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Abstract. Hermanns has introduced interactive Markov chains (IMCs) which
arise as an orthogonal extension of labelled transition systems and continuous-
time Markov chains (CTMCs). IMCs enjoy nice compositional aggregation prop-
erties which help to minimize the state space incrementally. However, the model
checking problem for IMCs remains unsolved apart from those instances, where
the IMC can be converted into a CTMC. This paper tackles this problem: We in-
terpret the continuous stochastic logic (CSL) over IMCs and define the semantics
of probabilistic CSL formulas with respect to the class of fully time and history
dependent schedulers. Our main contribution is an efficient model checking algo-
rithm for verifying CSL formulas on IMCs. Moreover, we show the applicability
of our approach and provide some experimental results.

1 Introduction

The success of Markovian models for quantitative performance and dependability eval-
uation is based on the availability of efficient and quantifiably precise solution methods
for continuous-time Markov chains (CTMCs) [3]. On the specification side, the contin-
uous stochastic logic (CSL) [2,3] allows to specify a wide variety of performance and
dependability measures of interest. A CTMC can be conceived as a labelled transition
system (LTS) whose transitions are delayed according to an exponential distribution.
Opposed to classical concurrency theory, CTMCs neither support compositional mod-
elling [19] nor do they allow nondeterminism in the model. Several efforts have been
undertaken to overcome this limitation, including formalism like the stochastic Petri
box calculus [22], statecharts [7] and process algebras [20,17].

Interactive Markov chains (IMCs) [18] conservatively extend process algebras with
exponentially distributed delays and comprise most of the other approaches’ benefits
[10]: As they strictly separate interactive from Markovian transitions, IMCs extend
LTSs with exponential delays in a fully orthogonal way. This enables compositional
modelling with intermittent weak bisimulation minimization [17] and allows to aug-
ment existing untimed process algebra specifications with random timing [7]. Moreover,
the IMC formalism is not restricted to exponential delays but allows to encode arbitrary
phase-type distributions such as hyper- and hypoexponentials [26].

Since IMCs smoothly extend classical LTSs, the model has received attention in
academic as well as in industrial settings [8,14,15]. In practice however, the theoretical
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benefits have partly been foiled by the fact that the analysis of IMCs is restricted to
those instances, where the composed IMC could be transformed into a CTMC. However,
IMCs support nondeterminism which arises both implicitly from parallel composition
and explicitly by the deliberate use of underspecification in the model [18]. Therefore
IMCs are strictly more expressive than CTMCs. As a result, model checking IMCs is
an unexplored topic thus far.

In this paper, we overcome this limitation and propose an efficient model checking
algorithm to verify CSL formulas on arbitrary IMCs. In our analysis, we use fully time
and history dependent schedulers to resolve all of the IMC’s nondeterministic choices.

The crucial point in model checking CSL is to compute the maximum (and mini-
mum) probability to visit a set of goal states in some time interval I . We characterize
this probability as the least fixed point of a higher-order operator which involves inte-
gration over the time domain. Then we use interactive probabilistic chains (IPCs) [15]
to define a discretization which reduces the time interval bounded reachability problem
in IMCs to the problem of computing step-interval bounded reachability probabilities
in IPCs. More precisely, we approximate the quantitative behaviour of the IMC up to
an a priori specified error bound ε > 0 by its induced IPC and prove that its maxi-
mum step-interval bounded reachability coincides (up to ε) with the achievable time-
interval bounded reachability probability in the underlying IMC. The resulting IPC is
then subject to a modified value iteration algorithm [5], which maximizes the step-
interval bounded reachability probability. The time complexity of our approach is in
O(|Φ| · (n2.376 +

(
m + n2

) · (λb)2/ε
))

, where |Φ| is the size of the formula, and n, m
are the number of states and transitions of the IMC, respectively. Further, b = sup I is
the upper time interval bound and λ is the maximal exit rate in the IMC.

Although we present all results only for maximum time-bounded reachability prob-
abilities, all proofs can easily be adapted to the dual problem of determining the mini-
mum time-bounded reachability probability.

Most of the technical details have been omitted from the paper. However, all proofs
and the technicalities that are necessary to establish the error bounds that are stated
within the paper can be found in [23, Chapter 6].

Organisation of the paper. The paper proceeds by first giving necessary definitions and
background in Section 2. Section 3 presents algorithms for computing the time-interval
bounded reachability for IMCs. Section 4 focuses on model checking algorithms for
CSL, followed by experimental results in Sec. 5. Section 6 discusses related work and
concludes the paper.

2 Preliminaries

Let X be a finite set. Probability distributions over X are functions μ : X → [0, 1] with∑
x∈X μ(x) = 1. If μ(x) = 1 for some x ∈ X , μ is degenerate, denoted μ = {x �→ 1};

in this case, we identify μ and x. The set of all probability distributions over X is
denoted Distr(X ). Accordingly, μ(X) =

∑
x∈X μ(x) for all X ⊆ X .



Model Checking Interactive Markov Chains 55

2.1 Interactive Markov Chains

We recall the definition of interactive Markov chains (IMCs) given in [17]:

Definition 1 (Interactive Markov chain). An interactive Markov chain is a tupleM =
(S,Act , IT ,MT , ν) where S and Act are nonempty sets of states and actions, IT ⊆
S × Act × S is a set of interactive transitions and MT ⊆ S × R>0 × S is a set of
Markovian transitions. Further, ν ∈ Distr(S) is the initial distribution.

We distinguish external actions in Acte from internal actions in Act i and set Act =
Acte ∪ Act i. Several IMCs may be composed via synchronisation over the set Acte

of external actions, yielding again an IMC. For details, we refer to [17]. In this paper,
we consider closed IMCs [21], that is, we focus on the IMC M that is obtained after
composition. Accordingly, M is not subject to any further synchronisation and all re-
maining external actions can safely be hidden. Therefore, we assume that Acte = ∅ and
identify the sets Act and Act i.
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Fig. 1. Example IMC

For Markovian transitions, λ, μ ∈ R>0 denote rates of
exponential distributions. IT (s) = {(s, α, s′) ∈ IT} is the
set of interactive transitions that leave state s; similarly, for
Markovian transitions we set MT (s) = {(s, λ, s′) ∈ MT}.
A state s ∈ S is Markovian iff MT (s) �= ∅ and IT (s) = ∅;
it is interactive iff MT (s) = ∅ and IT (s) �= ∅. Further, s is
a hybrid state iff MT (s) �= ∅ and IT (s) �= ∅; finally, s is a
deadlock state iff MT (s) = IT (s) = ∅. MS ⊆ S and IS ⊆
S denote the sets of Markovian and interactive states in M. We define postM (s) =
{s ∈ S | R(s, s′) > 0}.

