset D be a set of points in Ω. For any two points
u, v ∈ D, u dominates v if ui ≥ vi where 1 ≤ i ≤ d and there exists at least one
dimension j such that uj > vj .

Definition 2. (Skyline Point) A data point u is a skyline point if u is not dominated by
any other point v in D.
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Consider a running example as follow: a travel agency online has a list of hotels, each
has three attributes, listed in Table 2, i.e. grade (star), occupancy rate and discount. H2
is a skyline point as it has the largest value on the dimension occupancy rate and is not
dominated by any other object.

Table 2. Hotel Attributes and Values

Grade (Star) Occupancy Rate Discount
H1 5 0.6 0.1
H2 4 0.8 0.2
H3 2 0.7 0.4
H4 5 0.4 0.5
H5 3 0.5 0.3

Definition 3. (Subspace Skyline Point) Given a subspace S and a data object O in
dataset D, the projection of O in the subspace S, denoted by OS , is an |S|-tuple
(O.ds1,. . ., O.ds|S| ), where ds1,. . ., ds|S| ∈ S. OS is the subspace skyline point if
it is not dominated by the projection of any other object in D on the subspace S. Thus
we call O a subspace skyline point on the subspace S.

Definition 4. (Query Containing Relationship) Suppose two subspace skyline queries
Qp and Qq belong to subspaces Sp and Sq respectively. Let Si (1 ≤ i ≤ |Sp|) be the
si-th dimension of d, and Sj (1 ≤ j ≤ |Sq|) be the sj-th dimension of d, then we define
the query containing relationship (⊂) as: Qp ⊂ Qq ⇔ {(∀si(∈Qp)=1, si(∈Qq)=1) ∧
(∃sj(∈Qq)=1, sj(∈Qp)=0)}. Correspondingly, we can also say thatQp is a contained
skyline query of Qq .

For example, based on Definition 4, ifQp=(0, 1, 1) andQq=(1, 1, 1) then we haveQp ⊂
Qq, as d2, d3(∈ Qp)=1 and d2, d3(∈ Qq)=1, while d1(∈ Qq)=1 and d1(∈ Qp)=0.

3 Distributed Caching Mechanism

This section will introduce our Distributed Caching Mechanism algorithm, which uti-
lizes a well-adapted Distributed Caching Index technique to index the distributed sky-
line caches and route the skyline query to the promising peers.

Before presenting our approach, we specify the concept of cache. The term cache
here refers to a set of skyline points, which are the result of a certain skyline query.
In this paper, we divide cache into two categories: local cache and global cache. The
local cache is the skyline result of the local dataset at a peer, while the global cache
is the final skyline result of all peers in the network. All local caches are thought to be
stored at their owner peers. In practice, we can compute the local skyline in each peer on
the fly as it is time efficient and does not incur any communication cost. However, the
global cache management is a non-trivial task as we cannot store all the global caches
at each peer due to the storage limitation at each peer and the maintenance cost over
the network. Therefore, the purpose of our work is to design a method to manage and
utilize the global cache in an effective way.



8 L. Chen et al.

3.1 Indexing Cached Results on P2P Overlay

After the skyline results have been computed on the P2P network, the results are then
cached at the query originator peer. To answer future skyline queries based on the
cached results, an efficient index structure is designed on the structured P2P overlay
for indexing the cached skylines, which is named as Distributed Caching Index (DCI).
Each skyline result set is indexed by a unique value which is maintained by a certain
peer whose index range contains the index value. We should notice that only the query
originator caches the skyline results and the location of the cached skylines is published
via the index value on the P2P network to facilitate the skyline computation. Therefore,
the DCI distributes the indices proportionally over the P2P network, which can guar-
antee a balanced workload at each peer. In what follows, we present the proposed DCI
method based on the BATON overlay and then discuss how to deploy the proposed DCI
on DHT-based overlay at the end of this section.

Formally, for a d-dimensional data space, given a skyline query Qi=(d1, ..., dd), we
define its value VQi =d1 × 20 + ... + dd × 2d−1 and the maximum value of all skyline
queries VQmax =20+21+ . . .+2d−1=2d−1, which is also equal to the number of differ-
ent subspace skyline queries. Then, the index value VIi of Qi is calculated as follows:

VIi = Rmin +
VQi


 VQmax

Rmax−Rmin
�

(1)

where Rmax and Rmin indicate the maximum and minimum values of the index range
of the BATON network respectively. Note that the cache index VIi satisfies the condi-
tion VIi∈[Rmin, Rmax), which guarantees the cache index can be found at a certain
peer in the BATON network.

Publishing Cache Index: After a skyline query Qi has been processed, the query
originator P first calculates the cache index value VIi and then checks if its own index
range contains VIi . If true, P publishes the cache index of Qi in itself. Otherwise, P
routes the cache index publishing message to the proper peer according to the BATON
protocol [8].

[1.75, 2.125)

[2.5, 3.25)

[3.625, 3.8125)

[1.375, 1.5625) [2.3125, 2.40625) [3.4375, 3.53125)

[3.8125, 4)

[3.53125,3.625)[3.25,3.4375)[2.40625,2.5)[1,1.375) [1.5625,1.75) [2.125, 2.3125)

A

C

D F

B

E

H I J K L M

G

IndexValue = 1.71428

Q=(1, 1, 0)

result =

{H1, H2}

VQ =3

VQmax = 7
Max_range= 4

Fig. 1. An Example of Cache Index Publishing

Example 1. Consider the example shown in the Figure 1 and suppose the index range of
the BATON is [1,4). If the peer B has processed a skyline queryQ=(1, 1, 0) and obtains
the result {H1, H2}, then B caches the result and publishes the result to the peer I .
This is because the index value of Q=(1, 1, 0) is 3/
7/4� = 1.71428 ∈ [1.5625, 1.75),
which belongs to the index range of the peer I .
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Processing Query with Cache Index: If the cache index of a skyline query Qi has
been published on the P2P network andQi is issued by another peer afterward, then the
peer can locate a proper skyline cache to answer Qi. At the beginning, the query issuer
P checks if its index range contains the cache index VIi . If true, then the cache index
on P can be used directly to locate the cache. The query issuer then visits the peer who
caches the skyline result using addr parameter. After that, the query issuer publishes
a new cache index pointing to itself. If VIi does not belong to the index range of P ,
Qi will be routed to a proper peer according to the BATON protocol. According to the
BATON protocol, the routing cost of the skyline query to a certain peer is O(log N),
where N is the total peer population. Thus the publishing or searching cost of a cache
index with the DCI is also O(log N).

[1.75, 2.125)

[2.5, 3.25)

[3.625, 3.8125)

[1.375, 1.5625) [2.3125, 2.40625) [3.4375, 3.53125)

[3.8125, 4)

[3.53125,3.625)[3.25,3.4375)[2.40625,2.5)[1,1.375) [1.5625,1.75) [2.125, 2.3125)

A

C

D F

B

E

H I J K L M

G

Cache :

Q=(1, 1, 0)

result =

{H1, H2}

Q=(1, 1, 0)

1

2

IndexValue = 1.71428

Fig. 2. A Query Example of using Cache Index

Example 2. The example in the Figure 2 shows how to process a skyline query by using
the DCI technique. Suppose the peer B issuedQ=(1, 1, 0) before and cached the result.
When a peer F issues the same query Q, it first tries to find if the results of Q have
been cached. To this end, F visits the peer I since the index value 1.71428 falls into its
index range. As such, F obtains the cached results from B.

The above algorithm can compute skyline efficiently with the cached results. Once a
specific cache is established, it can be explored to answer the following identical skyline
queries. However, due to the dynamicity of the P2P system, we should address the
problem of the cache update. Our approach is similar to [10]. First, the cache may be
changed when data update occurs. When some data object at a peer updates (insert or
delete), we should check whether the update changes the local skylines. If the update
does not change the skyline in any subspace, no further operation is needed. Otherwise,
if the affected local skylines have been already cached, we send the skyline update to
the corresponding global cache. We further check the global cache and see if we need to
take further operations. Note that the local cache update may not incur the global cache
update. If the global cache needs to be updated, we either update the global cache (for
data insertion), or just remove the cache and corresponding index (for data deletion). In
the deletion case, if the global cache is kept, we need re-examine it by comparing with
the skylines from other peers, which is expensive and unacceptable.

Another possible factor affecting cache is node join or leave. If a new peer par-
ticipates the P2P system carrying some new data objects, it informs all the index-
maintaining peers and all those peers record the information. For the following queries,
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the indexing peer returns the cached result and notifies the originator peer to connect
the new peer for the additional skyline candidates, and then it deletes the marked up-
dates. The originator obtains the local skylines from the new peer and then merges them
with the cached global skylines. If the global skylines are changed, the originator pub-
lishes the new cache index and disables the old ones. On the other side, the node leave
may also trigger the cache update problem. When a peer leaves the network, one of its
neighbors takes over its index range. If it has some data objects, it will hand over its
data objects to its neighbor.

3.2 Optimizing Cache Utilization

While the proposed cache mechanism can utilize the cached answers for future skyline
queries, the effectiveness is limited, as the cached results for a certain query can be only
used to answer the identical future queries.

The skyline queries are often performed in an arbitrary subspace according to the
user’s preference. Therefore, we need to deal with 2d-1 subspace skyline queries. An
alternative caching mechanism is to pre-materialize a set of skyline points on various
subspaces and then store them in the cache for the future skyline queries. Obviously,
such approaches are infeasible as there are a large number of skyline answer sets and the
maintenance cost could be very expensive. Recall the caching mechanism for the range
query processing, the cached results can be reused for any overlapped range query,
and thus the caches gain effective utilization. Therefore, the favorable solution for the
skyline caching mechanism is to improve the utilization of the cached skyline answers
for future queries.

Relationship of Subspace Skyline Results: In [13], Vlachou et al. analyzed the re-
lationship between subspace skyline query results and proposed a new concept of ex-
tended skyline which based on the concept of extended domination. They are defined
as follow:

Definition 5. (Extended Domination) For any dimension set U , where U ⊆ D, p ex-
tended dominates q if on each dimension i ∈ U , pi > qi.

Definition 6. (Extended Skyline) The extended skyline is a set of all points that are
not extended dominated by any other data point in dataset D.

The extended domination is a strictly dominating relationship substantively. The ex-
tended skyline is a containing superset of normal skyline set. From the above defini-
tions, an important property of subspace skyline relationship can be found [13]:

Theorem 1. For two extended skyline queries, if Q∗
p ⊂ Q∗

q then R∗
p ⊆ R∗

q.

With the property of the extended skyline, we are able to cache the extended skyline
results for the future skyline queries. As long as the results of a containing-query can
be found, we just get the results from the cache and do not need to issue a new skyline
query to the P2P system, which can significantly increase the cache hit rate and reduce
the processing cost. Additionally, it is very easy to obtain the exact skyline points from
the extended skyline points, as the result set is small and we only need to remove the
dominated data points.
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The Enhanced Caching Algorithm: In Section 3.1, only the cache of the identical
skyline query can be used for a coming skyline query. If a skyline query was not is-
sued before, there does not exist any matched cache. A naive method is to broadcast
the skyline query to the whole P2P network and ask each peer to compute its local sky-
line. Finally, the originator peer merges all returned local skylines to identify the global
skylines. The progressive algorithms, such as the SSP [15], still involve a great num-
ber of peers to participate the process of the skyline computation, with both expensive
communication cost and data transferring cost. Therefore, the key point to improve the
skyline computation performance is to increase the utilization ratio of the cached results
for answering future queries. The proposed cache utilization strategy is designed to ex-
ploit the result containment between skyline queries, and hence it can greatly alleviate
the expensive skyline computation over the P2P network.

According to Theorem 1, we have a relationship between two skyline queries:Q∗
p ⊂

Q∗
q ⇒ R∗

p ⊆ R∗
q , if we conduct the extended skyline query. Obviously, when a

skyline query Qp is issued for the first time, no exactly matched cache can be found
for this query. However, if we can find one cache for its containing-queryQq which is
available in the P2P network, then we can useR∗

q to answerQp sinceR∗
q contains all

the skyline points of Rp. The communication cost of this method is O(log N) where
N is the number of peers in the P2P network, while the data transferring cost is equal
to the size of R∗

q . In this way, we can avoid computing a skyline query over the whole
P2P network if there exists its containing query.

In order to find the cache of a containing-query of the skyline query Qp, a naive
solution is to orderly select every containing-queryQq thatQp ⊂ Qq , until one desired
cache is found. This method guarantees that if the cache of a containing-skyline-query
exists, it then can be located and taken into use. However, in the worse case that no cache
for any containing-query is available, the maximal communication cost for locating the
cache is (2d−|Sq|)×(log N), where N is the number of peers in the P2P network. When
the dimensionality is large and |Sp| is small, it incurs a heavy cost overhead. The other
solution is based on the random selection strategy, i.e., randomly adding one dimension
as an active dimension to generate a minimal containing-query and search its cache.
Suppose Qp has |Sp| active dimensions, we randomly select one containing-queryQq

at the first time, which satisfies Qq has only one more active dimension than Qp. If the
desired cache was not found, we then recursively add another active dimension to Qq

and repeat the same process, until one cache of a containing-skyline-query is found or
reaching the containing-query whose dimensions are all active. This method may skip
some containing-queries existing in the system, but the maximal communication cost
for locating the desired cache is only (d − |Sp|) × (log N), where N is the number of
peers in the P2P network.

Compared with the above approaches, the first approach can find cache as long as
any containing-query cache exists in the network, thus it has a higher cache hit rate.
However it may incur a heavy communication cost to locate the desired cache. On the
contrary, the second approach has a lower cache hit rate but incurs less suffering in case
that the desired cache is not available. So the overall optimal performance is a tradeoff
between the cache hit rate and the communication cost when locating the desired cache.
In the implementation, we find if there exist some caches for the skyline queries with
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nearly full dimensionality, the cache hit rate for the second approach is high, and hence
yields better performance. In this work, we adopt the latter mechanism in our proposed
DCM scheme.

Algorithm 1. dcmSkyline(Q)
RQ=∅ /* RQ is the result of Q */;1

RQi =∅ /* RQi is the result of Qi that is Q’s containing skyline query */;2

compute index value VIQ of Q according to the Formula 1;3

find the peer P whose VIQ ∈ [P.minSubRange, P.maxSubRange);4

if (find Q’s cache index in P ) then5

cacheIndex =< Q, addr >;6

RQ=fetchCache(cacheIndex);7

if (RQ �= ∅) then8

indexPublish(Q, addr);9

return RQ;10

else11

randomly select Qi that Q ⊆ Qi ∧Q⊕Qi==1;12

if (Qi exists) then13

RQi =dcmSkyline(Qi);14

if (RQi �= ∅) then15

RQ=skyline(RQi );16

indexPublish(Q, addr);17

return RQ;18

else19

process the skyline query Q;20

Algorithm 1 shows the process of the skyline query computation based on the en-
hanced cache utilization strategy. Given a skyline query Q, the query originator peer
computes the index value VIQ , according to the Formula 1. Then the peer P whose
index range covers VIQ is found (lines 3-4). If VIQ is in P , Q is then routed to the peer
that keeps the desired cache and the cached results are returned to the query origina-
tor peer. After that, a new cache index is published (lines 5-10). However, if the cache
for answering Q is not available in the P2P network, the query originator peer will
randomly select one of its containing-query Qi which satisfies the condition that Qi

is the smallest containing-query of Q (line 12). If Qi is a valid query which has one
more active dimension than Q, the Algorithm 1 will be called recursively to find the
cache for the containing-query Qi, until one of these caches is found or reaching the
largest containing-query (i.e., the skyline query with full dimensionality) (lines 13-14).
If the containing cache is found, the query originator peer computes the skyline query
Q based on that returned cache to get the final skyline results and publishes a new cache
index to the P2P network (lines 15-18). At last, if no cache for any containing-query is
available, the query originator peer conducts the skyline computation algorithm to get
the answers (e.g., using the SSP algorithm to find the skyline points) (lines 19-20).



Distributed Cache Indexing for Efficient Subspace Skyline Computation 13

Note that, in all operations related to the cache, the extended skyline points are used,
i.e., transferring the cached extended skyline points and caching the extended skyline
points. Only when returning the skyline results to the end-user, the peer computes the
exact skyline results from the extended skyline points locally. The correctness of this
algorithm is guaranteed by Theorem 1.

4 An Experimental Study

In this section, we report the experimental results obtained from the extensive simula-
tion implemented in Java. We study the performance of our skyline caching mechanism
DCM on the BATON overlay with respect to three aspects: dimensionality, network
size and data size. The proposed DCM is evaluated against the adapted TDS approach
based on the advanced centralized skyline algorithm TDS [16] and the progressive P2P
skyline algorithm SSP [15]. For two baseline algorithms, we examine the performance
with and without cache. In the scenario that the cache mechanism is not available, the
query originator computes the skyline using the skyline query algorithm. For example,
in the TDS approach, the query originator peer floods the query to the whole P2P net-
work; upon receiving a query request from the query originator, each peer computes
its local skyline, returns the result back to the query originator peer, and finally these
local skylines are merged to generate the global skyline. On the contrary, if the previous
query results are cached, the query originator always tries to find the answer from the
cache directly. We consider the following five performance metrics:

– Cache hit probability: the probability that the cache of the exactly match skyline
query or the containing skyline queries is found.

– Involved node number: the node population visited by the skyline query, includ-
ing originator nodes, nodes routing query, nodes delivering message and nodes con-
ducting skyline query.

– Message communication cost: the total number of messages transferred in the
network for skyline computation.

– Response time: the overall elapsed time to answer the skyline query.

The experimental results show that the above metrics include all processing cost in
the skyline computation, i.e., queries delivering and computing, intermediate results
transferring, cache and index maintaining.

The performances are measured through simulation experiments on a Linux Server
with four Intel Xeon 2.80GHz processors and 2.0GB RAM. All experiments are re-
peated 10 times, and each of them issues 1000 skyline queries starting from a random
node. We distribute the data points randomly into all peers in the BATON network. We
use three kinds of different datasets: two synthetic datasets of independent and anti-
correlated distribution, which have up to 8 million data points, and a real dataset of
the NBA players’ season statistics from 1949 to 2003 [6], which approximates a cor-
related data distribution. Our approach yields similar performance superiority for three
datasets, as the performance is mainly affected by the cache hit rate. Although, more
skyline points need to be transferred in the network for anti-correlated data, the perfor-
mance improvement of anti-correlated dataset is almost similar to that of independent
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data. Therefore, we only present the results on the synthetic independent datasets here
due to the space constraint. The parameters used in the experiments are listed in Table 3.
Unless stated otherwise, the default parameter values, given in bold, are used.

Table 3. Parameters Used in Experiments

Parameter Setting

Dimensionality 4, 5, . . ., 10

Peer population 27, . . ., 212

Data volume at each peer 50, 100, 200, 400, 800, 8000

4.1 Cache-Hit Probability

We first study the cache-hit probability of our proposed DCM. The cache hit for the
DCM we calculate is not only the probability of the exactly-matched cache hit, but also
with the probability of the containing-query cache. The cache-hit probability is related
to the queries which have been processed before, and has no relationship with both data
size and network size. Therefore, only dimensionality is concerned as it determines the
total number of distinct queries. The results in the Figure 3(a) show that the probability
drops down when the dimensionality increases. It reaches 99% when the dimensionality
is 4, because the total number of the skyline query results is 24− 1, which is very small
compared with 1000 randomly generated subspace skyline queries and undoubtedly has
many repeated queries. As expected, due to the number of different queries increases
exponentially (as dimensionality increases), the hit rate drops accordingly. For example,
the cache hit rate for the exact-match method is less than 40% when the dimensionality
equals to 10. However, our DCM approach is very robust with respect to the dimen-
sionality change. Even though the dimensionality reaches 10, the cache-hit probability
remains about 90%. Enhanced with our optimized cache utilization strategy, we can get
the query result from the caches of the containing-queries, not only from the cache of
the identical query.

The experimental results shown in the Figure 3(b) demonstrate the different cache-hit
performance between the DCM and the exact-match method. We randomly issue 1000
subspace queries in a 10-dimensional dataset and compute the cache hit rates for the
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two approaches after every 100 queries have been finished. We can see that the DCM
outperforms the exact-match method in all cases. The final probability of the DCM is
nearly 90% with the help of the containing-query caches, while the probability of the
exact-match method is no more than 40%.

Obviously, the proposed DCM can improve the cache-hit rate and hence it can greatly
reduce the processing cost of the baseline skyline algorithms. Since the DCM yields a
significant improvement against the exact-match method, we will omit the comparison
with the exact-match method in the following experiments, as we concern how the
caching mechanism can improve the performance of the baseline algorithms in case of
without cache.

4.2 Number of Involved Nodes

The metric involved node number counts all nodes who participate in skyline query
computation, even including the nodes which only relay the query messages. The results
on Figure 4 show that our DCM involves much fewer nodes than the baseline SSP
and TDS algorithms. Even when the network size increases, the DCM approaches still
yield better performance, and the gap between the DCM approaches and the baseline
algorithms remains wide. This is owing to the efficiency of our proposed DCI technique,
and we only need O(logN) cost to locate and fetch the cached results in most cases.
Therefore, our DCM can reduce the involved peer population and process the skyline
query efficiently.
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The idea of the TDS [16] cannot work effectively in the P2P environment, because it
can get only the partial answers from the caches of the containing queries and have to
flood messages to all peers in order to locate the missing answers. Actually, the cache
hit rate of the TDS is the same as other centralized approaches as only the cache of
the exactly matched query is reusable. On the contrary, with the extended skyline, our
DCM approach can obtain the answers from the caches of any containing skyline query
directly, and hence the cache-hit rate (or cache utilization rate) is improved.

4.3 Message Communication Cost

The next performance metric we consider is the message communication cost. From
Figure 5, we can find that the message cost of the enhanced DCM approaches is much



16 L. Chen et al.

lower than the baseline SSP and TDS algorithms, and is steady with the increase of
dimensionality, network size and data size. In the DCM, if the cache was found, the
main cost is to locate and return the cache to the query originator. Note that, in case that
the cache could be found, our DCI-based approach has only O(logN) cost to locate the
peer with the cache.
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4.4 Response Time

The response time indicates the average elapsed time for the query originator to obtain
the global skylines. The results are shown in Figure 6. Like the previous cases, the DCM
outperforms the baseline SSP and TDS approaches. However, the difference is that the
SSP performs worse than the TDS. The reason is because the TDS may find the partial
skylines from the caches of the containing queries, and it broadcasts the query to all
peers to get all “missing” skylines simultaneously; while the SSP must find a certain
region according to the partition histories and compute the skyline in that region, and
then visits other regions progressively if necessary.
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Fig. 6. Performance on Response Time

4.5 Effect of Updates

Finally we show the performance of the algorithms on peer updates. We randomly se-
lect 1024 peers and 1 million 6-dimensional data points and vary the peer update rate
from 5% to 20% within the period of 1000 query executions. The type of the node up-
date behaviors (i.e., node join, node leave, data insert, data deletion and data update)
is randomly chosen. We use the response time to evaluate the efficiency of different
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approaches. In Figure 7, the performance of all DCM-based approaches is better than
that of the baseline methods, although the DCM mechanism is deteriorated nearly 4
times comparing to the case without updates, as some caches may be disabled due to
the updates. The updates have no impact on the baseline SSP, because it calculates each
skyline query in the originated peer and propagates to the promising peers progres-
sively regardless of update. The performance of the TDS is marginally deteriorated by
the reason that the intermediate result can not be used when peers update. But the effect
is very limited because the crucial consumption of the response time is the network
communication, and TDS has to access all the peers to retrieve the missing skylines.
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5 Conclusion

In this paper, a novel query-driven caching mechanism DCM is proposed for comput-
ing skyline on a structured P2P overlay. The proposed method can be easily applied to
other structured P2P overlays and is compatible with any distributed skyline computa-
tion algorithm. The DCM uses a distributed indexing strategy to locate the cache and
an enhanced cache utilization strategy is introduced to improve the cache performance.
We conducted the extensive experiments on various datasets and the experimental re-
sults demonstrate the superiority of our approach.
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Abstract. In this paper, we propose a fully decentralized framework called
iDISQUE to support tunable approximate similarity query of high dimensional
data in DHT networks. The iDISQUE framework utilizes a distributed indexing
scheme to organize data summary structures called iDisques, which describe the
cluster information of the data on each peer. The publishing process of iDisques
employs a locality-preserving mapping scheme. Approximate similarity queries
can be resolved using the distributed index. The accuracy of query results can be
tuned both with the publishing and query costs. We employ a multi-probe tech-
nique to reduce the index size without compromising the effectiveness of queries.
We also propose an effective load-balancing technique based on multi-probing.
Experiments on real and synthetic datasets confirm the effectiveness and effi-
ciency of iDISQUE.

1 Introduction

In many applications, objects (documents, images, etc.) are characterized by a collec-
tion of relevant features which are represented as points in a high-dimensional space.
Given a query point, a similarity search finds all data points which are nearest (most
similar) to the query point. While there have been numerous techniques proposed for
similarity search in high-dimensional space, these are mostly studied in the context
of centralized architectures [8,13]. Unfortunately, due to the well-known dimensional
curse problem, search in a high-dimensional space is considered as a “hard” problem. It
has been suggested that since the selection of features and the choice of a distance met-
ric in typical applications is rather heuristic, determining approximate nearest neighbors
should suffice for most practical purposes.

The relentless growth of storage density and improvements in broad-band network
connectivity has fueled the increasing popularity of massive and distributed data collec-
tions. The Peer-to-Peer (P2P) systems, as a popular medium for distributed information
sharing and searching, have been gaining increasing interest in recent years. There is
strong demand for similarity search in peer-to-peer networks as well.

Unfortunately, most of the existing P2P systems are not designed to support efficient
similarity search. In unstructured P2P networks, there is no guarantee on the complete-
ness and quality of the answers. On the other hand, while structured DHT-based P2P
systems [19,16,17] offer an efficient lookup service, similarity search still cannot be
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resolved readily. The reason is that the DHT networks usually employ consistent hash-
ing mechanisms which destroy data locality. To facilitate similarity search in DHT net-
works, we need locality-preserving lookup services, which can map similar data objects
in the original data space to the same node in the overlay network.

We advocate a fully decentralized index to organize the high-dimensional data in a
DHT network. Our framework is motivated by the following ideas. First, we need a
locality-preserving mapping scheme to map the index entries into DHT network. The
locality sensitive hash (LSH) has been proved to be effective for mapping data with
spatial proximity to the same bucket [12]. It has been utilized in [8] to support high di-
mensional similarity search in centralized setting. By carefully designing the mapping
scheme in DHT, we can realize high-dimensional locality among the peers. Second,
mapping all data objects of each peer to the DHT would result in a huge distributed
index. To reduce the size of the distributed index and the cost of index maintenance, we
should publish data summaries to the DHT network instead of the individual data ob-
jects. For this purpose, each peer needs a summarization method to derive representative
summaries from the data objects. We note that clustering is a typical summarization ap-
proach for organizing high-dimensional data. For example, in centralized environment,
the iDistance [13] approach indexes high-dimensional data in clusters, and provides ef-
fective similarity search based on a mapping scheme for these clusters. Although it is
difficult to cluster the entire data set in a P2P environment, we can exploit local cluster-
ing in each peer to construct a distributed index.

In this paper, we propose a practical framework called iDISQUE to support tunable
approximate similarity queries of high-dimensional data in DHT networks. The contri-
butions of our work are summarized as follow:

– We propose a fully decentralized framework called iDISQUE to handle approximate
similarity queries, which is based on a novel locality-preserving mapping scheme.
We also present a tunable query algorithm for approximate similarity search. The
accuracy of query results can be tuned by both the indexing and query costs.

– We present a distributed query multi-probe technique to allow for reducing the size
of the indices without compromising the effectiveness of queries. In addition, we
introduce a load-balancing technique based on multi-probing.

– We conduct extensive experiments to evaluate the performance of our proposed
iDISQUE framework.

The rest of the paper is organized as following: In Section 2, we present the related
work. In Section 3, we describe the preliminaries. Next we give an overview of the
iDISQUE framework in Section 4. Section 5 presents the locality-preserving indexing
in iDISQUE. Section 6 describes the query processing method in iDISQUE. In Sec-
tion 7, we present the techniques to handle load imbalance. We present the experiment
study in Section 8, and finally conclude the paper in Section 9.

2 Related Work

We are aware of a few previous works which propose techniques to support similarity
search in P2P environments. These systems can be divided into three main categories.
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The first category includes attribute-based systems, such as MAAN [4] and Mercury
[3]. In such systems, the data indexing process and similarity search process are based
on single dimensional attribute space, and their performances are poor even in low
dimension.

The second category including systems such as Murk [7] and VBI-tree [14] is based
on multiple dimension data and space partitioning schemes, and maps the specific space
regions to certain peers. Although these systems generally perform well at low dimen-
sionality, their performance deteriorates rapidly as the dimension increases due to the
“dimensionality of curse”.

The third category is metric-based P2P similarity search systems. The examples
include [6] [18] and [11]. The SIMPEER framework [6] utilizes the iDistance [13]
scheme to index high-dimensional data in a hierarchical unstructured P2P overlay, how-
ever this framework is not fully decentralized, making it vulnerable to super-peer fail-
ure. In [18] the author defines a mapping scheme based on several common reference
points to map documents to one dimensional chord. However, their scheme is limited
to applications in the document retrieval.

Perhaps the most similar work to ours is [11]. In [11] the author has proposed a
algorithm to approximate K-Nearest Neighbor queries in structured P2P utilizing the
Locality Sensitive Hashing [8] scheme. However, we argue that their scheme is not a
fully decentralized scheme, since their scheme relies on a set of gateway peers, where it
would incur the “single-failure” problem when the workload of gateway peers is large.
More over, the effectiveness of their mapping scheme and load balance scheme are
largely dependent on the percomputed global statistics, which are difficult to collected
in a fully distributed way. While our approach is fully decentralized, and no percom-
puted global statistics are required. It makes our approach more practical in reality.

3 Preliminaries

In this section, we briefly introduce the basic mechanisms used in our iDISQUE frame-
work, namely the locality sensitive hashing and the iDistance indexing scheme.

3.1 Locality Sensitive Hashing

The basic idea of locality sensitive hashing (LSH) is to use a certain set of hash func-
tions which map “similar” objects into the same hash bucket with high probability [12].
LSH is by far the basis of the best-known indexing method for approximate nearest-
neighbor (ANN) queries. A LSH function family has the property that objects close to
each other have higher probabilities of colliding than those that are far apart. For a do-
main S of the point set with distance measure D, a LSH family is defined as: a family
H = {h : S → U} is called (r1, r2, p1, p2)-sensitive for D if for any v, q ∈ S

– if D(v, q) ≤ r1 then PrH[h(v) = h(q)] ≥ p1;
– if D(v, q) ≥ r2 then PrH[h(v) = h(q)] ≤ p2,

where PrH[h(v) = h(q)] indicates the collision probability, namely the probability of
mapping point v and q into the same bucket.

To utilize LSH for approximate similarity (K-nearest-neighbor (KNN)) search, we
should pick r1 < r2 and p1 > p2 [8]. With these choices, nearby objects (those within
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distance r1) have a greater chance (p1 vs. p2) of being hashed to the same value than
objects that are far apart (those at a distance greater than r2 away).

3.2 The iDistance Indexing Scheme

The iDistance [13] scheme is an indexing technique for supporting similarity queries
on high-dimensional data. It partitions the data space into several clusters, and selects
a reference point for each cluster. Each data object is assigned a one-dimensional iDis-
tance value according to its distance to the reference point of its cluster. Therefore, all
objects in the high-dimensional space can be mapped to the single-dimensional keys of
a B+-tree. Details of the similarity query processing in iDistance can be found in [13].

4 Overview

In this section, we first give an overview of the iDISQUE framework. Then, we present
a simple indexing solution.

4.1 The iDISQUE Framework

The iDISQUE framework comprises a number of peers that are organized into a DHT
network. In a DHT network, the basic lookup service is provided. Given a key, the
lookup service can map it to an ID denoted by lookup(key), which can be used to find a
peer responsible for the key. Without loss of generality, we use Chord [19] as the DHT
overlay in our framework.

A peer sharing high-dimensional data is called a data owner, while a peer containing
index entries of the data shared by other peers is called an indexing peer. For sharing
and searching the data among the peers, the iDISQUE framework mainly provides the
following two services:

– The index construction service
When a peer shares its data, a service called index construction is invoked. The in-
dex construction service consists of the following four steps. First, the data owner
employs a local clustering algorithm, to generate a set of data clusters. For simplic-
ity in presentation and computation, we assume that all data clusters are spherical
in the vector space. Second, the data owner employs the iDistance scheme [13] to
index its local data in clusters, using the cluster centers created in the previous step
as the reference points. Third, for each data cluster being generated in step one, the
data owner creates a data structure called iDisque(iDIStance QUadruplE), denoted
by C∗ as follows:

C∗ =< C, rmin, rmax, IP >

where C is the center of the cluster, rmin and rmax define the minimum and max-
imum distances of all cluster members to the center, IP is the IP address of the
data owner. The above iDisque is a compact data structure which describes the data
cluster information. Therefore, the data owner is able to capture the summary of its
own data via a set of iDisques. Fourth, for each iDisque being generated, the data
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owner publishes its replicas to multiple peers using a mapping scheme which maps
the center of the iDisque to a certain number (denoted by Lp) of indexing peers,
then each iDisque is replicated to these indexing peers. In the rest of paper, Lp is
called the publishing mapping degree. The indexing peers receiving the iDisque
will insert it into their local index structures.

– The querying processing service
A peer can submit a similarity query to retrieve the data objects most relevant to the
given query. When a similarity (KNN) query is issued, it is first sent to a specified
number (denoted by Lq) of indexing peers which may probably contain candidate
iDisques, using the same mapping scheme as described above. In the rest of paper,
Lq is referred to as the query mapping degree. Second, each indexing peer receiving
the query will then look up its local part of the distributed index to find colliding
iDisques. The query will then be sent to the data owners of these candidate clusters.
Third, the data owners of the candidate clusters process the query utilizing their
local iDistance indexes, and return their local K-nearest-neighbors as the candidate
query results. Finally, the querying node sorts the data in the candidate query result
sets by distance to the query point, and produces the final results.

4.2 A Naive Indexing Scheme

For a Chord overlay, a straightforward indexing scheme can be implemented as follows:
For each iDisque, we replicate it for Lp copies and map them evenly to the Chord ring
ranging from 0 to 2m-1 at a constant interval of P = 2m/Lp. Constant P is called the
publishing period. Therefore, any two replicas repi and repj are mapped to two Chord
keys so that

|ChordKey(repi)− ChordKey(repj)| = n · P,

where n is an integer in (1, . . . , [Lp/2]). Such replication scheme guarantees that an
interval of length greater than P in the Chord key space must contain at least one replica
of an iDisque. Therefore, any interval of length greater than P must contain all iDisques
of the entire system. When a query is issued, we randomly choose an interval of length
P in the Chord ring, and randomly select Lq keys in this interval (Lq ≤ P ). The query
is then delivered to the indexing peers in charge of these Lq keys.

In the above naive indexing scheme, the iDisques are randomly distributed in the
network. Therefore, its index storage space is uniformly allocated among the indexing
peers, and the query load is balanced too. We denote by iDISQUE-Naive the above
naive indexing scheme. We note that if Lq is large enough to cover all peers in the
interval, the query is able to touch all iDisques in the system and is therefore accurate.
However, a typical Lq value is much smaller than P in a large network. Therefore, the
naive scheme cannot achieve high accuracy without a large Lq value. To improve the
query accuracy at a low cost, we shall look at a locality-preserving indexing scheme in
the iDISQUE framework.

5 Locality-Preserving Index Scheme

In this section, we introduce a locality-preserving indexing scheme for iDISQUE. In the
remaining sections, we will only assume the locality-preserving indexing scheme for
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the iDISQUE framework unless explicitly stated. We begin by introducing a locality-
preserving mapping scheme, and then present the index construction method.

5.1 Locality-Preserving Mapping

To facilitate locality-preserving mapping, a family of LSH functions is needed. Without
loss of generality, we assume the distance measure to be the L2 norm. Therefore, we
can use the family of LSH functionsH for Lp norms, as proposed by Datar et al. in [5],
where each hash function is defined as

ha,b(v) = � (a · v + b)
W

�,

where a is a d-dimensional random vector with entries chosen independently from a
p-stable distribution, and b is a real number chosen uniformly from the range [0, W ].
In the above family, each hash function ha,b : Rd → Z maps a d-dimensional vector
v onto a set of integers. The p-stable distribution used in this work is the Gaussian
distribution, which is 2-stable and therefore works for the Euclidean distance.

To resolve similarity queries, the locality-preserving mapping scheme in iDISQUE
has to be able to map similar objects (both data and query points) in the high-dimensional
space to the same Chord key. Our proposed mapping scheme consists of the following
consecutive steps:

First, to amplify the gap between the “high” probability p1 and “low” probability
p2 (refer to section 3.1), we define a function family G = {g : Rd → Uk} such that
g(v) = (h1(v), . . . , hk(v)), where hj ∈ H. Each g function produces a k-dimensional
vector. By concatenating the k LSH functions in g, the collision probability of far away
objects becomes smaller (pk

2), but it also reduces the collision probability of nearby
objects(pk

1).
Second, to increase the collision probability of nearby objects, we choose L inde-

pendent g functions, g1, . . . , gL, from G randomly. Each function gi (i = 1, . . . , L) is
used to construct one hash table, resulting in L hash tables. We can hash each object
into L buckets using functions g1, . . . , gL. As a result, nearby objects are hashed to at
least one same bucket at a considerably higher probability, given by 1− (1− pk

1)L.
Third, to map each k-dimensional vector, gi(v), to the Chord key space as evenly as

possible, we multiply gi(v) with a k-dimensional random vector Ri = [ai,1, . . . , ai,k]T :

ρi(v) = gi(v) · [ai,1, . . . , ai,k]T mod M

where M is the maximum Chord key 2m − 1. Each element in Ri is chosen randomly
from the Chord key space [0, 2m − 1]. We call each ρi a LSH-based mapping function,
and denote by ΨL the function set {ρi, . . . ,ρL}. Therefore, given ΨL = {ρ1, . . . , ρL},
we can map a point v ∈ Rd to L Chord keys ρ1(v), . . . , ρL(v). A query at point q is
said to collide with data point v if there exists a function ID i ∈ {1, . . . , L}, so that
ρi(q) = ρi(v).

5.2 Index Construction

We now propose the detailed process of index construction in iDISQUE. Given the four
steps of the index construction service as described in the previous section, we shall
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focus on the first and the fourth steps, namely clustering local data and publishing
iDisques, since the other two steps are already clearly described.

Clustering local data: When clustering its local data, a data owner must take two
important requirements into consideration. On one hand, as the iDisque structures are
published and stored in the DHT network, we need the number of iDisques (clusters)
published by a data owner to be as small as possible so that the cost of constructing and
storing the distributed index can be limited. On the other hand, the dimension (geomet-
ric size) of each cluster must be small enough to guarantee the query accuracy.

In order to balance the number of clusters and the query accuracy, we can tune the
entire system using a parameter δ, which specifies the maximum radius allowed for each
data cluster. A large δ value reduces the number of iDisques published and maintained
in the system, while impairing the accuracy. In contrast, a small δ does the reverse. Due
to the restriction of cluster size, one data point might be “singular” as its distance from
its nearest neighbor is more than δ. These points are called singularities. We shall create
a singular cluster for each singularity.

It is worth mentioning that although there are several existing clustering algorithms
to cluster local data to data cluster with a maximum radius δ, e.g., BIRCH [20], CURE
[10], in the implementation we adopt BIRCH [20] to cluster local data due to its popu-
larity and simplicity.

Chord
C
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2(C)

i(C)

Lp(C)

...

The mapping from q to Lq Chord keysThe mapping from C to Lp Chord keys

Publishing iDisque C* to Chord Query processing in Chord

q
i(q)

1(q)

Lq(q)

...
...

If i(C) = i(q), collision is detected 
and C* is a colliding iDisuqe

< i(C),i>

hash map key

Fig. 1. Publishing and querying an iDisque

Publishing iDisques: In order to publish iDisques to peers, we need a LSH-based
mapping function sequence ΨLp = {ρ1, . . . , ρLp}, whose length (cardinality) is equal
to the publishing mapping degree Lp. All data owners use the same set of ΨLp .

Given the above locality-preserving mapping scheme, we can publish iDisques in a
straightforward approach. Figure 1 shows an example of the mapping and publishing
process. First, for each iDisque denoted by C∗ (meaning that it is centered at C), we
map its cluster centroid C to Lp independent Chord keys ρ1(C), . . . , ρLp(C), using
the aforementioned mapping scheme. Second, for each Chord key ρi(C), we evoke the
Chord lookup service to find the peer which owns the Chord key, and send the pub-
lishing message containing the respective function ID i, the Chord key ρi(C), together
with the iDisque, C∗, to that peer. As multiple keys might be assigned to a same peer
in the Chord protocol, the upper bound cost of publishing an iDisque is Lp messages.
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When a publishing message is sent to an indexing peer, the recipient inserts the received
data into its local data structure, i.e. a hash map indexed by composite key (ρi(C),i).
This data structure provides efficient local lookup given the Chord key and the mapping
function ID.

6 Query Processing in iDISQUE

6.1 Basic Query Processing Scheme

Query processing is analogous to the publishing process as Figure 1. When a KNN
query at point q is issued, we map it to Lq Chord keys, named query Chord key set,
using a LSH-based mapping function sequence ΨLq = {ρ1, . . . , ρLq} which is a prefix
of sequence ΨLp (the first Lq functions in the LSH-based mapping functions pre-defined
in the system). Peers in charge of these Chord keys may probably contain colliding
iDisques (those that are mapped to the same Chord key as the query point via the same
mapping function ρi). We refer to such indexing peers as candidate peers. Then, the
querying node distributes the query along with its Chord key and function ID to each
respective candidate peer to look for colliding iDisques.

Based on the mapping scheme proposed in section 5.1, the probability of collision
between an iDisque centroid C and the query q depends on two factors: (1) the distance
between q and C, and (2) the number of function IDs on which the two points may
collide. Assume the publishing mapping degree of an iDisque centered at C is Lp,
the latter can be calculated as min(Lp, Lq). Therefore, the probability of collision is
estimated as 1− (1− pk

1)min(Lp,Lq). In the query process, we can tune the coverage of
the query by varying Lq. If Lq is large enough, all iDisques close to the query point in
the data space may have a chance to collide with the query on at least one function ID
i, where i ≤ Lp. In contrast, if Lq is small, the query cost is reduced, but its accuracy
will inevitably be impaired.

The above procedure supports progressive query refinement during run-time query
processing. The querying peer maintain a top K result queue sorted by their distances to
query point, and distribute the query progressively to candidate peers in an order anal-
ogous to ρ1, ρ2, . . . , ρLq . Each time a new candidate iDisque is returned, the querying
peer asks for the top-K data points from the data owners of the candidate iDisques, and
merges the local results in the result queue. Meanwhile, the querying peer maintains a
temporary list of data owners which it has already asked for data. Therefore, if replicas
of the same iDisque are returned, they will simply be discarded.

The query processing in each candidate peer is straightforward. Upon receiving a
query, the candidate peer looks up its local hash map structure (as described in section
5.2) for a colliding iDisque. If the query contains multiple function IDs and Chord keys
(in case that multiple functions are mapped to the same peer), multiple lookups will be
performed. Since some of the resultant colliding iDisques may not be really close to the
query point (due to false positives introduced by LSH-mapping), all colliding iDisques
will further undergo a distance check in data space. Then the candidate iDisques are sent
back to the querying peer. The pseudo code of the basic query algorithm is presented
algorithm 6.1.
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Algorithm 6.1: QUERYPROCESSING(q, K, Lq)

input: q as the query object
K as the number of nearest neighbors
Lq as the query mapping degree

queue := ∅
Construct ΨLq from ΨLp

Create query Chord key set using ΨLq

for each keyi in query Chord key set

do

⎧⎪⎪⎨⎪⎪⎩
Search indexing peer lookup(keyi)
for each iDisque returned

do
{

Search data owner iDisque.IP
Merge the local top K results to queue

return (queue)

6.2 Multi-probing in iDISQUE

In the above basic query processing algorithm, one problem is that the query accuracy
is bounded by min(Lp, Lq). When the publishing mapping degree Lp is small, the
query accuracy is restricted. Therefore, the publishing mapping degree has to be large
to achieve high query accuracy, resulting in large index size and high cost of index
publishing. A recent study on a new technique called multi-probing [15] has shed some
light on this problem. The multi-probe query technique employs a probing sequence to
look up multiple buckets which have a high probability of colliding the target data. As a
result, the method requires significantly fewer hash functions to achieve the same search
quality compared to the conventional LSH scheme. Inspired by this idea, we propose a
distributed multi-probe technique in iDISQUE.

For each mapping function ρi, the multi-probe technique creates multiple query keys
instead of one query key, which are also probable to collide with the keys of candidate
iDisques. The multiple keys are generated in a query-directed method. For a query
point q, we first obtain the basic query keys ρ1(q), . . . , ρLq(q). Second, for each basic
query key ρi(q), we employ the multi-probe method proposed in [15] to generate T

number of extended query keys, ρ
(1)
i (q), ρ

(2)
i (q), . . . ρ(T )

i (q), in descending order of
their probability to contribute to the query. Parameter T determines the number of multi-
probings for each basic query key. Therefore, the total number of query keys is (T +
1) ·Lq . Third, we look up the indexing peers of the basic and extended query keys in an

order like following ρ1(q), ρ2(q),. . . , ρLq(q), ρ
(1)
1 (q), ρ

(1)
2 (q),. . . , ρ

(1)
Lq

(q), . . ., ρ
(j)
1 (q),

ρ
(j)
2 (q), . . . , ρ

(j)
Lq

(q), . . . . Users are allowed to determine how far the multi-probing
should proceed according to the search accuracy and query cost.

Utilizing the above technique, we are able to achieve high accuracy even when the
publishing mapping degree of iDisques is very small. In addition, we can always im-
prove the search accuracy at the expense of more query keys (or higher query costs).
Therefore, the search quality will not be restricted by the publishing mapping degree,
which is specified by the data owners during index creation.
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7 Load-Balancing

The iDISQUE framework can easily adopt load-balancing techniques. In this section,
we propose a technique to handle load balancing. There could be two categories of data
imbalance in iDISQUE. One is the imbalance of data storage among data owners, the
other is the imbalance of index size among indexing peers. The former category can
be addressed by a simple data migration or replication scheme such as LAR [9]. In
iDISQUE, we shall focus on the problem of load imbalance among indexing peers.

In our method, the load of an indexing peer is defined as the number of iDisques it
maintains. In the ideal case, all iDisques are distributed evenly across the entire net-
work. However, in the locality-preserving mapping scheme, the assignment of iDisques
might be skewed among different indexing peers. To address the problem, we restrict
the maximum number of iDisques published to indexing peers by defining a variable
capacity threshold τ for each indexing peer, according to its storage or computing ca-
pacity. If the number of iDisques maintained by an indexing peer reaches the threshold,
the peer is overloaded and any request to insert a new iDisque to it will be rejected. The
publishing peer (data owner) can then utilize the multi-probe technique to discover a
new indexing peer which hopefully maintains fewer iDisques.

The discovering process is as following: For an iDisque denoted by C∗ and a map-
ping function ρi, the basic publishing key ρi(C) and a series of extended publishing
keys are all created by the multi-probe technique in descending order of their similar
probability to the basic publishing key. If the indexing peer mapped by the basic pub-
lishing key is overloaded, we probe one-by-one, in order of descending probability, the
peers mapped by the extended keys, until an indexing peer accepts C∗.

When processing similarity query, a load-balanced system must utilize the multi-
probe technique. If a query misses on a basic publishing key, it will proceed to an
extended key. However, the message cost of a query is determined by the query mapping
degree Lq and parameter T . In the rest of this paper, we assume that multi-probing is
enabled when the proposed load balancing technique works.

8 Experimental Results

In this section, we evaluate the performance of iDISQUE framework. We implement
both the iDISQUE-Naive indexing scheme and the locality-preserving indexing scheme,
which we refer to as iDISQUE-LSH.

For comparison, we implement a fully decentralized high-dimensional similarity
search P2P system based on spatial partitioning. For a d-dimensional space, we split
the data space evenly on each dimension into s equal-length segments. Therefore, we
obtain a d-dimensional grid of sd space partitions. For each partition we create an index
entry containing the IPs of peers, which own data records in that partition. All par-
titions, in a Z-order, are assigned to the peers in the Chord overlay in a round-robin
manner. This indexing scheme is called SPP (Spatial-partitioning). When a KNN query
is issued to SPP, we generate a sphere in the d-dimensional space centered at the query
point with a predefined radius. Indexing peers containing partitions overlapping the
sphere are queried, and the results are returned to the querying peer. If the number of
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results of the query is smaller than K , the sphere is enlarged iteratively to overlap more
partitions. The SPP scheme provides accurate query results.

We conduct the following experiments to evaluate iDISQUE: (1) The comparison
among the three indexing schemes, namely SPP, iDISQUE-Naive, and iDISQUE-LSH;
(2) Tuning various parameters in iDISQUE-LSH; (3) Load-balancing; and (4) Scalability.

8.1 Experiment Setup

The effectiveness of approximate similarity search is measured by recall and error rate,
as defined in [8]. Given a query object q, let I(q) be the set of ideal answers (i.e., the
k nearest neighbors of q), let A(q) be the set of actual answers, then recall is defined

as: |A(q)∩I(q)|
|I(q)| . The error rate is defined as: 1

|Q|K
∑

q∈Q

∑K
i=1

d#
i

d∗
i

, where d#
i is the i-th

nearest neighbor found by iDISQUE, and d∗i is the true i-th nearest neighbor. Since
error rate does not add new insight over relative recall and we do not report in our
experiments due to the space limit.

One real dataset and one synthetical dataset are used to evaluate the iDISQUE frame-
work. The real dataset is a subset (denoted by Covertype) containing 500k points
selected randomly from the original Covertype dataset [2], which consists of 581k
55-dimensional instances of forest Covertype data. The synthetical dataset is gener-
ated from the Amsterdam Library of Object Images set [1] which contains 12000 64-
dimensional vectors of color histogram. We create new data points by displacing by
a small amount (0.005) the original data points on a few random directions, and ob-
tain a synthetical dataset containing 100k points (denoted by ALOI). For both datasets,
1000 queries are drawn from the datasets randomly and for each query a peer initiator
is randomly selected. As most experimental results show similar trends for these two
datasets, unless otherwise stated, in the following experiment we will only present the
results for the Covertype dataset due to the limit of space.

In our experiments, the default network size N is 1000. The dataset is horizontally
partitioned evenly among the peers, and each node contains 100 data points by default.
The splitting number of SPP on each dimension is s = 4. We have experimented with
different parameter values for the locality-preserving mapping and picked the ones that
give best performance. In our experiment, the parameters of locality-preserving map-
ping are k = 15, W = 3.0 for both datasets. We also conduct a lot of experiments with
different K (K = 1,5,10) for the KNN queries, and the default K value is 5. In our
experiments, for simplification, we assume each iDisque C* has the same publishing
mapping degree, and the default publishing and querying mapping degree (Lp and Lq)
is 10. Since the current iDISQUE framework is based on Chord, in the experiments the
query processing cost is measured by the number of lookup messages for the indexing
peers. All the queries are executed for 10 times, and the average results are presented.

8.2 Comparative Study - Experiment 1

In this experiment we first compare the total storage space of the proposed indexing
schemes (Lp = 1 for the iDISQUE schemes). Note that the index size of iDISQUE-
Naive is the same as that of iDISQUE-LSH. The results indicate that the storage space
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of iDISQUE is much larger than SPP, although the former is still acceptable compared
to the size of the datasets. It must be noted that as the value of Lp increases, the storage
cost will increase linearly. This justifies the need for the multi-probe technique.

Table 1. Results of the storage space

Dataset Data size SPP index iDISQUE index
(KB) size (KB) size (KB)

Covertype(500k) 214844 248 15877
ALOI(100k) 50000 132 4895

We now compare the distribution of the index storage space among peers for the three
indexing schemes. For fairness in comparison, the results are presented in percentages.
Figure 2(a) shows the cumulative distribution of index storage space among 1000 peers
using the Covertype dataset. The figure indicates that iDISQUE-Naive provides the
most uniform distribution in index storage space, while the result of iDISQUE-LSH
is also satisfactory. However, the results of SPP indicate that nearly 95% of its index
storage is assigned to 5% the nodes. This partly explains the small index size of SPP.
As a result, the skewed index in SPP would inevitably cause serious problem of load
imbalance. Therefore, a scheme based on spatial-partitioning is not truly viable for
querying high-dimensional data.
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To compare the effectiveness and efficiency of the three schemes, we plot the accu-
racy results of iDISQUE-Naive and iDISQUE-LSH versus their message costs in Fig-
ure 2(b), given a publishing mapping degree of 40. The message cost of a query can be
determined by the query mapping degree Lq. Specifically, Lq is equivalent to the num-
ber of messages caused by a query when multi-probe is disabled. Note that the recall of
SPP is not plotted as they are always 1. The message cost of SPP is 35. Figure 2(b) indi-
cates that the recall of iDISQUE-Naive increases almost linearly when the message cost
grows. It reaches 44% at the cost of 40 messages. In contrast, the recall of iDISQUE-
LSH increases rapidly at first, and reaches about 70% at 10 messages. This shows that
iDISQUE-LSH’s accuracy is acceptable. Since iDISQUE-LSH is much more effective
than iDISQUE-Naive given the same message cost, we will focus on iDISQUE-LSH in
the remaining experiments.
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8.3 Performance Tuning - Experiment 2

Figure 3(a) shows the effect of δ on recall. We can see that the smaller the δ, the higher
the recall. This is because a smaller δ leads to finer iDisques, which can represent the
actual data points with a better approximation. If δ = 0, all iDisques are singular. In such
case, the iDisques represent real data and the recall is 73% for K = 1. Similar trends are
observed when K = 5 and K = 10. Such results confirm our analysis in Section 5.2. When
δ is 0.1, it can strike a balance between the storage space of iDisques and the accuracy
of queries. Therefore, the default value of δ is set to 0.1 (there are 9201 iDisques when
δ = 0.1).

Figure 3(b) shows the effect of Lq on recall for K = 1, 5, 10. It can be observed that
when Lq < 5, the recall increases rapidly. When Lq = 5, the recall is nearly 60% for K
= 1. These results confirm the effectiveness of our tunable approximate similarity query
framework.

Figure 3(c) shows the accuracy of iDISQUE-LSH enabling the distributed multi-
probe technique (MP means to enable multi-probing). The accuracy of a conventional
(non-multiple-probing) scheme is also plotted. As shown in the figure, multi-probe with
small publishing mapping degrees (Lp=1, 2, 5, 10) can achieve highly competitive ac-
curacy at nearly the same cost as a conventional scheme, which has a larger publishing
degree of 20. The recall of multi-probe with Lp = 10 is even marginally better than the
conventional scheme when the message cost is greater than 12. As a smaller Lp value
leads to smaller index size and also smaller index publishing costs, the multi-probe
technique can reduce the index size without compromising the quality of queries.

8.4 Load-Balancing - Experiment 3

In this experiment, we study the effect of the proposed load-balancing technique, which
is based on multi-probing. We vary the capacity threshold τ and illustrate the results of
the publishing cost, load distribution, and query accuracy in Figure 4. The threshold τ is
measured in units of the average load of all peers without load-balancing (i.e. a τ value
of 2 means twice the average load). We also plot the same results for iDISQUE without
load-balancing. The results indicate that as τ increases, the publishing cost reduces
rapidly because less multi-probing is required. However, the load becomes more skewed
as the restriction is being lifted. Meanwhile, as τ increases, more iDisques can be found
by the extended query key, therefore producing higher accuracy. To obtain balanced
load while producing quality results and without introducing high publishing cost, a τ
value of 2.5 could be a good choice.
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8.5 Scalability - Experiment 4

In this experiment, we evaluate the scalability of iDISQUE using five networks, where
the number of peers ranges from 1000 to 5000. We also create five randomly selected
subsets of the Covertype dataset with different sizes (100k, 200k, · · · , 500k), and create
an iDISQUE index for each of these subsets in a respective network. Figure 5 shows the
accuracy at various query message costs (Lq) in different network scales. The results
show that the network size has little impact on the accuracy of iDISQUE. Therefore,
the proposed scheme is scalable in terms of effectiveness.
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9 Conclusion

In this work, we proposed a framework called iDISQUE to support tunable approximate
similarity query of high dimensional data in DHT networks. The iDISQUE framework
is based on a locality-preserving mapping scheme, and its query accuracy can be tuned
by both the indexing and query costs. We also proposed a distributed multi-probe tech-
nique for iDISQUE to reduce its index size without compromising the effectiveness of
queries. Load balancing among the indexing nodes was achieved by utilizing a novel
technique based on multi-probing. The experimental results confirmed the effectiveness
and efficiency of the proposed framework.

For future work, we would look at data update strategies in the iDISQUE frame-
work. We would also consider dynamic load balancing techniques to handle skewness
in queries.
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Abstract. Classification in P2P networks has become an important re-
search problem in data mining due to the popularity of P2P computing
environments. This is still an open difficult research problem due to a va-
riety of challenges, such as non-i.i.d. data distribution, skewed or disjoint
class distribution, scalability, peer dynamism and asynchronism. In this
paper, we present a novel P2P Adaptive Classification Ensemble (PACE)
framework to perform classification in P2P networks. Unlike regular en-
semble classification approaches, our new framework adapts to the test
data distribution and dynamically adjusts the voting scheme by com-
bining a subset of classifiers/peers according to the test data example.
In our approach, we implement the proposed PACE solution together
with the state-of-the-art linear SVM as the base classifier for scalable
P2P classification. Extensive empirical studies show that the proposed
PACE method is both efficient and effective in improving classification
performance over regular methods under various adverse conditions.

1 Introduction

Distributed data mining is important and beneficial to a broad range of real-
world applications [1] on distributed systems. Recent popularity of peer-to-peer
(P2P) networks has also enabled them as excellent platforms for performing
distributed data mining tasks, such as P2P data classification [2,3,4,5]. While
its potential is immense, data mining in a P2P network is often considerably
more challenging than mining in a centralized environment. In particular, P2P
classification faces a number of known challenges [6] including scalability, peer
dynamism and asynchronism, etc.

In the past few years, a number of distributed classification techniques have
been proposed to perform classification in P2P networks [1,2,4,5]. Among these,
ensemble approaches are the most popular due to their simple implementation
and good generalization performance. The key idea is to build individual classi-
fiers on the local training data of peers, and then combine all their predictions
(e.g., weighted majority voting) to make the final prediction on unseen test data
examples. Ensemble approaches are proven to perform well, provided the follow-
ing assumptions are fulfilled: (1) outputs of individual classifiers are independent,
and (2) generalization error rates of individual classifiers are smaller than 50%,
i.e., individual classifiers do not perform worse than a random guessing approach.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 34–48, 2010.
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Fig. 1. Feature space for a 2-class problem

Table 1. Non i.i.d. class distributions

Peer Class 1 Class 2 Class 3 Class 4
skewed

P1 70 10 10 10
P2 10 70 10 10
P3 10 10 70 10
P4 10 10 10 70

disjointed
P1 50 50 0 0
P2 50 50 0 0
P3 50 50 0 0
P4 0 0 50 50

Unlike in centralized environments, in a P2P learning environment, regular en-
semble methods often cannot completely fulfill the above assumptions due to
the dynamics of P2P networks. Below, we discuss some scenarios where regu-
lar ensemble approaches could fail to achieve satisfactory performance in P2P
networks.

Scenario 1: disjoint data distribution: One typical challenge with P2P clas-
sification is the issue of disjoint data distribution and bias [2,7]. Figure 1 depicts
a sample 2-D feature space for a two-class classification problem. The data space
is represented by two symbols: circles and squares (each representing one class),
and the solid line (L0) denotes the optimal decision plane/model. Labels within
the symbols represent the peers/classifiers (C1, C2 and C3) that own the data,
and their decision planes/models are represented by dotted lines (L1, L2 and L3)
respectively. In a regular ensemble learning approach, if we assume that peers’
training data are i.i.d., the ensemble solution should be close to L0. However,
in this scenario, the ensemble model will be biased towards L1 and L2 causing
its accuracy to suffer. Although the data distribution between the two classes is
equal, the bias is still present due to the difference in number of votes. However,
in reality, it is not possible to adjust the bias by simply using the data density.

Scenario 2: skewed class distribution: Skewed class distribution is very com-
mon in typical classification problems [8] and for a P2P system, the skewness can
vary widely among peers. Table 1 presents non i.i.d. data and class distributions
that may be present in a P2P learning environment. The numbers denote the
percentage of the class data that is held by peers and peers may not hold the same
amount of data locally. Ideally, peers’ data should be i.i.d. and balanced, allow-
ing the ensemble classifier to perform better than individual classifiers. In reality,
however, skewed class distribution is usually unavoidable, and can considerably
deteriorate performance of the ensemble classifier. For instance, according to a
recent empirical study [2], the accuracy of an SVM ensemble classifier trained
from an imbalanced two-class data set decreases when the skew between classes
increases.

Scenario 3: disjoint class distribution: In extreme cases of skewed class
distribution, some peers may have no data from certain classes. We refer to this
special scenario as disjoint class distribution (Table 1). The regular ensemble
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approach that simply combines outputs from all classifiers could perform very
poorly in this scenario. For example, since peers P1, P2, and P3 contain no
training data from class 3, they will simply make a wrong prediction for a test
sample from class 3. As a result, no matter how peer P4 performs, the ensemble
classifier that combines all the four peers in a majority voting approach will
always make a wrong prediction for any example from class 3.

From the above discussions, we observe that regular ensemble classification
approaches have two shortcomings: (1) all the classifiers (peers) are engaged in
the voting scheme to predict a test data example; (2) the ensemble is often not
aware of test data distribution, so the same combination scheme is universally
applied for any test data example. Given the settings of a P2P network, it will
not be possible to obtain a representative testing dataset for estimating the
generalization errors of the classifiers. Hence, one uses the training errors as the
estimate. However, training errors are not always indicative of the generalization
error especially as shown in the previous scenarios, where classifiers may in
fact have generalization errors larger than 50% although not shown by their
training errors. Hence, the first shortcoming is a clear violation of the principals
of ensemble learning, which can deteriorate the accuracy of the entire ensemble.
The second shortcoming often leads to a suboptimal combination scheme because
it does not reward/penalise classifiers and hence the inability to deal with non-
i.i.d. data distribution.

To overcome the above shortcomings, in this paper, we investigate a novel
P2P ensemble classification framework that adapts to the test data distribution
and engages only a subset of classifiers (peers) dynamically to predict an un-
seen test data example. This raises three challenges: (1) how to effectively and
efficiently choose a subset of classifiers (peers) according to a test data example
dynamically? (2) how to develop an effective voting scheme to combine the out-
puts from the subset of classifiers (peers)? (3) how to minimize communication
cost and interactions between peers towards an efficient and scalable solution?

Inspired by the mixture of expert classification architecture [9] and the k
Nearest Neighbor classifier [10] where both assume that the closer the training
data are to the test data, the more appropriate the classifier will be, led us to
take into consideration how well the training error of a classifier estimates its
generalization error, which is the basis for constructing an adaptive ensemble.

This paper addresses these challenges, and makes the following contributions:

– We propose a novel P2P Adaptive Classification Ensemble (PACE) frame-
work, which can be integrated with any existing classification algorithm. The
PACE framework adapts to the test data distribution and adopts a dynamic
voting scheme that engages only a subset of classifiers (peers).

– We implement an effective P2P classification algorithm based on the PACE
framework with the state-of-the-art linear SVM algorithm as the base clas-
sifier. This enables highly efficient and scalable solutions in real large-scale
applications.
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– We conduct extensive empirical evaluations on both efficacy and efficiency
of our approach. Results show that our new algorithm is comparable to
competing approaches under normal conditions, and is considerably better
than them under various adverse conditions.

The rest of this paper is organized as follows. Section 2 reviews existing work
on P2P classification. Section 3 presents our proposed PACE approach. Section 4
shows our experimental results and Section 5 concludes this paper.

2 Related Work

Classification approaches for P2P systems can be generally classified into two cat-
egories: collaborative [1,2] and ensemble [4,5] approaches. While both categories
of approaches use the divide-and-conquer paradigm to solve the classification
problem, collaborative approaches only generate a single model for the classifi-
cation task while ensemble approaches often combine multiple models/classifiers
for predictions.

To take advantage of statistical property of SVMs, Ang et al. proposed a vari-
ant of the cascade SVM approach, which makes use of Reduced SVM (RSVM)
to reduce the communication cost and improve classification accuracy. Although
this approach claims to reduce the communication cost with RSVM, propaga-
tion of non-linear SVM models, made up of a number of support vectors, is
very costly. In addition, the tasks of cascading are repeated in all peers, wasting
computational resources.

On the contrary, Bhaduri et al. proposed to perform distribution decision tree
induction [1]. This is a much more efficient approach which propagates only the
statistics of the peers’ local data, with the decision tree of each peer converging
to the global solution over time.

Like traditional distributed systems, ensemble approaches are also very pop-
ular in P2P systems, which has several advantages for classification in P2P net-
works. First, voting ensemble is a loosely coupled algorithm, which means that
it does not require high-level synchronization. Secondly, as it does not require
all models to participate in the voting, it is able to give a partial solution any-
time [4]. This also means that it is fault tolerant, as failures of a few peers only
slightly affect the final prediction. The following are some examples of ensemble
approaches in P2P classification.

Recently, Siersdorfer and Sizov [5] proposed to classify Web documents by
propagating linear SVM models built from local data among neighboring peers.
Predictions are then performed using only the collected models, incurring zero
communication cost. However, collecting only from the neighboring peers re-
stricts the representation of the ensemble of classifiers as the data on each peer
is relatively small compared to the entire data in the network. This decreases
the prediction accuracy of the ensemble. As their experiments were conducted
using a small number of peers (16), this problem may be overlooked.

In another work, Luo et al. [4] proposed building local classifiers using Iv-
otes [11] and performed prediction using a communication-optimal distributed
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Fig. 2. Architectural framework of PACE. Dotted arrows represent network commu-
nications.

voting protocol that requires the propagation of unseen data to most, if not all
peers. This incurs huge communication cost if predictions are frequent. In ad-
dition, their work assumes that the error rates of all classifiers are equal, which
as previously discussed is not a valid assumption; besides it also does not ad-
dress the limitations of majority voting that can happen in the P2P networks.
Recently Ang et al. [2] showed that DIvotes in the P2P networks is sensitive to
the effects of skewed class distribution.

3 Approach

PACE aims to maintain the advantages of regular voting ensemble solutions
while effectively overcoming their drawbacks (c.f. Section 1). Unlike conventional
ensemble approaches, PACE is novel in that it adapts to the test data distri-
bution, and employs a dynamic voting scheme, which chooses only a subset of
important classifiers/peers for assessing a test data example. To facilitate the
selection of important classifiers with respect to test data distribution, we pro-
pose a cluster-driven approach, which provides an efficient way to examine how
close a test data example is to a specific peer at the expense of slight increase
in cost. Further, to combine outputs from the subset of selected classifiers, we
evaluate several k nearest neighbor weighted voting approaches, which exploit
various information towards an effective combination in the voting process.

The architectural framework of PACE is illustrated in Figure 2, and includes
two major phases: (1) training and clustering, and (2) prediction. In the training
and clustering phase, every peer builds classifier(s) on their local training data,
after which, they cluster the data and then propagate the classifiers and cluster
centroids to other peers. Each peer indexes its collected models (from other
peers) using the corresponding centroids. In the prediction phase, peers use the
index created earlier to select a subset of models from the set of all collected
models that is most relevant to the given test instance. Voting is then performed
using this subset of classifiers to produce the final prediction. Next, we provide
the in depth details of the two phases.

3.1 Training and Clustering Phase

In the training phase, a peer builds a base classifier (or a set of classifiers us-
ing techniques such as bagging, boosting or Ivotes) from its local data. Based
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on the model propagation approach, the local classifiers are propagated to all
other peers. The collected models are then used for performing prediction locally.
Model propagation is a popular approach in P2P classification where prediction
cost is a concern especially when training data are few and testing data are in
abundance [1,2,5,7]. We reiterate here that PACE is a generic ensemble clas-
sification framework, which can be integrated with any existing classification
algorithm as the base classifier. In our approach, we adopt the state-of-the-art
linear SVM algorithm as the base classifier to exploit its high efficiency for train-
ing classification models.

As noted earlier, simply combining the ensemble of classifiers by majority
voting is insufficient to guarantee satisfactory classification accuracy. However,
without additional data it is not possible to perform model selection or use
advanced model combination techniques. Unfortunately, considering the size of
the P2P network and the communication cost, it is not possible to manipulate the
data as required by existing ensemble model selection or advanced combination
techniques. Assuming that the classifier’s accuracy is correlated to the distance
between the testing and training data, we have to somehow capture the distance
between the testing and training data or the locality of the training data. Hence,
we propose the use of clustering to capture the locality of the training data of
each peer.

Clustering is performed on the training data of the peer to generate the set
of centroids, which are representative of the training data of the classifier. The
centroid serves as a summarization of a group of data examples. By using only a
small number of centroids, the additional overheads on the communication cost
will be reduced substantially. We empirically show that the inclusion of centriods
ensures robust ensemble performance. Here, we employ the simple and efficient
k-means clustering algorithms, in which we can specify the number of clusters,
which is directly proportional to the communication cost.

Note that the training and clustering steps can be performed either concur-
rently or sequentially. However, in addition to the locality information, we also
want to capture the classifier’s classification accuracy on the particular centroid.
This mainly aims to address the problem of skewed class distribution. Note that
a classifier trained on an imbalanced dataset will often have a high error rate.
Hence, even if the classifier is trained on data near to the test data, it still might
be possible that the classifier’s accuracy is not at an acceptable level. Hence,
the accuracy of the centroid can be used as the balancing parameter. In order
to obtain the error rate of the classifier on the cluster, we require both training
and clustering to be completed. Once the cluster testing is completed, the clas-
sification model together with the centroids and their error rates are propagated
to other peers.

By propagating the model(s) and centroids to all peers, we are duplicating
the knowledge of the peers in the P2P network, which allows the knowledge
of peers to remain in the network even when the owners have left or failed.
This reduces the adverse effects of peers failing. In addition, predictions can
be handled locally by peers without additional communication cost and waiting
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Algorithm 1. Training and Clustering Phase.
input : Local data Di, number of cluster g
output: classification model Mi, centroids Ci, model error rate Erri

Mi ← trainClassifier(Di) ;1

Clusters ← clusterData(Di, g) ;2

Ci ← computeCentroids(Clusters) ;3

Erri ← predictionTest(Mi,Di) ;4

time. However, there are two problems with such approaches, viz., the cost of
data propagation and validity of the models.

With consideration to the cost of data propagation and efficiency of PACE, we
choose to employ LIBLINEAR [12] for training linear SVM as the base classifier
in this paper. LIBLINEAR is an implementation of linear SVM that performs
a dual coordinate gradient descent for optimizing the linear SVM solution. LI-
BLINEAR reaches an ε-accurate solution in O(log(1/ε) iterations, and is one of
the fastest linear SVM solutions. In addition, the linear SVM only produces a
single weight vector as its model for a two-class problem (for multiclass problem,
based on one against all strategy, the number of weight vectors is the number
of classes minus one), which significantly reduces communication cost incurred
for model propagation. Another problem is the validity of the models. Assuming
that models get outdated (due to concept drift), full propagation and replica-
tion of the models will increase staleness of knowledge and degrade accuracy
over time. One approach which can be used to handle this problem is to use
aging schemes to invalidate or decrease the weights of the models as time passes.
However, other than peers leaving, new peers may also join the network or old
peers may receive new data. With new peers joining, their base classifiers can
be propagated to other peers and used together with other collected models,
which can be easily achieved using (weighted) majority voting. Whereas for old
peers receiving new data, one simple approach is to create an additional base
classifier (and centroids) with the new data and propagate it out. Alternatively,
one can choose to update the old model (and centroids) with the new data and
propagate them out to replace the old model (and centroids). The training and
clustering phase is summarized in Algorithm 1.

3.2 Prediction Phase

Assuming not all classifiers fulfill the accuracy criteria required for ensemble
classifiers, we need to filter out those irrelevant classifiers to prevent them from
adversely affecting the ensemble’s accuracy. Let us now examine Figure 1 that
illustrates scenario 1. Given a test instance represented by *, we note that
a regular ensemble consisting of all the classifiers L1, L2 and L3 incorrectly
classifies the test instance. On the other hand, if we were to select a model (subset
of all the models) which is trained on the data nearest to the test instance, e.g.
L3 in this case, we are more likely to correctly predict the test instance. However,
we note that the closest classifier may not be the optimal solution since it also
depends on the error rate of the classifier.
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Let dist(Di, T ) denote the distance from test instance T to the training data
Di of peer pi in the feature space, Mi denote the classification model of pi,
Erremp(Mi) denote the empirical error of Mi and Perr(Mi, T ) denote the confi-
dence probability of Mi wrongly classifying T . We introduce the following lemma
to show the relationship between two models on a test instance (proof omitted
due to space constraints):

Lemma 1. When dist(Di, T ) > dist(Dj , T ), then Perr(Mi, T ) > Perr(Mj, T ) if
Erremp(Mi) = Erremp(Mj).

Using Lemma 1 as the basis, we can provide a better estimation on the expected
error Errexp given a test instance T , which is ideal for weighing classifiers in
the ensemble. In addition, given that the criteria for selecting classifiers for the
ensemble is based on Lemma 1, we will be able to address scenarios 1, 2 and 3.
However, Lemma 1 assumes equal empirical error among the classifiers, which as
noted earlier is an incorrect assumption. Hence, using Lemma 1 as the basis, we
propose to combine the empirical error Erremp(Mi) and the distance dist(Di, T )
as the weight for the classifier in the ensemble.

W (Mi, T ) = 1−Perr(Mi, T ) = (1−Erremp(Mi))∗w(d) where w(.) is an inverse
distance function and d = dist(Di, T ). However, it is not possible to perform the
distance computation between all test data examples and all peers’ training data.
Hence, we approximate dist(Di, T ) with the distance of test instance T to the
nearest centroid c from the set of centroids Ci generated from clustering the
local training data Di (dist(Di, T ) ≈ distmin(Ci, T ) = minc∈Ci dist(c, T )).

To ensure asymptotic increase in accuracy as the size of the ensemble in-
creases, we have to ensure that the Errexp of each individual classifiers is less
than 0.5. Although we try to estimate Errexp with W , it is obvious that W is less
accurate, partly due to the fact that the distance measure uses centroids instead
of the actual data points, causing loss in accuracy. Therefore, instead of choos-
ing classifiers that meet the accuracy criteria, we perform a ranking and choose
the top k classifiers. Since every classifier Mi minimizes Erremp(Mi), using the
empirical error estimates for ranking may create unnecessary bias. Hence, all
classifiers are ranked according to their distance to the test instance, regardless
of their empirical error. Selecting only the top k models allows us to minimize
of adverse effects of possible erroneous classifiers. However, as we are unable
to determine the actual Errexp, the choice of k only serves as an estimation.
Hence, we empirically examine the choice of k and determine its effect on the
classification accuracy.

To allow better flexibility, we relax the value of d in W allowing the value
of either distmin(Ci, T ) or rank(Mi, T ). Note that the main purpose of w(.) is
to increase the weight of the closer models (research problem 2 ). Hence, in this
paper, we examine a variety of k nearest neighbor based weighting schemes as
follows:

– w0(d) = 1
– w1(d) = distmin(Clast,T )−distmin(Ccurrent,T )

distmin(Clast,T )−distmin(Cfirst,T )

– w2(d) = e−λrank.
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Algorithm 2. Prediction.
input : test instance T , set of all peers’ classifiers M, centroids of all peers’

training data C, prediction errors of all peers’ models Err, size of
ensemble k;

output: prediction y;
weighted votes counts VC ;1

list of k classifier TopK ;2

while |V C| < k do3

retrieve next nearest centroid Cnear from index;4

if model Mi of Cnear �∈ TopK then5

TopK ← Mi ;6

yi ← predict(Mi, T ) ;7

increaseVCyiby((1− Erri) ∗ w(ranki, disti))8

y ← getClassWithMaxV ote(VC) ;9

Note that the ranking of models has to be performed for each test instance,
because as their distribution varies so will their k nearest neighbors. A näıve
approach is to compute the distance between all classifiers’ centroids each and
everytime a new instance arrives. However, this is too costly as each ranking
incurs gN distance computations. Hence, to maintain high efficiency of PACE,
we propose to use a distance aware indexing algorithm such as k-d tree [13]
or locality-sensitive hashing (LSH) [14]. As the centroids are propagated with
the models, every peer can create their own index locally. Given a centroid, we
only need to index it once, and thereafter perform retrieval based on the index,
unlike the näıve approach where we have to recompute the distance of the test
instance to all collected centroids. Given appropriate parameters, a single lookup
is sufficient to retrieve all the required nearest models. On the arrival of a model,
we update the index using the centroids which allows us to retrieve the k-nearest
classifiers.

Here, we summarize the preprocessing and prediction phase. First, when a
new classifier and its centroids are received, we index the centroids and store
the classifier. This indexing step is critical to maintaining high efficiency for the
prediction phase. Next, when a test instance T arrives, we first retrieve k nearest
models using the index. Note that there can be more than k retrievals since each
model has more than one centroids. Next, we compute the centroid distance to
the test instance or simply record the rank. Then the prediction of the classifier,
multiplied by its training error and the kNN weight is stored. Given the votes
of the k nearest classifiers, we compute the largest voted class that is output as
the prediction of the ensemble. Pseudocode of the prediction phase is presented
in Algorithm 2.

3.3 Complexity Analysis

Here, we provide a time complexity analysis of PACE. In the training phase, each
peer builds a LIBLINEAR SVM classifier. The cost of building the linear SVM
model is O(log(1/ε)�id) for an ε-accurate solution where d is number of dimension
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of the dataset [12]. Other than model construction, peers also cluster the local
data which costs O(�ikd) [15]. Once both model construction and clustering are
completed, the training data is evaluated costing O(�id). In addition, upon the
arrival of a peer’s model and centroids, the distance indexes for the models are
updated. Since this is not a part of the prediction, we count it as a part of the
training cost. As the datasets used in our experiments are all high dimensional,
we use LSH [14] as the indexing algorithm. Given a (1, c, p1, p2)-sensitive hash
function for R

d, the cost of constructing the index is O((d+τ)(gN)ρ log1/p2 gN),
where τ is the time to compute the hash function and ρ = log(p1/p2). Hence,
assuming the k << log(1/ε), the worst case time complexity for training and
clustering is O(log(1/ε)�id).

In the prediction phase, when an instance arrives, we shall use the precom-
puted index to retrieve the top k nearest neighbors. As noted earlier, a single
lookup would be sufficient to retrieve all k nearest neighbors (given an appro-
priate c value or perform lookup in an incremental manner). Hence, the cost of
getting the k nearest neighbors is O(gd(gN)1/c2

). Finally, prediction is performed
for the top k models costing O(kd). Hence, the worst case time complexity for
prediction is O(gd(gN)1/c2

).
Next, we provide a brief overview of the communication cost incurred by each

peer. After the model construction, clustering and cluster validation, each peer
propagates its model, centroids and centroids’ accuracy to all other peers. Each
peer has g centroids, which are all d-dimensional vectors. The model for a two
class problem is in d-dimensional space. Including the centroids’ accuracy, the
communication cost is O(Ngd) bytes. Since all models are available at every
peer, the prediction phase does not require any communication.

4 Experiments and Analysis

In this section, we present experiments that demonstrate the cost-benefits of
PACE on various distributions. In addition, we study the effect of parameters
on classification accuracy, computation and communication cost of PACE.

4.1 Experiment Setup

To mimic P2P systems in our experiments, we employed some of the larger
datasets available from the UCI repository [16] — Multiclass Covertype (581,012
instances, 54 features, 7 class labels and 500 peers), MNIST (70,000 instances,
780 features, 10 class labels and 100 peers) and (KDD) Census-Income (295,173
instances, 50 features, 2 class labels and 200 peers) datasets. In addition, we
generated a two class (Binary) Covertype dataset by using class two against all
other classes. All attributes were normalized to the range of [0,1]. The number of
peers was chosen in accordance to the size of the dataset such that each peer has
at least 500 instances. For the Binary and Multiclass Covertype, we conducted
10-fold cross validation. For the Census-Income and MNIST datasets, we tested
using the provided testing data with 10 independent iterations.



44 H.H. Ang et al.

Table 2. Classification accuracy in %

Dataset Centralized P2P Linear SVM PACE PACE
Linear SVM Ivotes Ensemble k = 10 k = 0.1N

I.I.D. Data Distribution
Census Income 94.60 ± 0.00 94.79 ± 0.02 94.32 ± 0.01 94.31 ± 0.02 94.32 ± 0.02

Binary Covertype 75.68 ± 0.15 79.83 ± 0.12 75.61 ± 0.15 75.51 ± 0.33 75.61 ± 0.23
Multiclass Covertype 71.28 ± 0.12 76.12 ± 0.16 70.83 ± 0.16 70.67 ± 0.25 70.80 ± 0.20

MNIST 79.82 ± 0.00 88.00 ± 0.25 86.65 ± 0.19 82.43 ± 0.92 82.43 ± 0.92
Disjoint Class Distribution

Multiclass Covertype N.A. 68.74 ± 0.12 65.99 ± 0.16 69.70 ± 0.32 69.81 ± 0.45
MNIST N.A. 43.66 ± 3.36 53.94 ± 0.84 80.14 ± 1.48 80.14 ± 1.48

Table 3. Average computational cost per peer in msec (Training and Prediction)

Dataset Centralized P2P Linear SVM PACE PACE
Linear SVM Ivotes Ensemble k = 10 k = 0.1N

I.I.D. Data Distribution
Census Income 135 0 164 21200 20 11100 66 560 66 560

Binary Covertype 63 0 1102 49100 16 6112 40 224 40 820
Multiclass Covertype 200 0 2081 85889 27 14700 50 458 50 1790

MNIST 3670 0 2779 2300 66 3700 1422 320 1422 320
Disjoint Class Distribution

Multiclass Covertype N.A. 1237 55300 9 13300 31 490 31 2050
MNIST N.A. 1129 1700 8 1900 1137 260 1137 260

We compare PACE to the following algorithms — Centralized Linear SVM,
Ensemble of Linear SVM (LinSVME) with weighted majority voting and P2P
Ivotes [4]. Centralized Linear SVM is used as the benchmark for accuracy achiev-
able in a centralized environment. Since the main objective of this paper is to
address the limitations of majority voting in the P2P networks, we compare with
the two other (weighted) voting approaches. We used the LIBLINEAR [12] lin-
ear SVM package as the base classifier for PACE and LinSVME. In addition, we
used Kmeans++ [15] as the clustering algorithm for PACE. P2P Ivotes uses the
C4.5 Release 8 by Quinlan [17] as the base classifier. All algorithms are coded in
C++. Default settings for the Linear SVM were used, and for P2P Ivotes, the
bite size was set at 400 for the MNIST dataset and 800 for the rest of the other
datasets and error threshold was set at 0.002.

4.2 Accuracy

Table 2 presents classification accuracies of all competing approaches under var-
ious distributions. Under the assumption that the data is independent and iden-
tically distributed among all peers (I.I.D. Data Distribution), we observe that
PACE achieves higher accuracy than centralized Linear SVM on the MNIST
dataset but slightly lower accuracy (less than 1%) on other datasets. However,
note that in a real P2P environment, it is not possible to centralize all data to
learn a classifier. Compared with P2P Ivotes, PACE yields lower accuracy on
Binary, Multiclass Covertype and MNIST datasets, but is comparable on the
Census dataset. Note that the base classifier for P2P Ivotes is essentially an
ensemble of classifiers, because of which it performs better although at a much
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higher cost. Compared with LinSVME, PACE achieves comparable accuracy on
all datasets except MNIST.

4.3 Disjoint Data Distribution

For this experiment, we distributed the multiclass datasets (Covertype and
MNIST) among the peers such that each peer has local training data from only
two different classes (an example of scenario 3). Classification accuracy of the
P2P approaches for disjointed data distribution is also presented in Table 2. As
the results show, accuracies for all approaches drop in comparison with the case
of i.i.d. However, PACE achieves significantly higher accuracy than the competi-
tors on all datasets, demonstrating that it is more resilient to the adverse effect
of disjoint class distribution. Note that the significant drop in accuracy for P2P
Ivotes and LinSVME on MNIST dataset could be due to the fact that the size
distribution of the different classes in MNIST dataset are almost equal compared
to the Multiclass Covertype dataset and hence the difference.

In addition, we present the average computational cost incurred for a single
peer during the training and prediction (on entire test set) phase (c.f. Table 3).
Note that for PACE, we exclude the cost for building the index and for index re-
trieval, since these are implementation dependent, and fall outside the compared
phases. For instance, a hash-based index incurs negligible cost while testing, but
more in the construction stage. Observe that P2P Ivotes incurs the highest cost
on almost all datasets. This is because it dynamically builds additional clas-
sifiers depending on the difficulty of the local dataset. Hence, in addition to
incurring higher training cost, as there are more classifiers involved, the predic-
tion cost is also relatively higher. Compared with LinSVME, the training cost
of PACE is higher due to cost of clustering the local training data. However,
since training is not done as frequently and this is also within acceptable range
(not more than a few seconds for each peer), it is not a big issue. However,
PACE incurs significantly lesser prediction cost (even if index retrieval were to
be added) than LinSVME. This is because LinSVME uses all classifiers for pre-
diction, whereas PACE only uses a small number. From Table 3, we can see that
PACE performs within acceptable time for varying number of peers (100–500)
with varying dataset sizes and dimensions, thus demonstrating the efficiency and
scalability of PACE. It is apparent that the communication cost of PACE in-
creases linearly with the number of models (peers). Hence, given an appropriate
choice of classification model (such as linear SVM that is represented with only
a single vector), PACE is highly scalable in terms of communication cost (results
omitted due to space constraints).

4.4 Skewed Class Distribution

Here, we examine the effect of skewed class distribution on classification accu-
racy of the P2P approaches. Using a two class classification problem as the base
case, we experimented with the Binary Covertype dataset which has an even
class distribution. We skewed the local training data of every peer such that
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Fig. 4. Effect of number of clusters on accuracy for skewed (a) and disjoint (b and c)
class distributions; number of voters, k = 10

it is s% away from the natural distribution while maintaining equal size distri-
bution (skews in both ways). From the results (Figure 3), we observe that for
all approaches, as s increases, the accuracy decreases. However, we note that
P2P Ivotes has the sharpest descent. While LinSVME initially performs better
than PACE, its accuracy decreases sharply as s increases past 0.3. Although all
approaches are affected by skew, we note that PACE has the smoothest and
smallest descent in accuracy.

4.5 Parameter Sensitivity

Here, we examine the effects of the number of clusters g, number of voting peers
k, and the inverse distance weighting scheme, and provide some insight towards
their selection. Note that in Figures 4 and 5, lines denoted by “W” indicate the
different weighting schemes for PACE.

Number of clusters g: First we study the effect of the number of clusters on
classification accuracy for non i.i.d. data distribution (in Figure 4). Plots for i.i.d.
data distribution are not presented because the variations are less than 0.5% and
do not present any knowledge. We observe that in all cases, as the number of
clusters increases, the classification accuracy also increases but the magnitude of
increase also decreases. This happens because as the number of clusters increases,
they become more compact and representative, thereby increasing the accuracy
of the distance approximation and improving the prediction accuracy. However,
computation and communication costs also increase proportionally. Hence, our
approach is not very sensitive to the number of clusters and a smaller number
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Fig. 5. Effect of number of voting nearest neighbors on accuracy for skewed (a) and
disjoint (b and c) class distributions; number clusters, g = 5

of clusters are preferred. Note that satisfactory accuracy can be achieved on all
datasets with as few as 5 clusters.

Number of voting nearest neighbors k: Next, we study the effect of the
number of voting nearest neighbors (size of ensemble) on classification accuracy
(c.f. Figure 5). While the results for i.i.d. data distribution are not presented
due to space constraints, we note that as the number of voting peers increases,
the accuracy also increases. However, the increase quickly diminishes when the
number of voting peers exceeds 20% of the total peers.

Whereas under skewed or disjoint class distributions (c.f. Figure 5), we ob-
serve that as k increases, the classification accuracy increases initially and then
decreases. Note that this is also an expected result which justifies the rationale
of our approach. The reason for the initial increase is because classifiers that
were ranked higher have a higher probability of correctly classifying the test
data, which also depends on training error. Hence we observe that the nearest
neighbor may not have the highest accuracy. However, as k increases, we are
gradually adding classifiers that are less probable of correctly classifying the
test data and when the true error rate of these added classifiers falls below 0.5,
the accuracy of the ensemble starts to deteriorate. In addition, we observe that
for small values of k (lower 10%), PACE is able to outperform P2P Ivotes and
LinSVME for both distributions.

5 Conclusions

In this paper, we studied the problem of distributed learning in P2P networks.
We found potential pitfalls that arise due to data distributions in P2P net-
works, and presented several scenarios in which majority voting performs badly,
demonstrating the significance of our work. To address these issues, we pro-
posed a novel P2P Adaptive Classification Ensemble (PACE) framework which
dynamically adapts to the distributions of the test data and selects only rele-
vant classifiers to participate in the prediction vote. To validate the efficiency
and effectiveness of our approach, we conducted extensive empirical evaluations.
Results show that in the normally assumed environment, PACE performs similar
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to other existing P2P classification approaches. However, under varying condi-
tions typical of real world environments, PACE outperforms existing approaches
and minimizes the effects of adverse conditions.

In future, we intend to perform a more in-depth study on the relationship
between test data and classifiers with respect to their proximity in the feature
space. While the idea of our framework is to correlate data proximity and accu-
racy of the training error as an estimate for generalization error, its implemen-
tation may not be the most appropriate due to considerations such as time and
communication cost. Hence, alternatives approaches will be explored in future.
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Abstract. Rare association rule is an association rule consisting of rare items. It
is difficult to mine rare association rules with a single minimum support (minsup)
constraint because low minsup can result in generating too many rules in which
some of them can be uninteresting. In the literature, minimum constraint model
using “multiple minsup framework” was proposed to efficiently discover rare as-
sociation rules. However, that model still extracts uninteresting rules if the items’
frequencies in a dataset vary widely. In this paper, we exploit the notion of “item-
to-pattern difference” and propose multiple minsup based FP-growth-like ap-
proach to efficiently discover rare association rules. Experimental results show
that the proposed approach is efficient.

Keywords: rare association rules, frequent patterns, multiple minimum supports.

1 Introduction

Association rule mining is an important data mining technique which discovers inter-
esting associations among the entities (or items) in a dataset. Since the introduction of
association rules in [1], mining the association rules has been extensively studied in the
literature [2,3]. The basic model of association rule is as follows:

Let I = {i1, i2, ..., in} be a set of items. Let T be a set of transactions (dataset), where
each transaction t is a set of items such that t ⊆ I. A pattern (or an itemset) X is a set of
items {i1, i2, ..., ik}, 1≤ k ≤ n, such that X ⊆ I. Pattern containing k number of items
is called k-pattern. An association rule is an implication of the form, A ⇒ B, where
A ⊂ I, B ⊂ I and A∩B = /0. The rule A ⇒ B holds in T with support s, if s% of the
transactions in T contain A∪B. Similarly rule A ⇒ B holds in T with confidence c, if
c% of transactions in T that support A also support B. Given T , the problem of mining
association rules is to discover all rules that satisfy user-specified minimum support
(minsup) and minimum confidence (mincon f ) constraints. The patterns which satisfy
minsup are called frequent patterns. The rules which satisfy both minsup and mincon f
constraints are called strong rules.

Example 1: Let our running example be the transaction dataset, T , shown in Figure
1(a). The set of items I = {bread, jam, ball, bat, bed, pillow}. Total number of
transactions in T is 20. A set of items {bread, jam} is a pattern. This pattern occurs

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 49–62, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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in 5 transactions; therefore, its support, S(bread∪ jam) = 5×100
20 = 25% (in support

count, S(bread∪ jam) = 5).Let jam⇒ bread be an association rule which is derived

from this pattern. The confidence of this rule, C(jam ⇒ bread) = S(bread∪jam)
S(jam) =

25×100
40 = 62.5%. If minsup = 25% and mincon f = 50% then the pattern {bread,

jam} is a frequent pattern and the rule jam ⇒ bread is a strong rule. This rule says
that 25% of customers buy bread and jam together, and those who buy jam also buy
bread 62.5% of the time. Throughout this paper, we discuss this example in terms
of support counts.

TID TID Items
1

2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20

Bread, Jam

Bread, Jam

Bread, Jam

Bread, Jam
Bread, Jam, Bat

Bread, Bed, Pillow

Bread, Ball

Bread, Ball

Bread, Ball

Bread, Ball, Pillow Bread
Ball, Jam
Ball, Bat

Ball, Bat

Ball, Bat
Ball, Bat

Jam, Bat

Items

Bread, Bed, Pillow
Ball, Jam

Ball, Bat

(a) (b)

Patterns S
Bread 12
Ball
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Bed
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Bread, Jam

11
8
7
3Pillow

2
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5
Bread, Bed 2
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Bread, Pillow
Ball, Jam
Ball, Bat
Jam, Bat

2
2
5
2

Bed, Pillow 2
Bread, Pillow,
Bed 2

MMS
y

N
y

N
y

y

MMS
y
y
y
y
y
y

N
y
y

9
8
5
4
2
2

MIS

-
-
-

Fig. 1. Rare item problem illustration. (a) Transaction dataset and (b) Frequent patterns generated
at minsup = 2. The terms ‘S’, ‘MIS’ and ‘MMS’ are used as acronyms for support, minimum
item support and multiple minsup framework. In Figure 1(b), second column represents the MIS
values used for the items in multiple minsup framework. In Figure 1(b), the frequent patterns gen-
erated in multiple minsup framework are projected over the frequent patterns generated in single
minsup framework using terms ‘Y’ and ‘N’. These terms represent ‘frequent patterns generated’
and ‘frequent patterns not generated’ in multiple minsup framework respectively.

Given a transaction dataset consisting of a set of items, mining association rules
generally involves two steps: (i) Discovering all frequent patterns and (ii) Generating
all strong association rules from the set of frequent patterns.

Most of the real-world datasets are non-uniform in nature. That is, in a dataset, some
items appear frequently, while others appear relatively infrequent or rare. A rare asso-
ciation rule is an association rule consisting of rare items. Rare association rules can
provide useful knowledge [5]. However, it is difficult to mine rare association rules
because single minsup based association rule (or frequent pattern) mining approaches
like Apriori [1] and Frequent Pattern-growth (FP-growth) [6] suffer from the dilemma
called “rare item problem” [7]. The “rare item problem” can be described as follows. If
minsup is set too high, we miss the frequent patterns involving rare items because rare
items fail to satisfy high minsup. To find frequent patterns consisting of both frequent
and rare items, we have to set minsup very low. However, this may cause combinatorial
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explosion and produce too many frequent patterns. In addition, some of the uninterest-
ing patterns can be generated as frequent patterns.

Uninteresting patterns are of two types.

1. Patterns which have low support and contain only frequent items.
2. Patterns which have low support and contain highly frequent and rare items. Con-

sidering such patterns as interesting or uninteresting is a subjective matter which
depends on user requirement, application type etc. In this paper, we consider such
patterns as uninteresting.

Example 2: Continuing with Example 1, it can be observed that at high minsup,
say minsup = 5 (in support count), the rare items bed and pillow fail to participate
in generating frequent patterns because their support value is less than minsup.
To find frequent patterns consisting of rare items, let us specify low minsup, say
minsup = 2. The frequent patterns generated at minsup = 2 are shown in Figure
1(b). Among these generated frequent patterns, the patterns {bread, ball}, {ball,
jam} and {jam, bat} (patterns shown in bold letters) are uninteresting because they
contain frequent items occurring together in very less number of transactions. Also,
the patterns {bread, pillow}, {bread, bed} and {bread, pillow, bed} (patterns shown
in bold-italics letters) can also be considered as uninteresting because they contain
frequent item bread occurring along with rare items bed and/or pillow in very less
number of transactions.

To improve the performance of mining frequent patterns consisting of both frequent
and rare items, efforts are being made to discover frequent patterns using ”multiple
minsup framework” [7,9,11,12]. Independent of the detailed implementation technique,
the model used in these approaches is as follows.

1. Each item in the transaction dataset is specified with a support constraint called
minimum item support (MIS).

2. A pattern is defined as frequent, if its support is greater than or equal to the minimal
MIS value among all its items. In other words, minsup of a pattern is represented
as the minimal MIS value among all its items.

Generally, items’ MIS values are specified based on their respective support values. So,
as compared with frequent items, rare items are specified with relatively lower MIS
values. If a pattern contains only frequent items, it has to satisfy relatively high minsup
value to be a frequent pattern. If a pattern contains rare items, it has to satisfy relatively
low minsup value to be a frequent pattern. Thus, this model can efficiently prune those
uninteresting patterns which have low support and contain only frequent items.

Even though this model improves the performance over single minsup framework, it
still extracts uninteresting frequent patterns which have low support and contain highly
frequent and rare items. Hence, this model is also insufficient to mine frequent pat-
terns especially in the datasets where items’ frequencies vary widely, because, in such
datasets, users can consider those rules which have low support and contain both highly
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frequent and rare items as uninteresting rules. In this paper, we refer this model as
minimum constraint model.

Example 3: For the transaction dataset shown in Figure 1(a), let the MIS values for
the items bread, ball, jam, bat and pillow be 9, 8, 5, 4, 2 and 2 respectively. In Figure
1(b), column titled “MMS” presents the frequent patterns generated under minimum
constraint model with reference to the frequent patterns generated at minsup = 2.
The following observations can be made from the discovered frequent patterns.
First, this model has pruned all uninteresting patterns which have low support and
contain only frequent items from becoming frequent patterns. Second, this model
was unable to prune uninteresting patterns which have low support and contain
highly frequent and rare items from becoming frequent patterns.

The generation of uninteresting frequent patterns in minimum constraint model is
due to the reason that this model specifies minsup of a pattern by considering only the
minimal frequent (or MIS) item within it. In this paper, we exploit the notion of “item-
to-pattern difference” and, extend it to the minimum constraint model so that the pro-
posed model can specify minsup of a pattern by considering both minimal and maximal
frequent items within it. Thus, the proposed model prunes uninteresting patterns while
mining frequent patterns in the datasets where items’ frequencies vary widely. We call
this model as minimum-maximum constraint model. For this model, we also discuss
a pattern-growth approach which uses the prior knowledge regarding the items’ MIS
values and discovers frequent patterns with a single scan on the dataset. Experimental
results show that the proposed model is efficient.

The rest of the paper is organized as follows. In Section 2, we summarize the existing
approaches for mining rare association rules. In Section 3, we describe the proposed
approach. In Section 4, experimental results conducted on synthetic and real world
datasets are presented. In Section 5, we discuss conclusions and future work.

2 Related Work

To address “rare item problem”, minimum constraint model (discussed in Section 1),
which uses “multiple minimum support framework” was discussed and, extended to
Apriori approach to discover complete set of frequent patterns [7]. This multiple minsup
based Apriori-like approach suffers from the performance problems like generating
huge number of candidate patterns and multiple scans on the transactional dataset.
Therefore, an effort has been made to extend minimum constraint model to FP-growth
approach as it does not suffer from the performance problems as those of Apriori [9].

The above two approaches assume that items’ MIS values will be specified by the
user prior to their execution. However, in the datasets where there exists numerous
items, it is mostly difficult for the user to specify items’ MIS values. Therefore, a
method shown in Equation 1 has been proposed to specify MIS values for the items
dynamically [11].

MIS(i j) = S(i j)−SD when (S(i j)−SD) > LS (1)

= LS otherwise
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where, LS refers to user-specified “least support” and SD refers to support difference.
SD can be either user-specified or derived using Equation 2.

SD = λ(1−β) (2)

where, λ represents the parameter like mean, median of the item supports and β∈ [0,1].
In [12], an effort has been made to improve the performance of [9] by efficiently

identifying only those items which can generate frequent patterns.
The approaches discussed in [7,9,11,12] are based on minimum constraint model.

Therefore, these approaches can efficiently prune uninteresting patterns which have
low support and contain only frequent items. However, they cannot prune uninteresting
patterns which have low support and contain both highly frequent and rare items. The
reason is minimum constraint model do not specify minsup of a pattern by considering
both minimal and maximal frequent items within it, instead specifies minsup of a pattern
by considering only the minimal frequent item within it.

A stochastic mixture model known as negative binomial (NB) distribution has been
discussed to understand the knowledge of the process generating transaction dataset
[8]. This model along with a user-specified precision threshold, finds local frequency
thresholds for groups of patterns based on which algorithm finds all NB-frequent pat-
terns in a dataset. It considers highly skewed data (skewed towards right) with the un-
derlying assumption of Poisson processes and Gamma mixing distribution. Hence, the
model can effectively be implemented in the datasets like general web logs etc., which
are exponentially distributed. However, this approach is not effective on other datasets
like general super markets datasets which are generally not exponentially distributed.
The reason is frequent items will distort the mean and the variance and thus will lead
to a model which grossly overestimates the probability of seeing items with high fre-
quencies. If we remove items of high frequencies as suggested, we may miss some
interesting rules pertaining to frequent items.

An approach has been suggested to mine the association rules by considering only
infrequent items i.e., items having support less than the minsup [10]. However, this
approach fails to discover associations between frequent and rare items.

An Apriori-like approach which tries to use a different minsup at each level of itera-
tion has been discussed [13]. This model still suffers from “rare item problem” because
it uses a single minsup constraint at each iteration. Also, this approach being an Apriori-
like approach suffers from the performance problems like generating huge number of
candidate patterns and multiple scans on the dataset.

The model proposed in this paper is different from the minimum constraint model
which was used in [7,9,11,12]. The proposed approach specifies minsup of a pattern by
considering both minimal and maximal frequent item within it, whereas in minimum
constraint model, minsup of a pattern is specified by considering only the minimal
frequent item within it. The approaches discussed in [8] and [10] deal with frequent
patterns consisting of rare items. The proposed approach extracts frequent patterns con-
sisting of both frequent and rare items. The approach discussed in [13] do not specify
minsup for each pattern, instead specifies minsup at each iteration or level of frequent
pattern mining. In the proposed approach, independent to the iteration, each pattern has
to satisfy a minsup depending upon the items within it.
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3 Proposed Approach

3.1 Basic Idea

In the datasets where items’ frequencies vary widely, the minimum constraint model
(discussed in Section 1) generates uninteresting frequent patterns which have low sup-
port and contain highly frequent and rare items. The main issue is to develop a model
to filter such uninteresting frequent patterns. One of the characteristic feature of an un-
interesting frequent pattern generated in minimum constraint model is that the support
of a pattern is much less than the support of maximal frequent item within it.

The basic idea of the proposed approach is as follows. Uninteresting patterns are
filtered by limiting the difference between the support of a pattern, and the support of the
maximal frequent item in that pattern. To explain the basic idea, we define the following
terms: item-to-pattern difference (ipd) and maximum item-to-pattern difference (mipd).

Definition 1. Item-to-pattern difference (ipd). Given a pattern X = {i1, i2, · · · , ik},
where S(i1) ≤ S(i2) ≤ ·· · ≤ S(ik) and MIS(i1) ≤ MIS(i2) ≤ ·· · ≤ MIS(ik), the ipd
of pattern X, denoted as ipd(X) = S(ik)−S(X).

Example 5: In the transactional dataset shown in Figure 1(a), S(bread) = 12 and
S(bread, jam)=5. The ipd value of the pattern {bread, jam} i.e., ipd(bread, jam)=
7 (= 12−5).

The metric ipd provides the information regarding the difference between the support
of a pattern with respect to support of the maximal frequent item within it. If ipd value
is less for a pattern, it means support of the pattern is close to the the support of the
maximal frequent item within it. A high ipd value for a pattern means support of the
respective pattern is very less (or away) from the support of the maximal frequent item
within it.

Definition 2. Maximum item-to-pattern difference (mipd). The mipd is a user-
specified maximum ipd value. A pattern X is an interesting pattern if and only if
ipd(X)≤ mipd. Otherwise, the pattern X is an uninteresting pattern.

Example 6: Continuing with the Example 5, if mipd = 7 then the pattern {bread,
jam} is an interesting pattern because ipd(bread, jam)≤mipd. The pattern {bread,
bed} is an uninteresting pattern because ipd(bread,bed) > mipd.

The value for mipd can be specified to a certain percentage of a transactional dataset. If
mipd value is high, it discovers both interesting and uninteresting patterns as in mini-
mum constraint model. If mipd value is less, there is a danger of filtering out interesting
patterns.

The rules to extract interesting patterns under the proposed framework are as follows.
Let X = {i1, i2, · · · , ik}, where S(i1) ≤ S(i2)≤ ·· · ≤ S(ik), be a pattern. Let MIS(i j) be
the minimum item support for an item i j ∈ X . The pattern X is frequent if

(i) S(X)≥ minimum(MIS(i1),MIS(i2), · · · ,MIS(ik)), and
(ii) ipd(X)≤ mipd.
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Example 7: For the transaction dataset shown in Figure 1(a), let the MIS values
for the items bread, ball, jam, bat and pillow be 9, 8, 5, 4, 2 and 2 respectively.
Let user-specified mipd = 7. The interesting pattern {bread, jam} is a frequent
pattern because S(bread, jam)≥minimum(9,5) and ipd(bread, jam)≤mipd. The
uninteresting pattern {bread, bed} is an infrequent pattern, because, even though
S(bread,bed)≥ minimum(9,2) its ipd(bread,bed) > mipd.

The items’ MIS values and mipd value should be specified by the user depending upon
the type of application. Also, the items’ MIS values can be specified using Equation 1.

Calculating minsup for a pattern X: Based on the above two requirements, for the
pattern X to be a frequent pattern, its minsup, denoted as minsup(X) can be calculated
using Equation 3.

minsup(X) = maximum(minimum(MIS(i1), · · · ,MIS(ik)),(S(ik)−mipd)) (3)

The value, “S(ik)−mipd” can be derived by substituting “ipd(X) = S(ik)−S(X)” in the
equation “ipd(X)≤ mipd”. Thus, the proposed approach specifies minsup of a pattern
by considering both minimal and maximal frequent item within it.

Problem Definition: In a transactional dataset T , given items’ MIS values and mipd
value, discover complete set of frequent patterns that satisfy (i) lowest MIS value among
all its items and (ii) ipd value less than or equal to the user-specified mipd.

The frequent patterns discovered using this model follow “sorted closure property”.
The “sorted closure property” says, if a sorted k-pattern 〈i1, i2, ..., ik〉, for k ≥ 2 and
MIS(i1) ≥ MIS(i2) ≥ ... ≥ MIS(ik), is frequent, then all of its subsets involving the
item having lowest MIS value (i1) need to be frequent; however, other subsets need not
necessarily be frequent patterns.

Example 8: Consider a transaction dataset having three items i1, i2 and i3. Let
the MIS values for these items be 5%, 10% and 20% respectively. If a sorted 3-
pattern {i1, i2, i3} has support 6% then it is a frequent pattern because S(i1, i2, i3)≥
min(5%,10%,20%). In this frequent pattern, all supersets of i1 i.e., {{i1}, {i1, i2},
{i1, i3}} are frequent because of apriori property [1]. However, the supersets of
items i2 and i3, {i2, i3}, can be still an infrequent pattern with S(i2, i3) = 9% which
is less than the its required minsup (min(10%,20%)).

Therefore, the user should not consider all subsets of a frequent pattern as frequent.
Instead, user can consider all subsets of the minimal frequent (or MIS) item within a
frequent pattern as frequent. This property is elaborately discussed in [7].

3.2 Algorithm

Given the transactional dataset T , items’ MIS values and mipd value, the proposed
approach utilizes the prior knowledge regarding the items’ MIS values and discovers
frequent patterns with a single scan on the transactional dataset. The approach involves
the following three steps.

1. Construction of a tree, called MIS-tree.
2. Generating compact MIS-tree from MIS-tree.
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3. Mining compact MIS-tree using conditional pattern bases to discover complete set
of frequent patterns.

The first two steps i.e., construction of MIS-tree and compact MIS-tree are similar to
those in [9,12]. However, mining frequent patterns from the compact MIS-tree is dif-
ferent from [9,12].

Structure of MIS-tree: The structure of MIS-tree includes a prefix-tree and an item
list, called MIS-list, consisting of each distinct item with frequency (or support), MIS
value and a pointer pointing to the first node in prefix-tree carrying the respective item.

Construction of MIS-tree: Initially, the items in the transactional dataset are sorted
in descending order of their MIS values. Let this sorted order of items be L. Next,
MIS-list is populated with all the items in L order. The support values of the items
are set to 0. The MIS values of the items are set with their respective MIS values.
A root node labeled “null” is created in the prefix-tree. Next, each transaction in the
transactional dataset is scanned and MIS-tree is updated as follows. (i) Items in the
respective transaction are ordered in L order. (ii) For these items, their frequencies (or
supports) are updated by 1 in the MIS-list. (iii) In L order, a branch which consists
of these items is created in the prefix-tree. The construction of a branch in the prefix-
tree of MIS-tree is same as that in FP-tree. However, it has to be noted that FP-tree is
constructed with support descending order of items and MIS-tree is constructed with
MIS descending order of the items. To facilitate tree traversal, an item header table is
built so that each item points to its occurrences in the tree via a chain of node-links.

We now explain the construction of MIS-tree using the transactional dataset shown
in Figure 1(a). Let the MIS values for the items bread, ball, jam, bat, pillow and bed
be 9, 8, 5, 4, 2 and 2 respectively. Let user-specified mipd = 7. The sorted-list of items
in descending order of their MIS values is bread, ball, jam, bat, pillow and bed. Let
this sorted order be L. In L order, all items are inserted into MIS-list by setting their
support and MIS values to 0 and their respective MIS values. In the prefix-tree, a root
node is created and labeled as “null”. Figure 2(a) shows the MIS-tree constructed be-
fore scanning the transactional dataset. In the first scan of the dataset shown in Figure
1(a), the first transaction “1: bread, jam” containing two items is scanned in L order
i.e., {bread, jam}, and the frequencies of the items bread and jam are updated by 1 in
MIS-list. A branch of tree is constructed with two nodes, 〈bread:1〉 and 〈jam:1〉, where
bread is linked as child of the root and jam is linked as child of bread. The updated
MIS-tree after scanning first transaction is shown in Figure 2(b). The second transac-
tion “2: bread, ball, pillow” containing three items is scanned in L order i.e., {bread,
ball, pillow}, and the frequencies of the items bread, ball and pillow are updated by 1 in
MIS-list. The sorted list of items in the second transaction will result in a branch where
bread is linked to root, ball is linked to bread and pillow is linked to ball. However, this
branch shares the common prefix, bread, with the existing path for the first transaction.
Therefore, the count of bread node is incremented by 1 and new nodes are created for
items ball and pillow such that ball is linked to bread and jam is linked to ball, and their
nodes values are set to 1. The MIS-tree generated after scanning second transaction is
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shown in Figure 2(c). Similar process is repeated for the remaining transactions in the
transactional dataset. A node link table is built for tree traversal. The constructed MIS-
tree after scanning every transaction is shown in Figure 2(d).
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Fig. 2. MIS-tree for the transactional dataset shown in Fig. 1. (a) MIS-tree before scanning the
transactional dataset. (b) MIS-tree after scanning first transaction. (c) MIS-tree after scanning
second transaction. (d) MIS-tree after scanning entire transactional dataset.

Generating compact MIS-tree: The MIS-tree is constructed with every item in the
transactional database. There may be items which do not generate any frequent pattern.
So, using Lemma 1, we identify all those items which have support less than the low-
est MIS value among all frequent items (or frequent 1-patterns) and prune them from
the MIS-tree. In [9], it was observed that depending on the items’ MIS values there
exists scenarios where child nodes of a parent node can share a same item after prun-
ing operation. So, tree-merging operation is performed on the pruned MIS-tree to merge
such child nodes. The resultant MIS-tree is called compact MIS-tree. The algorithm and
correctness for constructing MIS-tree and generating compact MIS-tree are discussed
in [12].

Lemma 1. In T , the items which have their support less than the lowest MIS value
among all frequent items will not generate any frequent pattern.

Proof. In the proposed model, one among the constraints for a pattern to be frequent
is that it should satisfy the lowest MIS value among all its items. So items which have
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their supports less than the lowest MIS value among all the items cannot generate any
frequent pattern. From the sorted closure property, we can say that in a frequent pattern,
the item having lowest MIS value will be a frequent. Thus, we can prune all those items
which have support less than the lowest MIS value among all the frequent items (or
frequent 1-itemsets).

Continuing with the example, the frequent item having lowest MIS value is bed. Since,
all items in the transactional dataset have their support values greater than or equal
to MIS(bed) no item is pruned from the MIS-tree. Thus, the existing MIS-tree is the
compact MIS-tree.

Mining the compact MIS-tree: Briefly, mining of frequent patterns from the compact
MIS-tree is as follows. Choose each frequent length-1 pattern (or item) in the compact
MIS-tree as the suffix-pattern. For this suffix-pattern construct its conditional pattern
bases. From the conditional pattern bases, construct MIS-tree, called conditional MIS-
tree, with all those prefix-subpaths that have satisfied the MIS value of the suffix-pattern
and mipd. Finally, recursive mining on conditional MIS-tree results in generating all
frequent patterns.

The correctness of mining frequent patterns from the compact MIS-tree is based on
the following Lemma.

Lemma 2. Let α be a pattern in compact MIS-tree. Let MIS-minsupα and mipd be the
two constraints that α has to satisfy. Let B be α conditional pattern base, and β be an
item in B. Let S(β) and SB(β) be the support of β in the transactional database and in
B respectively. Let MIS(β) be the user-specified β’s MIS value. If α is frequent and the
support of β satisfies MIS-minsupα and S(β)− SB(β) ≤ mipd, the pattern < α,β > is
therefore also frequent.

Proof. According to the definition of conditional pattern base and compact MIS-tree
(or FP-tree), each subset in B occurs under the condition of the occurrence of α in the
transactional database. If an item β appears in B for n times, it appearers with α in n
times. Thus, from the definition of frequent pattern used in this model, if the SB(β) ≥
MIS-minsupα and S(β)−SB(β)≤ mipd then < α,β > is a frequent pattern.

Mining the compact MIS-tree is shown in Table 1. Consider bed, which is the last item
in the MIS-list. Bed occurs in one branch of the compact MIS-tree of Figure 2(d).
The path formed is {bread, pillow, bed: 2}. Therefore, considering bed as a suffix, its
corresponding prefix path 〈bread, pillow: 2〉, form its conditional pattern base. Its con-
ditional MIS-tree contains only a single path, 〈pillow: 2〉, bread is not included because
S(bread)−Sbed(bread) > mipd. The single path generates the frequent pattern {pillow,
bed:2}. Similarly, by choosing every item in the MIS-list, the complete set of frequent
patterns are generated. The frequent patterns generated in this model are {{bread},
{ball}, {jam}, {bat}, {pillow}, {bed}, {bread, jam}, {ball, bat}, {bed, pillow}}. It can
be observed that this model has pruned all uninteresting patterns while finding frequent
patterns consisting of frequent and rare items.
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Table 1. Mining the compact MIS-tree by creating conditional pattern bases

Item Conditional Pattern Base Conditional MIS-tree Frequent Patterns
bed {bread, pillow: 2} 〈pillow: 2〉 {pillow, bed:2}
pillow {bread, ball: 1} {bread: 2} - -
bat {bread, jam: 1} {ball: 6} 〈ball: 6〉 {ball, bat: 6}
jam {bread: 5} {ball:2} 〈bread:5〉 {bread, jam: 5}
ball {bread: 5} - -

After generating frequent patterns, a procedure discussed in [1] can be used to gen-
erate association rules from the discovered frequent patterns.

3.3 Relation between the Frequent Patterns Generated in Different Models

Let F be the set of the frequent patterns generated when minsup = x%. Let MCM be
the set of frequent patterns generated in minimum constraint model, when items’ MIS
values are specified such that no items’ MIS value is less than x%. For the same items’
MIS values and mipd value, let MMCM be the set of frequent patterns generated in
minimum-maximum constraint model. The relationship between these frequent patterns
is MMCM ⊆MCM ⊆ F .

4 Experimental Results

In this section, we present the performance comparison of the proposed model against
minimum constraint model discussed in [7,9,11,12]. We also present the performance
comparison of the proposed model with the model discussed in [13].

For experimental purposes we have chosen two kinds of datasets: (i) synthetic dataset
and (ii) real-world dataset. The synthetic dataset is T10.I4.D100K dataset which is gen-
erated with the data generator [1]. This generator is widely used for evaluating associ-
ation rule mining algorithms. It contains 1,00,000 number of transactions, 870 items,
maximum number of items in a transaction is 29 and the average number of items in a
transaction is 12. The real-world dataset is a retail dataset [14]. It contains 88,162 num-
ber of transactions, 16,470 items, maximum number of items in a transaction is 76 and
the average number of items in each transaction is 5.8. Both of the datasets are available
at Frequent Itemset MIning (FIMI) repository [15].

4.1 Experiment 1

In this experiment, we have compared the proposed model (minimum-maximum con-
straint model) against minimum constraint model. To specify MIS values for the items,
we used the equation discussed in [11]. In this paper, we have described this equation
in Equation 1 of Section 2. For both the datasets, we have chosen LS = 0.1% because
we have considered that any pattern (or an item) having support less than 0.1% is unin-
teresting. Next, items’ MIS values are specified by varying SD values at 0.25% and 1%
respectively.
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Both Fig. 3(a) and Fig. 3(b) show the number of frequent patterns generated in syn-
thetic and real-world datasets at different items’ MIS values and mipd values. The
thick line in these figures represents the number of frequent patterns generated when
minsup = 0.1%. The lines, titled “MCM(SD = x%, LS = y%)” and “MMCM(SD = x%,
LS = y%)”, represent the number of frequent patterns generated in minimum constraint
model and minimum-maximum constraint model when items’ MIS values are specified
with SD = x% and LS = y% in Equation 1. The following observations can be drawn
from these two figures.
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Fig. 3. Frequent patterns generated at different mipd values. (a) Synthetic (T10.I4.D100k) dataset
and (b) Real-world (Retail) dataset.

First, increase in SD has increased the number of frequent patterns in both mini-
mum constraint and minimum-maximum constraint models. The reason is as follows.
Increase in SD has resulted in specifying low MIS values for the items. Low MIS val-
ues of the items facilitated patterns to satisfy low minsup values, thereby, increasing the
number of frequent patterns.

Second, the minimum constraint model specifies minsup of a pattern by considering
only the items’ MIS values. Therefore, the number of frequent patterns discovered by
this model are independent to mipd values.

Third, the minimum-maximum constraint model specifies minsup of a pattern by
considering both items’ MIS values and ipd values of a pattern. Therefore, the number
of frequent patterns discovered by this model vary depending on the mipd value.

Fourth, it can be observed that for a fixed SD and LS values (or items’ MIS values),
the number of frequent patterns generated by minimum-maximum constraint model gets
increased with increase in mipd value. The reason is that as mipd value increases, the
patterns which have their support less than their respective maximal frequent item have
generated as frequent patterns.
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Analysis of the frequent patterns generated in retail dataset: In Figure 3(b) it can be
observed that there is a sudden rise in the number of frequent patterns being generated
when mipd values are varied from 40% to 60%. So, we have analyzed the frequent
patterns generated at mipd = 40%, mipd = 50% and mipd = 60%. In our analysis,
we have observed that when mipd > 40%, many of the frequent patterns generated
contained highly frequent items and rare items appearing together with very less support
values. Many of these patterns had their support value almost equivalent to 0.1%. The
proposed approach is able to prune such uninteresting patterns when mipd < 40%.

4.2 Experiment 2

In this experiment, we compare the proposed model against the model discussed in [13].
In [13], the minsup used for discovering frequent 1-patterns is shown in Equation 4.

minsup =
1
2

[
n

∑
i=1

TOTOCC1 +
MINS1 + MAXS1

2

]
(4)

where, TOTOCCl , MINS1 and MAXS1 represent total support of items, minimum and
maximum support of the items present in the transactional dataset.

Using Equation 4, the minsup derived for the synthetic and real-world datasets are
2.5% and 14.4% respectively. In synthetic dataset, at minsup = 2.5%, only 88 items out
of 870 items have participated in generating frequent patterns. In real-world dataset,
at minsup = 14.4%, only 14 items out of 16,470 items have participated in generating
frequent patterns. The reason for deriving high minsup values in these datasets is due to
the presence of items having high frequencies. We cannot remove these frequent items
because we will miss some important interesting rules consisting of these items.

In the proposed model when LS = 0.1%, 798 items out of 870 have participated in
synthetic dataset, and 2118 items out of 16,470 items have participated in real-world
dataset. Thus, the proposed model has facilitated more number of items to generate
frequent patterns.

5 Conclusions and Future Work

The minimum constraint model, which uses “multiple minimum support framework”
for finding rare association rules generates uninteresting frequent patterns if the items’
frequencies in a dataset vary widely. In this paper, we explored “item-to-pattern dif-
ference” notion and extended it to the minimum constraint model so that the extended
model can prune such patterns while mining rare association rules. For this extended
model, an FP-growth-like approach is also presented. This FP-growth-like approach
utilizes the prior knowledge provided by the user (items’ MIS values) and discovers
frequent patterns with a single scan on the dataset. We have evaluated the performance
of the proposed model by conducting experiments on both synthetic and real-world
datasets. The results show that as compared with single minsup model and minimum
constraint model, the proposed model prunes more number of uninteresting rules while
mining rare association rules.

As a part of future work, we are going to investigate an appropriate methodology for
assigning confidence values in a dynamic manner to generate rare association rules.



62 R. Uday Kiran and P. Krishna Reddy

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items
in large databases. In: ACM SIGMOD International Conference on Management of Data,
vol. 22, pp. 207–216. ACM Press, Washington (1993)

2. Hipp, J., Guntzer, U., Nakhaeizadeh, G.: Algorithms for Association Rule Mining - A Gen-
eral Survey and Comparision. ACM Special Interest Group on Knowledge Discovery and
Data Mining 2(1), 58–64 (2000)

3. Melli, G., Osmar, R.Z., Kitts, B.: Introduction to the Special Issue on Successful Real-World
Data Mining Applications. SIGKDD Explorations 8(1), 1–2 (2006)

4. Weiss, G.M.: Mining With Rarity: A Unifying Framework. SIGKDD Explorations 6(1), 7–19
(2004)

5. Mannila, H.: Methods and Problems in Data Mining. In: The International Conference on
Database Theory, pp. 41–55 (1997)

6. Jiawei, H., Jian, P., Yiwen, Y., Runying, M.: Mining Frequent Patterns without Candidate
Generation: A Frequent-Pattern Tree Approach. In: ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, pp. 53–87 (2004)

7. Liu, B., Hsu, W., Ma, Y.: Mining Association Rules with Multiple Minimum Supports. In:
ACM Special Interest Group on Knowledge Discovery and Data Mining Explorations, pp.
337–341 (1999)

8. Hahsler, M.: A Model-Based Frequency Constraint for Mining Associations from Transac-
tion Data. In: Data Mining and Knowledge Discovery, pp. 137–166 (2006)

9. Hu, Y.-H., Chen, Y.-L.: Mining Association Rules with Multiple Minimum Supports: A New
Algorithm and a Support Tuning Mechanism. Decision Support Systems 42(1), 1–24 (2006)

10. Zhou, L., Yau, S.: Association Rule and Quantitative Association Rule Mining among In-
frequent Items. In: 8th International Workshop on Multimedia Data Mining, pp. 156–167
(2007)

11. Uday Kiran, R., Krishna Reddy, P.: An Improved Multiple Minimum Support Based Ap-
proach to Mine Rare Association Rules. In: IEEE Symposium on Computational Intelligence
and Data Mining, pp. 340–347 (2009)

12. Uday Kiran, R., Krishna Reddy, P.: An Improved Frequent Pattern-growth Approach To Dis-
cover Rare Association rules. In: International Conference on Knowledge Discovery and
Information Retrieval (2009)

13. Kanimonzhi Selvi, C.S., Tamilarasi, A.: Mining Association rules with Dynamic and Collec-
tive Support Thresholds. International Journal on Open Problems Computational Mathemat-
ics 2(3), 427–438 (2009)

14. Brijs, T., Swinnen, G., Vanhoof, K., Wets, G.: The use of association rules for product as-
sortment decisions - a case study. In: Knowledge Discovery and Data Mining (1999)

15. Frequent Itemset MIning Repository, http://fimi.cs.helsinki.fi/data/

http://fimi.cs.helsinki.fi/data/


CAMLS: A Constraint-Based Apriori Algorithm
for Mining Long Sequences�

Yaron Gonen, Nurit Gal-Oz, Ran Yahalom, and Ehud Gudes

Department of Computer Science, Ben Gurion University of the Negev, Israel
{yarongon,galoz,yahalomr,ehud}@cs.bgu.ac.il

Abstract. Mining sequential patterns is a key objective in the field of
data mining due to its wide range of applications. Given a database
of sequences, the challenge is to identify patterns which appear fre-
quently in different sequences. Well known algorithms have proved to
be efficient, however these algorithms do not perform well when min-
ing databases that have long frequent sequences. We present CAMLS,
Constraint-based Apriori Mining of Long Sequences, an efficient algo-
rithm for mining long sequential patterns under constraints. CAMLS is
based on the apriori property and consists of two phases, event-wise and
sequence-wise, which employ an iterative process of candidate-generation
followed by frequency-testing. The separation into these two phases al-
lows us to: (i) introduce a novel candidate pruning strategy that increases
the efficiency of the mining process and (ii) easily incorporate consider-
ations of intra-event and inter-event constraints. Experiments on both
synthetic and real datasets show that CAMLS outperforms previous al-
gorithms when mining long sequences.

Keywords: data mining, sequential patterns, frequent sequences.

1 Introduction

The sequential pattern mining task has received much attention in the data min-
ing field due to its broad spectrum of applications. Examples of such applica-
tions include analysis of web access, customers shopping patterns, stock markets
trends, DNA chains and so on. This task was first introduced by Agrawal and
Srikant in [4]: Given a set of sequences, where each sequence consists of a list of
elements and each element consists of a set of items, and given a user-specified
min support threshold, sequential pattern mining is to find all of the frequent
subsequences, i.e. the subsequences whose occurrence frequency in the set of
sequences is no less than min support. In recent years, many studies have con-
tributed to the efficiency of sequential mining algorithms [2,14,4,8,9]. The two
major approaches for sequence mining arising from these studies are: apriori

and sequence growth.
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The apriori approach is based on the apriori property, as introduced in the
context of association rules mining in [1]. This property states that if a pattern α
is not frequent then any pattern β that contains α cannot be frequent. Two of the
most successful algorithms that take this approach are GSP [14] and SPADE [2].
The major difference between the two is that GSP uses a horizontal data format
while SPADE uses a vertical one.

The sequence growth approach does not require candidate generation, it
gradually grows the frequent sequences. PrefixSpan [8], which originated from
FP-growth [10], uses this approach as follows: first it finds the frequent single
items, then it generates a set of projected databases, one database for each fre-
quent item. Each of these databases is then mined recursively while concatenat-
ing the frequent single items into a frequent sequence. These algorithms perform
well in databases consisting of short frequent sequences. However, when mining
databases consisting of long frequent sequences, e.g. stocks values, DNA chains
or machine monitoring data, their overall performance exacerbates by an order
of magnitude.

Incorporating constraints in the process of mining sequential patterns, is a
means to increase the efficiency of this process and to obviate ineffective and
surplus output. cSPADE [3] is an extension of SPADE which efficiently consid-
ers a versatile set of syntactic constraints. These constraints are fully integrated
inside the mining process, with no post-processing step. Pei et al. [7] also discuss
the problem of pushing various constraints deep into sequential pattern mining.
They identify the prefix-monotone property as the common property of con-
straints for sequential pattern mining and present a framework (Prefix-growth)
that incorporates these constraints into the mining process. Prefix-growth leans
on the sequence growth approach [8].

In this paper we introduce CAMLS, a constraint-based algorithm for mining
long sequences, that adopts the apriori approach. The motivation for CAMLS
emerged from the problem of aging equipment in the semiconductor industry.
Statistics show that most semiconductor equipment suffer from significant un-
scheduled downtime in addition to downtime due to scheduled maintenance. This
downtime amounts to a major loss of revenue. A key objective in this context is
to extract patterns from monitored equipment data in order to predict its failure
and reduce unnecessary downtime. Specifically, we investigated lamp behavior
in terms of illumination intensity that was frequently sampled over a long period
of time. This data yield a limited amount of possible items and potentially long
sequences. Consequently, attempts to apply traditional algorithms, resulted in
inadequate execution time.

CAMLS is designed for high performance on a class of domains characterized
by long sequences in which each event is composed of a potentially large number
of items, but the total number of frequent events is relatively small. CAMLS con-
sists of two phases, event-wise and sequence-wise, which employ an iterative pro-
cess of candidate-generation followed by frequency-testing. The event-wise phase
discovers frequent events satisfying constraints within an event (e.g. two items
that cannot reside within the same event). The sequence-wise phase constructs
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the frequent sequences and enforces constraints between events within these se-
quences (e.g. two events must occur one after another within a specified time
interval). This separation allows the introduction of a novel pruning strategy
which reduces the size of the search space considerably. We aim to utilize spe-
cific constraints that are relevant to the class of domains for which CAMLS is
designed. Experimental results compare CAMLS to known algorithms and show
that its advantage increases as the mined sequences get longer and the number
of frequent patterns in them rises.

The major contributions of our algorithm are its novel pruning strategy
and straightforward incorporation of constraints. This is what essentially gives
CAMLS its high performance, despite of the large amount of frequent patterns
that are very common in the domains for which it was designed.

The rest of the paper is organized as follows. Section 2 describes the class of
domains for which CAMLS is designed and section 3 provides some necessary
definitions. In section 4 we characterize the types of constraints handled by
CAMLS and in section 5 we formally present CAMLS. Experimental results are
presented in section 6. We conclude by discussing future research directions.

2 Characterization of Domain Class
The classic domain used to demonstrate sequential pattern mining, e.g. [4], is
of a retail organization having a large database of customer transactions, where
each transaction consists of customer-id, transaction time and the items bought
in the transaction. In domains of this class there is no limitation on the total
number of items, or the number of items in each transaction.

Consider a different domain such as the stock values domain, where every
record consists of a stock id, a date and the value of the stock on closing the
business that day. We know that a stock can have only a single value at the
end of each day. In addition, since a stock value is numeric and needs to be
discretized, the number of different values of a stock is limited by the number of
the discretization bins. We also know that a sequence of stock values can have
thousands of records, spreading over several years. We classify domains by this
sort of properties. We may take advantage of prior knowledge we have on a class
of domains, to make our algorithm more efficient. CAMLS aims at the class of
domains characterized as follows:

– Large amount of frequent patterns.
– There is a relatively small number of frequent events.

Table 1 shows an example sequence database that will accompany us throughout
this paper. It has three sequences. The first contains three events: (acd), (bcd)
and b in times 0, 5 and 10 respectively. The second contains three events: a, c
and (db) in times 0, 4 and 8 respectively, and the third contains three events:
(de), e and (acd) in times 0, 7 and 11 respectively.

In section 6 we present another example concerning the behavior of a Quartz-
Tungsten-Halogen lamp, which has similar characteristics and is used for ex-
perimental evaluation. Such lamps are used in the semiconductors industry for
finding defects in a chip manufacturing process.
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Table 1. Example sequence database. Every entry in the table is an event. The first
column is the identifier of the sequence. The second column is the time difference from
the beginning of the sequence to the occurrence of the event. The third column shows
all of the items that constitute the event.

Sequence id Event id items
(sid) (eid)

1 0 (acd)
1 5 (bcd)
1 10 b

2 0 a
2 4 c
2 8 (bd)

Sequence id Event id items
(sid) (eid)

3 0 (cde)
3 7 e
3 11 (acd)

3 Definitions

An item is a value assigned to an attribute in our domain. We denote an item as
a letter of the alphabet: a, b, ..., z. Let I = {i1, i2, ..., im} be the set of all possible
items in our domain. An event is a nonempty set of items that occurred at the
same time. We denote an event as (i1, i2, ..., in), where ij ∈ I, 1 ≤ j ≤ n. An
event containing l items is called an l-event. For example, (bcd) is a 3-event.
If every item of event e1 is also an item of event e2 then e1 is said to be a
subevent of e2, denoted e1 ⊆ e2. Equivalently, we can say that e2 is a super-
event of e1 or e2 contains e1. For simplicity, we denote 1-events without the
parentheses. Without the loss of generality we assume that items in an event
are ordered lexicographically, and that there is a radix order between different
events. Notice that if an event e1 is a proper superset of event e2 then e2 is radix
ordered before e1. For example, the event (bc) is radix ordered before the event
(abc), and (bc) ⊆ (abc).

A sequence is an ordered list of events, where the order of the events in the se-
quence is the order of their occurrences. We denote a sequence s as 〈e1, e2, ..., ek〉
where ej is an event, and ej−1 happened before ej. Notice that an item can
occur only once in an event but can occur multiple times in different events
in the same sequence. A sequence containing k events is called a k-sequence,
in contrast to the classic definition of k-sequence that refers to any sequence
containing k items [14]. For example, 〈(de)e(acd)〉 is a 3-sequence. A sequence
s1 =

〈
e1
1, e

1
2, ..., e

1
n

〉
is a subsequence of sequence s2 =

〈
e2
1, e

2
2, ..., e

2
m

〉
, denoted

s1 ⊆ s2, if there exists a series of integers 1 ≤ j1 < j2 < ... < jn ≤ m such that
e1
1 ⊆ e2

j1
∧e1

2 ⊆ e2
j2
∧...∧e1

n ⊆ e2
jn

. Equivalently we say that s2 is a super-sequence
of s1 or s2 contains s1. For example 〈ab〉 and 〈(bc)f〉 are subsequence of 〈a(bc)f〉,
however 〈(ab)f〉 is not. Notice that the subsequence relation is transitive, mean-
ing that if s1 ⊆ s2 and s2 ⊆ s3 then s1 ⊆ s3. An m-prefix of an n-sequence s
is any subsequence of s that contains the first m events of s where m ≤ n. For
example, 〈a(bc)〉 is a 2-prefix of 〈a(bc)a(cf)〉. An m-suffix of an n-sequence s is
any subsequence of s that contains the last m events of s where m ≤ n. For
example, 〈(cf)〉 is a 1-suffix of 〈a(bc)a(cf)〉.
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A database of sequences is an unordered set of sequences, where every se-
quence in the database has a unique identifier called sid. Each event in every
sequence is associated with a timestamp which states the time duration that
passed from the beginning of the sequence. This means that the first event in
every sequence has a timestamp of 0. Since a timestamp is unique for each event
in a sequence it is used as an event identifier and called eid. The support or
frequency of a sequence s, denoted as sup(s), in a sequence database D is the
number of sequences in D that contain s. Given an input integer threshold, called
minimum support, or minSup, we say that s is frequent if sup(s) ≥ minSup. The
frequent patterns mining task is to find all frequent subsequences in a sequence
database for a given minimum support.

4 Constraints

A frequent patterns search may result in a huge number of patterns, most of
which are of little interest or useless. Understanding the extent to which a pat-
tern is considered interesting may help in both discarding ”bad” patterns and
reducing the search space which means faster execution time. Constraints are a
means of defining the type of sequences one is looking for.

In their classical definition [4], frequent sequences are defined only by the
number of times they appear in the dataset (i.e. frequency). When incorporat-
ing constraints, a sequence must also satisfy the constraints for it to be deemed
frequent. As suggested in [7], this contributes to the sequence mining process
in several aspects. We focus on the following two: (i) Performance. Frequent
patterns search is a hard task, mainly due to the fact that the search space is
extremely large. For example, with d items there are O(2dk

) potentially frequent
sequences of length k. Limiting the searched sequences via constraints may dra-
matically reduce the search space and therefore improve the performance. (ii)

Non-contributing patterns. Usually, when one wishes to mine a sequence
database, she is not interested in all frequent patterns, but only in those meet-
ing certain criteria. For example, in a database that contains consecutive values
of stocks, one might be interested only in patterns of very profitable stocks. In
this case, patterns of unprofitable stocks are considered non-contributing pat-
terns even if they are frequent. By applying constraints, we can disregard non-
contributing patterns. We define two types of constraints: intra-event con-

straints, which refer to constraints that are not time related (such as values of
attributes) and inter-events constraints, which relate to the temporal aspect
of the data, i.e. values that can or cannot appear one after the other sequentially.
For the purpose of the experiment conducted in this study and in accordance
with our domain, we choose to incorporate two inter-event and two intra-events
constraints. A formal definition follows.

Intra-event Constraints

– Singletons Let A = {A1, A2, ...An} s.t. Ai ⊆ I, be the set of sets of items that
cannot reside in the same event. Each Ai is called a singleton. For example,
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the value of a stock is an item, however a stock cannot have more than one
value at the same time, therefore, the set of all possible values for that stock
is a singleton.

– MaxEventLength The maximum number of items in a single event.

Inter-events Constraints

– MaxGap The maximum amount of time allowed between consecutive events.
A sequence containing two events that have a time gap which is grater than
MaxGap, is considered uninteresting.

– MaxSequenceLength The maximum number of events in a sequence.

5 The Algorithm

We now present CAMLS, a Constraint-based Apriori algorithm for Mining Long
Sequences, which is a combination of modified versions of the well known Apri-
ori [4] and SPADE [2] algorithms. The algorithm has two phases, event-wise and
sequences-wise, which are detailed in subsections 5.1 and 5.2, respectively. The
distinction between the two phases corresponds to the difference between the
two types of constraints. As explained below, this design enhances the efficiency
of the algorithm and makes it readily extensible for accommodating different
constraints. Pseudo code for CAMLS is presented in Algorithm 1.

Algorithm 1. CAMLS
Input minSup: minimum support for a frequent pattern.
maxGap: maximum time gap between consecutive events.
maxEventLength: maximum number of items in every event.
maxSeqLength: maximum number of events in a sequence.
D: data set. A: set of singletons.
Output F : the set of all frequent sequences.
procedure CAMLS(minSup, maxGap,maxEventLength,
maxSeqLength,D, A)
1: {Event-wise phase}
2: F1 ←

allFrequentEvents(minSup, maxEventLength,A, D)
3: F ← F1

4: {Sequence-wise phase}
5: for all k such that 2 ≤ k ≤ maxSeqLength and Fk−1 �= φ do
6: Ck ←candidateGen(Fk−1, maxGap)
7: Fk ←prune(Fk−1, Ck, minSup, maxGap)
8: F ← F ∪ Fk

9: end for
10: return F
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5.1 Event-Wise Phase

The input to this phase is the database itself and all of the intra-event con-
straints. During this phase, the algorithm partially disregards the sequential
nature of the data, and treats the data as a set of events rather than a set of
sequences. Since the data is not sequential, applying the intra-event constraints
at this phase is very straightforward. The algorithm is similar to the Apriori
algorithm for discovering frequent itemsets as presented in [4].

Similarly to Apriori, our algorithm utilizes an iterative approach where fre-
quent (k−1)-events are used to discover frequent k-events. However, unlike Apri-
ori, we calculate the support of an event by counting the number of sequences
that it appears in rather than counting the number of events that contain it.
This means that the appearance of an event in a sequence increases its support
by one, regardless of the number of times that it appears in that sequence.

Denoting the set of frequent k-events by Lk (referred to as frequent k-itemsets
in [4]), we begin this phase with a complete database scan in order to find L1.
Next, L1 is used to find L2, L2 is used to find L3 and so on, until the resulting
set is empty, or we have reached the maximum number of items in an event as
defined by MaxEventLength. Another difference between Apriori and this phase
lies in the generation process of Lk from Lk−1. When we join two (k−1)-events to
generate a k-event candidate we need to check whether the added item satisfies
the rest of the intra-event constraints such as Singletons.

The output of this phase is a radix ordered set of all frequent events satisfying
the intra-event constraints, where every event ei is associated with an occurrence
index. The occurrence index of the frequent event ei is a compact representation
of all occurrences of ei in the database and is structured as follows: a list li of sids
of all sequences in the dataset that contain ei, where every sid is associated with
the list of eids of events in this sequence that contain ei. For example, Figure 1a
shows the indices of events d and (cd) based on the example database of Table 1.
We are able to keep this output in main memory, even for long sequences, due
to the nature of our domain in which the number of frequent events is relatively
small.

Since the support of ei equals the number of elements in li, it is actually
stored in ei’s occurrence index. Thus, support is obtained by querying the index
instead of scanning the database. In fact, the database scan required to find
L1 is actually the only single scan of the database. Throughout the event-wise
phase, additional scans are avoided by keeping the occurrence indices for each
event. The allFrequentEvents procedure in line 2 of Algorithm 1 is responsible
for executing the event-wise phase as described above.

Notice that for mining frequent events there are more efficient algorithms than
Apriori, for example FP-growth [10], however, our tests show that the event-wise
phase is negligible compared to the sequence-wise phase, so it has no real impact
on the running time of the whole algorithm.
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(a) The occurrence indices of events d and (cd) from
the example database of Table 1. Event d occurs in
sequence 1 at timestamps 0 and 5, in sequence 2 at
timestamp 8 and in sequence 3 at timestamps 0 and
11. Event (cd) occurs in sequence 1 at timestamps 0
and 5 and in sequence 3 at timestamps 0 and 11.

<d(cd)>

1

3

5

11

eidssids

(b) Example of the occur-
rence index for sequence
< d(cd) > generated from
the intersection of the in-
dices of sequences < d >
and < (cd) >.

Fig. 1. Example of occurrence index

5.2 Sequence-Wise Phase

The input to this phase is the output of the previous one. It is entirely temporal-
based, therefore applying the inter-events constraints is straightforward. The
output of this phase is a list of frequent sequences satisfying the inter-events
constraints. Since it builds on frequent events that satisfied the intra-event con-
straints, this output amounts to the final list of sequences that satisfy the com-
plete set of constraints.

Similarly to SPADE [2], this phase of the algorithm finds all frequent se-
quences by employing an iterative candidate generation method based on the
apriori property. For the kth iteration, the algorithm outputs the set of frequent
k-sequences, denoted as Fk, as follows: it starts by generating the set of all k-
sequence candidates, denoted as Ck from Fk−1 (found in the previous iteration).
Then it prunes candidates that do not require support calculation in order to
determine that they are non-frequent. Finally, it calculates the remaining can-
didates’ support and removes the non-frequent ones.

The following subsections elaborate on each of the above steps. This phase
of the algorithm is a modification of SPADE in which the candidate generation
process is accelerated. Unlike SPADE, that does not have an event-wise phase
and needs to generate the candidates at an item level (one item at a time),
our algorithm generates the candidates at an event level, (one event at a time).
This approach can be significantly faster because it allows us to use an efficient
pruning method(section 5.2) that would otherwise not be possible.

Candidate Generation: We now describe the generation of Ck from Fk−1.
For each pair of sequences s1, s2 ∈ Fk−1 that have a common (k − 2)-prefix,
we conditionally add two new k-sequence candidates to Ck as follows: (i) if
s1 is a generator (see section 5.2), we generate a new k-sequence candidate
by concatenating the 1-suffix of s2 to s1; (ii) if s2 is a generator, we generate
a new k-sequence candidate by concatenating the 1-suffix of s1 to s2. It can
be easily proven that if Fk−1 is radix ordered then the generated Ck is also
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radix ordered. For example, consider the following two 3-sequences: 〈(ab)c(bd)〉
and 〈(ab)cf〉. Assume that these are frequent generator sequences from which
we want to generate 4-sequence candidates. The common 2-prefix of both 3-
sequences is 〈(ab)c〉 and their 1-suffixes are 〈(bd)〉 and 〈f〉. The two 2-sequences
we get from the concatenation of the 1-suffixes are 〈(bd)f〉 and 〈f(bd)〉. Therefore,
the resulting 4-sequence candidates are 〈(ab)cf(bd)〉 and 〈(ab)c(bd)f〉. Pseudo
code for the candidate generation step is presented in Algorithm 2.

Algorithm 2. Candidate Generation
Input Fk−1: the set of frequent (k − 1)-sequences.
Output Ck: the set of k-sequence candidates.
procedure candidateGen(Fk−1)
1: for all sequence s1 ∈ Fk−1 do
2: for all sequence s2 ∈ Fk−1 s.t. s2 �= s1 do
3: if prefix(s1) = prefix(s2) then
4: if isGenerator(s1) then
5: c ← concat(s1, suffix(s2))
6: Ck ← Ck ∪ {c}
7: end if
8: if isGenerator(s2) then
9: c ← concat(s2, suffix(s1))

10: Ck ← Ck ∪ {c}
11: end if
12: end if
13: end for
14: end for
15: return Ck

CandidatePruning: Candidate generation is followedbyapruning step.Pruned
candidates are sequences identified as non-frequent based solely on the apriori
property without calculating their support. Traditionally, [2,14], k-sequence can-
didates are only pruned if they have at least one (k − 1)-subsequence that is not
in Fk−1. However, our unique pruning strategy enables us to prune some of the
k-sequence candidates for which this does not apply, due to the following observa-
tion: in the kth iteration of the candidate generation step, it is possible that one
k-sequence candidate will turn out to be a super-sequence of another k-sequence.
This happens when events of the subsequence are contained in the correspond-
ing events of the super-sequence. More formally, if we have the two k-sequences
s1 =

〈
e1
1, e

1
2, ..., e

1
k

〉
and s2 =

〈
e2
1, e

2
2, ..., e

2
k

〉
then s1 ⊆ s2 if e1

1 ⊆ e2
1 ∧ e1

2 ⊆
e2
2 ∧ ... ∧ e1

k ⊆ e2
k. If s1 was found to be non-frequent, s2 can be pruned, thereby

avoiding the calculation of its support. For example, if the candidate 〈aac〉 is not
frequent, we can prune 〈(ab)ac〉, which was generated in the same iteration.

Our pruning algorithm is decribed as follows. We iterate over all candidates
c ∈ Ck in an ascending radix order (this does not require a radix sort of Ck

because its members are generated in this order - see section 5.2). For each c,
we check whether all of its (k − 1)-subsequences are in Fk−1. If not, then c is
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not frequent and we add it to the set Pk which is a radix ordered list of pruned
k-sequences that we maintain throughout the pruning step. Otherwise, we check
whether a subsequence cp of c exists in Pk. If so then again c is not frequent and
we prune it. However, in this case, there is no need to add c to Pk because any
candidate that would be pruned by c will also be pruned by cp. Note that this
check can be done efficiently since it only requires O(log(|Pk|) · k) comparisons
of the events in the corresponding positions of cp and c. Furthermore, if there
are any k-subsequences of c in Ck that need to be pruned, the radix order of the
process ensures that they have been already placed in Pk prior to the iteration
in which c is checked. Finally, if c has not been pruned, we calculate its support.
If c has passed the minSup threshold then it is frequent and we add it to Fk.
Otherwise, it is not frequent, and we add it to Pk. Pseudocode for the candidate
pruning is presented in Algorithm 3.

Support Calculation: In order to efficiently calculate the support of the k-
sequence candidates we generate an occurrence index data structure for each
candidate. This index is identical to the occurrence index of events, except that
the list of eids represent candidates and not single events. A candidate is rep-
resented by the eid of the last event in it. The index for candidate s3 ∈ Ck

is generated by intersecting the indices of s1, s2 ∈ Fk−1 from which s3 is de-
rived. Denoting the indices of s1, s2 and s3 as inx1, inx2 and inx3 respectively,
the index intersection operation inx1 � inx2 = inx3 is defined as follows: for
each pair sid1 ∈ inx1 and sid2 ∈ inx2, we denote their associated eids list
as eidList(sid1) and eidList(sid2), respectivly. For each eid1 ∈ eidList(sid1)
and eid2 ∈ eidList(sid2), where sid1 = sid2 and eid1 < eid2, we add eid2
to eidList(sid1) as new entry in inx3. For example, consider the 1-sequences
s1=< d > and s2=< (cd) > from the example database of Table 1. Their
indices, inx1 and inx2, are described in Figure 1a. The index inx3 for the 2-
sequence s3=< d(cd) > is generated as follows: (i) for sid1=1 and sid2=1, we
have eid1=0 and eid2=5 which will cause sid=1 to be added to inx3 and eid=5
to be added to eidList(1) in inx3; (ii) for sid1=3 and sid2=3, we have eid1=0
and eid2=11 which will cause sid=3 to be added to inx3 and eid=11 to be added
to eidList(3) in inx3. The resulting inx3 is shown in Figure 1b. Notice that the
support of s3 can be obtained by counting the number of elements in the sid list
of inx3. Thus, the use of the occurrence index enables us to avoid any database
scans which would otherwise be required for support calculation.

Handling the MaxGap Constraint: Consider the example database in Ta-
ble 1, with minSup = 0.5 and maxGap = 5. Now, let us look at the following
three 2-sequences: 〈ab〉, 〈ac〉, 〈cb〉, all in C2 and have a support of 2 (see sec-
tion 5.3 for more details). If we apply the maxGap constraint, the sequence 〈ab〉
is no longer frequent and will not be added to F2. This will prevent the algo-
rithm from generating 〈acb〉, which is a frequent 3-sequence that does satisfy the
maxGap constraint. To overcome this problem, during the support calculation,
we mark frequent sequences that satisfy the maxGap constraint as generators.
Sequences that do not satisfy the maxGap constraint, but whose support is
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Algorithm 3. Candidate Pruning
Input Fk−1: the set of frequent (k − 1)-sequences.
Ck: the set of k-sequence candidates.
minSup: minimum support for a frequent pattern.
maxGap: maximum time gap between consecutive events.
Output Fk: the set of frequent k-sequence.
procedure prune(Fk−1, Ck, minSup, maxGap)
1: Pk ← φ
2: for all candidates c ∈ Ck do
3: isGenerator(c) ← true;
4: if ∃s ⊆ c ∧ s is a (k − 1)-sequence ∧s /∈ Fk−1 then
5: Pk.add(c)
6: continue
7: end if
8: if ∃cp ∈ Pk ∧ cp ⊂ c then
9: continue

10: end if
11: if !(sup(c) ≥ minSup) then
12: Pk.add(c)
13: else
14: Fk.add(c)
15: if !(c satisfies maxGap) then
16: isGenerator(c) ← false;
17: end if
18: end if
19: end for
20: return Fk

higher than minSup, are marked as non-generators and we refrain from pruning
them. In the following iteration we generate new candidates only from frequent
sequences that were marked as generators. The procedure isGenerator in Algo-
rithm 3 returns the mark of a sequence (i.e., whether it is a generator or not).

5.3 Example

Consider the sequence database D given in Table 1 with minSup set to 0.6 (i.e.
2 sequences), maxGap set to 5 and the set {a, b} is a Singleton.

Event-wise phase. Find all frequent events in D. They are: 〈(a)〉 : 3, 〈(b)〉 : 2,
〈(c)〉 : 3, 〈(d)〉 : 3, 〈(ac)〉 : 2, 〈(ad)〉 : 2, 〈(bd)〉 : 2, 〈(cd)〉 : 2 and 〈(acd)〉 : 2, where
〈(event)〉 : support represents the frequent event and its support. Each of the
frequent events is marked as a generator, and together they form the set F1.

Sequence-wise phase. This phase iterates over the the candidates list until
no more candidates are generated. Iteration 1, step 1: Candidate generation.
F1 performs a self join, and 81 candidates are generated: 〈aa〉, 〈ab〉 , 〈ac〉, ...,
〈a(acd)〉, 〈ba〉, 〈bb〉, ..., 〈(acd)(acd)〉. Together they form C2. Iteration 1, step 2:
Candidate pruning. Let us consider the candidate 〈aa〉. All its 1-subsequences
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appear in F1, so the Fk−1 pruning passes. Next, P2 still does not contain any
sequences, so the Pk pruning passes as well. However, it does not pass the fre-
quency test, since its support is 0, so 〈aa〉 is added to P2. Now let us consider
the candidate 〈a(ac)〉. It passes the Fk−1 pruning, however, it does not pass
the Pk pruning since a subsequence of it, 〈aa〉, appears in P2. Finally, let us
consider the candidate 〈bc〉. It passes both Fk−1 and Pk pruning steps. Since it
has a frequency of 2 it passes the frequency test, however, it does not satisfy
the maxGap constraint, so it is marked as a non-generator, but added to F2.
All the sequences marked as generators in F2 are: 〈ac〉 : 2, 〈cb〉 : 2, 〈cd〉 : 2 and
〈c(bd)〉 : 2. The other sequences in F2 are marked as non-generators and are:
〈ab〉 : 2, 〈ad〉 : 2, 〈a(bd)〉 : 2, 〈dc〉 : 2, 〈dd〉 : 2 and 〈d(cd)〉 : 2.

Iteration 2: At the end of this iteration, only one candidate passes all the pruning
steps: 〈acb〉 : 2, and since no candidates can be generated from one sequences,
the process stops.

6 Experimental Results

In order to evaluate the performance of CAMLS, we implemented SPADE, Pre-
fixSpan (and its constrained version, Prefix-growth) and CAMLS in Java 1.6
using the Weka [5] platform. We compared the run-time of the algorithms by
applying them on both synthetic and real data sets. We conducted several runs
with and without including constraints. Since cSPADE does not incorporate all
of the constraints we have defined, we have excluded it from the latter runs.
All tests were conducted on an AMD Athlon 64 processor box with 1GB of
RAM and a SATA HD running Windows XP. The synthetic datasets mimic
real-world behavior of a Quartz-Tungsten-Halogen lamp. Such lamps are used
in the semiconductors industry for finding defects in a chip manufacturing pro-
cess. Each dataset is organized in a table of synthetically generated illumination
intensity values emitted by a lamp. A row in the table represents a specific
day and a column represents a specific wave-length. The table is divided into
blocks of rows where each block represents a lamp’s life cycle, from the day it is
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Fig. 2. Execution-time comparisons between CAMLS, SPADE and PrefixSpan on syn-
thetic datasets for different values of minimum support, without constraints. The num-
bers appearing on top of each bar state the number of frequent patterns that exist for
the corresponding minimum support.
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Fig. 3. Execution-time comparisons between CAMLS, SPADE and PrefixSpan on two
real datasets for different values of minimum support, without constraints. The num-
bers appearing on top of each bar state the number of frequent patterns that exist for
the corresponding minimum support.

first used to the last day it worked right before it burned out. To translate this
data into events and sequences, the datasets were preprocessed as follows: first,
the illumination intensity values were discretized into 50 bins using equal-width
discretization [12]. Next, 5 items were generated: (i) the highest illumination
intensity value out of all wave-lengths, (ii) the wave-length at which the highest
illumination intensity value was received (iii) an indication whether or not the
lamp burned out at the end of that day, (iv) the magnitude of the light inten-
sity gradient between two consecutive measurements and (v) the direction of the
light intensity gradient between two consecutive measurements. We then created
two separate datasets. For each row in the original dataset, an event consisting
of the first 3 items was formed for the first dataset and an event consisting of
all 5 items was formed for the second one. Finally, in each dataset, a sequence
was generated for every block of rows representing a lamp’s life cycle from the
events that correspond to these rows. We experimented with four such datasets
each containing 1000 sequences and labeled SYNα-β where α stands for the se-
quence length and β stands for the event length. The real datasets, R30 and
R100, were obtained from a repository of stock values [13]. The data consists of
the values of 10 different stocks at the end of the business day, for a period of
30 or 100 days, respectively. The value of a stock for a given day corresponds to
an event and the data for a given stock corresponds to a sequence, thus giving
10 sequences of either 30 (in R30) or 100 (in R100) events of length 1. As a
preprocessing step, all numeric stock values were discretized into 50 bins using
equal-frequency discretization [12].

Figure 2 compares CAMLS, SPADE and PrefixSpan on three synthetic
datasets without using constraints. Each graph shows the change in execution-
time as the minimum support descends from 0.9 to 0.5. The amount of frequent
patterns found for each minimum support value is indicated by the number that
appears above the respective bar. This comparison indicates that CAMLS has
a slight advantage on datasets of short sequences with short events (SYN10-
3). However, on datasets containing longer sequences (SYN30-3), the advantage
of CAMLS becomes more pronounced as the amount of frequent patterns rises
when decreasing the minimum support (around 5% faster than PrefixSpan and
35% faster than SPADE on the avarage). This is also true for datasets containing
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longer events (SYN10-5) despite the lag in the proccess (the advantage of
CAMLS is gained only after lowering the minimum support below 0.7). This
lag results from the increased length of events which causes the check for the
containment relation in the pruning strategy (line 8 of 3) to take longer. Similar
results can be seen in Figure 3 which compares CAMLS, SPADE and PrefixSpan
on the two real datasets. In R30, SPADE and PrefixSpan has a slight advantage
over CAMLS when using high minimum support values. We believe that this can
be attributed to the event-wise phase that slows CAMLS down, compared to the
other algorithms, when there are few frequent patterns. On the other hand, as
the minimum support decreases, and the number of frequent patterns increases,
the performance of CAMLS becomes better by an order of magnitude. In the
R100 dataset, where sequences are especially long, CAMLS clearly outperforms
both algorithms for all minimum support values tested. In the extreme case of
the lowest value of minimum support, the execution of SPADE did not even end
in a reasonable amount of time. Figure 4 compares CAMLS and Prefix-growth
on SYN30-3, SYM30-5 and R100 with the usage of the maxGap and Singletons
constraints. On all three datasets, CAMLS outperforms Prefix-growth.
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Fig. 4. Execution-time comparisons between CAMLS and Prefix-growth on SYN30-3
SYN30-5 and R100 with the maxGap and Singletons constraints for different values
of minimum support. The numbers appearing on top of each bar state the number of
frequent patterns that exist for the corresponding minimum support.

7 Discussion

In this paper we have presented CAMLS, a constraint-based algorithm for min-
ing long sequences, that adopts the apriori approach. Many real-world domains
require a substantial lowering of the minimum support in order to find any fre-
quent patterns. This usually amounts to a large number of frequent patterns.
Furthermore, some of these datasets may consist of many long sequences. Our
motivation to develop CAMLS originated from realizing that well performing
algorithms such as SPADE and PrefixSpan could not be applied on this class
of domains. CAMLS consists of two phases reflecting a conceptual distinction
between the treatment of temporal and non temporal data. Temporal aspects
are only relevant during the sequence-wise phase while non temporal aspects are
dealt with only in the event-wise phase. There are two primary advantages to this
distinction. First, it allows us to apply a novel pruning strategy which accelerates
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the mining process. The accumulative effect of this strategy becomes especially
apparent in the presence of many long frequent sequences. Second, the incor-
poration of inter-event and intra-event constraints, each in its associated phase,
is straightforward and the algorithm can be easily extended to include other
inter-events and intra-events constraints. We have shown that the advantage of
CAMLS over state of the art algorithms such as SPADE, PrefixSpan and Prefix-
growth, increases as the mined sequences get longer and the number of frequent
patterns in them rises.

We are currently extending our results to include different domains and com-
pare CAMLS to other algorithms. In future work, we plan to improve the
CAMLS algorithm to produce only closed sequences and to make our pruning
strategy even more efficient.
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Abstract. Gradual patterns highlight complex order correlations of the
form “The more/less X, the more/less Y”. Only recently algorithms have
appeared to mine efficiently gradual rules. However, due to the complex-
ity of mining gradual rules, these algorithms cannot yet scale on huge
real world datasets. In this paper, we propose to exploit parallelism in
order to enhance the performances of the fastest existing one (GRITE).
Through a detailed experimental study, we show that our parallel algo-
rithm scales very well with the number of cores available.

1 Introduction

Frequent pattern mining is a major domain of data mining. Its goal is to ef-
ficiently discover in data patterns having more occurrences than a pre-defined
threshold. This domain started with the analysis of transactional data (frequent
itemsets), and quickly expanded to the analysis of data having more complex
structures such as sequences, trees or graphs. Very recently, a new pattern min-
ing problem appeared: mining frequent gradual itemsets (also known as gradual
patterns). This problem considers transactional databases where attributes can
have a numeric value. The goal is then to discover frequent co-variations between
attributes, such as: “The higher the age, the higher the salary”. This problem
has numerous applications, as well for analyzing client databases for marketing
purposes as for analyzing patient databases in medical studies. Di Jorio et al. [1]
recently proposed GRITE, a first efficient algorithm for mining gradual itemsets
and gradual rules capable of handling databases with hundreds of attributes,
whereas previous algorithms where limited to six attributes [2]. However, as
gradual itemset mining is far more complex than traditionnal itemset mining,
GRITE cannot yet scale on large real databases, having millions of lines and
hundreds or thousands of attributes.
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One solution currently investigated by pattern mining researchers for reducing
the mining time is to design algorithms dedicated for recent multi-core processors
[3,4]. Analyzing their first results shows that the more complex the patterns to
mine (trees, graphs), the better the scale-up results on multiple cores can be. This
suggests that using multicore processors for mining gradual itemsets with the
GRITE algorithm could give interesting results. We show in our experiments
that indeed, there is a quasi-linear scale up with the number of cores for our
multi-threaded algorithm.

The outline of this paper is as follows: In Section 2, we explain the notion of
gradual itemsets. In Section 3, we present the related works on gradual patterns
and parallel pattern mining. In Section 4, we present our parallel algorithm for
mining frequent gradual itemsets, and Section 5 shows the results of our exper-
imental evaluation. Last, we conclude and give some perspectives in Section 6.

2 Gradual Patterns

Gradual patterns refer to itemsets of the form “The more/less X1, . . . , the
more/less Xn”. We assume here that we are given a database DB that consists
of a single table whose tuples are defined on the attribute set I. In this context,
gradual patterns are defined to be subsets of I whose elements are associated
with an ordering, meant to take into account increasing or decreasing variations.
Note that t[I] hereafter denotes the value of t over attribute I.

For instance, we consider the database given in Table 1 describing fruits and
their characteristics.

Table 1. Fruit Characteristics

Id Size (S) Weight (W) Sugar Rate (SR)
t1 6 6 5.3
t2 10 12 5.1
t3 14 4 4.9
t4 23 10 4.9
t5 6 8 5.0
t6 14 9 4.9
t7 18 9 5.2

Definition 1. (Gradual Itemset) Given a table DB over the attribute set I, a
gradual item is a pair (I, θ) where I is an attribute in I and θ a comparison
operator in {≥,≤}.

A gradual itemset g = {(I1, θ1), ..., (Ik, θk)} is a set of gradual items of cardi-
nality greater than or equal to 2.

For example, (Size,≥) is a gradual item, while {(Size,≥), (Weight,≤)} is a
gradual itemset.
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The support of a gradual itemset in a database DB amounts to the extend to
which a gradual pattern is present in a given database. Several support defini-
tions have been proposed in the literature (see Section 3 below). In this paper,
we consider the support as being defined as the number of tuples that can be
ordered to support all item comparison operators:

Definition 2. (Support of a Gradual Itemset) Let DB be a database and g =
{(I1, θ1), ..., (Ik, θk)} be a gradual itemset. The cardinality of g in DB, denoted
by λ(g, DB), is the length of the longest list l = 〈t1, . . . , tn〉 of tuples in DB
such that, for every p = 1, . . . , n − 1 and every j = 1, . . . , k, the comparison
tp[Ij ] θj tp+1[Ij ] holds.

The support of g in DB, denoted by supp(g, DB), is the ratio of λ(g, DB)
over the cardinality of DB, which we denote by |DB|. That is, supp(g, DB) =
λ(g,DB)
|DB| .

In the example database, for the gradual itemset g = {(S,≥), (SR,≤)}, we have
λ(g, DB) = 5, with the list l = 〈t1, t2, t3, t6, t4〉. Hence supp(g, DB) = 5

7 .

3 Related Works

Gradual patterns and gradual rules have been studied for many years in the
framework of control, command and recommendation. More recently, data min-
ing algorithms have been studied in order to automatically mine such patterns
[1,2,5,6,7,8].

The approach in [7] uses statistical analysis and linear regression in order to
extract gradual rules. In [2], the authors formalize four kinds of gradual rules in
the form The more/less X is in A, then the more/less Y is in B, and propose an
Apriori-based algorithm to extract such rules. Despite a good theoretical study,
the algorithm is limited to the extraction of gradual rules of length 3.

In [1] and [5], two methods to mine gradual patterns are proposed. The differ-
ence between these approaches lies in the computation of the support: whereas,
in [5], a heuristic is used and an approximate support value is computed, in [1],
the correct support value is computed.

In [8], the authors propose another way to compute the support, by using
ranking such as the Kendall tau ranking correlation coefficient, which basically
computes, instead of the length of the longest path, the number of pairs of lines
that are correctly ordered (concordant and discordant pairs).

To the best of our knowledge, there are no existing parallel algorithms to mine
gradual itemsets. The most advanced works in parallel pattern mining have been
presented by [3] for parallel graph mining and [4] for parallel tree mining. These
works have showed that one of the main limiting factor for scalable parallel
perfomance was that the memory was shared among all the cores. So if all the
cores request a lot of data simultaneously, the bus will be saturated and the
performance will drop. The favorable case is to have compact data structures
and complex patterns where a lot of computations have to be done for each
chunk of data transfered from memory.
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With its complex support computation and simple input data, gradual pattern
mining is thus a favorable case for parallelization. The main difficulty will be to
achieve a good load balance. We present our solution in the following section.

4 PGP-mc: Parallel Gradual Pattern Extraction

The sequential GRITE algorithm (see [1] for detailed algorithm) relies on a
tree-based exploration, where every level N + 1 is built upon the previous level
N . The first level of the tree is initialized with all attributes, which all become
itemset siblings. Then, itemsets from the second level are computed by combining
frequent itemsets siblings from the first level through what we call the Join()
procedure. Candidates which match a pre-defined threshold - they are considered
as frequent - are retained in level N + 1.

In this approach, every level cannot be processed until the previous one has
been completed, at least partially. So, we focused our efforts on the parallelization
of each level construction where individual combinations of itemsets (through the
Join() procedure) are mostly independant tasks. The main problem is that the
number of operations cannot be easily anticipated, at least for levels higher than
2. Moreover, the number of siblings may vary by a large margin depending of
the considered itemsets. A simple parallel loop would lead to an irregular load
distribution on several processing units.

In order to offset this irregularity, our approach dynamically attributes new
tasks to a pool of threads on a “first come, first served” basis. At first, all frequent
itemsets from the given level are marked unprocessed and queued in Qi. A new
frequent itemset i is dequeued and all its siblings are stored in a temporary queue
Qsi. Each available thread then extracts the next unprocessed sibling j from Qsi

and builds a new candidate k from i and j. The candidate is stored in level N +1
if it is considered frequent. When Qsi is empty, the next frequent itemset i is
dequeued and Qsi is filled with its own siblings. The process is repeated until all
itemsets i are processed (e.g., Qi is empty).

