
Efficient Büchi Universality Checking�

Seth Fogarty and Moshe Y. Vardi

Department of Computer Science, Rice University, Houston, TX
{sfogarty,vardi}@cs.rice.edu

Abstract. The complementation of Büchi automata, required for checking au-
tomata universality, remains one of the outstanding automata-theoretic challenges
in formal verification. Early constructions using a Ramsey-based argument have
been supplanted by rank-based constructions with exponentially better bounds.
The best rank-based algorithm for Büchi universality, by Doyen and Raskin, em-
ploys a subsumption technique to minimize the size of the working set. Sep-
arately, in the context of program termination, Lee et al. have specialized the
Ramsey-based approach to size-change termination (SCT) problems. In this con-
text, Ramsey-based algorithms have proven to be surprisingly competitive. The
strongest tool, from Ben-Amram and Lee, also uses a subsumption technique,
although only for the special case of SCT problems.

We extend the subsumption technique of Ben-Amram and Lee to the general
case of Büchi universality problems, and experimentally demonstrate the neces-
sity of subsumption for the scalability of the Ramsey-based approach. We then
empirically compare the Ramsey-based tool to the rank-based tool of Doyen and
Raskin over a terrain of random Büchi universality problems. We discover that the
two algorithms exhibit distinct behavior over this problem terrain. As expected,
on many of the most difficult areas the rank-based approach provides the superior
tool. Surprisingly, there also exist several areas, including the area most difficult
for rank-based tools, on which the Ramsey-based solver scales better than the
rank-based solver. This result demonstrates the pitfalls of using worst-case com-
plexity to evaluate algorithms. We suggest that a portfolio approach may be the
best approach to checking the universality of Büchi automata.

1 Introduction

The complementation problem for nondeterministic automata over infinite words is
a vital step in the automata-theoretic approach to formal verification. The automata-
theoretic approach reduces questions about program adherence to a specification to
questions about language containment [19]. Representing liveness, fairness, or termi-
nation properties requires finite automata that operate on infinite words. One automa-
ton, A, encodes the behavior of the program, while another automaton, B, encodes
the formal specification. To ensure adherence, verify that the intersection of A with
the complement of B is empty. The most difficult step is constructing the complemen-
tary automaton B. When addressing this problem, the formal verifications community
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has focused on universality testing [6,18,20]. This is the simplest case of containment
checking: checking if the universal language is contained in the language of the au-
tomaton. Finite automata on infinite words are classified by their acceptance condition
and transition structure. We consider here nondeterministic Büchi automata, in which a
run is accepting when it visits at least one accepting state infinitely often [2].

The first complementation constructions for nondeterministic Büchi automata em-
ployed a Ramsey-based combinatorial argument to partition infinite words into a finite
set of regular languages. Proposed by Büchi in 1962 [2], this construction was shown in
1987 by Sistla, Vardi, and Wolper to be implementable with a blow-up of 2O(n2) [17].
This brought the complementation problem into singly-exponential blow-up, but left a
gap with the 2Ω(n log n) lower bound proved by Michel [13].

The gap was tightened one year later in 1988, when Safra described a 2O(n log n)

construction [15]. Because of this, the Ramsey-based approach has never been imple-
mented. Work since then has focused on improving the practicality of 2O(n log n) con-
structions, either by providing simpler constructions, further tightening the bound [16],
or improving the derived algorithms. In 2001, Kupferman and Vardi employed a rank-
based analysis of Büchi automata to simplify complementation [12]. Recently, Doyen
and Raskin have demonstrated the necessity of using a subsumption technique in the
rank-based approach, providing a direct universality checker that scales to automata
several orders of magnitude larger than previous tools [6].

Separately, in the context of of program termination analysis, Lee, Jones, and Ben-
Amram presented the size-change termination (SCT) principle in 2001 [5]. Lee et al.
describe a method of size-change termination analysis and reduce this problem to the
containment of two Büchi automata. Stating the lack of efficient Büchi containment
solvers, they also propose a direct Ramsey-based combinatorial solution. The Lee,
Jones, and Ben-Amram (LJB) algorithm was provided as a practical alternative to re-
ducing the SCT problems to Büchi containment, but bears a striking resemblance to
the 1987 Ramsey-based complementation construction. In a previous paper, we showed
that the LJB algorithm for deciding SCT is a specialized realization of the Ramsey-
based construction [9]. When examined empirically, Ramsey-based tools proved to be
surprisingly competitive to their rank-based counterparts. The best Ramsey-based tool
employs a subsumption technique for the specific case of SCT problems [1].

