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Abstract. Synthesis is the automated construction of a system from its specifi-
cation. The system has to satisfy its specification in all possible environments.
Modern systems often interact with other systems, or agents. Many times these
agents have objectives of their own, other than to fail the system. Thus, it makes
sense to model system environments not as hostile, but as composed of rational
agents; i.e., agents that act to achieve their own objectives.

We introduce the problem of synthesis in the context of rational agents (ratio-
nal synthesis, for short). The input consists of a temporal-logic formula specify-
ing the system, temporal-logic formulas specifying the objectives of the agents,
and a solution concept definition. The output is an implementation T of the sys-
tem and a profile of strategies, suggesting a behavior for each of the agents. The
output should satisfy two conditions. First, the composition of T with the strategy
profile should satisfy the specification. Second, the strategy profile should be an
equilibrium in the sense that, in view of their objectives, agents have no incentive
to deviate from the strategies assigned to them, where “no incentive to deviate”
is interpreted as dictated by the given solution concept. We provide a method for
solving the rational-synthesis problem, and show that for the classical definitions
of equilibria studied in game theory, rational synthesis is not harder than tradi-
tional synthesis. We also consider the multi-valued case in which the objectives
of the system and the agents are still temporal logic formulas, but involve payoffs
from a finite lattice.

1 Introduction

Synthesis is the automated construction of a system from its specification. The basic
idea is simple and appealing: instead of developing a system and verifying that it ad-
heres to its specification, we would like to have an automated procedure that, given a
specification, constructs a system that is correct by construction. The first formulation
of synthesis goes back to Church [8]; the modern approach to synthesis was initiated by
Pnueli and Rosner, who introduced LTL (linear temporal logic) synthesis [24]. The LTL
synthesis problem receives as input a specification given in LTL and outputs a reactive
system modeled by a finite-state transducer satisfying the given specification — if such
exists. It is important to distinguish between system outputs, controlled by the system,
and system inputs, controlled by the environment. A system should be able to cope with
all values of the input signals, while setting the output signals to desired values [24].
Therefore, the quantification structure on input and output signals is different. Input
signals are universally quantified while output signals are existentially quantified.

Modern systems often interact with other systems. For example, the clients inter-
acting with a server are by themselves distinct entities (which we call agents) and are
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many times implemented by systems. In the traditional approach to synthesis, the way
in which the environment is composed of its underlying agents is abstracted. In partic-
ular, the agents can be seen as if their only objective is to conspire to fail the system.
Hence the term “hostile environment” that is traditionally used in the context of syn-
thesis. In real life, however, many times agents have goals of their own, other than to
fail the system. The approach taken in the field of algorithmic game theory [21] is to
assume that agents interacting with a computational system are rational, i.e., agents act
to achieve their own goals. Assuming agents rationality is a restriction on the agents
behavior and is therefore equivalent to restricting the universal quantification on the
environment. Thus, the following question arises: can system synthesizers capitalize on
the rationality and goals of agents interacting with the system?

Consider for example a peer-to-peer network with only two agents. Each agent is
interested in downloading infinitely often, but has no incentive to upload. In order, how-
ever, for one agent to download, the other agent must upload. More formally, for each
i ∈ {0, 1}, Agent i controls the bits ui (“Agent i tries to upload”) and di (“Agent i tries
to download”). The objective of Agent i is always eventually (di ∧ u1−i). Assume
that we are asked to synthesize the protocol for Agent 0. It is not hard to see that the
objective of Agent 0 depends on his input signal, implying he cannot ensure his objec-
tive in the traditional synthesis sense. On the other hand, suppose that Agent 0, who
is aware of the objective of Agent 1, declares and follows the following TIT FOR TAT

strategy: I will upload at the first time step, and from that point onward I will recipro-
cate the actions of Agent 1. Formally, this amounts to initially setting u0 to True and
for every time k > 0, setting u0 at time k to equal u1 at time k − 1. It is not hard
to see that, against this strategy, Agent 1 can only ensure his objective by satisfying
Agent 0 objective as well. Thus, assuming Agent 1 acts rationally, Agent 0 can ensure
his objective.