5 Experimental Results and Discussion

In this section we report experimental results from the execution of our program
on two different workstations with up to 32 processing cores : COYOTE, with
8 AMD Opteron 852 processors (each with 4 cores), 64GB of RAM with Linux
Centos 5.1, g++ 3.4.6 and IDKONN, with 4 Intel Xeon 7460 processors (each
with 6 cores), 64GB of RAM with Linux Debian 5.0.2, g++ 4.3.2.

Most of the experiments are led on synthetic databases automatically gener-
ated by a tool based on an adapted version of IBM Synthetic Data Generation
Code for Associations and Sequential Patterns1. This tool generates numeric
databases depending on the following parameters: number of lines, number of
attributes/columns and average number of distinct values per attribute.

1 www.almaden.ibm.com/software/projects/hdb/resources.shtml



82 A. Laurent et al.

5.1 Scalability

The following figures illustrate how the proposed solution scales with both the
increasing number of threads and the growing complexity of the problem. The
complexity comes either from the number of lines or from the number of at-
tributes in the database as the number of individual tasks is related to the
number of attributes while the complexity of each individual task - itemsets
joining - depends on the number of lines. In this paper, we report results for two
sets of experiments.

The first experiment set involves databases with relatively few attributes but a
significant number of lines. This kind of databases usually produces few frequent
items with moderate to high thresholds. As a consequence the first two level
computations represent the main part of the global execution time. Figures 1(a)
and 1(b) show the evolution of execution time and speed-up respectively for
10000-line databases - ranging from 10 to 50 attributes - on COYOTE.

(a) Exec. time (b) Speed-up

Fig. 1. Execution time and speed-up related to the number of threads. Test databases
ranging from 10 to 50 attributes with 10k lines, on COYOTE.

As shown by Figure 1(a), speed-ups can reach very satisfying values in suffi-
ciently complex situations. For example, speed-up is around 30 with 50 attributes
where the theoretical maximum is 32. The upper limit for 10 and 20 attributes
is not really surprising and can be explained by the lower number of individ-
ual tasks. As the number of tasks decreases and the complexity of each task
increases, it becomes more and more difficult to reach an acceptable load bal-
ance. This phenomenon is especially tangible during the initial database loading
phase (construction of the first level of the tree) where the number of tasks is
exactly the number of attributes. For example, the sequential execution on the
10-attribute database takes around 64 seconds from which the database loading
process takes 9 seconds. With 32 threads, the global execution time goes down
to 13 seconds but more than 5.5 seconds are still used for the loading phase.

Experimental results on IDKONN are very similar to these figures as speed-
ups go from a maximum of 4.8 with 24 threads on the 10-attribute database to a
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maximum of 22.3 with 24 threads on the 50-attribute database. Detailed results
on IDKONN are available at http://www.lirmm.fr/~laurent/DASFAA10.

The second set of experiments reported in this article is about databases
with growing complexity in term of attributes. Figures 2(a) and 2(b) show the
evolution of execution time and speed-up respectively for 500-line databases with
various number of attributes - ranging from 50 to 350 - on IDKONN.

(a) Exec. time (b) Speed-up

Fig. 2. Execution time and speed-up related to the number of threads. Test databases
ranging from 50 to 350 attributes with 500 lines, on IDKONN.

As we can see, our solution is extremely efficient and scales very well for many
attributes: we almost reach the theoretical maximum linear speed-up progression
for 150 attributes or more. For example, the sequential processing of the 350
attributes database took more than five hours while it spend approximatively
13 minutes using 24 threads on IDKONN. Furthermore, speed-up results are
particularly stable from one architecture to another2, meaning that performances
do not rely on very specific architectural features (caches, memory systems...).

With an execution time of less than 0.2 second with 16 threads, the 50-
attribute database experiment illustrates how our approach can still achieve
a very tangible acceleration on this particular case, which appears as crucial for
real time or near real time data mining and applications (e.g., intrusion/fraud
detection).

6 Conclusion and Perspectives

In this paper, we propose an original parallel approach to mine large numeric
databases for gradual patterns like the oldest a people, the higher his/her salary.
Mining these rules is indeed very difficult as the algorithms must perform many
time-consuming operations to get the frequent gradual patterns from the data-
bases. In order to tackle this problem, our method intensively uses the multiple
2 Complete experiments, detailed at http://www.lirmm.fr/˜laurent/DASFAA10, show

very similar results on COYOTE (with 32 threads).
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processors and cores that are now available on recent computers. The experi-
ments performed show the interest of our approach, by leading to quasi-linear
speed-ups on problems that were previously very time-consuming or even impos-
sible to manage, especially in the case of databases containing a lot of attributes.

This work opens many perspectives, not only based on technical improvements
depending on ad-hoc architectures of the machines, but also based on other data
mining paradigms. Hence we will consider closed gradual patterns in order to cut
down the computation runtimes. We will also study the use of another parallel
framework: clusters (including clusters of multi-core machines in order to benefit
from both architectures).
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Abstract. Rules are an important pattern in data mining, but existing
approaches are limited to conjunctions of binary literals, fixed measures
and counting based algorithms. Rules can be much more diverse, useful
and interesting! This work introduces and solves the Generalised Rule
Mining (GRM) problem, which abstracts rule mining, removes restric-
tions on the semantics of rules and redefines rule mining by functions on
vectors. This also lends to an interesting geometric interpretation for rule
mining. The GRM framework and algorithm allow new methods that are
not possible with existing algorithms, can speed up existing methods and
separate rule semantics from algorithmic considerations. The GRM al-
gorithm scales linearly in the number of rules found and provides orders
of magnitude speed up over fast candidate generation type approaches
(in cases where these can be applied).

1 Introduction

Rules are an important pattern in data mining due to their ease of interpretation
and usefulness for prediction. They have been heavily explored as association pat-
terns [2,3,8,5,9], “correlation” rules [3] and for associative classification [7,6,12].
These approaches consider only conjunctions of binary valued variables, use fixed
measures of interestingness and counting based algorithms1. Furthermore, many
rule mining algorithms are similar – the primary differences arise from the in-
corporation of the particular interestingness measures into existing algorithms.

The rule mining problem can be generalised by relaxing the restrictions on
the semantics of the antecedent as well as the variable types, and supporting
any interestingness measure on rules. A generalised rule A′ → c describes a
relationship between a set of variables in the antecedent A′ ⊆ A and a variable
in the consequent c ∈ C, where A is the set of possible antecedent variables and C
is the set of possible consequent variables. The goal in Generalised Rule Mining
(GRM) is to find useful rules A′ → c : A′ ⊆ A ∧ c ∈ C ∧ c �∈ A′ given functions
defining the measures and semantics of the variables and rules. Variables do not
need to be binary valued. Semantics are not limited to conjunction.

Thiswork introducesandsolves theGeneralisedRuleMiningproblembypropos-
ing a vectorized framework and algorithm that are applicable to general-to-specific
1 Such algorithms explicitly count instances/transactions that apply to a rule, typically

through explicit counting, subset operations or tree/trie/graph traversals.
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methods2. By solving rule mining at the abstract level, the GRM framework clearly
separates the semantics and measures of rules from the algorithm used to mine
them. Hence, the algorithm can be exploited for any methodology mappable to
the frameworks functions, such as [7,6,11,13]. In particular, complete contingency
tables can be calculated, including columns for sub-rules as required by complex,
statistically significant ruleminingmethods [11,13].Perhapsmore importantly, the
framework allows and encouragesnovelmethods (e.g. Section 4). Furthermore, this
separation allows methods to automatically and immediately benefit from future
advances in the GRM algorithm.

Rule mining is a challenging problem due to its exponential search space in
A ∪ C. At best, an algorithm’s run time is linear in the number of interesting
rules it finds. The GRM algorithm is optimal in this sense. It completely avoids
“candidate generation” and does not build a compressed version of the dataset.
Instead it operates directly on vectors. This also allows additional avenues for
reducing the run time, such as automatic parallelisation of vector operations and
exploitation of machine level operations. Finally, it can also exploit any mutual
exclusion between variables, which is common in classification tasks.

2 Related Work
As far as the author is aware, there has been no previous attempt to solve the
rule mining problem at the abstract level. Existing rule mining methods have
concrete measures and semantics. Most are used for associative pattern mining
or classification, only consider rules with conjunctive semantics of binary literals
and use counting approaches in their algorithms. Association rule mining meth-
ods [2,5,8] typically mine item-sets before mining rules. Unlike GRM, they do
not mine rules directly. Itemset mining methods are often extended to rule based
classification [14,7,12]. The algorithms can be categorized into Apriori-like ap-
proaches [2] characterized by a breadth first search through the item lattice and
multiple database scans, tree based approaches [5] characterized by a traversal
over a pre-built compressed representation of the database, projection based ap-
proaches [12] characterised by depth first projection based searches and vertical
approaches [8,4,10] that operate on columns. Vertical bit-map approaches [8,10]
have received considerable interest due to their ability to outperform horizontal
based techniques. Of existing work, the vectorized approach in GRM is most
similar to the vertical approach. However, GRM mines rules directly and is not
limited to bitmaps or support based techniques.

3 Generalised Rule Mining (GRM) Framework

Recall that elements of A ∪ C are called variables and the goal is to find useful
rules A′ → c : A′ ⊆ A ∧ c ∈ C ∧ c �∈ A′. Each possible antecedent A′ ⊆ A
and each possible consequent c ∈ C are expressed as vectors, denoted by xA′

and xc respectively. As indicated in Figure 1, these vectors exist in the space X ,
2 That is, methods where a less specific rule A” → c : A” ⊂ A′ is mined before the more

specific one A′ → c.
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the dimensions of which are samples {s1, s2, ...} – depending on the application
these may be instances, transactions, rows, etc. The database is the set of vectors
corresponding to individual variables, D = {xv : v ∈ A ∪ C}.

Fig. 1.

Good rules have high prediction power. Geometrically, in such
rules the antecedent vector is “close” to the consequent vector.

Definition 1. mR : X2 → R is a distance measure between the
antecedent and consequent vectors xA′ and xc. mR(xA′ , xc) evalu-
ates the quality of the rule A′ → c.

Any method based on counting is implemented using bit-vectors in
the GRM framework. A bit is set in xA′ (xc) if the corresponding
sample contains A′ (c). Then, the number of samples containing
A′, A′ → c and c are simply the number of set bits in xA′ , xA′ AND xc and xc

respectively. From these counts (n1+, n11 and n+1 respectively) and the length
of the vector, n, a complete contingency table can be constructed. Using this,
mR can evaluate a wide range of measures such as confidence, interest factor, lift,
φ-coefficient and even statistical significance tests. Geometrically, in counting
based applications mR is the dot-product; mR(A′ → c) = xA′ · xc = n11.

Since xc and all xa : a ∈ A corresponds to single variables they are available
in the database. However, the xA′ : A′ ⊂ A∧|A′| > 1 required for the evaluation
of mR(·) must be calculated. These are built incrementally from vectors xa ∈ D
using the aggregation function aR(·), which also defines the semantics of A′:

Definition 2. aR : X2 → X operates on vectors of the antecedent so that
xA′∪a = aR(xA′ , xa) where A′ ⊆ A and a ∈ (A−A′).

In other words, aR(·) combines the vector xA′ for an existing antecedent A′ ⊆ A
with the vector xa for a new antecedent element a ∈ A−A′. The resulting vector
xA′∪a represents the larger antecedent A′∪a. aR(·) also defines the semantics of
the antecedent of the rule: By defining how xA′∪a is built, it must implicitly define
the semantics between elements of A′ ∪ a. For rules with a conjunction of binary
valued variables, vectors are represented as bit-vectors and hence aR(xA′ , xa) =
xA′ AND xa defines the required semantics; Bits will be set in xA′∪a correspond-
ing to those samples that are matched by the conjunction ∧ai∈A′ ∧ a.

In some methods, a rule A′ → c needs to be compared with its sub-rules
A” → c : A” ⊂ A′. This is particularly useful in order to find more specific rules
that improve on their less specific sub-rules. Geometrically, this allows methods
where the antecedent of a rule can be built by adding more variables in such a
way that the corresponding vector xA′ moves closer to xc.

Definition 3. MR : R
|P(A′)| → R is a measure that evaluates a rule A′ → c

based on the value computed by mR(·) for any sub-rule A′′ → c : A′′ ⊆ A′.

MR(·) does not take vectors as arguments – it evaluates a rule based on mR

values that have already been calculated. If MR(·) does not need access to
mR values of any sub-rules to perform its evaluation, it is called trivial since
mR(·) can perform the function instead. A trivial MR(·) returns mR(·) and has
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algorithmic advantages in terms of space and time complexity. For counting
based approaches, MR(·) can be used to evaluate measures on more complex
contingency tables such as those in [13,11]. For example, to evaluate whether a
rule significantly improves on its less specific sub-rules by using Fisher’s Exact
Test [13,11]. Together with IR below, it can also be used to direct and prune
the search space – even ‘forcing’ a measure implemented in mR to be downward
closed in order to implement a kind of greedy search.

Interesting rules are those that are a) desirable and should therefore be output
and b) should be further improved in the sense that more specific rules should
be mined by the GRM algorithm.

Definition 4. IR : R
2 → {true, false} determines whether a rule A′ → c is

interesting based on the values produced by mR(·) and MR(·).
Only interesting rules are further expanded and output. Hence, more specific
rules (i.e. with more variables in the antecedent) will only be considered if IR(·)
returns true. Sometimes it is possible to preemptively determine that a rule is
not interesting based purely on its antecedent, such as in support based methods.

Definition 5. IA : X → {true, false}. IA(xA) = false implies IR(·) = false
for all A′ → c : c ∈ C.

4 Additional Motivational Examples

4.1 Probabilistic Association Rule Mining (PARM)

In a probabilistic database D, each row rj contains a set of observations about
variables A∪C together with their probabilities of being observed in rj . Proba-
bilistic databases arise when there is uncertainty or noise in the data and tradi-
tional methods cannot handle these. Probabilistic Association Rules can describe
interesting patterns while taking into account the uncertainty of the data.

Problem Definition: find rules A′ → c where the expected support E(s(A′ →
c)) = 1

n

∑n
j=1 P (A′ → c ⊆ rj) is above minExpSup. Under the assumption

that the variables’ existential probabilities in the rows are determined under
independent observations, P (A′ → c ⊆ rj) = Πa∈A′P (a ∈ rj) · P (c ∈ rj).

In the GRM framework, each variable is represented by a vector xi express-
ing the probabilities that the variable i exists in row j of the database: xi[j] =
P (i ∈ rj) : j ∈ {1, n}. All the {P (A′ ⊆ rj) : rj ∈ D} can be calculated efficiently
by incremental element-wise multiplication of individual vectors using the aR(·)
function: aR(xA′ , xa)[j] = xA′ [j] ∗ xa[j]. The GRM algorithm’s use of aR(·) en-
sures that there is no duplication of calculations throughout the mining process
while keeping space usage to a minimum. mR(·) is the expectation function and
calculates the expected support: mR(A′ → c) = 1

n

∑n
j=1 xA′ [j]∗xc[j]. Geometri-

cally, this is the scaled dot product of xA′ and xc: mR(A′ → c) = |xA′ ||xc|
n xA′ ·xc.

MR(·) is trivial. It can be shown that expected support is downwards closed
(anti-monotonic): E(s(A′ → c)) ≤ E(s(A′′ → c)) : A′′ ⊆ A′, allowing pruning.
Hence IR(A′ → c) returns true if and only if mR(A′ → c) ≥ minExpSup. IA(·)
can also be exploited to prune rules with E(s(A′)) < minExpSup.
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4.2 Various Correlated Rule Mining Methods

Other novel methods involve mining rules where the antecedent is highly corre-
lated with the consequent and where the rule mining progresses to more specific
rules if these reduce the angle between the antecedent and consequent vectors.
Such methods (with various semantics, both real and binary vectors, and for
descriptive or classification tasks) have been developed using the framework.

5 Generalised Rule Mining (GRM) Algorithm

class PrefixNode {PrefixNode parent, String name,
double valuem, double valueM}
//node: the PrefixNode (corresponding to A′) to
// expand using the vectors in joinTo.
//xA′: the V ector corresponding to A′.
GRM(PrefixNode node, V ector xA′, List joinTo)
List newJoinTo = new List();
List currentCategory = new List();
PrefixNode newNode = null;
boolean addedConsequent = false;
for each (xv, v, lastInCategory) ∈ joinTo
if (v ∈ C)
double valm = mR(xA′ , xv);
newNode = new PrefixNode(node, v, valm, NaN);
double valM =evaluateAndSetMR(newNode);
if (I(valm, valM ))
if (MR(·) non-trivial) store(newNode);
outputRule(newNode);
addedConsequent = true;

else newNode = null;
if (v ∈ A) //Note: possible that v ∈ A ∧ v ∈ C.
V ector xA′∪v = aR(xA′ , xv);
if (IA(xA′∪v))
newNode = new PrefixNode(node, v, NaN, NaN);

if (newNode 	= null)
GRM(newNode,newV ector,newJoinTo);
currentCategory.add(xv, v, lastInCategory);

else
if (v ∈ C∧!addedConsequent)
return; //prune early -- no super rules exist

if (lastInCategory∧!currentCategory.isEmpty())
currentCategory.last().lastInCategory = true;
newJoinTo.addAll(currentCategory);
currentCategory.clear();

main(File dataset)
PrefixNode root = new PrefixNode(null, ε, NAN);
V ector x∞ = //initialise appropriately (e.g. ones)
List joinTo = ... //read vectors from file**
GRM(root, x∞, joinTo);

Fig. 2. Simplified Generalized Rule Mining
(GRM) algorithm. (**It is possible to implement
the algorithm in the same runtime complexity
without loading all vectors into memory at the
same time).

The GRM algorithm efficiently
solves any problem that can
be expressed in the framework.
The variant briefly described
below assumes the measures
used are anti-monotonic (or
more specifically, at least order-
anti-monotonic).

A Categorised Prefix Tree:

(CPT) is a data structure where
antecedents and rules are repre-
sented by single PrefixNodes
and variables in C can only be
present in the leaves. Common
prefixes are shared, so when
MR(·) is non-trivial the CPT ef-
ficiently stores rules in a com-
pressed format. Otherwise, only
the current path (rule) the algo-
rithm is processing is in mem-
ory. Categories on sibling nodes
provide a way to express mu-
tual exclusion between variables
and in turn allows the algorithm
to exploit them. For instance,
in classification tasks, attribute-
values and classes are usually
mutually exclusive.

The GRM Algorithm: (Fig-
ure 2) works by performing a
strict depth first search (i.e. sib-
ling nodes are not expanded
until absolutely necessary) and calculating vectors along the way. There is no
“candidate-generation”. The search is limited according to the interestingness
function IR(·) and IA(·) and it progresses in depth by “joining sibling nodes”
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in the CategorisedPrefixT ree, enabling auto-pruning. Vectors are calculated
incrementally along a path in the search using aR(·), avoiding any vector re-
computations while maintaining optimal memory usage. The GRM algorithm
automatically avoids considering rules that would violate any mutual exclusion
constraints by carrying forward the categorization to the sibling lists (joinTo),
and only joining siblings if they are from different categories. The search space is
automatically pruned (i.e. without requiring explicit checking, thus saving vector
calculations) by maintaining a list of siblings (joinTo), and only joining sibling
nodes: Since only interesting rules as specified by IR(·) are to be expanded, only
interesting rules become siblings.

Theorem 1. The run time complexity is O(R·|A|·|C|·(t(mR)+t(MR)+t(aR)+
t(IR)), where R is the number of rules mined by the algorithm and t(X) is the
time taken to compute function X from the framework.

Hence the performance is linear in the number of interesting rules found by
the algorithm (the number of rules for which IR(·) returns true). It is therefore
not possible to improve the algorithm other than by a constant factor. In most
instantiations, t(mR) =t(aR) = O(n) and t(IR) = t(IA) = t(MR) = O(1).

6 Experiments

GRM’s runtime is evaluated here for conjunctive rules with bit-vectors (therefore
covering counting based approaches) and PARM (as a representative of meth-
ods using real valued vectors). Due to the lack of existing algorithms capable
of direct rule mining or of handling real valued data, a very efficient compet-
ing algorithm based on the commonly used Apriori ideas was developed, called
FastAprioriRules3, and in the evaluation it was given the advantage over GRM.

Existing rule mining methods require frequency counts. Hence, the algorithms
are compared on the task of mining all conjunctive rules A′ → c that are satisfied
by (i.e. classify correctly) at least minCount instances. By varying minCount,
the number of interesting rules mined can be plotted against the run time. The
UCI [1] Mushroom and the 2006 KDD Cup datasets were used as they are
relatively large. Figure 3(a) clearly shows the linear relationship of Theorem 1

3 FastAprioriRules is based on the common candidate generation and testing method-
ology. However, it mines rules directly – that is, it does not mine sets first and then
generate rules form these as this would be very inefficient. FastAprioriRules also
exploits the mutual exclusion optimisation which greatly reduces the number of
candidates generated, preemptively prunes by antecedents when possible and incor-
porates the pruneEarly concept. Hence FastAprioriRules evaluates exactly the same
number of rules as GRM so that the comparison is fair. To check if a rule matches
an instance in the counting phase, a set based method is used, which proved to
be much quicker than enumerating the sub-rules in an instance and using hashtree
based lookup methods to find matching candidates. The dataset is kept in memory
to avoid Apriori’s downside of multiple passes, and unlike in the GRM experiments,
I/O time is ignored.
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(a) Runtime comparison of support based
conjunctive rules on the Mushroom
dataset. GRM uses bitvectors.

(b) Runtime comparison of PARM on
three probabilistic Mushroom data sets.
GRM uses real vectors.

Fig. 3. Run-time is linear in the number of rules mined and orders of magnitude faster
than FastAprioriRules, regardless of the method. Log-log scale.

for over three orders of magnitude before the experiments were stopped (this also
holds in linear-linear scale). When few rules are found, setup factors dominate.
More importantly, GRM is consistently more than two orders of magnitude faster
than FastAprioriRules. It is also very insensitive to the dataset characteristics,
unlike FastAprioriRules. Results on smaller datasets (UCI datasets Cleve and
Heart) lead to identical conclusions and are omitted for clarity.

PARM is evaluated in a similar fashion by varying minExpSup. Here, the
Mushroom dataset was converted to a probabilistic dataset by changing occur-
rences to a value chosen uniformly from [0, 1) with a probability p. The resulting
graph in Figure 3(b) shows the same linear relationship for the three values of
p ∈ {0.3, 0.5, 0.7}. Here, GRM is at least one order of magnitude faster than the
FastAprioriRules implementation.
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Abstract. Keyword search is widely recognized as a convenient way to
retrieve information from XML data. In order to precisely meet users’
search concerns, we study how to effectively return the targets that users
intend to search for. We model XML document as a set of intercon-
nected object-trees, where each object contains a subtree to represent a
concept in the real world. Based on this model, we propose object-level
matching semantics called Interested Single Object (ISO) and Interested
Related Object (IRO) to capture single object and multiple objects as
user’s search targets respectively, and design a novel relevance oriented
ranking framework for the matching results. We propose efficient algo-
rithms to compute and rank the query results in one phase. Finally,
comprehensive experiments show the efficiency and effectiveness of our
approach, and an online demo of our system on DBLP data is available
at http://xmldb.ddns.comp.nus.edu.sg.

1 Introduction

With the presence of clean and well organized knowledge domains such as
Wikipedia, World Factbook, IMDB etc, the future search technology should ap-
propriately help users precisely finding explicit objects of interest. For example,
when people search DBLP by a query “Jim Gray database”, they likely intend to
find the publications object about “database” written by the people object“Jim
Gray”. As XML is becoming a standard in data exchange and representation in
the internet, in order to achieve the goal of “finding only the meaningful and
relevant data fragments corresponding to the interested objects (that users re-
ally concern on)”, search techniques over XML document need to exploit the
matching semantics at object-level due to the following two reasons.

First, the information in XML document can be recognized as a set of real
world objects [16], each of which has attributes and interacts with other objects
through relationships. E.g. Course and Lecturer can be recognized as objects in
the XML data of Fig. 1. Second, whenever people issue a keyword query, they
would like to find information about specific objects of interest, along with their
relationships. E.g. when people search DBLP by a query “Codd relational model”,
they most likely intend to find the publications object about “relational model”
written by “Codd”. Therefore, it is desired that the search engine is able to find
and extract the data fragments corresponding to the real world objects.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 93–109, 2010.
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1.1 Motivation

Early works on XML keyword search focus on LCA (which finds the Lowest
Common Ancestor nodes that contain all keywords) or SLCA (smallest LCA)
semantics, which solve the problem by examining the data set to find the smallest
common ancestors [16,13,9,7,20]. This method, while pioneering, has the draw-
back that its result may not be meaningful in many cases. Ideally, a practical
solution should satisfy two requirements: (1) it can return the meaningful re-
sults, meaning that the result subtree describes the information at object-level;
and (2) the result is relevant to the query, meaning that it captures users’ search
concerns. Despite the bulk of XML keyword search literature (See Section 2),
the existing solutions violate at least one of the above requirements.
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Fig. 1. Example XML data (with Dewey IDs)

Regarding to the meaningfulness, the query results should contain enough but
non-overwhelming information. i.e. it should be of the same granularity as user’s
search concern. Unfortunately, the matching semantics proposed so far cannot
achieve such goal. For example, for a query “Database” issued on Fig.1, both
LCA and SLCA return title:0.1.1.1 and title:0.1.2.1 as results, while the desired
result should be two subtrees rooted at Course:0.1.1 and Course:0.1.2, as they
encapsulate enough information about a “Database” course. The recent competi-
tors over SLCA include XSeek [18], CVLCA [13], MLCA [15] and MAXMATCH
[17]. While those approaches propose some promising and improved matching
semantics, the search target identification is still not clearly addressed. More
importantly, their inability to exploit ID references in XML data causes some
relevant results to be missed.

In order to complement the keyword search over tree model to find more
relevant results, ID references in XML data are captured and matching semantics
on digraph data model are designed. A widely adopted one is reduced subtree,
which is the minimal subgraph containing all keywords. However, it suffers the
same problem as those in tree model, as both of them exploit only the structure
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of XML data. Even worse, the problem of finding the results by increasing the
sizes of reduced subtrees for keyword proximity is NP-hard [14], thus keyword
search in digraph data model is heuristics-based and intrinsically expensive.

Regarding to the relevance, the query results should be relevant to user’s
search intention. However, the existing ranking strategies in both tree model [7]
and digraph model [12,8] are built at XML node level, which do not meet user’s
search concern at object level. Moreover, ranking functions in digraph model
even do not distinguish the containment edge and reference edge in XML data.

1.2 Our Approach

In this paper, we propose to model XML document as a set of object trees, where
each real world object o (with its associated attributes) is encapsulated in an
object tree whose root node is a representative node of o; two object trees are
interconnected via a containment or reference edge in XML data. E.g. The part
enclosed by a dotted circle in Fig. 1 shows an object tree for Dept and Course.

We propose our object-level matching semantics based on an analysis of user’s
search concern, namely ISO (Interested Single Object) and IRO (Interested Re-
lated Object). ISO is defined to capture user’s concern on a single object that
contains all keywords, while IRO is defined to capture user’s concern on multiple
objects. Compared to previous works, our object-level matching semantics have
two main advantages. First, each object tree provides a more precise match with
user’s search concern, so that meaningless results (which even though contain
all keywords) are filtered. Second, it captures the reference edges missed in tree
model, and meanwhile achieves better efficiency than those solutions in digraph
model by distinguishing the reference and containment edge in XML.

We design a customized ranking scheme for ISO and IRO results. The rank-
ing function ISORank designed for ISO result not only considers the content of
result by extending the original TF*IDF [19] to object tree level, but also cap-
tures the keyword co-occurrence and specificity of the matching elements. The
IRORank designed for an IRO result considers both its self similarity score and
the “bonus” score contributed from its interconnected objects. We design effi-
cient algorithms and indices to dynamically compute and rank the matched ISO
results and IRO results in one phase. Finally, we experimentally compare ISO
and IRO algorithms to the best existing methods XSeek [16] and XReal [4] with
real and synthetic data sets. The results reveal that our approach outperforms
XReal by an order of magnitude in term of response time and is superior to
XSeek in term of recall ratio, well confirming the advantage of our novel seman-
tics and ranking strategies. A search engine prototype incorporating the above
proposed techniques is implemented, and a demo of the system on DBLP data
is available at http://xmldb.ddns.comp.nus.edu.sg [3].

2 Related Work

XML tree model: In tree data model, LCA is first proposed to find the lowest
common ancestor containing all the keywords in their subtrees. SLCA [20] is
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proposed to find the smallest LCA that doesn’t contain other LCA in its subtree.
XSEarch [6] is a variation of LCA, which claims two nodes n1 and n2 are related
if there is no two distinct nodes with same tag name on the paths from their LCA
to n1 and n2. [15] incorporates SLCA into XQuery and proposes a Schema-Free
XQuery where predicates in XQuery can be specified through SLCA concept.
XSeek [16] studies how to infer the semantics of the search and identify the return
nodes by recognizing possible entities and attributes inherently represented in
XML data. The purpose of our research is also to maximize the possibility to
understand user’s search semantics, while we take a novel perspective by studying
new semantics based on ID reference and designing effective ranking strategy.

XML graph model: The major matching semantics is to find a set of re-
duced subtree G′ of database graph G, s.t. each G′ is the smallest subgraph
containing all keywords. However, the cost of finding all such G′ ranked by size
is intrinsically expensive due to its NP-hard nature[14]. Bidirectional expansion
is proposed to find ranked reduced subtrees[12], but it requires the entire visited
graph in memory, and suffers an inefficiency. BLINKS[8] improves it by designing
a bi-level index for result pruning, with the tradeoffs in index size and mainte-
nance cost. XKeyword[11] uses schema information to reduce search space, but
its query evaluation is based on the method of DISCOVER [10] built on RDBMS,
which cannot distinguish the containment and reference edges to further reduce
search space. [5] builds a tree+IDRef model to capture ID references by avoid-
ing the NP-hard complexity. However, this compromise may affect the results’
meaningfulness and relevance, which are carefully investigated in this paper.

Results ranking: In IR field, TF*IDF similarity [19] is designed to measure
the relevance of the keywords and the documents in keyword search over flat
documents. XReal [4] addresses the keyword ambiguity problem by designing an
XML TF*IDF on tree model, which takes the structural information of XML into
account. XRANK [7] generalizes PageRank to XML element and rank among
LCA results, where the rank of each element is computed statically in data
preprocessing. In contrast, the ranking functions in this paper are designed to
rank on the object trees and are computed dynamically during query processing.

3 Data Model

Definition 1 (Object Tree). An object tree t in D is a subtree of the XML
document, where its root node r is a representative node to denote a real world
object o, and each attribute of o is represented as a child node of r.

In an XML document D, a real-world object o is stored in form of a subtree due
to its hierarchical inherency. How to identify the object trees is orthogonal to
this paper; here, we adopt the inference rules in XSeek [16] to help identify the
object trees, as clarified in Definition 1. As we can see from Fig. 1, there are 7
object trees (3 Course, 3 Lecturer and 1 Dept), and the part enclosed by a dotted
circle is an object tree for Course:0.1.0 and Dept:0 respectively. Note that nodes
Students, Courses and Lecturers of Dept:0 are connection nodes, which connect
the object “Dept” and multiple objects “Student” (“Course” and “Lecturer” ).



An Effective Object-Level XML Keyword Search 97

Conceptual connection reflects the relationship among object trees, which is
either a reference-connection or containment-connection defined as below.

Definition 2 (Reference-connection). Two object trees u and v in an XML
document D have a reference-connection (or are reference-connected) if there is
an ID reference relationship between u and v in D.

Definition 3 (Containment-connection). Two object trees u and v in an
XML document D have a containment-connection if there is a P-C relationship
between the root node of u and v in D, regardless of the connection node.

Definition 4 (Interconnected object-trees model). Models an XML docu-
ment D as a set of object trees, D=(T ,C), where T is a set of object trees in D,
and C is a set of conceptual connections between the object trees.

In contrast to the model in XSeek [16], ID references in XML data is considered
in our model to find more meaningful results. From Fig. 1, we can find Dept:0 and
Course:0.1.0 are interconnected via a containment connection, and Lecturer:0.2.0
and Course:0.1.2 are reference-connected.

4 Object Level Matching Semantics

When a user issues a keyword query, his/her concern is either on a single object,
or a pair (or group) of objects connected via somehow meaningful relationships.
Therefore, we propose Interested Single Object (ISO) and Interested Related Ob-
ject (IRO) to capture the above types of users’ search concerns.

4.1 ISO Matching Semantics

Definition 5 (ISO) Given a keyword query Q, an object tree o is the Interested
Single Object (ISO) of Q, if o covers all keywords in Q.

ISO can be viewed as an extension of LCA, which is designed to capture user’s
interest on a single object. E.g. for a query “database, management” issued on
Fig. 1, LCA returns two subtrees rooted at Title:0.1.1.1 and Courses:0.1, neither
of which is an object tree; while ISO returns an object tree rooted at Course:0.1.1.

4.2 IRO Matching Semantics

Consider a query “CS502, lecturer” issued on Fig. 1. ISO cannot find any quali-
fied answer as there is no single object qualified while user’s search concern is on
multiple objects. However, there is a Lecturer:0.2.0 called “Smith” who teaches
Course “CS502” (via a reference connection), which should be a relevant result.
This motivates us to design IRO (Interested Related Object).

As a first step to define IRO pair and IRO group, we give a formal definition
on the connections among these multiple objects.



98 Z. Bao et al.

Definition 6 (n-hop-meaningful-connection). Two object trees u and v
in an XML document have a n-hop-meaningful-connection (or are n-hop-
meaningfully-connected) if there are n − 1 distinct intermediate object trees
t1, ...tn−1, s.t.

1. there is either a reference connection or a containment connection between
each pair of adjacent objects;

2. no two objects are connected via a common-ancestor relationship.

Definition 7 (IRO pair). For a given keyword query Q, two object trees u and
v form an IRO pair w.r.t. Q if the following two properties hold:

1. Each of u and v covers some, and u and v together cover all keywords in Q.
2. u and v are n-hop-meaningfully-connected (with an upper limit L for n).

IRO pair is designed to capture user’s concern on two objects that have a direct
or indirect conceptual connection. E.g. for query “Smith, Advanced, Database”,
two object trees Lecturer:0.2.0 and Course:0.1.2 form an IRO pair, as there is a
reference connection between them. Intuitively, the larger the upper limit L is,
more results can be found, but the relevance of those results decay accordingly.
Lastly, IRO group is introduced to capture the relationships among three or
more connected objects.

Definition 8 (IRO group). For a given keyword query Q, a group G of object
trees forms an IRO group if:

1. All the object trees in G collectively cover all keywords in Q.
2. There is an object tree h∈G (playing a role of hub) connecting all other object

trees in G by a n-hop-meaningful-connection (with an upper limit L′ for n).
3. Each object tree in G is compulsory in the sense that, the removal of any

object tree causes property (1) or (2) not to hold any more.

As an example, for query “Jones, Smith, Database” issued on Fig. 1, four objects
Course:0.1.1, Course:0.1.2, Lecturer:0.2.0 and Lecturer:0.2.2 form an IRO group
(with L′ = 2), where both Course:0.1.1 and Course:0.1.2 can be the hub. The
connection is: Lecturer:0.2.2 “Jones” teaches Course:0.1.1, which is a pre-requisite
of a “Database” Course:0.1.2 taught by Lecturer:0.2.0 “Smith”.

An object involved in IRO semantics is called the IRO object ; an ISO object
o can form an IRO pair (or group) with an IRO object o′, but o is not double
counted as an IRO object.

4.3 Separation of ISO and IRO Results Display

As ISO and IRO correspond to different user search concerns, we separate the
results of ISO and IRO in our online demo1 [3], which is convenient for user to
quickly recognize which category of results meet their search concern, thus a lot
of user efforts are saved in result consumption.
1 Note: in our previous demo, ISO was named as ICA, while IRO was named as IRA.
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5 Relevance Oriented Result Ranking

As another equally important part of this paper, a relevance oriented ranking
scheme is designed. Since ISO and IRO reflect different user search concerns,
customized ranking functions are designed for ISO and IRO results respectively.

5.1 Ranking for ISO

In this section, we first outline the desired properties in ISO result ranking; then
we design the corresponding ranking factors; lastly we present the ISORank
formula which takes both the content and structure of the result into account.

Object-level TF*IOF similarity (ρ(o, Q)): Inspired by the extreme success of
IR style keyword search over flat documents, we extend the traditional TF*IDF
(Term frequency*Inverse document frequency) similarity [19] to our object-level
XML data model, where flat document becomes the object tree. We call it as
TF*IOF (Term frequency*Inverse object frequency) similarity. Such extension
is adoptable since the object tree is an appropriate granularity for both query
processing and result display in XML. Since TF*IDF only takes the content of
results into account, but cannot capture XML’s hierarchical structure we enforce
the structure information for ranking in the following three factors.

F1. Weight of matching elements in object tree: The elements directly
nested in an object may have different weights related to the object. So we
provide an optional weight factor for advanced user to specify, where the default
weight is 1. Thus, the TF*IOF similarity ρ(o, Q) of object o to query Q is:

ρ(o, Q) =

∑
∀k∈o∩Q WQ,k ∗ Wo,k

WQ ∗ Wo
, WQ,k =

N

1 + fk
, Wo,k =

∑
∀e∈attr(o,k)

tfe,k ∗ We (1)

where k∈o∩Q means keyword k appears in both o and Q. WQ,k represents the
weight of keyword k in query Q, playing a role of inverse object frequency (IOF );
N is the total number of objects in xml document, and fk is number of objects
containing k. Wo,k represents the weight of k in object o, counting the term
frequency (TF ) of k in o. attr(o, k) denotes a set of attributes of o that directly
contain k; tfe,k represents the frequency of k in attribute e, and We is the
adjustable weight of matching element e in o, whose value is no less than 1, and
We is set to 1 for all the experiments conducted in section 8.

Normalization factor of TF*IOF should be designed in the way that: on one
hand the relevance of an object tree o containing the query-relevant child nodes
should not be affected too much by other query-irrelevant child nodes; on the
other hand, it should not favor the object tree of large size (as the larger the
size of the object tree is, the larger chance that it contains more keywords).
Therefore, in order to achieve such goals, two normalization factors Wo and WQ

are designed: Wo is set as the number of query-relevant child nodes of object o,
i.e. |attr(o, k)|, and WQ is set to be proportional to the size of Q, i.e. |Q|.
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F2. Keyword co-occurrence (c(o, Q)): Intuitively, the less number of ele-
ments (nested in an object tree o) containing all keywords in Q is, o is likely to
be more relevant, as keywords co-occur more closely. E.g. when finding papers in
DBLP by a query “XML, database”, a paper whose title contains all keywords
should be ranked higher than another paper in “database” conference with title
“XML”.

Based on the above intuition, we present c(o, Q) in Equation 2 (denominator
part), which is modeled as inversely proportional to the minimal number of at-
tributes that are nested in o and together contain all keywords in Q. Since this
metric favors the single-keyword query, we put the number of query keywords
(i.e. |Q| in nominator part) as a normalization factor.

c(o, Q) =
|Q|

min(|{E|E = attrSet(o) and (∀k ∈ Q, ∃e ∈ E s.t. e.contain(k))}|)
(2)

F3. Specificity of matching elements (s(o, Q)): An attribute a of an object
is fully (perfectly) specified by a keyword query Q if a only contains the keywords
in Q (no matter whether all keywords are covered or not). Intuitively, an object
o with such fully specified attributes should be ranked higher; and the larger the
number of such attribute is, the higher rank o is given.

Example 1. When searching for a person by a query “David, Lee”, a person p1
with the exact name should be ranked higher than a person p2 named “David
Lee Ming”, as p1’s name fully specifies the keywords in query, while p2 doesn’t.�

Thus, we model the specificity by measuring the number of elements in the object
tree that fully specify all query keywords, namely s(o, Q).

Note that s(o, Q) is similar to TF*IDF at attribute level. However, we enforce
the importance of full-specificity by modeling it as a boolean function; thus
partial specificity is not considered, while it is considered in original TF*IDF.

So far, we have exploited both the structure (i.e. factors F1,F2,F3) and content
(TF*IOF similarity) of an object tree o for our ranking design. Since there is no
obvious comparability between structure score and content score, we use product
instead of summation to combine them. Finally, the ISORank(o, Q) is:

ISORank(o, Q) = ρ(o, Q) ∗ (c(o, Q) + s(o, Q)) (3)

5.2 Ranking for IRO

IRO semantics is useful to find a pair or group of objects conceptually connected.
As an IRO object does not contain all keywords, the relevance of an IRO object o,
namely IRORank, should consist of two parts: its self TF*IOF similarity score,
and the bonus score contributed from its IRO counterparts (i.e. the objects that
form IRO pair/group with o). The overall formula is:

IRORank(o, Q) = ρ(o, Q) + Bonus(o, Q) (4)
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where ρ(o, Q) is the TF*IOF similarity of object o to Q (Equation 1). Bonus(o, Q)
is the extra contribution to o from all its IRO pair/group’s counterparts for Q,
which can be used as a relative relevance metric for IRO objects to Q, especially
when they have a comparable TF*IOF similarity value. Regarding to the design
of Bonus score to an IRO object o for Q, we present three guidelines first.

Guideline 1: IRO Connection Count. Intuitively, the more the IRO pair/
group that connect with an IRO object o is, the more likely that o is relevant to
Q; and the closer the connections to o are, the more relevant o is. ♣
For example, consider a query “interest, painting, sculpture” issued on XMark
[2]. Suppose two persons Alice and Bob have interest in “painting”; Alice has
conceptual connections to many persons about “sculpture” (indicated by attend-
ing the same auction), while Bob has connections to only a few of such auctions.
Thus, Alice is most likely to be more relevant to the query than Bob.

Guideline 2: Distinction of different matching semantics. The IRO con-
nection count contributed from the IRO objects under different matching se-
mantics should be distinguished from each other. ♣
Since IRO pair reflects a tighter relationship than IRO group, thus for a certain
IRO object o, the connection count from its IRO pair’s counterpart should have
a larger importance than that from its IRO group’s counterpart.

Example 2. Consider a query “XML, twig, query, processing” issued on DBLP.
Suppose a paper p0 contains “XML” and “twig”; p1 contains “query” and “pro-
cessing” and is cited by p0; p2 contains the same keywords as p1; p3 contains no
keyword, but cites p0 and p2; p4 contains “query” and p5 contains “processing”,
and both cite p0. By Definition 7-8, p1 forms an IRO pair with p0; p2, p3 and p0
form an IRO group; p0, p4 and p5 form an IRO group. Therefore, in computing
the rank of p0, the influence from p1 should be greater than that of p2 and p3,
and further greater than p4 and p5. �

According to the above two guidelines, the Bonus score to an IRO object o is
presented in Equation 5. Bonus(o, Q) consists of the weighted connection counts
from its IRO pair and group respectively, which manifests Guideline 1. w1 and
w2 are designed to reflect the weights of the counterparts of o’s IRO pair and
group respectively, where w1>w2, which manifests Guideline 2.

Bonus(o, Q) = w1 ∗BSIRO P (o, Q) + w2 ∗BSIRO G(o, Q) (5)

Guideline 3: Distinction of different connected object types. The con-
nection count coming from different conceptually related objects (under each
matching semantics) should be distinguished from each other. ♣

Example 3. Consider a query Q “XML, query, processing” issued on DBLP.
The bonus score to a “query processing” paper from a related “XML” conference
inproceedings should be distinguished from the bonus score coming from a related
book whose title contains “XML”, regardless of the self-similarity difference of
this inproceedings and book. �
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Although the distinction of contributions from different object types under a
certain matching semantics helps distinguish the IRORank of an IRO object, it
is preferable that we can distinguish the precise connection types to o to achieve
a more exact Bonus score. However, it depends on a deeper analysis of the
relationships among objects and more manual efforts. Therefore, in this paper
we only enforce Guideline 1 and Guideline 2. As a result, the IRO bonus from
the counterparts of o’s IRO pair and IRO group is presented in Equation 6-7:

BSIRO P (o, Q) =
∑

∀o′|(o,o′)∈IROPair(Q,L)

ρ(o′, Q) (6)

BSIRO G(o, Q) =

∑
∀g∈IROGroup(Q,L′)|o∈g BF (o, Q, g)

|IRO Group(o, Q)| (7)

In Equation 6, ρ(o′, Q) is the TF*IOF similarity of o′ w.r.t. Q, which is
adopted as the contribution from o′ to o. Such adoption is based on the intuition
that, if an object tree o1 connects to o′1 s.t. o′1 is closely relevant to Q, whereas
object tree o2 connects to o′2 which is not as closely relevant to Q as o′1, then it is
likely that o1 is more relevant to Q than o2. In Equation 7, BF (o, Q, g) can be set
as the self similarity of the object in g containing the most number of keywords.
As it is infeasible to design a one-fit-all bonus function, other alternatives may
be adopted according to different application needs. L (in Equation 6) and L′

(in Equation 7) is the upper limit of n in definition of IRO pair and IRO group.

6 Index Construction

As we model the XML document as the interconnected object-trees, the first
index built is the keyword inverted list. An object tree o is in the corresponding
list of a keyword k if o contains K. Each element in the list is in form of a tuple
(Oid, DL, wo,k), where Oid is the id of the object tree containing k (here we
use the dewey label of the root node of object tree o as its oid, as it serves the
purpose of unique identification) ; DL is a list of pairs containing the dewey
labels of the exact locations of k and the associated attribute name; wo,k is the
term frequency in o (see Equation 1). c(o, Q) (in Equation 2) can be computed by
investigating the list DL; s(o, Q) is omitted in index building, algorithm design
and experimental study later due to the high complexity to collect. Therefore,
the ISORank of an object tree can be efficiently computed. A B+ tree index is
built on top of each inverted list to facilitate fast probing of an object in the list.

The second index built is connection table CT , where for each object c, it
maintains a list of objects that have direct conceptual connection to c in doc-
ument order. B+ tree is built on top of object id for efficient probes. Since it
is similar to the adjacency list representation of graph, the task of finding the
n-hop-meaningfully-connected objects of c (with an upper limit L for connection
chain length) can be achieved through a depth limited (to L) search from c in
CT . The worst case size is O(|id|2) if no restriction is enforced on L, where |id| is
number of object trees in database. However, we argue that in practice the size
is much smaller as an object may not connect to every other object in database.
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7 Algorithms

In this section, we present algorithms to compute and rank the ISO and IRO
results.

Algorithm 1: KWSearch
Input: Keywords: KW [m]; Keyword Inverted List: IL[m]; Connection

Table: CT ; upper limit: L, L′ for IRO pair and group
Output: Ranked object list: RL

1 let RL = ISO Result = IRO Result = {};
2 let HT be a hash table from object to its rank;
3 let ILs be the shortest inverted list in IL[m];
4 for each object o ∈ ILs do
5 let Ko = getKeywords(IL, o);
6 if (Ko == KW ) /* o is an ISO object */
7 initRank(o,Ko,KW ,HT ); ISO Result.add(o);
8 else if (Ko �= ∅)
9 IRO Pair = getIROPairs(IL, o, o, CT, L) /* Algorithm 2 */
9 IRO Group = getIROGroups(IL, o, o, CT, L′, Ko) /* Algorithm 3 */

10 RL = ISO Result ∪ IRO Pair ∪ IRO Group;

Function initRank(o, Ko, KW, HT )
1 if (o not in HT )
2 HT.put(o.id, computeISORank(o,Q,KW));

Function computeRank(o, oList)
1 foreach object o′ ∈ oList
2 Ko′ = getKeywords(IL, o′) ;
3 if (Ko′ == KW ) /* o′ is an ISO object */
4 initRank(o′,Ko,KW ,HT ); ISO Result.add(o′);
5 else if(Ko′ �= ∅ AND (Ko′ ∪Ko == KW )) /* o′ is IRO object */

6 initRank(o′,K′
o,KW ,HT );

7 IRO Pair.add(o,o′);
8 initRank(o,Ko,KW ,HT ); /* o is an IRO object also */
9 updateIRORank(o, o′,oList, HT );

Function updateIRORank (o, o′, oList, HT )
1 update the IRORank of o based on Equation 5−7;
2 put the updated (o, IRORank) into HT ;

The backbone workflow is in Algorithm 1. Its main idea is to scan the shortest
keyword inverted list ILs, check the objects in the list and their connected
objects, then compute and rank the ISO and IRO results. The details are: for
each object tree o in ILs, we find the keywords contained in o by calling function
getKeywords()(line 5). If o contains all query keywords, then o is an ISO object,
and we compute the ISORank for o by calling initRank(), then store o together
with its rank into hash table HT (line 6-7). If o contains some keywords, then o
is an IRO object, and all its IRO pairs and groups are found by calling functions
getIROPairs() (Algorithm 2) and getIROGroups (Algorithm 3) (line 8-10).

Function computeRank() is used to compute/update the ranks of objects o′

in oList, each forming an IRO pair with o. For each such o′, it probes all inverted
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lists with o′ to check three cases (line 1-2): (1) if o′ is an ISO object containing all
query keywords, then its ISORank is computed and it is added into ISO Result
(line 3-4). (2) if both o and o′ are IRO objects, their TF*IOF similarity are
initialized (if not yet), and their IRORanks are updated accordingly (line 5-
9). Function initRank() computes the ISORank by Equation 3 if o is an ISO
object, otherwise computes its TF*IOF similarity by Equation 1.

Algorithm 2 shows how to find all objects that form IRO pair with an IRO ob-
ject src. It works in a recursive way, where input o is the current object visited,
whose initial value is src. Since two objects are connected via either a reference
or containment connection, line 2-3 deal with the counterparts of o via reference
connection by calling getConnectedList(); line 4-7 deal with containment con-
nection. Then it recursively finds such counterparts connecting to src indirectly
in a depth limited search(line 8-10). getIROGroups() in Algorithm 3 works in
a similar way, the detail isn’t shown due to space limit.

Algorithm 2: getIROPairs (IL[m], src, o,
CT , L)

/* find all counterparts of o captured

by IRO pair */

1 if L == 0 then return ;
2 let oList = getConnectedList(o,CT) ;
3 computeRank(o, oList) ;
4 let ancList = getParent(o) ;
5 computeRank(o, ancList) ;
6 let desList = getChildren(o) ;
7 computeRank(o, desList(o)) ;
8 L = L - 1 ;
9 foreach o′ ∈ (oList ∪ ancList ∪ desList)

s.t. o′ is not IRO object yet
10 getIROPairs(IL, src, o′, CT, L) ;

Algorithm 3 getIROGroups (IL[m], o,
CT , L′, Ko)

/* find all counterparts of o captured

by IRO group */

1 let KS = ∅; count = 0;
2 cList = getConnectedList(o, CT, L′);
3 for n= 1 to L′ do
4 foreach o′ ∈ cList do
5 KS = getKeywords(IL, o′) ∪ KS;
6 if (KS⊂KW ) then
7 count++; continue;
8 elseif (count>2) then
9 initialize group g containing such o and

o′;
10 IRO Group.add(o,g);

:

The time complexity of KWSearch algorithm is composed of three parts: (1)
the cost of finding all IRO pairs is: O(

∑
o∈Ls

∑L
i=1 |cListi(o)| ∗

∑k
j=1 log |Lj|),

where Ls, o, |cListi(o)|, k and |Lj| represent the shortest inverted list of query
keywords, an object ID in Ls, length of the list of objects forming an IRO pair
with o with chain length = i (limited to L), the number of query keywords, and
the length of the jth keyword’s inverted list respectively. (2) the cost of finding
all IRO groups is: O(

∑
o∈Ls

∑L′

i=1 |QL′| ∗
∑k

j=1 log |Lj |), where the meaning of
each parameter is same as part (1), and |QL′ | denotes the maximal number of
object trees reached from o by depth limited search with chain length limit to L′.
(3) the cost of finding all ISO objects is: O(

∑
o∈Ls

∑k−1
j=1 log |Lj|). The formation

of each cost can be easily derived by tracing Algorithm 1-3.

8 Experimental Evaluation

Experiments run on a PC with Core2Duo 2.33GHz CPU and 3GB memory,
and all codes are implemented in Java. Both real dataset DBLP(420 MB) and
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synthetic dataset XMark(115 MB) [2] are used in experiments. The inverted lists
and connection table are created and stored in the disk with Berkeley DB [1] B+
trees. An online demo [3] of our system on DBLP, namely ICRA, is available at
http://xmldb.ddns.comp.nus.edu.sg.

8.1 Effectiveness of ISO and IRO Matching Semantics

In order to evaluate the quality of our proposed ISO and IRO semantics, we inves-
tigate the overall recall of ISO, ISO+IRO with XSeek [16], XReal [4] and SLCA
[20] on both DBLP and XMark. 20 queries are randomly generated for each
dataset, and the result relevance is judged by five researchers in our database
group. From the average recall shown in Table 1, we find: (1) ISO performs as
well as XReal and XSeek, and is much better than SLCA. It is consistent with our
conjecture that the search target of a user query is usually an object of interest,
because the concept of object indeed is implicitly considered in the design of ISO,
XReal and XSeek. (2) ISO+IRO has a higher recall than ISO alone, especially
for queries on XMark, as there are more ID references in XMark that bring more
relevant IRO results. In general, IRO semantics do help find more user-desired
results while the other semantics designed for tree data model cannot.

Table 1. Recall Comparison

Data SLCA XSeek XReal ISO ISO+IRO
DBLP 75% 82.5% 84.1% 84.1% 90.5%
XMark 55.6% 63.8% 60.4% 62.2% 80.7%

Table 2. Ranking Performance Comparison

Data R-rank MAP
XReal ISO IRO XReal ISO IRO

DBLP 0.872 0.877 0.883 0.864 0.865 0.623
XMark 0.751 0.751 0.900 0.708 0.706 0.705

8.2 Efficiency and Scalability Test

Next, we compare the efficiency of our approach with SLCA and XReal [4] in
tree model, and Bidirectional expansion [12] (Bidir for short) in digraph model.
For each dataset, 40 random queries whose lengths vary from 2 to 5 words are
generated, with 10 queries for each query size. The upper limit of connection
chain length is set to 2 for IRO pair and 1 for IRO group, and accordingly we
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Fig. 2. Efficiency and scalability tests on DBLP

id Query
Q1 David Giora
Q2 Dan Suciu semistructured
Q3 Jennifer Widom OLAP
Q4 Jim Gray transaction
Q5 VLDB Jim Gray
Q6 conceptual design

relational database
Q7 join optimization parallel

distributed environment

Fig. 3. Sample queries on
DBLP
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modify Bidir to not expand to a node of more than 2-hops away from a keyword
node for a fair comparison. Besides, since Bidir searches as small portion of a
graph as possible and generates the result during expansion, we only measure
its time to find the first 30 results. The average response time on cold cache and
the number of results returned by each approach are recorded in Fig. 2 and 4.

The log-scaled response time on DBLP is shown in Fig. 2(a), and we find:
(1) Both SLCA and ISO+IRO are about one order of magnitude faster than
XReal and Bidir for queries of all sizes. SLCA is twice faster than ISO+IRO,
but considering the fact that ISO+IRO captures much more relevant results than
SLCA (as evident from Table 1), such extra cost is worthwhile and ignorable.
(2) ISO+IRO scales as well as SLCA w.r.t the number of query keywords, and
ISO alone even has a better scalability than SLCA.

From Fig. 2(b), we find the result number of ISO is a bit smaller than that of
SLCA, as ISO defines qualified result on (more restrictive) object level. Besides,
ISO+IRO finds more results than SLCA and XReal, because many results that
are connected by ID references can be identified by IRO. The result for XMark
(see Fig. 4) is similar to DBLP, and the discussion is omitted due to space limit.
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Fig. 4. Efficiency and scalability tests on XMark

Table 3. sample query
result number

Query ISO result IRO Result
Q1 16 42
Q2 14 58
Q3 1 56
Q4 14 230
Q5 8 1238
Q6 3 739
Q7 0 93

8.3 Effectiveness of the Ranking Schemes

To evaluate the effectiveness of our ranking scheme on ISO and IRO results,
we use two widely adopted metrics in IR: (1)Reciprocal rank (R-rank), which
is 1 divided by the rank at which the first relevant result is returned. (2) Mean
Average Precision (MAP). A precision is computed after each relevant one is
identified when checking the ranked query results, and MAP is the average value
of such precisions. R-Rank measures how good a search engine returns the first
relevant result, while MAP measures the overall effectiveness for top-k results.

Here, we compute the R-rank and MAP for top-30 results returned by ISO,
IRO and XReal, by issuing the same 20 random queries as describe in section 8.1
for each dataset. Specificity factor s(o, Q) is ignored in computing ISORank; in
computing the IRORank, w1 = 1 and w2 = 0.7 are chosen as the weights in
Equation 5. The result is shown in Table 2. As ISO and XReal do not take into
account the reference connection in XML data, it is fair to compare ISO with
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XReal. We find ISO is as good as XReal in term of both R-rank and MAP, and
even better on DBLP’s testing. The ranking strategy for IRO result also works
very well, whose average R-rank is over 0.88.

Besides the random queries, we choose 7 typical sample queries as shown in
Fig. 3: Q2-Q4 intend to find publications on a certain topic by a certain author;
Q5 intends to find publications of a particular author on a certain conference.

In particular, we compare our system [3] with some academic search engines
such as Bidir in digraph model [12], XKSearch employing SLCA [20] in tree
model, with commercial search engines, i.e. Google Scholar and Libra2. Since
both Scholar and Libra can utilize abundant of web data to find more results
than ours whose data source only comes from DBLP, it is infeasible and unfair
to compare the total number of relevant results. Therefore, we only measure the
number of top-k relevant results, where k=10, 20 and 30.
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Fig. 5. Result quality comparison

Since our system separates ISO results and IRO results (as mentioned in
section 4.3), top-k results are collected in the way that, all ISO results are ordered
before the IRO results. The total number of ISO results and IRO results are
shown in Table 3, and the comparison for the top-30 results is shown in Fig. 5.

First, we compare ISO+IRO with Bidir and XKSearch. For queries that have
both ISO and IRO results (e.g. Q1-Q6), our approach can find more relevant
results, and rank them in most of the top-30 results. There is no ISO result for
Q7, XKSearch also returns nothing; but 26 IRO results are actually relevant.

Second, we compare ISO+IRO with Libra and Scholar. From Fig. 5, we find
our approach is comparable with Scholar and Libra for all sample queries. In
particular, ISO+IRO is able to rank the most relevant ones in top-10 results for
most queries, because its top-10 precision is nearly 100% for most queries, as
evident in Figure 5(a). In addition, as Libra only supports keyword conjunction
(similar to our ISO semantics), it does not work well for Q3 and Q7, as there
is only 1 and 0 result containing all keywords for Q3 and Q7. As shown in Fig.
5(a), Scholar only finds 3 relevant results for Q5 in its top-10 answers, probably

2 Google Scholar: http://scholar.google.com. Microsoft Libra: http://libra.msra.cn
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because keywords “Jim” and “Gray” appear in many web pages causes many
results that don’t contain “VLDB” to still have a high rank, which is undesired.

Thirdly, as shown in Fig. 5, the average recall for each query generated by
our ISO+IRO is above 80% at each of the three top-k levels, which confirms its
advantage over any other approach.

9 Conclusion and Future Work

In this paper, we build a preliminary framework for object-level keyword search
over XML data. In particular, we model XML data as the interconnected object-
trees, based on which we propose two main matching semantics, namely ISO
(Interested Single Object) and IRO (Interested Related Object), to capture dif-
ferent user search concerns. A customized ranking scheme is proposed by taking
both the structure and content of the results into account. Efficient algorithms
are designed to compute and rank the query results in one phase, and extensive
experiments have been conducted to show the effectiveness and efficiency of our
approach. In future, we plan to investigate how to distinguish the relationship
types among objects and utilize them to define more precise matching semantics.
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Abstract. xml keyword search provides a simple and user-friendly way
of retrieving data from xml databases, but the ambiguities of keywords
make it difficult to effectively answer keyword queries. XReal [4] utilizes
the statistics of underlying data to resolve keyword ambiguity problems.
However, we found their proposed formula for inferring the search-for
node type suffers from inconsistency and abnormality problems.

In this paper, we propose a dynamic reduction factor scheme as well
as a novel algorithm DynamicInfer to resolve these two problems. Exper-
imental results are provided to verify the effectiveness of our approach.

1 Introduction

Keyword search has long been used to retrieve information from collections of
text documents. Recently, keyword search in xml databases re-attracted atten-
tion of the research community because of the convenience it brings to users -
there is no need for users to know the underlying database schema or complicated
query language.

Until now, a lot of research focuses on how to efficiently and meaningfully
connect keyword match nodes (e.g., ELCA [6], XSEarch [5], MLCA [9], SLCA [12]
and VLCA [8]) and generate meaningful, informative and compact results (e.g.,
GDMCT [7], XSeek [10] and MaxMatch [11]), but this only solves one side of the
problem. The returned answers may be meaningful, but they may not be desired
by users. Therefore, the other side of the problem is how to accurately acquire
the users’ search intention, which is a difficult task because keywords may have
multiple meanings in an xml document, and keyword query lacks the ability to
specify the meaning that is wanted. For example in Fig. 1, 11 appears as a text
value of volume and initPage node, and volume exists as an xml tag name and
a text value of title node, but which meaning is desired by the user is hard to
determine just from the query {volume 11}.

In order to resolve the ambiguities of keywords, Bao et al [4] introduced the
statistics of xml data into answering keyword queries, which provides an ob-
jective way of identifying users’ major search intention. In their search engine
XReal, they first use a formula, which is based on three guidelines (see Section 2
for details), to infer the search-for node type (SNT). Then they use an improved

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 110–124, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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SigmodRecord
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“Alex”

“SQL Query” “31” “40”

Fig. 1. An xml data tree of SigmodRecord

xml TF*IDF ranking strategy to rank individual matches of the identified SNT.
For example, for the query {article Karen} over the data tree in Fig. 1, XReal
may first infer article as the SNT. Then it ranks all of the subtrees rooted at
article nodes that contain keywords “article” and “Karen”.

In XReal’s two-step approach, the accuracy of inferring SNT plays a crucial
role in returning relevant final results. If the system selects an incorrect SNT,
all of the final results would be irrelevant to the user. However, based on our
experiments, their way of identifying the SNT suffers from inconsistency and
abnormality problems even though each keyword in the query has only one
meaning in an xml document. First, for the same query, XReal may return
inconsistent SNTs when the data size changes (We will give examples to describe
the details of these two problems in Section 3). In fact, XReal may infer different
SNTs even though we simply replicate an xml document two times. This is an
unreasonable behavior for an xml keyword search engine. Second, XReal may
infer different SNTs when the keyword queries are similar queries. This is another
type of inconsistency problem. For example, given the queries {article data} and
{article SQL} over the data tree in Fig. 1, both keywords “data” and “SQL”
appear as a text value of title node. Intuitively, these two queries should yield
the same SNT, but XReal may infer different SNTs for them. Third, XReal may
suggest unreasonable SNT when the frequency of keywords is low. However, users
often submit keywords which appear as text values and have low frequencies, so
this problem is serious for a search engine.

The two problems above show that the formula used by XReal can not effec-
tively identify the SNT in some cases. In order to resolve these two problems, we
propose a dynamic reduction factor scheme. Reduction factor is a constant value
in the formula used by XReal to infer the SNT (see Section 2). In our solution,
this factor is dynamic and changes on the fly. Its value is determined by a devised
formula. We provide algorithm DynamicInfer which incorporates the dynamic
reduction factor scheme to infer the SNT of a query. Extensive experiments veri-
fied the effectiveness of our approach to resolve the identified problems.
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To summarize, we make the following contributions:

1. We identify two problems (i.e., inconsistency and abnormality problems) of
XReal in inferring SNTs.

2. We propose a dynamic reduction factor scheme to resolve the identified prob-
lems. We provide algorithm DynamicInfer to incorporate this scheme to
infer the SNT of a query.

3. We conducted an extensive experimental study which verified the effective-
ness of our approach.

The rest of this paper is organized as follows. We briefly introduce the xml
keyword search engine XReal and some other background information in Section
2. In Section 3, we illustrate and analyze the weaknesses of XReal with examples.
The dynamic reduction factor scheme is presented in Section 4. Experimental
studies are shown in Section 5. Section 6 presents related work followed by
conclusion in Section 7.

2 Background

2.1 Notations

An xml document is modeled as an unordered tree, called the data tree. Each
internal node (i.e., non-leaf node) has a label, and each leaf node has a value. The
internal nodes represent elements or attributes, while the leaf nodes represent
the values of elements or attributes. Each node v in the data tree has a unique
Dewey code, which represents the position of that node in the data tree. With
this coding scheme, ancestor-descendant relationship can be easily identified: for
any two nodes v1, v2 in data tree t, v1 is an ancestor of v2 iff the dewey code of
v1 is a prefix of the dewey code of v2. Fig. 1 shows an example data tree.

Keyword query: A keyword query is a finite set of keywords K = {k1, ..., kn}.
Given a keyword k and a data tree t, the search of k in t will check both the
labels of internal nodes and values of leaf nodes for possible occurrence of k.

Definition 1. (Node Type) Let n be a node in data tree t. The node type of
n is the path from the root to n if n is an internal node. If n is a leaf node, its
node type is the node type of its parent.

The type of a node actually represents the meaning of this node. In Fig. 1, the
node type of author (0.0.2.0.3.0) is the path

(SigmodRecord.issue.articles.article.authors.author), and the node
type of title (0.0.2.0.0) is the path

(SigmodRecord.issue.articles.article.title).Thenodes title (0.0.2.0.0)
and title (0.0.2.1.0) own the same node type because they share the same path.
Node volume (0.0.0) and node title (0.0.2.0.0) have different node types.

Note: For simplicity, we will use the tag name instead of the path of a node
to denote the node type throughout this paper if there is no confusion.
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2.2 Overview of XReal

To make the paper self-contained, we review the xml keyword search engine
XReal in this section. We will use a running example to briefly introduce its
basic ideas.

Based on the fact that each query usually has only one desired node type to
search for, keyword query processing in XReal is divided into two steps. First,
three guidelines as well as a corresponding formula are used to identify the SNT.
Second, an xml TF*IDF ranking mechanism is used to rank the matches of the
identified SNT. We mainly discuss the first step because it is closely related to
our work.

The three guidelines which are used to guide the identification of SNT are
listed below. Given a keyword query q, XReal determines whether a node type
T is the desired node type to search for based on the following three guidelines:

Guideline 1: T is intuitively related to every query keyword in q, i.e. for each
keyword k, there should be some (if not many) T -typed nodes containing k
in their subtrees.

Guideline 2: xml nodes of type T should be informative enough to contain
enough relevant information.

Guideline 3: xml nodes of type T should not be overwhelming to contain too
much irrelevant information.

To apply these guidelines, XReal uses the following formula to calculate the
confidence score Cfor(T, q) of a node type T :

Cfor(T, q) = loge(1 +
∏
k∈q

fT
k ) ∗ rdepth(T ) (1)

where k represents a keyword in query q; fT
k is the number of T -typed nodes

that contain k as either values or tag names in their subtrees; r is some reduction
factor with range (0, 1] and normally chosen to be 0.8, and depth(T ) represents
the depth of T -typed nodes in document.

In Formula (1), the first multiplier (i.e., loge(1 +
∏

k∈q fT
k )) enforces the first

and third guidelines. The product of fT
k ensures that the selected node type

must be related to every keyword in the query, otherwise the score will be 0.
For example, with the data in Fig. 1, the value of

∏
k∈{volume,Karen} fauthor

k is
0 because there is no subtree rooted at the node type author that contains the
keyword “volume”. In addition, given a keyword k, the characteristics of tree
structure determines that the node type T at lower levels has a greater chance
to have larger values of fT

k . For example, f issue
initPage is smaller than farticle

initPage in
Fig.1. Therefore, the first multiplier usually keeps the level of SNT low enough
to make the result small. The second multiplier rdepth(T ) enforces the second
guideline by making the level of SNT high enough to contain more information.

3 Analysis of XReal’s Weaknesses

As we stated earlier, XReal uses Formula (1) to identify the search-for node type
(SNT) of a query. However, there exist inconsistency and abnormality problems
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SigmodRecord

issue

article

author

[67 in total]

“Karen”
[in 2 articles

AND in 2 issues]

[1504 in total
AND in 67 issues]

articles

...

authors

author

...

...

“John”
[in 33 articles

AND in 24 issues]
(a) Data set 1

SigmodRecord

issue

article

author

[134 issues]

“Karen”
[in 4 articles

AND in 4 issues]

[3008 in total
AND in 134 issues]

articles

...

authors

author

...

...

“John”
[in 66 articles

AND in 48 issues]

(b) Data set 2

Fig. 2. Two Data Set

customers

customer

ID

“C1”

name

“Will Smith”

address contact
interests

interest

“art”

customer

name

“John Will”

address contact

interest

“fashion”

“Art Street”

... ... ...

ID

“C2”

interests

...

Fig. 3. An xml data tree of customers

when this formula is applied. In this section, we will use examples to explain the
details of these problems, and discuss why these problems are serious to an xml
keyword search engine. To facilitate our discussion, we first give a data set (i.e.,
Data set 1) in Fig. 2(a), which is identical to the SigmodRecord data set obtained
from [1]. In the data set, we also provide the statistics of a certain meaning of
the words that will be used in our examples. For example, the keyword “Karen”
exists in two different articles as the text value of author node, and these two
articles exist in two different issues. We replicated Data set 1 two times to get
Data set 2 (Fig. 2(b)). All the examples in this section will be based on these
two data sets.

[Inconsistency problem 1]: For the same query, Formula (1) may infer incon-
sistent SNTs when the size of a data set changes. To illustrate this problem, we
simply replicate a data set two times to simulate the change of data size.

Example 1. Given the query {article, Karen} over Data set 1 and 2, we calculate
and compare the confidence score Cfor(T, q) of the node types article and issue
(Note: other node types, such as SigmodRecord and articles, are ignored here),
and list the results in Table 1. Intuitively, article should be identified as the SNT
no matter what the data size is, but the system infers inconsistent SNTs and
selects an unreasonable node type issue when the data has a larger size.
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Table 1. Cfor(T, q) for Inconsistency Problem (Query q: {article Karen})

Data set T loge(1 +
∏

k∈{article,Karen} fT
k ) ∗ 0.8depth(T ) Cfor(T, q)

Data set 1 issue loge(1 + 67 ∗ 2) ∗ 0.8 3.9242
article loge(1 + 1504 ∗ 2) ∗ 0.83 4.1008

Data set 2 issue loge(1 + 134 ∗ 4) ∗ 0.8 5.0288
article loge(1 + 3008 ∗ 4) ∗ 0.83 4.8104

Inconsistency problem is serious for an xml keyword search engine because the
data in reality is not static. The data set may become larger or smaller when
the data is inserted or deleted, but the precision of inferring SNT should not be
affected by the scale of data.

[Inconsistency Problem 2]: For two similar queries, Formula (1) may infer
inconsistent SNTs. Here by similar queries we mean their keywords have the
same node types. Intuitively, similar queries are supposed to have the same SNT.

Example 2. Consider the queries {article John} and {article Karen} over Data
set 1. These two queries are similar and the SNTs should be the same. However,
as shown in Table 2, XReal returns article for {article Karen}, and returns issue
for {article John}.

Table 2. Cfor(T, q) for Inconsistency Problem 2

q T loge(1 +
∏

k∈q fT
k ) ∗ 0.8depth(T ) Cfor(T, q)

{article Karen} issue loge(1 + 67 ∗ 2) ∗ 0.8 3.9242
article loge(1 + 1504 ∗ 2) ∗ 0.83 4.1008

{article John} issue loge(1 + 67 ∗ 24) ∗ 0.8 5.9067
article loge(1 + 1504 ∗ 33) ∗ 0.83 5.5360

[Abnormality Problem]: Formula (1) may infer unreasonable SNTs when the
keywords in a query have low frequencies. We use the keywords that occur in
text values to illustrate this problem.

Table 3. Cfor(T, q) for Abnormality Problem

q T loge(1 +
∏

k∈{Karen} fT
k ) ∗ 0.8depth(T ) Cfor(T, q)

{Karen} issue loge(1 + 2) ∗ 0.8 0.8789
article loge(1 + 2) ∗ 0.83 0.5625

Example 3. Consider the query {Karen} over the Data set 1. In this query, the
keyword “Karen” has low frequency. We calculate Cfor(T, q) of the node type
article and issue, and list the result in Table 3. From the result, it can be seen
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that the node type issue will be selected as the SNT, but article is intuitively a
better choice in this case. More seriously, if the user submits a keyword which
has extremely low frequency, XReal even returns the node type SigmodRecord
as the SNT.

The Abnormality Problem is also a serious problem for an xml keyword search
engine, because it is very common for the user to submit keywords which ap-
pear as text values in a data set, and normally this kind of keywords have low
frequencies.

Discussion: Inconsistency Problem 1 emerges because the logarithm function
(i.e., loge(1 +

∏
k∈q fT

k )) in Formula (1) grows more and more slowly when its
argument becomes larger due to the increased data size, but the exponential func-
tion (i.e., rdepth(T )) in Formula (1) decreases the value of the logarithm function
more quickly when the depth increases. Therefore, the level of SNT tends to go
up when the data size becomes larger. For similar queries, their argument values
of the logarithm function may be very different but the reduction factor remains
the same, so their SNTs are very likely to be different and lead to Inconsistency
Problem 2. On the other hand, these two inconsistency problems are more likely
to occur on deep tree structures than shallow ones. For example, the data tree
in Fig. 3 is shallower than the SigmodRecord data tree in Fig. 1. It is very hard
for the node type customers to be selected as the SNT because there is only
one customers node in the data tree which results in its very small confidence
score compared with the confidence score of customer. Although more customer
nodes may be inserted into the data set, the number of customers node does
not change.

The Abnormality Problem arises because for the node types at different levels,
their values of the first multiplier in Formula (1) are so close when the frequency
of keywords is low that the second multiplier can easily make the node types
at higher levels to be the SNT. In other words, the first multiplier will become
negligible when the keywords have low frequencies. For example in Data set 1, the
value of logef

article
Karen is the same with the value of logef

issue
Karen, so their confidence

scores are mainly determined by the second multiplier in the formula. In addition,
this problem is likely to happen on both deep and shallow data trees. For the
data tree in Fig. 3, if the keyword has a very low frequency, the node type
customers can also be inferred as the SNT, but this can not be accepted.

One may wonder whether these problems can be resolved by manually adjust-
ing the reduction factor for each data set by the database administrator. The
problem is the reduction factor is not closely related to the scale of the data but
the argument value of the logarithm function in Formula (1). In other words,
the reduction factor is closely related to the number of occurrences of each node
type containing the keywords in a query. Therefore, it is impossible to choose a
value which can fit for every query. The only way is to use a dynamic reduction
factor (i.e., r) in the formula and setting its value on the fly. In this paper, we
will explore how to achieve this.
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4 Inferring Search-for Node

In this section, we introduce the statistics of underlying data utilized in our
solution, and illustrate how to employ dynamic reduction factor scheme in im-
proving the precision of SNT identification. Before discussing our solution, some
preliminaries are introduced.

4.1 Preliminary Definitions

Entity nodes: Lots of xml documents in reality are well designed and conform
to a pre-defined schema. Therefore, even though an xml document is modeled
as a tree, it is actually a container of related entities in the real world. Consider
the data tree in Fig. 1, which is a collection of SigmodRecord, issue and arti-
cle entities. These entities are joined together through the ancestor-descendant
relationship. The root of each entity is called entity node. We use an approach
similar to that of [10] to identify entity nodes.

Definition 2. Let t be a data tree. A node u in t is said to be a simple node if
it is a leaf node, or has a single child which is a leaf node. A node u represents
an entity node if: (1) it corresponds to a *-node in the DTD (if DTD exists), or
has siblings with the same tag name as itself (if DTD does not exist), and (2) it
is not a simple node.

The entity type of an entity node e refers to the node type (as defined in
Definition 1) of e.

Example 4. For the data tree in Fig. 1, nodes issue (0.0), article (0.0.2.0)
and article (0.0.2.1) are inferred as the entity nodes. The entity nodes article
(0.0.2.0) and article (0.0.2.1) have the same entity-type, which is the node type
SigmodRecord.issue.articles.article.

Definition 3. (Ancestor Node Type) Given a node type T ≡ l0.l1. · · · .ln, we
say the path l0.l1. · · · .li is an ancestor node type of T , for any i ∈ [0, n− 1].

For example in Fig. 1, the node type Sigmodrecord.issue is an ancestor node
type of SigmodRecord.issue.articles.article.

Definition 4. (The entity-type of a node type) If a node type T is not the node
type of some entity node, its entity-type is its ancestor node type T ′ such that
(1) T ′ is the node type of some entity node, and (2) T ′ is the longest among all
ancestor node types of T satisfying condition (1). If T is the node type of some
entity node, its entity-type is itself. Node types that have the same entity-type
are called neighbor node types.

Note that every node type in the data tree owns one and only one entity-type.

Example 5. In Fig. 1, the entity-type of node type initPage is node type article.
Node type article’s entity-type is itself (i.e., article). The node types article,
title, initPage, endPage, authors and author are neighbor node types because
they share the same entity-type article.
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4.2 Dynamic Reduction Factor

We use a dynamic reduction factor scheme to adjust the reduction factor (i.e., r)
in Formula (1) on the fly in order to resolve the inconsistency and abnormality
problems.

Intuitively, the inconsistency and abnormality problems shown in Section 3
are all caused by an inappropriate reduction factor value and the inability of
that value to adapt to the user query. The score of a node type becomes lower
than that of some ancestor node types, causing the ancestor node type to be
chosen as the search-for node type. In order to solve this problem, we propose
the following guideline as the basis of our approach.

Guideline 4: Given a node type T which achieves the highest confidence score
among its neighbor node types, the reduction factor should be such that it
ensures that no ancestor node type T ′ of T achieves a higher confidence score
than T if we ignore the occurrence of keywords in other parts of the data tree
than subtrees rooted at T -typed nodes.

It should be noted that among a set of neighbor node types, the node type
of the entity nodes normally has the highest confidence score according to For-
mula (1). For example, consider the query {SQL} over the data tree in Fig. 1.
The confidence score of article, which is the node type of entity nodes, is larger
than title (Note: Here we do not consider other neighbor node types, such as
initPage and endPage, because their confidence scores are 0) because farticle

SQL is
equal to f title

SQL, and article-typed nodes are higher than title-typed nodes in the
data tree.

Example 6. The user submits query {article Karen} over the data tree in Fig. 1.
After calculation, the node type article achieves the highest confidence score
among all of the neighbor node types that have the entity-type article. Accord-
ing to Guideline 4 above, the new reduction factor should guarantee that the
confidence score of article is larger than the confidence score of articles, issue and
SigmodRecord if we ignore the occurrence of the keywords “article” and “Karen”
in other parts of the data tree than the subtrees rooted at article-typed nodes.

To formalize Guideline 4, we propose the statistics fT ′,T
k .

Definition 5. fT ′,T
k is the number of T ′-typed nodes that contain keyword k in

the subtrees of their T -typed descendant nodes in the xml database.

Example 7. Over the data tree in Fig. 1, f issue,article
data is the number of issue-

typed nodes that contain keyword “data” in the subtrees rooted at article-typed
nodes. f issue,article

data ignores the occurrence of keywords “data” in other parts of
the data tree than the subtrees rooted at article-typed nodes.

Guideline 4 can be formally defined with the following formula:

loge(1 +
∏

k∈q fT
k ) ∗ rdepth(T )

loge(1 +
∏

k∈q fT ′,T
k ) ∗ rdepth(T ′)

> 1, (T ′ ∈ Ancestors(T )) (2)
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so the reduction factor r should satisfy the condition below.

max{ depth(T )−depth(T ′)

√√√√ loge(1 +
∏

k∈q fT ′,T
k )

loge(1 +
∏

k∈q fT
k )

} < r ≤ 1, (T ′ ∈ Ancestors(T ))

(3)

In the two formulas above, T is the node type which achieves the highest
confidence score among all of its neighbor node types and is normally the node
type of the entity nodes. T ′ is an ancestor node type of T . fT

k is the number of
T -typed nodes that contain k in their subtrees. fT ′,T

k is the number of T ′-typed
nodes that contain k in the subtrees of their T -typed descendant nodes.

Reservation Space: The value of reduction factor r should satisfy the condition
in Formula (3). In practice, we need to determine the exact value of r, and we
can add a small value to the max function. This small value is called reservation
space (i.e., rs) in our approach, which can not be too small or too large. If rs
is too small, the confidence score of T ′ is very easy to exceed the confidence
score of T when there exist more T ′-typed nodes that contain the keywords in
the parts of the data tree excluding the subtrees rooted at T -typed nodes. If
rs is too large, it is very difficult for T ′ to be selected as the SNT even though
much more T ′-typed nodes contain the keywords in the parts of the data tree
excluding the subtrees rooted at T -typed nodes.

Based on our experiments, 0.05 is an appropriate value for rs. The formula
for the reduction factor r is as follows, and the maximum value of r is 1.

r = min{max{ depth(T )−depth(T ′)

√√√√ loge(1 +
∏

k∈q fT ′,T
k )

loge(1 +
∏

k∈q fT
k )

}+0.05, 1}, (T ′ ∈ Ancestors(T ))

(4)

4.3 Algorithm

XReal computes the confidence scores of all node types and selects the node
type with the highest confidence score as the SNT. For our approach, in order
to enforce Formula (4), we can not simply compute the confidence score of each
node type, and need to design a new algorithm.

Our algorithm DynamicInfer for inferring the SNT is shown in Algorithm 1.
Now we explain this algorithm. We first set the initial reduction factor as
0.8 (line 1). At line 2, we retrieve all of the leaf entity-types using proce-
dure GetLeafEntityT ypes(NT ). Leaf entity-types are the entity-types that
do not have any descendant entity-types. For each leaf entity-type, we use a
bottom-up strategy to infer the node type Tcurrent which achieves the high-
est confidence score in current bottom-up process. In each bottom-up process,
we first use procedure GetNeighborNodeTypes(NT, et) to collect all of the
neighbor node types which have the entity-type et (line 7). Then we use pro-
cedure GetNTWithHighestConfidenceScore to get the node type Tneighbor

that achieves the highest confidence score Cneighbor among the neighbor node
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Algorithm 1. DynamicInfer(NT, q)
Input: Node types NT = {nt1, ..., ntn}, a query q
Output: The search-for node type Tfor

1: r = 0.8, Cfor = 0, Tfor=null//r: reduction factor; Cfor is the confidence score of
SNT Tfor

2: le = GetLeafEntityTypes(NT ) //le is a list of leaf entity types
3: for i = 1 to le.length() do
4: Cpath = 0, Tpath=null
5: et = le[i]
6: while et �= null do
7: nn = GetNeighborNodeTypes(NT,et); //nn is a set of neighbor node types

which have entity type et
8: (Tneighbor, Cneighbor)=GetNTWithHighestConfidenceScore(nn)

//Tneighbor is the node type which has
the highest confidence score in nn, and its
confidence score is Cneighbor

9: if Cneighbor > Ccurrent then //Ccurrent is the confidence score of Tcurrent

which has the highest confidence score in
current bottom-up process

10: Tcurrent = Tneighbor

11: r = AdjustReductionFactor(Tneighbor, et)
12: Cneighbor = CalculateConfidenceScore(Tneighbor)
13: Ccurrent = Cneighbor

14: et = GetNextAncestorEntityType(et) //Get the closest ancestor entity
type of et

15: r = 0.8
16: Ccurrent = CalculateConfidenceScore(Tcurrent)
17: if Cfor < Ccurrent then
18: Tfor = Tcurrent

19: Cfor = Ccurrent

20: procedure AdjustReductionFactor(Thighest, et)
21: A = GetAncestorNodeTypes(et) //A is a set of ancestor node types of et

22: r = min{max{ depth(Thighest)−depth(a)

√
loge(1+

∏
k∈q f

a,Thighest
k

)

loge(1+
∏

k∈q f
Thighest
k

)
} + 0.05, 1}, (a ∈

A)
23: return r

types collected in the last step. If Cneighbor is larger than Ccurrent, we assign
Tcurrent with Tneighbor (line 10), and adjust the reduction factor with procedure
AdjustReductionFactor (line 11). Next we need to recalculate the confidence
score Cneighbor of Tneighbor by calling procedure CalculateConfidenceScore
which uses Formula (1) (line 12), and set Ccurrent with Cneighbor (line 13). We
repeat the steps above until all of the ancestor entity-types of current leaf entity-
type have been processed, and get the node type Tcurrent which has the highest
confidence score in current bottom-up process. We reset r to 0.8 (line 15), and
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recalculate the confidence score of Tcurrent (line 16) because we want to compare
the node types that achieve the highest confidence score in different bottom-up
process using the same reduction factor. We start another bottom-up process if
there are other leaf entity-types unprocessed. The initial value of reduction fac-
tor r in each bottom-up process is 0.8. Eventually, Tfor is the node type which
achieves the highest confidence score among all bottom-up processes.

We use the query {article John} to illustrate DynamicInfer.

Example 8. Consider the query {article John} over Data set 1. The algorithm
first retrieves all of the leaf entity-types (line 2). In this data set, there is only
one leaf entity-type article, so there is only one bottom-up process. The bottom-
up process starts. We first collect all the neighbor node types that have the
entity-type article (line 7) and apply Formula (1) to find the node type with
the highest confidence score among these neighbor node types (line 8), which is
article and its confidence score Cneighbor is 5.5360 in this case. Because Cneighbor

is larger than Ccurrent, we set Tcurrent with Tneighbor (i.e., article) and adjust
the reduction factor. After the adjustment (line 11), the new reduction factor
is 0.8764. Then we recalculate the confidence score of article using Formula (1)
(line 12). The new confidence score of article is 7.2783. Then we assign this value
to Ccurrent (line 13). At line 14, we get the closest ancestor entity-type of article,
which is issue. We also retrieve all of its neighbor node types and compute the
confidence scores of these node types. We find that the node type issue has the
highest confidence score 6.4708. Because 6.4708 is smaller than Ccurrent (i.e.,
7.2783), we do not change Tcurrent and the reduction factor. Because issue
does not have ancestor entity-type, the bottom-up process ends. At line 18, Tfor

is assigned with article. article is the only leaf entity-type in this case, so the
algorithm ends. The node type article is identified as the SNT.

For the example above, XReal infers the node type issue as the SNT. For this
case, article is a preferable SNT to issue.

5 Experiments

In this section, we present the experimental results on the accuracy of inferring
the search-for node type (SNT) of our approach DynamicInfer against XReal [4].
We selected several queries which have specific search intentions, but XReal
produces inconsistency and abnormality problems. We present the SNTs after
applying our dynamic reduction factor scheme and the new reduction factor in
the results.

5.1 Experimental Setup

The xml document parser we used is the XmlTextReader Interface of Libxml2 [3].
The keyword inverted list and statistics information are implemented in C++ and
stored with Berkeley DB [2].

We implemented XReal and our approach in C++. All the experiments were
performed on a 1.6GHz Intel Centrino Duo processor laptop with 1G RAM. The
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operating system is Windows XP. We used the data sets SigmodRecord and
WSU obtained from [1] for evaluation.

5.2 Results of Inferring Search-for Node

Inconsistency Problem 1: We used SigmodRecord data set for the experi-
ments on preventing Inconsistency Problem 1 because this data set has a deep
structure. As we stated earlier, inconsistency problems are most likely to happen
on deep data trees. We replicated the data set two times to simulate the data
size changes. The selected queries (QI1-QI5), the SNTs inferred by XReal, the
SNTs inferred by DynamicInfer and the new reduction factor are listed in Table
4. For these five queries, XReal infers unpreferable SNTs when the data set is
double sized, so we only listed the new reduction factor for the queries over the
double-sized data set in the table. It can be seen that our approach can resolve
Inconsistency Problem 1 by applying the dynamic reduction factor scheme.

Inconsistency Problem 2: We also used SigmodRecord data set to do the
experiments on preventing Inconsistency Problem 2. We selected three pairs of
similar queries and listed the new reduction factor for the second query in each
pair in Table 5. The results show that the dynamic reduction factor scheme can
successfully solve Inconsistency Problem 2.

Abnormality Problem: Abnormality Problem is likely to happen on both
deep and shallow tree structures, so we use SigmodRecord and WSU data set
to do the experiments on preventing Abnormality Problem. WSU is a university
courses data set which has a shallow structure. We selected three queries for
each data set. From the results shown in Table 6, our approach can also resolve
abnormality problems. It should be noted that the keywords in query QA3 have
relatively high frequencies compared with other queries, but XReal also infers
an unpreferable SNT.

6 Other Related Work

Most previously proposed xml keyword search systems used the concept of lowest
common ancestor (LCA), or its variant, to connect the match nodes. XRank [6]
proposed the excluding semantics to connect keyword matches, which connects

Table 4. Results on Resolving Inconsistency Problem 1

Query SNT of XReal SNT of Our approach r
Original Double-sized Original Double-sized

QI1 {article Karen} article issue article article 0.8680
QI2 {article title SQL} article issue article article 0.8702
QI3 {article database} article issue article article 0.8675
QI4 {title data author} article issue article article 0.8595
QI5 {title web initPage} article issue article article 0.8614
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Table 5. Results on Resolving Inconsistency Problem 2

Query SNT of XReal SNT of Our approach r
QI6 {author Karen} article article
QI7 {author John} issue article 0.8764
QI8 {title database} article article
QI9 {title query} issue article 0.8509
QI10 {article title database} article article
QI11 {article title relational database} issue article 0.8568

Table 6. Results on Resolving Abnormality Problem

Query SNT of XReal SNT of Our approach r
QA1 {Karen} issue article 1
QA2 {XML} SigmodRecord article 1
QA3 {database system} issue article 0.9047
QA4 {crowe} root course 1
QA5 {models} root course 1
QA6 {labor} root course 1

keyword matches by the LCA nodes that contain at least one occurrence of all
keywords after excluding the occurrences of keywords in their descendants that
already contain all keywords. XKSearch [12] proposed the notion of Smallest LCA
(SLCA) to connect keyword match nodes. A SLCA is the root of a subtree which
contains all the keywords, and any subtree rooted at its descendants does not
contain all the keywords. Li et al [9] proposed the concept of Meaningful LCA
to connect keyword matches. A set of keyword matches are considered to be
meaningfully related if every pair of the matches is meaningfully related. Two
keyword matches are considered meaningfully related if they can be linked with
a SLCA. The LCA based approaches have a common inherent problem, which is
that they may link irrelevant xml nodes together and return large amount of
useless information to the user. This problem is called false positive problem in
[8]. In order to solve the false positive problem, Li et al [8] proposed the concept
of valuable LCA (VLCA).

After keyword matches are meaningfully connected, it is important to deter-
mine how to output the results. Most LCA based approaches return the whole
subtree rooted at the LCA or its variants (e.g., MLCA, SLCA, etc.). Sometimes, the
return subtrees are too large for users to find needed information. Therefore,
Hristidis et al. in [7] introduced minimum connecting trees to exclude the sub-
trees rooted at the LCA that do not contain keywords. This approach makes the
results more compact. To make the answers more meaningful, XSeek [10] tried
to recognize the possible entities and attributes in the data tree, distinguish be-
tween search predicates and return specifications in the keywords, and return
nodes based on the analysis of both xml data structures and keyword match
patterns.
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7 Conclusion

In this paper, we identified the inconsistency and abnormality problems in the
approach of inferring the search-for node type used by XReal. To resolve these
problems, we propose a dynamic reduction factor scheme as well as algorithm
DynamicInfer to apply this scheme.

We have implemented the proposed approach and the extensive experiments
showed that our approach can resolve inconsistency and abnormality problems.
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Abstract. The flexibility of XML data model allows a more natural
representation of uncertain data compared with the relational model.
The top-k matching of a twig pattern against probabilistic XML data
is essential. Some classical twig pattern algorithms can be adjusted to
process the probabilistic XML. However, as far as finding answers of
the top-k probabilities is concerned, the existing algorithms suffer in
performance, because many unnecessary intermediate path results, with
small probabilities, need to be processed. To cope with this problem,
we propose a new encoding scheme called PEDewey for probabilistic
XML in this paper. Based on this encoding scheme, we then design two
algorithms for finding answers of top-k probabilities for twig queries. One
is called ProTJFast, to process probabilistic XML data based on element
streams in document order, and the other is called PTopKTwig, based on
the element streams ordered by the path probability values. Experiments
have been conducted to study the performance of these algorithms.

1 Introduction

Uncertainty is inherent in many real applications, and uncertain data manage-
ment is therefore becoming a critical issue. Unfortunately, current relational
database technologies are not equipped to deal with this problem. Compared
with the relational data model, the flexibility of XML data model allows a more
natural representation of uncertain data. Many data models for probabilistic
XML (PXML) have been studied in [4,5,6,7]. The queries on the probabilistic
XML are often in the form of twig patterns. When querying probabilistic data,
we have to compute the answers as well as the probability values of the an-
swers. Three kinds of twig queries (B-Twig, C-Twig, and I-Twig) with different
semantics were proposed, and their evaluations were studied in [8]. The paper
[3] studied the query ranking in probabilistic XML by possible world model,
and a dynamic programming approach was deployed that extends the dynamic
programming approach of query ranking on uncertain relational data [9] to deal
with the containment relationships in probabilistic XML.
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In this paper, we focus on the problem of efficiently finding twig answers
with top-k probability values against probabilistic XML by using stream-based
algorithms. Our data model for PXML is similar to PrXML{ind, mux} model
in [7], in which the independent distribution and mutually-exclusive distribu-
tion are considered. We find that an effective encoding scheme for probabilistic
XML requires new properties such as the path probability vision and ancestor
probability vision. In addition, the encoding should also reflect the probability
distribution information for handling, say, mutually-exclusive distribution. In
this paper, we propose a new Dewey encoding scheme called PEDewey to meet
these requirements.

Most of twig matching algorithms [12,2,13] for ordinary XML are based on
the element streams ordered by the document order. They can be adjusted to
process the probabilistic XML. However, for finding answers of the top-k proba-
bilities, these algorithms suffer in performance, because many unnecessary com-
putations are spent on elements and paths with small probabilities which may
not contribute to answers. To improve the performance, we propose an algorithm
called PTopKTwig which is based on the element streams ordered by the path
probability values. For comparison purpose, we also propose an algorithm called
ProTJFast based on document order. There are two definitions in ranking the
top-k query results from uncertain relational databases. One definition [11] is
ranking the results by the interplay between score and uncertainty. The work
in [3] falls into this category. The other is to find the k most probable answers
[10]. In this scenario, each answer has a probability instead of a score, which
intuitively represents the confidence of its existence, and ranking is only based
on probabilities. Our work falls into this category. As far as we know, there is
no other work on ranking the top-k query results for PXML in this category.

2 Background and Problem Definition

2.1 Probabilistic XML Model

An XML document can be modeled as a rooted, ordered, and node-labeled tree,
T (V, E), where V represents a set of XML elements, and E represents a set
of parent-child relationships (edges) between elements in XML. A probabilistic
XML document TP defines a probability distribution over an XML tree T and
it can be regarded as a weighted XML tree TP (VP ,EP ). In TP , VP = VD ∪
V , where V is a set of ordinary elements that appear in T , and VD is a set of
distribution nodes, including independent nodes and mutually-exclusive nodes
(ind and mux for short). An ordinary element, u ∈ VP , may have different types
of distribution nodes as its child elements in TP that specify the probability
distributions over its child elements in T . EP is a set of edges, and an edge
which starts from a distribution node can be associated a positive probability
value as weight. Notice that, we can regard the probability of ordinary edges
as 1. For example, in Figure 1, (a) is an ordinary XML document, and (b) is a
probabilistic XML, which contains ind and mux nodes.
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2.2 Problem Statement

The answer of a twig query q with n nodes against an ordinary XML document is
a set of tuples. In each tuple, there are n elements from the XML document, and
those elements match the nodes in q and satisfy all the structural relationships
specified in q. Once the set of answers are obtained, we also need to evaluate
the probability associated with each answer. Given an answer expressed by a
tuple t = (e1, e2, ..., en), there exist a subtree Ts(Vs, Es) of TP , which contains
all those elements. The probability of t can be computed by the probability of
Ts using the probability model for independent events, as mutually-exclusive
distribution has been considered in determining the answer set. The probability
of Ts can be deduced by all the edges of Ts by the equation: prob(t) = prob(Ts) =
Πei∈Esprob(ei). For example, in Figure 1, there are three answers of twig pattern
(c): t1(s1,b1,c1), t2(s1,b1,c2) and t3(s1,b2,c1). The probability of answer t1 is 0.24
(0.5*0.8*0.6). The tuple (s1,b2,c2) is not an answer, because b2 and c2 are child
elements of a mux node.

We tackle the problem of finding the top-k matchings of a twig pattern against
a probabilistic XML document. This is defined by the top-k answers in terms of
their probability values. Given a twig query q, and probabilistic XML document
TP , the answer set Sq contains all the matching results of q which satisfy both
structural relationships and the mutually-exclusive distribution specified in q.
The problem is to find the top-k answer set STopK which contains k tuples, and
for each tuple ti ∈ STopK , its probability value is no less than that of any tuple
tj ∈ Sq \ STopK .

For example, the probability values of the three answers of pattern (c) against
probability XML (b) in Figure 1 are prob(t1)(0.24), prob(t2)(0.196) and prob(t3)
(0.063), respectively. Assume we find the top-2 answers, then t1 and t2 should
be returned.

3 Encoding Scheme for Probabilistic XML

3.1 Required Properties of Encoding for PXML

There are two kinds of encoding schemes for ordinary XML documents, region-
based encoding[1] and prefix encoding. Both encoding schemes support the struc-
tural relationships and keep the document order, and these two requirements are
essential for evaluating queries against ordinary XML documents.
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As to the query evaluation against PXML, a new requirement of encoding
appears, which is to record some probability values of elements. Depending on
different kinds of processing, we may use the probability value of the current
element which is under a distribution node in PXML (node-prob for short), or
the probability value of the path from the root to the current element (path-
prob for short). In fact, we may need both node-prob and path-prob in twig
pattern matching against PXML. If only the node-prob value of current element
is recorded, then during the calculation of the probability value of an answer,
the node-prob values of the current element’s ancestors are missing. Similarly,
if only the path-prob value of the current element is used, it is easy to get the
probability of a path, however, for the probability of a twig query answer, the
path-prob value of the common prefix is also needed, but can not be found. For
example, in Figure 2, the twig query is S[//A]//B, and the probability value of
the answer t1:(S1,A1,B1) can be calculated by the following formula, where the
pathProb(x1) is calculated from the node-probs recorded in element A1 or B1.

prob(t1) = pathProb(A1) ∗ pathProb(B1)/pathProb(x1);

The prefix encoding scheme owns the ideal property for supporting ancestor
vision while a region-based encoding scheme does not. Therefore, it is better to
encode PXML elements by a prefix encoding scheme. However, to match a twig
pattern against a probabilistic XML document without accessing large number
of ancestor elements, we also need to provide the ancestor probability vision in
the encoding scheme.

3.2 PEDewey: Encoding PXML

Lu et al. proposed a prefix encoding scheme named extended Dewey [2]. In this
paper, for the purpose of supporting twig pattern matching against probabilistic
XML, we extend Lu’s encoding scheme by adding the Properties of the probability
vision and the ancestor probability vision, and propose a new encoding scheme
called PEDewey.

Extended Dewey is a kind of Dewey encoding, which use the modulus oper-
ation to create a mapping from an integer to an element name, so that given
a sequence of integers, it can be converted into the sequence of element names.
Extended Dewey needs additional schema information about the child tag set
for a certain tag in the DTD of an ordinary XML document. For example for
the DTD in Figure 3 (a), ignoring the distribution nodes, tag A has {C,D,E}
as the child tag set. The child tag set of g is expressed as CT (g)=g0,g1,...,gn−1.
For any element ei with tag name gi, an integer xi is assigned such that xi mod
n = i. Therefore, the tag name can be derived according to the value of xi. By
the depth-first traversal of the XML document, the encoding of each element
can be generated. The extended Dewey encoding is an integer vector from the
root to the current element, and by a Finite State Transducer, it can translate
the encoding into a sequence of element names. The finite state transducer for
the DTD in Figure 3(a) is shown in Figure 3(b).
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Based on the extended Dewey, we propose a new encoding scheme named
PEDewey for providing the probability vision and the ancestor probability vi-
sion. Given an element u, its encoding label(u) is defined as label(s).x, where s
is the parent of u. (1) if u is a text value, then x = −1; (2) if u is an ind node,
then x = −2; (3) if u is a mux node, then x = −3. (4)otherwise, assume that
the tag name of u is the k-th tag in CT (gs)(k = 0, 1, ..., n-1), where gs denotes
the tag name of the parent element s. (4.1) if u is the first child of s, then x = k;
(4.2) otherwise assume that the last component of the label of the left sibling of
u is y, then

x =

{
� y

n� · n + k if (y mod n) < k;

 y

n� · n + k otherwise.

where n denotes the size of CT (ts).
PEDewey behaves the same as extended Dewey when judging an ancestor-

descendant (or prefix) relationship between two elements by only checking
whether the encoding of one element is the prefix of the other. However,
PEDewey is different from extended Dewey when judging a parent-child (or
tight prefix) relationship of two elements u and v. The condition label(u).length
- label(v).length = 1 is checked by ignoring those components for distribution
nodes in the PEDewey encodings.

In PEDewey, an additional float vector is assigned to each element compared
with extended Dewey. The length of the vector is equal to that of a normal
Dewey encoding, and each component holds the probability value of the element.
From the encoding, the node-prob value of ancestors are recorded so the path-
prob value of the current element and its ancestors can be easily obtained. The
components for elements of ordinary, ind and mux are all assigned to 1.
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We define some operations on the float vector. (1) Given element e, function
pathProb(e) returns the path-prob of element e, which is calculated by multiply-
ing the node-prob values of all ancestors of e in the float vector (2) Given element
e and its ancestor ea, function ancPathProb(e, ea) returns the path-prob of ea

by multiplying those components from the root to ea in e’s float vector. (3)
Given element e and its ancestor ea, function leafPathProb(e, ea) returns the
path-prob of the path from ea to e by multiply those components from ea to e in
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e’s float vector. (4) Given elements ei and ej, function twigProb(ei, ej), returns
the probability of the twig whose leaves are ei and ej . Assume the ei and ej have
common prefix ec, and the probability of twig answer containing ei and ej is:

twigProb(ei, ej) = pathProb(ei) ∗ pathProb(ej)/ancPathProb(ei, ec);

4 ProTJFast Algorithm Based on Document Order

4.1 Data Structures and Notations

For a twig query pattern q, a path pattern from the root to a leaf node f is de-
noted as pf . We associate each leaf node f in q with a stream Tf , which contains
the PEDewey encodings of elements with tag f . The elements are sorted by the
ascending lexicography order, which is the document order of those elements in
PXML document. The operations on the stream are eof , advance, and get.

Similar to TJFast, a set Sb is associated with each branching node b in query
q in ProTJFast. In Sb, every two elements have an ancestor-descendant or a
parent-child relationship. Each element cached in Sb may participate in the final
query answers. Initially all the sets for branching nodes are empty. A list Lc

for top-k candidates is associated with query q, and the function lowerBound()
return the lowest probability value among those in Lc.

4.2 ProTJFast

We extend the twig matching algorithm TJFast to ProTJFast, which generates
the twig answers with top-k probability values against probabilistic XML. The
algorithm is presented in Algorithm 1. In ProTJFast, we need to generate twig
answers from path answers as early as possible so that we can determine and
then raise the lower bound for a top-k twig query. The point behind this is that
we could effectively use the lower bound for filtering unnecessary computations.

In the main procedure of ProTJFast shown in Algorithm 1. Firstly, in each
leaf stream, we find the first element whose encoding matches the individual
root-leaf path pattern of q (Lines 2-3). Then we call function getNext(q) to get
the tag which is to be precessed next (Line 5). There are two tasks in func-
tion getNext(q). The first task is to return the tag fact, such that the head
element eact of Tfact has the minimal encoding in document order among the
head elements of all leaf streams, and the second task is to add the element
of branching node which is the ancestor of get(Tfact) to the set Sb. The set Sb

records the information of elements processed previously, therefore by the func-
tion isAnswerOfTwig(qact), we can determine whether eact can contribute to a
twig answer with elements processed previously. If eact is a part of twig answer
(Line 6), we compute the twig answers which contains eact by invoking function
mergeJoin(fact, q), and store these twig answers in set Stemp (Line 7). Then we
can update the lower bound by invoking function updateLowerBound(Stemp)
(Line 8). Then we move the head element in stream Tfact to the next one whose
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Algorithm 1. ProTJFast(q)

Data: Twig query q, and streams Tf of the leaf node in q.
Result: The matchings of twig pattern q with top-k probabilities.
begin1

foreach f ∈ leafNodes(q) do2

locateMatchedLabel(f);3

while ¬end(q) do4

fact = getNext(q);5

if isAnswerOfTwig(fact) then6

Stemp=mergeJoin(fact, q);7

updateLowerBound(Stemp);8

locateMatchedLabel(fact);9

outputTopKSolutions();10

end11

Procedure locateMatchedLabel(f)12

begin13

while get(Tf )do not matchs pattern pf do14

advancebybound(Tf );15

end16

Procedure advancebybound(Tf )17

begin18

while pathProb(get(Tf )) < lowerBound() do19

advance(Tf );20

end21

Function end(q)22

begin23

Return ∀f ∈ leafNodes(q) → eof(Tf );24

end25

Function mergeJoin(fact, q)26

begin27

eact = get(Tfact);28

foreach ei in the set of intermediate results do29

ecom = commaonprefix(eact, ei);30

if (ecom matches all the branching nodes in pact) then31

if (ecom is not a mux node) then32

add the twig answers [eact, ei] to temp set Stemp;33

return Stemp;34

end35

Procedure updateLowerBound(Stemp)36

begin37

foreach mi ∈ Stemp do38

if twigProb(mi) > lowerbound then39

Update the candidate list Lc to keep the present twig answers with40

top-k probabilities;

lowerbound=min(twigProb(ci)), ci ∈ Lc;41

end42

Function isAnswerOfTwig(f);43

begin44

e= get(Tf );45

return ∀ eb which is prefix of e, and of of branching nodeb, → e ∈ Sb;46

end47

Function end(q)48

begin49

Return ∀f ∈ leafNodes(q) → eof(Tf );50

end51
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Algorithm 2. getNext(n)
begin1

if (isLeaf(n)) then2

return n;3

else4

if (n has only one child) then5

return getNext(child(n)) else6

for ni ∈ children(n) do7

fi = getNext(ni);8

ei = max{p|p ∈ MatchedPrefixes(fi, n)};9

max= maxargi{ei};10

min= minargi{ei};11

forall e ∈ MatchedPrefixes(fmin, n) do12

if pathProb(e)¿lowerBound() ∧ e is a prefix of emax then13

moveToSet(Sn, e);14

return nmin;15

end16

Function MatchedPrefixes(f, b)17

Return a set of element p that is an ancestor of get(Tf ) such that p can match18

node b in the path solution of get(Tf ) to path pattern pf .
Procedure moveToSet(S, e)19

Delete any element in S that has not ancestor-descendant (or parent-child)20

relationship with e;
Add e to set Sb;21

encoding matches the individual root-leaf path pattern pfact and the path prob-
ability is larger than the lower bound (Line 9). When the head element in any
leaf stream reaches to the end, the answers with top-k probabilities are found.

Lines 32-33 in Algorithm 1 deal with the mux node in probabilistic XML.
Firstly we get the common prefix of two path answers, and check whether the
element of common prefix is a mux node (when the encoding of common prefix
ends at -3). If so, these two path answers can not be merged into the twig pattern,
because only one element among those elements under a mux node can appear.

For example, assume that given twig query q1: S[//C]//D against probabilis-
tic XML in Figure 4, and the answers with top-2 probabilities are required.
Because Algorithm 1 is based on document order, firstly, two answers (c1, d1)
and (c2, d1) are matched, and the initial lower bound is set to 0.512, which is
the twig probability of (c2, d1). At this moment, (c1, d1) and (c2, d1) are the can-
didate answers in candidate list. The head elements in streams TC and TD are
c3 and d2. Because the pathProb(d2) 0.49 is smaller than lower bound 0.512, d2
can not contribute to the final answers definitely, and algorithm advance TD to
next element d3 directly. There is no matching with c3, therefore head element
in TC is advanced to c4. c4 and d3 match twig answer and twigProb(c4, d3) is
larger than the current lower bound, so (c4, d3) is added to candidate list, and
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the lower bound is updated to 0.578. When the head elements in streams are
c7 and d6, the common ancestor is a6, and the probability of a6 is smaller than
the lower bound, therefore the a6 is not added to the set of branching node,
and c7 and d6 can not contribute the final answers definitely. Once any stream
reaches the end, the twig answers (c4, d3) and (c5, d4) with top-2 probabilities
are returned. Notice that, if we query q2: S[//F]//G, the elements pair (f1,g1)
is not the answer, because their common prefix is mux node, and f1 and g1 can
not appear in the XML document simultaneously.

5 PTopKTwig Algorithms Based on Probability Order

Intuitively the element with larger path probability value will more likely con-
tribute to the twig answers with larger twig probability values. Keeping this idea
in mind, we propose a new algorithm called PTopKTwig to deal with the top-k
matching of twig queries against probabilistic XML based on the probability
value order.

5.1 Data Structure and Notations

Similar to the data structure of algorithm ProTJFast, we also associate each leaf
node f in a twig pattern q with a stream Tf , which contains PEDewey encoding
of all elements that match the leaf node f . The elements in the stream are sorted
by their path-prob values. It is very fast to sort those elements by using the float
vector in PEDewey encodings. A list Lc for keeping top-k candidates is also
allocated for q, and variable lowerBound records the lowest probability value of
the twig answer among those in Lc. We maintain cursorList, a list pointing to
the head elements of all leaf node streams. Using the function cursor(f), we can
get the position of the head element in Tf .
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5.2 Algorithm PTopKTwig

In the main algorithm of PTopKTwig(Algorithm 3), Lines 2-7 are used to find
the initial k answers so that an initial lower bound can be obtained. In Lines
8-15, the rules of filtering by lower bound are used. When a new candidate is
obtained, the lower bound is adjusted. Algorithm 3 proceeds in the probability
order of all the leaf nodes in query q, by calling the function getNextP(). This
function returns the tag name of the leaf node stream which has the biggest
probability value in its head element among all leaf node streams. As such, each
processed element will not be processed again, and the cursor list records the
head elements to be processed next for all leaf node streams.

After function getNextP() returns a tag qact, we may find new candidates which
the head element in Tqact contributes to, by invoking function matchTwig(). Func-
tion matchTwig() has an argument bF lag, which determines whether the filtering
rule based on the enhanced lower bound (see Section 5.3) needs to be applied.
When we try to find the initial lower bound, there is not filtering rule used in
function matchTwig(), so the argument is “noBound”.

During the process of finding other elements that contribute to the twig an-
swers with eqact , there is no duplicated computation of comparing the prefixes,
due to the order of probability values and the use of cursorList. The cursorList
records the head elements in respective streams which is next to be processed.
The elements before the head elements have been compared with elements in
other streams, and the twig answers that these elements might contribute to
have been considered. Therefore we only compare eqact with the elements after
the head elements in the related streams (Lines 3-4 in Algorithm 4).

5.3 Enhanced Lower Bounds

After getting the initial lower bound (Line 7 in Algorithm 3), we can get the
lower bound for every stream, which is called the enhanced lower bound and is
defined below:

Definition 1. Enhanced Lower Bound of Stream
Given a query q, leaf node stream Tf where f ∈ leafNodes(q) and the lower-
bound which is the probability value of the k-th twig answer, the enhanced lower
bound of Tf is defined as lowerBoundf .

lowerBoundf =
lowerBound

Πmax(predProb(fi, f))
, (fi ∈ leafNodes(q) ∧ fi �= f.)

We define a non-overlapping path of fi relative to f as the path from the
common ancestor of fi and f to fi which is denoted as predPath(fi,f). The
function predProb(fi,f) returns a set of probability values of all instances of
the non-overlapping path predPath(fi,f). In the above formula, the maximum
value of the set predProb(fi,f) is selected for each fi. The k-th probability
value of Lc is the common lower bound for all the streams. Because 0< Π
max(predProb(fi,f)) ≤ 1, the enhanced lower bound is always larger than the
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Algorithm 3. PTopkTwig(q)
Data: Twig query q, and streams Tf of the leaf node in q.
Result: The matchings of twig pattern q with top-k probabilities.
begin1

while length(CandidatesList) < k ∧ ¬ end(q) do2

qact=getNextP (q);3

tempTwigResults=matchTwig(qact, q, “noBound”);4

add(Lc, tempTwigResults);5

advanceCursor(cursor(qact));6

lowerBound=twigProb(CandidateList[k]);7

while ¬reachEnhancedBound(q) do8

qact=getNextP(q);9

tempTwigResults=matchTwig(qact, q, “withBound”);10

add(Lc, tempTwigResults);11

lowerBound=twigProb(Lc[k]);12

advanceCursor(cursor(qact));13

Output k twig answers from candidates list Lc;14

end15

Function end(q)16

begin17

Return ∀f ∈ leafNodes(q)→ eof(Tf );18

end19

Function reachEnhancedBound(q)20

begin21

flag = true;22

foreach qi ∈ leafNodes(q) do23

lowerboundqi = lowerbound/Π max(predProb(qj, qi)); (qj ∈24

leafNodes(q) ∧ qj �= qi);
if lowerboundqi > probpath(get(Tqi)) then25

flag = False;26

Return flag;27

end28

Function getNextP (n)29

begin30

foreach qi ∈ leafNodes(q) do31

ei = get(Tqi);32

max = maxargi(ei);33

return nmax34

end35
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Algorithm 4. matchTwig(qact, q, bF lag)
begin1

for any tags pair [Tqa ,Tqb ] (qa,qa ∈ leafNodes(q) ∧ qa, qb �= qact) do2

Advance head element in Tqa to the position of cursor(qa);3

Advance head element in Tqb to the position of cursor(qb);4

while (bF lag=“noBound” ∧ ¬ end(q)) ∨ (bF lag=“withBound” ∧ ¬5

reachEnhancedBound(q)) do
if elements eqa ,eqa match the common path pattern with eqact in6

query q, and the common prefix of eqa ,eqa match the common path
pattern which is from the root to the branching node qbran of qa and
qb in query q, and the common prefix is not a element of mux node.
then

add eqa ,eqa to the set of intermediate results.7

return twig answers from the intermediate set.8

end9

common lower bound, i.e., the lower bound for Tf can be raised by considering
non-overlapping paths from all other streams.

We apply the enhanced filtering rule based on the enhanced lower bound.
Firstly, in Line 8 of the main algorithm (Algorithm 3), if the probability of any
qact is smaller than the enhanced lower bound in the corresponding streams,
the algorithm stops. Secondly, during the process of matching twig answers by
invoking matchTwig() with bFlag as “withBound”, the elements with probabil-
ities lower than the enhanced lower bound in the corresponding stream do not
participate the comparison with the head element in Tqact in main algorithm.

During the process of calculating of the probability value of a twig answer
that eqact contributes to, for a leaf element eqp from the another stream Tqp ,
if leafPathProb(eqp , prefix(eqp , eqact)) * pathProb(eqact) is smaller than the
lower bound, we can see that eqp can not contribute to a twig answer with top-k
probabilities. Notice that, an enhanced lower bound in a leaf stream increases
as the common lower bound increases.

For the same twig query q1: S[//C]//D against probabilistic XML in Figure 4,
assume again that the answers for top-2 probabilities are required. In Algorithm
3, streams TC and TD are scanned, and the elements in streams are sorted by
path-prob values shown in Figure 5. The processing order of elements in streams
are marked by dotted arrow line in Figure 5, which is obtained by invoking the
getNextP () function. Firstly, we find the initial lower bound. Tag C is returned
by getNextP () and c4 is the head element in TC , and is then used to find elements
in TD with which twig answers can be matched. Because the elements in TD

are sorted by path-prob values too, one answer (c4, d3) is found. We continue
processing unprocessed elements with largest probability in all streams, until
the initial two twig answers (c5, d4) and (c4, d3) are found, and the lower bound
0.648 is obtained, which is the probability of (c5, d4). From the lower bound,
we can easily get the enhance lower bounds for TC which is 0.72 and TD which
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Fig. 5. Example of PTopKTwig

is 0.682. The enhanced lower bounds can be used to filter elements during the
process of finding twig answers from a given element or to stop the process. For
example, many elements (such as c6, c2, c3, c7, d5, d1, d2, and d6) need not to
be processed. When the next element c6 of TC is to be processed, the path-prob
value of c6 is smaller than the enhanced lower bound of TC , the algorithm stops,
and outputs the top-2 answers (c5, d4) and (c4, d3) in the candidate list.

6 Experiments

6.1 Experimental Setup

We implemented Algorithms ProTJFast and PTopKTwig in JDK 1.4. All our
experiments were performed on a PC with 1.86GHz Inter Pentium Dual pro-
cessor and 2GB RAM running on Windows XP. We used both real-world data
set DBLP and synthetic data set generated by IBM XML generator and a syn-
thetic DTD. To generate the corresponding probabilistic XML documents, we
inserted distribution nodes to the ordinary XML document and assigned prob-
ability distributions to the child elements of distribution nodes. The queries are
listed in Table 1. To compare the performance between ProTJFast and PTop-
KTwig, we used the metrics elapsed time and processed element rate rateproc

=numproc/numall, where numproc is the number of processed elements, and
numall is the number of all elements.

Table 1. Queries

ID DBLP queries ID synthetic data queries
Q1 dblp//article[//author]//title Q4 S//[//B][//C][//D]//A
Q2 S//[//B]//A Q5 S//[//B][//C][//D][//E]//A
Q3 S//[//B][//C]//A
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6.2 Performance Study

Influence of Number of Answers: We evaluated Q1 against the DBLP data
set of size 110MB by varying k from 10 to 50. Figures 6 and 7 show that when k
increases, the elapsed time and the rate of processed elements of both algorithms
increase as well. When k is small, the performance of PTopKTwig is much better
than ProTJFast. This is because that the smaller k is the better the enhanced
lower bound is. When k becomes big, the enhanced lower bound degrades. From
the figures, the elapsed time and the rate of processed elements of PTopKTwig
increases faster, though the performance is still better than ProTJFast. However,
for a top-k query, most likely k keeps relatively small, so PTopKTwig performs
better than ProTJFast.

Fig. 6. Varying K Fig. 7. Varying K

Fig. 8. Varying pred Fig. 9. Varying pred

Influence of Multiple Predicates: We evaluated the queries Q2 to Q5 on the
synthetic data set, to test the influence of multiple predicates. The fan-out of
these queries varies from 2 to 5. The results are shown in Figures 8 and 9. In Fig-
ure 8, the elapsed time of both algorithms increases when the fan-out increases.
The situation is similar in Figure 9 when testing the rate of processed elements.
As the number of predicates increases, the lower bound which is the value of
k-th twig answer becomes smaller, therefore the elapsed time and the rate of
processed elements of both algorithms increase. As to PTopKTwig, besides the
reason of the small lower bound, another reason is that the matching of multiple
leaf elements takes more time compared with streams in the document order.
However, due to the enhanced lower bound, the rate of processed elements of
PTopKTwig is always smaller than that of ProTJFast.
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7 Conclusions

In this paper, we studied how to find top-k matching of a twig pattern against
probabilistic XML data. Firstly, we discussed the required properties for PXML
encoding and proposed PEDewey - a new encoding scheme for PXML based on
extended Dewey. Then we introduced two algorithms ProTJFast and PTopK-
Twig which are based on PEDewey. The element streams in ProTJFast is by the
document order, while the element streams in PTopKTwig is by the probability
value order. Finally we presented and discussed experimental results on a range
of real and synthetic data.
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Abstract. Considerable efforts have been spent in studying subgraph problem.
Traditional subgraph containment query is to retrieve all database graphs which
contain the query graph g. A variation to that is to find all occurrences of a par-
ticular pattern(the query) in a large database graph. We call it subgraph matching
problem. The state of art solution to this problem is GADDI. In this paper, we
will propose a more efficient index and algorithm to answer subgraph matching
problem. The index is based on the label distribution of neighbourhood vertices
and it is structured as a multi-dimensional vector signature. A novel algorithm is
also proposed to further speed up the isomorphic enumeration process. This algo-
rithm attempts to maximize the computational sharing. It also attempts to predict
some enumeration state is impossible to lead to a final answer by eagerly pruning
strategy. We have performed extensive experiments to demonstrate the efficiency
and the effectiveness of our technique.

1 Introduction
In the real world, many complex objects are modelled as graphs. For instance, social
networks, protein interaction networks, chemical compounds, World Wide Web, net-
work design, work flows, and etc. It is a fundamental problem to find all data graphs
which contain a specific pattern, the query graph q. This problem is well known to
be subgraph containment query. There are already a considerable amount of existing
work([1], [2], [3], [4], [5], [6], [7]) which study the subgraph containment query. In real
life, it is often desirable to find the occurrences of a pattern instead of just finding which
graphs contain it. For example, in protein-protein interaction(PPI) networks, biologists
may want to recognize groups of proteins which match a particular pattern in a large
PPI network. That pattern could be a interaction network among a number of protein
types. Since each protein type could include a number of distinct proteins, we may find
zero, one or more than one possible matches from the PPI network.

For another example, in order to prevent a privacy attack technique described in
[8], we can use an efficient subgraph matching algorithm to test the data. In [8], the
attacker is able to create a subgraph before a social network database is anonymized
and released for research purpose. After the database is released, the attacker will need
to find the occurrence of the subgraph he created so that this subgraph becomes the
attacker’s anchor point. Via this anchor point, he could locate the other vertices that he
plans to attack.

The existing techniques proposed for subgraph containment query are focusing on
answering whether the database graph ceontains the query pattern or not. GraphGrep[9]

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 140–154, 2010.
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Fig. 1. Example database graph and query graph

could be extended to solve subgraph matching problem. However its construction cost
is prohibitively large as shown in GADDI[10].

GADDI([10]), is the state of art technique to solve subgraph matching problem.
Zhang et. al. proposed an index based on Neighbourhood Discrimitive Substruc-
tures. It counts the number of small substructures in induced intersection graph be-
tween the neighbourhood of two vertices. GADDI performs significantly better than
GraphGrep[9] and Tale[11]. However, GADDI also has two major weakness. Firstly,
since its index requires pairwise neighbourhood intersection and counting the number
of small substructures in each intersection graph, its construction cost is very expen-
sive. Secondly, since counting substructures are expensive, we could only afford to use
very few of them to index the graph. In GADDI, only three unlabeled substructures are
used. Without labels embedded in the substructures, they normally have limited filtering
power. For example, in Fig 1, GADDI is not able to eliminate the possibility of u1 be-
ing a potential match of v1 because all the index could recognize is that the intersection
graphs formed by v1 with other vertices contains one unlabeled triangle.

In this paper, we propose a novel and efficient framework to solve subgraph matching
problem. This framework utilizes a novel index called nIndex . In addition, we propose
a novel algorithm to enumerate subgraph matchings. Our algorithm, named NOVA ,
will pre-order the query vertices in a way such that more computational cost could
be shared. It will also employ an eagerly pruning strategy which could determine the
current enumeration state is impossible to lead to a successful mapping, so that the
enumeration process could exit early.

Our main contributions are summarized as follows:

1. We propose a flexible framework for finding subgraph matchings in large graph.
This framework is based on a vector signature for each vertex in the graph.

2. We propose a novel vector domination based index(nIndex ) which is efficient and
effective in terms of index space, construction time and query response time. if
a graph vertex is a match of a query vertex, it is a necessary(but not sufficient)
condition for the vector of the graph vertex to dominate the vector of the query
vertex. We propose a model to compress the index.

3. We propose a novel subgraph matching algorithm which attempts to maximize
computational sharing. We will demonstrate a theortical cost model on which our
strategy is based. This algorithm uses an eager pruning strategy to avoid expanding
unnecessary enumeration state.

4. We perform extensive experiments on both real and synthetic data to show the
effectiveness and the efficiency of our techniques.
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The rest of the paper is organized as follows. Section 2 presents the problem defini-
tion.Section 3 presents our algorithm, namely NOVA . Section 4 introduces the nIndex
and index compression. In Section 5, we will discuss how to extend our technique to
boost its filtering power when number of labels decreases. We will report the experi-
ment results in Section 6. Section 7 and 8 will discuss the related work and conclude
the paper.

2 Definitions

In this section, we will introduce the common notations used in this paper. We will also
present the fundamental definition and the problem statement in this section. In this
paper, we assume the graphs are only vertex-labeled. However, it is straightforward to
extend our techniques to edge-labeled graphs.

We use V (g), E(g), lg to denote all vertices, all edges, and the labeling function for
graph g respectively.

A subgraph matching from q to g is simply an injective relationship which maps a
vertex v ∈ q to a vertex u ∈ g.

Definition 1 (Subgraph Isomorphism Mapping). Given two graphs G = (V (g),
E(g), lg) and Q = (V (q), E(q), lq), an injective function f : q → g is a Subgraph
Isomorphism Mapping if and only if:

1. ∀u ∈ V (q), f(u) ∈ V (g) and l(u) = l(f(u))
2. ∀(u, v) ∈ E(q), (f(u), f(v)) ∈ E(g)

Definition 2 (Subgraph Matching Query). Given two graphs g and q, we need to find
all possible subgraph isomorphism mappings.

Generally, subgraph matching algorithms require prefiltering possible candidates for
all vertices in q. In NOVA , we use a k-dimensional vector signature to choose possible
candidates.

Definition 3 (Multi-dimensional Vector Signature). For each u ∈ V (g), we assign
it a k-dimensional vector, sig(u) =< d1(u), d2(u), ..., dk(u) >, as its signature. Each
dimension sig(u)[di] represents a particular characteristic of the vertex.

Our framework allows any features to be placed in the multi-dimensional vector sig-
nature. For example, in the simplest case, we can use a 1-dimensional vector in which
the only dimension is the labels. However, in our framework, we require the vector
signatures to possess a specific property. We call this class of signatures Admissible
Multi-dimensional Vector Signature. For simplicity, all multi-dimensional vector signa-
tures appear in this paper are admissible unless explicitly specified otherwise.

Definition 4 (Admissible Multi-dimensional Vector Signature). A signature is ad-
missible if for any u ∈ V (g) to be a match of v ∈ V (q), sig(u) dominates sig(v),
denoted by sig(u) � sig(v). sig(u) dominates sig(v) if: i) l(u) = l(v); ii) For each di

∈D, sig(u)[di]� sig(v)[di], where� is a partial order function defined on the specific
attribute.
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Table 1. Notations

g, q Database graph and query graph respectively
V (g) Set of all vertices in g

E(g) Set of all edges in g

u, v, w A single vertex
(u, v) A single edge with u and v being the end points
L(G), lg , l(u) the label domain of database G, the labeling function of g, the label of u, respectively
sig(u) the multi-dimensional vector signature of u

di(u) the value of ith dimension of sig(u)

In the paper, we will only use integers for all dimensions so that the � is naturally
defined. It is straightforward to extend the definition to any customized partial order
function.

3 Framework

Briefly, our framework is composed of following parts:

1. We preprocess the database graph g to construct a multi-dimensional vector signa-
ture for each vertex in the graph.

2. We will compress the original k-dimensional vector into a smaller m-dimensional
vector by choosing the most selective non-overlapping dimensions. This step is
optional.

3. For a given query graph q, we construct its signatures by using the same method.
We test all vertices u ∈ V (q) against vertices v ∈ V (g) to obtain a candidate list
for each u. A potential candidate v for u must satisfy two criteria: 1) l(u) = l(v);
2) sig(v) � sig(u);

4. After obtaining a candidate list for all vertices in V (q), we order the vertices in a
way which could potentially maximize computational sharing.

4 Index

4.1 Index

In this section, we will propose an index scheme called nIndex based on label distribu-
tion. nIndex will be fully integrated into the vector domination model we proposed in
Section 2. To index one vertex v, we need a user specified radius parameter rmax. For
all integers r, where 0 < r ≤ rmax, we count the number of distinct length r simple
paths who start from v and end at a vertex with label l.

Definition 5 (nIndex ). For a vertex u and a given value rmax, we define the nIndex
signature of u to be: sig(v) = {(r, l, countr,l(v)) |0 < r ≤ rmax∧ l ∈ lg}. countr,l(v)
is the number of length r distinct simple paths with one end being v and the other end
being a vertex of label l.
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Fig. 2. A Running Example

Table 2. nIndex for figure 2 (r = 2)

(a) Index for q

Node nIndex
v1 (1, B, 1), (1, C, 1), (1, D, 1), (2, B, 1), (2, C, 1), (2, D, 2)
v2 (1, A, 1), (1, D, 1), (2, A, 1), (2, C, 2), (2, D, 1)
v3 (1, A, 1), (1, D, 1), (2, A, 1), (2, B, 2), (2, D, 1)
v4 (1, A, 1), (1, B, 1), (1, C, 1), (2, A, 2), (2, B, 1), (2, C, 1)

(b) Index for g

Node nIndex
u1 (1, A, 1), (1, B, 2), (1, C, 2), (1, D, 1), (2, A, 3), (2, B, 2), (2, C, 2), (2, D, 5)
u2 (1, A, 1), (1, D, 1), (2, A, 2), (2, B, 1), (2, C, 3), (2, D, 1)
u3 (1, A, 1), (1, D, 1), (2, A, 2), (2, B, 3), (2, C, 1)
u4 (1, A, 1), (1, B, 1), (1, C, 1), (2, A, 3), (2, B, 2), (2, C, 2)
u5 (1, A, 2), (1, D, 2), (2, A, 4), (2, B, 4), (2, D, 3)
u6 (1, A, 1), (1, B, 1), (1, C, 1), (2, A, 2), (2, B, 2), (2, C, 1), (2, D, 4)

Table 2 shows part of the index generated for Fig. 2. The rationale of using label distri-
bution of distinct paths is because that it can partially reflect the neighbouring structrual
characteristic. For example, adding an edge between u2 and u3 will have a significant
effect on the signatures of q.

The space complexity for this index is O(n) = krmaxn where k = |L(G)|, n =
|V (G)|, rmax is the specified radius. However, for each vertex, there are many en-
tries whose count is 0. These zero-entries are not stored. In next section, we will also
demonstrate how to reduce the size of the index.

In NOVA , we found rmax = 2 is generally a good balance in terms of filtering
power and construction efficiency.

Theorem 1. In nIndex , sig(u) � sig(v) is a necessary condition if u is a matching of
v in any isomorphism mapping.

Proof. Let an arbitary isomorphism function be f , for any vertex v ∈ V (q), we have a u
where u = f(v). For any simple path p = {v, v1, ...vr}, there must also exists a simple
path p in datagraph g where p = {u, f(v1), ...f(vr)} by the definition of subgraph
isomorphism.
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This could be easily proved by recalling Definition 1. For any dimension (r, l), we
have:

sigr,l(v) = countr,l(v)
= |{(v, v1, ...vr)|l(vr) = l}| (1)

sigr,l(u) = countr,l(v)
= |{(u, u1, ...ur)|l(ur) = l}| (2)

Also, {(v, v1, ...vr)|l(vr) = l} ⊂ {(u, u1, ...ur)|l(ur) = l} We could immediate
conclude that sigd,l(u) � sigd,l(v) for any (d, l), therefore, sig(u) � sig(v).

4.2 Compression

In a k-dimension vector, not every dimension is equal in filtering power. Moreover,
some dimensions are closely correlated and their filtering power is severely overshad-
owed by these correlated dimensions. Based on this observation, we can reduce a k-
dimension vector into a m-dimension vector while preserving the filtering power as
much as possible.

FP =
∑

vx∈V g

selectiveness(sig(vx))

selectiveness(sig(vx)) denotes the selectivity of the signature of vx.

selectiveness(sig(vx)) = |{vy|vy ∈ V (g) ∧ l(vy) < l(vx)}|.
Let FPk to denote the filtering power of a k-dimension vector, we want to select m

out of k dimensions which results minimum loss of filtering power, that is to minimize
FPk − FPm.

Our compression framework is composed of following steps:

1. From the k-dimension vector {d1, d2, ..., dk}, we use a selection function to choose
two dimension to merge.

2. For the chosen dimensions, dx and dy , we use a merge function to merge them.
3. Repeat the above steps until there are only m dimensions.

In this paper, we will choose the pair of dimensions whose correlation is maximum.
Two dimensions are closely correlated if at most of the time, either they can both filter
a candidate against a vertex or neither of them can. If two dimensions are closely corre-
lated and one of them is unable to filter a vertex, then there will be little chance to filter
this vertex with the filtering power of the other dimension. Intuitively, removal of one
of these two correlated dimension shall cause limited loss of filtering power. Formally,
correlation between two dimensions is defined as:

correlation(dx, dy) = |{(vi, vj)|l(vi) = l(vj) ∧ sig(vi)[dx]
< sig(vj)[dx] ∧ sig(vi)[dy] < sig(vj)[dy ]}|

Having obtained the candidate merging pair, we will use the value of the one with
higher filtering power. The filtering power of a single dimension is calculated as:

fp(dx) = |{(vi, vj)|l(vi) = l(vj) ∧ sig(vi)[dx] < sig(vj)[dx]}|
The value of the merged dimension is dxy = max(fp(dx), fp(dy)).
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Algorithm 1. FindAllMatches(g, q, index)
Input: g: database graph, q: query graph, index: database index
Output: all subgraph isomorphism mapping
Build index for q;1

for each v ∈ V (q) do2

forall u ∈ V (g) ∧ l(u) = l(v) do3

if sig(u) � sig(v) then4

v.candidates.insert(u);5

end if6

end for7

end for8

Reorder all vi ∈ V (q);9

Enumerate(0);10

The algorithm to utilize the framework to compress the index is obvious and straight-
forward. Due to space limitation, we will omit the compression algorithms.

5 Query

Our algorithm could be summarized into following steps:

1. We order vertices in q into a sequence. We say a ith vertex in the sequence is the
depth i vertex. The ordering criteria will be explained later in this section.

2. For each vertices in q, we calculate the candidate list for it by using the labeling,
degree, and the signature information.

3. Initially we start from depth 1, we will choose one candidate from the candidate
list of depth 1 vertex. As the candidate is chosen, we will look up ahead to further
filter the candidate lists of deeper vertices by using neighbouring information.

4. If current depth is equal to the number of vertices in q, we know the current match-
ing is complete. We can backtrack to last depth and choose a different candidate. If
there is no more candidates on the last depth, we need to backtrack further up and
restore the changes made along the way.

v1 v2 v3 v4

u1 u7

u2
u5

u3
u10

u9

(s1) (s2)

(s3) (s4)

u4

v1 v2 v3 v4

u1 u7

u2
u5

u3
u10

u9

u4

u1 u2 u1 u2 u3 u4

v1 v2 v3 v4

u1 u7

u2
u5

u3
u10

u9

u4

u1 u7

v1 v2 v3 v4

u1 u7

u2
u5

u3
u10

u9

u4

u1 u2 u5

Fig. 3. Enumeration State
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Algorithm 2. Enumerate(depth)
Input: depth: the current enumeration depth
if depth = |V (q)| then1

for each vi ∈ V (q) do2

output mapping (vi, vi.match) ;3

return;4

end for5

end if6

for each u ∈ vdepth.candidates do7

vdepth.match = u ;8

forall i > depth do9

remove u from vi.candidates if it is a member;10

if vi is a neighbour of vdepth then11

remove all non-neighbours of u from vi.candidates;12

end if13

if vi.candidates.size() = 0 then14

add back removed candidates to their original list;15

end if16

else17

Enumerate(depth + 1) ;18

add back removed candidates to their original list;19

end if20

end for21

end for22

5. If there are any candidate lists have been reduced to empty list, we will immediate
conclude the current matching is invalid. In this case, we will restore the changes
made and choose a different candidate on this depth. If there is no more candidates
on this depth, we need to backtrack further up and restore the changes made along
the way.

We present our query algorithm in Alg 1 and Alg 2. We will use Fig 2 as a running
example.

Example 1. The first step is to build up a candidate list for v1 to v4. We will discuss the
filtering index in next Section. The next step is to order all vertices in q according to
an ordering rule. This rule will be explained in next subsection. The resulting candidate
lists and the enumeration order are shown in Fig 3. At enumeration depth 1, we have
only one choice for v1, which is u1. The neighbours of v1 are v2, v3 and v4. Unfortu-
nately, all candidates for v2 and v3 are neighbours of u1, therefore we could not remove
any vertices from these two candidate lists. However, we can prune u9 and u10 because
they are not neighbours of u1. At the second depth, we choose all valid candidates for
v2 in order, the first one is u2. Once we match u2 to v2, we will check the candidate lists
of v3 and v4, who are v2’s neighbours. Keep going on and we will find the first correct
mapping at depth 4 as shown in (s2). After that we need to backtract to depth 3 and try
to match u5 to v3. This time we find v3 is connected to v4 but the only candidate for
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v4, which is u4, is not connected to u5. We can conclude this matching is not correct.
Having probed all possible vertices at depth 3, we will need to backtrack to depth 2. u7
has not been probed at this depth. Again, v2 is connected to v4 but u7 is not connected
to u4. As soon as we see the depth 4 vertex, v4 has no more candidates, we can conclude
this matching will not be correct.

5.1 Cost Model

The cost of calculating subgraph matchings greatly depends on a number of unpre-
dictable factors, including the topology of the database graph, query graph, degrees etc.
It is very difficult to give a precise estimation of the algorithm. Inspired by [7], we use
the following expressions to approximate the overall cost. Let us suppose that Γi is
the set of distinct submatchings at enumeration depth i. γi is one of the submatchings
at depth i. To extend γi to next depth i + 1, there are fγ(|Ci+1|) ways of doing so,
where Ci+1 is the candidate sets of qi and fγ is an expansion function depending on γ.
Formally, the number of distinct submatches at depth i is:

|Γi| =
{
|C1| if i = 1∑

γ∈Γi−1
fγ(Ci) if i > 1

Everytime we extend an submapping γ we will incur an overhead cost δγ . The total
approximated cost will be:

Costtotal =
|V (q)|∑
i=1

∑
γ∈Γi−1

fγ(Ci)× δγ

It is not hard to see that the total cost is dominated by
∑|V (|q|)

i=0 |Γi|. Each |Γi| is re-
cursively affected by other Γk, where k < i, through a expansion function fγ(Ci). Al-
though the precise and exact fγ is difficult to determine, it is intuitive to expect fγ(Ci)
is proportional to |Ci|. Since Γi is recursive, we expect the total cost to be minimized if
we order Γ s in non-descending order. This approach is essentially the same of as maxi-
mizing computational sharing in the enumeration process. Many subgraph isomorphism
mappings may only differ to each other by a few vertices. We would like to reuse their
shared parts as much as possible. In order to reuse as much as possible, we should move
the shared parts to the earlier stage of enumeration process.

According to above analysis, we propose an ordering rule as such:

1. The v0 will be the one with the least candidates.
2. The ith vertex must be a neighbour of at least one already ordered vertices. (without

the loss of generality, we will assume q is a connected graph, so that you will always
be able to find at least one such vertex.)

3. Among the ones satisfy the last criteria, we choose the one with the least candidates.

The rationale behind the first and the third rule is straightforward. The second rule is
related to the eager verification strategy which we will detail in next subsection. Briefly,
its rationale is to allow this vertex’s candidate list to be pruned by previous vertices
before reaching this enumeration depth.
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5.2 Eager Verification

In traditional subgraph matching algorithms, we try to enumerate a submapping be-
fore testing whether the current mapping is subgraph isomorphic. We call them lazy
verification strategy.

Instead of using the traditional approach, we propose an eager verification strategy
in this paper. In this strategy, we try to reduce the number of candidates as early as
possible. At ith depth of the enumeration process, if we match a ux to the ordered
query node vi, we will check all candidate lists of vj where j > i:

i) We remove ux from vj’s candidate list.
ii) If vj is a direct neighbour of vi, we remove all vertices which are not direct neigh-

bours of ux from vj’s candidate list.

If any vj ’s candidate list becomes empty as a result, we could immediately conclude ux

is not a correct match for vi.
One of the most obvious advantage of eager verification is the ability of terminating

the current enumeration early. For example, in Fig 3 state 4, we could terminate at the
depth 2, whereas we have to look all the way through to depth 4 if lazy verification is
used. Secondly, eager verification can save a lot of unnecessary isomorphism test. For
example, in eager verification, a database graph vertex ux was a candidate for query
vertex vj , however, it has already been pruned at depth i where i < j. ux will not par-
ticipate in the enumeration process at depth j. However, in the case of lazy verification,
ux will participate in the enumeration process every time when we want to expand a
depth j− 1 submatching and then fail the isomorphism test because it will be exclusive
with the vertex chosen at depth i.

Theorem 2. In eager verification strategy, for any submatching formed at any depth i,
it automatically satisfies the isomorphism rules, there is no isomorphism tests required
for this submatching.

Proof. Let us assume the theorem holds for depth i − 1, suppose there is a candidate
vertex ux for vi and extend current submatching by ux will violate the isomorphism
rule. Let us recall Definition 1, if the current mapping functions is f , it is either:

i) l(ux) �= l(vi) or;
ii) ∃vk, k < i ∧ (vk, vi) ∈ E(q) ∧ (f(vk), ux) �∈ E(g).

Obviously, the first condition is impossible because all candidates for vi will have the
same label as vi. The second condition is also impossible because ux was supposed
to be removed from vi’s candidate list at depth k if eager verification strategy is used
according to its pruning rules described above. This raises a contradiction.

Therefore, the theorem holds for i if it also holds for i − 1. Obviously the theorem
holds for i = 1 therefore it will hold for all other i.

5.3 Correctness and Completeness

Correctness:All matching found by NOVA are correct.
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Proof. Follows Theorem 2, the result is immediate.

Completeness: All correct matchings will be found by NOVA .

Proof. Let us denote a submatching of depth i with fi. Suppose there is a missing
matching f , there must exist a i such that fi is a missing submatching but fi−1 is
not. It is trivial to see that i �= 1. For other i > 0, fi could only become a missing
submatching if f(vi) is removed from vi’s candidate list. According to the verification
strategy of NOVA , it could only happen if there exists a k, such that k < i, (vk, vi) ∈
E(q) ∧ (f(vk), f(vi)) �∈ E(g). It is a contradiction against the assumption that fi is a
submatching according the definition of isomorphism mapping.

6 Experiment

We have performed extensive experiment to compare our techniques, NOVA
(uncompressed version) and CNOVA(compressed version) with GADDI([10]), which
is the only known competitor. We have also studied how the performance is affected by
using the compressed index. In the experiments, we have used both real datasets and
synthetic data to evaluate the performance. The query sets are generated by randomly
choosing subgraphs from large graphs. We conducted all the experiments on a PC with
a 2.4GHz quad-core processor, and 4GB main memory running Linux.

6.1 Real Data

HPRD([12]) is a human protein interaction network consisting of 9460 vertices and
37000 edges. We used its GO term description([13]) as its labels. NOVA spent 15 sec-
onds to create an index of approximately 13MB while GADDI spent 512 and created an
index of 92MB. Figure 4 shows the performance of these two techniques. We can see
that when the degree of query increases, the performance of both techniques improve
significantly. This is because vertices with higher degrees are generally more selec-
tive. It also shows that when the number of vertices in query increases, both technique
respond slower. It is because more vertices mean more enumeration depth. We have
shown NOVA is up to one magnitude faster than GADDI. CNOVA has an index size of
6MB and it performs roughly the same as NOVA.
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Polblog([14]) is a graph showing the links between politician blogs. There are 1490
vertices and each is representing a politician blog. There are more than 17000 edges
and each is representing one hyperlink between them. We used origin of each blog as
the labels and there are 46 of them. It is worth to mention that there are a few very pow-
erful vertices closely linking to each other. Its label distribution is also very biased. For
example, the top 2 labels representing 50% of all vertices. In this dataset, GADDI kept
running for 36 hours and did not finish building the index and we have to terminate the
process. This is because the intersection graph between the several powerful vertices
are large. GADDI requires to count the occurrences of substructures which itself is a
subgraph isomorphism enumeration process. While it is affordable when the intersec-
tion graph is small, the cost grows exponentially when the size grows. We did not use
the compressing technique on this dataset because there is only a small number of labels
so that further reducing its filtering power will not be meaningful. Figure 5 shows as
the query degrees increases, the performance improves. It is also interesting to see that
as the query size grows, NOVA initially runs faster then it slows down. This is because
the label distribution is very biased. A small query graph means there is a high proba-
bility that all query vertices are very unselective. The resulted loss outweighs the gain
from less enumeration depth. When the size of query reaches a certain number, selective
vertices start to appear in queries and now the enumeration depth matters more.

10-1

100

101

 3  4  5  6  7  8  9  10

A
ve

ra
ge

 Q
ue

ry
 T

im
e 

(s
ec

)

Average Degree of Query Graph

POLB

NOVA

(a) Query degree versus Response time

10-1

100

101

 10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 Q
ue

ry
 T

im
e 

(s
ec

)

Average Query Graph Size (# of vertices)

POLB

NOVA

(b) Number of Vertices versus Response time

Fig. 5. Politician Blog Dataset

6.2 Synthetic Dataset

We have generated synthetic datasets to evaluate the performance of our techniques as
well as GADDI. The synthetic database has 5000 vertices, 40000 edges and 250 labels.
The data graphs are generated by a social network generator([15]). The query sets have
an average size of 25 vertices and average degree of 4. These are the standard settings
and we will vary some of these parameters to show how they affect the performance.

The first graph in Figure 6 shows the response time increases as the size of the
database graph increases for both NOVA and GADDI. In the second graph, we reduce
the number of labels to only 10. Thus the vertices become very unselective. Under
this condition, NOVA performs reasonably well. In both cases, NOVA is almost one
magnitude faster than GADDI.

Figure 7 shows the index size of NOVA grows almost linearly. This is because our
space complexity is O(n) = krn where k = |L(G)|, n = |V (G)|, r is the specified



152 K. Zhu et al.

10-2

10-1

 1  2  3  4  5  6  7  8  9  10

A
ve

ra
ge

 Q
ue

ry
 T

im
e 

(m
s)

Data Graph Size (K vertices)

NOVA
GADDI

(a) 250 Labels

10-1

100

101

102

 1  2  3  4  5  6  7  8  9  10

A
ve

ra
ge

 Q
ue

ry
 T

im
e 

(m
s)

Data Graph Size (# of vertices)

NOVA
GADDI

(b) 10 Labels

Fig. 6. Scalability against Database graph size

 0

 20

 40

 60

 80

 100

 120

 140

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

In
de

x 
S

iz
e 

(M
B

)

Data Graph Size (# of vertices)

NOVA
GADDI

CNOVA

(a) Index Size

100

101

102

103

 1  2  3  4  5  6  7  8  9  10

In
de

x 
C

on
st

ru
ct

io
n 

T
im

e(
s)

Data Graph Size (K vertices)

NOVA
GADDI

CNOVA

(b) Construction Time

Fig. 7. Construction Cost

radius. In this case, kr is almost constant. We also evaluated NOVA with compres-
sion, which is denoted by CNOVA. We demonstrated that while CNOVA added a small
amount of time in construction, the resulting index is 40% to 50% less than NOVA .
Both of these techniques are more efficient and more effective than GADDI.

Figure 8 studies the scalability against query. As the degree increases, the response
time improves for all of the three techniques. NOVA and CNOVA are still faster than
GADDI. The gap narrows as the degree increases. This is because queries become more
selective when degree increases. It is also interesting to see that CNOVA performs is
slightly faster than NOVA when the degree is high. It is because when queries are more
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selective, NOVA does not have too much advantage over CNOVA because the filtering
power is already strong. However, CNOVA’s signature vectors are shorter, which means
less overhead. Again, for the same reason, CNOVA is slightly faster than NOVA when
the average size of query is small and slightly slower than NOVA when the size is large.

7 Related Work

There are already a large amount of existing work([1], [2], [3], [4], [5], [6], [7]), [16]
related to subgraph containment in a database containing many small( less than 100
vertices) graphs. In this problem, given a query graph Q, the database needs to out-
put all graphs which are supergraph isomorphic to Q. However, the isomorphism test
is known to be NP-complete. In order to avoid expensive isomorphism test, the com-
monly used framework is as follow: i) Preprocess the database so that each graph in
the database is indexed with a signature. ii) Calculate the signature of Q. iii) Verify all
graphs in the database whose signatures are compatible with Q’s. As the expensive part
is performing isomorphism test, the above techniques are focusing on reducing veri-
fication time or reducing the total number of isomorphism tests to perform. The key
differences between the subgraph containment problem and the problem studied in this
paper are: i) In subgraph containment problem, there are multiple small graphs in the
database. The above techniques are only suitable to index small graphs, whereas in our
problem, we have a very large(thousands to tens of thousands vertices) single-graph
database. ii) In subgraph containment problem, the verification stage only needs to find
one match in each candidate to conclude Q is subgraph isomorphic to this candidate,
whereas in our problem, we need to perform full isomorphism test to find all possible
mappings.

GraphGrep([9]) proposed to index all paths of length upto K and as well as an in-
verted index for them. By using the paths as a signature, the matching process will be
much faster as they are very discriminative. However, in [10], Shijie Zhang et. al. has
shown that GraphGrep does not scale well on large graphs.

In [11], Tian et. al. proposed an efficient method to find approximate subgraph
matchings in large database graphs. This technique is based on a neighbouring bitmap
index. This method does not guarantee the connectiveness of result and it could only
find one approximate subgraph matching for each database graph.

GADDI([10]) is the state of art technique proposed for subgraph matching prob-
lem for large graph. It is based on a pair-wise index which records the number of tiny
features contained in the induced intersection graph of neighbourhoods.

Wang et. al., in [16], also proposed a vector domination filtering technique based on
neighbouring information to search patterns in a continuous graph stream. However, it
has not studied how to effectively build indices for large graph databases based on the
vector domination property.

There are other interesting techniques to deal with data mining of large graphs. For
example, [17] and [18] can be used to mine frequent graph patterns from a single large
network. They propose how to define the support of frequent patterns in a large graph.
Chen et. al., in [19], propose a method to mine frequent patterns from a group of large
graphs. In their techniques, frequent patterns are mined from the summarization graph
which is much smaller than the original graph.
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8 Conclusion

In this paper, we propose a novel index to solve the subgraph matching problem in
large database graph. As shown in the experiment, the index has strong filtering power
and is efficient in both construction and storage. We also proposed an efficient sub-
graph matching algorithm which attempts to maximize the computational sharing by
pre-ordering the query vertices in the enumeration process. More importantly, the k-
dimensional vector signature, which is the theme of our technique, could be used as
a general framework for finding subgraph matchings in large database graph. Every
dimension of the signature represents a specific feature of a vertex. The user can arbi-
trarily define the dominance function.
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Abstract. Efficiently processing shortest path (SP) queries over stochastic net-
works attracted a lot of research attention as such queries are very popular in
the emerging real world applications such as Intelligent Transportation Systems
and communication networks whose edge weights can be modeled as a random
variable. Some pervious works aim at finding the most likely SP (the path with
largest probability to be SP), and others search the least-expected-weight path.
In all these works, the definitions of the shortest path query are based on sim-
ple probabilistic models which can be converted into the multi-objective optimal
issues on a weighted graph. However, these simple definitions miss important in-
formation about the internal structure of the probabilistic paths and the interplay
among all the uncertain paths. Thus, in this paper, we propose a new SP definition
based on the possible world semantics that has been widely adopted for proba-
bilistic data management, and develop efficient methods to find threshold-based
SP path queries over an uncertain graph. Extensive experiments based on real
data sets verified the effectiveness of the proposed methods.

1 Introduction

In this paper, we study a novel problem, finding shortest paths (SPs) in an uncertain
graph. Compared to its counterpart problem, finding shortest paths in a certain graph,
the new problem has the following new characteristics: 1). We are working on an un-
certain graph (UG). In a UG, an edge between any two vertices is associated with an
existence probability1 2). A SP in a UG is associated with not only the weight of the
path, but also a probability indicating the existence of the path. Similar to SP search
over a certain graph, SP search over a UG has many applications as well. For example,
due to the existence of uncertain links in wireless sensor networks or transportation net-
works, it is often essential to conduct a SP route query over a UG which is used to model
these networks. In this work, we follow the widely used possible world data model [1,2]
to describe uncertain graphs. Specifically, given a UG, each edge is associated with a
weight and an existence probability. A possible world of UG is a graph having the ex-
actly same set of vertices as UG and an instance of all the possible combination of
edges. The probability of the possible world is the product of the probabilities of all the
edges appeared in the possible world. With this possible world model, the SP search

1 In this paper, we do not consider node (vertex) uncertainty and we will leave SP search over a
node and edge uncertain graph as an interesting future work.
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over a UG is to find all SPs among all the possible worlds of the UG. The probability
of a SP in each possible world is the possible world’s probability, and the probability
of the SP in the UG is the sum of the probabilities of all the possible worlds that the
SP exists. In practice, it is often not useful to return all SPs over a UG since some SPs
have very low probabilities. Therefore, in this paper, we study a probability threshold-
based SP query over an uncertain graph. Specifically, given a probability threshold ε, a
probabilistic threshold-based SP query over a UG returns a set of SPs, each SP has a
probability greater or equal to ε. Note that T-SP query may return multiple SPs due to
the existence of multiple possible worlds.

(3 , 0 .85 )
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Fig. 1. Example of an uncertain graph with three paths (w, p)

Figure 1 shows an uncertain graph G and the parameters (weight, probability) are
shown as labels on the edges. Given a SP query of s and d on G shown in Figure 1,
there are three possible paths, (P1 = e1e4, P2 = e2e3e4, P1 = e2e5) from the source
node (s) to the destination (d) as listed in Table 1 . The second row of Table 1 lists the
probability of each possible world that a path (P1, P2, or P3) is a SP. The third row lists
the probability of a SP path in G, i.e., the sum of probabilities of all the possible worlds
that the path is a SP. If the query probability threshold is 0.5, only P1 is returned.

Clearly, a naive solution for SP search over a UG is to enumerate all the possi-
ble worlds and conduct SP search over each possible world, which is very inefficient.
Therefore, in this paper, we first design a basic algorithm to avoid unfolding all possible
worlds. The proposed algorithm can compute the exact probability for each candidate
path by scanning the sorted list of paths (from s to d) only once. To further speed up
the calculation of probability, we propose an advanced method which reduces the com-
putation by combining isomorphic graphs. Finally, we also propose several pruning
techniques to further reduce the search space.

The rest of the paper is organized as follows. Section 2 discusses the related works.
The definitions of uncertain graph and probability threshold-based SP queries are given
in Section 3. We present a basic SP probability computing method together with some
pruning rules in Section 4. To speed up the query, Section 5 presents some improved
algorithms and tighten probability bounds. Moreover, we discuss the results of the
performance tests on real data sets in Section 6 and conclude in Section 7.
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Table 1. Possible worlds and probability of each path (in Fig. 1) being shortest path

Path P1 = e1e4 P2 = e2e3e4 P3 = e2e5

Possible
worlds

e1e2e3e4e5

(Pr=0.3672),

e1
−
e2e3e4e5

(Pr=0.0918),

e1e2
−
e3e4e5

(Pr=0.1224),

e1e2e3e4
−
e5

(Pr=0.0408),

e1
−
e2

−
e3e4e5

(Pr=0.0306),

e1e2
−
e3e4

−
e5

(Pr=0.0136),

e1
−
e2e3e4

−
e5

(Pr=0.0102),

e1
−
e2

−
e3e4

−
e5

(Pr=0.0034)

−
e1e2e3e4e5

(Pr=0.0648),
−
e1e2e3e4

−
e5

(Pr=0.0072)

e1e2e3
−
e4e5

(Pr=0.0918),
−
e1e2e3

−
e4e5

(Pr=0.0162),

e1e2
−
e3

−
e4e5

(Pr=0.0306),
−
e1e2

−
e3

−
e4e5

(Pr=0.0054)
−
e1e2

−
e3e4e5

(Pr=0.0216)

Sum of the
probabilities

0.68 0.072 0.1656

2 Related Work
Key ideas in uncertain databases are presented in tutorials by Dalvi and Suciu [1], [2],
and built on by systems such as Trio [4], MCDB [5] and MayBMS [3]. Initial research
has focused on how to store and process uncertain data within database systems, and
thus how to answer SQL-style queries. Subsequently, there has been a growing realiza-
tion that in addition to storing and processing uncertain data such as as NN query [22],
[26], range query [25], top-k query [23], [24] and skyline query [27]. There also exists
serval advanced algorithms to analyze uncertain data, e.g., clustering uncertain data [9]
and finding frequent items within uncertain data [10].

With respect to uncertain graphs, some works have considered the uncertain graph
from their application fields. Papadimitriou [16], Chabini [17] and Fu [8] view the road
networks as stochastic networks, and they consider the notion of shortest paths in ex-
pectation. Chabini et.al [17] focus on the expectation of travel times in addition to each
edge and in this way the network can be captured by a measure of uncertainty, while
Fu [8] studied the expected shortest paths in dynamic stochastic networks. Korzan B.
[6] and [7] studied the shortest path issue in unreliable road networks in which arc reli-
ability are random variables, and they compute the distribution of the SP to capture the
uncertain. For the communication systems, Guerin and Orda investigated the problem
of optimal routing when the state information is uncertain or inaccurate and expressed
in some probabilistic manner [11], [12]. However, their probabilistic models are quite
simple. These models miss important information about the internal structure of the
probabilistic paths and the interplay among all the uncertain paths. In this paper, we
study the SP search based on the possible world semantics, since the possible worlds
model can reflect the intricate characteristics in an uncertain graph.
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3 Problem Definition

In this section, we first formally introduce the uncertain graph (UG) model and define
a probability threshold-based SP query over a UG, then, we highlight the key issue
needed to be addressed to improve the efficiency of SP query processing.

Definition 1. An uncertain graph G is denoted as G = ((V, E), W, Pr), where (V, E)
is a directed graph2; W : E → R is a weighted function, Pr : E → (0, 1] is a
probability function denoting the existence of an edge in E.

From the above definition, we can find that a certain graph is a special UG whose edge
existent probability is 1, which can be denoted as G = ((V, E), W, 1). As mentioned in
Section 1, we use the possible world model to explain the semantics of UGs. Therefore,
under the possible world model, a UG implicates a group of certain graphs (possible
worlds). A certain graph G′ = ((V ′, E′), W ) is implicated from a UG (denoted by
G ⇒ G′) if V ′ = V, E′ ⊆ E. Assume that the existences of different edges in a UG
are independent to each other, we have,

Pr(G ⇒ G′) =
∏

e∈E′
Pr(e) ·

∏
e∈(E\E′)

(1 − Pr(e)). (1)

Let Imp(G) denote the set of all certain graphs implicated by the UG G. Apparently
the size of Imp(G) is 2|E| and Pr(G ⇒ G′) > 0 for any certain graph G′. Moreover,
we have

∑
G′∈Imp(G) P (G ⇒ G′) = 1. For example in Fig. 1, there are total 25 = 32

certain graphs implicated by G. Due to the space limit, Table 1 only lists 14 possible
worlds together with their associated existence probability.

Definition 2. Given an uncertain graph G, a probability threshold ε (0 < ε ≤ 1), and
two vertices s and d, a probabilistic threshold-based SP query returns a set of paths
(from s to d), whose SP probability values are at least ε.

We use SP (G′) to denote the SP returned by a SP query on two vertexes (s, d) of a
certain graph G′. For a path P ∈ G, the SP probability of P is the probability that P is
SP (G′) among all G′ ∈ Imp(G), that is,

PrSP (P ) =
∑

P=SP (G′)

Pr(G ⇒ G′). (2)

For any two vertexes s and d of G, the answer set to a probabilistic threshold-based
SP query is a set of paths whose SP probability values are at least ε, that is,

Answer(SP, P, ε) = {P |P ∈ G, PrSP (P ) ≥ ε}. (3)

To compute the answer set of a SP query on a UG, a naive solution is to enumerate
all certain graphs, compute the SP probability of certain graphs, and select the paths
satisfying the querying conditions (thresholds). Unfortunately, the naive method is in-
efficient since, as discussed before, there are exponential number possible worlds on a
UG. Thus, our focus in this paper is to develop efficient algorithms.

2 In this paper, we only consider directed graphs. For an undirected graph, an edge (u, v) can be
replaced by two directed edge u → v, u ← v.
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Fig. 3. Example of a longer path in RH

Before illustrating the technical details of our efficient solution, we first point out
the key issues to implement the efficient computing and briefly summarize the key
techniques we proposed.

Definition 3. Given vertices s and d over a UG G, assume that P1, ..., Pi is the list of
all paths (with increasing lengths from s to d) being investigated so far and EP1 , ..., EPi

are the edge sets for i paths (P1, ..., Pi), we use H to denote a graph composed by i
paths and associated nodes and RH = H\Pi to denote the graph reduced from H after
removing Pi.

For an instance, Figure 2 gives an example of H composed of 4 paths. Compared to the
graph in Fig. 1, H has an additional edge e6, which can be viewed as the fourth SP (P4)
between s and d since its weight is larger than any of other three paths listed in Table 1.
As shown in Fig.2, if Pi is P4, RH = H\P4 is just the graph in Fig. 1.

Now we define an important probabilistic event,

Definition 4. Given RH , an event Connect is defined as there exists at least one
shorter path (than Pi) in RH .

Now we can compute the SP probability of path Pi as follows:

PrSP (Pi) = (1− Pr(Connect))
∏

e∈EPi

Pr(e) (4)

In this equation,
∏

e∈Pi
Pr(e) denotes the existent probability of Pi. The equation

indicates that if Pi is the SP, all the shorter paths (than Pi) in RH cannot be connected.
Otherwise Pi cannot be the shortest path. The shorter paths in the definition of event
Connect is important, since RH might include paths longer than Pi. For example, there
are two paths sacd (with length 7) and scbd (with length 8) composed of RH shown in
Fig. 3, and the RH also includes a longer path (sacbd with length 12) than Pi (assume
its length is 10).

The key issue of efficient computing PrSP (Pi) is how to calculate the value of
Pr(Connect) efficiently. Unfortunately, Valiant [19] pointed that the problem of com-
puting probability that there is at least one path between given two vertexes in a
stochastic network is NP-Complete, which also means it is a hard problem to compute
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Pr(Connect). However, this is the case that users are interested in any SP over a UG
with the probability greater than 0. In practice, users are only interested SP whose prob-
ability is above a predefined threshold ε. Thus, with this probability threshold ε, we pro-
pose several heuristics to remove paths from further evaluation if the probability upper
bound to be SP for those paths are less than the threshold ε.

4 Probability Calculation of Shortest Path
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Fig. 4. Computing process for Pr(Connect) of Fig.1 using the basic algorithm

4.1 Basic Calculation Algorithm

From the Equations (4) and (3), we can get,

Pr(Connect) ≤ 1−
ε∏

e∈EPi
Pr(e)

.

Let RHS of the formula be Q. Thus, the problem of determining whether a path P is
a SP is converted into the following issue:

Pr(Connect) ≤ Q. (5)

In other words, for a path P , if its Pr(Connect) satisfies Equation (5), it belongs
to the answer set. Otherwise, P is marked as failed. According to the definition, to
compute Pr(Connect), we have to enumerate all the paths that connected s and d in
RH , which is quite inefficient. Thus, in this section, we present an algorithm to avoid
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checking all the paths, called basic algorithm. The reason we call it basic algorithm
because we will introduce some improvements later on to further improve the efficiency.
Before giving the basic algorithm to compute Pr(Connect), we first introduce some
related concepts.

Definition 5. Given RH containing two vertices s and d, an s− d path is a sequence
of edges that ensure the connection from s to d. If no proper subpath of an s− d path is
an s− d path, it is called an s− d minipath (denoted by Imin(s− d)).

Definition 6. Given RH , we define an edge set in RH as an event I , denoted by the
existence of edges in the set. An edge i is successful under I if i ∈ I , otherwise it is
failed.

For example, given an event I , I =
−
i j

−
k|ε, which stands for edge j is successful,

edges i and k are failed, and other edges not appeared in I are uncertain (i.e., can be
neither successful nor failed)3. Each I splits edge set E of RH into three disjoint subsets
Es(I), Ef (I) and Eu(I), which record successful edges, failed edges and uncertain

edges, respectively. An edge is uncertain if it does not appear in I . For I =
−
i j

−
k|ε,

Es(I) = {j}, Ef (I) = {i, k}, Eu(I) = E\{i, j, k}. That is to say Es(I) and Ef (I)
are the sets of successful and failed edges under event I correspondingly, Eu(I) is
the set of uncertain edges with respect to I , and Es(I)

⋃
Ef (I)

⋃
Eu(I) = E. The

probability of an event I is Pr(I) =
∏

e∈Es
Pr(e)

∏
e∈Ef

(1− Pr(e)).
Then, we define three special events.

Definition 7. Given RH containing s and d, a successful event (denoted as s-event) is
an event I if edges in Es(I) enable the connection from s to d. A failed event I (denoted
as f -event) is an event I if edges in Ef (I) disable the connection from s to d. If I is
neither successful nor failed, we say I is an undetermined event (denoted by u-event).

For example, in Fig. 1, e1e4|ε is an s-event since edges e1e4 connects s and d.
−
e1

−
e2e4|ε

is an f -event due to that the inexistences of e1 and e2 disable the connection from s to

d. e2
−
e3|ε is a u-event, since it cannot be determined if connecting (or disconnecting) s

and d by checking its Es(I) = e2 (or Ef (I) = e3).

Theorem 1. For each u-event I of RH , there is at least one s− d path under I .

Proof. Let e1...en = Eu(I). Then e1...en

⋃
Es(I) = E \ Ef (I), where E is the edge

set of RH . Since I is not failed, event I · e1...en|ε is an s-event. Since I is also not
successful, e1...en is not empty. By definition, e1...en is an s− d path under I . Q.E.D

Following the above example, for the u-event e2
−
e3|ε, we can find an Imin(s−d) = e1e4

in its Eu(I) such that e2
−
e3|ε · e1e4|ε is an s-event.

The theorem is the foundation of the basic algorithm. Initially, we do not know any
successful events, and the entire event space (E|ε) of RH is a u-event. Theorem 1

3 To distinguish an event consisting of edges and the edge set (path) consisting the same edges,
we use E|ε to denote the event while E denotes the corresponding edge set.
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guarantees that we can find an Imin(s − d) = e1...en under any u-event. Thus we can
determine all the successful events in which there is a sub-event Imin(s − d)|ε. The
following equation guarantees producing disjoint events.

For a u-event I , from the probabilistic theory, we have:

I = I ·Ω = I · (e1e2...en|ε + e1e2...en|ε)
= I · e1|ε + I · e1e2|ε + · · ·+ I · e1e2...en|ε + I · e1e2...en|ε.