This paper extends the subsumption technique of Ben-Amram and Lee to the gen-
eral case of Büchi universality. By doing so we provide a direct algorithm, derived
from the Ramsey-based complementation construction, for checking the universality
of Büchi automata. We note that subsumption is a heuristic technique and, even with
this improvement, there is still an exponential gap between the 2O(n2) Ramsey-based
approach and the 2O(n log n) rank-based approach. Motivated by the Ramsey-based ap-
proach’s strong performance on the domain of SCT problems, we investigate the em-
pirical performance of these two algorithms. Due to a paucity of real-world universality
problems, we compare the algorithms over a terrain of random universality problems
[6,18] characterized by transition density, acceptance density, and size.

Our empirical results first demonstrate that, as with rank-based algorithms, subsump-
tion is necessary for scalability in Ramsey-based tools. Further, we observe that the two
algorithms exhibit significantly different behavior. The terrain points that pose difficulty
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for each algorithm, while overlapping, are distinct. In terms of scalability, we show
that in many areas the rank-based universality tool performs exponentially better than
the Ramsey-based universality tool. However, there also exist several areas where the
Ramsey-based tool is more scalable than the rank-based tool, despite the massive differ-
ence between 2O(n log n) and 2O(n2). Finally, we discover that the Ramsey-based tool is
better at demonstrating non-universality by finding a counterexample, while the rank-
based tool is superior when proving universality. This final difference can be attributed
to the manner in which each approaches explores the state space of the complemented
automaton, but does not explain the other behaviors of the two approaches. We are thus
forced to conclude that worst-case complexity is a poor predictor of an algorithms per-
formance, and no substitute for empirical analysis. We suggest that a portfolio approach
[10,14] may be employed when checking the universality of Büchi automata. Failing
that, run both algorithms in parallel, and see which terminates first.

2 Preliminaries

In this section we review the relevant details of Büchi automata, introducing along the
way the notation used throughout this paper. An nondeterministic Büchi automaton on
infinite words is a tuple B = 〈Σ, Q, Qin, ρ, F 〉, where Σ is a finite nonempty alphabet,
Q a finite nonempty set of states, Qin ⊆ Q a set of initial states, F ⊆ Q a set of
accepting states, and ρ : Q × Σ → 2Q a nondeterministic transition function. We lift
the ρ function to sets of states and words of arbitrary length in the usual fashion.

A run of a Büchi automaton B on a word w ∈ Σω is a infinite sequence of states
q0q1... ∈ Qω such that q0 ∈ Qin and, for every i ≥ 0, we have qi+1 ∈ ρ(qi, wi). A run
is accepting iff qi ∈ F for infinitely many i ∈ IN . A word w ∈ Σω is accepted by B if
there is an accepting run of B on w. The words accepted by B form the language of B,
denoted by L(B). A path in B from q to r is a finite subsequence of a run beginning in
q and ending in r. A path is accepting if some state in the path is in F .

A Büchi automaton A is contained in a Büchi automaton B iff L(A) ⊆ L(B), which
can be checked by verifying that the intersection of A with the complement B of B
is empty: L(A) ∩ L(B) = ∅. We know that the language of an automaton is non-
empty iff there are states q ∈ Qin, r ∈ F such that there is a path from q to r and
a path from r to itself. The initial path is called the prefix, and the combination of the
prefix and cycle is called a lasso [19]. Further, the intersection of two automata can
be constructed, having a number of states proportional to the product of the number
states of the original automata [3]. Thus the most computationally demanding step is
constructing the complement of B. In the formal verification field, existing empirical
work has focused on the simplest form of containment testing, universality testing,
where A is the universal automaton [6,18].

For algorithms that compute sets of states, a subsumption technique can sometimes
be employed to limit the size of working sets. This technique ignores certain states
when their behavior is subsumed by other states. A subsumption relation is a partial
order over the state space of an automaton, such that if a state q subsumes a state r, then
r can be removed from any set containing q.
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2.1 Ramsey-Based Universality

When Büchi introduced these automata in 1962, he described a complementation con-
struction involving a Ramsey-based combinatorial argument. We describe a universality
testing algorithm based on an improved implementation presented in 1987. To construct
the complement of B, where Q = {q0, ..., qn−1}, we construct a set ˜QB whose elements
capture the essential behavior of B. Each element corresponds to an answer to the fol-
lowing question. Given a finite nonempty word w, for every two states q, r ∈ Q: is there
a path in B from q to r over w, and is some such path accepting?

Define Q′ = Q × {0, 1} × Q, and ˜QB to be the subset of 2Q′
whose elements do

not contain both 〈q, 0, r〉 and 〈q, 1, r〉 for any q and r. Each element of ˜QB is a {0, 1}-
arc-labeled graph on Q. An arc represents a path in B, and the label is 1 if the path is
accepting. Note that there are 3n2

such graphs. With each graph g̃ ∈ ˜QB we associate a
language L(g̃), the set of words for which the answer to the posed question is the graph
encoded by g̃.