The example above demonstrates that a synthesizer can capitalize on the rationality
of the agents that constitute its environment. When synthesizing a protocol for rational
agents, we still have no control on their actions. We would like, however, to generate
a strategy for each agent (a strategy profile) such that once the strategy profile is given
to the agents, then a rational agent would have no incentive to deviate from the strat-
egy suggested to him and would follow it. Such a strategy profile is called in game
theory a solution to the game. Accordingly, the rational synthesis problem gets as in-
put temporal-logic formulas specifying the objective ϕ0 of the system, the objectives
ϕ1, . . . , ϕn of the agents that constitute the environment, and a solution concept defi-
nition. The desired output is a system and a strategy profile for the agents such that the
following hold. First, if all agents adhere to their strategies, then the result of the inter-
action of the system and the agents satisfies ϕ0. Second, once the system is in place,
and the agent are playing a game among themselves, the strategy profile is a solution to
this game according to the given solution concept.1

A well known solution concept is Nash equilibrium [19]. A strategy profile is in Nash
equilibrium if no agent has an incentive to deviate from his assigned strategy, provided
that the other agents adhere to the strategies assigned to them. For example, if the TIT

FOR TAT strategy for Agent 0 is suggested to both agents in the peer-to-peer example,

1 For a formal definition of rational synthesis, see Definition 1.
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then the pair of strategies is a Nash equilibrium. Indeed, for all i ∈ {0, 1}, if Agent i
assumes that Agent 1− i adheres to his strategy, then by following the strategy, Agent
i knows that his objective would be satisfied, and he has no incentive to deviate from
it. The stability of a Nash equilibrium depends on the players assumption that the other
players adhere to the strategy. In some cases this is a reasonable assumption. Consider,
for example, a standard protocol published by some known authority such as IEEE.
When a programmer writes a program implementing the standard, he tends to assume
that his program is going to interact with other programs that implement the same stan-
dard. If the published standard is a Nash equilibrium, then there is no incentive to write
a program that deviates from the standard. Game theory suggests several solution con-
cepts, all capturing the idea that the participating agents have no incentive to deviate
from the protocol (or strategy) assigned to them. We devise a method to solve rational
synthesis for the suggested solution concepts. In fact, our method works for all solution
concept that can be defined in Extended Strategy Logic (see Section 4). We show that
for the well-studied solution concepts [21] of dominant-strategies solution, Nash equi-
librium, and subgame-perfect Nash equilibrium, rational synthesis is not harder than
traditional synthesis (both are 2EXPTIME-complete).

An important facet in the task of a rational synthesizer is to synthesize a system such
that once it is in place, the game played by the agents has a solution with a favorable
outcome. Mechanism design, studied in game theory and economy [20,21], is the study
of designing a game whose outcome (assuming players rationality) achieves some goal.
Rational synthesis can be viewed as a variant of mechanism design in which the game
is induced by the objective of the system, and the objectives of both the system and the
agents refer to their on-going interaction and are specified by temporal-logic formulas.

Having defined rational synthesis, we turn to solve it. In [5], the authors introduced
strategy logic – an extension of temporal logic with first order quantification over strate-
gies. The rich structure of strategy logic enables it to specify properties like the exis-
tence of a Nash-equilibrium. While [5] does not consider the synthesis problem, the
technique suggested there can be used in order to solve the rational-synthesis prob-
lem for Nash equilibrium and dominant strategies. Strategy logic, however, is not suffi-
ciently expressive in order to specify subgame-perfect-Nash equilibrium [26] which, as
advocated in [28] (see also Section 3), is the most suited for infinite multiplayer games
— those induced by rational synthesis. The weakness of strategy logic is its inability to
quantify over game histories. We extend strategy logic with history variables, and show
that the extended logic is sufficiently expressive to express rational synthesis for the tra-
ditional solution concepts. Technically, adding history variables to strategy logic results
in a memoryful logic [16], in which temporal logic formulas have to be evaluated not
along paths that start at the present, but along paths that start at the root and go through
the present.

Classical applications of game theory consider games with real-valued payoffs. For
example, agents may bid on goods or grade candidates. In the peer-to-peer network ex-
ample, one may want to refer to the amount of data uploaded by each agent, or one may
want to add the possibility of pricing downloads. The full quantitative setting is undecid-
able already in the context of model checking [1]. Yet, several special cases for which
the problem is decidable have been studied [2]. We can distinguish between cases in
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which decidability is achieved by restricting the type of systems [1], and cases in which
it is achieved by restricting the domain of values [11]. We solve the quantitative rational
synthesis problem for the case the domain of values is a finite distributive De Morgan
lattice. The lattice setting is a good starting point to the quantitative setting. First, lat-
tices have been successfully handled for easier problems, and in particular, multi-valued
synthesis [12,13]. In addition, lattices are sufficiently rich to express interesting quanti-
tative properties. This is sometime immediate (for example, in the peer-to-peer network,
one can refer to the different attributions of the communication channels, giving rise to
the lattice of the subsets of the attributions), and sometimes thanks to the fact that real
values can often be abstracted to finite linear orders. From a technical point of view, our
contribution here is a solution of a latticed game in which the value of the game cannot
be obtained by joining values obtained by different strategies, which is unacceptable in
synthesis.

