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Abstract. The typical proof of linearizability establishes an abstrac-
tion map from the concurrent program to a sequential specification, and
identifies the commit points of operations. If the concurrent program uses
fine-grained concurrency and complex synchronization, constructing such
a proof is difficult. We propose a sound proof system that significantly
simplifies the reasoning about linearizability. Linearizability is proved by
transforming an implementation into its specification within this proof
system. The proof system combines reduction and abstraction, which in-
crease the granularity of atomic actions, with variable introduction and
hiding, which syntactically relate the representation of the implemen-
tation to that of the specification. We construct the abstraction map
incrementally, and eliminate the need to reason about the location of
commit points in the implementation. We have implemented our method
in the QED verifier and demonstrated its effectiveness and practicality
on several highly-concurrent examples from the literature.

1 Introduction

Linearizability is a well-known correctness criterion for concurrent data-structure
implementations [1]. A concurrent implementation, denoted Impl, is said to be
linearizable with respect to a sequential specification, denoted Spec, if every
concurrent operation op of Impl takes effect atomically between its call and
return points, where the correct effect is described by a sequential operation op′

in Spec.
The typical proof of linearizability establishes an abstraction map, from Impl-

states to Spec-states [2], and shows that only one action of op, called the commit
action, is mapped to op′, and other actions are mapped to stuttering (identity)
transitions in Spec. Under fine-grained concurrency control, constructing such
a proof requires considerable expertise. First, identifying the commit action be-
comes nontrivial when op is written in terms of many small actions that make
visible changes to the state. It further complicates the analysis when the commit
point is determined at runtime depending on thread interleavings. Second, while
the abstraction map relates Impl-states to Spec-states, it must also filter out the
effects of the partially completed operations of Impl on the state except for the
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commit action. This includes completing partial operations or rolling back the
effects of these operations back to a clean state [3].

In this paper, we present a new method for proving linearizability of programs
with fine-grained concurrency. Our method permits more tractable proofs by
eliminating the above difficulties of constructing an abstraction map and not
requiring the identification of the commit points. In [4], we showed that by
interleaving reduction with abstraction, we can increase atomicity to the point
that assertions in a concurrent program can be verified by sequential (local)
reasoning. In this work, we argue that program rewriting guided by atomicity is
an effective method for proving linearizability and present a sound proof system
and a supporting tool that realize this method in a formal and practical setting.

We prove that Impl is linearizable with respect to Spec, by transforming Impl
to Spec via a sequence of phases. In a reduction phase, we alternate reduction and
abstraction to mark a set of sequentially composed actions as atomic. These ac-
tions are collected together, and the effects of thread interleavings are eliminated.
In a refinement phase, we couple variable introduction and variable hiding, in
order to make the code closer to the specification. These techniques provide us
with the ability to syntactically relate implementation of a data structure to
a specification with a different representation. We also provide the soundness
guarantee that, the proof transformations preserve the behaviors of the original
program. Thus, one can simplify the program by growing atomic blocks and
continue the linearizability proof with another method, e.g., separation logic [5].

Interleaving reduction and refinement phases supports the incremental con-
struction of the abstraction map. By increasing atomicity, a reduction phase
enables a following refinement phase to implicitly establish a simple and clean
abstraction map towards the specification. A refinement phase also helps to
improve a following reduction phase by eliminating superficial conflicts: Two
equivalent operations might conflict on low-level (implementation) variables but
this does not necessarily correspond to real conflicts in terms of the final specifi-
cation. Our solution to this issue indirectly introduces a semantic hierarchy into
mover checks in reduction, which is not particular to linearizability and is likely
to be useful in any kind of reduction proof.

We have implemented our method in the QED verifier. We demonstrate the
effectiveness and practicality of our method by proving linearizability of several
tricky examples from the literature. All proofs are available online and repro-
ducible using QED.

1.1 Related Work

Refinement between a concurrent program and its sequential specification is well-
studied [2,6,7,8]. Previous work showed that, under certain conditions, auxiliary
variables enable construction of an abstraction map to prove refinement [2,6].
However, in practice writing an abstraction map for programs with fine-grained
concurrency remains a challenge since there are a large number of cases to con-
sider. [3] used a complex abstraction map, called aggregation function, that com-
pletes the atomic transactions that are committed but not yet finished. The
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refinement proofs in [1,9,10,11], despite being supported by automated proof
checkers, all require manual guidance for the derivation of the proof, requiring
the user to manage low-level logical reasoning. On the other hand, in our method
the user guides the proof via code transformations at the programming language
level. Recently, [5] provided a tool that automates the derivation of the proof
using shape abstraction. To our knowledge, its automating ability is limited to
linked-list based data structures and it still requires identification of the possible
commit points.