Example 1. Let M be the IMC depicted in Fig. 1. Then s0 is a Markovian state with a
transition (s0, 0.3, s2) ∈ MT (s) (depicted by a solid line) to state s2 with rate λ = 0.3.
The transition’s delay is exponentially distributed with rate λ; hence, it executes in the
next z ∈ R≥0 time units with probability

∫ z

0 λe−λtdt =
(
1 − e−0.3z

)
. As state s0

has two Markovian transitions, they compete for execution and the IMC moves along
the transition whose delay expires first. Clearly, in such a race, the sojourn time in s0

is determined by the first transition that executes. As the minimum of exponential dis-
tributions is exponentially distributed with the sum of their rates, the sojourn time in
a state s is determined by the exit rate E(s) =

∑
s′∈S R(s, s′) of state s, where

R(s, s′) =
∑ {λ | (s, λ, s′) ∈ MT (s)}. In general, the probability to move from a

state s ∈ MS to a successor state s′ ∈ S equals the probability that (one of) the Marko-
vian transitions that lead from s to s′ wins the race. Therefore, the discrete branching
probability to move to s′ is given by P(s, s′) = R(s,s′)

E(s) . Accordingly, for state s0 of our

example, we have R(s0, s2) = 0.3, E(s0) = 0.3 + 0.6 = 0.9 and P(s0, s2) = 1
3 .

For interactive transitions, we adopt the maximal progress assumption [17, p. 71] which
states that internal transitions (i.e. interactive transitions labelled with internal actions)
trigger instantaneously. This implies that they take precedence over all Markovian tran-
sitions whose probability to execute immediately is 0. Therefore all Markovian transi-
tions that emanate a hybrid state can be removed without altering the IMC’s semantics.
We do so and assume that MT (s) ∩ IT (s) = ∅ for all s ∈ S.
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To ease the development of the theory, we assume w.l.o.g. that each internal action
α ∈ Act i has a unique successor state, denoted succ(α); note that this is no restriction,
for if (s, α, u) , (s, α, v) ∈ IT (s) are internal transitions with u �= v, we may replace
them by new transitions (s, αu, u) and (s, αv, v) with fresh internal actions αu and αv .

We assume that entering a deadlock state results in a time lock. Therefore, we equip
deadlock states s ∈ S with internal self-loop (s, α, s). However, our approach also al-
lows for a different deadlock state semantics, where time continues; in this case, we
would add a Markovian instead of an internal self-loop. The internal successor relation
�i ⊆ S × S is given by s �i s′ iff (s, α, s′) ∈ IT ; further, the internal reachabil-
ity relation �∗

i is the reflexive and transitive closure of �i. Accordingly, we define
post i(s) = {s′ ∈ S | s �i s′} and Reachi(s) = {s′ ∈ S | s �∗

i s′}.

2.2 Paths and Events in IMCs
We use a special action ⊥ /∈ Act and let σ range over Act⊥ = Act ∪ {⊥}. A finite

path is a sequence π = s0
t0,σ0−−−→ s1

t1,σ1−−−→ · · · tn−1,σn−1−−−−−−−→ sn where si ∈ S, ti ∈ R≥0

and σi ∈ Act⊥ for i ≤ n; n is the length of π, denoted |π|. We use π[k] = sk

and δ(π, k) = tk to refer to the (k+1)-th state on π and its associated sojourn time.
Accordingly, Δ(π, i) =

∑i
k=0 tk is the total time spent on π until (including) state π[i].

If π is finite with |π| = n, then Δ(π) = Δ(π, n − 1) is the total time spent on π;
similarly, π↓ = sn is the last state on π.

Internal transitions occur immediately. Thus an IMC can traverse several states at
one point in time. We use π@t ∈ (S∗ ∪ Sω) for the sequence of states traversed on π at
time t ∈ R≥0: Formally, let i be the smallest index s.t. t ≤ Δ(π, i); if no such i exists,
we set π@t = 〈〉. Otherwise, if t < Δ(π, i) we define π@t = 〈si〉; if t = Δ(π, i),
let j be the largest index (or +∞, if no such finite index exists) such that t = Δ(π, j).
Then π@t = 〈si . . . sj〉. We write s ∈ 〈si . . . sj〉 if s ∈ {si, . . . , sj}; further, if s ∈
〈si . . . sj〉 we define Pref (〈si . . . sj〉, s) = 〈si, . . . sk〉, where s = sk and k minimal. If
s /∈ 〈si . . . sj〉, we set Pref (〈si . . . sj〉, s) = 〈〉. The definitions for time-abstract paths
are similar.

A path π (time-abstract path π′) is a concatenation of a state and a sequence of
combined transitions (time-abstract combined transitions) from the set Ω = R≥0 ×
Act⊥ × S (Ωabs = Act⊥ × S); hence, π = s0 ◦ m0 ◦ m1 ◦ . . . ◦ mn−1 with mi =
(ti, σi, si+1) ∈ Ω (mi = (σi, si+1) ∈ Ωabs ). Thus Pathsn(M) = S × Ωn is the set
of paths of length n in M; further, Paths�(M), Pathsω(M) and Paths(M) are the
sets of finite, infinite and all paths in M. To refer to time-abstract paths, we add the
subscript abs ; further the reference to M is omitted wherever possible.

The measure-theoretic concepts are mentioned only briefly; we refer to [21] for an
in-depth discussion. Events in M are measurable sets of paths; as paths are Cartesian
products of combined transitions, we define the σ-field F=σ (B(R≥0)×FAct⊥×FS)
on subsets of Ω where FS=2S and FAct⊥=2Act⊥ . Then we derive the product σ-field
FPathsn=σ ({S0×M0× · · · ×Mn−1 | S0 ∈ FS , Mi ∈ F}) of measurable subsets of
Pathsn. The cylinder-set construction [1] extends this to infinite paths in the usual way.