Related Work. Already early work on synthesis has realized that working with a hos-
tile environment is often too restrictive. The way to address this point, however, has
been by adding assumptions on the environment, which can be part of the specification
(c.f., [3]). The first to consider the game-theoretic approach to dealing with rationality
of the environment in the context of LTL synthesis were Chatteerjee and Henzinger [6].
The setting in [6], however, is quite restricted; it considers exactly three players, where
the third player is a fair scheduler, and the notion of secure equilibria [4]. Secure equi-
librium, introduced in [4], is a Nash equilibria in which each of the two players prefers
outcomes in which only his objective is achieved over outcomes in which both objec-
tives are achieved, which he still prefers over outcomes in which his objective is not
achieved. It is not clear how this notion can be extended to multiplayer games, and
to the distinction we make here between controllable agents that induce the game (the
system) and rational agents (the environment). Also, the set of solution concepts we
consider is richer.

Ummels [28] was the first to consider subgame perfect equilibria in the context of in-
finite multiplayer games. The setting there is of turn-based games and the solution goes
via a reduction to 2-player games. Here, we consider concurrent games and therefore
cannot use such a reduction. Another difference is that [28] considers parity winning
conditions whereas we use LTL objectives. In addition, the fact that the input to the
rational synthesis problem does not include a game makes the memoryful nature of
subgame perfect equilibria more challenging, as we cannot easily reduce the LTL for-
mulas to memoryless parity games.

To the best of our knowledge, we are the first to handle the multi-valued setting. As
we show, while the lattice case is decidable, its handling required a nontrivial extension
of both the Boolean setting and the algorithms known for solving latticed games [13].

2 Preliminaries

We consider infinite concurrent multiplayer games (in short, games) defined as follows.
A game arena is a tuple G = 〈V, v0, I, (Σi)i∈I , (Γi)i∈I , δ〉, where V is a set of nodes,
v0 is an initial node, I is a set of players, and for i ∈ I , the set Σi is the set of actions
of Player i and Γi : V → 2Σi specifies the actions that Player i can take at each node.
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Let I = {1, . . . , n}. Then, the transition relation δ : V × Σ1 × · · · × Σn → V is a
deterministic function mapping the current node and the current choices of the agents
to the successor node. The transition function may be restricted to its relevant domain.
Thus, δ(v, σ1, . . . , σn) is defined for v ∈ V and 〈σ1, . . . , σn〉 ∈ Γ1(v) × · · · × Γn(v).

A position in the game is a tuple 〈v, σ1, σ2, . . . , σn〉 with v ∈ V and σi ∈ Γi(v) for
every i ∈ I . Thus, a position describes a state along with possible choices of actions
for the players in this state. Consider a sequence p = p0 · p1 · p2 · · · of positions. For
k ≥ 0, we use node(pk) to denote the state component of pk, and use pk[i], for i ∈ I ,
to denote the action of Player i in pk. The notations extend to p in the straightforward
way. Thus, node(p) is the projection of p on the first component. We say that p is a play
if the transitions between positions is consistent with δ. Formally, p is a play starting at
node v if node(p0) = v and for all k ≥ 0, we have node(pk+1) = δ(pk). We use PG
(or simply P when G is clear from the context) to denote all possible plays of G.

Note that at every node v ∈ V , each player i chooses an action σi ∈ Γi(v) simultane-
ously and independently of the other players. The game then proceeds to the successor
node δ(v, σ1, . . . , σn). A strategy for Player i is a function πi : V + �→ Σi that maps his-
tories of the game to an action suggested to Player i. The suggestion has to be consistent
with Γi. Thus, for every v0v1 · · · vk ∈ V +, we have πi(v0v1 · · · vk) ∈ Γi(vk). Let Πi

denote the set of possible strategies for Player i. For a set of players I = {1, . . . , n}, a
strategy profile is a tuple of strategies 〈π1, π2, . . . , πn〉 ∈ Π1 ×Π2 × · · · ×Πn. We
denote the strategy profile by (πi)i∈I (or simply π, when I is clear from the con-
text). We say that p is an outcome of the profile π if for all k ≥ 0 and i ∈ I , we
have pk[i] = πi(node(p0) · node(p1) · · · node(pk)). Thus, p is an outcome of π if all
the players adhere to their strategies in π. Note that since δ is deterministic, π fixes a
single play from each state of the game. Given a profile π we denote by outcome(π)G
(or simply outcome(π)) the one play in G that is the outcome of π when starting in
v0. Given a strategy profile π and a nonempty sequence of nodes h = v0v1 . . . vk, we
define the shift of π by h as the strategy profile (πh