(6)

Let e1...en (shorter than Pi) be an Imin(s − d), then I · e1e2...en|ε is an s-event.
However, events Ii = I · e1e2...ei|ε (1 ≤ i ≤ n) may be successful, failed or unde-
termined. Thus we adopt Equation (6) continually to produce successful events till no
s-events can be produced. Then we sum up the probabilities of all successful events,
which is Pr(Connect).

The computing process of Pr(Connect) can be denoted by a solution tree defined
as follows,

Definition 8. A solution tree is a tree structure, its root node denotes the universal

event space Ω of RH and other nodes denote the events I · e1...
−
ei|ε (1 ≤ i ≤ n) or

I · e1...en|ε given in Equation (6). Specially, a leaf node only denotes an s-event or an
f -event, but an intermediate node can denote a u-event, an s-event or an f -event.

The algorithm of computing Pr(Connect) works as follows. Initially, the solution tree
only contains the root node denoting the universal system space Ω (Ω is the initial u-
event) where each edge is uncertain. The algorithm begins with Ω, and finds an s − d
minpath4 to divide Ω into disjoint events according to Equation (6). These produced
events consists of nodes in the first level of the solution tree 5. In the first level, event

e1...eΩ|ε is successful, while events e1...
−
ei|ε for 1 ≤ i ≤ nΩ may classified be failed,

successful and undetermined. Similarly, each u-event is further recursively divided into
disjoint events until there is no u-event left. The solution tree grows from the u-events
until only s-events and f -events are left, which compose of the leaf nodes of the solution
tree. The value of Pr(Connect) is the summation of the probabilities over all s-events.

For example, we want to compute the SP probability of P4 = e6 whose weights are
larger than other three paths in Fig. 2. Thus Fig. 1 is just the graph RH . According
to Equation (4), we only need to compute Pr(Connect) of Fig. 1. Figure 4 gives the
solution tree of the basic algorithm for Fig. 1. In the example, there is one root Ω
at first, then the algorithm finds an s − d minpath e1e4 under Ω to produce events
−
e1|ε (u-event), e1

−
e4|ε (u-event) and e1e4|ε (s-event) in the first level of the tree. The

u-events are continually decomposed until the tree only contains s/f -events that are
shown as leaf nodes of Fig. 4. All the s/f /u-events have been listed in the figure, and the
figure also shows the probabilities of all successful events. The sum of successful event
probabilities is Pr(Connect) that is 0.68+0.1224+0.072+0.0162+0.027 = 0.9176.

Furthermore, let Pr(Is) and Pr(If ) be the current accumulated probability of s-
events and f -events in the basic algorithm. For Pr(Connect), we have Pr(Is) ≤

4 There are many s − d minpaths available, and we can choose any minpath since it might
enumerate exponential number nodes of the solution tree by choosing any minpath.

5 The root of a solution tree is defined as 0th level.
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Pr(Connect) ≤ 1−Pr(If ), so we can conduct the following examinations. If Pr(Is)
> Q, the algorithm stops and the path is marked failed. If 1−Pr(If ) < Q, we can also
stop the computing and return the path to the answer set. As the accumulations increase,
we can get tighter bounds which help stopping the calculation as early as possible. We
call the above bounding technique s/f event bound method.

4.2 Probabilistic Pruning Rules

So far, we implicitly have a requirement: all found paths satisfying the predicate in the
SP query. However, a threshold probability SP query is interested in only those paths
whose SP probabilities are higher than the probability threshold. Thus we develop some
probabilistic pruning rules to remove paths before traversing all the paths.

Theorem 2. PrSP (P ) ≤ Pr(P ) ≤ Prsubpath(P ).

The pruning rule means if the probability of a candidate path or its sub-path is smaller
than the threshold probability, the path can be pruned. We generate optimal paths in a
weight-increasing sequence. The shorter path that is marked failed may have influence
on the later generated path. Theorem 3 gives this property.

Theorem 3. Given two paths P and P ′, if the weight of P ′ is larger than that of P and
Pr(P ′) ≤ Pr(P ), Pr(P ) < ε, then Pr(P ′) < ε.

To use Theorem 3, we maintain the largest probability of the paths that have been
marked failed. Any new checked path identified by the above pruning rule should be
marked failed as well.

To determine the answer set, we need to enumerate optimal paths one by one. In
fact, users only care about some shortest paths that also have high probability. Thus the
answer set (also shown in the experiments) is very small, and we do not need to check
many paths. However we need a stop condition that can mark all the unchecked paths
failed. To achieve this, we provide a tight stopping condition given as follows,

Theorem 4. For the ith SP path, if its Pr(Connect) > 1 − ε, we can stop generating
new optimal paths Pm (m > i), and all those paths are marked failed candidates.

Proof: Let I1, ..., Ik be the events that shorter paths in RH of Pi are connected. Since

Pr(Connect) = Pr(I1
⋃
· · ·

⋃
Ik) = 1−Pr(I1

⋃
· · ·

⋃
Ik) = 1−Pr(

−
I 1

⋂
· · ·

⋂−
I k)

and Pr(Connect) > 1−ε, we have Pr(
−
I 1

⋂
· · ·

⋂−
I k) < ε. For Pr(Connect) of Pm,

there exists an integer k′>k, such that Pr(Connect)=Pr(
−
I 1

⋂
· · ·

⋂−
Ik

⋂
· · ·

⋂ −
Ik′ ).

Since
−
I 1

⋂
· · ·

⋂−
I k

⋂
· · ·

⋂−
I k′ ⊂

−
I 1

⋂
· · ·

⋂−
I k, Pr(

−
I 1

⋂
· · ·

⋂−
I k′) < ε. This result

leads to the conclusion. Q.E.D

Theorem 4 provides an upper bound for paths that have not been seen yet. If the proba-
bility satisfies the condition, then the unseen paths do not need to be checked.
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5 Optimization of Basic Calculation Algorithm

As noted in [19], it is a hard problem to compute the exact value of Pr(Connect), thus
the basic algorithm may need to enumerate huge number of events for a large graph
before the algorithm satisfies the stop condition. In this section, we propose another
optimization method, isomorphic graphs reduction, to stop the computing as early as
possible.

5.1 Isomorphic Graphs Reduction

As noted in Equation (6), any event I · e1e2...ei|ε (1 ≤ i ≤ n) may be u-event. Thus it
is very likely to produce sequence u-events in low levels of a solution tree so that those
u-events may produce large number of sub-u-events in exponential. That is to say, for a
large RH , the width of the solution tree may increase in exponential as the tree height
increases, which leads to a very large computing cost. However, we observe that there
exists relation between a sequence u-events. This information can be used to greatly
reduce the width of the tree. The method is proposed in this subsection.

s d)ePr( 1 C ( ) + s dC ( ))ePr(e 41

= s d)ePr( 1 C ( )( +)Pr(e 4 )ePr( 4
s dC ( )) + s dC ( ))ePr(e 41

= s d)ePr( 1 C ( ) +)Pr(e 4 )ePr( 4 + s dC ( ))ePr(e 41)ePr( 1
( )

= s d)ePr( 1 C ( ) +)Pr(e 4 )ePr( 4
s dC ( )

)9.08.0(2.0)975.08.0(0.80.15 ××+×××=

= 0.2376

Fig. 5. Reduction of u-events in Fig. 4

For a u-event Eu(I)|ε of the solution tree, let RH\Eu(I) denote the subgraph of
RH removing edge set Eu(I) and Pr(RH\Eu(I))|con denote the connected probabil-
ity (from s to d) for RH\Eu(I). From the basic algorithm, we know that the contributed
probability (to Pr(Connect)) of Eu(I)|ε is Pr(Eu(I)) ·Pr(RH\Eu(I))|con. For ex-

ample, in Fig. 4, the contributed probability of
−
e1|ε is Pr(

−
e1)Pr(RH\e1)|con, and the

subtree rooted at
−
e1 in Fig. 4 is the computing process of Pr(RH\e1)|con.

For graph S = RH\Eu(I), let S\e denote that edge e is deleted from S and S � e
denote that edge e is contracted (also called edge contraction) from S. Edge contraction
is an operation which removes an edge from a graph while simultaneously merging
together the two vertices that the edge used to connect. For S, there is an important
property,

Theorem 5

Pr(S)|con = Pr(e)Pr(S � e)|con + Pr(
−
e)Pr(S\e)|con. (7)
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Proof: Let Scon denote the connected event from s to d in S. From the probabilistic
theory, we have:

Pr(S)|con = Pr(e)Pr(Scon|e) + Pr(
−
e)Pr(Scon|

−
e)

where Pr(.|.) denotes the conditional probability.

Clearly, Pr(Scon|
−
e) equals Pr(S\e)|con. The probability of Pr(Scon|e) denotes

the potential impact on Scon given the condition that edge e is successful. Thus, we can
contract e, and Pr(Scon|e) equals Pr(S � e)|con. Q.E.D

Let I ·e1...ei|ε = Ii and I ·e1...ei+1|ε = Ii+1 be two neighbor u-events produced in the
solution tree, and let Fi and Fi+1 denote subgraphs RH\Ii and RH\Ii+1 respectively.

Thus for two neighbor u-events, their contributed probability (to Pr(Connect)) is,

Pr(Ii)Pr(Fi)|con + Pr(Ii+1)Pr(Fi+1)|con = Pr(Ii)[Pr(ei+1)Pr(Fi � ei+1)|con + Pr(
−
ei+1)

Pr(Fi\ei+1)|con] + Pr(Ii+1)Pr(Fi+1)|con

For two neighbor u-events, Fi and Fi+1 have same nodes, and Fi has an additional edge
ei+1 than Fi+1. Hence Fi\ei+1 and Fi+1 are same (isomorphic) graphs, then the above
equation can be rewritten as:

Pr(Ii)Pr(ei+1)Pr(Fi � ei+1)|con + Pr(Fi+1)|con[Pr(Ii)Pr(
−
e i+1) + Pr(Ii+1)]

In the above deduction, Fi produces a graph that is isomorphic to Fi+1, and the two
isomorphic graphs are combined into one. From the result, we know that two u-events
produce two new events, and one of which has smaller graph size. Thus the combining
process avoids producing many new u-events as the basic algorithm. For more than
two neighbor u-events, we use the property given in Equation (7) to factor these u-
events and combine isomorphic graphs. Finally we can get the same number of events
as those u-events, while basic algorithm may produce exponential number events. Thus
the width of the solution tree can be largely reduced. Figure 5 demonstrates the process

of combining isomorphic graphs for two u-events (
−
e1 and e1

−
e4) listed in Fig. 4. During

the process, two isomorphic graphs (signed within the rectangle) are combined into
one graph. From the figure, we know that original u-events produce two events with
corresponding smaller graphs, and the produced events are both successful. Thus we
can directly get the result. The final answer is 0.2376 which is the same as shown in
Fig. 4 (0.027+0.0162+0.072+0.1224=0.2376). However in Fig. 4, two original u-events
produce two u-events, again, the decomposition needs to be continued. To apply this
improved algorithm, we reduce the sequence u-events continually until there are no
neighbor u-events.

6 Performance Evaluation

We conduct an empirical study using real data sets on a PC with a 3.0 GHz Pentium4
CPU, 2.0 GB main memory, and a 160 GB hard disk. Our algorithms are implemented
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Table 2. Data sets

G1 G2 G3 G4 Gu

No. of nodes 1k 4k 8k 16k 21k
No. of edges 1.6k 6.4k 13k 25k 21.6k

in Microsoft Visual C++ 6.0. In the following experiments, BA denotes the basic al-
gorithm, ICA denotes the isomorphic graphs combination method (ICA), s,f-Bound de-
notes the s/f event bound approach, and Overall denotes the combination of three
techniques together.

As introduced in Section 1, the uncertain graph model is abstracted from the trans-
portation network and communication fields. Thus we evaluate the proposed algorithms
on the real road network data set: California Road Network with 21,047 nodes and
21,692 edges. The data set is extracted from the US Census Bureau TIGER/LineThere6.
Note that the four algorithms can handle both undirected and directed graphs. In exper-
iments, we represent the real database as a directed uncertain graph Gu. We further
generate 4 subgraphs G1, ..., G4 from Gu with nodes varying from 1k to 16k. Each
subgraph corresponds to a subarea of Gu. To test the sensitivity of the algorithms, we
increase the density of G4 by generating its edges to be 25k. The numbers of nodes and
edges of G1, ..., G4 and Gu are listed in Table 2. Those graphs are all certain. To sim-
ulate an uncertain graph, we generate an existent probability for each edge following a
Normal distribution N(μ, σ). The value of μ is set to the mean weight of all edges, i.e.,
μ =

∑|E|
i=1 wi/|E|, where wi is the original weight of the corresponding edge in data

sets. σ is also generated following Normal distribution N(μσ, σσ), where μσ = xμ,
and μ is the mean weight. This simulation method follows the findings in studies on
traffic simulations [14] and [15], which indicates that the travel time on paths in road
networks follows the Normal distribution.

The path queries are generated as follows. The issued probability threshold is set
from 0.2 to 0.7 and the default value is 0.4. The value of x is set to x = 1%-5%, and
the default value is 3%. For each parameter setting, we randomly run 50 path queries
and report the average results.

Firstly, we test the pruning power of algorithms on a small data set (G1) and a large
data set (Gu). Figure 6 shows the number of traversed paths by queries and the answer
size with different threshold probabilities and variances (x%) for G1. In Fig. 6(a), we
know that the number of paths is decreasing as probabilities increase. This is because
the small threshold probability leads to more answers (paths) that need to enumerate
more paths to determine the final answers. Obviously ICA has a more pruning power
than BA, since ICA reduces the number of traversed paths by combining isomorphic
graphs. s,f-Bound beats ICA, and needs fewer traversed paths. Based on the whole im-
proved methods, Overall prunes most paths, and the number of paths comes very close
to the final result. As stated earlier, in the worst case, it may need to enumerate an ex-
ponential number of edges of RH to compute Pr(Connect) in BA. But as shown in
the result, our improved methods can avoid the case. The number of traversed paths for

6 Topologically Integrated Geographic Encoding and Referencing system:
http://www.census.gov/geo/www/tiger/
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Fig. 6. Pruning power of the algorithms on G1

different variances is given in Fig. 6(b). There is a vary small decreasing tendency for
all algorithms and most of curves are stable, which indicates the pruning power is not
sensitive to the varying probability distribution. For Gu, Figure 7 gives the results from
which we know this data set needs much more paths than G1 due to the fact that it leads
to the largest uncertain graph. However as shown in Fig. 7(a), after adopting overall, we
get a very small result that in the worst case (the threshold probability is 0.2) that we
only need to traverse less than 70 paths to produce 23 results. Though Gu is a very large
graph, the size of RH is small and hence the algorithms can answer queries efficiently.
The results of above experiments with different threshold probabilities have a common
feature that all curves of the four algorithms drop very quickly after the probability is
0.5. The numbers of paths are almost the same when the threshold probability is large,
as shown in Fig. 6(a). The reason is that the answer set is very small when the threshold
probability is large, and the small answer set leads to a small number of traversed paths.

We also evaluate the scalability of the algorithms. To evaluate the effeteness with
different nodes, besides above two data sets, we further test the algorithms on graphs
G2, G3 and G4. Figure 8(a) shows the pruning power of the algorithms on the five data
sets. All algorithms are scalable, and the improved algorithms that obliviously prune
more paths than BA. The s,f-Bound have an efficient pruning power in the largest data
set with 21.6k nodes, which is also indicated in Fig. 8(b) that shows the runtime on the
five graphs. In this figure, s,f-Bound has a very short runtime of less than 10 seconds in
the largest graph. If we apply Overall, the results can be much better and the runtime
shown in Fig. 8(b) for all the graphs is less than 2 seconds. But as shown in Fig. 8, there
is a sudden increase in G4, then the curves decrease to Gu. The main reason is G4 has
more edges than Gu, which shows that both running efficiency and pruning power are
sensitive to the number of edges of the uncertain graph. We also evaluate the scalability
of pruning power and runtime with different edge sizes. To do this, we vary the density
of G2 by fixing the number of nodes as 4K while changing the number of edges. Five
graphs are generated with 4K, 8K, 16K, 32K and 64K edges. We report the results in
Fig. 9. The results confirm our finding that the number of traversed paths and runtime
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are sensitive to the number of edges. The results of runtime also indicate that, for each
improved algorithm, the additional time of computing bounds or combining isomorphic
graphs does not have an impact on the final runtime.

7 Conclusions

In this paper, the probability threshold-based SP path query is studied over a proposed
uncertain graph model. An efficient basic probability computing method and several
probabilistic pruning rules are proposed to avoid scanning all the possible worlds. An
improved computing scheme based on combinations of isomorphic graphs can greatly
reduce the probabilistic calculation cost. Also, a series of lower/upper bounds are given
to stop the calculation as early as possible. Finally, we confirm our design through an
extensive experimental study.
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Abstract. Evolving graphs are used to model the relationship variations
between objects in many application domains such as social networks,
sensor networks, and telecommunication. In this paper, we study a new
problem of discovering burst areas that exhibit dramatic changes during
some periods in evolving graphs. We focus on finding the top-k results
in a stream of fast graph evolutions. This problem is challenging because
when the graph evolutions are coming in a high speed, the solution should
be capable of handling a large amount of evolutions in short time and
returning the top-k results as soon as possible. The experimental results
on real data sets show that our proposed solution is very efficient and
effective.

Keywords: Evolving Graphs, Burst Areas, Haar Wavelet.

1 Introduction

Graph patterns have the expressive ability to represent the complex structural
relationships among objects in social networks, as well as in many other domains
including Web analysis, sensor networks, and telecommunication. The popular-
ity of social Web sites in recent years has attracted much attentions on social
networks, hence the research interests on mining large graph data [6,2,9,5,4].
However, graphs are not static but evolving over time. Users in social Web sites
participate in various activities such as writing blogs and commenting stories.
These interactive activities happen all the time and cause the social networks
changing rapidly and continuously.

In most social networks such as Digg [1], one of the common activities of users
is to make comments on stories. Then a bipartite graph can be constructed by
considering users and stories as vertices. There is an edge between a user and a
story if the user submits a comment on the story. Let us assume Fig. 1(a) is a
user-story graph at some time t. As time goes by, users submit more comments
on stories and the graph evolves. Suppose at time t + δt, the user-story graph
looks like one shown in Fig. 1(b). Since both the involvement of users and the
popularity of stories are various, the degree of change may be different at each
region in the graph. For example, as shown in the dotted line area, this region is
much different from one at time t, while the remaining part looks similar, which
means users in this region are more active and stories in it are more attractive.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 171–185, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) Time t (b) Time t + δt

Fig. 1. An Evolving User-Story Graph

Inspiring by the motivation from Fig. 1, in this paper, we study a new problem
of discovering the burst areas, that exhibit dramatic changes for a limited period,
in fast graph evolutions. Intuitively, dramatic changes mean the total evolutions
happened inside burst areas are much larger than one in other areas. There are
several difficulties to solve this problem. First, evolving graphs in social networks
are huge, which contain a large amount of vertices and edges. Second, sizes of
burst areas could be various. And last, the duration of the burst period is difficult
to predict, since a burst could last for minutes, hours, days or even weeks. All
these difficulties make this problem challenging and interesting. A candidate
solution must be efficient enough to deal with a great number of computations.

We focus on bipartite evolving graphs, since fast evolving graphs in social net-
works are mostly heterogeneous bipartite graphs. Similar to commenting stories,
other possible activities of users could be either writing blogs, tagging photos,
watching videos, or playing games. Each of such activities can be a fast evolving
bipartite graph. In an evolving graph, there is a weight associated with each ver-
tex or edge. The evolutions are in form of the change of weights of nodes/edges.
The weight of a non-existing node/edge is zero, so it does not matter whether
the coming nodes/edges are new to the graph.

The main contributions of this paper are summarized below.

– We formalize the problem of discovering burst areas in rapidly evolving
graphs. The burst areas are ranked by the total evolutions happened inside
and the top-k results are returned.

– Instead of calculating the total evolutions of every possible period, we pro-
pose to use Haar wavelet tree to maintain upper bounds of total evolutions
for burst areas. We also develop an incremental algorithm to compute the
burst areas of different sizes in order to minimize the memory usage.

– We present an evaluation of our proposed approach by using large real data
sets demonstrating that our method is able to find burst areas efficiently.

The rest of this paper are organized as follows. Section 2 introduces the prelim-
inary background knowledge and formalizes the problem of burst area discovery
in an evolving graph. We present our computation approaches in Section 3. Ex-
perimental results are presented in Section 4, and Section 5 discusses the related
work. Finally, Section 6 concludes the paper.
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2 Problem Statement

We give an overview on how to model evolving graphs at first, before we come to
any details about the problem and solution. There are mainly two approaches to
model evolving graphs. One way is to represent an evolving graph as a sequence
of graphs, G = (G1, G2, ...). Each graph Gi in the sequence is a snapshot of the
evolving graph at time ti. The advantage of this way is that it is convenient for
users to study the characteristics of an evolving graph at a particular time stamp,
as well as the differences between graphs of adjacent time stamps. One issue of
this approach is the large storage cost in proportion to the size of the evolving
graph and the time intervals between snapshots. The other method models an
evolving graph as an initial graph, which is optional, and a stream of graph
evolutions. This approach is more intuitive in most domains in the real world.
For example, the interactive activities in social networks can be considered as
an evolution stream. We model evolving graphs using the second approach in
this paper since we are more interested in the burst areas of graph evolutions,
not the graph characteristics at the current time.

An evolving graph G = (G, Δ) consists of two parts, an initial graph G and a
sequence of evolutions Δ. The initial graph G is a snapshot of the evolving graph
at time t0 with a set of vertices V (G) and a set of edges E(G). Let wi denote
the weight of vertex vi ∈ V and wij ∈ E denote the weight of edge eij = (vi, vj).
Each item δt in the evolution stream Δ is a set of quantities indicating the weight
changes of vertices or edges at the time t. There might be a number of evolutions
at the same time. Let δi

t and δij
t denote the weight change of vertex vi and edge

eij at time t, respectively. Without loss of generality, we assume the evolutions
come periodically.

Given a large evolving graph G = (G, Δ), we study the problem of find-
ing burst areas. Since a burst region is actually a connected subgraph of the
evolving graph, then any connected subgraph might be a possible burst area.
Apparently, it is more likely that the total evolutions in a subgraph with many
vertices/edges is greater than the one in a subgraph with fewer vertices/edges.
Thus, it is insignificant to compare total evolutions among subgraphs with large
differences in terms of vertex/edge quantity. Consequently, we introduce the r-
radius subgraph, which is more meaningful and challenging.

For a given vertex vi in a graph, the eccentricity EC of vi is the maximum
length of shortest paths between vi and any other vertex in the graph. Based on
the definition of eccentricity, the r-radius subgraph is defined as below.

Definition 1. (r-Radius Subgraph)
A subgraph g = (V (g), E(g)) in a graph G is an r-radius subgraph, if

min
vi∈V (g)

EC(vi) = r. (1)

The r-radius subgraphs in a large graph may be overlapping and result in redun-
dancy. To avoid this, we introduce the concept of maximum r-radius subgraph.
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Definition 2. (Maximal r-Radius Subgraph)
An r-radius subgraph gr is called maximal r-radius subgraph if there exists no
other r-radius subgraph g′r ⊆ G, which contains gr.

v4

v6

v1 v2 v3

v9v8v7v5

(a) An r-Radius Subgraph

v4

v6

v1 v2 v3

v9v8v7v5

(b) A Maximal r-Radius Subgraph

Fig. 2. An r-Radius Subgraph Example

Fig. 2 shows an example of r-radius subgraph and maximal r-radius subgraph.
Suppose Fig. 2(a) and Fig. 2(b) demonstrate the same graph G. The subgraph
in the dotted line area in Fig. 2(a) is a 2-radius subgraph. It is contained by
the subgraph in the dotted line area in Fig. 2(b), which is a maximal r-radius
subgraph.

It is a difficult task to identify all maximal r-radius subgraphs from a large
evolving graph. We observe that a maximal r-radius subgraph is in fact a max-
imal r-hop neighborhood subgraph, which we define below. Let N r

vi
denote the

set of vertices (except vi) whose shortest path distance to vi is less than or equal
to r.

Definition 3. (r-Hop Neighborhood Subgraph)
An r-hop neighborhood subgraph gr

vi
in a graph G is defined as the subgraph of

G containing all the vertices in N r
vi

. vi is called the center of gr
vi

.

In the following paper, we might use r-hop subgraph for short.
We show the relationship between maximal r-radius subgraphs and r-hop

neighborhood subgraphs in Theorem 1.

Theorem 1. For each maximal r-radius subgraph gr ⊆ G, there is a corre-
sponding r-hop neighborhood subgraph gr

vi
⊆ G, and gr = gr

vi
.

Proof Sketch: We will prove that (1) ∃vi ∈ gr, gr ⊆ gr
vi

, and (2) � ∃vj ∈ gr
vi

,
vj �∈ gr.

Let gr be a maximal r-radius subgraph belonging to G. Recall that the eccen-
tricity EC(vi) is the maximum length of shortest paths between vi and any other
vertex in gr. Then based on Definition 1, there exists a vertex vi ∈ V (gr) and
EC(vi) = r. Let d(vi, vj) denote the length of the shortest path between vi and
vj . Because EC(vi) = r, so ∀vj ∈ V (gr), we have d(vi, vj) ≤ r. Let gr

vi
be an r-

hop neighborhood subgraph based on Definition 3. Since ∀vj ∈ V (gr), d(vi, vj) ≤
r, so ∀vj ∈ V (gr), vj ∈ N r

vi
, where N r

vi
= V (gr

vi
). Therefore, ∃vi ∈ gr, gr ⊆ gr

vi
.
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Suppose ∃vk ∈ gr
vi

and vk �∈ gr, we have d(vi, vk) ≤ r. Let g′ denote the
subgraph that V (g′) = V (gr)∪{vk}, then g′ is also an r-radius subgraph, which
is contradict to the condition that gr is a maximal r-radius subgraph. Therefore,
� ∃vj ∈ gr

vi
, vj �∈ gr. �

Theorem 1 indicates that a maximal r-radius subgraph must be an r-hop neigh-
borhood subgraph. This is only a necessary condition, not sufficient. It is worth
noting that an r-hop neighborhood subgraph might not be an r-radius sub-
graph. Take vertex v4 in Fig. 2(a) as an example. Let us construct a 2-hop
neighborhood subgraph g2

v4
, which contains vertex v3, v4 and v9. g2

v4
is not

a maximal 2-radius subgraph, but a maximal 1-radius subgraph g1
v9

, because
d(v3, v9) = d(v4, v9) = 1. In this paper, we consider r-hop neighborhood sub-
graphs as the candidates of burst areas.

Recall δi
t and δij

t denote the weight change of vertex vi and edge eij at time t,
respectively. Obviously, if vi ∈ N r

vj
, which means vi is in the r-hop neighborhood

subgraph gr
vj

, then δi
t should be counted into the gr

vi
. δij

t belongs to an r-hop
neighborhood subgraph when both vi and vj are in the subgraph. We define the
burst score of an r-hop neighborhood subgraph as follows.

Definition 4. (Burst Score)
The vertex burst score of an r-hop neighborhood subgraph gr

vi
at time t is the

total weights of the vertex evolutions happened inside.

BurstScoreV =
∑

vj∈gr
vi

δj
t (2)

The edge burst score of an r-hop neighborhood subgraph gr
vi

at time t is the total
weights of the edge evolutions happened inside.

BurstScoreE =
∑

vj ,vk∈gr
vi

δjk
t (3)

So, the burst score of an r-hop neighborhood subgraph gr
vi

is sum of the vertex
burst score and the edge burst score.

Now, we formally define the problem of discovering top-k burst areas in fast
evolving graphs.

Problem 1. (Discovering Top-k Burst Areas)
For an evolving graph G = (G, Δ), given a maximum hop size rmax, a burst
window range (lmin, lmax), the top-k burst area discovery problem is that for
each burst window size between lmin and lmax and hop size between 1 and rmax,
finding the top-k r-hop neighborhood subgraphs with the highest burst scores
in G at each time stamp continuously.

For conciseness, in the following, we focus on edge evolutions in heterogeneous
bipartite evolving graphs. Our proposed solution can deal with vertex evolutions
as well.
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3 Discovering Burst Areas

A direct solution to discover top-k burst areas would be maintain total (lmax −
lmin +1)× r burst scores of each window size and hop size over sliding windows.
At each time stamp t, these burst scores are updated based on the evolutions hap-
pened inside the corresponding r-hop neighborhood subgraphs. Then, for each
window size and hop size, a list of top-k r-hop subgraphs based on burst scores
is returned as the answer. Before we explain our proposed solution in details,
which is much more efficient both in time complexity and memory consumption,
we first introduce some background knowledge.

3.1 Haar Wavelet Decomposition

The Wavelet Decomposition is widely used in various domains, especially the
signal processing. One of the conceptually simplest wavelet, Haar wavelet, is
applied to compress the time series and speed up the similarity search in the
time series database. The Haar wavelet decomposition is done by averaging two
adjacent values on the time series repeatedly in multiple resolutions in a hier-
archical structure, called Haar wavelet tree. The hierarchical structure can be
constructed in O(n) time. Fig. 3 illustrates how to construct the Haar wavelet
tree1 of a eight-value time series, which is at Level 0. Then at Level 1, there are
four average value of adjacent values. The averaging process is repeated until
there is only one average value left.

w1 w2 w3 w4 w5 w6 w7 w8

(w1+w2) / 2 (w3+w4) / 2 (w5+w6) / 2 (w7+w 8) / 2

(w1+w2+w3+w4) / 4 (w5+w6+w7+w8) / 4

(w1+w2+w3+w4+w5+w6+w7+w8) / 8

Level 0

Level 1

Level 4

Level 3

Level 2

Fig. 3. Haar Wavelet Decomposition

... wt-9 wt-8 wt-7 wt-6 wt-5 wt-4 wt-3 wt-2 wt-1 wt

A

B

wt-4 wt-3 wt-2 wt-1 wt

wt-2 wt-1 wt

Level 0

Level 1

Level 4

Level 3

Level 2

wt-3 wt-2 wt-1 wt

l = 3

l = 4

l = 5

Fig. 4. Upper Bounds of Burst Scores

3.2 Bounding Burst Scores of r-Hop Neighborhood Subgraphs

As defined in Definition 4, the burst score of an r-hop neighborhood subgraph
is the total changed weights happened inside for a period of time. Given an
evolving graph G = (G, Δ) and a window size range (lmin, lmax), we introduce
first how to bound r-hop burst scores for an r-hop subgraph.

Fig. 4 shows an example. wt is the sum of all the changed weights happened
in an r-hop neighborhood subgraph at time stamp t, Based on the Haar wavelet
decomposition, we can construct the Haar wavelet tree as shown at the bottom in
1 The Haar wavelet decomposition consists of both averages and differences. For con-

ciseness, we ignore the difference coefficients which are not used in our solution.
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Fig. 4. Suppose lmin = 3 and lmax = 5, the three corresponding burst windows
are shown at the top. As we can see that, the burst windows of size 3 and 4
are contained in the window A at Level 2, while the burst window of size 5 is
contained in windows B at Level 3. This leads to the following lemma.

Lemma 1. A burst window of length l at time t is contained in the window at
time t at Level 
log2 l� in the hierarchical Haar wavelet tree.

Proof Sketch: Let W = wt−l+1, wt−l+2, ..., wt denote the burst window of
length l. Based on the definition of the Haar wavelet decomposition, The length
of window at time t at Level n is 2n. Let W ′ = wt, wt−1, ..., w

′
t−2(�log2 l�)+1.

Because 2(�log2 l�) ≥ l, so W ⊆ W ′. �

Instead of average coefficients, we maintain sums of windows in the Haar wavelet
tree. Since the changed weights are all positive, the sum in a window in the Haar
wavelet tree is the upper bound of burst scores of all burst windows it contains.

Lemma 2. The burst score of a length l burst window at time t is bounded by
the sum coefficient of the window at time t at Level 
log2 l� in the Haar wavelet
tree.

We can use Lemma 2 to prune potential burst areas. If the burst score bound
of an r-hop neighborhood subgraph for some window size is larger than the
minimum score in the current top-k answers, then we perform a detailed search
to check whether it is a true top-k answer. Otherwise, the r-hop subgraph is
ignored. It is not necessary to build the whole Haar wavelet tree of all levels to
compute burst score bounds of r-hop subgraphs. As we can see from Lemma 2,
only the levels from 
loglmin

2 �− 1 to 
loglmax
2 � are needed to compute the bound

burst scores. Level 
loglmin
2 � − 1 is computed directly from Level 0.

Now, the problem is how to maintain the wavelet tree at each time stamp t,
since graph evolutions come as a stream. There are mainly two approaches.

1. Continuous Updating: The entire Haar wavelet tree is updated at each
time stamp t continuously. The approach ensures no delay in response time
to return top-k answers.

2. Lazy Updating: Only windows at the lowest level are updated at each time
stamp t. The sums maintained in the upper levels in the Haar wavelet tree
are not computed until all data in the corresponding windows is available.
For a burst window of size l, the response time delays at most 2�log2 l�.

In this paper, we propose to maintain Haar wavelet tree in a dynamic manner,
which can achieve both low computation cost and no delay in response time.
Fig. 5 presents a running example, which illustrates how the Haar wavelet tree
changes as time goes by. Function S(t, t′) denotes the sum of weights in the
window from time t to t′.

As shown in Fig. 5, suppose at time t, a Haar wavelet tree is built according
to changed weights at Level 0. Then at time t+1, instead of updating the entire
Haar wavelet tree, we only shift each level left for one window and add the newly
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Fig. 5. Updating Haar Wavelet Tree

changed weight wt+1 to the last window at each level. Since changed weights are
all positive, the sums of the last windows are still the upper bounds of burst
scores of corresponding burst windows. At time t+2, since all weights at Level 0
used to compute the sum of the last window at Level 1 are available, we compute
the actual sum of the last window at Level 1 based on Level 0. Then based on
the weights at Level 1, the sum of the last window at Level 2 is recomputed.
While the last window at Level 3 is not recomputed since the last two windows
at Level 2 are overlapping. Instead, we add wt+1 to it. Time t + 3 is similar to
time t + 1. At time t + 4, last windows at all levels are recomputed, because the
last two windows of lower levels are not overlapping. In general, last window at
the lowest level (Level 
loglmin

2 �−1) is computed every 2�log
lmin
2 �−1 time stamps,

while last windows at upper levels are recomputed once the last two windows at
lower levels are not overlapping.

3.3 Incremental Computation of Multiple Hop Sizes

Suppose we need to monitor r-hop neighborhood subgraphs in multiple hop
sizes, an easy solution is to maintain a Haar wavelet tree for each hop size of
every r-hop subgraph. The total memory usage would be O(rN), where N is the
total number of vertices. Obviously, it is not efficient in the computation cost,
and the memory assumption is high. In this section, we introduce our proposed
algorithm to maintain burst score bounds of multiple hop sizes using at most
O(N) memory consumption. Our solution is to maintain Haar wavelet trees for 1-
hop neighborhood subgraphs only. The burst score bounds of an r-hop subgraph
is calculated from subgraphs of smaller hop size in an incremental manner.

Let first examine how the edge evolutions affect the burst scores of nearby
r-hop neighborhood subgraphs using examples in Fig. 6. Fig. 6(a) shows an ex-
ample for 1-hop neighborhood subgraph g1

v1
. The dotted line is the edge evolution

happened. It is apparent that if the edge evolution belongs to g1
v1

, v1 must be
one of the vertices of the edge evolution. Fig. 6(b) shows an example for 2-hop
neighborhood subgraph g2

v1
. As we can see that if the edge evolution belongs to

g2
v1

, Either it is within g1
v1

, or N2
v1
\ {v1}. An edge evolution belongs N2

v1
\ {v1}

means both vertices of the edge evolution belong to N2
v1
\ {v1}. In this paper,



Discovering Burst Areas in Fast Evolving Graphs 179

v1

v2

v3

(a) 1-hop

v4

v5

v1

v2

v3

(b) 2-hop

v1

v2

v3

(c) 1-hop

v4

v5

v1

v2

v3

(d) 2-hop

Fig. 6. Evolutions in 1-hop and 2-hop Subgraphs

we are focusing on heterogenous bipartite graph. Suppose v1, v4, v5 and v2, v3
belong to the two sides of a bipartite graph, respectively. Then there are no such
evolutions as shown by the dotted edges in Fig. 6(c) and 6(d).

Now we explain how to compute burst scores of r-hop neighborhood subgraphs
incrementally from burst scores of 1-hop subgraphs. From the above obversion,
we can see that the burst score of an r-hop subgraph is the sum of two parts.
One is the burst score of (r − 2)-hop subgraph, the other is the total evolutions
within N r

vi
\ N r−2

vi
. While edge evolutions in N r

vi
\ N r−2

vi
must be connected to

one of the vertices in N r−1
vi

\ N r−2
vi

. Let vj ∈ N r−1
vi

\ N r−2
vi

, then we have the
following lemma.

Lemma 3. The total edge evolutions in N r
vi
\N r−2

vi
equal to∑

vj∈Nr−1
vi

\Nr−2
vi

BurstScore1vj . (4)

Based on Lemma 3, burst scores of r-hop neighborhood subgraphs are calculated
incrementally by using the following equation.

BurstScorer
vi

= BurstScorer−2
vi

+
∑

vj∈Nr−1
vi

\Nr−2
vi

BurstSocre1
vj

(5)

where BurstScorer
vi

denote the burst score of r-hop neighborhood subgraph gr
vi

,
and BurstScore0

vi
= 0. It is obvious that Eq. 5 is also correct if we substitute

burst scores by their upper bounds.

3.4 Top-k Burst Area Discovery

The whole algorithm is presented in Algorithm 1. At each time t, the algorithm
maintains Haar wavelet trees of all 1-hop neighborhood subgraphs at Line 3.
If a vertex is saw for the first time, a new Haar wavelet tree is constructed.
Otherwise, based on Section 3.2, Algorithm 1 updates all the Haar wavelet trees
which have evolutions happened inside.

In each loop from Line 4 to Line 12, the algorithm discovers incrementally
the top-k results from small hop size to large hop size. At Line 6, Algorithm 1
computes the upper bounds of burst scores according to Eq. 5. If the burst score
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Algorithm 1. The Top-k Burst Area Discovery Algorithm
Input: An evolving graph G = (G, Δ),

a maximal hop size rmax, a window range (lmin, lmax), the value of k
Output: the top-k burst areas at each time t

1: while time t ≤ tmax do
2: for vi ∈ V (G) do
3: Update the Haar wavelet tree for 1-hop subgraph g1

vi
;

4: for r = 1 to rmax do
5: for vi ∈ V (G) do
6: Compute burst score bound Br

vi
of r-hop subgraphs gr

vi
using Eq. 5;

7: for l = lmin to lmax do
8: mink = the minimum burst score of the top-k list of hop size r and

window length l;
9: if Br

vi
> mink then

10: Obtain BurstScorer
vi

by detailed search;
11: if BurstScorer

vi
> mink then

12: remove the k-th vertex vj in the corresponding top-k list;
13: add vi to the corresponding top-k list.

bound of an r-hop neighborhood subgraph is larger than the minimum burst
score mink in the corresponding top-k list, Algorithm 1 performs a detailed
search at Line 10 to verify whether it is a real top-k result. If the true burst score
is larger than mink, it is added to the corresponding top-k list substituting the
k-th item. To save memory space, instead of storing r-hop subgraphs, we only
store centers of the r-hop subgraphs in the top-k list.

4 Experimental Evaluation

In this section, we report our experimental results on two real data sets to show
both the effectiveness and the efficiency of our proposed algorithm.

4.1 Data Sets

The two real data sets are extracted from Digg [1]. Users can make their com-
ments on stories in Digg. The vertices of the heterogenous bipartite evolving
graph are users and stories. Graph evolutions are comments submitted by users.

The corpus of users’ comments collected contains comments for around four
month [7]. For better utilization, we split it into two two-month data sets, Digg

A and Digg B. Comments in the data sets are categorized day by day and there
are a large number of comments in each day. So, we further divide a day into
four time stamps and randomly assigned the comments in the same day into one
of the four time stamps. There are total 9583 users and 44005 articles. The total
time stamps of both data sets is 232. The evolution characteristics of these two
data sets are summarized in Fig. 7, which shows the total number of evolutions
happened at each time stamp. There are periodic troughs, because users submit
fewer comments during weekend.
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Fig. 7. Total Evolutions of The Evolving User-Story Graphs from Digg

4.2 Effectiveness

We demonstrate two examples discovered in Data Set Digg A in Fig. 8. The
length of the burst window is 8. Among all the 10th burst areas of each time
stamp, we select one with the highest burst score. Fig. 8(b) present the 1-hop
neighborhood subgraph at time 35, while the corresponding 1-hop subgraph at
time 27 is presented in Fig. 8(a).

The round vertices represent users, while the square vertices are stories. As we
can see that the subgraph in Fig. 8(b) having more vertices and edges than one in
Fig. 8(a), which indicates that the center vertex was the 10th active user during
the burst period. Similar results could be found in Fig. 8(c) and Fig. 8(d), which
show the 2-hop subgraphs with the highest burst score among all the 10th burst
areas of each time stamp. The centers of these two subgraphs are shown as the
central white vertices in the figures. These figures shows that the stories, which
were commented by the user of the center vertex, also received many comments
from other users during the burst period.

Fig. 9(a) and Fig. 9(b) present the center vertex ID of the top-1 1-hop and
2-hop burst areas from time 90 to time 140, respectively. At each time stamp, we
plot the center vertex ID of top-1 burst area whose burst window length is 8, as
well as the one of top-1 burst area whose burst window length is 16. The figure
show that the top-1 burst area of large window length is not always the same as
one of small window size, which explains why we need to find burst areas with
different burst window lengths.

4.3 Efficiency

We perform our efficiency testing on Data Set Digg A and Digg B. Fig. 10(a)
and Fig. 10(b) show the overall running time of the direct algorithm, which is
discussed in the beginning in Section 2, as well as one of our proposed algorithm.
The value of k in Fig. 10(a) and 10(b) is 10 and 20, respectively. As we can see,
our proposed algorithm is much faster than the direct algorithm. The lower part
of each bar of direct algorithm is the running time of updating all burst scores,
and the lower part of each bar of our proposed algorithm is the running time of
maintaining Haar wavelet trees. One advantage of our proposed algorithm is that
the maintaining cost is less than 1/10 of one of the direct algorithm. This will
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Fig. 8. Top-1 Burst Areas in Digg A (l = 8)
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Fig. 9. Center Vertex ID of Top-1 Burst Areas

be useful when we do not monitor evolution streams continuously, but submit
ad-hoc queries to find top-k burst areas at some interesting time stamps.

Fig. 10(c) and 10(d) show the overall running time for the direct algorithm
and our proposed algorithm, when the value of k changes. The length l of burst
window in Fig. 10(c) and 10(d) is 16 and 32, respectively. We can observe similar
experimental results that our proposed algorithm uses much shorter time. Fig. 11
presents the corresponding results for Data Set Digg B, which prove again the
efficiency of our proposed algorithm.

We report the pruning ability in Data Set Digg A and Digg B in Fig. 12.
Fig. 12(a) and 12(b) shows the pruning ability of our proposed algorithm in
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Fig. 10. Running Time of Digg A
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Fig. 11. Running Time of Digg B

Digg A and Digg B when the length of burst window varies. Fig. 12(c) and
12(d) shows the pruning ability of our proposed algorithm in Digg A and Digg

B as the value of k changes. The results shows that our proposed algorithm is
able to prune most of the detailed searches.
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Fig. 12. Pruning Ability

5 Related Work

There are a few papers dealing with graph change. Liu et al. [8] proposed to
spot significant changing subgraphs in evolving graphs. Significance is measured
by the total change of similarities between vertex pairs inside subgraphs. After
finding the most significant changing vertices, a clustering-manner algorithm is
used to connect these vertices into subgraphs. Their problem is to find changing
regions between two snapshots of a large evolving graph, while we concentrate
on detecting burst areas over streams of fast graph evolutions in this paper.

The problem of identifying dense areas in large and sparse graphs has at-
tracted considerable research efforts in literature. Such dense areas, especially
in the domain of social science, are usually considered as communities. Most of
the existing studies [3,5,4] only handle static graph data, while there are only a
few studies [6,2,9] that deal with time-evolving graphs.

Kumar et al. [6] aimed to discover community bursts in a time-evolving blog
graph. Their algorithm first extracts dense subgraphs from the blog graph to
form potential communities. Then, the bursts within all the potential communi-
ties are identified by modeling the generation of events by an automaton. Bansal
et al. [2] focused on seeking stable keyword clusters in a keyword graph, which
evolves with additions of blog posts over time. All vertices in each maximum
bi-connected subgraph are reported as a cluster. A cluster graph is further con-
structed using clusters as vertices and connecting the clusters in adjacent time
stamps as edges. Finally, a path with the highest weight normalized by its length
in the cluster graph is discovered and presented as the set of persistent keyword
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clusters. Sun et al. [9] proposed GraphScope that is able to discover communi-
ties in large and dynamic graphs. GraphScope then iteratively searches for the
best community partition and time segmentation, which minimizes the encoding
objective function based on Minimum Description Length.

In [10], Zhu et al. developed a framework to detect bursts in time series
database. They used a shifted Haar wavelet tree, which is similar to haar wavelet
tree with extra memory cost to improve the pruning ability. In our proposed
solution, we could achieve similar pruning ability without extra memory cost by
updating the Haar wavelet in a dynamic manner.

6 Conclusions

In this paper, we have studied the problem of finding top-k burst areas in fast
graph evolutions. We proposed to update the Haar wavelet tree in a dynamic
manner to avoid high computation complexity while keeping its high pruning
ability. The top-k burst areas are computed incrementally from small hop size
to large hop size in order to minimize memory consumption. Our experimental
results on real data sets show our solution is very efficient and effective.

Acknowledgments. The work was supported by grants of the Research Grants
Council of the Hong Kong SAR, China No. 419008 and 419109.
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Abstract. Advances in web technology have given rise to new informa-
tion retrieval applications. In this paper, we present a model for geo-
graphical region search and call this class of query similar region query.
Given a spatial map and a query region, a similar region search aims to
find the top-k most similar regions to the query region on the spatial
map. We design a quadtree based algorithm to access the spatial map
at different resolution levels. The proposed search technique utilizes a
filter-and-refine manner to prune regions that are not likely to be part of
the top-k results, and refine the remaining regions. Experimental study
based on a real world dataset verifies the effectiveness of the proposed
region similarity measure and the efficiency of the algorithm.

1 Introduction

In the geo-spatial application, a similar region query happens when users want to
find some similar regions to a query region on the map. The application scenarios
include

– Similar region search. Due to the limitation of knowledge, people may only
be familiar with some places where they visit frequently. For example, people
go to the nearest entertainment region which include malls for shopping and
the restaurants for dinner. Sometimes, people wish to know the alternative
places as the options for both shopping and dinners. Base on their familiar
entertainment region, similar region query retrieves the regions that have
the similar functions to their familiar entertainment region.

– Disease surveillance. Similar region search query is also useful in identifying
the potential high-risk areas that are prone to outbreak of diseases. Many
infectious diseases thrive under the same geographical conditions. By query-
ing regions that are similar in geographical characteristics, we can quickly
highlight these high-risks areas.

The traditional IR model might be applied to answer similar region queries: A
direct application is to partition the map into a set of disjoined regions, represent
the region by a vector of PoI categories, and utilize the vector space model

� Part of this work was done when the first author worked as an intern in MSRA.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 186–201, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) Query region:
Shopping mall

(b) Cand. region 1:
Shopping street

(c) Cand. region 2:
Shopping area

(d) Cand. region 3:
University town

Fig. 1. The first three plots show the distribution of five restaurants (triangles), four
shops (circles) and one theater (star); The last plot gives a distribution of nine research
institutes (rectangle) and many nearby restaurants (triangles) and shops (circles)

(VSM) [11] to evaluate the similarity of the regions. However, the traditional
IR model is inadequate in supporting the “good” similar region queries due to
two reasons. First, in traditional IR model, users are required to provide a set of
keywords or terms to the search engine, and the search engine returns a list of
texts which are relevant to the keywords. However, in similar region query, users
only provide a query region instead of keywords. Second, similar region query
searches the regions of similar region functionality, which is actually determined
by the spatial objects (we call these spatial objects Point-of-Interests (PoIs) in
the rest of paper) in the region and their spatial distribution in this region, i.e.,
local distribution or distribution in short. The traditional IR model does not take
local distribution into account while computing the similarity.

For example, Figure 1 shows four local distributions, where the first three
regions have the identical number and categories of PoIs, and the last region has
different PoI categories from the first three regions. Given the query region shown
in Figure 1(a), traditional IR model ranks Figure 1(b) and Figure 1(c) higher
than Figure 1(d), because Figure 1(d) has different PoI categories. However,
the traditional IR model could not distinguish the first three plots of Figure 1,
which actually stand for three different region functionalities: Shopping malls
are usually located in the communities as the entertainment centers; Shopping
streets are located in the central business area for providing services to tourists;
Shopping areas are located around the residential areas and the shops usually
are groceries.

The above example highlights the importance of considering not only spatial
objects categories but also their local distributions when answering similar region
query. We present the problem for answering similar region query as follows.

Similar region query problem. Given a spatial map, a query region Rq, two
coefficients to control the area of region μ1 and μ2, we aim to find the top-k
most similar regions to Rq on the spatial map, such that 1) μ1 ≤ Area(Ri)

Area(Rq) ≤ μ2,
Ri is a return region, and 2) any two return regions do not have large overlap1.

1 The degree of overlap is measured by the intersection ratio of two regions. In this
paper, we set this ratio to be 0.8.
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In this paper, we focus on two main issues in tackling the similar region search
problem. The first issue is to provide a proper definition for region similarity.
While there have been extensive researches into defining the document simi-
larity [1], to the best of our knowledge, there is no existing similarity measure
for regions. In this paper, we propose a reference distance feature which is con-
sistent with the human routines to compare region similarity. Accordingly, we
extend the VSM model to the Spatial Vector Space Model (SVSM) by using
the reference distance feature to capture the local distributions of spatial object
categories.

Second, the search space in the region search problem is a continuous spa-
tial map. Exhaustive search on the continuous spatial map is too expensive to
provide quick response to users. To solve this problem, we provide a quadtree
based approximate region search approach. The basic idea follows the filter-and-
refine approach which is described as follows. We maintain a top-k region set
and the similarity threshold to be a top-k region. We extract the representative
categories from the query region and filter the quadtree cells that do not contain
the representative categories. We further prune those cells that are not likely to
be the top-k most similar regions. The remaining cells are remained as seeds to
expand gradually. We insert the expanded regions into top-k regions if their sim-
ilarity values are greater than the similarity threshold, and accordingly update
the similarity threshold.

The remainder of this paper is organized as follows. Section 2 discusses the
related work. Section 3 gives preliminaries. Section 4 presents the spatial vector
space model. Section 5 proposes the quadtree-based region search approach.
Section 6 reports our experiment results. Finally, Section 7 concludes this paper.

2 Related Work

Text retrieval is one of the most related problems. Conventional text retrieval
focuses on retrieving similar documents based on text contents, and a few of
similarity models, such as vector space model [11] and latent semantic analysis
model [5], are proposed to compare the similarity. Recently, location-aware text
retrieval, which combines both location proximity and text contents in text re-
trieval, receives much attention. To perform efficient retrieval, both document
locations and document contents are required to be indexed in the hybrid index
structures, such as a combination of inverted file and R∗-tree [14], a combination
of signature files and R-tree [7], DIR tree [3]. Our work substantially differs from
location-aware text retrieval queries because we consider the relative locations
of spatial objects and the returned results are regions which are obtained by the
space partition index Quadtree.

Image retrieval [4], particularly content based image retrieval (CBIR) [10], is
another related problem. CBIR considers the color, texture, object shape, object
topology and the other contents, and represent an image by a single feature
vector or a bag of feature vectors for retrieval. CBIR is different from the similar
region query problem because CBIR focuses on either the content of whole image
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or the relationship from one object to another object, while we search the similar
regions based on the local distribution of one category to another category. In
addition, the image retrieval system searches the similar images from an image
database, while our algorithm finds the similar regions on one city map which
need to be properly partitioned during retrieval.

There are two existing approaches to select features from spatial data. The
first approach is based on spatial-related patterns, such as collocation patterns [8]
and interaction patterns [13]. Both patterns are infeasible to be employed in the
similar region queries because they capture the global distribution among dif-
ferent PoI types, not the local distribution. The second approach is the spatial
statistical functions test, like cross K function test [2]. In spite of theoretic sound-
ness, this approach need long training time so that it is impractical to provide
efficient response to the query.

3 Preliminaries

Suppose P is a spatial map, and T is a set of PoI categories T ={C1, C2, . . . , CK}.
Each PoI may be labelled with multiple PoI categories. For example, a building
is labelled both as “Cinema” and “Restaurant” if it houses a cinema and has
at least one restaurant inside. The PoI database D contains a set of PoIs. Each
PoI in D is presented by a tuple o = 〈po; To〉, where po = (xo, yo) denotes the
location of o, and To is a set of o’s PoI categories.

A region R is a spatial rectangle bounded by [Rxmin , Rxmax ] × [Rymin , Rymax ]
which locates in map P . A PoI o = 〈po; To〉 is said to occur in region R if po ∈ R.
We use DR = {o|o ∈ D ∧ po ∈ R} to denote all PoIs which occur in region R,
and DR

Ci
= {o|o ∈ D∧po ∈ R∧Ci ∈ To} to denote a set of objects with category

Ci which occur in region R.
By modifying the concepts of TF-IDF measure in VSM, we define the CF-

IRF as follows. The Category Frequency (CF) of the category Ci in region Rj ,
denoted as CFi,j , is the fraction of the number of PoIs with category Ci occurring
in region Rj to the total number of PoIs in region Rj , that is,

CFi,j =
DRj

Ci

DRj
(1)

The importance of a category Ci depends on the distribution of PoIs with
category Ci on the entire map. Suppose we impose a gx × gy grid on the map.
The Inverse Region Frequency (IRF) of category Ci, denoted as IRFi, is the
logarithm of the fraction of the total number of grids to the number of grids
that contain PoIs with category Ci.

IRFi = log
gx × gy

|{DRj

Ci
|DRj

Ci
�= ∅}|

(2)

With CF and IRF, the significance of a category Ci in region Rj , denoted as
CF-IRFi,j , is defined as follows:

CF-IRFi,j = CFi,j × IRFi (3)
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The information content of a region Rj is denoted as a vector

−→
Rj = (f1,j , f2,j, . . . , fK,j) (4)

where fi,j denotes the CF-IRF value of category Ci in region Rj . We use |−→Rj |
denotes the Euclidean norm of vector

−→
Rj .

|−→Rj | =
√

f2
1,j + . . . + f2

K,j (5)

The information content similarity of two regions Ri and Rj is the cosine
similarity of the corresponding feature vectors of Ri and Rj .

Sim(Ri, Rj) = cos(
−→
Ri,

−→
Rj) =

−→
Ri ·

−→
Rj

|−→Ri| × |−→Rj |
(6)

4 Spatial Vector Space Model

A similarity measure is desirable to evaluate the similarity of two regions. To be
consistent with the human routines to compare region similarity, we propose the
intuitive two level evaluation criteria as follows.

1. Do the regions have a significant overlap in their representative categories?
This is the basic gist when users compare the similarity of regions. For ex-
ample, the regions shown in Figure 1(c) and Figure 1(b) share three common
categories, and the regions shown in Figure 1(c) and Figure 1(d) share two
common categories. Therefore, the region pair {Figure 1(c), Figure 1(b)} is
considered to be more similar than the region pair {Figure 1(c), Figure 1(d)}.

2. If two regions share some common representative categories, do the PoIs of
the common representative categories exhibit similar spatial distribution?
We observe that Figure 1(a), Figure 1(b) and Figure 1(c) all share the same
representative categories, however they are not considered similar as the dis-
tributions of the PoIs for each category are drastically different in the three
figures. In other words, two regions are more similar if they have not only the
common representative categories but also the similar spatial distribution of
PoIs. Given a query region of shopping mall, Figure 1(a) is more similar to
this query region than Figure 1(b) and Figure 1(c).

CF-IRF feature satisfies the first level evaluation criterion but does not satisfy
the second level criterion because it ignores the local distribution of the PoIs.
This motivates us to propose a distribution-aware spatial feature and Spatial
Vector Space Model (SVSM). In SVSM, a region Rj is represented by a spatial

feature vector of n entries,
−→
Rj = (f1,j , f2,j , . . . , fn,j) where fi,j is the i-th

spatial feature entry and n is total number of features or the dimension of
the feature vector.

A desirable spatial feature will be insensitive to rotation variation and scale
variation. In other words, if two regions are similar, rotating or magnifying one of
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Fig. 2. An example of query region and its reference distance

the two regions will not affect their similarity. Figure 2 illustrates a query region
and three candidate regions in a map. We consider candidate region 1 and 2
are similar to the query region because they are similar to query region after
rotating by a scale variation (clockwise 270o) or magnifying by a scale variation,
respectively. In contrast, candidate region 3 is not so similar as candidate region
1 and 2 to the query region. Motivated by the requirements to minimize the
effects of scaling and allow for rotation invariant, we introduce the concept of
reference distance to capture the spatial distributions.

Average nearest neighbor distance can be employed to measure the local dis-
tribution in statistics domain [6], but it is expensive (O(n2) if no spatial index is
used, where n is the number of PoIs). Therefore, we propose the concept of refer-
ence point. The reference points are user-specified points in a region to capture
the local distributions of the PoIs in this region. The intuition behind reference
points is based on the observation that most users tend to use some reference
points for determining region similarity. For example, while comparing two re-
gions which have one cinema each, users tend to roughly estimate the average
distances from the other categories to the cinema, and compare the estimated
distances of two regions. Here, the cinema is a reference point.

It raises an issue to select the proper number of reference points and their
locations. We consider two extreme cases as follows. On one hand, one or two
reference points are not enough to capture the distribution. For example, Fig-
ure 2 shows that one reference point cannot distinguish the distribution of query
region and candidate region 3. On the other hand, a larger number of reference
points will give a more accurate picture of the spatial distributions among the
PoIs, but at the expense of greater computational cost. In this paper, we seek the
tradeoff between the two extreme cases. We propose that five reference points,
including the center and four corners of the region, are proper to capture the
local distribution. Figure 2 illustrates the five reference points, and the reference
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distances of two PoIs to the five reference points. The complexity to compute
reference distance is O(5 · n), which is more efficient than nearest neighbor dis-
tance O(n2). Here, we do not claim that the selection of five point reference
points is the best, but experiment results show that it is reasonable.

We now define the reference distance. Give a region R, a set of PoIs P , and
five reference points O={o1, o2, . . . , o5}. The distance of P to the i-th reference
point oi ∈ O is

r(P, oi) =
1
|P |

∑
p∈P

dist(p, oi) (7)

Assume region R has K different categories of PoIs. We use ri,j to denote the
distance of PoIs with category Ci to the reference point oj .The distance of K
categories to the reference set O is a vector of five entries.

I = {−→I1 , . . . ,
−→
I5} (8)

where each entry is the distance of K categories to the reference point oj ,
−→
Ii =

(r1,i, r2,i, . . . , rK,i).
The similarity of two feature vector sets IRi = {−→I1,i, . . . ,

−→
I5,i} and IRj =

{−→I1,j , . . . ,
−→
I5,j}, is

Simr(IRi , IRj ) =
1
5

5∑
k=1

Sim(Ik,i, Ik,j) (9)

We incorporate the rotation variation into similarity as follows. Given region
Rj , we obtain four rotated regions Rj1, Rj2, Rj3 and Rj4 by rotating Rj 90
degree each time. The similarity of Ri and Rj is the similarity of Ri and the
most similar rotated region of Rj , that is,

Simr(Ri, Rj) = arcmax{Simr(IRi , IRjk
), k = 1, 2, 3, 4} (10)

Lemma 1. The reference distance feature is insensitive to rotation and scale
variations.

Proof: Based on Equation 10, we can derive that the reference distance feature
is insensitive to rotation variation. Now we prove that the reference distance
feature is insensitive to scale variation as follows. Assume Rj is obtained by
scaling Ri by a factor σ. We have

−→
IRj = σ

−→
IRi and |−→IRj | = σ|−→IRi |. Therefore,

Simr(Ri, Rj) = cos(
−→
IRi , σ

−→
IRj ) =

−−→
IRi

·σ−−→IRi

|−−→IRi
|×σ|−−→IRi

| = 1. �

5 Proposed Approach

Given a query region Rq and two coefficients to control the area of region re-
turned, μ1 and μ2, the naive approach to answer similar region queries is to
utilize a sliding window whose area is between min area = μ1 × area(Rq) and
max area = μ2 × area(Rq). The sliding window is moved across the entire
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map and at each move, we compute the similarity between Rq and the sliding
window. If we maintain a list of top-k regions having the k largest similarity
values, then the time complexity of this naive approach in the worst case, given
a mapx×mapy spatial map, is O(k×min area×mapx×mapy). This is because
the total number of candidate regions is min area × mapx × mapy. For each
candidate region we compute whether it overlaps with the existing top-k similar
regions in O(k) time complexity. Thus the overall time complexity of this algo-
rithm is O(k2 ×min area×mapx ×mapy), which is too expensive to provide a
quick response to users.

To overcome the high complexity of the naive method, we propose a quadtree-
based approximate approach. Figure 3 shows the system architecture overview
of our approach. The architecture comprises an offline process and an online
process. The offline process partitions the map into a hierarchical structure and
builds a quadtree structure for quick retrieval of PoIs. The online process uses
these index structures to perform region search queries efficiently. Given a query
region, the system analyzes the shape and size of this region and determines
the appropriate quadtree layer to initiate the similar region search process. At
the same time, the system will compute the CF-IRF values to derive the rep-
resentative categories of the query region. Once we know the starting level of
the quadtree and the representative categories of the query region, we begin a
filter-and-refine procedure to quickly reduce the search space that is unlikely to
be in the top-k most similar regions.
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5.1 Quadtree Structure

Given a PoI database and the map of this database, we partition the map and
build a hierarchical quadtree structure [12] to facilitate the construction of multi-
scale regions. In the quadtree, the root node indicates the whole map and each
non-leaf node corresponds to one of the four partitioned cells from its parent’s
cell. At the lowest level, each leaf node corresponds to the partitioned cell with
the smallest granularity. The depth of the quadtree depends on the smallest gran-
ularity requirement in applications. In our system, the leaf node is 100 meters by
100 meters, so the quadtree height is 10 for a city of 30 kilometers by 30 kilometers.

The quadtree structure enables an efficient handling of multi-granularity sim-
ilar region queries. This is because we can adaptively select the different level of
granularity by accessing the quadtree nodes at the appropriate level. For exam-
ple, if the query region is the size of 200 meters by 200 meters and the parameter
to control the minimal return region area μ1=0.25, we perform the search on the
leaf node because the leaf node area is no less than μ1 times of the query region
area.

The quadtree allows the effective region pruning by storing the key statistical
information at each node in the quadtree. Each node maintains the lower bound
and upper bound of feature entries defined as follows.

Definition 1. The lower bound feature vector of a node B, denoted as
−→
B lb, is

(f1,lb, f2,lb, . . . , fn,lb), where fi,lb is the minimum i-th feature entry value of all
descendant nodes of B.

Definition 2. The upper bound feature vector of a node B, denoted as
−→
B ub,

is (f1,ub, f2,ub, . . . , fn,ub), where fi,ub is the maximum i-th feature value of all
descendant nodes of B.

Each quadtree node maintains the minimum/maximum CF-IRF vector and the
minimum/maximum reference distance vector. These bounds are useful for prun-
ing the candidate regions as stated in Lemma 2.

Lemma 2. Let
−→
Rq = (f1,q, f2,q, . . . , fn,q) to be the the feature vector of query

region, δ to be the cosine similarity threshold of top-k regions. A node B can be
pruned if for any feature entry fi,q, we have fi,ub · fi,q ≤ δ

n · |
−→
B lb| · |

−→
Rq|.

Proof: Let fi,j to be the i-th feature entry of region Rj where Rj ∈ B. Then
fi,lb ≤ fi,j ≤ fi,ub and |−→B lb| ≤ |−→Rj | ≤ |−→B ub|. Assume that fi,ub · fi,q ≤ δ

n ·
|−→B lb| · |

−→
Rq|. For the i-th feature entry fi,j , we have fi,j · fi,q ≤ fi,ub · fi,q ≤

δ
n · |

−→
B lb| · |

−→
Rq| ≤ δ

n · |
−→
Rj | · |

−→
Rq|.

By summing up the inequalities,
−→
Rj ·

−→
Rq =

∑n
p=1 fp,j · fp,q ≤ δ · |−→Rj | · |

−→
Rq|.

So, we have cos(
−→
Rj ,

−→
Rq) ≤ δ, which means that any region Rj under B will not

have a larger similarity than the top-k region similarity threshold. �

With Lemma 2, we can prune all nodes B that have no chance of satisfying the
similarity threshold δ. For example, suppose the quadtree node B has four child
nodes B1, B2, B3, B4. Each feature vector of child node has five entries.
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−→
B1 = (0.1, 0.3, 0.1, 0.8, 0.0),

−→
B2 = (0.1, 0.7, 0.2, 0.7, 0.0)−→

B3 = (0.0, 0.3, 0.1, 0.8, 0.2),
−→
B4 = (0.2, 0.4, 0.2, 0.6, 0.1)

So we have
−→
B lb = (0.0, 0.3, 0.1, 0.6, 0.0) and

−→
B ub = (0.2, 0.7, 0.2, 0.8, 0.2).

Let the feature vector of query region is
−→
Rq = (0.9, 0.1, 0.9, 0.1, 0.8) and δ =

0.95. We have δ
n · |

−→
B lb| · |

−→
Rq|=0.2468. The node B can be pruned because each

feature entry product of
−→
Rq and

−→
B ub is less than 0.2468.

In addition, we also construct an inverted tree index on the representative
categories to facilitate similar region search. The root node of the inverted tree
has K entries, where each entry corresponds to a category. Each category, say Ci,
of a non-leaf node is associated with a child node that has four entries. The entry
value is 1 if the corresponding partitioned region has the Ci as a representative
category; otherwise the entry value will be 0. This inverted list tree is recursively
built until it reaches a leaf node of the quadtree structure or all four entries have
value 0. Based on this inverted tree index, we can quickly identify the cells that
have similar categories to the query region.

5.2 Region Search Algorithm

In this section, we present the search strategy based on the quadtree structure.
The basic idea is to compute the proper search level in the quadtree in which the
buckets of search level will be greater than the minimal area of returned regions,
and on the search level we select a few bucket as seeds to gradually expand to
larger regions of proper size and large similarity value to the query region.

Algorithm 1 gives a sketch of the region search process. Line 1 computes the
search level based on the granularity of query region. Line 2 extracts the repre-
sentative categories from the search region Rq. The function ExtractCategory
computes the CF-IRF values for each category on Rq and only maintains the
top-m categories with the largest CF-IRF values. Line 3 adjusts the feature vec-
tor of Rq. The entries which correspond to the top-m representative categories
remain and the other entries are set to be zero. Line 4 initializes the return
region set to be an empty set and the similarity threshold δ to be 0. Line 5 calls
procedure SearchQTree to search the similar regions.

Procedure SearchQTree recursively searches and prunes the candidate re-
gions in quadtree. Line 8 is the validity checking for the top-k regions. A bucket
is valid only if 1) it contains the CM representative categories, and 2) it cannot
be pruned by Lemma 2. The inverted tree structure and the feature bounds of
buckets facilitate the validity checking. If a bucket is valid and this bucket is
higher level than lsearch (Line 9), its child nodes need to be recursively detected
further (Lines 10-11). Otherwise, Line 13 expands the valid buckets on lsearch by
calling the function RegionExpansion. Line 14 inserts the expanded region R to
the top-k region set R, if R has no big overlap with the existing top-k regions or
R has overlap with one existing top-k regions but R has a larger similarity value.
Line 15 updates the similarity threshold δ based on the k-th largest similarity
value in R currently.
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Algorithm 1. RegionSearch(Rq, T , k, m)
input : Query region Rq; Quadtree T ; Number of return regions k; Number of

representative categories m.
output: Top-k similar regions
Compute the search level lsearch on T based on Rq;1

CM = ExtractCategory(Rq , m);2

Adjust(
−→
Rq , CM);3

R = ∅; δ = 0;4

SearchQTree(
−→
Rq , T.root, δ, R);5

return R;6

Procedure SearchQTree(Rq, B, δ, R, CM)7

if B has CM categories ∧ B cannot be pruned by Lemma 2 then8

if B.level < lsearch then9

foreach child node B′ ∈ B do10

SearchQTree(Rq , B′, δ, R);11

else12

R = RegionExpansion(Rq , B′);13

R = R ∪R;14

update δ;15

Function RegionExpansion(Rq,R)16

repeat17

foreach dir ∈ {LEFT, RIGHT,DOWN, UP} do18

R′′ = expand(R,dir);19

dir = arcmax( Sim(Rq,R
′′));20

R′ = expand(R,dir);21

until Sim(Rq , R) ≤ Sim(Rq , R
′);22

return R′23

The RegionExpansion function (Lines 16-23) treats a region as a seed, per-
forms the tentative expansion in four candidate directions, and selects the op-
timal expanded region which gives the largest similarity value. The step width
of each expansion is the cell side of the quadtree leaf node in order to minimize
the scope of expansion, which eventually approach the local most similar region.
The expansion stops if there is no increase in the similarity value (Line 22).

Finally, Line 6 returns the top-k regions. If the number of regions in R is less
than k, we decrease the value of m by 1 in Line 2, and search the cells which
share exact m−1 common representative categories. We repeatedly decrease the
m value by 1 till the number of return regions in R reaches k.

6 Experiment Studies

In this section, we present the results of our experiments to examine the perfor-
mance of similar region search. We first describe the experiment settings and the
evaluation approach. Then, we report the performance on the region queries.
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6.1 Settings

In our experiments, we use the Beijing urban map, which ranges from latitude
39.77 to 40.036, and longitude 116.255 to 116.555. The spatial dataset consists
of the real world yellow page data of Beijing city in China. This dataset has
two parts. The first part contains the persistent stationery spatial objects, such
as the large shopping malls, factories, gas stations, land-marks, etc. The second
part is the set of short-term and spatial objects which are updated from time
to time, such as small restaurants and individual groceries. The total number
of PoIs are 687,773, and they are classified into 48 major categories by their
properties and functions.

We construct a quadtree for the Beijing urban map. The quadtree height is
10, and the cell side of quadtree leaf node is about 100 meters and the number of
leaf nodes is 512× 512. For each node of quadtree, we compute the lower bound
and upper bound for the two features, namely category frequency and reference
distance. We set μ1=0.25 and μ2=4, which means the return region areas range
from one quarter to four times of query region areas.

As we are not aware of any existing work that support top-k similar region
queries, we only evaluate two variants of the RegionSearch algorithm as follows.
1) VSM: It is a baseline algorithm based on the CF-IRF vector space model,
and 2) SVSM: It is a spatial vector space model based algorithm that measures
region similarity by the reference distance feature vector.

Given a query region, VSM and SVSM return the top-5 most similar regions
respectively. Five users who are familiar with Beijing city score the return regions
from 0 to 3 according to the relevance of the query region and the return regions.
The final score of a return region is the average scores of five users. Table 1 gives
the meanings of each score level.

Table 1. Users’ scores for the return region

Scores Explanations
0 Totally irrelevant
1 A bit relevant, with at least one common functionality with the query region
2 Partially relevant, the functionality of return region cover that of query region
3 Identically relevant, the return and query regions have the same functionality

We employ DCG (discounted cumulative gain) to compare the ranking per-
formance of VSM and SVSM. The criteria DCG is used to compute the relative-
to-the-ideal performance of information retrieval techniques. For example, given
G =(2, 0, 2, 3, 1), we have CG =(2, 2, 4, 7, 8) and DCG =(2, 2, 3.59, 5.09,
5.52). The higher the scores computed by DCG, the more similar the return
region. Please refer to [9] for the definitions of the cumulative gain (CG) and the
discounted cumulative gain (DCG).

All the algorithms are implemented in C++ and the experiments are carried
out on a server with dual Xeon 3GHZ processors and 4GB memory, running
Windows server 2003.
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6.2 Effectiveness Study

We select three typical types of query regions as the test queries.

– The shopping mall. The shopping mall is one of the commercial community
whose spatial points are clustered in small regions.

– The commercial street. The commercial street is another commercial com-
munity whose spatial points distributed along the streets.

– The university. The spatial points has a star-like distribution where the
institutes are located at the center and other facilities such as hotels and
restaurants are located around the university.

Each type of query region is given three query regions, which are listed in
Table 2. We evaluate the average DCG values for each type of query region.

Table 2. The type and size (meter × meter) of nine query regions

ID Type Query region ID Type Query region ID Type Query region
q1 mall 150×150 q4 street 150×600 q7 university 1400×800
q2 mall 100×300 q5 street 200×500 q8 university 1400×1100
q3 mall 50×70 q6 street 300×100 q9 university 1200×1200

In order to find a proper number of representative categories, we run the two
algorithms on different queries by varying the number of representative categories
to be 3,5,10. We found that the average DCG curve of m=5 is better than the
curves of m=3 and m=10. The result is consistent with our expectation because
small m values are not enough to differentiate the region functionality, and large
m values are likely to include some noise categories, both of which could affect
the precision of return regions. We set m=5 in the rest experiments.

Figure 4 shows the average DCG curves for the three types of query regions.
We observe that SVSM outperforms VSM for all of three query types, especially
on shopping mall queries and street queries. This is expected because SVSM
captures both the PoI categories and the local distribution in a region, which
is consistent with human routines to evaluate the region similarity. In addition,
SVSM did not have remarkable performance on the university queries. This is
possibly because university query regions are larger than shopping mall queries
and street queries, which results in the larger reference distances to decrease the
contrast of spatial feature vector.

6.3 Efficiency Study

In this set of experiments, we study the efficiency of VSM and SVSM. Figure 5
gives the runtime for the three query types as m varies from 3 to 10. We see that
both VSM and SVSM are scalable to m, but VSM is the faster than SVSM. This
is because SVSM requires extra time to process the additional spatial features.
We also observe that the runtime for SVSM decreases as m increases. This is
because a larger number of representative categories lead to the pruning of more
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Fig. 4. Average DCG curves for three query types (m = 5)
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Fig. 5. Effect of m on runtime
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Fig. 6. Number of region expansion

candidate regions. In addition, the runtime for the university queries is smaller
than the other two query types since the runtime is determined by the area
constraint of return regions. For large query regions, the search starts at the
higher levels of the quadtree which have small number of candidate regions.

Next, we check the performance of pruning strategy. Since only the candidate
regions which pass the validity test are expanded, we evaluate the pruning strat-
egy by counting the number of region expansion operations. Figure 6 shows the
number of region expansion performed for the three query types. In this experi-
ment, the shopping mall queries and street queries have around 260,000 candi-
date regions, and the university queries have around 16,000 candidate regions.
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We observe that q1 have more regions to be expanded than q2 and q3 (see Fig-
ure 6(a)). A closer look reveals that q1 only contains three categories, hence
many regions are considered as candidates. Figure 6(b) and Figure 6(c) show
that less than 3,000 and 1,800 regions are expanded respectively, demonstrating
the power of the pruning strategies.

7 Conclusion

In this paper, we introduce a similar region query problem in which spatial dis-
tribution is considered to measure region similarity. We propose the reference
distance feature and spatial vector space model (SVSM) which extends the con-
cept of vector space model to include reference distance features. We design
a quadtree-based approximate search algorithm to filter and refine the search
space by the lower and upper bounds of feature vectors. Experiments on the real
world Beijing city map show that our approach is effective in retrieving similar
regions, and the feature bounds are useful for pruning the search space. To the
best of our knowledge, this is the first work on similar region search. We plan
to investigate other types of spatial features for region similarity definition and
hope to incorporate our techniques into the Microsoft Bing search engine.
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Abstract. Visibility query is fundamental to many analysis and decision-
making tasks in virtual environments. Visibility computation is time com-
plex and the complexity escalates in large and dynamic environments,
where the visibility set (i.e., the set of visible objects) of any viewpoint is
probe to change at any time. However, exact visibility query is rarely nec-
essary. Besides, it is inefficient, if not infeasible, to obtain the exact result
in a dynamic environment. In this paper, we formally define an Approxi-
mate Visibility Query (AVQ) as follows: given a viewpoint v, a distance ε
and a probability p, the answer to an AVQ for the viewpoint v is an approx-
imate visibility set such that its difference with the exact visibility set is
guaranteed to be less than ε with confidence p. We propose an approach to
correctly and efficiently answer AVQ in large and dynamic environments.
Our extensive experiments verified the efficiency of our approach.

1 Introduction

Visibility computation, i.e., the process of deriving the set of visible objects with
respect to some query viewpoint in an environment, is one of the main enabling
operations with a majority of spatial analysis, decision-making, and visualization
systems ranging from GIS and online mapping systems to computer games. Most
recently the marriage of spatial queries and visibility queries to spatio-visual
queries (e.g., k nearest visible-neighbor queries and nearest surrounder queries)
has further motivated the study of visibility queries in the database community
[4,11,12]. The main challenge with visibility queries is the time-complexity of
visibility computation which renders naive on-the-fly computation of visibility
impractical with most applications.

With some traditional applications (e.g., basic computer games with simple
and unrealistic visualization), the virtual environment is simple and small in
extent, and hence, it can be modeled merely by memory-resident data struc-
tures and/or synthetic data. With such applications, a combination of hardware
solutions (e.g., high-end graphic cards with embedded visibility computation
modules) and memory-based graphics software solutions are sufficient for visi-
bility analysis. However, with emerging applications the virtual environment is
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becoming large and is modeled based on massive geo-realistic data (e.g., ter-
rain models and complex 3D models) stored on disk (e.g., Google Earth, Sec-
ond Life). With these applications, all proposed solutions [10,14,15] inevitably
leverage pre-computation to answer visibility queries in real-time. While such
solutions perform reasonably well, they are all rendered infeasible with dynamic
environments, as they are not designed for efficient update of the pre-computed
visibility information.

In this paper, for the first time we introduce approximate visibility query
(AVQ) in large dynamic virtual environments. Given a viewpoint v, a distance
ε, and a confidence probability p, the answer to AVQ with respect to the view-
point v is an approximate visibility vector, which is guaranteed to be in a dis-
tance less than ε from the exact visibility vector of v with confidence p, where
visibility vector of v is the ordered set of objects visible to v. The distance ε
is defined in terms of the cosine similarity between the two visibility vectors.
Approximation of the visibility is the proper approach for visibility computation
with most applications because 1) exact answer is often unnecessary, 2) exact an-
swer is sometimes infeasible to compute in real-time due to its time-complexity
(particularly in large dynamic environment), and 3) a consistent approximation
can always converge to the exact answer with arbitrary user-defined precision.
To enable answering AVQs in large dynamic environments, we propose a pre-
computation based method inspired by our observation that there is a strong
spatial auto-correlation among visibility vectors of distinct viewpoints in an en-
vironment, i.e., the closer two viewpoints are in the environment, often the more
similar are their visibility vectors. Consequently, one can approximate the vis-
ibility vector of a viewpoint v by the visibility vectors of its close neighbors.
Towards this end, we propose an index structure, termed Dynamic Visibility
Tree (DV-tree for short), with which we divide the space into disjoint partitions.
For each partition we pick a representative point and pre-compute its visibility
vector. The partitioning with DV-tree is such that the distance between the vis-
ibility vector of any point inside a partition and that of the representative point
of the partition is less than ε with confidence p. Therefore, with DV-tree we
can efficiently answer an AVQ for viewpoint v (with distance ε and confidence
p) by returning the pre-computed visibility vector of the representative point of
the partition in which v resides. Figure 1 depicts an example of AVQ answering,
which we discuss in more detail in Section 3. Accordingly, Figure 1a shows the
exact visibility for viewpoint v while Figure 1b depicts the approximate result
returned by DV-tree (i.e., visibility of the representative point of the partition
in which v resides).

DV-tree is particularly designed to be efficiently maintainable/updatable in
support of visibility computation in dynamic environments. In a dynamic envi-
ronment, at any time a set of moving objects are roaming throughout the space,
and consequently, the visibility vectors of some viewpoints may change. Accord-
ingly, the partitioning of the DV-tree must be updated to reflect the visibility
changes. However, this process is costly as it requires computing the visibility
vectors of all viewpoints within each (and every) partition, to be compared
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with the visibility vector of the representative point of the corresponding par-
tition. We have devised a two-phase filtering technique that effectively reduces
the overhead of the DV-tree partition maintenance. In the first phase, termed
viewpoint filtering, we effectively filter out the viewpoints whose visibility re-
mains unchanged despite the recent object movements in the environment. For
the remaining viewpoints (i.e., those that are filtered in), we proceed with the
second phase, termed object filtering. In this phase, before computing the vis-
ibility vector for each of the remaining viewpoints, we effectively filter out all
objects in the environment whose visibility status with respect to the viewpoint
remains unchanged despite the recent object movements in the environment.
After the two-phase filtering process, we are left with a limited number of view-
points whose visibility must be computed with respect to only a limited number
of objects in each case. Therefore, we can efficiently compute their visibility and
also revise the corresponding DV-tree partitions accordingly, if needed.

Finally, through extensive experiments, we show that our approach can effi-
ciently answer AVQ in large dynamic environments. In particular, our experi-
ments show that DV-tree result is more than 80% accurate in answering AVQ,
while the update cost is tolerable in real scenarios. This validates our observa-
tion about the spatial auto-correlation in visibility vectors. Note that both the
approximation error and the update cost can be interpreted as the visual glitch
and frame rate delay, respectively, in visualization systems. In general, for a DV-
tree with higher error-tolerance, larger partitions are generated. This results in
more visual glitches as a viewpoint moves from one partition to another, since
its visibility may encounter a noticeable change during this transition. However,
less frame rate delay is expected, because the DV-tree update is less costly as
compared to that of a less error-tolerant DV-tree. On the other hand, for a DV-
tree with less error-tolerance, smaller partitions are generated, which results in
less glitches, but higher frame rate delays. Thus, there is a trade-off between
these two system faults. Our experiments also show that DV-tree significantly
outperforms a competitive approach, HDoV-tree [15], in both query response
time and update cost.

The rest of the paper is organized as follows. Section 2 reviews the related
work. In Section 3, we formally define our problem, and successively in Section 4
we present an overview of our proposed solution. Thereafter, in Sections 5 and
6 we explain the processes of construction and update for our proposed index
structure (DV-tree). Section 7 presents the experimental results. Finally, in Sec-
tion 8 we conclude and discuss the future directions of this study.

2 Related Work

Visibility analysis is an active research topic in various fields, including computer
graphics, computer vision, and most recently, databases. Below, we review the
existing work on visibilty analysis in two categories: memory-based approaches
for small environments and disk-based approaches for large environments.
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2.1 Memory-Based Approaches

In [1,3,9,17], different approaches are proposed for fast and efficient rendering.
The end goal of most of these studies is to develop efficient techniques to ac-
celerate image generation for realistic walkthrough applications [6]. In addition,
there are a few proposals [2,5,7,16] from the computer graphics community on
visibility analysis in dynamic environments. However, the aforementioned work
assume the data are memory-resident, and therefore, their main constraint is
the computation time, rather than disk I/O. This is not a practical assumption
considering the immense data size with today’s emerging applications with large
virtual environments.

2.2 Disk-Based Approaches

On the other hand, in database community, many spatial index structures (e.g.,
R-tree, quad-tree) are proposed for efficient access to large data. Here, the goal is
to expedite the search and querying of relevant objects in databases (e.g., kNN
queries) [13], where the relevance is defined in terms of spatial proximity rather
than visibility. However, recently a number of approaches are introduced for effi-
cient visibility analysis in large virtual environments that utilize such spatial
index structures to maintain and retrieve the visibility data ([10,14,15]). In
particular, [10,14] exploit spatial proximity to identify visible objects. How-
ever, there are two drawbacks with utilizing spatial proximity. First, the query
might miss visible objects that are outside the query region (i.e., possible false
negatives). Second, all non-visible objects inside the query region would also
be retrieved (i.e., numerous false positives). Later, in [15], Shou et al. tackle
these drawbacks by proposing a data structure, namely HDoV-tree, which pre-
computes visibility information and incorporates it into the spatial index struc-
ture. While these techniques facilitate answering visibility queries in large en-
vironments, they are not designed for dynamic environments where visibility
might change at any time. They all employ a pre-computation of the environ-
ment that is intolerably expensive to maintain; hence, inefficient for visibility
query answering in dynamic environments.

In this paper, we focus on answering visibility queries in virtual environments
that are both large and dynamic. To the best of our knowledge, this problem
has not been studied before.

3 Problem Definition

With visibility query, given a query point q the visibility vector of q (i.e., the set
of objects visible to q) is returned. Correspondingly, with approximate visibility
query for q the returned result is guaranteed to be within certain distance from
the exact visibility vector of q, with a specified level of confidence. The distance
(or alternatively, the similarity) between the approximate and exact visibility
vectors is defined in terms of the cosine similarity between the two vectors.
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In this section, first we define our terminology. Thereafter, we formally define
Approximate Visibility Query (AVQ).

Consider a virtual environment Ω ⊂ R3 comprising of a stationary envi-
ronment ϕ as well as a set of moving objects μ (e.g., people and cars). The
stationary environment includes the terrain as well as the static objects of the
virtual environment (e.g., buildings). We assume the environment is represented
by a TIN model, with which all objects and the terrain are modeled by a net-
work of Delaunay triangles. We consider both static and moving objects of the
environment for visibility computation. Also, we assume a query point (i.e., a
viewpoint whose visibility vector must be computed) is always at height h (e.g.,
at eye level) above the stationary environment ϕ.

Definition 3.1. Given a viewpoint v, the 3D shadow-set of v with respect to
an object O ⊂ Ω, S(v, O), is defined as follows:

S(v, O) = {tr|tr ∈ Ω, tr /∈ O, ∃p ∈ tr s.t. vp ∩O �= ∅} (1)

i.e., S(v, O) includes any triangle tr in Ω, for which a straight line vp exists that
connects v to a point p on tr, and vp intersects with O.

Accordingly, we say a triangle t is visible to v, if t is not in the shadow-set of
v with respect to any object in the environment. That is, t is visible to v, if we
have:

t ∈ {tr|tr ∈ Ω −
⋃

∀O⊂Ω

S(v, O), dist(v, tr) ≤ D} (2)

where dist is defined as the distance between v and the farthest point from
v on tr, and D is the visibility range, i.e., the maximum range visible from a
viewpoint.

Note that without loss of generality, we assume boolean visibility for a triangle.
Accordingly, we consider a visible triangle as the one which is only fully visible.
However, triangle visibility can be defined differently (e.g., a triangle can be
considered visible even if it is partially visible) and our proposed solutions remain
valid.

Definition 3.2. Given a viewpoint v and an object O ⊂ Ω, we define the
visibility value of O with respect to v as follows:

visv
O =

∑
tr∈Tv∧tr∈O Area(tr)∑

tr∈Tv
Area(tr)

× 1
Dist(v, O)

(3)

where Tv is the set of all triangles visible to v, and Dist(., .) is the distance
between a viewpoint and the farthest visible triangle of an object. In other words,
the visibility value of an object O with respect to a viewpoint v is the fraction
of visible triangles to v which belong to O, scaled by the distance between v
and O. Intuitively, visibility value captures how visually significant an object
is with respect to a viewpoint. Thus, according to our definition of visibility
value, nearby and large objects are naturally more important than far away
and small objects in terms of visibility. In general, there are many factors (some
application-dependent) that can be considered in determining the visibility value
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of objects (e.g., size of the object, the view angle). Developing effective metrics
to evaluate visibility value is orthogonal to the context of our study, and hence,
beyond the scope of this paper.

Definition 3.3. For a viewpoint v, we define its visibility vector as follows:

V Vv = (visv
O1 , visv

O2 , ..., visv
On

) (4)

Visibility vector of v is the vector of visibility values for all the objects Oi ∈ Ω
with respect to v.

Definition 3.4. Given two viewpoints, v1 and v2, the visibility similarity be-
tween the two viewpoints is defined as the cosine similarity between their visi-
bility vectors as follows:

sim(v1, v2) = cosim(V Vv1 , V Vv1) =
V Vv1 .V Vv2

||V Vv1 || ||V Vv1 ||
(5)

We say the two viewpoints v1 and v2 (and correspondingly their visibility vectors)
are α−similar if:

cosim(V Vv1 , V Vv1) = α (6)

Equally, the visibility distance ε is defined based on the similarity α as ε = 1−α.
Alternatively, we say the two viewpoints are ε-distant (ε = 1− α).

Definition 3.5. AVQ Problem

Given a query point q, a visibility distance ε, and a confidence probability p, the
Approximate Visibility Query returns a vector A ∈ Ω, such that the visibility
vector V Vq of q and A have at least (1− ε)-similarity with confidence p.

A visual example of AVQ query is shown in Figure 1. Given a query point q,
ε=30%, and p=90%, Figure 1a depicts the exact visibility V Vq for q, whereas
Figure 1b shows the AVQ result A, which approximates the visibility from view-
point q with a user-defined approximation error.

4 Solution Overview

To answer AVQs, we develop an index structure, termed Dynamic Visibility Tree
(DV-tree for short). Given a specific visibility distance ε and confidence p, a DV-
tree is built to answer AVQs for any point q of the virtual environment Ω. The
parameters ε and p are application-dependent and are defined at the system
configuration time. Figure 2 depicts an example of DV-tree built for Ω. DV-tree
is inspired by our observation that there exists a strong spatial auto-correlation
among visibility vectors of the viewpoints. Accordingly, we utilize a spatial par-
titioning technique similar to quad-tree partitioning to divide the space into a
set of disjoint partitions. However, unlike quad-tree that uses spatial distance
between objects to decide on partitioning, with DV-tree we consider visibility
distance between viewpoints to decide if a partition should be further partitioned
into smaller regions. Particularly, we continue partitioning each region to four
equal sub-regions until every viewpoint in each sub-region and the representa-
tive point of the sub-region (selected randomly) have at least (1-ε)-similarity in
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visibility with confidence p (see Figure 2). Once DV-tree is constructed based
on such partitioning scheme, we also pre-compute and store the visibility vector
of the representative point for every partition of the tree. Subsequently, once
an AVQ for a query point q is received, it can be answered by first traversing
DV-tree and locating the partition to which q belongs, and then returning the
visibility vector of the partition’s representative point as approximate visibility
for q. For example, in Figure 2 the query point q is located at partition P31.
Thus, the answer to AVQ for the query point q is the visibility vector V Vr

P31
of

the representative point r
P31

of the partition P31.

a) Exact visibility (V Vq) b) Approx. visibility (A)

Fig. 1. Comparing approximate visibility (AVQ
with ε=30% and p=90%) with exact visibility for
a viewpoint q

rP2

rP1

P2

P42P41

P44P33

P31 P32

P34

P1

rP31q
P431

P433

P432

P434

Fig. 2. DV-tree for Ω

However, in a dynamic environment the visibility (i.e., the visibility vectors of
the viewpoints) may change as the objects move around. Accordingly, in order
to guarantee correct AVQ answering, the pre-computed partitioning with DV-
tree must be updated to maintain the distance between the representative point
of the partition and the rest of the viewpoints within the partition. To enable
efficient update, we propose a two-phase filtering technique which significantly
reduces the update cost of DV-tree. In particular, the first phase prunes the
unnecessary viewpoints whose pre-computed visibility data do not require up-
date (Section 6.1), while the second phase prunes the set of objects that can be
ignored while computing visibility for the remaining viewpoints (Section 6.2).
Sections 5 and 6 discuss the construction and update processes for DV-tree,
respectively.

5 Index Construction

In order to construct DV-tree with visibility distance ε and confidence p for a given
environment, we iteratively divide the region covered by the environment into four
smaller subregions, and for each partition we pick a random representative point,
until with a confidence p all the viewpoints inside a partition reside in a visibility
distance of less than ε, with the representative point of the partition (Figure 3).
With this index construction process, at each step of the partitioning we need to
compute the visibility vectors of all the viewpoints of a partition, and then find
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their visibility distance with the representative point. However, the computation
cost for such operation is overwhelming. This stems from the fact that each par-
tition should always satisfy the given ε and p for the approximation guarantee,
and such task is hard to accomplish when all the viewpoints of a region are con-
sidered. More importantly, continuous maintenance of DV-tree requires repeated
execution of the same operation. To address this problem, during each iteration of
the DV-tree construction algorithm, instead of calculating the visibility distance
for all the viewpoints of a partition, we calculate the visibility distance only for a
chosen set of random sample points. In Figure 3, these sample points are marked
in gray. Obviously, using samples would result in errors, because the samples are
a subset of points from the entire partition. To achieve a correct answer for AVQ,
we incorporate this sampling error into the approximation that in turn results in
a probabilistic solution with confidence p.

r

P1

rP2

rP1

rP3
rP4P3 P4

P2
P1

rP2

rP1

P2

P42
P41

P44P43P33

P31 P32

P34

rP2

rP1

P2

P42P41

P44P33

P31 P32

P34

P1

a) Step 1 b) Step 2 c) Step 3 d) Step 4

Fig. 3. Illustrating four steps of the DV-tree construction algorithm

In order to compute the sampling error, we first define a few notations. Given
a partition with representative point r and assuming a visibility distance ε, we
define the probability of success P for the partition as the probability that any
random point q inside the partition has a visibility distance less than ε with r.
In other words, we have:

Pr
{
sim(r, q) � (1− ε)

}
= P (7)

During the DV-tree construction, for a given visibility distance ε and confidence
p, we say a partition satisfies the given ε and p if its probability of success P is
equal to or larger than p (i.e., P � p).

Now, suppose we take n random sample points with replacement from the set
of viewpoints inside a partition. We denote N as the number of sample points
whose visibility distance to r is less than ε. Our goal is to find out the least
value to expect for N , denoted by Ñ , such that P � p is guaranteed with high
probability.

Lemma 1. Given a partition with P as its probability of success, suppose we
take n random sample points with replacement from the partition. Then, the
random variable N follows a binomial distribution B(n, P ) where n is the number
of trials and P is the probability of success.

Proof. The proof is trivial and is therefore omitted due to lack of space. � 
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Theorem 1. Given a partition with P as its probability of success and n as
the number of samples, the normal distribution N(nP, nP (1 − P )) is a good
approximation for N , assuming large n and P not too close to 0 or 1.

Proof. Since N has a binomial distribution (i.e., B(n, P )), according to the cen-
tral limit theorem, for large n and P not too close to 0 or 1 (i.e., nP (1 −
P ) > 10) a good approximation to B(n, P ) is given by the normal distribution
N(nP, nP (1− P )). � 

Consequently, we can approximate the value of Ñ with the normal distribution
for n samples and a given confidence interval λ. Throughout the paper, we
assume a fixed value for the confidence interval λ (i.e., λ = 95%). Moreover, any
value can be selected for n, as long as the constraint of Theorem 1 is satisfied.
To illustrate, consider the following example, where for a given partition with
ε = 0.2 and p = 0.8, we take 100 random sample points. Using the normal
distribution N(80, 16), with λ = 95%, we have Ñ = 87. This indicates if 87 out
of 100 sample viewpoints have visibility distance of less than 0.2 with r, we are
95% confident that P � p = 0.8 holds for that partition.

Figure 4 illustrates the DV-tree that corresponds to the final partitioning
depicted in Figure 3d. Each node PI is of the form (parent, PI1, PI2, PI3, PI4,
Internal), where PI1, PI2, PI3, and PI4 are pointers to the node’s children,
parent is a pointer to the node’s parent and Internal captures some information
of the current node, which is required for the DV-tree maintenance as we explain
in Section 6.

P1 P2 P3 P4

P1 P2  P3 P4

Internal

P31P32 P33 P34 Internal P41P42 P43 P44 InternalInternal Internal

 P31

Internal Internal Internal Internal

Internal Internal Internal

 P32  P33  P34
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n

N

N
~

Internal

VVr

Fig. 4. DV-tree

Viewpoint v

Cell c

Fig. 5. Potential occluded set of
the cell c with respect to view-
point v (POSc(v))

6 Index Maintenance

When an object moves from one location to another, not only the visibility vector
of the representative point of a partition but also that of each viewpoint inside
the partition might change. This affects the visibility distance of viewpoints
inside the partition to the representative point, which consequently could inval-
idate the approximation guarantee. As a result, DV-tree may return incorrect
answers for AVQ. Thus, in order to guarantee correct result, we must update the
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DV-tree partitioning accordingly. Note that we assume a discrete-time model for
the dynamics in the environment; i.e., an object located at location A at time t0,
may move to location B at time t0 + 1. In this section, we propose a two-phase
filtering technique which significantly reduces the cost of update: viewpoint fil-
tering at phase 1 (Section 6.1) and object filtering at phase 2 (Section 6.2). After
applying the two-step filtering, the visibility vectors of some of the viewpoints
are updated. For each of these viewpoints, the visibility distance with the rep-
resentative point of its partition might change. Consequently, the representative
point might no longer remain as a correct representative of the viewpoints inside
a partition. Accordingly, the partition must be revised such that a correct AVQ
answer is guaranteed. This revision can be either by splitting or by merging the
partitions (similar to quad-tree split and merge operations) to guarantee ε and p
for the revised partitions. While splitting is necessary for correct query answer-
ing, merging only improves the efficiency of query answering. Therefore, to main-
tain DV-tree we split the partitions (when needed) immediately and merge the
partitions in a lazy fashion (i.e., lazy merge). In the rest of this section, we
explain our two-step filtering technique in more details.

6.1 Viewpoint Filtering

As discussed earlier, in order to efficiently maintain DV-tree, we exploit the
fact that examining the visibility of all viewpoints is unnecessary for DV-tree
maintenance. The viewpoints are categorized into the following two groups. The
first group are those viewpoints that are not included in the sampling during
DV-tree construction, and hence, any change in their visibility does not affect
the DV-tree maintenance. These viewpoints are filtered out by sampling. This
filtering step is performed only once during the DV-tree construction, and there-
fore we refer to it as offline viewpoint filtering. On the other hand, for the set
of viewpoints that are sampled, maintaining visibility of all the samples with
each object movement is unnecessary, because with each object movement only
visibility of a subset of the sampled viewpoints changes. Thus, the second group
of viewpoints are filtered out from the set of sampled viewpoints because their
visibility cannot be affected by a particular object movement. We refer to this
step as online viewpoint filtering. Below we elaborate on both of these viewpoint
filtering steps.

Offline Viewpoint Filtering: By maintaining visibility of the sample view-
points, we need to guarantee that our DV-tree is still properly maintained. Recall
from Section 5 that N has a binomial distribution, if n samples are randomly
selected. During an update of a partition, we need to guarantee that our sampled
viewpoints which are stored in the visibility distance histogram V DH , remain
valid random samples, and therefore, allow avoiding any resampling. This prob-
lem has been studied in [8], where given a large population of R tuples and a
histogram of s samples from the tuples, to ensure that the histogram remains a
valid representative of the set of tuples during tuple updates, one only needs to
consider the updates for the sampled-set s. This guarantees that the histogram
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holds a valid random sample of size s from the current population. Accordingly,
during object movements, when visibility vector of a viewpoint p inside the par-
tition changes, if p is one of the sample points in V DH , its visibility vector
is updated. Otherwise, the histogram remains unchanged. In both cases, the
randomness of the sample points stored in V DH is guaranteed.

Online Viewpoint Filtering: As discussed earlier, once an object moves from
location A to location B, only visibility vectors of a group of relevant viewpoints
are affected. These are the viewpoints to which an object is visible when the
object is either in location A or location B. With our online viewpoint filtering
step, the idea is to pre-compute the set of relevant viewpoints for each point
of the space. Accordingly, we propose V-grid. With V-grid, we partition the
environment into a set of disjoint cells, and for each cell we maintain a list of
moving objects that are currently within the cell, as well as a list of all leaf
partitions in DV-tree (termed RV-List), that either their representative point or
any of their sample points is a relevant viewpoint for that cell. When an object
moves from one cell to another, we only need to update the visibility vectors of
the relevant viewpoints of the two cells.

Our intuitive assumption for pre-computing the relevant viewpoints of a cell
with V-grid is that moving objects of an environment (e.g., people, cars) have a
limited height, while the static objects such as buildings can be of any height. We
denote the maximum height of a moving object as H. In order to build V-grid,
we impose a 3D grid on top of the stationary environment ϕ, where each cell of
the grid is bounded with the height H on top of ϕ. Our observation is that any
viewpoint that cannot see the surface of a cell, cannot see anything inside the
cell either. Accordingly, all the viewpoints to which any point on the surface of
a cell is visible, are considered as the relevant viewpoints of the cell.

6.2 Object Filtering

For each of the relevant viewpoints of the cell in which a movement occurs
(i.e., when a moving object enters or leaves the cell), we need to recompute the
visibility vector of the viewpoint. However, to compute the visibility vector for
each relevant viewpoint, we only need to consider the visibility status of a subset
of the environment objects that are potentially occluded by the cell in which the
moving object resides before/after the movement. Below, we define how we can
identify such objects.

Definition 6.2.1. Given a grid cell c, and a viewpoint v, let cxy and vxy be the
2D projection of c and v on the xy plane, respectively. We define the potential
occluded set of c with respect to the viewpoint v (denoted by POSc(v)) as the
set of all cells, where for each cell ĉ, there exists a line segment from vxy to a
point s in ĉxy which intersects cxy in a point p such that the point p lies between
the two points vxy and s. The definition can be formulated as follows:

POSc(v) = {ĉ|∃s ∈ ĉxy, svxy ∩ cxy �= ∅, ∃p ∈ {svxy ∩ cxy}, |pvxy| < |svxy |} (8)

where |pvxy| and |svxy| are the lengths of line segments pvxy and svxy, respec-
tively.



Efficient Approximate Visibility Query in Large Dynamic Environments 213

Figure 5 depicts an example of the potential occluded set of a viewpoint v
with respect to a cell c as the gray area. We only need to recompute the visibility
values of all the objects that reside in the POS of c with respect to v.

7 Performance Evaluation

We conducted extensive experiments to evaluate the performance of our solution
in compare with the alternative work. Below, first we discuss our experimental
methodology. Next, we present our experimental results.

7.1 Experimental Methodology

We performed three sets of experiments. With these experiments, we measured
the accuracy and the response time of our proposed technique. With the first
set of experiments, we evaluated the accuracy of DV-tree answers to AVQ. With
the rest of the experiments, we compared the response time of DV-tree in both
query and update costs with a competitive work. In comparing with a compet-
itive work, since no work has been found on visibility queries in large dynamic
virtual environments, we extended the HDoV approach [15] that answers visi-
bility queries in large static virtual environments, to support dynamism as well.
With HDoV-tree, the environment is divided into a set of disjoint cells, where
for each cell the set of visible objects (i.e., union of all the objects which are
visible to each viewpoint in the cell) are pre-computed, and incorporated into
an R-tree-like structure. This spatial structure captures level-of-details (LoDs)
(i.e., multi-resolution representations) of the objects in a hierarchical fashion,
namely internal LoDs. Consequently, in a dynamic environment, not only the
pre-computed visibility data of every cell should be updated, the internal LoDs
should be updated as well. In this paper, we do not take into account the objects
LoDs1. Conclusively, to perform a fair comparison with HDoV-tree, we only con-
sider the cost of updating the pre-computed visibility data of every cell, while
ignoring the cost of traversal and update of the tree hierarchy.

Because of the I/O bound nature of our experiments, we only report the re-
sponse time in terms of I/O cost. Our DV-tree index structure is stored in mem-
ory, while the visibility data associated to each node of DV-tree (i.e., Internal
of the node) is stored on disk. Thus, the traversal of DV-tree for point location
query is memory-based, and the I/O cost considers only accessing the Internal
of a node. Moreover, our V-grid is in memory as well, since RV-list of each cell
holds only pointers to the relevant partitions.

We used a synthetic model built after a large area in the city of Los Angeles,
CA as our data set with the size of 4GB, which contained numerous buildings.
We also had a total number of 500 objects, with the maximum height of 1.5
meter (i.e., H = 1.5m) moving in the environment. For the movement model,
we employed a network-based moving object generator, in which the objects
move with a constant speed. Also, we picked 120 random samples during each
1 Note that employing LoDs is orthogonal to our approach, and can be integrated into

DV-tree; however, it is out of the scope of this paper.
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iteration of DV-tree construction. For visibility computation, we set the visibility
range D to 400 meters. Moreover, for visibility query, we ran 1000 queries using
randomly selected query points, and reported the average of the results.

The experiments were performed on a DELL Precision 470 with Xeon 3.2
GHz processor and 3GB of RAM. Our disk page size was 32K bytes. Also, we
employed an LRU buffer, which can hold 10% of the entire data.

7.2 Query Accuracy

With the first set of experiments, we evaluated the query accuracy of DV-tree.
Given a DV-tree with visibility distance ε and a confidence p, we run n queries.
Assuming N is the actual number of results satisfying ε, we expect N

n ≥ p.
We first varied the values for ε from 0.1 to 0.5 with p set to 70%. Figure 6a
illustrates the percentage of queries satisfying ε for different values of ε. As
Figure 6a depicts, for all cases this ratio is in the range of 92% to 95%, which
is much higher than our expected ratio of 70% (shown with a dashed line in
Figure 6a). Next, we varied the values for p from 50% to 90% with ε set to 0.4,
and measured the percentage ratio of N

n accordingly. As Figure 6b illustrates,
for all cases this ratio is in the range of 82% to 97%. The dashed line in the
figure shows the expected results. According to Figure 6b, the actual results are
always above the dashed line. This demonstrates the guaranteed accuracy of our
query result.
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The above results show the overall accuracy for a given ε, and p, but they
do not represent the distribution of displacement of the query result’s distance
from the exact answer as compared with ε. For ε = 0.4, and p = 70%, Figure
7 demonstrates the frequency distribution of this displacement (i.e., d− ε). The
area under the curve represents the total number of queries, out of which we
expect 70% to have a negative displacement. Figure 7 shows 94% query results
satisfy this condition. The figure also shows that a large number of query results
(68%) are only in distance of less than 0.2 from the exact result.

To summarize, this set of experiments confirms two issues. First, our use of
sampling technique during DV-tree construction results in correct AVQ answer-
ing. Second, our initial observation about the spatial auto-correlation among the
visibility vectors of the viewpoints is valid. This was also illustrated in Figure 1.
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7.3 Query Response Time

With the second set of experiments, we compared the query response time of
DV-tree with that of the extended HDoV-tree by varying the cell size in HDoV-
tree. We set the values of ε and p to 0.4 and 70%, respectively. With DV-tree, the
query response time is in terms of number of I/Os for retrieving visibility vector
of the representative point of the partition to which the query point belongs,
whereas with HDoV-tree the query response time is in terms of number of I/Os
for retrieving union of the visibility vectors of all viewpoints inside the cell where
query point is located. Thus, as the cell size grows, the query response time
increases as well. Figure 8 illustrates such results, where the number of I/Os are
shown in logarithmic scale. As the figure shows, in all cases DV-tree outperforms
HDoV-tree during query answering, except for the case of HDoV-tree with the
smallest cell size (i.e., one viewpoint per cell), where the query response time of
HDoV-tree is identical to that of DV-tree.

Note that with DV-tree the query result is retrieved as the visibility vector of
one viewpoint, which is restricted to the objects inside the viewpoint’s visibility
range. Conclusively, the query response time is independent of the values chosen
for ε and p, as well as the data size.

7.4 Update Cost

The final set of experiments investigates the update cost for maintaining DV-
tree. We set the number of moving objects to 50. First, we evaluate the DV-tree
update cost by varying the values for ε, where p is fixed at 70%. As Figure 9a
depicts, the update cost is in the range of 400 to 800 I/Os. The results show
a decrease in I/O cost for large values of ε. The reason is that as the value
of ε increases, larger partitions are generated, which leads to fewer updates.
Thereafter, we fixed ε at 0.4, and evaluate the DV-tree update cost by varying
the values for p. As Figure 9b illustrates, the number of I/Os varies between 500
to 650. Thus, the update cost slightly increases with the growing value of p. The
reason is that higher value for p requires more number of viewpoints to satisfy ε
in a partition (i.e., N), which results in maintaining more number of viewpoints.

Next, we compare the update cost of DV-tree with that of HDoV-tree. Similar
to the previous experiments, we set ε to 0.4, and p to 70%, and vary the cell size
for HDoV-tree. Figure 9c illustrates the number of I/Os for both data structures
in a logarithmic scale. The significant difference between the two proves the
effectiveness of our two-step filtering technique. For HDoV-tree with a small cell
size, the number of cells whose visibility should get updated is large. As the
cell size grows, the update cost slightly increases. The reason is that although
visibility of less number of cells should be updated, retrieving the entire visible
objects of a cell is still very costly.

Note that the accuracy evaluation in Section 7.2 is a good indicator that a
DV-tree with a higher error tolerance allows for reasonable visualization of large-
scale and dynamic environments with minor glitches. As Figure 9c depicts, each
update of DV-tree with ε = 0.4 and p = 70% requires 500 I/Os on average.
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With every I/O taking 10ms on average, the update cost can be estimated as 5
seconds. Note that 5 second update cost is very practical as one can apply many
techniques to hide this short delay. For instance, considering the case where tra-
jectory of the moving objects are known a priori, location of the moving objects
in the next 5 seconds can easily be predicted. This results in a smooth real-time
rendering of the environment. Moreover, for the cases where the objects are con-
strained to move on predefined paths (e.g., road networks), one can prefetch
from disk all the partitions whose visibility might change, and therefore, avoid
the extra I/O cost for DV-tree update.

8 Conclusion and Future Work

In this paper, we introduced the novel concept of approximate visibility query in
large dynamic environments. Accordingly, we proposed DV-tree for correct and
efficient AVQ answering. To enable efficient maintenance for DV-tree, we also
proposed a two-phase filtering technique that significantly reduces the update
cost for DV-tree. With our experiments, we showed that our observation about
the spatial auto-correlation of the visibility vectors is valid. We also demon-
strated the overall superiority of our approach as compared to other approaches.

The focus of this paper has been on formal definition of the visibility prob-
lem and to propose a framework to address this problem through the use of
approximation and DV-tree. For future work, we aim to explore optimization
techniques which improve the query efficiency and maintenance cost of DV-tree.
For example, while we chose to use a quad-tree-based approach to perform the
spatial partitioning, other partitioning techniques exist that might result in a
more optimal design for DV-tree. Furthermore, in this paper we make no as-
sumption about movement of the objects. Another direction for our future work
would be to use object models with known trajectory or restricted movement
options (e.g., cars on roads), and exploit this knowledge to improve the DV-tree
update cost.
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Abstract. Besides topological relations and approximate relations, car-
dinal directions have turned out to be an important class of qualitative
spatial relations. In spatial databases and GIS they are frequently used as
selection criteria in spatial queries. But the available models of cardinal
relations suffer from a number of problems like the unequal treatment of
the two spatial objects as arguments of a cardinal direction relation, the
use of too coarse approximations of the two spatial operand objects in
terms of single representative points or minimum bounding rectangles,
the lacking property of converseness of the cardinal directions computed,
the partial restriction and limited applicability to simple spatial objects
only, and the computation of incorrect results in some cases. This paper
proposes a novel two-phase method that solves these problems and con-
sists of a tiling phase and an interpretation phase. In the first phase, a
tiling strategy first determines the zones belonging to the nine cardinal
directions of each spatial object and then intersects them. The result
leads to a bounded grid called objects interaction grid. For each grid cell
the information about the spatial objects that intersect it is stored in an
objects interaction matrix. In the second phase, an interpretation method
is applied to such a matrix and determines the cardinal direction. These
results are integrated into spatial queries using directional predicates.

1 Introduction

Research on cardinal directions has had a long tradition in spatial databases, Ge-
ographic Information Systems (GIS), and other disciplines like cognitive science,
robotics, artificial intelligence, and qualitative spatial reasoning. Cardinal direc-
tions are an important qualitative spatial concept and form a special kind of
directional relationships. They represent absolute directional relationships like
north and southwest with respect to a given reference system in contrast to
relative directional relationships like front and left ; thus, cardinal directions de-
scribe an order in space. In spatial databases they are, in particular, relevant
as selection and join conditions in spatial queries. Hence, the determination of
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and reasoning with cardinal directions between spatial objects is an important
research issue.

In the past, several approaches have been proposed to model cardinal direc-
tions. They all suffer from at least one of four main problems. First, some models
use quite coarse approximations of the two spatial operand objects of a cardinal
direction relation in terms of single representative points or minimum bounding
boxes. This can lead to inaccurate results. Second, some models assume that
the two spatial objects for which we intend to determine the cardinal direction
have different roles. They create a scenario in which a target object A is placed
relative to a dominating reference object B that is considered as the center of
reference. This is counterintuitive and does not correspond to our cognitive un-
derstanding. Third, some models do not support inverse cardinal directions. This
means that once the direction dir(A,B) between two objects A and B is com-
puted, the reverse direction inv(dir(A,B)) from B to A should be deducible,
i.e., inv(dir(A,B)) = dir(B ,A). For example, if A is northwest and north of B,
then the inverse should directly yield that B is to the southeast and south of
A. Fourth, some models only work well if the spatial objects involved in direc-
tion computations have a simple structure. This is in contrast to the common
consensus in the spatial database community that complex spatial objects are
needed in spatial applications. As a consequence of these problems, some models
can yield wrong or counterintuitive results for certain spatial scenarios.

The goal of this paper is to propose and design a computation model for car-
dinal directions that overcomes the aforementioned problems by taking better
into account the shape of spatial operand objects, treating both spatial operand
objects as equal partners, ensuring the property of converseness of cardinal di-
rections (A p B ⇔ B inv(p) A), accepting complex spatial objects as arguments,
and avoiding the wrong results computed by some approaches.

Our solution consists in a novel two-phase method that includes a tiling phase
followed by an interpretation phase. In the first phase, we apply a tiling strategy
that first determines the zones belonging to the nine cardinal directions of each
spatial object and then intersects them. The result leads to a closed grid that
we call objects interaction grid (OIG). For each grid cell we derive the informa-
tion about the spatial objects that intersect it and store this information in a
so-called objects interaction matrix (OIM ). In the second phase, we apply an
interpretation method to such a matrix and determine the cardinal direction.

Section 2 discusses related work and summarizes the available approaches to
compute cardinal directions. In Section 3, the objects interaction matrix model
is introduced in detail. Section 4 compares the OIM model to past approaches.
Section 5 defines directional predicates for integrating cardinal directions into
spatial queries. Finally, Section 6 draws conclusions and depicts future work.

2 Related Work

Several models have been proposed to capture cardinal direction relations be-
tween spatial objects (like point, line, and region objects) as instances of spatial
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Fig. 1. Projection-based (a) and cone-shaped (b) models, and the Direction-Relation
Matrix model with A as reference object (c) and with B as reference object (d)

data types [1]. These models can be classified into tiling-based models and min-
imum bounding rectangle-based (MBR-based) models.

Tiling-based models define cardinal direction relations by using partitioning
lines that subdivide the plane into tiles. They can be further classified into
projection-based models and cone-shaped models, both of which assign different
roles to the two spatial objects involved. The first object represents the target
object that is put into relationship to the second, dominant object called the
reference object.

The projection-based models define direction relations by using partitioning
lines parallel to the coordinate axes. The early approach in [2] first generalizes
the reference (target) object by a reference (target) point (commonly the cen-
troid of the object). Then it partitions the embedding space according to the
reference point into four non-overlapping zones and uses the composition of two
basic cardinal directions, that is, north, west, south, and east, in each zone to as-
sign one of the four pairwise opposite directions northwest, northeast, southeast,
and southwest to it (Figure 1a). The direction is then determined by the zone
in which the target point falls. A problem of this approach is that the interme-
diate generalization step completely ignores the shape and extent of the spatial
operand objects and thus leads to easy to use but rather inaccurate models. The
Direction-Relation Matrix model [3,4] presents a major improvement of this ap-
proach by better capturing the influence of the objects’ shapes (Figure 1c). In
this model, the partitioning lines are given by the infinite extensions of the min-
imum bounding rectangle segments of the reference object. This leads to a tiling
with the nine zones of north, west, east, south, northwest, northeast, southwest,
southeast, as well as a central zone named sameLocation and given by the mini-
mum bounding rectangle of the reference object. The target object contributes
with its exact shape, and a direction-relation matrix stores for each tile whether
it is intersected by the target object. Thus this model suffers from the problem
of unequal treatment of objects leading to incorrect and counterintuitive deter-
minations of cardinal directions. For example, the Figure 5a shows a map of
the two countries China and Mongolia. If China is used as the reference object,
Mongolia is located in the minimum bounding rectangle of China, and thus the
model only yields sameLocation as a result. This is not what we would intuitively
expect. A further problem of this model is that it does not enable us to directly
imply the inverse relation. For example, Figure 1c and Figure 1d show the same



The Objects Interaction Matrix for Modeling Cardinal Directions 221

spatial configuration. If A is the reference object (Figure 1c), the model derives
that parts of B are northwest and east of A. We would now expect that then A
is southeast and west of B. But the model determines sameLocation and south
as cardinal directions (Figure 1d).

The cone-shaped models define direction relations by using angular zones.
The early approach in [5] first also generalizes a reference object and a target
object by point objects. Two axis-parallel partitioning lines through the reference
point are then rotated by 45 degrees and span four zones with the cardinal
directions north, west, east, and south (Figure 1b). Due to the generalization step,
this model can produce incorrect results. The Cone-Based Directional Relations
concept [6] is an improvement of the early approach and uses the minimum
bounding rectangle of the reference object to subdivide the space around it with
partitioning lines emanating from the corners of the rectangle with different
angles. This model has the problems of an unequal treatment of the operand
objects and the lack of inverse cardinal relations.

MBR-based models approximate both spatial operand objects of a directional
relationship through minimum bounding rectangles and bring the sides of these
rectangles into relation with each other by means of Allen’s interval relations [7].
By using these interval relations, the 2D-string model [8] constructs a direction-
specifying 2D string as a pair of 1D strings, each representing the symbolic
projection of the spatial objects on the x- and y-axis respectively. The 2D String
model may not provide correct inverse direction relations. Another weakness of
this model (and its extensions) is the lack of the ability to uniquely define direc-
tional relations between spatial objects since they are based on the projection
of the objects along both standard axes.

The Minimum Bounding Rectangle (MBR) model [9,10] also makes use of
the minimum bounding rectangles of both operand objects and applies Allen’s
13 interval relations to the rectangle projections on the x- and y-axes respec-
tively. 169 different relations are obtained [11] that are expressive enough to cover
all possible directional relation configurations of two rectangles. A weakness of
this model is that it can give misleading directional relations when objects are
overlapping, intertwined, or horseshoe shaped. A comparison with the Direction-
Relation Matrix model reveals that spatial configurations exist whose cardinal
direction is better captured by either model.

3 The Objects Interaction Matrix Model

The Objects Interaction Matrix (OIM) model belongs to the tiling-based models,
especially to the projection-based models. Figure 2 shows the two-phase strategy
of our model for calculating the cardinal direction relations between two objects
A and B. We assume that A and B are non-empty values of the complex spatial
data type region [1]. The tiling phase in Section 3.1 details our novel tiling strat-
egy that produces objects interaction grids, and shows how they are represented
by objects interaction matrices. The interpretation phase in Section 3.2 leverages
the objects interaction matrix to derive the directional relationship between two
spatial region objects.
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Fig. 2. Overview of the two phases of the Objects Interaction Matrix (OIM) model

3.1 The Tiling Phase: Representing Interactions of Objects with

the Objects Interaction Grid and Matrix

In this section, we focus on the tiling phase as the first phase of our OIM model.
The general idea of our tiling strategy is to superimpose a grid called objects
interaction grid (OIG) on a configuration of two spatial objects (regions). Such
a grid is determined by the two vertical and two horizontal partitioning lines of
each object. The two vertical (two horizontal) partitioning lines of an object are
given as infinite extensions of the two vertical (two horizontal) segments of the
object’s minimum bounding rectangle. The four partitioning lines of an object
create a partition of the Euclidean plane consisting of nine mutually exclusive,
directional tiles or zones from which one is bounded and eight are unbounded
(Figures 1c and 1d). Further, these lines partition an object into non-overlapping
components where each component is located in a different tile. This essentially
describes the tiling strategy of the Direction-Relation Matrix model (Section 2).

However, our fundamental difference and improvement is that we apply this
tiling strategy to both spatial operand objects, thus obtain two separate grid par-
titions (Figures 1c and 1d), and then overlay both partitions (Figure 3a). This
leads to an entirely novel cardinal direction model. The overlay achieves a co-
equal interaction and symmetric treatment of both objects. In the most general
case, all partitioning lines are different from each other, and we obtain an over-
lay partition that shows 9 central, bounded tiles and 16 peripheral, unbounded
tiles (indicated by the dashed segments in Figure 3a). The unbounded tiles are
irrelevant for our further considerations since they cannot interact with both
objects. Therefore, we exclude them and obtain a grid space that is a bounded
proper subset of R

2, as Definition 1 states. This is in contrast to the partitions
of all other tiling-based models that are unbounded and equal to R

2.

OIG(A, B) =

B

BA OIM (A, B) =

⎛⎝ 2 0 0
0 1 2
0 1 0

⎞⎠
(a) (b)

Fig. 3. The objects interaction grid OIG(A,B) for the two region objects A and B in
Figures 1c and 1d (a) and the derived objects interaction matrix OIM (A,B) (b)
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(a) 3× 3-OIG (b) 3× 2-OIG (c) 3× 1-OIG (d) 2× 3-OIG (e) 2× 2 OIG (f) 2× 1-OIG

(g) 1× 3-OIG (h) 1× 2-OIG (i) 1× 1 OIG

Fig. 4. Examples of the nine possible sizes of objects interaction grids

Definition 1. Let A, B ∈ region with A �= ∅ and B �= ∅, and let minr
x =

min{x | (x, y) ∈ r}, max r
x = max{x | (x, y) ∈ r}, minr

y = min{y | (x, y) ∈ r}, and
max r

y = max{y | (x, y) ∈ r} for r ∈ {A, B}. Then the objects interaction grid
space (OIGS) of A and B is given as

OIGS(A, B)={(x, y) ∈ R
2 | min(minA

x ,minB
x ) ≤ x ≤ max(maxA

x ,maxB
x ) ∧

min(minA
y ,minB

y ) ≤ y ≤ max(maxA
y ,maxB

y )}

Definition 2 determines the bounded grid formed as a part of the partitioning
lines and superimposed on OIGS(A, B).

Definition 2. Let seg be a function that constructs a segment between any two
given points p, q ∈ R

2, i.e., seg(p, q) = {t | t = (1 − λ)p + λq, 0 ≤ λ ≤ 1}.
Let Hr = {seg((minr

x,minr
y), (max r

x,minr
y)), seg((minr

x,max r
y), (max r

x,max r
y))}

and Vr = {seg((minr
x,minr

y), (minr
x,max r

y)), seg((max r
x,minr

y), (max r
x, max r

y))}
for r ∈ {A, B}. We call the elements of HA, HB , VA, and VB objects interaction
grid segments. Then the objects interaction grid (OIG) for A and B is given as

OIG(A, B) = HA ∪ VA ∪HB ∪ VB.

This definition comprises the description of all grids that can arise. In the most
general case, if HA∩HB = ∅ and VA∩VB = ∅, we obtain a bounded 3×3-grid.
Special cases arise if HA∩HB �= ∅ and/or VA∩VB �= ∅. Then equal grid segments
coincide in the union of all grid segments. As a result, depending on the relative
position of two objects to each other, objects interaction grids can be of different
size. However, due to the non-empty property of a region object, not all grid
segments can coincide. This means that at least two horizontal grid segments
and at least two vertical grid segments must be maintained. Figure 4 shows
examples for all nine possible sizes of objects interaction grids, and Definition 3
gives a corresponding formal characterization.

Definition 3. An objects interaction grid OIG(A, B) is of size m × n, with
m, n ∈ {1, 2, 3}, if |HA ∩HB | = 3−m and |VA ∩ VB | = 3− n.



224 T. Chen et al.

The objects interaction grid partitions the objects interaction grid space into
objects interaction grid tiles (zones, cells). Definition 4 provides their definition.

Definition 4. Given A, B ∈ region with A �= ∅ and B �= ∅, OIGS(A, B), and
OIG(A, B), we define cH = |HA ∪ HB| = |HA| + |HB| − |HA ∩ HB| and cV

correspondingly. Let HAB = HA ∪HB = {h1, . . . , hcH} such that (i) ∀ 1 ≤ i ≤
cH : hi = seg((x1

i , yi), (x2
i , yi)) with x1

i < x2
i , and (ii) ∀ 1 ≤ i < j ≤ cH : hi < hj

(we say that hi < hj :⇔ yj < yi). Further, let VAB = VA ∪ VB = {v1, . . . , vcV }
such that (i) ∀ 1 ≤ i ≤ cV : vi = seg((xi, y

1
i ), (xi, y

2
i )) with y1

i < y2
i , and (ii) ∀ 1 ≤

i < j ≤ cV : vi < vj (we say that vi < vj :⇔ xi < xj).
Next, we define four auxiliary predicates that check the position of a point

(x, y) with respect to a grid segment:

below ((x, y), hi) ⇔ x1
i ≤ x ≤ x2

i ∧ y ≤ yi

above((x, y), hi) ⇔ x1
i ≤ x ≤ x2

i ∧ y ≥ yi

right of ((x, y), vi) ⇔ y1
i ≤ y ≤ y2

i ∧ x ≥ xi

left of ((x, y), vi) ⇔ y1
i ≤ y ≤ y2

i ∧ x ≤ xi

An objects interaction grid tile ti,j with 1 ≤ i < cH and 1 ≤ j < cV is then
defined as

ti,j = {(x, y) ∈ OIGS(A, B) | below((x, y), hi) ∧ above((x, y), hi+1) ∧
right of ((x, y), vj) ∧ left of ((x, y), vj+1)}

The definition indicates that all tiles are bounded and that two adjacent tiles
share their common boundary. Let OIGT(A, B) be the set of all tiles ti,j imposed
by OIG(A, B) on OIGS(A, B). An m× n-grid contains m · n bounded tiles.

By applying our tiling strategy, an objects interaction grid can be generated
for any two region objects A and B. It provides us with the valuable informa-
tion which region object intersects which tile. Definition 5 provides us with a
definition of the interaction of A and B with a tile.

Definition 5. Given A, B ∈ region with A �= ∅ and B �= ∅ and OIGT(A, B),
let ι be a function that encodes the interaction of A and B with a tile ti,j, and
checks whether no region, A only, B only, or both regions intersect a tile. We
define this function as

ι(A, B, ti,j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if A◦ ∩ t◦i,j = ∅ ∧ B◦ ∩ t◦i,j = ∅

1 if A◦ ∩ t◦i,j �= ∅ ∧ B◦ ∩ t◦i,j = ∅

2 if A◦ ∩ t◦i,j = ∅ ∧ B◦ ∩ t◦i,j �= ∅

3 if A◦ ∩ t◦i,j �= ∅ ∧ B◦ ∩ t◦i,j �= ∅

The operator ◦ denotes the point-set topological interior operator and yields a
region without its boundary. For each grid cell ti,j in the ith row and jth column
of an m×n-grid with 1 ≤ i ≤ m and 1 ≤ j ≤ n, we store the coded information
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in an objects interaction matrix (OIM ) in cell OIM (A, B)i,j . Since directional
relationships have a qualitative and not a quantitative or metric nature, we
abstract from the geometry of the objects interaction grid space and only keep
the information which region intersects which tile. The OIM for m = n = 3 is
shown below, and Figure 3b gives an example.

OIM (A, B) =

⎛⎝ ι(A, B, t1,1) ι(A, B, t1,2) ι(A, B, t1,3)
ι(A, B, t2,1) ι(A, B, t2,2) ι(A, B, t2,3)
ι(A, B, t3,1) ι(A, B, t3,2) ι(A, B, t3,3)

⎞⎠
3.2 The Interpretation Phase: Assigning Semantics to the Objects

Interaction Matrix

The second phase of the OIM model is the interpretation phase. This phase takes
an objects interaction matrix obtained as the result of the tiling phase as input
and uses it to generate a set of cardinal directions as output. This is achieved by
separately identifying the locations of both objects in the objects interaction ma-
trix and by pairwise interpreting these locations in terms of cardinal directions.
The union of all these cardinal directions is the result.

In a first step, we define a function loc (see Definition 6) that acts on one
of the region objects A or B and their common objects interaction matrix and
determines all locations of components of each object in the matrix. Let Im,n =
{(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. We use an index pair (i, j) ∈ Im,n to represent
the location of the element Mi,j ∈ {0, 1, 2, 3} and thus the location of an object
component from A or B in an m× n objects interaction matrix.

Definition 6. Let M be the m× n-objects interaction matrix of two region ob-
jects A and B. Then the function loc is defined as:

loc(A, M) = {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n, Mi,j = 1 ∨ Mi,j = 3}
loc(B, M) = {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n, Mi,j = 2 ∨ Mi,j = 3}

For example, in Figure 3b, object A occupies the locations (2,2) and (3,2), and
object B occupies the locations (1,1) and (2,3) in the objects interaction ma-
trix OIM (A, B). Therefore, we obtain loc(A,OIM (A, B)) = {(2, 2), (3, 2)} and
loc(B,OIM (A, B)) = {(1, 1), (2, 3)}.

In a second step, we define an interpretation function ψ to determine the
cardinal direction between any two object components of A and B on the basis
of their locations in the objects interaction matrix. We use a popular model
with the nine cardinal directions north (N ), northwest (NW ), west (W ), south-
west (SW ), south (S ), southeast (SE ), east (E ), northeast (NE ), and origin
(O) to symbolize the possible cardinal directions between object components.
In summary, we obtain the set CD = {N,NW,W,SW,S,SE,E,NE,O} of basic
cardinal directions. A different set of basic cardinal directions would lead to a
different interpretation function and hence to a different interpretation of in-
dex pairs. Definition 7 provides the interpretation function ψ with the signature
ψ : Im,n × Im,n → CD .
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Table 1. Interpretation table for the interpretation function ψ

�������(i, j)
(i′, j′)

(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) O W W N NW NW N NW NW

(1,2) E O W NE N NW NE N NW

(1,3) E E O NE NE N NE NE N

(2,1) S SW SW O W W N NW NW

(2,2) SE S SW E O W NE N NW

(2,3) SE SE S E E O NE NE N

(3,1) S SW SW S SW SW O W W

(3,2) SE S SW SE S SW E O W

(3,3) SE SE S SE SE S E E O

Definition 7. Given (i, j), (i′, j′) ∈ Im,n, the interpretation function ψ on the
basis of the set CD = {N, NW, W, SW, S, SE, E, NE, O} of basic cardinal direc-
tions is defined as

ψ((i, j), (i′, j′)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N if i < i′ ∧ j = j′

NW if i < i′ ∧ j < j′

W if i = i′ ∧ j < j′

SW if i > i′ ∧ j < j′

S if i > i′ ∧ j = j′

SE if i > i′ ∧ j > j′

E if i = i′ ∧ j > j′

NE if i < i′ ∧ j > j′

O if i = i′ ∧ j = j′

For example, in Figure 3b, we obtain that ψ((3, 2), (1, 1)) = SE and ψ((2, 2),
(2, 3)) = W where holds that (2, 2), (3, 2) ∈ loc(A,OIM (A, B)) and (1, 1),
(2, 3) ∈ loc(B,OIM (A, B)). Table 1 called interpretation table shows the possible
results of the interpretation function for all index pairs.

In a third and final step, we specify the cardinal direction function named
dir which determines the composite cardinal direction for two region objects
A and B. This function has the signature dir : region × region → 2CD and
yields a set of basic cardinal directions as its result. In order to compute the
function dir, we first generalize the signature of our interpretation function ψ
to ψ : 2Im,n × 2Im,n → 2CD such that for any two sets X, Y ⊆ Im,n holds:
ψ(X, Y ) = {ψ((i, j), (i′, j′)) | (i, j) ∈ X, (i′, j′) ∈ Y }. We are now able to specify
the cardinal direction function dir in Definition 8.

Definition 8. Let A, B ∈ region. Then the cardinal direction function dir is
defined as

dir(A, B) = ψ(loc(A,OIM (A, B)), loc(B,OIM (A, B)))
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We apply this definition to our example in Figure 3. With loc(A,OIM (A, B)) =
{(2, 2), (3, 2)} and loc(B,OIM (A, B)) = {(1, 1), (2, 3)} we obtain

dir(A, B)=ψ({(2, 2), (3, 2)}, {(1, 1), (2, 3)})
={ψ((2, 2), (1, 1)), ψ((2, 2), (2, 3)), ψ((3, 2), (1, 1)), ψ((3, 2), (2, 3))}
={SE, W, SW}

Similarly, we obtain the inverse cardinal direction as:

dir(B, A)=ψ({(1, 1), (2, 3)}, {(2, 2), (3, 2)})
={ψ((1, 1), (2, 2)), ψ((1, 1), (3, 2)), ψ((2, 3), (2, 2)), ψ((2, 3), (3, 2))}
={NW, E, NE}

Syntactically function dir yields a set of basic cardinal directions. The ques-
tion is what the exact meaning of such a set is. We give the intended semantics
of the function result in Lemma 1.

Lemma 1. Let A, B ∈ region. Then dir (A, B) = {d1, . . . , dk} if the following
conditions hold:

(i) 1 ≤ k ≤ 9
(ii) ∀ 1 ≤ i ≤ k : di ∈ CD
(iii) ∃ r11, . . . , r1k, r21, . . . , r2k ∈ region :

(a) ∀ 1 ≤ i ≤ k : r1i ⊆ A, r2i ⊆ B
(b) dir (r11, r21) = d1 ∧ . . . ∧ dir (r1k, r2k) = dk

Several r1i from A as well as several r2i from B might be equal. Thus at most
k parts from A and at most k parts from B are needed to produce the k basic
cardinal directions of the result. There can be further parts from A and B but
their cardinal direction is not a new contribution to the result.

Finally we can say regarding Figure 3 that “Object A is partly southeast, partly
west, and partly southwest of object B” and that “Object B is partly northwest,
partly east, and partly northeast of object A”, which is consistent.

4 Comparison to Past Approaches

We now review the problems raised in the Introduction and show how our OIM
model overcomes them. The first problem is the coarse approximation problem
that leads to imprecise results. Models that capture directions between region
objects have evolved from reducing these objects to points, to the use of min-
imum bounding rectangles to approximate their extent, and ultimately to the
final goal of considering their shapes. From this perspective, the Directional-
Relation Matrix (DRM) model is superior to the MBR model due to the fact
that it captures the shape of the target object. However, it only represents an
intermediate step between the MBR model and the final goal because only the
shape of one object is considered and the shape of the other object does not con-
tribute at all. The OIM model that we propose in this paper is the first model
that considers the shapes of both region objects.
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(a) (b)

Fig. 5. Determining the cardinal direction

Table 2. Cardinal directions between Argentina (A) and Brazil (B) in Figure 5b from
different models

Model α dirα(A, B) dirα(B, A)
MBR {weak bounded south} {weak north}
DRM {sL†, S} {sL†,NW , N, NE , E}

2D-String {S} {NW , N, NE}
OIM {S, W,SW , O,SE} {N, E,NE , O, NW }

† sL means sameLocation

Unlike the MBR model and the 2D string model, where the region objects
play the same role, the DRM model suffers from the unequal treatment problem.
A target object is tested for intersection against the tiles created around a ref-
erence object. As a result, components of the target object inside different tiles
contribute to the final direction relations while the reference object contributes
as a whole object. This unequal treatment causes imprecision. Let dirDRM (A, B)
be a function that determines the cardinal directions for two simple regions A
and B in the DRM model where A is the target object and B is the reference
object. Then, in Figure 5b, the DRM model determines the cardinal direction
between Argentina (A) and Brazil (B) as dirDRM (A, B) = {sameLocation , S}.
This is not precise because for the major part of Brazil, Argentina lies to the
southwest, and it also lies to the west of some part of Brazil. In our OIM model,
objects are treated equally, and thus both contribute to the final cardinal direc-
tion. Our model yields the result dir (A, B) = {SE , S,SW , W, O}, which captures
the cardinal directions precisely.

The converse problem is a common problem shared by most models. It means
that models generate inconsistent results when swapping their operand objects.
Table 2 shows the different cardinal directions between Argentina and Brazil
in Figure 5b as they are obtained by different cardinal direction models. The
results show that the MBR model, the DRM model, and the 2D-String model
do not maintain the converseness property, i.e., dirα(A, B) �= inv(dirα(B, A))
for α ∈ {MBR,DRM, 2D-String}. Only the OIM model supports the inverse
operation, i.e., dir (A, B) = inv(dir (B, A)) holds. Therefore, by applying the
OIM model, we obtain consistent results corresponding to human intuition.
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Further, the MBR model, the DRM model, and the 2D string model have
originally been designed for simple regions only. Since all these models are based
on the moving bounding rectangle approximation of at least one object, an ex-
tension to complex regions and their minimum bounding rectangles is feasible
without difficulty. However, this procedure usually generates rather poor results.
For example, in Figure 1d, if we take the minimum bounding rectangle of the
entire object B, then object A is to the weak bounded south of object B accord-
ing to the MBR model, and object A is to the sameLocation and south of object
B according to the DRM model. Both results are imprecise since the western
direction of A to one component of B is not captured. Although variants exist
for the models to handle complex objects more precisely, considerable efforts
are required. Our model natively supports complex objects and is able to yield
much more precise results. For the same example in Figure 3a, our model gener-
ates the result dir (A, B) = {SE , W,SW }, which describes object A to be partly
southeast, partly west, and partly southwest of object B.

As a summary, we show in Table 3 the evaluation of the four major models
based on the four criteria of shape capturing, equal treatment of operand objects,
support for the inverse operation, and support for complex objects.

5 Defining Directional Predicates within Databases
Based on the OIM model and the interpretation mechanism described in the pre-
vious sections, we can identify the cardinal directions between any given two com-
plex region objects. To integrate the cardinal directions into spatial databases
as selection and join conditions in spatial queries, binary directional predicates
need to be formally defined. For example, a query like “Find all states that are
strictly north of Florida” requires a directional predicate like strict north as a
selection condition of a spatial join. Assuming a relation states with attributes
sname of type string and loc of type region, we can express the last query in an
SQL-like style as follows:

SELECT s1.sname FROM states s1, states s2

WHERE s2.sname=’Florida’ and strict_north(s1.loc,s2.loc);

The dir function, which produces the final cardinal directions between two
complex region objects A and B, yields a subset of the set CD = {N,NW,W,SW,
S,SE,E,NE,O} of basic cardinal directions. As a result, a total number of

Table 3. Comparison of the OIM model with other cardinal direction models

Models Shape Equal Inverse Complex
Capturing Treatment Operation Objects

MBR no yes no ps†

DRM partially no no ps†

2D-String no yes no ps†

OIM yes yes yes yes
† “ps” means “poorly supported”
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29 = 512 cardinal directions can be identified. Therefore, at most 512 direc-
tional predicates can be defined to provide an exclusive and complete coverage
of all possible directional relationships. We can assume that users will not be
interested in such a large, overwhelming collection of detailed predicates since
they will find it difficult to distinguish, remember and handle them. Instead, a re-
duced and manageable set is preferred. Such a set should be user-defined and/or
application specific. It should be application specific since different applications
may have different criteria for the distinction of directional relationships. For
example, one application could require a clear distinction between the cardinal
direction north and northwest, whereas another application could perhaps ac-
cept no distinction between the two and regard them both as northern. Thus it
should also offer user the flexibility of defining their own set of predicates.

As a first step, in Definition 9, we propose nine existential directional predi-
cates that ensure the existence of a particular basic cardinal direction between
parts of two region objects A and B.

Definition 9. Let A, B ∈ region. Then the existential directional predicates are
defined as

exists north(A, B) ≡ (N ∈ dir(A, B))
exists south(A, B) ≡ (S ∈ dir(A, B))
exists east(A, B) ≡ (E ∈ dir(A, B))
exists west(A, B) ≡ (W ∈ dir(A, B))
exists origin(A, B) ≡ (O ∈ dir(A, B))
exists northeast(A, B) ≡ (NE ∈ dir(A, B))
exists southeast(A, B) ≡ (SE ∈ dir(A, B))
exists northwest(A, B) ≡ (NW ∈ dir(A, B))
exists southwest(A, B) ≡ (SW ∈ dir(A, B))

For example, exists north(A, B) returns true if a part of A is located to the
north of B; this does not exclude the existence of other cardinal directions.
Later, by using this set of existential directional predicates together with ¬, ∨
and ∧ operators, the user will be able to define any set of composite directional
predicates for their own applications.

The following Lemma 2 shows that by using the existential directional predi-
cates and the logical operators ¬, ∨ and ∧, we can obtain a complete coverage
and distinction of all possible 512 basic and composite cardinal directions from
the OIM model based on the CD set.

Lemma 2. Let the list 〈d1, d2, d3, d4, d5, d6, d7, d8, d9〉 denote the cardinal direc-
tion list 〈N, S, E, W, O, NE, SE, NW, SW 〉 and let the list 〈p1, p2, p3, p4, p5, p6,
p7, p8, p9〉 denote the basic directional predicates list 〈exists north, exists south,
exists east, exists west, exists origin, exists northeast, exists southeast, exis-
ts northwest, exists southwest〉. Let A, B ∈ region and 1 ≤ i, j ≤ 9. Then for
any basic or composite cardinal direction provided by dir(A, B), the following
logical expression returns true:
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di∈dir(A,B)

pi ∧
∧

dj /∈dir(A,B)

¬pj

The existential predicates provide an interface for the user to define their own
derived directional predicates. We give two examples.

The first set is designed to handle strict directional predicates between two
region objects. Strict means that two region objects are in exactly one basic
cardinal direction to each other. Definition 10 shows an example of strict north
by using the existential predicates.

Definition 10. Let A, B ∈ region. Then strict north is defined as:

strict north(A, B) = exists north(A, B) ∧ ¬exists south(A, B)
∧¬exists west(A, B) ∧ ¬exists east(A, B)
∧¬exists northwest(A, B) ∧ ¬exists northeast(A, B)
∧¬exists southwest(A, B) ∧ ¬exists southeast(A, B)
∧¬exists origin(A, B)

The other strict directional predicates strict south, strict east, strict west,
strict origin, strict northeast, strict northwest, strict southeast, strict southwest
are defined in a similar way.

The second set of predicates is designed to handle similarly oriented directional
predicates between two regions. Similarly oriented means that several cardinal
directions facing the same general orientation belong to the same group. Defini-
tion 11 shows an example of northern by using the existential predicates.

Definition 11. Let A, B ∈ region. Then northern is defined as:

northern(A, B) = (exists north(A, B) ∨ exists northwest(A, B)
∨exists northeast(A, B))
∧¬exists east(A, B) ∧ ¬exists west(A, B)
∧¬exists south(A, B) ∧ ¬exists southwest(A, B)
∧¬exists southeast(A, B) ∧ ¬exists origin(A, B)

The other similarly oriented directional predicates southern, eastern, and west-
ern are defined in a similar way. From Definition 11, we can see that due to
the disjunction of three existential directional predicates each similarly oriented
directional predicate represents multiple directional relationships between two
objects. For example, if A is in the northern part of B, then dir(A, B) ∈
{{N}, {NW}, {NE}, {N, NW}, {N, NE}, {NW, NE}, {N, NW, NE}}.

We can now employ predicates like strict north, northern and exists north
in queries. For example, assuming we are given the two relations:

states(sname:string, area:region)

national_parks(pname:string, area:region)

We can pose the following three queries: Determine the national park names
where the national park is located (a) strictly to the north of Florida, (b) to the
northern of Florida, and (c) partially to the north of Florida. The corresponding
SQL queries are as follows:
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(a) SELECT P.pname FROM national_park P, states S

WHERE S.sname=’Florida’ and strict_north(P.area, S.area)

(b) SELECT P.pname FROM national_park P, states S

WHERE S.sname=’Florida’ and northern(P.area, S.area)

(c) SELECT P.pname FROM national_park P, states S

WHERE S.sname=’Florida’ and exists_north(P.area, S.area)

6 Conclusions and Future Work

In this paper, we have laid the foundation of a novel concept, called Objects
Interaction Matrix (OIM ), for determining cardinal directions between region
objects. We have shown how different kinds of directional predicates can be
derived from the cardinal directions and how these predicates can be employed
in spatial queries. In the future, we plan to extend our approach to handle two
complex point objects, two complex line objects, and all mixed combinations of
spatial data types. Other research issues refer to the efficient implementation
and the design of spatial reasoning techniques based on the OIM model.
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Abstract. Continuous monitoring of spatial queries has received signif-
icant research attention in the past few years. In this paper, we propose
two efficient algorithms for the continuous monitoring of the constrained
k nearest neighbor (kNN) queries. In contrast to the conventional k near-
est neighbors (kNN) queries, a constrained kNN query considers only the
objects that lie within a region specified by some user defined constraints
(e.g., a polygon). Similar to the previous works, we also use grid-based
data structure and propose two novel grid access methods. Our pro-
posed algorithms are based on these access methods and guarantee that
the number of cells that are accessed to compute the constrained kNNs
is minimal. Extensive experiments demonstrate that our algorithms are
several times faster than the previous algorithm and use considerably
less memory.

1 Introduction

With the availability of inexpensive position locators and mobile devices, con-
tinuous monitoring of spatial queries has gained significant research attention.
For this reason, several algorithms have been proposed to continuously monitor
the k nearest neighbor (kNN) queries [1, 2, 3], range queries [13, 4] and reverse
nearest neighbor queries [5, 6] etc.

A k nearest neighbors (kNN) query retrieves k objects closest to the query.
A continuous kNN query is to update the kNNs continuously in real-time when
the underlying data issues updates. Continuous monitoring of kNN queries has
many applications such as fleet management, geo-social networking (also called
location-based networking), traffic monitoring, enhanced 911 services, location-
based games and strategic planning etc. Consider the example of a fleet man-
agement company. A driver might issue a kNN query to monitor their k closest
vehicles and may contact them from time to time to seek or provide assistance.
Consider another example of the location based reality game BotFighter in which
the players are rewarded for shooting the other nearby players. To be able to
earn more points, the players might issue a continuous kNN query to monitor
their k closest players.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 233–249, 2010.
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We are often required to focus on the objects within some specific region. For
example, a user might be interested in finding the k closest gas stations in North-
East from his location. Constrained kNN queries [7] consider only the objects
that lie within a specified region (also called constrained region). We formally
define the constrained kNN queries in Section 2.1. In this paper, we study the
problem of continuous monitoring of constrained kNN queries.

The applications of the continuous constrained kNN queries are similar to
the applications of kNN queries. Consider the example of the fleet management
company where a driver is heading towards the downtown area. The driver might
only be interested in k closest vehicles that are within the downtown area. Con-
sider the example of BotFighter game, the players might only be interested in
the k closest players within their colleges so that they could eliminate their
fellow students. Continuous constrained kNN queries are also used to contin-
uously monitor reverse kNN queries. For example, six continuous constrained
kNN queries are issued in [5, 8] to monitor the set of candidate objects. Simi-
larly, constrained NNs are retrieved in [6] to prune the search space.

Although previous algorithms can be extended to continuously monitor con-
strained kNN queries, they are not very efficient because no previous algorithm
has been specifically designed for monitoring constrained kNN queries. In this
paper, we design two simple and efficient algorithms for continuous monitoring
of constrained kNN queries. Our algorithms significantly reduce the computation
time as well as the memory usage. The algorithms are applicable to any arbitrary
shape of constrained region as long as a function is provided that checks whether
a point or a rectangle intersects the constrained region or not. Our contributions
in this paper are as follows;

– We introduce two novel grid access methods named Conceptual Grid-tree
and ArcTrip. The proposed access methods can be used to return the grid
cells that lie within any constrained region in order (ascending or descending)
of their proximity to the query point.

– We propose two efficient algorithms to continuously monitor constrained
kNN queries based on the above mentioned grid access methods. It can be
proved that both the algorithms visit minimum number of cells to moni-
tor the constrained kNN queries. Our algorithms significantly reduce the
computational time and the memory consumption.

– Our extensive experiments demonstrate significant improvement over previ-
ous algorithms in terms of computation time and memory usage.

2 Background Information

2.1 Preliminaries

Definition 1. Let O be a set of objects, q be a query point and R be a constrained
region. Let OR ⊆ O be a set of objects that lie within the constrained region R,
a constrained kNN query returns an answer set A ⊆ OR that contains k objects
such that for any o ∈ A and any o′ ∈ (OR − A), dist(o, q) ≤ dist(o′, q) where
dist is a distance metric assumed Euclidean in this paper.
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Please note that a conventional kNN query is a special case of the constrained
kNN queries where the constrained region is the whole data space.

In dynamic environment, the objects and queries issue updates frequently. The
problem of continuous monitoring of constrained kNN queries is to continuously
update the constrained kNNs of the query.

Like many existing algorithms, we use time stamp model. In time stamp
model, the objects and queries report their locations at every time stamp (i.e.,
after every t time units) and the server updates the results and reports to the
client who issued the query. Our algorithm consists of two phases: 1) In initial
computation, the initial results of the queries are computed; 2) In continuous
monitoring, the results of the queries are updated continuously at each time
stamp.

Grid data structure is preferred [1] for the dynamic data sets because it can be
efficiently updated in contrast to the more complex data structures (e.g., R-trees,
Quad-trees etc). For this reason, we use an in-memory grid data structure where
entire space is partitioned into equal sized cells. The cell width in any direction
is denoted by δ. A cell c[i,j] denotes the cell at column i and row j. Clearly, an
object o lies into the cell c[�o.x/δ�, �o.y/δ�] where o.x and o.y represent x and y
co-ordinate values of the object location.

Let q be a query, R be the constrained region and rec be a rectangle. Below,
we define minimum and maximum constrained distances.

Definition 2. Minimum constrained distance MinConstDist(rec, q) is the min-
imum distance of q to the part of the rectangle rec that lies in the constrained
region R. If rec completely lies outside the constrained region R then the min-
imum constrained distance is infinity. The maximum constrained distance Max
ConstDist(rec, q) is defined in a similar way.

Please note that if the constrained region is a complex shape, computing the
minimum (maximum) constrained distance might be expensive or not possible.
In such cases, we use mindist(rec, q) and maxdist(rec, q) which denote mini-
mum and maximum distances of q from the rectangle rec, respectively. Fig. 1
shows examples of minimum and maximum constrained distances for two rect-
angles rec1 and rec2 where the constrained region is a rectangular region and

Fig. 1. Constrained dis-
tances

R0 R1 R2

D0

D1

D2

L1 L0L2

U1

U0

U2

o1

q

o2

Fig. 2. Illustration of
CPM

Fig. 3. CPM for con-
strained kNN queries
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is shown shaded. We use these distances to avoid visiting un-necessary rectan-
gles. Please note that minimum and maximum constrained distances give better
bounds compared to minimum and maximum distances and hence we prefer to
use constrained distances if available.

Table 1 defines the notations used throughout this paper.

Table 1. Notations

Notation Definition

o, q an object, a query
o.x, o.y, q.x, q.y the coordinates (x-axis, y-axis) of o and q

c, c[i, j] a cell c (at ith column and jth row)
dist(x, y) the distance between two points x and y

q.CkNN the set of constrained k nearest neighbors of q

δ the side length of a cell
R the constrained region
q.distk the distance between the kthNN and the query q

mindist(c, q), maxdist(c, q) minimum, maximum distance between q and the cell c

MinConstDist(c, q), minimum, maximum distance between q and the part
MaxConstDist(c, q) of cell c that lies in the constrained region

2.2 Related Work

Ferhatosmanoglu et al. [7] are first to introduce the constrained kNN queries.
They solve the problem for static data objects and static queries. Their proposed
solution traverses R-tree [9] in best-first [10] manner and prune the intermediate
entries by using several interesting pruning rules. They show that their technique
is optimal in terms of I/O. Gao et. al [11] studied the problem of finding k-nearest
trajectories in a constrained region.

Now, we focus on the related work on continuous nearest neighbor queries [12,
2, 3,1,5] where the queries and/or objects change their locations frequently and
the results are to be updated continuously. Voronoi diagram based approaches
(e.g., [13]) have also been proposed for the conventional kNN queries but they
are mainly designed for the case when only the queries are moving.

Grid data structures are preferred when the underlying datasets issue frequent
updates. This is because more complex structures (e.g., R-tree) are expensive to
update [1]. For this reason, several algorithms [2,3,1,5] have been proposed that
use grid-based data structure to continuously monitor kNN queries. .

Most of the grid-based kNN algorithms [2, 3, 1, 14] iteratively access the cells
that are close to the query location. Below, we briefly introduce CPM [1] because
it is a well-known algorithm for continuously monitoring kNN queries. Also,
to the best of our knowledge, this is the only work for which an extension to
continuous constrained kNN queries has been presented.

CPM [1] organizes the cells into conceptual rectangles and assigns each rect-
angle a direction (right, down, left, up) and a level number (the number of cells
in between the rectangle and q as shown in Fig. 2). CPM first initializes an
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empty min-heap H . It inserts the query cell cq and the level zero rectangles (R0,
D0, L0, U0) with the keys set to minimum distances between the query and
the rectangles/cell into H . The entries are de-heaped iteratively. If a de-heaped
entry e is a cell then it checks all the objects inside the cell and updates q.kNN
(the set of kNNs) and q.distk (the distance of current kthNN from q). If e is a
rectangle, it inserts all the cells inside the rectangle and the next level rectangle
in the same direction into the heap. The algorithm stops when the heap becomes
empty or when e has minimum distance from query not less than q.distk. The
Fig. 2 shows 1NN query where the NN is o1. The algorithm accesses the shaded
cells. For more details, please see [1].

CPM can also be used to answer continuous constrained kNN queries by
making a small change. More specifically, only the rectangles and cells that
intersect the constrained region are inserted in the heap. Fig. 3 shows an example
where the constrained region is a polygon. The constrained NN is o2 and the
rectangles shown shaded are inserted into the heap.

2.3 Motivation

At the end of Section 2.2, we briefly introduced how CPM can be used to an-
swer continuous constrained kNN queries. Fig. 3 shows the computation of a
constrained kNN query and the rectangles that were inserted into the heap are
shown shaded. Recall that whenever CPM de-heaps a rectangle, it inserts all
the cells into the heap. In the case of a constrained kNN queries, it inserts only
the cells that intersect the constrained region. Please note that it may require
to check a large number of cells to see if they intersect the constrained region
or not. In the example of Fig. 3, for every shaded cell, CPM checks whether it
intersects the constrained region or not.

The problem mentioned above motivates us to find a more natural grid access
method. In this paper, we present two novel access methods called Conceptual
Grid-tree and ArcTrip. Then, we introduce our algorithms based on these access
methods which significantly perform better than CPM.

3 Grid-Tree Based Algorithm
In this section, first we revisit the Conceptual Grid-tree we briefly introduced
in [6] to address a different problem. Then, we present Grid-tree based algorithm
to continuously monitor the constrained kNN queries.

3.1 The Conceptual Grid-Tree

Consider a grid that consists of 2n× 2n cells (Fig. 4 shows an example of a 4× 4
grid). The grid is treated as a conceptual tree where the root contains 2n × 2n

grid cells1. Each entry e (and root) is recursively divided into four children of
equal sized rectangles such that each child of an entry e contains x/4 cells where
1 If the grid size is not 2n × 2n, it can be divided into several smaller grids such that

each grid is 2i×2i for i > 0. For example, a 8×10 grid can be divided into 5 smaller
grids (i.e., one 8× 8 grid and four 2× 2 grids).



238 M. Hasan et al.

x is the number of cells contained in e. The leaf level entries contain four cells
each (the root, intermediate entries and the grid cells are shown in Fig. 4).

Please note that the Grid-tree is just a conceptual visualization of the grid
and it does not exist physically (i.e., we do not need pointers to store entries and
its children). More specifically, the root is a rectangle with each side of length 1
(we assume unit space). To retrieve the children of an entry (or root), we divide
its rectangle into four equal sized rectangles such that each child has side length
l/2 where l is the side length of its parent. A rectangle with side length equal to
δ (the width of a gird cell) refers to a cell c[i, j] of the grid. The cell c[i, j] can
be identified by the coordinates of the rectangle. More specifically, let a be the
center of the rectangle, then the cell c[i, j] is c[�a.x/δ�, �a.y/δ�].

3.2 Initial Computation

Algorithm 1 presents the technique to compute the initial results of a constrained
kNN query using the Conceptual Grid-tree. The basic idea is similar to that of
applying BFS search [10] on R-tree based data structure. More specifically, the
algorithm starts by inserting the root of the Grid-tree into a min-heap H (root is
a rectangle with side length 1). The algorithm iteratively de-heaps the entries. If
a de-heaped entry e is a grid cell then it looks in this cell and update q.CkNN and
q.distk where q.CkNN is the set of constrained kNNs and q.distk is the distance
of kth nearest neighbor from q (lines 7 and 8). If q.CkNN contains less than k
objects, then q.distk is set to infinity. Recall that to check whether an entry e is a
grid cell or not, the algorithm only needs to check if its side width is δ.

Algorithm 1. Grid-based Initial Computation

Input: q: query point; k: an integer
Output: q.CkNN
1: q.distk=∞; q.CkNN = φ; H = φ
2: Initialize the H with root entry of Grid-Tree
3: while H �= φ do
4: de-heap an entry e
5: if MinConstDist(e, q) ≥ q.distk then
6: return q.CkNN
7: if e is a cell in the grid then
8: update q.CkNN and q.distk by the objects in e
9: else

10: for each of the four children c do
11: if c intersects the constrained region then
12: insert c into H with key MinConstDist(c, q)
13: return q.CkNN

If the de-heaped entry e is not a grid cell, then the algorithm inserts its children
into the heap H according to their minimum constrained distances2 from q. A

2 Recall that we use minimum distance in case the constrained region is a complex
shape such that minimum constrained distance computation is either complicated
or not possible.
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child c that does not intersect the constrained region is not inserted (lines 10
to 13). The algorithm terminates when the heap becomes empty or when a de-
heaped entry e has MinConstDist(e, q) ≥ q.distk (line 5). This is because any
cell c for which MinConstDist(c, q) ≥ q.distk cannot contain an object that lies
in the constrained region and is closer than the kth nearest neighbor. Since the
de-heaped entry e has MinConstdist(e, q) ≥ q.distk, every remaining entry e′

has MinConstDist(e′, q) ≥ q.distk because the entries are accessed in ascending
order of their minimum constrained distances.

root

Grid cells

Intermediate entries

Fig. 4. The Conceptual
Grid-tree

Fig. 5. Illustration of Al-
gorithm 1

Fig. 6. Illustration of the
pruned entries

Example 1. Fig. 5 shows an example of a constrained kNN (k = 1) query q and
the constrained region is a polygon (we assume that the function to compute
minimum constrained distance is not available, so we use minimum distance). To
illustrate the working of our algorithm, the entries of the Grid-tree are shown in
Fig. 6. An entry C[i→j] refers to the rectangle that encloses the cells ci, ci+1, ..., cj .
For example, C[9→12] refers to the top-left small rectangle that contains the cells
c9, c10, c11 and c12. To further improve the illustration, we show the steps of the
execution in Table 1. Please refer to Fig. 5, 6 and Table 1 for rest of the example.
Below, we explain the execution of the algorithm for some of the steps.

1. The root of the tree is inserted in the heap. The set of q.CkNN is set to
empty and q.distk is set to infinity.
2. Root is de-heaped. Its children R1, R2 and R4 are not inserted into the heap
because they do not intersect the constrained region. The only child that is
inserted is C[1→16].
3. C[1→16] is de-heaped and all four children are inserted in the heap because
they intersect the constrained region.
4. C[5→8] is de-heaped and its children (cells c5, c6, c7 and c8) are inserted in
the heap.
5-8. The cells c6, c5, c7 and c8 are de-heaped in this order and the algorithm
looks for the objects that lie inside it. Only one object o1 is found (in cell c7)
but it lies outside the constrained region so it is ignored.
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The algorithm continues in this way.

Table 2. Grid-tree access

Step Deheaped Entries Heap content q.CkNN q.distk

1 φ root φ ∞
2 root C[1→16] φ ∞
3 C[1→16] C[5→8], C[1→4], C[13→16], C[9→12] φ ∞
4 C[5→8] c6, c5, c7, c8, C[1→4], C[13→16], C[9→12] φ ∞
5-8 c6, c5, c7, c8, C[1→4], C[13→16], C[9→12] φ ∞
9 C[1→4] c2, C[13→16], c3, c1, C[9→12], c4 φ ∞
10 c2 C[13→16], c3, c1, C[9→12], c4 φ ∞
11 C[13→16] c14, c3, c13, c15, c1, C[9→12], c16, c4 φ ∞
12 c14 c3, c13, c15, c1, C[9→12], c16, c4 φ ∞
13 c3 c13, c15, c1, C9−12, c16, c4 o3 dist(o3, q)
14 c13 c15, c1, C[9→12], c16, c4 o2 dist(o2, q)
15 c15 c1, C[9→12], c16, c4 o2 dist(o2, q)

13. At step 13, the cell c3 is de-heaped and an object o3 is found that lies in the
constrained region. q.CkNN is updated to o3 and q.distk is set to dist(o3, q).
14. c13 is de-heaped and an object o2 is found. Since o2 is closer to q than o3,
o3 is deleted from q.CkNN and o2 is inserted. q.distk is set to dist(o2, q).
15. The next de-heaped cell c15 has mindist(c15, q) ≥ dist(o2, q) so the algorithm
terminates and o2 is returned as the answer.

3.3 Continuous Monitoring

Data Structure: The system stores a query table and an object table to record
the information about the queries and the objects. More specifically, an object
table stores the object id and location of every object. The query table stores
the query id, query location and the set of its constrained kNNs.

Each cell of the grid stores two lists namely object list and influence list. The
object list of a cell c contains the object id of every object that lies in c. The
influence list of a cell c contains the id of every query q that has visited c (by
visiting c we mean that it has considered the objects that lie inside it (line 8
of Algorithm 1)). The influence list is used to quickly identify the queries that
might have been affected by the object movement in a cell c.

Handling a single update: In the timestamp model, the objects report their
locations at every timestamp (i.e., after every t time units). Assume that an
object o reports a location update and oold and onew correspond to its old and
new locations, respectively. The object update can affect the results of a query
q in the following three ways;

1. internal update: dist(oold, q) ≤ q.distk and dist(onew, q) ≤ q.distk; clearly,
only the order of the constrained kNNs may have been affected, so we update
q.CkNN accordingly.
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2. incoming update: dist(oold, q) > q.distk and dist(onew, q) ≤ q.distk; o is
inserted in q.CkNN

3. outgoing update: dist(oold, q) ≤ q.distk and dist(onew , q) > q.distk; o is not
a constrained kNN anymore, so we delete it from q.CkNN .

It is important to note that dist(o, q) is considered infinity if o lies outside the
constrained region. Now, we present our complete update handling module.
The complete update handling module: The update handling module con-
sists of two phases. In first phase, we receive the query and object updates and
reflect their effect on the results. In the second phase, we compute the final re-
sults. Algorithm 2 presents the details.

Algorithm 2. Continuous Monitoring

Input: location updates
Output: q.CkNN
Phase 1: receive updates
1: for each query update q do
2: insert q in Qmoved

3: for each object update o do
4: Qaffected = coold .Influence list ∪ conew .Influence list
5: for each query q in (Qaffected −Qmoved) do
6: if internal update; update the order of q.CkNN
7: if incoming update; insert o in q.CkNN
8: if outgoing update; remove o from q.CkNN

Phase 2: update results
9: for each query q do

10: if q ∈ Qmoved; call initial computation module
11: if |q.CkNN | ≥ k; keep top k objects in q.CkNN and update q.distk

12: if |q.CkNN | < k; expand q.CkNN

Phase 1: First, we receive the query updates and mark all the queries that have
moved (line 1 to 2 ). For such queries, we will compute the results from scratch
(similar to CPM). Then, for each object update, we identify the queries that
might have been affected by this update. It can be immediately verified that
only the queries in the influence lists of cold and cnew may have been affected
where cold and cnew denote the old and new cells of the object, respectively.
For each affected query q, the update is handled (lines 5 to 8) as mentioned
previously (e.g., internal update, incoming update or outgoing update).

Phase 2: After all the updates are received, the results of the queries are updated
as follows; If a query is marked as moved, its results are computed by calling
the initial computation algorithm. If q.CkNN contains more than k objects in
it (more incoming updates than the outgoing updates), the results are updated
by keeping only the top k objects. Otherwise, if q.CkNN contains less than k
objects, we expand the q.CkNN so that it contains k objects.

The expansion is similar to the initial computation algorithm except the fol-
lowing change. The cells that have MaxConstDist(c, q) ≤ q.distk are not in-
serted into the heap. This is because such cells are already visited.
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3.4 Remarks

A cell c is called visited if the algorithm retrieves the objects that lie inside it. The
number of visited cells has direct impact on the performance of the algorithm.
Our algorithm is optimal3 in the sense that it visits minimum number of cells
(i.e., if any of these cells are not visited, the algorithm may report incorrect
results). Moreover, the correctness of the algorithm follows from the fact that it
visits all such cells. Due to space limitations, we omit the proof of correctness
and the optimality. However, the proof is very similar to the proof for a slightly
different problem (please see Chapter 4.5 of [15]).

We would like to remark that the Conceptual Grid-tree provides a robust
access method that can be used to access cells in order of any preference function.
For example, it can be naturally extended to access cells in decreasing order of
their minimum L1 distances from the query point. As another example, in [4]
we use grid-tree to access the cells in order of their minimum distances to the
boundary of a given circle.

4 ArcTrip Based Algorithm

In this section, we first present a grid access method called ArcTrip. Then,
we present the algorithm to continuously monitor the constrained kNN queries
based on the ArcTrip.

4.1 ArcTrip

ArcTrip is a more general case of our previous work CircularTrip [16]. Given a
query point q and a radius r, the CircularTrip returns the cells that intersect the
circle centered at query location q and has radius r. More specifically, it returns
every cell c for which mindist(c, q) ≤ r and maxdist(c, q) > r. Fig. 7 shows the
CircularTrip where the shaded cells are returned by the algorithm.

The algorithm maintains two directions called Dcur and Dnext (Fig. 7 shows
the directions for the cells in different quadrants based on the location of q). The
main observation is that if a cell c intersects the circle then at least one of the
cells in either direction Dcur or Dnext also intersects the circle. The algorithm
starts with any cell that intersects the circle. It always checks the cell in the
direction Dcur and returns the cell if it intersects the circle. Otherwise, the cell
in the direction Dnext is returned. The algorithm stops when it reaches the cell
from where it had started the CircularTrip.

Given a query point q, radius r and angle range〈θst, θend〉, ArcTrip returns
every cell c that i) intersects the circle of radius r with center at q and ii) lies
within the angle range 〈θst, θend〉. Note that when the angle range is 〈0, 2π〉,
3 The proof assumes that the functions to compute minimum and maximum con-

strained distances are available. Moreover, the case when the query changes its loca-
tion is exception to the claim of optimality (we choose to compute the results from
scratch when the query moves).
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ArcTrip is same as the CircularTrip. In Fig. 8, ArcT rip(q, r, 〈θst, θend〉) returns
the shaded cells. ArcTrip works similar to the CircularTrip except that it starts
with a cell cstart that intersects the circle at angle θst and stops when the next
cell to be returned is outside the angle range.

