Simple O(m logn) Time Markov Chain Lumping

Antti Valmari! and Giuliana Franceschinis?

L Tampere University of Technology, Department of Software Systems
P.O. Box 553, FI-33101 Tampere, Finland
Antti.Valmari@tut.fi
2 Dip. di Informatica, Univ. del Piemonte Orientale
viale Teresa Michel 11, 15121 Alessandria, Italy
Giuliana.Franceschinis@mfn.unipmn.it

Abstract. In 2003, Derisavi, Hermanns, and Sanders presented a com-
plicated O(mlogn) time algorithm for the Markov chain lumping prob-
lem, where n is the number of states and m the number of transitions
in the Markov chain. They speculated on the possibility of a simple al-
gorithm and wrote that it would probably need a new way of sorting
weights. In this article we present an algorithm of that kind. In it, the
weights are sorted with a combination of the so-called possible majority
candidate algorithm with any O(klog k) sorting algorithm. This works
because, as we prove in the article, the weights consist of two groups,
one of which is sufficiently small and all weights in the other group have
the same value. We also point out an essential problem in the description
of the earlier algorithm, prove the correctness of our algorithm in detail,
and report some running time measurements.

1 Introduction

Markov chains are widely used to analyze the behaviour of dynamic systems and
to evaluate their performance or dependability indices. One of the problems that
limit the applicability of Markov chains to realistic systems is state space explo-
sion. Among the methods that can be used to keep this problem under control,
lumping consists of aggregating states of the Markov chain into “macrostates”,
hence obtaining a smaller Markov chain while preserving the ability to check
desired properties on it.

We refer to [4I8] for different lumpability concepts and their use in the analysis
of systems. For the purpose of this article it suffices that in the heart of their use
is the problem of constructing the coarsest lumping quotient of a Markov chain.
We define this problem formally in Section 2] and call it “the lumping problem”
for brevity.

Let n denote the number of states and m the number of transitions in the
Markov chain. An O(n 4+ mlogn) time algorithm for the lumping problem was
given in [6/5]. It is (loosely) based on the Paige-Tarjan relational coarsest par-
tition algorithm [10] of similar complexity. Unless the input is pathological with
many isolated states, we have n = O(m) implying O(n + mlogn) = O(mlogn).
Therefore, it is common practice to call these algorithms O(mlogn).

J. Esparza and R. Majumdar (Eds.): TACAS 2010, LNCS 6015, pp. 38-B2] 2010.
© Springer-Verlag Berlin Heidelberg 2010

Simple O(mlogn) Time Markov Chain Lumping 39

The Paige-Tarjan algorithm starts with an initial partition of the set of states
and refines it until a certain condition is met. Sets of the partition are tradition-
ally called blocks. A basic operation in the Paige—Tarjan algorithm is the splitting
of a block to at most three subblocks. We call one of the subblocks the middle
group, and another one the left block. Their precise definitions will be presented
in Section

When applying the Paige—Tarjan algorithm to the lumping problem, the block
splitting operation has to be modified. The middle group may have to be split
further to one or more middle blocks. On the other hand, the rather complicated
mechanism used by the Paige—Tarjan algorithm for separating the left block from
the middle group is not needed any more, because the refined splitting operation
can do that, too.

The authors of [6] first discussed a general balanced binary tree approach
to implementing the refined splitting operation. They proved that it yields
O(m log? n) time complexity to the algorithm as a whole. Then they proved
O(mlogn) time complexity for the special case where the trees are splay trees.

The authors of [6] speculated whether O(mlogn) time complexity could be
obtained with a simpler solution than splay trees. In this article we show that
this is the case. Instead of always processing the left block and middle group
together with a binary search tree, our algorithm processes them separately when
necessary. Separation is obtained with the so-called possible majority candidate
algorithm. The left block need not be split further. The splitting of the middle
group is based on sorting it with just any O(klogk) time algorithm, where
k is the number of items to be sorted. To show that this yields the desired
complexity, we take advantage of a special property of middle blocks that sets
an upper bound to the number of times each state can be in a middle block. The
left block lacks this property. Our algorithm sometimes separates some middle
block instead of the left block, but when this happens, the left block is so small
that it does not matter.

The articles [6I5] do not show a correctness proof of their algorithm. Indeed,
the description and pseudocode in them ignore an essential issue. This makes
direct implementations produce wrong results every now and then, as we show
in Section [l with an example. The splitting operation uses one block, called
splitter, as input. If block B has been used as a splitter and is then itself split
to By, Ba, ..., By, then it suffices that all but one of them are used as splitters
later on. The good performance arises from not using a biggest one among the
B; in the future. However, if B has not been used as a splitter, then every B;
must be used in the future. The articles [G5] fail to say that. Because of this, we
felt it appropriate to discuss the correctness issue in great detail in this article.