Owicki-Gries [12,1] and rely-guarantee [13] methods have been used in refine-
ment proofs. However, in the case of fine-grained concurrency, deriving the proof
obligations in both approaches requires expertise. The idea of local reasoning is
exploited by separation logic [14] which is not particularly useful for shared ob-
jects with high level of interference. In these cases, we show that abstraction is
an important tool to reduce the effects of interference.

Wang and Stoller [15] statically prove linearizability of the program using its
sequentially executed version as the specification. Their notion of atomicity is
defined over a fixed set of primitives, which is limited in the case of superficial
conflicts. On the other hand, our notion of atomicity is more general and sup-
ported by abstraction to prove atomicity even under high level of interference.
They provided hand-crafted proofs for several non-blocking algorithms, and our
proofs are mechanically checked. In [16], Groves gives a hand-proof of the lin-
earizability of the nonblocking queue, by reducing executions the fine-grained
program to its sequential version. His use of reduction is non-incremental, and
must consider the commutativity of each action by doing a global reasoning,
while our reasoning is local.

2 Motivation and Overview

Our running example is a multiset of integers. Figure 1 shows the concurrent im-
plementation (Impl), and the sequential specification (Spec), of InsertPair and
LookUp operations1. The instruction assume φ blocks until φ becomes true, and
havoc x assigns a nondeterminstic value to x. Our goal is to verify linearizability
of Impl with respect to Spec.

Spec uses the variable S, which maps each integer to its cardinality in the
multiset. Initially, S is empty, so S[x]==0 for every integer x.

Impl contains an array M of N slots. For each slot, the elt field stores an integer,
and the stt field indicates the status of the slot. The atomic FindSlot operation2

allocates an empty slot by setting its stt field to reserved, and returns its index.
FindSlot fails and returns -1 if it cannot find any empty slot. The lock of each slot
is acquired and released separately by lock and unlock operations, respectively.

1 We omit the Insert operation to simplify the explanation.
2 The original implementation of FindSlot uses fine-grain locking, and traverses the

array using a loop similar to that of LookUp. In order to simplify the explanation, we
use a version of FindSlot that has already been transformed using our proof steps.
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Implementation (Impl)
enum Status = { empty,reserved,full };
record Slot { elt: int, stt: Status };
var M: array[0..N-1] of Slot

LookUp(x:int) returns(r:bool)
var i: int;

1 for (i := 0; i < N; i++) {
2 lock(M[i]);
3 if (M[i].elt==x && M[i].stt==full){
4 unlock(M[i]);
5 r := true; return;
6 } else unlock(M[i]);
7 }
8 r := false;

atomic FindSlot(x:int) returns (r:int)
1 if (forall 0<=i<N. M[i].stt != empty) {
2 r := -1;
3 } else {
4 assume (0<=r<N && M[r].stt==empty);
5 M[r].stt := reserved;
6 }

InsertPair(x:int, y:int) returns (r:bool)
var i,j: int;

1 i := FindSlot(x);
2 if (i == -1) {
3 r := false; return;
4 }
5 j := FindSlot(y);
6 if (j == -1) {
7 M[i].stt := empty;
8 r := false; return;
9 }

10 M[i].elt := x;
11 M[j].elt := y;

12 lock(M[i]);
13 lock(M[j]);
14 M[i].stt := full;
15 M[j].stt := full;
16 unlock(M[i]);
17 unlock(M[j]);
18 r := true;

Specification (Spec)
var S: array [int] of int;
atomic LookUp(x:int) returns (r:bool)
r := (S[x] > 0);

atomic InsertPair(x:int, y:int) returns (r:bool)
if(r) { S[x] := S[x] + 1; S[y] := S[y] + 1; }

Fig. 1. The concurrent implementation and the sequential specification of multiset

A typical linearizability proof establishes an abstraction map that relates the
slots M of Impl to the map S of Spec. Let |A| denote the cardinality of the set A.
The following abstraction map expresses the programmer’s design intent clearly:

S[x]==|{ i | 0<=i<N && M[i].elt==x && M[i].stt==full }|

In words, for each integer x, the number of slots i in Impl with M[i].elt==x

and M[i].stt==full represents S[x] in Spec. When the proof is done at finest
granularity of concurrency, more complicated variants of this abstraction map
has to be used. In the following, we envision such a proof, and highlight com-
mon difficulties. We then illustrate how our proposed approach alleviates these
difficulties and allows the proof to use the above map.