4.2 Initial Computation

Let 〈θst, θend〉 be the angle range that covers the constrained region and the
minimum distance of the constrained region from the query q is mindist(q, R)
(as shown in Fig. 9). The basic idea of the ArcTrip based algorithm is to call
ArcTrip with the angle range 〈θst, θend〉 and radius r set to mindist(q, R). The
radius is iteratively increased by δ (the cell width) and the returned cells are
visited in ascending order of their minimum distances from the query unless k
constrained NNs are found. It can be guaranteed that the algorithm does not
miss any cell if the radius is iteratively increased by δ [16].

Algorithm 3. ArcTrip Based Initial Computation

Input: q: query point; k: an integer
Output: q.CkNN
1: q.distk=∞; q.CkNN = φ; H = φ
2: compute mindist(q, R) and 〈θst, θstart〉
3: r = mindist(q,R)
4: for each cell c returned by ArcTrip(q, r, 〈θst, θend〉) do
5: insert c in H with key MinConstDist(c, q) if it intersects the constrained region
6: while H �= φ do
7: de-heap an entry e
8: If MinConstDist(e, q) ≥ q.distk; return q.CkNN
9: update q.CkNN and q.distk by the objects in e

10: if H = φ then
11: r = min{r + δ,q.distk}
12: for each cell c returned by ArcTrip(q, r, 〈θst, θend〉) do
13: insert c into H with key MinConstDist(c, q) if the cell is not visited before

and intersects the constrained region
14: return q.CkNN
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Algorithm 3 shows the details of the initial computation. The radius r of the
ArcTrip is set to mindist(q, R). The algorithm inserts the cells returned by the
ArcTrip(q, r, 〈θst, θend〉) into a min-heap if they intersect the constrained region
(lines 4 and 5).

The cells are de-heaped iteratively and q.CkNN and q.distk are updated
accordingly (line 9). When the heap becomes empty, the algorithm calls ArcTrip
by increasing the radius (i.e., r = min{r + δ, q.distk}). The returned cells are
again inserted in the heap (lines 10 to 13). Note that the ArcTrip may returns
some cells that were visited before, so such cells are not inserted in the heap
(line 13).

The algorithm stops when the heap becomes empty or when the next de-
heaped entry has MinConstDist(e, q) ≥ q.distk (line 8). The proof of correct-
ness and the proof that the algorithm visits minimum possible cells is similar to
Theorem 1 in [16].

Example 2. Fig. 9 shows the computation of a constrained NN query. Initially,
the ArcTrip is called with radius r set to mindist(q, R) and the light shaded
cells are returned. The dotted cells are not inserted in the heap because they
do not intersect the constrained region. Other light shaded cells are visited in
ascending order but no valid object is found. ArcTrip is now called with the
radius increased by δ and the dark shaded cells are returned. Upon visiting these
cells, the object o2 and o3 are found. Since o2 is closer, it is kept in q.CkNN
and q.distk is set to dist(o2, q). Finally, ArcTrip with radius q.distk is called to
guarantee the correctness. No cell is inserted in the heap because all the cells
returned by ArcTrip have been visited. The algorithm terminates and reports o2
as the result.

4.3 Continuous Monitoring

The continuous monitoring algorithm (and the data structure) is similar to the
continuous monitoring of Grid-based algorithm (Algorithm 2) except the way
q.CkNN is expanded at line 12. The set of constrained kNNs is expanded in a
similar way to the initial computation module described above except that the
starting radius of ArcTrip is set to r = q.distk.

4.4 Remarks

Similar to the Grid-tree based algorithm, ArcTrip based algorithm is optimal in
number of visited cells. The proof of optimality and correctness is also similar
(due to space limits, we do not present the proofs and refer the readers to [15]).

ArcTrip is expected to check lesser number of cells that intersect the con-
strained region as compared to the Grid-tree based access method. However,
retrieving the cells that intersect the circle is more complex than the Grid-tree
based access method. In our experiments, we found that both the algorithms
have similar overall performance. Similar to the grid-based access method, Arc-
Trip can be used to access cells in increasing or decreasing order of minimum or
maximum Euclidean distance of the cells from q.
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We remark that although we observed in our experiments that the grid-tree
based algorithm and ArcTrip-based algorithm demonstrate very similar perfor-
mance, they are two substantially different grid access methods. The proposed
grid access methods can be applied to several other types of queries (e.g., fur-
thest neighbor queries). It would be interesting to compare the performance of
both proposed access methods for different types of queries and we leave it as
our future work.

5 Experiments

In this section, we compare our algorithms GTree (Grid-tree algorithm) and
ARC (ArcTrip algorithm) with CPM [1] which is the only known algorithm
for continuous monitoring of the constrained kNN queries. In accordance with
the experiment settings in [1], we use Brinkhoff data generator [17] to generate
objects moving on the road network of Oldenburg, a German city. The agility of
object data sets corresponds to the percentage of objects that reports location
updates at a given time stamp. The default speeds of generator (slow, medium
and fast) are used to generate the data sets. If the data universe is unit, the
objects with slow speed travel the unit distance in 250 time stamps. The medium
and fast speeds are 5 and 25 times faster, respectively. The queries are generated
similarly. Each query is monitored for 100 time stamps and the total time is
reported in the experiments. In accordance with [7], for each query, a random
constrained region is generated with random selectivity (i.e., a rectangle at a
random location with randomly selected length and width). Table 3 shows the
parameters used in our experiments and the default values are shown in bold.

Table 3. System Parameters

Parameter Range

Grid Size 162, 322, 642, 1282, 2562, 5122

Number of objects (×1000) 20, 40, 60, 80, 100

Number of queries 100, 200, 500, 1000, 2500, 5000
Value of k 2, 4, 8, 16, 32, 64, 128
Object/query Speed slow, medium, fast
Object/query agility (in %) 10, 30, 50, 70, 90

Effect of grid size: Since we use grid structure, we first study the effect of
grid cardinality in Fig. 10. Fig. 10(a) shows the performance of each algorithm
on different grid sizes with other parameters set to default values. In accordance
with previous work that use grid based approach, the performance degrades
if the grid size is too small or too large. More specifically, if the grid has too
low cardinality, the cost of constrained kNN queries increase because each cell
contains larger number of objects. On the other hand, if the grid cardinality is
too high then many of the cells are empty and the number of visited cells is
increased.



246 M. Hasan et al.

300

600

900

1200

1500

1800

162 322 642 1282 2562 5122

T
im

e 
in

 s
ec

Grid Cardinality

CPM
ARC

GTree

(a) Total time

0.3

1

3

10

30

60

162 322 642 1282 2562 5122

T
im

e 
in

 s
ec

on
d

Grid Cardinality

CPM
ARC

GTree

(b) Initial computation time

0

300K

600K

900K

1200K

1500K

322 642 1282 2562 5122

E
nt

rie
s 

an
d 

ob
je

ct
s 

vi
si

te
d

Grid Cardinality

CPM
GTree

ARC

(c) # of entries processed

Fig. 10. Effect of Grid Size

We compare the initial computation costs of the three algorithms in Fig. 10(b).
The initial computation costs of our algorithms are several times better than
CPM.

In Section 2.3, we showed an example that CPM may process a large number of
entries (rectangles, cells and objects) to see if they intersect with the constrained
region. Although several other factors contribute to the query execution cost, the
number of entries for which the intersection is checked is one of the major factors
that affect the query cost.

Fig. 10(c) shows the number of entries (rectangles, cells and objects) for which
the intersection with the constrained region is checked. As expected, the number
is large if the cells are too large or too small. If the cells are large, the number
of objects for which the intersection is checked is large. On the other hand, if
the cells are small, the number of cells (and conceptual rectangles) for which
the intersection is checked is large. When grid cardinality is low, all three algo-
rithms process similar number of entries. This is because most of the entries are
objects inside the cells. Since each algorithm visits similar number of cells when
cardinality is low, all the objects within each cell are checked for the intersection.
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Fig. 11 compares the memory usage of the three algorithms. GTree and Arc-
Trip based algorithm both store the same data structure and hence have same
memory usage. To efficiently update the results, for each query, the CPM stores
the heap and a visit list (the visit list contains the cells that have been visited
by the query). The percentage on top of the bars represents the ratio of the
memory usage of the algorithms (e.g., 62% means that our algorithms require
62% of the total memory used by CPM).
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Effect of k values: Fig. 12 studies the effect of k on all the algorithms. Clearly,
our algorithms outperform CPM for all k values. Interestingly, both of our algo-
rithms show very similar performances and trends for most of the data settings.
We carefully conducted the experiments and observed that the initial computa-
tion cost and the cost for expanding q.CkNN (line 12 of Algorithm 2) of both
algorithms is similar. The way queries are updated is also similar. Hence, for
most of the data settings, they have similar performances and trends.

We observe that all three algorithms are less sensitive for small values of k.
This is because each cell contains around 30 objects on average for the default
grid size. For small k values, a small number of cells are visited to compute the
results. Hence, the main cost for small k values is identifying the cells that lie
in the constrained region.

Fig. 13 shows the memory usage of each algorithm for different k values.
The memory usage is increased with k. As explained earlier, the change is less
significant for small k values because the number of cells visited is almost same
when k is small.

Effect of data size: We study the performance of each algorithm for different
object and query data sets. More specifically, Fig. 14 shows the total query
execution time for data sets with different number of objects. The cost of all
algorithms increase because the algorithms need to handle more location updates
for larger data sets.
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Fig. 15 shows the time for each algorithm for the data sets with different
number of queries. Both of our algorithms show similar performance and scale
better than CPM. CPM is up to around 4 times slower than our algorithms.

Effect of speed: In this Section, we study the effect of object and query speed
on the computation time. Fig. 16 and 17 show the effect of object and query
speed, respectively. As noted in [1] for kNN queries, we observe that the speed
does not affect any of the three constrained kNN algorithms.

Effect of agility: As described earlier, agility corresponds to the percentage of
objects (or queries) that issues location updates at a given time stamp. Fig. 18
studies the effect of data agility. As expected, the costs of all algorithms increase.
This is because the algorithms need to handle more object updates as the agility
increases.
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Fig. 19 shows the effect of query agility. The cost of CPM increases with in-
crease in query agility because whenever a query changes the location the results
are computed from scratch. Interestingly, the query agility does not have a sig-
nificant effect on our algorithms. This is mainly because the initial computation
cost (the case when a query moves) is not significantly higher than the update
cost.

6 Conclusion

We propose two continuous constrained kNN algorithms based on two novel
grid access methods. The proposed algorithms are optimal in the sense that
they visit minimum number of cells to monitor the queries. Moreover, they use
significantly less memory compared to the previous algorithm. Extensive experi-
ments demonstrate that our algorithms are several times faster than the previous
algorithm.
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Abstract. Finding a homomorphism between tree patterns is an im-
portant technique for testing tree pattern containment, and it is the
main technique behind algorithms for rewriting tree pattern queries using
views. Recent work has shown that for tree patterns P and Q that involve
parent-child (/) edges, ancestor-descendant (//) edges, and branching ([])
only, under a non-disjunctive, non-recursive dtd G, testing whether P
is contained in Q can be done by chasing P into P ′ using five types of
constraints derivable from G, and then testing whether P ′ is contained
in Q without G, which in turn can be done by finding a homomorphism
from Q to P ′. We extend this work to non-disjunctive, recursive dtds.
We identify three new types of constraints that may be implied by a non-
disjunctive recursive dtd, and show that together with the previous five
types of constraints, they are necessary, and sufficient in some important
cases, to consider for testing containment of tree patterns involving /,
//, and [] under G. We present two sets of chase rules to chase a tree
pattern repeatedly, and compare the advantages of these chase rules.

1 Introduction

XPath plays a central role in all xml query languages. A major fragment of
XPath can be represented as tree patterns [5]. Finding homomorphism between
tree patterns is an important technique for efficiently testing tree pattern con-
tainment, and for finding contained/equivalent rewritings of a tree pattern using
a view [8,4,3]. It is shown in [5] that, when P and Q belong to several classes
of tree patterns, P is contained in Q if and only if there is a homomorphism
from Q to P . Unfortunately, when a dtd is present, the existence of a homo-
morphism from Q to P is no longer a necessary condition for P to be contained
in Q. It is shown in [7], however, that if the dtd is duplicate-free and the tree
patterns involve / and [] only, then testing whether tree pattern, P , is contained
in another pattern, Q, under the dtd can be reduced to testing whether P is
contained in Q under two types of constraints implied by the dtd. This result
was extended in [3] to tree patterns involving /,// and [] (known as the class
P {/,//,[]} [5]), under non-recursive and non-disjunctive dtds. It is shown that in
this case, testing whether P is contained in Q under the dtd can be done by
chasing P to P ′ using five types of constraints implied by the dtd, and then
testing whether P ′ is contained in P without the dtd.
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c© Springer-Verlag Berlin Heidelberg 2010
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In this work we extend the work [3] to non-disjunctive, recursive dtds. This
is motivated by the fact that the majority of real-world dtds allow recursion[2].
We focus on tree patterns in P {/,//,[]} under dtds that can be represented as
(possibly cyclic) schema graphs [3]. Our focus is the transformation of a tree
pattern P into P ′ under a dtd G so that the containment of P in any other
pattern Q under dtd G can be tested by identifying a homomorphism from Q to
P ′. This is of practical application in tree pattern rewriting using views since the
main approaches of rewriting algorithms are all based on the testing containment
using homomorphism [8,4,3]. We are not concerned with the completeness, effi-
ciency, and theoretical complexity of tree pattern containment under recursive
dtds, which have been studied already in [6].

Our main contributions are:

– We identify three new types of constraints derivable from a recursive dtd,
and provide an efficient algorithm to extract all such constraints.

– For tree patterns in P {/,//,[]}, we show the three new types of constraints
together with the constraints identified in [3] are sufficient to catch the struc-
tural restrictions imposed by a recursive dtd for the purpose of containment
test.

– We present two sets of chase rules, Chase1 and Chase2, with respect to the
new constraints. Chase1 chases P ∈ P {/,//,[]} to a set S of tree patterns in
P {/,//,[]} such that, if the chase terminates, then P ⊆G Q iff every pattern
in S is contained in Q without dtd. Chase1 is inefficient and it may not
even terminate. Chase2 chases P ∈ P {/,//,[]} to a pattern that involves an
additional type of edges - the descendant-or-self axis. Chase2 is more efficient
than Chase1 in many cases.

– As required by Chase2, we define tree patterns involving /,//, [] and the
descendant-or-self axis, and show that for such tree patterns P and Q, P
is contained in Q if but not only if there is a homomorphism from Q to P .
We also identify subclasses of such tree patterns for which the existence of
homomorphism is both sufficient and necessary for P ⊆ Q.

The rest of the paper is organized as follows. Section 2 provides the prelimi-
naries. We define the new constraints in and provide the algorithm to find all
such constraints implied by a dtd in Section 3. The chase rules are presented in
Section 4. Finally, Section 5 concludes the paper.

2 Preliminaries

2.1 dtd, XTree and Tree Patterns

Let Σ be an infinite set of tags. We model an xml document as a tree (called
an XTree) with every node labeled with some tag in Σ, and model a dtd as a
connected directed graph G satisfying the following conditions: (1) Each node
is labeled with a distinct tag in Σ. (2) Each edge is labeled with one of 1, ?, +,
and ∗, which indicate “exactly one”, “one or zero”, “one or many”, and “zero
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or many”, respectively. Here, the default edge label is 1. (3) There is a unique
node, called the root, which may have an incoming degree of zero, and all other
nodes have incoming degrees greater than 0. The set of tags occurring in G is
denoted ΣG. Because a node in a dtd G has a unique label, we also refer to a
node by its label. A dtd is said to be recursive if it has a cycle. To ensure that
all conforming XML trees (see below) are finite, we require that in every cycle,
there is at least one edge marked with ? or ∗. A recursive dtd example is shown
in Fig. 1 (a).

Let v be a node in an XTree t, the label of v is denoted label(v). Let N(t)
(resp. N(G)) denote the set of all nodes in XTree t (resp. dtd G), and rt(t)
(resp. rt(G)) denote the root of t (resp. G). A tree t is said to conform to dtd
G if (1) for every node v ∈ N(t), label(v) ∈ ΣG, (2) label(rt(t)) = label(rt(G)),
(3) for every edge (u, v) in t, there is a corresponding edge (label(u), label(v)) in
G, and (4) for every node v ∈ N(t), the number of children of v labeled with x
is constrained by the label of the edge (label(v), x) in G. The set of all XTrees
conforming to G is denoted TG.

A tree pattern (TP) in P {/,//,[]} is a tree P with a unique output node (denoted
OP ), with every node labeled with a tag in Σ, and every edge labeled with either
/ or //. The path from the root to the output node is called the output path. A
TP corresponds to an XPath expression. Figures 1 (b), (c) and (d) show three
TPs, P , P ′ and Q. They correspond to the XPath expressions a[//c]//d and
a[//c]/x//d, and a/x//d respectively. Here, single and double lines represent /-
edges and //-edges respectively, a branch represents a condition ([]) in an XPath
expression, and a circle indicates the output node.

Let N(P ) (resp. rt(P )) denote the set of all nodes in a TP P (resp. the root
of P ). An embedding of a TP P in an XTree t is a mapping δ from N(P ) to
N(t) which is (1) label-preserving, i.e., ∀v ∈ N(P ), label(v) = label(δ(v)), (2)
root-preserving, i.e., δ(rt(P )) = rt(t), and (3) structure-preserving, i.e., for every
edge (x, y) in P , if it is a /-edge, then δ(y) is a child of δ(x); if it is a //-edge,
then δ(y) is a descendant of δ(x), i.e, there is a path from δ(x) to δ(y). Each
embedding δ produces a node δ(OP ), which is known as an answer to the TP.
We use P (t) to denote the answer set (i.e., set of all answers) of P on t.

A TP P is said to be satisfiable under dtd G if there exists t ∈ TG such
that P (t) is not empty. In this paper we implicitly assume all TPs are satisfiable
under the dtds in discussion. We will also use the following terms and notations.
An x-node means a node labeled x. An x-child (resp. x-parent, x-descendant)
means a child (resp. parent, descendant) labeled x. A /-child (resp. //-child)
means a child connected to the parent via a /-edge (resp. //-edge). A (/,x)-child
means a /-child labeled x. An x//y-edge (resp. x/y-edge) means a //-edge (resp.
/-edge) from an x-node to a y-node.

2.2 TP Containment and Boolean Patterns

A TP P is said to be contained in another TP Q, denoted P ⊆ Q, if for every
XTree t, P (t) ⊆ Q(t). When a dtd G is present, P is said to be contained in Q
under G, denoted P ⊆G Q, if for every XTree t ∈ TG, P (t) ⊆ Q(t).
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It is noted in [5] that the containment problem of tree patterns can be reduced
to the containment problem of boolean patterns. A boolean pattern is a tree
pattern without any output node. Given a boolean pattern P and an XML tree
t, P (t) returns true iff there is an embedding of P in t. Given two boolean
tree patterns P and Q, P is said to be contained in Q (under G) if for all
XTree t (∈ TG), P (t) → Q(t). By similar argument, when a dtd is present, the
containment problem of tree patterns can be reduced to that of boolean patterns.
In the rest of the paper, all of the tree patterns in discussion are assumed to be
boolean tree patterns.

Given P, Q ∈ P {/,//,[]}, P ⊆ Q iff there is a homomorphism from Q to P [1].
Recall: let P, Q ∈ P {/,//,[]}. A homomorphism from Q to P is a mapping δ from
N(Q) to N(P ) that is label-preserving, root-preserving, structure-preserving as
discussed in the last section.

Lakshmanan et al. showed in [3] that, if P and Q are both in P {/,//,[]} and
the dtd G is acyclic, then P ⊆ Q can be reduced to TP containment under a
set Δ of constraints (referred to as the LWZ constraints hereafter) implied by
G. To check containment under Δ, Lakshmanan et al. used some chase rules to
chase P repeatedly until no more change can be made, resulting a new TP P ′

(the chased pattern), and showed that P ⊆G G iff P ′ ⊆ Q.
The LWZ constraints are listed below.

(1) Parent-Child Constraints (PC), denoted a ⇓1 x, which means that
whenever an x-node is the descendant of an a-node, it must be the child
of the a-node.

(2) Sibling Constraints (SC), denoted a:S↓ y, where S = {x} or S = ∅, and
a, x, y are labels in Σ. In the first case the constraint means that for every
a-node, if it has an x-child, then it also has a y-child. In the second case, it
means that every a-node must have an y-child. Note: for our dtds, the only
case of SC is of the form a : ∅↓y, which we will abbreviate as a :↓ y.

(3) Cousin Constraints (CC), denoted a : x⇓ y. The constraint means that
for every a-node, if it has an x-descendant, then it also has a y-descendant.

(4) Intermediate Node Constraints (IC), denoted a
x−→ y, which means that

every path from an a-node to a y-node must pass through an x-node.
(5) Functional Constraints (FC), denoted a � x, which means that every

a-node has at most one x-child.

The LWZ rules are as follows.

PC-rule: If G � a ⇓1 x, then change any a//x-edge to a/x-edge.
SC-rule: If G � a :↓ y, then add a (/, y)-child to any a-node, if the a-node

does not have such a y-child already.
CC-rule: If G � a : x ⇓ y, and an a-node, a0, has a (//, x)-child, then add a

(//, y)-child to a0 if a0 does not have a y-descendant already.
IC-rule: If G � a

x−→ y, then replace any a//y-edge a0//y0 with an a//x-edge
a0//x0 and the x//y-edge x0//y0.

FC-rule: If G � a � x, and there are two or more (/, b)-children of an a-node,
then merge these b-children.
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Fig. 1. Recursive dtd G and some TPs conforming to G

3 New Constraints Derivable from a Recursive DTD

With a recursive dtd the LWZ constraints are no longer sufficient to capture the
structural restrictions imposed by the dtd that may affect containment between
two TPs, as shown in the following examples.

Example 1. Consider the recursive dtd in Fig. 1 (a) and the queries P = a//d
and Q = a/x//d. Using the LWZ constraints we can chase P to a//x//d but
no further. There is no homomorphism from Q to the chased pattern. Hence we
cannot find P ⊆G Q.

Observe in Example 1 that, in any tree conforming to the dtd, every path from
an a-node to a d-node passes through an x-node (i.e., a

x−→ d is implied by the
dtd). Moreover, the node immediately following the a-node on the path is an
x-node. This information enables us to transform the query a//d to a/x//d, and
thus to establish the equivalence of P and Q in the example.

Example 2. Consider the TPs P and Q and dtds G1 and G2 in Fig. 2. It is easy to
see P ⊆G1 Q and P ⊆G2 Q. But using the LWZ constraints we cannot transform
P to any other form under either G1 or G2, and there is no homomorphism from
Q to P . Therefore we cannot detect P ⊆Gi Q for i = 1, 2.

Unlike Example 1, in the dtds of Example 2, the paths from a to b do not
have a fixed immediate following node of a or a fixed immediate preceding node
of b. However, all paths from a to b must pass through the edge (a, b). Thus
a//b represents the disjunction of a/b, a//a/b, a/b//b and a//a/b//b. Therefore,
P is equivalent to the union of the TPs a/a/b/b, a/a//a/b/b, a/a/b//b/b and
a/a//a/b//b/b under the dtds. Since every TP in the union is contained in Q,
we know P is contained in Q under the dtds.

Next we formally define three new types of constraints. The first two types
catch the useful information shown in Example 1, the third constraint captures
the useful information shown in Example 2.

Definition 1. A child of first node constraint (CFN) is of the form x
/b−−−→ y,

where x, y, b ∈ ΣG. It means that on every path from an x-node to a y-node, the
node immediately following the x-node must be a b-node.
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Fig. 2. Recursive dtds and TPs

A parent of last node constraint (PLN) is of the form x
b/−−−→ y, which means

that for every path from an x-node to a y-node, the node immediately preceding
the y-node is a b-node.

An essential edge constraint (EE) is of the form x
a/b−−→ y, it means that

every path from an x-node to a y-node must contain an edge from an a-node to
a b-node.

Note the following special forms of CFN, PLN, and EE constraints:

x
/y−→ y, x

x/−→ y and x
x/y−−→ y (abbreviated as x

/−→ y).

These special forms have the following properties:

Proposition 1

G � x
b−→ y, x

/b−→ b ⇔ G � x
/b−→ y

G � x
b−→ y, b

b/−→ y ⇔ G � x
b/−→ y

G � x
a−→ y, a

b−→ y, a
/−→ b ⇔ G � x

a/b−−→ y

Therefore, in the following, we will focus only on the above special cases of
constraints, and when we say CFN, PLN, EE constraints, we mean the above

special forms. Also, when x = y = b, the above three constraints become x
/x−→ x,

x
x/−→ x, and x

/−→ x. They are equivalent in the sense that one implies the
others. They mean that on any path from one x-node to another there can be
only x-nodes. We will refer to the LWZ constraints and the CFD, PLN, and EE
constraints simply as the constraints, and use ΔG to denote the set of all such
constraints implied by dtd G. These constraints represent part of the restrictions
imposed by G on the structure of XML trees conforming to G. For example, the

dtd in Fig. 1 implies the CFNs a
/x−→ x, a

/x−→ d and the PLNs x
x/−→ d, a

x/−→ d,

while either of the dtds in Fig. 2 implies the EE a
/−→ b (among others).

3.1 Finding the New Constraints Implied by DTD

A trivial constraint is one which can be derived from every dtd over Σ. For
example, x : y ⇓ y. A trivial constraint is useless. There are other constraints
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Algorithm 1. Finding new constraints implied by dtd G

1: Initialize SCFN, SPLN and SEE as empty set.
2: for every edge (x, y) in G (possibly x = y) do
3: if there is no path from x to y in G− {(x, y)} then

4: add x
/−→ y to SEE

5: if for all u ∈ child(x)− {y}, there is no path from u to y then

6: add x
/y−→ y to SCF N

7: if for all v ∈ parent(y)− {x}, there is no path from x to v then

8: add x
x/−→ y to SPLN

a c

b d

er

*

*

*

? *

(a) dtd

start end constraints

b a b
b/−→ a

c a c
/d,b/−−−→ a

c b c
/d−→ b

c d c
/d−→ d

d a d
b/−→ a

d b d
/−→ b

(b) New constraints

Fig. 3. Recursive dtd and the new constraints found using Algorithm 1

that are useless. For example, when the dtd does not include the tags x or y, or
there is no path from x to y in the dtd, the constraints x : y ⇓ z, x � y, x ⇓1 y,

x
z−→ y, x

/z−→ y and x
z/−→ y will be true but useless. We will call such constraints

vacuous. We are only interested in non-trivial and non-vacuous constraints.
Algorithms for finding all LWZ constraints have already been studied in [3].

Therefore we focus on the new constraints. Let us use SCFN, SPLN, and SEE to
denote the sets of all CFN, PLN, and EE constraints implied by G. Let

child(x) = {y |(x,y) is an edge in G}, and
parent(y) = {x |(x,y) is an edge in G}.

Algorithm 1 shows an algorithm for finding all EE, CFN, and PLN constraints
implied by G. The algorithm checks each edge (x, y) in G, to see whether there
is a path from x to y that does not pass through (x, y). If no such path is found,

then x
/−→ y is implied by G (line 3-4). Then it further checks whether there is

a child u of x other than y such that there is a path from u to y, if no such

path can be found, then x
/y−→ y is implied by G (line 5-6). Similarly, if there

is no path from any parent of y (except x) to y, then x
x/−→ y is implied by G

(line 7-8). Checking whether there is a path from one node to another can be
done in O(|E(G)|), and there are no more than |N(G)| children (parents) of any
node, thus the algorithm takes time O(|E(G)|2 ×|N(G)|). The correctness of the
algorithm is straightforward.

Example 3. Consider the dtd in Fig. 3 (a). The new constraints found by Al-
gorithm 1 are listed in Fig. 3 (b). Note that since the IC constraints a

b−→ a and
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c
d−→ c are also implied by G, we can combine them with b

b/−→ a and c
/d−→ d to

obtain a
b/−→ a and c

/d−→ c.

4 Chasing TPs with Constraints

To use the new constraints to test TP containment, we need to define some
chase rules. For easy description of the rules, we use superscripted characters
to indicate nodes in a TP that are labeled with that character. For example,
x0, x1, . . . represent nodes that are labeled x. We also use x0//y0 (resp. x0/y0)
to represent the //-edge (resp. /-edge) (x0, y0). We will define two sets of chase
rules/algorithms, referred to as Chase1 and Chase2. Each set of rules has its own
advantages. In what follows, ΔG denotes the set of all non-trivial, non-vacuous
constraints implied by dtd G.

4.1 Chase1

Given dtd G and TP P ∈ P {/,//,[]}, Chase1 transforms P using the LWZ rules
and the following rules:

1. If G � x ⇓1 y, but G � x
/y−→ y, and P contains the edge x0//y0, then split

P into two TPs P1 and P2, such that x0//y0 is replaced with x0/y0 and
x0/y1//y0, respectively, in P1 and P2.

2. If G � x ⇓1 y, but G � x
x/−→ y, and P contains the edge x0//y0, then split

P into two TPs P1 and P2, such that x0//y0 is replaced with x0/y0 and
x0//x1/y0, respectively, in P1 and P2.

3. If G � x
x/−→ y, G � x

/y−→ y, but G � x
/−→ y, and P contains the edge x0//y0,

then split P into four TPs P1, P2, P3, P4, such that x0//y0 is replaced with
x0/y0, x0//x1/y0, x0/y1//y0, and x0//x1/y1//y0, respectively, in P1, P2, P3
and P4.

4. If G � x
/−→ x, and P contains the edge x0//x1, then split P into three

TPs P1, P2 and P3, such that x0//x1 is replaced with x0/x1, x0/x2/x1, and
x0/x2//x3/x1, respectively, in P1, P2 and P3.

Let G be a dtd. Let P, Q ∈ P {/,//,[]} be satisfiable under G. To test whether
P ⊆G Q, we repeatedly chase P with ΔG, using the rules in Chase1 and the
LWZ rules, into a set S of TPs: Initially, S = {P}. After each application of
Chase1, S is updated. It is easy to see that, under G, P is equivalent to the
union of the TPs in S. Therefore, we have

Proposition 2. If at some stage of chasing P with ΔG using the rules in
Chase1, there is a homomorphism from Q to every TP in S, then P ⊆G Q.

Example 4. Consider the dtd G and the TPs P , Q in Figures 4 (a), (b) and (e).

P and Q are satisfiable under G. ΔG contains x
x/−→ y. Thus P can be chased to

P1 and P2 as shown in Figures 4 (c) and (d). There is a homomorphism from Q
to P1, and a homomorphism from Q to P2. Therefore, we know P ⊆G Q.
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Fig. 4. P ⊆G Q because P can be chased to P1 ∪ P2 under G, and P1, P2 ⊆ Q

The following is an important property of Chase1.

Theorem 1. Let P, Q ∈ P {/,//,[]} be satisfiable under G. If P cannot be chased
using the rules in Chase1, then P ⊆G Q iff there is a homomorphism from Q
to P .

The proof of the above theorem is in the full version of this paper.
The above result is important because it implies that for testing containment

of TPs in P {/,//,[]} (that terminate with Chase1) under non-disjunctive recursive
dtds, we only need to consider their containment under the corresponding CFN,
PLN, EEC and LWZ constraints. In other words, these constraints are sufficient
to catch the essential structural restrictions (imposed by the dtd) that may
affect containment of TPs in P {/,//,[]}.

Observe that Chase1 may not terminate, that is, it can go on infinitely. For

example, when G � x
/−→ x, the TP x//x is chased into three TPs, and one of them

still has x//x. Also, the number of TPs we will obtain may grow exponentially.
Despite these problems, Chase1 is still useful in several cases. In particular,
Chase1 can detect some cases of containment which cannot be detected using
Chase2. For instance, the P ⊆G Q in Example 4 cannot be detected using
Chase2.

Next we present Chase2, which is more efficient than Chase1 in many cases.

4.2 Chase2

Chase2 makes use of the descendant-or-self axis, denoted ∼, of XPath to represent
the union of several TPs in P {/,//,[]} as a single pattern in P {/,//,∼,[]} (the set
of all patterns involving /,//,[] and ∼). A tree pattern in P {/,//,∼,[]} is like a TP
in P {/,//,[]} except that an edge may be labeled with ∼ (in addition to / and
//). Such edges will be referred to as ∼-edges. To eliminate impossible cases, we
require that the nodes on both sides of any ∼-edge have identical labels. Observe
that if there are several consecutive ∼ edges, they can be replaced with a single
one. For example, x ∼ x ∼ x can be replaced with x ∼ x. When drawing TPs in
P {/,//,∼,[]}, we use double dotted lines to represent ∼-edges (refer to Fig. 5 (a)).
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Given TPs P ∈ P {/,//,∼,[]} and an XML tree t, an embedding of P in t is a map-
ping from N(P ) to N(t) that is root-preserving and label-preserving as defined
before, and structure-preserving which now includes the condition that, if (x, y)
is a ∼-edge in P , then δ(y) is δ(x) or a descendant of δ(x). Note when P does
not have ∼-edges, the embedding reduces to an embedding of TPs ∈ P {/,//,[]}

in t. Similarly, given Q ∈ P {/,//,∼,[]}, a homomorphism from Q to P is defined
in the same way as for the case where both P and Q are in P {/,//,[]}, except
that structure-preserving now means if (x, y) is a /-edge in Q, then (h(x), h(y))
is a /-edge in P ; if (x, y) is a //-edge, then there is a path from h(x) to h(y)
which contains at least one /-edge or //-edge; if (x, y) is a ∼-edge, then either
h(x) = h(y) or there is a path from h(x) to h(y). With these definitions, we have
the following result.

Theorem 2. For any TPs P ∈ P {/,//,∼,[]} and Q ∈ P {/,//,[]}, P ⊆ Q if, but not
only if, there is a homomorphism from Q to P .

Proof. The “if” is straightforward, the “not only if” is shown by Example 5.

Example 5. For the TPs Q and P in Fig. 5, P ⊆ Q but there is no homomorphism
from Q to P .
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Fig. 5. P ⊆ Q, but no homomorphism exists from Q to P

There are some special cases where the existence of a homomorphism is both
necessary and sufficient for P ⊆ Q, where P, Q ∈ P {/,//,∼,[]}.

Theorem 3. P ⊆ Q iff there is a homomorphism from Q to P in the following
cases:

1. P ∈ P {/,//,∼,[]} and Q ∈ P {/,//,[]}, and for every ∼-edge between two x-nodes
in P , there does not exist a //-edge between two x-nodes in Q.

2. P and Q are both in P {/,//,∼}.
3. P ∈ P {/,//,∼,[]} and Q ∈ P {/,//}.
4. P ∈ P {/,//,∼} and Q ∈ P {/,//,[]}.

The proof of the theorem is in the full version of this paper.
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Rules in Chase2

Chase 2 consists of the LWZ rules and the following rules.

1. If G � x ⇓1 y, but G � x
/y−→ y, then replace any x//y-edge, x0//y0, with

x0/y1 ∼ y0.

2. If G � x ⇓1 y, but G � x
x/−→ y, then replace any x//y-edge, x0//y0, with

x0 ∼ x1/y0.

3. If G � x
/y−→ y, G � x

x/−→ y, but G � x
/−→ y, then replace any x//y-edge,

x0//y0, with x0 ∼ x1/y1 ∼ y0.

4. If G � x
/−→ x, then replace any x//x-edge, x0//x1, with x0/x2 ∼ x1 or with

x0 ∼ x2/x1.

Chase2 can be used to chase a TP repeatedly until no more change can be
obtained. The following proposition is straightforward.

Proposition 3. Let G be a dtd, Δ be a subset of constraints implied by G, and
P, Q ∈ P {/,//,[]} be TPs. Let P ′ be the TP obtained by applying the Chase2 rules
to P using the constraints in Δ. If there is a homomorphism from Q to P ′, then
P ⊆G Q.

The example below demonstrates the advantage of Chase2 over Chase1, that is,
the better efficiency in some cases.

Example 6. Consider the TPs P, Q and the dtd G1 in Fig. 2. G1 implies a
/−→ b,

but not a
/b−→ b or a

a/−→ b. Therefore P can be chased into P ′ = a/a ∼ a/b ∼ b/b
using Chase2. Clearly there is a homomorphism from Q to P ′. Therefore we can
conclude P ⊆G1 Q and P ⊆G2 Q.

However, generally P ⊆G Q does not imply the existence of a homomorphism
from Q to ΔG(P ). One reason for this deficiency of Chase2 is because of The-
orem 2. Another reason is that the rules in Chase2 are not sufficient such that,
in some cases, not all useful constraints can be applied in the chase.

We point out that the Chase2 rules can be extended with additional rules to
make the chase “complete” for some special cases, that is, P ⊆G Q can be tested
by testing the existence of a homomorphism from Q to P ′, where P ′ is the TP
obtained by applying Chase2 and the additional rules. The details can be found
in the full version of this paper.

5 Conclusion

We identified three new types of constraints that may be implied by a recursive
dtd G, and presented an algorithm for finding them. These constraints are used
to transform a tree pattern in P {/,//,[]} in order to test whether P ⊆G Q using
homomorphism. We provided two sets of chase rules for this purpose. As a
by-product, we showed that the existence of a homomorphism is sufficient but
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not necessary for the containment of tree patterns with self-or-descendant edges,
and identified special cases where the existence of homomorphism is necessary.
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Abstract. Designing dynamic labeling schemes to support order-
sensitive queries for XML documents has been recognized as an impor-
tant research problem. In this work, we consider the problem of making
range-based XML labeling schemes dynamic through the process of en-
coding. We point out the problems of existing encoding algorithms which
include computational and memory inefficiencies. We introduce a novel
Search Tree-based (ST) encoding technique to overcome these problems.
We show that ST encoding is widely applicable to different dynamic la-
bels and prove the optimality of our results. In addition, when combining
with encoding table compression, ST encoding provides high flexibility of
memory usage. Experimental results confirm the benefits of our encoding
techniques over the previous encoding algorithms.

1 Introduction

XML is becoming an increasingly important standard for data exchange and
representation on the Web and elsewhere. To query XML data that conforms
to an ordered tree-structured data model, XML labeling schemes have attracted
a lot of research and industrial attention for their effectiveness and efficiency.
XML Labeling schemes assign the nodes in the XML tree unique labels from
which their structural relationships such as ancestor/descendant, parent/child
can be established efficiently.

Range-based labeling schemes[6,11,12] are popular in many XML database
management systems. Compared with prefix labeling schemes[7,2,13], a key ad-
vantage of range-based labeling schemes is that their label size as well as query
performance are not affected by the structure (depth, fan-out, etc) of the XML
documents, which may be unknown in advance. Range-based labeling schemes
are preferred for XML documents that are deep and complex, in which case
prefix labeling schemes perform poorly because the lengths of prefix labels in-
crease linearly with their depths. However, prefix labeling schemes appear to be
inherently more robust than range-based labeling schemes. If negative numbers
are allowed for local orders, prefix labeling schemes require re-labeling only if
a new node is inserted between two consecutive siblings. Such insertions can
be processed without re-labeling based on existing solutions[14,9]. On the other
hand, any insertion can trigger the re-labeling of other nodes with range-based
labeling schemes.
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The state-of-the-art approach to design dynamic range-based labeling schemes
is based on the notion of encoding. It is also the only approach that has been pro-
posed which can completely avoid re-labeling. By applying an encoding scheme
to a range-based labeling scheme, the original labels are transformed to some dy-
namic format which can efficiently process updates without re-labeling. Existing
encoding schemes include CDBS[4], QED[3,5] and Vector[8] encoding schemes
which transform the original labels to binary strings, quaternary strings and vec-
tor codes respectively. The following example illustrates the applications of QED
encoding scheme to containment labeling scheme, which is the representative of
range-based labeling schemes.

Example 1. In Figure 1 (a), every node in the XML tree is labeled with a con-
tainment label of the form: start, end and level. When QED encoding scheme
is applied, the start and end values are transformed into QED codes based on
the encoding table in (b). We refer to the resulting labels as QED-Containment
labels which are shown in (c). QED-Containment labels not only preserve the
property of containment labels, but also allows dynamic insertions with respect
to lexicographical order[3].

Fig. 1. Applying QED encoding scheme to containment labeling scheme

Formally speaking, we consider an encoding scheme as a mapping f from the
original labels to the target labels. Let X and Y denote the set of order-sensitive
codes in the original labels and target labels respectively, f maps each element
x in X to an element y = f(x) in Y . For the mapping to be both correct and
effective, f should satisfy the following properties:

1. Order Preserving: The target labels must preserve the order of the original
labels, i.e. f(xi) < f(xj) if and only if xi < xj for any xi, xj ∈ X.

2. Optimal Size: To reduce the storage cost and optimize query performance,
the target labels should be of optimal size, i.e. the total size of f(xi) should
be be minimized for a given range. To satisfy this property, f has to take
the range to be encoded into consideration. The mappings may be different
for different ranges.
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The following example illustrates how this mapping in Figure 1 (b) is derived
based on QED encoding scheme.

Example 2. To create the encoding table in Figure 1 (b), QED encoding scheme
first extends the encoding range to (0, 19) and assigns two empty QED codes
to positions 0 and 19. Next, the (1/3)th (6=round(0+(19-0)/3)) and (2/3)th

(13=round(0+(19-0)×2/3)) positions are encoded by applying an insertion al-
gorithm with the QED codes of positions 0 and 19 as input. The QED insertion
algorithm takes two QED codes as input and computes two QED codes that are
lexicographically between them which are as short as possible (Such insertions
are always possible because QED codes are dynamic). The output QED codes
are assigned to the (1/3)th and (2/3)th positions which are then used to partition
range (0, 19) into three sub-ranges. This process is recursively applied for each
of the three sub-ranges until all the positions are assigned QED codes. CDBS
and Vector encoding schemes adopt similar algorithms.

We classify these algorithms i.e. CDBS, QED and Vector, as insertion-based
algorithms since they make use of the property that the target labels allow
dynamic insertions. However, a drawback of the insertion-based approach is that
by assuming the entire encoding table fits into memory, it may fail to process
large XML documents due to memory constraint. Since the size of the encoding
table can be prohibitively large for large XML documents and main memory
remains the limiting resource, it is desirable to have a memory efficient encoding
algorithm. Moreover, the insertion-based approach requires costly table creation
for every range, which is computationally inefficient for encoding multiple ranges
of multiple documents.

In this paper, we show that only a single encoding table is needed for the
encoding of multiple ranges. As a result, encoding a range can be translated into
indexing mapping of the encoding table which is not only very efficient, but also
has an adjustable memory usage. The main contributions of this paper include:

– We propose a novel Search Tree-based (ST) encoding technique which has a
wide application domain. We illustrate how ST encoding technique can be
applied to binary string, quaternary string and vector code and prove the
optimality of our results.

– We introduce encoding table compression which can be seamlessly integrated
into our ST encoding techniques to adapt to the amount of memory available.

– We propose Tree Partitioning (TP) technique as an optimization to further
enhance the performance of ST encoding for multiple documents.

– Experimental results demonstrate the high efficiency and scalability of our
ST encoding techniques.

2 Preliminary

2.1 Range-Based Labeling Schemes

In containment labeling scheme, every label is of the form (start, end, level)
where start and end define an interval and level refers to the level in the
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XML document tree. Assume node n has label (s1, e1, l1) and node m has label
(s2, e2, l2), n is an ancestor of m if and only if s1 < s2 < e2 < e1. i.e. interval
(s1, e1) contains interval (s2, e2). n is the parent of m if and only if n is an
ancestor of m and l1 = l2 − 1. Other range-based labeling schemes[11,12] have
similar properties.

Example 3. In Figure 1 (a), node(1,18,1) is an ancestor of node(7,8,3) because
1<7<8<18. Node(4,11,2) is the parent of node(5,6,3) because 4<5<6<11 and
2=3-1.

Although range-based labeling schemes work well for static XML documents,
insertions of new nodes may lead to costly re-labeling. Leaving gaps[12] only
allows limited number of insertions before re-labeling is required. Floating point
numbers have been suggested to be used[1]. However, the precision of floating
point number is limited by the fixed number of bits in its mantissa. As a result,
re-labeling is still necessary when the number of insertions exceeds certain limits.

2.2 Dynamic Formats

Dynamic formats proposed in the literature include binary strings that end with
1[4], quaternary strings that end with 2 or 3[3] and vector codes[8]. They are
dynamic in the sense that arbitrary insertions can be made between two consec-
utive codes without affecting other codes. We use binary strings to illustrate the
property of dynamic formats. We include the descriptions of quaternary strings
and vector codes in the extended version of this paper[10].

Definition 1. (Binary String) Given a set of binary numbers A = {0, 1}
where each number is stored with 1 bit. A binary string is a sequence of elements
in A.

Binary strings are compared based on lexicographical order. The following the-
orem formalizes the dynamic property of binary strings that end with 1.

Theorem 1. Given two binary strings Cl and Cr which both end with 1 such
that Cl precedes Cr in lexicographical order (denoted as Cl ≺ Cr), we can always
find Cm which also ends with 1 and Cl ≺ Cm ≺ Cr.

Theorem 1 can be proved based on Algorithm 1.

Example 4. Given three binary strings 01, 11 and 111, it follows from lexico-
graphical order that 01 ≺ 11 ≺ 111. Insertion between 01 and 11 will produce
011, since length(01) ≥ length(11) (01⊕1, Algorithm 1 line 2). And insertion
between 11 and 111 gives 1101, since length(11) < length(111) (111 with the
last 1 change to 01, Algorithm 1 line 4).

3 ST Encoding Technique

In this section, we present the details of our ST encoding technique which can
be applied to binary string, quaternary string and vector codes, and are called
STB, STQ and STV encoding schemes respectively.
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Algorithm 1. InsertBinaryString(Cl, Cr)
Data: Cl and Cr which are both binary strings that end with 1 and Cl ≺ Cr

Result: Cm which ends with 1 and Cl ≺ Cm ≺ Cr

if length(Cl) ≥ length(Cr) then1

Cm = Cl⊕ 1 /* ⊕ means concatenation */;2

end3

else Cm = Cr with the last number 1 change to 01;4

return Cm;5

3.1 ST-Binary (STB)

Data structure: Our STB encoding is based by the data structure we call STB
tree. An STB tree is a complete binary tree where each node is associated with
a binary string that ends with 1, which we refer to as an STB code. The STB
code of the root is 1.

Given a node n in the STB tree, the STB code of its left child lc and right
child rc can be derived as follows:

– Clc=Cn with the last 1 replaced with 01
– Crc=Cn⊕ 1 (⊕ means concatenation)

Two STB trees with 6 and 12 nodes are shown in Figure 2 (b) and (c).
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(c) An STB tree of size 12 
(The decimal numbers above and below each node 
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(b) An STB tree of size 6 

(d) STB table of (b)

L-Index: level order traversal sequence number
I-Index:  inorder traversal sequence number

STB Code
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I-Index STB Code
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2 001

3 0011

4 01

5 0101
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7 0111

8 1

9 1001
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11 11

12 111

I-Index STB Code

1 001

2 01

3 011

4 1

5 101

6 11

Fig. 2. STB encoding of two ranges 6 and 12

Lemma 1. The left subtree of a node n contains only STB codes lexicographi-
cally less than Cn; The right subtree of n contains only STB codes lexicographi-
cally greater than Cn.
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Proof. [Sketch] Given any STB code n which is a binary string that ends with
1, we denote Cn as “S1” where “S” is a binary string or an empty string. It
follows that Clc=“S01” and similarly, Clc.lc=“S001” and Clc.rc=“S011”. Now
it is easy to see that all the STB codes in the left subtree have “S0” as their
prefix. Since “S0” precedes “S1” in lexicographical order, all the STB codes in
the left subtree are lexicographically less than Cn. The rest of the lemma follows
similarly.

Theorem 2. An STB tree is a binary search tree based on lexicographical order.

Proof. Theorem 2 follows directly from Lemma 1.

An L table stores the STB codes of an STB tree in order of level order traversal.
We denote the index of an L table as L-Index and use L to denote the set of
decimal numbers in L-Index. An important observation about L table is that it
can be shared by STB trees of different sizes: the first m rows of the L table
represents an STB tree of size m in level order. An STB table stores the STB
codes of an STB tree in order of inorder traversal. We denote the index of an
STB table as I-Index and use I to denote the set of decimal numbers in I-Index.

Example 5. Consider the STB tree of size 6 in Figure 2 (b). If we order its STB
codes according to level order traversal sequence, they match the first 6 rows
of the L table in (a). Ordering the codes in order of inorder traversal sequence
would produce the STB table in (d). Similar observation can be made for the
STB tree in (c).

Algorithms. To encode a range m with STB encoding is to realize the mappings
represented by an STB table of size m. Intuitively, this can be achieved by
traversing the STB tree of size m in inorder.

Formally speaking, STB encoding defines a mapping f : I → B where B
denotes the set of STB codes. More specifically, f is established through two
levels of mappings: f(i) = h(g(i)) where g : I → L and h : L → B. Deriving
h is straight forward from the L table. Depending on the range to be encoded,
the size of L table can be extended dynamically. How g can be established is
shown in Algorithm 2 which is based on inorder traversal of a binary tree. First
a stack path is initialized to store the L-Indices of a root-to-leaf path(line 1).
Then we proceed to call Function PushLeftPath which pushes the L-Index of
the leftmost path (starting from the root) into path (line 2). For each i ∈ I,
we map i to the top element in path (Recall that during an inorder traversal,
the leftmost element is always visited first). Then the L-Index of the leftmost
path that starts from the right child of the top element is pushed into path
(line 3 to 6).

Next we show that STB encoding is order preserving and of optimal size.

Theorem 3. Given a range m and any two numbers j and k such that 1 ≤
j < k ≤ m, it follows that Cj ≺ Ck where Cj and Ck denote the STB codes
transformed from j and k based on STB encoding.



268 L. Xu et al.

Algorithm 2. ItoLMapping(m)
Data: m which is the range to be encoded.
Result: The mapping from I-Index to L-Index stored in an array ItoL[1 . . . m].
Initialize Stack path;1

PushLeftPath(path, 1, m);2

for i=1 to m do3

l=path.Pop();4

ItoL[i] = l;5

PushLeftPath(path, 2× l + 1, m) /* 2× l + 1 −→ right child */6

end7

Function PushLeftPath(path, l, m)

while l ≤ m do
path.Push(l);
l = 2× l /* 2× l −→ left child */

end

Proof. Since an STB tree is a binary search tree (Theorem 2), an inorder traver-
sal of the STB tree visits the STB codes in increasing lexicographical order. In
other words, STB encoding is order preserving.

Lemma 2. Level i of an STB tree has 2i−1 STB codes (except possibly the last
level) of length i. (Assume the root is of level 1).

Lemma 2 easily follows from the properties of STB trees.
Since an STB code is a binary string that ends with 1, there are 2i−1 possible

STB codes of length i. From Lemma 2, we can see that an STB tree has all
the possible STB codes of length i at level i (except possibly the lowest level).
The fact that an STB tree is a complete binary tree implies that STB codes
with length i are always used up before STB codes with length i + 1 are used.
Therefore STB encoding produces labels with optimal size.

3.2 ST-Quaternary (STQ)

We illustrate our STQ encoding scheme using the data structure we call STQ
tree. An STQ tree is a complete ternary tree. Each node of the STQ tree is
associated with two STQ codes: left code (L) and right code (R) where R = L
with the last number 2 change to 3. L and R of the root are 2 and 3 respectively.

Given a node n in the STQ tree, the left code of its left child (lc), middle
child (mc) and right child (rc) can be derived as follows:

– Llc= Ln with the last number 2 change to 12;
– Lmc= Ln ⊕ 2 (⊕ means concatenation);
– Lrc= Rn ⊕ 2.
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(c) An STQ tree of size 12
(The decimal numbers above and below each node 

indicate its L-Index and I-Index respectively)
(e) STQ table  of  (c)(a) L table
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(b) An STQ tree of size 6

(d) STQ table of (b)

L-Index: level order traversal sequence number
I-Index:  inorder traversal sequence number
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I-Index STQ Code

1 12

2 13

3 2

4 22

5 23

6 3

Fig. 3. STQ Encoding of two ranges 6 and 12

For every node, we have R = L with the last number 2 change to 3.
Two STQ trees with 6 and 12 codes are shown in Figure 3 (b) and (c).

Lemma 3. The left subtree of a node n contains only STQ codes lexicograph-
ically less than Ln; The middle subtree of n contains only STQ codes lexico-
graphically between Ln and Rn; The right subtree of n contains only STQ codes
lexicographically greater than Rn.

The proof is similar to that of Lemma 1, so we omit it here. Given Lemma
3, an STQ tree can be seen as a search tree if we define the inorder traversal
sequence to be in order of: (1) Traverse the left subtree; (2) Visit L of the root;
(3) Traverse the middle subtree; (4) Visit R of the root and (5) Traverse the
right subtree. In this way, we can define I-Index, L-Index, STQ table and L

table similar to those of STB tree.
STQ encoding defines the mapping from I-Index to STQ codes which is

achieved through two levels of mappings: from I-Index to L-Index and from
L-Index to STQ codes. As shown in Figure 3 (a), the mappings from L-Index to
STQ codes are stored a single L table which can be shared by multiple ranges.
The mappings from I-Index to L-Index can be derived from Algorithm 4 which
performs an inorder traversal of the STQ tree.

The correctness of our STQ encoding algorithm follows from the fact that an
inorder traversal visits the STQ codes in increasing lexicographical order. The
size of the encoded labels is also optimal as, intuitively, our algorithm favors
STQ codes with smaller lengths.
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Algorithm 4. ItoLMapping(m)
Data: m which is range to be encoded.
Result: The mapping from I-Index to L-Index stored in an array ItoL[1 . . . m].
Initialize Stack path;1

PushLeftPath(path, 1, m);2

for i=1 to m do3

l=path.Pop();4

ItoL[i] = l;5

if l mod 2 =1 then /* l −→ lcode */6

PushLeftPath(path, 3× l + 2, m) /* 3× l + 2 −→ middle child */7

else /* l −→ rcode */8

PushLeftPath(path, 3× l + 1, m) /* 3× l + 1 −→ right child */9

end10

end11

Function PushLeftPath(path, l, m)

while l ≤ m do
path.Push(l + 1);
path.Push(l);
l = 3× l /* 3× l −→ left child */

end

3.3 ST-Vector (STV)

Our STV encoding scheme is based on the data structure we call STV tree. It
is a complete binary tree where each node is associated with a vector code: C.
The vector codes of the root, its left child and right child are (1,1), (2,1) and
(1,2) respectively.

Given a node n and its parent p in the STV tree, the vector codes of its left
child (lc) and right child (rc) can be derived as follows: If n is the left child of
p, Clc=2 × Cn - Cp; Crc=Cn + Cp; Else, Clc=Cn + Cp; Crc=2 × Cn - Cp. An
example of STV tree is shown in Figure 4.

(4,1) (5,2) (5,3) (4,3) (3,4) (3,5)

(3,1) (3,2)

(2,5) (1,4)

(2,3) (1,3)

(2,1) (1,2)

(1,1)

(5,1) (7,2) (8,3)

Fig. 4. STV tree
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Theorem 4. An STV tree is a binary search tree based on vector order.

The proof is based on mathematical induction, we omit it here. Given the STV
tree, we can define L table similar to that of STB encoding which stores the
mapping from L index to Vector codes. Moreover, since STV tree is a binary
search, Algorithm 2 can be directly applied to derive the mapping from I to L
index. We ignore the details of STV encoding since it is similar to STB encoding.

3.4 Comparison with Insertion-Based Approach

Compared with the insertion-based approach, our design of ST encoding as a
two level mapping has the following advantages: (1) Since h : L → STB/STQ/
STV code remains the same for different ranges, the cost of encoding a new range
is only to compute g : I → L. By sharing h for different ranges, we avoid costly
table creation for every range; (2) Compression technique can be conveniently
applied to L table to provide high flexibility of memory usage (Section 4). The
compression technique is easily incorporable because compressing L table only
affects h while h and g are independent of each other; (3) By exploiting the
common mappings of different ranges, we can further speed up the encoding of
multiple ranges (Section 5).

4 Encoding Table Compression

The L table of STB is shown in Figure 5 (a). Considering its STB codes with
indices from 2 onwards, we can see that every STB code at index 2i + 1 can be
deduced from the STB code at index 2i by changing the second last number to
1. Therefore we can compress this L table to half by only retaining the rows with
even indices ((b)). Thus, the mapping from L-Index to STB codes for becomes:

h(l)→

⎧⎪⎪⎨⎪⎪⎩
LTable[l/2] , when l mod 2 = 0

LTable[�l/2�]with the sec-
ond last number change to 1 , when l mod 2 = 1

(1)

The table in (b) can be further compressed by a factor of 2 if we consider the STB
codes with indices from 2 onwards. We exclude the STB codes with odd indices
since they can be derived from the STB codes with even indices by changing the
third last number to 1 ((c)). In this way, we can compress the L table of STB
by factors of 2, 4, 8 . . .2C and we denote C as the compression factor.

By analyzing the L table of STQ in Figure 5 (d), the straight forward com-
pression is to exclude the STQ codes with even indices since they can be derived
from the STQ codes with odd indices by changing the last 2 to 3 ((b)). Therefore
the mapping from L-Index to STQ codes becomes:

h(l)→

⎧⎪⎪⎨⎪⎪⎩
LTable[�l/2�] , when l mod 2 = 1

LTable[l/2] with the
last number change to 3 , when l mod 2 = 0

(2)
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(b) Compressed L
table with C=1

(c) Compressed L 
table with C=2

(a) The original 
L table of  STB

(e) Compressed L 
table with C=0

(d) The original 
L table of STQ

(f) Compressed L
table with C=1

L STB Code

1 1

2 01

3 11

4 001

5 011

6 101

7 111

8 0001

9 0011

10 0101

11 0111

12 1001

13 1011

14 1101

15 1111

16 00001

17 00011

18 00101

L STB Code

1 001

2 0001

3 1001

4 00001

L STB Code

1 01

2 001

3 101

4 0001

5 0101

6 1001

7 1101

8 00001

9 00101

L STQ Code

1 2

2 3

3 12

4 13

5 22

6 23

7 32

8 33

9 112

10 113

11 122

12 123

13 132

14 133

15 212

16 213

17 222

18 223

L STQ Code

1 12

2 112

3 212

L STQ Code

1 2

2 12

3 22

4 32

5 112

6 122

7 132

8 212

9 222

Fig. 5. Compress L tables of STB and STQ by factors of 2C and 2× 3C respectively

Consider the table in Figure 5 (e), it can be further compressed by a factor of 3
if we consider the STQ codes from index 2 onwards. The STQ codes at indices
3i and 3i+ 1 can be derived from the STQ code at index 3i− 1 by changing the
second last number to 2 and 3. Therefore we exclude the STQ codes at indices
3i and 3i + 1 and the resulting table is shown in (f). In summary the L table of
STQ can be compressed by factors of 2, 6, 18 . . .2 × 3C .

The L table of STV can be compressed by a factor of 2 based on the bilateral
symmetry we observe in the STV tree (Figure 4). Further compression is possible
based on the symmetry at lower levels. Overall we can achieve compression
factors of 2C .

5 Tree Partitioning (TP)

We introduce Tree Partitioning (TP) as an optimization to further enhance the
performance of ST encoding technique. We use STB tree to illustrate the idea
of TP. Our optimization technique can be easily adapted for STQ and STV
trees.

STB encoding technique, as we have shown, is a mapping f(i) = h(g(i)) where
g : I → L and h : L → B. Since h remains the same for different ranges, the
cost of encoding a range is dominated by g. The motivation for TP optimization
is that, given multiple ranges to be encoded, the computational cost of g can
be reduced if we can exploit the common mappings for ranges that are close to
some extent.

Suppose there are two STB trees T of size s1 and T ′ of size s2 (without loss
of generality, we assume s1 < s2), we analyze the common mapping of the two
trees when they have the same height, say k, i.e. 2k ≤ s1 < s2 < 2k+1.
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(a) An STB tree T of size 9

L

M

R

L’

R’

1

01 11

001

0001 0011

011

0101 0111

111101

1

2

3

4

5

6

7

8

9

10

2 3

4 5 6 7

8 9 10 11 11

1
1

01 11

001

0001 0011

011 111101

1

2

3

4

5

6

7

8

2 3

4 5 6 7

8 9 9

1

(b) An STB tree T’ of size 11
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Fig. 6. TP Optimization

Our TP algorithm divides T ′ into three partitions:

L partition: All the nodes on the left of the path from the root to the node
with L-Index=s1 + 1.

R partition: All the nodes on the right of the path from the root to the node
with L-Index=s2

M partition: The rest of the nodes in the STB tree

T is also divided into three partitions: L’, R’ and M’. L’ and L partitions have
the same L-Index and so do R’ and R partitions. And the rest of the nodes fall
into M’. g in L and L’ partitions are the same as the two partitions overlap and
are visited first during inorder traversal. If we increase all the I-Index in R by
s2 − s1, g in R and R’ also coincide.

Example 6. Two STB trees T and T’ in Figure 6 (a) and (b) are partitioned
based on our TP algorithm. In the resulting partitions, g in L and L’ are the
same. g in region R can be derived from that in R’ if we increase the L-Index in
R by 11 − 9 = 2.

Since both M and M’ bounded by two root-to-leaf paths, Algorithm 2 can be
easily modified to compute the mappings in them (an intermediate state can be
calculated based on direct calculation which is available in [10]). By partition-
ing the range to be encoded, we can re-use some of the previously-computed
mappings and avoid re-computing g for the whole range.

6 Experiments and Results

In this section, we experimentally evaluate and compare the various encoding
techniques developed in this paper against the insertion-based encoding schemes
including CDBS, QED and Vector. The comparison of CDBS, QED and Vector
with the previous labeling scheme are beyond the scope of this paper and can
be found in [5,8].

We used data sets from XMark benchmark, Treebank, SwissProt and DBLP
datasets for our experiments. The characteristic of these data sets are shown
in Table 1. We used JAVA for our implementation and our experiments are
performed on Pentium IV 3 GHz with 1G of RAM running on windows XP.
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Table 1. Test data sets

Data set Max/average fan-out Max/average depth No. of nodes
XMark 25500/3242 12/6 179689

Treebank 56384/1623 36/8 1666315
SwissProt 50000/301 5/3 2437666

DBLP 328858/65930 6/3 3332130

6.1 Encoding Time

First we evaluate the encoding time of these encoding schemes using contain-
ment labels of the XMark data set. We randomly generated 80 XMark documents
whose sizes range from 1 MB to 90 MB. In Figure 7, we observe clear time dif-
ference between ST encodings and insertion-based encodings: our STB and STV
encodings are both approximately 3 times faster than CDBS and Vector en-
coding; Moreover, our STQ encoding is approximately 7 times faster than QED
encoding. The reason is clear from the comparison of algorithms: insertion-based
encodings need to create an encoding table for every range, which is significantly
slower than our ST encodings that perform index mapping of a single table. The
advantages of ST encoding are more significant when we apply TP optimization
which exploits common mappings of encoding multiple ranges. Overall ST encod-
ings with TP are by a factor of 5-11 times faster than insertion-based encodings
for containment labels. The results confirm that our ST encoding techniques
are highly efficient for encoding multiple ranges and substantially surpass the
insertion-based encodings.
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6.2 Memory Usage and Encoding Table Compression

We compare the memory usage of different algorithms which is dominated by
the size of the encoding tables and the results are shown in Figure 8. Without
any compression, the table size of STB and CDBS are the same, and so are their
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table creation times. However, unlike CDBS whose table size is fixed, our STB
encoding can adjust its table size by varying the compression factor C. A larger
C yields a smaller table size and less table creation time. Similar observation can
be made in Figure 8 (c) and (d) for quaternary strings. The table creation time
of STQ is less than that of QED due to the complexity of the QED insertion
algorithms. By adjusting the compression factor, our ST encoding can process
large XML data sets with limited memory available.
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Fig. 8. Encoding table compression

6.3 Label Size and Query Performance

We empirically evaluate the label size and query performance of different labeling
schemes. We have proved that both STB and STQ encodings produce labels of
optimal sizes. The labels of vector and STV encoding schemes are stored as UTF8
strings. From our experimental results, their label sizes may differ by a small
amount which is overall negligible, so we ignore the diagrams here. Moreover,
since the labels produced by ST encoding and its insertion-based counterpart
are of the same format, their query performance is also the same. In summary,
the labels produced by our ST encoding techniques are of optimal quality.

7 Conclusion

In this paper, we take the initiative to address the problem of efficient label en-
coding. We propose ST encoding technique which can be applied to range-based
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labeling schemes to produce dynamic labels. We show that ST encoding technique
is highly efficient and has a wide application domain. Compared with insertion-
based encodings which are main memory-based and have fixed memory require-
ments, our ST encoding technique has an adjustable memory usage and is there-
fore able to process very large XML documents with limited memory available. An
interesting future research direction is to explore more dynamic formats and study
how the application scope of ST encoding could be extended to these formats.
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Abstract. Multi-cores are more and more popular recently and have being al-
tered the course of computing. Traditional XPath query evaluation algorithms 
cannot take full advantages of multi-cores, and it is not straightforward to adapt 
such algorithms on multi-cores. In this paper, we propose an efficient parallel 
PathStack algorithm, named P-PathStack, for processing XML twig queries. 
The algorithm first efficiently partitions input element lists into multiple buck-
ets, and then processes data in each bucket in parallel. With efficient partition-
ing method, our proposed algorithm can avoid many useless elements and 
achieve very good speedup ratio. We have implemented the algorithm and ex-
perimental results show that it achieves high performance and speedup ratio. 

Keywords: Multi-core, Partition, Parallel, PathStack. 

1   Introduction 

As XML has become the de facto standard of data representation and exchange over 
the Internet, it plays an essential role in many modern computer and business systems. 
It has become one of the hottest topics to store and query XML documents for data-
base researchers. Some XML query languages, such as XPath[1], XQuery[2], XML-
QL[3], have been standardized and implemented. One key technique in these query 
languages is to use a path expression to express and search particular structure pat-
terns. To efficiently evaluate path expressions, XML documents can be labeled with 
numbers [4], and by incorporating numbers to labels. One can quickly determine the 
relationships of parent-child or ancestor-descendant between element nodes and at-
tribute nodes using the labeled numbers, without traversing the whole original XML 
document. 

Many algorithms have been proposed for processing XPath queries recently. AI-
Khalifa et al. [5] proposed the structural join algorithm, which solved XPath queries 
with linear complexity. But structural join algorithm will generate large intermediate 
results. Then holistic twig join algorithms were proposed for processing XPath twigs 
which can avoid large intermediate results, such as TwigStack [6], TSGeneric [7], 
TJFast [8], iTwigJoin [9]. 
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In addition, Multi-cores are more and more popular recently and have being altered 
the course of computing. All the above algorithms have a common characteristic: they 
are proposed for single-core CPUs. They cannot take fully advantages of multi-core 
CPUs. To take advantage of multi-cores, efficient parallel algorithms are desirable for 
evaluating XPath queries. In our previous work [31], we proposed a parallel structural 
join algorithm (PSJ) for processing XPath in parallel. However it cannot handle XML 
twigs in holistic and thus is not efficient for XML twig queries.  

In this paper, we parallelize PathStack algorithm [6] and enhance it on two as-
pects: one is the data partition, and the other is the task partition. It is very critical 
to evenly partition input ordered lists for parallel XPath query processing. Guoliang 
Li et al. [10] proposed an even partition based method, which partitions the input 
XML element lists into buckets evenly and may skip many ancestor or descendant 
elements. We borrow the idea of even partition from [10], and adapt the even  
partition approach to our problem, and take full use of the excellence of skipping 
ancestor or descendant nodes. We use region number instead of BBTC (Blocked 
Binary-Tree Coding scheme) [11], as region encoding is simple and useful while 
BBTC is strong but complicated.  

A parallel XPath query algorithm is the other key issue for parallel algorithms. 
This paper proposes an efficient parallel algorithm to process XPath twig queries in 
parallel. Although the PSJ algorithm has good performance and good speedup ratio 
against traditional structural join algorithm, it has the inherent shortages of binary 
structural joins. It processes a couple of two nodes at a time and produces large im-
mediate results. Also, it is less efficient than algorithms which at least process a root-
to-leaf path at a time, such as PathStack/TwigStack[6], TSGeneric[7], and etc. To 
overcome these shortcomings, we use PathStack [6] as the baseline algorithm, and 
devise a parallel PathStack algorithm, named P-PathStack. The algorithm P-PathStack 
is more efficient and produces less immediate results. 

Similar to parallel structural join algorithm, P-PathStack algorithm consists of two 
steps. First it evenly partitions XML data into multiple buckets, then evaluates root-
to-leaf path in each bucket in parallel, and finally merges the results of all paths. Al-
gorithm P-PathStack avoids large immediate results. The experimental results prove 
that P-PathStack has good speed up ratio and outperforms the parallel structural join 
algorithm significantly. 

Our main contributions are summarized as follows: 
 

1) We adapt even partition approach from [10] to our problem, take full use of 
the excellence of skipping ancestor or descendant nodes and partition XML 
elements more evenly. 

2) We propose a parallel PathStack algorithm P-PathStack, which evaluates 
twig-XPath in parallel. The algorithm achieves high efficiency by using our 
optimization. 

 
The rest of the paper is organized as follows. Section 2 gives some previous work on 
XML query processing in parallel. We give the preliminary of P-PathStack algorithm 
in Section 3. Section 4 presents the parallel PathStack. In Section 5, we give experi-
mental results of the parallel algorithm and analyze the algorithm. Finally we conclude 
in Section 6. 
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2   Related Work 

XML Query Processing: Many algorithms have been proposed for processing XML 
queries. Stack-tree-Desc/Anc [5] was the first stack-based algorithm, which has linear 
complexity.  Zhang et al. [19] proposed a multi-predicate merge join (MPMGJN) 
algorithm based on <start, end, level> labeling of XML elements for binary structural 
join. Li et al. [20] proposed EE/EA Join, which decomposed the structure join into 
element-element join and element-attribute join. To scan elements much faster, index-
based approaches are also proposed [21], [22], [23], in which the indices of B+-tree, 
R-tree and XR-tree are examined to improve the efficiency of XML queries process-
ing. The later work [24] studied the problem of binary join order selection for com-
plex queries on a cost model, which took into consideration factors such as selectivity 
and intermediate results size. Although structure join algorithm is more efficient than 
navigation, it will involve large intermediate results.  

To solve the problem of huge intermediate results, holistic twig join algorithm is 
proposed. Bruno et al. [6] proposed a holistic twig join algorithm TwigStack to avoid 
large intermediate results. With a chain of linked stacks to compactly represent partial 
results of individual query root-to-leaf paths, TwigStack merged the sorted lists of 
participating element sets altogether, without involving large intermediate results. 
TwigStack had been proved to be optimal in terms of input and output sizes for twigs 
with only A-D (Ancestor-Descendant) edges [31]. 

In [7] Jiang et al. studied holistic twig join on all/partly indexed XML documents. 
The algorithms used indices to efficiently skip the elements that did not contribute to 
final answers, but it could not reduce the size of intermediate results. Lu et al. [8] 
proposed a novel algorithm, TJFast, on extended Dewey that only used leaf nodes' 
streams and saved I/O consumption. Lu et al. [26] proposed the algorithm Twig-
StackList, which was better than any of previous work in term of the size of interme-
diate results for matching XML twig patterns with both P-C and A-D edges. Chen et 
al. [27] proposed an algorithm iTwigJoin, which was still based on region encoding, 
but worked with different data partition strategies (e.g. Tag+Level and Prefix Path 
Streaming). Tag+Level streaming can be optimal for both A-D and P-C only twig 
patterns whereas PPS streaming could be optimal for A-D only, P-C only and one 
branch node only twig patterns assuming there was no repetitive tag in the twig pat-
terns [31]. Our prior work TJEssential algorithm [30] combined root-to-leaf with leaf-
to-root way to improve the performance of XML query processing.  

In addition, Wei Lu et al. [12] proposed a parallel approach for XML parsing, 
which first uses an initial pass to determine the logical tree structure of an XML 
document and then divides the document between the chunks occur at well-defined 
points. Wei Lu et al. [13] introduced the concept of work stealing into the field of 
XML processing. In multi-threads environment, when a thread is idle, the thread will 
choose a busy thread, and steal a half of work from the busy thread. When all work 
has been done, all threads will exit. According to common prefix of XQuery queries, 
Xiaogang Li et al. [14] distributed XML data into different machines, and then evalu-
ated the partitioned data on each machine, finally merged the distributed results to 
generate final results. 

In our prior work [31] we proposed a parallel structural join algorithm (PSJ) to 
execute XPath queries which contains only one root-to-leaf in parallel. However, as 
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structural join algorithm, PSJ will produce large immediate results. So PSJ is not very 
fit for processing twig-XPath queries. As a result, we improve the classic PathStack 
algorithm [6] and make it execute twig-XPath queries in parallel to take full advan-
tages of computing resources on multi-core processors. 

Multi-Core: A multi-core CPU includes two or more independent cores, which are 
integrated onto a single integrated circuit die. In this paper, we study how to use 
multi-core CPU to improve the performance of XML query processing. 

3   Preliminaries 

Li et al. [10, 31] proposed even partition based method to improve the performance 
of processing XML queries. The proposed even partition based approach divides 
AList (the input list of ancestor elements) and DList (the input list of descendant 
list) into different buckets, AListi (the i-th bucket of AList) and DListi (the i-th 
bucket of DList) respectively, and only structure joins of suited buckets are useful 
to the join results. The even partition based approach can guarantee the following 
equation [10, 31],  

( )
1

nb
AList DList AList DListi ii

• = ∪ •
=

,                                             (1) 

where AListi and DListi respectively denote the element sets of AList and DList in the 
i-th bucket after partition, and nb denotes the number of buckets. In other words, only 
AListi·DListi is useful to the final results and AListi·DListj (i≠j) will not.  

As stated in [10], we first partition DList into different buckets DListi (i=0,1,…, 
nb), and the size of each bucket (except the last one) is constant, denoted as bs. We 
then partition AList into the buckets AListi (i=0,1,…, nb) based on DList. For any 
element e contained in AList, the element e belongs to AListi if and only if e has one 
or more descendants in DListi. In most cases, this partition approach can assure that 
all elements which are in different buckets do not have the ancestor-descendant or 
parent-child relationships, that is, AListi·DListj=∅ (i≠j). Even if AListi·DListj≠∅in 
some cases, the partitioning conditions below assure that AListi·DListj⊆AListj·DListj, 
so we only need to evaluate AListi·DListi (i=0,1,…, nb) and merge their results to get 
the finally result. 

Besides the equation (1) above, the partitioned buckets also satisfy the following 
three conditions [10]: 
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To partition AList and DList, we first partition descendant elements (i.e. DList)  
into several buckets orderly. And then determine which ancestor elements belong  
to the bucket using a binary search based method. We will introduce the details in  
Section 4.  

For ease of presentation, we give an example. Suppose AList={all the elements 
whose local name is A in Fig. 1(a)} and DList={all the elements whose local name is 
D in Fig. 1(a)}. Then AList and DList can be partitioned into different buckets as 
shown in Fig. 1(a), 1(b). In Fig. 1(a), each bucket contains two four D elements, and 
Fig. 1(b) two D elements. In Fig. 1(b) the element A2 will be put into both AList1 and 
AList2. Although AList1·DList2 = {D3}, AList2·DList2 = {D3, D4}, that is, AL-
ist1·DList2⊆ AList2·DList2, so we can safely ignore the operation AList1·DList2. The 
same occurs for AList2 and DList1. 

Even partition can also skip ancestor or descendant elements. In Fig. 1(a), the ele-
ment A1 will be skipped, because A1’s region encode <2,3,1> doesn’t intersect with 
any D element’s region encode. Also the elements D7 and D8 will be skipped. 

 

 

Fig. 1. An XML tree and corresponding partition results 

4   P-PathStack: Parallel PathStack Algorithm 

In this section, we first introduce even partition based approach, and then describe the 
algorithm P-PathStack in detail.  

4.1   Even Partition 

In this paper, we employ region encoding <start, end, level> to encode XML docu-
ments. Using region encoding, we can quickly determine the relationship between 
two nodes, such as parent-child or ancestor-descendant relationship. As the size of 
XML document increases, the space cost by region encoding increases linearly. 
Suppose AList and DList denote the ancestor element list and the descendant ele-
ment list respectively, and they are in document order. We will partition AList and 
DList into different buckets bucketi (i=0,1,…, nb), where bucketi contains 
both AListi and DListi. 
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Now we are ready to introduce two Rules [10, 31] to partition DList and AList into 
different buckets. 
 

Rule 1: Partition DList 

for i = 0 … (nb-1) 
      bucketi.dstartpos = i* bs 
      if i<bs-1 
          bucketi.dendpos = (i+1)* bs – 1; 
      else 
         bucketi.dendpos = |DList| - 1 
end for 

 
Rule 1 means that DList is partitioned into nb buckets, and each one (except the last 
one) contains bs descendant elements and the last contains the remaining elements. 
The variable dstartpos denotes the start position of the bucket, while dendpos denotes 
the end position.  
 

Rule 2: Partition AList 

for i = 0 … (nb-1) 
     bucketi.astartpos = min {p|ap.end > bucketi.minstart, 

0≤p<|AList|, ap∈AList} 
      bucketi.aendpos = max {p|ap.start < bucketi.maxend, 

0≤p<|AList|, ap∈AList} 
end for 

 
bucketi.minstart means the minimal start value of region encode of descendant 
element in bucketi, while bucketi.maxend means the maximal end value of 
region encode <start, end,level>.  

Rule 2 means that if one or more ancestor elements have descendants in bucketi, 
there is a start position and end position in AList. The elements between astartpos 
and aendpos are contained by bucketi. If aendpos < astartpos, there are 
not ancestor elements in bucketi, then the result of PathStack algorithm in buck-
eti will be empty. 

For an XPath root-to-leaf path A0//A1//A2//A3, we first partition leaf node A3 ac-
cording to Rule 1, and partition A3’s parent A2 according to Rule 2; then based on the 
partitioning results of A2, partition its parent node A1 according to Rule 2. Repeat 
these steps, until the root node A0.  

In fact, the partition process can be reversed. We can firstly partition the root-node 
elements (A0), and then partition its child A1, repeat these steps until the leaf node 
A3. Though the details are not completely the same with Rule 2 when partitioning 
from the root to the leaf, the basic idea is the same. 

In this paper, we suppose there are not nested elements in an XML document, i.e.  
an element doesn’t contain sub-elements which have the same name with the parent.  
This assumption is very nature for most of XML documents. Based on this condition, 
we can use binary search to find the first ancestor element whose end value of region 
encode is larger than minstart value of this bucket. We can also use binary search 
to find the last ancestor element whose start value of region encode is smaller than 
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maxend value of this bucket. Using binary search, the time cost in partition period is 
little, less than 5% of total elapsed time. The experimental results prove it in Section 5. 

4.2   Work Balance 

The purpose of even partition is to evaluate XPath in parallel. Thus we should make 
each bucket contain the same number of elements as much as possible. It cannot 
achieve high speed up ratio of parallel algorithm for unbalanced partition. 

We can see that Rule 1 in Section 4.1 makes the number of the leaf-node element 
in each bucket almost the same. The two rules cannot assure the total number of ele-
ments from root to leaf in each bucket is the same, but for those XML documents with 
elements distributed evenly, the total number in each bucket is close to each other. 
Because the number of leaf-node elements in each bucket is almost the same, and 
according to our partition rules, the number of its parent node elements assigned in 
each bucket will be close if the XML document with elements distributed evenly. 

On the other hand, we should also consider the balance between threads in parallel. 
The number of buckets assigned to each thread should be the same. So we should 
consider the number of threads used to determine the value of nb (number of buckets) 
and bs (the number of leaf-node elements in each bucket). 

We determine the values of nb and bs as below: 

// thread_number: number of threads used 
nb = thread_number*16;  
bs = |DList|/nb; 
/* sizehigh: the upper limit of number of leaf-node elements 

in each bucket*/ 
while bs > sizehigh 
 nb *= 2; 
 bs = |DList|/nb; 
end while 
/* sizelow: the lower limit of number of leaf-node elements 

in each bucket */ 
while bs < sizelow 
 if(nb == thread_number) 
  break; 
 else 
  nb /= 2; 
 bs = |DList|/nb; 
end while 

From the above pseudo codes, we partition DList into nb buckets, and nb is 16 times 
of number of threads used (because it achieves higher performance for nb =16), then 
the same number of buckets will be assigned to each thread. Each thread is assigned 
at least one bucket. And we set upper limit and lower limit for bs. If bs is too large, it 
will make against work balance, as the total number of elements contained in each 
bucket will differ more; if bs is too small, it will make against the exertion of parallel 
predominance, as parallel scheduling needs extra cost and partitioning data costs more 
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time. Similarly, we can easily get the pseudo codes of partitioning from the root node 
to the leaf node, see Section 4.1. 

4.3   Elements Skip 

We have mentioned the skipping function of even partition below. The excellence 
of skipping ancestor or descendant elements is very important in our parallel  
algorithm.  

We can see that when partitioning AList according to Rule 2 in Section 4.1, we 
only need to find the first ancestor element es whose end value of the region encode 
is larger than the minstart value of this bucket and the last one el whose start 
value of region encode is smaller than maxend value. In other words, elements lo-
cated before es or after el will be skipped.  

The detailed procedure consists of two steps. Firstly partition from the leaf node to 
the root node. We partition DList into one bucket, and determine which elements of 
its parent node belong to this bucket according to Rule 2. Repeat these steps until the 
root node. Secondly partition from the root node to the leaf node. We put the remain-
ing elements of the root node into one bucket, and determine which elements of the 
child node belong to this bucket, as described in Section 4.2. After this procedure, 
many useless elements will be skipped. This approach can skip many useless elements 
at the head and at the end of the element list.  

For example, in Fig. 1(a), the first step will skip the element A1, and the second 
step will skip the elements D7 and D8. The remaining elements are {A2,A3,A4} and 
{D1, D2, D3, D4, D5,D6}. 

4.4   P-PathStack: Parallel PathStack Algorithm 

In this section, we describe the parallel PathStack algorithm, which is the key part of 
this paper. 

We propose Algorithm P-PathStack to compute answers of a query twig pattern. 
Fig. 2 illustrates the algorithm. We first partition the data into difference buckets, and 
then for the data in each bucket, we use algorithm PathStack [6]. 
 

Algorithm P-PathStack(q) 
1. Determine the value of nb and bs as described in 

Section 4.2 
2. Partition each root-to-leaf path into multiple buckets 

as in Section 4.1 
3. For each root-to-leaf path, skip elements at the head 

and at the end of element list, as in Section 4.3 
4. Call PathStack[6] algorithm for all buckets in 

parallel using OpenMP [15] 
5. MergeAllPathSolutions() 

Fig. 2. Algorithm P-PathStack 
 



 An Efficient Parallel PathStack Algorithm for Processing XML Twig Queries 285 

From Fig. 2, we can see that the key idea of the parallel algorithm is data partition 
and parallel execution. Line 1 to Line 3 partition data into several buckets, and the 
complexity is O(nb (log|A1List|+ log|A2List|+…+ log|AnList|)). |AiList| denotes the 
number of elements with the name Ai (i=1,2,…,n) and Ai is a node contained by the 
root-to-leaf path. The complexity is much cheaper than the PathStack algorithm’s 
linear complexity. 

In Line 4 we call the standard PathStack algorithm to calculate XPath result in each 
bucket. Note that we put all the buckets of all paths into thread pool to execute in 
parallel. As a result, not only execute in parallel between different paths, also between 
buckets which belong to the same path. We make bucket as the parallel unit, because 
we can reduce the granularity of parallel and make work load between threads more 
balanced, then we can enhance the efficiency of parallel algorithm. In this paper, we 
use OpenMP [15] to implement parallel execution. OpenMP uses thread pool tech-
nology; we can set the number of threads used in program, and OpenMP will assign 
buckets evenly to the threads and assign the threads to different CPU cores on multi-
core systems. 

For example, consider the XPath A[//B][//D]. There are two root-to-leaf paths, 
A//D and A//B. For path A//D, after Line 1 in Fig. 2 we get {A2, A3, A4; D1, D2, D3, 
D4, D5, D6}. Suppose we partition them into two buckets, bucket1 {A2; D1, D2, D3} 
and bucket2 {A3, A4; D4, D5, D6}. For path A//B, after Line 1 in Fig. 2 we get {A2, 
A3; B1, B2}; we partition them into two buckets, bucket3 {A2; B1} and bucket4 
{A3; B2}. Now we get all four buckets and we use OpenMP to evaluate XPath result 
in the four buckets in parallel. The results of the four buckets respectively are {A2, 
A2, A2}, {A3}, {A2} and {A3}. Combine the result which belong to the same root-
to-leaf path, we get elements {A2, A2, A2, A3} and {A2, A3}, then merge them, and 
finally we get the final result {A2, A3}. 

5   Experimental Study 

We conducted a set of extensive experiments to study the performance of P-PathStack 
algorithm in this section. We tested 6 XPath queries on two datasets, XMark [16] and 
DBLP [17]. All the experiments are carried out on an Intel Xeon E5310 CPU (64 bits, 
8 cores), 4G main memory, Red Hat 5 operating system, with Linux kernel version 
2.6.18.5. We used C++ language and Intel C++ Compiler 11 (icc), which supports 
OpenMP 3.0 by default. 

Table 1. XPath queries tested on datasets 

Dataset XPath NO XPath 
Q1 item//mailbox//mail/text//keyword 
Q2 site[//category//description//keyword]//mailbox//mail//text XMark 
Q3 site[//person//name][//open_auction//increase]//mailbox//text 
Q4 dblp//article[@year=’2005’] 
Q5 dblp[//article[@mdate=’2002-01-03’]] 

//proceedings//number/text()=’1’ 
DBLP 

Q6 article[@year=’2005’][@key.contains(“sigmod”)]//cite//label 
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The dataset DBLP is a set of real bibliography files, and the size of the raw text 
files is about 380MB. We generated the XMark data with scale factor = 4 and the raw 
text file is about 450MB. Table 1 lists the XPath queries tested on the two datasets. 
There are three query patterns for the 6 queries. Q1 and Q4 belong to the patterns of 
root-to-leaf path, Q2 and Q5 are twig patterns with two paths, and Q3 and Q6 are 
pattern with three paths. 

5.1   Performance of P-PathStack 

In this experiment we study the performance and speed up ratio of P-PathStack. We 
tested the six XPath queries listed in Table 1.  

In this paper, we define the speedup ratio of P-PathStack below: 

speedup_ratio = time_cost_by_PathStack / time_cost_by_n-t                   (5) 

where time_cost_by_PathStack denotes the elapsed time cost by traditional 
PathStack algorithm and time_cost_by_n-t denotes the elapsed time cost by P-
PathStack algorithm with n threads. 

In order to scale the efficiency of parallel, we define Relative Parallel Efficiency 
(RPE), 

RPE(Q) = speedup_ratio / n                                                      (6) 

where speedup_ratio denotes the speedup ratio of P-PathStack algorithm with n 
threads, and n is the number of threads used. 

Fig. 3 shows the experimental results on the two datasets. We can see that the 
speed up ratio is very significant; even it increases faster than number of threads used. 
We can see that in most cases the RPE value is larger than 1. Only for a few cases 
RPE is smaller than 1. For example, RPE equals 72.7% for Q6 with 8 threads and 
78.4% with 7 threads. In other words, the speed up ratio is larger than the number of 
threads used. 

With one thread, the smallest RPE equals 136% for Q3, and up to 201% for the 
query Q5. It seems something is wrong that RPE is larger than 1, but nothing is 
wrong. That’s mainly because even partition approach we use for partitioning data 
can skip many useless ancestor and descendant elements. If enough elements are 
skipped, P-PathStack algorithm with one thread may cost less time than the traditional 
PathStack algorithm and it’s probable that RPE exceeds 1. Fig. 4 shows the number of 
elements P-PathStack algorithm and the traditional PathStack algorithm read. The 
elements P-PathStack read is much less than that PathStack reads. The percentage for 
P-PathStack to PathStack is 65.9% at most for Q2 and only 47.2% at least for Q5. The 
average percentage is about 57%. As a result, the RPE value exceeds 1 even up to 2. 
With this excellence of even partition, our parallel algorithm achieves excellent per-
formance and high speed up ratio. 

We also define another variable to scale the parallel efficiency of the parallel algo-
rithm, Average Relative Parallel Efficiency (ARPE), 

ARPE(Q)  = average(RPE for all threads)                                      (7) 

With the formula (6) we calculate the ARPE value easily. For Q1, ARPE is 137.6%, 
Q2 134.7%, Q3 107.6% and Q4 154.7%, Q5 164.4%, Q6 115.8%. 
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(a) Speed up ratio for XMark 

 
(b) Speed up ratio for DBLP 

Fig. 3. Speed up ratio for XPath quries (n-t: the P-PathStack algorithm with n threads, 
n=1,2,…,8) 

 
In Fig. 3, the speed up ratio does not increase linearly as number of threads used 

increases. There are several factors which impact efficiency of parallel. 
The more threads used, the more cost parallel scheduling needs. Operating system 

needs extra cost for parallel scheduling. In order to reduce the extra cost, the number 
of threads used is always smaller than number of cores in a CPU. As a result, we can 
assign all threads to different cores, and then reduce even remove switch of threads on 
CPU cores. 
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Fig. 4. Number of elements read 

The more threads used, the more data accessing conflicts occur. Our algorithm runs 
on memory-shared multi-core system. All the cores share the main memory, and also 
share L2 cache at most cases. In the algorithm, there needs much write/read opera-
tions. In the experiments, there are at most 8 threads evaluating XPath queries in 
parallel. When threads access shared resources like main memory and L2 cache, re-
source competition occurs. Operating system must cost much time to solve the re-
source competition problem. In fact, in our experiments, we assign separated memory 
blocks to each thread for reducing accessing conflicts. 

The more threads used, the less time cost by parallel execution. But partitioning 
data and merging results run in serially, so the time cost by them will account for a 
greater percentage of total running time. This will also lower the speed up ratio. Fig. 5 
shows percentage partitioning data accounts of total elapsed time. Basically the per-
centage increases as number of threads used increase. 

 
Fig. 5. Percentage accounted by even partition 
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5.2   Even Partition 

Data partition is the key technology in parallel algorithm. In our algorithm, we use 
even partition as the data partition method and it contributes much to the parallel 
algorithm. So in this section we will discuss the experimental results about even  
partition. 

Fig. 4 shows the number of elements read by PathStack and P-PathStack. We find 
that even partition skip about a half of elements, which is very helpful to improve the 
efficiency of P-PathStack algorithm. 

Fig. 5 shows percentage even partition accounts of total elapsed time. In most 
cases the percentage is smaller than 5%, only in few cases it exceeds 5%, and the 
peak occurs in Q2 with 7 threads, whose value is 9.66%. The average percentage of 
all queries and all threads is 2.83%. It makes high speed up ratio of parallel execution 
that even partition accounts a very low percentage of total elapsed time. 

In section 4.2, we mention that size of bucket will impact work balance and paral-
lel efficiency. Experimental results show that it’s true. Give Q5 with 4 threads for an 
example, see Table 2.  

Q5 consists of two paths, path1: dblp//article[@mdate=’2002-01-03’], path2: dblp 
//proceedings//number/text()=’1’. In the columns of path1 and path2 in Table 2, the 
first number denotes the number of buckets (nb, nb can’t be smaller than number of 
threads used, 4 in here), and the second denotes the number of leaf-node elements 
(bs) in this path. The columns of sizelow and sizehigh denote the lower limit and the 
upper limit of bs. We can see that when we set the lower limit the value 1000 or 3000 
and the upper limit 6-times of the lower limit, the speed up ratio is about 1.5 times of 
others in the table. Generally speaking, small buckets are more helpful for work bal-
ance but need more partitioning time. In our experiments, we find that lower limit 
1000 for DBLP and lower limit 3000 for XMark are the best. 

Table 2. Size of buckets for Q5 with 4 threads 

sizelow sizehigh Speedup Ratio path1 path2 
1000 6000 6.13 16*1895 32*1944 
3000 18000 6.03 8*3791 16*3888 
5000 30000 4.19 4*7583 8*7777 
7000 42000 4.19 4*7583 8*7777 
9000 54000 4.20 4*7583 4*15555 

10000 60000 4.20 4*7583 4*15555 

6   Conclusion and Future Work 

As multi-core CPUs become more and more popular, parallel algorithms for XPath 
and XQuery processing become more critical by utilizing the computing resources of 
multi-core CPUs. We have made a good attempt in this paper for processing XML 
twig queries in parallel. In our prior work [31], we proposed a parallel structural join 
algorithm and in this paper we proposed a parallel PathStack algorithm P-PathStack 
to process XML twig queries in parallel, which can skip many more unnecessary 
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elements and avoid huge intermediate results. Evidently P-PathStack is more efficient 
for memory-shared multi-core systems.  

For future work, we want to devise more effective data partition algorithms which 
can skip many more unnecessary elements and achieve better work balance, and de-
vise more efficient parallel computing model for XPath/XQuery processing. 
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Abstract. Keyword search on databases has been popularized since it enables 
users to get information under databases without any knowledge of the schema 
or query languages. There are a number of keyword-search techniques on both 
RDB and XML DB, but those may still miss appropriate answers when some 
substructures of XMLs are related by relational linkage information. To over-
come this problem, we consider integration of XML and relational data and this 
paper proposes a new method of keyword search on hybrid XML-Relational da-
tabases. As a new concept, a new join operator, named XRjoin, is designed and 
utilized to join XML with relational data. Experiments on DB2 v9.5 show ef-
fects of our proposal. 

1   Introduction 

Currently, a variety of semi-structured data as well as relational data has been stored 
in structural databases (e.g. IBM DB2 v9.5 [5]), and there is much increasing need for 
users to retrieve both XML and relational data by keyword search [4]. A relational 
database containing XML without any change of its format is termed a hybrid XML-
Relational database (XML-RDB). Motivated by this background, this paper proposes 
a new method of keyword search on this hybrid database system. Applying the key-
word search on a XML-RDB is a challenging task, because keyword-search tech-
niques on RDB widely differ from those on XML DB. We are motivated by the fact 
that the keyword-search results from the same data set under RDB and XML DB are 
different not only on their ranks but also on their contents. 

To explain our motivation, we use a simple DBLP-style data set of Fig. 1. In Fig. 1 
Table Conference has one XML column XML1, which includes the “Conf-Session-
Paper” hierarchy. Table Authors has one XML column XML2, which includes the 
“Author-Paper” hierarchy. Because of storing XML data, the two tables in the XML-
RDB are called hybrid entities. In contrast to a hybrid entity, Table Paper is a rela-
tional entity without any XML. There are m:n relationships in Table Paper-Author 
between the tuples of Authors and those of Paper. The 1:n relationships between 
tuples of Conference and those of Paper are presented in Paper by columns CID and 
PID. Table Citation contains the reference information between papers. Note that the 
“paper” elements in XMLs are represented by the attribute pid only, and exclude any 
detail of papers. The pid is related by the tuple id PID of Paper.  
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Fig. 1. A fragment of our experimental XML-RDB 

Fig.1 shows the case where the keyword query {link, sanjay} is given to this 
XML-RDB. Here we should find two answers, where two XML-subtrees including 
the keywords are connected by some linkage information. That is, the first answer is 
the one where the conference(V04)’s subtree satisfying “link” has the same paper 
(P004) as the author(A002)’s subtree satisfying “sanjay” has. This answer tells that 
the two XML-subtrees have the same “paper” element. The second answer is the 
one where the conference(V04)’s subtree satisfying “link” has a paper P005, which 
cites another paper P003 owned by the author(A002)’s subtree satisfying “sanjay”. 
This answer uses the citation relationship which links the minimal subtrees of the 
XMLs. 

The ability for existing studies to retrieve the above appropriate answers is very 
limited. For example, XRANK [2] of XML DB extracts subtrees of LCA (least com-
mon ancestor) from the nodes hit by keywords, and ignores linkage information; thus 
it cannot find the above answers made of XML-subtrees linked by relational linkages. 
When normalizing Fig. 1 into relational tables, DBXplorer [1] of RDB does not con-
sider XMLs; thus it cannot get an appropriate subtree of XML, where, for example, 
two sessions satisfying the keywords belong to the same conference. DISCOVER [3] 
of RDB can find such an answer, but its maximum Candidate Network’s size T limits 
its ability to retrieve subtrees of XMLs having any depth or heterogeneity.   

To overcome problems of these methods, our objective is to provide a keyword-
search method on a XML-RDB to get substructures of XMLs with any depth and 
heterogeneity that are related by relational linkages. A join operator to do join be-
tween XML and relational data is imperative. Thus we develop a new operator named 
XRjoin to accomplish it. 

Section 2 draws a hybrid XML-RDB system and describes our approach of key-
word search on this system. In Section 3, we propose the new join operator XRjoin 
and demonstrate how it works. And the concluding remarks are given in Section 4. 
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2   Keyword Search on a Hybrid XML-RDB System 

2.1   Data Model 

Based on the ER model of a RDB, we firstly design a new schema for a hybrid XML-
RDB. Fig. 2 shows the two data models of a RDB and an XML-RDB where the cor-
responding data of a subset DBLP are stored.  

Fig. 2(a) shows an ER model of the RDB. The RDB has four entities Conference, 
Session, Paper, Authors, and four relationships Conf-Sess, Sess-Paper, Paper-Author, 
Citation. The “Conf-Session-Paper” and “Author-Paper” hierarchies have been de-
composed into several tables.  

 

  

(a) The ER model of a RDB             (b) The schema of a hybrid XML-RDB 

Fig. 2. Data model 

Fig. 2(b) shows the schema of an XML-RDB. This schema includes three entities 
Conference, Paper, Authors, two m:n relationships Paper-Authors (omitted in Fig. 
2(b)), Citation and two part-of1 relationships between Conference.XML1 and PID, 
Authors.XML2 and PID. The instances of XMLs are expressed in Fig. 1. XML1 makes 
four tables (Conference, Conf-Sess, Session, Sess-Paper) of the RDB into one hybrid 
entity of the XML-RDB. And XML2 contains the information between one author and 
one or more papers in one XML. When the value of the attribute pid in one XML1 
including a keyword is equal to the value of PID of the tuple including another key-
word, it is possible to do our proposed XRjoin between XML1 and Paper. 

2.2   Our Approach of Keyword Search   

The processes of our keyword search on the hybrid XML-RDB system are composed 
of the following four steps: (1) identify entities including each keyword, (2) enumer-
ate join-trees2, (3) generate SQL/XML query statements, (4) execute these statements 
and obtain results.  

Keyword entities: The entities including each keyword are first identified by using 
auxiliary tables. In this XML-RDB, three auxiliary tables are made as follows.  

Table 1. Symtbl_relation (value, tuple_id, column_name, relation_name) 
Table 2. Symtbl_XML (value, DeweyID, hybridEntity_name) 
Table 3. Symtbl_link (tuple_id, DeweyID) 

                                                           
1  Part-of is a relationship where one tuple id "belongs" to (is a part or member of) another 

object (element of XML in a hybrid entity). 
2  A join-tree is composed of the entities connected by foreign-keys where each keyword ap-

pears at least one. The join-tree decides how to join between these entities. 
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The Table 1 Symtbl_relation stores the value, the tuple id, the column name and 
the relation name for each tuple of all relational entities. For each text-node for all 
XMLs of hybrid entities, the Table 2 Symtbl_XML stores its value, DeweyID (an 
effective labeling method for XML [2]) and its hybrid relation name. We do the full-
text search on Symtbl_relation and Symtbl_XML to identify where keywords are. The 
Table 3 Symtbl_link contains the tuple id (Paper.PID) of the relational entity (same as 
the attribute pid of a “paper” element) and the DeweyID of the “paper” element. For 
simplicity, each DeweyID is unique because of containing the tuple id of XML in 
hybrid entities. It is utilized to compute the LCA (least common ancestor) when 
XRjoin is executed. 

Join-trees: Based on those entities, the system enumerates the join-trees, the mini-
mum-cost Steiner-trees in a schema-graph, where each keyword appears at least once. 
After enumeration, all join-trees are listed and ordered by a score that is proportionate 
to the number of entities in a join-tree. Users can select any join-tree to do next step to 
get detailed information.  

As an example, Fig. 3(a) shows a case where two keywords K1 and K2 hit entities 
of the schema of Fig. 2(b). Fig. 3(b) shows two join-trees for this case. Because there 
are hybrid entities in two join-trees, join between XML and relational data are neces-
sary. Thus, we design the XRjoin (described in Section 3 in detail) to do it. Join-tree1 
in Fig. 3(b) just does XRjoin once between a hybrid entity Conference and a relational 
entity Paper. Join-tree2 has two hybrid entities, so we must do XRjoins not only be-
tween Conference and Paper, but also between Authors and Paper. A natural join by 
foreign-key will be done between the two temporary resulting tables of XRjoins to get 
final results. Our system is also enhanced to enumerate join-trees including citation 
relationship.  

After finding join-trees, one join-tree is selected by a user. Then, according to the 
join-tree, the SQL/XML query statement is generated and executed automatically to 
finish the join operations among the entities.  

  

(a) Keywords in the schema                                            (b) Join-trees 

Fig. 3. An example of join-tree enumeration 

3   XRjoin 

3.1   Definition of XRjoin 

XRjoin is an operator to join XML data with relational data, which is written formally 
as XRjoin ((X, K1), (E, K2)), shown in Fig. 4(a). In Fig. 4(a), X is a hybrid entity and 
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E is a relational entity, and K1 and K2 are keywords in the two tables respectively. 
The result of the XRjoin is the set of all combinations of tuples in X and E including 
keywords (K1 and K2) respectively, where the part-of relationship is satisfied.  

The algorithm of the notation XRjoin ((X, K1), (E, K2)) are shown in Fig. 4(b). At 
line 1 of Fig. 4(b), σK2 (E) is a set of tuples including K2 in E, and each tuple id of e is 
represented by an attribute e_id in X. Line 2 shows x is a tuple in X, whose XML part 
includes K1. Only one XML column is permitted in X. At line 3, XRjoin ((X, K1), (E, 
K2)) is defined as a set of new tuples [e, LCA-T (e_id, K1) on x]. LCA-T (e_id, K1) 
on x is a (non-empty) subtree whose root element is the LCA for the element includ-
ing e_id and an element satisfying K1 in the XML of x. T is an output hybrid entity 
that contains these new hybrid tuples. XRjoin ((X, K1), (E, K2)) retrieves the XML 
information satisfying K1 (in X) which further contains a relational data-item satisfy-
ing K2 (in E). 

 

 

(a) the schema graph                     (b) algorithm 

Fig. 4. The XRjoin ((X, K1), (E, K2))  

When multiple keywords hit, the algorithm of XRjoin mentioned above is ad-
vanced for general usage. Generalized XRjoin permits K1 on X to be a set of {K1, K2, 
…, Kn}(n>0), and K2 on E to be null or one keyword. (i.e., if K2 on E has multiple 
keywords, they are logically-ANDed into one.) When multiple keywords hit the hy-
brid entity X, LCA-T (e_id, K1) on x at line 3 of Fig. 4(b) is changed into LCA-T 
(e_id, K1, K2, …, Kn) on x, which means to extract the subtree from LCA including all 
elements of keywords {K1, K2, …, Kn} and the element e_id. If no keyword hits the 
relational entity E, the algorithm of XRjoin changes line 1 of Fig. 4(b), for each 
e ∈  σK2 (E), into for each e ∈  E, which means all tuples in E are handled. 

3.2   Behavior of XRjoin 

According to the algorithm mentioned above, we present an illustration of concrete 
contents to explain how XRjoin works. Fig. 5 shows some tuples of Paper, and an 
instance of XML1 in hybrid entity Conference. K1 is the keyword "tuning". K2 is the 
keyword "base". K1 exists in the session title (S_title) of XML1, and K2 hits the title 
of three tuples P004, P005, P006 in Paper. This XRjoin is presented as XRjoin ((Con-
ference, “tuning”), (Paper, “base”)). Fig. 6 shows the resulting hybrid entity T. 
XRjoin extracts each LCA between the element including "tuning" and one of the 
paper elements whose attributes are P004, P005, P006. The subtree from the LCA is 
inserted as a new XML column named SUBTREE in T. Besides SUBTREE, related 
relational data (PID, Title, Keywords) in Paper are also inserted into T.  
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Fig. 5. The instances of hybrid entity Conference and relational entity Paper 

 

Fig. 6. The result T of XRjoin ((Conference, “tuning”), (Paper, “base”)) 

Score: When XRjoin extracts the LCA, its Score is calculated according to the differ-
ence of the lengths between LCAID and the one of K1nodeid and K2nodeid which has 
a longer DeweyID. It is directly proportional to the depth of the subtree. We list the 
hybrid tuples in ascending order of the Score (see Fig. 6). 

Score = 100× (Length[ K1nodeid | K2nodeid ] - Length[ LCAID ])  
         where Length [] is a function to calculate the length of a DeweyID. 

As another example, Fig. 7(a) shows a case of join-tree2 (of Fig. 3(b)). The join-tree2 
decides the steps of join as follows, when there are two keywords K1(link) and 
K2(sanjay). The first step is to do XRjoin between Conference and Paper as the nota-
tion XRjoin ((Conference, K1), (Paper)). The second step is to do XRjoin between 
Authors and Paper as the notation XRjoin ((Authors, K2), (Paper)). The last step is to 
do natural join by a SQL statement between the two XRjoin resulting tables. The 
result is shown in Fig. 7(b), which means that an author named “sanjay” has written a 
paper which has been published in conference VLDB 2004 and the conference has a  
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(a) the join-tree2                          (b) the result in DB2 

Fig. 7. Query {link, sanjay} 

session titled “link analysis”. The answer cannot be obtained by existing techniques 
[1], [2], [3] (when T=2). 

4   Concluding Remarks 

In this paper, we firstly stated our motivation about this study, and briefly analyzed 
the existing keyword-search methods [1], [2], [3] on RDB and XML DB, and gave the 
examples of the results that they may miss. To get appropriate and ordered XML-
relational hybrid information, we proposed a new method of keyword search on a 
hybrid XML-Relational database. We defined a new join operator XRjoin to join 
XML data with relational data, and implemented the XRjoin in our system that is a 
keyword search engine system on a subset of DBLP. Experiments showed that our 
system built on DB2 v9.5 can work well in practice and it can find the answers that 
we want to get, and we will demonstrate this system at DEMO session. 

Our proposal is successful in extracting substructures of XMLs linked by relational 
linkages. In the near future, we will improve this system to generate Candidate net-
works to do join that DBXplorer does not do, and enhance XRjoin accordingly.  
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Abstract. Achieving data security over cooperating web services is becoming
a reality, but existing XML access control architectures do not consider this fed-
erated service computing. In this paper, we consider a federated access control
model, in which Data Provider and Policy Enforcers are separated into different
organizations; the Data Provider is responsible for evaluating criticality of re-
quested XML documents based on co-occurrence of security objects, and issuing
security clearances. The Policy Enforcers enforce access control rules reflecting
their organization-specific policies. A user’s query is sent to the Data Provider
and she needs to obtain a permission from the Policy Enforcer in her organiza-
tion to read the results of her query. The Data Provider evaluates the query and
also evaluate criticality of the query, where evaluation of sensitiveness is carried
out by using clearance rules. In this setting, we present a novel approach, called
the DIFF approach, to evaluate security clearance by the Data Provider. Our tech-
nique is build on top of relational framework and utilizes pre-evaluated clearances
by taking the differences (or deltas) between query results.

1 Introduction

Increasingly, data and services over the Web are becoming decentralized in nature. For
example, the architecture of web services is becoming more decentralized; a number
of servers stretching over different locations/organizations are orchestrating together
to provide a unified service, sometimes referred to as cloud computing [5]. In this
setting, access control for protecting sensitive data in XML format should also be cross-
organizational, where a user, an access requester, and the Data Provider holding sen-
sitive data, belong to different organizations. Figure 1 shows a conceptual depiction of
such a federated access control model. The Data Providers and Policy Enforcers are
separated into different organizations; each Data Provider is responsible for evaluating
criticality of requested XML documents based on co-occurrence of security objects, and
issuing security clearances. The Policy Enforcers enforce access control rules which re-
flect their own organization-specific policies. We assume that these organizations have
agreed on global security policies for information exchange.

Let us illustrate the architecture with an example depicted in Figure 2(a) containing
a part of a travel plan produced by a travel agency. We assume that the travel agency
respond to request from clients and users using XML documents. These documents may

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 299–306, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Overview of federated access control

Tour plan 11-Aug-2007

1. Tour participants           2. Participants requiring special 
                                              attention

Name Address

Jane Tokyo

Tom Kyoto

Alice Nagoya

Name Special Service

Jane Baby sitting

Tom Diabetic meal

objects label

{Jane, Tokyo} L2

{Tom, Kyoto, Diabetic meal} L3

(a) A Published Document (b) Clearance Rules

{Alice, Nagoya} L1

Fig. 2. Example

contain sensitive information. Suppose that an XML document containing relevant re-
sults is requested by a user in an airline company providing flights for the tour. The user
needs to obtain a permission from the Policy Enforcer in his/her organization to read the
document. The user query is sent to the Data Provider (in this case, the travel agency).
The Data Provider evaluates the query and also evaluate criticality of the query, where
evaluation of sensitiveness is carried out by using clearance rules R. A clearance rule
r ∈ R is a 2-tuple [O, L], where O is a set of objects existing in XML documents and
L is a clearance label that defines necessary security clearance the user should have. In
this paper, we limit the scope of the objects to be text nodes of an XML tree. Note that
these objects can be results of a set of XPath queries. A rule r raises a security caution
defined by L iff O ⊆ B where B = {b1, b2, . . . , bn} is a bag of objects in a query
result q. Figure 2(b) illustrates a sample of clearance rules represented as a table. If we
apply the clearance rules to the document shown in Figure 2(a), we obtain the clear-
ance labels L1, L2, and L3. For instance, the objects Alice and Nagoya appear in
the document and matches the rule (Alice, Nagoya, L1). Likewise, Jane and
Tokyo appear in the document and matches the rule (Jane, Tokyo, L2). The
co-occurrence of Tom, Kyoto, Diabetic meal raises the label L3. A partial order
between labels (such as L1 < L2 < L3) can be introduced, where ‘A < B’ means
that B is superior or more cautious than A. A query may raise a set of clearance labels,
but if a priority order between labels is defined, a label that is dominated by another
superior label can be ignored.

Finally, the Policy Enforcer receives the clearance labels C, and decides whether the
user is eligible for the clearance by mapping the labels C to its local roles, and checking
whether the user is assigned to one of these roles. Observe that by issuing clearance, the
Data Provider can export the task of access authorization to the Policy Enforcer, thus
realizing federated access control.
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participants

participant

name address

Jane Tokyo

participant

name address

Tom Kyoto

participant

name address

TokyoNoriko

participants

participant

name address

Tom Kyoto

participant

name address

Jane Osaka

participant

name address

NagoyaAlice

service

Diabetic 
meal

o1 o2 o3 o4 o5 o6
Object ID o11 o12 o13 o14 o15 o16 o17

(a) Document q1 (b) Document q2

Fig. 3. Example of results evaluated by the Data Provider

(a) SUCXENT Schema

Document (DocID, DocName)

Path (PathID, PathExp)

PathValue (DocID, LeafOrder, PathID,  

     SiblingOrder, IxSibLevel, LeafValue)

AncestorInfo (DocID, NodeLevel,  MinSibOrder, 

    MaxSibOrder,  NodeName)

Rules (RuleNo, ObjID, Object, Label, 

           TotalObjects)

FoundVRules (RuleNo, ObjID, Counter)

FirstFoundVRules (RuleNo, ObjID, Counter)

Del_Obj (Value, DelCounter)

Ins_Obj (Value, InsCounter)

(b) Additional Relations

Rule
No

Obj
ID

Object Label
Total

Objects

1 1 Alice L1 2

1 2 Nagoya L1 2

... ... ... ... ...

(c) The Rules Table (Partial view)

Fig. 4. Relational schemas

Motivation and overview. There has been a number of efforts to realize federated ac-
cess control [1,2,3,6,8]. However, to the best of our knowledge, none of these efforts
have undertaken a systematic study of the security clearance technique supported by the
Data Provider in a dynamic environment where the underlying XML documents may
evolve with time. In this paper, we propose a database-driven, diff-based strategy to
address this issue. Our proposed technique compliments existing research on federated
access control strategies for XML documents.

Since the access control policies are realized through integration of the clearance
rules at the Data Provider and the local rules at Policy Enforcers, at first glance, it
may seem that we could take the strategy of pre-evaluating clearance rules at the Data
Provider as much as possible and cache obtained clearance labels. The advantage of
this strategy is that clearance evaluation for repeated queries can be avoided. However,
this approach is not a feasible strategy as illustrated by the following example. Consider
the documents q1 and q2 sent by the Data Provider to a Policy Enforcer in response to
a user’s queries at times t1 and t2, respectively, where t1 < t2. We assume that the
Data Provider represents the query results in XML format and the set of clearance rules
in Figure 2(b) must be satisfied by the documents. It is quite possible for q1 and q2 to
share some data objects due to the following reasons: (a) q1 and q2 are results of the
same query that is issued at times t1 and t2. The results may not be identical as the
underlying data have evolved during this time period; (b) q1 and q2 are results of two
different queries. However, some fragments of the underlying data may satisfy both the
queries. Consequently, only the second rule in Figure 2(b) is valid for q1. However, in
q2 this rule does not hold anymore. On the contrary, now the first and third rules are
valid for q2. In other words, updates to the underlying data invalidates caching of the
clearance rules of q1.

In this paper, we take a novel approach for evaluating security clearance by exploiting
the overlapping nature of query results. Specifically, we investigate taking differences



302 E. Leonardi, S.S. Bhowmick, and M. Iwaihara

(deltas) of XML representations of the query results, so that valid clearance labels can be
detected and reused. We compute the clearance labels of the first result (q1) by scanning
the entire result. Subsequently, labels of subsequent results are computed efficiently
by analyzing the differences between the results. We refer to this strategy as the DIFF

approach. Since we store the clearance rules and XML results in a RDBMS, the DIFF

approach detects differences in the query results and clearance rules using a series of
SQL statements. In the next section, we elaborate on this approach. Note that due to
space constraints, the naı̈ve approach of scanning the entire resultset for every request
(referred to as the SCAN approach) is discussed in [7].

2 The DIFF Approach

Consider a set of query results Q = {q1, q2, . . . , qn} in XML format. We refer to these
results as versions in the sequel. Assume that the clearance labels for q1 are cached,
but no cache entry exists for the remaining results qi where i > 1. How can the Data
Provider evaluate clearance labels for the remaining (n− 1) versions efficiently? In the
DIFF approach, we take advantage of the significant overlaps between q1 and remaining
results by reusing cached clearance labels whenever possible, and re-evaluate the clear-
ance rules that are only affected by the changes (deltas) to the results. Note that often
the size of the deltas are typically smaller than the size of qi.

2.1 Relational Schema

We first present the relational schema that we use for storing results and clearance rules
in the database for both SCAN and DIFF approaches. As the results requested by a Policy
Enforcer are represented in an XML format, we can use any existing techniques for XML

storage built on top of a RDBMS [4] to store these results. We use the SUCXENT schema
[9] depicted in Figure 4(a) for storing the request results in a RDBMS. SUCXENT is a
tree-unaware approach for storing and querying XML documents in relational databases.
Particularly, in this paper, only the LeafValue attribute of the PathValue table is
used for security clearance evaluation. The PathValue table stores the textual content
of the leaf nodes of an XML tree in the LeafValue column. Hence, we do not elaborate
on the remaining attributes and tables in Figure 4(a).

The clearance rules are stored in the Rules table (Figure 4(b)). The RuleNo at-
tribute is used as an unique identifier of a rule. TheTotalObjects attribute maintains
the total number of sensitive objects in a rule r whose co-occurrences raise security
cautions. The level of security caution is stored in the Label attribute. The ObjID
and Object attributes store the identifier and value of the text objects in the query
results, respectively. For example, Figure 4(c) depicts how the first rule (Alice,
Nagoya, L1) in Figure 2(b) is stored in the Rules table. The FoundVRules and
FirstFoundVRules tables are used to keep track of the number of sensitive objects
that appeared in the requested query results. The number of occurrences of k-th sensi-
tive object of a rule r is stored in the Counter attribute. The remaining tables shall be
elaborated in Section 2.3.
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Input:
- Q is the PathValue table
- R is the Rules table

Output:
- Z is pairs of query id 

         and violated rules

01  initialize Z, C
02  for each qi in Q do
03    if qi is the first 
            query result then
04      C = evaluateDoc(qi, R)
05      FR = C.clone()
06    else
07      C = FR.clone()
08      D = findChanges(q1, qi)
09      C = evaluateDelta(D, R)
10    end if
11    V = findViolatedRules(C) 
12    Z.add(i, V)
13  end for
14  return Z

01  INSERT INTO FoundVRules
02  SELECT DISTINCT RuleNo, ObjID, 0 
03  FROM Rules

01  UPDATE FoundVRules
02  SET COUNTER = C.TOTAL 
03  FROM FoundVRules F, 
04     (SELECT  C.RULENO, C.OBJID, 
                COUNT(*) AS TOTAL 
05      FROM RULES C, PATHVALUE L 
06      WHERE L.DOC_ID = did
07        AND CHARINDEX(
                ' ' + C.OBJECT + ' ', 

' ' + L.LEAFVALUE +' ') >0 
08      GROUP BY C.RULENO, C.OBJID) C 
09  WHERE C.RULENO = F.RULENO  
10 AND C.OBJID = F.OBJID 

(b) Initialize the FoundVRules Table

(c) Evaluate First Query Result(a) The DIFF Algorithm

01  SELECT L.LEAFVALUE, 
           COUNT(*) AS COUNTER
02  FROM 
03    (SELECT L1.LEAFVALUE
04     FROM PATHVALUE L1
05     WHERE L1.DOC_ID = did1
06     EXCEPT ALL
07     SELECT L2.LEAFVALUE
08     FROM PATHVALUE L2
09     WHERE L2.DOC_ID = did2) L
10  GROUP BY L.LEAFVALUE

(e) Find the Changes

01  TRUNCATE TABLE FirstFoundVRules
02  INSERT INTO FirstFoundVRules
03  SELECT * FROM FoundVRules

(d) Clone Tables

Fig. 5. The DIFF algorithm and SQL queries

2.2 Effects of the Changes

Suppose we have two query results, namely q1 and q2, and a set of clearance rules C =
{c1, c2, . . . , cn}. After evaluating q1, let R = {r1, r2, . . . , rn} be the set of clearance
rules that match with q1 where R ⊆ C. Let Oq1 and Oq2 be the bags of objects in q1
and q2, respectively.

Let us now discuss the effects of the changes to the query results on the clearance
rules. In this paper, we focus on two types of change operations to the query results:
deletion and insertion of text objects. Note that the update of a text object can be repre-
sented as a sequence of delete and insert operations. An object odel is a deleted object
iff odel ∈ Oq1 and odel �∈ Oq2. Similarly, an object oins is an inserted object iff
oins �∈ Oq1 and oins ∈ Oq2.

Property 1. A deletion of an object odel will cause the removal of clearance rule r ∈ R
iff co-occurrence odel with ok ∈ Oq1 forms the clearance rule r ∈ R, and there does
not exist ok′ ∈ Oq1 such that value(ok′) = value(odel) where value(o) is the text
value of object o.

Property 2. An insertion of an object oins1 will cause an addition of clearance rule r
into R if o-occurrence of oins1 with oj ∈ Oq1 forms a clearance rule r ∈ C, or co-
occurrence of oins1 with another inserted object oins2 forms a clearance rule r ∈ C.

2.3 The DIFF Algorithm

The DIFF algorithm is depicted in Figure 5(a). The input to the algorithm are two re-
lational tables, namely the PathValue table (denoted as Q in Figure 5(a)) and the
Rules table (denoted as R in Figure 5(a)). Note that the requested results are stored in
the PathValue table. The first step is to initialize the FoundVRules table (denoted
as C in Figure 5(a)) by invoking an SQL query depicted in Figure 5(b) and a list Z .
For each query result, the algorithm will do the followings (Lines 02–13). If the current
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01  UPDATE FoundVRules SET COUNTER =  C.TOTAL 
02  FROM  FoundVRules F,
03    (SELECT C.RULENO, C.OBJID, 
              F.COUNTER - COUNT(*) AS TOTAL 
04     FROM DEL_OBJ D, RULES C, FirstFoundVRules F 
05     WHERE CHARINDEX(' ' + C.OBJECT + ' ', 
                       ' ' + D.VALUE  +' ') >0 
06       AND C.RULENO = F.RULENO  
07       AND C.OBJID = F.OBJID 
08     GROUP BY C.RULENO, C.OBJID, F.COUNTER) C 
09  WHERE C.RULENO = F.RULENO  AND C.OBJID = F.OBJID

(a) Analyze the Changes

01  SELECT DISTINCT C.RULENO, C.CLABEL
02  FROM RULES C, 
03    (SELECT F.RULENO, 

COUNT(F.OBJID) AS VOBJ
04     FROM FoundVRules F
05     WHERE F.COUNTER >0
06     GROUP BY F.RULENO) F
07  WHERE F.RULENO = C.RULENO 
08    AND F.VOBJ = C.TOTALOBJECT 

(b) Find Violated Rules

Fig. 6. SQL queries used in DIFF approach

query result is the first one (q1), then it evaluates the occurrences of sensitive objects
in q1 (Lines 03–05). The evaluation is done by executing the SQL query depicted in
Figure 5(c). The objective of this query is to update the value of Counter attribute of
the FoundVRules tables to the number of occurrences of a sensitive object in a par-
ticular rule (Lines 04-08, Figure 5(c)). Next, the algorithm clones the FoundVRules
table into the FirstFoundVRules table. The FirstFoundVRules table stores
the results generated by evaluation of q1.

If the current requested query results is not the first one (denoted as qi where
i > 1), then the algorithm will do the followings (Lines 06–10). First, it clones the
FirstFoundVRules table into the FoundVRules table (Line 07) using the SQL

query depicted in Figure 5(d). This step is important as we want to evaluate clearance
for qi using the clearance of q1. Next, the algorithm determines the differences between
q1 and qi by executing two SQL queries. The first SQL query is used to find the deleted
objects (Figure 5(e)). Note that did1 and did2 will be replaced by the ids of q1 and qi,
respectively. The result of this SQL query is stored in the Del Obj table (Figure 4(b)).
The second SQL query is used to detect the inserted objects. We use the same SQL query
as shown in Figure 5(e); however, did1 and did2 will be replaced by the ids of qi and q1,
respectively. The results of this SQL query is kept in the Ins Obj table (Figure 4(b)).

Having found the differences between q1 and qi, the algorithm analyzes the deleted
and inserted objects based on the Property 1 and Property 2, respectively, in order to
determine the clearance of qi. The SQL query depicted in Figure 6(a) is executed to
analyze the set of deleted objects. Line 3 is used to decrease the number of appearances
of sensitive objects if the sensitive objects are deleted. Similarly, this query is slightly
modified to analyze the inserted objects. The modifications are as following. The “-” in
Line 3 is replaced by “+”. In Line 4, we replace “DEL OBJ” with “INS OBJ”.

The last step in evaluating each requested result qi is to find the rules that raise
security cautions by querying the FoundVRules table (denoted by V ). Figure 6(b)
presents the SQL query for determining such rules. Then, we add a pair of request ids i
and V into Z . Finally, the algorithm returns Z which may be analyzed further in order
to determine which requested results are safe for publication.

3 Experimental Results

In this section, we present the experiments conducted to evaluate the performance of our
proposed approach and report some of the results obtained. A more detailed results is
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Dataset

1

Filesize 
(KB)

13
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3 34
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6 180
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1,437

2,151

3,734

Number 
of Leaf 
Nodes

N

2

4

6

8

10

R
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R
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(a) Data Set (b) Clearance Rules Characteristics

Fig. 7. Dataset and clearance rules characteristics

Data 
Set

N=2

1

(a) R=500

1 2 Avg

2
1.31 0.02 0.06 0.08

3
2.05 0.02 0.06 0.08

4
3.25 0.03 0.05 0.07

5
8.39 0.03 0.06 0.08

6
12.48 0.05 0.06 0.11

(b) R=5000

A B Total
3

A B Total

21.52 0.07 0.05 0.13

0.02 0.04 0.06
0.02 0.05 0.06
0.02 0.05 0.07
0.03 0.05 0.08
0.05 0.05 0.09
0.07 0.05 0.12

0.48
0.73
1.13
2.85
4.23
7.25

N=10
1 2 Avg

7.79 0.05 0.12 0.17
12.53 0.05 0.12 0.17
20.39 0.06 0.12 0.17
41.36 0.07 0.12 0.19
61.71 0.08 0.12 0.20

A B Total
3

A B Total

106.72 0.10 0.12 0.22

0.05 0.10 0.15
0.05 0.09 0.14
0.06 0.10 0.16
0.07 0.09 0.17
0.08 0.09 0.18
0.10 0.09 0.20

2.70
4.28
6.91

13.91
20.69
35.71

Data 
Set

N=2

1

1 2 Avg

2
15.32 0.08 0.17 0.25

3
24.99 0.08 0.17 0.25

4
40.64 0.08 0.17 0.25

5
82.63 0.10 0.16 0.26

6
123.42 0.12 0.17 0.29

A B Total
3

A B Total

219.92 0.13 0.17 0.29

0.08 0.13 0.20
0.08 0.11 0.20
0.09 0.12 0.21
0.10 0.12 0.23
0.12 0.12 0.23
0.14 0.12 0.26

5.26
8.48

13.70
27.70
41.31
73.49

N=10
1 2 Avg

75.86 0.30 0.55 0.86
123.75 0.30 0.56 0.86
202.21 0.31 0.56 0.87
412.95 0.36 0.56 0.92
618.45 0.38 0.57 0.94

A B Total
3

A B Total

1069.9 0.40 0.57 0.97

0.30 0.33 0.63
0.31 0.33 0.64
0.30 0.34 0.64
0.37 0.34 0.70
0.38 0.33 0.72
0.40 0.33 0.74

25.78
41.75
67.91

138.19
206.70
357.20

Fig. 8. Experimental results: The DIFF approach (in seconds)

available in [7]. The experiments were conducted on a computer with Pentium 4 3GHz
processor and 1GB RAM. The operating system was Windows XP Professional. All the
approaches were implemented using Java JDK 1.6. We use Microsoft SQL Server 2005
Developer Edition as our backend database system.

We use synthetic XML documents that are generated based on the DTD of SIGMOD

Record XML. We assume that these documents represent results requested by the Policy
Enforcers. Each data set has three different versions. Figure 7(a) depicts the characteris-
tics of our data sets. The clearance rules are generated by randomly choosing the objects
that co-occur together. The numbers of clearance rules (denoted as R) are between 50
and 5,000 rules, and the number of objects in each rule (denoted as N ) are between 2
and 10. Hence, the total number of sensitive objects in the clearance rules is between
100 and 50,000 (Figure 7(b)).

The performance of the DIFF approach for R = {500, 5000} and N = {2, 10} is
depicted in Figure 8. The “A” and “B” columns denote the execution times of finding
the changes and of analyzing the changes, respectively. Observe that as the values of
N and R increase, the performance becomes slower. The performance of analyzing the
first document version is slower compared to the subsequent versions as the whole doc-
ument is analyzed for the clearance rules. The performance of analyzing the subsequent
versions is significantly faster as much lesser number of objects are evaluated.

4 Conclusions and Future Work

In this paper, we have presented a novel and sophisticated approach for automatically
evaluating sensitiveness of publishing a batch of XML documents in a federated XML
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access control environment, and giving security clearance based on the sensitiveness.
We use the differences between requested query results for clearance evaluation in our
model. Our experimental results show that the proposed diff-based approach is efficient
in determining security clearance. As part of future work, we would like to extend our
framework to support clearance of security objects that are semantically related.
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Abstract. Massive amounts of video data from digital tv channels, on-
line video communities, peer-to-peer networks, and video blogs require
automated techniques for copyright enforcement and usage tracking. Ef-
fective video copy distortion models usually incur high computational
cost. We propose an index supported multistep filter-and-refine algo-
rithm for a complex copy detection model. We characterize a class of
filters for which we prove completeness of the result, and provide fur-
ther runtime improvement by a novel tight approximation. In thorough
experiments, we demonstrate that our algorithm substantially improves
processing times.

1 Introduction

Videos are increasingly abundant due to widespread use of online video com-
munities (e.g. YouTube), peer-to-peer networks for video sharing, video blogs,
and digital tv channels. With easy distribution and many available tools for
recording, editing, altering, storing and re-distributing video content, copyright
protection and usage tracking face enormous challenges.

Video copy detection algorithms aim at automatic identification of video con-
tent that is identical to the query or represents an altered version of the orig-
inal video [9,24,14,3]. As opposed to content-based similarity search in video
databases [10,15,16], the aim is not searching for similar topics or otherwise
related content in video material, but to discover videos that have undergone
technical or manual changes, such as change in contrast or editing of the order
of scenes in the video [14]. Content-based copy detection (CBCD) is based on
the video content alone, i.e. ‘the media itself is the watermark’ [9]. Each video
is characterized by a signature computed using a feature extraction algorithm.
CBCD techniques can also be used to complement watermarking, i.e. embedding
of information for identification [7].

As the computational task of video copy detection is inherently complex,
some video copy approaches also contain speed-up techniques and index support.
Window-based approaches compare only subsequences of the videos of fixed
length [9,25,13]. Key-frame-based methods represent videos via fewer key frames
for detected shots [11,7,23,5,6]. Some approaches use very compact fingerprints
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of the videos [11]. Indexing of features for faster comparison has been studied
e.g. in [5,6], where an extended R-tree stores video frame features for retrieval.

In our prior work, a model for robust adaptable video copy detection (RAV C)
was introduced [3]. It effectively detects video copies without prior compression
or key frame extraction. The identification of videos is based on matching ap-
proaches in both the image and time domain. This RAV C approach has been
shown to successfully and reliably identify video copies that have been subjected
to alterations that originate in a number of benchmark scenarios. Query process-
ing under this model is, however, a computational expensive task.

In this paper, we propose an index-supported algorithm for speeding up copy
detection under the existing RAV C model. For efficient query processing, we
propose a multistep filter-and-refine algorithm. Our novel generic filter exploits
the properties of the underlying EMD and DTW distance functions. We prove
that this generic filter is a lower bound of the RAV C. In our multistep filter-and-
refine algorithms, the lower bounding property guarantees no false dismissals,
and therefore ensures that our algorithm will return all copies as defined by
RAV C. Moreover, we show how this general filter can be easily combined with
other filter approaches, thus directly benefiting from ongoing active research on
the EMD and DTW distance functions in a flexible “plug-and-play” fashion.

To support the VA-file-index [22] for our algorithm, we introduce the so-
called dual MinDist function. This function allows computing the filter distance
between query lower bounds directly for the indexed, quantized, features.

Optionally, we propose a novel approximation of the RAV C distance function.
We demonstrate in the experiments that this approximation provides substantial
further runtime improvements with remarkably little degradation in the copy
detection accuracy. Our main contributions include

– dual MinDist function (VA-file indexing of multidimensional video features)
– generic flexible filter with proof of lower bounding property (completeness)
– very tight novel approximation of the RAV C (optional further speed-up)

2 Video Copy Detection

We start by summarizing the robust adaptable video copy detection scheme
RAVC [3] illustrated in Figure 2. The general idea is to compare two videos
by matching their video histograms. A video histogram V = (v1, . . . , vn) is a
series of (frame) image histograms vi (e.g. color histograms) in their chrono-
logical order. As video copies are hardly ever exact copies, i.e. identical digital
representations, RAVC accounts for two main types of video alterations: image
(e.g. changes in contrast or screen ratio) and time (e.g. re-sampling of frames
for different video encoding standards or re-ordering of scenes). For time, RAVC
uses an extension of Dynamic Time Warping (DTW ) [19] to multidimensional
time series. Figure 1 illustrates the idea behind DTW : Given two time series,
Euclidean Distance (left) compares only corresponding time points, whereas the
DTW distance (center) computes the best matching by stretching and scaling
(warping) along the time axis. To avoid degenerate matchings, warping is usually
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a) b) c)

Fig. 1. a) Euclidean: only corresponding time points are compared (vertical lines);
b) DTW: the bursty pattern is aligned, but one point in the top blue time series is
matched against several in the lower series; c) DTW with k-band: warping is restricted

restricted to at most k positions (right). Each point in time is not associated with
a single value, but with a multidimensional vector, i.e. the image histogram of a
frame. The comparison of each frame, the ground distance GD, uses the Earth
Mover’s Distance (EMD) [17]. RAVC is defined as the minimum matching of
recursively shorter video histograms.

Definition 1. Robust Adaptable Video Copy distance. The Robust Adapt-
able Video Copy distance between two video histograms X = (x1, . . . , xn) and
Y = (y1, . . . , yn) with respect to a ground distance given by a cost matrix C =
[cij ] and with respect to a band constraint k is defined as follows:

RAV C(X, Y ) = GDEMD(X, Y ) + min

⎧⎨⎩
RAV C(start(X), start(Y ))
RAV C(X, start(Y ))
RAV C(start(X), Y )

RAV C(∅, ∅) = 0, RAV C(X, ∅) = RAV C(∅, Y ) = ∞

with

GDEMD ((x1, . . . , xu), (y1, . . . , yv)) =

{
EMD(xu, yv) |u − v| ≤ k

∞ else

RAV C is recursively defined like DTW for univariate time series. The main
difference in RAV C is that EMD is used to match frames. EMD reflects the
discordance in the best match (necessary “flow” to transform one into the other)
based on a ground distance in feature space (e.g. similarity between colors).

Definition 2. Earth Mover’s Distance. The Earth Mover’s Distance be-
tween two normalized frame histograms u = (u1, . . . , ud) and v = (v1, . . . , vd)
with respect to a ground distance given by a cost matrix C = [cij ] is:

EMDC(u, v) = min
F

⎧⎨⎩
d∑

i=1

d∑
j=1

cijfij | Pos ∧ SumUp

⎫⎬⎭
Pos : ∀1≤i,j≤d fij ≥ 0 SumUp : ∀1≤i≤d

d∑
j=1

fij = ui ∧ ∀1≤j≤d

d∑
i=1

fij = vj

where F denotes the set of possible flow matrices. Thus, the minimum flow be-
tween the histograms is computed, under the constraints that the flows be positive,
and sum up to the histogram bin values.
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Fig. 2. RAVC model: videos are matched according to Dynamic Time Warping align-
ment (in the time domain) of the Earth Mover’s Distance values (in the image domain)

As the straightforward calculation of a matching in both the image and the time
domain is a computationally costly task (dynamic programming algorithms for
DTW are of quadratic complexity, EMD is of worst case exponential complexity,
yet in practice quadratic or cubic runtimes are observed [17]), we propose a novel
algorithm for efficient query processing.

3 Query Processing

In this section, we present our algorithm for efficient video copy detection under
the RAV C model. Our approach follows the multistep filter-and-refine paradigm,
and provides index support based on the V A-file as illustrated in Figure 3: In the
multistep filter-and-refine algorithm, we speed up query processing by using an
efficiently computable filter function to generate potential video copy candidates.
Only these candidates undergo further filtering and, if needed, refinement with
the full RAV C model. Note that this multistep filter-and-refine algorithm uses
a feedback loop to minimize the number of candidates that have to be processed
as suggested in KNOP [20]. In order to achieve efficient video copy detection
without degradation of quality of the RAV C model, the ICES filter criteria
should be met [1]: the filter should be indexable, i.e. compatible with an index for
faster access to relevant videos; it should be complete, i.e. no true result should be
falsely dismissed from the answer set; it should be efficient, i.e. remarkably faster
than the exact RAV C model to ensure substantial runtime gains; and finally, it
should be selective, i.e. the set of candidates should be small to avoid unnecessary
calls to the costly exact RAV C. For indexing, we use the VA-file, an index
structure that was developed specifically for high-dimensional data [22], and has
been successfully used for indexing of music time series data in [18]. To process a
query, a first filter that uses V A-file indexing on quantized features is used to fill
a priority queue of candidate copies for the next filter step (cf. Fig. 3). The V A-
file quantizes the data space and assigns compact bit codes for quick sequential
reading of the compressed data. For a video histogram V = (v1, . . . , vn), we
denote its quantized bit code representation as V I = (vI

1 , . . . , vI
n). Processing

of queries of the V A-file is based on the minimal distance between the query
and objects with a certain bit code, the so-called MinDist (we introduce it for
filtering of quantized video histograms in Section 3.2).
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Fig. 3. Video originals are enveloped (LBKeogh lower bound of DTW ) for the 1st filter,
where candidates are extracted from quantized videos in the V A-file. A 2nd filter (exact
DTW with IM lower bound of EMD) is followed by RAV C refinement using exact
video features. A feedback loop ensures that the number of candidates is minimized.

3.1 Generic Filter

In the following, we propose a generic filter for the RAV C model that fulfills
the ICES criteria. As RAV C is based on the DTW and EMD distances, we
build on work that has been done in this very active research area. The generic
filter is based on filters either in the image or in the time domain and can be
flexibly instantiated using existing approaches for DTW or EMD. However, it
is important to note that existing filters assume simpler settings, i.e. univariate
time series for DTW , or non-quantized features for the EMD. We therefore
introduce methods for handling complex video histograms.

LBKeogh, a DTW filter technique for univariate time series, computes an
envelope around the time series that reflects the maximal and minimal values
within the k-band constraint: Envk(x) = ((xL

1 , xU
1 ), . . . , (xL

n , xU
n )) with xL

i =
min−k≤j≤k(xi+j), xU

i = max−k≤j≤k(xi+j) [12,26]. The distance to values above
or below the envelope lower bounds the actual DTW distance. We take dimension-
wise envelopes of video histograms V = (v1, . . . , vn) of length n and dimension-
ality d: ENVk(V ) = (Envk(V1), . . . , Envk(Vd)) = V E . We use this lower bound
with a recent speed-up technique [4].

Note that instead of constructing the envelope around the query, this could
also be done around all videos indexed in the database. This poses no difficulty
for our algorithm, yet constructing of the envelope and subsequent quantization
(or vice versa), leads to very large hyperrectangles and consequently to poor
pruning power. The relatively weaker performance of quantized envelopes has
also been validated in preliminary experiments, and an example of this effect is
given in the experiments in Section 4.

Through constraint relaxation, it becomes possible to compute a EMD lower
bound in a dimensionwise fashion, thereby reducing the complexity of the filter
to a linear problem only [1]. This IM (independent minimization) filter enlarges
the search space for the minimum through constraint relaxation.

Our generic filter (1st filter in Fig. 3) consists of computing the dual MinDist
(DMD) between query envelopes and quantized video features.
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Definition 3. Generic Filter (GF)
For a query video histogram X = (x1, . . . , xn) and indexed video histogram Y =
(y1, . . . , yn), the generic filter for RAV C is defined using the envelope of X, XE,
and quantization of Y , Y I :

GF (XE , Y I) =
n∑

i=1

DMDEMD(xE
i , yI

i )

The generic filter requires computing the MinDist, i.e. the smallest distance
between the query envelope and quantized video. Both the envelope and the
quantized video describe ranges in the feature space that can be visualized as
hyperrectangles. However, in the literature, the EMD MinDist is only available
for comparison between a hyperrectangle and a vector. We introduce the dual
MinDist for hyperrectangles in this work.

3.2 Dual MinDist

For a multidimensional vector and a hyperrectangle, the EMD MinDist has
been derived in [2]. It adapts constraints in the minimization by replacing the
SumUp criterion with a range R that reflects the upper and lower bounds of the
hyperrectangle.

For a normalized frame histogram u = (u1, . . . , ud) and a hyperrectangle
vI = ((vL

1 , vU
1 ), . . . , (vL

d , vU
d )) the MinDist of the EMD with respect to a ground

distance given by a cost matrix C = [cij ] is defined as:

MinDistEMDC (u, vI) = min
F

⎧⎨⎩
d∑

i=1

d∑
j=1

cijfij | Pos ∧ R

⎫⎬⎭
R : ∀1≤i≤d

d∑
j=1

fij = ui ∧ ∀1≤j≤d vL
j ≤

d∑
i=1

fij ≤ vU
j

As mentioned above, comparison of quantized video histograms with video his-
tograms represented via envelopes corresponds to comparison of two series of
hyperrectangles. Instead of the MinDist that computes the smallest distance
between any point and a hyperrectangle, we thus need the Dual MinDist that
computes the smallest distance between two hyperrectangles.

We define this EMD Dual MinDist by adapting the R constraint such that
the matching takes the upper and lower boundaries of both hyperrectangles
into account. However, simply relaxing the constraint for both hyperrectangles
would not constitute the Dual MinDist. The minimization would not be forced
to actually find a valid matching between vectors in both hyperrectangles. The
reason for this is that neither sum would have to equal the sum of weights in any
histogram. Instead, matching parts of histogram bin entries on either side would
be falsely determined as the minimum. We therefore introduce an additional
constraint W that ensures correctness of this Dual MinDist by requiring that
the sum of all flows equals one, i.e. the sum of entries in normalized histograms.
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Definition 4. Dual MinDist for EMD
For hyperrectangles uI=((uL

1 , uU
1 ), . . . , (uL

d , uU
d )) and vI=((vL

1 , vU
1 ), . . . , (vL

d , vU
d ))

the Dual MinDist for the EMD with respect to a ground distance given by a
cost matrix C = [cij ] is defined as:

DMDEMDC (uI , vI) = min
F

⎧⎨⎩
d∑

i=1

d∑
j=1

cijfij | Pos ∧ W ∧ R′

⎫⎬⎭
R′ : ∀1≤i≤d uL

i ≤
d∑

j=1

fij ≤ uU
i ∧ ∀1≤j≤d vL

j ≤
d∑

i=1

fij ≤ vU
j W :

d∑
i=1

d∑
j=1

fij =1

The constraint R′ ensures that the range of the minimization problem is indeed
within the corresponding hyperrectangles, whereas W restricts the minimization
to histograms of normalized weight. Our novel Dual MinDist provides the means
for actually using a multistep filter-and-refine algorithm as outlined before. We
now benefit from the lower bounding for DTW in envelope-based hyperrectan-
gles of the query and from the indexing in the V A-file which corresponds to the
quantization-based hyperrectangles of the database videos. As a further benefit,
we may employ lower bounds for the EMD MinDist as well. This is based on
the observation that the MinDist is a special case of the Dual MinDist. This
can be easily verified by choosing a hyperrectangle with identical upper and
lower delimiters, i.e. a point. The important observation that we make here, is
that the above mentioned IM lower bound can be modified to fit our new Dual
MinDist by similar constraint relaxation. We therefore use it as a lower bound
in our query processing algorithm. In Figure 3 this is depicted as the 2nd filter.

3.3 Completeness

It has been shown that for multistep algorithms in the GEMINI or KNOP frame-
works, proving that the filter function is a lower bound to the original distance
suffices to show completeness [8,20]. We prove completeness of the generic filter
by showing that it or any any lower bound thereof indeed lower bounds the
RAV C scheme:

Theorem 3.1. The generic filter GF (Def. 3) lower bounds the RAV C, i.e. for
two video histograms X = (x1, . . . , xn) and Y = (y1, . . . , yn) holds:

GF (XE , Y I) ≤ RAV C(X, Y )

Proof. From GF (XE, Y I) ≤ RAV C(X, Y ) we have by definition of GF
and RAV C:

∑n
t=1 DMDEMD(xE

t , yI
t ) ≤ DTWEMD(X, Y ). Let the optimal

DTW alignment be described as a series of positions P = (pX
1 , pY

1 ), . . . , (pX
R , pY

R),
then these are exactly the images compared using EMD:

n∑
t=1

DMDEMD(xE
t , yI

t ) ≤
R∑

r=1

EMD
(
x(pX

r ), y(pY
r )

)
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Using a similar argument as for the derivation of LBKeogh, namely that we can
compute for each of the n positions the minimal distance possible under band
constraint k:

n∑
t=1

DMDEMD(xE
t , yI

t ) ≤
n∑

t=1

min
z∈{xt−k,...,xt+k}

{EMD(z, yt)}

It suffices to show that the above statement holds for each individual t:

DMDEMD(xE
t , yI

t ) ≤ min
z∈{xt−k,...,xt+k}

{EMD(z, yt)}

By EMD definition

≤ min
z∈{xt−k,...,xt+k}

⎧⎨⎩min
F

⎧⎨⎩
d∑

i=1

d∑
j=1

cijfij | Pos ∧ SumUp

⎫⎬⎭
⎫⎬⎭

with: Pos : ∀1≤i,j≤d fij ≥ 0 SumUp : ∀1≤i≤d

∑d
j=1 fij = zi∧∀1≤j≤d

∑d
i=1 fij =

y(t, j). The outer minimum can be pulled inside, since the constraints are in-
dependent. By weaking the constraints, the search space for the minimization
increases, yielding a smaller or at most equal result:

DMDEMD(xE
t , yI

t ) ≤ min
F

⎧⎨⎩
d∑

i=1

d∑
j=1

cijfij | Pos ∧ M

⎫⎬⎭
M : ∀1≤j≤d

d∑
i=1

fij = vj ∧ ∀1≤i≤d

d∑
j=1

fij ≥ min
zt−k,i:zt+k,i

∧∀1≤i≤d

d∑
j=1

fij ≤ max
zt−k,i:zt+k,i

Now the right side is the MinDist: DMDEMD(xE
t , yI

t )≤MinDistEMD(xE
t , yt)�

This concludes the proof of the lower bounding property for the generic filters,
thus we guarantee completeness in multistep filter-and-refine algorithms as de-
sired. The proof of the general filter allows for easy plugging in of other lower
bounds of DTW and EMD with immediate guarantees on completeness.

3.4 Speedup Using Approximations

In the RAV C model, the exact computation of the EMD is computationally
expensive. For more efficient query processing, we propose an additional new
approximation of the EMD that is of only linear complexity. Starting from the
existing IM lower bound of the EMD that has linear complexity, we propose a
new upper bound of the EMD of the same complexity. Our novel approximation
of the EMD is the average of these two lower and upper bounds. Both of these
bounds are very tight, as we show in the experiments, and their average is very
close to the exact EMD value. Consequently, trading off very little accuracy
results in substantial efficiency gains.
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We construct our new upper bound OM (ordered minimization) based on
the nature of the EMD constraints. As opposed to constraint relaxation for the
lower bound IM , the upper bound OM is based on introduction of an additional
constraint. We construct this constraint such that linear computation is achieved.

To linearize the computation for an upper bound of the EMD, we introduce
a new constraint to the minimization problem that requires assigning flows be-
tween the histograms in the order of their cost entries. Then, the upper bound
OM can be computed sequentially on an ordered list of dimensions.

Definition 5. Ordered Minimization (OM)
For two histograms u = (u1, . . . , ud) and v = (v1, . . . , vd) the Ordered Minimiza-
tion with respect to a ground distance given by cost matrix C = [cij ] is defined
as:

OMC(u, v) = min
F

⎧⎨⎩
d∑

i=1

d∑
j=1

cijfij | Pos ∧ SumUp ∧ O

⎫⎬⎭
O : ∀1≤i,j≤d with fij>0 ∀1≤x,y≤d with cxy<cij

d∑
i=1

fxi = ux ∨
d∑

i=1

fiy = vy

The new constraint O ensures that constraints on the histogram dimensions
are satisfied in the order given by the cost matrix entries. This means that in a
manner similar to a greedy approach, the cheapest cost values are preferred in
the matching, regardless of possible increase in the overall value of the solution.
This allows linearization of the optimization problem. By simply ordering the
dimensions with respect to their cost, we can efficiently compute OM . As this
solution satisfies additional constraints, the minimum detected is an upper bound
of the one found under the weaker EMD constraints. We formally state that
OM is indeed an upper bound and prove this theorem.

Theorem 3.2. For two histograms u and v and a cost matrix C = [cij ] the
EMD is bounded by the OM in Definition 5:

EMDC(u, v) ≤ OMEMDC (u, v)

Proof

We show that the solution space S′ of the optimization problem given by the
constraints of the OM is fully included in the solution space S described by the
constraints of the EMD. Then, as a consequence, the minimum determined in
this smaller solution space cannot be smaller than the minimum in the original
space: for any subset S′ of S: S′ ⊆ S ⇒ min(S) = min(min(S\S′), min(S′)) ≤
min(S′).

This inclusion property is straightforward from the definition of the solution
problem via the constraint sets of EMD and OM , respectively: Pos∧SumUp ⊇
Pos∧SumUp∧O. Consequently, the minimum found by EMD cannot be larger
than the one described by OM , and the upper bounding property holds. �
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We now have both a lower and an upper bound of the EMD. We propose using
their average MA (minimization average), i.e. the average of the Independent
Minimization and the Ordered Minimization, as a close approximation of the
costly EMD:

Definition 6. Minimization Average (MA)
For two histograms u = (u1, . . . , ud) and v = (v1, . . . , vd) EMD approximation
is defined as

MA(u, v) =
IM(u, v) + OM(u, v)

2
We demonstrate in the experiments in Section 4 that this approximation is
indeed a very close one. RAV C can thus be used without approximation for
full correctness of the result, or with this approximation for more efficient query
processing times.

4 Experiments

We demonstrate in these experimental evaluations that video copy detection
under the robust adaptable video copy detection scheme, RAV C, is substantially
speeded up by our multistep filter-and-refine approach.

We implemented RAV C and our multistep filter-and-refine algorithm based
on the V A-file (Sect. 3) in Java, using lower bounds for DTW and EMD as
discussed in Section 3.1. We evaluate both the exact RAV C scheme as proposed
in Section 3.3 and the approximate speed-up in Section 3.4. Experiments were
conducted on 2.33GHz Intel XEON CPU machines running Windows Server
2008. The video data sets are the TRECVid1 benchmark data of about 43 hours
of videos [21]. The videos have an aspect ratio of 320x200. We use query videos as
in the original RAV C paper [3], which are generated using benchmark scenarios
described in [14]: changes in contrast, black bars as a result of screen ratio
changes, gauss filters, and changes in the temporal order. All results are averaged
over 40 queries. Where not described differently, we set the band constraint in
1 http://www-nlpir.nist.gov/projects/trecvid/
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DTW to k = 80, the dataset size to the full TRECVid database, the video length
to 512 frames. The color histograms were computed in extended HLS space with
dimensionalities of 4 or 20.

As a first experiment, we show that the approximation through the Minimiza-
tion Average (MA), introduced in Section 3, is indeed a very close approximation
of the full distance computation. Figure 4 shows the distance value deviation of
the three distance functions IM , OM , and MA to the full RAV C model. As
we can see, both the upper (OM) and lower (IM) bound tightly enclose the
RAV C model. By taking their average (MA), the distance value deviation is
always below 1.5%, making it a remarkably close approximation.

Additionally, we evaluate the corresponding accuracy of the query results for
RAV C MA compared to RAV C. The accuracy is measured as the recall of the
closest match found in the database, i.e. how many times the top result is indeed
the original to the altered query copy. Results are depicted in Figure 5. As we
can see, the overall deviation (in percent of the number of queries) to the exact
values is very low. These changes are within a two percent point range, thus do
not indicate any major differences.

We now study the performance of our approach in terms of runtimes. We
compare sequential computation of the RAV C model, sequential computation
of our proposed approximation, denoted as SeqFastRAV C, as well as our index-
supported multistep filter-and-refine algorithm for the approximation, referred
to as FastRAV C. We evaluate the performance with respect to different scal-
ability issues: we vary the size of the video database, the length of the videos,
the band of the DTW distance, as well as the result size of the copy detection
scheme. In our first efficiency experiment, we study the scalability in terms of
database size for video histograms with a resolution of 20 dimensions. Figure 6
shows the results. Please note that the y-axis uses a logarithmic scale. As we
can see, sequential computation of the RAV C model is prohibitively slow. For
a database of about 7000 videos, the runtime is more than 100,000 seconds
which corresponds to over 28 hours. This is in stark contrast to the FastRAV C
which takes only less than 47 seconds. This is a tremendous speed-up of more
than three orders of magnitude. Sequential computation of the approximation,
SeqFastRAV C results in runtimes of slightly less than 2500 seconds, i.e. more
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than 40 minutes. Thus, our approximation set-up contributes substantially to
the runtime improvements. The index-supported filtering provides another or-
der of magnitude. Clearly, our approach reduces video copy detection times that
are practically infeasible to runtimes that are much more realistic for practical
applications. This is observed across all database sizes. As an additional com-
parison, we have also included an example of moving the envelope, i.e. the lower
bound for DTW from the query to the database (DBEnvRAV C). As discussed
in Subsection 3.1, performance of this lower bounding approach is consistently
poorer than our proposed technique. Its computation takes more than 150 sec-
onds, which is almost four times that of FastRAV C. If the envelope is put
around the videos in the index, this means that the hyperrectangles that origi-
nate from the V A-file induced quantization grow substantially due to the lower
bounding envelopes. As a consequence, the lower bound is a lot less tight, and
pruning is not as effective. We have observed this relationship consistently in all
our experiments. In the following, we do not include it in the diagrams.

We validated these results for different histogram resolutions. Figure 7 shows
this exemplarily for 4-dimensional frame histograms. As we can see, even though
the dimensionality of the video histograms is very different, the general be-
havior of the different computation methods is similar. The difference between
FastRAV C and SeqFastRAV C is slightly less pronounced, but the overall
achieved speed-up remains at more than three orders of magnitude. Our next
performance evaluation studies the scalability with respect to the video length,
i.e. the number of frames in each video. Figure 8 shows the results for 20-
dimensional video histograms. Also in this experiment, we observe speed-up
rates around three orders of magnitude, with a slightly larger difference between
the SeqFastRAV C and the FastRAV C for video databases of shorter length.
This might be due to the fact that shorter video lengths correspond to a lower di-
mensionality for the index. Consequently, runtimes benefit more from the index
support. Still, this results only in minor differences.

The same setup, but for video features with a resolution of only 4 dimensions
per frame histogram, clearly supports this hypothesis. We show the runtime
results in Figure 9. Once again, there is a huge efficiency gain for our method,
but there is a noticeable jump from the shorter videos, where we observe a larger
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gap between SeqFastRAV C and its index-supported counterpart FastRAV C,
to the longer videos, where the gap decreases. Still, the index support provides
speed-ups of at least four times even in the closest case. The overall gains are
consistently more than three orders of magnitude. An important parameter in
the RAVC model is the amount of stretching along the time axis that is permitted
in DTW . This k-band constraint regulates the amount of editing in the temporal
domain that is considered to still be a video copy (cf. Page 309). As this band
constraint is also known to play an important role with respect to DTW runtime
performance (where larger bandwidths usually correspond to longer runtimes),
we study the effect of this parameter on our proposed algorithm. Figure 10
illustrates the results for 20-dimensional video histograms. As we can see, our
approach is remarkably robust with respect to the bandwidth parameter. The
general tendencies for RAV C, SeqFastRAV C and FastRAV C are the same as
in previous experiments, and runtime gains are remarkable even for wider bands.

Once again, we contrast our findings with the same setup on a low-resolution
histogram database. Figure 11 shows the performance for different bandwidths
for 4-dimensional video histograms. For these features, we see that there is a
change in the relationship between FastRAV C and SeqFastRAV C. As we can
see, the influence of the bandwidth constraint is more pronounced for the index-
based vs. sequential speed-up algorithm. This might be due to the fact that
with a low resolution of histograms and a wide area of potential matchings,
the quantized values in the index might not differentiate enough between the
different videos in the database. Still, FastRAV C remains much more efficient.
As a final study, we vary the result size for video copy detection. This is specified
as the number of potential copies retrieved by the algorithms. Usually, a video is
assumed to be a copy of at most one element of the database. Slightly increasing
the result size parameter leads to more false alarms, but reduces misses. Figure 12
illustrates the results for the 20-dimensional video histograms for one to five
potential copies in the result. As we can see, the results are quite stable with
respect to changes in the result size, and we observe only slightly less speed-up
in the index-based FastRAV C for the low-dimensional features. In this case,
as depicted in Figure 13, the gain from the index decreases for increasing result
size. As mentioned before, this might be due to the fact that lower resolution
video histograms that are quantized in the index are not as differentiable. As
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the tolerance threshold is increased implicitly by requesting a larger result size,
this probably leads to the effect that the very good speed-up ratios for higher
resolution histograms are not matched. Still, the index-based solution is always
the best performing across all experiments. Especially for setups that are very
relevant for video copy detection, i.e. small result size, high resolution features,
large databases, we have seen very good performance of our algorithm.

5 Conclusion

We propose an efficient multistep filter-and-refine algorithm for the RAV C
model for video copy detection. It includes a novel generic filter that builds on the
distance measures used in RAV C. Moreover, we integrate V A-file based index-
ing for which we devised the MinDist function that allows comparing indexed
videos with lower bounding approximations of queries. Optionally, we provide a
novel tight approximation of the RAV C for further speed up. Our evaluation on
real benchmark video data demonstrates that our algorithm achieves substan-
tial runtime improvements of several orders of magnitude. With these speed-ups,
reliable RAV C copy detection becomes feasible for practical applications.
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Abstract. We address the problem of skyline query processing for a
count-based window of continuous streaming data that involves both
totally- and partially-ordered attribute domains. In this problem, a fixed-
size buffer of the N most recent tuples is dynamically maintained and
the key challenge is how to efficiently maintain the skyline of the sliding
window of N tuples as new tuples arrive and old tuples expire. We iden-
tify the limitations of the state-of-the-art approach STARS, and propose
two new approaches, STARS+ and SkyGrid, to address its drawbacks.
STARS+ is an enhancement of STARS with three new optimization tech-
niques, while SkyGrid is a simplification STARS that eliminates a key
data structure used in STARS. While both new approaches outperform
STARS significantly, the surprising result is that the best approach turns
out to be the simplest approach, SkyGrid.

1 Introduction

Due to the usefulness of skyline queries in identifying interesting data points
and its conceptual simplicity, there is a lot of research attention on how to
efficiently process skyline queries. Given a set of tuples S, a skyline query (with
respect to a collection A of attributes of interest) returns the subset of S (the so
called “skyline”) that are dominating with respect to A. Specifically, a tuple tx
dominates another tuple ty iff tx is better than or equal to ty in every attribute
in A, and is strictly better in at least one such attribute. Thus, the skyline of
S, which consists of all tuples in S that are not dominated by any tuple in S,
represents the subset of the most interesting points (with respect to A).

Using the popular example of a tourist who is looking for a hotel that is both
cheap as well as close to the city, the “skyline” hotels that are of interest to
the tourist are the hotels not dominated by any other hotel, where a hotel hx

dominates another hotel hy if it satisfies the following conditions: (1) hx.price ≤
hy.price, (2) hx.distance ≤ hy.distance, and (3) at least one of the inequalities
in (1) and (2) is strict.

� Part of this work was done when the author was a student at National University
of Singapore.
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Much of the early work on skyline queries are in the context of attributes
with totally-ordered domains (as illustrated by the skyline hotel example), and
focuses on query processing in offline environment where a skyline result is
computed in response to a query on a disk-resident dataset (e.g., [5,8,6]). Recent
research effort has shifted towards query processing in online environment, where
a skyline result is dynamically maintained for a long-standing skyline query over
continuous streaming data [10,12].

The key challenge for the streaming data environment is how to efficiently
update the skyline for a sliding window of tuples. There are two models for
the sliding window length N in streaming data applications. In the time-based
window model, N represents the lifespan of each tuple in some number of time
units. Each arriving tuple ti has an arrival time-stamp si and expires after si+N
time units. Thus, the skyline is computed over all non-expired tuples and is
updated whenever a new tuple arrives or an existing tuple expires [12]. In the
count-based window model, the skyline is maintained for the most recent N tuples
[10]. Thus, the skyline is updated whenever a new tuple arrives, and the arrival
of the new tuple may also cause the oldest existing tuple to expire if there are
already N tuples before the new arrival.

Several recent work on skyline queries have broadened the scope to include
categorical attributes with partially-ordered domains in both offline [2,9] as well
as online [10] environment. Categorical attributes are more general than numer-
ical attributes as the dominance relationships among the domain values for a
categorical attribute are based on a partial ordering instead of a total ordering.

In this paper, we address the problem of skyline query processing for a count-
based window of continuous streaming data that involves both totally- and
partially-ordered attribute domains. In this problem, a fixed-size buffer of the
N most recent tuples is dynamically maintained and the key challenge is how
to efficiently maintain the skyline of the sliding window of N tuples as new tu-
ples arrive and old tuples expire. The state-of-the-art approach for this skyline
problem is the STARS method [10], which is based on two key data structures:
a multi-dimensional grid to organize the tuples in the buffer, and a geometric
arrangement structure to organize the skyline tuples.

There are many interesting applications that require dynamic skyline mainte-
nance of streaming objects in our setting. Consider an Internet search webservice
that continuously accepts search requests from users, where each search request
is associated with various categorical attributes of interest such as the search
language, geographical region of the request, and the browser software and op-
erating system used. The webservice can define a partial order over the attributes
indicating its preferences of the search requests it wants to track. The system will
then filter out and maintain a subset of recent interesting search requests, which
can be exploited to study trends for better search results. Another application
in news services is illustrated in [10].

In this paper, we make the following contributions. We identify the limitations
of the STARS method and propose two new approaches, STARS+ and SkyGrid,
to address its drawbacks. STARS+ is an enhancement of STARS with three new
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optimization techniques, while SkyGrid is a simplification STARS that completely
eliminates a key data structure used in STARS. While both new approaches
outperform STARS significantly, the surprising result is that the best approach
turns out to be the simplest approach, SkyGrid, which outperforms both STARS
and STARS+ by up to a factor of 3 and 2.1, respectively.

The rest of this paper is organized as follows. In Section 2 we review the STARS
algorithm. We present two new approaches, STARS+ and SkyGrid, in Sections
3 and 4, respectively. In Section 5, we present an experimental evaluation of
the proposed algorithms. Finally, Section 6 concludes the paper. Due to space
constraint, all proofs are omitted.

2 Overview of STARS Approach

In this section, we give an overview of the STARS approach [10], which is the
state-of-the-art algorithm for the skyline problem that we are addressing in this
paper and the basis of our STARS+ approach.

The STARS approach, which is based on the count-based sliding window
model, maintains a fixed-size buffer of N tuples and updates the skyline of
the N most recent tuples as new tuples arrive and old tuples expire. Whenever
a new tuple tin arrives and the buffer is already full with N tuples, the oldest
tuple tout in the buffer is expired and tin becomes part of the skyline if it is
not dominated by any other tuples in the buffer. Moreover, if tout was a skyline
tuple, then it is possible for some of the non-skyline tuples in the buffer to be
promoted to become skyline tuples. Specifically, for each non-skyline tuple t in
the buffer, if t is exclusively dominated by tout (i.e., tout is the only skyline tuple
that dominates t), then t is promoted to a skyline tuple.

To avoid unnecessary dominance comparisons, STARS minimizes the set of
tuples in the buffer by discarding irrelevant tuples from the buffer. A tuple t in
the buffer is classified as irrelevant if it is dominated by a younger tuple t′ (i.e.,
t′ arrives later than t). The reason is that since t′ will only expire after t, t is
guaranteed to be dominated by at least one tuple throughout its remaining lifes-
pan in the buffer which means that t can never be promoted to a skyline tuple.
Thus, any tuple t that is dominated by a newly arrived tuple tin is irrelevant
and can be immediately discarded from the buffer. STARS refers to the buffer
containing only relevant tuples as the skybuffer.

The skyline maintenance algorithm in STARS, which is invoked whenever a
new tuple arrives, is shown in Fig. 1. The algorithm has the following inputs: SB
is the buffer of relevant tuples (skybuffer), S ⊆ SB is the set of skyline tuples,
tin is the newly arrived tuple, and tout is the oldest tuple to be expired.

The key operations in the maintenance algorithm can be classified into the
following three types of queries. (1) D-query: Given a tuple t, return the set of
buffer tuples that are dominated by t; (2) S-query: Given a tuple t, determine
whether t is dominated by any skyline tuple; and (3) P-query: Given a skyline
tuple t that expires, return the set of buffer tuples that are promoted to skyline
tuples due to the expiry of t. In Fig. 1, a D-query is used in steps 2 and 4,
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Algorithm: SkylineMaintenance (SB, S, tin, tout)
Input: SB is the skybuffer.

S ⊆ SB is the skyline.
tin is the newest (arriving) tuple.
tout is the oldest (expiring) tuple.

1) if tin not dominated by any tuple in S then
2) Remove tuples dominated by tin from S;
3) Insert tin into S;

endif
4) Remove tuples dominated by tin from SB;
5) Insert tin into SB;
6) if tout is in S then
7) Remove tout from S;
8) P = {t ∈ SB :

t is exclusively dominated by tout};
9) Insert tuples in P into S;

endif
10) Remove tout from SB.

Fig. 1. Skyline maintenance framework of STARS
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an S-query is used in step 1, and a P-query is used in step 8. Note that a P-
query can be evaluated in terms of a D-query and multiple S-queries: given an
expiring skyline tuple t, a D-query is first used to find the set of tuples T that
are dominated by t, and then for each tuple t′ in T , an S-query is used to check
if t′ is exclusively dominated by t.

To efficiently support the core operations (i.e. D-queries and S-queries) for
skyline maintenance, the STARS approach organizes the buffer tuples and skyline
tuples using two key data structures.

Multi-dimensional Grid. Suppose the skyline is computed wrt d attributes,
A1, · · ·Ad. STARS organizes the tuples in the buffer using a d-dimensional grid,
where the ith dimension corresponds to attribute Ai. The objective is to map
and store each tuple into a grid cell to support efficient D-queries.

To enable this mapping, the partially-ordered domain of each categorical at-
tribute is linearized into a total ordering by a topological sort of the attribute
domain’s partial order. More specifically, the partially-ordered domain of a cat-
egorical attribute is represented by a directed acyclic graph (DAG), where each
vertex in the DAG represents a domain value, and each edge represents the
dominance relationship between two attribute values that cannot be be inferred
by transitivity such that a value v is better than v′ iff there exists a directed
path from v’s vertex to v′’s vertex in the DAG. Let r(v) denote the rank of the
vertex corresponding to value v in a topological sort of the DAG. It follows that
if r(v) > r(v′), then v cannot dominate v′. However, if r(v) < r(v′), then either
v dominates v′ or the two values are incomparable.