i )i∈I in which for all i ∈ I and
all histories w ∈ V ∗, we have πh

i (w) = πi(h · w). We denote by outcome(π)Gh (or
simply outcome(π)h) the concatenation of v0v1 . . . vk−1 with the one play in G that is
the outcome of πh when starting in vk. Thus, outcome(π)h describes the outcome of
a game that has somehow found itself with history h, and from that point, the play-
ers behave if the history had been h. Given a profile (πi)i∈I , an index j ∈ I , and a
strategy π′

j for Player j, we use (π−j , π
′
j) to refer to the profile of strategies in which

the strategy for all players but j is as in π, and the strategy for Player j is π′
j . Thus,

(π−j , π
′
j) = 〈π1, π2, . . . , πj−1, π

′
j , πj+1, . . . , πn〉.

3 Rational Synthesis

In this section we define the problem of rational synthesis. We work with the following
model: the world consists of the system and a set of n agents Agent 1, . . . ,Agent n.
For uniformity we refer to the system as Agent 0. We assume that Agent i controls a
set Xi of variables, and the different sets are pairwise disjoint. At each point in time,
each agent sets his variables to certain values. Thus, an action of Agent i amounts to
assigning values to his variables. Accordingly, the set of actions of Agent i is given by
2Xi . We use X to denote

⋃
0≤i≤n Xi. We use X−i to denote X \ Xi for 0 ≤ i ≤ n.
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Each of the agents (including the system) has an objective. The objective of an agent is
formulated via a linear temporal logic formula (LTL [23]) over the set of variables of
all agents.2 We use ϕi to denote the objective of Agent i.

This setting induces the game arena G = 〈V, v0, I, (Σi)i∈I , (Γi)i∈I , δ〉 defined as
follows. The set of players I = {0, 1, . . . , n} consists of the system and the agents. The
moves of agent i are all the possible assignments to its variables. Thus, Σi = 2Xi . We
useΣ,Σi, andΣ−i to denote the sets 2X , 2Xi , and 2X−i , respectively. An agent can set
his variables as he wishes throughout the game. Thus Γi(v) = Σi for every v ∈ V . The
game records in its vertices all the actions taken by the agents so far. Hence, V = Σ∗

and for all v ∈ Σ∗ and 〈σ0, . . . , σn〉 ∈ Σ, we have δ(v, σ0, . . . , σn) = v · 〈σ0, . . . , σn〉.
At each moment in time, the system gets as input an assignment in Σ−0 and it gen-

erates as output an assignment in Σ0. For every possible history h ∈ (Σ−0 ∪ Σ0)∗ the
system should decide what σ0 ∈ Σ0 it outputs next. Thus, a strategy for the system is
a function π0 : Σ∗ → Σ0 (recall that Σ = Σ−0 ∪Σ0 and note that indeed V + = Σ∗).
In the standard synthesis problem, we say that π0 realizes ϕ0 if all the computations
that π0 generates satisfy ϕ0. In rational synthesis, on the other hand, we also generate
strategies for the other agents, and the single computation that is the outcome of all
the strategies should satisfy ϕ0. That is, we require outcome(π)G |= ϕ0 where G is as
defined above. In addition, we should generate the strategies for the other agents in a
way that would guarantee that they indeed adhere to their strategies.

Recall that while we control the system, we have no control on the behaviors of
Agent 1, . . . , Agent n. Let π0 : Σ∗ → Σ0 be a strategy for the system in G. Then, π0

induces the game Gπ0 = 〈Σ∗, ε, I, (Σi)i∈I , (Γ ′
i )i∈I , δ〉, where for i ∈ I \ {0}, we have

Γ ′
i = Γi, and Γ ′

0(w) = {π0(w−0)}, where w−0 is obtained from w by projecting
its letters on Σ−0. Recall that δ is restricted to the relevant domain. Thus, as Γ ′

0 is
deterministic, we can regard Gπ0 as an n-player (rather than n+ 1-player) game. Note
that Gπ0 contains all the possible behaviors of Agent 1, . . . ,Agent n, when the system
adheres to π0.