2.1 Challenges in a Typical Refinement Proof for Multiset

Abstraction maps and commit points. Many techniques work by first
selecting a commit point in every operation. The most likely choice for the
commit point for InsertPair is line 16, since releasing the first lock makes the
inserted element M[i].elt visible to other threads. Consider an abstraction map
from Impl to Spec and suppose that line 16 of InsertPair is executed by Impl.
This transition must be mapped to a single transition that increments S[x]

and S[y] atomically. As a first try, let us consider the simple abstraction map
introduced above:

S[x]==|{ i | 0<=i<N && M[i].elt==x && M[i].stt==full }|
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This map does not work with this choice of commit point, because when lines
14 and 15 of InsertPair are executed, S[x] and S[y] are incremented, but the
execution has not reached the commit point yet. In addition, the updates that
are propagated to S are not atomic. Our next, slightly more sophisticated map
below does not update S[x] and S[y] while the locks to these cells are held.
(HeldBy(M[i],t) is true when thread t is holding the lock of M[i]):

S[x]==|{ i | 0<=i<N && M[i].elt==x && M[i].stt==full && !HeldBy(M[i],t)}|

The problem with this map is that every slot locked by a thread would be
excluded from S. As a result, at line 16 (the commit point) the map would
increment S[x] but not S[y] since M[j] is still locked. Thus, this map still does
not accomplish the atomic specification state update we are after. The right map
has to complete this partial update at the commit point by incrementing S[y]

as well although the lock of M[j] is still held.
We next try different selections of commit points: lines 14, 15 or 17. For each of

these choices, in order to produce the intended specification state and avoid non-
atomic updates to it, an abstraction map must “roll back” effects of executions
of InsertPair that have not reached their commit point, and must “complete”
the effects of others that are past their commit point but have not yet finished.
To accomplish this, the map must refer to not only the locking state but also
the program counters of all threads.

Non-fixed commit points. Another issue that complicates the linearizability
proof for multiset is that the commit action of LookUp is not fixed, but depends
on the concurrently executing insertions by other threads. If LookUp(x) returns
true its commit action is at line 3, where it finds out that the slot being visited
contains x and is valid. When LookUp(x) fails, its commit point must be chosen
as the first read of a slot it performs or earlier. This is because, in the absence
of a Delete operation, it is possible that x gets inserted into a slot M[i], after
LookUp visits the ith slot and fails to find x, therefore, the commit point cannot
be past the first read of a slot. Techniques that depend on the existence of a
fixed commit point would be ineffective in such situations [13].

2.2 Proof by Reduction and Abstraction

Observe that the code blocks between lines 12-17 of InsertPair is atomic, i.e.,
any execution in which the actions of this block are interleaved with actions
from other threads can be transformed into one in which actions of the commit
block are contiguous. The technique we present allows us to express this fact and
use it in a sound manner in a refinement or linearizability proof. Being able to
treat the commit block as a single atomic action eliminates all of the potential
difficulties outlined above.

In our method the proof is constructed by transforming Impl to Spec, both
shown in Figure 1. This is done through a reduction phase followed by a re-
finement phase. In the reduction phase, we reduce the bodies of InsertPair and
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LookUp to single atomic actions. This phase is guided by a simple hint about the
locking discipline (see [17] for details of automating reduction).

In order to handle the non-fixed commit points of LookUp, we apply a trans-
formation to separate its succeeding and failing executions. Since each failing
iteration of LookUp is a left-mover, the failing branch of LookUp trivially reduces
to a single action. For the successful branch, we apply an abstraction to the fail-
ing iterations that makes them also right-movers, and combine the abstracted
iterations with the final, successful iteration. This reduces the successful branch
into an atomic action. At the end, we obtain LookUp as a single atomic action
that summarizes both successful and failing executions of the original code.

After transforming InsertPair and LookUp to single atomic actions, the locking
state becomes unnecessary. We use variable hiding to clean up the calls to lock

and unlock. Finally, we arrive at the representation of the multiset in Spec in
three proof steps. First, we introduce the Spec variable S to the current version
of the program. Then, we add (and prove) the following invariant, which links
the new variable to the array M:

S[x]==|{ i | 0<=i<N && M[i].elt==x && M[i].stt==full }|

Recall that the above invariant establishes the simplest abstraction map that
reflects the programmer’s design intent. The invariant allows us to add the as-
signments S[x] := S[x] + 1; and S[y] := S[y] + 1; at the end of InsertPair.
We follow the introduction of S with a variable hiding step in which we replace
the bodies of InsertPair and LookUp with the corresponding bodies in Spec (Fig-
ure 1). Our soundness theorems given in Section 5 guarantee that transforming
Impl to Spec using our rules implies the linearizability of Impl.

What is noteworthy about the proof we outlined is that it handles two separate
concerns in separate proof steps: 1) concurrency control using locking and the stt

field, and 2) relating the array-based representation of Impl to the representation
in Spec. This example does not illustrate the use of variable hiding to eliminate
superficial conflicts. In Section 6 we provide an example that does.