In Section 2lwe describe the lumping problem rigorously. Section Bl introduces
the less well known old algorithms and data structures that our new algorithm
uses. Our new algorithm is presented in Sectiondland proven correct in Section 5l
That it runs in O(n 4+ mlogn) (or O(mlogn)) time is shown in Section
Section [1 presents some measurements made with a test implementation, and
Section [§ presents our conclusions.

40 A. Valmari and G. Franceschinis

2 The Lumping Problem

The input of the lumping problem consists of a weighted directed graph (S, A, W)
together with an initial partition Z. In the definition, A C S x S, and W is a
function from A to real numbers. The elements of S, A, and W are called states,
transitions, and weights, respectively. We let n denote the number of states and
m the number of transitions. For convenience, we extend W to S x S by letting
W (s,s') = 0 whenever (s,s’) ¢ A. We also extend W to the situation where the
second argument is a subset of S by W(s,B) = > .5 W(s,s). By s — s" we
mean that (s,s’) € A. If B C S, then s — B denotes that there is some s’ € B
such that s — s'.

In many applications, the values W (s, s’) are non-negative. We do not make
that assumption, however, because there are also applications where W (s, s)
is deliberately chosen as —W (s, S\ {s}), making it usually negative. It is also
common that W(s,S) is the same for every s € S, but we do not make that
assumption either.

A partition of a set A is a collection {A;, Az, ..., Ax} of pairwise disjoint
nonempty sets such that their union is A. The initial partition Z is a partition
of S. The elements of a partition of S are traditionally called blocks. A partition
B’ is a refinement of a partition B if and only if each element of B’ is a subset
of some element in B.

A partition B of S is compatible with W if and only if for every B € B,
B' € B, s1 € B, and s, € B we have W(s1,B’) = W (s2, B’). Let croip be an
abbreviation for “compatible refinement of initial partition”, that is, a partition
of S that is a refinement of 7 and compatible with W. The objective of the
lumping problem is to find the coarsest possible croip, that is, the croip whose
blocks are as big as possible. Our new algorithm solves it.

Sometimes a variant problem is of interest where compatibility is defined
in a different way. In it, compatibility holds if and only if for every B € B,
B' € B\ {B}, s1 € B, and sy € B we have W(s1, B’) = W(s2, B’). The variant
problem can be solved by, for each state s, replacing W (s, s) by —W (s, S\ {s}),
and then using the algorithm for the lumping problem [5]. This is an instance of
a more general fact, given by the next proposition.

Proposition 1. For every I € Z, let wy be an arbitrary real number and Uy =
ITUUZ;, where Iy is an arbitrary subset of T. Let W' be defined by

W'(s,s") = Wi(s,s') when s' # s, and
W'(s,s) = wy —W(s,Ur \ {s}), where I is the I € T that contains s.

Then the coarsest lumping-croip with W' is the coarsest variant-croip with W.

Proof. The value of W (s, B) has no role in the definition of variant-compatibility
whenever s € B. This implies that the value of W (s, s) has never any role. So
W and W' yield the same variant-croips. The claim follows, if we now show that
with W', every lumping-croip is a variant-croip and vice versa.

It is immediate from the definitions that every lumping-croip is a variant-
croip. To prove the opposite direction with W', let B be a variant-croip, B € B,

Simple O(mlogn) Time Markov Chain Lumping 41

s1 € B, and sy € B. We have to prove that W'(s1, B') = W/'(sq, B') for every
B’ € B. This is immediate when B’ # B by the definition of variant-croips. We
prove next that W’(sy, B) = W/'(sa, B), completing the proof.

Let I be the initial block that contains si, and let By, Bs, ..., By be the
blocks to which the blocks in {I} UZ; have been split in B. Clearly sy € I, B
is one of the B;, By U---U By, = Ur, and S-F, W'(s, B;) = W'(s,U;) = wy
when s € I. Without loss of generality we may index the B; so that B = Bj.
Then W'(s1, B) = wy — S0, W(s1, Bi) = wy — 3%, W'(s2, Bi) = W'(s9, B),
because W'(s1, B') = W'(sa, B') when B’ # B. |

3 Background Data Structures and Algorithms

In this section we introduce those algorithms and data structures that are needed
in the rest of the article, not new, but not presented in typical algorithm text-
books either.

Refinable Partition. Our lumping algorithm needs a data structure for main-
taining the blocks. We present two suitable data structures that provide the
following services.

They make it possible in constant time to find the size of a block, find the
block that a given state belongs to, mark a state for subsequent splitting of
a block, and tell whether a block contains marked states. They also facilitate
scanning the states of a block in constant time per scanned element, assuming
that states are not marked while scanning. Finally, there is a block splitting
operation that runs in time proportional to the number of marked states in the
block. It makes one subblock of the marked states and another of the remaining
states, provided that both subblocks will be nonempty. If either subblock will be
empty, it does not split the block. In both cases, it unmarks the marked states
of the block. It is important to the efficiency of the lumping algorithm that the
running time of splitting is only proportional to the number of marked, and not
all, states in the block.