In this way, the scales of the grid on each dimension is bucketized into as
many buckets as the number of domain values. Thus, each tuple t = (a1, · · · , ad)
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is mapped into the cell given by 〈r(a1), · · · , r(ad)〉. To find the set of buffer
tuples that are dominated by t (i.e., evaluate a D-query), STARS only needs
to consider tuples t′ = (a′

1, · · · , a′
d) that are located in the cells satisfying the

following range query wrt t: r(a1) ≤ r(a′
1),· · · , and r(ad) ≤ r(a′

d). Additionally,
many cells satisfying the range query are false positives and can be pruned as
well. Thus, the grid organization enables STARS to eliminate many unnecessary
dominance comparisons against tuples that cannot be dominated by t. To make
the method scale to a large number of attributes or large attribute domains,
STARS introduces techniques to control grid granularity by grouping multiple
values into the same bucket. We use Fig. 2 (from [10]) to illustrate this.

Example 1. Consider the domain D of a categorical attribute consisting of the
values {a, · · · , h} that are organized into the partial order depicted in Fig. 2(a).
A possible topological sort is a, · · · , h, which can be grouped into six buckets,
each indicated by a dotted box in Fig. 2(a). A grid to organize a 2D dataset on
D × D is depicted in Fig. 2(b). Consider a tuple t that is mapped to the cell
marked × in Fig. 2(b). The dotted region in Fig. 2(b), which corresponds to the
range query wrt t, represents the set of cells that could contain tuples dominated
by t. Note that among the nine cells in the region, only the three cells marked •
are candidate cells; the remaining six cells are false positives that cannot contain
tuples dominated by t, which can be eliminated as well. �

Geometric Arrangements. To efficiently support S-queries, STARS organizes
the skyline tuples using a geometric arrangement of lines that maps skyline
tuples onto a 2D plane. For this mapping, STARS needs to first choose two of
the attributes (say Ai and Aj) among the attributes of interest for the skyline
computation. Then each skyline tuple t = (a1, · · · , ad) is represented by a line
y = r(ai)·x−r(aj) in the 2D plane, where ai and aj are t’s values for attributes Ai

and Aj , respectively. Based on this geometric line arrangement, two tuples t and
t′ are incomparable if the intersection point (xI , yI) of their line representations
has xI < 0. STARS uses the doubly-connected-edge-list (DCEL) data structure
[4] to represent the positive half (wrt the x-axis) of the line representation of
each skyline tuple. Using DCEL, STARS is able to efficiently evaluate an S-
query wrt a tuple t by retrieving the lines that intersect with t’s line in the
positive half of the x-axis. In this way, many skyline tuples incomparable to t
are pruned. Moreover, evaluating an S-query is progressive as it can terminate
once an intersecting skyline tuple is found. We use the example (from [10]) shown
in Fig. 3 to illustrate this concept.

Example 2. Suppose there are three skyline tuples t1, t2, and t3. Their line rep-
resentations are shown as labelled in Fig. 3. Consider an S-query wrt a tuple
tq, which is represented by the line as labelled in Fig. 3. Using DCEL, t3 is the
first line found to intersect with tq, and a dominance comparison is performed
to check if tq is dominated by t3. If so, then the the evaluation of the S-query
completes; otherwise, the next line that intersects tq is t2 and a dominance com-
parison between t2 and tq is performed and so on. Observe that t1 is pruned as
it intersects with tq at the point (xI , yI) where xI < 0. �
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3 STARS+ Approach

In this section, we present three optimization techniques to improve the per-
formance of STARS. We refer to this optimized variant as STARS+. The first
technique reduces the number of S-queries required for evaluating P-queries.
The second technique introduces auxiliary structures to improve the evaluation
of D-queries. The third technique optimizes the line arrangement technique to
improve the evaluation of S-queries. Our experimental results show that STARS+

significantly outperforms the unoptimized STARS.

3.1 Dominating Tuple (DT) Optimization

In the STARS approach, each P-query (step 6 in SkylineMaintenance algo-
rithm) to find the tuples that are exclusively dominated by an expiring skyline
tuple is evaluated in terms of one D-query and multiple S-queries, which incurs
a rather high computation overhead. One way to speed up a P-query evaluation
is to reduce the number of S-query evaluations.

One approach to reduce the the number of S-query evaluations is to keep
track of the number of tuples that dominate each tuple. This idea is referred to
as the “eager approach” [12] in contrast to the non-optimized “lazy approach”.
Specifically, each tuple t is associated with a counter, denoted by t.counter,
which represents the number of skyline tuples that dominate t. When t first
arrives, t.counter is initialized to the number of skyline tuples that dominate t.
Subsequently, whenever a skyline tuple tout expires, for each tuple t dominated by
tout, t.counter is decremented by one to indicate that t is dominated by one fewer
tuple due to the expiry of tout. Clearly, if t.counter > 0, we can conclude that t is
not exclusively dominated by tout without requiring a S-query evaluation. While
the advantage of the eager approach is that a P-query can be evaluated with
significantly fewer S-queries, the drawback is that the initialization of t.counter
requires the entire skyline to be scanned when t arrives. In fact, the performance
of the eager approach was shown to be worse than the lazy approach [12].

To avoid the overhead of the eager approach, we adopt a “semi-eager” ap-
proach for STARS+ that simply associates each tuple t with a single skyline
tuple, denoted by t.dt, that dominates t. The knowledge about this dominating
tuple t.dt is available virtually “for free” as part of the S-query issued to check
if t is a skyline tuple when t arrives; thus, only a minor modification to the
S-query evaluation procedure is needed to return a skyline tuple that dominates
t when t is not a skyline tuple. Subsequently, whenever a skyline tuple tout ex-
pires, for each tuple t dominated by tout, if t.dt is not equal to tout, then t is not
exclusively dominated by tout and we save the cost of an S-query to determine
this. However, if t.dt is equal to tout, an S-query is invoked to check if there is
another skyline tuple (besides tout) that dominates t. If there is indeed another
tuple t′ that dominates t, then we update t.dt to be t′ and conclude that t is not
exclusively dominated by tout.

The following result shows that our proposed DT optimization can signifi-
cantly reduce the number of S-queries to be evaluated for a P-query.
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Theorem 1. Suppose that a newly arrived tuple t in the skybuffer is dominated
by all the existing skyline tuples. Let s denote the number of the skyline tuples.
If no new skyline tuple is encountered, then with the DT optimization, the total
expected number of S-queries that are executed (to check if t should be promoted)
due to the expiry of the s skyline tuples is bounded by Θ(ln s). In contrast, the
total number of such S-query evaluations for the lazy approach is s.

3.2 Empty Cell (EC) Optimization

Recall that in STARS, a D-query wrt a tuple t is evaluated by examining all tuples
in each candidate cell within the region specified by a range query wrt t. We
observe that many candidate cells are empty, particularly for high-dimensional
data as the number of grid cells grows exponentially with data dimensionality.
Consequently, a large overhead is incurred in examining empty cells.

To get an idea of the sparsity of the grid cells, let us consider a d-dimensional
dataset and a buffer size of N tuples. Assuming the attribute values are inde-
pendent, the average number of tuples in the skybuffer is given by O(lnd N) [7].
Let the granularity of each grid dimension be g (i.e., each dimension scale has
g buckets). Then, the number of tuples per grid cell is given by ρ = lnd N

gd . For
high-dimensional data, ρ is often very small (e.g., ρ = 0.022 when N = 105, d = 4
and g = 30).

To reduce the overhead of examining empty grid cells when evaluating D-
queries in a d-dimensional grid, the Empty Cell (EC) optimization technique
maintains d − 1 additional structures, termed index grids, to keep track of the
number of tuples in the grid. Each index grid Ci (1 ≤ i ≤ d−1) is i-dimensional,
having the same scales as the first i dimensions of the original grid. All the cells
in Ci have an initial value of 0. When a tuple is added to or removed from the
buffer, EC-Indexing in Fig. 4(a) is invoked to update the index grids. During the
evaluation of a D-query, the candidate cells are examined by enumerating the cell
coordinates in a systematic manner: for each prefix of the d-length enumeration,
STARS+ invokes EC-Checking in Fig. 4(b) to check if the enumeration for the
current prefix can be terminated due to an empty region. If a true value is
returned, STARS+ terminates further enumeration for the current prefix and
backtracks.

Example 3. For a 3D grid, two index grids C1 and C2 are maintained. All of
their cells are initialized to 0. Suppose a tuple is added to the buffer at 〈2, 5, 3〉.
Then C1〈2〉 and C2〈2, 5〉 are updated to 1. A D-query evaluation starts enumer-
ating the candidate cells to be examined with the enumeration prefix 〈1〉. Since
C1〈1〉 = 0, STARS+ terminates further enumeration with this prefix, and back-
tracks to the next prefix 〈2〉. Since C1〈2〉 �= 0, STARS+ continues the enumeration
with the next dimension to consider 〈2, 1〉. Since C2〈2, 1〉 = 0, STARS+ termi-
nates further enumeration with 〈2, 1〉 and backtracks to 〈2, 2〉. Since C2〈2, 2〉 = 0,
STARS+ continues backtracking until 〈2, 5〉. �

When a D-query evaluation is enumerating a prefix with i dimensions, there
is a probability of pi = kgd−i

that the enumeration will backtrack, where k is
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Alg. (a): EC-Indexing (〈k1, k2 . . . kd〉, e)
Input: 〈k1, k2 . . . kd〉 are the coordinates

in the skybuffer grid, where a tuple
is added or removed.
e indicates an add or remove event.

1) for i = 1 to d − 1 do
2) if e is “add” then
3) Increase Ci〈k1, k2 . . . ki〉 by 1;
4) else

/* e is “remove” */
5) Decrease Ci〈k1, k2 . . . ki〉 by 1;

endif
endfor

Alg. (b): EC-Checking (〈k1, k2 . . . km〉)
Input: 〈k1, k2 . . . km〉 (1 ≤ m < d) is the

coordinates prefix in the skybuffer
grid, enumerated in a D-query.

Output: a boolean indicating if all cells with
coordinates prefix 〈k1, k2 . . . km〉
are empty.

1) for i = 1 to m do
2) if Ci〈k1, k2 . . . ki〉 is 0 then
3) return true

endif
endfor

4) return false

Fig. 4. Empty Cell (EC) optimization

the average probability that a cell is empty. Therefore, a D-query evaluation
with EC is expected to examine a fraction λ of the candidate cells, where λ =∏d−1

i=1 (1 − pi) =
∏d−1

i=1 (1 − kgd−i

) ≤ 1 − kg. Suppose k = 0.99 and g = 30, then
λ < 0.26. As d or g increases, k approaches 1, and so EC becomes more effective.

The overhead incurred by EC is low. The cost to update the index grids when a
tuple is added or removed is O(d) which is negligible since d is usually small. The
space overhead for each index grid Ci is O(gi); thus, the total space requirement
of O(gd−1) is insignificant relative to the O(gd) space requirement of the original
grid.

3.3 Geometric Arrangement (Minmax) Optimization

Our third optimization concerns the geometric arrangement technique for evalu-
ating S-queries. In STARS, the two attributes used for line mapping are selected
arbitrarily when data dimensionality is higher than two. To assess the perfor-
mance impact of the choice of the attribute pair, we conducted an experiment
to compare the performance of skyline maintenance for every possible attribute
pair and found that the performance gap between the best and worst pair can
exceed 20%. Thus, the choice of the attribute pair for the mapping is important
but there is no clear heuristic that can be used to optimize this selection. An-
other drawback of STARS is that it utilizes only two attributes for the mapping.
Intuitively, using more attributes is likely to provide better pruning power as
more information about the data is being exploited.

We present an enhanced variant of the line mapping, termed Minmax, that
utilizes all attributes. Consider a d-tuple t = (a1, · · · , ad). Minmax maps t
to the line y = C · x − D, where C = max(r(t.a1), · · · , r(t.ad)) and D =
min(r(t.a1), · · · , r(t.ad)). The following result establishes its correctness.

Theorem 2. Let l1 and l2 represent the two lines mapped from two d-tuples t1
and t2 based on Minmax, respectively. If l1 and l2 intersect at the point (xI , yI)
where xI < 0, then t1 and t2 are incomparable.
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4 SkyGrid Approach

In this section, we present a more extreme approach to optimize STARS by ac-
tually eliminating the use of the geometric arrangement technique for S-queries.
Instead, all skyline maintenance operations are performed using only the grid
data structure. To distinguish between the skyline and non-skyline tuples in the
buffer, each tuple is associated with a single bit that is set to true iff the tuple
is a skyline tuple. We refer to this new approach as SkyGrid.

The simplified skyline maintenance framework for SkyGrid is shown in Fig. 5.
Clearly, using only a single data structure in SkyGrid simplfies the skyline main-
tanance operations. Recall that for both STARS and STARS+ (refer to Fig. 1),
if tin is a skyline tuple, we need to update two structures with the following
operations: (1) remove the line representations of any skyline tuples that are
dominated by tin (step 2); (2) insert the line representation of tin (step 3); (3)
remove the tuples in the buffer that are dominated by tin (step 4); and (4) insert
the tin into the buffer (step 5). In contrast, for SkyGrid, if tin is a skyline tuple,
only the grid structure needs to be updated with the following operations (refer
to Fig. 5): (1) insert tin into the buffer (step 3); and (2) remove the tuples in
the buffer that are dominated by tin (step 4).

The simpler skyline maintenance operations in SkyGrid results in better per-
formance. In STARS+, the cost of inserting or removing the line representation
of a skyline tuple in the geometric arrangement is O(s) using DCEL, where s is
the number of skyline tuples [4]. In contrast, for SkyGrid, the cost for promoting
a tuple into the skyline is only O(1) (by marking a skyline status bit).

Algorithm: SkylineMaintenance+ (SB, tin, tout)
Input: SB is the skybuffer.

tin is the newest (arriving) tuple.
tout is the oldest (expiring) tuple.

1) if tin not dominated by skyline tuples in SB then
2) Mark tin as “skyline”;

endif
3) Insert tin into SB;
4) Remove tuples dominated by tin from SB;
5) Remove tout from SB;
6) if tout was marked as “skyline” then
7) P = {t ∈ SB :

t is exclusively dominated by tout};
8) Mark tuples in P as “skyline”;

endif

Fig. 5. Simplified skyline maintenance framework

gh f de c b a

a

b

c

de

f

gh

�

�

× 	 	

	

	

	

	

	

	

Fig. 6. S-query in SkyGrid

To support S-queries, SkyGrid can simply find the candidate cells in a similar
way as in D-queries, but in the opposite direction. Specifically, SkyGrid only needs
to consider d-tuples t′ = (a′

1, · · · , a′
d) that are located in the cells satisfying the

following range query wrt t = (a1, · · · , ad): r(a1) ≥ r(a′
1),· · · , and r(ad) ≥ r(a′

d).
The following example illustrates this idea.
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Example 4. Consider the domain D depicted in Fig. 2(a). A grid to organize a
2D dataset on D × D is depicted in Fig. 6. Consider a tuple t that is mapped
to the cell marked × in Fig. 6. The dotted region in Fig. 6, which corresponds
to the range query wrt t, represents the set of cells that could contain tuples
dominating t. The actual candidate cells for the S-query are marked by �. �

Next, we compare the pruning potential of STARS+ and SkyGrid. As S-query
is progressive in both, we ignore the progressiveness. Assuming independent at-
tribute values, the following result states the expected pruning ratio of STARS+.

Theorem 3. STARS+ (utilizing the Minmax mapping) is expected to prune fewer
than half of the number of skyline tuples in an S-query evaluation.

On the other hand, we expect SkyGrid to be able to prune more skyline tuples.
While a formal computation is difficult as it depends on data domains, we can
obtain an estimation. The evaluation of an S-query wrt to a tuple t examines
a fraction

∏d
i=1 ki of all the cells as candidates, where ki ∈ [0, 1] is the fraction

of buckets dominating t on each dimension. Hence (1 −
∏d

i=1 ki) of the cells are
pruned. For high dimensional data with a reasonable value of ki (e.g., d > 2 and
ki < 0.7), the estimated number of cells (and hence tuples) that are pruned is
more than half.

To further improve performance, SkyGrid also incorporates both the DT and
EC optimizations of STARS+. Note that we can use two sets of EC index grids
for the buffer and skyline, respectively. In this way, when evaluating an S-query,
SkyGrid identifies candidate cells by utilizing only the index grids for the skyline.
This avoids the need to examine most candidate cells that contain no skyline tu-
ples, thereby reducing the number of skyline status bits that have to be checked.

In terms of space requirement, the cost for STARS+ is O(s2) using DCEL
to organize s skyline tuples as a geometric arrangement [4]. In contrast, since
SkyGrid organizes the skyline tuples as part of the skybuffer, no additional space
is required. However, each tuple in SkyGrid requires a skyline status bit, so an
extra O(sb) space is needed, where sb is the size of the skybuffer. When s is
reasonably large, STARS+ incurs a higher space overhead than SkyGrid.

5 Experimental Evaluation

5.1 Experiment Settings

In our experiments, we generated synthetic partially-ordered domains following
the approach in [10]. Each domain is modeled as a DAG and is characterized by
the parameters (m, h, c, f), where m is the number of vertices, h is the height
of the DAG, c ∈ (0, 1] is the fraction of the vertices at the next level that are
connected to a vertex, and f refers to the type of DAG which is either “t” for
tree-like or “w” for wall-like DAG. We refer to an attribute domain by these
parameters; for instance, (500, 8, 0.3, t).

We generated four 4-dimensional datasets shown in Table 1, where each col-
umn corresponds to one dataset and the ith row corresponds to the domain for
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the ith attribute; d-dimensional datasets, where d ∈ {2, 3}, are generated from
Table 1 by simply considering only the first d rows of the table. For each algo-
rithm being evaluated, we ran it on each of the four datasets, and report the
average performance over the four datasets (unless stated otherwise).

For each data domain, we also considered three different distributions: (1)
independent, where the attribute values of the tuples follow a uniform distribu-
tion; (2) correlated, where a tuple that is good in one attribute also tends to be
good in other attributes; (3) anti-correlated, where a tuple that is good in one
attribute tends to be bad in at least one other attribute [1,5,11].

Table 1. Synthesized sets of data domains

Dataset I Dataset II Dataset III Dataset IV
(250, 7, 0.3, t) (120, 7, 0.2, t) (100, 10, 0.1, w) (500, 8, 0.3, t)
(180, 6, 0.6, t) (120, 7, 0.2, t) (100, 10, 0.2, w) (500, 8, 0.3, t)

(180, 20, 0.3, w) (120, 5, 0.2, t) (100, 10, 0.4, w) (500, 8, 0.3, t)
(90, 4, 0.2, t) (120, 5, 0.2, t) (100, 10, 0.8, w) (500, 8, 0.3, t)

Table 2. Skyline sizes

Dim Corr Indep Anti
d = 2 240 25 45
d = 3 395 480 418
d = 4 636 3779 4444
d = 5 1298 12363 15875

The number of data dimensions, denoted by d, was varied from 2 to 4. Table 2
shows the skyline sizes for datasets with domain (500, 8, 0.3, t) on each attribute,
using a 100K buffer with different data distributions. Note that datasets with
partially-ordered domains have much more skylines than totally-ordered datasets
since two tuples are more likely to be incomparable [1,11]. For independent or
anti-correlated datasets, the size of the skylines becomes very large once d ≥ 5;
therefore, finding conventional skylines for d ≥ 5 becomes less interesting [3].

Furthermore, we varied buffer sizes from 10K to 1M. Lastly, we chose g = 20
as the default grid granularity if it is not stated.

All the algorithms were implemented using Java. The experiments were con-
ducted on a 3.0GHz PC with 3GB of main memory running Windows OS.

5.2 Evaluating STARS+ Optimizations

In this subsection, we evaluate the effectiveness of each of the three optimizations
DT, EC and Minmax that are introduced for STARS+.

Dominating Tuple. STARS+ utilizes DT to improve the performance of P-
queries. Figure 7 shows the average time per P-query evaluation without DT
(normalized wrt with DT)1. DT clearly improves the evaluation of P-queries, up
to 2.3 times faster. The speed-up is greater when the skyline is larger, which is
often caused by a larger buffer, particularly when d = 4. For d ∈ {2, 3}, we notice
a non-monotonous speed-up wrt buffer size. On lower dimensional datasets, the
skyline sizes are much smaller. Their skylines soon become “saturated” (i.e., no
longer growing and maybe shrinking due to randomness in data) when the buffers
become larger. Hence, when the buffer increases beyond the saturation point,
their skyline sizes become non-monotonous, resulting in the non-monotonicity
of the performance speed-up by DT. When d = 4, the saturation point is well
beyond 1M, so we only observe an improving speed-up.
1 To be fair, both used the same attribute pair for line mapping.
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Fig. 7. Effectiveness of DT on P-query evaluation

Empty Cell. STARS+ utilizes EC to improve the performance of D-query eval-
uation. The average time per D-query without EC (normalized wrt with DT)1 is
shown in Fig. 8. There is negligible improvement when d = 2, as the number of
cells is small. However, when d > 2, EC becomes very effective. This is especially
so for correlated data, where the tuples distribute unevenly in the grid resulting
in more empty cells.
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Fig. 8. Effectiveness of EC on D-query evaluation

Figure 9 compares the average evaluation time per D-query under varying
grid granularity. When the granularity is initially increased from a small value,
the performance of D-query evaluation both with and without EC improve due
to a finer grid. However, as the granularity increases beyond 20, the performance
without EC quickly deteriorates due to the rapid growth of the number of empty
cells. In contrast, with EC the performance degradation is less pronounced, as
most of the empty cells are pruned.

Pruning Efficiency of Minmax. STARS+ utilizes Minmax to improve the
skyline organization by pruning more skyline tuples in an S-query evaluation.
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Following [10], we define the pruning efficiency (PE) of an S-query as the fraction
of skyline tuples that require dominance comparison (i.e., that are not pruned).
Thus, smaller PE values are better. Figure 10 compares the PE of S-queries
for STARS, STARS+ and SkyGrid, where d = 4. For the performance results
of STARS, instead of arbitrarily choosing two attributes for line mapping, we
evaluated STARS with all possible attribute pairs, and present the performance
results corresponding to the best pair (STARS-Best) as well as the worst pair
(STARS-Worst) for comparison.
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Fig. 10. Pruning efficiency of S-query

The results reveal that there could be a performance gap between STARS-Best
and STARS-Worst. In Figs. 10(a) and (b), STARS+ not only closes the gap, but
also maintains a lead over STARS-Best. In addition, SkyGrid is much better than
STARS+ in terms of PE.

However, in Fig. 10(c) on correlated data, the PE of STARS+ is generally on
par with STARS-Worst. The reason is that the Minmax optimization in STARS+

is not effective on correlated data. Consider two tuples with correlated attribute
values that map to the lines l1 : y = C1 · x − D1 and l2 : y = C2 · x − D2,
respectively. If C1 > C2, it is likely that D1 > D2; therefore, it is also likely that
D1−D2
C1−C2

> 0, the x-coordinate where l1 and l2 intersect. By Theorem 2, the two
tuples are unlikely to be pruned. On the other hand, SkyGrid outperforms both
Minmax and STARS-Worst, but loses marginally to STARS-Best on buffers larger
than 50K. The reason is that tuples with correlated attribute values distribute
unevenly in the grid, resulting in less efficient S-queries. However, SkyGrid still
achieves the best overall performance despite this (see Section 5.3).

5.3 Evaluating Overall Performance

In this subsection, we compare the overall performance of STARS (both STARS-
Best and STARS-Worst), STARS+ and SkyGrid. To be fair to STARS and SkyGrid,
we also implemented in them the two optimizations of STARS+, DT and EC. Due
to space constraints, we only present the results for d = 4; similar trends are
observed for d ∈ {2, 3}.
Tuple update time. We measure the average time per tuple update, which cor-
responds to the time for one invocation of the SkylineMaintenance algorithm.
The results are presented in Fig. 11.
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Fig. 11. Comparison of tuple update time with DT and EC

The results for independent and anti-correlated data in Figs. 11(a) and (b)
reveal that SkyGrid achieves the best overall performance, followed by STARS+,
and lastly STARS. However, with large buffers, the performance gap between
SkyGrid and STARS+ narrows. The reason is that although the performance of
SkyGrid for P-queries is much better than STARS+, P-queries occur less fre-
quently with large buffers due to the decreased probability for an expiring tuple
to be a skyline tuple [10]. However, despite this, SkyGrid still performs better
than STARS+ by a clear margin with buffers as large as 1M. Note that SkyGrid
is still preferable in time-critical applications, where the cost of each individual
update is more important than the amortized cost. SkyGrid greatly improves the
otherwise very expensive tuple updates that involve a P-query.

On correlated data, as shown in Fig. 11(c), STARS+ is only marginally out-
performed by STARS, although the former performs poorly in PE. Tuples with
correlated attributes tend to distribute unevenly in the grid, resulting in less ef-
ficient D-queries. Thus, the performance of P-queries becomes a less dominating
factor in the overall performance. Also, skylines on correlated data are gener-
ally smaller, resulting in a lower frequency of P-queries. So the PE of S-queries
matters less to overall performance. This also explains why SkyGrid has the best
overall performance even though it is not so in terms of PE.

Figure 12 studies the effect of grid granularity on the average time per tuple
update of the three approaches with a 100K buffer. Observe that SkyGrid remains
the best approach under different grid granularities.

Space requirement. The memory usage of the three approaches is shown in
Table 3, with a 100K buffer on Dataset IV (d = 4). Clearly, SkyGrid uses the least
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Table 3. Memory usage

Corr Indep Anti
Skyline 636 3779 4444

Memory (MB)
STARS
-Worst 55 574 731
STARS
-Best 56 505 693
STARS+ 55 442 589
SkyGrid 54 55 55
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memory, as it requires little extra space for the skyline representation. On the
other hand, STARS+ and STARS require comparable amount of memory, since
they both use a geometric arrangement to organize the skyline. Also note that
the differences are insignificant on correlated data because of a smaller skyline.

6 Conclusion

In this paper, we have presented two new approaches, STARS+ and SkyGrid,
to compute skylines for streaming data that involves partially-ordered attribute
domains. Our experimental results show that both STARS+ and SkyGrid outper-
form the state-of-the-art STARS approach, with the surprisingly result that the
simplest approach, SkyGrid is the best approach.
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Abstract. Sampling streams of continuous data with limited memory,
or reservoir sampling, is a utility algorithm. Standard reservoir sampling
maintains a random sample of the entire stream as it has arrived so
far. This restriction does not meet the requirement of many applications
that need to give preference to recent data. The simplest algorithm for
maintaining a random sample of a sliding window reproduces periodically
the same sample design. This is also undesirable for many applications.
Other existing algorithms are using variable size memory, variable size
samples or maintain biased samples and allow expired data in the sample.

We propose an effective algorithm, which is very simple and therefore
efficient, for maintaining a near random fixed size sample of a sliding
window. Indeed our algorithm maintains a biased sample that may con-
tain expired data. Yet it is a good approximation of a random sample
with expired data being present with low probability. We analytically ex-
plain why and under which parameter settings the algorithm is effective.
We empirically evaluate its performance (effectiveness) and compare it
with the performance of existing representatives of random sampling over
sliding windows and biased sampling algorithm.

1 Introduction

Sampling is a utility task used in diverse applications such as data mining [7,9,12],
query processing [2], and sensor data management [4,11].

There are many different algorithms dedicated to effectively building a random
sample of a small fixed dataset whose efficiency varies and depends on how data
is stored and accessed. It is however less obvious to incrementally build the
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sample in a single pass or, more generally, to maintain a random sample when the
dataset is updated. This is for instance the case when dealing with data streams.
Reservoir sampling is a family of algorithms, first introduced by McLeod et al.
in [8] and revisited by Vitter in [13], precisely able to incrementally sample a
data set in one pass or, similarly, data stream. In reservoir sampling the first n
points in the data set are stored at the initialization step. The (t + 1)th data
replaces a randomly selected data in the reservoir with probability n

t+1 . As the
data set length increases, the probability of the insertion reduces to guarantee
that every sample is equiprobable. The fact that reservoir sampling produces
samples of the entire data set as opposed to samples of data in a sliding window
is a clear disadvantage for data stream applications where users need to consider
the most recent information.

A generalization of the problem considers both insertions and deletions. The
algorithms in [5], random pairing and resizing samples, cater for such updates.
Random pairing considers each insertion as a compensation of a previous dele-
tion. In both algorithms samples are resized to maintain their randomness.

Users may also be concerned by the freshness of data. They may need to focus
on most recent data or consider that data is expiring. The algorithm in [1], biased
sampling, allows a bias towards recent data. We show here that this approach
cannot be parameterized to become a good approximation of a sliding window.

The algorithms in [3], simple window sampling and chain window sampling,
sample from a sliding window. Data outside the window, older data, expire. The
simple algorithm is efficient but periodic. It lazily replaces data in the sample
when they expire and therefore reproduces the same sampling design for each
tumbling window. The chain sample algorithm does not suffer from periodic-
ity. However, the needed memory (the size of the chains) is only statistically
bound.

In this paper, we consider the problem of maintaining an approximate uni-
form random sample of a fixed specified size n over a data stream based on
a sequence based sliding window model. The algorithm presented in this work
belongs to the class of reservoir sampling. It is called FIFO (First In First Out)
sliding window sampling, or FIFO for short. It maintains a sample of size n and
requires a memory of size n. The algorithm is biased towards recent data. The
algorithm however does not produce true random samples of the sliding window
and may contain expired data. However, as we argue, it can be parameterized to
produce almost random samples. It relies on a simple queue data structure. We
present some analytical results and empirically and comparatively evaluate its
effectiveness. We compare it with the main reservoir and sliding window reservoir
algorithms. We conclude that FIFO is both efficient and effective.

The remainder of the paper is organized as follows. In Section 2 we present the
main existing sampling algorithms in detail. In Section 3 we propose our novel
algorithm FIFO and study it analytically. In Section 4 we empirically evaluate
its performance (effectiveness) and compare it to that of the main algorithms.
Finally, we draw our conclusions in Section 5.
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2 Background and Related Work

In this section, we introduce a variety of existing sampling algorithms in detail.

2.1 Reservoir Algorithm

We introduce algorithm R and the updated version algorithm Z [13] in this
section.

Algorithm R. Algorithm R works as follows: t denotes the number of the data
in the dataset that have been processed. If t+1 ≤ n, the (t+1)th data is directly
inserted into the reservoir. Otherwise, the data is made a candidate and replaces
one of the old candidates in the reservoir with probability n/(t+1). The replaced
data is uniformly selected from the reservoir.

Algorithm Z. The basic idea of Algorithm Z is to skip data that are not going
to be selected, and rather select the index of next data. A random variable ϕ(n, t)
is defined to be the number of data that are skipped over before the next data
is chosen for the reservoir, where n is the size of the sample and t is the number
of data items processed so far. This technique reduces the number of data items
that need to be processed and thus the number of calls to RANDOM (RANDOM
is a function to generate a uniform random variable between 0 and 1).

2.2 Sampling with Updates

As we discussed above, the reservoir algorithm can only produce samples of
the insertion-only dataset. In [5], two algorithms “Random Pairing” (RP) and
“Resizing Samples” (RS) are proposed to cater for deletions.

Random Pairing. The basic idea behind random pairing is to avoid accessing
the base data set by considering the new insertion as a compensation for the
previous deletion. In the long term, every deletion from the data set is even-
tually compensated by a corresponding insertion. The algorithm maintains two
counters c1 and c2, which respectively denote the numbers of uncompensated
deletions in the sample S and in the base data set R. Initially c1 and c2 are
both set to 0. If c1 + c2 = 0, the reservoir algorithm is applied. If c1 + c2 �= 0,
the new data has a probability c1/(c1 + c2) to be chosen for S; otherwise, it is
excluded. Then c1 or c2 are modified accordingly. When the transaction consists
of a sequence deletion of the wth before last element immediately compensated
by an insertion, this is the case of a sliding window of size w, random pairing
degenerates into the simple algorithm of [3].

Resizing Samples. The general idea of any resizing algorithm is to generate
a sample S of size at most n from the initial dataset R and after some finite
transactions of insertions and deletions, produce a sample S′ of size n′ from the
new base dataset R′, where n < n′ < |R|. The proposed algorithm follows this
general idea by using a random variable based on the binomial distribution.
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2.3 Sampling Sliding Window

In [3], two types of sliding window are defined: (i) the sequence-based window
and (ii) the timestamp-based window. In this paper, we focus on algorithms of
the former type, which generate a sample of size n from a window of size w.

Simple Algorithm. The simple algorithm first generates a sample of size n
from the first w data using the reservoir algorithm. Then, the window moves.
The sample is maintained until a new coming data causes an old data in the
sample to expire. The new data is then inserted into the sample and the expired
data is discarded. This algorithm can efficiently maintain a uniform random
sample of the sliding window. However, the sample design is reproduced for
every tumbling window. If the ith data is in the sample for the current window,
the (i + cw)th data is guaranteed to be included into the sample sometime in
future, where c is an arbitrary integer constant.

Chain-sample Algorithm. The chain-sample algorithm generates a sample
of size 1 for each chain. So in order to get our sample of size n, n chains need
to be maintained. When the ith data enters the window, it is selected to be the
sample with probability Min(i,w)

w . If the data is selected, the index of the data
that replaces it when it expires is uniformly chosen from i + 1 to i + w. When
the data with the selected index arrives, the algorithm puts it into the sample
and calculates the new replacement index, etc. Thus, a chain of elements that
can replace the outdated data is built.

2.4 Biased Reservoir Sampling

The authors of [1] propose a biased reservoir sampling algorithm. The bias is
defined a priori by bias function that gives more recent data a higher probability
to be put in the sample. The probability of the rth data included in the reservoir
at the arrival of the tth data is proportional to the bias f(r, t):

f(r, t) = e−λ(t−r), (1)

where λ is the bias rate lying between 0 and 1.
The algorithm first maintains an empty reservoir of capacity n = [1/λ]. As-

sume that at the arrival of the tth data, the fraction of the reservoir filled is F (t).
The (t + 1)th data is deterministically inserted into the reservoir and replaces
one randomly selected old data with probability F (t). Otherwise, no deletion
occurs and the reservoir size increases by 1.

3 FIFO Sampling Algorithm

The goal of our work is to always extract a uniform random sample from the
current window. Suppose the sample size is n and the window size is w. In this
scenario, after the tth (we assume that t > w) data is processed, all the expired
data which arrive before the (t−w+1)th point should have null probability to be
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Fig. 1. The probability distribution of uniform sampling of the window. t is the number
of processed data in the stream.

included in the sample, while all the data in the window should have a probability
n/w to be included. We plot the ideal probability distribution in Figure 1. Below
we compare the probability distributions of different stream sampling algorithms
and show that FIFO best approximates it without reproducing its sample design.

The main idea of FIFO is that whenever a new data in the stream arrives,
we insert it into the sample with a fixed probability p and simply discard the
oldest data in the sample. Below we see that if we appropriately select the value
of p, the algorithm can approximate a random sample. The complete algorithm
is given in Algorithm 1.

Algorithm 1. FIFO Sampling Algorithm
Data: n : sample size, p : inclusion probability, DS : data stream
Result: The sample S

S ← {};1

Insert sequentially the first n data of DS into S;2

while NOT EndOFStream(DS) do3

Randomly generate a number ϕ in the interval [0, 1);4

if ϕ < p then5

Insert the next data into S;6

Discard the oldest data in S;7

8

end9

3.1 Probability Analysis

In this section, we analyze the probability distribution of FIFO. We start by
giving the probability formula of each data to be included in the sample. Ob-
viously, a data is contained in the sample at a certain point if and only if (a)
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the data is selected into the sample when it is processed and (b) it has not been
discarded. Because FIFO always discards the oldest data in the sample, a newly
inserted data is not replaced out until n of its subsequent data have entered the
sample, that is, if the rth data is inserted into the sample and less than n data
are selected into the sample from the (r +1)th data to the tth data, the rth data
is in the sample after the tth data is processed. Denote by n the sample size
and by P(r,t) the probability that the rth data is in the sample after t data have
been processed, where t ≥ r. Without loss of generality, we assume that t � n.
We divide the stream into three intervals: (i)[1, n]; (ii)[n+1, t-n]; (iii)[t-n+1, t].
Note that the probability distributions in these three intervals are different.

When 1 ≤ r ≤ n, the case is slightly different. Initially the first n data are
sequentially inserted into the sample. So for the first data, n−1 of its successors
have been inserted into the sample. It is discarded once there is one more data to
be selected into the sample from the (n+1)th data to the tth data. For the second
data, two more insertions after the first n insertions cause it to be discarded,
etc. Thus we can derive the probability formula for the first n data, which is:

P(r,t) =
r−1∑
k=0

Binomial(k; t − n, p), (2)

where the function Binomial() represents the Binomial distribution [10]. A bino-
mial function Binomial(k; m, p0) = (m

k )pk
0(1−p0)m−k calculates the probability

that an event happens for k times in m tests, with a probability of p0 each time.
In the above formula, t−n is the total number of remaining data in the stream,
k is the number of data selected for the sample and p is the probability.

When n + 1 ≤ r ≤ t−n, the situation is similar to the case that we discussed
above except that each data initially enters the sample with probability p. So
the formula is:

P(r,t) = p ×
n−1∑
k=0

Binomial(k; t − r, p). (3)

The last n data are not replaced out once they are selected into the sample, as
each of them has less than n successors. Thus the formula is trivial:

P(r,t) = p. (4)

The complete probability formulae are as follows:

P(r,t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑r−1
k=0 B(k; t − n, p) for 1 ≤ r ≤ n

p
∑n−1

k=0 B(k; t − r, p) for n + 1 ≤ r ≤ t − n

p for t − n + 1 ≤ r ≤ t,

(5)

where B() is the abbreviation of Binomial().
Figure 2 shows the probability distributions obtained using the above formu-

lae. In the figure, we vary the value of p and plot the probability for each data
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Fig. 2. Probability of each data to be included at t = 10, 000 for varying p. n = 100,
w = 5, 000.

to be finally included in the sample at a given time t. The X-axis represents the
variable r and the Y-axis is the probability P(r,t). The number of processed data
in the figure is 10, 000, the window size is 5, 000 and the sample size is 100. We
also plot the corresponding ideal distribution.

In the figure, the line-point graphs show the probability distributions for dif-
ferent values of p according to our analysis, and the dashed graph shows the
ideal probability distribution as discussed above. From the graphs, we can see
that the probability distribution of p = n/w seems best approximate the ideal
distribution. Expired data have lower probabilities to be included in the sample
as their age increases while most data in the window have near equi-probability
n/w to be selected. The figure suggests that the optimum of this situation is
obtained near p = n/w. Although equi-probability is only a necessary condition
for a sampling algorithm to generate random samples, no further dependency
being imposed, it is clear that it is a sufficient condition for FIFO.

In Figure 3, we show, for given n, w and p (p = n/w), the probability distri-
butions for selected varying values of t. The graphs being parallel indicates that
the same effectiveness is maintained for the successive windows.

3.2 Optimal Selection Probability

One important question is the choice of the optimal value of the probability p.
That is the value of p that yields the best approximation of a random sampling
of the sliding window. We estimate this value in two different ways: analytically
and empirically. On Figure 2, we see the probability distributions for different
values of p. p = n/w seems to be the optimal value. Let us confirm this.

We can estimate the optimal value of the probability p by comparing the
difference D between the distribution of our algorithm for various values of p
and the ideal distribution:

D =
t∑

r=1

|P(r,t) − P(r)|, (6)
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where P(r,t) can be calculated by Equation 5 and P(r) is the probability in theory
defined as follows:

P(r) =
{

0 if r ≤ t − w
n/w else. (7)

Empirically, the optimal value of the probability p should coincide with the
smallest value D.

By experiments, we find that for a given pair of w and n, D always reaches
the minimum value when the inclusion probability is set to be n/w. Thus we
believe that the optimal probability should be n

w ± d, where d is a very small
real number for adjustment. Figure 4 and Figure 5 show the results on two sets
of parameters.
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Fig. 5. Sample 200 data with window
size of 2, 000 from a 20, 000 data stream

We can also calculate the probability p from another point of view. Recall
that in Figure 2 and 3, that the probability for a data to be included in the
sample always firstly increases fast as t gets larger. After a certain point, the
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increase ratio becomes smaller and smaller and eventually the probability stays
at p. This point is called an inflexion point. For a fixed pair of n and w, we
believe that the best approximation of a random sample is obtained when the
inflexion point coincides with t − w + 1.

Because the distribution is discrete, we cannot calculate the inflexion point
by a classical derivation. However, we can use the following approach. Let d(r,t)

be the difference between probabilities of the rth data and the (r + 1)th data in
the sample after the processing of the tth data, that is, d(r,t) = P(r+1,t) − P(r,t).
We also define Δd(r,t) = d(r,t) − d(r−1,t). If r is an inflexion point, we have that
Δd(r−1,t) ≥ 0 and Δd(r,t) ≤ 0. By replacing with the formulae in Section 3 (we
assume that n + 1 ≤ r ≤ t − n for the general case), we get:

d(r,t) = p

n−1∑
k=0

[B(k; t − r − 1, p) − B(k; t − r, p)]. (8)

A result in the case of a Binomial Distribution [10] states that if X ∼ B(x, p)
and Y ∼ B(y, p) then X + Y ∼ B(x + y, p). Thus:

B(k; t − r, p) = B(k; t − r − 1, p)B(0; 1, p) + B(k − 1; t − r − 1, p)B(1; 1, p)
= (1 − p)B(k; t − r − 1, p) + pB(k − 1; t − r − 1, p).

(9)

By taking Equation 9 into Equation 8, we have:

d(r,t) = p2
n−1∑
k=1

[B(k; t − r − 1, p) − B(k − 1; t − r − 1, p)]

+ p[B(0; t − r − 1, p) − B(0; t − r, p)]

= p2B(n − 1; t − r − 1, p).
(10)

Thus,
Δd(r,t) = p2[B(n − 1; t − r − 1, p) − B(n − 1; t − r, p)]. (11)

We can use Poisson distribution, Poisson(k0, λ) = λk0e−λ/k0! to approximate
the Binomial distribution Binomial(k0; m, p0), if m is sufficiently large and p0
is sufficiently small, where λ = mp0 [10]. Our formulae satisfy the constraint, so
we get:

Δd(r,t) = p2{ [(t − r − 1)p]n−1e−(t−r−1)p

(n − 1)!
− [(t − r)p]n−1e−(t−r)p

(n − 1)!
}

=
p(n+1)e−(t−r−1)p

(n − 1)!
[(t − r − 1)n−1 − (t − r)n−1

ep
].

(12)

Let Δd
′
(r,t) = (t − r − 1)n−1 − (t−r)n−1

ep . Obviously, Δd(r,t) and Δd
′
(r,t) are of

the same positive and negative shape. So if r is an inflexion point, we have
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Δd
′
(r−1,t) ≥ 0 and Δd

′
(r,t) ≤ 0. Because we empirically claim that the inflexion

point coinciding with t−w + 1 is the optimum, we replace r by t−w + 1, so we
get: ⎧⎨⎩ (w − 1)n−1 − wn−1

ep ≥ 0

(w − 2)n−1 − (w−1)n−1

ep ≤ 0.
(13)

Thus we get a bound of p, which is,

(n − 1) ln
w

w − 1
≤ p ≤ (n − 1) ln

w − 1
w − 2

. (14)

Table 1 illustrates the previous result. We can find that this bound for the

Table 1. Some bounds calculated by specified n and w

n w Lower Bound Upper Bound n
w

500 2000 0.249562 0.249687 0.25
100 2000 0.0495124 0.0495372 0.05
1000 5000 0.19982 0.19986 0.2
1000 12000 0.0832535 0.0832604 0.0833333

optimal probability is close to n/w, which coincides with the results of the first
approach. Thus, we believe that the probability n/w is a good approximation to
the optimal probability.

4 Performance Evaluation

In this section, we compare FIFO’s performance with that of the various sam-
pling algorithms discussed. We compare the analytical bias function and empir-
ically compare the distribution divergence.

The results confirm the inappropriateness of the reservoir, resizing sample
and biased sampling algorithm for the problem of sliding windows. They also
show that, in practice FIFO performs as effectively as the simple sliding window
sampling (and random pairing which degenerates into simple random sampling).

4.1 Comparison of Analytical Bias Functions

In this section, we analytically compare the bias function of FIFO with the opti-
mal probability p with the bias functions of the simple algorithm and the biased
reservoir sampling algorithm, respectively. We show that FIFO approximates a
random sample without a predictable sample design.

In the simple algorithm, expired data are discarded and all the data in the
sample come from the current window. As the first w data are processed using
the reservoir sampling algorithm, each of the data have a probability n/w to
be included. Thus, data in the current window also have the optimal inclusion
probability. However, the simple algorithm is periodical.
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In the biased sampling algorithm [1], the probability of the rth data in the
stream being included in the sample after the processing of the tth data is P(r,t) =
e−(t−r)/n, where n is the sample size. Figure 6 and Figure 7 show the results
based on two sets of parameters. In Figure 6, the case is generating a sample
of size 200 from a set of 5,000 data with window size 1,000. Figure 7 shows
the result of sampling from a dataset of 10,000 data with window size being
set to 5,000 and sample size being set to 500. In both figures, we also plot the
probability distribution of reservoir sampling. The results demonstrate that the
inclusion probability of biased sampling algorithm suddenly increases to 1 when
the stream is close to the end. Data with a little distant history in the window
has a very small probability to be included. Obviously, FIFO approximates the
ideal distribution better than the biased reservoir sampling algorithm does.
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4.2 Empirical Performance Evaluation: Setup

We compare our implementation of algorithm R, algorithm Z, Random pairing
(RP), the simple algorithm, the chain-sample algorithm, the biased reservoir
algorithm and FIFO. We consider a sliding window on the stream.

The empirical performance evaluation uses the Jensen-Shannon Divergence
to quantify the difference between the distributions of the data in the sliding
window and in the sample. A small Jensen-Shannon divergence indicates similar
distributions. For two distributions P = {p1, p2 . . . pn} and Q = {q1, q2 . . . qn},
Jensen-Shannon divergence measures their similarity as follows:

DJS(P ||Q) =
1
2
DKL(P ||M) +

1
2
DKL(Q||M), (15)

where M = 1
2 (P + Q), DKL is the Kullback -Leibler Divergence, which is defined

as follows:

DKL(P ||Q) =
n∑

i=1

pi log(pi/qi). (16)
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We use Jensen-Shannon divergence to measure the similarity of distributions of
the successive samples with the distribution in the successive sliding windows.

We empirically evaluate the performance of the algorithms with both synthetic
and real datasets.

4.3 Empirical Performance Evaluation: Synthetic Data

The synthetic dataset that we used is a set of 1,000,000 integers with values
ranging from 1 to 10 chosen from a Zipfian distribution. In order to create
changes in the distribution, we shuffle the distribution every 100,000 data. The
sample size is fixed to 1,000 and the window size is 50,000. We plot the graph of
the Jensen-Shannon divergence for each algorithm.

The results are shown in Figure 8. As we discussed above, algorithm R and Z
produce successive samples of the entire dataset, but not of the sliding windows.
As expected, the Jensen-Shannon divergence increases. Indeed the sample in R
and Z is representative of the entire stream so far and therefore diverges from
the distribution in the window that contains only the most recent data. The
reshuffling corresponding to the changes in distribution are clearly visible on
the plot. The chain-sample algorithm produces low Jensen-Shannon divergence
values. The biased reservoir sampling algorithm generates very high peaks at
the interfaces of two intervals with different distributions. It is too sensitive to
the changes, as expected as well. The simple algorithm performs the best in the
above algorithms. The RP algorithm degenerates into the simple algorithm. Our
FIFO algorithm performs similarly to the simple algorithm, which can be seen
clearly in Figure 9.
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We then extend our experiment to further compare the performances of FIFO
with that of the simple algorithm. Figure 10 and Figure 11 show the results
of the experiments on 100 datasets containing integers with values ranging
from 1 to 100 and 100 datasets containing integers with values ranging from
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Fig. 11. Comparison of FIFO and sim-
ple algorithm, 100 datasets of value range
from 1 to 1,000.

1 to 1,000 respectively. The reader remembers that, although the two algorithms
perform equally well, the simple algorithm sample design is periodical.

We also confirm the optimal value for p by evaluating FIFO’s performance by
setting different inclusion probabilities. Figure 12 and Figure 13 show the results
on the 10 datasets of value from 1 to 10 and 100 datasets of value from 1 to
100 respectively. From the figure, we can see that the optimal probability should
near n/w, which coincides with the results in Figure 2.
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4.4 Empirical Performance Evaluation: Real Data

The real life dataset that we used in the experiments is the weather data collected
at [6] which records the surface synoptic weather information for the entire globe
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from December 1981 to November 1991. The reports come from land stations
and ships located in particular positions of the earth. We use the reports from
land stations in 1990, and we are interested in the current weather attribute
which has a domain of 48 integer values. The data is sorted in chronological
order. The total number of the records is 1, 344, 024. We set the sample size to
be 1,000 and the window size to be 50,000. We still calculate successive Jensen-
Shannon divergence values as in the synthetic dataset experiment to evaluate
the performances of the algorithms. The results are shown as Figure 14. We can
see that algorithm R, algorithm Z and the biased reservoir sampling algorithm
produce higher Jensen-Shannon divergence values. The other four algorithms
perform relatively better. However, RP degenerates into the simple algorithm.
In Figure 15, we can see their performances more clearly. The chain-sample
algorithm produces a slightly higher Jensen-Shannon divergence than FIFO and
the simple algorithm. FIFO and the simple algorithm are still the best.
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5 Conclusions

In this paper, we propose a new sampling algorithm, called FIFO sliding window
sampling or FIFO, for short, for sampling sliding windows over data stream. We
compare its performance to that of existing stream and sliding window sampling
algorithms. We analyze the properties of FIFO analytically and empirically to
show that our new algorithm is effective: it can maintain a near random sample
of a sliding window with fixed memory and without reproducing its sample
design. FIFO is also very efficient as it only maintains a queue and can be
straightforwardly further improved by skipping data, as in algorithm Z. It is
therefore able to process high arrival rate data streams. Although we have shown
empirically and argued analytically that FIFO is most effective for p near n/w,
we are now trying to obtain an exact analytical formula for this optimum.
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Abstract. Analyzing the relationships of time series is an important problem for
many applications, including climate monitoring, stock investment, traffic con-
trol, etc. Existing research mainly focuses on studying the relationship between
a pair of time series. In this paper, we study the problem of discovering leaders
among a set of time series by analyzing lead-lag relations. A time series is con-
sidered to be one of the leaders if its rise or fall impacts the behavior of many
other time series. At each time point, we compute the lagged correlation between
each pair of time series and model them in a graph. Then, the leadership rank is
computed from the graph, which brings order to time series. Based on the lead-
ership ranking, the leaders of time series are extracted. However, the problem
poses great challenges as time goes by, since the dynamic nature of time series
results in highly evolving relationships between time series. We propose an ef-
ficient algorithm which is able to track the lagged correlation and compute the
leaders incrementally, while still achieving good accuracy. Our experiments on
real climate science data and stock data show that our algorithm is able to com-
pute time series leaders efficiently in a real-time manner and the detected leaders
demonstrate high predictive power on the event of general time series entities,
which can enlighten both climate monitoring and financial risk control.

1 Introduction

In the literature, the lagged correlation between two streams has been well studied in
empirical research [5,1,12] and efficient algorithms to discover lagged correlations have
also been developed [13]. However, the study on summarizing the relationships across
multiple data streams is still lacking. The comprehensive relationships among multiple
data streams are very helpful in many applications to monitor and control the overall
movement of the entity where the data streams are generated. Two application examples
are given as follows.

Earth Science: In climate teleconnection network, each stream represents the weather
observations (e.g., temperature, pressure and precipitation) [16] of a specific point on
the latitude-longitude spherical grids. The lagged correlation between two streams indi-
cates that the weather change in one location can affect the weather in another location
with some time delay. By analyzing lead-lag on observations in multiple locations, the
earth scientists can understand better from which location the climate phenomena orig-
inates and how it evolves.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 352–367, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Detecting Leaders from Correlated Time Series 353

Sep 96 Jan 97 Jul 97 Jan 98 Jul 98 Jan 99
−2

−1

0

1

2

3

4

Time

An
om

al
ie

s

 

 

NINO 1+2 Index
Leadership Index

20 weeks

19 weeks

Fig. 1. Leadership Index VS. NINO 1+2 Index from 1996-1999

Finance: The stock market can be modeled as a financial network, in which each stream
represents the price of a stock. The lead-lag effect between two streams implies that the
price change of one stock influences that of another [12]. In finance crisis, when the
market goes down dramatically and the government plans to launch finance bailout, the
regulators desire to know the subset of stocks which poses risks (influences) on others
and triggers the movement of the whole market. They can then apply a program to these
market leaders and control the overall systemic risk.

In this paper, we study the problem of discovering leaders among a set of time series
by analyzing lead-lag relations. We target to extract leaders from multiple time series in
a real-time manner. Here, we demonstrate the significance of the problem and the use-
fulness of the discovered leaders on a real climate dataset. We analyze the streams of
the sea surface temperature (SST) on the Pacific ocean (30 ◦S− 30 ◦N, 55 ◦E − 80 ◦W )
where the famous Nino phenomena occurs irregularly every 4-5 years. We study a pe-
riod from 1996-1999. In Fig. 1, the bold blue line shows the weekly NINO 1+2 index
which is a standard climate index developed by earth scientists to study SST anomalies
in a Nino region off the coast of Peru. A positive value of the index indicates significant
anomalies. As shown in the figure, the NINO 1+2 index begins to increase in January
1997 and goes above 0 in March 1997. Later, it begins to drop and eventually falls be-
low 0 in November 1998. On the other hand, we sample 125 streams of SST time series
from that region and extract weekly leaders from them. We then form a leadership index
using the extracted leaders weighted by their normalized leadership scores. The red line
in Fig. 1 gives the leadership index which exhibits a similar but earlier trend to NINO
1+2 index. It begins to increase in September 1996 and rises above 0 in October 1996,
which is 20 weeks earlier than NINO 1+2 index. Later, it falls below 0 in July 1998,
which is 19 weeks earlier. To further confirm the relationship between the two indices,
we conduct a Granger-causality analysis [7] by performing F-test on the lagged value of
both indices. After selecting the optimal lagged value for the regression model (lag = 2
for NINO 1+2 index and 1 for leadership index), the result suggests that the leadership
index Granger-causes NINO index (the F-Statistics is 6.64) while NINO index does not
Granger-cause leadership index (the F-Statistics is statistically insignificant).

Through this example and many other experimental results, we find that the discov-
ered leaders are able to bring enlightening information. First, leaders are good represen-
tatives of the whole entity. An event usually introduces some changes to leaders, whose
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effect then propagates to related time series. As a result, analysts only need to monitor
and analyze leaders in order to evaluate the overall entity movement triggered by events.
Second, since the leadership is defined by the lagged correlation, leaders have the pre-
dictive power within the computed lag as shown in Fig. 1. Therefore, analyzing leaders
can detect the trend of an event at an early stage. In climate observation and control,
this predictive power is very helpful in giving the scientists an early alert on the climate
phenomena and allowing them to do better preventions for the coming disasters.

The problem of finding the leaders among multiple time series poses great chal-
lenges. First, the observations of time series (e.g., temperature, intra-day stock price)
usually change rapidly over time, which implies that the leaderships among them may
also change from time to time. Therefore, the lagged correlations between pairs of time
series, which are used for leadership identification, must be re-computed for every new
time tick, while the correlation computation at each time tick is already costly. This
high computational complexity makes the design of an efficient solution difficult. Sec-
ond, after computing the lagged correlation between each pair of streams, how to define
and extract useful leaders out of the whole set of time series is also a big challenge.

In this paper, we propose an efficient streaming algorithm to address the problem.
The main contributions of the paper are summarized as follows. First, we formalize a
new problem of discovering the leadership among multiple time series, which well cap-
tures the overall co-movements of time series. Second, we devise an efficient solution
that discovers the leaders in a real-time manner. Our solution utilizes an effective update
strategy, which significantly reduces the computational complexity in a stream environ-
ment. Third, we justify the efficiency of our solution, the effectiveness of our update
strategy, as well as the usefulness of the discovered leaders by conducting extensive
experiments over the real climate data and financial data.

The rest of the paper is organized as follows. Section 2 gives the preliminaries. Sec-
tion 3 defines the problem of leadership discovery and discusses the main idea of our
solution. Section 4 presents the incremental correlation update strategy. Section 5 re-
ports the performance evaluation. Finally, Section 6 reviews some related work and
Section 7 concludes the paper.

2 Preliminaries

We consider a set of N synchronized time series {S1,S2, . . . ,SN}, where each time series
S j = (s j

1, . . . ,s
j
t ) is a sequence of discrete observations over time, and s j

t is the value of
S j at the most recent time point t. Given a length w and a time point t, a sliding window
for time series S j, denoted as s j

t,w, is the subsequence (s j
t−w+1, . . . ,s

j
t ). And the lagged

correlation between two sliding windows si
t,w and s j

t,w of two time series Si and S j at

lag l, denoted as ρi j
t,w(l), is computed by considering the common parts of the shifted

sequences:

ρi j
t,w(l) =

⎧⎪⎨⎪⎩
∑t−l

τ=t−w+1 (si
τ+l−si

t,w−l)(s
j
τ−s j

t−l,w−l)

σi
t,w−l σ

j
t−l,w−l

, l ≥ 0;

ρ ji
t,w(−l), l < 0,

(1)
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Fig. 2. Two Time Series and the Lagged Correlation Plot over their Local Sliding Windows

where si
t,w−l and s j

t−l,w−l are the mean values in the shifted sliding windows si
t,w−l and

s j
t−l,w−l , and σi

t,w−l and σ j
t−l,w−l are the standard deviations. In particular, ρi j

t,w(0) is the
correlation with zero lag (known as the local Pearson’s correlation [11]). When l > 0,
ρi j

t,w(l) denotes the correlation between the sliding windows si
t,w and s j

t,w by delaying Si

with a lag l. The case when l < 0 can be easily handled symmetrically. Since ρi j
t,w(l)

is computed on the common parts of two windows, l is less than the window length
w, and in practice |l| ≤ w/2 as suggested in [2]. In a stream context, it is not desirable
to compute ρi j

t,w(l) from scratch at each time point t. As shown in [18,13], the lagged
correlation can be computed efficiently by tracking the following statistics: the inner
product, the sum of squares and the sum of the shifted windows si

t,w−l and s j
t−l,w−l .

3 Leadership Discovery

In this section, we first define the problem of leadership discovery.

Problem Definition. The problem of leadership discovery is to find the leaders among
N synchronized time series, S1,S2, . . . ,SN , that exhibit significant lead-lag relations over
the set of time series in a real-time manner, where the lead-lag relation is measured by
the concept of lagged correlation.

Solution Overview. Our solution to the problem of leadership discovery has three main
steps: (1) compute the lagged correlation between each pair of time series; (2) construct
an edge-weighted directed graph based on lagged correlations to analyze the lead-lag
relation among the set of time series; (3) detect the leaders by analyzing the leadership
transmission in the graph. We now discuss each step in detail.

3.1 Lagged Correlation Computation

The first step is to compute the lagged correlation between each pair of time series.
Existing work [13] on computing lagged correlations cannot be directly applied to our
problem, since i) it tries to capture lag correlation in the whole history of streams while
our objective is to obtain the local lags in the current sliding window, and ii) the approxi-
mation in their updating algorithm has accuracy preference to the points with small lags
and may generate a large error for large lags, which is not desirable for our problem.
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Therefore, we propose to aggregate the effects of various lags and define an aggregated
lagged correlation. Without loss of generality, we focus on positive correlation, while
negative correlation can be handled similarly. We explain how to compute the aggre-
gated lagged correlation by the following example. Fig. 2(a) shows two time series X
(top) and Y (bottom) with a length of 150. The window length is set to be 120 and
we consider the window marked by the dotted rectangle. Fig. 2(b) shows the lagged
correlation at each lag l computed by Eq. (1) over the two windows. The maximum
lag m = 60, i.e., |l| ≤ 60. When l < 0 (i.e., Y is delayed), the positive correlation only
exists for l ∈ [−60,−39] (the shadowed area). When l ≥ 0 (i.e., X is delayed), starting
from l = 1, we observe a strong increase in positive correlation and it achieves a peak
value of 0.81 at l = 32. In order to identify the leadership (X leads Y or Y leads X), we
need to aggregate all the observed correlation values over the entire lag span and take
the expected correlation value given the two cases of l. The aggregated lagged correla-
tion between two time series Si and S j, denoted as Ei j(ρ), is then defined as the larger
expected correlation value:

Ei j(ρ) = max(Ei j(ρ|l ≥ 0),Ei j(ρ|l < 0)). (2)

We say that Si leads S j if Ei j(ρ) = Ei j(ρ|l < 0), and Si is led by S j otherwise if Ei j(ρ) =
Ei j(ρ|l ≥ 0). Such leadership (Si leads S j or vice versa) is also called the lead-lag
relation between Si and S j. The value of Ei j(ρ|l ≥ 0) is computed as

Ei j(ρ|l ≥ 0) =
m

∑
l=0

max(ρi j(l),0) · p(l|l ≥ 0), (3)

where max(ρi j(l),0) takes only positive correlations and p(l|l ≥ 0) takes the value
of 1/(m+ 1) since the contribution of each lag is equal. Ei j(ρ|l < 0) can be computed
symmetrically. In Fig. 2, by Eq. (3), EXY (ρ|l < 0) = 0.1056 and EXY (ρ|l ≥ 0)= 0.4017.
Thus, EXY (ρ) = max(0.1056,0.4017)= 0.4017 indicating X is led by Y .

3.2 Graph Construction

In order to model the leadership relationships among a set of time series, we con-
struct a simple edge-weighted directed graph, G(V ,E), where the set of nodes V =
{S1,S2, . . . ,SN} represents N time series, and the set of directed edges E represents
lead-lag relations between time series. An edge (Si,S j) indicates that Si is led by S j and
its weight is set as Ei j(ρ). Since we are interested in significant lead-lag relations, we
set a correlation threshold γ such that only those pairs Si and S j with Ei j(ρ) > γ have
edges in G . It is important to note that, when the window slides, the edges and their
weights in G will change dynamically.

3.3 Leader Extraction

Given the graph G , we now extract leaders from it. Since a good leader needs to capture
both direct and indirect leaderships, we first analyze the leadership transmission in G .
Suppose that each time series has a leadership score, based on which a ranking among
time series can be obtained. We now discuss how to assign a good leadership score.
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Consider the leadership score of A under different graphs as shown in Fig. 3. In case
I and II, A directly leads 3 time series, B, C, and D. In case I, all of the three have zero
in-degree. In case II, C has an in-degree of 3, which implies that A indirectly leads the
three that are led by C as well as the three directly led by A itself. It indicates that the
leadership score of A in case II should be larger than that in case I. On the other hand,
consider case III and case IV. In case III, B is exclusively led by A, whereas in case IV,
B is led by A as well as the other two, C and D. The leadership score of A in case III
should be larger than that in case IV. Therefore, we define leadership score as

score j = ∑
Si∈LS j

scoreiEi j(ρ)
dout(Si)

, (4)

where LS j is the set of time series that are led by S j, scorei is the leadership score
of Si and dout(Si) is the summation of out edge weights of Si. This leadership score
defined above is similar to that defined for the Web Graph on which PageRank score is
computed to represent the popularity of web pages. In this paper, we adopt PageRank
[4] as the leadership score of a time series to quantify its importance in the graph G .

Finally, based on the structure of G and the PageRank values of time series, we ex-
tract the leaders by eliminating redundant leaderships. The basic idea is to first sort the
time series by the descending order of their PageRank values and then to remove itera-
tively the time series that is led either by previously found leaders or by the descendant
of previously found leaders.

3.4 The Overall Algorithm

Our solution is presented in Algorithm 1. Given the latest values in time series at time
point t, the algorithm first updates the statistics needed in computing lagged correla-
tions as stated in Section 2. It then computes pairwise aggregated correlations (Lines
2-5). Graph G is then constructed (Line 6) and the power method computes the PageR-
ank vector π (Line 7). Finally, the ExtractLeaders procedure (Algorithm 2) identifies
leaders. In ExtractLeaders, time series are first sorted by the descending order of the
rank π. Then starting from the time series with the highest rank, it checks the time se-
ries led by it and removes them as well as their descendants from the list. The procedure
RemoveDescendant repeats the process recursively until all descendants of the current
leader are removed. The remaining time series on the list are returned as leaders.
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We now analyze the complexity of Algorithm 1. Correlation computation in Lines
2-5 needs to compute (2m + 1)N2 correlation values, which involves complex math-
ematical calculation. PageRank computation and the ExtractLeaders procedure take
O(kN2) and O(N) time, respectively, where k is the number of power method iterations.
Thus, the most time-consuming steps in Algorithm 1 are in computing correlations and
PageRank. The space complexity of the algorithm is O(mN2) for storing the correlation
statistics and O(N2) for storing the values in power method.

Algorithm 1. DiscoverLeaders

INPUT: N time series, S1, . . . ,SN , up to current
time t, sliding window length w, maximum lag
m, correlation threshold γ
OUTPUT: leaders

1: Update statistics needed for correlation
computation;

2: for every pair of time series Si and S j do
3: Compute correlation ρi j

t,w(l), for |l| ≤ m;
4: Compute aggregated lagged correlation

Ei j(ρ) by Eq. (2);
5: end for
6: Construct graph G with respect to γ;
7: Compute PageRank vector π on G ;
8: L ← ExtractLeaders(G ,π);
9: return L;

Algorithm 2. ExtractLeaders
INPUT: graph G , rank vector π
OUTPUT: leaders

1: L ← Sort time series in descending order
by π;

2: for each time series S j in L do
3: RemoveDescendant(L,G ,S j );
4: end for
5: return L;

6: Procedure RemoveDescendant(L,G ,S j )
7: for each time series Si in L after S j do
8: if (Si,S j) is an edge in G then
9: RemoveDescendant(L,G ,Si);

10: Remove Si from L;
11: end if
12: end for

In a stream environment, correlation computation becomes the bottleneck of Algo-
rithm 1 since the implementation of PageRank is fast when the graph is small enough to
store in the main memory (e.g., N = 500). Too many correlation values need to be com-
puted at each time point and there are endless time points coming into the stream. In
order to accomplish prompt leadership detection, we further propose an effective update
approach that is able to reduce the number of correlation computations and meanwhile
retaining high accuracy, which is described in the following section.

4 Real-Time Correlation Update

In order to speed up the computation of the aggregated lagged correlation for a pair of
time series, we propose an efficient update approach by investigating the evolutionary
characteristics of lagged correlations. Recall that in Eq. (3), all positive lagged correla-
tion values are aggregated, i.e., we compute the area with positive correlations. There-
fore, compared with the exact correlation value at each lag, the area formed by these
positive correlations is more crucial to determine the lead-lag relation. We call this area
the interesting area. The basic idea of our update approach is to track the interesting
area. More specifically, at an initial time point, we compute the exact correlation value
at each lag and record the interesting area. Then at the subsequent time point, we track
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Fig. 4. Tracking the Interesting Area

and update this interesting area by computing the correlation for only a small number of
lags. We then use this interesting area to approximate the aggregated lagged correlation.

We now discuss how to track and update the interesting area. Fig. 4(a) gives an
example of the evolutionary shapes of the interesting area between two time series. The
lagged correlation is computed at each lag l ∈ [−60,60]. At time t = 1, the interesting
area spans from l = −60 to l = −20 and the corresponding correlation value decreases
gradually from 0.8 to 0. We call such continuous area a wave. When t = 5, we note that
there are two waves of the interesting area. The first one spans from l =−60 to l =−17,
which is obviously an evolution from the previous wave. Compared with the wave at
t = 1, the boundary of this wave enlarges from l = −20 to l = −17. Hereafter, we call
this type of wave an existing wave. The second wave spans from l = 55 to l = 60. Since
this wave does not exist at t = 1, we call this type of wave a new wave. When t = 10
and t = 15, the existing wave changes slowly, while this new wave enhances its effect.

The above example shows that, in order to keep track of the interesting area, we
need to capture the evolutionary pattern of two types of waves, existing waves and new
waves. Our solution is based on two observations.

Observation 1. An existing wave at time t is relatively stable at subsequent time points
after t.

Observation 1 can be explained as follows. For a specific lag l, the correlation ρi j
t,w(l) at

time t is computed on two shifted windows si
t,w−l and s j

t−l,w−l . When the time moves to

t + 1, correlation ρi j
t+1,w(l) is computed on si

t+1,w−l and s j
t−l+1,w−l . Notice that there is

a large overlap in these two sets of windows. Specifically, the difference between si
t,w−l

and si
t+1,w−l (also between the other two windows) is only one point. As a result, the

two correlations ρi j
t,w(l) and ρi j

t+1,w(l) cannot differ a lot. Therefore, we have the above
observation of an existing wave.

Using Observation 1, we can track an existing wave as follows. The most important
features of a wave are its magnitude and width. The magnitude of a wave can be char-
acterized by its maximum points, while the width can be characterized by the minimum
points. Therefore, we propose to approximate the area of an existing wave by tracking
its peak points. Specifically, after we compute the exact correlation value for each lag
at the initial time point, we record the peak points for the existing wave. Then, at the
subsequent time point, we only compute the exact correlation value for the lag of each
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maximum peak point and conduct a geometric progression probing to both sides of the
lag until the probe reaches the boundary. The boundary can be either the adjacent min-
imum peak point, the maximum lag ±m or the point with a negative correlation value.
Then, we conduct a linear interpolation over the computed correlation points to approx-
imate the area of the wave. Finally, the peak points are updated according to the probed
correlation values so that they can be used for the subsequent time point.

Fig. 4(b) shows the points, at which we compute (probe) correlation values. Suppose
that t = 1 is an initial time point. We compute all the lagged correlation values for
l ∈ [−60,60] and record a maximum peak point at l = −60. When t = 5, we probe
from the maximum peak point l = −60 until reaching the boundary, where we detect a
negative correlation. In this process, the probing step is increased exponentially so that
the approximated wave has higher accuracy around the peak point. There are altogether
7 correlation values computed in the probing process. Then, as shown in Fig. 4(c), linear
interpolation is applied to these 7 points to form the approximated existing wave. As
further shown in t = 10 and t = 15, this existing wave can be well tracked.

Now, the remaining problem is to track a new wave. As there is no existent evidence
of a new wave at the initial time point, we are not able to record its peaks for tracking
purpose. Fortunately, we have the following observation of new waves.

Observation 2. A new wave at t only emerges at maximum lag values of ±m.

Observation 2 can be explained as follows. We first consider the case when 0 ≤ l ≤m. At
a specific time t, the correlation ρi j

t,w(l) is computed on two windows of length (w− l).
Therefore, with the increase of l from 0 to m, the window length, on which ρi j

t,w(l) is
computed, decreases. On the other hand, compared with the previous time point t − 1,
each time series evolves by adding a new data point to and deleting an old data point
from the sliding window. This causes the value of ρi j

t,w(l) to be different from ρi j
t−1,w(l).

However, the effect of the time series evolvement on the value of ρi j
t,w(l) is different

for different lag l. With the increase of l, the windows, on which ρi j
t,w(l) is computed,

becomes smaller and thus the effect of the evolvement becomes larger, which results in
larger difference of ρi j

t,w(l) and ρi j
t−1,w(l). This explains why a new wave may emerge at

the largest lag l = m. Similarly, a new wave is also likely to emerge at l = −m.
According to Observation 2, we can track new waves by monitoring the correla-

tion values at l = ±m. As shown in Fig. 4(b), although there is no sign of a new
wave at l = 60 when t = 1, we also compute its correlation at t = 5. This strategy
successfully detects a positive correlation value at l = 60. Then, we take it as an ex-
isting wave and track it using the approach we have discussed above. In summary, at
t = 5, we use 11 points to track the whole interesting area, saving 91% of correlation
computation.

Our update approach, UpdateCorrelation, is presented in Algorithm 3. It first checks
the correlation values at the two maximum lag points to detect potential new waves
(Line 2). If there exists a new wave, the algorithm treats it as an existing wave (Lines
3-5). Then, the algorithm approximates each existing wave by two procedures Probe
and Interpo (Lines 7-11). Procedure Probe is shown in Algorithm 4. After computing
the correlation value at the maximum peak point, it probes the points on its two sides in
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Algorithm 3. UpdateCorrelation

INPUT: new value at t for two time series Si and S j, sliding window length w, maximum lag m,
the set of peak points peaki j

t−1 at time t −1
OUTPUT: the lead-lag relation of Si and S j

1: if there is no existing wave at l = ±m then
2: Compute ρi j

t,w(m) and ρi j
t,w(−m) to detect potential new waves;

3: if there exists new waves then
4: Add the corresponding l to peaki j

t−1;
5: end if
6: end if
7: for each maximum peak point ptMax in peaki j

t−1 do
8: sampleWavePointSet = Probe(ptMax);
9: wavePointSet=Interpo(sampleWavePointSet);

10: Add wavePointSet to corresponding ρi j
t,w(l);

11: end for
12: peaki j

t = detectPeak(ρi j
t,w(l));

13: Compute aggregated lagged correlation Ei j(ρ) by Eq. (2);
14: Decide the lead-lag relation of Si and S j;

Algorithm 4. Probe
INPUT: a peak point ptMax
OUTPUT: sampleWavePointSet

1: sampleWavePointSet ← Compute ρi j
t,w(ptMax);

2: step = 1;
3: index = ptMax∓ step; // + for right side probe
4: while index is not a left(right) boundary point do
5: sampleWavePointSet ← Compute ρi j

t,w(index);
6: step = step×2;
7: index = ptMax∓ step; // + for right side probe
8: end while

a geometric progression style. The probing stops when the boundary is met, which we
have discussed above. As for the procedure Interpo, we use the linear interpolation [10]
to connect the probed values and form the approximated interesting area. We then detect
and update peak points according to the probed correlation values (Line 12), which can
be implemented by an existing peak detection algorithm [3]. Finally, we decide the
lead-lag relation based on the approximated interesting area (Lines 13-14).

The UpdateCorrelation algorithm enables us to track the interesting area using only
O(logm) correlation computations instead of O(m) that a brute-force approach requires.
Moreover, since we start probing from the maximum peak points and stop probing when
detecting the boundary, the actual number of correlation computations is much smaller.
We further study the efficiency improvement of UpdateCorrelation in Section 5.
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Fig. 5. Parameter Sensitivity and Leaders Stability

5 Experimental Results

In this section, we design a set of experiments to answer the following questions:

(1) What are the effects of the parameters (e.g., the sliding window length, the correla-
tion threshold) on the performance of our algorithm in terms of discovered leaders?

(2) How does the set of discovered leaders evolve as the sliding window moves for-
ward? Does the set of leaders remain stable or evolve a lot with time?

(3) Are detected leaders interesting and useful? How can we use them appropriately?
(4) How effective is UpdateCorrelation? How good is its approximation accuracy?

Does the accuracy degrade over time?

We perform our experiments on a PC with a Pentium IV 3.4GHz CPU and 2GB RAM
and the algorithm is implemented with Matlab. We test by using two real datasets.

– SST 125. It contains 125 streams of weekly sea surface temperature on the Pacific
ocean from 1990-present1. Each stream is normalized using Z-Score [14].

– S&P 500. It contains 500 streams of high-frequency stock transaction data which
we retrieve from the NYSE Trade and Quote (TAQ) database. We extract the tick
data of stock prices by computing the Volume Weighted Average Price (VWAP) for
transactions at each tick as VWAP = Numbero f ShareBought×SharePrice

TotalShareBought .

Sensitivity of Parameters: There are three parameters in our algorithm: the window
length w, the correlation threshold γ and the maximum lag m. As suggested in [2],
m is set to be w/2. Therefore, we only test two paremeters γ and w. We test on 100
consecutive time ticks in SST 125 and vary γ from 0.2 to 0.85 with a step of 0.05. We
also test three values of w = 30,45,60. Fig. 5(a) presents the number of leaders detected
at each γ. For all w, we find a clear rise in the number of leaders when γ increases from
0.2 to 0.6. This is because the number of edges in G decreases with the increase in γ.
As G becomes sparser, the locations are less likely to be covered by the same leader,
which results in more leaders. For w = 30, when γ exceeds 0.7, there is a drop in the
number of leaders. This is because when γ is set too high, many locations become
isolated and are not led by any others. Therefore, the number of leaders decreases when

1 http://www.cdc.noaa.gov/data/gridded/
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Fig. 6. Zero-Lag Strength of Leaders

γ is high and becomes 0 when γ is set as 1, i.e., no edge in G . We also observe similar
phenomena for other values of w but with different turning points. In order to study
the evolution of leaders when varying γ, we compute the containment rate of leaders
between two consecutive γ as |Leaders(γi) ∩ Leaders(γi−1)|

|Leaders(γi−1)| . As shown in Fig. 5(b), for all
w, the containment rate at different γ remains high (averagely 0.7). This indicates that
most of the leaders found at a low γ can also be found at a high γ. This gives us a hint in
choosing γ. Normally, γ can be set around 0.3 since it tends to select a small number of
leaders. If users want to be more confident with the lead-lag relation, γ can be set higher
and a higher γ also covers most of the results that are produced by lower ones.

Stability of Leaders Over Time: A user may raise the following question: since the
leaders are updated at every time tick, can I trust the current detected leaders? We now
study the stability of leaders over time. We adopt the Jaccard coefficient [15] to measure
the similarity between the leaders extracted at two consecutive time ticks, which is
computed as |Leaders(ti) ∩ Leaders(ti−1)|

|Leaders(ti) ∪ Leaders(ti−1)| . For SST 125, we set w = 30, γ = 0.3 and extract
leaders at 104 consecutive time ticks in 1997-1998. As shown in Fig. 5(c), the stability
generally remains high (the average similarity is 0.61). The average leader duration (i.e.,
the time length in which a stock continues to be a leader) is 5.3 ticks (one and a half
months) and the maximum duration is 12 ticks (three months). The result suggests that
the detected leaders have a certain degree of stability although the interval between two
consecutive time ticks is as long as 1 week. Nevertheless, there is a drop of stability in
the middle of the Nino phenomena(around t = 55). This is because all locations have
high anomaly scores as shown in Fig. 1 at that time. Therefore, the lead-lag effect is
not significant and the leaders vary from time to time, which results in relatively low
leadership stability. For S&P 500, we set w = 120, γ = 0.3 and extract leaders at 270
consecutive time ticks in an entire trading day. In Fig. 5(d), we find that the average
similarity is high as 0.82 and is quite stable. This is because its graph G is large and a
small number of altered edges are not likely to affect the stocks’ PageRank. In summary,
the results indicate a certain degree of stability for the evolution of the leaders.

Predictive Power: We now demonstrate the usefulness of detected leaders by con-
structing a Leadership Index, where the weight βi of each leader in the index portfo-
lio is determined by its relative PageRank value, i.e., βi = πi

∑ j∈Leaders π j
. Fig. 7 presents

the Leadership Index on S&P 500. We extract 1-minute interval data and set w = 60,
γ = 0.3. Among the 500 stocks, we extract an average of 10.8 leaders in a trading day.
Compared with the market index formed of S&P 500, we find there are five phases
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in both indices with the upward/downward trend. In the first phase, these two indices
rise together with some minor delay in S&P 500 Index. Then, at t = 95, the Leader-
ship Index begins to go down first while S&P 500 Index keeps rising until meets its
first turning point at t = 145, which is delayed by 50 minutes. After that, Leadership
Index rebounds at t = 177 with a first steady rising trend followed by a steep burst at
t = 209. In contrast, S&P 500 Index starts the rising trend at t = 197 and meets the
burst point at t = 214, which are both delayed with Leadership Index. The final turning
point of S&P 500 Index is at t = 233, which is delayed with Leadership Index by 7
minutes. In summary, in the first phase, Leadership Index leads S&P 500 Index with
very small lags; while in other phases, Leadership Index leads S&P index with larger
lags and the lag decreases from 50 minutes at the beginning to 7 minutes at the end. We
conduct Granger-causality analysis over these two indices and the result suggests that
Leadership Index Granger-causes S&P 500 index where the optimal lagged value is 1
for both indices with a significant F-Statistics of 9.65. We find similar results in SST
125 dataset. Recall that in Fig. 1, at the beginning and the ending of Nino phenomena,
Leadership Index leads Nino 1+2 index with large lags, whilst in the middle phase of
the phenomena, the lead-lag effect is not so significant with small lags.

The above findings indicate that the leadership index indeed exhibits a predictive
ability. However, its predictive power has different strengths at different time. Then,
how can we know the predictive strength of the Leadership Index at a specific point
of time? We study again the shape of the interesting area and differentiate two types
of waves, the zero-lag wave and the non-zero-lag wave. The zero-lag wave is centered
around the lag value of 0. Two time series having a zero-lag wave tend to have a low
predictive power due to the small lag. On the other hand, a non-zero-lag wave indicates
a large time lag, which is the cause of the high predictive power. We define the strength
of zero-lag correlations as the fraction of the edges in G that have zero-lag waves. The
strength indicates the extent that the graph G is contributed by zero-lag correlations.
Therefore, a low zero-lag correlation strength indicates a high predictive power and vice
versa. Fig. 5 presents the zero-lag correlation strength over time on the two datasets SST
125 and S&P500. We find that the strength for SST 125 is low at the beginning when
the Nino phenomena starts to emerge. After the Nino phenomena develops fully, all the
locations tend to have synchronized anomalies and the strength becomes high as 0.7.
Finally, when the phenomena begins to diminish, some locations lead others to drop
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Fig. 8. Performance of Correlation Update

and the strength falls down again, which results in the increase of predictive power. On
the other hand, for S&P 500, we observe a high but decreasing strength curve starting
from t = 1 and it reaches 0.1 at t = 95 (matching with the end of the first rising phase of
Leadership Index in Fig. 7). It then stays very low below 0.2 until the end of the trading
day. Therefore, the evolution pattern of the zero-lag strength coincides with the change
of the predictive power of Leadership Index.

Correlation Update: We now study the effectiveness of the UpdateCorrelation algo-
rithm. In order to have a longer and consistent time series to test, we extract 30 stocks
with tick frequency of 5 seconds and vary w from 120 to 1440. For each w, we move
forward the sliding window over that trading day and compare our approximate ap-
proach with the exact approach. Fig. 8(a) reports the number of correlation computa-
tions. When w = 120, the exact approach needs around 54,000 correlation computa-
tions, while our approximate approach only needs 7571 computations. The number of
correlation computations for the exact approach increases linearly with w, while our
approximate approach grows very slowly with w. When w = 1440, our approximate
approach needs to compute 20,767 correlation values, which is over 30 times less than
648,000 computations of exact approach. Fig. 8(b) presents the average running time
for the two approaches, which shares a similar trend with the correlation computations
in Fig. 8(a). When w = 1440, the running time for approximate approach is 0.94s, which
is an order of magnitude faster than 9.3s of the exact approach. Fig. 8(c) shows the ac-
curacy of the approximation. The error rate is computed as the Jaccard distance between
the two sets of leaders detected by the two approaches. And the average error rate is less
than 1.5% and decreases when w increases. Fig. 8(d) also presents the approximation
error rate over time when we move forward the sliding window by setting w = 360,
γ = 0.3. It shows that the error is always lower than 0.15 as time goes far away from
the initial time tick. This justifies our approximate approach refines peak values and can
achieve good approximation accuracy.

6 Related Work

There are several existing studies on multiple time series stream mining. Spiros et al.
[11] tracked local correlations by comparing the local auto-covariance matrices of each
time series. Zhu and Shasha [18] monitored thousands of time series data but focused
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on finding high cross-correlation pairs of them. Tan et al. [14] analyzed the linear corre-
lation of multiple climate time series and attemptedX to construct climate index using
clustering. Sakurai et al. [13] proposed an algorithm named BRAID to detect arbitrary
lag correlations among time series. BRAID uses a geometric probing strategy and se-
quence smoothing to approximate the lag value wave. Since BRAID always starts prob-
ing from lag l = 0, the approximation generates larger error when l becomes larger. In
our work, on the contrary, we track features of each interesting area, i.e., the peaks and
boundaries, and probe from each local maximum peaks. This gives a good approxima-
tion accuracy for the wave at large l. To the best of our knowledge, our work is the first
to discover the leadership among multiple time series. We are also aware of a stream
of work [6,17,8,9] that constructs a weighted graph on time series in order to discover
different interesting patterns. Dorr and Denton [6] proposed to construct a hierarchic
graph by analyzing similar subsequence of time series to discover timing patterns (e.g.,
a subsequence of one time series ”begins earlier”, ”ends later”, or is ”longer” than an-
other). Idé and Kashima [8] proposed an anomaly detection method by analyzing the
eigenspace of the dependency matrix. Later, Idé et al. [9] computed the anomaly score
of a time series by investigating its k-neighborhood time series. Instead, our work dis-
covers leaders by constructing a graph based on the lead-lag relations of time series.

7 Conclusions

In this paper, we formalize a novel problem of discovering leaders from multiple time
series based on lagged correlation. A time series is identified as a leader if its movement
triggers the co-movement of many other time series. We develop an efficient algorithm
to detect leaders in a real-time manner. The experiments on real climate science data and
financial data show that the discovered leaders demonstrate high predictive power on the
event of general time series entities and the approximate correlation update approach is
up to an order of magnitude faster than the exact approach at a relative low error rate.
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12. Säfvenblad, P.: Lead-lag effects when prices reveal cross-security information. Working Pa-
per Series in Economics and Finance 189, Stockholm School of Economics (September
1997)

13. Sakurai, Y., Papadimitriou, S., Faloutsos, C.: Braid: Stream mining through group lag corre-
lations. In: SIGMOD, pp. 599–610 (2005)

14. Steinbach, M., Tan, P.-N., Kumar, V., Klooster, S.A., Potter, C.: Discovery of climate indices
using clustering. In: KDD, pp. 446–455 (2003)

15. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Reading
(2006)

16. von Storch, H., Zwiers, F.W.: Statistical Analysis in Climate Research. Cambridge University
Press, Cambridge (2002)

17. Wichard, J.D., Merkwirth, C., Ogorzałlek, M.: Detecting correlation in stock market. Physica
A: Statistical Mechanics and its Applications 344(1-2), 308–311 (2004)

18. Zhu, Y., Shasha, D.: Statstream: Statistical monitoring of thousands of data streams in real
time. In: VLDB, pp. 358–369 (2002)



Mining Outliers with Ensemble of
Heterogeneous Detectors on Random Subspaces

Hoang Vu Nguyen, Hock Hee Ang, and Vivekanand Gopalkrishnan

Nanyang Technological University, Singapore

Abstract. Outlier detection has many practical applications, especially
in domains that have scope for abnormal behavior. Despite the impor-
tance of detecting outliers, defining outliers in fact is a nontrivial task
which is normally application-dependent. On the other hand, detection
techniques are constructed around the chosen definitions. As a conse-
quence, available detection techniques vary significantly in terms of ac-
curacy, performance and issues of the detection problem which they ad-
dress. In this paper, we propose a unified framework for combining dif-
ferent outlier detection algorithms. Unlike existing work, our approach
combines non-compatible techniques of different types to improve the
outlier detection accuracy compared to other ensemble and individual
approaches. Through extensive empirical studies, our framework is shown
to be very effective in detecting outliers in the real-world context.

1 Introduction

The problem of detecting abnormal events, also called outliers, has been widely
studied in recent years [1–3]. Researchers have developed several techniques to
mine outliers in static databases and also recently in data streams. Existing out-
lier detection methods can be classified as distance-based [3–5], density-based
[1, 2] and evolutionary-based [6]. There are many ways in practice to define what
outliers exactly are, e.g., r-neighborhood Distance-based Outlier [3], kth Near-
est Neighbor Distance-based Outlier [5] (a.k.a. k-NN) and Cumulative Neigh-
borhood [4]. Since detection methods are usually constructed around specific
outlier notions, their detection qualities vary significantly among datasets. For
example, a recent study [7] shows that the Nearest-Neighbor (NN ) method per-
forms well when outliers are located in sparse regions whereas LOF [1] performs
well when outliers are located in dense regions of normal data. Existing tech-
niques usually compute distances (in full feature space) of every data sample
to its neighborhood to determine whether it is an outlier or not [1–3, 6]. This
causes two side-effects. First, for high-dimensional datasets the concept of lo-
cality as well as neighbors becomes less meaningful [8]. Second, not all features
are relevant for outlier mining. More specifically, popular distance functions like
Euclidean and Mahalanobis are extremely sensitive to noisy features [7]. Despite
the presence of the curse of dimensionality, it is difficult in practice to choose a
relevant subset of features for the learning purpose [6, 9, 10].

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 368–383, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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While the nature of data is unpredictable, there is a need for an efficient tech-
nique to combine different outlier detection techniques to overcome the drawback
of each single method and yield higher detection accuracy. The motivation here is
similar to the advent of ensemble classifiers in the machine learning area [9, 11].
With the feasibility of ensemble learning and subspace mining demonstrated,
the natural progression would be to combine them both. Lazarevic and Kumar
[10] propose the first solution for semi-supervised ensemble outlier detection in
feature subspace. That work assumes the existence of outlier scores where a
combine function can be applied directly. However, this is not practically true
since different detection methods can produce outlier scores of different scales.
For example, it can be recognized that the scores produced using kth Nearest
Neighbor Distance-based Outlier [5] are smaller in scale than those using Cu-
mulative Neighborhood [4]. Furthermore, as pointed out in Section 3.3, different
detection techniques also produce different types of score vectors. In particular,
some vectors are real-valued while others are binary-valued. This leads to the
need of a unified notion of outlier score and an efficient technique to specifically
deal with scores’ heterogeneity. The availability of such notion would facilitate
the task of combination.

Problem Statement. Consider a dataset DS with N data samples in dim di-
mensions. While most of the data samples in DS are normal, some are outliers,
and our task is to detect these outliers. While few outliers can be found when
all dimensions are taken into account, most of them can only be identified when
looking at some subsets of features. In addition, some features of DS are noisy,
and cause the full distance computation to be inaccurate if they are included.
Given a set of base outlier detection technique(s), our goal is to build an efficient
method to combine the results obtained from them while overcoming their in-
dividual drawbacks when applying on DS. The ensemble framework should: (a)
alleviate of the curse of dimensionality and noisy features, (b) efficiently combine
outlier score vectors of base techniques having different scales and different char-
acteristics, and (c) provide higher detection quality than each individual base
technique used in the ensemble (when applied on full feature space). In order
to address this problem, we present the Heterogeneous Detector Ensemble on
Random Subspaces (HeDES) framework. The advantage of using HeDES lies in
its ability to incorporate various heuristics for combining different types of score
vectors. The main contributions of this work can be summarized as follows:

– We introduce a unified notion of outlier score function and show how exist-
ing outlier definitions can be represented using it. We demonstrate how to
identify different types of outlier scores in literature by using this new notion
of outlier score function.

– We propose a generalized framework for ensemble outlier detection in feature
subspaces - HeDES. Unlike the existing simple framework [10], HeDES is able
to combine different techniques producing outlier scores of different scales or
even different types of scores (e.g., real-valued v/s. binary-valued).
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Through extensive empirical studies, we demonstrate that the HeDES framework
can outperform state-of-the-art detection techniques and is therefore suitable for
outlier detection in real-world applications. The rest of this paper is organized
as follows. Related work and background knowledge are presented in the next
section. Details of our approach are provided in Section 3 and empirical com-
parison with other current-best approaches is discussed in Section 4. Finally, the
paper is summarized in Section 5 with directions for future work.

2 Literature Review

Distance-based outlier detection techniques in general exploit the distance of
a data sample to its neighborhood to determine whether it is outlier or not.
Distances can be computed either using only one neighbor [5] or using k nearest
neighbors [4]. The notion of distance-based outlier was first introduced by Knorr
and Ng [3] and then refined in [5]. Breunig et al. [1] propose the first notion of
density-based outliers. The outlier score used, called Local Outlier Factor (LOF),
is a measure of difference in neighborhood density of a data sample p and that
of data samples in its local neighborhood. LOF for data samples belonging to
a cluster is approximately equal to 1, while that for outliers should be much
higher. Experimental results from [7] show that LOF outperforms other detection
techniques in most cases. Papadimitriou et al. [2] introduce a new definition of
density-based outliers. Instead of using the k nearest neighbors of a data sample
p in computing its outlier score, they employ the r-neighborhood of p. The
outlier score of each data sample, called MDEF, is used to compare against
the normalized deviation of its neighborhood’s scores and standard-deviation is
employed in the outlier flagging decision. This removes the need of using any
static cutoff or score ranking.

Both distance-based and density-based techniques involve the computation
of distances from each data sample to its neighborhood. However, for high-
dimensional datasets the concept of locality as well as neighbors becomes less
meaningful [8]. This limitation is addressed by an evolutionary-based technique
introduced by Aggarwal and Yu [6]. The method first performs a grid discretiza-
tion of the data by dividing each data attribute into ∅ equi-depth ranges. Then,
a genetic approach is employed to mine subspaces whose densities are in the top
smallest values. Nevertheless, it suffers the intrinsic problems of evolutionary ap-
proaches - its accuracy is unstable and varies depending on the selection of initial
population size as well as the crossover and mutation probabilities. The problem
of mining in subspaces has also been studied in supervised learning [8, 9]. Ho
[9] point out that constructing different classifiers by using randomized initial
conditions or data perturbations cannot ensure high classification accuracy. In-
stead, randomly sampling subsets of feature space (i.e., feature subspaces) for
different classifiers seems to be a very promising solution. Likewise, Lazarevic
and Kumar [10] tackled the outlier detection problem using an ensemble of out-
lier techniques built on the problem subspaces. By assuming that information
about normal behavior in the underlying dataset is known, they reported findings
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similar to that of [9]. Their technique, called Feature Bagging, consists of two
variants of combine functions: Breadth First and Cumulative Sum. The Breadth
First combine method (a) first sorts all outlier score vectors, (b) then takes the
data samples with highest outlier score from all outlier detection algorithms, and
(c) finally appends their indices at the end of the final index vector (and so on).
On the other hand, Cumulative Sum simply sums up all the score vectors and
returns the result as the final outcome. Nevertheless, Feature Bagging does not
specify clearly how to integrate outlier scores with different scales and different
characteristics (e.g. real-valued vector vs. binary vector). Furthermore, Breadth
First is reported to be sensitive to the order of detection algorithms applied
[10]. Another notion of ensemble outlier mining is presented in [12]. However,
like Feature Bagging, no consideration is given to the heterogeneity of outlier
scores produced by different techniques. Furthermore, it lacks of details on how
to process the score vectors to make its proposed combine functions be applica-
ble whereas a direct application is impossible (c.f. Section 3). In addition, several
aspects of the ensemble outlier detection problem (as mentioned in Section 1)
are not discussed.

Abe et al. [13] propose an approach for constructing an ensemble of di-
chotomizers for mining outliers using artificially generated data. Their approach,
called Active Outlier, first reduces the problem of outlier detection to classifi-
cation. Active learning (a form of data sub-sampling) is used to construct a set
of dichotomizers, combined results of which are used to identify outliers. Ac-
tive Outlier is indeed a type of ensemble learning using data sub-sampling. As
mentioned in [9, 10], building ensembles using data perturbation cannot enrich
the homogeneity or de-correlate the relationship among learners in the ensemble
as efficiently as feature sub-sampling. Our empirical studies on real-life datasets
(c.f., Section 4) support this claim.

3 Methodology

The HeDES framework is a generalized framework for mining outliers in sub-
spaces using ensemble of outlier detection techniques (henceforth termed detec-
tors). In the following, we present the details of constructing the ensemble and
explain how it is applied in HeDES.

3.1 Ensemble Construction

The process of constructing the ensemble of detectors is displayed in Algorithm
1. In each of the total R rounds, we first sample a detector T from the pool
of techniques considered (T ) on a round-robin basis. Practically, R should be
chosen as a multiple of the pool size. Next, we form a subspace S where T will
operate by randomly choosing Nf features from the full feature space. Here, Nf is
sampled from the uniformly distributed range [ dim/2!, dim−1]. The pair (T, S)
is then added to the ensemble. By sampling Nf from the range [ dim/2!, dim−1]
instead of fixing it to  dim/2! like in [9], we increase the possibility of generating
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different subsets of features for each detector in the ensemble. Since the detection
capability of each detector relies on its own notion of dissimilarity measure, this
increases the chance that they generalize their prediction in ways different to each
other. Hence, the above process of constructing the ensemble takes advantage of
high-dimensional feature space and weakens the curse of dimensionality.

After identifying all the detectors to be used in the ensemble, we adjust their
weights by running the ensemble against an unlabeled training set. The intuition
behind this weight-adjust is that some detection techniques are more powerful
than others on some certain types of data. For example, recent study by Lazare-
vic et al. [7] shows that the Nearest-Neighbor (NN ) method outperforms LOF
when outliers are located in sparse regions whereas LOF [1] yields higher per-
formance than NN when outliers are located in dense regions of normal data.
Even though the detectors in the ensemble are applied on the same dataset dur-
ing testing, the subspaces where they operate are homogeneous. Furthermore,
subspace distributions are different whereas detectors’ prediction performance is
dependent on their respective subspace. Thus, our argument on detectors’ supe-
riority over the others in some certain data still holds in our ensemble learning.
Since the nature of subspaces is unpredictable, assigning fixed weights for de-
tectors is not a good solution. Intuitively, had we known which detectors would
work better, we would give higher weights to them. In the absence of this knowl-
edge, a possible strategy is to use the result of detectors on a separate validation
dataset, or even their performance on the training dataset, as an estimate of
their future performance.

Algorithm 1. Constructing HeDES

for i = 1 to R do1

Choose a detector Ti ∈ T2

Randomly sample Nf from [�dim/2�, dim− 1]3

Randomly sample a subset of features Si of size Nf from the feature set of4

DS
Add (Ti, Si) into the ensemble5

Apply the ensemble to the synthetic training dataset6

Adjust the weight of each detector in the ensemble7

This paper, similar to AdaBoost [14], employs the latter strategy. However,
since the training set is unlabeled, a direct weight-adjust is not straightforward.
To overcome this problem, we construct a labeled synthetic training dataset
from the original (unlabeled) one by applying the technique presented in [13].
In brief, the synthetic set is comprised of normal data drawn from the original
one and artificially generated outliers. The artificial outliers here are created by
using a uniform distribution U that is defined within a bounded subspace whose
minimum and maximum are limited to be 10% beyond the observed minimum
and maximum, respectively. Let the original training set be Str, we construct the
set of artificial outliers Sout of size |Str| according to U on the bounded domain.
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Algorithm 2. Mining Outliers with HeDES

Normalize DS1

foreach detector type j do2

TV Sj = ∅3

for i = 1 to R do4

Choose the detector (Ti, Si) from the ensemble5

j = type of Ti6

RV Si = apply Ti to DS projected on Si7

TV Sj = TV Sj ∪ {RV Si}8

foreach detector type j do9

V Sj = SUBCOMBINE(TV Sj)10

V SF INAL = COMBINE(V S1, V S2, . . .)11

The synthetic training set is then set to be Str ∪ Sout. More details are given in
[13]. The use of this set helps us estimate the performance of each detector in the
ensemble and adjust its weight correspondingly despite the lack of knowledge on
anomalous behavior. Since outlier detectors in the ensemble are unsupervised,
they are less susceptible to the overfitting problem. In other words, the weights
trained are loosely coupled with the synthetic training set. Furthermore, this
artificial data generation has been shown to be successful in training highly
accurate classifiers [13]. Thus, the weights obtained in the training phase are
likely to have very high generalization capability on unseen test data. By using
the weight-adjusted scheme, the effect of detection techniques that are not as
relevant as the others can be reduced. This becomes even more critical when
irrelevant techniques may lead to a significantly wrong assignment of outlier
score (c.f., Section 4).

3.2 HeDES Framework

Our proposed approach, HeDES, is described in Algorithm 2, and functions as
follows. The testing dataset is passed through the ensemble. For every pair (T, S)
in the ensemble, we apply T to DS projected on subspace S and obtain a raw
vector score. This raw vector score is stored together with other vector scores
generated by the same detector type j in TV Sj . After finishing R rounds, each set
of vector scores (vectors in the same set are of the same type) are combined sep-
arately using SUBCOMBINE function to yield a vector score V Sj . Finally, the
COMBINE function is invoked using all the V S’s obtained to produce the final
vector score V SFINAL. The interpretation (combination) of V S and V SFINAL

depends on the specific combine functions utilized which are explored in detail
in Section 3.4. Note that the two most important components in this framework
are: (a) the outlier score function, and (b) the (SUB)COMBINE functions. The
main difference between the simple subspace ensemble framework in [10] and
our generalized framework lies in the multi-staged combine function which al-
lows much more flexible integration among the heterogeneous types of outlier
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detection techniques. It is highlighted that similar to other ensemble classifiers
[9, 14], ensemble outlier detection method is a parallel learning algorithm [10].
Since each round of running is independent of the other, a parallel implementa-
tion can be employed for faster learning.

3.3 Outlier Score Function

Assume a metric distance function D exists on DS, using which we can measure
the dissimilarity between two arbitrary data samples in any arbitrary subspace.
A general approach that has been used by most of the existing outlier detection
methods [1, 3, 6] is to assign an outlier score (based on the distance function)
to each individual data point, and then design the detection process based on
this score. The use of the outlier score is analogous to the mapping of multi-
dimensional datasets to R space (the set of real numbers). In other words, we
can define the outlier score function (Fout) which maps each data sample in DS
to a unique value in R. Intuitively, to create an outlier score function, we first
identify a set of measurements based on some specified criteria, then define a
mechanism g for combining them, and finally generate a function (Fout) based on
g. Most the existing techniques utilize only a single measurement, i.e., g becomes
a uni-variable function that is related directly to the only measurement taken
into account. With reference to the k-NN [5], let the measurement considered
be the distance from a data pattern p to its kth nearest neighbor (Dk), then a
possible choice of Fout is Fout = g(Dk) = Dk.

Outlier score function classification. Among existing approaches to outlier
detection problem, we can classify Fout into global and local score functions. An
outlier score function is called global when the value it assigns to a data sample
p ∈ DS can be used to compare globally with other data samples. More specif-
ically, for two arbitrary data samples p1 and p2 in DS, Fout(p1) and Fout(p2)
can be compared with each other, and if Fout(p1) > Fout(p2), p1 has a larger
possibility than p2 to be an outlier. The definitions proposed by Angiulli et al.
[4], Breunig et al. [1], and Ramaswamy et al. [5] straightforwardly adhere to this
category. On the other hand, the definition of Knorr and Ng [3] can be con-
verted to this category by taking the inverse of the number of neighbors within
distance r of each data point. In contrast, a local outlier score function assigns
to each data sample p, a score that can only be used to compare within some
local neighborhood. Example of such a function is proposed in [2], where the
local comparison space is the set of data samples lying within the circle centered
by p and the radius is user-defined. The choice of a global or local outlier score
function clearly affects later stages of the algorithm design process.

A classification of detection techniques using Fout. Using the notion of
Fout defined above, existing outlier detection techniques can be classified into two
types: (a) Threshold-based where a local Fout is usually used, and (b) Ranking-
based where a global Fout is employed, (c.f., Definitions 1 and 2, respectively).
According to this classification, the methods proposed in [4–6] using global score
functions are classified as Ranking-based. On the other hand, LOCI [2] with local
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score function is classified as Threshold-based. Although the technique in [3]
utilizes a global Fout, it is classified as Threshold-based by letting Fout(p) = 1

|S(p)|
and choosing t = 1

1−P . In this case, a data sample p ∈ DS is an outlier if
Fout(p) > t , i.e., Fout(p) > 1

1−P . Note that the threshold t in LOCI [2] is
dynamic, whereas that of [3] is static (dependant on the pre-defined variable P ).

Definition 1. [Threshold-based] Given a (dynamic or static) threshold t, a
data sample p is an outlier of DS if Fout(p) > t.

Definition 2. [Ranking-based or Top-n-outlier] Given a positive integer
n, a data sample p is an nth outlier of DS if no more than n − 1 other points
in DS have a higher value of Fout than p. An algorithm based on this definition
outputs the top n outliers.

When Fout is global, a Ranking-based technique is normally preferred since the
assigned score values of data samples can be compared globally to produce the
top points with largest scores. The resultant score vector is then real-valued and
identical to the values that Fout assigns to data samples. On the other hand,
if Fout is a local one, a Threshold-based approach becomes a reasonable choice.
As a consequence, the score vector obtained contains only binary values (0 for
non-outliers and 1 for outliers) since the scores produced by Fout are already
discretized through a threshold-based test. Therefore, score vectors produced
by different detection techniques are heterogeneous and need to be processed
carefully to facilitate the COMBINE process.

Issue of converting Fout to the posterior probabilities. Assume by apply-
ing an outlier detector T with outlier score function Fout onto DS, we obtain
the score vector: RV S = {Fout(p1), Fout(p2), . . . , Fout(pN )}. The problem of out-
lier detection is equivalent to a binary classification problem with two classes:
O (outlier class) and M (normal class). One important question which has not
been addressed well by the research community is how to compute the poste-
rior probability P (O|Fout(pi)) using the knowledge on RV S. Gao and Tan [15]
propose two methods attempting to solve this problem. The first method bases
on the assumption that the posterior probabilities follow a logistic sigmoid func-
tion and the normal and anomalous samples have similar forms of outlier score
distribution (same covariance matrix). It then tries to learn the function’s pa-
rameters using RV S. The second learner on the other hand models the likelihood
probability distributions P (Fout(pi)|O) and P (Fout(pi)|M) as a Gaussian and an
exponential distribution, respectively. The posterior probabilities are then com-
puted using Bayes theorem. Among the two methods, mixture modeling is more
suitable for ensemble learning as demonstrated in [15].

The main intuition leading to this mixture model is derived from the empirical
studies using k-NN [5] as the score function. However, the argument used in [15]
does not hold for density-based approaches, such as LOF, where density of a data
sample is compared (divided) to that of its neighbors. Because of limited space,
we omit the demonstration here. Our empirical studies (c.f., Section 4) point out
that processing the outlier scores directly (like in HeDES and Feature Bagging)
instead of converting to posterior probabilities will yield better detection results.
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3.4 COMBINE Functions

As discussed in Section 2, Lazarevic and Kumar [10] introduce two combine func-
tions (Cumulative Sum and Breadth First) which have been successfully used in
ensemble-based outlier mining. Here, we present three novel combine functions
which are Weighted Sum, Weighted Majority Voting and OR Voting. Unlike
Breadth First, these functions are invariant to the order of the detectors. Since
accuracy is the most critical factor in ensemble learning, this property becomes
an advantage of our approach. Among them, the first two functions are shown
to be very efficient in ensemble classification and have been widely employed in
many practical applications [14, 16]. The intuition for utilizing weighted com-
bine functions were also discussed in details above. Weighted Majority Voting is
known to excel in combining class labels assigned by different classifiers in the
ensemble. On the other hand, Weighted Sum in classification is normally applied
on posterior probabilities [9]. Conversely, in HeDES, it is used to combine nor-
malized outlier scores produced by different detectors of the ensemble. Finally,
Or Voting is a natural combine function for integrating heterogeneous types of
output scores as demonstrated later. It is important to note here that exploring
all possible combine functions is not a focus in this paper. Nevertheless, our
chosen combine functions are still able to encompass almost all available types
of outlier scores in the field.

Although HeDES provides an easy extension to score vectors of various types
(depending on the purpose of learners), in this paper score vectors are either real-
valued or binary-valued. An natural approach (Ensemble Voting) to combine
different types of score vectors is to simply normalize and discretize the real-
valued score vectors (convert all score vectors to the same type), and thereafter
integrate all the binary-valued score vectors (inclusive of the discretized real-
valued score vectors) using Weighted Majority Voting. However, such a natural
approach is not sufficient and does not produce good results (c.f., Section 4). The
set of input score vectors to the (SUB)COMBINE function is classified into two
groups in which the first group contains score vectors (TV SR) resulting from
applying Ranking-based techniques, whereas the second group contains score
vectors (TV ST ) of Threshold-based ones. Our strategy is to apply some combine
function on TV SR and TV ST separately to obtain V SR and V ST . Finally, a
special combine function is used to integrate V SR and V ST to produce the
final score vector V SFINAL. It is noted that the problem of combining results
of Ranking-based and Threshold-based techniques here is very similar to the
problem of combining detection results of categorical and continuous features
in mixed-attribute datasets as addressed in [17]. In both cases, we process real
values and binary/categorical values separately. Eventually, a heuristic is used
to integrate the results obtained. This is the base intuition for our Or Voting
combine function.

Processing outlier score vectors. Because of the different nature be-
tween Ranking-based and Threshold-based techniques, outlier score vectors pro-
duced by them need different treatments. Assume the data samples in DS are
p1, p2, . . . , pN . A detection technique T using a specific score function Fout is
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applied to identify outliers in DS. We denote T ’s resultant score vector as
RV S = {Fout(p1), Fout(p2), . . . , Fout(pN )}.

If T is a Ranking-based technique: Vectors of different Ranking-based tech-
niques may have different scales [5]. Hence, to apply combine functions, real-
valued vectors need to have equivalent scale. In other words, normalization is
necessary. In HeDES, RV S is normalized using the standardization technique.
One of the most important characteristics of this normalization technique is
its ability to maintain the detectability of extreme values after performing nor-
malization [18]. As argued in [10], this facilitates combining real-valued vectors
since a data sample receiving a high score value by one detector, after sum-
ming up its score with those produced by other detectors, may still have large
values and be flagged as outliers. We define the normalized value of Fout(pj)
in RV S as: Scorenorm(pj) = Fout(pj)−m

s where m = 1
N (

∑N
i=1 Fout(pi)) and

s = 1
N (

∑N
i=1 |Fout(pi) − m|). By applying normalization, the range of outlier

score becomes independent of the technique used. Since all normalized vectors
score have comparable scale, it is feasible to integrate them.

If T is a Threshold-based technique: We preserve RV S as it is. This is because
each individual element in RV S already indicates the posterior probability of
being outlier for data points. Thus, if an ensemble employs techniques from
both Ranking-based and Threshold-based, we need a special combine function.
Since Cumulative Sum and Breadth First functions ignore the score vectors’
heterogeneity, they are not suitable for use.

Weighted Sum. This function is used for vectors in TV SR. Let us denote the
weight of the detector Ti ∈ T at round i with score vector RV Si as Wi. The
final score vector of all vectors in TV SR is defined as: V SR =

∑
i Wi × RV Si.

Weighted Sum is in fact a modified version of Cumulative Sum proposed in [10].
However, the weight-based strategy helps boost the performance of more efficient
detectors. This cannot be obtained in equi-weight schemes.

Weighted Majority Voting. This combine function is used for processing
vectors in TV ST . Although similar to most of the existing ensemble classifiers
[9, 14], the problem here is much simpler since we are only interested in two
classes of data: normal (class M) and outlier (class O). Since all vectors in TV ST

only contain binary values, they are suitable for Weighted Majority Voting. As
in the case of Weighted Sum, the weight of each vector is determined by the
performance of the corresponding detection technique on training datasets.

OR Voting. This function is used for combining V SR and V ST . However, its
input vectors must contain only binary values. Therefore, we perform a dis-
cretization process on V SR where its top values are converted to 1, and the rest
are converted to 0. Under this scheme, we have: V SFINAL = V SR ∨ V ST where
“∨” is the usual Boolean operator.

Interpretation of V SFINAL. If the pool of detection techniques T contains
only Ranking-based techniques, we then flag those data samples having high-
est scores in V SFINAL as outliers. In case T contains only Threshold-based
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techniques, outliers are those points having score in V SFINAL equal to 1. Fi-
nally, if T contains both Ranking-based and Threshold-based methods, outliers
are those whose scores equal to 1 in V SFINAL. Thus, the flagging mechanism
for “mixed” T is similar to that of an ensemble containing only Threshold-based
methods. This is because by applying the OR function, the real-valued vector
V SR is already converted to a binary-valued one. Similar to [10], the number of
outliers to flag for Ranking-based methods depends on the specific dataset used.

4 Experimental Evaluation

To verify the effectiveness of the proposed combination framework, we conducted
the experiments on several real datasets which are taken from UCI Machine
Repository 1. These datasets are used widely in outlier detection as well as in
rare class mining [10], and are summarized in Table 1. The setup procedure
(converting datasets into binary-class sets, etc.) employed here follows exactly
that of Feature Bagging. In the field of outlier detection, ROC curve (as well
as AUC) is an important metric used to evaluate detection quality. Similar to
[4, 7, 10, 15], AUC (area under the ROC curve) was chosen as performance
benchmark in this paper because of its proved relevance for outlier detection
[7, 10]. In each experiment, due to space limitation, we only report how AUC
changes when the number of rounds R is varied for KDD Cup 1999 dataset. This
dataset is chosen as it has the largest number of instances as well as attributes
among all the datasets considered, and hence is a good representative. For other
sets, the results are similar and average AUC with R = 10 is presented (setting
R to 10 was suggested in [10, 15]). For every dataset, each reported result is
a 95% confidence interval of the AUC obtained by averaging the outcomes of
running the algorithms 10 times on each of its generated binary-class sets. In our
empirical studies, two different base detectors are considered: LOF [1] and LOCI
[2], and are tested using full feature space. The former is known to be one of the
best Ranking-based techniques [7] while the latter is a well-known Threshold-
based technique [2]. By choosing these high quality base detectors, we are able
to highlight the improvement of HeDES in detection accuracy. For LOF, the
parameter MinPts was set to 20. For LOCI, we chose nmin = 20, nmax = 50,
α = 1/2, and kα = 3. Those values were derived from the corresponding papers
[1, 2]. Apart from the two base techniques, we compared our approach with
other ensemble approaches including: Feature Bagging [10], Active Outlier [13],
Mixture Model [15], and Ensemble Voting (c.f., Section 3.4). Feature Bagging
uses two combine functions: Cumulative Sum and Breadth First. For each dataset
under consideration, we choose to display the highest AUC value among the
two for Feature Bagging. Active Outlier constructs an ensemble after t rounds
of training, i.e. the ensemble contains t detectors. Here, t was set to R for fair
comparison. Since Active Outlier does not use any base detector, its performance
remains the same regardless of which base detector is chosen for other ensemble
techniques.
1 http://www.ics.uci.edu/ mlearn/MLRepository.html
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Table 1. Characteristics of datasets used for measuring accuracy of techniques

Dataset Classes Attributes Instances Outlier v/s. Normal

Ann-thyroid 1 3 21 3428 class 1 v/s. 3
Ann-thyroid 2 3 21 3428 class 2 v/s. 3
Lymphography 4 18 148 merged class 2 & 4 v/s. rest
Satimage 7 36 6435 smallest class v/s. rest
Shuttle 7 9 14500 class 2, 3, 5, 6, 7 v/s. 1
KDD Cup 1999 2 42 60839 class U2R v/s. normal
Breast Cancer 2 32 569 class 2 v/s. 1
Segment 7 19 2310 each class v/s. rest
Letter 26 16 6238 each class v/s. rest

Experiment on Ranking-based technique. This experiment aims to inves-
tigate the performance of the our proposed combine function, Weighted Sum,
when applied to the Ranking-based technique. We compared our method against
LOF, Feature Bagging (FB), Mixture Model (MM), and Active Outlier (AO).
The results are shown in Figure 1 and Table 2. It can be observed that Weighted
Sum strategy yields very good results in all test cases. Even in the case where
the base technique, LOF, performs no better than random guessing due to high
dimensionality of the dataset (Satimage), our approach is still able to bring very
good improvement. The results also indicate that using full feature space in out-
lier detection may yield low accuracy, especially when the number of features is
large and it is likely that some features are noisy. The performance of Mixture
Model over the datasets used is worse than Active Outlier and Feature Bag-
ging. This agrees with our argument about the applicability of Mixture Model
on other notions of outliers. In particular, the outlier score proposed in LOF is
density-based whereas k-NN is distance-based. Extensive studies in the field have
pointed out the significant differences between these two notions. These in addi-
tion to the results obtained show that the assumption made in Mixture Model
is not flexible enough to encompass the scores produced by LOF. For all en-
semble techniques considered (including our approach), AUC value increases as
the number of detectors included in the ensemble increases. However, Weighted
Sum and Feature Bagging tend to work better than AO. This can be attributed
to the fact that ensemble learning by subspace sampling produces more efficient
learners than data sub-sampling one [9].

Experiment on Threshold-based technique. In this experiment, we study
the effect of our proposed combine function, Weighted Majority Voting (WMV),
for Threshold-based techniques. Thus, LOCI is selected as the base detector.
Our approach’s performance is assessed against LOCI, Feature Bagging (FB,
also utilizes LOCI), and Active Outlier (AO). Mixture Model is omitted here
since the posterior probabilities can be derived directly from the binary-valued
scores. In fact, the results achieved by Mixture Model under this setting are
the same as that of Feature Bagging. From Figure 1 and Table 3, it can be
seen that Weighted Majority Voting yields the best or nearly best results in
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Table 2. Ranking-based technique: AUC values of LOF, Feature Bagging, Mixture
Model, Active Outlier, and Weighted Sum (R = 10)

Dataset LOF FB MM AO WS

Ann-thyroid 1 0.869 0.869 ± 0.015 0.855 ± 0.021 0.856 ± 0.023 0.892 ± 0.005

Ann-thyroid 2 0.761 0.769 ± 0.003 0.759 ± 0.007 0.753 ± 0.009 0.798 ± 0.008

Lymphography 0.924 0.967 ± 0.009 0.921 ± 0.001 0.843 ± 0.041 0.984 ± 0.004

Satimage 0.510 0.558 ± 0.031 0.562 ± 0.025 0.646 ± 0.024 0.703 ± 0.022

Shuttle 0.825 0.839 ± 0.004 0.724 ± 0.017 0.843 ± 0.006 0.861 ± 0.002

Breast Cancer 0.805 0.825 ± 0.022 0.758 ± 0.012 0.822 ± 0.015 0.866 ± 0.017

Segment 0.820 0.847 ± 0.017 0.798 ± 0.005 0.836 ± 0.002 0.882 ± 0.003

Letter 0.816 0.821 ± 0.003 0.722 ± 0.014 0.824 ± 0.002 0.848 ± 0.001
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Fig. 1. AUC values of all competing approaches on the KDD Cup 1999 dataset

all cases (the margin with respect to the best one is negligible). For Feature
Bagging, neither Cumulative Sum nor Breadth First works well in combining
vectors of Threshold-based techniques. This indicates that specialized schemes
are required. With the results achieved in this test, Weighted Majority Voting
is shown to be a promising candidate.

Overall, we can observe that ensemble outlier detection (Feature Bagging,
Weighted Majority Voting, Active Outlier) results in good improvements over the
base technique. We again observe the same pattern as in the previous experiment:
the accuracy of ensemble techniques grows as the number of detectors increases
and that of Active Outlier is dominated by our approach’s and Feature Bagging’s.

Experiment on Ranking-based & Threshold-based techniques. So far in
our empirical studies, the ensemble contains either only Ranking-based (LOF) or
only Threshold-based (LOCI) detection techniques. We now investigate our last
proposed combine strategy, the OR Voting, in an ensemble where both types of
techniques are considered. Therefore, in this experiment, both LOF (Ranking-
based) and LOCI (Threshold-based) are employed. We call our method under
this setting Mixed Ensemble (ME). More specifically, we use Weighted Sum
for Ranking-based technique whereas with Threshold-based technique, we ap-
ply Weighted Majority Voting. The results from each group are combined using
the OR Voting. Our proposed approach is compared against Feature Bagging
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Table 3. Threshold-based technique: AUC values of LOCI, Feature Bagging, Active
Outlier, and Weighted Majority Voting (R = 10)

Dataset LOCI FB AO WMV

Ann-thyroid 1 0.871 0.873 ± 0.003 0.856 ± 0.023 0.872 ± 0.021
Ann-thyroid 2 0.747 0.754 ± 0.026 0.753 ± 0.009 0.812 ± 0.015

Lymphography 0.892 0.932 ± 0.007 0.843 ± 0.041 0.987 ± 0.003

Satimage 0.529 0.535 ± 0.022 0.646 ± 0.024 0.654 ± 0.024

Shuttle 0.822 0.856 ± 0.011 0.843 ± 0.006 0.873 ± 0.004

Breast Cancer 0.801 0.827 ± 0.002 0.822 ± 0.015 0.842 ± 0.001

Segment 0.835 0.852 ± 0.002 0.836 ± 0.002 0.850 ± 0.014
Letter 0.811 0.834 ± 0.016 0.824 ± 0.002 0.872 ± 0.004

Table 4. Ranking-based & Threshold-based techniques: AUC values of Feature Bag-
ging, Mixture Model, Active Outlier, Ensemble Voting, and Mixed Ensemble (R = 10)

Dataset FB MM AO EV ME

Ann-thyroid 1 0.870 ± 0.015 0.813 ± 0.013 0.856 ± 0.023 0.832 ± 0.012 0.883 ± 0.020

Ann-thyroid 2 0.768 ± 0.031 0.684 ± 0.001 0.753 ± 0.009 0.754 ± 0.012 0.792 ± 0.004

Lymphography 0.955 ± 0.033 0.735 ± 0.002 0.843 ± 0.041 0.901 ± 0.235 0.952 ± 0.014
Satimage 0.531 ± 0.003 0.517 ± 0.043 0.646 ± 0.024 0.544 ± 0.007 0.780 ± 0.005

Shuttle 0.853 ± 0.028 0.729 ± 0.013 0.843 ± 0.006 0.827 ± 0.024 0.871 ± 0.016

Breast Cancer 0.824 ± 0.013 0.755 ± 0.023 0.822 ± 0.015 0.837 ± 0.017 0.864 ± 0.015

Segment 0.845 ± 0.007 0.792 ± 0.016 0.836 ± 0.002 0.840 ± 0.004 0.852 ± 0.006

Letter 0.841 ± 0.004 0.785 ± 0.011 0.824 ± 0.002 0.836 ± 0.003 0.877 ± 0.018

(FB), Mixture Model (MM), Active Outlier (AO) and the natural combination
approach (Ensemble Voting, a.k.a. EV). Ensemble Voting, similar to ensemble
classifier using weighted majority voting (e.g., AdaBoost), is shown to yield very
high accuracy in the classification problem [14]. However, through this experi-
ment we point out that it is not very applicable for ensemble outlier detection.
For Cumulative Sum of Feature Bagging, we simply sum up all score vectors
after performing normalization. The AUC values of all methods are presented in
Figure 1 and Table 4. Our approach (Mixed Ensemble) once again performs very
well compared to other techniques. The results also show that when an ensemble
contains both Ranking-based and Threshold-based techniques, natural sum-up
scheme of Cumulative Sum as well as usual ensemble learning based on Weighted
Majority Voting does not help much. Instead, we need special combine functions
to deal specifically with different types of score vectors.

5 Conclusions and Future Work

In this paper, the problem of ensemble outlier detection in high-dimensional
datasets were studied in detail. A formal notion of outlier score which helps to
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identify different types of outlier score vectors was introduced. Using the new
notion, we presented a heterogeneous detector ensemble on random subspaces
(HeDES) framework using different relevant combine functions to tackle the
problem of heterogeneity of techniques. Extensive empirical studies on several
popular real-life datasets show that our approach can outperform contemporary
techniques in the field. In future work, we are considering a systematic exten-
sion to test all possible combine functions. Furthermore, we intend to expand
the scope of our empirical studies by performing experiments on more large and
high-dimensional datasets with different base outlier detection techniques. These
will bring us a better understanding about the benefit of ensemble outlier detec-
tion for real-world applications. Last but not least, we would like to investigate
how the selection of subspaces and base outlier detection techniques affects the
detection accuracy of the ensemble.
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Abstract. Despite the recent emergence of many large-scale networks in dif-
ferent application domains, an important measure that captures a participant’s
diversity in the network has been largely neglected in previous studies. Namely,
diversity characterizes how diverse a given node connects with its peers. In this
paper, we give a comprehensive study of this concept. We first lay out two cri-
teria that capture the semantic meaning of diversity, and then propose a com-
pliant definition which is simple enough to embed the idea. An efficient top-k
diversity ranking algorithm is developed for computation on dynamic networks.
Experiments on both synthetic and real datasets give interesting results, where
individual nodes identified with high diversities are intuitive.

1 Introduction

Mining diversity is an important problem in various areas and finds many applications
in real-life scenarios. For example, in information retrieval, people use information en-
tropy to measure the diversity based on a certain distribution, e.g., one person’s research
interests diversity[12]. In social literature, diversity, which has been proposed under
other terminologies like bridging social capital, proves its importance in many social
phenomena. Putnam found that bridging social capital benefits societies, governments,
individuals and communities[11]. In particular, bridging social capital helps reduce an
individual’s chance of catching certain diseases and the chance of dying, e.g., joining an
organization cuts in half an individual’s chance of dying within the next year, leading
to the conclusion that “Network diversity is a predictor of lower mortality”.

Mining diversity on network data is also critical for network analysis as network data
emerge in abundance in many of today’s real world applications. For example, adver-
tisers may be very interested in the most diverse users in social network because they
connect with users of many different types, which means “word of mouth” marketing
on these users could reach potential customers of a much wider spectrum of varied
tastes and budgets. In a research collaboration network of computer scientists, the di-
versity of a node could indicate the corresponding researcher’s working style. A highly
diverse researcher collaborates with colleagues from a wide range of institutions and
communities, while a less diverse one might only work with a small group of people,
e.g., his/her students. As such, an interesting query on such a network could be “Who

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 384–398, 2010.
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(a) Example 1 (b) Example 2 (c) Example 3

Fig. 1. Three Examples

are the top ten diversely-collaborating researchers in the data mining community?”. To
illustrate the intuition of diversity on networks, let us look at an example.

Example 1. Consider a social network example in which nodes represent people and
edges represent social connections between corresponding parties. Suppose we examine
two nodes A and B in Fig.1(a) where A connects to 5 neighbors and B connects to 4
neighbors. However, the 5 neighbors of A are all from the same profession and the
same community, while the 4 neighbors of B are from 4 different professions and/or
communities. Here, although the neighborhood of B is smaller than that of A, it is
obvious that B connects to a more diverse group of people, which could have important
implications regarding the role he/she may play in the network, e.g., the profitability
and impact if we are to choose a node to launch a marketing campaign.

Example 1 demonstrates that the diversity of a node on network is determined by the
characteristics of its neighborhood. Greater difference between the neighbors translates
into greater diversity of the node. In Example 1, the attributes or the labels are used
to distinguish the neighbors. Then how can we measure the diversity if no attribute
information is given? Example 2 illustrates another way to mine diversity which is
based on the topological structure of the network.

Example 2. In Fig.1(b), comparing nodes A and C with the same degree of 3, it is
easy to observe significant difference between the diversities of their neighborhoods. A
connects to three neighbors, each of which belongs to a distinct community, while C
connects to three closely connected neighbors that form a cohort. In many applications,
A might be more interesting, because of its role of joining different persons together.

The two examples above give two different ways to measure diversity on networks.
However regardless of using either neighborhood attributes or topology, certain com-
mon principles conveying the semantic meaning of diversity underlie any particular
kind of computation or definition of diversity. In fact, it is our observation that there are
two basic factors impacting the diversity measure on a network.

• All else being equal, the greater the size of the neighborhood, the greater the diversity.

When all the neighbors are the same, in terms of both associated labels and neigh-
borhood topology, more neighbors lead to a greater diversity.

• The greater the differences among the neighbors, the greater the diversity.
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The neighbors can be distinguished either by their attributes and labels or by the
topological information of the neighborhood. Whichever way, a larger difference
should translate into a greater diversity.

The above two factors can also been treated as two criteria taken as the basis for propos-
ing a reasonable definition for measuring diversity. In this paper, we focus on mining
the diversity on network based on the topological structure. As pointed out in Section
2, existing measures like centrality can not accurately capture the notion of diversity in
general, although certain degree of correlation between them can be observed for some
data sets.

Our contributions can be summarized as follows.

• As far as we know, there has been no research work to investigate diversity on
network structure data based on network characteristics. We are the first to propose
the diversity concept on network and give two criteria that capture the semantic
meaning of diversity.

• We investigate mining diversity based on topological information of a network, find
a function which is simple enough to embed the two criteria and propose an efficient
algorithms to obtain top-k diverse nodes on dynamic networks.

• Extensive experiment studies are conducted on synthetic and real data sets includ-
ing DBLP. The results are interesting, where individual nodes identified with great
diversities are highly intuitive.

The remaining of this paper is organized as follows. In Section 2, the related work is
introduced and compared with our work. In Section 3, we propose a diversity defini-
tion based on topological information of network and develop an efficient top-k diver-
sity ranking algorithm for dynamic networks in Section 4. The experiment results are
reported in Section 5. Other kinds of diversity definition are discussed in Section 6.
Section 7 concludes this study.

2 Related Work

As network data emerge in abundance in many of today’s real world applications, many
research work has been done on network analysis in recent literatures. Properties re-
flecting the overall characteristics of network, such as density, small world, hierarchical
modularity and power law [15,5,2,10], have been observed for a long time. Compared to
these, many measures that focus on individual components, e.g., degree, betweenness,
closesness centrality, clustering coefficient, authority and etc, have also been proposed
to distinguish the roles of nodes in network [13,9,14,7]. Besides, some other types of
patterns, e.g., frequent subgraphs that focus more on local topologies [8,16], can be
mined from the network.

However, all these measures are different from diversity and thus could not accu-
rately capture the idea behind. Degree centrality, which is defined as the number of
links for a given node, does not consider whether the neighbors are similar. Between-
ness centrality assigns higher value to nodes appearing on the shortest paths of more
node pairs. As we shall observe in the experiments, it might be correlated with di-
versity to some extent in particular data scenarios, but it is not a direct modeling of
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diverseness and thus would not satisfy the two criteria we have proposed in general.
Closeness centrality, which measures the average shortest-path length from a node to
all other nodes in the network, has similar problems. Moreover, such shortest-path based
measures require the global computation of all-pair shortest paths, which leads to the
time-consuming measure calculations on a large network. The clustering coefficient
value of a node corresponds to the number of edges among its neighbors normalized
by the maximum number of such edges; intuitively, with higher clustering coefficient,
the neighbors have more connections among them and thus are more similar to each
other, which leads to lower diversity. However, clustering coefficient does not consider
the scale of the neighborhood and only counts number of edges as the sole parameter,
which is inevitably restricted. Interestingly, it can be treated as a degenerated version of
our diversity definition when the latter is confined to a very special setting.

3 Diversity Definition

In this section, we will propose concrete diversity definitions based on nodes’ neigh-
borhood topology. First, a simple definition is given out and the calculation results on
Example 2 illustrate that it matches our intuition of diversity. Then we will propose
a general definition and show its calculation results on more examples, in which we
analyze its parameters and compare it with centrality.

3.1 Terminology and Representation

Let an undirected unweighted network be G = {(V, E) | V is a set of nodes and E is a set
of edges, E ∈ V ×V , an edge e = (i, j) connects two nodes i and j, i, j ∈ V , e ∈ E}.
N(v) denotes the set of v’s neighbors. |N(v)| denotes the cardinality of N(v), i.e., the
number of neighbors. r is the radius of the neighborhood. If it is set to be 1, N(v) is
the set of directly connected nodes and |N(v)| equals to the degree of node v. N−u(v)
denotes the set of v’s neighbors which excludes the nodes that become v’s neighbors
through u. For example, when r = 1, N−u(v) is the set of the direct neighbors of v
except u itself; when r = 2, N−u(v) = N(v) - {x|there is only one shortest path from
v to x which is through u}. L(i, j) denotes the length of shortest path from node i to
node j.

3.2 A Simple Diversity Example

To illustrate the diversity measure, we first use a simple definition as below, which can
get the intuitive results of Example 2 in Fig.1(b).

Definition 1. Given a network G and a node v ∈ V (G), the diversity D(v) is defined
as

D(v) =
∑

u∈N(v)

(
1− |N(v)

⋂
N(u)|

|N(u)|
)

(1)

The underlying intuition of the definition is that, for a target node v, if a neighbor u
has fewer connections with other neighbors of v, u is considered to contribute more to
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the diversity of v. Therefore the diversity of v is defined as the aggregation of every
neighboring node u’s contribution which equals to the probability of leaving the direct
neighborhood of v through u [7].

Based on this definition, we can get that the diversity values of A,B,C in Example 2
are 3, 2, 1.167 respectively. The relative values match our intuition of diversity ranking
on this network.

3.3 Diversity: General Definition

While the previous definition based on direct common neighborhood is simple and in-
tuitive in some cases, we need more flexibility and generality in the diversity definition
for most applications to capture the measure more accurately. As we discussed above,
the diversity in general grows in proportion with the size of the neighborhood. With this
notion of each neighbor contributing to the diversity of the central node, we propose the
general definition of diversity in an aggregate form as follows.

Definition 2 [Diversity]. The diversity of a node v is defined as an aggregation of each
neighbor u’s contribution to v’s diversity.

D(v) =
∑

u∈N(v)

wv(u) ∗ F (u, v) (2)

where F (u, v) is a function measuring the diversity introduced by u. wv(u) is u’s weight
in the aggregation.

According to our guiding principles, if a neighbor u is less similar to other neighbors
of v, u would contribute more to v’s diversity. Thus F (u, v) is a function evaluating the
dissimilarity between u and other neighbors of v in the set radius r, i.e., the set N−u(v).
In general, F (u, v) can be defined as a linear function of the similarity between u and
N−u(v) as

F (u, v) = 1 − α ∗ S(u, N−u(v)) (3)

S(u, N−u(v)) is a function measuring the similarity between u and N−u(v) up to a nor-
malization. α indicates its weight, which can be set empirically. We define S(u, N−u(v))
as the average similarity between u and each node x of N−u(v). There are various ways
to measure the similarity between two nodes u and x, e.g., shortest path is a reasonable
choice for many real-world scenario. However, computing shortest paths on a global
scale is inefficient. Fortunately, since diversity is a local property defined on a neigh-
borhood with a set radius, we can use the following definition based on local shortest
path computation.

Definition 3 [Similarity Between Node Pair]. The similarity between two nodes u and
x is defined as:

S(u, x) =
{

δ(l−1), 0 < δ < 1 if L(u, x) = l ≤ r
0 otherwise
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Table 1. Computation Results for Example 2

Node DC BC
Diversity (α = 0.8 δ = 0.8)
r=1 r=2 r=3 r=4

A 3 48 3 5.208 5.208 5.208
B 4 27 1.6 2.763 4.147 4.245
C 3 0 0.867 1.767 2.962 4.489

If two nodes are too far apart, in the sense that their distance is larger than the neigh-
borhood radius r of our interest, their similarity is considered to be zero; Otherwise,
their similarity is inversely proportional to their distance. δ is a damping factor to re-
flect the notion that nodes farther apart share less similarity. The effect of δ is further
explored in Section 3.4. With the similarity between a pair of nodes defined, we can
give the definition of similarity between a node and a set of nodes.

Definition 4 [Similarity Between Node and Node Set]. The similarity between a node
u and a set of nodes N−u(v) is defined as

S(u, N−u(v)) =

∑
x∈N−u(v)∩N−v(u) (wv(x) ∗ S(u, x))∑

x∈N−v(u) S(u, x)
(4)

where wv(x) is the weight of x in v’s neighborhood.

The purpose of setting weight, e.g., wv(u) and wv(x), is to prioritize all the nodes in
v’s neighborhood. There are more than one possible ways to define the weights. In this
paper, we define wv(x) = S(v, x) based on the argument that distance-based similarity
is an appropriate way to evaluate the priority of a node in v’s neighborhood when a
radius larger than 1 is needed. Putting it together, we have

S(u, N−u(v)) =

∑
x∈N−u(v)∩N−v(u) (S(v, x) ∗ S(u, x))∑

x∈N−u(v) S(u, x)
(5)

It is easy to notice that the definition in Section 3.2 is a special case of this general
definition.

3.4 Examples and Analysis

To illustrate the intuition of the diversity measure above and analyze the impact of its
parameters, we get the computation results for Example 2 and 3 in Fig.1(b)(c) with
changing parameters and show them in Table 1 and 2, where the computation results of
degree and betweenness centrality are also listed1.

Comparison with Degree and Betweenness. Example 2 demonstrates that diversity
does not equal to degree. E.g., A and C are with the same degree but their diversities dif-
fer a lot. In Example 3, as the neighbors of all the nodes are not directly connected with

1 DC and BC denote degree and betweenness centrality for short respectively in this paper.
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Table 2. Computation Results for Example 3

Node DC BC
Diversity (α = 0.8, δ = 0.5) Diversity (α = 0.8, δ = 0.8)
r=1 r=2 r=3 r=4 r=5 r=6 r=1 r=2 r=3 r=4 r=5 r=6

A 2 42 2 4.70 4.74 4.74 4.74 4.74 2 5.31 4.97 4.97 4.97 4.97
B 6 47 6 3.19 3.92 3.99 3.99 3.99 6 3.04 4.37 4.39 4.39 4.39
C 5 43 5 2.98 3.90 3.96 3.96 3.96 5 2.85 4.50 4.51 4.51 4.51
D 2 1.6 2 2.39 2.69 3.19 3.24 3.24 2 2.33 2.96 4.25 4.38 4.37
E 2 2.25 2 2.16 2.48 3.10 3.15 3.15 2 2.14 2.82 4.41 4.51 4.51
F 5 5 5 2.34 2.73 3.15 3.39 3.41 5 2.13 3.01 4.11 5.06 5.18
G 4 3 4 2.08 2.47 2.90 3.19 3.21 4 1.92 2.83 3.94 5.13 5.25

each other, the value of diversity equals to degree when r = 1. But when r increases
from 1 to 2, the diversity ranking changes. Example 3 demonstrates that diversity does
not equal to betweenness centrality either. E.g., betweenness centrality of A and C in
Fig.1(c) are roughly the same, but their diversities are obviously different.

Radius of Neighborhood. Table 1 and 2 show all the calculation results when r changes
from 1 to the possible maximal value (it means that the neighborhood would no longer
change when r increases more). It is found that a larger radius may lead to counter-
intuitive ranking results. However, it is our belief and definition that diversity should
measure an aspect of a node’s interaction with its local neighborhood. To judge a node’s
diversity on a global scale (e.g., considering all the nodes as neighbors of the cen-
ter node) is semantically controversial. On the other hand, it is discovered that “small
world” phenomenon applies to a wide range of networks such as the Internet, the social
networks like Facebook and the bio-gene networks, which means most nodes in these
networks are found to be within a small number of hops from each other. In particular,
the theory of “six degrees of separation” indicates that in social network most people
can reach any other individuals through six persons. It follows that when r increases
beyond a small number, a node’s diversity would be aggregated by nearly all the nodes’
contributions in the network, which deviates away from what diversity is meant to cap-
ture based on our previous discussion. Therefore, a small radius should be chosen in
the computation. Furthermore, the results show that the top-k results in the diversity
ranking become stable when r = 2 or r = 3 in most cases.

Damping Factor. The damping factor δ controls a neighbor’s impact on the diversity
measure in relation to its distance to the central node. Intuitively, neighbors far away
should have smaller impact on the central node’s diversity. As we discussed above,
diversity is influenced mainly by two factors: the size of the neighborhood and the dif-
ference among the neighbors. On real data sets, as the radius increases, the number
of neighbors increases enormously, which makes the size of neighborhood be a dom-
inating factor of diversity computation. This imbalance would sometimes distort the
ranking result. Therefore an appropriate damping factor can be chosen to balance the
two factors, e.g., δ = 0.5 in Table 2 .
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4 Top-K Diversity Ranking Algorithm

In real applications, top-k diversity ranking for query-based dynamic networks is often
required in data scenarios. Still take the DBLP example. Suppose the original input net-
work is the entire DBLP co-authorship network G generated by including papers from
all the eligible conferences. If a user poses a query “Who are the most diverse researcher
in Database community?”, it would result in the dropping of edges which correspond
to papers published in non-database conferences. Diversity ranking is then computed
on the resulting sub-network. The challenge for computing measures on dynamic net-
works is that it is no longer possible to compute once for all and answer all the queries
by retrieving saved results. As such, the task is to develop efficient algorithms for top-k
diversity measure on dynamic networks generated by user queries.

Our strategy is to find ways to quickly estimate an upper-bound of D(v) for each
node v in the new sub-network. Meanwhile we store the smallest diversity value of
top k candidates which is denoted as l bound. If the upper-bound of v is smaller than
l bound, it can be tossed away to save computation. Otherwise we perform more costly
computation to get the accurate measure value of D(v) and update l bound.

We obtain the upper-bound based on two scenarios. First, the diversity of a node
should be smaller than the cardinality of its neighborhood. When all the neighbors have
no connections, the diversity reaches the maximal value. On the other hand, as the
query-based dynamic network is a subgraph of original network, one node’s neighbor-
hood should be the sub-set of its original neighborhood. Thus two nodes’ similarity
should be smaller than their similarity on the original network. By using the mono-
tonicity property, we obtain the upper-bounds and propose an efficient top-k diversity
ranking algorithm.

For any quantity W computed on a network G, we use W ′ to represent the same
quantity computed on a sub-network G′ ⊆ G. We use Nu(v) to denote the set of nodes
in v’s r-neighborhood which can only be reached by shortest paths passing through u,
i.e., Nu(v) = N(v) \ N−u(v).

Lemma 1. For a network G and a node v ∈ V (G), D(v) ≤
∑

u∈N(v) wv(u).

Lemma 1 is due to the fact that F (u, v) ≤ 1 by definition and F (u, v) = 1 only when
all the neighbors of v have no connections.

Lemma 2. For a network G and a sub-network G′ ⊆ G, for any two nodes u, v ∈
V (G), 0 ≤ S′(u, v) ≤ S(u, v) ≤ 1.

Lemma 2 is due to the fact that the length of the shortest path L(u, v) for any two nodes
u and v in G increases monotonically in sub-network G′.

We define some notations to simplify the formulas. We set C(v) =
∑

u∈N(v) wv(u).
According to Lemma 1, C(v) is an upper bound of D(v). Since in this paper we define
wv(u) = S(u, v), we also have C(v) =

∑
u∈N(v) S(u, v). Hence, for any sub-network

G′ ⊆ G, C′(v) =
∑

u∈N ′(v) S′(u, v). We denote S =
∑

x∈N−u(v)∩N−v(u)(S(v, x) ∗
S(u, x)) for short.
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Input: Sub-network G′ and K
Output: A set T of K nodes with top diversity
1: Q ← Queue of V (G′), sorted by C′(v)
2: l bound ← 0; T ← ∅;
3: Pop out the top node v in Q
4: if C′(v) < l boundQ return T;
5: for each u ∈ N ′(v)
6: Compute Upper(u, v);
7: UP (v)← UP (v) + min{1, Upper(u, v)}
8: if UP (v) < l bound continue;
9: for each u ∈ N ′(v)
10: Compute F ′(u, v);
11: D′(v)← D′(v) + F ′(u, v);
12: if D′(v) > l bound insert v into T
13: if |T | > K
14: remove the last node in T ;
15: l bound ← smallest diversity in T ;
16: return T ;

Algorithm 1. Top-K Diversity Ranking

Since 0 ≤ S(u, v), S′(v, x) ≤ 1 for any nodes u and v, we have for any node x,

S(v, x)− S′(v, x) + S(u, x)− S′(u, x)

≥ (S(v, x)− S′(v, x)) ∗ S(u, x) + (S(u, x)− S′(u, x)) ∗ S′(v, x)

= S(v, x) ∗ S(u, x)− S′(u, x) ∗ S′(v, x)

If we sum up by x for the above inequality, since S(v, x) = 0 for x /∈ N(v) (resp. for
S(u, x)), and S(v, x) ∗ S(u, x) = 0 for x /∈ (N(v)

⋂
N(u)), we have

C(v)− C′(v) + C(u)− C′(u) ≥ S − S′ +
∑
x∈A

S(u, x) ∗ S(v, x)−
∑
x∈B

S′(u, x) ∗ S′(v, x)

where A = N(u)∩N(v)−N−v(u)∩N−u(v). B = N ′(u)∩N ′(v)−N ′
−v(u)∩N ′

−u(v).
As B ⊆ A, S(u, x) ≥ S′(u, x),

∑
x∈A S(u, x)∗S(v, x)−

∑
x∈B S′(u, x)∗S′(v, x) ≥

0. Therefore,
C(v)− C′(v) + C(u)− C′(u) ≥ S − S′

So

F ′(u, v) = 1− α ∗ S′∑
x∈N−v(u) S′(u, x)

≤ 1− α ∗ (S − (C(u)− C′(u) + C(v)− C′(v)))∑
x∈N−v(u) S′(u, x)

≤ 1− α ∗ (S − (C(u)− C′(u) + C(v)− C′(v)))
C′(u)

= Upper(u, v)

We thus derived another upper-bound Upper(u, v) for F ′(u, v). Thus F ′(u, v) ≤
min{1, Upper(u, v)}.
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To use this upper-bound, we compute S for each pair (u, v) which are each other’s
r-neighbors in the original network and store these values in the pre-computation stage.
Likewise, we also compute and store C(v). When the user inputs a query, we just need
to compute C′(u) and C′(v) for the sub-network, which is simply a local neighbor
checking, to get Upper(u, v).

The top-k diversity ranking algorithm is as shown in Algorithm 1.

5 Experimental Results

In this section, we did extensive experiments on both synthetic and real data and gen-
erated some interesting results. The most diverse nodes on different types of networks
are highlighted to illustrate an intuition of diversity. We compare the results of diversity
with two classical centrality measures – degree and betweenness centrality and show
both the difference and the correlation between them. At last, we implemented our top-
k ranking algorithm on dynamic network and demonstrate its efficiency.

5.1 Results on Synthetic Network

We first applied the algorithm to a synthetic network consisting of 92 nodes and 526
edges shown in Fig.2. The network was generated as following: first, we generated three
clusters of nodes; in each cluster the nodes only connect with the nodes in the same
cluster randomly; then we generated other 10 nodes connecting to any node arbitrarily.

Fig.2 shows the top 20 nodes ranked by degree, betweenness centrality and diversity
respectively. The top 10 nodes are highlighted with red color and the sizes of nodes are
linear with the ranking (The higher the rank, the larger the size). The second top 10
nodes are highlighted with blue color [1].

This figure demonstrates that the nodes which connect more nodes from different
clusters tend to be more diverse. When r increases from 1 to 2, the diverse nodes will
further move to the connection points of clusters. It seems that diversity is highly cor-
related with betweenness centrality on this network. Their correlation coefficients are

(a) Diversity when r = 1 (b) Diversity when r = 2(c) Betweenness Cen-
trality

(d) Degree Centrality

Fig. 2. Synthetic network results
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(a) Surajit Chaudhuri (b) Guy M. Lohman (c) Philip Yu (d) Jiawei Han

Fig. 3. Neighborhood of four authors

(a) Diversity when r = 1 (b) Diversity when r = 2 (c) Betweenness Centrality

Fig. 4. Network of American football games

shown in Table 52. This large correlation is caused by the characteristic of this network
structure. As the network consists of three clusters and some other nodes connecting
the clusters, the nodes with high betweenness centrality values also tend to locate on
the connection points of clusters. However, diversity is different from betweenness cen-
trality as we analyzed above. And we will show that they are lowly correlated on some
networks with different structures.

5.2 Results on DBLP Network

We extracted the network of co-authorship on conference SIGMOD, VLDB and ICDE
from DBLP data3, which means that if two authors cooperated a paper published on
these conferences, an edge was generated to link them. Table 3 compares the top 20
author ranked by diversity and betweenness centrality. We set α = 0.8, δ = 0.5. As it
is proved that on an undirected network degree is consistent to authority (eigenvector
centrality) obtained by PageRank [4], we can also treat degree as an authority value and
compare it with diversity. Thus Table 3 demonstrates that diversity ranking is different
from betweenness centrality ranking as well as authority (degree).

2 SN denotes synthetic network for short.
3 This network is called as ”DB” for short in the remainder of the paper.
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Table 3. Author Ranking Results on DB

Diversity when r = 1 Diversity when r = 2 Betweenness Centrality
Author DC Value Author Value Author Value
Rakesh Agrawal 98 50.94 Rakesh Agrawal 450.84 Rakesh Agrawal 971048.8
David J. DeWitt 118 50.60 David J. DeWitt 434.77 Michael J. Carey 785089.9
Hector Garcia-Molina 98 48.20 Surajit Chaudhuri 402.93 Christos Faloutsos 747502.4
Divesh Srivastava 89 46.75 Michael J. Carey 386.85 David J. DeWitt 746523.0
Surajit Chaudhuri 73 45.53 Divesh Srivastava 373.34 Umeshwar Dayal 737304.2
Raghu Ramakrishnan 90 44.95 Jennifer Widom 367.29 Michael Stonebraker 705067.8
H. V. Jagadish 82 41.53 Hector Garcia-Molina 364.51 Hector Garcia-Molina 685955.0
Hamid Pirahesh 83 41.45 Raghu Ramakrishnan 360.98 Surajit Chaudhuri 631760.8
Michael J. Carey 115 41.05 Michael J. Franklin 360.09 Philip A. Bernstein 628037.5
Michael Stonebraker 113 40.93 Jeffrey F. Naughton 349.62 H. V. Jagadish 604977.7
Jennifer Widom 84 40.29 Hamid Pirahesh 343.99 Divesh Srivastava 562573.6
Christos Faloutsos 94 39.21 H. V. Jagadish 339.80 Raghu Ramakrishnan 555216.0
Jeffrey F. Naughton 95 38.86 Gerhard Weikum 333.76 Gerhard Weikum 540029.5
Guy M. Lohman 73 37.98 Umeshwar Dayal 330.88 Elisa Bertino 533129.3
Michael J. Franklin 76 37.42 Philip A. Bernstein 327.75 Dennis Shasha 526097.3
Nick Koudas 69 37.32 Michael Stonebraker 326.91 Jiawei Han 520527.3
C. Mohan 66 36.19 Abraham Silberschatz 326.70 Michael J. Franklin 518074.6
Gerhard Weikum 80 34.11 C. Mohan 322.23 Gio Wiederhold 517573.1
Philip A. Bernstein 61 33.45 Guy M. Lohman 320.67 Kian-Lee Tan 513349.0
Rajeev Rastogi 75 33.36 Bruce G. Lindsay 312.36 C. Mohan 509267.1

Table 3 demonstrates some interesting results. For example, although the difference
between the degrees of R. Agrawal and D. DeWitt is as large as 20, their diversities
are nearly the same. The reason should be that R. Agrawal is from industry area and
has worked in many companies, e.g., Microsoft, IBM Almaden Research Center, Bell
Laboratories, etc. Therefore, Agrawal’s cooperators are very diverse. We also compare
the diversity of two authors, Surajit Chaudhuri and Guy M. Lohman, who have the
same degree. Their neighborhoods as shown in Fig.3(a) and Fig.3(b) demonstrate that
Lohman’s cooperators connect with each other more closely than Chaudhuri’s. There-
fore the diversity of Chaudhuri is larger than Lohman as obtained in Table 3.

We can also get similar results on the co-author network of conference KDD and
ICDM from DBLP data4 as shown in Table 4. For example, although Philip S. Yu
and Jiawei Han’s degrees are roughly the same, their diversities differ a lot, which can
also be demonstrated from their neighborhoods as shown in Fig.3(c) and Fig.3(d). The
reason should be that Philip S. Yu had worked in industry area and has cooperated with
many different persons who have no close relationship. Thus his diversity value is much
larger than Jiawei Han.

5.3 Results on Network of American Football Games

We obtained another social network of American football games between Division IA
colleges during regular season Fall 2000 [6]. In this data, nodes represent teams and

4 The network is called as ”DM” for short in the remainder of the paper.
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Table 4. Author Ranking Results on DM

Diversity when r = 1 Diversity when r = 2 Betweenness Centrality
Author DC Value Author Value Author Value
Philip S. Yu 76 39.72 Philip S. Yu 160.82 Philip S. Yu 544203.3
Jiawei Han 73 26.25 Haixun Wang 107.15 Christos Faloutsos 335598.8
Christos Faloutsos 60 24.77 Jiawei Han 96.85 Heikki Mannila 179383.3
Jian Pei 51 20.37 Christos Faloutsos 93.26 Mohammed Javeed Zaki 158551.1
Haixun Wang 32 19.21 Ke Wang 92.37 Jiawei Han 132043.5
Ke Wang 36 17.30 Jian Pei 91.13 Eamonn J. Keogh 123389.1
Heikki Mannila 39 16.54 Ada Wai-Chee Fu 82.14 Padhraic Smyth 116926.1
Bing Liu 32 15.15 Jianyong Wang 75.56 Jian Pei 112538.7
Mohammed Javeed Zaki 30 14.50 Charu C. Aggarwal 74.11 Charu C. Aggarwal 107042.4
Eamonn J. Keogh 37 14.32 Wei Fan 73.63 Bing Liu 103081.9
Wei Fan 29 14.26 Wei Wang 71.52 Gregory Piatetsky-Shapiro 101267.2
Padhraic Smyth 32 13.89 Bing Liu 70.26 Srinivasan Parthasarathy 95692.4
Wei-Ying Ma 34 13.73 Spiros Papadimitriou 69.17 Ada Wai-Chee Fu 91889.1
Ada Wai-Chee Fu 25 13.70 Hong Cheng 69.14 Ke Wang 90909.1
Qiang Yang 41 13.68 Eamonn J. Keogh 67.69 Haixun Wang 88484.7
Vipin Kumar 29 13.21 Alexander Tuzhilin 64.71 Vipin Kumar 82333.2
Wei Wang 39 13.13 Jiong Yang 63.58 Rakesh Agrawal 80409.2
Hui Xiong 27 13.02 Hongjun Lu 62.50 Huan Liu 79472.5
Huan Liu 28 12.92 David W. Cheung 60.45 Spiros Papadimitriou 78784.6
Alexander Tuzhilin 17 12.16 Michail Vlachos 60.28 Prabhakar Raghavan 77359.7

edges denote that two teams had a game. Fig.4 shows the top 10 nodes with largest
diversity and betweenness centrality, which are highlighted by the larger sizes of nodes.
The degrees of all the nodes are roughly the same, with the range from 8 to 12. Thus
we do not show the degree ranking results. The data also contain the node labels which
indicate the conference that each team belongs to. We use different colors to distinguish
the labels in the figure. Therefore the results illustrate that the diversity calculated based
on network topology is consistent to the diversity based on node labels, which means
that the nodes whose neighbors are from more clusters tend to be more diverse. Table
55 demonstrates that on this network the diversity is lowly correlated with degree and
betweenness centrality.

5.4 Performance Comparison

Fig.5(a) compares the running time of Top-K algorithm with the time of ranking all the
nodes on DB and DM networks. It demonstrates that Top-K algorithm is much more
efficient and can meet online query needs. We also implemented an efficient between-
ness algorithm [3] and compared it with diversity. Fig.5(b) demonstrates that diversity
calculation is much faster than betweenness calculation. The reason is that to some ex-
tent betweenness centrality is a global measure based on the shortest path calculation
between all the pair-nodes which is very time consuming while the diversity measure
only needs to count the local neighborhood.

5 FN denotes the social network of American football games for short.
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Table 5. Correlation Coefficients of Metrics

Network #node #edge
DC vs. DC vs. Diversity BC vs. Diversity

BC r = 1 r = 2 r = 1 r = 2
SN 92 526 0.470 0.874 0.399 0.709 0.828
FN 115 616 0.151 0.345 0.224 0.413 0.463
DB 7640 22309 0.810 0.881 0.819 0.829 0.716
DM 3405 6496 0.665 0.908 0.683 0.701 0.576
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Fig. 5. Performance comparison

6 Discussion

As diversity is a highly subjective concept, we do not think there exists one optimal def-
inition which is applicable for all scenarios. Rather than narrowing ourselves down to
one specific definition, we are fully aware of other possible definitions that may be bet-
ter geared for other applications. For example, a highly intuitive definition can be based
on clustering, where nodes are first assigned labels by certain clustering algorithm and
then diversity is computed by calculating the information entropy of the cluster distri-
bution of neighbors. This kind of definition needs to at least solve the following issues:
(i) The choice of the clustering algorithm dictates the resulting clusters, which in turn
determines the diversity computation. The decision on clustering parameters becomes
critical and difficult. (ii) The internal cohesion of clusters, which reflects the topology
of network, is also an important component for diversity. The diversity of a node con-
nected with a compact cluster should be different from the diversity of a node connected
with a loose cluster. Therefore in general still lots of aspects and factors should be ex-
ploited for the clustering-based definition. In this paper, we propose a straightforward
diversity definition based on the similarity between neighbors instead of solving these
problems of clustering.

7 Conclusion

In this paper, we investigated the problem of mining diversity on networks. We gave
two criteria to characterize the semantic meaning of diversity and to provide the ba-
sis of proposing a reasonable measure definition. Then we studied diversity measure
based on network topology and picked a concrete definition to embed the idea. We
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developed an efficient algorithm to find top-k diverse nodes on dynamic networks. Ex-
tensive experiment studies were conducted on synthetic and real data sets. The results
are interesting, where individual nodes identified with high diversities are intuitive.
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Abstract. Discovering interesting patterns from high-speed data streams is a 
challenging problem in data mining. Recently, the support metric-based fre-
quent pattern mining from data stream has achieved a great attention. However, 
the occurrence frequency of a pattern may not be an appropriate criterion for 
discovering meaningful patterns. Temporal regularity in occurrence behavior 
can be a key criterion for assessing the importance of patterns in several online 
applications such as market basket analysis, gene data analysis, network moni-
toring, and stock market. A pattern can be said regular if its occurrence behav-
ior satisfies a user-given interval in the data steam. Mining regular patterns 
from static databases has recently been addressed. However, even though min-
ing regular patterns from stream data is extremely required in online applica-
tions, no such algorithm has been proposed yet. Therefore, in this paper we de-
velop a novel tree structure called Regular Pattern Stream tree (RPS-tree), and 
an efficient mining technique for discovering regular patterns over data stream. 
Using a sliding window method the RPS-tree captures the stream content, and 
with an efficient tree updating mechanism it constantly processes exact stream 
data when the stream flows. Extensive experimental analyses show that our 
RPS-tree is highly efficient in discovering regular patterns from a high-speed 
data stream. 

Keywords: Data mining, data stream, pattern mining, regular pattern, sliding 
window. 

1   Introduction 

A data stream is a continuous, unbounded, and timely ordered sequence of data ele-
ments generated at a rapid rate. Unlike traditional static databases, stream data, in 
general, has additional processing requirements; i.e., each data element should be 
examined at most once and processed as fast as possible with the limitation of avail-
able memory. Even though mining user-interest based patterns from data stream has 
become a challenging issue, interests in online stream mining for discovering such 
patterns dramatically increased [1], [2], [10], [11], [12].  

Mining frequent patterns [3], [6], from transactional databases has been actively 
and widely studied in stream data mining [2], [10], [11], [12] for over a decade. The 
rationale behind mining frequent patterns is that only patterns occurring at a high 
frequency in a database are of interest to users. Therefore, a pattern is called frequent 
if its occurrence frequency (i.e., support) in the database exceeds the user-given  
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support threshold. However, the occurrence frequency may not always represent the 
significance of a pattern. The other important criterion for identifying the interesting-
ness of a pattern might be the shape of occurrence i.e., whether the pattern occurs 
periodically, irregularly, or mostly in a specific time interval.  

The significance of patterns with temporal regularity can be revealed in a wide 
range of applications where users might be interested on the occurrence behavior 
(regularity) of patterns rather than just the occurring frequency. For example, in a 
retail chain data, some products may be sold more regularly than other products. 
Thus, even though both of the products are sold frequently over the entire selling 
history or for a specific time period (e.g., for a year), the products still need to be 
managed independently. That is, it is necessary to identify a set of items that are sold 
together at a regular interval for a specified time period. Also, to improve web site 
design, a site administrator may be interested in regularly visited web page sequences 
rather than web pages that are heavily hit only for a specific period. As for genetic 
data analysis, the set of all genes that co-occur at a fixed interval in DNA sequence 
may carry more significant information to scientists. Again, in stock market the set of 
stocks indices that rise at a regular interval might be of special interest to stock bro-
kers and traders. The pattern regularity can also be a useful metric among other appli-
cations such as network monitoring, telecommunications or the sensor network. 

Traditional frequent pattern mining techniques fail to uncover such regular pat-
terns because they focus only on the high frequency patterns. Recently, Tanbeer et al. 
[4] studied the pattern appearance behaviour in static transactional databases. With 
the help of a regularity measure determined by the maximum interval at which a 
pattern occurs in a database, the study introduced a tree structure called RP-tree to 
discover regular patterns satisfying a user-given regularity threshold. The RP-tree 
requires two database scans and contains the information for only regular items in the 
database. However, with the recent development of technology several online applica-
tions require to handle a bulk amount of data in the form of data stream. For example, 
retail chains record millions of transactions, telecommunications companies connect 
thousands of calls, and popular web sites log millions of hits at a regular basis. It is, 
therefore, obvious that, because of the two database scans and the prior knowledge 
about the regularity threshold requirements, the RP-tree is inefficient in discovering 
regular patterns in the above data stream scenarios. Hence, to find regular patterns 
efficiently from data streams we require efficient algorithm that can capture the 
stream content with one scan and can competently mine the resultant patterns.  

Motivated from the above demand, we address a new problem of mining regular 
patterns in data streams. We propose a novel single-pass tree structure, called the 
RPS-tree (Regular Pattern Stream tree), to capture the stream contents in a compact 
manner. Using an efficient pattern growth-based mining technique the RPS-tree can 
mine set of the regular patterns in stream data for a user-given regularity threshold. 

To efficiently handle (or mine) continuously-generated data streams, sliding win-
dows [10], [11], [12] are commonly used because of its flexibility to monitor the 
stream data at runtime. As new transactions arrive, the oldest transactions in the slid-
ing window expire. Because of the efficient stream handling mechanism, we will 
exploit the sliding window in our approach. 

Main idea of our RPS-tree is to develop a simple, but yet powerful, tree structure 
that captures the stream content for the current window in full with a single scan in a 
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canonical item order. Such construction feature enables its easy maintenance without 
any information loss during the slide of window. To the best of our knowledge, RPS-
tree is the first effort to mine regular patterns from data streams. The experimental 
analyses on both real and synthetic data show that mining regular patterns from data 
streams with our RPS-tree is more efficient than that with the RP-tree. 

The rest of the paper is organized as follows. Section 2 summarizes the existing al-
gorithms related to our work. The detail discussion on RP-tree is also presented here. 
Section 3 introduces the problem of regular pattern mining in data stream. The struc-
ture and mining of our proposed RPS-tree are given in Section 4. We report our ex-
perimental results in Section 5. Finally, Section 6 concludes the paper. 

2   Related Work 

Many algorithms have been proposed for mining frequent patterns [3], [8] from static 
database, since its introduction by Agrawal et al. [6]. Han et al. [3] proposed the fre-
quent pattern tree (FP-tree) and the FP-growth algorithm to mine frequent patterns 
with a pattern growth approach using only two database scans. Even though FP-
growth algorithm has been highly efficient, it is not suitable for mining stream data 
because of its two database scans requirement.  

A large number of techniques have been developed recently to mine frequent pat-
terns from data stream [2], [10], [11], [12]. Algorithms in [10] and [11] use the sliding 
window concept to capture stream content with the help of a tree-based data structure. 
To facilitate the efficient mining and tree updating, the DSTree in [11] and the CPS-
tree in [10] are constructed for the full window content. Using the FP-growth [3] 
algorithm both approaches discover the exact set of recent frequent patterns from the 
data stream with single scan. However, none of the support metric-based frequent 
pattern mining models is appropriate for discovering the special occurrence (i.e., 
periodic or cyclic or regular) characteristics of patterns from data stream. 

Mining periodic patterns [1], [7], cyclic patterns [7], [9] and regular patterns [4] in 
static databases have been well-addressed over the last decade. Periodic pattern min-
ing problem in time-series data focuses on the cyclic behavior of patterns either in the 
whole [7] (full periodic patterns mining) or at some point [1] (partial periodic pat-
terns mining) of time-series. Such pattern mining has also been studied as a wing of 
sequential pattern mining [5], [9] in recent years. In [9], the authors extended the 
basic form of sequential patterns to cyclically repeated patterns. A progressive time 
list-based verification method to mine periodic patterns from a sequence of event sets 
was proposed in [5]. Ozden et al. [7] proposed a method to discover the association 
rules [6] occurring cyclically in a transactional database. Although mining periodic 
and cyclic patterns are closely related to our work, these algorithms cannot be directly 
applied for finding regular patterns from a data stream because they consider time-
series or sequential data where the database is static. 

Recently, Tanbeer et al. [4] proposed the Regular Pattern tree (RP-tree in short) to 
exactly mine the regular patterns from static transactional databases. The study de-
fines a new regularity measure for a pattern determined by the maximum interval at 
which the same pattern occurs in a database. 
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Construction of an RP-tree requires two database scans: one is for collecting the 
regularity of all distinct items and the other is for building the tree only for the regu-
lar items in each transaction. To keep track of the occurrence information, RP-tree 
explicitly maintains the transaction-ids (tid) of all transactions in the tree structure. It 
stores the tid of a transaction only at the last node of the transaction. The other nodes 
do not need to carry any occurrence information or support count (as does in FP-tree). 

By applying an FP-growth-based [3] efficient pattern growth mining technique and 
exploiting the tid-information kept in the tree structure, RP-tree generates the com-
plete set of regular patterns for the user-given regularity threshold. While mining 
regular patterns from an RP-tree, the transaction occurrence information maintained 
in it is used to calculate the regularity of each generated pattern.  

However, as mentioned before, even though RP-tree efficiently finds regular pat-
terns from static transactional databases, it is not suitable for mining regular patterns 
from data streams because of its regularity threshold-based tree structure, and two 
database scans requirement. 

3   Problem Definition 

Let L = {i1, i2, … , in} be a set of literals, called items that have been used as a unit 
information of an application domain. A set X = {ij, … , ik}⊆ L, where j ≤ k 
and , [1, ]j k n∈ , is called a pattern (or an itemset). A transaction t = (tid, Y) is a tuple 

where tid represents a transaction-id (or time of transaction occurrence) and Y is a 
pattern. If X ⊆ Y, it is said that t contains X or X occurs in t. Let size(t) be the size of 
t, i.e., the number of items in Y.  

A data stream DS can formally be defined as an infinite sequence of transactions, 
DS = [t1, t2, … , tm), where ti, ],1[ mi ∈ is the i-th arrived transaction. A window W can 

be referred to as a set of all transactions between the i-th and j-th (where j > i) arrival 
of transactions and the size of W is |W| = j – i, i.e., the number of transactions between 
the i-th and j-th arrival of transactions. Let each slide of window introduce and expire 
slide_size, 1 ≤ slide_size ≥ |W|, transactions into and from the current window. 

If X occurs in tj [1, | |]j W∈ , such transaction-id is denoted as X
jt , [1, | |]j W∈ . There-

fore, X
W

T ={ ,..., }X X
j kt t , , [1, | |]j k W∈  and j ≤ k is the set of all transaction-ids where X 

occurs in the current window W. 