3 Concurrent Programs: Syntax and Semantics

Program. A program P is a tuple P = 〈GlobalP ,ProcP 〉. GlobalP is the set of
uniquely-named global variables. ProcP is a set of procedures. A procedure is a
tuple 〈ρ, localρ, bodyρ〉, where ρ is the name, localρ is the set of local variables,
and bodyρ is the body of the procedure.

We distinguish the input variables
−→
inρ ⊆ localρ and the output variables−→

outρ ⊆ localρ. The tuple 〈ρ,
−→
inρ,

−→
outρ〉 is called the signature of the procedure.

The signatures of the procedures in Proc form the signature of the program,
denoted Sig(P). We employ the convention that the variables in

−→
inρ and

−→
outρ

are read-only and write-only, respectively, while the rest of the variables in localρ
can be both read and updated.

We use VarP to denote GlobalP ∪ ⋃
ρ∈Proc localρ. We assume that each local

variable is used in a unique procedure. Var ′
P consisting of the primed version
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of each variable in VarP . We omit the subscripts when the program and the
procedure are clear from the context.

Execution model. Let Tid be the set of all thread identifiers. For simplicity of
presentation, we assume that procedure calls are inlined properly, assuming no
recursion in the call chain. In general, our method applies to the inter-procedural
case allowing recursion [4].

Without loss of generality, each thread calls one procedure ρ from Proc, and
terminates when ρ returns. Statements of the procedures may refer to the current
thread id through the special variable tid ∈ Global , whose domain is Tid .

Syntax. We assume that each atomic statement α, which we call an (atomic)
action, is in the form: assert a; p. Let ρ be the procedure whose body contains α,
and V = Global ∪ localρ. The assert predicate a be over only unprimed variables
from V . The transition predicate p is over both primed and unprimed variables
in V ∪ V ′. For any action α, let φα and τα denote its assert and transition
predicates. For instance, φα = a and τα = p, for α given above.

We use sequential composition (;), choice (�) and loop (�) operators to form
compound statements. We also define the nullary action stop, which appears only
at runtime and intuitively marks the end of fully executing a statement.

Program states. A program state s is a pair consisting of
– a variable valuation σs that maps a thread id and a variable to a value, such

that σs(t, g) = σs(u, g) for all states s and thread id’s t, u, whenever g is a
global variable.

– a code map εs that keeps track of a (compound) statement for each thread,
such that εs(t) = c means that at program state s, the remaining part of the
program to be executed by thread t is given by c.

A program state s is called initial if ∀t ∈ Tid . ∃ρ ∈ Proc. εs(t) = bodyρ, i.e.
every thread is about to call a procedure. State s is called final if εs(t) = stop,
for all t ∈ Tid . We write Initial(s) (resp. Final(s)) to denote that s is an initial
(resp. final) state.

Let σs|V denote the projection of valuation σs on V ⊆ Var . Define s |V to be
the program state (σs|V , εs). This definition also pointwise applies to collections
of states.

Predicates over program variables. For an assert predicate x, let x[t] denote
the predicate in which all free occurrences of tid is replaced with t. We say that
a program state s satisfies x[t], denoted as s � x[t] or as x[t](s), if x[t] evaluates
to true when all free occurrences of each unprimed variable v is replaced with
σs(t, v). An assert predicate is called a state predicate if it does not contain any
free occurrence of tid.

Similarly, the pair of program states (s1, s2) satisfies a transition predicate
p[t], denoted as (s1, s2) � p[t] or as p[t](s1, s2), if p[t] evaluates to true when each
unprimed variable v (resp. v′) is replaced with σs1 (t, v) (resp. σs 2(t, v)).

Let fv(p) be the set of free variables in the (state or transition) predicate p.
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Execution semantics. We assume a sequentially-consistent memory model.

For thread t and γ ∈ Atom, (t, γ) is called a transition label. We say s
(t,α)−−−→ s′

holds when t can execute α next (in which case s′ is a (t, α) successor3 of s), all
other threads do not update their control flow, all local variables of other threads
remain the same, the global variables and local variables of t are updated so that

the transition predicate of α is satisfied. Formally, s
(t,α)−−−→ s′ if (s, s′) � τα[t] and

for all u 
= t and for any local variable x, σs(u, x) = σs′ (u, x).

Run. A run r of the program is a sequence of state transitions:

r = r1
(t1,α1)−−−−→ r2

(t2,α2)−−−−→ · · · (tn−1,αn−1)−−−−−−−−→ rn

For the definitions that follow, we fix the run r above. Let T id(r) denote the
set of threads occurring in r. Let ri denote the ith program state, and r(i), the
ith transition label (ti, αi) in r. For a state predicate φ, we say that r is a run
of P from φ if Initial(r1) and r1 � φ.