Definition 1. [2,17] Let g̃ ∈ ˜QB and w ∈ Σ+. Say w ∈ L(g̃) iff for all q, r ∈ Q:
(1) 〈q, a, r〉 ∈ g̃, a ∈ {0, 1}, iff there is a path in B from q to r over w
(2) 〈q, 1, r〉 ∈ g̃ iff there is an accepting path in B from q to r over w

The languages L(g̃) for the graphs g̃ ∈ ˜QB, form a partition of Σ+. With this partition
of Σ+ we can devise a finite family of ω-languages that cover Σω. For every g̃, ˜h ∈ ˜QB,
let Ygh be the ω-language L(g̃) · L(˜h)ω. We say that a language Ygh is proper if Ygh

is non-empty, L(g̃) · L(˜h) ⊆ L(g̃), and L(˜h) · L(˜h) ⊆ L(˜h). There are a finite, if
exponential, number of such languages. A Ramsey-based argument shows that every
infinite string belongs to a language of this form, and that L(B) can be expressed as the
union of languages of this form.

Lemma 1. [2,17]
(1) Σω =

⋃{Ygh | Ygh is proper}
(2) For g̃,˜h ∈ ˜QB, either Ygh ∩ L(B) = ∅ or Ygh ⊆ L(B)
(3) L(B) =

⋃{Ygh | Ygh is proper and Ygh ∩ L(B) = ∅}
To obtain the complementary Büchi automaton B, Sistla et al. construct, for each g̃ ∈
˜QB, a deterministic automata on finite words, Bg, that accepts exactly L(g̃) [17]. Using
the automata Bg, one could construct the complementary automaton B and use a lasso-
finding algorithm to prove the emptiness of B, and thus the universality of B. However,
we can avoid an explicit lasso search by employing the rich structure of the graphs in
˜QB. For every two graphs g̃,˜h ∈ ˜QB, determine if Ygh is proper. If Ygh is proper, test
if it is contained in L(B) by looking for a lasso with a prefix in g̃ and a cycle in ˜h. In
order to test if a proper language Ygh is contained in L(B), search for a q ∈ Qin, r ∈
Q, a ∈ {0, 1} such that the arc 〈q, a, r〉 ∈ g̃ and the arc 〈r, 1, r〉 ∈ ˜h. We call this test
of a pair of graphs the two-arc test.

Lemma 2. [17] A Büchi automaton B is universal iff every proper pair 〈g̃,˜h〉 of graphs
from ˜QB passes the two-arc test.
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Lemma 2 yields a PSPACE algorithm to determine universality [17]. Simply check each
g̃,˜h ∈ ˜QB. If Ygh is both proper and not contained in L(B), then the pair 〈g̃,˜h〉 provide
a counterexample to the universality of B. If no such pair exists, the automaton must
be universal. This algorithm faces difficulty on two fronts. First, the number of graphs
is 3n2

. Second, checking language nonemptiness is an exponentially difficult problem.
To address these problems we construct only graphs with non-empty languages. We
borrow the notion of composition from [5], allowing us to use exponential space to
compute exactly the needed graphs. Given a graph g̃ whose language contains the word
w1 and a graph ˜h whose language contains the word w2, their composition g̃;˜h can be
defined such that w1w2 ∈ L(g̃;˜h).

Definition 2. [5] Given two graphs g̃,˜h ∈ ˜QB, define their composition g̃;˜h to be:

{〈q, 1, r〉 | q, r, s ∈ Q, 〈q, b, s〉 ∈ g̃, 〈s, c, r〉 ∈ ˜h, b = 1 or c = 1}
∪{〈q, 0, r〉 | q, r, s ∈ Q, 〈q, 0, s〉 ∈ g̃, 〈s, 0, r〉 ∈ ˜h, and

∀t ∈ Q, b, c ∈ {0, 1} . 〈q, a, t〉 ∈ g̃ ∧ 〈t, b, r〉 ∈ ˜h implies a = b = 0}

Using composition, we can define a concrete algorithm that explores the space of graphs
on-the-fly, searching for a counterexample. Given a Büchi automaton B, for every
σ ∈ Σ, define g̃σ to be {〈q, 0, r〉 | q ∈ Q \ F, r ∈ ρ(q, σ) \ F} ∪ {〈q, 1, r〉 | q ∈
Q, r ∈ ρ(q, σ), q or r ∈ F}. Let ˜Q1

B be the set {g̃σ | σ ∈ Σ}. To generate the non-
empty graphs, compose graphs from ˜Q1

B until we reach closure. The resulting subset of
˜QB, written ˜Qf

B, contains exactly the graphs with non-empty languages. In addition to
non-emptiness, properness requires testing language containment. Recall that a pair of
graphs 〈g̃,˜h〉 with non-empty languages is proper when both L(g̃) · L(˜h) ⊆ L(g̃), and
L(˜h) · L(˜h) ⊆ L(˜h). We employ composition to provide a novel polynomial time test
for the containment of graph languages.