Definition 1 (a period of X in W). Let 1
X
jt +  and X

jt  [1, (| | 1)]j W∈ − , be two consecutive 

transaction-ids in X
W

T . The number of transactions (or the time difference) between 

1
X
jt + and X

jt is defined as a period of X, say pX (i.e., pX = 1
X X

jjt t+ − , [1, (| | 1)]j W∈ − ). For 

Table 1. A transactional data stream (DS)

Id Transaction Id Transaction Id Transaction
1 
2 
3 

a, c, e, f 
b, c, f 
b, c, f 

4
5
6

c, d, e 
a, b, c, e 
c, d, e 

7
8
9

a, c, d, e 
c, d, e, f 

a, c 
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the simplicity of period computation, a ‘null’ transaction with no item is considered at 
the beginning of W, i.e., tf = 0 (null), where tf represents the tid of the first transaction 
to be considered. Similarly, tl, the tid of the last transaction to be considered, is the tid 
of the |W|-th transaction in the window, i.e., tl = t|W|. For instance, in the stream data in 
Table 1, consider the window is composed of eight transactions (i.e., tid = 1 to tid = 8 
make the first window, say W1). Then the set of transactions in W1 where pattern 

{b,c} appears is 
1

{ , }
W

b cT = {2, 3, 5}. Therefore, the periods for {b,c} are 2 (= 2 - tf), 1 (= 

3 - 2), 2 (= 5 - 3),  and 3 (= tl - 5), where tf  = 0 and tl  = 8. 
The occurrence periods, defined as above, present the exact information about the 

appearance behavior of a pattern. A pattern will not be regular if, at any stage in W, it 
appears after sufficiently large period. The largest occurrence period of a pattern, 
therefore, can provide the upper limit of its periodic occurrence characteristic. Hence, 
the measure of the characteristic of a pattern of being regular in a W (i.e., the regular-
ity of that pattern in W) can be defined as follows. 

Definition 2 (regularity of pattern X in W). Let for a X
W

T , X
W

P be the set of all peri-

ods of X i.e., PX = 1{ ,..., }X X
sp p , where s is the total number of periods of X in W. Then, 

the regularity of X in W can be denoted as regW(X) = 1( , ..., )X X
sMax p p . For example, in 

the DS of Table 1
1W

reg (b,c) = 3, since 
1

{ , }
W

b cP =  Max(2, 1, 2, 3) = 3. 

Therefore, a pattern is called a regular pattern in W if its regularity in W is no more 
than a user-given maximum regularity threshold called max_reg λ, with 1 ≤ λ ≤ |W |. 
The regularity threshold is given as the percentage of window size. 

The regular patterns in W, therefore, satisfy the downward closure property [6], 
i.e., if a pattern is found to be regular, then all of its non-empty subsets will be regu-
lar. Thus, if a pattern is not regular, then none of its supersets can be regular. Given 
DS, |W|, and a max_reg, finding the complete set of regular patterns in W, RW that 
have regularity of no greater than the max_reg value is the problem of mining regular 
patterns in data stream. 

4   RPS-Tree: Design, Construction, and Mining 

In this section, we first introduce our RPS-tree for data stream and describe efficient 
tree update mechanism for RPS-tree. We also discuss the mining of an RPS-tree here. 

4.1   Design of an RPS-Tree 

The structure of an RPS-tree consists of one root node referred to as the “null”, a set 
of item-prefix sub-trees (children of the root), and an item header table called regular 
pattern stream table (RPS-table in short). Similar to an FP-tree [3] and an RP-tree [4], 
each node in an RPS-tree represents an itemset in the path from the root up to that 
node. 

The RPS-tree maintains the occurrence information of all transactions (in the cur-
rent window) in the tree structure. To explicitly track such information, it keeps a list  
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of transaction-id information only at the last item-node (say, tail-item) for a transac-
tion. Such list is called a tid-list. Hence, an RPS-tree maintains two types of nodes; 
say ordinary nodes and tail-nodes. The former are types of nodes that do not maintain 
the tid-list, whereas the following definition describes the latter type.  

Definition 3 (tail-node). Let t = {i1, i2,…, in} be a sorted transaction, where in is the 
tail-item. If t is inserted into an RPS-tree in this order, then the node of the tree that 
represents item in is defined as the tail-node for t. For example, if the first transaction 
(i.e., tid = 1) in the DS of Table 1 is inserted into an RPS-tree in lexicographical order, 
then the node that represents item ‘f’ (i.e., the tail-item of the transaction) is the tail-
node in the tree for that transaction. 

Nodes of both types explicitly maintain parent, children, and node traversal point-
ers. In addition, each tail-node maintains a tid-list and a tail-node pointer. The tail-
node pointer points to either the next tail-node in the tree if any, or ‘null’. Irrespective 
of the node type, no node in the RPS-tree maintains a support count value as does in 
an FP-tree [3]. 

The RPS-table consists of each distinct item in the current window with relative 
regularity and a pointer pointing to the first node in the RPS-tree that carries the item. 
Specifically, the RPS-table of an RPS-tree consists of three fields in sequence (i, r, p); 
item name (i), regularity of i (r), and a pointer to the RPS-tree for i (p). The item 
name is just a symbol to identify each item. The regularity is calculated by traversing 
the RPS-tree after the construction, which is explained in the next subsection. The 
item pointer facilitates the fast traversal to the whole tree in the mining phase. In 
addition, an RPS-tree maintains a tail-node pointer (say, tnp) to point to the first tail-
node in the tree. These pointers will facilitate fast tree traversal during the regularity 
calculation and tree update operation. 

4.2   Construction of an RPS-Tree 

The construction of the RPS-tree is featured in such a way that it takes only one scan 
over the high-speed data stream to capture the full content of the current window. In 
the RPS-tree, items are arranged according to any canonical order, which can be de-
termined by the user prior to the tree construction. Once the item order is determined 
(say, for the initial window), items will follow this order in our RPS-tree for subse-
quent windows.  

We use an example to illustrate the step-by-step construction process of an RPS-
tree for the DS in Table 1. Let us assume that the RPS-tree is constructed in lexico-
graphic order and each window is composed of eight transactions (i.e., the initial 
window, W1 contains tids from 1 to 8) as shown in Fig. 1(a).  

The construction of an RPS-tree is similar to that of an FP-tree [3]. Initially, the 
RPS-tree is empty (i.e., starts with a ‘null’ root node). To simplify the figures, we do 
not show the node traversal pointers in the trees, although they are maintained as in an 
FP-tree.  

The first transaction to be inserted is {a, c, e, f} (i.e., tid = 1). As shown in  
Fig. 1(b), the transaction is inserted in the lexicographic order. Notice that ‘f’ is the 
tail-item of the transaction and the tail-node “f:1” explicitly maintains the tid informa-
tion in its tid-list. Also, tnp points to the first tail-node “f:1” in the tree (as shown by 
dotted arrow in the figure). Fig. 1(c) shows the status of the RPS-tree after inserting  
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the second transaction (i.e., tid = 2) in similar fashion. The tail-node pointer is up-
dated to point to the next tail-node “f:2” as shown in the figure. The RPS-tree after 
capturing all transactions of W1 is presented in Fig. 1(d). Notice that the RPS-tree in 
Fig. 1(d) captures the complete information of W1 in a compact fashion. However, the 
regularity of items in the RPS-table has not been computed yet. 

To assist the regularity calculation, each item in the RPS-table is assigned a tempo-
rary array. Then, starting from the tnp, and following tail-node pointers we visit each 
tail-node and accumulate the tid(s) available in its tid-list in the respective temporary 
arrays for every item from that tail-node up to the root. For example, after visiting the 
first two tail-nodes of “f:1” and “f:2,3” in the RPS-tree of Fig. 1(d), the contents of the 
temporary arrays for items ‘a’, ‘b’, ‘c’, ‘e’, and ‘f’ (i.e., items from tail-nodes up to 
the root) are Ta = {1}, Tb = {2, 3}, Tc = {1, 2, 3}, Te = {1}, and Tf = {1, 2, 3}. 

Therefore, after finishing the traversal for all tail-nodes, we obtain the complete list 
of tids for each item in its respective temporary array. Thus, for instance, the set of 
transactions for item ‘a’ we obtain, Ta = {1, 5, 7}. Then, it is rather simple calculation 
to find the Pa from Ta, which gives 1 ( )Wreg a  = 4. The process of accumulating the 

Fig. 1. Construction and update of an RPS-tree for the DS in Table 1 
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tids and calculating the regularity of items in the RPS-table is termed as refreshing 
the RPS-table. Finally, Fig. 1(e) shows the final status of the RPS-tree and the RPS-
table with the regularity of each item after the RPS-table refreshing operation. The 
RPS-tree in Fig. 1(e) is ready for mining the set of regular patterns from it upon  
request. 

4.3   Updating the RPS-Tree 

The simple construction feature of the RPS-tree enables it to delete the oldest and 
insert new transactions in an efficient manner. Because our RPS-tree keeps the tail-
node pointers, one can easily locate the transaction(s) to be removed. To illustrate the 
RPS-tree updating mechanism, we use our running example of RPS-tree construction. 

Suppose the window slides transaction-by-transaction (slide_size = 1) i.e., each 
slide of window expires the oldest and inserts one new transactions. Therefore, in this 
example, tid = 1 expires and a new transaction tid = 9 appears with the sliding of 
window. 

To reflect the deletion of the oldest transaction we avoid the costly tree traversal 
operation. Rather following the tail-node pointers we visit only the tail-nodes in the 
RPS-tree and adjust only the tid-lists of each tail-node in the tree for deleted transac-
tion(s). We delete the tids in the tid-list of each tail-node if their values are less than 
or equal to the slide_size; otherwise, we decrement them by slide_size. In process, we 
delete a tail-node and its path towards the root if its tid-list becomes empty. For ex-
ample, we delete the tail-node “f:1” and its parent node “e”, since after adjusting the 
tids, the tid-list of “f:1” becomes empty. However, we avoid deleting nodes (toward 
the root) at the parent of “e”, since it (the parent) has a child other than “e”. Such 
operation ensures the deletion of only the expired transactions from the tree. The 
RPS-tree after deleting the oldest transaction (i.e., tid = 1) from the RPS-tree of W1 
and adjusting the tid-lists in all tail-nodes is shown in Fig. 1(f). For the simplicity of 
figures we avoid showing the tail-node pointers in the figures. However, they are 
maintained as explained above. 

Notice that the RPS-tree in Fig. 1(f) is ready to capture the new incoming transac-
tion(s) in the sliding window. New transactions can be easily added to the RPS-tree 
by using the same technique as illustrated in Figs. 1(b) – (d). Usually, the regularity 
of patterns may change with the sliding of window (i.e., with the deletion and inser-
tion of old and new transactions). For example, with λ = 3, and |W| = 8 for the DS in 
Fig. 1(a) the regular patterns {b}, and {b,c} in W1 become irregular (i.e., a pattern 
whose regularity is greater than max_reg) in W2. Again, the irregular patterns {d} 
and {c,d,e} in W1 become regular in W2. Therefore, to reflect the correct regularity of 
each item in the current window, we perform the RPS-table refreshing operation at 
each window. Fig. 1(g) shows the status of the RPS-tree in W2 after inserting new 
transaction and refreshing the RPS-table. Similar to the RPS-tree in Fig. 1(e), the 
complete set of regular patterns for the current window then can be mined from the 
RPS-tree in Fig. 1(g). 

Based on the RPS-tree construction technique discussed above, we have the fol-
lowing property and lemma on the completeness of an RPS-tree. Let for each transac-
tion t in a window W, item(t) be the set of all items in t and is called the full item 
projection of t.  
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Property 1: An RPS-tree contains item(t) for each transaction in a window only once. 

Lemma 1: Given a stream database DS and a sliding window W, item(t) of all trans-
actions in W can be derived from the RPS-tree for the W. 

Proof: Based on the RPS-tree construction and updating mechanism and Property 1, 
item(t) of each transaction t is mapped to only one path in the RPS-tree and any path 
from the root up to a tail-node maintains the complete projection for exactly n trans-
actions (where n is the total number of entries in the tid-list of the tail-node).             ■ 
 
One may assume that the structure of an RPS-tree may not be memory efficient, since 
it explicitly maintains tids of each transaction in the tree structure. But we argue that 
the RPS-tree achieves the memory efficiency by keeping such transaction information 
only at the tail-nodes and avoiding the support count field at each node in the tree. 
Moreover, keeping the tid information in tree structure has also been found in litera-
ture for efficiently mining frequent patterns [2], [8]. To a certain extent, some of those 
studies additionally maintain support count and/or the tid information [2], [8] in each 
tree node. Furthermore, with modern technology, main memory space is no longer a 
big concern. Hence, we made the same realistic assumption as in many studies [11] 
that we have enough main memory space (in the sense that the trees can fit into the 
memory). 

Since each transaction t in W contributes at best one path of size(t) to an RPS-tree, 
the total size contribution of all transactions in W can be at best∑ ∈ || |)(|Wt tsize . How-

ever, because there are usually many common prefix patterns among the transactions, 
the size of an RPS-tree is normally much smaller than∑ ∈ || |)(|Wt tsize . 

It may be assumed that RPS-table refreshing mechanism of RPS-tree may require 
higher computation cost compared to scanning the stream data twice as in RP-tree. But, 
we argue that the cost of refreshing the RPS-table by traversing the paths from the tail-
nodes up to the root of the RPS-tree is much less than that by scanning the database a 
second time, since reading transactions from the memory-resident tree is much faster 
than scanning them from the database. Also note that, while accumulating the tids from 
a tail-node during refreshing the RPS-table, we process as many transactions at a time 
as the size of its tid-list. This multiple transactions processing technique further re-
duces the RPS-table refreshing cost compared to obtaining the regularity of items 
through a second scan of the stream data. In the next subsection, we discuss the regular 
pattern mining process from the RPS-tree constructed for the current window. 

4.4   Mining the RPS-Tree  

Similar to the FP-growth [3] mining approach, we recursively mine the RPS-tree of 
decreasing size to generate regular patterns by creating conditional pattern-bases (PB) 
and corresponding conditional trees (CT) without additional database scan. Before 
discussing the mining process we explore the following important property and 
lemma of an RPS-tree. 

Property 2: Each tail-node in an RPS-tree maintains the occurrence information of all 
nodes in the path (from that tail-node up to the root) in the transactions of its tid-list. 
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Lemma 2: Let Z = {a1, a2, ….., an} be a path in an RPS-tree where node an, being the 
tail-node, carries the tid-list of the path. If the tid-list is carried to node an-1, then node 
an-1 maintains the occurrence information of path Z′ = {a1, a2, ..., an-1} for the same set 
of transactions in the tid-list without any loss. 

Proof: Based on Property 2, the tid-list in node an explicitly maintains the occurrence 
information of Z′ for the same set of transactions. Therefore, the same tid-list at node 
an-1 exactly maintains the same information for Z′ without any loss.           ■ 
 
Using the features revealed by the above property and lemma and based on the 
downward closure property [6], we proceed to mining the RPS-tree for only regular 
items starting from the bottom up to the top in the RPS-table. If an item i in the RPS-
table is an irregular item, we ignore mining for it. However, following the node tra-
versal pointers we only visit each node Ni for i in the RPS-tree and carry (i.e, copy) 
Ni’s tid-list to its parent Np. Therefore, the parent node Np is temporarily converted to a 
tail-node if it was an ordinary node; otherwise (i.e., if Np is a tail-node), the tid-list is 
added with its previous tid-list. At the same time, from Ni we delete the tid-list it bor-
rowed as a parent node from its children (if any). This process of carrying the tid-list 
of a (temporary) tail-node to its parent node is termed as carry-tid and the set of tid(s) 
carried to the parent is called as carried-tid. 

We use our running example to illustrate the mining on an RPS-tree. Consider min-
ing the RPS-tree of Fig. 1(e) for λ = 3. Since ‘f’, the bottommost item in the RPS-
table, is not regular (i.e., 1 ( )Wreg f > 3), we only perform the carry-tid operation for 

each of its nodes in the RPS-tree. Fig. 2(a) shows the status of the RPS-tree after the 
carry-tid operation for ‘f’. The tids shown in dark box in the figure are carried-tids. 

Mining for each regular item i in the RPS-table, on the other hand, is performed by 
constructing the conditional pattern-base PBi for i by projecting only the prefix sub-
paths of Ni in the RPS-tree with the tid-list of Ni. During this projection, we only in-
clude regular items. Determination of whether an item is regular can be easily done 
by a simple look-up (an O(1) operation) at the RPS-table. There is no worry about 
possible omission or doubly counting of items. While visiting each Ni, we perform the 
carry-tid operation for the node as well. 

To store the regularity of items with i, a small RPS-table, say RPS-tablei, is main-
tained for PBi. While constructing PBi, to compute the regularity of each item j in the 
RPS-tablei, based on Property 2 we map all Ni’s tid-lists to all items in the respective 
path explicitly in temporary arrays (one for each item). Once the PBi is constructed, 
the contents of the temporary array for j in the RPS-tablei represent the Tij (i.e., set of 
all tids where items i and j occur together) in PBi. Therefore, it is a rather simple cal-
culation to compute regW(j) from Tij by generating Pij. The conditional tree for i CTi is, 
then, constructed from its PBi by removing all irregular items and their respective 
nodes from the RPS-tablei and PBi, respectively. If the deleted node is a tail-node, 
based on Lemma 2 its tid-list is pushed-up to its parent node.  

Let j be the bottommost item in RPS-tablei of CTi. Then the pattern {i,j} is gener-
ated as a regular pattern with the regularity of j in the RPS-tablei. The same process 
of creating a conditional pattern-base and its corresponding conditional tree is re-
peated for further extensions of pattern {i,j}.  



 Mining Regular Patterns in Data Streams 409 

The next item in the RPS-table in Fig. 2(a) (i.e., ‘e’) is a regular item (i.e., 

1 ( )Wreg e  ≤ 3). Therefore, we construct the PBe, and then CTe. We also perform the 

carry-tid operation while constructing the PBe. The structure of the RPS-tree after the 
carry-tid operation for ‘e’ is illustrated in Fig. 2(b). Fig. 2(c) shows the structure of 
the PBe. The CTe is constructed by removing all irregular items and their respective 
nodes from the RPS-tablee and PBe. The CTe in Fig. 2(d) is, therefore, constructed by 
deleting all entries for irregular item ‘b’. The set of all regular patterns mined from 
the CTe is given in Fig. 2(e). The value after ‘:’ indicates the regularity of individual 
pattern. The whole process is repeated until the top of the RPS-table (i.e., ‘a’). 

Notice that after each successful carry-tid operation any node in the RPS-tree re-
tains its original status of either as an ordinary node or a tail-node (e.g., nodes “e” and 
“e:4,6” from Fig. 2(a) to Fig. 2(b)). Also, since we start mining from the bottommost 
item in the RPS-tree, there is no scope of missing any tid-list in the whole tree from 
carrying upward. It can be noticed that, when mining for all items in the RPS-table is 
completed, the carry-tid operations will accumulate a copy of all tids at the root node. 
It is then rather a trivial task to remove them from the root to make the tree consistent 
to be updated for the next window content. 

Therefore, from the above mining process we can say that for a given max_reg and 
W the RW can be generated from an RPS-tree constructed on the window contents. In 
the next section, we evaluate the performance of our RPS-tree. 

5   Experimental Analyses 

In this section, we present the experimental results and related analysis on the com-
parison of proposed RPS-tree with its state-of-the-art counterparts. To the best of our 
knowledge, the RPS-tree is the first effort to address the problems of regular pattern 
mining in data stream. Therefore, we compare its performance with that of the RP-
tree [4], the existing algorithm available for regular pattern mining. All programs are 

Fig. 2. Mining the RPS-tree of Fig. 1(e) for λ = 3 
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written in Microsoft Visual C++ 6.0 and run with Windows XP on a 2.66 GHz ma-
chine with 1GB of main memory. The runtime specifies the total execution time, i.e., 
CPU and I/Os. 

We use several real and synthetic datasets (as in Table 2) which are frequently used 
in frequent pattern mining experiments, since they maintain the characteristics of 
transactional data. The first two datasets were obtained from [14]. BMS-POS contains 
several years worth of point-of-sale data from a large electronics retailer. Kosarak is a 
dataset of click-stream data from a Hungarian on-line news portal. T10I4D100K, de-
veloped by [13], is a synthetic dataset. In all experiments, we consider slide_size = 1. 
In the first experiment, we study the compactness of our RPS-tree in stream data.  

5.1   Memory Efficiency 

We conducted experiments to verify the memory requirements for our RPS-tree on 
different datasets by varying the window size. Since RPS-tree is a regularity threshold 
independent tree structure, the regularity threshold values do not influence on its 
memory requirements. Therefore, in this experiment, the reported required memory 
represents the size of the underlying tree structure after capturing only the complete 
sliding window content. Because RP-tree is a regularity threshold-based tree struc-
ture, we do not compare its memory requirement with RPS-tree. 

Table 3 reports RPS-tree’s memory requirement (on average for all window for a 
fixed window size) in several datasets with the variation of window size at each case. 
In BMS-POS, for example, when the window size is 100K (i.e., |W|1 = 100K), the 
required memory is on an average 13.81 MB in each window. Again, in the same 
dataset RPS-tree consumes on an average 33.51 MB memory when |W|4 = 400K. 

Hence, from the data in Table 3 it can be observed that when capturing the stream 
data of different characteristics, an RPS-tree is memory efficient for the available 
memory now-a-days. In the next experiment, we compare execution time between our 
RPS-tree and existing RP-tree. 

 

Table 2. Dataset characteristics

Dataset #Trans.(T) #Items(I) MaxTL(MTL) AvgTL(ATL) 
BMS-POS 
Kosarak 
T10I4D100K 

515,597
990,002
100,000

1,657
41,270

870

164
2,498

29

6.53 
8.10 

10.10 

Table 3. Memory requirement (MB) with window size variation in RPS-tree 

For window size Dataset with different window sizes 
|W|1 |W|2 |W|3 |W|4 |W|5

BMS-POS (|W|1 = 100K, |W|2 = 200K, |W|3 = 
300K, |W|4 = 400K) 

13.81 22.26 29.97 33.51 -

Kosarak (|W|1 = 100K, |W|2 = 300K, |W|3 = 500K, 
|W|4 = 700K, |W|5 = 900K) 

55.67 84.92 130.41 159.24 228.97

T10I4D100K (|W|1 = 30K, |W|2 = 50K, |W|3 = 70K, 
|W|4 = 90K) 

3.51 5.09 6.96 8.93 -
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5.2   Runtime Efficiency 

To study the runtime performance experiments were conducted with a mining request 
at each window by varying the max_reg values for each dataset while the window 
size |W| was kept fixed at reasonably high values. The results of the experiment are 
shown in Fig. 3. The time shown on the y-axes are the total time for scanning the 
window content, tree construction, tree update and RPS-table refreshing time (only 
for RPS-tree), and mining. Notice that mining data stream with RP-tree requires scan-
ning each window content twice, since it was originally proposed for static databases. 

 
As shown in Fig. 3, the higher the max_reg values, the longer the overall time re-

quired by both trees. The reason is that, the higher the max_reg value, the greater the 
number of regular patterns can be generated from the current window. However, the 
results clearly demonstrate that RPS-tree outperforms RP-tree in terms of overall 
runtime by multiple orders of magnitude for both high and low max_reg values. The 
key to this performance gain of RPS-tree is its efficient tree updating mechanism that 
only scans the new incoming transaction(s) once, while RP-tree requires scanning the 
whole window content twice. The gain of RPS-tree over the RP-tree becomes more 
prominent when the window size is larger. We also evaluated RPS-tree’s performance 
on the variation of window size, as shown in the next experiment. 

5.3   Window Size 

Because RPS-tree captures the full window content, its performance may vary de-
pending on the window size i.e., |W|. Hence, to determine the effect of changes in 
window size on the runtime of RPS-tree, we analyzed its performance by varying |W| 
over different datasets while keeping the max_reg value fixed. The graphs presented 
in Fig. 4 show the results on BMS-POS for max_reg = 0.16%, and Kosarak for 
max_reg = 0.06%. The y-axes in the graphs represent the average total time (including 
construction time, tree update time for the RPS-tree only, and mining time) required 
in all active windows. 

Larger window sizes resulted in a longer total tree construction time for both trees. 
However; the overall runtime required by RPS-tree is small enough to handle larger 

Fig. 3. Runtime comparison 
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windows in different datasets. For RP-tree, in contrast, a sharp increase in runtime 
according to an increase in window size was observed. As a result, the performance 
gaps between the two tree structures widen for larger windows. For example, in Ko-
sarak for max_reg = 0.06% when |W| = 100K, RPS-tree’s gain is not much prominent 
(Fig. 4(b)). However, for |W| = 900K RPS-tree achieves a significant improvement in 
overall runtime. Similar results we obtained in BMS-POS as well. Therefore, these 
results show that RPS-tree is better than RP-tree in handling larger windows and pro-
ducing the exact set of regular patterns within a reasonable amount of time over data 
streams. 

The above experiments demonstrate that RPS-tree outperforms the state-of-the-art 
algorithms in mining regular patterns from data streams of various characteristics 
(refer to Table 2). The easy and simple maintenance phase of the RPS-tree has been 
the key to its significant performance gain. 

6   Discussions and Conclusions 

In this paper, we define the regularity of a pattern by its maximum occurrence inter-
val (in a window) calculated from its tids (Definition 2) obtained during mining. 
However, other parameters such as the arithmetic mean or variance of occurrence 
intervals can also be considered as regularity measures for finding interesting patterns 
from data streams. Since RPS-tree maintains the exact occurrence information for all 
transactions in the current window, and the mining phase provides the complete tids 
for each pattern, computing such parameters can also be simple similar to computing 
the maximum occurrence interval for a pattern. 

In conclusions, we introduced a new concept of mining interesting patterns (called 
regular patterns) that occur with a temporal regularity in high-speed data streams. We 
proposed a novel tree structure, RPS-tree, to capture the stream content in memory-
efficient manner and to enable regular pattern mining from it. To obtain the fast and 
interesting results RPS-tree can be updated efficiently for the current content of the 
stream. The experimental analysis reveals that RPS-tree is significantly faster than 
other algorithm that can be used in mining regular patterns from a data stream. 

Fig. 4. RPS-tree’s performance on size of W
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Abstract. With the advent of an unprecedented magnitude of data,
top-k queries have gained a lot of attention. However, existing work to
date has focused on optimizing efficiency without looking closely at pri-
vacy preservation. In this paper, we study how existing approaches have
failed to support a combination of accuracy and privacy requirements
and we propose a new data publishing framework that supports both
areas. We show that satisfying both requirements is an essential prob-
lem and propose two comprehensive algorithms. We also validated the
correctness and efficiency of our approach using experiments.

1 Introduction

With the advent of data on an unprecedented scale, there has been active re-
search carried out on supporting ranking queries, to effectively narrow down
results to a small desired number of matches according to a given ranking cri-
teria [1,2,3,4]. While existing work mostly focused on optimizing the efficiency
of computing top-k ranked tuples, there has been less effort made on preserving
privacy at the same time.

Privacy preservation research on databases has also been also an active,
study area including published work on k-anonymity [5], l-diversity [6], m-
invariance [7], and t-closeness [8], but most of these approaches have treated
every tuple more or less equally, without taking its ranking into account. As a
result, applying these approaches directly on top-k ranked tuples would damage
the result quality, by including many non top-k tuples in the results.

To illustrate this problem, consider an example database of job applicants as
shown in Fig. 1, where the ranking function is the sum of all three test scores. A
recruitment company owns this database of job applicants and, a hiring manager
of a company wants to see if this recruitment company has good candidates be-
fore paying a service fee. The recruitment company may reveal some information

� This work was supported by Engineering Research Center of Excellence Program of
Korea Ministry of Education, Science and Technology (MEST) / Korea Science and
Engineering Foundation (KOSEF), grant number R11-2008-007-03003-0.
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Quasi-identifier Ranking attributes
Tid Age Sex Zipcode Course1 Course2 Course3 Score Rank
1 33 Female 53715 99 99 99 297 1
2 39 Male 53715 96 98 99 293 2
3 23 Female 53715 92 97 95 284 3
4 74 Male 53703 96 96 90 282 4
5 51 Male 53703 98 89 94 281 5
6 37 Female 53703 97 95 88 280 6
7 45 Female 53712 96 95 88 279 7
8 22 Male 53712 98 90 91 279 7
9 33 Female 53712 92 96 90 278 9
10 37 Female 53712 97 89 90 276 10

Fig. 1. An Example Database

about the test scores of their top-k applicants to impress the hiring manager,
without compromising the privacy of the applicants. A naive approach would
be to publish the table as it is shown in Fig. 1 without any unique identifiers,
such as names, SSNs, or passport numbers. However, as shown in [5], revealing
quasi-identifiers may seem harmless but when combined with other seemingly
harmless public data this may reveal the identities of the applicants. Another
approach at the other end of the spectrum of privacy is to publish only the list of
total scores, as in [9], but the returned data would only be of limited use for the
hiring manager. Our goal is to assist the database owner to publish information
on ranking attributes, the attributes that most affect tuples’ ranking, without
compromising too much on privacy.

To consider the privacy, we adopt a widely-known privacy metric called k-
anonymity. In a k-anonymous table, the tuples are indistinguishable from the
other k-1 tuples. To analyze data quality, we employ a precision metric, i.e.,
how many returned tuples are top-k ranked, out of the total number of returned
tuples. Imagine a scenario where the recruitment company wants to publish the
top-6 candidates with 3-anonymity.

Applying the top-k query algorithms to identify the top-6 ranked tuples and
then aggregating their values results in Fig. 2(a). This approach includes all
of the top-k tuples and, thus achieved perfect recall. Each ranking attribute is
displayed as a range of values to provide 3-anonymity. Tuples 1, 2, and 3 are not
individually identifiable, but are presented as a group of top-3 candidates. The
tuple id’s in parentheses denote the tuples that are not in the top-6 but were
included. Note that the hiring manager does not get to see the Tid column, so he
or she can learn about the correlation between the individual course scores and
the total score from the range but cannot know which exact tuples are included
in the second range. This outcome displays a good result for the top-3 tuples,
but the second top-3 tuples suffer exhibit only a 50% accuracy level, i.e., only
half of them are in the top-6.

We can also apply a 3-anonymity algorithm to the top-6 tuples. Unfortunately,
achieving k-anonymity with a minimal change is NP-hard when k > 3 [10], so
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Tid Course1 Course2 Course3 Score Precision
1,2,3 [92,99] [97,99] [95,99] [284,297] 1
4,5,6,(7,8,10) [96,98] [89.96] [88,94] [226,282] 0.5

(a) Perfect Recall Example

Tid Course1 Course2 Course3 Score Precision
1,5,6,(8,10) [97,99] [89,99] [88,99] [274,297] 0.6
2,3,4,(9) [92,96] [96,98] [90,99] [278,293] 0.75

(b) Mondrian Example

Tid Course1 Course2 Course3 Score Precision
1,2,3 [92,99] [97,99] [95,99] [284,297] 1
4,6,(7) [96,97] [95,96] [88,90] [279,282] 0.67

(c) k-ARQ Example

Fig. 2. Results of three different algorithms applied on database in Fig. 1

maximizing data quality while achieving k-anonymity on top-k tuples is not prac-
tical. One of the approximation algorithms, Mondrian [11], results in the table
shown in Fig. 2(b). This result shows a lower overall precision than Fig. 2(a).

In this paper we propose the use of k-ARQ, a k-Anonymous Ranking Query
approach, to ensure both privacy maintenance and precision when ranking at-
tribute publication. We can show that calculating a set of tuples that optimize
privacy and precision at the same time is an NP-Complete problem, and intro-
duce two Greedy Approximation Algorithms. Fig. 2(c) shows the result from our
Greedy Approximation Algorithms. k-ARQ achieves the same perfect precision
as Fig. 2(a) for the top-3 tuples, and achieves better precision for the next top-3.
We summarize this comparison below in Table 1.

Table 1. The pros and cons of current state-of-arts

Privacy Precision Ranking Attribute Publication
Privacy top-k [9] � �
k-anonymity approximation [11] � �
k-ARQ � � �

Our key contributions to the research area are as follows:

– To the best of our knowledge, we are the first to study the problem of
publishing ranking attributes, while supporting the dual requirements of
privacy and accuracy.

– We formalized the problem, and showed that it is an NP-complete problem.
– We develop two Greedy Approximation Algorithms, with optimization

heuristics to enhance their efficiency.
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– We evaluate our Greedy Algorithms in terms of appropriate use and effi-
ciency, compared to existing approaches. The correctness is defined in this
case as satisfying both the privacy maintenance and accuracy requirements,
and the efficiency is measured in terms of elapsed time and precision.

The rest of the paper is organized as follows. Section 2 discusses the prelim-
inaries and problem definition, and Section 3 shows that the problem is NP-
Complete. Section 4 proposes our Greedy Algorithms. Section 5 presents our
evaluation results. Section 6 surveys related work.

2 Preliminaries

As preliminaries, we first formally state our problem (Section 2.1) then discuss
why existing solutions (Section 2.2 and 2.3) have failed to address it.

2.1 Problem Definition

The input to our problem is a data table T = {t1, · · · ,tn}, which is a set of
m-dimensional n tuples where each tuple ti is represented by a set of values for
m dimensions (attributes), {d1, d2, · · · ,dm}. Each attribute in T is one of the
following: quasi-identifier, ranking attribute, or sensitive attribute, which we will
define formally below. Note that our definition is consistent with prior published
literatures on this area, as we have indicated with citations.

Definition 1 (Quasi-identifier set QI [12]). A quasi-identifer set QI is a set
of attributes in table T that can be joined with external information to re-identify
individual records, such as age, gender, and zip code in Fig. 1.

Definition 2 (Ranking attribute set RA). A ranking attribute set RA is a
maximal set of attributes that affects the overall ranking (i.e., parameters for
F from the data table and its score), such as course test scores and total score
in Fig. 1. Typically ranking attributes have a total order, i.e.between any two
values for a ranking attribute, it is defined which one is greater than or equal to
the other.

Definition 3 (Sensitive attribute SA). A sensitive attribute set SA is a set
of attributes associated with the privacy of a user.

We will now define our proposed problem: the output is a published table Tpub,
which is derived from the input data table T and includes information on rank-
ing attributes, while satisfying privacy, ranking, and accuracy requirements. For
privacy, we use the widely-used k-anonymity method, adopting its definition
from [6]. The privacy requirement is specified by kp for kp-anonymity.

Definition 4 (K-Anonymity). A table T {t1, t2 , · · · ,tn} is a set of tuples
where each tuple has dimensions dj . This table T satisfies k-anonymity if for
every tuple ti there exist k − 1 other tuples t1, t2, tk−1 such that ti[dj] = t1[dj]
= t2[dj ] = · · · = tk−1[dj ] for any dimension (attribute) dj.
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The ranking requirement is specified by sending a query for the top kq tuples
based on the user-defined ranking function F . For accuracy, we use the well-
known metric of precision and, the ratio of the true positives in the overall
results. In our case, this is the ratio of the number of top-kq tuples in Tpub to the
number of all tuples in T , and the requirement is specified by the lower bound
of this ratio prec.

Definition 5 (k-ARQ problem). For the given data table T and the ranking
function F we compute the score of each tuple and add this as another ranking
attribute to T . For the given privacy, ranking, and accuracy requirements (kp, kq,
prec), calculate a published output table Tpub that includes the ranking attribute
set RA. (Note that RA includes the F score now.) Tpub is a successful result if
and only if

– kp-anonymity: for every tuple ti in Tpub there exist kp -1 other tuples t1,
t2, · · · tkp−1 such that ti[dj ] = t1[dj] = t2[dj] = · · · = tkp−1[dj] for any
dimension (attribute) dj in RA.

– Ranking and Accuracy |Tpub ∩ Kq| ≥ prec ×|Tpub|.

where Kq is a set of top-kq tuples w.r.t F scores.

Note that the traditional k-anonymity definition only includes QI. Our definition
of kp-anonymity is only defined over RA, but we can easily achieve kp anonymity
on QI as well. Based on the tuple groupings obtained for our problem, this can
be done by simply aggregating the values of QI and SA of each group into ranges
as shown in Fig. 3.

Tid Age Sex Zipcode Course1 Course2 Course3 Score Precision
1,2,3 [23,39] human 53715 [92,99] [97,99] [95,99] [284,297] 1
4,6,(7) [37,74] human [53703,53712] [96,97] [95,96] [88,90] [279,282] 0.67

Fig. 3. Extension to Quasi-identifiers

However, this straightforward adoption is vulnerable to a homogeneity attack
as discussed in [6], when all SA values in a group happen to be identical. For
example, the first group in Fig. 3 shows that all of the top-3 candidates live
in the 53715 zipcode area. If a zipcode were a sensitive attribute, then this
provides no anonymity for the zipcode even though it’s a group of 3 tuples. To
avoid this vulnerability, we recommend the application of existing anonymization
techniques such as those in [6,7,8] on QI and SA on the groupings obtained for
our problem, instead of aggregating values into ranges as discussed above.

2.2 Baseline Approach I: Perfect Recall

We will now discuss a baseline approach of adopting existing solutions for our
proposed problem in Section 2.1. We first discuss how to use top-k algorithms
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d1 d2

B 1.0 C 1.0
A 1.0 A 1.0
E 0.8 L 0.9
K 0.7 D 0.8
F 0.7 G 0.7
D 0.7 H 0.7
J 0.6 F 0.7
I 0.6 E 0.65
H 0.5 I 0.6
C 0.5 B 0.6
L 0.4 J 0.4
G 0.3 K 0.3

(a) Ordered list of tuples
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(b) 2-dimensional plot of tuples

Fig. 4. Perfect Recall

such as [1,2,3,4] to distinguish the top-k tuples from the rest and how they, can
be leveraged as a baseline solution to our problem.

Fig. 4 presents a geometric illustration of the top-k algorithms. Given that
index structure ordering tuples in the order of attribute values d1 and d2 as shown
in Fig. 4(a) illustrates that these algorithms access objects in a descending order
of d1 and d2 values, which corresponds to a sweeping hyperplane orthogonal to
the d1 and d2 axis respectively, downwards towards 0 in Fig. 4(b) as the arrows
indicate. These algorithms terminate when the top-k results are guaranteed to
exist among the tuples already accessed, i.e., shaded regions in Fig. 4. In other
words, when the upper bound score of all tuples in the unshaded region is no
higher than k objects in the shaded region with the highest F scores, these
algorithms can safely terminate.

We can use these algorithms to identify a “minimum-bounded rectangle”
(which we denote as an MBR) where tightly bounding top kq tuples are found,
and marked as a box as shown in Fig. 4(b) above. When kp < kq as in our exam-
ple, publishing the range of the MBR satisfies both the privacy requirements and
ensure all of the actual topkq are included in Tpub, i.e., achieves perfect recall.

While this baseline approach is guaranteed to publish all of the true positives,
it does not have any control over how many false positives are included in the
results. To illustrates this, when a ranking function is F = d1 + d2, a hypersur-
face d1 + d2 = 1.4 represents a boundary distinguishing the true positives and
negatives. This means that all the object values above this surface are true pos-
itives and the rest of object values in the dark-shaded triangular area are true
negatives. Depending on data distributions and ranking functions, unbounded
number object values may fall into the triangular area, which could lower their
precision below the user-specified requirement prec.
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2.3 Baseline Approach II: Mondrian

An alternative approach is to apply existing anonymization algorithms, that have
been typically applied to anonymize both QI and RA. Specifically, we adopted
the mondrian [11] method, which uses one of the state-of-the-art k-anonymity
approximation algorithms, as a baseline approach.

mondrian achieves the user-specified privacy requirement kp-anonymity by
iteratively dividing a data space into equal-sized partitions such that each parti-
tion includes at least kp objects. Mondrian divides the true positive set into half,
initially, with respect to d1 into partitions P1 and P2, as shown by the vertical
division line in Fig. 5.

A

H2

H1

C

B

D

EFG H

I

J

K

L

𝑑1

𝑑2 ℱ = 𝑑1 + 𝑑2 = 1.4

𝑃1 𝑃2

median of 𝑑1

Fig. 5. Mondrian

Fig. 5 illustrates such iterations, based on the same example used in Section
2.2, where kq = 6 and kp = 3, More specifically, we divide the true positive
set into half, initially with respect to d1, as shown by a vertical division line in
Fig. 5. This line divides the result set into partitions P1 and P2 as marked in
the figure.

Fig. 6 illustrates each iteration of Mondrian as applied to our current example
of kp = 3 and kq = 3 for the database in shown Fig. 1. The Mondrian approach

Tid Course1 Course2 Course3 Score
1 [97,99] 99 99 297
5 [97,99] 89 94 281
6 [97,99] 95 88 280
2 [92,96] 98 99 293
3 [92,96] 97 95 284
4 [92,96] 96 90 282

(a) Step1 - choosing dimension

Tid Course1 Course2 Course3 Score
1 [97,99] [89,99] [88,99] 297
5 [97,99] [89,99] [88,99] 281
6 [97,99] [89,99] [88,99] 280
2 [92,96] [96,98] [90,99] 293
3 [92,96] [96,98] [90,99] 284
4 [92,96] [96,98] [90,99] 282

(b) Step2 - recoding other dimension

Fig. 6. Step-by-Step Mondrian execution
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first divides the values with respect to course 1, by picking the median course 1
score of six true positives, which is 97. Based on this value, we split course 1
into [97, 99] and [92, 96] segments, based on which tuples are divided into the
two partitions of tuples 1,5 and 6 and 2,3, and 4, as Fig 6(a) shows. Mondrian
then aggregate the values of the course 2 and course 3 scores in each partition
into privacy ranges as Fig. 6(b) shows.

Note that this generalization (aggregation) of course 2 and course 3 values re-
sults in many false positives, such as for tuple 8,9 and 10 (shown in parentheses
to mark false positives) in Fig. 6. Depending on the data distributions and the
ranking function, an unbounded number of such false positives can be included
in the published table, which makes it difficult to satisfy the user-specified ac-
curacy requirement prec. This is due to the nature of the Mondrian method
and other k-anonymity approximation algorithms that treat all tuples equally
without considering their ranks.

3 Hardness analysis

To show that k-ARQ is an NP-Complete problem, first we need to show that
the solution to this problem is verifiable in polynomial time. After the verifica-
tion proof, we will show that a well-known NP-Complete problem, Subset Sum
problem can be reduced to apply to this problem in polynomial time by showing
the polynomial-time reduction and how the solution to one problem is also a
solution to the other. For the given parameters (kp, kq, prec), we can convert
these parameters into (k, p) for a simpler proof. Given the privacy requirement
kp and the ranking requirement kq, k = max(kp, kq). If kp < kq, then we can
repeat this algorithm multiple times until we get at least kq tuples. Given k, we
can then identify the appropriate p value for the definition below.

Definition 6 (k-ARQ problem). A table T {t1, t2, · · · , tn} is a set of m-
dimensional tuples, and each tuple ti is labeled as tp if ti is one of the top k
tuples, and as fp otherwise. Each tuple ti is also associated with count ci, which
indicates how many duplicates of ti is in T . k-ARQ(T, k, p) returns a split value
vector SV = 〈sv1, sv1, · · · , svd〉, which defines a set S as S = {ti : ti[dj ] ≤
svj}for all j, 1 ≤ j ≤ m, that satisfies the following:

1.
∑

ci for all ti ∈ S=k and
2. p =(the num of tp tuples in S - the num of fp tuples in S)

if such SV exists. If not, k-ARQ(T, k, p) returns a pre-assigned value.

From this definition, the precision of S is p+k
2k , thus p= prec

2k − k.

Definition 7 (Subset sum problem). A is a set of integers {a1, a2, · · · ,
apn} and sum is also an integer. Subsetsum(A, sum) returns As = {ap1, ap2,
· · · , apt}, where

∑t
j=1 apj = sum, if such As exists. If not, Subsetsum(A,sum)

returns a pre-assigned value.
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Polynomial time verification proof: Given a split value vector SV = 〈sv1
, sv2, · · · , svm〉 for k-ARQ(T, k, p), where T contains n m-dimensional tuples,
we can construct S in O(mn) for integer comparisons. By verifying the first
condition, |S| = k can be checked in O(n), the worst case being S = T , and for
the same worst case O(m) for the second condition. Thus, the verification of any
solution to k-ARQ(T, k, p) is done in O(nm), polynomial time to its input size.

Polynomial time reduction from a Subset sum problem1: Given a subset
sum problem Subsetsum(A, sum) with an integer set {a1, a2, · · · , apn}, for
each ai in A, a pair (ti, ci) is created where tuple ti, ti[dj ] = 1 if i = j and
ti[dj ] = 0 otherwise, and the count ci of ti is set to be ai. A pn-dimensional
table T is constructed with all ti. All tuples are labelled in T as tp. Transforming
Subsetsum(A,sum) into k-ARQ(T, sum, sum) takes polynomial time.

Subsetsum ⇒ k −ARQ: Imagine that there is a solution As for Subsetsum(A,
sum), As = {ap1, ap2, · · · , apt}. By the definition of the subset sum problem,∑t

j=1 apj=sum. Define SV as svi = 1 if ai ∈ As, 0 otherwise. By definition of
S, tuple ti generated from ai will be in S. This S satisfies the first condition
because

∑
ci for all ti ∈ S =

∑
aj for all aj in As = sum. This S also satisfies

the second condition because the number of tp tuples in S is equal to
∑t

j=1 apj

= sum.

k−ARQ ⇒ Subsetsum: Given a solution SV for k-ARQ, then compute the set
S and construct a subset of A, As, such that ai is in As if svi = 1 .

∑
ai∈As

ai =∑
ci for all ti ∈ S = sum. This satisfies the Subsetsum(A, sum) as a solution.

The proof above shows that the k-ARQ problem is an NP-Complete problem.
If the desired results is to solve an optimized version of k-ARQ,optimization is
possible using p, the precision parameter, or k, the accuracy parameter. Given
the same p, as k approaches kq in the original top-kq ranking query, the result
become more accurate relative to the original result of the top-kq ranking query.
There are only kq number of candidates for p values, as 1 ≤ p ≤ kq naturally.
Thus, the optimization problem over p is also NP-Complete. Similarly, there are
only a limited number of candidates for k value, as kp ≤ |S| ≤ kp/prec. As a
result,the optimization problem of k-ARQ over k and p is also an NP-Complete
Problem.

4 Proposed Solution

This section proposes algorithms to address our proposed problem in Section 2.1.
As an exact solution has proven to be NP-complete, we propose the use of two
Greedy Approximation Algorithms in Sections 4.1 and 4.2.

4.1 Greedy Algorithm by Deletion

The Greedy by deletion algorithm first initializes the result set as the MBR
of true positives (i.e., the output of PerfectRecall) and Greedy improves its
1 This reduction technique was inspired by the NP-Completeness proof in [11].
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precision toward the optimal value by reducing the boundary on one dimension
at a time, until any more deletions would result in a violation of the privacy
requirement kp or reduce the precision. Intuitively, a desirable reduction would
eliminate as many false positives as possible while eliminating as few true pos-
itives as possible. Our Greedy Deletion Algorithm chooses a true positive tuple
that has the largest Δfp − Δtp when removed from the result set, where Δtp

is the number of eliminated true positives and Δfp is the number of eliminated
false positives. To assist in the calculation of Δfp − Δtp, we utilize an ordered
list (index) returned by the top-k algorithms.
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(c) Delete point B from (a)

d1 d2

B 1.0 C 1.0
A 1.0 A 1.0
E 0.8 D 0.8
F 0.7 H 0.7
D 0.7 F 0.7
I 0.6 E 0.65
H 0.5 I 0.6
C 0.5 B 0.6

(d) Ordered list for fast Δfp − Δtp

calculation

Fig. 7. Greedy by Deletion from PerfectRecall

For example, Fig. 7(a) shows the initial set of results which corresponds to an
MBR for true positives. At the first iteration, the Deletion algorithm may choose
B with the lowest d2 value or C with the lowest d1 value. The outcome of each
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deletion is shown in Fig. 7(b) and (c), respectively. Δfp − Δtp is calculated by
using the sorted lists shown in Fig. 7(d). B is at the bottom of the sorted list for
d2 and the Deletion mechanism traverses the list up until the next true positive
E. There is one false positive I between B and E, so Δfp − Δtp= 1 − 1 = 0.
Similarly, there is H and I between C and D, so Δfp−Δtp for C is 2−1 = 1. The
Deletion mechanism chooses C to remove it from the result set and the sorted
list is then updated accordingly. The pseudo-code of the Deletion algorithm is
shown below.

Algorithm 1. Greedy Approach by Deletion
Input: A dataset D divided into tp and fp with m ranking attributes, and user-

specified requirements k and p as specified in 6.
Output: The result set RS, MBR of RS
1: Obtain a sorted list for each dimension in descending order from top-k ranking

algorithm
2: RSt ⇐ all top-k tuples and false positive tuples in MBR of top-k tuples
3: while |RSt| ≤ k and precision of RSt ≥ p do
4: traverse sorted list for each dimension
5: candidate ⇐ tp with the largest Δfp - Δtp that is not in RSt

6: RSt ⇐ RSt \ {candidate}
7: RS ⇐ RSt

8: update MBR based on true positive tuples in RS and update RS
9: end while

10: if MBR of RS satisfy p and k then
11: return RS, MBR
12: end if

4.2 Greedy Approach by Insertion

An alternative Greedy algorithm, called the Insertion Algorithm, starts with an
empty set and inserts the true positive tuple with the largest Δtp−Δfp, breaking
ties with ranking, until any more addition would render the precision below the
basic requirement.

In our example in Fig. 8(a), after the first iteration, MBR contains only A
= (1.0, 1.0). At the second iteration, as all true positives have the same Δtp −
Δfp, we pick B=(1.0, 0.6) with the highest ranking. Now the MBR extends to
[1.0, 1.0], [0.6, 1.0] and the precision is still 1. At the third iteration, among true
positives C,D,E and F , we pick D with the largest Δtp − Δfp. To illustrate,
adding C to the result set will result in MBR shown in Fig. 8(b) with Δtp−Δfp=
|{C, D, E, F}| - |{H, J}| = 2 , while adding D will result in the MBR shown in
Fig. 8(c) with Δtp − Δfp= |{D, E, F}| - 0 = 3.

The Insertion algorithm is similar to Deletion algorithm. The pseudo-code of
this algorithm is shown only in [13] due to space limitations.
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Fig. 8. Greedy by Insertion

5 Experimental Results

To validate the effectiveness and efficiency of our algorithms, we generated 100
synthetic datasets, each of which consisted of 10000 tuples with 5 ranking at-
tributes. The ranking function F is the sum of all of the ranking attribute values.
Each dataset was tested 100 times. Our Greedy Algorithms were implemented
in C++ using an ODBC connection. All of the performance measurements, our
proposed method, Perfect Recall and Mondrian, were performed on a 3.3GHz In-
tel Dual Core Processor with 2GB RAM running Windows OS. The experiment
parameters are summarized below:

Parameter Result size (k) precision (prec) dimension (m) cardinality (n)
Default value 20 0.7 5 10000

To validate the effectiveness of the approach, we can show the success ratio
per top-k query as displayed in Fig. 9. We also compared the results from our
Greedy Algorithms to optimal solutions when the optimal solutions are known
as in Fig. 10. Finally, we can now show the efficiency of our algorithms in terms
of time as seen in Fig. 11.

Fig. 9 compares our Greedy Algorithms with Perfect Recall and Mondrian in
terms of the success ratio as the ranking requirement k increases. When a user
requests a top-k query, each algorithm may not be able to satisfy both k and p.
For each k, the result is an average from 100 executions. Our Greedy Algorithms
succeed far more times than Perfect Recall and Mondrian. This is expected in
the case of Mondrian as it does not consider the ranking of tuples in partitioning
and suffers from the lowest success rate. PerfectRecall performs better when k is
small, but still only succeeds in about half the amount of times when compared
to our Greedy Algorithms. When k becomes as large as 20, PerfectRecall always
fails to satisfy p.

Fig. 10 shows how our Greedy Algorithms compare to an optimal solution. We
generated special datasets where the optimal solution with the highest precision
is known for a given k and p, and applied our Greedy Algorithms to them. The
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Fig. 10. Precision of results

y-axis shows the precision achieved for each dataset on the X-axis, as specified by
experiment ID numbers. Admittedly our solution does not always find a solution,
but when it does, the gap between it and the optimal is never lower by more
than 0.1, and also in terms of ratio our Greedy Algorithms achieve above 90%
relative to the optimal solution.

Fig. 11 compares the efficiency time of our algorithms to others by measuring
the execution time as k increases. Since PerfectRecall gets its MBR from top-k
ranking algorithm, it would not incur any extra cost. For this reason, Fig. 11
does not depict the computational time of PerfectRecall but one can imagine this
being 0. Each data point is from an average of 100 executions. Since Mondrian
divides data into equal-sized datasets, the computational time is not affected
by k. On the other hand, our Greedy Algorithms need more iterations as k
increases and therefore, our execution time increases fast. However, note that
this k is limited by the privacy requirement kp, which usually is much smaller
than kq. For example, if a user requests the top-100 queries with 10-anonymity,
our execution time is dominated by 10 and, not by 100. To be precise, it takes
less than 1.5 seconds to compute a result set of this type. As future work, we
plan to experiment with more heuristics and realistic kp and kq values.



k-ARQ: k-Anonymous Ranking Queries 427

10 11 12 13 14 15 16 17 18 19 20
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

K

T
im

e(
s)

Deletion
Insertion
Mondrian

Fig. 11. Computational time

6 Related Work

Ranking queries have been actively studied, as an effective means to narrow
down to a relevant data subset in large-scale repositories [1,2,3,4]. Most existing
algorithms focus on optimizing the computation of such results and reveals all
the information for the top-k results, i.e., identifiers, attribute values, and rank
ordering, which may include sensitive data on each individual.

To protect privacy, the notion of k-anonymity [5] has been introduced, to
publish an “anonymized” table with the assurance that no individual can be
uniquely distinguished from k − 1 other tuples. In order to move toward this
direction of publishing anonymized tables, the problem is proved to be NP-
hard problem for k > 3 in [10], followed by efficient approximation partitioning
algorithms algorithms [11,12] and clustering algorithms [14,15]. The limitations
of k-anonymity were discussed and mitigated in l-diversity [6], m-invariance [7], t-
closeness [8], and also in variations of k-anonymity such as (α, k)-anonymity [16]
and (p+, α)-anonymity [17].

A straightforward solution to our proposed problem with kp and kq require-
ments is to apply these anonymization algorithms over top-kq tuples returned
by top-k query algorithms such as TA-family algorithms [1,2,3,4]. We use one
of the algorithms, Mondrian [11], as part of our performance evaluation as a
reference point. However, there are limitations in this basic application. Most
approximation algorithms assume that there are many more tuples than kp and
use some form of partitioning to ensure kp-anonymity, so when the input size kq

is already close to kp, they either cannot partition the input and fail to achieve
kp-anonymity, or have to include too many tuples that are not in the top-kq

results and sacrifice data quality as discussed in Section 2.
To pursue the dual requirements of the privacy and ranking accuracy, the

privacy-preserving top-k query algorithm [9] returns the exact top-k results but
publishes no other attribute values. For example, if a user wants to find top-
100 most popular search keywords is, then the algorithm returns the 100 search
keywords but no other information such as how many searches were done for
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each keyword or in, which region each keyword. Since this algorithm does not
publish any attributes, it is very difficult to infer any meaningful statistics from
the results, e.g., attributes’ sensitivity to rankings or attribute correlations.
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Abstract. Evaluating a traditional database query against a data tu-
ple yields true on match and false on mismatch. Unfortunately, there
are many application scenarios where such an evaluation is not possible
or does not adequately meet user expectations about vague and uncer-
tain conditions. Thus, there is a need for incorporating impreciseness and
proximity into a logic-based query language. The calculus query language
CQQL [24] has been developed for such scenarios by exploiting results
from quantum logic. In this work we will show how to integrate under-
lying ideas and concepts of CQQL into SQL.

Keywords:databasequery language,SQL, information retrieval,DB&IR.

1 Introduction

Evaluating a traditional database query against a data tuple yields true on
match and false on mismatch. Unfortunately, there are many application sce-
narios where such an evaluation is not possible or does not adequately meet user
needs. One problematic application area is information retrieval where finding
a complete match in general is hardly possible. Thus, there is a need for incor-
porating the concepts of impreciseness and proximity into a logic-based query
language. To motivate and exemplify the following principles and ideas we in-
troduce a running scenario which is dealing with the sale of TV sets. Amongst
other attribute values, the following properties are stored for a single TV set:
name, handling (ha), image quality (iq), existence of an optical sound port
(osp), sound quality (sq) and status (st). The three attributes handling, image
quality and sound quality contain a rating value for the respective properties
decoded as marks from 1 to 6. Whereas, mark 1 stands for an excellent test
result and mark 6 signals an inadequate quality for the tested feature. The do-
main of the attribute status (st) comprehends the three values available, sold
and ordered, whereby the underlined abbreviations are used for brevity. Table 1
gives an extracted part of a given data spreadsheet.

The user defines her/his query as: I want to find a device with a handling
as easy as possible and the best possible quality of image. If a device is not
able to offer a link to a sophisticated sound system via an optical sound port,
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the internal sound quality has to be as high as possible. We can formalise the
condition as:

ha ≈ 1 ∧ iq ≈ 1 ∧ (osp = no ⇒ sq ≈ 1) (1)

The vagueness of the subconditions handling as easy as possible (ha ≈ 1), best
possible quality of image (iq ≈ 1) and sound quality as high as possible (sq ≈ 1)
cannot be adequately mapped to Boolean truth values. As an inadequate at-
tempt, Table 1 gives the truth values for a Boolean evaluation in round brack-
ets, where the threshold value for an acceptable mark is assumed to be 2. The
numeric values in squared brackets and the column scoreval will be discussed
later. Obviously, important information are getting lost by the usage of classical
Boolean logic. As a consequence, the provided result items are not distinguish-
able at all. For instance, the TV sets TV1, TV2 and TV3 return all the same
positive result true for Query 1, in spite of the fact that TV set TV2 has to
be acknowledged as the best choice, when the properties handling, image
quality and sound quality in conjunction with the considered query are
taken into account.

Table 1. Spreadsheet of tested TV sets

TV set
name ha iq osp sq st scoreval
TV1 2 (T) [0.8] 2 (T) [0.8] yes (T) [1.0] 2 (T) [0.8] a 0.72
TV2 2 (T) [0.8] 1 (T) [1.0] yes (T) [1.0] 1 (T) [1.0] s 0.9
TV3 1 (T) [1.0] 2 (T) [0.8] no (F) [0.0] 1 (T) [1.0] o 0.64
TV4 3 (F) [0.6] 1 (T) [1.0] no (F) [0.0] 4 (F) [0.4] a 0.32
. . . . . . . . . . . . . . . . . . . . .

Generally, the user rather wants to see how near to her/his vision certain
product offers are. Data objects fulfill such queries to a certain degree which can
be represented by a value out of the interval [0, 1]. Based on these score values a
ranking of all data objects becomes possible which helps to distinguish the result
items. Further examples of this kind of uncertain queries can be found in [2].

Our quantitative approach presented in [24] incorporates score values into a
logic by exploiting a retrieval model based on quantum logic [3]. An essential
advantage of this approach is to preserve the laws of the Boolean logic, given
certain syntactical and semantical constraints are respected. Based on quantum
logic the calculus query language CQQL, Commuting Quantum Query Language,
has been developed as an extension of relational domain calculus. The main
contribution of this work is the integration of CQQL concepts in combination
with a novel weighting approach into SQL.

Next section gives a brief overview about the query language CQQL. Related
works and comparable approaches are discussed in Section 3. Section 4 presents
the core functionality of QSQL by defining syntax and semantics. In Section 5
we sketch the implementation architecture and present performance experiments
with QSQL. Finally, a summary and a outlook is given in Section 6.
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2 The Quantum Query Language CQQL

In this section we sketch the basic principles behind evaluating a tuple t against
a given CQQL condition c. For readers with special interest in the theoretical
foundation we give a more detailed explanation of the retrieval model behind
CQQL in [24] and [14]. In comparison to [24] we describe in [14]1 the concepts
in a much more intuitive way which does not require knowledge of quantum
mechanics.

In general, CQQL enables the logic-based construction of queries starting from
traditional Boolean and similarity conditions. The underlying idea is to apply
the theory of vector spaces, also known from quantum mechanics and quantum
logic, for query processing.

All attribute values of a tuple t are embodied by the direction of a normalised
vector. The condition c itself corresponds to a vector subspace also called con-
dition space. The evaluation result is then determined by the minimal angle
between tuple vector and condition space. The squared cosine of this angle is a
value out of the interval [0, 1] and can therefore be interpreted as a similarity
measure as well as a score value. A method for a convenient computation of the
desired squared cosine of this angle is developed in [24]. It allows to evaluate a
tuple t against a normalised (see below) condition c constructed by ∧,∨ and ¬
recursively as follows:

eval(t, c) = ϕ(t, c) if c is atomic, (2)
eval(t, c1 ∧ c2) = eval(t, c1) ∗ eval(t, c2) (3)
eval(t, c1 ∨ c2) = eval(t, c1) + eval(t, c2)− (4)

eval(t, c1 ∧ c2)

eval(t,¬c) = 1− eval(t, c) (5)

whereby c1 and c2 are arbitrary subconditions. The function ϕ(t, c) returns the
evaluation of a single similarity predicate c as ‘ha ≈ 1’. Its structure depends on
the domain of the queried attribute of t. In general, any set of similarity values
which can be produced by the scalar product of normalised vectors is supported.
That is, the similarity values must form a semi-positive definite correlation
matrix.

The defined operations 3 and 4 can only be applied, if the considered condi-
tion c is evaluated in a specific syntactical form. In this normal form only mu-
tually exclusive subconditions or subconditions with disjoint sets of restricted
attributes are allowed. The algorithm norm [24] transforms an arbitrary con-
dition into the required normal form by using logical transformation rules as
idempotence1, absorption2 and distributivity3. To preserve these logic laws we
need following restriction in CQQL: In a valid condition any attribute
must not be queried by more than one constant in a similarity pred-
icate. This restriction will be respected by QSQL. Consequently, the query
1 Idempotence: A ∧A ≡ A and A ∨ A ≡ A.
2 Absorption: A ∨ (A ∧B) ≡ A and A ∧ (A ∨ B) ≡ A.
3 Distributivity: A∧ (B∨C) ≡ (A∧B)∨ (A∧C) and A∨ (B∧C) ≡ (A∨B)∧ (A∨C).
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‘ha ≈ 1∨ ha ≈ 3’ is not allowed in CQQL/QSQL. Please notice, that the condi-
tion ‘(ha ≈ 2∧sq ≈ 1)∨(ha ≈ 2∧iq ≈ 1)’ is valid, because the attribute ha is re-
stricted by the same constant 2 in both occurrences. Furthermore, CQQL/QSQL
assume that the evaluations of atomic conditions is based on attributes being
independent from each other.

Using more than one similarity conditions on different attributes often causes
a new problem: which importance on the result should one condition have in
comparison to another one? So, in the context of our scenario the user could
decide that the impact (weight) of the handling condition should be only a half
of the influences of the image condition.

The integration of weights into the CQQL formalism is surprisingly simple,
in contrast to the approach from Fagin and Wimmers [10]. At first we assign a
weighting variable θi ∈ [0, 1] to each operand (subcondition) of a conjunction or
disjunction, e.g. c1 ∧(θ1,θ2) c2. A weighting variable θi controls the influence of
the score value produced by evaluating the subcondition ci. The main idea of our
weighting approach is the application of two syntactical substitution rules. They
convert a weighted conjunction and a weighted disjunction into unweighted ver-
sions of the respective operations. For this purpose, we insert weighting constants
as fixed score values into the logical formula q:

c1 ∧(θ1,θ2) c2 � (c1 ∨ ¬θ1) ∧ (c2 ∨ ¬θ2) (6)
c1 ∨(θ1,θ2) c2 � (c1 ∧ θ1) ∨ (c2 ∧ θ2) (7)

To elucidate the mechanism behind the substituted formulas we will examine
two extreme cases in more detail. A weighting variable of 0 (θi = 0) leads to
a behaviour that the corresponding subcondition ci has no longer any effect on
the final evaluation result. On contrary, if both weight variables are equal to 1
(θ1 = θ2 = 1), we achieve the same evaluation result generated by applying the
unweighted versions of conjunction and disjunction.

Applying the weighting approach to a weighted version of Query 1 we achieve:
(ha ≈ 1 ∧0.5,1 iq ≈ 1) ∧ (osp = no ⇒ sq ≈ 1) ≡
(ha ≈ 1 ∧0.5,1 iq ≈ 1) ∧ (¬(osp = no) ∨ sq ≈ 1)

� ((ha ≈ 1 ∨ ¬(0.5)) ∧ (iq ≈ 1 ∨ ¬(1.0)))∧
(¬(osp = no) ∨ sq ≈ 1)

The column scoreval in Table 1 gives the score values produced by the last
query. The single score values for the respective predicates, e.g. ‘ha ≈ 1’, are
given after the queried marks in squared brackets.

3 Related Work

The integration of vague and unprecise conditions into a logic-based query lan-
guage is a so far not satisfactorily solved research problem [7,15,21,25]. Proposed
approaches tackling this problem can be classified into qualitative (without score
values) and quantitative (with score values) methods.

Qualitative approaches: A famous example of a qualitative technique is the
skyline operator [5] which can be considered as a special case of the winnow op-
erator [6]. It filters out interesting tuples from a potentially large result set. The
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domination condition of a skyline operator relies on Boolean logic. Therefore, a
homogeneous result set is produced once more which cannot sufficiently express
different degrees of query matching.

Quantitative approaches: On the contrary, quantitative methods work with
score values. For instance, object-relational database systems already use score
values for evaluating multimedia conditions. However, score values are outside
the logic. Thus, it is required to reduce score values into Boolean truth values4
before a logic-based query evaluation can take place.

Other quantitative approaches often apply fuzzy logic [4,23,26]. The main
principle of fuzzy set theory is to generalise the concept of set membership [27].
In classical set theory a characteristic function 1A : Ω → {0, 1} defines the
memberships of objects ω ∈ Ω to a set A ⊂ Ω, whereby 1A(ω) = 1, if ω ∈ A and
1A(ω) = 0 otherwise. In fuzzy set theory the characteristic function is replaced by
a membership function μM : Ω → [0, 1], that assigns numbers to objects ω ∈ Ω
according to their membership degree to a fuzzy set M . Membership degrees can
be used to represent different kinds of imperfect knowledge, including similarity,
preference, and uncertainty.

Conjunctions and disjunctions of fuzzy membership degrees are evaluated by
special classes of functions called t-norms and t-conorms, respectively. For input
values from {0, 1}, all t-norms and t-conorms behave like the Boolean conjunction
and disjunction. For the values in between, however, different behaviours are
possible. [27] suggests the usage of max for ∨, min for ∧ and (1−μM (x)) for ¬.
Thus, the example condition ‘(st = a ∨ st = o) ∧ ha ≈ 1’ would be evaluated by
min(max(μ[st=a](t), μ[st=o](t)), μ[ha≈1](t)), whereby the fuzzy set μ[ha≈1](t), for
instance, represents the fulfilling of condition ‘ha ≈ 1’ by tuple t.

The functions min/max are the standard t-norm/t-conorm because it is the
only idempotent2 and first proposed set of functions [27]. Nevertheless, [13] shows
that the application of min/max differs from the intuitional understanding of a
combination of values, because the binary min/max functions return only one
value. This leads to a value dominance of one of the two input values while the
other one is completely ignored [12,13].

To exemplify this disadvantage of min/max we consider the condition ‘c1 ≡
ha ≈ 1∧ iq ≈ 1’. Then, the following equations describe the evaluation by fuzzy
logic with min/max (Eq. 8) in comparison to the CQQL/QSQL evaluation (Eq.
9 and 10) introduced in the previous section:

evalF/min(t, c1) = min(μ[ha≈1](t), μ[iq≈1](t)) (8)
evalQ(t, c1) = evalQ(t,norm(ha ≈ 1 ∧ iq ≈ 1)) (9)

= ϕ(t, ha ≈ 1) ∗ ϕ(t, iq ≈ 1) (10)

Furthermore, we assume two tuples t1[ha, iq] = (1, 5) and t2[ha, iq] = (1, 1). To
evaluate c1 we need score values for each fuzzy set and predicate, e.g. μ[ha≈1](t1)
or ϕ(t1, ha ≈ 1). We set the score value 1.0, if the queried property is rated by the
best possible mark 1. Thus, μ[ha≈1](t1) and ϕ(t1, ha ≈ 1) are evaluated to 1.0,
4 For example, by comparison with a threshold.
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since t1 is rated by mark 1 for handling. On the contrary, mark 5 results to the
score value 0.2, i.e. μ[t1,iq≈1](t1) = ϕ(t1, iq ≈ 1) = 0.2. If we now apply Equation
8 to t1 and t2, i.e. evalF/m(t1, c1) = evalF/m(t2, c1) = 1.0, we can see that t1 and
t2 cannot be distinguished by the min/max evaluation (in spite of tuple t2 has
an excellent mark in both criteria). Thus, min/max cannot express influences
or grades of importance of both values on a result. In contrast, CQQL/QSQL
involves both values and therefore avoids the dominance problem of min/max:
evalQ(t1, c1) = 0.2 and evalQ(t2, c1) = 1.0.

The algebraic product a · b for ∧ and the algebraic sum a + b − a · b for ∨,
which overcomes the dominance problem of min/max, has been also proposed
in fuzzy logic [19]. However, a large number of logical laws and semantically
equivalences is known from Boolean logic. A user who is intuitively familiar
with this equivalences would expect that the same rules are still valid in fuzzy
logic and CQQL/QSQL. For instance, the logical combination of a condition
with itself, e.g. ‘c2 ≡ iq ≈ 1 ∧ iq ≈ 1’, should produce the same result as given
by evaluating this condition alone2.

Unfortunately, in fuzzy logic the algebraic product is not idempotent2 and
thus no distributivity4 holds. This can be easily shown:

evalF/prod(t, c2) = μ[iq≈1](t) ∗ μ[iq≈1](t) = (μ[iq≈1](t))2 (11)
evalQ(t, c2) = evalQ(t,norm(iq ≈ 1 ∧ iq ≈ 1)) (12)

= ϕ(t, iq ≈ 1) (13)

Referring to the user expectation we achieve an incorrect result evalF/prod(t1, c2)
= 0.04 �= 0.2 = evalF/prod(t1, iq ≈ 1) in fuzzy logic, if the score values for t1
are assumed as above. Contrarily, CQQL/QSQL computes the correct result
evalQ(t1, c2) = 0.2, because of its normalisation algorithm (Eq. 12) recognises
that the underlying condition space (Sec. 2, [14]) for ‘iq ≈ 1’ is intersected by
itself. Therefore, the operation ‘iq ≈ 1 ∧ iq ≈ 1’ can be simplified to ‘iq ≈ 1’
before any evaluation rule is applied (Eq. 13).

In general, CQQL/QSQL is able to differentiate semantical cases by applying
Boolean transformation rules on vector spaces during the normalisation. This
is impossible in fuzzy logic because required semantics are hidden behind the
membership values of the given fuzzy sets [22]. Table 2 summarises the discussed
properties.

Table 2. Properties of different evaluation models

Model Scores Idempotence Non-dominating
Boolean logic no yes -
Fuzzy logic (min/max) yes yes no
Fuzzy logic (product) yes no yes
CQQL/QSQL yes yes yes

Probabilistic approaches proposed for example in [20] pan the responsibility
for the definition of the correct semantics for conjunction and disjunction to
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the user. [11] presents several top-k processing techniques using score values
computed by score functions. The applied arithmetic score functions, however,
do not support logic-based conditions.

SQL: An order by-clause in SQL also performs a ranking of resulting tuples
[9]. However, the order condition is simple based on data values. Arbitrary logical
formulas cannot be used in SQL to specify an order condition.

4 Integration of CQQL Concepts into SQL

The Structured Query Language (SQL) is the de facto standard for accessing
database systems. Since its introduction in the 70s and its first standardization in
1986 the practical significance of SQL has grown enormously. In this section we
will show how we extend SQL’s capabilities by CQQL concepts. For this purpose,
we establish a new SQL dialect called Quantum SQL (QSQL). For defining
syntax and semantics we will refer to the core functionality of SQL-92 [9], which
covers the well-known relational algebra operations: selection, projection, union,
intersection, difference, join and grouping. Object-relational concepts introduced
in SQL-99 [1] are not supported by QSQL yet.

We have customised a SQL-92 grammar by inserting QSQL keywords. Ob-
viously, we have to omit a presentation of the whole grammar consisting of 82
rules. Nevertheless, we will state the syntactical characteristics for each basic
operation in the following subsections.

For evaluating QSQL queries we develop a mapping between QSQL and SQL-
99 [1]. In consequence, every QSQL query can be evaluated against a relational
database system, which supports SQL-99, after a normalisation and a further
syntactical transformation. In fact, these transformation rules define the seman-
tics of QSQL.

In the remainder, our SQL-99 example statements are ran against the Oracle
11g database system [18]. However, the mapping is designed in a way that a
simple adaption to other database systems is possible. We will mention possible
marginal differences between the SQL-99 standard syntax and the respective
Oracle variant.

4.1 Selection

An important semantical distinction between selecting tuples in QSQL and in
SQL is the representation of the result. In Boolean logic a subset of tuples con-
stitutes the outcome of a given query. As already stated, there is a different
situation for queries including similarity conditions. In this case each tuple pro-
duces a score value expressing the degree of fulfilling. Therefore, the query result
is achieved by a list of all tuples ordered by their score values. In our approach,
the score value is encoded in an additional attribute scoreval, which is auto-
matically generated during the evaluation process.

Syntax in QSQL: A tuple selection in QSQL can be formulated in the same
way as in SQL. The logical selection-condition is placed in the where-clause. In
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addition to SQL, there exists the option to apply similarity predicates indicated
by the similarity operator : ∼. As an example we will examine following query:
Determine all available TV sets with a handling as easy as possible. Listing 1.1
gives the QSQL statement for the example.

� �

select name
from tv_set
where ( st=’a’ and ha ~ 1 ) and scoreval > 0
order by scoreval desc

� �

Listing 1.1. Selection with similarity condition in QSQL

Mapping to SQL-99: The transformed SQL-99 statement usually includes a
huge number of auxiliary functions implemented in the database programing
language PL/SQL [16]. Basically, there are two types of supporting PL/SQL-
functions: (1) score functions computing score values for single predicates and
(2) logical operator functions connecting subconditions.

As an example for a score function, consider the similarity predicate ‘ha ≈ 1’
of our current example. Then, the PL/SQL-function HA_TO_SCORE(ha, 1)
calculate the score value as normalised distance between the attribute value of
ha and the best possible mark 1. The used calculation formula is directly inferred
from the CQQL evaluation function ϕ(t, c) for single predicates (Sec. 2). All score
functions which are used during the evaluation processing have to be known to
the database system in advance. The deployment of them can be automatically
accomplished via the construction of the underlying tables.

Besides score functions, the resulting score value also depends on the logical
combination of subconditions realised by logical operators. In SQL-99 we apply
the PL/SQL-functions LAND, LOR and LNOT to implement the operator seman-
tics given in Section 2 (Eq. (3),(4) and (5)). So, we map the structure of the
logical select-conditions to corresponding nested PL/SQL-function calls. Since
the computed score value is assigned to the new attribute scoreval we have to
transfer the evaluation of logical select-conditions from the where-clause to the
select-clause. Using the example in Listing 1.1, Listing 1.2 gives the outcome
of mapping QSQL to SQL-99.

� �

select name, LAND( EQUAL( st, ’a’ ), HA_TO_SCORE( ha, 1 ) ) as scoreval
from tv_set
where scoreval > 0
order by scoreval desc

� �

Listing 1.2. Transformed select-statement in SQL-99

The usage of the function EQUAL(st,’a’) is necessary because Oracle can-
not cast the result of a comparison expression, e.g. ‘st=’a’’, to a numeric value
within the select-clause. Please notice, the given statement in Listing 1.2 is
simplified in a sense that a repeated calculation of the score value in the where-
clause is abbreviated by the attribute name scoreval. Actually, the Oracle
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SQL parser expects here the evaluation expression of scoreval again. This
simplification is used in the remainder of this work.

Next we integrate our weighting approach (Sec. 2). Please regard the query:
Determine all TV sets with a handling as easy as possible and an image quality as
good as possible. The rating of the handling property should be twice as important
as the image quality benchmark. According to the linguistic weighting terms we
set a weight of 0.5 on the image quality subcondition and a weight of 1.0 on the
handling subcondition.

Syntax in QSQL: In QSQL a user can assign a weighting constant from the
interval [0, 1] to an arbitrary subcondition. The indicating keyword weighted
by is written behind the concerned subcondition. If a weighting constant for a
subcondition is missing, QSQL implicitly assumes the constant value 1.0 for this
subcondition. Listing 1.3 gives the last example expressed as QSQL statement.

Mapping to SQL-99: Before we can map logical select-conditions to PL/SQL-
functions we have to dissolve the weighted versions of the logical operators.
By applying the substitution rules (Eq. (6) and (7)) we can establish a logical
formula on unweighted operators: (ha ≈ 1∧(0.5,1.0) iq ≈ 1) � (ha ≈ 1∨¬0.5)∧
(iq ≈ 1 ∨ ¬1.0). The SQL-99 version of the last QSQL statement is given in
Listing 1.4.

� �

select name
from tv_set
where ( ha ~ 1 ) WEIGHTED BY 0.5 and iq ~ 1

� �

Listing 1.3. Weighted selection in QSQL

4.2 Projection

In SQL a projection is used to define the column structure of the resulting table
by means of a given attribute list.

In contrary to relational algebra, which is set -oriented, SQL allows duplicated
tuples in tables. If you intend to eliminate these duplicates, you have to use
the keyword distinct in the select-clause. We investigate the distinct and
the non-distinct version of the projection by studying the query: Determine all
producers of TV sets with a handling as easy as possible.

� �

select name, LAND(
LOR( HA_TO_SCORE( ha, 1 ), LNOT( 0.5 ) ),
LOR( IQ_TO_SCORE( iq, 1 ), LNOT( 1.0 ) ) ) as scoreval

from tv_set
where scoreval > 0
order by scoreval desc

� �

Listing 1.4. Transformed weighted selection in SQL-99

Syntax in QSQL: The syntax for projecting attributes in QSQL does not differ
from the usual SQL syntax. The select-clause and the keyword distinct are
used in QSQL in the same way.
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Mapping to SQL-99: For the non-distinct version we can state that the pro-
jection has no effect on score values. Consequently, we simple copy the projection
attribute list from the select-clauses of QSQL to SQL-99.

Though, for the distinct-case a simple SQL-99 distinct is not sufficient,
because duplicated tuples can possess different score values. The question is
now: What is the appropriated score value for the condensed tuple in the result
table? To answer this question we refer to the strong relationship between the
∃-quantifier of the relational domain calculus and the projection operation of the
relational algebra. In [17] a mapping between an arbitrary (safe) domain calculus
formula and an algebra expression is defined. Thereby, a ∃-quantifier is mapped
to a projection operation and vice versa, e.g. {(Y ) | ∃X : R(X, Y ) ∧ X < 10} ≡
πY (σX<10(R)), whereby X, Y are numeric variables/attributes and R denotes a
relation over a relation schema (X, Y ).

As already emphasised, the CQQL formalism extends the relational domain
calculus. In this sense, we preserve the equivalence between the ∃-quantifier
and the projection. We choose the maximum function, which evaluates the ∃-
quantifier in CQQL [24], to determine the score value of the resulting tuple.
The implementation in SQL-99 utilises a grouping operation over all projected
attributes together with the aggregation function max (Listing 1.5).

� �

select producer, max( HA_TO_SCORE( ha, 1 ) ) as scoreval
from tv_set
group by producer
having scoreval > 0
order by scoreval desc

� �

Listing 1.5. Transformed projection in SQL-99

4.3 Union, Intersection and Difference

The union of two tuple sets E = E1 ∪ E2 is one of the classical set operations,
besides intersection and difference, provided by QSQL.

In the context of score values we have to revise the traditional semantics of
the union operation. First of all, the union of two sets is obviously related to
the disjunction of two subconditions in the domain calculus [17]. For instance,
following expressions are equivalent: {(X) | R(X) ∧ (X < 10 ∨ X > 15)} ≡
σX<10(R) ∪ σX>15(R), when X is a numeric variable/attribute and R denotes
a relation over a relational schema (X). Next, we denote the score value of a
tuple t contained in a tuple set Ej by the term svEj (t) ∈ [0, 1]. The resulting
score value svE(t) of E = E1∪E2 has to be achieved by combining the two score
values svE1(t) and svE2(t) regarding the same tuple t.

Considering the membership of t to the input sets E1 and/or E2 there are
three computation cases to deal with:

svE(t) =

⎧⎪⎨⎪⎩
svE1(t) + svE2(t)− svE1(t) ∗ svE2(t) if t ∈ E1 ∧ t ∈ E2

svE1(t) if t ∈ E1 ∧ t /∈ E2

svE2(t) if t /∈ E1 ∧ t ∈ E2
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For determining svE(t) we apparently take advantage of the evaluation rule for
the disjunction in CQQL (Eq. (4)).

To exemplify the mapping of a union operation following example query is
chosen: Determine all producers which are capable to offer a TV set or a DVD
player. Both devices should be characterised by a handling being as easy as possi-
ble. To process this query we introduce the relation dvd_player with the relation
schema (name, ha, producer, supplier, delivery_date).
Syntax in QSQL: QSQL uses the keyword union to indicate the union of two
tuple sets. We give the example as QSQL statement in Listing 1.6.

� �

select producer
from (

select producer from tv_set where ha ~ 1
union
select producer from dvd_player where ha ~ 1 )

� �

Listing 1.6. Union of two tables in QSQL

Mapping to SQL-99: For calculating svE(t) we split the resulting tuple set E
into three disjoint sets whereby each of them corresponds to a single computa-
tion case of svE(t). The respective SQL statement is shown in Listing 1.7.

� �

select producer, max( scoreval )
as scoreval

from (
select E1.producer, LOR( E1.scoreval, E2.scoreval ) as scoreval
from

( select producer, HA_TO_SCORE( ha, 1 ) as scoreval
from tv_set ) E1,

( select producer, HA_TO_SCORE( ha, 1 ) as scoreval
from dvd_player ) E2

where E1.producer = E2.producer
union all
select producer, HA_TO_SCORE( ha, 1 ) as scoreval
from tv_set
where producer not in ( select producer from dvd_player )

union all
select producer, HA_TO_SCORE( ha, 1 ) as scoreval
from dvd_player
where producer not in ( select producer from tv_set ) )

group by producer
having scoreval > 0
order by scoreval desc

� �

Listing 1.7. Transformed union of two tables

The extended similarity semantics of the intersection (E = E1 ∩E2) and the
difference operation (E = E1\E2) are analogously specified. Thus, we establish
svE(t) for the intersection operation as svE1(t) ∗ svE2(t). Obviously, the com-
putation of the intersection exploits the evaluation rule for the conjunction in
CQQL (Eq. (3)). As for the union operation the score value for the difference is
based on more than one computation case:
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svE(t) =

{
svE1(t) ∗ (1− svE2(t)) if t ∈ E1 ∧ t ∈ E2

svE1(t) if t ∈ E1 ∧ t /∈ E2

Concerning the first case the second score value svE2(t) has a negative effect on
the resulting score value svE(t). We can affirm these semantics by considering
a simple Boolean-based evaluation. In this particular context the input score
values svE1(t) and svE2(t) would be 1.0 (true). So, we obtain a resulting score
value of 0.0 (false) which is equivalent to the fact that the considered tuple t
must be subtracted from E1 when t is also given in E2.

Because of the conceptual correspondences between union, intersection and
difference we will omit special example queries for the intersection and difference
operation.

4.4 Join and Grouping

From relational algebra we know that each type of a join operation (inner, outer,
natural) can be implemented by the already introduced operations (projection,
selection, set operations) and a cross product over several input relations. There-
fore, we refer to the discussion about these operations, whereas the score value
for a combined tuple in a cross product is the product of the two input tuple
score values.

The group operation is used to group a set of tuples with related values. It
is very often applied together with a SQL aggregate function, e.g. max, min or
sum. Merging tuples from a group of tuples is related to the projection operation
which we have already discussed above. Due to this correlation we make use of
the maximum function again to compute the score value of the resulting tuple.
Besides the score value produced by the implicit projection, we must also take
the optional having-clause into account. Precisely, we must combine both score
values conjunctively to get the final score value. For brevity, we omit a special
example query for the grouping.

5 Implementation and Experiments
Java application

Normalisation
Transformation

JDBC-Driver

Oracle DBS

QSQL-Library

QSQL

SQL-99

Fig. 1. Implementation archi-
tecture of QSQL

In this chapter we briefly describe the ar-
chitecture of QSQL (Fig. 1). To avoid a di-
rect manipulation of Oracle’s internal processes
we have developed a special QSQL library
QSQLforOracle extending the usual Oracle
JDBC driver [8] for Oracle 11g. It manages the
connection and the communication between a
Java application and an Oracle database. Mainly,
it takes QSQL queries from a Java application,
normalises and transforms them into SQL-99
statements which will be finally sent to the Ora-
cle database server.
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By using the QSQL library as a separate normalisation/transformation layer
existing databases can also benefit from QSQL. For this purpose, the database
administrator must only deploy the score functions (Sec. 4), what can be auto-
matically realised by the adapted QSQL commands create table and alter
table.

Table 3. Performance test in
seconds

Model Time
SQL 0.04
QSQL/unsorted 0.14
Skyline 1.01
Fuzzy/sorted 19.01
QSQL/sorted 19.25

In Section 3 we gave a comparison between
the usability and expressiveness of different qual-
itative and quantitative approaches. In Table 3
we present a performance test exploiting Query
1 (Sec. 1) and a set of 100, 000 TV sets. The
adapted queries of all approaches are formulated
in SQL-99 and are performed on an Oracle 11g
database system5.

Not surprisingly, the processing times of the
Boolean-based approaches SQL with a threshold
mark 2 and skyline with a nested select-clause
implementation as described in [5] are clearly better than the observed time
values for the quantitative approaches Fuzzy logic with min/max as t-norm/t-
conorm and QSQL. As already mentioned, in quantitative approaches we sort
resulting tuples by their score values. Comparing the unsorting QSQL query
(0.14 seconds) with the sorting one (19.25 seconds) reveals that the main contri-
bution to the processing time is caused by the final sorting step. An optimised
top-k operator could avoid a sorting of all resulting tuples. Ongoing research
activities are dealing with this issue.

6 Summary and Outlook

In this paper we proposed a new SQL dialect called QSQL which integrates the
evaluation concepts of the quantum logic-based query language CQQL into SQL.
For this purpose, the basic idea of the theoretical model behind CQQL was given.
Later, we defined syntax and semantics of QSQL by means of mapping QSQL
queries to SQL-99 statements. Various example queries from a running scenario
illustrated the introduced principles. Finally, we sketched the implementation
architecture of the QSQL and gave an impression about the performance issues
of QSQL.

The next step is to extend the functionality of QSQL by further operations,
e.g. a top-k operator, and more efficient mapping techniques.
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Abstract. This paper studies a new query on uncertain data, called k-selection
query. Given an uncertain dataset of N objects, where each object is associated
with a preference score and a presence probability, a k-selection query returns k
objects such that the expected score of the “best available” objects is maximized.
This query is useful in many application domains such as entity web search and
decision making. In evaluating k-selection queries, we need to compute the ex-
pected best score (EBS) for candidate k-selection sets and search for the optimal
selection set with the highest EBS. Those operations are costly due to the ex-
tremely large search space. In this paper, we identify several important properties
of k-selection queries, including EBS decomposition, query recursion, and EBS
bounding. Based upon these properties, we first present a dynamic programming
(DP) algorithm that answers the query in O(k · N) time. Further, we propose a
Bounding-and-Pruning (BP) algorithm, that exploits effective search space prun-
ing strategies to find the optimal selection without accessing all objects. We eval-
uate the DP and BP algorithms using both synthetic and real data. The results
show that the proposed algorithms outperform the baseline approach by several
orders of magnitude.

1 Introduction

Data uncertainty is pervasive in our world. A web search engine returns a set of pages
to a user, but cannot guarantee all the pages are still available. An on-line advertise-
ment site lists many products with nice discounts, but some of them are already sold
out in store. A GPS navigator may display nearest restaurants, but some of them may
be already full. In presence of data uncertainty, effective queries that facilitate the re-
trieval of desired data items are urgently needed. In the past few years, several Top-k
query semantics [14,10,11,7] for uncertain data have been proposed, trying to capture
the possibly “good” items. However, these proposals do not address a very common
problem, i.e., a user is typically only interested in the “best” item that is “available”.
For example, a used car shopper buys the car of his preference that is still for sale.
Based on this observation, in this study, we present a new and novel query operator
over uncertain data, namely, k-selection query. Given that the uncertain availability of
data items is captured as a probability, the k-selection query returns a set of k candi-
date items, such that the expected score of the best available item in the candidate set is
optimized.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 444–459, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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To illustrate the k-selection query semantics, let us consider a scenario where John
plans to purchase a used car. Given an on-line used car database D = {d1, d2, · · · , dN}
where each di (1 ≤ i ≤ N) represents a car and di ranks higher than di+1.1 A top-k
query may help by returning k cars based on John’s preference. However, contacting
all these sellers to find the best available car is time consuming since popular cars with
a good deal may be sold quickly. Assuming that the available probabilities of vehicles
can be obtained (e.g., a freshly posted used car has a higher available probability than
a car posted weeks ago), a k-selection query on D takes into account the scores and
availability of the cars to return an ordered list of k candidates that maximizes the
expected preference score of the best available car. Thus, John can be more efficient in
finding the best available car by following the list to contact sellers.

Data Object Scores Probability

d1 4 0.3
d2 3 0.4
d3 2 0.8
d4 1 0.6

(a) Dataset Example

Strategies Results Expected Best Score

Top-2 Scores {d1, d2} 2.04
Weighted Score {d2, d3} 2.16

2-Selection {d1, d3} 2.32

(b) Query Result Example

Fig. 1. A 2-Selection Query Example

Finding the optimal k-selection to maximize the expected preference score of the
best available object is not trivial. Consider a toy example in Fig. 1(a), where a set of
4 cars D = {d1, d2, d3, d4} along with their available probabilities are shown. Suppose
a user is interested in obtaining an ordered set of two candidates, {di, dj}, where di is
ranked higher than dj . Since di has a higher preference score than dj , the best object of
choice is di as long as it is available. Only if di is unavailable while dj is available, dj

will become the best choice. Based on the above reasoning, we use expected best score
(which stands for expected score of the best candidate) to measure the goodness of the
returned candidates. First, let us consider {d1, d2}, the candidate set obtained based on
the highest scores. Its expected best score is 4 · 0.3 + 3 · (1 − 0.3) · 0.4 = 2.04. Next,
consider {d2, d3} which is obtained based on the highest weighted score. Its expected
best score is 3 ·0.4+2 · (1−0.4) ·0.8 = 2.16. The above two strategies look reasonable
but they do not yield the best selection because the first strategy does not consider
the availability while the second strategy does not consider the ranking order in their
selecting processes. As shown, the {d1, d3}, returned by the proposed 2-selection query,
yields the highest expected best score = 4 · 0.3 + 2 · (1 − 0.3) · 0.8 = 2.32.

Accordingly, the expected best score (EBS) for a selection S ⊆ D can be expressed
as in Eq. (1).

EBS(S) =
∑
di∈S

f(di) · P (di is the best available object in S) (1)

where f(di) and P (di) denote the preference score and available probability of object
di, respectively.

1 For simplicity, we assume that the data items have been sorted in the order of John’s preference.
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Therefore, a k-selection query Q(k, D) aims at returning an ordered subset S∗ ⊆ D,
|S∗| = k such that the EBS of S∗ is maximized. S∗ can be expressed as shown in
Eq. (2):

S∗ = arg max
S⊆D,|S|=k

EBS(S) (2)

The k-selection query is a new type of rank queries on uncertain dara that, to our best
knowledge, has not been reported in the literature. Evaluating the k-selection query is
very challenging because the candidate objects can not be selected individually to form
the optimal solution. As a result, the search space for optimal k-selection is as large as(
N
k

)
, which is significant as N increases. Efficient algorithms for the k-selection query

are needed to tackle the challenge.
The contributions made in this paper are summarized as follows:

– We present a new and novel rank query, called k-selection, for uncertain databases.
– Based on the possible world model for uncertain data, we formalize the presentation

of expected best score (EBS) and propose decomposing techniques to simplify the
calculation of EBS.

– We develop a dynamic programming algorithm that solves the k-selection query
over sorted data in O(k · N) time (where N is the dataset size).

– A bounding-and-pruning (BP) algorithm is developed based on the EBS bounds
and the relationship in their preference scores. Its computational cost is even lower
than the DP algorithm for large datasets.

– We conduct a comprehensive performance evaluation on both the synthetic data
and real data. The result demonstrates that the proposed DB and BP algorithms
outperform the baseline approach by several orders of magnitudes.

The rest of the paper is organized as follows. In Section 2, we review the existing
work and formally formulate the problem. Section 3 addresses the problem by decom-
posing the EBS calculation and identifying the query recursion. Section 4 introduces
the dynamic programming algorithm and the bounding-and-pruning algorithm that ef-
ficiently processes the k-selection query. Section 5 reports the result obtained from an
extensive set of experiments. Section 6 concludes this paper.

2 Preliminaries

In this section, we first briefly review the previous works related to our study. Then, we
present the formal definition of the k-selection problem.

2.1 Related Work

The related work involves two major research areas: 1) uncertain data modeling and 2)
top-k query processing on uncertain data.

Uncertain data modeling. When inaccurate and incomplete data are considered in a
database system, the first issue is how to model the uncertainty. A popular and general
model to describe uncertain data is the possible world semantic [1,13,9]. Our study
in this paper adopts this model. The possible world semantic models the uncertain
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data as a set of possible instances D = {d1, d2, · · · , dN}, and the presence of each
instance is associated with a probability P (di) (1 ≤ i ≤ N). The set of possible
worlds PW = {W1, W2, · · · , WM} enumerates all possible combinations of the data
instances in D, that may appear at the same time (i.e., in a same possible world). Each
possible world Wi has an appearance probability which reflects Wi’s probability of
existence. In this paper, we assume that the appearance of an object is independent
from any other objects. Thus, the appearance probability of a possible world Wi can be
derived from the membership probabilities of the uncertain objects:

P (Wi) =
∏

d∈Wi

P (d) ·
∏

d 	∈Wi

P (d) (3)

where the first term represents the probability that all the objects belong to Wi exist,
and the second term represents the probability that all objects not in Wi do not exist,
with P (d) = 1 − P (d).

In [9,8], query processing over independent data presence probabilities is studied,
with SQL-like queries on probabilistic databases supported in [8]. Furthermore, since
the presence of one object may depend on that of another, this presence dependency is
modeled as generation rules. The rules define whether an object can present when some
others exist and thus model the correlations between data objects. Query processing
over correlated objects has been discussed in [17,16].

Top-k query processing over uncertain data. Following the possible world semantics,
lots of queries defined in certain databases are revisited in uncertain scenario, such as
Top-k queries [14,10,11,7], nearest neighbor queries [6,12,2,5,4,3] and skyline queries
[15,18].Among different queries over uncertain data, top-k queries have received con-
siderable attention [14,10,11,7]. Like the k-selection query, all top-k queries assume a
scoring function that assigns a preference score for each object. Because of the data un-
certainty, various top-k query semantics and definitions have been explored, including
U-Topk and U-kRanks [14], PT-Topk [10], PK-Topk [11], and Expected-kRanks [7].
However, their goals are essentially different from k-selection query.

The U-Topk introduced in [14] catches the k-object set having the highest accu-
mulated probability of being ranked as top-k objects. Taking the same example in
Fig. 1(a), the U-top2 result is {d2, d3} with top2 probability 0.224. For U-kRanks,
the query tries to find the object with the highest probability to be ranked exactly at
position 1, 2, · · · , k, respectively. Therefore, the object d3 has the highest probability
of being ranked first as well as the second. Thus, a U-2Rank returns the result {d3, d3}.
The PT-Topk [10] and PK-Topk [11] define the top-k probabilities for individual ob-
jects. Specifically, the top-k probability measures the chance that an object ranks within
the first k objects. The PT-Topk returns the objects having top-k probability no less
than a threshold, and PK-Topk returns the k objects having the largest top-k proba-
bilities. Based on the top-2 probabilities calculated for each object, we can find that,
given a threshold of 0.3, PT-Top2 will return objects {d3, d2, d1}; and PK-Top2 will
return {d3, d2}. Most recently, [7] proposed the expected ranking semantics, where
each individual object is sorted by its expected rank over all the possible worlds. Based
on this definition, the top-2 objects are {d3, d2}. In summary, although existing top-k
queries catch the top scored objects with various semantics, because their optimization
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problems are essentially different with k-selection, none of them can be used to answer
the k-selection query.

2.2 Problem Formulation

Given the possible world model, we consider a k-selection query with some possible
world Wi. Assume the selection set is S (S ⊆ D), since a user will only pick objects
from S, the best available object is from the intersection of S and Wi. The expected
best score (EBS) of S is therefore defined as follows:

Definition 1. Expected Best Score: The EBS of a candidate answer set S, EBS(S), is
defined as the expected best score of S over each possible world Wi ∈ PW:

EBS(S) =
∑

Wi

⋂
S 	=∅

max
d∈Wi

⋂
S

f(d) · P (Wi) (4)

Definition 2. k-Selection Query: The k-selection query over uncertain dataset D,
Q(k, D), is defined as finding the optimal answer set S∗ consisting of k objects from D
such that the EBS of the k selected objects is maximized (see Eq.(2))

3 Analysis for k-Selection

To process a k-selection query, one straightforward way is to enumerate all possible
selection sets, and for each selection set, enumerate all possible worlds to calculate its
EBS. Finally, a set with maximum EBS is returned. This solution is clearly inefficient
because it involves a lot of unqualified selection sets, and the EBS calculation accesses
a large number of possible worlds one by one. To facilitate the EBS calculation and
develop efficient query processing algorithm, in this section, we identify a set of useful
properties of EBS and the query.

3.1 Expected Best Score (EBS)

One key step to find the optimal k-selection is to reduce the computation of EBS. From
Eqn. (4), we can group the possible worlds based on their best available object. In other
words, instead of enumerating all the possible worlds to find EBS of a selection S,
we enumerate all the data object dS

i ∈ S and then accordingly identify those possible
worlds that have the best available object as dS

i . Therefore, continuing from Eqn. (4),
we have:

EBS(S) =
k∑

i=1

f(dS
i ) ·

∑
Wi∈PW

P (Wi | f(dS
i ) is the largest in Wi ∩ S)

=
k∑

i=1

f(dS
i ) · P (dS

i )
i−1∏
j=1

P (dS
j )

(5)

The first step of the above equation eliminates the maximum operator of Eqn. (4)
by considering each selected objects one by one. Therefore, for each object dS

i , the
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probability that dS
i is the best available object is the sum of possible world probabilities

that dS
i happens to be the available object with the largest score. In the second step,

we further simplify the best available probability as subject to two conditions: 1) dS
i is

available; 2) all the objects within S that have a higher score than dS
i are unavailable.

(Note that objects within S are also numbered in score decreasing order.)

3.2 Query Recursion

For a dataset with N objects, there are a total of
(

N
k

)
possible subsets. Thus, to exhaus-

tively enumerate all possible selections is prohibitively expensive for a large dataset.
To develop an efficient algorithm to find S∗, we explore some nice properties of the
k-selection query under the data independence assumption.

Theorem 1. EBS Decomposition: Consider a candidate selection S with objects {dS
1 ,

dS
2 , · · · , dS

k } such that dS
1 is the top scored object. We define a partition of selection S as

S = Si−∪S(i+1)+ , with Si− = {dS
1 , dS

2 , · · · , dS
i } and S(i+1)+ ={dS

i+1, d
S
i+2, · · · , dS

k }.
The expected best score of S is decomposable as follows:

EBS(S) = EBS(Si−) +
i∏

j=1

P (dS
j ) · EBS(S(i+1)+). (6)

Proof. From Eq. (5), we have:

EBS(S) =
i∑

j=1

j−1∏
l=1

P (dS
l )P (dS

j ) · f(dS
j ) +

i∏
l=1

P (dS
l ) ·

k∑
j=i+1

j−1∏
l=i+1

P (dS
l )P (dS

j ) · f(dS
j )

= EBS(Si− ) +
i∏

l=1

P (dS
l ) · EBS(S(i+1)+).

From Theorem 1, we find that any partition of S can split its EBS into a linear relation
as b0 + b1x, with b0 and b1 only depending on the head partial selection of Si− . And
the tail selection S(i+1)+ would affect the x value.

Theorem 2. Query Recursion: For any dataset sorted in descending order of the pref-
erence score, Di+ = {di, di+1, · · · , dN}, the optimal k-selection set has the maximum
EBS as Opt(k, Di+). Then, the optimal EBS can be derived recursively as follows:

Opt(k, Di+) = max

{
P (di)f(di) + P (di) · Opt(k − 1, D(i+1)+),
Opt(k, D(i+1)+).

(7)

Proof. Consider the optimal answer set S∗ for k-selection query over Di+ and ∀di, it
is either included in S∗ or not. If di ∈ S∗, then because the slope of Eq. (6) is non-
negative, Si+1+ must also be maximized. By Theorem 1, the corresponding EBS for
S∗ is P (di)f(di) + P (di) · Opt(k − 1, D(i+1)+). Similarly, if di �∈ S∗, then S∗ must
also be the optimal set of k-selection query for D(i+1)+ , with EBS Opt(k, D(i+1)+).
Thus, the EBS of S∗ takes the maximum of the above two cases, as in Eq. (7).

Theorem 2 unleashes the recursion of the k-selection query. Armed with this recursion,
we can reduce any k-selection query on Di+ to queries with equal to or smaller than k
over a smaller data set D(i+1)+ .
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3.3 Bounding Property

The above recursion property helps us to relate the k-selection query with smaller scale
queries. It also indicates the dependency of the query to smaller scale queries. In other
words, to find the optimal selection for query Q(k, Di+), all the queries with smaller
k and fewer objects than Di+ have to be solved. Since there are still many of these
queries, we further explore the bounding property of the k-selection query.

Theorem 3. EBS Bounding of Optimal Selection: For any dataset Di+ with di as the
top object, the optimal EBS of a k-selection query, Opt(k, Di+), k > 0, is bounded by
[P (di)f(di), f(di)].

Proof. Because all the object scores are positive, any Opt(k − 1, D(i+1)+) is
non-negative. Therefore, from the first case in recursion Eq. (7), we must have
Opt(k, Di+) ≥ P (di)f(di). Furthermore, because f(di) is the maximum score in
Di+ , it is also the bound of the maximum score in any set S ⊆ Di+ . Thus, based on
Eq. (4), Opt(k, Di+) ≤ max

d∈S
f(d) ·

∑
Wi

⋂
S 	=∅ P (Wi) ≤ max

d∈S
f(d) = f(di).

4 Query Processing Algorithms

In the previous section, we analyze a set of properties for k-selection queries. Now we
present two efficient k-selection processing algorithms based on these properties.

4.1 Dynamic Programming (DP) Algorithm

According to Theorem 2, the k-selection query can be decomposed into queries with
smaller dataset size and query size. Specifically, a query Q(k, Di+) can be answered in
constant time if the sub-queries Q(k−1, D(i+1)+) and Q(k, D(i+1)+) are solved. Thus,
if we link these sub-queries as Q(k, Di+)’s children, an acyclic recursion graph can
be constructed. A sample recursion graph for a 2-selection query over 4 data objects
is shown in Fig. 2, with the root node representing Q(k, D). In this graph, there are
two scenarios in which the query can be trivially solved: 1) the query size k = 0, thus
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the optimal EBS is also 0 because no object can be selected; 2) the remaining dataset
size is 1 (i.e., DN+ ), which means that the only object must be chosen to maximize
the EBS for query size k > 0. We call these queries the base-case queries. Consider
these base-case queries as leaves, the acyclic graph is similar to a tree with height N
and width k+1 (Fig. 2). Furthermore, the recursion graph can be structured into layers,
with the root query on layer 1 and Q(t, Di+) (0 ≤ t ≤ k) queries on layer i. Based on
Theorem 2, all the sub-queries in layer i need to decide whether to accept or reject di.

Since the evaluation of each sub-query relies on the results of its descendants in the
recursion graph, a dynamic programming algorithm is developed to process the queries
in a bottom-up fashion in Algorithm 1. Firstly, two types of base-case queries are ini-
tialized in line 1. Then, the algorithm recursively determines the optimal selection for
each subproblem from bottom up, with queries for smaller datasets evaluated first (lines
2 through 8). For each sub-query Q(t, Di+), the variable accept gets the optimal EBS
assuming that di is included; otherwise, reject stores the EBS when di is excluded.
By comparing accept and reject, the choice of whether to include di is stored in
the variable trace(t, Di+). Finally, the algorithm traces back the trace array to find
out all accepted objects to obtain the optimal selection (lines 9 through 11). It is not
difficult to see that the running time of the dynamic programming algorithm is O(k ·N)
to traverse the entire recursion graph.

Algorithm 1. Dynamic Programming (DP) Algorithm
Input: Dataset D, query size k
Output: Optimal subset S∗ for k-selection over D
Initialize Opt(0, D(0:N)+ ) ← 0, and Opt(1 :k, DN+ ) ← P (dN )f(dN ) + 0;1
for layer i ← N−1, N−2 · · · 1 do2

for query size t ← 1, 2 · · · k do3
accept ← P (di)f(di) + P (di) · Opt(t − 1, D(i+1)+ );4
reject ← Opt(t, D(i+1)+ );5
Opt(t, Di+ ) ← max

(
accept, reject

)
;6

trace(t, Di+ ) ← accept > reject;7

Initialize optimal subset S∗ ← ∅, query size t ← k;8
for layer i ← 1, 2 · · ·N do9

if trace(t, Di+ ) = true then10
S∗ ← S∗ ∪ {di}, t ← t − 1;11

return S∗, Opt(k, D)12

Take Fig. 2 as an example. At the beginning, the EBS values for the layer 4 nodes
are initialized to 0, 0.6, 0.6, respectively. Then, the recursion procedure starts from layer
3. Consider the sub-query Q(1, D3+) for instance, the left edge from the node repre-
sents the case of accepting d3, with EBS as 0.8 × 2 + 0.2 × Opt(0, D4+) = 1.6;
the right edge represents the choice of rejecting d3, and the corresponding EBS is
1.0 × Opt(1, D4+) = 0.6. Since accepting d3 leads to a higher EBS, d3 will be
included in the optimal set for the sub-query Q(1, D3+) with solid edge. After the
recursion procedure completes, all nodes get their optimal EBS values and decision
edge identified. (di is selected if the solid edge goes left; otherwise to right). The
optimal selection for the root query Q(2, D) can be found by tracing back the de-
cision result of each relevant node. For our running example, the decision path is
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Q(2, D) → Q(1, D2+) → Q(1, D3+) → Q(0, D4+), and the corresponding decisions
along the path are 〈accept,reject,accept〉 indicating S∗ = {d1, d3}.

4.2 Bounding and Pruning Heuristics

The dynamic programming algorithm proposed in the last subsection needs to access all
the data objects to find the optimal k-selection. However, the optimal k-selection, after
all, tends to include those objects with higher scores. This intuition leads us to consider
an algorithm that can stop without solving all the sub-queries.

However, for any sub-query Q(t, Di+) (0 ≤ t ≤ k), finding pruning rules to stop
solving it is not trivial. This is because any of its ancestors above layer i (including the
root query) counts on the exact value of Opt(t, Di+) to make selection decisions. Thus,
to develop efficient pruning heuristics, we start by investigating the relation between the
subproblem Q(t, Di+) and the root k-selection query Q(k, D). Considering a dataset
partition for D as Di− = {d1, d2, · · · , di} and D(i+1)+ = {di+1, di+2, · · · , dN}, then
a k-selection query over D is also partitioned by selecting t objects from Di− and k− t
objects from D(i+1)+ . We define conditional k-selection queries as follows:

Definition 3. Conditional k-Selection: Q(k, D | t, Di−) is defined as a conditional k-
selection query over D, by choosing t objects from Di− and the other k− t objects from
D(i+1)+ . The EBS of the entire selection is maximized as Opt(k, D | t, Di−).

Clearly, the conditional k-selection query is sub-optimal to Q(k, D) because it is re-
stricted to the condition that exactly t objects are selected from Di− . But, the global
optimal k-selection can be found by solving a group of conditional k-selection queries.

To find the optimal conditional selection query Opt(k, D | t, Di−), t objects St− are
chosen from Di− (hereafter St− is called head selection); the remaining k − t objects
S(t+1)+ will be from D(i+1)+ (hereafter S(t+1)+ is called tail selection). Recall from
Theorem 1, the EBS of S = St− ∪ S(t+1)+ is a linear function as b0 + b1x, where the

intercept and slope depend on head selection (b0 = EBS(St−), b1 =
∏

d∈St−
P (d));

and x is the EBS of tail selection (x = EBS(S(t+1)+)). Thus, to find an optimal con-
ditional k-selection, x must be maximized because the slope b1 is always nonnegative.
Furthermore, after x is known, proper head selection shall also be chosen to maximize
overall EBS of S.

Since we cannot know the optimal x value without solving Q(k− t, D(i+1)+), but
from the bounding property, x’s bounding can be found without much effort. According
to Theorem 3, the optimal x = Opt(k−t, D(i+1)+) must fall within [P (di+1)f(di+1),
f(di+1)]. Combining this value range with all the possible head selection linear func-
tions, we developed two pruning heuristics.

Theorem 4. Intra-Selection Pruning: For a head selection St− with EBS function
represented by L(St− , x) = b0 + b1x. For any value x within the bounding range
[P (di+1)f(di+1), f(di+1)], if there always exists another head selection Sa

t− having
L(St− , x) < L(Sa

t− , x), St− will not result in the optimal conditional selection.

Proof. Suppose the optimal tail selection is S∗
(t+1)+ . By combining the alternative

head selection Sa
t− , we have the overall EBS as EBS(Sa

t− ∪ S∗
(t+1)+) = L(Sa

t− , x) >
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L(St− , x) = EBS(St− ∪ S∗
(t+1)+). Thus, St− cannot result in the optimal selection,

and is subject to pruning.

Theorem 5. Inter-Selection Pruning: For a head selection St− and any value x within
the bounding range of [P (dt+1)f(dt+1), f(dt+1)], if there exists another known k-
selection Sa such that L(St− , x) < EBS(Sa). Then, the head selection St− will not
result in the optimal selection.

Theorem 5 is correct because even with the optimal tail selection S∗
(t+1)+ , the linear

relation of L(St− , x) will end up with a lower EBS than EBS(Sa). This is called
inter-selection pruning because the pruning selection Sa may come from any other
k-selection without following the restriction of choosing t objects from Di− .

Fig. 3. Example Showing Three Combinations for Partial Dataset D4−

An example illustrating the intra- and inter-selection pruning is shown in Fig. 3,
where we consider a conditional query of Q(2, D | 1, D3−) with

(3
1

)
= 3 different pos-

sible head selections: {d1}, {d2}, and {d3}. Their EBS linear functions as well as the
bounding range of Opt(1, D4+) are shown in Fig. 3. Here, we can see that L({d3}, x)
is always lower than L({d1}, x) and L({d2}, x) within the value range of [P (d4)f(d4),
f(d4)]. Thus, according to intra-selection pruning, the head selection {d3} can be safely
discarded. In addition, suppose the EBS of Sa = {d1, d2} is already computed, as in
Fig. 3. We can observe that the EBS function of the head selection {d2} is either lower
than EBS({d1, d2}) or head selection {d1}. Therefore, following the inter-selection
pruning, {d2} can be safely discarded. After pruning these redundant head selections,
the remaining head selections are referred to as effective head selections.

Definition 4. Effective Head Selections: Considering a sub-query Q(k, D | t, Di−),
the effective head selections ES(t, i) is head selections remained after the intra- and
inter-selection pruning.

Theorem 6. Effective Head Selection Recursion: The set of effective head selections
ES(t, i), is a subset of ES(t, i − 1) ∪ (ES(t − 1, i − 1) + {di}).2

2 The “+” means that di is added to each head selection in ES(t−1, i−1).
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Proof. Consider any effective head selection St− ∈ ES(t, i), it either contains di or not.
If di ∈ St− , then St− − {di} must be an effective head selection for D(i−1)− because
otherwise St− will not catch the optimal selection either. Similarly, if di �∈ St− , St−

must be an effective head selection for D(i−1)− .

Theorem 6 points out that we do not need to run a pruning algorithm for all possible
head selections from Di− all the times. Instead, it is enough to consider the effective
head selections from its predecessors and merging them and apply pruning rules. This
recursion significantly reduces the computation of head selection pruning, and moti-
vates a top-down bounding and pruning algorithm.

4.3 Bounding and Pruning (BP) Algorithm

Having introduced the pruning heuristics, now we present the top-down bounding and
pruning algorithm to solve the k-selection query (see Algorithm 2).

The main frame of this algorithm is similar to the dynamic programming algorithm 1,
except that the sub-queries here are accessed in a top-down fashion. For each sub-query,
the algorithm first determines whether the sub-query Q(k−t, Di+) is a base-case query
(line 7). If so, the optimal EBS for the tail selection Opt(k − t, Di+) is trivially solved
(line 9,10). This result can be combined with every effective head selection to find
the exact optimal conditional selection EBS. If this conditional selection is better, then
the best found k-selection is updated in line 11. For those sub-queries that cannot be
trivially solved, we only use constant time to obtain its EBS value bound of Opt(k −
t, Di+) in line 13, then all the successors’ effective head selections are collected and
filtered using inter-/intra-selection pruning rules (Theorem 4, 5, 6). Consequently, if no
effective head selection is left, the scenario is captured in line 4 and the entire algorithm
terminates, asserting the found best k-selection as the global optimal.

Algorithm 2. Bounding and Pruning (BP) Algorithm
Input: Dataset D, query size k
Output: Optimal Subset S∗ for k-selection over D
Initialize effective head selection ES(0 : k, 1 : N) = ∅, ES(0, 1) = {∅};1
Initialize found best kselection as bestEMS ← 0, S∗ ← ∅;2
for layer i ← 1, 2 · · ·N do3

if ∀ ES(0 : k, i) = ∅ then /* No effective head selections. */4
break;5

for query size t ← k, k−1 · · · 0 and ES(t, i) 	= ∅ do6
if t = k or i = N then /* Tail selection basecases. */7

for ∀St− ∈ ES(t, i) do8
if t = k then EBS(S) ← EBS(St− );9

if i=N then EBS(S) ← EBS(St− ) +
∏

d∈S
t−

P (d) · P (di)f(di);10
if EBS(S) > bestEMS then bestEMS ← EBS(S) and S∗ ← S11

else /* Inter-and intra-selection pruning */12
TailBound ← [p(di)f(di), f(di)];13
ES(t, i) ← MERGEPRUNE

(
ES(t, i−1), ES(t−1, i−1)

)
;14

return S∗, bestEMS15
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Fig. 4. Example for Bounding and Pruning Algorithm (k=2, N=4)

A running example for the bounding and pruning algorithm is shown in Fig. 4. The
EBS bounding range for each tail selection is shown under each node in the figure (e.g.
[1.2, 3] for sub-query Q(2, D2+) because f(d2) ∗ P (d2) = 1.2 and f(d2) = 3). For
the head selection St− , the root query Q(2, D) initializes its effective head selection as
ES(0, 1) = {∅}, and then propagates it to its child nodes Q(1, D2+) and Q(2, D2+)
with ∅ ∪ {d1} and ∅, respectively. The pruning operation becomes effective on layer
3. For the sub-query Q(1, D3+), the before-pruning head selections are {d1} and {d2}.
Since these two head selections have the EBS functions as 1.2+0.7x and 1.5+0.5x, re-
spectively, and given tail selection EBS range as [1.6, 2], the head selection {d1} always
has a higher EBS (Theorem 4). Thus, {d2} is pruned according to intra-selection prun-
ing. The inter-pruning happens at the node Q(2, D3+). Since the only head selection
for this node is ∅ with EBS function 0 + 1x and tail selection EBS range [1.6, 2]. But
at the time, node Q(0, D3+) already found a conditional 2-selection S = {d1, d2} with
bestEMS = 2.04. This 2-selection is always superior to Q(2, D | 2, D3+) because the
maximum value of 0+1x over [1.6, 2] is only 2. Thus, after this only head selection ∅ is
pruned, the node has no remaining head selection propagated. Therefore, its child node
Q(2, D4+) is ignored during the next layer’s processing for empty effective front selec-
tion. The stopping node is highlighted in orange in Figure 4, and the optimal selection
is actually found at node Q(0, D4+) with its head selection {d1, d3}.

The bound and pruning algorithm is guaranteed to find the optimal k-selection be-
cause all the head selections are kept until it is guaranteed not to catch the optimal
selection. And solving the tail selection has always been postponed by using the bound-
ing properties until it is trivial base case.

5 Performance Evaluation

To test k-selection queries, we use both synthetic data and real-world dataset. Real
datasets include three data sets named FUEL, NBA and HOU, respectively. FUEL is a
24k 6-dimensional dataset, in which each point stands for the performance of a vehicle.
NBA contains around 17k 13-dimensional data points corresponding to the statistics of
NBA players’ performance in 13 aspects. And HOU consists of 127k 6-dimensional
data points, each representing the percentage of an American familys annual expense
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on 6 types of expenditures.3 In our experiments, we arbitrarily choose two dimensions
from each data set for testing, and assign uniform distributed probability between [0, 1]
for each data point. These real-world datasets are used to validate the k-selection perfor-
mance effectiveness for practical applications. On the other hand, we use the synthetic
data to learn insights of k-selection queries and proposed algorithms. For synthetic
data, the membership probability of an object is modeled by P (di) = μ + δu(i), where
μ > 0, δ > 0, and u(i) uniformly distributed between [−0.5, 0.5]. Thus, with default
value μ = 0.5 and δ = 1, P (di) is a uniform distribution between [0, 1]. To gener-
ate the ranking score for each object, we set f(di) = 0.5 + βu(i) + (1 − |β|)u′(i),
with u(i) the same random variable as in P (di) but u′(i) another identical indepen-
dent random variable. Therefore, β models the covariance between f(di) and P (di) as
η = Cov(f(di), P (di)) = δβ. In addition to data modeling, we model the data access
I/Os by concerning the object size. We set the page size at 4 KB. Therefore assuming
one object occupies θ bytes, it will need one I/O operation every 4000/θ object access.
The experiment parameters are summarized in Figure 5.All the experiments are imple-
mented and conducted on a Window Server with Intel Xeon 3.2 GHz CPU and 4 GB
RAM. The results presented in this section are averaged over 100 independent runs.

Parameter Setting Default

Dataset Size (N) 100 ∼ 100, 000 10, 000
Query Selection Size (k) 1 ∼ 1, 000 100

Probability Mean (μ) 0.2 ∼ 0.8 0.5
Probability Range (δ) 0.2 ∼ 1 1

Probability Score Covariance (η) −0.8 ∼ 0.8 0
Object Size (θ) 10 ∼ 1000 100

Fig. 5. Experiment Parameters

We evaluate the performance of different k-selection algorithms, including dynamic
programming algorithm (DP), the bounding and pruning algorithm (BP), and a naive
algorithm that examines all

(
N
k

)
candidate selections. Since the naive algorithm cannot

scale up to a large dataset, we first compare these algorithms under small datasets. As
shown in Fig. 6(a), with 100 objects and 5-selection, the execution time of the naive
algorithm is already raised to 100 seconds, which is 106 times to the DP algorithm, and
105 times to the BP algorithm. For these small datasets, we also find that the BP has
a worse performance than the DP algorithm. This is because building a small k by N
recursion graph for DP is fast, but the pruning overhead for BP is relatively costly while
not much objects can be pruned for a small dataset.

We now proceed to compare the performance of DP and BP under larger datasets.
Fig. 6(b) and (c) shows the results using real data. In Fig. 6(b), we find DP is better
than BP for a small dataset, which is consistent with what we observed in Fig. 6(a).
However, for all other large dataset settings, BP performs much better than DP because
of its effective pruning: most of the sub-queries are pruned and left out of computation.

3 Those datasets are collected from www.nba.com, www.ipums.org and www.fueleconomy.gov
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Fig. 7. Query Response Time under Synthetic Data

To gain more insight into these two algorithms, we further evaluate them using syn-
thetic data under different workload settings. Fig. 7(a) plots the performance results
for two series of tests (k = 10 and k = 1, 000) as the dataset size varies from 100 to
10,000. For both of the algorithms, it is found that the query execution time increases
with increasing the dataset size or the selection size. This is because the larger is N or k,
more sub-queries need to be solved before finding the optimal selections (see Fig. 8(a)).
Comparing these two algorithms, again, only when the selection size is small and the
dataset size is small, DP outperforms BP. On the other hand, BP outperforms DP by
more than an order of magnitude for most of the larger-scale cases. Next, we exam-
ine the performance of the two algorithms under different data distribution settings. As
for the setting of the membership probabilities, Fig. 7(b) shows that the DP algorithm,
again, exhibits a similar performance with various settings. However, the BP algorithm
shows a significant decrease in cost when the probability mean is high. The reason is
that with a higher probability mean, the optimal k-selection favors to include high-score
objects such that the inter-selection pruning could terminate the BP algorithm earlier (as
observed in Fig. 8(b)). In Fig. 7(c), a similar trend is found when the score and prob-
ability covariance are increased. This is because when the score and probability are
correlated, many high-score objects will be selected, thereby making the BP algorithm
to explore less objects before termination.

Finally, the impact of the object size is shown in Fig. 9. Although both algorithms
need to access more data when a larger dataset is concerned, the BP algorithm performs
similarly when the object size is varied. This is because BP only accesses a small portion
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of objects with few I/Os and, hence, even if the object size is large, BP does not suffer
from it. On the other hand, however, it is shown that the query execution time of DP
increases significantly when the object size increases. This, from another angle, implies
that more objects are accessed in DP than BP.

6 Conclusion

In this paper, we introduce a new k-selection query operation over uncertain data, which
finds a subset of objects, that yields the highest expected best score (EBS). While the
query is very useful for various applications, it may incur very high processing cost due
to the extremely large search space. To address this problem, we first analyze the char-
acteristics of the k-selection query and identify a number of properties. Then, we pro-
pose two efficient k-selection query processing algorithms. The Dynamic Programming
(DP) algorithm, which employs the EBS decomposition and query recursion properties,
evaluates sub-queries in a bottom-up fashion recursively. Bound-and-Pruning (BP) al-
gorithm, however, utilize a linear relation of EBS decomposition and bounding, to effi-
ciently reduce the problem search space. Through a set of comprehensive evaluations,
we demonstrate that our proposed algorithms are superior to the naive brute-force ap-
proach, and are efficient for on-line applications.
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Abstract. We focus on measuring relations between pairs of objects in Wikipedia
whose pages can be regarded as individual objects. Two kinds of relations be-
tween two objects exist: in Wikipedia, an explicit relation is represented by a
single link between the two pages for the objects, and an implicit relation is repre-
sented by a link structure containing the two pages. Previously proposed methods
are inadequate for measuring implicit relations because they use only one or two
of the following three important factors: distance, connectivity, and co-citation.
We propose a new method reflecting all the three factors by using a generalized
maximum flow. We confirm that our method can measure the strength of a re-
lation more appropriately than these previously proposed methods do. Another
remarkable aspect of our method is mining elucidatory objects, that is, objects
constituting a relation. We explain that mining elucidatory objects opens a novel
way to deeply understand a relation.

Keywords: link analysis, generalized flow, Wikipedia mining, relation.

1 Introduction

Searching Web pages containing a keyword has grown in this decade, while knowledge
search has recently been researched to obtain knowledge of a single object and relations
between multiple objects, such as humans, places or events. Searching knowledge of
objects using Wikipedia is one of the hottest topics in the field of knowledge search. In
Wikipedia, the knowledge of an object is gathered in a single page updated constantly
by a number of volunteers. Wikipedia also covers objects in a number of categories,
such as people, science, geography, politic, and history. Therefore, searching Wikipedia
is usually a better choice for a user to obtain knowledge of a single object than typical
search engines.

A user also might desire to discover a relation between two objects. For example, a
user might desire to know which countries are strongly related to petroleum, or to know
why one country has a stronger relation to petroleum than another country. Typical key-
word search engines can neither measure nor explain the strength of a relation. The
main issue for measuring relations arises from the fact that two kinds of relations exist:
“explicit relations” and “implicit relations.” In Wikipedia, an explicit relation is repre-
sented by a link. For example, an explicit relation between petroleum and Iraq might be
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represented by a link from page “Iraq” to page “Petroleum.” An implicit relation is rep-
resented by multiple links and pages. For example, as depicted in Figure 8, an implicit
relation between petroleum and the USA might be represented by two links: one be-
tween “Petroleum” and “Gulf of Mexico” and the other one between “Gulf of Mexico”
and the “USA.” For an implicit relation between two objects, the objects, except the
two objects, constituting the relation is named elucidatory objects because such objects
enable us to explain the relation. For the example described above, “Gulf of Mexico” is
the elucidatory object. The user can understand an explicit relation between two objects
easily by reading the pages for the two objects in Wikipedia. By contrast, it is difficult
for the user to discover an implicit relation and elucidatory objects without investigat-
ing a number of pages and links. Therefore, it is an interesting problem to measure and
explain the strength of an implicit relation between two objects in Wikipedia.

Several methods have been proposed for measuring the strength of a relation be-
tween two objects on an information network (V, E), a directed graph where V is a set
of objects; an edge (u, v) ∈ E exists if and only if object u ∈ V has an explicit relation
to v ∈ V . We can define a Wikipedia information network whose vertices are pages
of Wikipedia and whose edges are links between pages. Previously proposed methods
then can be applied to Wikipedia by using a Wikipedia information network. Most of
these methods use only one or two of the three representative concepts for measuring a
relation: distance, connectivity, and co-citation, although all the concepts are important
factors for implicit relations. Using all the three concepts together would be appropri-
ate for measuring an implicit relation and mining elucidatory objects. Another concept
“cohesion,” exists for measuring the strength of an implicit relation. CFEC proposed by
Koren et al. [1] and PFIBF proposed by Nakayama et al. [2][3] are based on cohesion.
We do not adopt cohesion because it has a property unsuitable for measuring “3-hop
implicit relations,” as we will explain in Section 2.2. In an information network, an im-
plicit relation between two objects s and t is represented by a subgraph containing s and
t. We say that the implicit relation is a k-hop implicit relation if the subgraph contains
a path from s to t whose length is at least k > 1. Figure 8 depicts an example of a
3-hop implicit relation between “Petroleum” and the “USA.” We observe that a number
of 3-hop implicit relations play important roles in Wikipedia.

We propose a new method for measuring a relation on Wikipedia by reflecting all
the three concepts: distance, connectivity, and co-citation. Our method uses a “gener-
alized maximum flow” [4][5] on an information network to compute the strength of
a relation from object s to object t using the value of the flow whose source is s and
destination is t. It introduces a gain for every edge on the network. The value of a flow
sent along an edge is multiplied by the gain of the edge. Assignment of the gain to
each edge is important for measuring a relation using a generalized maximum flow.
We propose a heuristic gain function utilizing the category structure in Wikipedia. We
confirm through experiments that the gain function is sufficient to measure relations
appropriately.

We evaluate our method using computational experiments on Wikipedia. We first se-
lect several pages from Wikipedia as our source objects; and for each source object, we
select several pages as the destination objects. We then compute the strength of the rela-
tion between a source object and each of its destination objects, and rank the destination



462 X. Zhang, Y. Asano, and M. Yoshikawa

objects by the strength. By comparing the rankings obtained by our method with those
obtained by the “Google Similarity Distance” (GSD) proposed by Cilibrasi and Vitányi
[6], PFIBF and CFEC, we ascertain that the rankings obtained by our method are the
closest to the rankings obtained by human subjects. Especially, we ascertain that only
our method can appropriately measure the strength of 3-hop implicit relations.

Our method can mine elucidatory objects constituting a relation by outputting paths
contributing to the generalized maximum flow, that is, paths along which a large amount
of flow is sent. We will explain in Section 4.4 that mining elucidatory objects opens a
novel way to deeply understand a relation.

Several semantic search engines [7] seem to be used for searching relations between
two objects, using a semantic knowledge base [8] extracted from Web or Wikipedia.
However, the semantics in these knowledge bases, such as “isCalled,” “type” and “sub-
ClassOf,” are mainly used to construct an ontology for objects. Such semantic knowl-
edge bases are still far from covering relations existing in Wikipedia, such as “Gulf of
Mexico” is a major “petroleum” producer. We do not assuming semantics in this paper.

The main contributions of this paper are as follows. (1) A detailed and methodi-
cal survey of related work for measuring relations (Section 2). (2) A new method using
generalized maximum flow for measuring the strength of a relation between two objects
on Wikipedia, reflects the three concepts: distance, connectivity and co-citation (Sec-
tion 3). (3) Experiments on Wikipedia show that our method is the most appropriate one
(Section 4.2). (4) Case studies of mining elucidatory objects for deeply understanding
a relation (Section 4.4).

2 Related Work

2.1 Distance, Connectivity, Co-citation

The Erdös number [9] used by mathematicians is based on distance and co-authorships.
The legendary mathematician Paul Erdös has a number 0, and the people who co-wrote
a paper with Erdös have a number 1; the people who co-wrote a paper with a person
with a number 1 have a number 2, and so on. The Erdös number is the distance, or the
length of the shortest path, from a person to Erdös on an information network whose
edge represents co-authorship; a shorter path represents a stronger relation. However,
the Erdös number is inadequate to represent the implicit relation between a person and
Erdös because the number does not estimate the connectivity between them.

The connectivity, more precisely the vertex connectivity, from vertex s to vertex
t on a network is the minimum number of vertices such that no path exists from s
to t if the vertices are removed. The connectivity is also used to measure the fault-
tolerant robustness of a network [4]. s has a strong relation to t if the connectivity from
s to t is large. The connectivity from s to t is equal to the value of a maximum flow
from s to t, where every edge and vertex has capacity 1. The value is equal to the
number of vertex-disjoint paths from s to t. However, the distance cannot be estimated
by the maximum flow because the amount of a flow along a path is independent of the
path length. Lu et al. [10] proposed a method for computing the strength of a relation
using a maximum flow. They tried to estimate the distance between two objects using a
maximum flow by setting edge capacities. However, the value of a maximum flow does
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not necessarily decrease by setting only capacities even if the distance becomes larger.
Therefore, their method cannot estimate the distance successfully by the value of the
maximum flow. Instead of setting capacities, we use a generalized maximum flow by
setting every gain to a value less than one. Therefore, the value of a maximum flow in
our method decreases if the distance becomes larger.

Co-citation based methods assume that two objects have a strong relation if the
number of objects linked by both the two objects is large [11]. On the other hand,
co-occurrence is a concept by which the strength is represented by the number of ob-
jects linking to both objects. The “Google Similarity Distance” (GSD) proposed by
Cilibrasi and Vitányi [6] can be regarded as a co-occurrence based method; it measures
the strength of a relation between two words by counting of Web pages containing
both words. That is, it implicitly regards the Web pages as the objects linking to the
two objects representing the two words. In an information network, an object linked
by both objects becomes an object linking to the both if the direction of every edge is
reversed. Therefore, co-occurrence can be regarded as the reverse of the co-citation. We
then include co-occurrence based methods among co-citation based methods in this pa-
per. Milne and Witten [12] also proposed methods measuring relations between objects
in Wikipedia using Wikipedia links based on co-citation. Co-citation based methods
cannot deal with a typical implicit relation, such as “person w is regarded as a friend
by person v who is regarded as a friend by person u.” This relation is represented by
the path formed by two edges (u, v) and (v, w). In contrast, co-citation based methods
can deal with two edges going into the same vertex, such as edges (u, v) and (w, v).
Therefore, co-citation based methods are inadequate for measuring an implicit relation.
Furthermore, co-citation based methods cannot deal with 3-hop implicit relations de-
fined in Section 1 because these methods estimate only two edges between the two
objects, as explained above. SimRank, proposed by Jeh and Widom [13], is an exten-
sion of co-citation based methods. SimRank employs recursive computation of co-cited
objects, therefore it can deal with a path whose length is greater than two, although it
cannot deal with a typical implicit relation “a friend of a friend” similarly to co-citation
based methods.

2.2 Cohesion

In the field of social network analysis, cohesion based methods are known to measure
the strength of a relation by counting all paths between two objects. The original co-
hesion was proposed by Hubbell and Katz [14][15][16]. It has a property that its value
greatly increases if a popular object, an object linked from or to many objects, exists.
As pointed out in other researches [17][1][2], this property is a defect for measuring
the strength of a relation. Several cohesion based methods, such as PFIBF and CFEC
explained below, were proposed to dissolve this property.

Nakayama et al. [3][2] proposed a cohesion based method named PFIBF. Instead of
enumerating all paths, PFIBF approximately counts paths whose length is at most k > 0
using the k-th power of the adjacency matrix of an information network. However, in the
k-th power of the matrix, a path containing a cycle whose length is at most k− 1 would
appear. PFIBF cannot distinguish a path containing a cycle from a path containing no
cycle. For example, if k ≥ 3 and two edges (u, v) and (v, u) exist, then PFIBF counts
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both path (u, v) and path (u, v, u, v) containing a cycle (u, v, u). Consequently, PFIBF
has a property that it estimates a single path, e.g., (u, v) in the above example, for
multiple times. The length of a cycle is at least two. No path containing a cycle appears
if k ≤ 2. In fact, PFIBF usually sets k = 2. Therefore, PFIBF is inappropriate for
measuring a 3-hop implicit relation. The “Effective Conductance” (EC) proposed by
Doyle et al. [18] is a cohesion based method also. EC has the same deficit as PFIBF:
it counts a path containing a cycle redundantly. Koren et al. [1] proposed cycle-free
effective conductance (CFEC) based on EC by solving this deficit. For a positive integer
k, CFEC enumerates only the k-shortest paths between s and t, instead of computing all
paths. CFEC does not use a path containing a cycle, although it cannot count all paths.

In contrast to the original cohesion, PFIBF and CFEC underestimate a popular ob-
ject. CFEC defines the weight of path p = (s = v1, v2, ..., v� = t) from s to t as
wsum(v1) �

∏�−1
i=1

w(vi,vi+1)
wsum(vi)

, where w(u, v) is the weight of edge (u, v) and wsum(v) is
the sum of the weights of the edges going from vertex v. Therefore, the weight of a path
becomes extremely small if a popular object exists in the path. The strength C(s, t) of
the relation between s and t is the sum of the weights of all paths from s to t. Figure 1
depicts two networks and all the paths between s and t. For simplicity, let the weight of
every edge be one. The wsum of each vertex is written in the rectangle near the vertex.
The weight of each path is presented at the right side of the path. For the network G1
depicted in Figure 1(a), the wsum of s is 2, and the weight of path (s, v1, v2, t) is 1.
C(s, t) for G1 is 2, which is equal to the connectivity between s and t. If we add two
edges (v2, v3) and (v3, v2) to G1, then we obtain network G2 in Figure 1(b). Two ver-
tices v2 and v3 become more popular in G2 than they are in G1, and C(s, t) decreases
from 2 in G1 to 1.5 in G2. Consequently, CFEC has the property that it could estimate
the strength of a relation smaller if popular objects exist. Similarly, PFIBF has the same
property. This property seems strange because the connectivity between two vertices on
a network never decreases when an edge is added to the network. We ascertain that the
property is unsuitable for measuring a relation by comparing our method with PFIBF
and CFEC in Section 4.2.

2.3 Explanation of a Relation

Faloutsos et al. [17], Tong and Faloutsos [19] proposed methods for visualizing a sub-
network explaining a relation by utilizing the ideas of EC; Koren et al. [1] also proposed
such a method based on CFEC. The subnetwork is constructed from a set of paths hav-
ing the highest weights. These methods always underestimate a popular object. There-
fore, a popular object is hardly displayed in a subnetwork explaining a relation in these
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methods. However, a popular object constitutes a relation between two objects in some
cases. For example, “George W. Bush” is a popular object in the dataset of Wikipedia,
and it constitutes a relation between “Junichiro Koizumi” and “Condoleezza Rice.” Zhu
et al. [20] extract explicit relations between pairs of people from the Web. They then
visualize a graph whose vertices are people, edges are explicit relations between two
people. They do not explain an implicit relation. Therefore, these methods are inade-
quate for explaining a relation. We ascertain in Section 4.4 that a more comprehensive
alternative is obtainable using our method.

3 Our Method Using Generalized Flow

3.1 Generalized Maximum Flow

The generalized maximum flow problem is identical to the classical maximum flow
problem except that every edge e has a gain γ(e) > 0; the value of a flow sent along
edge e is multiplied by γ(e). Let f(e) ≥ 0 be the flow f on edge e, and μ(e) ≥ 0 be
the capacity of edge e. The capacity constraint f(e) ≤ μ(e) must hold for every edge
e. The goal of the problem is to send a flow emanating from the source vertex s into the
destination vertex t to the greatest extent possible, subject to the capacity constraints.
Let generalized network G = (V, E, s, t, μ, γ) be information network (V, E) with the
source s ∈ V , the destination t ∈ V , the capacity μ, and the gain γ. Figure 2 depicts
an example of a generalized maximum flow on a generalized network. One unit of flow
is sent from the source s to v1, i.e., f(s, v1) = 1, the amount of the flow is multiplied
by γ(s, v1) when the flow arrives at v1. Consequently, only 0.8 units arrive at v1. In
this way, only 0.512 units arrive at the destination t. The capacity constraint for edge
e = (u, v) must hold before the gain is multiplied. f(s, v1) = 1 ≤ μ(s, v1) must hold,
for example.

We propose a new method for measuring the strength of a relation using the gener-
alized maximum flow. The value of flow f is defined as the total amount of f arriving
at destination t. To measure the strength of a relation from object s to object t, we use
the value of a generalized maximum flow emanating from s as the source into t as the
destination; a larger value signifies a stronger relation. We regard the vertices in the
paths composing the generalized maximum flow as the objects constituting the relation.
We qualitatively ascertain the claim that our method can reflect the three representative
concepts explained in Section 2: distance, connectivity, and co-citation.

We first discuss the distance. In the methods based on distance, a shorter path repre-
sents a stronger relation. For our method, we set γ(e) < 1 for every edge e; then a flow
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considerably decreases along a long path. A short path usually contributes to the gen-
eralized maximum flow by a greater amount than a long path does. Therefore, a shorter
path means a stronger relation in our method also.

We then discuss the connectivity. In methods based on connectivity, a strong relation
is represented by many vertex disjoint paths from the source to the destination. The
number of vertex disjoint paths can be computed by solving a classical maximum flow
problem. The generalized maximum flow problem is a natural extension of the classical
maximum flow problem. Therefore, it also can be used to estimate the connectivity.

We discuss the co-citation at last. A flow emanates from the source into the destina-
tion, and therefore the flow seldom uses an edge whose direction is opposite that from
the source to the destination. On the other hand, we require use of both directions to
estimate the co-citation of two objects. We consider the relation between two objects
s and t in the network presented in Figure 3(a). Object u is co-cited by s and t. This
co-citation is represented by two edges (s, u) and (t, u). However, we were unable to
send a flow from s to t along the two edges, unless we reverse the direction of the edge
(t, u) to (u, t). Therefore, we construct a doubled network by adding to every original
edge in G a reversed edge whose direction is opposite to the original one. For example,
Figure 3(b) depicts the doubled network for the network presented in Figure 3(a). We
present the definition of a doubled network.

Definition 1. Let G = (V, E, s, t, μ, γ) be a generalized network, and rev : E → (0, 1]
be a reversed edge gain function for G. The doubled network Grev = (V, E′, s, t, μ′, γ′)
of G for rev is defined as follows. E′ consists of two types of edges: (1) every edge
e(u, v) ∈ E with μ′(e(u, v)) = μ(e(u, v)) and γ′(e(u, v)) = γ(e(u, v)); and (2) one
reversed edge erev(v, u) for every edge e(u, v) ∈ E with μ′(erev(v, u)) = μ(e(u, v))
and γ′(erev(v, u)) = rev(e(u, v)).

A flow on the original network satisfies the capacity constraint, that is, the flow is send
along each (u, v) by at most μ(e(u, v)). The constraint is satisfied on the doubled net-
work if we introduce a new constraint f(e(u, v))f(erev(v, u)) = 0 for flow f . Fortu-
nately, we proved that the value of the generalized maximum flow on a doubled net-
work is unchanged even if the new constraint is introduced. Therefore, we can estimate
co-citation using a generalized maximum flow on the doubled network. The proof is
omitted because of space limitations.

3.2 Gain Function for Wikipedia

It is desired to assign a larger gain to an important edge because a path composed of
edges with large gains can contribute to the value of a flow. The gain of an edge should
be determined depending on what kinds of objects the source and the destinations are.
For example, if we measure a relation between a Japanese politician and an American
politician, then we should assign a larger gain to the primarily important edges connect-
ing Japanese and American politicians, than probably unimportant edges connecting
Japanese politicians to baseball players. Edges connecting Japanese politicians would
be secondarily important, in the example. To realize such a gain assignment, we need to
construct groups of objects in Wikipedia, such as “Japanese politicians” and “baseball
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players”. In Wikipedia, the page corresponding to an object belongs to at least one cate-
gory. For example, the Japanese politician “Junichiro Koizumi” belongs to the category
“Members of the Diet of Japan.” However, categories cannot be used as groups directly
because the category structure of Wikipedia is too fractionalized.

A category representing a concept might have descendant categories each represent-
ing a sub concept. The group for category ci should contain its descendant categories
too, as depicted in Figure 4. However, a part of descendant categories represent no
sub concepts. For example, “The Pacific War” category is a descendant category of the
“Thailand” category. We observed that such irrelevant descendant categories, depicted
as black triangles in Figure 4, are usually linked from more than three categories other
than kin categories of ci. We remove them from the group. We omit the detail of con-
structing a group because of space limitations.

We now propose the gain function for Wikipedia. Let S be the set of objects be-
longing to a category in group for a category of the source. Similarly, let T be the set
of objects for the destination. Then, the primarily important edges explained above are
defined as the set of edges (u, v) such that u ∈ S ∧ v ∈ T or u ∈ T ∧ v ∈ S, named an
S − T bridge. The secondarily important edges are inside S or T , and the unimportant
edges would be outside S and T , as illustrated in Figure 5. We assign the gain for an
edge e = (u, v) depending on a distance function d(e) between e and S−T bridge, de-
fined as follows: if e ∈ S−T bridge, then d(e) = 0; if u ∈ S∧v ∈ S or u ∈ T ∧v ∈ T ,
then d(e) = 1; otherwise, d(e) is set to 1 plus the number of edges, including e itself, in
the shortest path from e to arbitrary vertex in S or T , computed by ignoring the direc-
tions of edges. Figure 5 depicts the definition of d(e). We express the gain function for
edge e depending on d(e) with two parameters α and β as

γ(e) = α ∗ βd(e), 0 < α < 1, 0 < β ≤ 1,

and the reverse gain function is represented with parameter λ as

rev(e) = λ × γ(e), 0 ≤ λ ≤ 1.

If the value of α is fixed, a smaller β produces larger differences between the gains for
edges in S − T bridge and those for other edges. λ is used to adjust the importance of
a reversed edge. We conduct experiments to determine α, β and λ in Section 4.3.



468 X. Zhang, Y. Asano, and M. Yoshikawa

3.3 Summary of Our Method

We summarize our method for measuring a relation from s to t as follows. (1) Construct
a generalized network G = (V, E, s, t, μ, γ) containing s and t from Wikipedia, by
determining the parameters α and β explained in Section 3.2. We set the capacity of
every edge to one. (2) Determine the parameter λ explained in Section 3.2 for reversed
edge gain rev for G, and construct the doubled network Grev of G for rev. (3) Compute
a generalized maximum flow g in Grev . (4) Output the value of the flow divided by
the square root of deg (t), the number of objects linked from or to t in the dataset, as
the strength of the relation. (5) As those constituting the relation, output several paths
contributing to the flow.

Computation on a large network is practically impossible. As discussions in [1][13],
only a part of the network is significant for measuring a relation. For Wikipedia, we
construct G at (1) using pages and links within at most k hop links from s or t in
Wikipedia. Careful observation of pages in Wikipedia revealed that several paths com-
posed of three links are interesting for understanding a relation, although we were able
to find few interesting paths composed of four links. Furthermore, in preliminary exper-
iments, we constructed G using three and four hop links, separately, and obtained the
ranking according to the strength of relations computed by our method. However, the
ranking obtained using four hop links is almost identical to that obtained using three
hop links. Therefore, we usually set k = 3 at (1).

Our method can be applied to both directed network and undirected network. For an
undirected network, we set λ = 1 to use both directions of an edge equally.

We use only a subset of links. The generalized network becomes large if deg (t) is
large, and vice versa. The value of the generalized maximum flow becomes large if the
generalized network is large. Consequently, the value becomes large for any source if
deg (t) is large. On the other hand, the relation between s and t is expected to be inde-
pendent of deg (t). We decide to divide the value of the flow by

√
deg (t) at (4). We

tried several functions other than
√

deg (t), such as deg (t) itself or log (deg (t)), al-
though

√
deg (t) is the best among them. Similarly, we can estimate deg (s). However,

our main purpose is construction of a ranking according to the strength of relations from
a fixed source s to several destinations. Estimating deg (s) does not affect the ranking.
Therefore, we do not estimate that.

4 Experiments and Evaluation

4.1 Dataset and Environment

We perform experiments on a Japanese Wikipedia dataset (20090513 snapshot). We
first extract 27,380,916 links that appeared in all pages. We then remove pages that are
not corresponding to objects, such as each day, month, category, person list, and portal.
We also remove the links to such pages, and obtain 11,504,720 remaining links.

We implemented our program in Java and performed experiments on a PC with four
3.0 GHz CPUs (Xeon), 64 GB of RAM, and a 64-bit operating system (Windows Vista).
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4.2 Evaluation of Rankings

A good evaluation of methods for measuring the strength of a relation always requires
human subjects, as performed in [2][21][22]. There are several benchmark datasets for
similarity of words, such as ‘WordSimilarity-353” test collection [23]. However, to the
best of our knowledge, there is no benchmark dataset for the strength of a relation be-
tween objects in Wikipedia, such as people or countries as we used in the experiments.
Therefore, we compare the rankings according to the strength of a relation obtained by
our method, GSD, PFIBF and CFEC, with those obtained by human subjects. For our
method, we set the gain function with α = 0.8, β = 0.8, and λ = 0.8. The parameters
are determined by the estimation of gain function described in the next subsection.

Relations between People: For the source and the destination objects, we select fa-
mous person known by the students creating the rankings by their subjects. We first
select 10 famous Japanese and American politicians as source objects from Japanese
Wikipedia, in order to enables the students to investigate relations among the persons on
Wikipedia and create appropriate rankings. As the destination objects for each source,
we then select four famous persons related to the source. For each of the 40 obtained
pairs of a source and a destination, we compute the strength of the relation from the
source to the destination using our method, GSD, PFIBF and CFEC, on the same data
set explained in Section 4.1. We then obtain rankings according to the strength. We
search Web pages in the domain of Japanese Wikipedia using keywords of the full
names of these persons to compute GSD. For PFIBF, edge weight is assigned using FB
weighting method of PFIBF [3]. For CFEC, we set the weight of every edge to one. We
compare the rankings with those obtained by human subjects. For examining each of
the 40 relations, 10 students read the Wikipedia pages corresponding to the source and
the destination, and pages related to the source and the destination. Each student gives
an integer score of 0–10, independently to the others, as the strength of the relation
between each source and destination; a larger score represents a stronger relation. We
then obtain rankings according to the average of the scores given by the 10 students.

Table 1 presents the rankings for only five sources because of space limitations. Sim-
ilar results are obtained for the remaining five sources. For each source, the ranking and
the average score obtained by human subjects are written in the column “Human;” an
integer 1-4 is assigned as the ranking of the destination; a real number in parentheses is
the score. Similarly, the ranking and the strength obtained by our method, GSD, PFIBF
and CFEC, are written in the column “Ours 3 hop,” “GSD,” “PFIBF 2 hop” and “CFEC
3 hop,” respectively. “k hop” written behind the name of a method indicates that the
method measures a relation between source s and destination t on the network con-
structed using at most k hop links from s and t. A real number in parentheses is the
obtained strength. Note that, GSD uses a smaller real number in parentheses to repre-
sent a stronger relation. The shadowed cells for each method emphasize the difference
between the ranking obtained by human subjects and that obtained by the method.

The rankings obtained by PFIBF (3 hop) are much worse than those obtained by
PFIBF (2 hop). Therefore, we describe the rankings of PFIBF (2 hop) only. Regarding
CFEC (3 hop), we use 1000 shortest paths. The rankings obtained by our method are the
closest to those obtained by human subjects. However, some rankings by other methods
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Table 1. Rankings of persons

Source Destinations Human
Ours

GSD
PFIBF CFEC

3 hop 2 hop 3 hop

Donald
Henry

Rumsfeld

Dick Cheney 1 (7.7) 1 (2.05) 1 (0.17) 2 (3.38) 2 (1.08)
Condoleezza Rice 2 (6.9) 2 (1.47) 2 (0.22) 3 (2.58) 4 (0.02)
Ronald Reagan 3 (5.5) 3 (1.07) 3 (0.35) 1 (3.47) 1 (1.20)
Junichiro Koizumi 4 (3.8) 4 (0.46) 4 (0.53) 4 (1.63) 3 (0.06)

Nobuta
Machimura

Yasuo Fukuda 1 (8.4) 1 (1.67) 1 (0.19) 1 (9.39) 1 (1.38)
Condoleezza Rice 2 (5.3) 2 (0.82) 2 (0.41) 3 (0.75) 3 (0.01)
George W. Bush 3 (4.1) 3 (0.64) 4 (0.56) 2 (1.14) 2 (0.02)
Hillary Clinton 4 (2.6) 4 (0.61) 3 (0.48) 4 (0.27) 4 (0.00)

Kiichi
Miyazawa

Noboru Takeshita 1 (8.4) 1 (3.71) 1 (0.09) 1 (12.1) 1 (1.49)
George H. W. Bush 2 (4.9) 2 (1.07) 4 (0.58) 3 (0.86) 3 (1.04)
Robert Rubin 3 (4.0) 4 (0.71) 2 (0.49) 4 (0.46) 4 (0.01)
Bill Clinton 4 (3.9) 3 (1.05) 2 (0.49) 2 (1.74) 2 (1.07)

Junichiro
Koizumi

Shinzo Abe 1 (9.1) 1 (5.30) 1 (0.18) 1 (29.6) 1 (1.97)
Donald Rumsfeld 2 (5.3) 2 (1.99) 2 (0.53) 2 (2.32) 3 (0.12)
Wen Jiabao 3 (4.5) 4 (1.66) 2 (0.53) 4 (2.00) 2 (1.03)
Condoleezza Rice 4 (4.1) 3 (1.83) 4 (0.55) 3 (2.17) 4 (0.06)

Yasuo
Fukuda

Takeo Fukuda 1 (9.7) 1 (4.04) 1 (0.16) 1 (11.7) 1 (2.12)
Tony Blair 2 (4.7) 3 (1.43) 4 (0.52) 3 (1.30) 3 (0.06)
Nicolas Sarkozy 3 (4.6) 2 (1.75) 2 (0.50) 2 (2.07) 2 (1.03)
Mamoru Mohri 4 (2.8) 4 (0.73) 2 (0.50) 4 (0.47) 4 (0.01)
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Fig. 6. Average correlation coefficients for all methods

are far from those by human subjects. For example, for “Donald Henry Rumsfeld,”
PFIBF and CFEC rank “Ronald Reagan” as the first destination, although the students
rank him as the third. Similarly, for “Kiichi Miyazawa,” GSD ranks “George H. W.
Bush” as the fourth, although the students rank him as the second.

We also compute the Pearson product-moment correlation coefficient between the
obtained strength and the score given by the students. For each method, Figure 6 de-
picts the average correlation coefficient for the 10 sources. Note that, the bar “GSD”
indicates the absolute value of the coefficient for GSD; the original coefficient for GSD
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Table 2. Rankings of states for Petroleum

Ranking statistics-based Ours 3 hop GSD PFIBF 2 hop CFEC 3 hop
1 USA Japan Iraq Iran Saudi Arabia
2 Russia USA Iran Saudi Arabia Kuwait
3 China Russia Saudi Arabia Iraq Iraq
4 Saudi Arabia Saudi Arabia Kuwait Japan Iran
5 Iran China Indonesia Brazil Egypt
6 Canada Libya Libya Indonesia Brazil
7 Mexico Kuwait UAE Egypt Libya
8 Japan UK Pakistan Turkey UAE
9 Brazil Iran Afghanistan Libya Indonesia
10 India Bahrain Singapore UAE Norway

is negative because GSD gives smaller value to represent a stronger relation. For CFEC
(3 hop), we present both the coefficients of using k = 200 and k = 1000 shortest paths.

Our method (2 hop) and our method (3 hop) have the best two correlation coeffi-
cients: 0.953 and 0.939. The respective coefficients of GSD and PFIBF 2 hop are fairly
good: 0.904 and 0.901. However, GSD cannot use three hop links by nature as explained
in Section 2. The coefficient of PFIBF (3 hop) is fairly worse than that of PFIBF (2 hop).
Therefore, GSD and PFIBF are unsuitable for measuring the strength of 3-hop implicit
relations. Moreover, GSD and PFIBF were unable to mine elucidatory objects consti-
tuting an implicit relation, although our method can do so. The coefficients of CFEC
are much worse than those of other methods; if the number of shortest paths becomes
smaller, then its coefficient becomes smaller.

It took 102s to compute the generalized maximum flow using three hop links for the
40 relations described above. The time for computing PFIBF (3 hop) is 400s, which
is about four times longer than our method. For computing CFEC (3 hop), using 200
shortest paths and 1000 shortest paths took 91s and 5631s, respectively.

Relations between Petorleum and Countries: As another experiment, we obtain the
rankings according to the strength of the relations from “Petroleum” to each of the 192
states using each method. We also create a statistics-based ranking of the 192 states
according to the scores computed by the following equation using the statistics about
the oil production and consumption of the states [24].

score =
oil production of a state

oil production of the world
+

oil consumption of a state

oil consumption of the world

Although the relation between petroleum to a state is not only dependent on its pro-
duction and consumption of petroleum, the statistics-based ranking offers an objective
way for evaluating the rankings obtained by several methods. The top 10 states in the
ranking obtained by each method are presented in Table 2. CFEC is computed using
1000 shortest paths here. Referring to the statistics-based ranking, we can see that our
method yielded the most reasonable ranking. Especially, except our method, the two
largest consumer “USA” and “China” are not ranked in the top 10 by other methods.
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Fig. 7. P@10, P@20 and P@30 of Rankings of states for Petroleum

We then evalute the precision at the top n states of a ranking, abbreviated to P@n,
computed by |Sn|

n , where Sn is the set of states appeared in both the ranking and the
statistics-based ranking. Figure 7 depicts P@10, P@20 and P@30 of all rankings. Sim-
ilarly to the results of the first experiment depicted in Figure 6, our method (3 hop)
and our method (2 hop) generate the highest precisions. The precisions of PFIBF (2
hop) are secondly highest, although those of PFIBF (3 hop) are fairly worse. CFEC (3
hop) performed better than CFEC (2 hop), similar to the first experiment. However, the
precision of GSD is the worst in this experiment.

The results of the two experiments imply that our method is the most appropriate one
for measuring the strength of a relation. Particularly, our method is the only choice for
measuring 3-hop implicit relations.

We also conduct an experiment setting the weight of edge e for CFEC to γ(e), our
edge gain. However, the obtained rankings are much worse than those obtained by set-
ting edge weight to one. We do not apply the gain function to PFIBF, because PFIBF
has its own method for weighting edges.

4.3 Estimation of Gain Function

In this subsection, we evaluate the parameters α, β and λ for our gain function explained
in Section 3.2. Let ρ(α, β, λ) be the correlation coefficient, averaged for the 40 relations
among politicians described in Section 4.2, depending on the values of parameters. We
set the values of the parameters as α ∈ {0.1, 0.2, ..., 0.9}, β ∈ {0.1, 0.2, ..., 1.0} and
λ ∈ {0, 0.1, ..., 1.0}. We compute ρ(α, β, λ) for all the possible 9 × 10 × 11 = 990
combinations of values. Let ρ̄(α = χ) be the average of ρ(α, β, λ) obtained by the
combinations of fixing α = χ and varying β and λ. ρ̄(β = χ) and ρ̄(λ = χ) are
similarly defined. Table 3 presents the averages ρ̄(α = χ), ρ̄(β = χ) and ρ̄(λ = χ).

Table 3. Average of correlation coefficients with a fixed parameter

�����average
χ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρ̄ (α = χ) - 0.705 0.811 0.855 0.878 0.891 0.901 0.908 0.914 0.920 -
ρ̄ (β = χ) - 0.778 0.805 0.829 0.850 0.870 0.889 0.905 0.913 0.910 0.899
ρ̄ (λ = χ) 0.810 0.826 0.842 0.855 0.866 0.874 0.880 0.885 0.888 0.891 0.893



Analysis of Implicit Relations on Wikipedia 473

The differences between the averages are relatively small when χ is large. Therefore,
our method is fairly robust against varying values of the parameters. The highest average
for a fixed α is ρ̄ (α = 0.9) = 0.920, that for β is ρ̄ (β = 0.8) = 0.913, and that for λ is
ρ̄ (λ = 1.0) = 0.893. The shadowed cells in the row “ρ̄(α = χ)” indicate that we could
find no statistical significance among the distributions of ρ(α, β, λ) obtained by the
combinations of fixing α = 0.7, 0.8 or 0.9, by setting the significance level to 0.05. The
shadowed cells in the two bottom rows have similar indication. Therefore, candidate
combinations producing good results are α ∈ {0.7, 0.8, 0.9}, β ∈ {0.7, 0.8, 0.9} and
λ ∈ {0.6, 0.7, ..., 1.0}. Similar candidate combinations are obtained by evaluating the
P@n of the ranking of states for the 990 combinations of the parameters. We finally
choose the combination α = 0.8, β = 0.8 and λ = 0.8 which produces a medium
result among the candidates.

In addition, we obtain the following observations. (1) If β = 1, then the gain func-
tion is insensitive to groups, constructed from the category structure of Wikipedia as
explained in Section 3.2. ρ̄(β = 1) = 0.899 is worse than the best average. Therefore,
the category structure is essential to our gain function. (2) If λ = 0, then no reversed
edges are used for measuring a relation. ρ̄(λ = 0) = 0.810 is the worst value in the
bottom row. Therefore, reversed edges used for reflecting co-citation are effective in
measuring a relation. Conversely, using no reversed edges would be a deficit of CFEC.

4.4 Case Studies of Elucidatory Objects

For each relation, our method outputs the top-k paths, say top-30 paths, primarily con-
tributing to the generalized maximum flow, that is, paths along which a large amount of
the flow is sent. We call objects in such paths elucidatory objects affecting the relation.
In this subsection, we conduct case studies to demonstrate that elucidatory objects are
useful for explaining an implicit relation.

Figure 8 portrays five paths (A)–(E) contributing to the flow emanating from “Petro-
leum” into the “USA.” Each vertex represents a page in Wikipedia, and each edge rep-
resents a link from a page to another page. The vertices except “Petroleum” and “USA”
are elucidatory objects. We analyze these paths based on the contents of pages in the
paths. Path (A) corresponds to the fact that the USA has exploited petroleum in the
Gulf of Mexico. John F. Kennedy in path (B), the thirty-fifth President of the USA,
considered reducing or abolishing the oil depletion allowance. Path (C) would corre-
spond to the fact that the USA attacked Iraq, which has many oil fields. Alabama, in
path (D) of the USA, produces large quantities of plastic from petroleum. USS Grid-
ley in path(E) is a U.S. Navy ship that struck against Iranian oil platforms. The ship
also escorted Kuwaiti oil tankers through the Strait of Hormuz. Although paths (B) and
(E) would not clearly represent the implicit relation between petroleum and the USA,
the other paths are interesting for elucidating the relation. We were unable to find the
relation represented by these paths from only two pages “Petroleum” and the “USA.”
Therefore, our method might help a user to understand a relation. We also investigated
the elucidatory objects in the top-30 paths for each of many relations evaluated in the
experiments described in Section 4.2, and found that over half of them are meaningful
for explaining the relations. One interesting subject of future work is to find a method
for filtering out unclear paths. Additionally, several visualization techniques would
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effective for explaining an implicit relation. For example, as depicted in Figure 8, we
could represent a path contributing more to a flow by a thicker line to show the impor-
tance of a path; displaying a snippet on each edge would also help users to understand
the meaning of each path without reading Wikipedia pages.

The methods proposed by Faloutsos et al. [17], Tong and Faloutsos [19] and Koren
et al. [1] visualize a subgraph for explaining a relation. However, a user still must in-
vestigate important paths in the subgraph to understand the relation. It is easier in usual
for a user to understand a relation explained by simple paths rather than a complicated
subgraph. Therefore, our method would be better for understanding a relation deeply.

5 Conclusion

We have proposed a new method of measuring the strength of a relation between two
objects on Wikipedia. By using a generalized maximum flow, the three representative
concepts, distance, connectivity, and co-citation, can be reflected in our method.

We have ascertained that we can obtain a fairly reasonable ranking according to the
strength of relations by our method compared with those by GSD [6], PFIBF [3][2] and
CFEC [1]. Particularly, our method is the only choice for measuring 3-hop implicit rela-
tions. We have also confirmed that elucidatory objects are helpful to deeply understand
a relation.

Some future challenges remain. We plan to apply our generalized flow based method
to social networks by determining another gain function. Unlike in Wikipedia, objects
in most social networks represent people only. A gain function for a social network
would be simpler than our function for Wikipedia. We are also interested in seeking
possibilities of the elucidatory objects constituting a relation mined by our method. We
plan to quantitatively evaluate the elucidatory objects. We are developing a tool for
deeply understanding relations by utilizing elucidatory objects.
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Abstract. As more and more people are willing to publish their attitudes and 
feelings in blogs, how to provide an efficient way to summarize and extract pub-
lic opinion in blogosphere has become a major concern for both compute science 
researchers and sociologist. Different from existing literatures on opinion re-
trieval and summarization, the major issue of online public opinion monitoring is 
to find out people’s typical opinions and their corresponding distributions on the 
Web. We observe that blog search results could provide a very useful source for 
topic-coherent and authoritative opinions of the given query word. In this paper, 
a lexicon based method is proposed to enrich the representation of blog search 
results and a spectral clustering algorithm is introduced to partition blog search 
results into opinion groups, which help us to find out opinion distributions on the 
Web. A mutual reinforcement random walk model is proposed to rank result 
items and extract key sentiment words simultaneously, which facilitates user to 
quickly get the typical opinions of a given topic. Extensive experiments with dif-
ferent query words were conducted based on a real world blog search engine and 
the experiments results verify the efficiency and effectiveness of our proposed 
model and methods. 

1   Introduction 

Online public opinion can be defined as the collection of opinions of many different 
people on the Web and the sum of all their views [14]. Governments have increasingly 
found public opinion to be useful tools for guiding their public information and propa-
ganda programs and occasionally for helping in the formulation of other kinds of poli-
cies. For individual users, public opinion can help them when making decisions.  

Nowadays, people are willing to write about their lives and thoughts in blogs, 
which are often online diaries published and maintained by bloggers, reporting on 
their daily activities and feelings. The contents of the blogs include commentaries or 
discussions on a particular subject, ranging from mainstream topics (e.g., food, music, 
products, politics, etc.), to highly personal interests [5]. According to statistics, there 
are more than 100 million blogs on the Internet, which has provided us a rich source 
for extracting public opinion online. 

Fig.1 shows the public opinion extraction results in blogosphere for Liu Xiang’s 
withdrawal from Olympic Games [15]. Different from traditional opinion mining 
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task, the major issue of online public opinion monitoring is to find out the typical 
opinions and their corresponding distributions on the Web. In Fig.1 there are nine 
kinds of opinions, and each one reflects a typical point of view toward Liu’s with-
drawal. For example, about 22% bloggers support Liu Xiang’s decision and about 
16% bloggers feel disappointed. However, it’s tough work for analysts to get this 
report, because most of the data collecting and typical opinion summarizing tasks can 
only be done manually. 

22%
20%

16%

11%
8% 7% 7%

5% 4%

0%

5%

10%

15%

20%

25% Support Liu Xiang
Understandable
Disappointed
Criticize Liu Xiang
Regretful
Just a show
Not Olympic spirit
It's normal
Be deceived

 

Fig. 1. Online public opinion for Liu Xiang’s withdrawing from Beijing Olympic Games 

From the discussion above we know that online public opinion extraction is not 
just a sentiment classification task or the same as opinion summarization task. The 
three major challenges include: 

 

How to sample the blogosphere. Since there are huge amount of blogs on the Web, 
given a topic, it is unrealistic to analyze all the topic relevant blogs in the blo-
gosphere. A sampling strategy need to be designed so that we can use a small dataset 
which could represent as many bloggers’ opinions as possible. 

How to find the typical opinions. A typical opinion is a point of view held by many 
people. Public opinion monitoring in blogosphere should aggregate individual atti-
tudes or beliefs and extract typical opinions in the sample dataset. 

How to quantitatively measure the distribution of typical opinions. As the exam-
ple in Fig.1, we should know how many people “support Liu Xiang”, and how many 
people “feel disappointed” in the dataset, so that we can get a macro view of people’s 
attitudes toward the given topic on the Web. 

Most recently, opinion mining techniques have been used to find people’s attitudes 
in blogosphere. Previous studies on opinion retrieval in blogs usually focus on finding 
the topic relevant opinionated blog entries [22][23], but not the opinion relatedness 
between the retrieval results. The existing studies on opinion summarization can gen-
erate a short abstract of the major opinions in a close blog dataset on a given topic [6]. 
However, for public opinion monitoring task, the extracted results should not only 
contain the summary of opinions, but also should include the distribution of each 
typical opinions. Moreover, previous studies on opinion retrieval and summarization 
equally treat each blog document, but in real world, blogs from opinion leaders, who 
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have a greater influence on the Web, should be given priority during the summariza-
tion. Therefore, there are still some defects in existing methods, which could not to-
tally meet the need for public opinion monitoring task in blogosphere. 

In this paper, we propose a new method to summarize and extract public opinion 
from blog search results. We use the titles and snippets of blog search results (BSRs 
for short) to summarize public opinion based on the following considerations: 

(1) In many cases, bloggers do not confine themselves to one topic in a blog arti-
cle. But sophisticated Web search techniques could guarantee that BSRs are 
highly topic relevant to the query word; 

(2) Usually, these titles and snippets in BSRs contain bloggers’ opinion about the 
given query word; 

(3) Due to the algorithms of blog search engines, the top ranked BSRs are from 
popular or opinion leader’s blog sites. So we can get the public opinion of the 
whole blogosphere using a relative small BSRs dataset. 

(4) We need not to crawl and index the huge amount of blog entries on the Web. 