The run is maximal if rn cannot make any transition. Henceforth, we will
only consider maximal runs.

Trace. A trace is a sequence of transition labels, l = l1 . . . lk. The trace moves
a state s1 to sk+1, written s1

l−→ sk+1, if there is a run r of P over l, such that
rj = sj , for all 1 ≤ j ≤ k + 1 and ri

li−→ ri+1.

Violation-freedom. A run r of P from φ is called a violation if ¬φα[t](rk)
evaluates to true for some (t, α) ∈ next(rk). Intuitively, a violation is a run of
P that starts from an initial program state s1 and reaches a program state sk

which violates the assert predicate, φα, of an action α which thread t can execute
at state sk. A run is said to be successful if it is not a violation. We indicate a
successful run as s1

l−→ s2 and a violation as s1
l−→ error.

4 Program Transformations

In this section, we formalize our notion of proof and introduce the rules for the
proof calculus. A proof state is the pair (P , I), where P is a program, and I is
a state predicate, called the inductive invariant of the program. We require that
for every proof state (P , I), all the atomic actions of P preserve I. An atomic

action α preserves I, written α � I, if s1
(t,α)−−−→ s2 and s1 � I imply s2 � I.

A proof consists of rewriting the input program, denoted P1, iteratively so
that, in the limit, one arrives at a program, denoted Pn, that can be verified by
sequential reasoning methods. Formally, the proof is expressed as (P1, true) ���
(P2, I2) ��� · · · ��� (Pn, In) Each proof step is governed by a proof rule, which
we present below.
3 Our technical report [18] contains a more elaborate discussion of the operational

semantics of our formal language.
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The following proof rule states the general form of updating I, replacing it
with a stronger invariant.

Rule 1 (Invariant). Replace invariant I1 with I2 if α � I2 for all the actions
α in P, and I2 ⇒ I1.

The basic idea in reduction and abstraction is to replace an action with another
action that simulates the former.

Definition 1 (Simulation). Let α, β be actions, t be an arbitrary thread id.
We say β simulates α at proof state (P , I), written (P , I) 
 α � β, if both of
the following hold:

S1. (I ∧ ¬φα) ⇒ ¬φβ S2. (I ∧ τα) ⇒ (¬φβ ∨ τβ)

Intuitively, S1 states that if there is a violation with α, there has to be a violation
with β substituted in place of α. S2 states that for each violation-free run,
replacing α with β results in either a violation, or a violation-free run with the
same end state.

4.1 Reduction

Reduction, due to Lipton [19], creates coarse-grained atomic statements by com-
bining fine-grained actions. An action α can be combined with another action
if α is a certain kind of mover. A mover is an action that can commute over
actions of other threads in any run. We write (P , I) 
 α : m to indicate that α
is m−mover in the proof state (P , I), where m ∈ {L, R}.

We decide that an action α is a mover by statically checking a simulation
relation, that states that commuting α with every β can lead to the same state
or goes wrong. An assert predicate x is p-stable, if ∀s, s′.x(s) ∧ p(s, s′) ⇒ x(s′).

Let wp(p, x), the weakest (liberal) pre-condition of predicate x for transition
predicate p, stand for all states which cannot reach a state where x evaluates to
false after executing p. Formally, wp(p, x) = {s | ∀s′. p(s, s′) ⇒ x(s′)}. For two
transition predicates p and q, define their composition p · q, as the transition
predicate p · q = {(s1, s2) | ∃s3. p(s1, s3) ∧ q(s3, s2)}. The operator � � expresses
the result of combining two actions to one atomic action.4

�α; β� = assert (φα ∧ wp(τα, φβ)); (τα · τβ) �α�β� = assert (φα ∧ φβ); (τα ∨ τβ)

Definition 2 (Left-mover). Action α is a left-mover in proof state (P , I),
denoted (P , I) 
 α : L, if the following holds for every action β in P and every
pair of distinct thread ids t and u: (P , I) 
 �β[u] ; α[t]� � �α[t] ; β[u]�.

Definition 3 (Right-mover). Action α is a right-mover in proof state (P , I),
denoted (P , I) 
 α : R, if, for every action β in P, and every pair of distinct
thread ids t and u: (P , I) 
 �α[t] ; β[u]� � �β[u] ; α[t]� and φβ [u] is τα[t]-stable.
4 We assume that a transition predicate τα[t] can only change the variables in the

scope of t and that if t and u are running the same procedure, local variables are
suitably renamed to prevent false conflicts.
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The reduction rules below define the conditions under which non-atomic state-
ments are transformed to atomic actions. We omit the rules about procedure
calls and parallel composition which are similar to those of [4].