2.3 Resolving Nondeterminism by Schedulers
An IMCM is nondeterministic iff there exists (s, α, u) , (s, β, v) ∈ IT (s) with u �= v: If
both internal transitions (to states s1 and s4) in state s2 of Fig. 1 execute instantaneously,
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the successor state is not uniquely determined. To resolve this nondeterminism, we use
schedulers: If M reaches state s2 along a history π ∈ Paths�, a scheduler yields a
probability distribution over the set Act i(π↓) = {α, β} of enabled actions in s2.

Definition 2 (Generic measurable scheduler). A generic scheduler on an IMC M =
(S,Act , IT ,MT , ν) is a partial mapping D : Paths� × FActi

→ [0, 1] with D(π, ·) ∈
Distr

(
Act i(π↓)

)
for all π ∈ Paths� with π↓ ∈ IS . A generic scheduler D is measur-

able (GM scheduler) iff for all A ∈ FAct , D−1(A) : Paths� → [0, 1] is measurable.

Measurability states that {π | D(π, A) ∈ B} ∈ FPaths� holds for all A ∈ FAct and
B ∈ B([0, 1]); intuitively, it excludes schedulers which resolve the nondeterminism
in a way that induces non-measurable sets. Recall that no nondeterminism occurs if
π↓ ∈ MS . However, we slightly abuse notation and assume that D(π, ·) = {⊥ �→ 1} if
π↓ ∈ MS so that D yields a distribution over Act⊥. A GM scheduler D is deterministic
iff D(π, ·) is degenerate for all π ∈ Paths�. We use GM (and GMD) to denote the
class of generic measurable (deterministic) schedulers. Further, a GM scheduler Dabs

is time-abstract (GM abs) iff abs(π) = abs(π′) implies Dabs(π, ·) = Dabs(π′, ·).
Example 2. If state s2 in Fig. 1 is reached along path π = s0

0.4,⊥−−−→ s2, then D(π)

might yield the distribution
{
α �→ 1

2 , β �→ 1
2

}
, whereas for history π′ = s0

1.5,⊥−−−→ s2,
it might return a different distribution, say D(π) = {α �→ 1}.

2.4 Probability Measures for IMCs
In this section, we define the probability measure [21] induced by D on the measurable
space (Pathsω, FPathsω ). We first derive the probability of measurable sets of com-
bined transitions, i.e. of subsets of Ω:
Definition 3. Let M = (S,Act , IT ,MT , ν) be an IMC and D ∈ GM . For all π ∈
Paths�, we define the probability measure μD(π, ·) : F → [0, 1] by:

μD(π, M) =

{∑
α∈Acti(π↓) 1M (α, 0, succ(α)) · D (π, {α}) if s ∈ IS

∫
R≥0

E(s)e−E(s)t · ∑s′∈S 1M

(⊥, t, s′
) ·P(s, s′) dt if s ∈ MS .

(1)
Here, 1M denotes an indicator, i.e. 1M (σ, t, s′) = 1 if (σ, t, s′) ∈ M and 0, otherwise.
Intuitively, μD(π, M) is the probability to continue along one of the combined tran-
sition in the set M . For an interactive state s ∈ IS , it is the probability of choosing
α ∈ Act i(π↓) such that (α, 0, succ(α)) is a transition in M ; if s ∈ MS , μD(π, M) is
given by the density for the Markovian transition to trigger at time t and the probability
that a successor state is chosen respecting M . As paths are inductively defined using
combined transitions, we can lift the probability measure μD(π, ·) to FPathsn :

Definition 4 (Probability measure). Let M = (S,Act , IT ,MT , ν) be an IMC and
D ∈ GM . For n ≥ 0, we define the probability measures Prn

ν,D inductively on the
measurable space (Pathsn, FPathsn):

Pr0
ν,D : FPaths0 → [0, 1] : Π �→

∑

s∈Π

ν (s) and for n > 0

Prn
ν,D : FPathsn → [0, 1] : Π �→

∫

Pathsn−1
Prn−1

ν,D (dπ)
∫

Ω

1Π(π ◦ m) μD(π, dm).
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Observe that Prn
ν,D measures a set of paths Π of length n by multiplying the probabil-

ities Prn−1
ν,D (dπ) of path prefixes π (of length n−1) with the probability μD(π, dm) of

a combined transition m ∈ M which extends π to a path in Π . Together, the measures
Prn

ν,D extend to a unique measure on FPathsω : if B ∈ FPathsn is a measurable base
and C = Cyl(B), we define Prω

ν,D(C) = Prn
ν,D(B). Due to the inductive definition

of Prn
ν,D, the Ionescu–Tulcea extension theorem [1] applies, which yields a unique ex-

tension of Prω
ν,D to arbitrary sets in FPathsω .

2.5 Interactive Probabilistic Chains

Interactive probabilistic chains (IPCs) [15] are the discrete-time analogon of IMCs:

Definition 5 (Interactive probabilistic chain). An interactive probabilistic chain
(IPC) is a tuple P = (S,Act , IT ,PT , ν), where S,Act , IT and ν are as in Def. 1 and
PT : S×S → [0, 1] is a transition probability function s.t. ∀s ∈ S. PT (s,S) ∈ {0, 1}.

A state s in an IPC P is probabilistic iff
∑

s′∈S PT (s, s′) = 1 and IT (s) = ∅; PS
denotes the set of all probabilistic states. The sets of interactive, hybrid and deadlock
states are defined as for IMCs, with the same assumption imposed on deadlock states.
Further, we assume any IPC to be closed, that is (s, α, s′) ∈ IT implies α ∈ Act i.
As for IMCs, we adopt the maximal progress assumption [17, p. 71]; hence, internal
transitions take precedence over probabilistic transitions.

Definition 6 (IPC scheduler). Let P = (S,Act , IT ,PT , ν) be an IPC. A function
D : Paths�

abs → Distr(Act i) with D(π) ∈ Distr(Act i(π↓)) is a time abstract history
dependent randomized (GM abs ) scheduler.