In order to tackle the above three challenges, several hundreds of the top ranked 
BSRs are used to sample the blogosphere about the given topic. Then a lexicon based 
method is proposed to measure the underlying opinion relatedness between BSR 
items and a spectral clustering method is employed to aggregate the opinions into 
groups, which reflect the opinion distributions on the Web. Finally, a mutual rein-
forcement random walk model is proposed to rank BSRs and extract key sentiment 
words in each opinion cluster, which facilitates user to quickly get the typical opin-
ions of the given topic in blogosphere. 

To our best knowledge, this is the first paper trying to summarize and extract 
online public opinion from blog search results. The rest of the paper is organized as 
follows. Section 2 analyzes the sentiment characteristics of BSR items and discusses 
the new sentiment representation for BSRs. Section 3 describes opinion clustering 
algorithm. In Section 4, we will propose a random walk model to rank BSR items and 
extract key sentiment words simultaneously. Section 5 provides experimental results 
on real world blog search engine. Section 6 introduces the related work. Finally we 
present concluding remarks and future work in Section 7. 

2   Blog Search Results Sentiment Representation 

In this section, we attempt to give BSRs a new representation in order to measure the 
opinion relatedness between BSR items.  

2.1   Characteristics of Blog Search Results  

Some commercial blog search engines have been published on the Web [4] [16]. 
These services usually use Web search techniques and rank the results by their topic 
relevance and the popularity of the blog entry. To demonstrate the sentiment charac-
teristics of BSRs, we issue the movie name “Hancock” in Google Blog Search, then 
several results are collected and shown in Table 1. 
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Table 1. The titles and snippets for query word “Hancock” 

Title Snippet 

Hancock 
Go see Hancock. Much respect to Will Smith and the 

directors behind the film, truly inspirational. 
It’s a comedy, It’s a fantasy, Yes, 

It’s ‘Hancock’ 
Hancock was enjoyable, but no without it problems 

thanks to many unanswered questions. 

Hancock 2008 DVDRip direct links 
Hancock 2008 Language: English Runtime: 92 min 

Country: USA Release Date: 2 July 2008. 

 
We can see that the BSR items in Table 1 have the following characteristics: 
 

(1) The title and snippet of each item are very short, may be just one or two sen-
tences, and sometimes may be just a word. 

(2) The titles and snippets are highly relevant to the given query word. That’s be-
cause the blog search engine employs sophisticated and mature Web search tech-
niques to get the most topic relevant articles and snippets; 

(3) Some of the titles and snippets contain the bloggers’ sentiments and opinions. 
As the search results are highly topic-coherent, the sentiment words in titles and snip-
pets mainly reflect the bloggers’ own opinions about the given query key word; 

(4) Not all the blogs contain authors’ emotions, there are some informative results 
mixed up with affective ones. For example, the last result item in Table 1 tells us the 
download information of Hancock movie DVDRip; 

According to [12], there are two kinds of blog articles in the blogosphere, namely 
informative blogs and affective blogs, and Table 1 also confirms this point of view. 
Here we give our definition of Affective BSR and Non-affective BSR. 

Affective BSR. An Affective BSR is the BSR item that contains bloggers’ sentiments 
and opinions. 

Non-affective BSR. The contents of this genre of BSR include (1) the informative 
BSR that providing or conveying information and (2) short snippet that do not contain 
any personal feelings and emotions. 

An opinion usually includes opinion holder, opinion target and sentiments. Accord-
ing to the properties of blogs, the opinion holder of a BSR item is the blogger him-
self/herself. The opinion target is usually the query word or the subtopic related to the 
query word. From this observation, we submit topic words to a blog search engine, 
collect the BSR items and aggregate the sentiments in BSRs, so as to summarize and 
extract the public opinion of the bloggers about the given topic. 

2.2   BSRs Sentiment Representation  

BSRs are usually very short and opinion words usually do not converge like topic 
words. So directly applying traditional similarity measure based on term matching to 
BSRs often produces inadequate results. In this section, we propose a new sentiment 
representation for BSRs based on WordNet gloss. 

WordNet is a large lexical database of English. Nouns, verbs, adjectives and ad-
verbs are grouped into sets of cognitive synonyms (synsets), each expressing a distinct 
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concept [19]. Each synset in WordNet has a gloss that defines the concept that it repre-
sents. The intuition of this paper is that the terms with similar sentiments have similar 
glosses. For example, the synset A contains the words “amusing”, “amusive”, “divert-
ing” and “fun” and it has the gloss “providing enjoyment; pleasantly entertaining”; 
Synset B contains the words “amused”, “diverted”, “entertained” and it has the gloss 
“pleasantly occupied”. The words in synset A and B are quite different. However, their 
glosses share the same word “pleasantly”. Therefore, synset A and B have similar 
sentiment meanings, i.e. when people use the words in A and B, they tend to express 
similar state of emotions. In this paper, we attempt to remove non-sentiment words and 
add the glosses of each emotion-bearing word into BSRs to give them a new sentiment 
representation. The details of each step are discussed as follows: 

 

Step 1. Lemmatization. We convert the words into their basic lemma form. We do 
not conduct stemming algorithm to the words because we must keep their original 
sentiment meanings. 

Step 2. Negation Processing. Each word in the negation sentences is replaced by 
its antonym in WordNet and the words that do not have antonyms in WordNet are 
given a new prefix “not-”.  

Step 3. Sentiment Words Tagging. In this paper, we use SentiWordNet as the 
sentiment lexicon. Extensive experiments show that SentiWordNet is a very effective 
lexicon tool for finding emotion-bearing words [1][7]. Words with positive or nega-
tive strength above a threshold in SentiWordNet are picked out and corresponding 
words in BSRs are tagged as sentiment words.  

 

According to definition in Section 2.1, suppose Ra represents the set of Affective 
BSR and Rna represents the set of Non-affective BSR. So we get BSRs a naR R= ∪ . Let 

sw denote sentiment word and r, ri, rj∈BSRs. If r contains sentiment word, we say 
sw∈r, so we employ the following way to classify BSRs: 

{ | ( , )}a i iR r sw sw r= ∃ ∈ , { | ( , )}na j jR r sw sw r= ∀ ∉  (1) 

The above formulas indicate that if r contains at least one sentiment word, we clas-
sify it into Affective BSR category; otherwise, we classify it into Non-affective cate-
gory. It must be emphasized that since our goal is to group BSRs by their opinions, 
we do not care about the sentiment orientations of each word in BSRs. After this step, 
we eliminate search result items in Rna, and the words in Ra that don’t have sentiment 
tags are also removed. Only sentiment words in Ra are brought to the next processing 
steps.  

Step 4. BSRs Sentiment Representation. After prior processing steps, each  
remaining BSR item can be represented by a set of sentiment words. Give a BSR item 
r containing n sentiment words, we have r = {sw1, sw2, … , swn}. Synsets and glosses 
in WordNet are used to expand sentiment words representations, so we have E(sw) = 
{Synset(sw), Gloss(sw)}. Synset(sw) denotes all words in the synset of sw; Gloss(sw) 
denotes the gloss of sw. Therefore, we expand a BSR item r as Er = {E(sw1), E(sw2), 
… , E(swn)}. 

We concatenate the expansions of sentiment words in r together, and vector space 
model is used to represent BSRs. Suppose rj is a BSR item: 
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1 2( ( ), ( ),..., ( ))j mr TFIRF t TFIRF t TFIRF t=  (2) 

where ti (i=1, 2, …, m) is a term in the new representation, i.e. ti∈Er, TF represents 
term frequency in the BSRs and IRF denotes the inverse BSR item frequency. We call 
the new representation of BSRs as Sentiment Vectors (SV), because it can reflect 
bloggers’ original emotions and opinions. 

3   Aggregate Opinions in BSRs Based on Spectral Clustering 

Blogger’s opinions about a certain topic may be opposite or quite different. Our inten-
tion is to not only summarize typical opinions, but also find out their corresponding 
distributions, i.e. how many people hold similar opinions in the blogosphere. So in 
this section we attempt to aggregate BSRs into opinion clusters.  

3.1   Sentiment Similarity Computing  

In Section 2.2, we introduce SV to represent bloggers’ emotions in BSRs. SV have 
enriched the representations of the emotion-bearing words in each BSR item, and we 
employ traditional text similarity measurement algorithm to compute the sentiment 
similarity between BSR items. Evaluating a variety of similarity measurement algo-
rithms on SV, however, is not the aim of this paper. Rather we simply want to find out 
whether the new expanded representations of BSRs are effective in reflecting blog-
gers’ opinions. In this paper, we consider BSR items as nodes, and the BSRs collec-
tion can be modeled as an affinity graph in which each link denotes the sentiment 
similarity between BSR items. Formally, given the BSRs set R, let G=(V,ED) be an 
affinity graph to reflect the relations between items in R. V is the set of vertices and 
each vertex v∈V is an item in the BSRs set. ED is the set of edges. Each candidate 
edge eij in ED is associated with a similarity weight between item vi and vj. The simi-
larity weight function SentiSim is defined as: 

( , )
|| || | |

i j
i j

i j

v v
SentiSim v v

v v

⋅
=

×
 (3) 

We use adjacency matrix M to describe the structure of G and the value of Mij 
represents the weight of an edge in the graph. So we have 

( , ),  if 

                0 ,  otherwise 
i j

ij

SentiSim v v i j
M

≠⎧
= ⎨
⎩

 (4) 

Our intention is to aggregate similar opinions in BSRs, namely we have to partition 
the graph G into several subgraphs and each subgraph should reflect coherent opin-
ions of the bloggers. This is not an easy task because we do not know the structure of 
the graph G. Moreover, the number of clusters could not be easily predicted in ad-
vance. In the next section, we employ a spectral clustering algorithm to partition 
graph G which does not need to make any assumptions on the form of the clusters and 
a heuristic method to determine the number of clusters is introduced. 
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3.2   Spectral Clustering for BSRs  

Spectral clustering is an effective algorithm based on graph partitioning. The basic 
idea of the algorithm is to map the raw data space into eigenspace. In this paper, we 
choose the MS [8] method with the computation of the Laplacian matrix as follows. 
Let D be the diagonal degree matrix of M, i.e. 

ii ijj
D M=∑ . The Laplacian matrix L is 

defined as L = I-D-1M. The first k generalized eigenvectors of L is found to compose a 
new matrix M' and the traditional clustering method such as K-Means can be used on 
M' to find clusters.  

The number of clusters. We could not know the cluster number k in advance. In this 
paper, we employ a heuristic algorithm to auto determine k by computing eigengap of 
the matrix L. Matrix perturbation theory indicates that the stability of the eigenvectors 
of a matrix is determined by the eigengap. However, sometimes the cluster structure 
of the data is not so obvious, or there may be several big eigengap candidates, i.e. 
there are several eigenvalues λk where |λk+1-λk| is large. So we use candidate eigengaps 
to heuristically set the value of k and evaluate the quality of the clustering results to 
get the best k. Based on the assumption that the best partitioning will have most edges 
within the subgraphs and little edges between subgraphs, the quality of graph parti-
tioning is defined as [11]: 

2

1

( ) ( ( ) )
k

ii i
i

Q C e c a c
=

= −∑  (5) 

where C is a candidate clustering result, k represents the number of clusters, eii is the 
number of edges with both vertices within cluster i, ai is the number of edges with one 
or both nodes in cluster i, and c is the total number of edges. The heuristic method to 
determine k is as follows: (1) Compute the eigenvalues of L; (2) Find the biggest three 
eigengaps, and set the candidate number of clusters k1, k2, k3; (3) For each candidate k, 
we employ the MS spectral clustering method [8] to partition G into subgraphs; (4) 
The Q(C) function in Formula 5 is used to evaluate each candidate clustering results. 
The best Q(C) is chosen, so the final clustering result and the number of cluster are 
confirmed. 

We call this opinion clustering algorithm as OC algorithm. Using OC algorithm, 
we can generate opinion coherent clusters of a given BSRs dataset. At the same time, 
we hope that each BSR item could be ranked by its sentiment coherence to the seman-
tic meanings of the cluster. We will discuss this opinion ranking and keywords extrac-
tion method in the next section. 

4   Opinion Ranking and Keywords Extraction 

When browsing the Web search results, people used to read several top ranked items. 
Based on this intuition, the proposed algorithm should not only group BSRs into opin-
ion clusters, but also should rank the results in each cluster according to certain met-
ric. Considering the intention of people exploring the blogosphere, the words with 
higher sentiment strength are better indicator for bloggers’ emotions and the BSRs 
contain definite sentiment orientation and strong emotion meanings will attract more 
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attention. Therefore, the proposed algorithm should rank these BSRs in higher posi-
tion. And we also hope that the key sentiment words are extracted for each cluster, 
which could facilitate users’ quick browsing through the public opinion summariza-
tion results. 

Inspired by the work of Wan [18], in this paper we propose a mutual reinforcement 
random walk model to rank BSRs and extract key sentiment words simultaneously. 
Our basic assumption is that a BSR item is important if it includes important sentiment 
words and is heavily linked with other important BSR items. And also, a sentiment 
word is important if it has higher sentiment strength; it appears in many important BSR 
items and has relation with many other important sentiment words. This mutual rein-
forcement relationship of BSRs and sentiment words is shown in Fig.2. 

 

 

Fig. 2. The mutual reinforcement of BSRs and sentiment words 

In Fig.2, given a BSRs dataset, OC algorithm has partitioned the graph into several 
clusters. In a cluster, BSRs represents the blog search results in a cluster; SW denotes 
the sentiment word set of the given cluster. We build three graphs GB, GS and GB-S to 
reflect the BSR-BSR, SW-SW, BSR-SW relationship. For bipartite GB-S graph, if a 
sentiment word swj appears in BSR ri, an edge will be created between ri and swj. 
Each node in these graphs is associated with a sentiment strength value (shown as 
different grayscale in the right part of Fig. 2), and based on the random walk on these 
graphs, this strength is diffused in the three graphs. After several mutual reinforce-
ment iteration steps, the important BSR items could be ranked in higher position and 
simultaneously we also get the most salient sentiment words in each cluster. The 
detail of the algorithm is described as follows. 

Given a cluster Co that is the subgraph of G, we have the new adjacency matrix 
{ |  where , }ij ij oB B M i j C= ∈  to represent GB. We use S to denote the adjacency ma-

trix of GS and the similarity between SW is calculated by cosine similarity of Word-
Net expansion representation E(sw). The adjacency matrix of BSR-SW relationship is 
represented by W, and the weight is computed as: 

( )

( )
i

j
ij

sw r

TFIRF sw
W

TFIRF sw
∈

=
∑

 
(6) 

where given a sentiment word swj in BSR item ri. If swj appears frequently in ri and 
seldom appears in other BSR item, there is a higher weight between swj and ri. 
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B, S and W is normalized to ,   and B S W  respectively and the normalized transpose 

of W is represented by Ŵ . Let RBSR, RSW denote the ranking scores of BSR and SW. 
The mutual reinforcement random walk approach can be formulated as follows: 

( 1) T ( ) T ( )

( 1) T ( ) T ( )

(1 )

(1 )

k k k
BSR BSR SW

k k k
SW BSR SW

R B R W R

R W R S R

α α
β β

+

+

⎧ = + −
⎨ = + −⎩

 (7) 

Suppose we have: 

T T

T T

(1 )
,       

(1 )
BSR

SW

RB W
Y R

RW S

α α
β β
⎡ ⎤ ⎡ ⎤−

= =⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦
 (8) 

In matrix form, we have the equation YR=λR. Similar to the idea of PageRank [13], 
we add links from one node to any other nodes in GB and GS graph, so we have: 

T T
1

T T
2

((1 ) ) (1 )

(1 )((1 ) )

d E n dB W
Y

W d E n dS

α α
β β

⎡ ⎤− + −
= ⎢ ⎥− − +⎣ ⎦

 (9) 

where E is a square matrix with each element equal 1. We can prove that the trans-
pose of Y is stochastic and irreducible. 

Lemma: YT is irreducible and when α + β =1, it is stochastic. 

Proof: There is a link between each node in GB and GS, so they are strong connected. 
Because GB-S has connected the nodes in GB and GS graph, for each pair of nodes u, v 
in these three graphs, there is a path from u to v. Therefore, the new graph GAll com-
posed by GB, GS, GB-S is strong connected. And also there will be more than one path 
for any pair of nodes in GAll, so GAll is aperiodic and the matrix YT is irreducible. For 
any column in the left part of Y: 

31 1

1 1 11

1
( )

nn n

ij ij iji
i i i

d
Y d B W

n
α β α β

= = =

−= + + = +∑ ∑ ∑ ∑  (10) 

The same conclusion can be deduced in the right part of Y. So when α + β =1, the 
sum of elements in each column in Y is 1, and the matrix YT is stochastic.                   

E/n in Formula 9 means that each node in the graph has an equal weight. Recall our 
assumption that the word with higher sentiment strength is a better indicator for blog-
gers’ emotions, we give each node a different weight during the iteration steps. For 
graph GS, the weight of a node is defined by the sentiment strength of the word sw, 
and we have the weight vector {q|qi = f(sw)}, where f(sw) is the sw’s sentiment 
strength in SentiWordNet. For graph GB, the weight is defined as the average strength 
of the word in each BSR item, and we have 

1

{ | ( ) }
N

i j
j

p p f sw N
=

=∑ . p and q is normal-

ized to p  and q . The matrix Y can be reformulated as follows: 
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Using Formula 11, we incorporate sentiment strength information into mutual rein-
forcement random walk model and it can be proved that Y'T is stochastic and irreduci-
ble. The power method is used to iteratively find the solution of the equation Y'R=R. It 
is guaranteed that R will converge to a steady state, which we use as final ranking 
results of BSR items. Finally, the top 5 ranked sentiment words are extracted as key 
sentiment words of the cluster. This ranking and summarization method is applied on 
each cluster. 

5   Experiments 

5.1   Experiment Setup  

Our experiment is conducted on a commodity PC with Windows XP, Core2 Duo CPU 
and 4GB RAM. Given a query key word, we use Google Blog Search to find the topic 
relevant blog entries. Titles and snippets are parsed and extracted for further process-
ing steps.  

Web search results clustering usually focus on informative, polysemous and poor 
query words, such as “java”, “jaguar”, “apple”. With different purpose, we pay more 
attention to the entities’ and events’ name which can arouse people’s interest to pub-
lish opinions in blogosphere. The different types of query words used in this paper are 
shown in Table 2. 

Table 2. The query words used in the experiments 

ID Type Query Words Data Range 
Hancock Movie hancock movie 2008.7.1-2008.7.31 
Obama People president obama 2009.1.1-2009.1.31 

Opening Event beijing olympic opening 2008.8.8-2008.8.12 
IPod Product ipod touch 2007.9.1-2007.9.31 

 
Public opinions are highly relevant to the published time. If there is a hot topic 

emerging on the Internet, people are eager to write down their own opinions about the 
topic in blogs. However, as the time passing by, the blogs on original topic become 
fewer and fewer and there maybe a succeeding topic or a new story emerging in the 
blogosphere. In this paper, we restrict the publishing date of blogs for the query to 
find the most topic coherent story in the searching space. For example, we restrict the 
query “hancock movie” within one month period since the movie was released.  

Usually blog search engines have already ranked results by blogs’ authorities, and 
opinion leaders’ blogs and popular blogs can be returned in the higher position. 
Therefore, we use a relatively small dataset to reflect the major opinions in the whole 
blogosphere. As a result, less than 1000 BSR items are collected for each query. 
 

Evaluation Measure. There is no ground truth for the clustering results. Since we 
have model BSRs as graph, the best partitioning results would have most edges with 
the cluster and little edges between the clusters. So we use Formula 5 in Section 3.2 to 
evaluate clustering performance. 
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We use precision (P) at top N results to measure the performance of the ranking al-
gorithm. Since no golden standard is available for these search results, we ask three 
graduate students major in opinion mining to evaluate the opinion coherence between 
ranked search results and extracted key sentiment words in each cluster. However, it 
is very subjective to measure this opinion coherence. The three evaluators are asked 
to browse through the search results, compare key sentiment words to each result and 
give a score ranging from 0 to 10 to show how well the extracted key sentiment words 
match the opinion contained in each search result. If the score is high, it means that 
the extracted words are good opinion summarization for the given search result item. 
For each cluster we have: 

1

10
@

N

i
i

Score
p N

N
==
∑

 (12) 

where N denotes the top N result items in the cluster, and Scorei is the value given by 
evaluators. Notice that p@N represents the precision of one cluster, and the average 
precision of all clusters is calculated as @ ( @ )

k
P N p N k= ∑ . Finally, we use the 

average P@N value of the three evaluators to measure the performance of proposed 
BSRs public opinion summarization and extraction algorithm. 

Using Sentiment Vectors and OC algorithm, we hope that most of the Non-
affective BSR items are filtered out and the affective ones are ranked in high position. 
Thus we use Non-affective BSR (I) at top N results to measure this performance: 

@
I N

I N
N

∩=  (13) 

where I is the number of Non-affective BSR items in top N results. Three human 
annotators are asked to label BSR item with A/NA tag, i.e. Affective/Non-affective 
result. If there is a disagreement between the first two annotators, the third one will 
decide the final tag of the BSR item. 

5.2   Experiment Results  

Opinion Clustering Performance. We compare the proposed opinion clustering 
method with the basic K-Means method. To validate the effectiveness of the cluster 
number determination algorithm, we manually set k from 2 to 12.  

Fig.3 (a) and (b) show the clustering performance and eigenvalues of the query 
“hancock movie”. In Fig.3 (a), the Y axis denotes the Q(C) function value. The bigger 
triangle represents the auto-determined cluster number of OC algorithm. It can be 
seen from Fig.3 (b) that the “Hancock” dataset has a very obvious eigengap, and the 
proposed OC algorithm could find the best clustering performance using this eigengap 
when k=7. The “Beijing Olympic opening” and “IPod Touch” dataset also validate the 
proposed method (due to space limitation, we do not list the figures here). However, 
in Fig.3 (c) OC algorithm does not find the best partition number (OC predicts k=10, 
but the best Q is achieved when k=8). Fig.3 (d) illustrates that the difference between 
all eigenvalues are approximately the same for the “President Obama” dataset. This 
indicates that there is no clear cluster structure in “Obama” dataset, and this may  
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because the sentiment words used in this dataset are quite scattered. In this situation, 
we hope that our ranking algorithm could help us to figure out typical opinions in 
BSR items. 
 

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

2 3 4 5 6 7 8 9 10 11 12

k

Q

K-Means

OC

0
0.0005
0.001

0.0015
0.002

0.0025

0 5 10 15
i

E
ig

en
va

lu
es

 
           (a) “Hancock” clustering performance                     (b) “Hancock” eigenvalues 

-0.2

-0.1

0

0.1

0.2

0.3

2 3 4 5 6 7 8 9 10 11 12

k

Q

K-Means

OC

0
0.005

0.01
0.015

0.02
0.025

0 5 10 15

i

E
ig

en
va

lu
es

 
         (c)“Obama” clustering performance                                (d) “Obama” eigenvalues 

Fig. 3. Clustering performance results 

Opinion Ranking Precisions. Here we compare the proposed mutual reinforcement 
random walk based opinion ranking algorithm (MR algorithm) with two different 
ranking methods. The first method is directly rank BSR items by average sentiment 
strength, and we call it SR. The second one is directly employ basic PageRank algo-
rithm on the BSR graph, which does not consider sentiment strength and we call it 
PR. The key sentiment words of these two methods are extracted by TFIRF function, 
i.e. the words with top TFIRF values are extracted as key sentiment words. Here we 
set α=β=0.5 of MR algorithm to equally treat the weights of BSRs and sentiment 
words. The parameter d is set to be 0.85. We use MR-NE represents the mutual rein-
forcement algorithm without WordNet gloss expansion, i.e. the similarity is computed 
directly based on sentiment words vectors. The comparison of opinion ranking per-
formance is shown in Fig.4. 

We can see from Fig.4 that generally the proposed MR method outperform the 
other method. Note that the precision is calculated by volunteers’ comparing ranked 
BSRs with extracted key sentiment words. If the key sentiment words could reflect 
the major opinions expressed in the BSRs, a higher score will be given. Fig.4 vali-
dates that the mutual reinforcement method could effectively rank opinions and ex-
tract key sentiment words for each cluster and the extracted words could provide a 
very brief summarization of the major opinions in each cluster. And also we can con-
clude that the WordNet synset and gloss expansion are effective in finding the under-
lying opinion relatedness between short BSR texts. 

The best performance is achieved using the query “beijing olympic opening”. After 
analyzing the search results, we find that the words that people used to express their 
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opinions on Beijing Olympic open ceremony are really converging. On the other 
hand, the words reflecting people’s opinions on political figures are more complex 
and scattered. Thus the precision of our algorithm is decreased. 
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Fig. 4. Opinion ranking performance 

Affective vs Non-affective. The I@N performance using query “hancock movie” and 
“president obama” is shown in Fig. 5. It can be seen from Fig. 5 that I@5 is relatively 
small. Using opinion ranking algorithm, there is average 0.6 items in the top 5 BSRs 
are non-affective for query “hancock movie”, compared with average 4.6 non-
affective items in top 15 BSRs. Therefore, it can be concluded that the proposed algo-
rithm can effectively rank the affective BSR in high position. 
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Fig. 6 illustrates the clustering results for the query “hancock movie”. 924 BSR 
items are parsed for the further clustering steps. Key sentiment words are extracted 
for each cluster. Take cluster A for example, the extracted words include “good” and 
“pretty” and the top rank BSR items contain the sentences such as “I think overall is 
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good” and “saw Hancock yesterday and that was pretty good”. Generally, the pro-
posed method can extract sentiment words which reflect the major opinions expressed 
in the top ranked results. However, human evaluation for these results is very subjec-
tive. The new evaluation method without human involvement will be presented in the 
future work. 

6   Related Work 

6.1   Search Results Clustering  

Determining the similarity of short text snippets works poorly with traditional docu-
ment similarity measures. Some lexicon-based and language modeling-based have 
been proposed to solve the text snippets similarity measurement and clustering prob-
lem [9] [20]. But there are still some obstacles to measure the sentiment similarity 
between the short texts. 

Rich literatures have been published on search results clustering. Zeng et al. [21] 
reformalize the search result clustering problem as a supervised salient phrase ranking 
problem. Ferragina et al. [3] develop an open-source system which offers both hierar-
chical clustering and folder labeling with variable-length sentences. There are already 
some industrial Web search results clustering systems on the Internet [17] [10], which 
are especially useful for informative, polysemous and poor queries. 

We have proposed a sentiment clustering method for blog search results [2]. How-
ever, in [2] the sentiment similarity between BSRs is only considered at word level 
and key words are extracted only by sentiment strength. 

6.2   Opinion Mining  

The task of opinion retrieval is to find relevant and opinionate documents according 
to a user’s query [22] [23]. TREC started a special track on blog data in 2006 with a 
main task of retrieving personal opinions towards various topics, and it has been the 
track that has the most participants in 2007 [7]. However, people could have various 
opinions on the same topic, and opinion retrieval can not provide users with overall 
summarization of opinions expressed in blog articles. 

TAC 2008 has launched a task on opinion question answering and summarization. 
Given a list of questions, an exact string answer or several sentences containing the 
answer should be returned [6]. Different from that task, our intention is to find blog-
gers’ typical opinions and their corresponding distribution in blogosphere. 

7   Conclusion and Future Work 

Blog has provided a good platform for people to express their opinions and attitudes. 
In this paper, we propose a method to summarize and extract public opinion based on 
blog search results. Opinions are aggregated into clusters. A mutual reinforcement 
random walk model is proposed to rank blog search result items and extract key sen-
timent words. Experimental results demonstrate that the proposed method can effec-
tively extract public opinion in the blogosphere. 
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In this study, only sentiment words are used to represent bloggers’ opinions in 
BSRs. In future work, more linguistic information may be considered in the new rep-
resentation of sentiment vectors.  
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Abstract. We propose an extensible platform for bridging private
databases and Web services. Our main idea is to make a Web service
and its results be a set of virtual tables in a relational database (RDB)
environment. As private data that cannot be disclosed is stored in pri-
vate RDBs, these virtual tables realize a bridge between private RDBs
and Web services.

1 Introduction

Many Web services are currently offered, and the number of services continues
to increase. The cloud is so powerful that people will think new services must
be made on the cloud. It is, however, very reluctant for people and organization
to upload their important private data to the cloud because it is the worst if
the private data is leaked out by any chance. Even though the cloud provides
private secure space such as Amazon VPC, people still keep to feel uneasy.

People and organization often store their private data in their own relational
databases (RDBs). It is necessary to bridge the local databases and Web services
when they want to make applications that need both private data and data from
Web services. Our approach is to make a Web service and its results be a set
of virtual tables in local RDB environments. As private data that cannot be
disclosed is stored in private RDBs, these virtual tables realize the bridge to Web
services on the cloud. Virtual tables are realized by using table-valued functions.
As the platform does not extend the syntax of SQL, it can be extended by users.

2 Related Work

This section describes several related works and compares our work to them.
WSQ/DSQ [4] is a relational database environment where Web search engines
can be treated as virtual tables. A user can obtain a list of search items with a
search ranking, URL, and date from a virtual table. WebQL [1] is a software for
Web mining, data extraction, and data integration. It uses an SQL-like language
to access different data sources and to extract data from them. They treat several
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kinds of data sources and one of them is Web pages. Cafarella et al. [3] created a
search system that allows users to use a syntactic pattern as a query. KnowItAll
[2] is a Web service using their system. The system can be used to make a natural
language application, such as discovering hypernyms/hyponyms of a given word
within a huge number of Web pages.

Here, we compare WSQ/DSQ, WebQL, KnowItAll, and our platform. First,
except for KnowItAll, none need to store any data initially. They can collect
text data both from Web services and from local databases. Second, WSQ/DSQ
and WebQL use new languages; users need to pay cost to learn them. KnowItAll
does not have a language; it accepts queries that contain a syntactic pattern.
Our platform does not have any language extension from existing SQL. Third,
WSQ/DSQ does not have natural language processing (NLP) functions such as
term extraction using regular expressions. Some processing for text data is usu-
ally necessary to join text from the Web and text from local databases. Fourth,
our system can store procedures to obtain knowledge from text data. They are
stored by making a user-defined function by using the CREATE FUNCTION syntax.
Last, our system has much more extensibility than others. We implemented some
functions for Web services and processing functions such as NLP functions. If
users require other functions, they can add their own user-defined functions. It
would be difficult to extend the other platforms.

3 Web Services and Functions as Virtual Tables

A large amount of useful information are provided by Web services on the cloud.
If organizations and people stores their private data on the cloud, it is possible to
create many private applications useful for them. It is, however, not acceptable
in many cases because the private data must not be stolen by others in all cases.
Another way to make such applications is that a private database has capability
to connect to Web services. Out approach takes this way, and it is safer for
privacy. The concept of the approach is to regard the cloud as virtual databases.

Figure 1 shows the concept of the platform. It bridge local databases and
many Web services by regarding the cloud as virtual databases. APIs provided
by Web services send data to the platform. A wrapper is made for each of them,
and it is treated as a table. These tables are not physical but rather virtual
ones whose values change according to given arguments. Several functions are
prepared, and the outputs of them are also regarded as virtual tables. Processing
text data from both local databases and Web services is useful to join data from
both of them. Users of the platform can operate all of these by SQL.

Because they all are in an RDB environment, local databases can easily be
connected to Web services. Suppose that a private database has a table about
researchers, and it contains some data not to be disclosed. A Web service that
has publication data for researchers, such as CiteSeer or DBLP, can be joined
with the table on the local database, and aggregation of the data will provide
the number of research papers for each of the researchers.
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Fig. 1. Concept of the proposed platform

3.1 Virtual Tables Using Table-Valued Functions

Virtual tables are tables that do not store any data but will return table data
when they are executed. A table-valued function is a function that returns
a table. Virtual tables are realized by using table-valued functions. We imple-
mented the platform on Microsoft SQL Server 2005, and SQL CLR on it allows
us to make functions by using programming languages supported by the .Net
Framework, such as C# and Visual Basic. We do not extend the Transact-SQL.

For example, we created a virtual table that returns Web search results. The
table does not store any Web search result. When the virtual table is used in
SQL statements, it accesses a Web search engine and generates a table data
from the returned search results at that time. Many other Web services are also
implemented as virtual tables in the same manner. Table-valued functions are
also used to implement functions, such as morphological analysis, word extrac-
tion, and finding co-occurring words. Conventional RDBMSs have some string
functions, but these are too low level to extract meaningful information from
text data. The implemented functions return rich results as table data.

As virtual tables has substantial data when they are executed, joining virtual
tables and normal tables is easily done. However, because a virtual table changes
the result by a given argument value, normal fashion to join virtual tables cannot
be used in some cases. APPLY is a proprietary operator in SQL Server 2005. An
example usage of the APPLY operator is as follows.

SELECT * FROM tbl CROSS APPLY tvf(tbl.col);

tbl is a normal table name, and tfv is a table-valued function, and table tbl’s
column col is given as an argument of tfv. The results columns of this SELECT
statement are all tbl’s and tfv’s. The APPLY operator is used as CROSS APPLY
or OUTER APPLY, and they works like INNER JOIN or LEFT JOIN respectively.
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Fig. 2. Example of executing WebSearch

3.2 Web Services as Virtual Tables

We describe how to treat a Web search engine as a virtual table as an ex-
ample. A result from a conventional Web search engine normally contains in-
formation about searched pages. The information on each page consists of the
title, URL, and snippet. The table data of the virtual table is made of them.
WebSearch(query, num) is the name of the virtual table that returns a set of
Web search result items, where the argument query is a query and num is the
maximum number of search results. Each row in the returned table contains a
search ranking, URL, title, and snippet. Figure 2 shows an example of executing
WebSearch with the query “DASFAA2010”, where the top 50 search results are
retuned as a table. The platform supports many kinds of Web search engines.
Search results are obtained through APIs provided by the services. For example,
the virtual table WebSearch Yahoo uses Yahoo! Web Search.

Users can also treat many other Web services as virtual tables in the same
manner as conventional Web search engines. A Web image search service such
as Yahoo! Image Search returns surround text of searched images for a given
query word, and a bibliography web service such as CiteSeer and DBLP returns
publication information for a given author or document name.

When a Web service provides just a scalar value, the result does not have
to be a virtual table. Such Web services are implemented as scalar-valued func-
tions. For example, WebCount(query) gives the hit count from a conventional
Web search engine for a given query. SocialBookmarkCount(url) is another
scalar-valued functions that returns the number of social bookmarks in a social
bookmark service, such as delicious.com.

3.3 Functions as Virtual Tables

Many Web services return text data. To join local databases and Web services,
it is often necessary to extract term-level data from text data. We implemented
many functions for information extraction, which are mainly NLP functions.
Some of them are briefly introduced as follows.

ExtractPattern(text, extractPattern) is a virtual table that extracts
words from a given text by using regular expressions. There are two arguments
that text is a piece of text and extractPattern is a regular expression. The
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function is a virtual table, so the result is as table that contains all of the
matched parts in the given regular expression. The word column in the returned
table has a matched word. There are some other columns for users to specify the
matched parts in the regular expression. A simpler function to extract term is
ExtractWord(text, extractPattern), where extractPattern is a syntactic
pattern with a tag <word>. CooccurringWords(text, targetWord) is a virtual
table that returns words co-occurrent with a given target word.

4 Applications

4.1 Joining Local Databases and Web Services

Private data that must not be shared by others is mainly personal information
such as salary, birthday, address, and the number of children. On the other hand,
Web services provide public information. It sometimes contributes to evaluate
the private data. An example to join private data and data in a certain Web
service is shown as follows.

SELECT Researcher.Fullname, COUNT(*) AS n
FROM Researcher
CROSS APPLY Publication_DBLP(Researcher.Fullname) AS dblp

GROUP BY Researcher.Fullname
ORDER BY n DESC;

There is private information about researchers in a local table Researcher.The
column Fullname stores a list of full names of researchers. Publication DBLP is
publication data for researchers. The above SQL lists researcher’s name sorted by
the number of publications.

The former example joins data from Web services directly to local databases.
Another usage is to extract knowledge from data from the Web and to use the
knowledge on private data. Here, we introduce Web aggregation, which is a way
to acquire knowledge from the Web. It is done by obtaining text resource from
Web services, extracting information from the obtained text, and aggregate the
extracted information.

We devised a method to obtain coordinate terms of a given word. This method
uses syntactic patterns “x or y” and “y or x” where x and y are coordinate terms.
The detail of the method is described in [5], our platform has capability to realize
the method very easily. Figure 3 shows the definition of the user-defined function
to obtain coordinate terms. This can be used as follows.

SELECT * FROM CoordinateTerms(’Porsche’);

4.2 Web Trigger

The platform allows setting triggers on virtual tables by providing some stored
procedures. To make applications that set triggers on virtual tables, we first need
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1: CREATE FUNCTION CoordinateTerms (@q varchar(max))
2: RETURNS @results TABLE (word NVARCHAR(max), v FLOAT)
3: AS
4: BEGIN
5: DECLARE @wsa TABLE (word NVARCHAR(max), ca int);
6: DECLARE @wsb TABLE (word NVARCHAR(max), cb int);
7: INSERT INTO @wsa (word, ca)
8: SELECT word, count(word) FROM WebSearch(’"’ + @q + ’ or"’, 100)
9: CROSS APPLY ExtractWord(description, @q + ’ or <word>’)

10: GROUP BY word;
11: INSERT INTO @wsb (word, cb)
12: SELECT word, count(word) FROM WebSearch(’"or ’ + @q + ’"’, 100)
13: CROSS APPLY ExtractWord(description, ’<word> or ’ + @q)
14: GROUP BY word;
15: INSERT @results
16: SELECT ta.word, SQRT(ta.ca * tb.cb) v FROM @wsa AS ta, @wsb AS tb
17: WHERE ta.word = tb.word
18: AND ta.word NOT LIKE ’%’ + @q + ’%’
19: ORDER BY v DESC
20: RETURN
21: END

Fig. 3. User-defined function to find coordinate terms

1: CREATE FUNCTION CheapHotelInTsukuba()
2: RETURNS @results TABLE (rest INT, average INT)
3: AS
4: BEGIN
5: INSERT INTO @results (rest, average)
6: SELECT COUNT(*), AVG(sumCharge)
7: FROM VacantHotelSearch_Rakuten (’Tsukuba’, ’Ibaraki’, ’2010/4/1’, ’2010/4/4’, 1)
8: WHERE sumCharge < 30000;
9: RETURN

10: END

Fig. 4. Functions to obtain the number of available hotel rooms and the average charge

to keep Web search service results as a snapshot table. And then the platform
checks information in the Web at regular time intervals. When the difference be-
tween the previous snapshot and the current information is determined, triggers
set on the table are fired.

An example of applications using triggers on virtual tables is to check for
available hotel rooms. The virtual table VacantHotelSearch provides the re-
sults of the Web service. Suppose he has to go to Tsukuba in Ibaraki prefecture
in Japan from April 1st to 4th, 2010 and he reserves a hotel later. He wishes
to be notified if the available options change. First, he makes a user-defined
table-valued function CheapHotelInTsukuba that returns the number of avail-
able rooms whose charges are less than 30,000 JPY and their average charge. Its
definition is shown in Figure 4.

The stored procedure CreateSnapshotTable is prepared on the platform, and
it is used as follows, where the snapshot table snap t hotel is updated once an
hour (every 60 minutes).

CreateSnapshotTable ’CheapHotelInTsukuba()’, ’snap_t_hotel’, 60
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1: CREATE TRIGGER tri_tsukuba_hotel
2: ON snap_t_hotel AFTER UPDATE
3: AS
4: BEGIN
5: DECLARE @rest INT;
6: SELECT @rest = (SELECT rest FROM snap_tsukuba_hotel);
7: DECLARE @avg INT;
8: SELECT @avg = (SELECT average FROM snap_tsukuba_hotel);
9: DECLARE @message NVARCHAR(max);

10: SET @message = ’The number of hotel options is ’ + CAST(@rest AS NVARCHAR(5)) + ’.’
11: + CHAR(13) + CHAR(10) + ’The average charge is ’ + CAST(@avg AS NVARCHAR(7)) + ’.’;
12: EXEC MailSend ’ohshima@dl.kuis.kyoto-u.ac.jp’, @message;
13: END

Fig. 5. Trigger for checking available hotel rooms

The trigger is written in Figure 5. An e-mail is sent every time the result of
CheapHotelInTsukuba changes. The message sent by the system contains the
number of hotel options and their average charge.

5 Conclusions

We proposed a platform for bridging local databases and the cloud. It is devel-
oped in an existing RDB environment, Microsoft SQL Server 2005. Each Web
service is treated as a virtual table. Although it is not easy to brought private
data out of local databases, the platform realize to create applications using
private data and Web data.
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Abstract. In social tagging sites, users are provided easy ways to create
social networks, to post and share items like bookmarks, videos, photos
and articles, along with comments and tags. In this paper, we present
a study of top-k search in social tagging sites by utilizing multiple so-
cial networks and temporal information. In particular, besides the global
connection, we consider two main social networks, namely the friendship
and the common interest networks in our scoring functions. Based on
the degree of participation in various networks, users can be categorized
into specific classes that differ in their weights on each scoring com-
ponent. Temporal information, usually ignored by previous works, can
enhance the popularity and freshness of the ranking results. Experiments
and evaluations on real social tagging datasets show that our framework
works well in practice and give useful and intuitive results.

1 Introduction

The advent of Web 2.0 has facilitated the growth of online communities and
applications such as blogs, wikis, online social networks and social tagging sites.
In social tagging sites, such as del.icio.us, Flickr, and CiteULike, once a user
is logged in, he can easily edit his own personal profile, build social networks
with friends, and contribute content by posting bookmarks, videos, photos, or
articles. He can also annotate those items with arbitrary tags.

Social tagging sites are free, fun, and functional, attracting more and more
people to register as users. Moreover, social tagging sites have formed and stored
plenty of valuable information like user-generated items, user social networks,
and user tags. How to make good use of this information to improve services
such as hot-lists, recommendations and web search is an open and attractive
challenge for both academia and industry.

In this paper, we focus on temporal ranking and personal search in social
tagging sites. When compared to other related work such as [1,6], our contri-
butions are: First, we apply multiple components to score an item with respect
to a particular user’s different social networks and assign weights based on the
classification of that user’s participation in those networks. Then, we take tem-
poral information into account, to enhance popularity and freshness of the top-k
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results. We provide a variation of the classic top-k algorithm which works ef-
ficiently for our user-dependent temporal scoring functions. Last, experimental
evaluations on real social tagging datasets show that our framework works well
in practice.

2 Data Model

Previous work in social tagging mostly ignores temporal information, only con-
sidering three factors: User, Item, and Tags. We extend the tagging behavior
by adding timestamps: <User, Item, Tags, Timestamp>, which indicates that a
user annotated one item with arbitrary tags at some time. In the following, we
first demonstrate the model of social networks and static scoring functions with-
out timestamps, and then explore a method to incorporate temporal information
into ranking.

In social tagging sites, users are generally participating in multiple social
networks. Aside from the global connection (Global), meaning everyone is con-
necting with anyone else on the whole web, we consider two other main kinds
of social networks, namely, friendship (Friends) and common interest networks
(Links).

Friendship is a kind of explicit social network. One user can choose to add
any other users as friends. Most of them could be acquaintances in real life—
friends, schoolmates, business contacts, etc; some may be known through the
internet. We use Friends(u) to represent all users in a friendship with user u.
Social tagging sites enable users to create and join special groups. This is also an
explicit social network, since group members have direct connections with each
other. We categorize groups into Friends as well.

We also consider another kind of social network called common interest net-
work [1]. Different from the traditional explicit social networks built up by adding
friends or joining groups, the common interest network is implicit in nature,
formed based on similar tagging behaviors. The items posted and the tags used
by a user can be considered indicators of that person’s interests. Linking peo-
ple together whose tagging behaviors overlap significantly can implicitly form
common interest networks.

For example, Let Items(u) be the set of items tagged by the user u with any
tag. Using Links(u) to represent the common interest network for the user u, we
could define that another user v is in Links(u) iff a large fraction of the items
tagged by u are also tagged by v, as |Items(u) ∩ Items(v)| > θ, where θ is a
given threshold.

Given a query Q = t1, . . . , tn with n tags, issued by user u, and a number
k, we want to efficiently return the top-k items with the highest overall scores.
Our search strategy is user-focused, giving different results to different users. Our
scoring functions consider the user’s multiple social networks. Moreover, the top-
k results returned take into account tagging behaviors’ temporal information.
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3 Scoring Functions

The static scoring functions for each social network component and overall com-
bined scores are initially described. A method of weight assignments based on
user classification is then discussed. Finally, temporal information of tagging
behaviors is added and temporal scoring functions are examined.

3.1 Multiple Social Network Components

The overall static scoring function needs to aggregate three social network com-
ponents: friendship, common interest network, and global connection.

Given a user u, the friendship component score of an item i for a tag t is
defined as the number of users u’s friends who tagged i with tag t :

ScF (i, u, t) = |Friends(u) ∩ {v|Tagging(v, i, t)}| (1)

Similarly, the score from common interest network is defined as the number
of users in u’s Links who tagged i with tag t :

ScL(i, u, t) = |Links(u) ∩ {v|Tagging(v, i, t)}| (2)

Besides the above two scoring component from a user’s social networks, we
also consider the global effect on scoring. Not everyone is an active participant;
if we only use the local social network scoring, the search effectiveness may
decrease. The Global score, which is user-independant, is defined as the total
number of users in the whole website tagged item i with tag t :

ScG(i, t) = |{v|Tagging(v, i, t)}| (3)

As a result, the static overall score of item i for user u with one tag t is an
aggregate function of the weighted scores from the three components:

ScO(i, u, t) = w1 ∗ ScG(i, t) + w2 ∗ ScF (i, u, t) + w3 ∗ ScL(i, u, t) (4)

where wi is the weight of each component and
∑3

i=1 wi = 1
Since a query contains multiple tags, we also define the static overall SCORE

of item i for user u with the whole query Q = t1, . . . , tn as the sum of the scores
from individual tags, which is a monotone aggregation function:

SCORE(i, u) =
n∑

j=1

ScO(i, u, tj) (5)

3.2 User Classification

Different weight assignments of components can generate different overall scores.
There are several ways to assign component weights using machine learning or
statistics methods. However, those need a large amount of data such as user
feedbacks and log records, which are not easy to access. For simplicity, we use
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a user classification method based on the social networks size and recommend
weight assignments for each class.

Users in social tagging sites have different usage patterns and degrees of par-
ticipation in their social networks. Some users have many friends, while some
may only have few. Also, for tagging, some users do frequent tagging and thus
have a lot of tagged items; while others may not tag as much.

In our general framework, we use three categories for Friends and Links social
network component, described as: many, some and few ; so there are nine classes
totally. Within this classification, we assume that users in the same class have
similar degree of trust on each social network scoring component. Then we can
give a recommendation of weight assignments for users in each class.

3.3 Temporal Scoring Functions

We believe that ranking results will be more attractive to users not only based on
their relevance, but also on popularity and freshness. For example, one item may
be more interesting if it is recently added. In this case, a simple interpretation
of freshness is the first date the item was posted. However, a more subtle way
may consider how many recent tagging behaviors have targeted an item.

Our basic approach is to divide the tagging behaviors into multiple time slices,
based on their time stamps. We use m to denote the number of time slices and
adjust the weights of different time slices based on their recency. A decay factor
a (0 < a < 1) is used to penalize the count score from old time slices. Thus, the
temporal score of Global component of item i with tag t can be defined as:

TScG(i, t) =
m∑

s=1

ScG(i, t, s) ∗ am−s (6)

where ScG(i, t, s) is the global score of item i with tag t at time slice s, with
s = m being the current time slice.

The temporal scoring functions for Friends and Links components are defined
similarly with the same temporal factors in Global :

TScF (i, u, t) =
m∑

s=1

ScF (i, u, t, s) ∗ am−s (7)

TScL(i, t) =
m∑

s=1

ScL(i, u, t, s) ∗ am−s (8)

The temporal overall scoring function of item i for user u with tag t is:

TScO(i, u, t) = w1 ∗ TScG(i, t) + w2 ∗ TScF (i, u, t) + w3 ∗ TScL(i, u, t) (9)

Therefore, the temporal scoring for whole query is:

TSCORE(i, u) =
n∑

j=1

TScO(i, u, tj) (10)
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4 Temporal Ranking Algorithm

Typically, one inverted list is created for each keyword and each entry contains
the identifier of a document along with its score for that keyword [2]. For our
framework, when the query is composed of multiple tags, we need to access
multiple lists and apply the top-k processing algorithms.

One straightforward method is to have one inverted list for each (tag, user)
pair and sort items in each list according to the temporal overall score (TScO)
for the tag t and user u. However, there are too many users registered (del.icio.us
has over 5 million users). If we create inverted lists per keyword for each user,
there will be a huge amount of inverted lists and thus large space is required.

Another solution is to factor out the user from each inverted list by using
upper-bound scores [1]. Since we use the number of users as the static score
without normalization and set all three social network component with the same
temporal factors for a query, for the same item i with the same tag t, no matter
which user, we have TScF <= TScG and TScL <= TScG. As a result, temporal
global score is an upper-bound of temporal overall score for all users. Since the
global component scoring is user-independent, we can create only one list for
each keyword along with the temporal global scores (TScG) as an upper-bound
of the user-based temporal overall scores (TScO).

The temporal factor can be designed as adjustable for users, so the temporal
factors may also need to be factored out from the inverted lists. The static global
scores (ScG) is an upper-bound for the temporal global scores (TScG), since the
static scores correspond to the temporal ones with a = 1. Therefore, the final
upper-bound scores used in the inverted lists are the static global scores (ScG).

We can thus extend Fagin’s classic top-k TA algorithm [3] to rank the items
listed in the order of static global scores (ScG) as the upper bound. When a
new item is seen for the first time, we compute its exact temporal overall score
(TScG) with a “local” aggregation function of three component temporal scores.
The Algorithm stops whenever the score of the kth item in the heap is no less
than the sum of bottom bounds of all lists. More details are covered in [4].

5 Experimental Evaluation

To evaluate the effectiveness of our scoring functions and algorithms, we col-
lected real datasets from CiteULike (http://www.citeulike.org), an academic ar-
ticle social tagging site. In CiteULike, articles are stored with their metadata,
abstracts, and links, and users can add tags and personal comments. CiteULike
provides some datasets from their core database. However, to get more recent
data, we further crawled datasets before 2009.7.1. An extended collection of our
experimental evaluations appears in [4].

Here we use the NDCG (normalized discounted cumulated gain) measurement
[5] to evaluate the performance of our experiments. Every item in top-k lists is
given a corresponding human judgment scoring from 0 to 3 (0=Bad, 1=Fair,
2=Good, 3=Excellent) based on relevance and attractiveness (popularity and
freshness) for particular query tags.
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Fig. 1. Average NDCG results for different decay factor a

Fig. 2. User classification and weights recommendation for representative classes

Different queries may prefer different temporal factor settings, thus we use two
different sets of popular query tags. For set-1, the queries are “social-network”
and “tagging”. These are popular and very hot recently. For set-2, we use “al-
gorithm” and “database” separately as popular and classic queries.

We divide the time range of our datasets into six-month periods, starting from
the most recent 2009.1.1 - 2009.6.30 to earlier time slices, which will remain the
same throughout this paper. We change the decay factor a from 1 to 0, which
means setting recency priority from low to high. and only evaluate the global
temporal scoring (TScG) to factor out user diversity.

From the results in Fig. 1, we observe that different kinds of queries have
different preferences. Hot queries may prefer recent tagging behaviors much more
than classic queries. But for both sets, the average NDCG peaks when a is set
0.5 or 0.6, neither too high to miss the temporal information nor too low to lose
classic items.

Then we evaluate the NDCG of different user classes with different weight
assignments for each social network and we set few as 0-5, some as 6-15, and
many as 15+ for both Friends and Links.

Based on the user classification, we provide an example recommendation of
weight assignments for six representative classes in Fig. 2. The decay factor
is set as a = 0.5 and the time slices are six-months. We tested two queries—
“tagging” and “algorithm”, picked up two users from our dataset for each class,
and extracted the average NDCG. As shown in Fig. 3, in all six representative
classes, our multiple-component method produced better NDCG than any other
methods considering only one type of social network.
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Fig. 3. Average NDCG for weight assignments across six representative classes

6 Conclusions

In this paper, we presented a study of temporal top-k search in social tagging
sites using three main types of social networks, friendship, common interest
networks, and global connections. To set the weights of each scoring component
for different users, a classification method is proposed based on the size of users’
social networks. To improve the popularity and freshness of ranking results, the
timestamps of tagging behaviors are recorded and divided into multiple time
slices and temporal scoring functions are formed by giving higher weights to
more recent time slices. In addition, an efficient temporal top-k algorithm for
ranking is proposed with upper-bound scores. Experimental evaluation on real
datasets shows that our framework and methodology work well in practice.
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Abstract. Air-Indexing aims at efficient data dissemination via a wireless broad-
cast channel to a multitude of mobile clients. As mobile devices have very lim-
ited resources, energy efficiency is crucial in such scenarios. Moreover, one has
to cope with high error rates on wireless transmissions resulting in packet losses
which lead to high energy consumption and long waiting times until a query re-
sult is available. We propose a novel cross-layer scheduling with adaptive error
correction which enables flexible query optimization on mobile clients. RepAir
ensures efficiency by adapting its query processing according to the individual er-
ror rate of each client. Thorough experiments show that RepAir yields substantial
efficiency improvements in terms of access latency and tuning time compared to
competing Air-Indexing approaches.

1 Introduction

Mobile devices are ubiquitous. Novel applications emerge from many different areas
such as location based services, mobile information systems, entertainment and mul-
timedia application. A huge variety of data broadcast scenarios have been proposed
including traffic information systems, broadcasting of weather or news clips, audio or
video guides for museums etc. and broadcasting of small video clips for major events
such as the Olympic games. In general, all of these scenarios address a large group of
clients using standard mobile devices requiring efficient broadcast techniques. Recent
air indexing techniques have been proposed to perform an efficient query processing in
such broadcasting scenarios.

In general, air indexing aims at a trade-off between energy efficiency and access effi-
ciency, where the former is measured as the tuning time and the latter as access latency.
The tuning time is the amount of time that the client has to actively receive data, i.e.
it is in the active mode. For the rest of the time the client switches to the less energy
consuming doze mode, i.e. it does not download data from the broadcast. The access
latency constitutes the total time needed to answer a query, i.e. from the moment the
client first tunes into the broadcast until all requested data has been successfully down-
loaded. To enable selective tuning on mobile clients, several air indexing approaches
have been proposed throughout the last years. The general idea is to send additional
meta information about the data items and their arrival time within the broadcast such
that the clients can switch to doze mode until the desired data arrives. Traditional index-
ing schemes from the database domain cannot be used because of the missing random
access in broadcast scenarios. The presence of communication errors poses an addi-
tional obstacle.
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Wireless transmission in such mobile scenarios has to cope with error prone com-
munication channels. In todays mobile communication like 3G [7] error correction is
always required as communication has to cope with high error rates. For speech trans-
mission these high error rates are typically compensated by transmitting redundant in-
formation by special codings. The remaining problem is that still errors occur, resulting
in lower speech quality (interrupts, high noise rates, etc.). In data transmission, we rely
on receiving data without any errors. Error correction could guarantee this only with
tremendous redundancy in transmissions leading to low transmission rates which are
not accepted by users due to impractically large transmission times.

Summarizing these facts, we have to cope with several challenges in broadcasting
data to mobile devices namely energy efficiency, access efficiency and high error rates.
Traditional air indexing approaches have concentrated on the application layer. They
have to perform costly reaccess of the broadcast stream in case of an error occurrence.
On the other side, the technical layer is not aware of the content it is supposed to transmit
and thus error correction techniques are not able to adapt to air indexing requirements.

In this paper we propose a novel air indexing techniques that we call RepAir. We de-
velop an adaptive index scheduling on the technical layer and a flexible error correction
on the application layer. As a cross-layer approach, RepAir is aware of the semantic
of each packet and can incorporate error correction for improving both tuning time
and access latency. For our RepAir scheduling, we employ error correction separately
on the index and on the data items to achieve a reliable air indexing and to overcome
high penalties on the access latency. Our flexible query optimization can adapt to the
individual error rates of each mobile client and yields faster access and lower energy
consumption. We show improved access latency and tuning time greatly independent
of the error probability.

2 Related Work

Air Indexing techniques that have been proposed throughout the last years can be di-
vided into two major groups: distributed indexing techniques and (1, m) indexing tech-
niques. Both are based on the same underlying assumption that the packet size is fixed
during transmission. For air indexing packets are comparable to pages in traditional
data bases. Packets are used to transmit both index and data as index packets and data
packets. The differences between distributed and (1, m) indexing lies first in the type
of information stored in the index packets and second in the scheduling, i.e. how in-
dex and data packets are interleaved to form the broadcast. However, all air indexing
techniques focus only on specialized index information and index transmission. Non of
these techniques considers forward error correction neither for index nor for data pack-
ets. Especially, they all work on the application layer ignoring possible improvements
through cross-layer aspects induced by the semantics of index and data packets.

The basic idea underlying (1, m) indexing techniques [5,6,10,2] is to take a tradi-
tional index, usually a hierarchical index from the R-Tree family [3,1], and to serialize
it for dissemination. The broadcast is then scheduled by sending the entire index and a
fraction of 1/m of the data in turns yielding m replications of the index per broadcast,
hence (1, m). To reduce the total length of a broadcast cycle, other approaches do not
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send the entire index m times. They split the index into one replicated and several non-
replicated parts. Query processing in (1, m) first downloads interesting and available
index information (dependent on the approach), then downloads candidate items and
finally refines the result set until the exact result is present.

For distributed indexing the data is divided into frames, where each frame contains
several data items or rather their corresponding data packets. In the broadcast an index
packet is sent before each frame. To facilitate navigation within the broadcast during
query processing, the index packet contains pointers to other frames and optionally ad-
ditional information about the local or global data distribution (depending on the actual
approach). By using local pointers that index an exponentially increasing object range,
distributed indexing schemes allow multiple different search paths whereas (1, m) only
allows multiple entry points (repetitions) for the same search path (index). Several ap-
proaches have been published using Hilbert Curves [9,4], Voronoi diagrams [17] and
D-Trees [15,14]. We will go into more detail describing DSI since we compare against
their approaches in our experiments. DSI divides the feature space into a grid such that
each grid cell contains at most one data item [9]. After that, the Hilbert Curve (HC)
value for each data item is calculated w.r.t. the grid and the items are ordered accord-
ing to their HC value. The index packets contain a table of pairs (HCi, pi), where the
p0, . . . , pt are pointers indexing an exponentially increasing number of data items. Two
approaches are presented for query processing, the aggressive approach is supposed to
optimize the tuning time while the conservative approach tries to optimize the access
latency. However, we will show in our experiments in Section 4 that both fail in case of
high error rates due to the reloading of lost packets.

Summing up the features of existing approaches, we observe several drawbacks. As
none of these techniques includes error correction in the index scheduling, they are
forced to costly reaccess the broadcast stream to retrieve lost packets. Furthermore,
their query processing is not able to adapt to the varying error rates in each individual
mobile client. Overall, this leads to an increase of both access latency and tuning time
for these approaches.

3 RepAir Approach

We show that neither recent data scheduling approaches nor error correction techniques
on technical layers alone can achieve both an efficient and fault tolerant data dissemina-
tion at the same time. Our RepAir scheduling as a cross-layer approach achieves such a
solution. The general idea is to trigger different coding for index and data packets at the
transmitter side. Each mobile client can use this error correction codes for repairing lost
packets. By using different amount of error correction in query processing, a mobile
client can adapt to its individual error rate.

3.1 Scheduling in RepAir

As mobile communication uses a packet based transmission, all information is given
in packets and the scheduler has only to decide the packet ordering. A packet p is the
atomic unit in data transmission. In addition to the carried data or index information
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it contains header information such as the packet identification number and a pointer
to the next index segment. The schedule, which constitutes one broadcast cycle, is first
constructed by the transmitter and then repeatedly broadcasted to all receivers. It con-
tains packets to encapsulate data items and index segments. A common assumption for
such a broadcast is that index and data remain unchanged. While we keep this assump-
tion for the following sections, we discuss data and index updates in Section 5.

Definition 1. Air-Indexing Schedule: An Air-Indexing Schedule AIS is a sequence
p1 . . . pN of packets containing all data packets DP =

⋃
item∈DB DPitem given by

the items in the application data base DB and all index packets IP =
⋃m

i=1 IPIndexi

in an interleaved fashion.

As main characteristic of redundant transmission we observe that different index
mappings are proposed in recent approaches. The index mapping specified by f :
IPI → DPI gives us the subset of the data base indexed by a set of index packets.
The main property of the two variants complete indexing (as in basic (1, m)) and dis-
tributed indexing is the cardinality of data base items that is indexed by index packets:
|f(complete index)| = |DB|, |f(distributed index)| � |DB|. These two variants per-
form a trade-off between two aspects: A bigger broadcast size (for complete index) and
more broadcast cycle passes (for distributed index). However, for error prone commu-
nication both variants require multiple broadcast cycle access.

In contrast to both variants of broadcast scheduling (complete and distributed), we re-
duce the number of required broadcast cycles during query processing through a differ-
ent form of information redundancy. By our novel RepAir approach we will show that
broadcasts, enriched by error correcting codes, yield better access latencies. Especially
for error prone communication it is important to ensure a correct index transmission. In
contrast to a data segment (interesting only for a few clients) the index is essential for
an energy efficient query processing in all mobile clients. Different handling for both
types of packets is thus essential for energy efficient query processing.

In a packet based transmission we consider a packet as the atomic unit of communi-
cation. Furthermore we assume that due to checksum techniques we can detect an error
during transmission. We thus use the common binary erasure model for modeling the
errors during communication.

Definition 2. Binary Erasure Model: A communication layer behaving according to
a binary erasure model with error parameter ξ transmits a packet correctly from the
transmitter to a receiver with a probability of (1 − ξ).

As we assume transmission from one transmitter to many receivers, the error probabil-
ity varies for each receiver. This separate modeling for each mobile client is meaningful
as errors are not a global phenomenon affecting all mobile clients in the same manner.
There might be various types of errors during the transmission like buildings reducing
radio signal quality because of reflections and absorption, interfering signals from mul-
tiple transmitters in the same region, low battery and thus low signal strength on the
mobile device or even atmospheric noise which disturbs the radio signal. Please note
that typical error rates for mobile communication range from 10% up to 70% packet
losses even after forward error correction in 3G [7].
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Assuming this underlying communication model we have now to consider tech-
niques that handle errors to achieve a correct transmission. On technical layers this
problem has already been addressed by error correction techniques: For a fault toler-
ant transmission one uses coding techniques which cannot only detect errors but also
reconstruct the original signal even if some error occurred during the transmission. In
general this means that one has to blow-up the transmitted information by redundant
data such that errors can be automatically corrected.

Since there is no fixed error rate, RepAir uses a flexible technique which supports a
multitude of mobile clients. Rateless “Fountain Codes” [12] support such a scenario for
one-to-many communication (broadcast/multicast). They have been designed for fault
tolerant transmission in broadcast scenarios like file transmission in satellite television
broadcasting. With fountain codes producing an endless coding, we can use the coding
packets in the next broadcast for reconstruction as well. Intuitively, a perfect error cor-
recting coding scheme has to code a source packet such that it can not only reconstruct
this packet but also help to reconstruct errors in other packets. Belief propagation aims
at such a coding scheme. The solition distribution used in our approach ensures that
each received packet can be decoded. Furthermore, each packet has high probability to
participate in reconstruction of another packet.

Technically, we use a given set SP of source packets and build a coding packet cp
by combining a number of source packets which are chosen equally at random, using a
simple XOR operation ⊕. We refer to the number of source packets included in cp as
its degree degcp. To restore a single source packet sp that is included in cp we need to
know all other source packets included in cp. If this is the case, we call cp a resolvable
code packet. Once we have a code packet cp with degcp = 1, i.e. cp = sp for a certain
source packet sp, we can restore another source packet sp′ from cp′ if cp′ = sp ⊕ sp′.
A similar scenario applies for two known source packets and a corresponding coding
packet of degree three etc.

Two major questions arise: First, during scheduling, how do we determine the de-
gree for a coding packet such that we will be able to restore all source packets from a
reasonable number of coding packets with high probability? And second, during query
processing, how do we determine whether the next coding packet is useful for us, i.e.
whether we should spend tuning time to download it? As for the first question there are
many approaches in the literature. We adapt the robust soliton distribution from [11] for
the degree deg of the coding packets.

Definition 3. The Robust Soliton Distribution gives the probability μ(deg) for a coding
packet to be of degree deg and is defined by c > 0 and δ as follows. Let SP be a set of
source packets to be coded and |SP | the size of SP . Then

μ(i) = (ρ(i) + τ(i)) /β ∀i = 1, . . . , |SP |

where

ρ(i) =
{

1/|SP | , if i = 1
1/(i · (i − 1)) , ∀i = 2, . . . , |SP |

τ(i) =

⎧⎨⎩
R/i · |SP | , ∀i = 1, . . . , |SP |/R − 1
R · ln(R/δ)/|SP | , if i = |SP |/R
0 , otherwise
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R = c · ln(|SP |/δ)
√
|SP |

and

β =
|SP |∑
i=1

ρ(i) + τ(i)

For more details on the robust soliton distribution and its properties please refer to
[11]. In the following we will describe how we adapt robust soliton for our RepAir
scheduling.

RepAir belongs to the group of (1, m) air indexing techniques. In this work we use
a standard R-Tree [3] to index the data items. However, RepAir can be used with any
indexing structure as most (1, m) techniques. We do not employ replicated and non-
replicated parts, i.e. we index all data items in each of the m index segments. We order
the data items according to the leafs of the R-Tree (from left to right) and split them
into m groups such that the groups form segments of equal length (as equal as possible;
length in terms of byte).

To generate coding packets for the RepAir schedule we employ a pseudo-random
number generator ζ(seed) that produces equally distributed random numbers rand ∈
[0, 1), which are pseudo-random and recomputable when the seed is known. RepAir
computes coding packets for each index segment and each data item separately. We
will describe the procedure for an abstract set SP 0 of source packets which can either
be the set of index packets constituting an index segment or the set of data packets
constituting one data item. First we pick a random seed seepSP 0 and compute a set
CP 0 of coding packets with |CP 0| = |SP 0|. The computation is done in three steps:

1. Determine the degree degcp for each cp ∈ CP 0 using the robust soliton distribution
and ζ(seedSP 0).

2. Compute cpi by choosing degcpi − 1 source packets sp ∈ SP 0 equally at random
using ζ(seedSP 0) and combining them with spi through ⊕.

3. Check whether SP 0 is completely resolvable from CP 0. If not, go back to 2.

In the first step we use ζ(seedSP 0) to determine a random value randi for each coding
packet cpi. We calculate the degree for cpi by degcpi = max{deg|g(deg) < randi}
with g(deg) =

∑deg−1
j=1 μ(deg). Since μ(deg) according to Definition 3 is a probability

distribution, g(deg) ∈ [0, 1) holds for all deg ∈ N.
Having CP 0 we compute additionally a set CP+ of blowup packets, where |CP+| =

|CP 0| · BU . BU is a blowup factor that can be set individually for index and data (c.f.
Section 4). To provide sufficient yet resolvable information in the blowup packets, we
aim at a degree of 8 for all cp+ ∈ CP+. However, we restrict their degree to be at most
�|SP 0|/2� to facilitate resolving of coding packets for small sets of source packets.
Hence, we set deg(cp+) = min{�|SP 0|/2�, 8} for all cp+ ∈ CP+. For construction
we once again combine deg(cp+) many source packets sp ∈ SP 0 chosen equally at
random using ζ(seedSP 0).

Finally, a RepAir broadcast is built by constructing a fixed number of air indexing
schedules, e.g. four schedules AIS0 to AIS3 and sending them repeatedly in turns.
(We discuss data and index updates in Section 5.) For each AIS a new seed is chosen
for each index segment and data item. The advantage of four different AIS lies in
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Fig. 1. Abstract query model in mobile data dissemination

the fact that the content of the coding packets differs randomly and thus supports fast
resolution with high probability. The header of each packet additionally contains the
corresponding seeds seedv and seed(v+1)mod4 for the current and the next AIS. The
seed values are crucial for query processing on the mobile client.

3.2 Query Processing in RepAir

Given the scheduling of data and index packets which are sent by the transmitter in an
endless broadcast we have to consider query processing for the receiving mobile client.
In Figure 1 we give an abstraction from recent query processing schemes. The aim is
to describe the abstract steps of query processing together with the associated cost in
terms of access latency and tuning time to identify potential for improvement.

1. Initialize Query State: find the next index packet using the pointer contained in the
header informnation.

2. Index Found State: receive some index information to compute at least the first
candidate for the query result.

3. Necessary Index Loaded State: compute the time slots of candidate data objects.
4. Next Data Item Loaded State: determine whether the query is fully answered. If

there are still candidates or unpruned parts of the index left, go back to state 2 and
find the next required index information. Otherwise the query is finished.

5. All Data Items Loaded State: the query is finished.

We focus on the marked (*) properties in Figure 1, as these are essential for an efficient
query processing on error prone communication channels. Access latency and tuning
time between state 3 and state 4 are highly depending on the error probability: For
each data item that could not be received without errors the client has to wait for the
next broadcast cycle and then tunes in again. The access latency while receiving the
index information between state 2 and state 3 is also highly dependent on the error
probability as each of the index packets has to be received without errors for a correct
query processing. Our RepAir approach enhances both steps (3-4 and 2-3) by the novel
cross-layer scheduling. As RepAir is able to reconstruct lost packets instead of waiting
for the next broadcast cycle we largely reduce access latency. Tuning time is reduced
by avoiding the download of false candidates during query processing (states 3-4).

To answer a query on a mobile device given a RepAir broadcast, we first tune into the
broadcast to determine the arrival of the next index segment as described above. Next,
we download coding packets from the broadcast that contain index information until
we can reconstruct the entire index. After using the index to determine the correct set
of data items answering our query, we download for each item corresponding coding
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01 boolean packetIsUseful( list<Integer> encodedPackets ){ 

02   removeKnownPackets( encodedPackets );
03 if ( encodedPackets.size() == 1 ) return true;
04 if ( encodedPackets.size() == 0 ) return false;

05   // for all downloaded and not yet resolved coding packets …
06 for ( CodePacket cpp : packetPool) {
07 if ( encodedPackets.size() < cpp.degree() ) {
08 if ( isSubset( encodedPackets, cpp ) ) return true;
09 } else if ( encodedPackets.size() == cpp.degree() ) {
10 if ( isEqual( encodedPackets, cpp ) ) return false;
11 } else {
12       // a superset is useful if the remainder is useful
13 if ( isSuperset( encodedPackets, cpp) )
14 return packetIsUseful( setDiff( encodedPackets, cpp );
15 }
16 } return true; 
17 }

Fig. 2. Pseudo code of the method to decide whether a coding packet is useful

packets from the broadcast until we can fully reconstruct the item. This is done in
parallel, i.e. we continue downloading useful coding packets for other data items even
if we did not yet fully restore the previous ones due to too many packet losses.

Hence, we have to determine whether an arriving coding packet is useful for us. We
describe the process again using a general set of source packets SP 0 constituting either
an index segment or a data item of interest. Let CP = CP 0 ∪ CP+ be the next set of
coding packets corresponding to SP 0. We know the packet id of the first coding packet
in CP . After a packet loss, we can determine whether we are still reading a packet
belonging to CP using the packet id and the number of corresponding coding packets
which is contained in its header.

From the first coding packet that we successfully download we derive the seed
seedSP 0 for SP 0 in the current AIS as well as the seed for the next AIS. For any
cp ∈ CP we can then calculate the set SPcp ⊂ SP 0 of source packets that are encoded
in cp. Figure 2 shows our pseudo code to determine whether cp is interesting based on
SPcp (encodedPackets).

We first remove all known source packets from SPcp to receive SP ∗
cp in (line 2). If

there is only one source packet left in SP ∗
cp, cp is definitely interesting, because we can

compute a previously unknown source packet right away (line 3). If there is no new
information, we discard cp (line 4). From line 6 to 15 we look at all coding packets
cpp corresponding to SP 0 that we have downloaded already but not yet fully resolved
(packet pool). Therein we perform three simple checks for each of these coding packets
cpp: If SP ∗

cp is a subset of SPcpp, cp is useful because we can decrease the degree of
cpp by adding cp using ⊕ (line 08). If SP ∗

cp and SPcpp contain the same source packets,
cp is redundant and therefore not useful (line 10). If SP ∗

cp is a superset of SPcpp, we
can decrease the degree of cp by adding cpp as above. cp is then considered useful, if
the remainder SPcp \ SPcpp is useful (line 14).

By the three simple checks we just described, we can avoid downloading useless
coding packets in many cases. However, there are still cases where a coding packet
can be resolved via a linear combination of several known coding packets. To test all
possible combinations would be too costly whereas the operations above can be done
in linear time. Since we cannot preclude usefulness, we return true in case of doubts
(line 16). When a coding packet cp is considered useful and downloaded successfully
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we decrease its degree as well as the degree of all coding packets in the packet pool
as much as possible. If thereafter cp is not fully resolved we add it to the packet pool
for further computation. Query answering stops when all requested data items are fully
restored on the mobile client.

3.3 Discussion

In most of the scenarios introduced in Section 1 the size of one data item is usually larger
than 10 kByte, e.g. audio or video clips or enhanced descriptive content for restaurants
or touristic places. Moreover, a reasonably short access time is crucial for user accep-
tance. As an example, consider a very fast wireless connection of 300Kb/sec [7], a user
who is willing to wait between 30 seconds and five minutes and an error prone channel
that causes the access latency to be in the range of three broadcast cycles. This would
restrict the size of a single broadcast cycle to range from 3Mb to 15Mb, e.g. 300 to
1500 data items of 10K each. This is a reasonable number of items for many scenarios
such as information on restaurants or touristic places. With a possibly faster wireless
connections in the future, the content and size of the single data items will grow as well
due to multimedia enhancement.

A look at the size of the resulting index structure reveals a great opportunity to de-
crease both access latency and tuning time. Assuming 1000 objects of 15 Kb each,
indexed in two dimensions using 4 byte floating point numbers, an R-Tree of fanout 10
and pointers of 4 byte, then the resulting R-Tree is of similar size as one data item, i.e.
15 Kb. Now the solution to reduce the tuning time is as simple as can be. If the complete
index is received first, the true data objects can exactly be determined. Hence, receiving
the complete index improves energy efficiency in comparison to approaches that have
only distributed index information at hand. This concept will be strengthened in future
even more when the item size grows due to media enhancement.

We consider the above mentioned assumptions as highly plausible and relevant for
real application. However, we will show the performance of our approach for many
different parameter settings in the next section to showcase the power of our solution.

4 Experiments

We test our RepAir technique against (1, m) indexing with replicated and non-replicated
index parts and against both the conservative and aggressive distributed air indexing ap-
proaches from [9]. We demonstrate the benefits of RepAir against the well established
(1, m) approaches which are achieved due to our cross layer scheduling incorporat-
ing forward error correction. For repeatability we used our evaluation framework [13],
which can be downloaded from our website1.

4.1 Setup

Table 1 summarizes the parameters that we investigate in the experiments and shows
their variation as well as their standard value, i.e. if not mentioned explicitly, we use

1 http://dme.rwth-aachen.de/repair

http://dme.rwth-aachen.de/repair
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Table 1. Parameter variation and standard values

Parameter Variation std value Parameter Variation std value

item size 64B - 1MB 10KB m (RepAir & (1, m)) 4,16,32,64 16
#items 100 - 23000 1000 Index blow-up 0-50% 30%
data distribution as described above Greece Data blow-up 0-50% 20%
item sizes equal or skewed equal k nearest neighbors 1-20 5
packet size 64-2048 Byte 512 Byte packet loss probability 0 - 70% 20%

(corresp. Bit Error Rate) 0 - 10−3 (BER ≈ 5 · 10−5)

the standard values from Table 1. In each experiment we vary one parameter on the x-
axis and report access latency and tuning time (plus sometimes the resulting broadcast
size) on the y-axis. We use synthetic binary data of the required byte size to investigate
equally sized data items. For skewed item sizes we took 1000 images from a gallery
containing roughly 600 categories with 100 images each and resized them such that
their average size fitted the required byte size. For indexing we use features from three
different data distributions. First, we extracted from each image a 3-dimensional HLS
color histogram. To investigate equally distributed data we generated 1000 coordinates
that were equally random distributed in 2d space. Finally, we use real data representing
23,000 locations in Greece (if less items are used we take a random sample). As RepAir
provides a general approach, higher dimensional features could also be used with an
appropriate high-dimensional index structure. We use the R-tree as an exemplary index.

Since the resulting measures access latency (AL) and tuning time (TT ) can vary
depending on the random error, the tune-in time when the query is started, the query
region etc., we conduct 1000 queries per parameter setting. We report the median of
those 1000 values and provide boxplots on selected experiments. We report results of k
nearest neighbor queries. As RepAir downloads the entire index anyway, the presented
results can be extrapolated for range queries, since they just need a different descent in
the received index structure.

4.2 Fault Tolerance

The main property of an Air-Indexing approach on error prone communication chan-
nel is its fault tolerance depending on the error rate of the underlying communication
channel. We vary the packet error rate from 0 to 70 percent, which corresponds to a
Bit Error Rate (BER) from 0 to 10−3 (realistic BER range from 10−6 to 10−3 [7]).
As depicted in Figure 3(a), both variants of DSI do not perform well with increasing
error rates. Especially the conservative approach has to load a lot of packets and thus
spends the most energy for the query processing. Both variants of (1,m) perform better
as they have a more complete index given and thus are more selective in tuning into the
broadcast. With high error rates (1,m) has still to receive both index and data segments
multiple times as packets are lost more frequently. Our RepAir approach overcomes
this drawback by using the incorporated fountain codes to reconstruct lost packets.

Further differences between the approaches are depicted in Figure 3(b) where we
measure access latency for each query. We see the contrary effect for the two DSI
variants: The aggressive approach answers the query with reasonable low energy con-
sumption (TT) but far to high waiting times (AL). As described in [9], the conservative
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Fig. 3. a-b: Variation of error probability. RepAir is outperformed only at zero error rate by (1, m)
and the conservative DSI due to the blow up overhead. c: Tuning Time boxplots.

approach shows exactly the contrary effect on the two measurements. For (1,m) variants
we see similar performance on TT while reduced AL only for the replicated variant. Our
RepAir approach shows best performance for both TT and AL with one exception. If
no error occurs, the access latency of (1,m) and the conservative DSI is lower than the
access latency of the RepAir approach, because RepAir has a larger broadcast size due
to the blowup packets. (1,m) replicated and the aggressive DSI both have a higher ac-
cess latency, because they miss correct candidates during the first broadcast due to their
query processing approach.

For the 1000 runs mentioned before, we compare in Figure 3(c) maximum, 95%,
median, 5% and minimum values of the tuning time for RepAir, DSI aggressive and
(1,m). We can see that not only the median is increasing for higher error rates but also
the variance of the results are dramatically increasing. Our RepAir approach shows
not only better performance in the median but also the worst case tuning time is far
better than for the competing approaches. Due to the cross-layer scheduling, RepAir
achieves efficient query processing for both AL and TT and thus outperforms existing
approaches.

4.3 Scalability

A general challenge for all index structures is their scalability w.r.t. the broadcast size.
For Air-Indexing there are three major aspects that have an effect on the broadcast
length: First, the size of each data item. Second, the number of data items, which also
effects the size of the index. And third, the amount of index information, e.g. number
of pointers in DSI or number of repetitions in (1, m), as the index is transmitted in
segments interleaved within the data base. In Figure 4 we see TT, AL and broadcast
size (BCS). Only RepAir, (1,m) replicated and DSI aggressive show good scalability
for bigger data bases resulting in low TT. DSI even outperforms RepAir for 10000 data
items. However, the AL of this technique is unacceptably high as depicted in Figure
4(b) (please notice the logarithmic scale for AL).

Overall RepAir outperforms existing algorithms in terms of scalability w.r.t. the
number of data items. The broadcast size of our RepAir approach is slightly bigger
than for all other approaches (cf. Fig. 4(c)), as we increase the broadcast size by cod-
ing packets. However, as one can see in all other experiments, this overhead results in
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a far more efficient query processing as depicted also w.r.t. variable data item size in
Figure 4(d-e). Intelligent incorporation of coding packets thus ensures a significant im-
provement in terms of access latency and tuning time also for larger data bases and data
items.

4.4 Variation of Query Size and Scenarios

Next we investigate the effect of the query size on AL and TT for the different ap-
proaches by varying k from 1 to 20. As stated above, we leave all other parameters at
their standard value given in Table 1. Figure 5 shows the results for tuning time (left)
and access latency (right). The tuning time increases nearly linear with each additional
data item for all approaches. The increase of (1,m) replicated is a little steeper than
(1,m) and RepAir’s, since it receives more index information only if needed. The con-
servative DSI starts with a significantly higher offset at k = 1, because it downloads all
candidate frames in broadcast order. Since other neighbors might be contained in those
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frames, the slope of its graph is significantly lower over k. Inspecting the performance
w.r.t. k we show that RepAir outperforms all approaches in AL as well as in TT for any
query size.

To test the approaches in different scenarios we tested equally sized items and skewed
item sizes as well as three different data distributions in terms of the indexed features:
1) 3d image features (images), 2) equally random distributed 2d features (synth) and 3)
2d locations from greek cities (greece). For the skewed item sizes we used the original
binary image data (images resized to 10kB average size) and for the equally sized items
we generated 10kB of synthetical binary data (and kept the features as above). Figure
6 shows the resulting TT and AL for all six combinations. As can be seen, RepAir
performs better than the competing approaches in all settings.

4.5 Parameter Discussion for RepAir

As we have seen in the previous experiments RepAir outperforms existing approaches
due to its cross-layer scheduling. In this section we give a more detailed discussion
about this cross-layer scheduling and its parametrization. As described in Section 3.1
our RepAir approach performs fountain coding with individual coding rates for index
and data segments. In Figure 7 we show how AL and TT are affected by index and data
blow-up. We highlighted the default setting (index blow-up | data blow-up) = (0.3|0.2)
which yields best TT and AL for RepAir.

Repair achieves best performance with 20% data blow-up. For lower blow-up rates
we achieve a smaller broadcast cycle as we encode less redundant packet information.
However, having higher blow-up rates RepAir ensures to receive data items the first
time they pass by. Thus the overall access latency is optimal for a medium data blow
up with small broadcast cycle but still enough blow-up to reconstruct lost data items.
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The index blow-up is more robust as typically the index is relatively small comared to
the data base. Thus we can set a higher index blow-up rate of 30% to ensure that the
complete index is received without any packet loss.

We observe a similar effect (cf. Fig. 7 right) for the parameter m which denotes how
many index segments are interleaved into the data base. For increasing m the broadcast
size increases and thus also the AL. For low interleaving rates there are too few index
segments and thus the mobile clients have to wait longer time until they can compute
the query result. Both effects of setting the blow-ups and m show that one has to ensure
small broadcast cycles that contain enough index information for an efficient query
processing. Our cross-layer scheduling in the RepAir approach achieves this small but
also fault tolerant broadcast by incorporating different blow-up levels for index and data
segments.

5 Updates and Further Applications

In general if an update occurs, a new air indexing schedule has to be computed on the
server side and broadcasted instead of the old one. However, there are two possible
update scenarios with major differences, data updates and index updates. Data updates
do only affect the content of the data item, e.g. a stock value or a temperature value. The
index is not affected by such changes, i.e. the stock-id or the location-id of the weather
measurement stays unchanged. Version bits have been proposed for such scenarios in
mobile data dissemination [10] and can be used along with RepAir.

If the version of the index changes during query processing, the query has to be
started over again. However, in most broadcasting scenarios (cf. Section 1) the intervals
of updates are very long compared to the time needed to answer a user query. If an
update occurs once a day or even once per hour but a query is answered within one or
two minutes, it is very unlikely that those two actions coincide. In such scenarios one
can safely assume static index information. However, for frequently changing index
information such assumptions do not hold and further research has to be done in this
area. In ongoing work we focus on an update-aware air index structure based on our
general RepAir approach.

Air indexing in general is an upcoming research area. Recent publications investigate
more specialized tasks such as approximate or continuous kNN queries [16] or valid
scope computation for mobile application [8]. Our RepAir approach could be beneficial
also in these specialized areas, as RepAir ensures to receive the complete index and thus
has information about the overall data distribution.

6 Conclusion

We introduced RepAir, the first cross-layer air indexing approach. Our novel index
scheduling includes error correction and adds individual redundancy according to the
semantics of the content. With RepAir we propose an enhanced query processing avoid-
ing false candidate downloads. It efficiently determines useful coding packets for recon-
struction and is thus flexible for a broad range of error rates. Our simple yet effective
approach outperforms competing techniques in both access latency and tuning time.
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Thorough experiments show that our novel approach guarantees an energy efficient and
fault tolerant data dissemination even for high error rates common in mobile commu-
nication. For repeatability and testing of further scenarios, we provide our evaluation
software on our website.
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Abstract. In wireless sensor networks, in-network processing of aggre-
gation queries has been an important technique to reduce energy con-
sumption in wireless communication, which is a main source of energy
consumption in sensor devices. In-network processing is typically guided
by an aggregation tree, where each node forwards partially computed ag-
gregates to its parent. In this paper we consider a routing method for
grouped aggregation queries, where sensor readings are divided into dis-
joint groups according to their values and aggregates are computed for
each group. For this type of queries, multipath routing, where each node
forwards different aggregates to different nodes, can lead to more effi-
cient in-network processing. However, no multipath routing protocol for
efficient in-network processing of grouped aggregation queries has been
proposed thus far. In this paper we propose a new routing protocol, called
Content-based Multipath Routing (CMR), for efficient in-network pro-
cessing of grouped aggregation queries. CMR employs multipath routing,
and each node forwards partially computed aggregates along different
paths based on the contents of the aggregates. The experimental results
show that CMR outperforms the existing aggregation tree-based routing
protocols.

1 Introduction

The advent of wireless sensor networks gives us opportunities unattainable be-
fore [1]. They can be deployed in many places such as buildings, manufacturing
plants and habitats, and can provide timely and accurate information about en-
vironmental conditions. Wireless sensor nodes acquire the status of the environ-
ment from different kinds of sensors, and through wireless multihop networking,
deliver it to the base station, where users request queries and receive answers.

Energy efficiency is of utmost importance in sensor networks because sensor
nodes have limited power. It is known that wireless communication among sen-
sor nodes is a main source of energy consumption [2]. In-network processing is a
widely accepted technique to reduce energy consumption in wireless communica-
tion in many sensor network applications [3][4]. For aggregation queries such as
SUM, AVERAGE, MAX, etc., aggregates are computed in-network whenever possible.
For example, for a MAX aggregation query, an intermediate node may forward
only the maximum value among the sensor readings received from its neighbors,
to the next hop node.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 520–534, 2010.
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This paper is particularly concerned with grouped aggregation queries, which
divide sensor readings into disjoint groups according to their values and compute
aggregates for each group. Consider the following query, “Report the average vol-
ume of each room in a building”, for monitoring the occupancy of the rooms.
This query partitions sensor readings into different groups according to the lo-
cations where they are acquired and reports the average volume of each group,
i.e., of each room.

For efficient in-network processing of grouped aggregation queries, in-network
processing is typically guided by an aggregation tree, which is a spanning tree
rooted at the base station. In the aggregation tree each node is assigned the
distance from the base station, or level. In-network processing proceeds level-by-
level from the farthest nodes toward the nodes near the base station: When the
nodes at level l are sending messages, those at level l − 1 are receiving. Before
sending a message, a node performs in-network processing with its own sensor
readings and the partially computed aggregates received from its child nodes
and produces new aggregates, one for each group. It then sends these aggregates
to its parent.

Although in-network processing based on the aggregation tree has been com-
monly used because of its simplicity, it may not be the best way to forward
aggregates for grouped aggregation queries. For example, consider three differ-
ent routing approaches for collecting sensor readings that are divided into two
groups g1 and g2, shown in Figure 1. In the figure, an edge between two nodes in-
dicates that the two can communicate with each other. Black- and grey-colored
nodes are the nodes that need to send their sensor readings to the base sta-
tion, which is connected to node h. The nodes a and d produce sensor readings
belonging to group g1 and the nodes b and e in group g2. Arrows indicate mes-
sage transmissions and explosion shapes indicate the places where in-network
processing occurs.

In the three routing approaches, the difference lies in the way that node c
forwards its aggregates. In the routing approaches of Figure 1a and 1b, which
are based on the aggregation tree, node c forwards all its aggregates to its parent,
i.e., to node d in Figure 1a and to node e in Figure 1b, respectively. In Figure 1c,
however, node c forwards the two aggregates to different nodes: The aggregate
in group g1 to node d and that in group g2 to node e. Let us, for the sake of
brevity, assume that a single message can contain only a single aggregate. Then,
the routing approaches in Figure 1a and 1b require 10 message transmissions
(count the number of arrows), whereas the routing approach in Figure 1c needs
only 8 message transmissions.

As shown in the previous example, the aggregation tree-based routing ap-
proach, or single-path routing, where each node forwards all its aggregates to its
parent, may not be the best routing strategy for grouped aggregation queries.
Nevertheless, as far as we are aware of, no routing protocol that is based on mul-
tipath routing has been proposed for efficient in-network processing of grouped
aggregation queries.
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Fig. 1. Three different routing approaches

In this paper we propose a new routing protocol, called Content-based Multi-
path Routing (CMR), for efficient in-network processing of grouped aggregation
queries. In CMR each node forwards partially computed aggregates along differ-
ent paths based on the content of the aggregates. In other words, it examines the
group to which each aggregate belongs and conducts routing in such a way that
in-network processing is likely to occur among aggregates in the same group. The
experimental study shows that CMR outperforms the existing routing protocols
based on the aggregation tree in terms of energy consumption in wireless com-
munication for collecting the results of grouped aggregation queries. Our earlier
work [5] was concerned with a routing method for aggregation queries with no
grouping. This work extends it for grouped aggregation queries.

The rest of the paper is organized as follows. Section 2 discusses the back-
ground of this work and presents related work. Section 3 defines necessary termi-
nology and notations and then describes CMR in detail. In Section 4 we compare
the performance of CMR with those of the existing routing protocols that are
based on the aggregation tree. Finally, Section 5 concludes the paper.

2 Background

2.1 Query Model

A sensor network can be modelled as a distributed database. Each node generates
tuples for the distributed table, named sensors, which has one attribute per
input of the nodes (e.g., temperature, light, humidity, etc.) A user of a sensor
network can query this sensors table by using an SQL-like query language.

Consider the following grouped aggregation query that monitors the occu-
pancy of the rooms on the sixth floor in a building, by using microphone sensors
attached to sensor nodes and looking for rooms where the average volume is over
some threshold [6]:

Q1: SELECT AVG(volume), room

FROM sensors

WHERE floor = 6

GROUP BY room



Content-Based Multipath Routing for Sensor Networks 523

HAVING AVG(volume) > threshold

EVERY 60s

This query first partitions rooms on the sixth floor according to their locations
and reports, every 60 seconds, all rooms where the average volume exceeds a
specified threshold.

The semantics of grouped aggregation queries is the same as SQL aggregation
queries except the EVERY clause (for a detailed description of its semantics, refer
to [3]). We consider only standard SQL aggregation functions (AVG, SUM, MIN,
MAX, and COUNT) in this paper. In what follows, when we say a ‘query’, it means
a grouped aggregation query, unless otherwise specified.

2.2 In-Network Aggregation Query Processing

Query processing in sensor networks generally consists of two phases. In the dis-
tribution phase, a query is propagated from the root node, which is connected to
the base station, down to all the nodes in the network through some kind of mes-
sage flooding. In the collection phase, sensor readings satisfying the conditions
of the query are collected to the base station through some routing protocol. In-
network processing is performed whenever possible during the collection phase.
The standard SQL aggregation functions can all be computed in-network [7],
and how to compute them in-network can be found in [3].

In general, regardless of whether using an aggregation tree or multipath rout-
ing, construction of a routing structure that coordinates the operation of in-
network processing proceeds similarly as follows:

– Distance determination: First, the root node prepares a routing message and
records its distance—it is simply zero—on the message and broadcasts it.
When a sensor node other than the root node receives a routing message
from one of its neighbors and it has not yet decided its distance, it sets
its distance to the distance recorded in the routing message plus one and
marks the sender as its candidate parent. Next, it records its distance on
the routing message and broadcasts it. Later, if the node receives a routing
message from the node whose distance is one less than its distance, it marks
the node as its candidate parent, but this time discards the message. Finally,
for other cases, the node just ignores an incoming routing message. In this
way, every node in the network discovers its distance from the root node
and its candidate parents, which are located one-hop closer to the root node
than itself.

– Structure construction: In routing protocols based on the aggregation tree,
each node selects one of its candidate parents as its parent, to form a routing
tree. In multipath routing, this step is omitted.

In-network processing for grouped aggregation queries in the collection phase
proceeds as follows. When the nodes at distance d are sending messages, the
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nodes at distance d − 1 are receiving. Before a node sends a message, it com-
bines the aggregates received from its neighbors and its own sensor readings, if
available, into new aggregates, producing one aggregate per group. In in-network
processing based on the aggregation tree, each node forwards all its newly gener-
ated aggregates to its parent. In multipath routing, however, each node decides
to which candidate parent to send each aggregate on the fly; thus, different
aggregates could be sent to different candidate parents.

2.3 Related Work

It has been shown that the problem of finding the minimum cost routing tree
for result collection of grouped aggregation queries is NP-complete [8]. Thus
heuristic approaches are generally used for constructing routing trees for efficient
in-network processing of grouped aggregation queries in sensor networks.

TAG is one of the most commonly used routing protocols in sensor net-
works [3][4][7][6]. In TAG, the construction of a routing tree proceeds as de-
scribed in Section 2.2. The difference is that, in the structure construction step,
each node selects the candidate parent from which it received the routing mes-
sage for the first time as its parent. Note that TAG is a general purpose routing
tree that can also be used for grouped aggregation queries.

The Group-aware Network Configuration (GaNC) [9] is specially designed
for grouped aggregation queries. When a user poses a query, in the distance
determination step, each node additionally records in the message the query
and the group to which its sensor readings will likely belongs, based on the
specification of the query. In the structure construction step, each node selects
as its parent the candidate parent that reported the same group as its group.
This may increase the possibility of in-network processing among aggregates
belonging to the same group. Unlike GaNC, our proposed method considers
the group information of not only its neighbors, but also those residing on the
possible paths to the base station.

The Leaves Deletion (LD) algorithm proposed in [8] first constructs a shortest
path tree (SPT), where each node connects to the base station in the minimum
hops. In fact the SPT constructed in this way is almost the same as the routing
tree constructed by TAG. Then, each leaf node changes its parent several times
so long as more efficient in-network processing can be achieved.

The routing protocols aforementioned are all tree-based protocols in which
each node forwards all its aggregates to its parent. As noted in Section 1, tree-
based routing may not be the best routing strategy for grouped aggregation
queries. No multipath routing protocol, however, has been proposed for efficient
in-network processing of grouped aggregation queries. Although there are some
multipath routing protocols, their goal is typically either to increase fault re-
silience by duplicating aggregates and propagating them along multiple paths
[7][10][11], or to support fast recovery by replacing paths in the middle of message
propagation in the case of link failures [12].
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3 Content-Based Multipath Routing

In this section we present a multipath routing protocol called Content-based
Multipath Routing (CMR) that is designed for efficient in-network processing
of grouped aggregation queries. CMR decides at each node how to forward ag-
gregates to different candidate parents. The key idea of CMR is that each node
forwards aggregates in such a way that in-network processing among aggregates
belonging to the same group is performed more frequently and early. Note that
frequent in-network processing reduces the data volumes that need to be trans-
ferred inside a sensor network. Early in-network processing, where aggregates
are soon merged after generation, is preferable than late in-network processing
because of its cumulative effect. For example, for a MAX query, suppose that
a node needs to forward two values received from its neighbors. Then, it will
throw away the smaller one and sends only the larger one to the next hop node.
The benefit of not sending the smaller one will be accumulated at every hop up
to the base station. The farther the node is located from the base station, the
larger the accumulated benefit.

The operation of CMR is based on a distance metric called the minimum
mergeable distance (MD). Roughly speaking, given a grouped aggregation query,
each node computes its MD value per group. The MD value of a node for a
group indicates the distance to the closest node that generates sensor readings
belonging to the group. The MD values computed are exchanged in a distributed
fashion in such a way that each node discovers and stores the MD values of all its
candidate parents. In the collection phase, given an aggregate in some group, a
node forwards the aggregate to one of the candidate parents that has the smallest
MD value for the group. This routing policy will not only increase the occurrences
of in-network processing because each node forwards partial aggregates toward
some node that generates sensor readings belong to the same group, but also
promote early in-network processing because partial aggregates are forwarded
toward the closest such node.

In what follows, we first formally define the minimum mergeable distance
(MD) and then describe how to compute and exchange MD values in a decen-
tralized manner in a sensor network. Then, we explain how each node forwards
partial aggregates to its candidate parents based on their MD values.

3.1 Minimum Mergeable Distance

We model a sensor network as an undirected graph G = (V, E), where V is a
set of nodes and E is a set of edges. There is a distinguished node v0, called the
root node, which is an ordinary sensor node or possibly can be the base station.
The root node and all other sensor nodes are members of V . An edge (vi, vj) is
in E if two nodes vi and vj can communicate with each other. Figure 2a shows
a graph for a sensor network with nine sensor nodes.

The distance from vi to vj in graph G, denoted by dG(vi, vj), is the length of
any shortest path between the two nodes. The distance from the root node v0
to vi is simply called the “distance of vi” and is denoted by dG(vi). dG(v0) = 0
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Fig. 2. A sensor network graph and its stratified routing graph

by definition. The stratified routing graph S = (V, E′) of a graph G = (V, E) is
a subgraph of G, where an edge (vi, vj) ∈ E is in E′ if and only if |dG(vi) −
dG(vj)| = 1. The stratified routing graph is also called the ring topology in the
literature [10][11]. Figure 2a and 2b show a graph and its stratified routing graph,
respectively.

Next, we define a support relationship between nodes. Let S = (V, E) be a
stratified routing graph. We define a relation →S on V by:

→S= {< vi, vj > | (vi, vj) ∈ E and dS(vj) < dS(vi)}.

If a pair < vi, vj > is in →S , we write vi →S vj . We will omit the subscript S
in relation →S when the context is clear. The transitive closure of → is denoted
by →+. We say that vj is a support node of vi if vi →+ vj . If vi → vj , we say
that vj is a direct support node, or DS-node, of vi. In Figure 2b, node v0 is the
support node of every other node, that is, vi →+ v0, where i = 1, . . . , 8. The
support nodes of v7 are v0, v1, v2, v3, and v4, whereas its DS-nodes are v3 and
v4. There is no support relationship between v3 and v8. The support relationship
vi →+ vj indicates that a path from node vi to node vj , through which messages
are forwarded toward the root node in the collection phase, can be established.

Given a grouped aggregation query, a node is called a qualifying node, or
Q-node, if it satisfies the conditions in the WHERE clause of the query. For
query Q1 in Section 2.1, Q-nodes are the nodes on the sixth floor. Each Q-node
is assigned a group ID based on its values of the attributes appeared in the
GROUP BY clause of the query. The group ID of a Q-node v is denoted by
group(v). For query Q1, each Q-node is assigned the room number where it is
placed as its group ID.

We are now ready to define the minimum mergeable distance. Given a grouped
aggregation query q and a stratified routing graph S = (V, E), the minimum
mergeable distance (MD) of a node vi for a group g, denoted by MDq,S(vi, g), is
defined as follows:

(1) 0, if node vi is a Q-node for query q and group(vi) = g,
(2) min{dG(vi, vj) | vi →+ vj , vj is a Q-node for query q, and group(vj) = g}, if

node vi is not a Q-node, and there exists one or more such vj ,
(3) dG(vi), otherwise.



Content-Based Multipath Routing for Sensor Networks 527

v0

v1 v2

v4 v5 v6v3

v7 v8

(a)

g1 g2 g1 g2

v0 0 0 v5 1 1
v1 0 1 v6 2 1
v2 1 0 v7 0 2
v3 1 2 v8 2 0
v4 1 1

(b)

Fig. 3. Q-nodes for two groups and minimum mergeable distances

For brevity, we will use MD(vi, g) instead of MDq,S(vi, g) if there is no ambi-
guity. MD(vi, g) represents the distance from node vi to the closest Q-node that
supports vi and belongs to group g. Figure 3a shows a stratified routing graph
with nine sensor nodes and Q-nodes for some query. In the figure, grey-colored
nodes are Q-nodes for group g1, and black-colored nodes are Q-nodes for group
g2. Figure 3b shows the MD values of each node for groups g1 and g2.

Previously, for simplicity of explanation, we defined a Q-node to be a node that
satisfies the conditions of a query. However, for a condition such as temp > 20,
even though a node satisfies this condition at one time, it may not satisfy it at
another time. On the other hand, for a condition such as floor = 2, if a node
satisfies this condition, it will always or likely satisfy this condition during the
lifetime of the query. We call a condition of the first type a dynamic condition,
and that of the second a static condition. Because queries may have a dynamic
condition in general, we redefine a Q-node to be a node that satisfies all the
static conditions of the query. The group of a Q-node is also determined based
only on the values of those attributes that may appear in a static condition.

Let v be a node that is not a Q-node for some query. Then, the MD of node
v for group g can be calculated as follows:

MD(v, g) = min{MD(w, g) | v → w} + 1 (1)

Equation 1 indicates that the MD of node v for some group can be calculated
based solely on the MDs of its DS-nodes for the group. This property enables the
implementation of an efficient distributed MD calculation algorithm in a sensor
network, which we will describe in the next section.

3.2 Distributed MD Computation

Distributed computation of MD values consists of the following two steps: con-
struction of stratified routing graph and computation of MD. The construction
of stratified routing graph step is the same as the distance determination step
described in Section 2.2. Through this step, each node discovers its distance
from the root node and its DS-nodes. To reflect the change of network topology,
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Fig. 4. Group-MD lists at nodes v4 and v8

we can execute this step periodically, or whenever the user receives less than a
user-specified number of tuples within the specified sample period, as suggested
in [4].

The computation of MD step is executed when the user poses a query. In this
step, the user query is delivered to every node in the network, the MD of each
node is calculated, and each node discovers the MD values of its DS-nodes. This
step consists of the following three sub-steps:

– Collection. Each node collects the MDs that are broadcast by its DS-nodes
and organizes these MDs into a collection of group-MD lists, denoted by L.
Given a group g, L(g) denotes the list of pairs of a DS-node and its MD for
group g, sorted in ascending order of MD. Note that the DS-node that has
the smallest MD for group g can be found in the the first entry of the list
L(g).

– Computation. After receiving the MDs of all its DS-nodes, each node calcu-
lates its MDs based on Equation 1. There are two cases to consider. 1) Let
us first assume that it is not a Q-node. Then, for each group g in L, its MD
for the group is the MD of the DS-node found in the first entry of L(g), plus
one. 2) Suppose now that it is a Q-node for some group. Then, its MD for
the group is zero, and its MDs for the other groups are calculated as in case
1).

– Notification. After calculating its MDs, each node broadcasts them to its
neighbors.

The root node initiates the computation of MD step by computing and broad-
casting its MD, bypassing the Collection sub-step. After that, the execution of
this step propagates down to the network. Figure 4 shows how the collections
of group-MD lists are populated at nodes v4 and v8 after executing this step in
Figure 3a.

3.3 The Aggregate Forwarding Algorithm

In this section we describe how each node forwards aggregates to its DS-nodes
based on their MD values. The basic idea is that a node forwards each aggregate
in some group to the DS-node that has the smallest MD for the group, to promote
frequent and early in-network processing.

When forwarding aggregates in this way, a node has to make a good choice
about how many number of messages to use. Since a per-message energy cost,
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regardless of the size of the message, is very high [13], forwarding each aggre-
gate in a separate message may not be the best choice: This may generate too
many messages. On the other hand, if a node uses as smaller a number of mes-
sages as possible, then some aggregate may end up being contained in a message
not targeted to the DS-node that has the smallest MD for the group of the
aggregate. Since the optimal number of messages depends on various factors
and may not be easily formulated, in this paper we focus only on reducing the
energy consumption induced by per-message cost. Thus, in our aggregate for-
warding algorithm, a node uses the minimum number of messages. Accordingly,
the problem of forwarding aggregates at each node can be formulated as follows.

Suppose that a node has n aggregates to forward, and each message can
contain at maximum p aggregates. Then, the node will use k = �n/p� messages
to forward its aggregates. A node in our aggregate forwarding algorithm must
decide 1) how to distribute n aggregates over k messages and 2) to which DS-node
to send each message. Since the number of ways for distributing n aggregates
over k messages and deciding the target of each message may be overwhelmingly
large, our method tackles this problem heuristically and consists of two steps. In
the cluster generation step, a node groups aggregates into a number of clusters,
each of which contains those aggregates that will go into the same message. In
the cluster assignment step, the node assigns these clusters to k messages, one
by one in some fixed order, and then the node decides to which node to send
each message. In what follows, we describe these two steps in more detail.

Cluster generation. Given an aggregate a in some group, the DS-node whose
MD for the group is smallest is called the best DS-node of the aggregate and is
denoted by best DS node(a). Recall that, given an aggregate a, best DS node(a)
can be found in the first entry of the group-MD list for the group of the aggregate,
i.e., L(group(a)). best DS node(a) can be nil if L(group(a)) is empty. In this
step a node groups those aggregates with the same best DS-node into a cluster.
And the aggregates whose best DS-node is nil form another cluster. We define
the best DS-node of a cluster C, denoted by best DS node(C), to be the best
DS-node of any aggregate in the cluster.

Cluster assignment. In this step a node assigns the clusters formed in the
previous step to k messages and decides to which DS-node to send each message.
Depending on the size of a cluster (the number of aggregates in it), the cluster
might need to be assigned to one or more messages. For example, if the size of the
cluster is smaller than the size of a message, then we need only one message to
accommodate the aggregates in the cluster. On the other hand, if the cluster size
exceeds the message size, then we need more than one message for the cluster.
Even when the cluster size is smaller than the message size, if the message is
already filled with the aggregates from another cluster, then the cluster still
might need to be distributed over several messages.

Before we describe how to assign clusters to messages in detail, let us explain
how to decide the target of each message first. If a message contains the aggre-
gates from only one cluster, a node simply sends it to the best DS-node of the
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cluster, because this way the aggregates in the cluster will be sent to their best
DS-node. If a message contains the aggregates from more than one cluster, then
a node sends it to the best DS-node of the cluster that were first assigned to this
message (the order in which clusters are assigned to a message will be explained
later). Note that the clusters other than the cluster that were first assigned to
the message may not be sent to their best DS-nodes. The target of a message m
determined this way is denoted by target(m).

Now we describe how to assign clusters to messages. As noted in the previous
paragraph, the order of assigning clusters to messages needs to be carefully
determined, because we can end up with some clusters that are not sent to their
best DS-nodes. In order to determine the order of assigning clusters to messages,
a node examines the benefit of sending each cluster to its best DS-node. If a node
sends an aggregate a in a cluster to its best DS-node, the aggregate will arrive
at a Q-node that belongs to group(a), after the MD hops of its best DS-node,
i.e, after MD(best DS node(a), group(a)) hops, by the definition of MD. From
there on, the aggregate will have a free ride and not have to be transferred due
to in-network processing. To capture this notion of free riding, we define the
benefit of an aggregate a, denoted by benefit(a), to be the number of hops of
free riding by sending it to its best DS-node, which is computed as follows:

(1) benefit(a) = 0, if best DS node(a) is nil,
(2) benefit(a) = d(v) − MD(best DS node(a), group(a)), otherwise.

In other words, if there exists no best DS-node, then the aggregate will likely
arrive at the root node without in-network processing; thus, no free riding and
no benefit. On the other hand, if there exists its best DS-node, the aggregate
will enjoy free riding, starting after the MD hops up to the root node. Similarly,
we define the benefit of a cluster Ci, denoted by benefit(Ci), to be the average
of the benefits of the aggregates in it:

benefit(Ci) =

∑
ai∈Ci

benefit(ai)
|Ci|

.

Note that the benefit of the cluster whose best DS-node is nil—the best DS-node
of all its aggregates is also nil—is always the minimum.

In summary, in this step a node processes clusters in decreasing order of
their benefits and sets the target of each message to the best DS-node of the
cluster that is first assigned to the message. Algorithm 1 describes this step more
formally.

In Algorithm 1, a node first sorts clusters in decreasing order of their benefits.
It then processes each cluster one by one (line 2), handling the cluster Cnil
whose best DS-node is nil separately at the end. For each cluster, it assigns
each aggregate a in the cluster to a message, allocating a new message as needed
(line 3). It first attempts to find a message whose target is best DS node(a),
i.e., a message that is already allocated and targeted to best DS node(a) (line
4). If there is such a message with room (line 5), it places the aggregate in the
message. If not, it attempts to allocate a new message (line 8). If this is possible,
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Algorithm 1. Cluster assignment
Input: C: a set of clusters, Cnil: the cluster whose best DS-node is nil, k: the

number of messages.
Output: M : a set of messages, initially ∅.
Sort C in decreasing order of cluster benefit;1

foreach cluster Ci ∈ C \ Cnil do2

foreach aggregate a ∈ Ci do3

Find a message msg from M whose target is best DS node(a);4

if Such message with room found then5

msg ← a; return;6

end7

if |M | < k then8

Allocate a new message msg;9

target(msg)← best DS node(a);10

msg ← a; M ← msg; return;11

end12

Find any message msg with room from M ; msg ← a;13

end14

end15

foreach aggregate a ∈ Cnil do16

Find any message msg with room from M ; msg ← a;17

end18

it sets the target of the newly allocated message to best DS node(a) and puts
the aggregate into the message. If it is impossible to allocate a new message, it
finds any message with room and places the aggregate there (line 13). Finally,
the node puts each aggregate in the cluster Cnil into any message with room
(line 16 to 18).

4 Performance Evaluation

We conducted various experiments with our own simulator to compare the per-
formance of our approach with those of the existing routing protocols. The ex-
isting routing protocols considered in the evaluation are TAG, GaNC, and LD,
described in Section 2.3. We modified LD appropriately to adapt it to our set-
ting. Originally, LD changes the parent of each node several times as long as
there is a gain, which can defined differently case by case. In our setting, the
parent of each node is changed to only a Q-node and is not changed any more
if the changed parent is in the same group as its child node.

As performance metric, we use the amount of energy consumed for wireless
communication in collecting the result of a grouped aggregation query in a sin-
gle sample period. We model per-message energy consumption by the following
linear model proposed in [13]:

Energy = m × size + b,
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Table 1. Default parameters

Parameter Default value Parameter Default value
Network size (m2) 600× 600 Message size 1

Grid size 50 × 50 Number of groups 8

where b is a fixed component associated with device state changes and channel
acquisition overhead, and m × size is an incremental component which is pro-
portional to the size of the message. We adjusted the coefficients appropriately
by linear regression for 802.15.4 radio hardware (such as the CC2420, used in the
Telos and micaZ platforms) with 250 kbps data rate. We set m to 11.4 μJ/byte
and b to 487 μJ for sending point-to-point traffic, and 3 μJ/byte and 414 μJ for
receiving point-to-point traffic, respectively. We assume that a message consists
of a 11-byte header and 28-byte payload (see TinyOS Enhancement Proposals
1111).

In various simulation experiments, sensor nodes are deployed in a rectangular
area whose width and height are set to the same length. The default size of the
area is 600m × 600m. The sensor nodes are arranged into a grid of cells whose
default size is 50 × 50. Each sensor is placed at the center of each grid cell and
can communicate with the sensors placed adjacent grid cells: Thus, a sensor
node can communicate with at maximum nine sensor nodes. Some nodes at the
edges of the grid may have three or five neighbor sensor nodes. The parameter,
message size, whose default value is one, indicates how many aggregates a single
message can contain. A grouped aggregation query divides sensor readings into
a number of groups, whose default value is set to 8 groups in the evaluation.
Table 1 summarizes the default values of the parameters used in the simulation.
We place the base station at the leftmost, uppermost cell of the grid.

In the evaluation, we assume that wireless communication is lossless: That
is, a node successfully receives all the messages from other nodes. In addition,
we assume that all sensor nodes produce sensor readings that satisfy the con-
ditions of the query. Each sensor reading belongs to a certain group with equal
probability of belonging to any group. In all experiments, we have executed each
simulation 10 times and computed the average. In all graphs that follow, the y
axis indicates the relative cost, i.e., the energy consumption of a routing protocol
over that of TAG, which is one of the most commonly used routing protocols. For
example, the value 0.8 means the routing protocol consumes only 80% amount
of energy compared to TAG, or reduces energy consumption by 20% compared
to TAG.

Effect of Number of Groups. In this experiment, we investigate the effect of
the number of groups in a query on the performances of the routing protocols.
Figure 5a shows the results of the experiment. When the number of groups is
one, i.e., all aggregates are in the same group, the three routing protocols show
the same performances because in-network processing occurs at every node in

1 http://www.tinyos.net/
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(a) Varying the number of groups (b) Varying the message size

(c) Varying the number of sensor
nodes

Fig. 5. Experimental results

all routing protocols. As the number of groups increases, the proposed method,
CMR, outperforms the other routing protocols because of its frequent and early
in-network processing effects. As the number of groups becomes larger and larger,
its performance slowly degrades but is still better than the other routing proto-
cols. This is because, as the number of groups increases, the number of nearby
nodes belonging to the same group decreases, so do the chances of frequent and
early in-network processing in CMR.

Effect of Message Size. In this experiment, we evaluate how the message size
affects the performances of the routing protocols. The results of this experiment
are shown in Figure 5b. When the message size is one, CMR shows the best
performance since every aggregate is contained in a separate message, and thus
can be sent to its best DS-node. As the message size increases, however, its
performance decreases, because some aggregate may end up being contained in
a message that is not targeted to its best DS-node.

Effect of Number of Sensor Nodes. This experiment is designed to evaluate
the effect of the number of sensor nodes on the performances of the routing
protocols by varying the number of sensor nodes from 225 (grid size 15× 15) to
34225 (grid size 185×185). Figure 5c shows the results of the evaluation. As the
number of sensor nodes increases, the reduction in energy consumption of the
proposed method slowly increases, since the cumulative effect of frequent and
early in-network processing in our method also increases.
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5 Conclusions

In this paper we have proposed a content-based multipath routing protocol called
CMR for efficient in-network processing of grouped aggregation queries. CMR
employs multipath routing and forwards aggregates based on the contents of
aggregates by means of a distance metric called minimum mergeable distance, to
promote frequent and early in-network processing. The experimental evaluation
shows that the proposed method outperforms the existing routing protocols. As
future work, we plan to perform further experiments to evaluate our proposed
method in more realistic sensor network environments.
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Abstract. Pervasive applications, such as natural habitat monitoring and location-
based services, have attracted plenty of research interest. These applications de-
ploy a large number of sensors (e.g. temperature sensors) and positioning devices
(e.g. GPS) to collect data from external environments. Very often, these systems
have limited network bandwidth and battery resources. The sensors also cannot
record accurate values. The uncertainty of these data hence has to been taken
into account for query evaluation purposes. In particular, probabilistic queries,
which consider data impreciseness and provide statistical guarantees in answers,
have been recently studied. In this paper, we investigate how to evaluate a long-
standing (or continuous) probabilistic query. We propose the probabilistic filter
protocol, which governs remote sensor devices to decide upon whether values
collected should be reported to the query server. This protocol effectively re-
duces the communication and energy costs of sensor devices. We also introduce
the concept of probabilistic tolerance, which allows a query user to relax answer
accuracy, in order to further reduce the utilization of resources. Extensive simu-
lations on realistic data show that our method reduces by address more than 99%
of savings in communication costs.

1 Introduction

Advances in sensor technologies, mobile positioning and wireless networks have mo-
tivated the development of emerging and useful applications [5,10,22,7]. For example,
in scientific applications, a vast number of sensors can be deployed in a forest. These
values of the sensors are continuously streamed back to the server, which monitors
the temperature distribution in the forest for an extensive amount of time. As another
example, consider a transportation system, which fetches location information from ve-
hicles’ GPS devices periodically. The data collected can be used by mobile commerce
and vehicle-traffic pattern analysis applications. For these environments, the notion of
the long-standing, or continuous queries [21,24,13,15], has been studied. Examples
of these queries include: “Report to me the rooms that have their temperature within
[15oC, 20oC] in the next 24 hours”; “Return the license plate number of vehicles in
a designated area within during the next hour”. These queries allow users to perform
real-time tracking on sensor data, and their query answers are continuously updated to
reflect the change in the states of the environments.

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 535–549, 2010.
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Fig. 1. Uncertainty of (a) temperature and (b) location

An important issue in these applications is data uncertainty, which exists due to var-
ious factors, such as inaccurate measurements, discrete samplings, and network latency.
Services that make use of these data must take uncertainty into consideration, or else
the quality and reliability may be affected. To capture data uncertainty, the attribute
uncertainty model has been proposed in [20,23,3], which assumes that the actual data
value is located within a closed region, called the uncertainty region. In this region, a
non-zero probability density function (pdf) of the value is defined, such that the inte-
gration of pdf inside the region is equal to one. Figure 1 (a) illustrates that the uncertain
value of a room’s temperature in 1D space follows a uniform distribution. In Figure 1
(b) the uncertainty of a mobile object’s location in 2D space follows a normalized Gaus-
sian distribution. Notice that the actual temperature or location values may deviate from
the ones reported by the sensing devices. Based on attribute uncertainty, the notion of
probabilistic queries has been recently proposed. These are essentially spatial queries
that produce inexact and probabilistic answers [3,4,17,16,14,1].

In this paper, we study the evaluation of the continuous probabilistic query (or CPQ
in short). These queries produce probabilistic guarantees for the answers based on the
attribute uncertainty. Moreover, the query answers are constantly updated upon database
change. An example of a CPQ can be one that requests the system to report the IDs
of rooms whose temperatures are within the range [26oC, 30oC], with a probability
higher than 0.7, within the next two hours. Let us suppose there are two rooms: r1 and
r2, where two sensors are deployed at each room and report their temperature values
periodically. At time instant t, their probabilities of being within the specified range
are 0.8 and 0.3 respectively. Hence, at time t, {r1} would be the query answer. Now,
suppose that the temperature values of the two rooms are reported to the querying server
at every tP time units. Since their temperature values can be changed, the answer to the
CPQ can be changed too. For example, at time t + tP , the new probabilities for r1
and r2 of satisfying the CPQ are respectively 0.85 and 0.7. Then, the CPQ answer at
t+tP is {r1, r2}. We call the value 0.7, which controls the query answer, the probability
threshold parameter. This parameter allows a user to specify the level of confidence that
he wants to place in the query result.

A simple method for evaluating a CPQ is to allow each sensing device to periodi-
cally report their current values, evaluate the probabilities of the new sensor values, and
update the query result. This approach is, however, expensive, because a lot of energy
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and communication resources are drained from the sensing devices. Moreover, when a
new value is received, the system has to recompute the CPQ answer. As pointed out in
[4], recomputing these probability values require costly numerical integration [4]. It is
thus important to control the reporting activities in a careful manner. In this paper, we
present a new approach of evaluating a CPQ, which (1) prolongs battery lifetime; (2)
saves communication bandwidth; and (3) reduces computation overhead. Specifically,
we propose the concept of probabilistic filter protocol. A probabilistic filter is essen-
tially a set of conditions deployed to a sensing device, which governs when the device
should report its value (e.g., temperature or location) to the system, without violating
query correctness requirements [19,5]. Instead of periodically reporting its values, a
sensor does so only if this is required by the filter installed on it. In the previous exam-
ple, the filter would simply be the range [26oC, 30oC], and is installed in the sensors in
r1 and r2. At time t+ tP , if the sensor in r1 checks that its probability for satisfying the
CPQ is larger than 0.7, it does not report its updated value. Thus, using the filter pro-
tocol, the amount of data sent by the devices, as well the energy spent, can be reduced.
Indeed, our experimental results show that the amount of update and energy costs is
saved by 99%. Since the server only reacts when it receives data, the computational
cost of re-evaluating the CPQ is also smaller.

We also observe that if a user is willing to tolerate some error in her query answer,
the performance of the filter protocol can be further improved. In the previous example,
suppose that the answer probability of room r1 has been changed from 0.85 to 0.65.
Since the probability threshold is 0.7, r1’s sensor should report its value to the server.
However, if the user specifies a “probabilistic tolerance” of 0.1, then, r1 can choose not
to report its value to the server. Based on this intuition, we design the tolerant proba-
bilistic filter, which exploits the probabilistic tolerance. The new protocol yields more
energy and communication cost savings than its non-tolerant counterpart, by around
66%, in our experiments. We will describe the formal definition of probabilistic toler-
ance, and present the protocol details.

The rest of this paper is organized as follows. Section 2 presents the related work. We
describe the problem settings and the query to be studied in Section 3. Then we discuss
the probabilistic filter protocol in Section 4. The tolerant probabilistic filter protocol is
presented in Section 5. We give our experimental results in Section 6, and conclude the
paper in Section 7.

2 Related Work

In the area of continuous query processing, a number of approaches have been pro-
posed to reduce data updates and query computation load. These work include: indexing
schemes that can be adapted to handle high update load [21]; incremental algorithms
for reducing query re-evaluation costs [24]; the use of adaptive safe regions for reduc-
ing update costs [12]; the use of prediction functions for monitoring data streams [13];
and sharing of data changes in multiple-query processing [15].

To reduce system load, researchers have proposed to deploy query processing to
remote streaming sources, which are capable of performing some computation. Specif-
ically, the idea of stream filters is studied. Here, each object is installed with some
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simple conditions, e.g. filter constraints, that are derived from requirements of a con-
tinuous query [19,5,22,11,25,8,7]. The remote object sends its data to the server only
if this value violates the filter constraints. Since not all values are sent to the server, a
substantial amount communication effort can be saved. In this paper, we propose the
use of probabilistic filters on data with attribute-uncertainty. To our best knowledge,
this has not been addressed before.

There also have been plenty of literature on probabilistic queries. [3] proposed a
classification scheme of probabilistic queries based on whether a query returns a nu-
merical value or the identities of the objects that satisfy the query. Many studies focus
on reducing the computation time of probabilistic queries since such computing often
involves expensive integration operations on the pdfs [4,17].

However, most of the work on probabilistic queries focuses on snapshot queries -
queries that only evaluated by the system once. Few studies have addressed the issue of
evaluating CPQs. In [1], the problem of updating answers for continuous probabilistic
nearest neighbor queries in the server is studied. However, it does not explain how filters
can be used to reduce communication and energy costs for this kind of queries. In [9], a
tolerance notion for continuous queries has been proposed. However, it does not use the
attribute uncertainty model. In [2], we performed a preliminary study of using filters for
CPQs. We further improve this method by introducing the probabilistic tolerance, and
present an extensive evaluation on our approach.

3 Continuous Probabilistic Queries

In this section, we first explain the details of the system model assumed in this paper
(Section 3.1). Then, in Section 3.2, we present the formal definition of CPQ, as well as
a simple method of evaluating it.

3.1 System Model

Figure 2 shows the system framework. It consists of a server, where a user can issue
her query. The query manager evaluates the query based on the data obtained from the
uncertain database (e.g., [3]), which stores the uncertainty of the data values obtained
from external sources. Another important module in the server is the filter manager. Its
purpose is to instruct a sensor on when to report its updated value, in order to reduce
the energy and network bandwidth consumption. In particular, the filter manager derives
filter constraints, by using the query information and data uncertainty. Then, the filter
constraints are sent to the sensors. The server may also request the filter constraints to
be removed after the evaluation of a CPQ is completed.

Each sensor is equipped with two components:

– a data collector, which periodically retrieves data values (e.g., temperature or posi-
tion coordinates) from external environments.

– a set of one or more filter constraints, which are boolean expressions for determin-
ing whether the value obtained from the data collector is to be sent to the server.
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As discussed in Section 1, we use the attribute uncertainty model (i.e., a closed range
plus a pdf) [20,23] to represent data impreciseness. The type of uncertainty studied
here is the measurement error of a sensing device, whose pdf is often in the form of
the Gaussian or uniform pdf [20,23,3]. To generate the uncertain data, the uncertain
database manager stores two pieces of information: (1) an error model for each type
of sensors, for instance, a zero-mean Gaussian pdf with some variance value; and (2)
the latest value reported by each sensor. The uncertain data value is then obtained by
using the sensor’s reported value as the mean, and the uncertainty information (e.g.,
uncertainty region and the variance) provided by the error model. Figure 1 illustrates
the resulting uncertainty model of a sensor’s value.

In the sequel, we will assume a one-dimensional data uncertainty model (e.g., Fig-
ure 1(a)). However, our method can generally be extended to handle multi-dimensional
data. Let us now study how uncertain data is evaluated by a CPQ.

3.2 Evaluation of CPQ

Let o1, ..., on be the IDs of n sensing devices monitored by the system. A CPQ is
defined as follows:

Definition 1. Given a 1D interval R, a time interval [t1, t2], a real value P ∈ (0, 1], a
continuous probabilistic query (or CPQ in short) returns a set of IDs {oi|pi(t) ≥ P}
at every time instant t, where t ∈ [t1, t2], and pi(t) is the probability that the value of
oi is inside R.

An example of such a query is: “During the time interval [1PM, 2PM ], what are the
IDs of sensors, whose probabilities of having temperature values within R = [10oC,
13oC] are more than P = 0.8, at each point of time?” Notice that the answer can be
changed whenever a new value is reported. For convenience, we call R and P respec-
tively the query region and the probability threshold of a CPQ. We also name pi the
qualification probability of sensor oi.

At any time t, the qualification probability of a sensor oi can be computed by per-
forming the following operation:

pi(t) =
∫

ui(t)∩R

fi(x, t)dx (1)
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In Equation 1, ui(t) is the uncertainty region of the value of oi, and ui(t) ∩ R is
the overlapping part of ui(t) and the query region R. Also, x is a vector that denotes a
possible value of oi, and fi(x, t) is the probability density function (pdf) of x.

Basic CPQ Execution. A simple way of answering a CPQ is to first assume that each
sensor’s filter has no constraints. When a sensor’s value is generated at time t′, its new
value is immediately sent to the server, and the qualification probabilities of all database
sensors are re-evaluated. Then, after all pi(t′) have been computed, the IDs of devices
whose qualification probabilities are not smaller than P are returned to the user. The
query answer is constantly recomputed during t1 and t2.

This approach is expensive, however, because:

1. Every sensor has to report its value to the server periodically, which wastes a lot of
energy and network bandwidth;

2. Whenever an update is received, the server has to compute the qualification prob-
ability of each sensor in the database, using Equation 1, and this process can be
slow.

Let us now the probabilistic filter protocol can tackle these problems.

4 The Probabilistic Filter Protocol

Before presenting the protocol, let us explain the intuition behind its design. Figure 3
shows a range R (the pair of solid-line intervals) and the uncertainty information of two
sensors, o1 and o2, at current time tc, represented as gray-colored bars. Let us assume
that the probability threshold P is equal to one. Also, the current values extracted from
the data collectors of o1 and o2 are v1(tc) and v2(tc) respectively. We can see that o1’s
uncertainty region, u1(tc), is totally inside R. Also, v1(tc) ∈ u1(tc). Hence, o1 has a
qualification probability of one, and o1 should be included in the current query result.
Suppose that the next value of u1 is still inside R. Then, it is still not necessary for the
query result to be updated. More importantly, if o1 knows about the information of R
(the query region of a CPQ), o1 can check by itself whether it needs to send the update
to the server. A “filter constraint” for o1, when it is inside R, can then be defined as
follows:

if u1(tc) − R �= Φ then send v1(tc) (2)

R’’ R’

Update at 
pi<0.7

Update
at pi<1

o1

R

update at pi=0.7

o2update unnecessary

Fig. 3. Illustrating probabilistic filter constraints
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which means: “When v1 has a chance to be outside R, report v1 to the server”. Thus,
the server can first compute constraint 2 and send it to o1. As long as constraint 2 is not
satisfied, no update is produced by o1.

The above technique can be generalized to handle any probability threshold P . Let
us consider Figure 3 again, where P = 0.7. Suppose that o1 continues to move towards
the left boundary of R, such that a fraction of more than 0.3 of its uncertainty region
(shaded) lies outside R. At this point, v1 must be reported, so that the ID o1 can be
removed from the query result. This is equivalent to using constraint 2, except that R is
replaced by R′. Here, R′ is derived by using the maximum amount of o1’s uncertainty
region allowed on the outside of R, which is equal to 0.3 of o1’s uncertainty region.

Figure 3 also shows that o2 is currently outside R. For P = 0.7, the following
constraint can be used:

if u2(tc) touch R′′ then send v2(tc) (3)

When u2 touches R′′, it has a fraction of exactly 0.7 inside R. Upon receiving the
update from o2, the server should insert o2 to the query result. Notice that while R′

is outside R, the region R′′ is enclosed by R. In general, for every CPQ with P , two
constraints are need, to handle the cases when a value’s uncertainty is outside or inside
R. An additional advantage of this approach is that a sensor does not need to compute its
qualification probability, which can be complicated for a sensor with low computational
power.

R

uncertainty center

pi=0.7

oi

rili

Fig. 4. Checking filter constraints at the sensor

Simple Constraint Verification. In practice, a sensor may not keep the detailed uncer-
tainty information to perform filter constraint checking. Also, since a sensor can have
low computational power, it is worthwhile to further simplify the constraint verifica-
tion process. Observe that the uniform/Gaussian pdf assumed in our uncertainty model
has a symmetric shape, and is centered around the value sensed from the data collector
(c.f. Figure 1). It is then sufficient for the sensor to test the constraints by using only its
sensed value. Figure 4 illustrates a CPQ with P = 0.7. When the sensed value vi of
oi touches the line li, oi has exactly a qualification probability of 0.7. Thus, if vi is on
the left of li, its qualification probability must be less than 0.7. Similarly, if vi is on the
right of ri, its qualification probability is also less than 0.7. Hence, vi ∈ [li, ri] if and
only if pi ≥ P .
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The values of li and ri can be obtained by using the pdf information to derive the
distance from the boundaries of R. For uniform pdf, the distance can be obtained easily;
for Gaussian pdf, the value can be derived by performing table-lookup. This approach is
desirable for a sensor with low processing power. Moreover, only one interval ([li, ri])
needs to be stored, as opposed to the two intervals presented earlier (e.g., R′ and R′′).
Hence, the precious memory required by a sensor for storing the constraints is also
saved.

4.1 Protocol Design

We are now ready to discuss the probabilistic filter protocol. Algorithm 1 below shows
the algorithm employed by the server’s filter manager.

Initialization:1

Request data from sensors o1, . . . , om;2

for each sensor oi do3

UpdateDB(oi);4

Compute new filter constraint [li, ri];5

Send(addFilterConstraint, [li, ri], oi);6

Maintenance:7

while t1 ≤ currentTime ≤ t2 do8

Wait for update from oi;9

UpdateDB(oi);10

if update == (oi, delete) then11

remove oi from answer of Q;12

if update == (oi, insert) then13

insert oi to answer of Q;14

for each sensor oi do15

Send(deleteFilterConstraint, oi);16

Algorithm 1. Probabilistic filter protocol (at filter manager)

In this algorithm, after a continuous query Q is registered, the server collects infor-
mation from all sensors. Based on these values, the server evaluates the filter constraint
for each of them. Afterwards, the constraints are installed in the sensors (lines 2-6).
These constraints, in the form of [li, ri], are computed by using the method described
in the previous section.

When Q is being executed (between times t1 and t2), the server continuously listens
to updates from all sensors. If it receives an update, it will update the uncertain database
(lines 9-10). Then, instead of recomputing the whole query answer of Q, an incremental
update approach is adopted: the server refreshes the query result according to the update
command received (lines 11-14). This is possible, because the update of oi only affects
its own qualification probability, but not other sensors. After the query is completed,
the filter constraints for query Q on all sensors are removed (Steps 15-16).
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currState = FALSE;1

while true do2

command = receive(server);3

switch command do4

case addFilterConstraint5

Add new filter constraint to oi;6

Stop;7

case deleteFilterConstraint8

Delete filter constraint from oi;9

Stop;10

result = checkFilterConstraints(vi,currState);11

if result == include then12

currState = TRUE;13

sendUpdate(oi ,insert);14

else if result == exclude then15

currState = FALSE;16

sendUpdate(oi ,delete);17

Algorithm 2. Probabilistic filter protocol (at sensor)

Sensor side. Each sensor oi retrieves data value periodically from the external environ-
ment. It also uses a variable called currState to store its current state with respect
to Q: if oi is currently included in Q’s result, then currState has a true value, or
false otherwise. As shown in Algorithm 2, currState is initially FALSE (line 1).
The sensor then continuously listens to the commands from the server (lines 2-3). If the
server requests to add or delete filter constraints for a CPQ, it will do so accordingly
(lines 4-10). Then, it will check the filter constraints by using its latest sensed value vi,
the currState value, and the checking method in the previous section (line 11). If oi

should be included in the query result, oi changes currState to TRUE, and notifies
the server (lines 12-14). Otherwise, oi is removed from the query result (lines 15-17).

These algorithms alleviate the problems of the basic protocol discussed in Sec-
tion 3.2. At the sensor side (Algorithm 2), update is only sent to the server if the fil-
ter constraint is violated, not periodically. At the server side (Algorithm 1), since the
query answer is updated incrementally, there is no need to compute the qualification
probability of each sensor. Moreover, for both the server and sensors, no qualification
probabilities are computed. Hence, a significant amount of computational effort at both
the server and the sensors is reduced.

5 Tolerant Probabilistic Filters

In this section, we investigate how the performance of the probabilistic filter protocol
can be further improved, if the user is willing to sacrifice some degree of accuracy
(or equivalently, specify a tolerance) in her query answers. We present a definition of
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tolerance designed for CPQs in Section 5.1. Then, we study how the filter protocol
should be modified in order to exploit this tolerance, in Section 5.2.

5.1 Probabilistic Tolerance

The probabilistic tolerance, specified with a real value Δ ∈ [0, 1], is defined as follows.

Definition 2. Given a CPQ Q, and Δ ∈ [0, min(P, 1 − P )], a Δ-CPQ returns results
S ∪ T at every time instant t during the lifetime of Q, where S = {oi|pi(t) ≥ P + Δ}
and T ⊆ {oi|pi(t) ≥ P − Δ}.

Essentially, the result of Δ-CPQ has the following requirements:

– It contain IDs of all sensors with qualification probabilities not less than P + Δ;
– It does not contain the ID of any sensor whose qualification probability is less than

P − Δ;
– It may contain a sensor with qualification probability less than P+Δ but not smaller

than P − Δ.

Example. Consider three sensors, o1, o2 and o3, and a CPQ with P = 0.7 and Δ = 0.1.
Suppose at some time instant, the qualification probabilities pi’s of o1, o2, and o3 are
respectively 0.85, 0.55 and 0.71. Since p1 ≥ 0.7 + 0.1, o1 is included in the result of
this 0.1-CPQ. On the other hand, p2 < 0.7− 0.1, and so o2 is excluded from the query
result. For o3, its probability p3 is between [0.6, 0.8], and whether o3 is included in the
result does not affect the correctness of the query. Notice that if p3 was previously greater
than 0.8, there is no need for o3 to be removed from the query result, even though its
probability is now below 0.7. Hence, o3 does not have to report its newest value to the
server.

5.2 Protocol Design

Given a Δ-CPQ, we first derive two pairs of filter constraints for each sensor. Specifi-
cally, we consider the same CPQ, with probability P + Δ, and compute the constraint
[l+i , r+

i ] for each sensor oi, using the techniques in Section 4. Recall that if the sensed
value vi is within this range, pi must be no less than P + Δ. For the same CPQ, we

R

oi

li-

pi=P+ =0.8

pi=P- =0.6

li+ ri
-ri

+

Fig. 5. Filter constraints for enforcing probabilistic tolerance
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derive another filter constraint [l−i , u−
i ], for probability P − Δ. This means vi is lo-

cated in this range, if and only if pi ≥ P − Δ. For example, in Figure 5, P = 0.7 and
Δ = 0.1. If vi ∈ [l+i , r+

i ], then pi must exceed 0.8. On the other hand, if vi /∈ [l−i , r−i ],
then pi < 0.6.

The probabilistic tolerance can be enforced by making changes to Algorithms 1 and
2. For the filter manager (Algorithm 1), the maintenance phase (lines 7-16) is the same
as before, and so we only display the new initialization phase, as shown in Algorithm 3.
The main idea of this algorithm is that for a sensor oi whose qualification probability pi

is not less than P at initial time t0, it only needs to report its value vi if its pi < P −Δ,
or equivalently, vi /∈ [l−i , u−

i ]. In lines 5-6, all sensors of this type (R(t0)) are assigned
the [l−i , u−

i ] filters. We say that this filter is active, meaning that it is currently employed
by the sensor to decide whether to send an update. The other filter, [l+i , u+

i ], is not used
(or inactive) in this moment. However, both filters are sent to the sensor. On the other
hand, if pi < P , then oi has to report vi when pi ≥ P + Δ, which is equivalent
to vi ∈ [l+i , u+

i ]. For this kind of sensors, the roles of the [l+i , u+
i ] and [l−i , u−

i ] are
switched, as shown in lines 8-11.

Initialization:1

Receive data from all sensors o1, · · · , om;2

Let R(t0) be the set {oi|pi(t0) ≥ P};3

for each sensor oi in R(t0) do4

Compute filter constraints [l−i , u−
i ] and [l+i , u+

i ];5

Assign [l−i , u−
i ] as active filter and [l+i , u+

i ] as inactive filter;6

Send the 2 filter constraints to oi;7

for each sensor oi not in R(t0) do8

Compute filter constraints [l−i , u−
i ] and [l+i , u+

i ];9

Assign filter [l+i , u+
i ] as active filter and [l−i , u−

i ] as inactive filter;10

Send the 2 filter constraints to oi;11

Algorithm 3. New initialization phase for filter manager

At the sensor side, Algorithm 2 can generally still be used, except with the following
differences. First, two filter constraints are stored. Second, only the active filter is used
for determining whether to send an update. Third, once an update is sent, the active and
inactive states of the two filters stored in the sensors are swapped.

6 Experimental Evaluation

We now evaluate the performance of our protocols. Section 6.1 presents the experimen-
tal setup, and Section 6.2 discusses the results.

6.1 Experimental Setup

We use the temperature sensor readings captured by 54 sensors, deployed in the Intel
Berkeley Research lab. The temperature values are collected every 30 seconds. The
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lowest and the highest temperature values are +13oC and +35oC respectively. So, we
set the domain space as +10oC to +40oC. The uncertainty region of a sensor value is
in the range of ±1oC [18], and we assume that uncertainty pdf is uniform. (We also
experiment with Gaussian pdf). We use 54 sensors to generate 155520 records over
one day, with a sampling time interval of 30s. For energy consumption, the energy for
sending an uplink message is 77.4mJ and the energy for receiving a downlink message
is 25.2mJ [6].

Each data point is obtained by averaging over the results of 100 random queries.
The size of each query is 5oC. The centers of the queries are randomly selected within
[12.5oC, 37.5oC]. All the queries has same duration as simulation period 1 day. By
default, P = 0.6. Since P cannot be 0 as stated in the definition, so in our experiment
we use P + ε where ε = 10−4 to substitute P = 0 case.

6.2 Experimental Result

Probabilistic Filters. We first evaluate the effectiveness of introducing probabilistic fil-
ters. We focus on both communication cost and computation costs. From Figures 6(a)
and (b), the use of probabilistic filters reduce the update frequency and energy con-
sumption rate by more than 99%. In detail, the average update frequency for probabilis-
tic filters is around 0.074 per sampling interval, which is much less than when filters
are not used. The average energy consumption for the probabilistic filters is 7.6 mJ per
sampling interval. Moreover, using our protocol, the server does not need to do any
probability computation. Hence, the computational time for handling an update is also
significantly reduced (Figure 6(c)).

(a) (b) (c)

Fig. 6. Probabilistic Filters

(a) (b) (c)

Fig. 7. Probabilistic tolerance (P = 0.6)
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Probabilistic Tolerance. Next, we evaluate the performance of our tolerant protocol,
under different values of Δ. From Figures 7(a) and (b) we can see that the improvement
is about a 66% reduction over update frequency and energy consumption (in main-
tainance phase), when Δ = 0.4. The reason for this improvement is that the increase
on the probabilistic tolerance gives more chances for sensors to avoid violating the con-
straints as well as sending updates. Figure 7(c) also shows that the computational time
on the server side is reduced by around 60% at Δ = 0.4. This is the consequence of
fewer updates received at the server.

Gaussian Distribution. We also evaluate our protocol for uncertainty pdfs that follow
Gaussian distribution. Figure 8 shows that given the same tolerance value, more updates
are saved when the Gaussian pdf has a larger variance. For example, if Δ = 0.4, the
reduction using variance of 10 units over that of 0.2 units is around 20%. This reflects
that the filter constraints (e.g., l+i ) tend to be further away from the current sensed value
under a larger variance. Hence, our protocol works better for Gaussian pdf with a larger
variance.
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Multiple Queries. Finally, we evaluate the performance of running multiple queries
in the system. We use a number of queries with random sizes and starting times. The
lifetime of each CPQ follows a uniform distribution of [2, 2880] sampling intervals. The
probability threshold and probabilistic tolerance are also randomly selected. In Figure 9,
we can see that the energy consumption rate scales linearly with the number of queries.
When we increase the number of queries, the increment on the energy per sampling
interval is around 438mJ.

7 Conclusions

Uncertainty management is an important and emerging topic in sensor-monitoring ap-
plications. In order to reduce update and energy consumption, we study a protocol
for processing continuous probabilistic queries over imprecise sensor data. We further
present the concept of probabilistic tolerance, and a protocol which enforces this toler-
ance, to yield more savings. In the future, we will study how other CPQs (e.g., nearest-
neighbor queries) can be supported.
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Abstract. Process view technology is catching more attentions in modern busi-
ness process management, as it enables the customisation of business process 
representation. This capability helps improve the privacy protection, authority 
control, flexible display, etc., in business process modelling. One of approaches 
to generate process views is to allow users to construct an aggregate on their 
underlying processes. However, most aggregation approaches stick to a strong 
assumption that business processes are always well-structured, which is over 
strict to BPMN. Aiming to build process views for non-well-structured BPMN 
processes, this paper investigates the characteristics of BPMN structures, tasks, 
events, gateways, etc., and proposes a formal process view aggregation ap-
proach to facilitate BPMN process view creation. A set of consistency rules and 
construction rules are defined to regulate the aggregation and guarantee the or-
der preservation, structural and behaviour correctness and a novel aggregation 
technique, called EP-Fragment, is developed to tackle non-well-structured 
BPMN processes. 

1   Introduction 

Workflow/process view technologies have been recognised as an important capability 
for better granularity control of process representation [5, 8-12]. A process view 
represents a partial view of an actual business process, and therefore separates the 
process representation from the executable processes. This feature highlights the 
benefits of process views in the areas of authority control, process visualisation, col-
laborative business process modelling etc. 

Reluctantly, most current research on workflow/process views assumes that busi-
ness processes are well structured, yet this assumption confronts a lot of conflicts 
when Business Process Modelling Notations (BPMN) [1] is getting popular. As a 
graphical modelling tool, BPMN allows users to design business processes arbitrarily, 
and therefore many practical BPMN processes are not strictly well structured [13]. 
For example, a BPMN process may have unpaired Fork and Merge or Join gateways. 
To apply process view technology to BPMN processes, the non-well-structured char-
acteristics of BPMN processes have to be taken into account.  
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Some research efforts have been put to formalise the construction of process views, 
mostly by aggregating activities in the corresponding base process [3, 6]; however, 
their works only focus on construction from basic or compound activities without 
concerning related events and exceptions, which are common elements in BPMN 
process designing. These elements help BPMN capture more details of business proc-
esses, and they should be considered as well when creating process views for BPMN 
processes. Furthermore, current approaches do not provide the selective aggregation 
of branches in Split and Join gateways.   
 

 

Fig. 1. Motivating example 

Figure 1 shows our motivating example of BPMN process. As we can see that 
some parts of the structure are non-well-structured. For example, the split branches 
from the Fork gateway o3 flow to different Join gateways o4, o12, and o14. The timer-
event o17 attached to the task o13 indicates that the subsequent execution will bypass 
the Join gateway o14 and flow through o18, o20, to o16 if the event occurs. For the given 
process, users may specify the requirement for aggregating tasks o7, o8, o10, o13, and 
event o11 in a process view. Two main questions are required to be answered: (1) Is 
the specified set of objects able to be aggregated? (2) If it is not, then what is the 
minimal set of objects, including the pre-specified set, for an aggregation? 

Aiming at supporting process views generation for BPMN processes, we propose a 
BPMN process view construction approach that covers the main BPMN elements and 
characteristics. A set of rules is defined to regulate the view generation in compliance 
with structural and behavioural consistencies and correctness. Related algorithms are 
also developed for view checking and construction. Particularly, our approach makes 
the following contributions to process view research: 

• Present an aggregate construction technique, called EP-Fragment, to tackle non-
well-structured processes and selective aggregation of branches. 

• Propose an algorithm for finding minimal aggregate from a set of user-specified 
tasks. This algorithm helps the automatic aggregation for process views. 

• Consider BPMN elements, such as events, exception paths, etc., in our model. 

The remainder of this paper is organised as follows. Section 2 provides a formal 
model of BPMN processes, syntaxes, and components for process view. Section 3 
provides a process view construction methodology based on construction rules and 
consistency constraints; the prototype is also implemented for the proof of our ap-
proach. Section 4 reviews the related works. Finally, the concluding remarks are 
given in Section 5 with an indication on future work. 
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2   Formal Model of BPMN Processes  

In this section, syntaxes, components, and structure of BPMN processes and process 
views are introduced and defined. A process view constructed on its underlying 
BPMN process is itself represented by the BPMN diagram. While a full range of 
BPMN elements are developed and proposed in BPMN 1.2 specification [1] to cap-
ture more detailed behaviour of business process, it is adequate to select only a core 
subset of them for the discussion on BPMN process views. This includes Tasks, 
Events, Gateways, Control flows, Message flows, Exception flows, and Pools.  

Definition 1 (Private process or Process). A private BPMN process bp contains a 
set of tasks, events, and gateways connected together to represent the execution be-
haviour of the whole process. We model it as an extended directed-graph which is 
represented as a tuple (O, T, TE, G, E, F), where, 

− O is a finite set of BPMN element objects divided into disjoint sets of T, G, and E 
− T is a finite set of tasks in bp  
− G is a finite set of gateways in bp  
− E is a finite set of events in bp; event_type: E→{Start, Catching-Intermediate, 

Throwing-Intermediate, End} is a function used to specify the type of event. 
− F  ⊆ O × O is a finite set of control flow relations represented by a directed edge in 

bp. A control flow f = (oi, oj)∈F corresponds to the unique control flow relation be-
tween oi and oj, where oi, oj∈O 

− TE ⊆ E × T is non-injective and non-surjective defining a finite set of attachment 
relations of intermediate events on tasks, called Event-attached task relation. An 
attachment relation of event e on task t, te=(e, t)∈TE corresponds to the intermedi-
ate trigger condition of event e for task t , where t∈T, e∈E and 
event_type(e)=Catching-Intermediate.  

− F* is reflexive transitive closure of F, written oiF
*oj, if there exists a path from oi to 

oj. In addition, we can write oi(F∪TE)*oj if there exists a path from object oi to oj 
via control flow relations F and event-attached task relations TE.  

Note that the exception flow of the task is a flow leading from an event e in TE, and 
there can be one or more events attached to the task defining multiple exception 
flows. We also define necessary functions that will be used in the paper. 

− in(x) = |{y∈O | ∃y, (y, x)∈F}| returns the in-degree of node x, and out(x) = |{y∈O | 
∃y, (x, y)∈F}| returns the out-degree of node x  

− path  returns a set of all objects in all possible paths leading from oi  via a 
control flow fi to oj via a control flow fj, such that ∃oi, oj∈O, ∃fi, fj∈F, oi(fiF

*fj)oj. A 
set of objects in normal path, denoted as , defines a set of all objects in all pos-

sible paths from start event to the end event of a process, i.e.,  = , 
such that es∈{E | event_type(E)=Start} and ee∈{E | event_type(E)=End}. 

It is also conceived that a well-structured  (opposite to non-well-structured) process 
must contain structures of correct pairs of Fork and Merge or Join gateways, and  
there must be no branch going out or coming in between the structure [15]. The  

(oi
,  

oj) 

path(es ee)
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non-well-structured process can be detected by using graph reduction [19] or SESE 
decomposition technique [20]. 

Definition 2 (Least Common Predecessor and Least Common Successors). Given 
a set of objects N⊆O in a process, we define a set of least common predecessors and 
successors of N, denoted as lcp(N) and lcs(N), respectively. 

lcp(N) = { op∈O\N | ∀o∈N (opF*o ∧ (¬∃oq∈O\N (oqF*o ∧ oqF*op)))} 
lcs(N) = { os∈O\N | ∀o∈N (oF*os ∧ (¬∃oq∈O\N (oF*oq ∧ osF*oq)))} 

For the purpose of identifying which flow going out of the least common predecessors 
and which flow coming into the least common successors, we define two functions 
lcpF(N) and lcsF(N) as the subset of outgoing flows of lcp(N) and incoming flows of 
lcs(N), respectively. These subsets only contain the flows in F that flow into or out 
from the set N. 

lcpF(N)={ ∈F | ∀op∈lcp(N), ∀os∈lcs(N), ∃o∈N, (op, o)∈F ∧ | path(op 
,   

 os) | > 0} 

lcsF(N)={ ∈F | ∀os∈lcs(N), ∀op∈lcp(N), ∃o∈N, (o, os)∈F ∧ | path(op  , 
 os) | > 0} 

From the lcs and lcp defined above, we can see that if any object does not exists in the 
normal path of the process, but other objects do, then lcs and lcp will not be found. 
For example, we can determine that lcp and lcs of a set of objects {o7, o9} in Figure 1 
are o3 and o14, respectively. Correspondingly, the set of flows according to lcp and lcs, 
i.e., lcpF and lcsF, are {(o3, o6), (o3, o5)} and {(o9, o14), (o12, o14)}, respectively. How-
ever, if we include o18 into the set, the functions lcp, lcs, lcpF, and lcsF will return an 
empty set as o18 does not exist in the normal path as same as the others. 

Figure 2 illustrates an example of complex scenario showing multiple flows of 
multiple least common predecessors and successors in a process. Assume that N={t2, 
t3}, we find lcp(N) = {g1} and lcs(N) = {g4, g5}; correspondingly, lcpF(N) = {(g1, t2), 
(g1, t3)} and lcsF(N) = {(g2, g4), (g2, g5), (g3, g4), (g3, g5)}. Similarly, if we assume 
N={t4, t5}, then lcp(N) = {g2, g3} and lcs(N) = {g6}. Therefore, we can find that 
lcpF(N) = {(g2, g4), (g2, g5), (g3, g4), (g3, g5)} and lcsF(N) = {(t4, g6), (t5, g6)}.   

 

Fig. 2. An example of lcpF and lcsF 

Definition 3 (Exception path). Given a process bp (O, T, TE, G, E, F), an exception 
path is a set of the paths leading from a catching-intermediate event e in Event-
attached task relation (e, t)∈TE to any object in the normal path or the end event of 
the process. 

Let teObject(e, t)  denote the set of objects lying on the exception path of (e, t)∈TE. 

teObject(e, t) = o |  ∃on∈ , eF*o ∧ oF*on,  if | path(e on) | > 0
o | ∃ee∈ E | event_type(E)=End , eF*o ∧ oF*ee ),  otherwise
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As shown in Figure 1, we want to find the objects on the exception path of timer 
event o17 which attached to the task o13. As we can find that lcs({o17, o1}) = {o16} in 
which it exists in both normal path from start event o1 and exception path of o17, so 
the set of objects in exception path teObject(o17, o13) = {o18, o20}. 

Definition 4 (Collaboration Process). A collaboration process is a set of private 
processes that interacts each other by interchanging messages. Let cbp denote a 
BPMN collaboration process and it is a tuple (BP, M, δ), where 

− BP = {bp1, bp2,…, bpn}, bpi∈BP(1≤i≤n)  is a process existing in cbp 
− δ: BP.O → P is a bijective function describing the object-pool relations between 

objects in private processes and pools P = {p1, p2,…, pk}, where pool pi∈P(1≤i≤k) 
is used as a container of private process. Correspondingly δ-1: P→ BP.O is an in-
verse function 

− M ⊆ .  ∪ .
∈

 × .  ∪ .
∈

, m = {(oi, oj) ∈M | δ(oi) ≠ 

δ(oj)} is a message of the interaction between source oi and target oj of tasks or 
events such that the source and the target must be on different private processes or 
pools 

We define process view as an abstract representation of its base collaboration process. 
The detailed construction process of a view will be introduced in the next section. 

3   Process View Construction 

Process views are constructed by a set of process view operations in which recent 
works on process views have summarised two primary operations: Aggregation and 
Hiding [2, 3]. Aggregation operation provides users to define a set of objects in the 
base process that has to be aggregated and replace such objects with the aggregate 
object, while hiding operation will simply hide the specified objects. In this paper we 
do not consider the hiding operation. The aggregation operation can be iterated in 
order to achieve the preferred process view. As such, this section will firstly define a 
set of consistency rules that the constructed process view and its underlying process 
must comply to maintain the structural and behaviour correctness between them.  

3.1   Preliminaries 

In this section, we define some necessary terms, definitions and functions that will be 
used in the process view construction. 

Definition 5 (Process fragment or P-fragment). Process fragment represents a par-
tial structure of a private process. Let P-fragment Pf denote a nonempty connected 
sub-graph of a process bp∈cbp.BP and it is a tuple (O', T', TE', G', E', F', Fin, Fout) 
where O'⊆O, T'⊆T, TE'⊆ TE, G'⊆G, E'⊆E, F'⊆ O' × O'⊆ F, such that, 

− ∀es∈{E | event_type(E)=Start}, ∀ee∈{E | event_type(E)=End}, es∉E' ∧ ee∉E', 
i.e., Pf cannot contain any start or end event of bp 

− ∃Fin, Fout ⊆ F, F∩((O\O') × O')= Fin ∧ F∩(O' × (O\O'))= Fout; Fin  and Fout are the 
set of entry flows and exit flows of Pf, respectively 
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− ∀oi∈O', ∃om, on ∈O', ∃ox∈O\O', ∃oy∈O\O', ∃(ox,, om)∈ Fin, ∃(on, oy)∈ Fout, oxF'*oi 
∧ oiF'*oy, i.e., for every object oi in Pf.O' there exists a path from entry flow to oi 
and from oi to exit flow 

− for every object o∈O'  there exists a path p=(es, …, fi,, …, o, …, fo, …, ee) starting 
from es to ee via fi∈Fin, o, and fo∈Fout 

Let boundary objects of Pf be a set of entry and exit objects of Pf which all objects O' 
in Pf are bounded by boundary objects, such that, 

− ∃ox∈O\O', ∃oy∈O', (ox, oy)∈Fin; ox is the entry object of Pf  
− ∃oy∈O\O', ∃ox∈O', (ox, oy)∈Fout; oy is the exit object of Pf 

Figure 3 depicts an example of various P-fragments of the process in the motivating 
example shown in Figure 1. The biggest P-fragment Pf4 has only one entry object o3 
and one exit object o16. P-fragment Pf3 has two entry objects o3 and o9, and one exit 
object o16. Similarly, Pf2 has two entry objects o3 and o5, and one exit object o14. Pf1 

has one entry object o5 but it has two exit objects o12 and o14. From the Definition 5, 
o18 and o20 are not accounted for exit objects of any P-fragment because they are not 
in the normal path. 

 

Fig. 3. P-fragments of the motivating example 

3.2   Process View Consistency Rules 

As stated before, every generated process view must preserve the structural and be-
haviour correctness when deriving its underlying process which can be the base busi-
ness process or even inherited process views. In order to preserve such properties, a 
comprehensive set of Process view consistency rules for BPMN processes are de-
fined. Since our previous work [4, 2] defines a set of consistency rules based on 
BPEL processes, we adapt and extend it as to comply with BPMN. 

Assume that v1 is a process view based on underlying collaboration process cbp, 
and v2 is a process view constructed by applying an aggregation operation on process 
view v1, then v1 and v2 must satisfy all consistency rules defined below. 

Rule 1 (Order preservation). For any two objects belonging to process views v1 and 
v2, their execution order must be consistent if such objects exists in v1 and v2, i.e.,  
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If o1, o2∈ .
∈ 1.  ∩ .

∈ 2. , such that o1Fo2 in v1, then o1Fo2 in v2 

Rule 2 (Branch preservation). For any two objects belonging to process views v1 

and v2, the branch subjection relationship of them must be consistent, i.e.,  

If o1, o2∈ .
∈ 1.  ∩ .

∈ 2. , such that ¬(o1F*o2 ∨ o2F*o1) then 

lcp({o1, o2}) in v1 = lcp({o1, o2}) in v2 and lcs({o1, o2}) in v1 = lcs({o1, o2}) in v2 

Rule 3 (Event-attached task preservation). For any event-attached task relation 
belonging to v1 and v2, an existence of all coherence objects on the exception path led 
from such attached event must be consistent, i.e.,  

If (e, t)∈ . E
∈ 1.  ∩ . E

∈ 2. , such that teObject(e, t) exists in v1, 

then teObject(e, t) exists in v2. 

Rule 4 (Message flow preservation). For any message flow exists in v1 and v2, the 
message flow relation of its source and target objects must be consistent, i.e., 

If o1, o2∈ .  ∪ .
∈ 1.  ∩ .  ∪ .

∈ 2. , such that (o1, 

o2)∈v1.M then (o1, o2) ∈ v2.M. 

3.3   Constructing an Aggregate 

In this section, we define a set of aggregation rules and introduce a formal approach 
by extending the concept of P-fragment to validate the specified set of objects in the 
process whether it is able to be aggregated.  If it is valid, then the result of aggregation 
is constructed and represented by single atomic task.  

3.3.1   Aggregation Rules 
Aggregation rules specify the requirements when constructing an aggregate. Let OA ⊆ 
O denote a set of objects in process view v1 that have to be aggregated and let agg(OA) 
return an aggregate task in process view v2 constructed from OA such that every object 
in OA exists in the normal path in v1 and the aggregate satisfies every aggregation rule. 
We also demonstrate that this proposed set of aggregation rules conforms to Process 
view consistency rules, thus the aggregation operation maintain structural and behav-
iour correctness between v1 and v2. 

Aggregation Rule 1 (Atomicity of aggregate). An aggregate behaves as an atomic 
unit of processing (task); therefore, it must preserve the execution order for every task 
and event within it, as well as between itself and the process.  

It is conceived that the structure and behaviour of every object to be aggregated the 
aggregate remain internally unchanged. However, the relation and behaviour among 
those objects in OA and the other objects O\OA that are not in the aggregate need to be 
considered such that there must exist only one in-degree and out-degree of the aggre-
gate which are the least common predecessor of OA and the least common successor 
of OA, respectively, i.e.,  

∀o∈OA in v1, lcp(agg(OA)) = lcp(OA) ∧ lcs(agg(OA)) = lcs(OA)) ∧ | in(agg(OA)) | = | 
out(agg(OA)) | = 1 
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This rule demonstrates the conformance to Process view consistency rules: (1) Or-
der preservation and (2) Branch preservation. 

Aggregation Rule 2 (Objects in exception path). If the task in event-attached task 
relation is in the aggregate then every object in its exception path must be hidden in 
the process view; thus, it is not considered to be in the aggregate, i.e., 

If there exists task t∈OA∩T' and event e∈E such that (e, t)∈TE, then every object 
o∈teObject(e, t) must be hidden. 

The concept behind this rule is that every object in the exception path is treated as 
an internal behaviour of a task having an event attached to, if the task is to be aggre-
gated then, consequently, such event is to be hidden. Figure 4 shows an example of an 
application of this rule. If a set of objects {t1, t2, t5} is to be aggregated, then the set 
{e1, e2, e3, t3, t4, t6} resulted from teObject(e1, t1) ∪ teObject(e2, t1) must be hidden. 

 

Fig. 4. Aggregating tasks with event-attached task 

This rule demonstrates the conformance to Process view consistency rules: (3) 
Event-attached task preservation. 

3.3.2   Structure Validation  
In this section we propose an approach for structure validation of a given set of ob-
jects to be aggregated, called Enclosed P-fragment. This approach mainly checks the 
atomicity of the structure according to Aggregation rule 1. If it is valid, then the ag-
gregate is able to be constructed. However, if it is not valid, we also propose the tech-
nique to find the minimum set of objects based on a given set in the next section.  

Definition 6 (Enclosed P-fragment or EP-Fragment). Let Pf (O', T', TE', G', E', F', 
Fin, Fout) define a P-fragment of a process by the Definition 5. If Pf has only one entry 
object and one exit object as its boundary, then it is enclosed, called Enclosed P-
fragment or EP-Fragment. We can claim that any EP-Fragment itself guarantees the 
atomicity of its whole structure.  

Revisiting our motivating example in Figure 3, we can see that Pf1 is not enclosed 
since there are two exit objects o12 and o14; while o18 is not accounted for exit object 
as it is on the exception path from event o17 attached to task o13. Similarly, Pf2 and Pf3 

are unenclosed. The former has two entry objects o3 and o5, and one exit object o16; 
likewise, the latter has two entry objects o3 and o9.  

From the Definition 6, multiple entries and multiple exits are allowed for defining 
EP-Fragment. This also enables the selective aggregation of branches feature as illus-
trated by Pf4 in Figure 3. The fragment Pf4 is enclosed because it has only one entry 
object o3 and one exit object o16, although there are multiple branches coming in and 
going out from its fragment. 
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In order to validate the structure of the given set of objects to be aggregated, we 
have to find whether the given set of objects is able to form an EP-Fragment. To do 
so, two auxiliary functions are required: forward walk and backward walk. 

Given any two flows in a process: fs=(ox, os)∈F as an entry flow and fe=(oe, oy)∈F 
as an exit flow, we want to find two sets of objects, denoted as ρFwd(fs, oy) and 
ρBwd(fe, ox), by walking forward along all possible paths starting from fs to oy and by 
walking backward along all possible paths from fe to ox, respectively.  

- A forward walk function ρFwd(fs, oy) returns a set of objects by walking forward 
from fs to oy as well as from fs to the end event of the process 

- A backward walk function ρBwd(fe, ox) returns a set of objects by walking back-
ward from fe to ox as well as from fe to the start event of the process. 

These two functions can be implemented by extending the depth-first search algo-
rithm so we do not detail them in this paper. Apart from them, we also require two 
functions to identify a set of objects that does not exist in forward walk but it is found 
in backward walk, and vice versa. Such functions will help us to validate the EP-
Fragment as the technique will be described later.  

Let function objOutBwd(fe, ox) return a set of objects OOB⊆O such that it does not 
exist in forward walk but exists in backward walk and each of such object’s flow 
directly links to the object which exists in both forward and backward walks, i.e., 
∀ob∈OOB,∃o∈ρFwd(fs, oy) ∩ ρBwd (fe, ox), (ob, o)∈F. Inversely, function ob-
jOutFwd(fs, oy) returns a set of objects OOF⊆O such that ∀of∈OOF,∃o∈ρFwd(fs, oy) ∩ 
ρBwd (fe, ox), (o, of)∈F. 

We can see that if ρFwd(fs, oy) = ρBwd (fe, ox), then objOutFwd(fs, oy) and  
objOutBwd(fe, ox) return ∅. This also implies that there exists only one entry flow 
to the forward walk from  fs to fe and only one exit flow from the backward walk fe 
to fs. 

From Figure 5, we want to find objects in forward and backward walks between an 
entry flow fs = (t2, g2) and an exit flow fe = (g5, t7). The result of ρFwd (fs, t7) is {g2, t3, 
t4, t5, t6, g5, g4, g6, t8} and ρBwd (fe, t2) is {g2, t3, t4, t5, t6, g5, g4, g1, t1}. Consequently, 
objOutFwd(fs, t7) returns {g6} since it exists in forward walk but does not exist in 
backward walk. Correspondingly, objOutBwd(fe, t2) returns {g1}. 

 

Fig. 5. An example of forward and backward walk in a process 

Lemma 1: Given a set of objects N⊆O in a process bp (O, T, TE, G, E, F), an EP-
Fragment Pf (O', T', TE', G', E', F', Fin, Fout) can be formed by N, if and only if,  
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− ρ  , ,    = ρ  , ,    

, i.e., the forward walks and backward walks of all combinations of lcpF and lcsF 
flows return the same result set identical to N in bp                                           (1) 

− ∀fp∈lcpF(N), ∃o∈N, fp=(ox, o), i.e., there exists only one entry object ox             (2) 
− ∀fs∈lcsF(N), ∃o∈N, fs=(o, oy), i.e., there exists only one exit object oy                (3) 

From Figure 3, assuming that N = {o8, o11, o13}, then we can find that lcp(N) = {o5} 
and lcs(N) = {o14}. Correspondingly, we will find lcpF(N) = {(o5, o8), (o5, o13)} and 
lcsF(N) = {(o12, o14), (o13, o14)}. Because lcpF returns entry flows with only one entry 
object o5 and lcsF returns exit flows with only one exit object o14, therefore N satisfies 
condition (2) and (3). After having applied both functions for every combination of 
lcpF(N)  and lcsF(N) , the result sets of ρFwd and ρBwd are {o8, o11, o12, o13} and {o8, 
o11, o12, o13, o10, o7, o4, o3, o2, o1}, respectively. As we can see that only the result 
from ρFwd is identical to N, but ρBwd is not (condition (1) is not satisfied), thus N 
cannot be formed as an EP-Fragment.  

Figure 6 shows a process with P-fragment Pf1 in the loop structure. Assume that 
N={t1, t2, t3}. Since we find that lcpF(N) = {(g1, t1)} and lcsF(N) = {(t3, g1)}, then 
conditions (2) and (3) are satisfied. However, when applying ρFwd and ρBwd func-
tions, {t1, t2, t3, g2, t4} and {t1, t2, t3, g2} are returned, respectively. The non-identical 
results from both functions prove that objects N in Pf1 can not form an EP-Fragment 
by not satisfying condition (1). In contrast and clearly, objects in Pf2 can form an EP-
Fragment. 

 

Fig. 6. P-fragments in a loop structure 

Theorem 1: A P-fragment Pf (O', T', TE', G', E', F', Fin, Fout) in a process bp (O, T, 
TE, G, E, F) can be aggregated if and only if it is enclosed.  

Proof: We prove the claim in two steps: (1) we present that the EP-Fragment can be 
aggregated and it complies with the Aggregation rules 1 and 2; (2) we show that the 
aggregate can form an EP-Fragment. 