Rule 2 (Reduce-Sequential). Replace occurrences of α ; γ with �α ; γ� if
either (P , I) 
 α : R or (P , I) 
 γ : L.

Rule 3 (Reduce-Choice). Replace occurrences of α � γ with �α � γ�.

Rule 4 (Reduce-Loop). Replace occurrences of α� with β if the following
hold:

L1. (P , I) 
 α : m s.t. m ∈ {R, L} L2. β � I
L3. φβ ⇒ τβ [Var/Var ′] L4. (P , I) 
 �β ; α� � α

4.2 Abstraction

The purpose of the abstraction rule is to replace an action with another action
An abstraction step consists of replacing an action α with another action β,
which in principle leads to less interference with other actions.

Rule 5 (Abstraction). Replace the action α with action β if β � I and
(P , I) 
 α � β.

This rule is usually applied for an action asserta; p by replacing it with 1)
assert b; p such that b ⇒ a or 2) with assert a; q such that p ⇒ q. While the
former corresponds to adding extra assertions to the action, the latter adds
more (non-deterministic) transitions.

4.3 Variable Introduction and Hiding

Intuitively, variable introduction rewrites some actions in the program so that
these can refer to a new (history) variable. Variable hiding is the dual of variable
introduction; each action is rewritten so that it does no longer refer to the
hidden variable. Hiding a variable also requires quantifying out the variable in
the invariant.

In order to ensure soundness, in both cases, we need a relation between actions
over different sets of variables. For this, we extend our simulation relation (�)
for each rule. In addition, we require that the input and output variables of
the procedures (

−→
inρ,

−→
outρ) are fixed during the proof; the rules below are not

applicable to these variables.

Rule 6 (Add-Variable). Add the new variable v to VarP , and replace every
action α with β whenever (P , I) 
 α �+v β, which holds if the following are
both valid:

A1. (I ∧ ¬φα) ⇒ (∀v . ¬φβ) A2. (I ∧ τα) ⇒ (∀v . ¬φβ ∨ (∃v ′. τβ))
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Rule 7 (Hide-Variable). Remove the existing variable v from the program,
and replace the invariant I with ∃v . I. Replace every action α with β whenever
(P , I) 
 α �−v β, which holds if the following are both valid:

H1. (∃v . I ∧ ¬φα) ⇒ ¬φβ H2. (∃v , v ′. I ∧ τα) ⇒ (¬φβ ∨ τβ)

Fix a thread t and a state s. In both of the rules, the first condition (A1,
H1) states that violations are preserved. The second condition (A2, H2) states
that transitions (over the common variables of α and β) are either preserved or
additional violations are introduced.

5 Soundness Theorems

Given a proof (P1, I1) ��� · · · ��� (Pn, In), we now provide the soundness
theorems. Each theorem relates Pn to P1, providing a soundness guarantee for
a particular use of our method. Due to lack of space, we provide the proofs in
our technical report [18].

5.1 Proving Assertions

The first theorem is an extension of the main soundness theorem in [4]. Intu-
itively, the theorem states that proof steps preserve violations, and initial-final
state pairs when the output program is good from the final invariant.

Good and Bad. In the following, we define Good(P , I) as the set of pre- and
post-state pairs associated with succeeding (maximal) runs of program P from
states satisfying I. Bad(P , I) is the set of pre-states associated with violations.
Formally,

Good(P , I) = {(s1, s2) | Initial(s1), s1 � I, ∃l. s1
l−→ s2, F inal(s2)}

Bad(P ,I) = {s1 | Initial(s1), s1 � I, ∃l. s1
l−→ error}

P is said to be good from I if Bad(P , I) = ∅; it is called bad from I, otherwise.

Theorem 1. Let (P1, I1) ��� · · · ��� (Pn, In) be a sequence of proof steps. Let
V = VarP1 ∩ VarPn and X = (VarP1 ∪ VarPn)\V. The following hold:

C1. Bad |V (P1, ∃X. In) ⊆ Bad |V (Pn, ∃X. In)
C2. ∀(s1, sn) ∈ Good |V (P1, ∃X. In) :

a. s1 ∈ Bad |V (Pn, ∃X. In) or b. (s1, sn) ∈ Good |V (Pn, ∃X. In)

Note that, since the input and output variables of procedures are fixed during
the proof, so the set V above will always be nonempty. A corollary of the above
theorem is that, if Pn is good from In, then P1 is good from In. This means
that, one can prove the assertions in P1 by gradually obtaining programs with
coarser-grained concurrency using our proof rules.
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5.2 Proving Linearizability

In this section, we establish a link between P1 and Pn in the context of proving
linearizability. For this, we first define behavioral simulation, a special kind of
simulation that relates two programs through their observable behaviors over
procedure input and output values.