Definition 1 (Rational Synthesis). Consider a solution concept γ. The problem of ra-
tional synthesis (with solution conceptγ) is to return, given LTL formulasϕ0, ϕ1, . . . , ϕn,
specifying the objectives of the system and the agents constituting its environment, a
strategy profile π = 〈π0, π1, . . . , πn〉 ∈ Π0 × Π1 × · · · × Πn such that both (a)
outcome(π)G |= ϕ0 and (b) the strategy profile 〈π1, . . . , πn〉 is a solution in the game
Gπ0 with respect to the solution concept γ.

The rational-synthesis problem gets a solution concept as a parameter. As discussed
in Section 1, the fact 〈π1, . . . , πn〉 is a solution with respect to the concept guarantees
that it is not worthwhile for the agents constituting the environment to deviate from
the strategies assigned to them. Several solution concepts are studied and motivated in
game theory. We focus on three leading concepts, and we first recall their definitions and
motivations in game theory. The common setting in game theory is that the objective
for each player is to maximize his payoff – a real number that is a function of the play.
We use payoffi : P → R to denote the payoff function of player i. That is, payoffi

2 We could have worked with any other ω-regular formalism for specifying the objectives. We
chose LTL for simplicity of the presentation.
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assigns to each possible play p a real number payoffi(p) expressing the payoff of i on p.
For a strategy profile π we use (with a slight abuse of notation) payoffi(π) to abbreviate
payoffi(outcome(π)).

The simplest and most appealing solution concept is dominant-strategies solution. A
dominant strategy is a strategy that a player can never lose by adhering to, regardless
of the strategies of the other players. Therefore, if there is a profile of strategies π in
which all strategies πi are dominant, then no player has an incentive to deviate from
the strategy assigned to him in π. Formally, π is a dominant strategy profile if for every
1 ≤ i ≤ n and for every (other) profile π′, we have that payoffi(π

′) ≤ payoffi(π
′
−i, πi).

Consider, for example, a game played by three players: Alice, Bob and Charlie whose
actions are {a1, a2}, {b1, b2} and {c1, c2}, respectively. The game is played on the
game arena depicted in the left of Figure above. The labels on the edges are marked
by the possible action moves. Each player wants to visit infinitely often a node marked
by his initial letter. In this game, Bob’s strategy of choosing b1 from Node 2 is a dom-
inant strategy. All of the strategies of Charlie are dominating. Alice, though, has no
dominating strategy. Unfortunately, in many games some agents do not have dominant
strategies, thus no dominant-strategy solution exists. Naturally, if no dominant strategy
solution exists, one would still like to consider other solution concepts.

Another well known solution concept is Nash equilibrium [19]. A strategy profile is
Nash equilibrium if no player has an incentive to deviate from his strategy in π provided
he assumes the other players adhere to the strategies assigned to them in π. Formally,
π is a Nash equilibrium profile if for every 1 ≤ i ≤ n and for every (other) strategy
π′

i for player i, we have that payoffi(π−i, π
′
i) ≤ payoffi(π). For example, the strategy

profile depicted in the middle of Figure above by dotted edges is a Nash equilibrium of
the game to its left. Knowing the strategy of the other players, each player cannot gain
by deviating from his strategy.

An important advantage of Nash equilibrium is that a Nash equilibrium exists in
almost every game [22].3 A weakness of Nash equilibrium is that it is not nearly as
stable as a dominant-strategy solution: if one of the other players deviates from his
assigned strategy, nothing is guaranteed.

Nash equilibrium is suited to a type of games in which the players make all their
decisions without knowledge of other players choices. The type of games considered
in rational synthesis, however, are different, as players do have knowledge about the
choices of the other players in earlier rounds of the game. To see the problem that this
setting poses for Nash equilibrium, let us consider the ULTIMATUM game. In ULTI-
MATUM, Player 1 chooses a value x ∈ [0, 1], and then Player 2 chooses whether to
accept the choice, in which case the payoff of Player 1 is x and the payoff of Player 2
is 1− x, or to reject the choice, in which case the payoff of both players is 0. One Nash

3 In particular, all n-player turn-based games with ω-regular objectives have Nash equilib-
rium [7].
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equilibrium in ULTIMATUM is π = 〈π1, π2〉 in which π1 advises Player 1 to always
choose x = 1 and π2 advises Player 2 to always reject. It is not hard to see that π is
indeed a Nash equilibrium. In particular, if Player 2 assumes that Player 1 follows π1,
he has no incentive to deviate from π2. Still, the equilibrium is unstable. The reason is
that π2 is inherently not credible. If Player 1 chooses x smaller than 1, it is irrational for
Player 2 to reject, and Player 1 has no reason to assume that Player 2 adheres to π2. This
instability of a Nash equilibrium is especially true in a setting in which the players have
information about the choices made by the other players. In particular, in ULTIMATUM,
Player 1 knows that Player 2 would make his choice after knowing what x is.