Lemma 3. For any g̃,˜h, ˜k ∈ ˜Qf
B, it holds that L(g̃) · L(˜h) ⊆ L(˜k) iff g̃;˜h = ˜k

Algorithm 1 employs composition to search for proper pairs of graphs and check the
universality of a Büchi automaton B. On non-universal automaton, this algorithm can
terminate as soon as it finds a counterexample, and thus sometimes avoid computing
the entire set of graphs.

Algorithm 1. RamseyUniversality(B)
Initialize ˜Qf

B ⇐ ˜Q1
B

repeat
Take two graphs g̃,˜h ∈ ˜Qf

B
Include g̃;˜h in ˜Qf

B
if g̃;˜h = g̃ and ˜h;˜h = ˜h then

if 〈g̃,˜h〉 fails the two-arc test then return Not Universal

until ˜Qf
B reaches fixpoint

return Universal
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2.2 Rank-Based Complementation

If a Büchi automaton B does not accept a word w, then every run of B on w must
eventually cease visiting accepting states. The rank-based construction uses a notion of
ranks to track the progress of each possible run towards this fair termination. The rank-
based construction accepts w precisely if all runs cease visiting accepting states, and so
defines a automaton for the complement of L(B). For a definition of this construction,
see [12].

An algorithm seeking to refute the universality of B can look for a lasso in the
state-space of the rank-based complement of B. A classical approach is Emerson-Lei
backward-traversal nested fixpoint νY.μX.(X ∪ (Y ∩ F )) [8]. This nested fixpoint
employs the observation that a state in a lasso can reach an arbitrary number of accept-
ing states. The outer fixpoint iteratively computes sets Y0, Y1, ... such that Yi contains
all states with a path visiting i accepting states. Universality is checked by testing if
Y∞, the set of all states with a path visiting arbitrarily many accepting states, intersects
Qin. In contrast to the Ramsey-based approach, this rank-based approach can termi-
nate early on some universal automaton, when some Yi is already disjoint from Qin.
If no initial state has a path to i accepting states, then no initial state can lead to a
lasso. In this case we already know the complemented automaton is empty, and the
original automaton is universal. In consequence, extracting a counter-example from the
Emerson-Lei algorithm is non-trivial, and requires that the algorithm fully terminates.
Doyen and Raskin implemented this algorithm using a subsumption relation, provid-
ing a universality checker that scales to automata an orders of magnitude larger than
previous approaches [6].

3 Subsumption in the Ramsey-Based Algorithm

Subsumption has proven to be very effective in the rank-based approach [6] and in
the Ramsey-based approach specialized to SCT problems [1]. To use subsumption in
the special case of SCT problems, Ben-Amram and Lee replaced a test for an arc in
idempotent graphs with a test for strongly-connected components in all graphs. To use
subsumption in the general Ramsey-based approach, we need to replace the two-arc test
over proper pairs of graphs. We simplify Algorithm 1 by removing the requirement that
pairs of graphs should be proper. Instead of examining only pairs 〈g̃,˜h〉 where g̃;˜h = g̃

and ˜h;˜h = ˜h, we examine every pair 〈g̃,˜h〉 of non-empty graphs. When examining a
proper pair of graphs, we used the two-arc test: search for a q ∈ Qin, r ∈ Q, a ∈ {0, 1}
such that 〈q, a, r〉 ∈ g̃ and 〈r, 1, r〉 ∈ ˜h. When examining a pair of graphs that may not
be proper, we cannot limit our search to single arcs. We must test for a path from q to
r, and a path from r to itself. We test for this path by computing the strongly connected
components of ˜h, and testing if some strongly connected component of ˜h both contains
a 1-labeled arc and is reachable from a start state in g̃.

A strongly connected component (SCC) of a graph g̃ is a maximal set S of nodes, so
that for every q, r ∈ S there is a path from q to r, and a path from r to q. Computing
the strongly connected components of a graph can be done in linear time with a depth-
first search [4]. An SCC S in a graph g̃ is 1-labeled when there are q, r ∈ S with an
arc 〈q, 1, r〉 ∈ g̃. We say there is a path from a state q to an SCC S when there is a
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path from q to an element of S. Once we partition the nodes into strongly connected
components, we can simply search for a reachable 1-labeled SCC.

Definition 3. A pair 〈g̃,˜h〉 of graphs passes the lasso-finding test when there exists:
q ∈ Qin, r ∈ Q, a ∈ {0, 1} and S ⊆ Q such that, 〈q, a, r〉 ∈ g̃, there is a path from r

to S in ˜h, and S is a 1-labeled SCC of ˜h.

Lemma 4. ˜Qf
B contains a pair 〈g̃,˜h〉 that fails the lasso-finding test iff ˜Qf

B contains a
pair of graphs 〈g̃′,˜h′〉 that fails the two-arc test.