Behavioral simulation. Let r = s1
l−→ sn be a (maximal) run of the program.

Letρbe theprocedureexecutedby t.Wecall the tuple (t, ρ, σs1 (t,
−→
inρ), σsn(t,

−→
outρ))

the behavior of t in r and denote it by beh(r, t). The behavior includes the name of
theprocedure calledby t, alongwith thevalues of the inputand theoutputvariables
of the procedure5. We write Beh(r) to denote {beh(r, t) | t ∈ T id(r)}.

We define fst(r, t) and lst(r, t) be the indices of first and the last actions of t in
r. Formally, with L = {i | r(i) = (t, α)}, fst(r, t) = min(L) and lst(r, t) = max(L).
Let �r be a partial order over Tid(r) ordering threads that do not execute
concurrently: t �r u if lst(r, t) < fst(r, u).

Definition 4. Let P and P ′ be two programs with Sig(P) = Sig(P ′), and let I be
a state predicate. Let X1 = fv(I)\VarP and X2 = fv(I)\VarP ′ . P ′ behaviorally-
simulates P from I, denoted P �I P ′ if for each maximal run r of program
P from ∃X1.I, there exists a maximal run r′ of P ′ from ∃X2.I such that 1)
Beh(r) = Beh(r′) and 2) �r ⊆ �r′

The following theorem connects behavioral simulation to the generic notion of
linearizability. We say P is linearizable to P ′ from I to restrict the definition
of linearizability to runs of P and P ′ from I. A program P is called an atomic
program if for every ρ ∈ ProcP , bodyρ is an atomic action.

Theorem 2. Let P ′ be an atomic program that is good from I. A program P is
linearizable to P ′ from I iff P �I P ′.

The following theorem states that each good program reached during the proof
behaviorally simulates the initial program.

Theorem 3 (Soundness). Let (P1, I1) ��� · · · ��� (Pn, In) be a sequence of
proof steps such that Pn is good from In. Then forall 1 ≤ i ≤ n, P1 �In Pi holds.

Theorems 2 and 3 provide two options for proving linearizability of P1 to the
intended specification from I, represented by an atomic program Pn. First, one
can complement another proof method with ours, by first performing the proof
(P1, true) ��� · · · ��� (Pk, I), and then applying her method to prove that
Pk is linearizable to Pn. Once the proof passes, this implies that P1 is also
linearizable to Pn, since our transformations preserve all the behaviors of the
program relevant to linearizability. Alternatively, s/he can keep transforming
(Pk, I) up to (Pn, I), and complete the full proof of linearizability in our system.
Note that, for the theorems to ensure soundness in these cases, s/he must also
prove that Pk (resp. Pn) is good from I. The latter is formalized by the following.

5 Notice that the first and the last states of the run provide us the values of
−→
inρ and

−→
outρ,

respectively.
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Corollary 1. Let (P1, true) ��� · · · ��� (Pn, I) be a sequence of proof steps,
such that Pn is an atomic program that is good from I. Then, P1 is linearizable
to Pn from I.

6 Implementation and Experience

We implemented our proof method in the QED verifier. QED accepts as input
a multithreaded program written in an extension of the Boogie programming
language and a proof script. All the transformations are applied automatically,
and when necessary, the preconditions of the transformations are checked, by
generating verification conditions and feeding them to the Z3 SMT solver. Using
QED, we mechanically proved the linearizability of the following programs:

– Lock-coupling linked list [13]
– Treiber’s non-blocking stack [20]
– Non-blocking and two-lock queues [21]
– Non-blocking mutex lock implementation adapted from [22]

For each data structure, we chose a generic specification as the target of the
proof, and were able to transform the program to the specification program
through few reduction and refinement phases. The QED tool and the proof
scripts of the above programs are available at http://qed.codeplex.com.

In the rest of the section, we overview the proof of the non-blocking queue,
and describe how coupling variable introduction and hiding helps us to cope with
superficial conflicts. This is an important limitation for reduction, and interest-
ingly, our standard notion of abstraction on the existing variables (Section 4.2)
does not help in this situation. Our solution to eliminating the conflict is to
hide the variables on which the conflict happens; but, differently from the stan-
dard abstraction, introducing new variables, which will carry enough (semantic)
information from the hidden variables and will not cause conflicts.

6.1 Non-Blocking Queue

Figure 2 shows the version of the non-blocking queue [21] after applying a reduc-
tion phase on the original implementation. Atomic action Do Dequeue removes an
element from the queue, and Do Enqueue appends a new element to the queue.
The implementation is lazy in that Do Enqueue does not update the Tail variable
after adding the new node. As a result, at any time Tail may point to any node
between Head and null. The actions labeled Move Tail and Update Tail try to
move the Tail towards the end of the list. This resembles relaxed balancing in
concurrent implementation of tree-like data structures, in which restructuring
the data structure is separated from actual operations, and delayed.