Note that in the discrete-time setting, measurability issues do not arise. To define a
probability measure on sets of paths in P , we define the probability of a single transition:

Definition 7 (Combined transitions in IPCs). Let P = (S,Act , IT ,PT , ν) be an
IPC, s ∈ S, σ ∈ Act⊥, π ∈ Paths�

abs and (σ, s) ∈ Ωabs a time abstract combined
transition. For scheduler D ∈ GM abs , we define

μabs
D

(
π, {(σ, s)}) =

⎧
⎪⎨

⎪⎩

P(π↓, s) if π↓ ∈ PS ∧ σ = ⊥
D(π, {σ}) if π↓ ∈ IS ∧ succ(σ) = s

0 otherwise.

is the probability of the combined transition (σ, s). For a set of combined transitions
M ⊆ Ωabs , we set μabs

D

(
π, M

)
=

∑
(σ,s)∈M μabs

D

(
s, {(σ, s)}).

The measures μabs
D extend to a unique measure on sets of paths in P in the same way as

it was shown for the IMC case in Sec. 2.4.

3 Interval Bounded Reachability Probability

We discuss how to compute the maximum probability to visit a given set of goal states
during a given time interval. Therefore, let I be the set of nonempty intervals over the
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nonnegative reals and let Q be the set of nonempty intervals with nonnegative rational
bounds. For t ∈ R≥0 and I ∈ I, we define I � t = {x − t | x ∈ I ∧ x ≥ t} and
I ⊕ t = {x + t | x ∈ I}. Obviously, if I ∈ Q and t ∈ Q≥0, this implies I � t ∈ Q and
I ⊕ t ∈ Q.

3.1 A Fixed Point Characterization for IMCs

Let M be an IMC. For a time interval I ∈ I and a set of goal states G ⊆ S, we define
the event �IG = {π ∈ Pathsω | ∃t ∈ I. ∃s′ ∈ π@t. s′ ∈ G} as the set of all paths that
are in a state in G during time interval I . The maximum probability induced by �IG
in M is denoted pMmax (s, I). Formally, it is obtained by the supremum under all GM
schedulers:

pMmax (s, I) = sup
D∈GM

Prω
νs,D

(
�IG

)
.

Theorem 1 (Fixed point characterization for IMCs). Let M be an IMC as before,
G ⊆ S a set of goal states and I ∈ I such that inf I = a and sup I = b. The
function pMmax : S × I → [0, 1] is the least fixed point of the higher-order operator
Ω : (S × I → [0, 1]) → (S × I → [0, 1]) which is defined as follows:

1. For Markovian states s ∈ MS : Ω(F )(s, I) equals

{∫ b

0
E(s)e−E(s)t · ∑s′∈S P(s, s′) · F (s′, I � t) dt if s /∈ G

e−E(s)a +
∫ a

0
E(s)e−E(s)t · ∑s′∈S P(s, s′) · F (s′, I � t) dt if s ∈ G.

2. For interactive states s ∈ IS : Ω(F )(s, I) equals 1 if s ∈ G and 0 ∈ I , and
otherwise, Ω(F )(s, I) = max

{
F (s′, I) | s′ ∈ post(s)

}
.

Example 3. The fixed point characterization suggests to compute pMmax (s, I) analyti-
cally: Consider the IMC M depicted in Fig. 1 and assume that G = {s3}. For I = [0, b],
b > 0 we have pMmax (s3, I) = 1, pMmax (s4, I) = 1 − e−0.1b and pMmax (s1, I) =∫ b

0 e−t
(

2
5 · pMmax (s2, I � t) + 1

5 · pMmax (s3, I � t) + 2
5 · pMmax (s4, I � t)

)
dt. For inter-

active state s2, we derive pMmax (s2, I) = max
{
pMmax (s4, I), pMmax (s1, I)

}
, which yields

pMmax (s0, I) =
∫ b

0
0.9e−0.9t ·( 2

3 · pMmax (s1, I � t) + 1
3 · pMmax (s2, I � t)

)
dt. Hence, an

IMC generally induces an integral equation system over the maximum over functions,
which is not tractable. Moreover, the iterated integration is numerically unstable [3].

Therefore, we resort to a discretization approach: Informally, we divide the time hori-
zon into small time slices. Then we consider a discrete-time model whose steps corre-
spond to the IMC’s behaviour during a single time slice. First, we develop a fixed-point
characterization for step bounded reachability on interactive probabilistic chains (IPCs);
then we reduce the maximum time interval bounded reachability problem in IMCs to
the step interval bounded reachability problem in the discretized IPC. Finally, we show
how to solve the latter by a modified value iteration algorithm.
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3.2 A Fixed Point Characterization for IPCs

Similar to the timed paths in IMCs, we define π@n ∈ S∗ ∪ Sω for the time abstract
paths in IPCs: Let #PS (π, k) =

∣
∣{i ∈ N | 0 ≤ i ≤ k ∧ π[i] ∈ MS}∣∣; then #PS (π, k)

is the number of probabilistic transitions that occur up to the (k+1)-th state on π. For
fixed n ∈ N, let i be the smallest index such that n = #PS (π, i). If no such i exists,
we set π@n = 〈〉; otherwise i is the index of the n-th probabilistic state that is hit on
path π. Similarly, let j ∈ N be the largest index (or +∞ if no such finite index exists)
such that n = #PS (π, j). Then j denotes the position on π directly before its (n+1)-th
probabilistic state. With these preliminaries, we define π@n = 〈si, si+1, . . . , sj−1, sj〉
to denote the state sequence between the n-th and the (n+1)-th probabilistic state of π.
To define step-interval bounded reachability for IPCs, let k, k′ ∈ N and k ≤ k′: Then

�[k,k′]G = {π ∈ Pathsω
abs | ∃n ∈ {k, k + 1, . . . , k′} . ∃s′ ∈ π@n. s′ ∈ G}

is the set of paths that visit G between discrete time-step k and k′ in an IPC P .

Accordingly, we define the maximum probability for the event �[k,k′]G:

pPmax (s, [k, k′]) = sup
D∈GMabs

Prω
νs,D

(
�[k,k′]G

)
.