In [9], we demonstrated that the Lee, Jones, and Ben-Amram algorithm for size-change
termination is a specialized realization of the Ramsey-based containment test. In [1],
Ben-Amram and Lee optimize this specialized algorithm, removing certain graphs
when computing the closure under composition. Using the lasso-finding test, we now
show how to employ Ben-Amram and Lee’s subsumption relation for the general case
of Büchi universality. Doing so allows us to ignore graphs when they are approximated
by other graphs.

Intuitively, a graph g̃ approximates another graph ˜h when the arcs of g̃ are a subset of,
or less strict than, the arcs of ˜h. In this case, finding an arc or SCC in g̃ is strictly harder
than finding one in than ˜h. When the right arc can be found in g̃, then it also occurs in
˜h. When g̃ does not have a satisfying arc, then we already have a counterexample. Thus
we need not consider ˜h.

Formally, given two graphs g̃,˜h ∈ ˜QB, we say that g̃ approximates ˜h, written g̃ 
 ˜h,
when for every arc 〈q, a, r〉 ∈ g̃ there is an arc 〈q, a′, r〉 ∈ ˜h, a ≤ a′. Note that
approximation is a transitive relation. Using the notion of approximation, we present
an algorithm that computes a subset of ˜Qf

B, called ˜Q�
B . A set of graphs ˜Q is 
-closed

under composition when for every g̃,˜h ∈ ˜Q, there exists ˜k ∈ ˜Q such that ˜k 
 g̃;˜h.
Given a set ˜Q1

B of graphs, Algorithm 2 computes a set ˜Q�
B by keeping only the minimal

elements under the 
 relation. ˜Q�
B will be 
-closed under composition, but not closed

under composition in the normal sense.
Note that the lasso-finding test is required to safely limit our search to graphs in

˜Q�
B . Since we are now removing elements from ˜Q�

B , it is possibly that the proper
pair of graphs in ˜Qf

B that fails the two-arc test may never be computed: a graph in
the pair may be approximated by another graph, one that does not satisfy the condi-
tions of properness. When using the lasso-finding test, on the other hand, we exam-
ine all pairs of graphs. As an example, consider the set containing the single graph
g̃ = {〈q, 0, q〉, 〈q, 0, r〉, 〈r, 0, q〉}. We leave it to the reader to verify that this set is 
-
closed under composition, and that 〈g̃, g̃〉 fails the lasso-finding test, but that 〈g̃, g̃〉 is
not proper. Similarly, if we consider the graph g̃ = {〈q, 1, r〉, 〈r, 1, q〉}, we find that
〈g̃, g̃〉 fails the two-arc test, but passes the lasso-finding test.

Theorem 1. Given an initial set ˜Q1
B of graphs, the set ˜Qf

B contains a proper pair 〈g̃,˜h〉
of graphs that fails the two-arc test if and only if the set ˜Q�

B computed in Algorithm 2

contains a pair 〈g̃′,˜h′〉 of graphs that fails the lasso-finding test.
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Algorithm 2. RamseyUniversality(B)
Construct the set ˜Q1

B of all single-character graphs
Initialize the worklist ˜W ⇐ ˜Q1

B
Initialize the set ˜Q�

B ⇐ ∅
while ˜W �= ∅ do

Remove an element g̃ from ˜W
for ˜h ∈ ˜Q�

B do
if ˜h � g̃ then

Discard g̃ and exit for

else if g̃ � ˜h then
Remove ˜h from ˜Q�

B
else if 〈g̃,˜h〉 or 〈˜h, g̃〉 fails the lasso-finding test then

return Not Universal

if g̃ has not been discarded then
Add g̃ to ˜Q�

B
for ˜h ∈ ˜Q1

B do Add g̃;˜h to ˜W

return Universal

Based on the algorithm used by Ben-Amram and Lee, Algorithm 2 extends Algo-
rithm 1 to exploit subsumption and avoid computing the entirety of ˜Qf

B
1. To make the

algorithm more concrete, a worklist is used to keep track of which graphs have yet
to be considered. Further, instead of composing arbitrary pairs of graphs, we compose
each graph only with graphs from ˜Q1

B. Since any composition can be phrased as a se-
quence of compositions of graphs from ˜Q1

B, this is sufficient to generate the entirety
of ˜Q�

B while reducing the size of the worklist considerably. To achieve reasonable per-
formance, our implementation memoizes the strongly connected components of graphs
and implements the lasso-finding test as an intersection test over two sets of states.

4 Empirical Analysis

The subsumption technique employed in Algorithm 2 is purely a heuristic improve-
ment: the worst-case complexity of the algorithm does not change. Thus the Ramsey-
based algorithm has a worst-case running time exponentially slower than that of the
rank-based algorithm. Motivated by the strong performance of Ramsey-based algo-
rithms on SCT problems [9], we compare Ramsey and rank based solvers on a terrain
of random automata.