The predicate Reach(next,k,l,m) expresses that, from node k, following zero
or more next pointers, we first reach l and then m [23]. The Reach predicate gives
us the ability to do simple abstractions on actions accessing the list nodes. For
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Implementation (Impl)
record Node { data: int; next: Node; }
var Head, Tail: Node;

Dequeue() returns (x: int)
var tail: Node;
while(true) {

Move_Tail: atomic {
havoc tail;
assume Reach(next, Tail, tail, null)

&& tail != null;
Tail := tail;

}
} // end while

Do_Dequeue: atomic {
if (Head.next == null) {
x := null;
} else {
assume (Head != Tail);
Head := Head.next; x := Head.data;
}

}

Enqueue(x: int)
var node, tail: Node;
atomic {
node := new Node(x);
node.next := null;

}
while(true) {

Move_Tail:atomic {
havoc tail;
assume Reach(next, Tail, tail, null)

&& tail != null;
Tail := tail;

}
} // end while

Do_Enqueue: atomic {
assume (Tail.next == null);
Tail.next := node; tail := Tail;

}
Update_Tail: atomic {

if (Tail == tail) Tail := node;
}

Specification (Spec)
atomic Dequeue() returns (x: int)

if (Head.next == null) {
return null;
} else {
Head := Head.next; x := Head.data;
}

atomic Enqueue(x: int)
node := new Node(x);
node.next := null;
_Tail.next := node;
_Tail := _Tail.next;

Fig. 2. The reduced implementation of the non-blocking queue and its specification

example, a former abstraction step in the reduction phase replaces the action n

:= tail.next with the action havoc n; assume Reach(next,tail,n,n); while the
former is not mover, the latter is.

In order to apply reduction, the only option is to show that Move Tail is
a right-mover, since Do Enqueue and Do Dequeue perform the actual operations,
thus are not movers. Move Tail conflicts with Do Enqueue and Do Dequeue on Tail.
Notice that Move Tail performs an internal operation that does not affect the
semantics of the queue. Thus, these conflicts are superficial. Havocing Tail in
the conflicting actions, or hiding Tail are a valid proof steps, and would make
reduction pass. However, the resulting code would perform incorrect operation.

We eliminate the conflict by coupling the hiding of Tail with introducing
the history variable Tail of the same type. Differently from Tail, Tail always
points to the end of the queue. We then associate the existing variables with the
new variable Tail by the following invariant.

Reach(next, Head, Tail, Tail) && Reach(next, Tail, _Tail, null)

&& (_Tail != null) && (_Tail.next == null)

In order to satisfy the invariant, we add to the end of Do Enqueue the assign-
ment Tail := Tail.next. Once there is Tail to keep track of the end of the list,
we are ready to hide Tail. This is done by replacing the actions in the program
with actions that do not refer to Tail, but now uses Tail to access the end of the
linked list. Figure 3 shows the version of the program after hiding Tail. Notice



310 T. Elmas et al.

record Node { data: int; next: Node; }
var Head, _Tail: Node;

procedure Dequeue()
var tail: Node;

while(true) {
Move_Tail: atomic { havoc tail; }
} // end while

Do_Dequeue: atomic {
if (Head.next == null) {
x := null;
} else {
Head := Head.next; x := Head.data;
}

}

procedure Enqueue(x: int)
var node, tail: Node;
atomic {
node := new Node(x);
node.next := null;

}

while(true) {
Move_Tail: atomic { havoc tail; }
} // end while

Do_Enqueue: atomic {
_Tail.next := node;
_Tail := _Tail.next;
havoc tail;

}
Update_Tail: atomic { assume true; }

Fig. 3. The version of the non-blocking queue after hiding Tail

that the new form of Move Tail does not perform any semantic operation in the
new program, and does not conflict with other actions. In addition, the actions
Do Enqueue and Do Dequeue now use Tail to correctly perform their operations.

The hiding step also includes existentially quantifying Tail in the invariant
given above. This produces the following invariant for the new program.

Reach(next, Head, _Tail, null) && (_Tail != null) && (_Tail.next == null)

We proceed with a reduction phase that combines the blocks into a single
action for each operation. The combined operations, together with the above
invariant (for simplicity, we omit parts of the representation invariant), give the
correct behavior of a sequential queue implementation. Corollary 1 ensures that
the original implementation in [21] is linearizable to this final program from
the invariant. Note that it also possible to continue the proof with an extra
refinement phase to prove the linearizability to a more generic specification of
the queue.
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