A traditional refinable partition data structure represents each block with
two doubly linked lists: one for the marked states and another for the remaining
states [I} Sect. 4.13]. The record for the block contains links to the lists, together
with an integer that stores the size of the block. It is needed, because the size
must be found fast. The record for a state contains a link to the block that the
state belongs to, and forward and backward links.

Marking of an unmarked state consists of unlinking it from its current list
and adding it to the list of the marked states of its block. In the splitting, the
new block is made of the marked states, and unmarked states stay in the old
block. This is because all states of the new block must be scanned, to update the
link to the block that the state belongs to. The promised running time does not
necessarily suffice for scanning the unmarked states. (For simplicity, we ignore
the other alternative where the smaller subblock is made the new block.)

A more recent refinable partition data structure was inspired by [9] and pre-
sented in [12]. In it, states and blocks are represented by numbers. All states

42 A. Valmari and G. Franceschinis

count := 0
for i := 1 to k do
if count = 0 then

pme := Ali] ; count :=1
else if A[i] = pmc then
count := count + 1
else
count := count — 1

Fig. 1. Finding a possible majority candidate

(that is, their numbers) are in an array elems so that states that belong to the
same block are next to each other. The segment for a block is further divided
to a first part that contains the marked states and second part that contains
the rest. There is another array that, given the number of a state, returns its
location in elems. A third array denotes the block that each state belongs to.
Three arrays are indexed by block numbers. They tell where the segment for
the block in elems starts and ends, and where is the borderline between the
marked and other states. An unmarked state is marked by swapping it with the
first unmarked state of the same block, and moving the borderline one step.

Possible Majority Candidate. A possible majority candidate pmc of an array
A[l...k] is any value that has the following properties. If some value occupies
more than half of the positions of A, then pmc is that value. Otherwise pmc is
just any value that occurs in A.

The algorithm in Figure[lfinds a possible majority candidate in linear time [3]
Sect. 4.3.3]. To see that it works, let f(z) = count when pme = x and f(z) =
—count when pme # x. When A[i] = x, then f(z) increases by one independently
of the value of pmc, and when A[i] # z, then f(x) increases or decreases by one.
If 2 occurs in more than half of the positions, then f(x) increases more times than
decreases, implying that at the end of the algorithm f(x) > 0. This guarantees
that pmc = x, because otherwise count would have to be negative, and the tests
in the code prevent it from becoming negative.

4 The Lumping Algorithm

Our new lumping algorithm is shown in Figure 2l The grey commands on lines 1
and 3 are not part of it. They are added because of the needs of the proofs
of the correctness and performance of the algorithm. They will be discussed in
Sections [l and [(l We will prove that their presence or absence does not affect
the output of the algorithm.

The input to the algorithm consists of S, A, W, and Z. We assume that A is
available as the possibility to scan the input transitions of each state in constant
time per scanned transition, and define os’ = {s | s — s'}.

The algorithm maintains a refinable partition of states. The initial value of
the partition is Z. Each block has an identity (number or address) with which it

Simple O(mlogn) Time Markov Chain Lumping 43

1 Ug:=7Z; Br:=0; w[s] := unused for every s €S ; C:={SU{s,}}
2 while Ug # 0 do
3 let B’ be any block in Ug ; Ug := Ug\{B'}; C :=C\{Cp jU{B', Cp \B'}
4 ST = @
5 for s’ € B’ do for s € es’ do
6 if w([s] = unused then St := St U {s} ; ws] := W(s,s')
7 else w(s] := w[s] + W (s, s')
8 for s € St do if w[s] # 0 then
9 B := the block that contains s
10 if B contains no marked states then Bt := Br U {B}
11 mark s in B
12 while Bt # () do
13 let B be any block in Bt ; Bt := Bt \ {B}
14 B := marked states in B ; B := remaining states in B
15 if B = () then give the identity of B to By else make B; a new block
16 pme := possible majority candidate of the w[s] for s € By
17 Bs :={s € B:1 | w[s] # pmc}; By :=B1\ B2
18 if Bo = () then ¢ := 1 else
19 sort and partition By according to w(s], yielding Ba, ..., By
20 make each of Ba, ..., By a new block
21 if B € Ug then add B, ..., By except B to Ug
22 else add [B)]” By, ..., By except a largest to Ug
23 for s € St do wls] := unused

Fig. 2. The coarsest lumping algorithm

can be found via an index or pointer. We saw in Section [3] that when a block is
split, the splitting operation decides which subblock inherits the identity of the
original block.

The array w has one slot for each s € S. It stores numbers. One value that
could not otherwise occur is reserved for a special purpose and denoted with
“unused” in the pseudocode. In our implementation, unused = DBL MAX, that is,
the maximal double precision floating point value of the computer.

The algorithm maintains a set Ug of “unprocessed” blocks, that is, blocks that
have to be used later for splitting. Similarly, St maintains a set of “touched” states
and Bt a set of “touched” blocks that will be processed later. The algorithm has
been designed so that only very simple operations are needed on them. In partic-
ular, when something is being added, it is certain that it is not already there. It is
thus easy to implement these sets efficiently as stacks or other data structures. The
sets contain indices of or pointers to blocks and states, not copies of the block and
state data structures. Therefore, when a block that is in Ug is split, the subblock
that inherits its identity also inherits the presence in Ug.