To see this problem in the setting of infinite games, consider the strategy profile
depicted in the right of Figure above by dashed edges. This profile is also a Nash equi-
librium of the game in the left of the figure. It is, however, not very rational. The reason
is that if Alice deviates from her strategy by choosing a2 rather than a1 then it is ir-
rational for Bob to stick to his strategy. Indeed, if he sticks to his strategy he does not
meet his objective, yet if he deviates and chooses b1 he does meet his objective.

This instability of Nash equilibrium has been addressed in the definition of subgame-
perfect equilibrium [26]. A strategy profile π is in subgame-perfect equilibrium (SPE)
if for every possible history of the game, no player has an incentive to deviate from his
strategy in π provided he assumes the other players adhere to the strategies assigned to
them in π. Formally, π is an SPE profile if for every possible history h of the game,
player 1 ≤ i ≤ n, and strategy π′

i for player i, we have that payoffi(π−i, π
′
i)h ≤

payoffi(π)h. The dotted strategy depicted in the middle of Figure above is a subgame-
perfect equilibrium. Indeed, it is a Nash equilibrium from every possible node of the
arena, including non-reachable ones.

In the context of on-going behaviors, real-valued payoffs are a big challenge and
most works on reactive systems use Boolean temporal-logic as a specification language.
Below we adjust the definition of the three solution concepts to the case the objectives
are LTL formulas.4 Essentially, the adjustment is done by assuming the following sim-
ple payoffs: If the objective ϕi of Agent i holds, then his payoff is 1; otherwise his
payoff is 0. The induced solution concepts are then as followed. Consider a strategy
profile π = 〈π1, . . . , πn〉.

– We say that π is a dominant strategy profile if for every 1 ≤ i ≤ n and profile π′, if
outcome(π′) |= ϕi, then outcome(π′

−i, πi) |= ϕi.
– We say that π is a Nash equilibrium profile if for every 1 ≤ i ≤ n and strategy π′

i,
if outcome(π−i, π

′
i) |= ϕi, then outcome(π) |= ϕi.

– We say that π is a subgame-perfect equilibrium profile if for every history h ∈ Σ∗,
1 ≤ i ≤ n, and strategy π′

i, if outcome(π−i, π
′
i)h |= ϕi, then outcome(π)h |= ϕi.

4 Solution in the Boolean Setting

In this section we solve the rational-synthesis problem. Let I = {0, 1, . . . , n} denote
the set of agents. Recall that Σi = 2Xi and Σ = 2X , where X = ∪i∈IXi, and that
the partition of the variables among the agents induces a game arena with states in

4 In Section 5, we make a step towards generalizing the framework to the multi-valued setting
and consider the case the payoffs are taken from a finite distributive lattice.
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Σ∗. Expressing rational synthesis involves properties of strategies and histories. Strat-
egy Logic [5] is a logic that treats strategies in games as explicit first-order objects.
Given an LTL formula ψ and strategy variables z0, . . . , zn ranging over strategies of
the agents, the strategy logic formula ψ(z0, . . . , zn) states that ψ holds in the outcome
of the game in which Agent i adheres to the strategy zi. The use of existential and uni-
versal quantifiers on strategy variables enables strategy logic to state that a given profile
consists of dominant strategies or is a Nash equilibrium. However, strategy logic is not
strong enough to state the existence of a subgame perfect equilibrium. The reason is
that a formula ϕ(z0, . . . , zn) in strategy logic assumes that the strategies z0, . . . , zn

are computed from the initial vertex of the game, and it cannot refer to histories that
diverge from the strategies. We therefore extend strategy logic with first order variables
that range over arbitrary histories of the game.

Extended Strategy Logic. Formulas of Extended Strategy Logic (ESL) are defined
with respect to a game G = 〈V, v0, I, (Σi)i∈I , (Γi)i∈I , δ〉, a set H of history variables,
and sets Zi of strategy variables for i ∈ I . Let I = {0, . . . , n}, Σ = Σ0 × · · · ×
Σn, and let ψ be an LTL formula over Σ. Let h be a history variable in H, and let
z0, ..., zn be strategy variables in Z0, . . . ,Zn, respectively. We use z as an abbreviation
for (z0, ..., zn). The set of ESL formulas is defined inductively as follows.5

Ψ ::= ψ(z) | ψ(z;h) | Ψ ∨ Ψ | ¬Ψ | ∃zi.Ψ | ∃h.Ψ

We use the usual abbreviations ∧,→, and ∀. We denote by free(Ψ) the set of strategy
and history variables that are free (not in a scope of a quantifier) in Ψ . A formula Ψ
is closed if free(Ψ) = ∅. The alternation depth of a variable of a closed formula is
the number of quantifier switches (∃∀ or ∀∃, in case the formula is in positive normal
form) that bind the variable. The alternation depth of closed formula Ψ is the maximum
alternation depth of a variable occurring in the formula.