Theorem 2 (Fixed point characterisation for IPCs). Let P = (S,Act , IT ,PT , ν)
be an IPC, G ⊆ S a set of goal states and I = [k, k′] a step interval. The function
pPmax is the least fixed point of the higher-order operator Ω : (S × N × N → [0, 1]) →
(S × N × N → [0, 1]) where

1. for probabilistic states s ∈ PS :

Ω(F )
(
s, [k, k′]

)
=

⎧
⎪⎨

⎪⎩

1 if s ∈ G ∧ k = 0
0 if s /∈ G ∧ k = k′ = 0
∑

s′∈S PT (s, s′) · F (s′, [k, k′] � 1) otherwise;

2. for interactive states s ∈ IS : Ω(F )
(
s, [k, k′]

)
= 1 if s ∈ G and k = 0. Otherwise,

Ω(F )
(
s, [k, k′]

)
= max s′∈post(s)F (s′, [k, k′]).

Observe that for IMCs, the recursive expression of the probabilistic reachability does
not decrease the time interval I for interactive states, whereas for IPCs, the recursive
expression does not decrease the corresponding step interval [k, k′].

3.3 A Discretization That Reduces IMCs to IPCs

For an IMC M and a step duration τ > 0, we define the discretized IPC Mτ of M:

Definition 8 (Discretization). An IMC M = (S,Act , IT ,MT , ν) and a step dura-
tion τ > 0 induce the discretized IPC Mτ = (S,Act , IT ,PT , ν), where

PT (s, s′) =

{(
1 − e−E(s)τ

) ·P(s, s′) if s �= s′
(
1 − e−E(s)τ

) ·P(s, s′) + e−E(s)τ if s = s′.
(2)
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s0 s1 s2 s3
λ a b

c

(a) The example IMC M.

s0 s1 s2 s3
1 − e−λτ a b

e−λτ

c

(b) The induced discretized IPC Mτ .

Fig. 2. Interval bounded reachability in IMCs with lower interval bounds

In Mτ , each probabilistic transition PT (s, s′) > 0 corresponds to one time step of
length τ in the underlying IMC M: More precisely, PT (s, s′) is the probability that a
transition to state s′ occurs within τ time units. In case that s′ = s, the first summand
in PT (s, s′) is the probability to take a self-loop back to s, i.e. a transition that leads
from s back to s executes; the second summand denotes the probability that no transi-
tion occurs within the next τ time units and thus, the systems stays in state s = s′.

Now we state the correctness of the discretization: To compute the probability
pMmax

(
s, [a, b]

)
, we analyze step-interval bounded reachability in the discretized IPC

Mτ , where each step approximately corresponds to τ time units. First we show that
pMτ
max

(
s,

[
0, � b

τ �
])

converges from below to pMmax

(
s, [0, b]

)
if τ → 0:

Theorem 3. Let M = (S,Act , IT ,MT , ν) be an IMC, G ⊆ S a set of goal states,
I = [0, b] ∈ Q a time interval with b > 0 and λ = max s∈MSE(s). Further, let τ > 0
be such that b = kbτ for some kb ∈ N>0. For all s ∈ S it holds:

pMτ
max

(
s, [0, kb]

) ≤ pMmax (s, I) ≤ pMτ
max

(
s, [0, kb]

)
+ kb · (λτ)2

2
.

Example 4. Consider the IMC M and its discretized IPC Mτ in Fig. 2(a) and Fig. 2(b),
resp. Assume that G = {s2} and fix some τ > 0, k ∈ N>0. Further, let I = [0, kτ ]. In
the IMC M, it holds that pMmax (s0, I) =

∫ kτ

0
λe−λt ·pMmax (s1, I� t)dt = 1−e−λkτ . In

Mτ , we obtain pMmax (s0, [0, k]) =
∑k

i=1(e
−λτ )i−1

(
1 − e−λτ

)
= 1− e−λkτ , which is

the geometric distribution function for parameter p = 1 − e−λτ .

So far, we only considered intervals of the form I = [0, b], b > 0. In what follows, we
extend our results to arbitrary intervals. However, this is slightly involved:

If s ∈ MS is a Markovian state and b > 0, then pMmax

(
s, (0, b]

)
= pMmax

(
s, [0, b]

)
.

However this is not true for interactive states: If s1 (instead of s0) is made the only
initial state in M and Mτ of Fig. 2, the probability to reach s2 within interval [0, b]
is 1 whereas it is 0 for the right-semiclosed interval (0, b]. Further, the discretization is
imprecise for point intervals: To see this, note that if I = [τ, τ ], then pMmax (s0, I) = 0,
whereas pMτ

max (s0, [1, 1]) = 1 − e−λτ .
Now, let I = [kaτ, kbτ ] be a closed interval with ka, kb ∈ N and 0 < ka < kb. In

the IMC M in Fig. 2(a), we obtain pMmax (s0, I) =
∫ kbτ

kaτ
λe−λt · pMmax (s1, I � t) dt =

e−λkaτ − e−λkbτ , whereas for its discretized IPC Mτ (see Fig. 2(b)), we derive

pMτ
max (s0, [ka, kb]) =

kb∑

i=ka

(
e−λτ

)i−1 · (1 − e−λτ
)

= e−λ(ka−1)τ − e−λkbτ .
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Fig. 3. Discretization steps

Clearly, the two probabilities differ in the first term
by a factor of eλτ . To see the reason, let ka = 2
and kb = 3: We have pMmax (s, [2τ, 3τ ]) = e−2λτ −
e−3λτ ; however, in Mτ it holds pMτ

max (s, [2, 3]) =
e−λτ ·(1 − e−λτ

)
+e−2λτ ·(1 − e−λτ

)
= e−λτ −

e−3λτ . As each step in Mτ corresponds to a
time interval of length τ (cf. Fig. 3), the inter-
val bounds 2τ and 3τ fall in different discretiza-
tion steps. Hence in the discretization, we add two
steps which leads to an error. If instead we com-
pute pMmax (s, (2τ, 3τ ]), we obtain pMτ

max (s, (2, 3]) =
pMτ
max (s, [3, 3]) = e−2λτ − e−3λτ , as desired.