(1) Let Pf (O', T', TE', G', E', F', Fin, Fout) be an EP-Fragment and every object O' in 
Pf is to be aggregated. Aggregation Rule 1 is naturally satisfied by EP-Fragment 
(by the Definition 6). Similarly, Aggregation Rule 2 is satisfied by P-fragment 
(by the Definition 5). 

(2) Let object agg(OA) be an aggregate represented as a single atomic task with one 
incoming flow (ox, agg(OA)) and one outgoing flow (agg(OA), oy). Let 
N={agg(OA)} and then we find lcp(N) = {ox} and lcs(N) = {oy}; therefore 
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condition (2) and (3) of Lemma 1 are satisfied. Apply forward and backward 
walk functions will return identical result { agg(OA)}, therefore condition (1) of 
Lemma 1 is satisfied. So we can conclude that agg(OA) is an EP-Fragment. 

3.3.3   Minimal Aggregate 
As aforementioned, if a given set of objects cannot be aggregated, i.e., not able to 
form an EP-Fragment by Lemma 1, we facilitate users to be able to do so, by using 
our proposed minimal aggregate function. For a given set OA, we can find the minimal 
aggregate of OA which satisfies every Aggregation rule. We define minAgg(OA) as  
the function that returns a minimal set of objects that can be aggregated, and hides 
every object on exception paths. The implementation of minAgg(OA) is illustrated in 
Algorithm 1. 

 
Algorithm 1. Finding minimal set of objects for the aggregation

minAgg: OA
 → O 

1 let Omin = {}, OF={}, OB={}, OOF = {}, OOB = {} 
2 let OFT = {}, OBT = {} 
3 let Otemp = OA 
4 do 
5      for each (fs: (ox, os), fe: (oe, oy)) ∈ lcpF(Otemp) × lcsF(Otemp) 
6           OF =  ρFwd(fs, oy) 
7           OB =  ρBwd (fe, ox) 
8           OFT = OFT ∪ (OF \ OFT) 
9           OBT = OBT ∪ (OB \ OBT) 
10           OOF = OOF ∪ (objOutBwd(fe, ox) \ O

OF) // find the adjacent exit object 
11           OOB = OOB ∪ (objOutFwd(fs, oy) \ O

OB) // find the adjacent entry object 
12      end for 
13      if (OFT = OBT) ∧ (∀fp ∈ lcpF(OFT), ∃o∈OFT, fp = (ox, o) ∧ (∀fs ∈ lcsF(OFT), ∃o∈OFT, fs 

= (o, oy)) then break //break the loop if Agg Rule1 is satisfied 
14      Otemp = Otemp ∪ OOF ∪ OOB 
15 while OFT ≠ OBT 
16 Omin = OFT  
17 for each t∈Omin ∩ T  
18      if ∃e∈E, (e, t)∈TE then 
19            //hide all objects belonging to path of event-attached task(Agg  Rule 2) 
20           for each o∈teObject(e, t)  
21                hide object o and its corresponding flows 
22           end for 
23      end if 
24 end for 
25 return Omin 

 

We explain why minAgg(OA) returns a minimal set of objects of OA. Firstly, the given 
set of objects are validated whether it can form an EP-Fragment or not by applying 
Lemma 1. If it is able to form an EP-Fragment, then it is returned which initially 
satisfies Lemma 1 without extending its boundary. However, if it cannot form an EP-
Fragment, then a set of adjacent objects resulted from objOutFwd and objOutBwd 
functions are added to the object set for each loop (lines 10-11). Since these two  
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functions return only a set of direct adjacent objects which is necessary required intui-
tively; thus the additional set is minimal then we conclude that this algorithm guaran-
tees the minimum expansion of the object set to form an EP-Fragment.  

Theorem 2: A set of objects OA⊆O in a process bp (O, T, TE, G, E, F) satisfies all 
aggregation rules if and only if OA=minAgg(OA). 

Proof: To prove this theorem, we need to construct an aggregate by minAgg(OA) that 
satisfies both Aggregation Rule 1 and Rule 2.  

Aggregation Rule 1: From the Algorithm 1 for minAgg, initially we find the lcpF and 
lcsF of OA. Then, all objects within the paths between lcpF and lcsF are found by 
ρFwd and ρBwd (lines 5-7). The while loop check if ρFwd does not return the result 
as identical to the result of ρBwd (line 4), then Pf is not enclosed (by Lemma 1, condi-
tion 1), then the adjacent objects resulted from objOutFwd and objOutBwd functions 
are added to OA (line 14). Then OA is repetitively computed for finding the lcpF and 
lcsF again finding the entry and exit flows that will be the boundary of the enlarged 
OA. ρFwd and ρBwd are used to compare the result and then OA is validated by lcpF 
and lcsF again to check whether it can form an EP-Fragment (lines 4-15). If it con-
cludes that such new result set of both ρFwd and ρBwd are identical, and lcpF returns 
flows with one entry object and lcsF returns flows with one exit object (line 13), then 
OA can form an EP-Fragment (by Lemma 1). This concludes that the result aggregate 
satisfies Aggregation Rule 1.  

Aggregation Rule 2: For each object in the result aggregate set that satisfies Aggre-
gation Rule 1, if there exists event e attached to task t in OA, then such event and 
every object o∈teObject(e, t) is not included into the aggregate and it is also hidden 
(lines 17-22). Thus, it satisfies Aggregation Rule 2.  

If a given set OA initially satisfies every condition in Lemma 1 (line 13) and every 
object in the exception path of every event that attached to task in OA, then the result 
set will return the same as an original given set. Therefore, this concludes that 
OA=minAgg(OA). In contrast, if the OA is not able to satisfy Lemma 1, then the result 
set will be expanded; hence  | minAgg(OA) | > | OA |. Thus, this concludes that OA is 
not able to be aggregated.                                                                                               

3.3.4   Effect to Message Flows of an Aggregate 

The aggregation has to preserve the consistency of message flow interactions among 
the process and its participants in the collaboration process. For every incoming and 
outgoing message flow of the object that have to be aggregated, it also remains for the 
aggregate, such that,  

− ∀mx∈v1.M, ∃oj∈OA, ∃ok∈ .
∈ 1. \OA, mx=(oj, ok) → (tagg, ok)∈v2.M 

− ∀my∈v1.M, ∃om∈ .
∈ 1. \OA, ∃on∈OA, my=(om, on) → (om, tagg)∈v2.M 

Figure 7 illustrates an example of object aggregation with message flows. All incom-
ing and outgoing messages (a) are rearranged to the aggregate task (b). 

This conditional effect of the aggregation satisfies Process view consistency rules: 
(4) Message flow preservation.   
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Fig. 7. Aggregation with messages 

By considering the Aggregation Rules (1 and 2) and the conditional effect of mes-
sage flows, we therefore can see that the aggregate task resulted from our aggregation 
approach satisfies to all Process view consistency rules. 

3.4   Prototype 

The prototype implementation, named FlexView, is currently being developed to 
support process view construction for BPMN process based on the approach proposed 
in this paper. The system initially loads the base BPMN file, and then allows users to 
specify which elements in the process will be aggregated. When the operation is com-
pleted, the process view is generated as an output of the system. Figure 8 shows the 
main screen of the system and an example of process view constructed from the base 
BPMN process displayed on the BizAgi Process Modeller [17]. Due to limited space, 
we do not show much detail in the prototype here.  

 
Fig. 8. FlexView engine (left) and result process view 

4   Related Work and Discussion 

Zhao, Liu, Sadiq, and Kowalkiewicz [4] proposed the process view approach based 
on the perspective of role-based perception control. A set of rules on consistency and 
validity between the constructed process views and their underlying process view is 
defined. Compared with our work, they neither provide how each process view is 
constructed nor consider non-well-structured processes.  

Liu and Shen [6] presented an algorithm to construct a process view with an order-
ing-preserved approach from a given set of conceptual-level activities in a base proc-
ess. In their approach, the aggregate activities called virtual activities requires to  
conform membership rule, atomicity rule, and order preservation rule. Compare with 
our work, they only focus on basic activity aggregation while they do not consider   
non-well-structured processes and the relation setting of activity in a collaborative 
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process such as messages and event attachments (exception). We extend their work to 
allow such relations. 

Van der Aalst, Dumas et al [16] proposed the framework for staged correctness-
preserving configuring reference process models regarding the correctness of syntax 
and behavioural semantic captured by propositional logic formula. The proposed 
framework is based on WF-net and a set of transition variants used for the configura-
tion: allowed, hidden, and blocked. Compare with our work, they do not provide an 
aggregation approach to construct the abstracted process model. 

Bobrik, Reichert et al [18] presented a visualization approach to tackle inflexibility 
of building and visualizing personalized views of managed processes. They intro-
duced two basic view operations: reducing and aggregating, and properties of process 
views. Graph reduction and graph aggregation techniques (by defining SESE region) 
are used for such operations. This work has some similarities compared with our P-
fragment; however, the EP-Fragment allows multiple entries and exits to be applica-
ble for selective aggregation of branches. In addition, their work focuses on process 
visualizing thus relaxing the preservation of structural and behaviour consistencies 
between base process and its resulted view, while our work is based on the compre-
hensive set of consistency rules. Their work also does not consider other aspects of 
BPMN properties, such as exception, but ours does.  

Grefen and Eshuis [3] proposed a formal approach to construct a customized process 
view on a business process. The approach consists of two main phases: a process pro-
vider constructs a process view that hides private internal details of the underlying busi-
ness process, and second phase let a consumer constructs a customized process view 
tailored to its needs to filter out unwanted process information. However, their approach 
focuses on block-structured process model represented by hierarchy tree model only and 
it does not take a graph structure into account. While it is too restrictive and unlikely to 
see those well-structured process in BPMN process, the approach presented in this paper 
adapted and extended from their work and our previous work [2] by considering non-
well-structured process and event attachments features of BPMN. 

Vanhatalo, Volzer, and Koehler [14] proposed a technique for decomposing work-
flow graphs into a modular and fine fragment by finding Canonical Fragments, and 
generate the Refine Process Structure Tree. In short, we aim at proposing an aggre-
gate approach that satisfies aggregation rules specifically for BPMN process, while 
they only focus on finding the finest fragment of graphs. 

5   Conclusion and Future Work 

This paper presented a novel approach for constructing an aggregate for BPMN proc-
ess views. The main contribution of this approach is that the core subset of current 
BPMN standard is taken into account in order to define a comprehensive set of con-
struction rules and consistency rules. Since BPMN is likely to allow processes to be 
non-well-structured unlike some other standards such as BPEL which are strictly 
well-structured (block-structure), it is necessary to validate its structure using the EP-
Fragment validation technique proposed in this paper. Our future work is to support 
process views for choreography processes in the BPMN 2.0. 

Acknowledgement. The research work reported in this paper is supported by Austra-
lian Research Council and SAP Research under Linkage Grant LP0669660. 
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Abstract. The aim of duplicate detection is to group records in a relation which
refer to the same entity in the real world such as a person or business. Most exist-
ing works require user specified parameters such as similarity threshold in order
to conduct duplicate detection. These methods are called user-first in this paper.
However, in many scenarios, pre-specification from the user is very hard and of-
ten unreliable, thus limiting applicability of user-first methods. In this paper, we
propose a user-last method, called Active Duplicate Detection (ADD), where an
initial solution is returned without forcing user to specify such parameters and
then user is involved to refine the initial solution. Different from user-first meth-
ods where user makes decision before any processing, ADD allows user to make
decision based on an initial solution. The identified initial solution in ADD en-
joys comparatively high quality and is easy to be refined in a systematic way (at
almost zero cost).

1 Introduction

The problem of data quality deservedly attracts significant attention from industry and
research communities. An obvious reason is that the value of information fundamen-
tally relies on the quality of the data from which it is derived. One widely studied
data quality problem is duplicate detection which identifies the records not identical in
representation but referring to the same real world entity. Duplicate data extensively
exist in various information systems and impose evident impact in our daily life. In the
database community, this problem has been studied for decades and described as merge-
purge [1,2], data deduplication [3], instance identification [4] and entity resolution [5];
the same task has also been known as record linkage or record matching [6,7,8,9] in
statistics community.

Given a set of records where their pairwise similarities are known, duplicate detec-
tion aims to identify duplicates and groups them together. We say a group is correct
if it contains only and all records referring to the same entity. Previous works parti-
tion records into groups where the highly similar records are in the same group. Such
approaches require a global similarity threshold to decide whether records should be
grouped together. The records that are grouped together are regarded as duplicated
records [2,10,11,12]. However, these approaches usually lead to results with poor re-
call and precision [13]. [13] indicates that the local structural properties are very im-
portant consideration in duplicate detection. [13] proposes two criteria to capture the

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 565–579, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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local structural properties. The idea is that duplicate records should be close to each
other and each duplicate record should have sparse neighbors, i.e. limited neighbors in
proximity. The neighbor limit in proximity can be viewed as a relative global threshold
because it is applied to entire dataset but the size of the proximity area is respective to
each record (i.e. decided by the distance from the record to its nearest neighbor). The
method proposed in [13] is called DE (i.e. duplicate elimination) in the rest of this
paper.

Regardless of which of the existing methods we use, a common limitation is that
users need to estimate the relative/absolute global threshold in advance. Unfortunately,
without understanding the distribution of the data clearly, it is very unlikely to achieve
a good estimation. We call these methods user-first.

Unlike the existing work, this work does not require user to specify such thresh-
olds for duplicate detection. Specifically, we propose a solution called Active Dupli-
cate Detection (ADD). ADD is based on a new concept of duplicate principle. With
the duplicate principle, the aggregation characteristics of the duplicate records can be
quantitatively evaluated without setting parameters. It follows the observation that the
duplicate records tend to be closer to each other and far from others in proximity. For
example, if a record is close to a group, we have less confidence on the correctness of
this group no matter how far away other records are because this record may belong
to this group but was missed. In DE, the similar principle is implied by the two crite-
rion as discussed above. However, DE is different from our method. The criterion are
qualitative because it cannot distinguish which one is more likely to be correct if two
groups both satisfy the criterion. In contrast, our method is based on quantitative mea-
sures of duplicate principle over groups. For a group, it equals to the rate by comparing
the group diameter (i.e. the maximum similarity between records in this group) and the
distances from this group to other records. With support of the quantitative measures,
ADD first finds an initial solution without forcing user to specify parameters, and then
user is involved to refine the initial solution. We say that ADD is user-last.

In the user-first methods, the final solution is shaped by the user specified parame-
ters which are assumed to be globally applied. But this assumption is not true in many
scenarios. The flexible nature of this problem indicates that correct groups usually have
very different parameter settings. While it is hard for user-first methods to handle this
situation, the robustness can be provided by user-last ADD. The initial solution of
ADD is only based on the quantitative measures over the duplicate principle and no
parameter is required. This prevents applying improper parameter settings and falsely
pruning some correct groups. We argue that it is favorable for user to judge the correct-
ness of groups in the initial solution returned by ADD compared to setting parameters
as in the user-first methods.

ADD follows the observation that the duplicate records tend to be closer to each other
and far from others in proximity. ADD is different from the typical clustering problem.
The goal of clustering is to separate a dataset into discrete subsets by considering the
internal homogeneity and the external separation. Once a similarity measure is cho-
sen, the construction of a clustering criterion function usually makes the partition of
clusters a global optimization problem. In our problem, we don’t have global optimiza-
tion objective, and we are interested to find the individual optimal groups, i.e. the most
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isolated. Note that ADD is orthogonal with the similarity measure between records1.
That is, any distance function can be chosen, such as edit distance or cosine similarity.

In [13], in addition to the relative global threshold, there are two more optional
parameters, i.e. a solution can be provided without setting of these parameters. One is
the maximum number k of records in a correct group and the other is the maximum
similarity distance θ between records in a correct group. If user has knowledge on k
and θ, the solution can be improved noticeably. In ADD, the settings of k and θ are
optional as well. If user has the ability to specify k and θ, ADD generally provides the
initial solution with better quality; otherwise, the initial solution needs more refinement.
Fortunately, ADD has the mechanism to easily perform refinement. Without the loss of
generality, we suppose the k and θ can be specified by user in this work since the effect
of no settings of k and θ can be achieved by simply setting k and θ large enough values.
ADD is denoted as ADD(k, θ) when k and θ are specified.

The remainder of this paper is organized as follows. The work related to this prob-
lem is reviewed in section 2 and the duplicate principle is discussed in section 3. After
that, we introduce the active duplicate detection in section 4 where the duplicate detec-
tion tree and the algorithm for search initial solution are introduced. The experimental
results are reported in section 5 and the paper is concluded in section 6.

2 Related Work

Duplicate detection has practical significance in data management in particular in large
scale information systems. This problem has received a lot of attention from research
communities, see [14] for a comprehensive survey. Previous duplicate detection tech-
niques can be classified into supervised and unsupervised approaches [15]. Supervised
approaches learn rules from training data which contains known duplicates with various
errors observed in practice [12,11]. However, these approaches depend on the training
data which is not always available or comprehensive enough even with some active
learning approaches [3,16].

The unsupervised methods detect duplicates by applying distance functions to mea-
sure the similarity between records. Various similarity functions have been proposed
in literature such as edit distance and cosine similarity. In addition, some efforts have
been put on learning similarity functions from training datasets [12,11]. The adaptive
string similarity metrics is proposed by [11] for different database and application do-
mains in order to improve the accuracy of the similarity measure. [12] develops a gen-
eral framework of similarity matching by learning from the training dataset consisting
of errors and respective solutions. Based on the pairwise similarities, previous dupli-
cate detection techniques apply clustering algorithms to partition records into groups
of duplicates based on the pairwise similarity. The highly similar records are in the
same group. The single linkage clustering [17] is a widely accepted choice to parti-
tion records into groups. Using this method, the dissimilarity between two groups is
the minimum dissimilarity between members of the two groups. It works well when
the groups of duplicates are very small (of size 2 or 3) [13,18]. If more records belong

1 If two records are similar, they have high similarity, and the distance (or similarity distance)
between them is small.
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to the same entity, the groups using single linkage may produce a long chain. That is,
two records in the same group may be very dissimilar compared to some records in
two different groups. Using clustering techniques, duplicate detection requires an abso-
lute global threshold to decide whether two records are duplicates [2,10]. However, the
global distance threshold leads to a solution with poor recall and precision [13].

To overcome this drawback, [13] points out that local structural properties are very
important in duplicate detection. The insight is that if several records are duplicates
they should be similar to each other and each duplicate has limited number of neigh-
bors around. This observation is captured by two criteria, i.e. compact set and sparse
neighborhood. The compact set means that any records in the group are closer to each
other than to any other record, and the sparse neighborhood means that the neighbors of
each record in the group are less than a specified number in proximity. These criteria are
qualitative since two groups satisfying them are no different. If a group has more than
two subgroups and they all meet the requirement of the criteria, it is hard to distinguish
which one is more likely to be correct. Thus, the subgroups are always returned in the
final solution in [13]. While the compact set criterion is straightforward, the number
of neighbors allowed in proximity in sparse neighborhood criterion is a user specified
relative global threshold since the number of neighbor applies to all groups but the def-
inition of proximity is determined by each record and its nearest neighbor. User needs
to estimate the percentage of duplicates and understand the distribution of the dataset.

3 Duplicate Principle

Given a set of records R where no two records in R are identical, duplication detection
is to identify all of the records in R that refer to the same entity. In other words, we are
trying to group the records in R such that each group maps to one and only one real
world entity and no two groups refer to the same entity. Based on the properties of each
group, we can define two concepts, namely, correctness and incorrectness:

Definition 1: Correctness and Incorrectness. Given a group g, we say that its group-
ing is correct if it contains all records referring to the same entity; otherwise, if it con-
tains some records from other entities or does not contain all records from the same
entity, we say that its grouping is incorrect. �

According to Definition 1, we have the following definition called Confidence on
Grouping:

Definition 2: Confidence on Grouping. Given a group g, if g is more likely to be cor-
rect, we say that we have more confidence on its grouping. �

It is intuitive that the duplicated records usually share more common information and
thus are more similar to each other. Let us take an example to illustrate the idea of con-
fidence on the grouping. Suppose there is a group g which is formulated by grouping
two records: ri ∈ R and rj ∈ R. If there are many records around g such that the dis-
tance from any point to ri is even shorter than the distance between ri and rj , then it is
obviously not intuitive to group ri and rj together. Hence, the confidence of grouping is
very low in this situation. As such, the confidence on grouping is related to the distance
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Fig. 1. A schematic example of duplicate principle measure

of the points around a group. This observation is similar to the criteria of compact set
and sparse neighborhood in [13]. But we further indicate that the closer point to a group
will have a higher impact on our confidence than the farther one to the same group. This
point enables us to quantitatively measure the confidence of grouping by considering
an increasingly wider proximity so as to avoid the parameter settings as in [13]. We
formally define a concept called Duplicate Principle:

Definition 3: Duplicate Principle (DP). Given a set of records R and a group g ⊂ R,
our confidence that the records in g are more likely to refer to the same entity is decided
by three factors: 1) the records in g tend to be closer to each other, and 2) the other
records tend to be farther to g, and 3) the record (not in g) closer to g will have a higher
impact to our confidence than the record (not in g) farther to g. �

For two record pairs (rk, rf ) and (ri, rj), suppose they have the same similarity dis-
tance. (ri, rj) is surrounded closely by many other records while (rk, rf ) is isolated.
Intuitively, (rk, rj) is more likely to form a correct group than (ri, rj). In other words,
(rk, rf ) has some common textual characteristics which are rarer in other records com-
paring to (ri, rj).

The duplicate principle of a group can be quantitatively appraised to demonstrate
how likely this group is correct. For a group g{r1, .., rn} ⊂ R, let max∀ri,rj∈g

(dist(ri, rj)) be the diameter of g, denoted as diam(g). The diameter is the maximum
similarity distance among records in g which describes the tightness in g. For any record
r ∈ R − g, the similarity distance to g is defined as min∀ri∈gdist(ri, r), r ∈ R − g,
the distance to the most similar records in g, denoted as dist(g, r). The greater the
dist(g, r) is, the greater the reverse effect of r will be on confidence of g’s correctness.
According to the duplicate principle, records in g are more likely to be duplicates if
diam(g) is smaller and dist(g, r) is greater. The ratio between diam(g) and dist(g, r)
is used to measure the duplicate principle of g, denoted as g.DP , when a single record
r ∈ R − g is considered.
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g.DP =
diam(g)
dist(g, r)

. (1)

The smaller DP means that we have more confidence on the correctness of g and the
greater DP means that g is more likely to be incorrect. Two situations may cause g
to be incorrect. First, g may contain records referring to some others entities, and the
second situation is that some other records should be included in g but are not. In any
of these two situations, g is not a correct group. Figure 1 shows a schematic example
where h, i, e, f form a group g. The diameter of g is the similarity distance between
e and i. For the record c, its distance to g is dist(g, c). We want to point out that the
proposed method does not use any spatial techniques and thus it is applicable to various
similarity distances functions including edit distance and cosine similarity.

In formula 1, only the reverse effect of a single record r ∈ R− g is considered in the
DP measure of g. If there are more records in R−g, a simple method is to aggregate the
reverse effects of all records in R−g together, i.e. g.DP = diam(g)

∑
∀r∈R−g

1
dist(g,r) .

To some extent, this simple aggregation reveals the overall reverse effect of all records
in R−g to our confidence to the correctness of the group g. But the reverse effect is not
gradient descent along with the distance away from g as pointed out in the definition
of duplicate principle. Consider r ∈ R − g is very close to g, it is a strong implication
that g is less likely to be correct no matter whether or not all other records are far away
from g. That is, r in closer region of g has dominant reverse effect to our confidence of
g’s correctness.

Thus, the reverse effects of records in R−g should be considered at different distance
ranges. A distance range is represented as [lowbound, upperbound]. To g, objects with
similarity distance falling in [lowbound, upperbound] are in the same distance range.
In different distance ranges, the objects are processed separately. An example of dis-
tance range is shown in figure 2. In this work, distance ranges are consecutive and
equal in length. For each group, the unit length of the distance range is different and the
group diameter is a natural choice since the reverse effects are relative to the tightness
of g. For example, for a group g with a small diameter, a record R−g has strong reverse
effect if its distance to g is less than the diameter of g. In this situation, g is very likely to
be incorrect. Given a group g, the first distance range is [0, diam(g)) (no less than 0 and
less than diam(g)) and the second distance range is [diam(g), 2∗diam(g)), and so on.
If a record r ∈ R− g has dist(g, r) in between [i ∗ diam(g), (i+1) ∗ diam(g)), i ≥ 0,
we say r is in the ith distance range.

For the records in the same range, their reverse effects are similar and simply aggre-
gated as the reverse effect of this distance range, denoted as g.dpi. The following is the
formula for calculating g.dpi.

g.dpi =
diam(g)
dist(g, r)

, i = 0, 1, 2.., for ∀r ∈ R − g and

i ∗ diam(g) ≤ dist(g, r) < (i + 1) ∗ diam(g) (2)

Usually, g.dp0 is computed first since it has the most dominant effect to our con-
fidence to g’s correctness; if necessary, the dp in next range is computed. When a
set of dp, (g.dp0, g.dp1, ..) are computed, we say the DP measure of g, g.DP , is



Active Duplicate Detection 571

(g.dp0, g.dp1, ..). For each given (g.dp0, g.dp1, ..), it has practical meaning. For ex-
ample, (g.dp0 = 0, g.dp1 = 0, g.dp2 �= 0..) indicates that no record has distance to g
less than 2 ∗ diam(g).

Given two groups g, g′, their DP measures can be compared to evaluate which one is
more likely to be correct. We first discuss the situation that dp0 = 0. So, the comparison
of DP measures starts from dp1. If g.dp1 < g′.dp1, g is more likely to be correct than
g′ no matter the dp in next range, and we say g dominates g′. If g.dp1 = g′.dp1, g.dp2
and g′.dp2 needs to be computed and compared. This operation is repeated until the
first range where their dps are different is identified. In practise, the number of ranges
are usually very small to distinguish two groups (1-2 ranges). The relationship between
two groups based on the DP at different ranges can be defined as follows.

Definition 4: Domination. One group g dominates another group g′ if g.dpi < g′.dpi

and g.dpj = g′.dpj , (i = 0, 1, 2.., j = 0, 1, 2, .., 1 ≤ j < i). This relation is denoted as
g � g′ or g.DP � g′.DP . �
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Fig. 2. A schematic example of domination relationship between groups

We just discussed the situation that g.dp0 = 0. In the situation that g.dp0 �= 0, it
means some record(s) in g are closer to some other record(s) not in g than to some
record(s) in g. This is a strong indication that g is less likely to be correct. Thus, a
group likely to be correct must have dp0 = 0. This requirement is same as the concept
of compact set [13] introduced in section 2. Figure 2 shows the domination relation-
ship between two groups g, g′ based on g.DP, g′.DP . Since g.dp0 = g′.dp0 = 0, we
compare g.dp1 and d.dp1. Since g.dp1 = g.dp1 = 0, g.dp2 = 0 and g′.dp2 = 0.35 are
compared. Since g.dp2 < g′.dp2, g � g′, i.e. we have more confidence on g’s correct-
ness than g′. Based on the domination relationship between records, the active duplicate
detection method is developed.

4 Active Duplicate Detection

Given a set R of records, the active duplicate detection identifies an initial solution
of record groupings without any user specified parameter settings. The objective is to
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return disjoint groups in the ascending order of DP measure. The task can be fulfilled
in concept as follows. The group g with the most dominant DP measure is found first. If
g also satisfies the additional conditions, i.e. g.dp1 = 0, |g| < k and diam(g) < θ, g is
inserted into an initial solution and the included records are removed from R; otherwise,
this group is not dropped and the included records remain in R. As aforementioned, k, θ
are two global constraints. k is the maximum number of records allowed in a correct
group and θ is the maximum similarity distance allowed for records in a correct group.
Both k, θ are optional settings provided by user. Then in remaining records in R, the
group g′ with the most dominant DP measure is found. If the additional conditions are
satisfied, g′ is insert into the initial solution; otherwise it is dropped. A similar operation
is repeated until all qualified groups have been inserted in the initial solution. The cost
to do that is prohibitively high due to the combinatorial nature of this problem (NP
problem). To reduce the search space, we introduce the duplicate principle tree.

4.1 Duplicate Principle Tree

The duplicate principle tree (DP -tree) for R is a bottom-up process. Initially, each
record is in a single group. Each time we find the pair which can form a new group
with the most dominant DP measure. That is, we have the strongest confidence that
the newly formed group is correct compared to the group formed by merging any other
pairs. Let (ri, rj) be such a pair. The new group formed is {ri, rj}. The following
construction of DP -tree is based on the observation that ri, rj should be in the same
group. In other words, they cannot be split into two different groups. To prove that,
we assume that ri, rj are split into two groups ri ∈ gi, rj ∈ gj in some stage of the
DP -tree construction. The group {ri, r} (r ∈ gi) must be dominated by {ri, rj} since
{ri, rj} has the most dominant DP . This is same for rj and other records in gj . This
means that ri, rj are more likely to be duplicate than distinct. It is not reasonable to
split ri, rj into two groups. This observation can be recursively extended to each group
that consists of more than two records. In this work, we call the situation that ri and rj

will stay in the same group once they are merged unbreakable group rule.

Unbreakable Group Rule. Among current groups G = {g1, .., gn}, if a group formed
by pair of groups gi, gj ∈ G dominates any group formed by any other pair of groups
in G, gi, gj are merged to create a new group {gi, gj} = gi ∪ gj . In the following
construction of DP -tree, this new group may merge with other group to form a super
group. {gi, gj} is termed unbreakable, that is, gi, gj are always in the same group from
now on. �

Following the unbreakable group rule, the groups are merged repeatedly until all records
in R are in a single group. The duplicate principle tree is constructed. An example is
shown in Figure 4.

In DP -tree, a non-leaf node contains a group formed by merging its two child nodes,
and the DP measure is attached. When two groups are merged, the group diameter
tends to increase. Note that the records around the resultant group can be close or far
away. Thus, the DP measure of the resultant group may increase or decrease. That is,
DP does not change monotonically along the path from leaf nodes up to the root in the
tree. For this reason, all groups need to be generated in order to find the most dominant
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groups, i.e. satisfying the duplicate principle the most. The groups at leaf nodes are
individual records. The diameter of each such group is 0 and thus dp = 0 at all ranges.
The group at root contains all records, dp = 0 at all ranges as well. Since the root and
leaf nodes should be excluded from the solution, their dp0s are set to be ∞.

Figure 3 is the pseudo-code to construct the DP -tree. When a new group is gen-
erated, some operations are performed (line 11-23). From line 11-17, DP of the new
group is computed. The DP is compared with the DP s of the groups in its child nodes.
The most dominant DP , denoted as minDP , is tagged with the new group. It is also
marked whether this new group itself has the most dominant DP using a sign flag.
This is necessary since DP does not change monotonically along the path from leaf
node to the root in tree. When browsing the tree, if a node with flag = 1, it means
that DP of this node dominates that of its child nodes. By doing that, unnecessary tree
access can be avoided. In line 18-21, the parent-child relationship is set up by assigning
pointers to relevant nodes.

Figure 4 is the duplicate tree of the same example in figure 1. The records which
are close to each other and isolated from other records in proximity have dominant DP

Algorithm DP -tree(R)
Input: R a set of records {r1, .., r|R|}
Output: DP -tree of R
1. Output = ∅, T ree = ∅; //initialize group sets
2. for each ri ∈ R
3. gi = {ti}; gi.flag = 1;
4. gi.diamter = 0; gi.DP =∞;
5. g1, , g|R| are leaf nodes of Tree;
6. c = 1;
7. while |R| > 0
8. compute DP for all pairs in G;
9. if {gi, gj}.DP dominates DP of all other pairs
10. create a new group g|T |+c = {gi, gj};
11. g|T |+c.DP = {gi, gj}.DP ;
12. g|T |+c.flag = 0;
13. remove gi, gj from G, record g|T |+c in Tree;
14. g|T |+c.minDP = min(gi.minDP, gj .minDP );
15. if g|T |+c.DP ! min(gi.minDP, gj .minDP )
16. g|T |+c.flag = 1;
17. g|T |+c.minDP = g|T |+c.DP ;
18. gi.parent = gj .parent = g|T |+c;
19. g|T |+c.leftChild = gi;
20. g|T |+c.righChild = gj ;
21. c=c+1;
22. end while
23. return Tree;
END DP -tree

Fig. 3. Pseudo-code for DP -tree construction
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Fig. 4. An example of duplicate tree

measure such as a, b. So, a, b are selected and merged to form a new group {a, b}. Ac-
cording to the Unbreakable Group Rule, they are not separated in subsequent grouping
operations. Compared to group {a, b}, the distance of c, d is greater and many other
records are close. So, the DP of {c, d} is clearly dominated by a, b. For the group
{e, f} and {i, h}, their DP s are (0, 1) and (0, 1.8). When {e, f}, {i, h} are merged
to be a single group {e, f, i, h}, the DP decreases even though the diameter increases
compared to {e, f}, {i, h}. The reason is that {e, f, i, h} is farther away from other
records. The DP -tree will then be searched to find the initial solution of ADD.

4.2 Initial Solution and Refinement

Active duplicate detection ADD(k, θ) first aims to identify an initial solution which
can be formally defined as follows:

Initial Solution: given a set R of records, k and θ, ADD(k, θ) retrieves a set G of dis-
joint groups from the DP -tree of R. Each group g ∈ G meets three conditions: 1) g.DP
dominates the DP measure of any other groups in DP -tree but not in G, and 2) g.dp0 =
0, and 3) |g| < k, diam(g) < θ. �
The initial solution is obtained by browsing DP -tree. The search starts from the root.
All child nodes are read in a heap H . The node in the heap with the most dominant DP
measure is visited and replaced in H by its child nodes. Each time when a node n is
visited, we examine whether its DP measure is less than that of all its child nodes in the
subtree under n (not only direct child nodes), n is picked up and checked for condition
2 and 3 which are straightforward. Once all conditions are met, this node is inserted
into G and its subtree will be pruned. If the conditions are not met, the child nodes are
replaced in H . When a leaf node is visited, it is dropped. The search terminates until all
nodes in the tree are processed or pruned.

The pseudo code for searching initial solution of ADD(k, θ) is presented in Fig-
ure 5. ADD(k, θ) invokes function SEARCH to recursively visit the nodes in the DP -
tree which is constructed by using algorithm DP-TREE. In the tree, a node is marked
g.f lag = 1 if its DP dominates its child nodes’s DP s. ADD(k, θ) returns a set of
disjoint groups satisfying the conditions of initial solution.
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Algorithm ADD(R, k, θ)
Input: R a set of records {r1, .., r|R|}
Output: the initial solution
1. Tree=DP -tree(R);
2. cnode=Tree.root;
3. output = ∅;
4. SEARCH(cnode, output, k, θ);
5. return output;
END ADD

Algorithm SEARCH(node,S, k, θ)
Input: θ-diameter threshold, k-group size threshold
Output: S, initial solution
6. g = node.g; //group in this node
7. if node.flag = 1 and diam(g) < θ and |g| < k
8. insert g into output;
9. return;
10. SEARCH(node.leftChild, InitialS, k, θ);
11. SEARCH(node.rightChild, InitialS, k, θ);
END SEARCH

Fig. 5. Pseudo-code for finding the initial solution

Refinement: once the initial solution is returned, the groups in G can be sorted on the
dominance relationship of DP measures. The groups with the dominant DP measures
are more likely to be correct compared to others. A threshold τ of DP measure can
be specified to divide G into two subsets G1, G2. If g ∈ G1, g.DP ≺ τ and g.DP �
τ if g ∈ G2. The groups in G1 have the most dominant DP measure and thus we
have strong confidence of their correctness. So, the groups in G can be returned to the
final solution directly. The high precision of G1 is expected (precision measures the
percentage of correct groups in the returned solution). The groups in G2 need to be
examined and refined by user. For a group g ∈ G2, if user suspects the correctness
of g, an exploratory solution can be provided according to which of the two situations
(discussed in section 3) are potentially causing the incorrectness of g. If user suspects
that g contains records referring to different entities, the subtree under g can be searched
to find subgroups in the way as finding initial solution from the tree. If user suspects
that g should contain more records, its parent group will be provided. In this case, k and
θ are ignored as these global settings can be a reason behind the potentially incorrect
group.

5 Experiments

The experimental study covers two aspects of the problem, quality (i.e. precision and re-
call) and efficiency. In the quality aspect, we compare the solutions using our approach
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and that using DE developed in [13]. Even though active duplicate detection (ADD)
allows user to explore potentially better solution, we still use the initial solution in the
comparison for fairness. The impact of reference set to the quality of initial solution is
also studied. In the efficiency aspect, several large datasets are tested using ADD in
terms of scalability.

5.1 Experiment Setup and Evaluation Metrics

The experiments are conducted using a PC (Intel Core2 6600 CPU 2.4GHz, 2GB
memory). We consider the real datasets publicly available from the Riddle reposi-
tory: Restaurants, BirdScott, Parks, Census. These four datasets are also used in
the experiment in [13]. Restaurant is a database containing 864 restaurant records
that contain 112 duplicates (i.e. 112 entities have duplicates). Each record is com-
posed of four fields: Name, Address, City and Cuisine. Based on Restaurant,
we create two datasets Short Restaurants (Restaurants[Name]) and Long Restau-
rants(Restaurants[Name, Address, City, Cuisine]) in order to test the effect of
record length to the solution. BirdScott is a collection of 719 bird records that contain
155 duplicates. Parks contains 254 duplicates in 654 records. Census is a collection
of 833 records that contain 333 duplicates. In each dataset, the similarity between two
records are measured using the normalized edit distance (divided by the length of the
longer record).

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

(A)BirdScott

DES:c=2
DES:c=6

DES:c=10
DES:c=20
DES:c=50

ADDD(DP=00X)
ADDD

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

(B)BirdScott

DED:c=2
DED:c=6

DED:c=10
DED:c=20
DED:c=50

ADDD(DP=00X)
ADDD

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

(C)Parks

DES:c=2
DES:c=6

DES:c=10
DES:c=20
DES:c=50

ADDD(DP=00X)
ADDD

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

(D)Parks

DED:c=2
DED:c=6

DED:c=10
DED:c=20
DED:c=50

ADDD(DP=00X)
ADDD

 0

 0.2

 0.4

 0.6

 0.8

 0.6  0.8  1

(E)Short Restaurant

DES:c=2
DES:c=6

DES:c=10
DES:c=20
DES:c=50

ADDD(DP=00X)
ADDD

 0

 0.2

 0.4

 0.6

 0.8

 0.6  0.8  1

(F)Short Restaurant

DED:c=2
DED:c=6

DED:c=10
DED:c=20
DED:c=50

ADDD(DP=00X)
ADDD

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6

(G)Long Restaurant

DES:c=2
DES:c=6

DES:c=10
DES:c=20
DES:c=50

ADDD(DP=00X)
ADDD

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6

(H)Long Restaurant

DED:c=2
DED:c=6

DED:c=10
DED:c=20
DED:c=50

ADDD(DP=00X)
ADDD

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

(I)Census

DES:c=2
DES:c=6

DES:c=10
DES:c=20
DES:c=50

ADDD(DP=00X)
ADDD

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

(J)Census

DED:c=2
DED:c=6

DED:c=10
DED:c=20
DED:c=50

ADDD(DP=00X)
ADDD

Fig. 6. Experiments results on precision (vertical axis) vs. recall (horizontal axis)



Active Duplicate Detection 577

The precision and recall metrics are used to evaluate the quality. In our experi-
ments, precision measures the percentage of correct groups in the returned solution and
recall is the percentage of correct groups returned from all correct groups. Higher re-
call and precision values indicate better quality. We use precision vs. recall graph to
show the experiment results where the (recall, precision) values for various parameter
settings are demonstrated.

For DE, the minimum compact set is always selected since it is required in the-
ory by [13]. That is, if one group satisfying the criteria (i.e. compact set and sparse
neighborhood) has more than two disjoint subgroups satisfying the criteria as well, the
subgroups are selected in the final solution. However, when conducting experiments
in [13], the minimum compact set is not strictly required in the final solution. The rea-
son as explained by [13] is that the non minimum compact set is rare and so it is not
necessary to check it. In our experiment, we strictly require that the groups in the final
solution of DE are minimum compact sets to make the experiment fair. For the param-
eter c of sparse neighborhood criterion, we use the same settings as that used in [13]
(c = 6) for the same datasets Restaurants, BirdScott, Parks and Census. We also
test the situation when c is set at [2, 6, 10, 20, 50] in order to examine the impact of c
to the precision and recall of the final solution using DE. For the proximity associated
with c, we use the same definition as that in [13], i.e. the double of the distance from
each record to its nearest neighbor.

For ADD, the initial solution is returned first. A fraction of initial solution with the
best duplicate principle measure can be reported directly due to high confidence. We
tested the accuracy and recall of this fraction by setting the DP measure as (dp0 =
0, dp1 = 0, dp2 �= 0) in the experiments, denoted by DP = 00x. Any group with the
DP dominating DP = 00x is in the first fraction of the initial solution. The meaning
of (dp0 = 0, dp1 = 0, dp2 �= 0) is that no record has distance to the group less than the
double of the group diameter.

Two optional parameters tested are k, θ where k is the size of a correct group (the
maximum number of records) and θ is the diameter of a correct group (the maximum
similarity distance of records). As discussed in section 1, they are optional parameters
specified by user to indicate the condition of a correct group. To demonstrate the im-
pact of k, θ, they are tested separately. When the setting of k changes from 2 to 5 with
step length 1, θ is not specified. Similarly, when the setting of θ changes from 0 to 1
with step length 0.05, k is not specified. In all figures, DES, ADDS denote algorithm
DE, ADD running at different setting of k, while DED, ADDD donate algorithm
DE, ADD running at different settings of θ. ADDS(DP = 00x) denotes the algo-
rithm ADD by only selecting the first fraction of the initial solution.

5.2 Precision vs. Recall

In figure 6, the experiment results for five different datasets are demonstrated. For each
dataset, the impact of k, θ are presented in two separate figures. This depicts the situ-
ation that the given threshold (dp0 = 0, dp1 = 0, dp2 �= 0) is usually reliable for the
first fraction of initial solution with a high precision compared to the final solution of
DES. Thus, the groups in the first fraction of the initial solution can be directly re-
turned to the final solution. In the same figures, it is also clear the corresponding recall
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of ADD(DP = 00x) is relatively low. But, this is not a problem for ADD since the
first fraction is only a part of the final solution and the other part is found by refin-
ing the rest of the initial solution. Thus, the initial solution should contain most of the
correct groups, i.e. high recall. In the experiments, the entire initial solution returned
by ADDS demonstrates a clearly better recall than that of DES in all datasets at all
settings of k.

In figure 6(b)(d)(f)(h)(j), the algorithms are tested for various θ. Compared to k, the
impact of θ is significant. The reason is that most datasets have a large percentage of
groups that are of size 2. Therefore, once k > 2, the effect of k is hardly noticed. In con-
trast, θ is more robust. Even though two tuples have the best DP measure, if their sim-
ilarity distance is greater than θ, they can not be in the same group. Thus, both ADDD
and DED are sensitive to the settings of θ. In all settings of θ, the ADDD(DP = 00x)
always has the reliable precision comparing to DED while the ADDD always has the
higher recall for all datasets.

Effect of c. A good estimation of parameter c requires user to understand the dataset
before any processing and have a proper knowledge of statistics. In the experiments, the
impact of various estimations of c to the precision and recall is tested. The results are
presented in figure 6.

We first look at the situation that k is given 6(a)(c)(e)(g)(i). When the setting of c
changes from 2 to 20, we observe that the precision decreases and the recall increases.
Since c is upper bound of the sparse neighborhood criterion, the greater c means it can
be satisfied by more groups and, as a consequence, the recall of the final solution in-
creases as illustrated. The increase of recall means that many groups that should be in
the final solution are pruned if the setting of c is small. At the same time, the preci-
sion decreases. If precision decreases sharply and recall increases slowly like in 6(e),
it means the small setting of c is proper for this dataset. If precision decreases slowly
and recall increase sharply like in 6(a)(i), it means the greater setting of c is proper. If
precision decreases slowly and recall increase slowly like in 6(c), it means the setting
of c is irrelevant.

In the situation that θ is given 6(b)(d)(f)(h)(j). The setting of c also changes from 2 to
50, we observe the same situation that the precision decreases and the recall increases.
Similarly, the greater c allows more groups to qualify to be in the final solution and
several patterns are observed. The small c is proper if precision decreases sharply and
recall increases slowly like in 6(f); the greater c is proper if precision decreases slowly
and recall increase sharply like in 6(b)(j); c is irrelevant if precision decreases slowly
and recall increase slowly like in 6(c).

We notice that most duplicates in the datasets studied here is of size 2-3. Thus, the
significant impact of changing c to the final solution suggests that the distribution in
proximity of different records can be very different. This situation makes it hard for
user to estimate a proper c. The expertise and knowledge in statistics are critical.

6 Conclusion

In this paper, we have presented a new method for duplicate detection, namely ’Active
Duplicate Detection’ or ADD. ADD provides a means of creating an initial solution (or
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grouping of duplicate records) without requiring any user input. This is in contrast with
most existing approaches to duplicate detection which require user to provide certain
parameters up front. Assuming that user has knowledge of the underlying datasets so as
to provide correct parameter settings is not a sound assumption. As such, ADD provides
a much more globally applicable solution. Further, we have demonstrated that ADD
performance both in quality of results (precision vs. recall) as well as efficiency is highly
competitive and in some case superior to existing solutions.
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Abstract. Efficient management of RDF data is an important factor in realizing 
the Semantic Web vision. The existing approaches store RDF data based on  
triples instead of a relation model. In this paper, we propose a system called 
FlexTable, where all triples of an instance are coalesced into one tuple and all 
tuples are stored in relation schemas. The main technical challenge is how to 
partition all the triples into several tables, i.e. it is needed to design an effective 
and dynamic schema structure to store RDF triples. To deal with this challenge, 
we firstly propose a schema evolution method called LBA, which is based on a 
lattice structure to automatically evolve schemas while new triples are inserted. 
Secondly, we propose a novel page layout with an interpreted storage format to 
reduce the physical adjustment cost during schema evolution. Finally we per-
form comprehensive experiments on two practical RDF data sets to demonstrate 
that FlexTable is superior to the state-of-the-art approaches. 

Keywords: FlexTable, RDF data, dynamic relational model, Lattice. 

1   Introduction 

The Resource Description Framework(RDF) is a flexible model for representing in-
formation about resources in the World Wide Web (WWW). When an increasing 
amount of RDF data is becoming available, RDF model appears to have a great mo-
mentum on the Web. The RDF model has also attracted attentions in the database 
community. Recently, many database researchers have proposed some solutions to 
store and query RDF data efficiently. 

The popular solutions are called TripleStore[4] and VerPart[2], which could be 
seen in Fig.1. The former one uses one table to store all the RDF triples. This table 
only has three attributes which separately corresponds to subject, predicate and value 
of triples. The weak point of this solution lies in that it stores predicates as values in 
the table, not attributes, such as in traditional relation database. Then statistics of 
attributes is useless for RDF queries. In RDF queries, a key operation is to find in-
stance with a given predicate, however, the statistics of attribute ‘predicate’ in Tri-
pleStore contain summary of all the predicates. So statistics of a predicate could not 
be obtained from TripleStore directly, which will deteriorate performance of RDF 
queries. 
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For example, there is a query to find names of graduates from Zurich University 
who won Nobel Prize in Physics. To answer this query, users need to scan the only 
one table in TripleStore twice and join the results of these scans. When the scans are 
more than two, the join order will be very important for query performance. However, 
in mainstream databases, the statistics for each predicate could not be gained directly, 
that will be harmful to join performance. 

The latter one uses N two-column tables to store triples, where each table corre-
sponds to one predicate and N is the number of all the predicates in an RDF data set. 
In such table, the first column stores subjects of triples and the second column con-
tains values of those subjects in corresponding predicate. This solution is better than 
TripleStore in statistics collecting and query performance, where statistics of each 
predicate could be extracted with traditional methods in DBMS. But, in VertPart, 
values of each instance are stored separately, where statistics of predicates correlation 
are lost. Then DBMS may recommend a low-efficient query path for an RDF query. 

For instance, there is another RDF data set extracted from WWW, where each tri-
ple represents that a book is tagged by a user with a tag as a predicate. A triple 
<“Harry Potter and the Philosopher's Stone”, “young adult”, “David”> means that 
user “David” uses “young adult” to tag “Harry Potter and the Philosopher's Stone”. 
Assuming that there is a query issued for retrieving those books that having three tags 
simultaneously, such as “fantasy”, “fiction”, and “children”. VertPart’s performance 
advantage, comparing with TripleStore, lies in that the scan of these predicates is 
more efficient. However, there still leaves a problem for joining results of these scans 
in a high speed. Unfortunately, this kind of queries in RDF data applications is popu-
lar, such as finding groups or building a taxonomic structure among instances. If a 
book tagged with “fantasy”, “fiction” is inserted into RDF data set, we could classify 
it to a class of “fantastic fiction”. When another book is inserted with more tags,  
including “fantasy” and “fiction”, we can conclude that it belongs to a subclass of 
“fantastic fiction” and could build relations between these classes. In this kind of 
applications, while each instance is inserted, system must search the class in which its 
tags are contained and classify it to that class. Because the join condition for these 
intermediate results requires final results to have same subjects. If all the triples de-
scribing one instance are organized together in one page, the join cost will be reduced 
dramatically while the number of join predicates is very big. 

 

ID1 Alexandros
ID2 Konstantinos
ID3 Vaggelis
ID4 John
ID5 Konstantinos

ID1 Valarakos
ID2 Pazalos
ID3 Kourakos
ID4 Partsakoulakis
ID5 Stergiou

ID1 Male
ID2 Male
ID3 Male

ID1 Mr.
ID2 Mr.
ID5 Dr.

ID1 ID5  
 (a) TripleStore    (b) VertPart 

Fig. 1. An Example of TripleStore and VertPart 

These requirements urge that triples should be organized as triple groups, and a 
query could be restricted in each group to reduce scan cost. Secondly, all triples shar-
ing same subjects should be stored in one page to reduce join cost. However, there 
exist some problems to do that. First question is how to group the triples to reduce 
query cost. And the second one is how to support this process dynamically. As we 
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know that in real applications, data sets are growing over time. If triple grouping is 
redone while each new triple is inserted, the cost will be prohibitively high. So using a 
dynamic model will be very important for triple grouping. The last one is when sup-
porting dynamic triple grouping, new inserted triple will induce merging or adjusting 
of the original groups. And the changes of original groups will cause changes of triple 
positions, which is a costly operation. To resolve these problems, we propose to use a 
dynamic relation model called FlexTable to support dynamical triple grouping. 

Providing a relation model for RDF data storage is necessary and significant. As 
written in [1], EF Codd has pointed out that a relation model of data is superior in 
several respects to the graph or network model. The reason why current solutions do 
not use relation model to store RDF data lies in that RDF’s logical model is a graph 
model. Naturally, researchers use a physical graph model to store RDF data, such as 
TripleStore and VertPart. However, for the applications pointed above, we could find 
that it is time to come back to relation model to store RDF data. Our idea is something 
like that in [12], called clustered property table, both of these solutions prefer to man-
age RDF data in relation model. And the difference of our methods lies in that they 
focus on a static circumstance, and our focus is on a dynamic circumstance. 

From the following experiments, a conclusion could be drawn that clustered prop-
erty table will be better than VertPart. In [2], although Abadi had shown that, in col-
umn-store database, the performance of VertPart was superior to clustered property 
table, he also pointed out that this phenomenon was observed in column-store database 
and the performance of VertPart and clustered property table differed litter in row-store 
database. In [8], Sidirourgos showed that even in column-store database, the perform-
ance of VertPart was not always better than clustered property table, which depends on 
different data set. So, we continue to extend the method of clustered property table to a 
dynamic circumstance. Now our implementation is realized on row-store database, in 
the future we will implement them on column-store database. 

In this paper, we propose a system called FlexTable to store RDF data with a dy-
namic relation model. To the best of our knowledge, there is no work today storing 
RDF data with a dynamic relation model. 

There are some contributions of FlexTable. Firstly, a method based on lattice-
structure is proposed to design evolving triple groups. In this method, each triple 
group is stored in a table and predicates in a triple group correspond to attributes in 
that table. In the following sections, the attribute set of a table is called a schema. 
Whether or not to adjust a schema depends on the similarity between the schema and 
its most similar schema. If similarity is high enough, a new schema is produced to 
contain tuples and attributes of the original two. In the following sections, the process 
of dynamical schema adjustment is called schema evolution. 

Secondly, a new data page layout is designed for reducing cost of schema evolu-
tion. As we know, in mainstream database, reorganizing a tuple requires correctly 
extracting values according to the order of attributes in schema. When a new schema 
is produced to merge the original two, the attribute order in the new schema is differ-
ent with that of the original two. So it is necessary to reorganize values from old 
schemas to insert in the new one, which causes large cost when this process happens 
frequently. Unfortunately, in many data applications, they are such cases, such as 
tagging system, Yago1. In this paper, a new type of data page is introduced to contain 
                                                           
1 Yago, http://www.mpi-inf.mpg.de/yago-naga/yago/ 
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interpreted information of attributes, which will reduce the cost of rewritten data 
pages. 

The rest of this paper is organized as follows. In section 2, we introduce prelimi-
nary of FlexTable. Section 3 we present an algorithm for designing a dynamic relation 
model. In section 4, we propose a new page layout to reduce adjustment cost of ta-
bles. Section 5 gives some detail experiments to show the improvement of FlexTable. 
In section 6, we discuss the state of the art of storing RDF data in RDBMS. Finally, 
we conclude in section 7. 

2   Preliminary 

An RDF term is an URI or a literal or a blank node. A triple (s,p,v)∈(U∪B)×U× 
(U∪B∪L) is called an RDF triple, where U is a set of URIs, B is a set of blank node 
and L is a set of literals. In a triple, s is called subject, p is predicate and v is value. 

Definition 1 -- RDF tuple. An RDF tuple is a tuple coalesced with a set of triples 
having a same subject. 

An RDF tuple is structured as a conventional tuple in DBMS. The subject of those 
triples is stored in an attribute named by “URI”. Values of each predicate are stored in 
an attribute named by the predicate. In an RDF tuple, the number of values in a predi-
cate is always more than one, so we use an array to store those values. In Table1, the 
first tuple is an example of an RDF tuple describing “Albert_Einstein”, edges in Fig.2 
correspond to triples composing this RDF tuple. 

Definition 2 -- RDF schema. An RDF schema is a set of RDF tuples. 
An RDF schema is stored as a table in FlexTable. Each row corresponds to an RDF 

tuple and each column corresponds to an attributes of RDF tuples. Table1 is an exam-
ple of an RDF schema. 

 
Table 1. An Example of RDF schema 

URI GraduatedFrom bornIn diedIn 

Albert_Einstein University_of_Zurich Ulm Princeton,_New_Jersey 

Leonhard_Euler University_of_Basel Basel Saint_Petersburg 

 
Fig. 2. An example of triples about “Leonhard_Euler” 
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3   Schema Evolution 

As we know, it is efficient to manage chaotic things with classifying them into several 
groups. This principle is also useful in managing RDF data. However, all of current 
solutions for storing RDF data, including TripleStore and VertPart, logically regard 
all the triples as a whole, which disobeys the above principle. Although VertPart 
could physically store triples in several tables, it also logically treats all the triples as 
one schema. When triples are considered as a whole, the correlations of all predicates 
are difficult to compute. As we have pointed out in the first section, many applica-
tions need to issue queries with joins. In this case, join order and predicate correlation 
statistics would have a great effect on query performance. However, there is no such 
functionality in current solutions. So, classification of triples should be added into 
RDF data management to reduce query cost. By using classification, predicates could 
be clustered into several classes which could help to improve query performance with 
adjustment of join order. 

To resolve these problems listed above, a new approach is introduced to organize 
RDF data in schemas as done in RDBMS. A naïve method is to extract an RDF 
schema from an RDF tuple. However, with this approach, there will be a drawback 
that few RDF tuples will share a same RDF schema. In this paper, the rigid constraint 
is relaxed, if two schemas are most similar, these two could be merged into one. In 
other words, similar schemas are merged automatically according to their similarity, 
not manually. 

In the following subsections, firstly a formula to measure similarity of two sche-
mas is introduced. Secondly a lattice-based algorithm (LBA) is presented to make 
certain which schema pair to merge. This method is better than the brute force ap-
proach, which computes all the pairs of existing schemas. Thirdly, a control parameter 
is proposed to judge when to stop evolve. 

3.1   Similarity Measurement 

As we have pointed out, two schemas with maximum similarity value will be merged 
while a new RDF tuple is inserted. To compute the similarity of these two schemas, a 
cosine-distance measure is introduced. Here each schema is represented as an attribute 
set, e.g. { URI, ‘cityInState’, ‘geopoliticalSubdivision’, ‘majorCityInState’, ‘conceptu-
allyRelated’} is a schema with six attributes as listed above. To compute cosine-
distance of two schemas, only the latter four attributes are needed. Formula 1 is given 
to compute importance of an attribute in one schema. 
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In Formula 1, “si” represents a schema and “aj” represents an attribute. This formula 
references classical tf/idf formula used in Information Retrieval. The former part 
sup(si, aj) is to compute the importance of attribute “aj” in schema “si”, and the latter 
part is to compute the importance of attribute “aj” in all the schemas. In Formula 1, 
sup(si, aj) is computed as ratio of RDF tuples which have values in attribute “aj” to all  
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RDF tuples contained in “si”. While sup(si, aj) =1, all the RDF tuples in “si” have 
values in attribute “aj”, it means that the importance of “aj” to “si” is much higher than 
that of “ai” to other schemas. 

The latter part is to compute the logarithm of the ratio of all schemas to those 
schemas which have attribute “aj”. This part measures the distribution of attribute “aj” 
in all schemas. While more schemas containing attribute “aj”, the importance of “aj” 
to “si” would be less. For example, if attribute “inUniversity” existes in less schemas 
than attribute “name”, two schemas sharing the attribute “inUniversity” are more 
similar than those only sharing attribute “name”. Because the former two is likely to 
be students or teachers in a university and the latter two could be anything else. 

With Formula 1, similarity of two schemas could be computed as a cosine-distance 
formula written as follows: 

22ji
),(),(

),(),(
 )s ,(s

kjkkik

kjkik

asas

asas
sim

μμ

μμ

∑∑
∑ •

=
 (2) 

3.2   Lattice-Based Algorithm(LBA) 

A straightforward method used in schema evolution, named as brute force approach, 
is to compute all the similarity of schema pairs with formula 2 and pick up the most 
similar pair to merge. With brute force approach, each time schema evolution is in-
voked, the similarity between new schema and existing schemas should be computed 
and similarity of all the schema pairs should be saved. It could be inferred that time 
complexity of this approach is O(n) and space complexity is O(n2), the cost of which 
is prohibitively expensive. 

To reduce the cost of schema evolution, inspired with [10], a lattice-based algo-
rithm (LBA) is introduced to prune the unnecessary computation. Here a lattice is 
built as follows. Firstly, each RDF schema is corresponded to a node in the lattice. 
Secondly, while all the attributes of schema A is contained in attribute set of schema 
B, then A is an ancestor of B and B correspondingly is a descendant of A. When there 
is no other schema that is both an ancestor of B and a descendant of A, A is called a 
parent of B and B is a child of A. The relationship between A and B corresponds to a 
line from A to B. When a top node, which has no attribute, and a bottom node, which 
has all the attributes as its attribute, is added, a lattice could be drawn. An example is 
shown in Fig.3, where there are four nodes, such as {P2,P3}, {P1,P5}, {P2,P3,P4}, 
{P1,P2,P3,P5}. Solid lines in Fig.3 represent that the upper node is a parent of the 
lower node. Dashed lines in Fig.3 represent that these nodes are brother nodes. Here, 
only the nodes that have same parents are concerned as brother nodes. In our algo-
rithms, only the similarities between parent-child schema pair or brother schema pair 
are computed. Inferred from Fig.3, similarity between {P1,P5} and {P2,P3,P4} are 
unnecessary to compute, compared with brute force approach. And in a sparse data 
set, while the bigger the number of schema is, the more unnecessary computation cost 
is pruned. 
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Fig. 3. An Example of RDF Schema Lattice 

In Algorithm EvolutionLattice, when an RDF tuple is inserted, a schema Snew is ex-
tracted from it. After adding Snew into lattice, similarity values δi between Snew and its 
parents, brothers Si are computed. Assuming that the biggest similarity is δ’, say be-
tween schema Sm and Sn. While exists δi > δ’, then merge the schema Si with Snew. 
Otherwise a new schema is created for Snew and Sm is merged with Sn. 

Algorithm EvolutionLattice(tuple, lattice) 
Input: tuple – An RDF tuple 
        lattice – An RDF schema lattice 
Output: lattice 
1:  schema  ExtractSchema(tuple);  
2:  AddSchema(schema, lattice); 
3:  schemaPair  GetMaxSimPair(lattice); 
4:  if(NeedMerge(schemaPair)) 
5:     newSchema=MergeSchema(schemaPair); 
6:      AddSchema(newSchema,lattice) 
7:  InsertTuple(tuple);  
8:  return lattice; 

The input parameters of EvolutionLattice are two, tuple corresponds to a new in-
serted RDF tuple, and lattice corresponds to the schema lattice structure described 
above. The aim of ExtractSchema in line 1 is to extract an RDF schema from the 
inserted RDF tuple. Line 2 invokes AddSchema to add the extracted schema into lat-
tice and compute similarity between this schema and its related schemas connected 
with lines in lattice. In Line 3, GetMaxSimPair is used to select a schema pair with 
max similarity from lattice. When NeedMerge returns true, MergeSchema is invoked 
to merge these schemas. In line 5, the merged schema newSchema is inserted into the 
lattice. At last, InserTuple is invoked to insert the inputting RDF tuple into FlexTable. 
The keys of this algorithm are AddSchema and NeedMerge, the detailed descriptions 
of the former one is shown as follows and the latter is described in 3.3. 

Algorithm AddSchema(schema, lattice) 
Input: schema -- A new schema 
       lattice – An RDF schema lattice 
Output: lattice 
1: bottom  getBottomNode(lattice); 
2: stack  new Stack(bottom); 



 FlexTable: Using a Dynamic Relation Model to Store RDF Data 587 

3:  while(!isEmpty(stack))  
4:     temp  pop(stack); 
5:     if (schema is ancestor of temp)  
6:        push all parents of temp into stack;  
7:     else 
8:        AddChildren(temp’s children, schema);  
9:         compute similarity between temp’s children and 
schema; 
10: top  getTopNode(lattice); 
11: push top in stack; 
12: while(!isEmpty(stack))  
13:    temp  pop(stack); 
14:    if (temp is ancestor of schema)  
15:       push all children of temp into stack;  
16:    else 
17:       AddParents(temp’s parents, schema);  
18:        compute similarity between temp’s parents and 
schema; 
19:       compute similarity between temp and schema; 
20:        compute similarity between temp’s brothers and 
schema; 
21: return lattice; 

Algorithm AddSchema adds lines between new schema and existing schemas in 
lattice. It is divided into two parts, first part corresponds to line 1 to line 9, which 
finds all the children of a new schema, add relations between the schema and its chil-
dren, and compute similarity between these pairs. The second part corresponds to line 
10 to line 20, which finds all the parents of the new schema, and add relations, com-
pute similarities between them. In addition, the brother relations are ascertained only 
when parents of schema are found, then similarities between schema and its brothers 
are computed after AddParents is invoked. Note that, in line 20 where temp is also a 
brother of schema, the similarity between these two schemas should be computed 
here. 

3.3   Control Parameter 

On implementation of Schema Evolution, there is another problem, which is when to 
stop merge. The strategy used here is to compute the storage gain of schema evolu-
tion. Firstly, storage cost of two schemas and a new schema is computed. If storage 
cost of a new schema is smaller than that of existing two schemas, then merge these 
two schemas into the new one. Otherwise, there is no need for actions. 

The storage cost of a schema includes two parts, one is to store schema meta-
information, such as the name of schema and names of attributes in schema, and the 
other is to store tuples in schema such as null value bitmap of a tuple and actual val-
ues. In RDBMS, the storage cost of a schema could be expressed as formula 3. 

valCNAAC +••+•+= |||||| γβα  (3) 

Here, α is storage cost of schema name and other information that only stored one 
time for a schema. And β is storage cost of each attribute in one schema, |A| is the 
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number of attributes in corresponding schema, β•|A| is total storage cost of all attrib-
utes of one schema. The third part is storage cost of null value bitmap for all tuples 
which is used to reduce storage cost for null value, where |N| is number of RDF tuples 
in the schema, γ is storage cost of each bitmap. The fourth part is storage cost of ac-
tual values. 

With Formula 3, storage gain for schema merging could be computed as Formula 4: 
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While Cgain is bigger than zero, the function NeedMerge in EvolutionLattice returns 
“true”, otherwise returns “false”. If the result is “false”, merging is not happened. 

In summary, we propose a formula to compute similarity between two schemas 
firstly. Secondly, a lattice-based algorithm (LBA) to design dynamic relational sche-
mas for RDF data is introduced. At last, a formula is used to determine when to merge 
two schemas. 

4   Modification of Physical Storage 

In traditional databases, such as PostgreSQL, a tuple's values are stored in the same 
order as order of attributes in schema. This method has a benefit to reduce storage 
space because system can use a bitmap to indicate whether the value of an attribute in 
one tuple is null or not. So with this approach, storage of null values is avoided. For 
example, a tuple with a not-null value bitmap "101" means that the value of the sec-
ond attribute is null. 

 

Fig. 4. An Example of FlexTable data page layout 

However the above method is inefficient when schema evolution happens fre-
quently. When the system merges two existing schemas, at least data pages of one 
schema are required to be rewritten correspondingly. For example, on assumption that 
attribute set of SchemaA is {name, age, univ} and attribute set of SchemaB is {name, 
sex, univ}. There is an RDF tuple tupA in SchemaA having a value {‘Kate’, 53} with 
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a not-null bitmap ‘110’. And another RDF tuple tupB in SchemaB has a value {‘Jim’, 
‘MEN’, ‘UCLA’} with a not-null bitmap ‘111’. After SchemaA merges with Sche-
maB, the resulting attribute set of new schema changes to {name, age, univ, sex}, 
there exists a problem that not-null bitmap of tupB should be explicitly rewritten to 
‘1011’. Therefore, the cost of schema merging is prohibitively high in the traditional 
page layout. We tackle this problem with introducing a novel page layout which uses 
an interpreted storage format. Specifically, with interpreted storage, the system must 
"interpret" the attribute names and their values for each tuple at query access time, 
whereas with positional storage like bitmap in PostgreSQL, the position information 
of the attributes is pre-compiled. In the scenario that schema changes frequently, the 
benefits of not storing null values become less, while the performance gain in avoid-
ing the data pages rewritten becomes more desirable. 

Inspired by [11], we introduce a new approach called page-interpret to divide data 
page into three regions: the first is page header area, the second is attribute interpreted 
area, and the third is data value area. As shown in Fig.4(a), behind "Page Header" and 
pointers of tuples in current page, we record attribute information such as attributes’ 
ids, which area is called attribute interpreted area. Next we give an example to show 
how to process schema merging between schemaA (name, age, univ) and schemaB 
(name, sex, univ). When a new tuple (Jim, 'MALE', 'UCLA') is inserted, it is impor-
tant to note that only the last non-full page needs to be rewritten (shown in Fig.4(b)), 
while previous full pages in original schemaA and schemaB could remain unchanged. 
Note that our approach does not affect the query performance. With page layout of 
FlexTable, the only additional cost is to interpret a tuple organized according to page-
level’s attribute set into a tuple organized according to table-level’s attribute set, 
which is trivial comparing with I/O cost. 

5   Experiment and Analysis 

Setting. The experiments are carried out on a PC running Windows XP, with Intel 
Pentium-(R) Dual CPU T2390@1.86GHz and 1GB of RAM. We use a 160GB SATA 
hard drive. The data set for experiments are two. One is FreeToGovCyc1, called 
govcyc in the following sub-sections, a practical and sparse Semantic Web data set, 
with 45823 triples, 10905 instances and 441 properties. The other one is triples ran-
domly extracted from Yago, called yago in the following sub-sections, which occu-
pies near 1/100 of Yago dataset, with 1,000,000 triples, 152,362 instances and 87 
properties. The modifications of physical storage are implemented on PostgreSQL 
8.1.3. The algorithm of SchemaEvolution is programmed with JAVA. 

5.1   Analysis of Triples Import 

Time cost of triples import on FlexTable is composed of two parts. One is the time for 
execution of LBA, which corresponds to the time for logical adjustment of RDF tu-
ples. The other one is the time for inserting triple set into its corresponding table, 
which corresponds to the time for physical adjustment of RDF tuples’ positions.  

                                                           
1 FreeToGovCyc,  
http://semweb.mcdonaldbradley.com/OWL/Cyc/FreeToGov/60704/FreeTo GovCyc.owl 
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Experiments are executed to compare FlexTable with VertPart and TripleStore. Here 
each table in FlexTable has an index on URI to accelerate queries executed in the next 
sub-section. To make experiments equality, each table of VertPart also has an index 
on instance. Our TripleStore simulates Hexastore[6], where if an instance has some 
values on one predicate, these values are organized as an array to store in database, so 
does the implementation of VertPart. Because our queries are nothing to do with the 
column ‘value’, only two indexes are built on TripleStore. They are (instance, predi-
cate) and (predicate, instance). 

 

 

Fig. 5. Comparisons of Time Cost for Triples Import 

Fig.5 shows two experiments implemented on yago and govcyc. FT-mod corre-
sponds to FlexTable implemented on data page layout introduced in section4. And 
FT-Ori corresponds to FlexTable implemented on data page layout of PostgreSQL. 
From Fig.5, a conclusion could be drawn that no matter in what data set, FT-Mod is 
the solution with least time cost. And FT-Ori is the most expensive solution for triple 
import. In yago, the difference of cost between FT-Mod and other solutions is more 
evident than that in govcyc. It results from the cause that data in govcyc is sparser 
than that in yago. So the time of LBA executed on govcyc is bigger than that on yago. 
Because cost of schema evolution occupies most part of whole cost in FT-Mod, the 
advantages of FT-Mod is clearer in yago. 

5.2   Analysis of Storage Cost 

Table2 shows comparisons of storage cost in FlexTable with other solutions. Here 
FlexTable means FT-Mod in sub-section 5.1. From Table2, we could find that storage 
cost of FlexTable is the smallest. There are two reasons. The first one is that the role 
of control parameter described in sub-section 3.2 makes storage cost smaller. The 
second one is that in FlexTable values of one instance are organized as one tuple 
which corresponds to several tuples in other solutions, so it could avoid storing re-
dundant tuple headers. 

In Table2, a phenomenon could be found that, in govcyc, storage cost of VertPart 
is much bigger than that of TripleStore. However, in yago, it is on the contrary. This 
phenomenon results from the fact that data of govcyc is sparser than that of yago. For 
the reason that VertPart creates one table for each predicate, so there are many free 
space in pages of VertPart. 
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Table 2. Comparisons of Storage Cost 

DataSet FlexTable(KB) VertPart(KB) TripleStore(KB) 

govcyc 4,592 15,112 9,576 

yago 47,400 56,168 76,808 

5.3   Analysis of Query Performance 

Our test queries are represented in SPARQL syntax. The pattern of test query is in the 
form "select ?x where {?x pred1 ?val1. {?x pred2 ?val2}.… {?x predN ?valN}}". 
This kind of query is to search all the instances simultaneously having predicates in 
the query. It is an important kind of query in Semantic Web construction. Assuming 
that pred1, pred2, … , predN are predicates describing instance A. With this query, 
users could find which instances belong to subclass of instance A’s class. Then they 
could build a taxonomy structure between instances. These predicates are shown in 
Table3. Fig.6 shows our experimental results by comparing it with VertPart and Tri-
pleStore. We add predicates to the query pattern one by one. Firstly, we use the first 
two predicates in Table3. Secondly, the third predicate is added to join with results of 
last query. Then the third, the fourth, the fifth, … , the Nth predicate are added to the 
query pattern. With increase of N, we find that our approach is superior to the existing 
solutions in terms of query performance, especially in yago. For example, when the 
attribute number to join in yago is 8, VertPart takes 407ms and TripleStore takes 
312ms, but FlexTable takes only 172ms. In Fig.6, changes of FlexTable’s perform-
ance could be explained that the number of tables need to be scanned in FlexTable 
significantly decreases with increase of N. And at the same time, the number of joins 
in data dictionary to find the correct table to scan will becomes bigger, which deterio-
rates test query’s performance. So, in Fig.6(a), query cost of N=1 is biggest, then in 
most cases it decreases with increase of N. When N is 7, the query performance is the 
best. And when N is eight, the cost becomes bigger than the case that N=7. VertPart 
suffers from scanning and joining more tables, so its cost is always bigger tan Flex-
Table. TripleStore scans data from one index, the next join could use buffer of last 
join. So, in yago, performance of the query executed in TripleStore does not change 
much. In govcyc, because the data set is too small, the tendency of query performance 
are not so evident. However, we could still find that performance of FlexTable is 
better than other two in many cases. 
 

 

Fig. 6. Comparisons of query performance while increasing number of joins in a query 



592 Y. Wang et al. 

Table 3. Filtered Predicates 

Sequence govcyc yago 

0 comment type 

1 definingmt Iscalled 

2 conceptuallyrelated bornondate 

3 positivevestedinterest livesin 

4 allies diedondate 

5 possesses influences 

6 economicinterestin iscitizenof 

7 capitalcity diedin 

6   State of the Art 

In this section, we discuss the state of the art of storing RDF data in RDBMS, with an 
extended look at comparing them with FlexTable. 

6.1   TripleStore 

Although there have been some non-relational RDBMS approaches for storing RDF 
data, such as [3]. The majority of RDF data storage solutions uses RDBMSs, such as 
Jena[4], Sesame[5], Oracle[14]. While storing RDF data in a relational database, there 
is a problem to translate triples into tuples. The straightforward way is to translate a 
triple into a tuple, i.e. a table with three attributes is created for storing triples, whose 
attributes separately correspond to subject, predicate and object of triples. This ap-
proach is called TripleStore, which is shown in Fig.1(a). 

In TripleStore, the cost of table scanning and joining is much expensive. So re-
searchers need to add many indexes to improve query performance of Triple Store. 
For example, in Hexastore[6], there are at least 6 indexes needed to add, which are all 
possible permutations of attributes subject(s), predicate(p) and value(v), i.e. {s, p, v}, 
{s, v, p}, {p, s, v}, {p, v, s}, {v, s, p} and {v, p, s}. To reduce storage cost of so many 
indexes, in rdf-3x[7], a compressed method is presented. From their experiments, 
using the compressed method, storage cost of 6 indexes which is six times of original 
cost could be reduced to double of original cost. In [13], Neumann proposes some 
optimization skills for rdf-3x optimizer. 

These optimizations for TripleStore are orthogonal to ours. The focus of FlexTable 
is on how to partition triples into several correlated groups to accelerate query per-
formance. So these optimizations also could be added to FlexTable to improve query 
performance and reduce storage cost. 

6.2   VertPart 

VertPart is a variant of TripleStore. Because in TripleStore, storing all triples in one 
table is a bottleneck for query performance, researchers consider some methods to  
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partition triples into different tables. In an RDF data set, there is an assumption that 
the number of predicates is far less than that of subjects and objects. According to this 
assumption, partitioning triples based on predicates is a feasible way to improve per-
formance of TripleStore. In [2], triples with same predicates are partitioned into a 
table named by the predicate, whose attributes separately correspond to subject and 
object of triples. This approach is called VertPart, shown in Figure1(b). With the 
method of VertPart, these tables with two attributes could be stored in column-store 
database. In [2], a detail experiment is executed to show that storing RDF data in 
column-store database is better than that of row-store database. In [8], experiments 
are shown that gain of performance in column-store database depends on the number 
of predicates in a data set. There exist potential scalability problems for VertPart 
when the number of predicates in an RDF data set is high. In [9], an experimental 
comparison of RDF data management approaches is done to show that none of current 
approaches can compete with a purely relational model. 

As proved in some papers, VertPart is effective in some applications, such as tradi-
tional library systems, where predicates are predefined by administrators or content 
managers. However it is infeasible for WWW applications, where predicates are de-
fined freely by users. There are several reasons. Firstly, in these applications the 
number of predicates is much bigger than that of subjects. So VertPart will produce 
many tables with few triples, which increases storage cost. Secondly, in practice each 
subject is described with many predicates. If users need to search all predicates of a 
given subject, system needs to scan all predicate tables, which is poor in query per-
formance. So it could be concluded that VertPart is not suitable for storing triples 
produced in WWW applications. 

From above analyses, we could find that the best approach for storing RDF date is 
to store them in a relation model. And our work is to manage RDF data with a dy-
namic relation model, which could reduce the cost of schema adjustment during in-
cremental production of RDF triples. 

7   Conclusion 

In this paper, we present an RDF storage system, called FlexTable, which designs a 
dynamic relation model to support efficient storage and query for RDF data. Firstly, 
we introduce a mechanism to support dynamic schema evolution. We also propose a 
novel page layout to avoid physical data rewritten during schema evolution. Finally, 
comprehensive experiments are performed to demonstrate the advantages of Flex-
Table over existing methods in terms of triple import, storage and query performance. 
In the future, we will extend FlexTable to column-store database. 
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Abstract. Bipartite network is a branch of complex network. It is widely used 
in many applications such as social network analysis, collaborative filtering and 
information retrieval. Partitioning a bipartite network into smaller modules 
helps to get insight of the structure of the bipartite network. The main contribu-
tions of this paper include: (1) proposing an MDL 21 criterion for identifying a 
good partition of a bipartite network. (2) presenting a greedy algorithm based 
on combination theory, named as MDL-greedy, to approach the optimal parti-
tion of a bipartite network. The greedy algorithm automatically searches for the 
number of partitions, and requires no user intervention. (3) conducting experi-
ments on synthetic datasets and the southern women dataset. The results show 
that our method generates higher quality results than the state-of-art methods 
Cross-Association and Information-theoretic co-clustering. Experiment results 
also show the good scalability of the proposed algorithm. The highest im-
provement could be up to about 14% for the precision, 40% for the ratio and 
70% for the running time. 

Keywords: Community Detection, Bipartite Network, Minimum Description 
Length, Information Theory. 

1   Introduction 

To understand the structure of a complex system, a common approach is to map the 
interconnected objects in the complex system to a complex network and study the 
structure of the complex network. During the mapping, the interacted objects are 
mapped into highly connected modules that are only weakly connected to one other. 
The modules are considered to embody the basic functions of the complex network. 
Thus people can identify the modules or communities of which the complex network 
is composed in order to comprehend the structure of the complex system [1-5]. One 
classical application is the recommendation system for E-Commence like Amazon. 
Let’s look at an example. 

Example 1. Fig 1 shows an example about books and customers. In (a), there are 
eleven customers and four books. To recommend books to a given customer ‘C’, a 
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recommendation system needs to search customers with similar tastes of ‘C’ (or 
books having the same topic with the books bought by ‘C’) from the sample data. To 
do so, the data is transformed into a two-mode network first, as shown in (b). The 
recommendation system could detect communities in the two-mode network directly. 
The result for community detection on (b) is shown in (c). Another choice is to pro-
ject the two-mode network into one mode network and detect communities in the one-
mode network. In Fig 1, (b) is projected to (d) and the result for community detection 
on (d) is shown in (e). Customers in the same group are considered to share the simi-
lar tastes and books in the same group are considered to share the same topic. In Fig 1, 
‘A’,’B’,’D’, and ’E’ are considered to share the similar tastes with ‘C’ and ‘2’ is con-
sidered to have the same topic with ‘1’. At last, the results are selectively applied to 
recommendation according to the accuracy of different methods.  

 

 

Fig. 1. The flowchart of recommendation for some sample data  

A complex network is called one-mode network if it is mapped from a complex 
system composed of one type of objects. There are extended works on detecting 
communities in one-mode network. Among these works, a popular approach is to 
search for partitions that maximize the modularity [6, 7]. However, as a criterion of 
community quality, modularity is considered to have two disadvantages [8]: a resolu-
tion limit and a bias to equal-sized communities. Compression-based method that 
searches for partitions minimizing the description length is a recent alternation [9, 10]. 
Compression-based method usually makes use of the MDL principle in the field of 
information theory [11]. 

A complex network is called two-mode network or bipartite network if it is 
mapped from a complex system composed of two types of objects. In this paper, bi-
partite network refers to two-mode network. Fig. 1 (d) and (b) show examples of both 
one-mode network and two-mode network [12]. According to Fig.1, one-mode net-
work has only one node set while two-mode network has two disjoint node sets. For 
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one-mode network, node connects to each other in the same set. We only need to 
analyze the connections to detect the communities in one-mode network. For two-
mode network, nodes in the same set are not connected. To detect the communities of 
one node set, we need study its connections to the other node set and the community 
structure of the other node set simultaneously. Thus communities of two node sets can 
be detected simultaneously. 

As discussed in the section of related works, the existing methods for bipartite net-
work is still far from sound comparing with the methods for one-mode network. This 
paper proposes a compression-based method to resolve communities in bipartite net-
work as: (a) defines an MDL criterion which is extended from [9]; and (b) proposes a 
greedy algorithm which is adapted from [13]. The criterion is based on binomial coef-
ficient and the proposed greedy algorithm takes advantage of the properties of bino-
mial coefficient. The proposed algorithm automatically discovers the communities of 
two node sets simultaneously. Experiment results show that the newly proposed 
method successfully finds communities that CA (cross-association) method [13] fails 
to find and it is more accurate than the well known ITCC (Information-theoretic co-
clustering) method [14] while detecting communities.  

The rest of the paper is organized as follows. Section 2 gives some related work. 
Section 3 introduces the basic idea of our method and the MDL criterion. Section 4 
proposes a greedy algorithm that finds communities according to the proposed MDL 
criterion. Section 5 evaluates the proposed algorithms on four datasets. Section 6 
concludes the paper.  

2   Related Works 

The earliest significant work on this topic is the biclustering/co-clustering [15] which 
simultaneously searches row/column communities. A row community and a column 
community together with the connections between them form a submatrix (bicluster). 
Cheng [16] proposed a biclustering algorithm for gene expression data analysis, using 
a greedy algorithm that identifies one bicluster at a time by minimizing the sum 
squared residue. Dhillon [14] proposed an information-theoretic co-clustering, which 
searches communities by minimizing the KL-divergence between the biclusters and 
the original matrix. According to the experiments, the results generated by bicluster-
ing/co-clustering are highly accurate. However, the row/column community number 
needs to be specified before running the algorithm. 

Recently, Guimera [17] proposed a projection based method. It transforms the bi-
partite network to one-mode network and uses method for one-mode network to dis-
cover communities. However, the projection process is usually considered to cause 
information loss, which will leads to bad result. Barber [18] extended the modularity 
[6] to bipartite network and proposed a method searching communities by minimizing 
the modularity. Barber’s method requires a serious constraint: the numbers of row 
community and column community need to be equal. Lehmann [19] proposed a 
method detecting biclique communities. However, its result highly depends on the 
user’s specification on the relaxation of biclique community. All methods mentioned 
above require manual specification on some parameters. 
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At the same time, some parameter-free methods were proposed. Chakrabarti [13] 
proposed a CA(cross-association) method. It automatically discovers row/column 
communities simultaneously. Sun [20] extended CA to deal with time-evolving bipar-
tite network and its ability to discover communities for static bipartite network is no 
better than CA. Papadimitriou[21] extended CA to search not only global communi-
ties but also local communities and its ability to discover global communities for 
static bipartite network is also no better than CA. Nevertheless, the result generated 
by CA is still unsatisfactory as shown in section 5. 

3   An MDL Criterion 

The MDL principle has been successfully used in many applications such as universal 
coding, linear regression and density estimation [11]. The basic idea of MDL principle 
is to use the regularity of given data to compress the data. The regularity that com-
presses the data the most is considered to describe the given data the best. In our 
method, the community structure is treated as the regularity of a bipartite network. 
Thus according to the MDL principle, to search a good community structure is actually 
to search the community structure that compresses the bipartite network the most. The 
sketch of the proposed method for bipartite network community detection is as follows.  
 

1) Define a formula to compute the bits for expressing a bipartite network directly. 
Let l be the bit length to directly express the bipartite network;  

2) Divide the process to express the bipartite network into two parts: one part to 
express its community structure and the other part to express the extra informa-
tion describing the network given the community structure. Let lc be the bit 
length. Note that if all vertices are put into one community, lc is equal to l; 

3) Search for the optimum partition that minimizes lc. This method is called a com-
pression-based method because lc is expected to be less than l. lc is called the 
MDL criterion since it is the optimizing target. 

Table 1. Table of main symbols 

Symbol Definition 

A 
n, m 

Binary data matrix 
Dimensions of A (rows, columns) 

k, e 
k*, e* 

(Qr, Qc) 

Number of row and column communities 
Optimal number of communities 
A partition 

Ai,j 

 

ai, bj 

n(Ai,j) 
n1(Ai,j) 

Submatrix of A composed of rows in community i and columns in 
community j 
Dimensions of Ai,j 

Number of elements in Ai,j n(Ai,j) = aibj 

Number of 1 in Ai,j 
C(Ai,j) 

T(A; k, e, Qr, Qc) 
Code cost for Ai,j 

Total cost for A 
Ari,j 

n(Ari,j) 
n1(Ari,j) 

Sub-matrix of A composed of row i and columns in community j 
Number of elements in Ari,j n(Ari,j)= bj 
Number of 1 in Ari,j 
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3.1   Terminologies 

Let X be an unweighted and undirected bipartite network. Suppose X is composed of 
two disjoint node sets Sr and Sc, the size of Sr is n and the size of Sc is m, then X can 
be described as a n×m (n, m ≥1) adjacency matrix A. Let us index the rows as 1, 
2,…, n and columns as 1, 2,…, m. Let k denote the number of row communities and 
let e denote the number of column communities. Let us index the row communities by 
1, 2, … , k and the column communities by 1, 2, … , e. Let 

Qr: {1, 2, … , n}
 

→{1, 2,…, k} 

Qc: {1, 2, … , m}
 

→{1, 2,…, e} 

denotes the assignments of rows to row communities and columns to column commu-
nities, respectively. The pair (Qr, Qc) is referred as a partition. We denote submatrix 
of A composed of rows in community i and columns in community j as Ai,j, i = 1,  
2, …, k and j = 1, 2, …, e. Let the dimensions of Ai,j  be (ai, bj). 
 
Example 2. Fig 1 (c) shows a partition example for Fig1 (b). In this example, Sr = 
{1,2,3,4}, Sc = {A,B,C,D,E,F,G,H,I,J,K}; n = 4, m = 11; k = 2, e = 2; Qr = 
{1,2,3,4}→{1,1,2,2} , Qc ={A,B,C,D,E,F,G,H,I,J,K}→{1,1,1,1,1,2,2,2,2,2,2}. 

3.2   A Two-Part Coding 

We now describe a two-part coding for matrix A. The first part is the partition com-
plexity that describes the partition (Qr, Qc). The second part is the conditional com-
plexity that describes the matrix given the partition. 

3.2.1   Partition Complexity 
The partition complexity consists of the following terms: 
 
1) Bits needed to describe the number of rows, columns and number of 1: n, m, and 

n1 (A). Since this term does not vary with different partitions, it makes no sense 
to the result so that it can be ignored. 

2) Bits needed to describe the number of communities: log(n)  for k and log(m) for 
e. Since these two terms do not vary with different partitions, it is ignored as 
well. 

3) Bits needed to describe the community to which the rows and columns belong: 
nlog(k) and mlog(e). 

4) Bits needed to describe all the ke submatrix Ai,j, i.e. the number of 1 between 
pairs of row community and column community: kelog(n1(A)) 

3.2.2   Conditional Complexity 
Example 3. Assume there is a matrix A with only 1 row community and 1 column 
community. Given n(A) and n1(A), the left information of A is expressed as follows:  
(1) Each combination of the n1(A) 1’s is mapped to an integer index . Thus it requires 
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1

( )
( )( )n A

n A integers to map all the combinations. (2) All the integers are encoded into bits. 

Consider the following matrix 

1  0  0  0

0  0  1  0

0  1  0  0

0  0  0  1

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

It requires 
1

( )
( )( )n A

n A  = 16
4( )  = 1820 integers. The matrix could be encoded using 

log(1820) bits. 
Given the partition complexity, the information to fully express A can be expressed 

using ,
1 1

( )i j
i k j e

C A
≤ ≤ ≤ ≤
∑ ∑  bits where  

,

1 ,

( )

, 1 1 ( )
1 1

( ) = log ( )i j

i j

n Ak e
i j i j n A

i k j e

C A = =
≤ ≤ ≤ ≤

⎡ ⎤∏ ∏⎣ ⎦∑ ∑  (1) 

Then the total bits to describe A with respect to a given partition is  

,

1 ,

1

( )
1 1 ( )

( ; , , , ) = log( ) + log( ) + log( ( ))

                                              +log ( )i j

i j

r c

n Ak e
i j n A

T A k e Q Q n k m e ke n A

= =
⎡ ⎤∏ ∏⎣ ⎦

 (2) 

3.3   Problem Formulation 

By the MDL principle, smaller T(A; k, e, Qr, Qc) leads to higher quality partition.  
Thus in order to resolve the communities of A, we need to find the optimal partition 
that minimizes T(A; k, e, Qr, Qc). The optimal partition correspond to k*, e*, Qr*, Qc* 
and T(A; k*, e*, Qr*, Qc*). Typically, this problem is a combination optimization 
problem, thus is a NP-hard problem [22]. A common approach to conquer such prob-
lem is the evolutionary algorithm [23, 24]. In order to obtain a deterministic result, we 
use an approximate algorithm instead. 

4   A Split-Refine Greedy Algorithm 

4.1   Sketch of the Algorithm 

The proposed algorithm is a greedy algorithm, as shown in Algorithm 1. It is the algo-
rithm for the case when n is bigger than or equal to m. And it has a counterpart for the 
case when n is smaller than m. It starts from k = 1 and e = 1. For each iteration, it 
performs a row and column splitting (line 6), a column splitting only (line 7), and a 
row splitting only (line 8). Each step above guarantees that the total cost is non-
increasing, so it is considered to be a greedy algorithm. At last, it adjusts the search 
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step size for the three steps above. The procedure terminates if the failure continues 
3*σ times, where σ is a threshold. Here σ is set to be 3.  
 

 

Algorithm 1. MDL-greedy 
Input: A 
Output: k*, e*, Qr*, Qc* 
1. k =1; e = 1; Qr = {1,1,…,1}; Qc = {1,1,…,1}; T = 0; F=0, R.rowstep = 1, R.columnstep =1 

//start as one community;  F is the flag for no improvement;  
R is a counter for repeated splitting, i.e. the search step size 

2. currentcost = CostComputation (k, e, Qr, Qc) 
3. F = 0; 
4. if n >= m 
5.    do  
6.        Row-column-greedy(k, e, Qr, Qc, F, R); 
7.        Column-greedy(k, e, Qr, Qc, F, R); 
8.        Row-greedy(k, e, Qr, Qc, F, R); 
9.        Adjust-searchstep(F, R); 
10.   while (F < 3σ) 
11. end 
12. k* = k, e* = e, Qr* = Qr, Qc*= Qc 
13. return 
Procedure CostComputation (k, e, Qr, Qc) 

//compute the cost of a partition according to formula 2 

 
Algorithm 2 shows the row and column searching. It splits the row and column first. 

During the splitting, a new row community and a new column splitting are generated. 
After the splitting, it reassigns each row/column to a new community that has the least 
cost. At last, the algorithm checks whether the splitting leads to a better compression. 
If the compression has been improved, the new partition is assigned to the current 
partition. The check guarantees the non-increasing of the total cost. Algorithm 2 has its 
counterparts for Column-greedy and Row-greedy. There are two sub-procedures 
SplitRow() and ReassginRowCommunity(), which are described in Algorithm 4 and 
Algortihm 5, respectively. SplitColumn() and ReassginColumnCommunity() are fun-
damentally the same as the former two except that they are for column.  

 
Algorithm 2. Row-column-greedy 
Input: k, e, Qr, Qc, F, R 
Output: k, e, Qr, Qc, F, R 
1. [tmpk, tmpQr] = SplitRow(k, Qr, R); [tmpe, tmpQc] = SplitColumn(tmpe, tmpQc, R ); 
2. [tmpk, tmpe, tmpQr, tmpQc] =  ReassginRowCommunity(tmpk, e, tmpQr, Qc); 
3.  [tmpk, tmpe, tmpQr, tmpQc] = ReassginColumnCommunity(tmpk, tmpe, tmpQr, tmpQc)); 
4.  newcost = CostComputation(tmpk, tmpe, tmpQr, tmpQc); 
5.  if newcost >= currentcost     
6.         F = F + 1; 
7.  else  
8.         currentcost = newcost;       k = tmpk; Qr = tmpQr e = tmpe; Qc = tmpQc; F = 0; 
9.  end 

 
Algorithm 1 adjusts the search size R according to the failure during the search. 

Algorithm 3 shows the detail. For each consecutive three times failure, the search step 
R will be increased. If there is no such failure, the search step size is kept as 1. 

 



602 K. Xu et al. 

Algorithm 3. Adjust-searchstep 
Input: F, R 
Output: F, R 
1.  if F%3 == 0 
2.    if k > e  R.rowstep++; 
3.    else  if  e > k 
4.                 Rcolumnstep++; 
5.           else  
6.                 R.rowstep++; 
7.                 Rcolumnstep++; 
8.           end 
9.    end 
10. else 
11.     R.rowstep=1; 
12.     Rcolumnstep=1; 
13. end  

4.2   Split the Submatrix 

The algorithm splits the submatrix by splitting the row/column respectively. The 
detail of function SplitRow() is as follows: line 3 picks up the submatrix whose cost is 
the highest; line 11 judges whether the reduced cost after removing a row and regard-
ing it as a community is higher than or equal to a threshold. In our work, the threshold 
is set as the maximum reduced cost. The splitting step searches for the right value for 
k and e. 

Lemma 4.1. if A = 1

2

A

A

⎡ ⎤
⎢ ⎥
⎣ ⎦

, then C(A1) + C(A2) ≤C(A). 

Proof 

1 2

1 1 1 1 2

1

1 2

1

1 2

1 1 1 2

1 2

1 1 1 2

( ) ( )( )
( ) ( ) ( )

( )
( ) ( )
( )

0

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) log[( )] log[( )]

         log[ ( )( )]

          log[( )( )]

           =log[( )]+log[( )] 

         

n A n An A
n A n A n A

n A
n A n A
n A x x

x

n A n A
n A n A

n A n A
n A n A

C A +
+

−
=

= =

=

≥

∑

1 2  = ( )+ ( )C A C A

 

where the second equality follows the Vandermondes’s Identity [25] and the inequal-
ity follows the monotonic of the log function. 
 

Corollary 4.1. For any k2 ≥k1 and e2 ≥e1, there exists a partition such that 

2 2 1 1

, ,
1 1 1 1

( )  ( )i j i j
i k j e i k j e

C A C A
≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

≤∑ ∑ ∑ ∑  

Proof. This simply follows Lemma 4.1. 
According to Corollary 4.1, the function SplitRow() will never increase the condi-
tional complexity. 
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Algorithm 4. SplitRow 
Input: k, Qr, R 
Output: k, Qr 
1. Repeat line 2~line14 R.rowsize times 
2. k = k +1; 
 
 
3. r = ,

1 ,

( )

( )
1 1

arg max ( )i j

i j

n A

n A
i k j e≤ ≤ ≤ ≤

∑  
 
 

4. for each row i (1≤i≤n) 
5.      if Qr(i) == r 
 
 
6.      costr(i) = , , , ,

1 , 1 , 1 , 1 ,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

(( ) ( ) ( ))r j r j i j i j

r j r j i j i j

n A n A n Ar n Ar

n A n A n Ar n Ar
j e

−
−

≤ ≤

− −∑  
 
 
//record the reduced cost when removing row i from community r and regard it  
as a community 

7.      end 
8. end 
9. threshold = max(costr); 
10. for each row i (1≤i≤n) 
11.    if costr(i) >= threshold  
12.       Qr(i) == k;   
13.    end 
14. end 
15. return 

4.3   Reassign the Rows and Columns to Community 

The reassign step is a refinement of the result from the split step. It not only refines 
the splitted row communities, but also refines the column communities so as to fit the 
change of row communities. Line 5 picks up the community to which assigning a row 
will add the least cost to the total. Line 7 judges whether to reassign a row will reduce 
the total cost. The symbols before reassignment are denoted as k0 and C(Ai,j

0), and the 
symbols after the reassignment are denoted as k1 and C(Ai,j

1). 
 

Theorem 4.1. 
0 1

0 1
, ,

1 11 1

( )  ( )i j i j
j e j ei k i k

C A C A
≤ ≤ ≤ ≤≤ ≤ ≤ ≤

≥∑ ∑ ∑ ∑  

 
Proof. This simply follows the reassignment judgment. 
 
By Theorem 4.1, the function ReassginRowCommunity() will never increase the 
conditional complexity. 

4.4   Computational Complexity 

Line 5 of Algorithm 5 computes ke binomial coefficient. The same computation is 
also required for the column reassignment. Thus the computational complexity of 
Algorithm 5 is O(I(n+m)ke), where I is the count of the outer loop. 

Line 2 of Algorithm 4 computes ke binomial coefficient, and the loop on line 3 
computes ne binomial coefficient. Thus the computational complexity of Algorithm 4 
is O((k+n)e). Here the loop time R is ignored since its maximum value is 3. 
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Considering the computation on columns, the complexity of each iteration in Algo-
rithm 1 is O(2I(n+m)ke + 2ke+ne+mk) =  O(I(n+m)ke). Thus the complexity of Al-
gorithm 1 is O((k*+e*) I(n + m)k*e*). Since k*, e*, and I are small according to our 
experiments, Algorithm 1 is linear. 

 
Algorithm 5. ReassignRowCommunity 

Input: k, e, Qr, Qc 
Output: k, e, Qr, Qc 
1. do 
2.    currentcost = CostComputation (k, e, Qr, Qc); 
3.    tmpQr = Qr; 
4.    for each row r (1≤r≤n) 
 
5.       i = , , ,

1 , 1 , 1 ,

( ) ( ) ( )

( ) ( ) ( )
1 1

arg min (( ) ( ))i j r j i j

i j r j i j

n A n Ar n A

n A n Ar n A
i k j e

+
+

≤ ≤ ≤ ≤

−∑ ; 
 
 
6.      ipos = Qr(r);  

 //the current community row r belong to 
 
 
 
 
7.       if        

, , ,
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, , ,

1 , 1 , 1 ,

( ) ( ) ( )

( ) ( ) ( )
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−
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8.         tmpQr(r) = i 
9.         Qr = tmpQr; 
10.       end 
11.     end 
12.     for each column c (1≤c≤m) 
13.        do the same as done from each row 
14.     end 
15.     newcost = CostComputation (k, e, Qr, Qc)  
16.  while newcost < currentcost; 
17. return 

5   Performance Study 

All experiments are conducted on an INTEL core 2DuoProcessorE2160 with 2G 
memory, running Windows XP. All algorithms are implemented in Matlab R2007b. 
The program is run on J2SE 5.0.  

5.1   The Synthetic Datasets 

To check the performance of the proposed algorithm, the algorithm is examined over 
four synthetic datasets, which parallel the datasets for one-mode network in [26].  
 
Dataset1: The sizes of Sr and Sc for each graph are set as 192 and 192, respectively. Sr 
and Sc are divided into three communities of 64 vertices, denoted as {Sr1, Sr2, Sr3} and 
{Sc1, Sc2, Sc3} respectively. Edges are placed between vertex pairs of different types 
independently and randomly. The distribution of the edges for a graph is shown in 
Table 2. Here Zij is the average degree of the vertices in Sri. Several constraints are 
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added on the generated graphs: For a given i,
1 3

24ij
j

Z
≤ ≤

=∑ ; 
!

ii ij
j i

Z Z
=

>∑ . All 
!i j

ijZ
=

 

are the same. 

Table 2. Edge distribution for dataset 1 

Graph Sc1 Sc2 Sc3 

Sr1        Z11 Z12 Z13 

Sr2 Z21 Z22 Z23 
Sr3 Z31 Z32 Z33 

 
Dataset 2: the number of graphs is the same as that of datasets 1. Each graph in data-
set 1 has a corresponding subgraph in dataset 2, as shown in Table 3. All graphs in 
dataset 2 are generated by removing Sr3 and its related edges from graphs in dataset 1. 
 

Dataset 3: Let y be an integer and 1≤y≤21. The sizes of Sr and Sc  for each graph 
are set as 192y and192y, respectively. Sr and Sc are divided into three communities of 
64y vertices, denoted as {Sr1, Sr2, Sr3} and {Sc1, Sc2, Sc3} respectively. Edges are 
placed between vertex pairs of different types independently and randomly. The edge 
distribution for a graph is shown in Table 2. Here Zij is the average degree of the 
vertices in Sri. Two constraints are added on the generated graphs: For a given i, 

1 3

24ij
j

Z y
≤ ≤

=∑ , 
!i j

ijZ
=

= 2y. 

Table 3. Edge distribution for dataset 2 

Graph Sc1 Sc2 Sc3 

Sr1        Z11 Z12 Z13 

Sr2 Z21 Z22 Z23 

 
Dataset 4: the number of graphs is the same as that of datasets 3. Each graph in data-
set 3 has a corresponding subgraph in dataset 2, as shown in Table 3. All the graphs in 
dataset 4 are generated by removing Sr3 and its related edges from graphs in dataset 3. 

5.2   Evaluation and Results 

There is no ‘standard’ criterion to measure the quality of the results. Therefore, the 
precision, i.e. the fraction of vertices classified correctly, is computed as in [26], and 
it is adapted to bipartite network. The vertices in Sr that has been correctly classified 
is denoted as P(Sr), the vertices in Sc that has been correctly classified is denoted as 
P(Sc). Then precision can be computed as follows: 

| | | ( ) || | | ( ) |
( )= * *

| | | | | | | | | | | |
c cr r

r c r r c c

S P SS P S
P V

S S S S S S
+

+ +
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Another criterion is the ratio between the number of discovered communities and the 
correct community number. The number of correct row communities is denoted as Nr 
and the number of correct column communities is denoted as Nc. Then ratio can be 
computed as follows: 

= * *cr

r c r r c c

NN k l
Ratio

N N N N N N
+

+ +
 

When Ratio is equal to 1, the method discovers the correct community number. When 
Ratio is less than 1, the method discovers less than the correct community number. 
And when Ratio is bigger than 1, the method discovers more than the correct commu-
nity number. 

Table 4. Precision&Ratio for dataset 1 

 !i j

ijZ
=

 
MDL greedy CA ITCC 

1 0.9765±0.0525 0.9100±0.0665   0.9744±0.0529   

2 0.9944±0.0277 0.9394±0.0569 0.9746±0.0566 
3 0.9897±0.0373 0.9414±0.0583 0.9776±0.0595 
4 0.9787±0.0507 0.9262±0.0642 0.9719±0.0663 

 
 

P(V) 

5 0.9470±0.0577 0.8794±0.0797 0.8553±0.1233 
1 1.0567±0.1258 1.1900±0.1276   - 
2 1.0133±0.0656 1.1600±0.1296 - 
3 1.0233±0.0855 1.1450±0.1415 - 
4 1.0433±0.1127 1.1650±0.1411 - 

 
 

Ratio 

5 1.0733±0.1577 1.2667±0.2247 - 

Table 5. Precision&Ratio for dataset 2 

 !i j

ijZ
=

 
MDL greedy CA ITCC 

1 0.9958±0.0181 0.8745±0.0585   0.9329±0.0166   

2 0.9978±0.0130 0.8804±0.0631 0.9350±0.0523 
3 0.9939±0.0188 0.8896±0.0693 0.9388±0.0395 
4 0.9853±0.0207 0.8922±0.0671 0.9048±0.0789 

 
 

P(V) 

5 0.9430±0.0431 0.8339±0.0753 0.8097±0.1009 
1 1.0100±0.0438 1.3420±0.1372   - 
2 1.0040±0.0281 1.3300±0.1738 - 
3 1.0080±0.0394 1.2780±0.1703 - 
4 1.0100±0.0438 1.3060±0.1874 - 

 
 

Ratio 

5 1.0540±0.1749 1.4580±0.2417 - 

 
The algorithms MDL-greedy, CA and ITCC are tested on dataset 1 and dataset 2. 

Although the ‘farthest’ initialization is reported to be the best in [14], ‘random’ initiali-
zation gains better result than ‘farthest’ initialization for ITCC in this experiment. 
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Therefore, ‘random’ initialization is adopted for ITCC. Furthermore, the community 
number is specified manually as the correct number since ITCC cannot search it auto-
matically. Therefore, there is no Ratio for ITCC. The results are the average preci-
sion/ratio and their standard deviation over 100 random network generations, which 
are shown in Table 4 and Table 5. On both datasets MDL-greedy outperforms CA and 
ITCC. MDL-greedy gains a higher precision and is more stable than the other two 
methods. MDL-greedy scarcely discovers wrong community number while CA tends 

to generate more communities. When 
!i j

ijZ
=

increase to 5, the performance of all meth-

ods drops. The precision for ITCC drops the most, which is even worse than CA. The 
precision drop of MDL-greedy is acceptable because the variation is small. Comparing 
with CA, the Ratio for MDL-greedy is hardly affected. Obviously, CA gets trapped in 

the noise produced by the big 
!i j

ijZ
=

 when searching for the number of communities. A 

sample result on a specified network is shown in Fig 2 to explain this phenomenon.  
 

 

Fig. 2. A sample result for MDL-greedy & CA on dataset 1&2 

5.3   Scalability 

The algorithms MDL-greedy and CA are tested on dataset 3 and dataset 4. ITCC is 
not tested here since it requires manual specification on community number. The time 
cost for finding the optimum partition is recorded in our testing. The results are shown 
in Fig 3. The results show that the cost of MDL-greedy increases linearly along the 
increasing of y and is very stable. MDL-greedy outperforms CA on both datasets.  
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Fig. 3. Time cost for dataset 3(a)&dataset 4(b) 

 

Fig. 4. A sample result for MDL-greedy & CA on dataset 3&4 

When y is small, the performances of MDL-greedy and CA are close. But along the 
increasing of y, the performance difference between MDL-greedy and CA becomes 
larger and larger. According to the Ratio value in Table 4 and Table 5, the difference 
is attributed to the extra burden from CA’s tendency to discover the community num-
ber more than the correct one. This phenomenon is very obvious in the result for data-
set 4. Since the networks in dataset 4 are asymmetric, CA sometimes consumes much 
more time than expected. There are two jumps in Fig 3(b): from y=15 to y= 17 and 
from y=19 to y=21. A sample result for both methods on a specified network is shown 
in Fig 4. The number of communities that CA generates is much larger than the actual 
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number: (k CA*=6, l CA*=6) vs (k*=3, l*=3) in Fig 4(c) and (k CA*=4, l CA*=6) vs 
(k*=2, l*=3) in Fig 4(f). Generating more communities will decrease both the preci-
sion and scalability of CA. This may make MDL-greedy more practical than CA, 
since practical problems often provide large datasets. 

5.4   The Southern Women Data Set 

The southern women dataset is commonly used to evaluate the performance of bipar-
tite network community detection methods [27]. It records eighteen women’s atten-
dance on fourteen events. Freeman has described it as “…a touchstone for comparing 
analytic methods in social network analysis[28]”. MDL-greedy, CA and ITCC are run 
on this dataset. Again ‘random’ initialization is adopted for ITCC. ITCC is run twice 
and the community number are set as (k = 2,l = 3) and (k = 2, l = 4) respectively. The 
results are shown in Fig 5, where the women are labeled as ‘W*’ and the events are 
labeled as ‘E*’. According to Freeman[28], the ’perfect’ community for the southern 
women are ‘W1-W9’ and ‘W10-W18’. There is no focus on the events. It is shown 
from Fig 5 that both MDL-greedy and CA detect the correct community number for 
the southern women. The result of MDL-greedy is exactly the ‘perfect’ community 
while the result of CA is quite different from the ‘perfect’ one. And no method in [28] 
generates the same result as CA. No method  in [28] generates the same result as ITCC 
(k = 2, l = 3) either, which is also far from the ‘perfect’ one. However, the result of 
ITCC (k = 2, l = 4) is very close to the ‘perfect’ one in which only ‘w8’ is misplaced. 

 

 
Fig. 5. Result for southern women dataset 
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6   Conclusions 

To resolve communities in bipartite networks, the compression-based method is pro-
posed for bipartite networks.  A binomial coefficient based formula is applied as the 
description length of a partition. A greedy algorithm to minimizing the description 
length is also proposed under a split-refine framework. It successfully searches com-
munities in automatic style for different types of nodes simultaneously. The experi-
ment results show the high accuracy of the proposed method in the perspectives of 
both manually defined measures: precision and ratio. The experiment results also 
show its almost linear scale with the node size of the bipartite network, which fits the 
computational complexity analysis well. 
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Abstract. Discovery of evolving regions in large graphs is an impor-
tant issue because it is the basis of many applications such as spam
websites detection in the Web, community lifecycle exploration in social
networks, and so forth. In this paper, we aim to study a new problem,
which explores the evolution process between two historic snapshots of
an evolving graph. A formal definition of this problem is presented. The
evolution process is simulated as a fire propagation scenario based on
the Forest Fire Model (FFM) [17]. We propose two efficient solutions
to tackle the issue which are grounded on the probabilistic guarantee.
The experimental results show that our solutions are efficient with re-
gard to the performance and effective on the well fitness of the major
characteristics of evolving graphs.

1 Introduction

Graphs represent the complex structural relationships among objects in various
domains in the real world. While these structural relationships are not static,
graphs evolve as time goes by. Evolving graphs are usually in the form of a set
of graphs at discontinuous time stamps, where the period between two adjacent
time stamps may be quite long. Take the Web archive for example. Due to its
large size, the Web or a part of it is periodically archived by months or even
by years. Mining evolving graphs is important in many applications including
the detection of spam websites on the Internet [7], exploration of community
lifecycle in social networks [20], and identification of co-evolution relationships
between structure and function in bio-informatics [18].

While many of the existing studies have paid attentions to finding stable
or changing regions in evolving graphs [1,19,10], only a few of them are about
how graphs evolve. The researchers have proposed various generative models
to capture the statistical properties of the graph evolution such as Power Law
distribution [5], effective diameter [21], and so forth. In this paper, however,
we study a new problem, which is to model the evolving process between two
historical snapshots of an evolving graph. Fig. 1 briefly shows our idea. G is
an evolving graph which evolves from time t to t′. Suppose we have the graph
snapshots at time t and t′, and the real evolution details between these two

H. Kitagawa et al. (Eds.): DASFAA 2010, Part I, LNCS 5981, pp. 612–626, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Example Graphs (All the figures in this paper are made colorful for clarity)

snapshots are unknown. We would like to generate a series of virtual graph
snapshots, as shown in the dotted parts in Fig. 1. What is important is that the
statistical properties of the evolution must be maintained in these virtual graph
snapshots. By doing this, we decompose the macro graph change of the two real
snapshots into several micro changes. The benefits are twofold.

Firstly, by parsing the graphs into historical snapshots, we can learn the evo-
lution of the different parts, and thus the future trends of these regions can be
predicted. Fig. 2 shows a concrete example, which is conducted on the DBLP
dataset1. The extracted virtual historical snapshot steps can help us understand
the evolution of co-authorship relations. It seems that Web community evolution
detection [2] can do the same thing, but the work in this paper is different from
that. We aim to detect the changes throughout the whole graph and do not
constrain the work on the boundary subgraph (community) that may be defined
by the users (i.e., with keywords).

Secondly, successfully tackling the issue proposed in this paper can address
the critical issue of the lack of intermediate order-based Web data between two
historical Web graphs. Many existing studies on static/dynamic graph mining
can profit from restoring these historical graphs such as frequent subgraph dis-
covery [9], temporal graph cluster detection [1], micro view on social networks
[13], and so forth. As such, this research work is orthogonal to the existing issues
on graph mining in a complementary manner.

For ease of exposition and without loss of generality, we only consider the
node/edge insertion scenario in this paper. It should be noted that our ap-
proaches can handle the scenario where both the insertion and the deletion of
nodes/edges occur. The difficulty in generating these virtual graph snapshots is
that there are numerous number of possibilities.

Our approach adopts the Forest Fire Model (FFM) [17], which has been
demonstrated as successfully explaining the mechanism of dynamic systems [8].
The new edge linkage action can be thought of as fire propagation, and the nodes
on the new edges are the origins of the fire. The virtual historical graph is then
to be thought of as the snapshot on tracking how the fire propagates on the
whole graph. We will give the formal definition of the problem shortly.

1 www.informatik.uni-trier.de/∼ley/db
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(a) Original Graph
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(b) Virtual Graph Snapshot #1
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(c) Virtual Graph Snapshot #2
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(d) Existing Graph

Fig. 2. Expected Graph Evolution Process

The contributions of our paper are as follows:

• We propose a new problem of how to trace back the virtual snapshots of
evolving graphs. The process can be simulated based on the FFM. The
historical graph is deemed as a snapshot of tracking the fire propagation
situation on the graph.

• We propose two approaches, bottom-up and leap-search. The bottom-up
strategy examines the candidates from scratch in a global view, while the
lead-search method applies a density-oriented candidate selection mecha-
nism. We also explore the heuristics based on the properties of evolving
graphs to improve the efficiency of the two approaches.

• We conduct comprehensive experiments on real large evolving graphs. The
evaluation results demonstrate the effectiveness and efficiency of the pro-
posed solutions.

The remainder of this paper is organized as follows. We introduce the pre-
liminaries in Section 2. The bottom-up and leap-search solutions are presented
in Sections 3 and 4, respectively. Section 5 reports the experimental results and
Section 6 concludes the paper.
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Table 1. The summary of notation

Notation Definition
G An evolving graph or a graph adjacent matrix
Gt An evolving graph at time t
Vt The set of vertices in the graph Gt

Et The set of edges in the graph Gt

|Vt| Number of vertices in the graph Gt

|Et| Number of edges in the graph Gt

i, j, k Vertices in a graph
e= (i, j) Edges in a graph
deg(u) Degree of vertex u

vi,j Fire propagation velocity between vertices i and j
ti,j Fire propagation time between vertices i and j
di,j Distance or length between vertices i and j

c Backward burning probability

2 Preliminary
In this paper, we deal with undirected evolving graphs. Let G denote an evolving
graph. A snapshot of the graph G at time t is represented as Gt = (Vt, Et), where
Vt is the set of vertices at time t; and Et ⊆ Vt × Vt is the set of edges at time
t. The notations used in this paper is summarized in Table 1. To trace back
the historical snapshots of an evolving graph, we will introduce novel strategies
based on the FFM [17].

2.1 Forest Fire Model

The FFM was first proposed in ecology [17], where the scholars were interested
in how to control and predict wildfire in the real world environment. Henley [8]
first introduced the FFM in studying the characteristics of self-organized sys-
tems. From then on, the FFM has succeeded in explaining many real dynamical
systems such as Geographic Information Systems (GIS) [6], Affiliation Network
[12], arXiv citation [12], and so forth. Most especially, the FFM fits in many
properties of real Web data we would like to explore in this paper: (1) the rich
get richer, which is called the attachment process (heavy-tailed degrees) [3];
(2) leads to community structure [11]; (3) densification [12]; and (4) shrinking
effective diameter.

Note that the FFM is related to random walk and electric currents [4] with
regard to the issue of evolving graphs. The difference is that the latter two have
not taken all the aforementioned four properties of real Web graph into account.
As far as we know, there is only one work [12] on studying evolving Web graph
based on the FFM. There are three main differences between this work and
[12]: (1) [12] aims to generate synthetic evolving graphs from scratch, while in
this work we trace back the historical snapshots between two real graphs; (2)
[12] randomly selects the initial fired nodes, while in this work we deliberately
choose the initial fired nodes with probabilistic guarantee; and (3) we introduce
the fire propagation velocity into our framework, while [12] does not consider
this property. These distinct issues are due to the different purposes of the two
works; [12] intended to generate synthetic evolving graph from scratch on the
fly, while we aim to study the whole history of how an old graph evolves to a



616 Z. Yang et al.

Gt Gt+1Gi1 Gi2 Gik-1

0-graph 1-graph 2-graph (k-1)-graph k-graph

time

Fig. 3. Graph evolving process

newer graph. By parsing the evolving process into virtual historical snapshots,
we can learn the micro evolution of the different regions in a large graph to make
a navigational prediction on the evolving trend of the graph.

2.2 Discovery of the Historical Snapshot Graph Problem

Given two graphs, Gt and Gt+1, at time t and time t + 1, the problem of dis-
covering the historical graph snapshots involves tracing back the virtual graphs
after inserting n new edges2, where 1 ≤ n ≤ (|E(Gt+1)| − |E(Gt)|) = k, into the
old graph Gt. Let n-graph denote the graph snapshot which has n new edges.
Fig. 3 illustrates the evolving process of the graph. Gt and Gt+1 can be mapped
at 0-graph and k-graph, respectively. The issue of discovering the histori-

cal graph snapshots is then equivalent to finding the n-graphs, where
0 < n < k and (|E(Gt+1)| − |E(Gt)|) = k.

For example, Fig. 2 (b)-(c) are the graph snapshots of Fig. 2 (a) by inserting 6
and 14 new edges, denoted as 6-graph and 14-graph, respectively. The new edge
linkage action can be thought of as fire propagation, and the nodes on the new
edges are the origins of the fire. The virtual historical graph is then thought of
as the snapshot on tracking how the fire propagates on the whole graph. In this
paper, we introduce how to set the initial fire energy and how fast fire propagates
on the graph. As far as we know, this work is the first one to study these issues.
The problem of finding the n-graphs is then equivalent to discovering

the burning out n-graphs, which is formally defined in Definition 1.

Definition 1. Burning Out n-Graph (BOG) Problem
Given two undirected graphs Gt = (Vt, Et) and Gt+1 = (Vt+1, Et+1); a cost
function CF (i, j) on edge (i, j) where i ∈ Vt ∪ Vt+1 and j ∈ Vt ∪ Vt+1 ; a user
preferred number n of new edges, find the subgraph H of Gt ∪ Gt+1 such that

• The number of new edges on H is n, and
•

∑
(i,j)∈E(H) CF (i, j) is minimized.

E(H) is the edge set of graph H . The cost function CF can be considered as
the time necessary to construct the subgraph H (or burning out it), as will be
well defined shortly with the help of the FFM [17].

2 New vertices are accompanied with new edges.
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2.3 Discovery of the Burning Out n-Graph (BOG) Problem

We aim to address the issue of finding the first burning out n-graphs, which is
equivalent to extracting the historical graph snapshots. In this section, we intro-
duce the basic configuration of the fire model such as the initial fire energy, the
velocity and time for fire propagation, and the update of the fire energy.

Initial fire energy: Consider an FFM, where the fires are caused by those
changing edges (with vertex insertion), and each changing edge introduces one
unit fire energy. The initial fire energy of a vertex is the accumulated energy of
all its adjacent new edges.

Fire propagation: The cost function CF (i, j) introduced in Section 2.2 is de-
fined as the time ti,j of the fire propagation consumed on the edge between the
two adjacent vertices i and j. We have

CF (i, j) = ti,j =
di,j

v̄i,j + v̄j,i
, (1)

where di,j denotes the distance between the two adjacent nodes (i and j), and
v̄i,j and v̄j,i denote the average fire propagation velocity from vertice i to j, and
vice versa, respectively. It is interesting to note that the fire propagation has
direction, which conforms to the common intuition that the effects of changing
edges/vertices spread from the origins to the distant edges/vertices3. The average
velocity v̄i,j is mainly dependent on the initial burning energy4 �i. Hence, simplify
the model without loss of generality, we have v̄i,j = γi∗�i, where γi is a constant.
In this paper, we assume γi=γj=. . .=1, and Eq. (1) can be deduced as

CF (i, j) = ti,j =
di,j

�i + �j
. (2)

Fire energy update: The fire energy � should be updated after each successful
propagation by using the following equation.

�jt′ = �jt +
∑

i∈Neighsuc(j)

(1 − c) �i→j , (3)

where �jt and �jt′ are the fire energy of j at time t and time t′ respectively, c
is a backward burning probability [12], and �i→j is the fire energy transferred
from i to j. Thus we have �i→j = �i/deg(i). Neighsuc(j) denotes the neighbour
nodes of j that successfully transfer their fire energy to j between time t and
time t′. Note that once a node successfully propagates fires to its neighbours, its
own fire energy is reset to zero at the time.

In this paper, we propose two approaches to discover the fastest burning
out n-graphs. The bottom-up approach examines the candidates from scratch
3 This mechanism will help to address the issue on directed graphs, which however, is

out scope of this paper.
4 In a real ecological environment, other effects such as wind, topography slope, and

so forth, should also be taken into account.



618 Z. Yang et al.

———————————————————————————————————————————–
Algorithm 1. Bottom-up algorithm
———————————————————————————————————————————–

Input: The graph Gi−1 and Gi at time ti−1 and ti, a user preferred number n
Output: The fastest burning out n-graph(s)

1 H = Gi−1 ∪ Gi;
2 for each vertex vi ∈ H do //initial fire energy
3 fe[vi] =num of adjacent changing edges;
4 can graph list=store vi as a graph;
5 num of new edge=0;
6 while num of new edge < n do
7 for each graph g ∈ can graph list do
8 g′= appending g with new edge e of minimal spreading time;
9 tlocal=fire propagation time on e;
10 if tlocal < tminlocal

do
11 tminlocal

=tlocal;
12 update g’ in can graph list;
13 update fe[vi] if new edge introduces a new vertex vi;
14 num of new edge++;
15 output the n-graphs with minimal fire propagation time;
———————————————————————————————————————————–

in a global view with the dynamic threshold guaranteed, while the leap-search
approach proposes a density-oriented candidate selection strategy.

3 The Bottom-Up Approach

We develop a bottom-up greedy algorithm to extract the burning out n-graphs.
The algorithm follows the candidate generation and verification iteration. To
accelerate the process, the threshold-based technique is proposed to prune the
candidates early.

Candidate generation: In each iteration, a k-graph g is grown up to a can-
didate (k+1)-graph g′ by introducing a new edge enew, where the following
conditions hold: (1) enew is connected to some vertices in g; and (2) the fire
spreading time t from g to vnew is minimized5.

Verification: If the burning out time of the candidate (k+1)-graph g′ is greater
by far than the best one, we turn to the next candidate subgraph. Otherwise,
we update the fire energy of the new vertex, which is introduced by the new
edge based on Eq. 3, and continually grow g′ to a larger candidate graph with
another candiate-generation-and-test iteration.

The basic bottom-up greedy algorithm is shown in Algorithm 1. We will in-
troduce the pruning techniques in the next section. In the initial phase (line
1-5), the two graphs are joined. The changing edges of each vertex are counted
while joining, stored in an array fe. The vertex is put into the candidate list as
a graph. The candidate generation and test iteration is from line 6 to line 14.
Given a k-graph g, we generate its candidate (k+1)-graph, by finding a nearest
edge to g, which may come from its nearest neighbor vertex or internal unlinked
5 Specifically, t is computed based on Eq. 2. By default, di,j is set to 1 for the un-

weighted graph in this paper. For the weighted graph, di,j can be set according to
the weight of the edge.
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(a) Example graph data
(b) Sequential inserted edges(red color indicates insertion/removal edges)
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Fig. 4. Example graph

edge. The fire propagation time is computed based on Eq. 3. If the time is smaller
than the least time of burning out graph time so far, we update the new graph
information (line 12) and also update the fire energy of a new vertex if it exists
(line 13). The iteration will be completed when the burning out n-graph is found.

3.1 Implementation Details

Pruning Techniques. We can prune many candidate graphs early based on
the threshold-based technique. The threshold time tth is dynamically updated
based on the most optimal graph by far. Before a candidate graph g grows up
to a larger candidate one, if we find the construction (burning out) time tg of g
is already greater than tth, this round can be terminated and continued to the
next round. The reason why we jump to the next round instead of the remaining
candidates is that we can rank all the candidate graphs based on their burning
out time in ascending order (by using minimal heap). If tg is greater than tth,
then the time of all the remaining candidates (in the heap) should be greater
than tth; hence, this round can be safely terminated. The early pruning rule is
justified based on the following lemma.

Lemma 1 (Anti-monotone). Let g be a graph with k edges and g’ be a con-
nected supergraph of g with (k+1) edges. The burning out times of g and g’ are
t and t’, respectively. Let tth be a threshold time. If t > tth, then t′ > tth.
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———————————————————————————————————————————–
Algorithm 2. Pruning strategy for the bottom-up algorithm
———————————————————————————————————————————–
1 sort fe in descending order;
2 min heap ← store vj ∈ fe with maximal value as a subgraph;
3 while min heap is not empty do
4 g=subgraph with minimal value tg in min heap;
5 if #new edge(g) ≥ n do
6 break;
7 g′= appending g with edge of minimal spreading time;
8 tlocal=fires propagation time of the new edge;
9 min heap ← store g′ with tlocal max;
10 update fe[vi] if new edge introduces a new vertex vi;
11 vj=unvisited node in fe whose energy is the largest;
12 for each neighbor vk of vj do
13 if t(vk, vj) < tlocal do
14 min heap ← store vj as a subgraph;
15 break;
———————————————————————————————————————————–

Proof Sketch. (By contradiction) Suppose we have t′ ≤ tth. We reduce g′ to g′′

by removing the edge not existing in g. Let t′′ be the burning out time of g′′.
We have t′′ ≤ tth. As t′′ is equal to t, it results in t ≤ tth, which is contradictory
to the assumption; thus the lemma holds. �

Lemma 1 can efficiently prune many candidate subgraphs, as will be demon-
strated in the experimental results. The reason for this is that due to the Den-
sification Power Law [12] property, the threshold of the most optimal subgraph
(a “rich” one) by far will have high probability greater than most of the other
subgraphs (“poor” ones); thus, the latter ones can be pruned earlier without
testing. The optimized algorithm is shown in Algorithm 2, which replaces line
5-14 in Algorithm 1. The algorithm is self-explanatory, and we provide a con-
crete example to illustrate the process.

Example 1. Suppose we want to determine the snapshot with an insertion of
14 new edges. The graph in Fig. 4 (a) is our example graph, where the red lines
indicate the changing edges. We first scan the graph to accumulate the number of
the changing adjacent edges of each vertex and sort them. Therefore, we obtain
a list V1 : 7, V28 : 5, V32 : 4, V33 : 3, . . .. Note that we only record the vertex
which has at least one changing adjacent edge. Next, we push V1 into the heap
(because it has the largest initial fire energy and may propagate the fire faster).
We traverse the adjacent vertices of V1 and compute the time that the fire can
be spread to the nearest neighbor, resulting in 1/8 unit time (w.r.t Eq. 2, where
�V1 = 7 and �V2 = 1). Note that there are multiple nearest neighbors, e.g., V2,
V3, V4, etc. The new subgraph is pushed into the heap, and the fire energy of
each vertex involved is updated (w.r.t Eq. 3). We also push the node V28 into
the heap because its initial energy is the largest among the unvisited nodes.
Recursively, we execute the process until we find that the total number of new
edges is greater than or equal to the threshold (i.e., 14). The results are listed
in Fig. 4 (b). Note that the historical snapshot should be the union of graph G’
of the new edges gn with the old graph Gt, where G’=Gt ∪ gn.
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———————————————————————————————————————————–
Algorithm 3. Leap-search algorithm
———————————————————————————————————————————–

Input: The graph Gi−1 and Gi at time ti−1 and ti, a user preferred number n
Output: The fastest burning out n-subgraph(s)

1 H = Gi−1 ∪ Gi;
2 for each vertex vi ∈ H do //initial fire energy
3 fe[vi] =num of adjacent changing edges;
4 sort fe in descending order;
5 for each vj ∈ fe do //generate candidate core subgraphs
6 g=store vj with energy value as a subgraph;
7 while #new edge(g) < n do
8 g′= appending g with edge of minimal spreading time;
9 tlocal=fires propagation time of the new edge;
10 tlocal max=maximal value of tlocal;
11 cand graph list=store g′ with tlocal max;
12 for each subgraph g ∈ cand graph list do //test the candidate graph

//update g if possible
13 for each edge e(i, j) ∈ g do
14 update fe[i] and fe[j] by checking neighbors of i and j;
15 update fire propagation time of e(i, j);
16 update least time tleast necessary to fire out g;
17 Output the n-graphs(s) with minimal fire propagation time;
———————————————————————————————————————————–

4 The Leap Search Approach

In this section, we present a leap-search based method for the extraction of
burning out n-graphs. The method is efficient in processing graphs with a large
n, where growing up the candidate subgraphs from scratch by using bottom-up
growth can be time consuming. The approach is based on the density-oriented
candidate selection strategy. The intuitive idea is that fire transfers fast in those
regions where the energy density is high. The extraction process is also composed
of candidate generation and verification iteration.

Candidate generation: Starting from the nodes with the most fire energy,
we grow them by selecting their nearest neighbors (w.r.t. the fire propagation
time) until the number of the new edges in the subgraph graph is equal to n.
In other words, we do not wait for other possible candidates to grow up. During
the growing process, we record the least time necessary to transfer the fire.

Verification: We check the bottleneck nodes of the fire propagation in these
subgraphs (as indicated by the least time), greedily find the neighbors which can
remedy the weak edges on spreading the fire, and then update the least time
value. Through a recursive process, we finally determine the first burning out
regions with the least n new edges.

The leap-search algorithm is shown in Algorithm 3. The initial phase (line 1-
4) is similar to that of Algorithm 1. The candidate core subgraphs are generated
first (line 5-11). Starting from the nodes with most fire energy, we grow them
by linking to their nearest neighbors (w.r.t. the fire propagation time) or their
internal unlinked edges (line 8) until the number of the new edges in the subgraph
graph is equal to or greater than n. Different from the bottom-up algorithm, we
do not wait for other possible candidates to grow up. During the growing process,
we record the least time necessary to transfer the fire among them (line 9). In
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Fig. 5. Update mechanism for weak links (red line indicates the edge has changed and
this figure is best viewed in color)

———————————————————————————————————————————–
Algorithm 4. Pruning strategy for the leap-search algorithm
———————————————————————————————————————————–
1 tth=by far min time to burn out a n-candidate graph;
2 max heap=candidate graphs with fire propagation time t;
3 while max heap is not empty do
4 g=subgraph with maximal value in max heap;
5 for all edges of g
6 e(i, j)=g’s unvisited slowest edge on propagating fire;
7 update fe[i] and fe[j] by checking neighbors of i and j;
8 update fire propagation time tei,j

of e(i, j);
9 if(tei,j

> tth)
10 break;
———————————————————————————————————————————–

the candidate test phase (line 12-16), we check the bottleneck nodes of the fire
propagation in these subgraphs (as indicated by the least time), greedily find
the neighbors which can remedy the weak edges on spreading the fire (line 14-
15), and then update the least time value6 (line 16). The detail of the updating
mechanism will be described shortly. Finally, we determine the first burning out
regions with the least n new edges.

4.1 Implementation Details

Weak Link Updating Mechanism. We introduce how to update the fire
propagation time of the weak links. Suppose we have a subgraph as shown in
Fig. 5. Nodes V1 and V2 have been included in the candidate graph g, but nodes
V3 and V4 are outside of g. If we know that edge e(V1, V2) is a weak edge of g
(i.e., the fire propagation time is slow), then we start from nodes V1 and V2, and
check whether their neighbors can transfer fire energy to them. For this example,
node V2 has two neighbors, V3 and V4, with a large fire energy and can propagate
fire to V2. Therefore, we update fe[V2] (line 14 in Algorithm 3) by using Eq. 3.
The fire spreading time of e(V1, V2) is also updated (line 15).

Pruning Strategy. When testing the candidate graphs (line 12-16 in Algorithm
3), we can prune many candidates early by using a time threshold, tth, which is
by far the fastest time to burn out an n-graph. Given a candidate graph, if after
we update it by using the mechanism introduced in the last section the burning
time is still smaller than tth, then we can safely prune this candidate graph. To
6 The replacement should guarantee the number of new edge will not decrease.
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Data set name
Classifed type old new old new old new
Recorded time 2001 2007 2001-10-1 2001-12-31 2004-5 2005-7

Nodes 1849 5289 6310 10008 2446029 3078826
Edges 4732 16667 30637 67777 57312778 71400464

DBLP Enron Web

Fig. 6. Statistics of the three data sets
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Fig. 7. Efficiency of the proposed solutions

further improve the efficiency, the slowest edges on propagating fires in candidate
graphs are tested first. The optimized algorithm is shown in Algorithm 4.

5 Performance Evaluation

To evaluate our strategies, we conducted extensive experiments. We performed
the experiments using a Itanium2 CPU (1.5GHz) server with a 128G memory7,
running Redhat linux. All the algorithms were written in C++. We conducted
experiments on three real life datasets, DBLP , Enron, Web.

The first dataset, DBLP , is extracted from DBLP website8 and focuses
on the bibliography information from database community. It contains the co-
authorship information of major database conferences from 2001 to 2007. The
second dataset, Enron, records the email communication information of each
day from 2001-10-01 to 2001-12-31. For detail of these two datasets refer [15].
The third dataset, Web, records two snapshots of Japanese web pages (in jp do-
main) in May 2004 and July 2005, respectively. Part of this dataset is reported
in [22]. The basic statistics of the datasets are shown in Fig. 6. Refer [23] for
more experimental results.

5.1 Efficiency of Our Solutions

We compare our two algorithms, bottom-up and leap-search, with a naive
method [23]. The result is shown in Fig. 7. Note that the execution time on
the Enron dataset is in logarithm format. We can see that our solutions are
much faster than the naive one, about one to two orders of magnitude (as shown
in Fig. 7 (a)). For the huge Web dataset, the naive algorithm can not finish in

7 The actual used memory is smaller than 8G.
8 www.informatik.uni-trier.de/∼ley/db
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Fig. 8. Pruning efficiency of the proposed strategies

reasonable time. Between our two approaches, the leap-search performs better
than the bottom-up when the number of new edges n becomes larger. The rea-
son is that for large value of n, growing graphs from scratch by evaluating all
the neighbors is time consuming. However, for a small value of n, the cost for
growing graphs becomes smaller and the cost for updating weak links becomes
larger; thus, the bottom-up algorithm performs better.

5.2 Pruning Efficiency of Our Solutions

In this section, we evaluate the efficiency of the proposed pruning techniques.
The result is illustrated in Fig. 8. We can see that with pruning techniques,
the bottom-up algorithm can perform much better, as shown in Fig. 8 (a). The
reason is that many of the candidate graphs can be pruned sharply with the anti-
monotone rule and the refinement strategy. For the leap-search approach, the
early pruning technique can remove many candidate graphs from the heap. Thus,
the overall performance is improved. In summary, with the pruning techniques,
both algorithms only need to test and update a small number of candidate
graphs, which lead to good scalability with respect to the cardinality of the
datasets and the value of n.

5.3 Effectiveness of Our Solutions

We examine whether the discovered virtual historical snapshots restore the real
data with high precision and follow the important properties of evolving graphs.

– Precision. We compare three algorithms, random, bottom-up and leap-
search on the precision metric9. The random method is implemented by
randomly selecting n new edges combined with the old graph as the vir-
tual snapshot. The quantitative metric is defined as precision = ΔER∩ΔEV

ΔER
,

where ΔER denotes the set of actual new edges and ΔEV represents the
set of virtual generated new edges. Our methods can get rather high preci-
sion as illustrated in the figure. The reason why the precision decreases on
restoring the older snapshots (i.e., 10/15), is due to the small number of the
new edges, which leads to difficulty in locating the new edges. For our two
algorithms, there is a trade-off between efficiency and effectiveness.

9 Due to its prohibitive cost on execution compared with others, the naive algorithm
has not been considered here.
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Table 2. Precision evaluation

(a) Precision on Enron dataset
Date= 10/15 11/1 11/15 12/1 12/15

random 0.180 0.545 0.699 0.767 0.816
bottom-up 0.620 0.743 0.858 0.911 0.935

leap-search 0.517 0.654 0.779 0.863 0.907

(b) Precision on DBLP dataset
Year= 2002 2003 2004 2005 2006

random 0.129 0.271 0.415 0.622 0.731
bottom-up 0.546 0.644 0.700 0.773 0.902

leap-search 0.414 0.526 0.611 0.725 0.846
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Fig. 9. Effective diameter

– Effective Diameter. Fig. 9 shows the values of effective diameters [21]
for the historical snapshots. We can see that the virtual snapshots mainly
express the transition characteristic between the two real graphs. In Fig. 9
(b), the effective diameter drops after inserting a few edges. We argue that
the reason is due to the relative small community of the DB scholars. The
first few new edges may link to many others because these insertion edges
may be caused by those influential people (with more initial fire energy).

– Degree Distribution. We also evaluate the degree distributions of the
virtual historical snapshots. The temporal degree distribution follows the
power law distribution and the changing edge degree distribution obeys the
densification power law distribution. Refer [23] for detail.

6 Conclusion

In this paper we have studied a new problem of tracing back the virtual his-
torical snapshots. Two solutions have been proposed, the bottom-up and the
leap-search. We have conducted extensive experiments and the results show
that our approaches can restore the historical graph snapshots efficiently while
maintaining the evolution properties. In the future, we will evaluate some other
predictors such as those proposed in [14,16].
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J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg
(2000)

10. Inokuchi, A., Washio, T.: A fast method to mine frequent subsequences from graph
sequence data. In: ICDM (2008)

11. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.:
Stochastic models for the web graph. In: FOCS (2000)

12. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In: KDD (2005)

13. Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of
social networks. In: KDD (2008)

14. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks.
JASIST 58(7) (2007)

15. Liu, Z., Yu, J.X., Ke, Y., Lin, X., Chen, L.: Spotting significant changing subgraphs
in evolving graphs. In: ICDM (2008)

16. Newman, M.E.J.: The structure and function of complex networks. SIAM Re-
view 45(2) (2003)

17. Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fuels.
USDA Forest Service, Ogden, UT, Tech. Rep. (1972)

18. Shakhnovich, B.E., Harvey, J.M.: Quantifying structure-function uncertainty: a
graph theoretical exploration into the origins and limitations of protein annotation.
Jounal of Molecular Biology 4(337) (2004)

19. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: Graphscope: parameter-free
mining of large time-evolving graphs. In: KDD (2007)

20. Tantipathananandh, C., Berger-Wolf, T., Kempe, D.: A framework for community
identification in dynamic social networks. In: KDD (2007)

21. Tauro, S., Palmer, C., Siganos, G., Faloutsos, M.: A simple conceptual model for
the Internet topology. In: GLOBECOM (2001)

22. Toyoda, M., Kitsuregawa, M.: What’s really new on the web? identifying new pages
from a series of unstable web snapshots. In: WWW (2006)

23. Yang, Z., Yu, J.X., Liu, Z., Kitsuregawa, M.: Fires on the Web: Towards Efficient
Exploring Historical Web Graphs. University of Tokyo, Tech. Rep. (2009)



Identifying Community Structures in Networks
with Seed Expansion

Fang Wei1,2, Weining Qian3, Zhongchao Fei1,2, and Aoying Zhou3

1 Portfolio Strategy&Technology Leadership CTO Group, CPG,
Alcatel-Lucent Shanghai Bell

2 School of Computer Science, Fudan University,
Shanghai, China

{Fang.Wei,Zhongchao.Fei}@alcatel-sbell.com.cn
3 Software Engineering Institute, East China Normal University, Shanghai, China

{wnqian,ayzhou}@sei.ecnu.edu.cn

Abstract. Real-world networks naturally contain a lot of communities.
Identifying the community structures is a crucial endeavor to analyze the
networks. Here, we propose a novel algorithm which finds the commu-
nity structures from seed expansion. Its expansion process bases on the
transmissive probabilities coming from seed vertices and the modularity
Q function which is firstly defined by Newman et al.. The experimental
evaluation is conducted on real-world networks. The evaluation shows
that our algorithm has good results in quality.

1 Introduction

Real-world networks naturally contain a lot of communities. Generally, the com-
munity is some tightly-linked entities. It often represents a set of common inter-
ests or functional interactions members. Hence, how to identify the community
structures from complex networks is an interesting problem. Recently, it has
attracted wide attention in many domains and disciplines.

In this paper, we propose a novel algorithm which identifies the community
structures from seed expansion. The algorithm is based on transmissive prob-
abilities and the modularity Q function which is a new metric to measure the
community structures and firstly defined in [1].

The algorithm begins with a set of seed vertices. From the initial probabili-
ties of seed information, we compute the transmissive probabilities of newly- ex-
panded vertices. The probabilities reflect the possibility that seed vertices extend
to new vertices. Sorting the probabilities at each time step, we get a descend-
ing order of newly-expanded vertices. According to the order, we compute the
change value on modularity Q for current community candidate. If the change
value is larger than zero, it means that adding the vertex brings good community
structure to the seed set and it has a chance of further expansion.Otherwise, the
vertex is deleted.
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The contributions of this paper are summarized as follows:

1. Vertices’ transmissive probabilities are defined and the change values on
modularity Q are chosen to decide the expansion. The algorithm doesn’t
need to predefine the threshold of probability.

2. In five real-world networks, we evaluate our algorithm in two expansion
cases which are overlapping and non-overlapping. Both cases show that our
method has good performances.

2 Preliminaries

2.1 Network Model and Community

A network can be modeled as a graph. Let G = (V, E) be a graph with n vertices
and m edges, V and E are respectively the vertex set and edge set. The networks
discussed in this paper are unweighted and undirected graphs.

The community structure in network often refers to a subgraph of tightly-
linked vertices. Its connections among community vertices are relatively denser
than the ones crossing to the rest of the network.

We introduce one of its definitions, which is described in [2].

Definition 1. If a network owning m edges has been divided into k communities,
its modularity Q function is:

Q =
k∑

c=1

[
lc
m

− (
dc

2m
)2]

where c is the label of community. lc is the total number of edges whose ends
both lie in the same community c, and dc is the sum of the degrees of vertices in
community c.

When the community structure is updated by adding new vertices, we consider
the change of Q value. If adding a vertex to community structure, the links
pointed to the community members are called as inlinks and the links pointed
to the outside vertices which not belong to the community structure are named
as outlinks. Their total number are respectively denoted by |IL| and |OL|.

2.2 Definitions

In our algorithm, the probability for the transition from a vertex to another is
also considered. It is defined as:

Definition 2. The probability for the transmission from vertex j to vertex i is:

P (vj → vi) =
1

d(vj)

where vertex j is vertex i’s neighbor and d(vj) is the degree of vertex j.

The higher vertex’s transmissive probability is, the tighter connection between
the vertex with its neighbor is.
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3 Our Algorithm

Our algorithm is like the aggregative process. The aggregative criterion is the
change value of modularity Q.

Its expansion process will be introduced in following subsections.

3.1 The Change Value on Modularity Function Q

From the seed vertices, we begin the expansion process. For every newly-expanded
vertex, we will consider whether it brings good community structure to seed group.

When community c absorbs a new vertex w, it gets a new structure and its
initial Q becomes Q′. Then, the change value on Q corresponds to:

ΔQ = Q′ − Q =
|ILw|

m
− 2dc × dw + d2

w

4m2

Here, |ILw| is the total number of inlinks, dw is the degree of vertex w.
The value is decided not only by the links of new vertex, but also by the total

degrees of current seed set.

3.2 Expansion Step and Transmissive Probability

For the vertex v in seed S, its initial probability at the beginning of expansion
can be measured by:

P0(v) =
d(v)∑

u∈S d(u)

where v and u are the members of seed S.
After the initial state, the probability of vertex at each expansion step can be

computed based on its links information. Summarizing the amount of probabil-
ities transferred from its neighbors and itself, we get the probability of vertex i
at time step t:

Definition 3. The probability of vertex i at time step t is:

Pt(vi) = Pt−1(vi) +
∑

vk∈N(vi)

Pt−1(vk) × P (vk → vi)

where N(vk) are the neighbors of vertex k.

By the above formula, we get vertices’ probabilities at each expansion state and
sort these values in descending order. Then, every newly-expanded vertex is
scanned by this order for the locally-optimal expansion and the Q change value
corresponding to each scanning state is measured.

If the change value is larger than zero, it will be added into the seed for further
expansion. If ΔQ is smaller than zero, the vertex will be discarded. The next
vertex in probability order will repeat the computing process. The computing
seeks the locally-optimal value.

After the newly-expanded vertices are scanned, the seed group is updated and
the expansion process reaches new time step. The process is repeated until the
Q value of seed structure has no better changes.
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3.3 The Bound of Expansion Process

In expansion process, the spread of seed information can be viewed as informa-
tion’s random walk. At each step, the walker focuses on a vertex and moves to
its neighborhood vertex at random. The sequence of walkers forms a Markov
chain. From given vertex, the random walks tend to scan more often the vertices
that are tightly connected with seed vertices.

After a series of expansions, the Markov chain approaches the steady distri-
bution which is at the mixing time of random walk. The extent of convergence
about walks is measured by the L1-distance [3]. Based on the vertex’s probabil-
ity defined in our algorithm, the L1-distance can be computed. By the distance,
the mixing time of our expansion is estimated.

4 Experimental Evaluation

The experiments are conducted on a single processor of a 3.2 GHz Pentium Xeon,
which has 2GB RAM and runs with Window 2K. The experimental datasets
come from five real-world networks which are described in Table 1.

Table 1. The features of our experimental datasets

Data Name Vertices Edges Data Source

Zachary’s karate club 34 78 http://www-personal.umich.edu/˜mejn/netdata/

Football games 115 613 http://www-personal.umich.edu/˜mejn/netdata/

NIPS coauthorships 1,063 2,083 http://www.cs.toronto.edu/˜roweis/data.html

Protein interactions 1,458 1,948 http://www.nd.edu/ networks/resources.htm

KDD citations 27,400 352,504 http://www.cs.cornell.edu/projects/kddcup/

In expansion process, the newly-expanded vertices face the fact that whether
the locally-optimal goal permits them to belong to several communities, which
corresponds to overlapping or non-overlapping expansion approach. Both the
cases have practical requirements. We will perform our algorithm on two cases
and compare their modularity Q with other algorithms.

4.1 Selecting Seeds

Selecting good seeds is significant to expansion process. But the analysis of seeds
choosing is not our emphasis, the paper focuses on expansion steps.

Our seeds chosen in experiments come from the seeds described in [4]. The con-
crete approach is coarsening the origin graph into a series of smaller graphs. They
find the partition clues from coarsening graphs. By the recursive partition, the
final results are our seed sets. They are often a set of tightly-connected vertices.

4.2 The Experimental Analysis of Five Datasets

In experiments, the average Q value for all discovering communities is adopted
to measure the expansion process. It is denoted as avg Q.
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Fig. 1. The experimental results of Karate Club at various means

The Mome algorithm in [5] is one of the latest methods for the community
discovery. We compare our algorithm denoted as PQ(P comes from vertex’s
probabilities and Q is the modularity function) with it at the same conditions.

The following subsections are the evaluation with same number of means. In
all figures, PQ algorithm with overlapping expansion approach is abbreviated as
“OL” , the non-overlapping one is “Non” and the Mome algorithms is denoted
as “Mome”.

Zachary’ Karate Club: It is one of the classic datasets in social network
analysis. The karate club belonged to an American university in 1970s. Wayne
Zachary concluded the social interactions among club members and constructed
this network. It has 34 vertices represented the number of club members and 78
edges expressed their social interactions.

For the performance on avg Q, our algorithm has slight superiority which is
shown in Figure 1.
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Fig. 2. The experimental results of Football Games at various means

American college football teams: This network comes from the games
played between 115 American college football teams in 2000. Each team is repre-
sented by a vertex in the network and the games between two teams are denoted
as edges. Each team belongs to a conference, and the games between inter-
conference are played more than intra-conference ones.

From Figure 2, we can clearly see that the expansion with overlapping is
better than the one with non-overlapping approach, and the non-overlapping
one is better than Mome. The overlapping approach has distinct superiority
over Mome.
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Fig. 3. The experimental results of NIPS Coauthorship at various means

The Co-authorships of NIPS conference: This data is drawn from the co-
authorship network about the NIPS conference papers. The vertices represent
the authors and edges are the co-authorships among authors.

In Figure 3, the overlapping expansion is obviously better than non-
overlapping approach and Mome, the non-overlapping approach has a little su-
periority over Mome.
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Fig. 4. The experimental results of Protein interactions at various means

Protein interactions: The dataset is the protein network which indicates the
interactions between proteins. Figure 4 is its experimental evaluation. The over-
lapping approach and non-overlapping one are obviously better than Mome.
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Fig. 5. The experimental results of KDD Coauthorship at various means

The citationships of KDD papers: The last dataset is about the paper cita-
tions of KDD conference. Its links come from the citationships among conference
papers.
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In Figure 5, three approaches have similar results. Our methods is not worse
than Mome.

From the experimental analysis, our algorithm has better results than Mome
in both overlapping and non-overlapping expansion cases. We also find that the
overlapping expansion makes the single community structure more complete.

5 Related Work

Andersen and Teng in [6] describe a method to find communities from seed set.
They use the lazy random walks technique to sweep each vertex. At the sweep
cut, the method decides whether there is a jump in the expanded probabilities of
vertices. Furthermore, they need to seek the help of some additional operations
to improve the local properties of sweep cut.

There is also a algorithm based on seed expansion in [4]. It is designed for the
problem of detecting overlapping community structures. Its expansion process
is limited by the thresholds of vertices degree-normalized probabilities and over-
lapping rates. Our PQ algorithm doesn’t need to predefine the threshold. The
expansion process is guided by the change value of modularity Q.

6 Conclusion

In this paper, we present a new method for identifying the community struc-
tures in networks. Our method is based on seed expansion. The change value
of modularity function is used to evaluate the contribution of newly-expanded
vertex to current seed group. The transmissive probabilities are used to deduce
the relationships between neighborhood vertices.

In five real-world datasets, the algorithm is evaluated from overlapping and
non-overlapping cases. Both of them show that our method has good quality
than others.
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Abstract. In this paper, we model clickthroughs as a tripartite graph involving
users, queries and concepts embodied in the clicked pages. We develop the Dy-
namic Agglomerative-Divisive Clustering (DADC) algorithm for clustering the
tripartite clickthrough graph to identify groups of similar users, queries and con-
cepts to support collaborative web search. Since the clickthrough graph is up-
dated frequently, DADC clusters the graph incrementally, whereas most of the
traditional agglomerative methods cluster the whole graph all over again. More-
over, clickthroughs are usually noisy and reflect diverse interests of the users.
Thus, traditional agglomerative clustering methods tend to generate large clus-
ters when the clickthrough graph is large. DADC avoids generating large clusters
using two interleaving phases: the agglomerative and divisive phases. The ag-
glomerative phase iteratively merges similar clusters together to avoid generating
sparse clusters. On the other hand, the divisive phase iteratively splits large clus-
ters into smaller clusters to maintain the coherence of the clusters and restructures
the existing clusters to allow DADC to incrementally update the affected clusters
as new clickthrough data arrives.

1 Introduction

The exponential growth of information on the Internet has created great demands on
highly effective search engines. Finding relevant information in such a large volume of
data to satisfy users’ information needs becomes a difficult and challenging task. To
improve retrieval effectiveness, personalized search engines create user profiles record-
ing the users’ preferences, which are used to adjust the search results to suit the users’
preferences. Clickthrough data, which contains a user’s queries, the retrieved results
and the results that the user has clicked on, is an important implicit relevance feedback
available on a search engine. A user clicks on documents mostly because the user be-
lieves they satisfy his/her information needs. Thus, most personalized systems [4], [6]
rely on analyzing the clickthrough data to extract the users’ preferences.

In order to fully utilize the clickthrough data to improve retrieval effectiveness, we
propose a Community Clickthrough Model (CCM) which incorporates multiple-type
objects, namely, users, queries, and concepts embodied in documents returned by the
search engine and those clicked by the users, in a tripartite graph model. Based on
CCM, we develop the Dynamic Agglomerative-Divisive Clustering (DADC) algorithm
to generate clusters of similar users, similar queries and similar concepts. The user
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clusters form user communities that are useful in collaborative filtering to predict the
interests of a user. The query clusters are useful in providing query suggestions for users
to formula more effective queries, while the concept clusters are useful in categorizing
result pages.

The main contributions of this paper are:

– We develop a tripartite Community Clickthrough Model (CCM) which alleviate the
click sparsity problem by considering in CCM concepts embodied in the documents
instead of the the documents themselves.

– We developed the Dynamic Agglomerative-Divisive Clustering (DADC) algorithm
to produce clusters of similar users, similar queries and similar concepts based on
CCM. DADC is able to resolve semantic ambiguities and hence produces better
precision and recall compared to the existing state-of-the-art clustering methods.

– Partitional clustering methods, such as K-Means, are fast but lack accuracy. More-
over, in most cases, the number of clusters K has to be determined ahead of time
as an input to the clustering algorithm. On the other hand, hierarchical clustering
methods (divisive or agglomerative) are more accurate, but they are slow especially
when the data set is large. DADC retains the accuracy of hierarchical clustering
methods and allows new incoming data to be clustered online dynamically.

The rest of the paper is organized as follows. Section 2 discusses the related work.
In Section 3, we present our community clickthrough model and the method to ex-
tract concepts embodied in documents for constructing the model. In Section 4, we de-
scribe our DADC method. Experimental results evaluating the performance of DADC
against three state-of-the-art methods (BB, CubeSVD, M-LSA) and a baseline method
(K-Means) are presented in Section 5. Section 6 concludes the paper.

2 Related Work

In this section, we review a few state-of-the-art techniques for query clustering.

2.1 BB’s Graph-Based Clustering

In Beeferman and Berger’s agglomerative clustering algorithm [1] (or simply called
BB’s algorithm in this paper), a query-document bipartite graph is firstly constructed
with with one set of nodes corresponds to the set of the submitted queries, while the
other set of nodes corresponds to the set of clicked documents. When a use submits
a query and clicks on a document, the corresponding query and the clicked document
are linked together with an edge on the bipartite graph. During the clustering process,
the algorithm iteratively merges the two most similar query into one query node, then
the two most similar documents into one document node, and the process of alternative
merging is repeated until the termination condition is satisfied.

2.2 CubeSVD

In order to model the relationships between users, queries, and documents, CubeSVD
[9] models the clickthrough data as a 3-order tensorA. After the tensorA is constructed,
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a Higher-Order Singular Value Decomposition (HOSVD) technique is employed to sim-
plify A into lower-order matrix, in order to apply latent relationships analysis to dis-
cover latent relationships among users, queries, and documents in the tensor A.

2.3 M-LSA

In the web domain, M-LSA [10] represents the relationships between users, queries,
and documents with three co-occurrence matrices (Mu×q, Mu×d, and Mq×d), where
u, q, and d are the users, queries and documents respectively. A unified co-occurrence
matrix R is constructed using the co-occurrence matrices. Similar to LSA, M-LSA also
employs Eigen Value Decomposition (EVD) to discover important objects from the
object collections from R.

2.4 Divisive-Agglomerative Clustering

The Divisive-Agglomerative clustering [7] is a top-down, incremental algorithm for
clustering stream data into a tree-shape structure [8]. The root node of the tree contains
the complete set of data. The algorithm splits the root node into two smaller clusters
according to a heuristic condition on the diameters of the clusters. The two new clusters
are linked to the root node as it’s child nodes. The algorithm iterates the splitting process
on the leave nodes until no new cluster (new child node) can be formed. Apart from
splitting, the algorithm also has an agglomerative phase to re-aggregate the leave nodes
to adapt the tree structure as the data are updated.

3 Community Clickthrough Model

The three clustering methods (BB, CubeSVD, and M-LSA) discussed in Section 2 are
content-ignorance in that two queries are related if they induce clicks on the same doc-
ument. They completely ignore the content of the documents. One major problem with
content-ignorance model is that the number of common clicks on documents induced
by different queries is very small. Beeferman and Berger [1] reported that the chance
for two random queries to have a common click is merely 6.38× 10−5 in a large click-
through data set from a commercial search engine. Thus, the bipartite graph or the
co-occurrence matrix would be too sparse for obtaining useful clustering results.

To alleviate the click sparsity problem, we introduce a content-aware clickthrough
model, called Community Clickthrough Model (CCM), which replaces clicked docu-
ments with concepts embodied in the clicked documents. When a user ui submits a
query qj , an edge is created between ui and qj representing the relationship between
ui and qj . Similarly, if a query qi retrieves a document that embodies concept cj , an
edge is created between qi and cj . When a user ui clicks on a document that embodies
concept ck, an edge is created between ui and ck. For clarity, when a user u clicks on a
document that embodies a concept c, we simply say u clicks on c; if q retrieves a doc-
ument that embodies concept c, we say u retrieves c. Thus, CCM is a tripartite graph
relating users, their submitted queries, the retrieved concepts and the clicked concepts,
which are a subset of the retrieved concepts.
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To identify concepts embodied in a document, we define a concept as a sequence
of one or more words that occur frequently in the web-snippets1 of a particular query.
These word sequences represent important concepts related to the query because they
co-exist in close proximity with the query in the top documents. The following sup-
port formula, which is inspired by the well-known problem of finding frequent item
sets in data mining [2], is employed to measure the interestingness of a particular key-
word/phrase ci extracted from the web-snippets arising from q:

support(ci) =
sf(ci)

n
· |ci| (1)

where sf(ci) is the snippet frequency of the keyword/phrase ci (i.e. the number of web-
snippets containing ci), n is the number of web-snippets returned and |ci| is the number
of terms in the keyword/phrase ci. If the support of a keyword/phrase ci is greater than
the threshold s (s = 0.07 in our experiments), we treat ci as a concept for the query q.

4 Dynamic Agglomerative-Divisive Clustering

Our Dynamic Agglomerative-Divisive Clustering (DADC) algorithm performs updates
efficiently by incrementally updating the tripartite graph as new data arrives. It consists
of two phases, namely, the agglomerative phase and divisive phase. The agglomera-
tive phase is based on Beeferman and Berger’s agglomerative clustering algorithm [1],
which iteratively merges similar clusters. The divisive phase splits large clusters into
small ones using the Hoeffding bound [3] as a criterion. It prevents clusters from grow-
ing without bound when new data arrives. The clickthrough data is first converted into a
tripartite graph as described in Section 3, and DADC would iteratively merge and split
nodes in the tripartite graph until the termination condition is reached.

4.1 Agglomerative Phase

The agglomerative phase is based on the tripartite graph described in Section 3 with
the following assumptions: 1) Two users are similar if they submit similar queries and
click on similar concepts, 2) Two queries are similar if they are submitted by similar
users and retrieve similar concepts, and 3) Two concepts are similar if they are clicked
by similar users and are retrieved by similar queries.

Based on the above assumptions, we propose the following similarity functions to
compute the similarity between pair of users, pair of queries, and pair of concepts.

sim(ui, uj) = α1 ·
Qui · Quj

‖ Qui ‖‖ Quj ‖ + β1 ·
Cui · Cuj

‖ Cui ‖‖ Cuj ‖ (2)

sim(qi, qj) = α2 ·
Uqi · Uqj

‖ Uqi ‖‖ Uqj ‖ + β2 ·
Cqi · Cqj

‖ Cqi ‖‖ Cqj ‖ (3)

sim(ci, cj) = α3 ·
Uci · Ucj

‖ Uci ‖‖ Ucj ‖ + β3 ·
Qci · Qcj

‖ Qci ‖‖ Qcj ‖ (4)

1 “Web-snippet” denotes the title, summary and URL of a Web page returned by search engines.
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where Qui is a weight vector for the set of neighbor query nodes of the user node ui in
the tripartite graph G3, the weight of a query neighbor node q(k,ui) in the weight vector
Qui is the weight of the link connecting ui and q(k,qi) in G3. Cui is a weight vector for
the set of neighbor concept nodes of the user node ui in G3, and the weight of a query
neighbor node c(k,ui) in Cui is the weight of the link connecting ui and c(k,ui) in G3.
Similarly, Uqi is a weight vector for the set of neighbor user nodes of the query node qi,
Cqi is a weight vector for the set of neighbor concept nodes of the query node qi, Uci is
a weight vector for the set of neighbor user nodes of the concept node ci, and Qcj is a
weight vector for the set of neighbor query nodes of the concept node ci.

The condition α + β = 1 is imposed on Equations (2), (3) and (4) to make the
similarities lie between [0, 1]. The similarity of two nodes is 0 if they do not share any
common node in G3, while the similarity of two nodes is 1 if they share exactly the
same set of neighboring nodes.

In the agglomerative phase, the algorithm merges the two most similar users based
on Equations (2), then the two most similar queries are merged based on Equations (3),
and finally the two most similar concepts are merged based on Equations (4), and so
on. The procedure repeats until no new cluster (user, query or document cluster) can be
formed by merging.

4.2 Divisive Phase

The divisive phase employs a hierarchical clustering technique, which is an inverse of
the agglomerative phase (splitting instead of merging). It iteratively splits large clusters
into two smaller clusters until no new clusters can be formed by splitting. One major
problem in the divisive phase is to determine the minimum number of observations
necessary for the phase to converge. To resolve the problem, the Hoeffding bound [3]
is employed to ensure that after n independent observations of a real-valued random
variable r with range R, and with confidence 1 − δ (where δ is the split threshold), the
true mean of r is at least r − ε, where r is the observed mean of the samples and

ε =

√
R2 ln(1/δ)

2n
(5)

In the divisive phase, each cluster is assigned with a different ε, namely, εk. Assume
that the distances between pair of users, pair of queries, and pair of concepts are defined
as follows.

d(ui, uj) =

√√√√ n∑
k=1

(q(k,ui) − q(k,uj))2 +
m∑

k=1

(c(k,ui) − c(k,uj))2 (6)

d(qi, qj) =

√√√√ n∑
k=1

(u(k,qi) − u(k,qj))2 +
m∑

k=1

(c(k,qi) − c(k,qj))2 (7)

d(ci, cj) =

√√√√ n∑
k=1

(u(k,ci) − u(k,cj))2 +
m∑

k=1

(q(k,ci) − q(k,cj))2 (8)
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q(k,ui) ∈ Qui is the weight of the link connecting ui and q(k,ui), and c(k,ui) ∈ Cui is
the weight of the link connecting ui and c(k,ui). Similarly, u(k,qi) ∈ Uqi , c(k,qi) ∈ Cqi ,
u(k,ci) ∈ Uci , and q(k,ci) ∈ Qci .

Assume that two pairs of nodes (d1n = d(ni, nj) and d2n = d(nk, nl)) are the top-
most and second top-most dissimilar nodes in a cluster (based on the distance Equation
6), (7), or (8). Assume that �d = d(ni, nj) − d(nk, nl), if �d > εk, with probability
1 − δ, the differences between d(ni, nj) and d(nk, nl) is large than zero, and pick
(ni, nj) as the boundary of the cluster when applying Hoeffding bound with �d. In the
divisive phase, ni and nj are selected as the pivots for the splitting, and the clusters are
split according to the statistical confidence given by Hoeffding bound.

5 Experimental Results

In this Section, we compare and analyze the clustering results from the five clustering
algorithms (K-Means, CubeSVD, M-LSA, BB, and DADC). In Section 5.1, we de-
scribe the setup for collecting the clickthrough data. In Section 5.2, The five clustering
algorithms are compared and evaluated in Section 5.2.

5.1 Experimental Setup

To evaluate the performance of the five clustering algorithms, we developed a middle-
ware to serve as Google’s frontend for collecting clickthrough data. 64 users are invited
to use our middleware to search for the answers of 239 test queries. We ask human
judges to determine a standard cluster for each of the users, queries, and concepts. The
clusters obtained form the five clustering algorithms are compared against the standard
cluster for their correctness.

5.2 Performance Comparison

We have already shown in [5] that clustering algorithms that employ concepts achieve
better precisions comparing to content-ignorance methods that consider document only.
Thus, all of the five methods compared in this section are based on the CCM model as
described in Section 3, which is based on the relationships between users, queries, and
concepts. A tripartite graph as described in Section 3 is used for BB and DADC meth-
ods. CubeSVD is based a 3-order tensor (with user, query and document dimensions)
to model the relationships between users, queries, and concepts. For M-LSA, it is based
on the unified matrix Ru,q,c.

Table 1 shows the average precision, recall, and F-measure values of K-Means,
CubeSVD, M-LSA, BB, and DADC methods. K-Means is served as the baseline in the
comparison. As discussed in Section 1, hierarchical clustering methods are slower, but
more accurate comparing to partitional clustering methods. As expected, we observe
that DADC yields the best average precision, recall, and F-measure values (0.9622,
0.7700, and 0.8479), while BB yields the second best average precision, recall, and F-
measure values (0.9141, 0.6732, and 0.7531). DADC gains 32.3% average precision,
144% average recall, and 127% average F-measure, while BB gains 25.6% average
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Table 1. Precisions of K-Means, CubeSVD, M-LSA, BB, and DADC at Optimal Thresholds

K-Means CubeSVD M-LSA BB DADC
Avg. Precision 0.7275 0.7612 0.8642 0.9141 0.9622
Avg. Recall 0.3152 0.2998 0.6064 0.6732 0.7700
Avg. F-Measure 0.3733 0.4189 0.6793 0.7531 0.8479

precision, 113% average recall, and 101% average F-measure comparing to the base-
line method. The extra divisive phase in DADC helps to separate dissimilar objects into
different clusters, resulting in more accurate clusters comparing to BB.

We observe that the average precision, recall, and F-measure values of CubeSVD
are very close to those obtained by the baseline method. As discussed in [9], CubeSVD
generates new associations among the users, queries, and concepts in the reconstructed
tensor Â through the CubeSVD analysis. The new associations in Â brings not only
similar objects, but also unrelated objects together. We observe that the predicted asso-
ciations from the CubeSVD analysis may not be always correct, and the slight overlap
of the incorrect associations brings the unrelated objects together, forming large clus-
ters containing both similar and dissimilar objects. CubeSVD’s large clusters lead to an
average precision (0.7612) that is slightly better than the baseline method (0.7275), but
a very bad recall (0.2998) comparing to the baseline (0.3152). We observe that M-LSA,
which aims at identifying the most important objects among the co-occurrence data,
does not suffer from the incorrect prediction problem of CubeSVD. It can successfully
identify the important object among the co-occurrence data, and group similar objects
into the same cluster. It gains 18.7% average precision, 92% average recall, and 82%
average F-measure comparing to the baseline method.

6 Conclusions

We propose a dynamic Agglomerative-Divisive clustering (DADC) algorithm to effec-
tively exploit the relationships among the users, queries, and concepts in clickthrough
data. We evaluate DADC against four different state of the art methods (BB, CubeSVD,
M-LSA, and K-Means), experimental results confirm DADC can accurately determine
the user, query, and concept clusters from the clickthrough data, and it significantly
outperforms existing cluster strategies designed for multiple-type data objects.

For future work, we will investigate collaborative filtering methods to predict the
interests of a user from the user communities to enhance the accuracy of personaliza-
tion and study methods to provide personalized query suggestions based on the user
communities and query clusters to help users formula more effective queries.
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