We now define the semantics of ESL. Intuitively, an ESL formula of the formψ(z;h)
is interpreted over the game whose prefix matches the history h and the suffix start-
ing where h ends is the outcome of the game that starts at the last vertex of h and
along which each agent i ∈ I adheres to his strategy in z. Let X ⊆ H ∪ ⋃

i∈I Zi be
a set of variables. An assignment AX assigns to every history variable h ∈ X ∩ H,
a history AX(h) ∈ V + and assigns to every strategy variable zi ∈ X ∩ Zi, a strat-
egy AX(zi) ∈ Πi. Given an assignment AX and a strategy πi ∈ Πi, we denote by
AX[zi ← πi] the assignment A′

X∪{zi} in which A′
X∪{zi}(zi) = πi and for a variable

x �= zi we have A′
X∪{zi}(x) = AX(x). For histories of the game w ∈ V + we define

AX[h←w] similarly.
We now describe when a given game G and a given assignment AX satisfy an ESL

formula Ψ , where X is such that free(Ψ) ⊆ X. For LTL, the semantics is as usual [17].

5 We note that strategy logic as defined in [5] allows the application of LTL path operators (©
and U ) on strategy logic closed formulas. Since we could not come up with a meaningful
specification that uses such applications, we chose to ease the presentation and do not allow
them in ESL. Technically, it is easy to extend ESL and allow such applications.
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(G,AX) |= ψ(z) iff outcome(AX(z))G |= ψ (G,AX) |= Ψ1 ∨ Ψ2 iff (G,AX) |= Ψ1 or (G,AX) |= Ψ2

(G,AX) |= ψ(z;h) iff outcome(AX(z))GAX(h) |= ψ (G,AX) |= ∃zi.Ψ iff ∃πi∈Πi.(G,AX[zi←πi]) |= Ψ

(G,AX) |= ¬Ψ iff (G,AX) |=/ Ψ (G,AX) |= ∃h.Ψ iff ∃w∈V +.(G,AX[h←w]) |= Ψ

Let Ψ be an ESL formula. We use [[Ψ ]] to denote its set of satisfying assignments;
that is, [[Ψ ]] = {(G,AX) | X = free(Ψ) and (G,AX) |= Ψ}. Given a game graph G, we
denote by [[Ψ ]]G the assignmentAX to the free variables in Ψ such that (G,AX) ∈ [[Ψ ]].

Expressing Rational Synthesis. We now show that the rational synthesis problem
for the three traditional solution concepts can be stated in ESL. We first state that a
given strategy profile y = (yi)i∈I is a solution concept on the game Gy0 , that is, the
game induced by G when Agent 0 adheres to his strategy in y. We use I−0 to denote
the set {1, . . . , n}, that is, the set of all agents except for the system, which is Agent
0. Given a strategy profile z = (zi)i∈I , we use (z−{i,0}, yi, y0) to denote the strat-
egy profile where all agents but i and 0 follow z and agents i and 0 follow yi and
y0, respectively. For i ∈ I , let ϕi be the objective of Agent i. For a solution concept
γ ∈ {DS, NASH, SPE} and a strategy profile y = (yi)i∈I , the formula Ψγ(y), expressing
that the profile (yi)i∈I−0 is a solution with respect to γ in Gy0 , is defined as follows.

• Ψ DS(y) :=
∧

i∈I−0
∀z. (ϕi(z−0, y0)→ ϕi(z−{i,0}, yi, y0)).

• Ψ NASH(y) :=
∧

i∈I−0
∀zi. (ϕi(y−i, zi)→ϕi(y)).

• Ψ SPE(y) := ∀h.∧i∈I−0
∀zi. ((ϕi(y−i, zi, h)→(ϕi(y, h)).

We can now state the existence of a solution to the rational-synthesis problem with
input ϕ0, . . . , ϕn by the closed formula Φγ := ∃(yi)i∈I .(ϕ0((yi)i∈I) ∧ Ψγ((yi)i∈I)).
Indeed, the formula specifies the existence of a strategy profile whose outcome satisfies
ϕ0 and for which the strategies for the agents in I−0 constitute a solution with respect
to γ in the game induced by y0.