Based on these observations, we extend Thm. 3 to intervals with positive lower
bounds. To avoid some technicalities, we first restrict to right-semiclosed intervals:

Theorem 4. Let M = (S,Act , IT ,MT , ν) be an IMC, G ⊆ S a set of goal states,
I = (a, b] ∈ Q a time interval with a < b and λ = max s∈MSE(s). If τ > 0 is such
that a = kaτ and b = kbτ for some ka, kb ∈ N, then it holds for all s ∈ S:

pMτ
max

(
s, (ka, kb]

) − ka · (λτ)2

2
≤ pMmax (s, I) ≤ pMτ

max

(
s, (ka, kb]

)
+ kb · (λτ)2

2
+ λτ.

The error bounds for the case of lower interval bounds that are stated in Thm. 4 are
derived using double induction over ka and kb, respectively.

Theorem 5. If M, G and τ are as in Thm. 4 and I ∈ Q is a time interval with inf I = a
and sup I = b such that a < b and a = kaτ , b = kbτ for ka, kb ∈ N and 0 /∈ I , then

pMτ
max

(
s, (ka, kb]

) − ka · (λτ)2

2
≤ pMmax (s, I) ≤ pMτ

max

(
s, (ka, kb]

)
+ kb · (λτ)2

2
+ λτ.

For the remaining cases, note that for all states s ∈ S and intervals I = ∅ or I = [a, a]
with a > 0 it holds that pMmax (s, I) = 0. Finally, for the case that I = [0, 0], an
interactive reachability analysis suffices to compute pMmax (s, I), which is either 1 or 0.

3.4 Solving the Problem on the Reduced IPC

Let P = (S,Act , IT ,PT , ν) be an IPC, G ⊆ S a set of goal states and [ka, kb] a step
interval. In this section, we discuss how to compute pPmax

(
s, [ka, kb]

)
via a modifica-

tion of the well known value iteration algorithm [5]. The adaptation is non-trivial, as
we consider step intervals that correspond to the number of probabilistic steps that are
taken. This is reflected in our algorithm which only decreases the step counter for prob-
abilistic, but not for internal transitions. We discuss step bounded reachability first:

Step Bounded Reachability: We aim at computing pPmax

(
s, [0, k]

)
for 0 ≤ k. This

works as follows: In each step i = 0, 1, . . . , k of the iteration, we use two vectors
�vi ∈ [0, 1]S and �ui ∈ [0, 1]S , where �vi is the probability vector obtained from �ui−1 by
one step in the classical value iteration algorithm and �ui is obtained by computing the
backwards closure along interactive transitions w.r.t. �vi−1.
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Each of the k value iteration steps consists of two phases: First, �vi is computed: If
s ∈ PS ∩ G, then �vi(s) = 1. If s ∈ PS \ G, then �vi(s) is the weighted sum of the
probabilistic successor states s′ of s, multiplied by the result �ui−1(s′) of the previous
step. In the second phase, �ui is obtained by the backward closure of �vi along internal
transitions. Initially, we set �v0(s) = 1 if s ∈ G, and �v0(s) = 0, otherwise. Then:
∀i ∈ {0, . . . , k} . �ui(s) = max {�vi(s′) | s �∗

i s′} and for �vi:

∀i ∈ {1, . . . , k} . �vi(s) =

⎧
⎪⎨

⎪⎩

∑
s′∈S PT (s, s′) · �ui−1(s′) if s ∈ PS \ G

1 if s ∈ PS ∩ G

�ui−1(s) if s ∈ IS .

For efficiency reasons the set {s′ ∈ S | s �∗
i s′} can be precomputed by a backwards

search in the interactive reachability graph of P .
After k value iteration steps pPmax (s, [0, k]) is obtained as the probability in �uk(s).

Step-Interval Bounded Reachability: In this part, we compute pPmax

(
s, [ka, kb]

)
, for

interval bounds 0 < ka < kb. Again, we compute a sequence �v0, �u0, . . . , �vkb
, �ukb

. As
ka > 0, we split the value iteration in two parts: In the first kb−ka value iteration steps,
we proceed as before and compute the probability vectors �v0, �u0, . . . , �vkb−ka , �ukb−ka .
Thus, we compute the probabilities pPmax (s, [0, kb−ka]) for all s ∈ S.

The vector �vkb−ka provides the initial probabilities of the second part: In the remain-
ing i ∈ {kb−ka+1, . . . , kb} value iteration steps, we set �vi(s) = 0 if s ∈ IS and
�vi(s) =

∑
s′∈S PT (s, s′) · �ui−1(s′) if s ∈ PS . The vectors �ui are as before. To see

why, note that the value iteration algorithm proceeds in a backward manner, starting
from the goal states. We do not set �vi(s) = 1 if s ∈ G in the last ka iteration steps, as in
the first ka transitions, reaching a goal state does not satisfy our reachability objective.
To avoid that the probabilities of interactive states s ∈ IS erroneously propagate in the
vectors �ui(s) from the first to the second part, in the second part we define �vi(s) = 0
for all s ∈ IS (instead of �vi(s) = �ui−1(s) as in the first part). Let us illustrate this:

Example 5. We compute pPmax (s, [1, 2]) in the IPC P in Fig. 4 for initial state s0

and goal state s3: In the first part, apply the value iteration to compute �u1: �v0(s) =
1 if s = s3 and 0, otherwise. By the backwards closure, �u0 = (1, 0, 0, 1). Thus
pPmax (s0, [0, 0]) = 1, as s0 can reach G by the interactive α-transition. For �v1, we
have �v1(s0) = �u0(s0) = 1 and �v1(s1) = 1

2�u0(s3) + 1
2�u0(s2) = 1

2 . In this way,
we obtain �v1 =

(
1, 1

2 , 1
4 , 1

)
and �u1 =

(
1, 1

2 , 1
4 , 1

)
. With the probabilities �u1, the

first part ends after kb − ka = 1 value iteration steps. As ka = 1, one iteration for
the lower step bound follows. Here �v2(s0) = �v2(s3) = 0 as s0, s3 ∈ IS ; further
�v2(s1) = 1

2�u1(s3) + 1
2�u1(s2) = 5

8 and �v2(s2) = 1
2�u1(s2) + 1

4�u1(s3) + 1
4�u1(s1) = 1

2 .
Finally, �u2 =

(
5
8 , 5

8 , 1
2 , 1

2

)
. Therefore, we obtain that pPmax (s0, [1, 2]) = �u2(s0) = 5

8 .