Initially Ug contains all blocks. The body of the main loop of the algorithm
(lines 3 to 23) takes and removes an arbitrary block B’ from Ug and splits
all blocks using it. The splitting operation may add new blocks to Ug. This is
repeated until Ug becomes empty. A block that is used in the role of B’ is called
a splitter.

44 A. Valmari and G. Franceschinis

Let B’ denote the set of states which have transitions to B’, that is, e B’ =
{s | 3¢ € B": s — s'}. Lines 4 to 7 find those states, collect them into S,
and compute W (s, B") for them. Each W (s, B’) is stored in w[s]. The if test
ensures that each state is added to St only once. The used ws] are reset back
to “unused” on line 23. This is a tiny bit more efficient than resetting the ws]
before use via s, as was done in [6].

Lines 8 to 11 mark those states in @ B’ that have W (s, B’) # 0, and collect into
Bt the blocks that contain such states. We saw in Section [3] that the marking
operation moves the state to a new place in the refinable partition data structure
(to another linked list or to another part of an array). As a consequence, the
marking operation interferes with the scanning of states. It would confuse the
scanning of B’ on line 5, if it were done in that loop. This is the main reason for
the seemingly clumsy operation of collecting e B’ into St and scanning it anew
from there. Another reason is that it makes it easy to get rid of states that have
W(s,B") = 0.

Lines 12 to 22 scan each block that has at least one s such that W (s, B") # 0,
and split it so that the resulting subblocks are compatible with B’. Lines 14
and 15 are the same as the splitting operation in Section Bl They split B to
those states that have and those that do not have W (s, B") # 0. The former
are stored in B; and the latter remain in B. The latter include those that do
not have transitions to B’. If B would become empty, then B; will not be a
new block but inherits the identity (number or address) of B. It must be kept
in mind in the sequel that B; may be different from B or the same block as B.

Line 16 finds a possible majority candidate among the w[s] of the states in
Bj. Lines 17 to 20 split By to By, Ba, ..., By so that s; and s5 are in the same
B; if and only if W(s1, B") = W(s2, B’). After the sorting on line 19, the s with
the same W (s, B') are next to each other and can easily be converted to a new
block. The sorting operation is new compared to Section [8l However, it is well
known how a doubly linked list or an array segment can be sorted in O(klog k)
time, where k is the number of elements to be sorted.

The subblock whose W (s, B') is the possible majority candidate is processed
separately because of efficiency reasons. As was mentioned above, the sorting
operation costs O(klogk). As was pointed out in [6], paying O(klogk) where
k =|ByU---UBy| would invalidate the proof of the O(n+ mlogn) performance
of the algorithm as a whole. The solution of [6] to this problem was to split By
to By, ..., By with the aid of splay trees. However, we will prove in Section
that O(klogk) is not too costly, if those states whose W (s, B") is the possible
majority candidate are not present in the sorting.

The set of blocks that will have to be used as splitters in the future is updated
on lines 21 and 22. There are two cases. If B is in Ug, then all subblocks of the
original B must be in Ug after the operation. Because B is already there, it
suffices to put the B; into Ug. However, B; may have inherited the identity of
B on line 15 and must not be put into Ug for a second time.

If B ¢ Ug, then it suffices that all but one of the subblocks is put into Ug. The
good performance of the algorithm relies on putting only such subblocks into Ug

Simple O(mlogn) Time Markov Chain Lumping 45

B(j Bd Bl

1 1 \8 !
O O

oL Bi 05 | o~

...... 0.5, . 8 1

Bs 1 Bo

Fig. 3. A counter-example to never putting all subblocks into Ug

whose sizes are at most half of the size of the original B. This is implemented by
finding the largest, or one of the largest if there are many of maximal size, and
not putting that subblock into Ug. This works, because there can be at most
one subblock whose size is more than half of the original size. The notation [B,]’
reminds that if B and Bj refer to the same block, then only one of them should
be considered.

Testing whether B € Ug can be made fast, if each block has a bit that is set
when the block is put into Ug and reset when the block is removed from Ug.

The articles [65] do not discuss the distinction represented by lines 21 and 22.
They seem to always work according to line 22, even if B € Ug. The example in
Figure Bldemonstrates that this is incorrect. The initial partition is { By, Ba, B3U
B, U Bs, Bg}. If By is used as the first splitter, it splits B3 U B4 U B to Bz and
B4 U Bs. Assume that Bj is not and B4 U Bjs is put into Ug. If By is used as the
next splitter, it splits B4 U Bs to B4 and Bs. It may be that then Bj is put into
Ug and By is not. At this stage, B3z and By are not in Ug, and none of the other
blocks induces any splitting. Thus Bg is never split, although it should be. This
problem makes implementations based directly on [6I5] yield wrong results.