To evaluate the performance of various tools on Büchi universality problems, we
employ the random model proposed by Tabakov and Vardi and later used by Doyen
and Raskin [6,18]. This model fixes the input alphabet as Σ = {0, 1} and considers the
containment of Σω in, and thus the universality of, the language of a random automata.

1 This algorithm does not prune ˜Q1
B for subsumed graphs. As our alphabet consists of two

characters, and ˜Q1
B contains two elements, this is acceptable for our use. For larger alphabets,

˜Q1
B could be checked for subsumed graphs.
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Each automaton B = 〈Σ, Q, Qin, ρ, F 〉 is constructed with a given size n, transition
density r, and acceptance density f . Q is simply the set {0...n−1}, and Qin = {0}. For
each letter σ ∈ Σ, we choose �n ∗ r� pairs of states (s, s′) ∈ Q2 uniformly at random
and the transitions 〈s, σ, s′〉 are included in ρ. We impose one exception to avoid trivial
cases of non-universality: the initial node must have at least one outgoing transition
for each letter of the alphabet. The set F of accepting states comprises �n ∗ f� states,
likewise chosen uniformly at random.

Data points are derived from 100 or more2 random automata with the given n, r,
and f . Each tool is given one hour to solve each problem. When possible, we compute
the median running time [6,18]. This allows us to plot the data on a logarithmic scale
and easily judge exponential behavior. However, in many cases interesting behavior
emerges after a significant percentage of the runs time out. In these cases we measure
the timeout percentage instead of median running time.

Our rank-based tool, simply called RANK, is a slightly modified version of the Mh
tool developed by Doyen and Raskin [6]. Our Ramsey-based tool, called RAMSEY, is
based on the sct/scp program– an optimized C implementation of the SCT algorithm
from Ben-Amram and Lee [1]. We have modified the RAMSEY tool to solve arbitrary
Büchi universality problems by implementing Algorithm 2. Both tools can be config-
ured to not employ their subsumption techniques. In this case, we append (ns) to the
program name.

All experiments were performed on the Shared University Grid at Rice (SUG@R)3, a
cluster of Sunfire x4150 nodes, each with two 2.83GHz Intel Xeon quad-core processors
and 16GB of RAM. Each run is given a dedicated node.

4.1 Subsumption

We know that subsumption is vital to the performance of rank-based solvers [6]. Fur-
ther, we have observed subsumption’s utility on the domain of SCT problems [9]. This
motivates us to extend the subsumption technique of [1] to the case of general Büchi
universality, resulting in Algorithm 2. Employing observations from Section 4.2 be-
low, we check the practical utility of subsumption on the most difficult terrain point for
RAMSEY, where transition density r = 1.5 and acceptance density f = 0.5. Figure
1 displays RAMSEY’s performance as size increases, on a logarithmic scale. If more
than 50% of the problems timed out, the median is displayed at 3600 seconds, which
flattens the RAMSEY (ns) line at the last data point. We observe that the RAMSEY (ns)
line has a higher slope than the RAMSEY line. As this graph uses a logarithmic scale,
this difference in the slope indicates an exponential improvement in scalability when
subsumption is used. Similar results held for every terrain point we measured, demon-
strating that although a heuristic technique, subsumption is required for the scalability
of our Ramsey-based approach. We also note that the curves appear to be linear on
the logarithmic scale, suggesting that the median running time for this terrain point is
2O(n), rather than the 2O(n2) of the worst-case complexity bound.

2 When the results from 100 automata appear anomalous, additional automata are generated and
tested to improve the fidelity of the results. No data are ever excluded.

3 http://rcsg.rice.edu/sugar/

http://rcsg.rice.edu/sugar/
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Fig. 1. Subsumption exponentially improves RAMSEY median running times (r = 1.5, f = 0.5)

4.2 Behavior over the Terrain

As stated above, randomly generated automata of a given size can vary in two parame-
ters. By changing the transitions and acceptance density, we can observe the behavior of
each tool over a variety of terrain points. Automata with a high transition density tend to
be universal, while automata with low transition density tend to be non-universal. Ac-
ceptance density has a smaller, but still noticeable, affect on universality [6,18]. To map
out the behavior of the two tools over this terrain, we hold size constant at n = 100,
and examined a variety of terrain points. We generate data points for each combi-
nation of transition density r ∈ {0.02, 0.26, 0.50, 0.74, 0.98} and acceptance density
f ∈ {0.5, 1.5, 2.0, 2.5, 3.0}.