3.5 Algorithm and Complexity

Let M, G, ε and I as before, with b = sup I . For ε > 0, choose kb such that kb · (λτ)2

2 +
λτ ≤ ε. With τ = b

kb
, the smallest such kb is kb = �λ2b2+2λb

2ε �. Then the step duration τ

induces the discretized IPC Mτ . By Thm. 5, pMmax (s0, I) can be approximated (up to ε)
by pMτ

max (s0, (ka, kb]). Let n = |S| and m = |IT | + |MT | be the number of states and
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Fig. 4. Example IPC

transitions of M, respectively. In the worst case, Mτ has n
states, and m + n transitions. In each value iteration step, the
update of the vector �vi takes at most time m + n; for �ui, the
sets Reachi(s) are precomputed. In the general case, the best
theoretical complexity for computing the reflexive transitive
closure is in O (

n2.376
)
, as given by [13]. As m∗ ⊆ S × S,

the number of transitions in the closure m∗ is bounded by n2.
Hence, with an appropriate precomputation of m∗, updat-
ing �ui takes time O(n2). Therefore, with kb value iteration steps, the worst case time
complexity of our approach is in n2.376 + (m + n + n2) · (λb) · (λb + 2) /(2ε) ∈
O(

n2.376 + (m + n2) · (λb)2 /ε
)
.

4 Model Checking the Continuous Stochastic Logic

For model checking, we consider a finite set AP = {a, b, c, . . .} of atomic propositions
and state labelled IMCs: A state labelling function L : S → 2AP assigns to each state
the set of atomic propositions that hold in that state. To specify quantitative properties,
we extend the continuous stochastic logic (CSL) [3,12], which reasons about qualitative
and quantitative properties of CTMCs to the nondeterministic setting:

Definition 9 (CSL syntax). For a ∈ AP , p ∈ [0, 1], I ⊆ Q an interval and � ∈
{<,≤,≥, >}, CSL state and CSL path formulas are defined by

Φ ::= a | ¬Φ | Φ ∧ Φ | P�p(ϕ) and ϕ ::= X IΦ | Φ UI Φ.

Intuitively, a path π ∈ Pathsω satisfies the formula X IΦ (π |= X IΦ) if the first transi-
tion on π occurs in time-interval I and leads to a successor state in Sat(Φ). Similarly,
π satisfies the until formula Φ UI Ψ if a state in Sat(Ψ) is reached at some time point
t ∈ I and before that, all states satisfy state formula Φ.

Definition 10 (CSL semantics). Let M = (S,Act , IT ,MT ,AP ,L, ν) be a state la-
belled IMC, s ∈ S, a ∈ AP , I ∈ Q, � ∈ {<,≤,≥, >} and π ∈ Pathsω. For
state formulas, we define s |= a iff a ∈ L(s), s |= ¬Φ iff s �|= Φ and s |= Φ ∧ Ψ
iff s |= Φ and s |= Ψ . Further, s |= P�p(ϕ) iff for all D ∈ GM it holds that
Prω

νs,D {π ∈ Pathsω | π |= ϕ} � p. For path formulas, we define

π |= X IΦ ⇐⇒ π[1] |= Φ ∧ δ(π, 0) ∈ I

π |= Φ UI Ψ ⇐⇒ ∃t ∈ I. ∃s ∈ π@t. s |= Ψ ∧ ∀s′ ∈ Pref (π@t, s). s′ |= Φ

∧ ∀t′ ∈ [0, t) . ∀s′′ ∈ π@t′. s′′ |= Φ.

To model check an IMC w.r.t. a CSL state formula Φ, we successively consider the
state subformulas Ψ of Φ and calculate the sets Sat(Ψ) = {s ∈ S | s |= Ψ}. For atomic
propositions, conjunction and negation, this is easy as Sat(a) = {s ∈ S | a ∈ L(s)},
Sat(¬Ψ) = S \ Sat(Ψ) and Sat(Ψ1 ∧ Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2). Therefore we
only discuss the probabilistic operator P�p(ϕ) for next and bounded until formulas.
To decide Sat (P�p(ϕ)), it suffices to maximize (or minimize, which can be done
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similarly) Prω
νs,D ({π ∈ Pathsω | π |= ϕ}) w.r.t. all schedulers D ∈ GM . We define

pMmax (s, ϕ) = supD∈GM Prω
νs,D ({π ∈ Pathsω | π |= ϕ}) and consider both types of

path formulas:

The Next Formula. Computing pMmax (s,X IΦ) is easy: We proceed inductively on the
structure of the formula and assume that Sat(Φ) is already computed. Let a = inf I , b =
sup I and s ∈ MS . Then pMmax

(
s,X IΦ

)
=

∫ b

a E(s)e−E(s)t ·∑s′∈Sat(Φ) P(s, s′) dt =
P (s,Sat(Φ)) · (

e−E(s)a − e−E(s)b
)
, where P (s,Sat(Φ)) =

∑
s′∈Sat(Φ) P(s, s′) is

the probability to move to a successor state s′ ∈ Sat(Φ). If s ∈ IS , 0 ∈ I and post(s)∩
Sat(Φ) �= ∅, then pMmax

(
s,X IΦ

)
= 1; otherwise pMmax

(
s,X IΦ

)
= 0.

The Until Formula. Let ϕ = Φ UI Ψ with I ∈ Q and assume that Sat(Φ) and Sat(Ψ)
are already computed. We reduce the problem to compute pMmax (s, ϕ) to the maximum
interval-bounded reachability problem: Therefore, define Sϕ

=0 = {s ∈ S | s |= ¬Φ}. In
the next step, we turn all states s ∈ Sϕ

=0 into absorbing states by replacing all its out-
going transitions by a single interactive self loop. This is similar to the approach taken
in [3,6] for model checking CTMCs and MDPs. Formally, a state s ∈ IS is absorbing
iff post i(s) = {s}. Hence, as soon as a path enters an absorbing state, it cannot reach a
different state anymore. Moreover, due to the maximal progress assumption, time does
not progress any further in absorbing states. Intuitively, making Sϕ

=0-states absorbing is
justified as follows. If a path π enters a state s ∈ Sϕ

=0, it can be decided immediately
whether π |= Φ UI Ψ , or not: If s |= Ψ holds and if state s is entered at some time in
the interval I , then π |= Φ UI Ψ . Otherwise π �|= Φ UI Ψ holds.