5 Correctness

In this section we prove the correctness of the algorithm presented in the previous
section. In the proof, we will keep track of some information on blocks that have
been used as splitters and then have been split themselves. For this purpose we
introduce compound blocks. A compound block is always a union of ordinary
blocks. The idea is that always on line 2, the splitting that any compound block
C1 would cause has already been done, either by having used C; as a splitter,
or by having used C, Cj, ..., C} as splitters, where C' = C; U--- U C}, and the
C; are pairwise disjoint. This will be made precise later.

The grey statements in Figure [2] maintain the compound blocks. The com-
pound blocks constitute a partition C of S U {s, }, where s, will be explained
soon. Initially C consists of one compound block that contains all states, includ-
ing s, . On line 3, the compound block Cg/ that covers the ordinary block B’ is

46 A. Valmari and G. Franceschinis

split to two compound blocks B’ and Cg: \ B’. (The invariant after the proof of
Lemma 2l will imply that Cg/ \ B’ # ().)

The purpose of s, is to make it easier to formulate two invariants that will be
used in the last part of the correctness proof. Without s, , the last part would
be very difficult to follow. The easy formulation needs initially such a compound
block C; that S C C; and W (s, C}) is the same for every s € C;. Unfortunately,
W (s, S) is not necessarily the same for every s € S. Fortunately, we can fix
this without affecting the operation of the algorithm by adding a new imaginary
state si. Its adjacent transitions are chosen such that W(s,s,) = —W(s,5)
when s € S, and s, has no output transitions. Thus W (s, S U {s,}) = 0 for
every s € SU{sy}, and we can let C; = SU{s_ }. The grey statement on line 1
makes C; the only compound block.

We now show that the addition of s; changes the correct answer only by
adding {s,} as an extra block to it. Clearly B is a refinement of 7 if and only
if BU{{s.}} is a refinement of ZU {{s, }}. Furthermore, W (s1, B) = W (s2, B)
holds trivially when {s1,s2} C {s.}. If W(s1, B) = W(s2, B) for every B € B,
then W(s1,{s1}) = =X pepW(s1,B) = =2 pepWi(s2, B) = W(sz,{s1}).
From these it can be seen that B is compatible with the original W if and only
if BU{{s1}} is compatible with W extended with the transitions adjacent to
s . So the two systems have the same croips, except for the addition of {s] }.

The next important fact is that not implementing s; and the grey statements
changes the output of the algorithm only by removing {s, } from it. The state-
ment Ug := 7 does not put {s; } into Ug. (This is similar to line 22, where all
except one subblocks of B are put into Ug.) Therefore, s; never occurs as the
s" on line 5. Because s| has no output transitions, it cannot occur as the s on
line 5 either. Its only effect on the execution of the algorithm is thus that {s }
is an extra block that is never accessed. The set C of compound blocks has no
effect on the output, because its content is not used for anything except for the
computation of new values of C on line 3.

We have shown the following.

Lemma 1. Without the grey statements the algorithm in Figure [2 computes
the correct result for S, A, W, and T if and only if with the grey statements it
computes the correct result when s and its adjacent transitions have been added.

We now prove that the algorithm computes the correct result in the presence of
s and the grey statements. The next lemma states that it does not split blocks
unnecessarily.

Lemma 2. Let sy € SU{s.} and so € SU{s }. If the algorithm ever puts s,
and so into different blocks, then there is no croip where s1 and so are in the
same block.

Proof. We show that it is an invariant property of the main loop of the algorithm
(that is, always valid on line 2) that if two states are in different blocks of the
algorithm, then they are in different blocks in every croip.

If s and s are in different blocks initially, then they are in different blocks
in ZU {{s,}} and thus in every croip.

Simple O(mlogn) Time Markov Chain Lumping 47

The case remains where lines 14 to 20 separate s; and sy to different blocks.
This happens only if W(s1,B’) # W (s2,B"). Let BU {{s.}} be an arbitrary
croip. It follows from the invariant that each block of BU{{s }} is either disjoint
with B’ or a subset of B’, because otherwise the algorithm would have separated
two states that belong to the same block of a croip. Therefore, there are blocks

1y ooy B in BU{{s.1}} such that B{ U---UB), = B’. The fact W(s1, B") #
W (s2, B') implies that there is 1 < ¢ < k such that W (s, B}) # W (s2, B}). So
s1 and so belong to different blocks in BU {{s }}.]

Proving that the algorithm does all the splittings that it should is more difficult.
We first show that the following is an invariant of the main loop.

For each C' in C, Ug contains all but one blocks B that are subsets of C'.

This is initially true because Ug contains all blocks except {s, }, and C = {C}}
where C; = S U {s,}. On line 3, B’ is removed from Ug but also subtracted
from Cp/, so the invariant becomes valid for Cp/ \ B’. It becomes valid for the
new compound block B’, because it consists of one block that is not any more in
Ug. Lines 21 and 22 update Ug so that either B was in Ug before the splitting
operation and all of its subblocks are in Ug after the operation, or B was not in
Ug beforehand and precisely one of its subblocks is not in Ug afterwards. Thus
they do not change the number of blocks that are subsets of C' and not in Ug.