Figure 2(a) displays the percentage of cases in which the RANK tool timed out in
each terrain point. As observed in [6], there is a sharp spike in timeouts at transitions
density r = 1.5, acceptance density of 0.26. This spike trails off quickly as transition
density changes, and only slightly more gradually as acceptance density changes. There
is a subtler high point at r = 2.0, f = 0.02, where the timeouts rise to 50%. This is

(a) RANK (b) RAMSEY

Fig. 2. Differences in behavior between RANK and RAMSEY over problem terrain, measured as
percentage of problems that timeout when size n = 100
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consistent with other rank-based tools, even those using different algorithms [18]. Fig-
ure 2(b) displays the percentage of cases in which the RAMSEY tool timed out in each
terrain point. Like RANK, r = 1.5, f = 0.26 is a difficult terrain point for RAMSEY.
However, RAMSEY continues to time out frequently along all terrain points with tran-
sition density r = 1.5, and has no significant timeouts at any other terrain points.

Simply glancing at the terrain graphs, it appears that RANK may perform better than
RAMSEY in most terrain points. On the other hand, RAMSEY does not exhibit a second
high point at r = 2.0, f = 0.02, and at least for this size of automata RAMSEY beats
RANK at the hardest point for RANK. What these graphs clearly show is that those
attributes that make a problem hard for RANK to handle are not necessarily the same as
those attributes of a problem that cause difficulty for RAMSEY.

4.3 Scalability

We explore some interesting terrain points by measuring the scalability of each algo-
rithm: we hold the transition and acceptance densities constant, and increase size. We
choose to investigate three terrain points: a point r = 1.5, f = 0.5, where RANK seems
to perform better than RAMSEY; the main spike r = 1.5, f = 0.26, where both tools
exhibited difficulty solving problems; and a final point r = 2.0, f = 0.05 near RANK’s
second high point, where RAMSEY seems to perform better.

Figure 3 displays the median running time for problems with the transition density at
r = 1.5 and the acceptance density at f = 0.5, on a logarithmic scale. If more than 50%
of the problems timed out, the median is displayed at 3600 seconds, cutting off RAM-
SEY’s line. As the scale is logarithmic, the difference in the slope between RANK’s line
and RAMSEY’s indicates that, on this terrain point, RANK clearly scales exponentially
better than RAMSEY. The third line, labeled “Parallel”, displays the behavior of run-
ning both tools in parallel on separate machines, and terminating as soon as either tool
gives an answer. Is is notable that this line, while having the same slope as RANK’s, is
lower; indicating there are a number of cases even at this terrain point where RAMSEY

terminates before RANK.
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Fig. 3. RANK scales exponentially better than RAMSEY when r = 1.5 and f = 0.5 (log scale)
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Fig. 4. RAMSEY scales better than RANK at the most difficult terrain point (r = 1.5, f = 0.26)

The most difficult terrain points for both tools lie near r = 1.5, f = 0.26. Up to
n = 50, median running times (see addendum) indicate that RAMSEY performs better
than RANK only by a constant factor. Past this this size, the percentage of timeouts is
too high for median measurements to be meaningful. However, a gap in the timeout
percentage appears as the automata grow larger than 50 states. Figure 4 displays the
percentage of runs that timed out for each size n at this terrain point. It does appear
that, past n = 50, RAMSEY begins to scale significantly better than RANK. We again
display the behavior of running both tools in parallel on separate machines using the
third line, labeled “Parallel.” We again find that even at a terrain point that favors one
tool, RAMSEY, we benefit from running both tools simultaneously.

At size n = 100, RANK exhibited difficulty when the transition density was 2.0 and
the acceptance density was low. We measured the scalability of RAMSEY and RANK
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Fig. 5. RAMSEY scales much better than RANK when r = 2 and f = 0.05
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on problems with r = 2.0 and f = 0.05. At this terrain point the median running
times do not increase exponentially for either RANK or RAMSEY. As a large number
of problems still did not complete, Figure 5 displays the timeout percentages as size
grows. At this terrain point, RAMSEY does appear to scale better than RANK. However
the gap is not the exponential improvement we observed when RANK performed better
than RAMSEY. At this configuration, running the tools in parallel was only a slight
improvement over running RAMSEY alone.

4.4 Universal vs. Non-universal Automata

Section 2 reviews the algorithms used by RANK and RAMSEY to explore the state
space of the complemented automaton. Of note is that in certain cases each tools can
terminate before computing the entirety of their fixpoints: RANK on universal automata,
and RAMSEY on non-universal automata. This suggests that RANK may perform better
on universal automata, and RAMSEY may perform better on non-universal automata.

To confirm this hypothesis, we compare RANK and RAMSEY on a corpus of univer-
sal and non-universal automata. Our corpus is derived from 1000 automata with size
n = 50, transition density r = 1.8, and acceptance density f = 0.2. This point was
chosen because of the relatively equal proportion of universal and non-universal au-
tomata. Table 1 summarizes the results. RANK does indeed perform better on universal
automata. Universal automata were solved in a median time of 108.3 seconds, while on
non-universal automata, the median running time was 177.8 seconds. We observe the
inverse behavior in RAMSEY: on non-universal automata RAMSEY had a median run-
ning time of only 33.1 seconds, while on universal automata the median running time
was 253.4 seconds. The universality or non-universality of a problem does affect the
performance of each approach.