Theorem 6 (Time-bounded until). Let M = (S,Act , IT ,MT ,AP ,L, ν) be a state
labelled IMC, ϕ = Φ UI Ψ a CSL path formula with I ∈ Q and G = Sat(Ψ) the set of
goal states. Further, assume that all states s ∈ Sϕ

=0 are made absorbing. Then

pMmax

(
s, Φ UI Ψ

)
= pMmax (s, I) for all s ∈ S.

Theorem 6 reduces the problem to compute pMmax (s, ΦUI Ψ) of the until formula to the
problem of computing the interval bounded reachability probability pMmax (s, I) with
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(a) Time-bounded reachability in M

problem states ε λ b prob. time
Erl(30, 10) 35 10−3 10 4 0.672 50s
Erl(30, 10) 35 10−3 10 7 0.983 70s
Erl(30, 10) 35 10−4 10 4 0.6718 268s
ws-cl, N=4 820 10−6 2 101 3.3 ·10−5 2d
ws-cl, N=4 820 10−4 2 102 4 ·10−4 15h
ws-cl, N=4 820 10−3 2 103 5 ·10−3 6d
(b) Computation time for different parameters

Fig. 5. Experimental results for Erl(30, 10) and the workstation cluster from [16]
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respect to the set of goal states G = Sat(Ψ). The latter can be computed efficiently by
the discretization approach introduced in Sec. 3.3.

For CSL state-formula Φ, let |Φ| be the number of state subformulas of Φ. In the worst
case, the interval bounded reachability probability is computed |Φ| times. Hence the
model checking problem has time complexity O(|Φ| · (n2.376 +

(
m + n2

) · (λb)2/ε
))

.

5 Experimental Results

We consider the IMC in Fig. 6, where Erl(30 , 10 ) denotes a transition with an Erlang
(k, λ) distributed delay: This corresponds to k = 30 consecutive Markovian transitions
each of which has rate λ. The mean time to move from s2 to the goal s4 is k

λ = 3
with a variance of k

λ2 = 3
10 . Hence, with very high probability we move from s2 to s4

s0 s1 s2

s4

1 β

Erl(30, 10)

s3

s5

α

0.5
0.5

11

Fig. 6. The Erl(30, 10) model M

after approximately 3 time units. The decision
that maximizes the probability to reach s4 in
time interval [0, b] in state s1 depends on the so-
journ in state s0. Fig. 5(a) depicts the computed
maxima for time dependent schedulers and the
upper part of Tab. 5(b) lists some performance
measurements.

If AP = {g} and s4 is the only state la-
belled with g, we can verify the CSL formula
Φ = P≥0.5

(
�[3,4]g

)
by computing pMmax (s0, [3, 4]) with the modified value itera-

tion. The result pMmax (s0, [3, 4]) = 0.6057 meets the bound ≥ 0.5 in Φ, implying that
s0 |= Φ.

Finally, the lower part of Tab. 5(b) lists the performance of our approach for a large
scale example [16], where we conduct a dependability analysis of a cluster of 2N work-
stations to estimate its failure probability over a finite time horizon. This rather stiff
model has a high computational complexity in our prototypical implementation, as the
failure events are very rare which leads to a large time horizon.

All measurements were carried out on a 2.2GHz Xeon CPU with 16GB RAM.

6 Related Work and Conclusions

In the setting of stochastic games, the time-bounded reachability problem has been
studied extensively in [11], with extensions to timed automata in [9]. Closely related to
ours is the work in [7], where globally uniform IMCs — which require the sojourn times
in all Markovian states to be equally distributed — are transformed into continuous-time
Markov decision processes (CTMDPs). Subsequently, the algorithm in [4] is used to
compute the maximum time-bounded reachability probability in the resulting globally
uniform CTMDP. However, the applicability of this approach is severely restricted, as
global uniformity is hard (and often impossible) to achieve.

Further, the above approaches rely on time-abstract schedulers which are proved to
be strictly less powerful than the time-dependent ones that we consider here [4,24].

In [25], we relax the restriction to global uniformity and consider locally uniform
CTMDPs for which we propose a discretization that computes maximum time-bounded
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reachability probabilities under late schedulers: In locally uniform CTMDPs, late sched-
ulers outperform early schedulers [24], which are the largest class of history and time
dependent schedulers definable on general CTMDPs [21].

The discretization approach in this paper resembles that of [25]. However, the results
are complementary: In general, transforming IMCs to CTMDPs as done in [21] does
not yield locally uniform CTMDPs. Hence, the approach in [25] is inapplicable for the
analysis of IMCs. However, we expect to solve the problem of computing time-interval
bounded reachability in CTMDPs by analysing the CTMDP’s induced IMC.

By providing an efficient and quantifiably precise approximation algorithm to com-
pute interval bounded reachability probabilities, this paper solves a long standing open
problem in the area of performance and dependability evaluation. Moreover, we solve
the CSL model checking problem on arbitrary IMCs.

Acknowledgement. We thank Holger Hermanns and Joost-Pieter Katoen for their com-
ments and for many fruitful discussions about earlier versions of this work.
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25. Neuhäußer, M.R., Zhang, L.: Time-bounded reachability in continuous-time Markov deci-
sion processes. Technical report, RWTH Aachen University (2009)

26. Pulungan, R.: Reduction of Acyclic Phase-Type Representations. PhD thesis, Universität des
Saarlandes, Saarbrücken, Germany (2009)


	Model Checking Interactive Markov Chains
	Introduction
	Preliminaries
	Interactive Markov Chains
	Paths and Events in IMCs
	Resolving Nondeterminism by Schedulers
	Probability Measures for IMCs
	Interactive Probabilistic Chains

	Interval Bounded Reachability Probability
	A Fixed Point Characterization for IMCs
	A Fixed Point Characterization for IPCs
	A Discretization That Reduces IMCs to IPCs
	Solving the Problem on the Reduced IPC
	Algorithm and Complexity

	Model Checking the Continuous Stochastic Logic
	Experimental Results
	Related Work and Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