The invariant implies that each compound block contains at least one ordinary
block, namely the one that is not in Ug.

At this point it is easy to prove that the algorithm terminates. Termination
of all loops other than the main loop is obvious. Each iteration of the main loop
splits one compound block to two non-empty parts. There can be at most |5
splittings, because after them each compound block would consist of a single
state, and thus of precisely one block. By the previous invariant, that block is
not in Ug, and hence Ug is empty.

Another important invariant property of the main loop is

For every block B, s1 € B, so € B, and C € C we have W(s1,C) =
W(SQ,C).

This is initially true because initially C = {S U {s1 }}, and W(s,SU{s1}) =0
for every s € S U {s,}. Assume that the invariant holds for C' = Cp/. The
splitting of Cp/ to B’ and Cpg/ \ B’ on line 3 violates the invariant, but the rest
of the main loop re-establishes it for C = B’. Regarding C' = Cp \ B', if s;
and sy are in the same block, then W (s1,Cp/ \ B') = W(s1,Cp/) — W(s1,B') =
W (s2,Cp) — W(s2, B") = W(s2,Cps \ B’). So the invariant remains valid.

Lines 1 and 3 imply that each ordinary block is a subset of a compound
block. When the algorithm terminates, Ug = (). Then, by the first invariant,
each compound block consists of a single ordinary block. Therefore, ordinary
and compound blocks are then the same thing. In this situation, the second
invariant reduces to the claim that the partition is compatible. We have proven
the following lemma.

48 A. Valmari and G. Franceschinis

Lemma 3. The algorithm terminates, and when it does that, the partition is
compatible.

So the algorithm terminates with a croip. By Lemma [all other croips are
refinements of the one produced by the algorithm. This means that the output
is the coarsest croip. Now Lemma [I] yields Theorem [

Theorem 1. The algorithm in Figure [d (without s, and the grey statements)
finds the coarsest refinement of T that is compatible with W .

We did not assume in the correctness proof of the algorithm that the coarsest
croip exists. Therefore, our proof also proves that it exists.

It can be reasoned from the proof that if for every initial block B and every
s1 € B and sp € B we have W(s1,S) = W(sg,S), then it is correct to put
initially all but one of the initial blocks into Ug.

6 Performance

In this section we show that the algorithm in Figure 2l runs in O(n + mlogn)
time, where n is the number of states and m is the number of transitions.

Line 1 runs clearly in O(n) time.

Let us now consider one iteration of the main loop. Lines 3 to 7 run in O(|B’|)+
O(X s cp |®s|) time. They find [¢B'| <), 5 |es'| states and store them into
St. Lines 8 to 11 and 23 scan the same states and thus run in O(|eB’|) time.
Lines 12 to 22 scan a subset of the blocks that contain these states. By Section[3]
the running time of lines 14 and 15 is only proportional to the number of these
states. Therefore, excluding the sorting operation on line 19, lines 12 to 22 run in
O(|eB’|) time. To summarize, excluding the sorting operation, lines 3 to 23 run
in O(|B'|) + 03",/ cp |#s']) time. The O(|B’|) term can be charged in advance,
when B’ is put into Ug. This leaves O(|es’|) time for each s’ € B’.

Assume that B’ is used as a splitter and later on some B” C B’ is used as
a splitter. There has been a sequence By,...,B;, of blocks such that & > 1,
B’ = Bj, B;, = B”, and B has been created by splitting B;_; when 1 < i < k.
When B/ was created, B}, was not in Ug because it had been used as a splitter.
When Bj, was created, it was put into Ug or inherited a position in Ug, because
it was later used as a splitter. There is thus at least one ¢ between 1 and k such
that B]_; was not in Ug and B} was put into Ug when B] was created. We see
that B} was put into Ug by line 22. As a consequence, |B!| < }|Bj_,|. Clearly
1By > |Bi| > ... > |Bf. So |B"| < }IB|.

This implies that each time when a state s’ is used for splitting, it belongs to
a splitter whose size is at most half of the size in the previous time. Therefore,
the state can occur in a splitter at most logyn + 1 times. The contribution of
s’ to the execution time of the algorithm as a whole is thus O((logn)|es’|) plus
the share of ¢’ of the time needed for sorting. When this is summed over every
s’ € S and added to the O(n) from line 1, it yields O(n +mlogn), because then
es’ goes through all transitions.

We have proven the following lemma.

Simple O(mlogn) Time Markov Chain Lumping 49

Lemma 4. Fzxcluding the sorting operations on line 19, the algorithm in Fig-
ure[@ runs in O(n 4+ mlogn) time.