Table 1. RANK performs better on universal problems, RAMSEY on non-universal problems,
measured by median running time (n = 50, r = 1.8, f = 0.2)

Count RANK RAMSEY

Universal 460 108.3 253.4
Non-Universal 527 177.8 33.1
Unknown 13

The question naturally arises: does the difference in performance on universal vs.
non-universal automata fully explain the different behaviors of RAMSEY and RANK.
This is not the case. As previously noted in Figure 3, RANK performs exponentially
better than RAMSEY on automata with a transition density of 1.5 and an acceptance
density of 0.5. More than 80% of the solved automata at this terrain point are non-
universal: a distribution that should favor RAMSEY. Further, Figure 5 shows a terrain
point where RAMSEY scales significantly better than RANK. At this terrain point, more
than two-thirds of solved automata with n > 50 were universal, and should have favored
RANK. Therefore we cannot conclude that the difference in behavior between RANK

and RAMSEY is truly attributed to the gap in performance between universal and non-
universal automata.
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5 Conclusion

This paper tells two stories. The first story is about subsumption. In general, subsump-
tion is a trade off: there is a benefit to reducing the working sets of the algorithms, but
checking for subsumed states can be computationally expensive. In the domain of CNF
satisfiability solvers, subsumption is generally regarded as an ineffective technique: the
overhead of checking for subsumed clauses outweighs any benefit gained from remov-
ing them. For checking Büchi automata universality, it has previously been shown that
subsumption is not only useful, but vital for the scalability of the rank-based approach
[6]. In this paper, we demonstrate that this also holds for the Ramsey-based approach,
which use not only a different construction but also a different algorithm to explore
the state space of this construction. These results suggest the use of subsumption rela-
tions in other constructions, such as the slice-based construction of Kähler and Wilke
[11].

The second story is that neither the rank-based approach nor the Ramsey-based ap-
proach to Büchi universality testing is clearly superior. This is true despite the massive
gap in worst-case complexity between the two approaches. Each approach exhibits dis-
tinct behavior on the terrain of random universality problems. Due to these differences,
we do not believe a winner takes all approach is best for universality checking. The
current best approach is to run both tools in parallel, and see which terminates first.
Doing so improves performance by a constant factor, relative to the best tool for any
given terrain point.

Preferable to running the algorithms in parallel would be to employ a portfolio ap-
proach. A portfolio approach attempts to predict which algorithm would perform better
on a given problem [10]. To do this, we would have to examine the space of univer-
sality problems and discover significant attributes of problems. Transition and accep-
tance density are not the only observable attributes of an automaton, or even necessarily
the most important ones. While they are significant for randomly generated problems,
there is no reason to expect that transition and acceptance density are good indicators
of difficulty for real-world problems. In the case of SAT solvers, over ninety pertinent
attributes were found [7]. Machine-learning techniques were used to identify which
features suggest which approach to SAT solving. The challenge that now faces us is
discovering a similar body of features with which to characterize Büchi automata, and
to create a corpus of automata to characterize. In addition to transition and acceptance
density, attributes could include the density of initial states, the number of strongly con-
nected components in the automata, and the density of strongly connecting components
containing an accepting state4. One point that is well demonstrated in our investigation
is that theoretical worst-case analysis often yields little information on actual algorith-
mic performance; an algorithm running in 2O(n2) can perform better in practice than an
algorithm running in 2O(n log n). We do note RAMSEY, the program running in 2O(n2)

time and space, sometimes consumed on the order of 20 GB of memory, where RANK

rarely consumed more than 300 megabytes.
Finally, in this paper we focus on universality as a special case of Büchi contain-

ment that encapsulates its algorithmically difficult aspects. To actually verify that an

4 We thank the reviewers for suggestions on possible criteria.
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implementation A adheres to a specification B, we need to lift our universality testing
algorithms to the general case of containment testing. Computing the intersection of
two automata uses the product of the state spaces. For the rank-based approach, this re-
sults in pairing a state A with a state in in KV(B). The theory of rank-based containment
testing with subsumption is described in [6] and implemented in RANK. Ramsey-based
universality, however, avoids directly exploring the state space of the automata. A the-
ory of Ramsey-based containment was developed for [9], but without subsumption. To
add containment testing to RAMSEY requires the extension of the theory developed in
this paper for universality testing.
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SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007)

15. Safra, S.: On the complexity of ω-automata. In: Proc. 29th IEEE Symp. on Foundations of
Computer Science, pp. 319–327 (1988)
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