We still have to analyse the time consumption of the sorting operations. For that
purpose, consider the B’ and Cp/ \ B’ of line 3. We say that a subblock B; of
block B on lines 13 to 22 is

— the left block, if W (s, B") # 0 and W(s,Cp/ \ B") = 0 for every s € B;,
— a middle block, if W(s, B") # 0 and W (s,Cp \ B’) # 0 for every s € B;, and
— the right block, if W (s, B") = 0 for every s € B;.

This definition covers all subblocks of B, because W (s, Cg/) is the same for every
s € B by the second invariant of Section [l In particular, every state in the left
block has the same W (s, B), because it is W (s, Cz/). The union of the middle
blocks of B is called the middle group. The following lemma says an important
fact about the middle groups.

Lemma 5. If the middle groups are sorted with an O(klogk) sorting algorithm
(such as heapsort or mergesort), then the total amount of time spent in sorting
is O(mlogn). This remains true even if each sorting operation processes also at
most as many additional states as is the size of the middle group.

Proof. Let #(s) denote the number of compound blocks C' such that s — C'. Let
so = {s"| s — s'}. Clearly #c(s) < [se] and) o #c(s) < > ,cq 58| =m. Each
time when s is in a middle block, we have both s — B’ and s — Cp/\ B’, so #(s)
increases by one. As a consequence, if #n(s) denotes the number of times that
s has been in a middle block, then #m(s) < #c(s). Therefore, > o #m(s) <
s fhels) <m.

Let K denote the total number of middle groups processed during the execu-
tion of the algorithm, and let k; be the size of the ith middle group. Thus k; < n
and Zfil ki =3 scg #m(s) < m. We have Zfil 2k; log(2k;) <2 Zfil k; log(2n)
= 2(K ki) log(2n) < 2mlog(2n) = 2mlogn + 2mlog2. Therefore, the total
amount of time spent in sorting the middle groups and at most an equal number
of additional states with any O(k log k) sorting algorithm is Zfil O(2k; log(2k;))
= O(mlogn). O

The Bj on line 16 is the union of the left block and the middle group. Every
state in the left block has the same W (s, B). If the left block contains more
states than the middle group, then line 16 assigns its W (s, B’) to pmec, line 17
separates it from the middle group, and line 19 only sorts the middle group. In
the opposite case, B1, and thus its subset Bs, contains at most twice as many
states as the middle group. Both cases satisfy the assumptions of Lemma [l This
implies that the sorting operations take altogether O(mlogn) time.

The memory consumption of every data structure is clearly O(m) or O(n),
and the data structures for the blocks and es’ are £2(n) and £2(m). Heapsort and
mergesort use O(n) additional memory. We have proven the following theorem.

Theorem 2. If the details are implemented as described above, then the algo-
rithm in Figure[2 runs in O(n 4+ mlogn) time and ©(n + m) memory.

50 A. Valmari and G. Franceschinis

L gh—1

Fig.4. An example where sorting the union of the middle and left blocks with a
O(klog k) algorithm costs too much. Each transition has weight 1.

Processing the possible majority candidate’s block separately from Bs is not
necessary for correctness. We show now that it is necessary for guaranteeing the
performance. Assume that a ©(k log k) sorting algorithm is applied to the union
of the middle and left blocks. Consider the family of systems in Figure @l In the
figure, the initial partition is shown by dashed lines.

Assume that the initial block in the center is used as the first splitter. It splits
itself into two halves along the rightmost dotted line. The leftmost half is used
for further splitting, because it has 2"~ — 1 states, while the other half has 2"~1
states. When it is used as a splitter, it splits itself to two halves of sizes 2"—2
and 2"~2 — 1 states. Again, the leftmost half is smaller. This repeats h — 1 times,
plus one time which does not cause any splitting. Each time the leftmost initial
block is processed as a left block. We have h sorting operations on at least 2"
elements each, taking altogether 2(h(2"log2")) = R2(nlog*n) = 2(mlog®n)
time, because m = n = 2"*1. This is not O(mlogn).

7 Testing and Measurements

Our lumping algorithm was implemented in C++ and tested in two different
ways.

The first series of tests used as inputs more than 250 randomly generated
graphs of various sizes, densities, numbers of initial blocks, and numbers of dif-
ferent transition weights. Unfortunately, there is no straightforward way of fully
checking the correctness of the output. Therefore, each graph was given to the
program in four different versions, and it was checked that the four outputs
had the same number of states and the same number of transitions. Two of the
versions were obtained by randomly permuting the numbering of states in the
original version, and the first output was used as the fourth input. This is sim-
ilar to the testing described in [I1]. Indeed, the programs written for [T1] were
used as a starting point when implementing both the lumping program and the
testing environment.

Simple O(mlogn) Time Markov Chain Lumping 51

Table 1. Some timing measurements. The times are in seconds.

input output reading lumping
source states transitions states transitions input algorithm
random 30 000 1000 000 29 982 995 044 7.3 0.7
random 30 000 1000 000 29 973 952 395 6.9 1.0
random 30 000 1 000 000 1 0 6.3 0.3
random 30 000 10 000 000 29 974 9 950 439 71.4 7.5
random 30 000 10 000 000 29 931 9 522 725 68.9 7.6
random 30 000 10 000 000 1 0 63.9 3.6
GreatSPN 184 756 2 032 316 139 707 5.2 2.0
GreatSPN 646 646 7 700 966 139 707 21.2 32.8
GreatSPN 1 352 078 16 871 582 195 1041 49.5 126.6
GreatSPN 2 704 156 35 154 028 272 1508 111.3 825.4

The ability of the testing environment to reveal errors was tested by modifying
the lumping program so that it initially puts one too few blocks into Ug. The
testing environment detected the error quickly.

The upper part of Table [l shows some running times on a laptop with 2 GiB
of RAM and 1.6 GHz clock rate. The bottleneck in the tests was the capacity of
the testing environment and the time spent in input and output, not the time
spent by the lumping algorithm.

The Markov chains used in the second set of experiments were made with
the GreatSPN tool [2I7] from a family of stochastic Petri net models. The nets
exhibit symmetries, making it possible for GreatSPN to also compute the lumped
Markov chains directly. The sizes of the results obtained by running our program
on unlumped Markov chains produced by GreatSPN were compared to the sizes
of lumped Markov chains produced directly by GreatSPN, and found identical.
Correctness was also checked by computing some performance indices.

These experiments were made on a laptop with 2 GiB of RAM and 2.2 GHz
clock rate. Their results are reported in the lower part of Table [l They suggest
that our program has good performance even with more than 10° states and 107
transitions.

8 Conclusions

We presented an O(mlogn) time algorithm for the lumping problem, where n
is the number of states and m is the number of transitions. It is not the first
algorithm for this problem with this complexity. However, it is much simpler than
its predecessor [6], because the use of splay trees was replaced by an application
of just any O(klog k) sorting algorithm together with a simple possible majority
algorithm. We also believe that our presentation is the first that is sufficiently
detailed and non-misleading from the point of view of programmers. Thus we
hope that this article is of value to solving the lumping problem in practice.
Our simplification is based on the observation that the sum of the sizes of the
so-called middle blocks during the execution of the Paige—Tarjan algorithm is

52 A. Valmari and G. Franceschinis

at most m. Therefore, the extra time taken by sorting them is so small that it
does not add to the overall time complexity of O(mlogn) of the Paige-Tarjan
algorithm. We demonstrated with an example that this does not extend to so-
called left blocks. As a consequence, the left blocks must often be processed
separately. Fortunately, this was easy to do with the possible majority candidate
algorithm.

Our algorithm does not implement the compound blocks of [10]. However, we
used compound blocks extensively in the proofs. They are a handy way of keeping
track of splitting that has already been done. Without referring to them it would
be impossible to define the middle blocks and justify the correctness of the
technique that underlies the good performance, that is, sometimes not putting
some block into Ug. Compound blocks are thus essential for understanding the
algorithm, although they are not explicitly present in it.

Acknowledgments. We thank the reviewers of this article for exceptionally
many good comments.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1974)

2. Baarir, S., Beccuti, M., Cerotti, D., De Pierro, M., Donatelli, S., Franceschinis, G.:
The GreatSPN tool: recent enhancements. SIGMETRICS Performance Evaluation
Review, Special Issue on Tools for Performance Evaluation 36(4), 4-9 (2009)

3. Backhouse, R.C.: Program Construction and Verification. Prentice-Hall Interna-
tional Series in Computer Science, UK (1986)

4. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. Journal of
Appl. Prob. 31, 309-315 (1994)

5. Derisavi, S.: Solution of Large Markov Models Using Lumping Techniques and Sym-
bolic Data Structures. Dissertation, University of Illinois at Urbana-Champaign
(2005)

6. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov
chains. Information Processing Letters 87(6), 309-315 (2003)

7. GRaphical Editor and Analyzer for Timed and Stochastic Petri Nets,
http://www.di.unito.it/%7egreatspn/| (last update September 25, 2008)

8. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, Heidelberg (1960)

9. Knuutila, T.: Re-describing an algorithm by Hopcroft. Theoret. Comput. Sci. 250,
333-363 (2001)

10. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM J. Com-
put. 16(6), 973-989 (1987)

11. Valmari, A.: Bisimilarity minimization in O(mlogn) time. In: Franceschinis, G.,
Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 123-142. Springer, Hei-
delberg (2009)

12. Valmari, A., Lehtinen, P.: Efficient minimization of DFAs with partial transition
functions. In: Albers, S., Weil, P. (eds.) STACS 2008, Symposium on Theoretical
Aspects of Computer Science, Bordeaux, France, pp. 645-656 (2008),
http://drops.dagstuhl.de/volltexte/2008/1328/

http://www.di.unito.it/%7egreatspn/
http://drops.dagstuhl.de/volltexte/2008/1328/

	Simple $O(mlog n)$ Time Markov Chain Lumping
	Introduction
	The Lumping Problem
	Background Data Structures and Algorithms
	The Lumping Algorithm
	Correctness
	Performance
	Testing and Measurements
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