ESL Decidability. In order to solve the rational-synthesis problem we are going to
use automata on infinite trees. Given a set D of directions, a D-tree is the set D∗. The
elements in D∗ are the nodes of the tree. The node ε is the root of the tree. For a node
u ∈ D∗ and a direction d ∈ D, the node u · d is the successor of u with direction d.
GivenD and an alphabetΣ, aΣ-labeledD-tree is a pair 〈D∗, τ〉 such that τ : D∗ → Σ
maps each node of D∗ to a letter in Σ.

An alternating parity tree automaton (APT) is a tupleA = 〈Σ,D,Q, δ0, δ, χ〉, where
Σ is the input alphabet, D is the directions set, Q is a finite set of states, δ0 is the
initial condition, δ is the transition relation and χ : Q �→ {1, . . . , k} is the parity
condition. The initial condition δ0 is a positive boolean formula over Q specifying the
initial condition. For example, (q1 ∨ q2) ∧ q3 specifies that the APT accepts the input
tree if it accepts it from state q3 as well as from q1 or q2. The transition function δ maps
each state and letter to a boolean formula over D × Q. Thus, as with δ0, the idea is
to allow the automaton to send copies of itself in different states. In δ, the copies are
sent to the successors of the current node, thus each state is paired with the direction to
which the copy should proceed. Due to lack of space, we refer the reader to [9] for the
definition of runs and acceptance.
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Base ESL formulas, of the formψ(z, h), refer to exactly one strategy variable for each
agent, and one history variable. The assignment for these variables can be described by a
(Σ×{⊥,�})-labeledΣ-tree, where theΣ-component of the labels is used in order to de-
scribe the strategy profileπ assigned to the strategy variable, and the {⊥,�}-component
of the labels is used in order to label the tree by a unique finite path corresponding to the
history variable. We refer to a (Σ × {⊥,�})-labeled Σ-tree as a strategy-history tree.
The labeling function τ of a strategy-history tree 〈Σ∗, τ〉 can be regarded as two labeling
functions τs and τh mapping nodes of the tree to action tuples inΣ and history informa-
tion in {�,⊥}, respectively. A node u = d0d1 . . . dk in a strategy-history tree 〈Σ∗, τ〉
corresponds to a history of the play in which at time 0 ≤ j ≤ k, the agents played as
recorded in dj . A label τs(u) = (σ0, . . . , σn) of node u describes for each agent i, an
action σi that the strategy πi advises Agent i to take when the history of the game so far
is u. A label τh(u) describes whether the node u is along the path corresponding to the
history (where� signifies that it does and⊥ that it does not). Among the |Σ| successors
of u in the strategy-history tree, only the successor u · τs(u) corresponds to a scenario in
which all the agents adhere to their strategies in the strategy profile described in 〈Σ∗, τ 〉.
We say that a path ρ in a strategy-history tree 〈Σ∗, (τs, τh)〉 is obedient if for all nodes
u ·d ∈ ρ, for u ∈ Σ∗ and d ∈ Σ, we have d = τs(u). Note that there is a single obedient
path in every strategy-history tree. This path corresponds to the single play in which all
agents adhere to their strategies. The {�,⊥} labeling is legal if there is a unique finite
prefix of a path starting at the root, all of whose node are marked with�. Note that there
is a single path in the tree whose prefix is marked by �’s and whose suffix is obedient.

An ESL formulaΨ may contain several base formulas. Therefore,Ψ may contain, for
each i ∈ I , several strategy variables in Zi and several history variables in H. For i ∈ I ,
let {z1

i , . . . , z
mi

i } be the set of strategy variables in Ψ ∩ Zi. Recall that each strategy
variable zj

i ∈ Zi corresponds to a strategy πj
i : Σ∗ → Σi. Let {h1, . . . , hm} be the

set of history variables in Ψ . Recall that each history variable h corresponds to a word
in Σ∗, which can be seen as a function wh : Σ∗ → {�,⊥} labeling only that word
with �’s. Thus, we can describe an assignment to all the variables in Ψ by a Υ -labeled
Σ-tree, with Υ = Σm0

0 ×Σm1
1 × · · · ×Σmn

n × {⊥,�}m.
We solve the rational synthesis problem using tree automata that run on Υ -labeledΣ-

trees. Note that the specification of rational synthesis involves an external quantification
of a strategy profile. We construct an automaton U that accepts all trees that describe
a strategy profile that meets the desired solution. A witness to the nonemptiness of the
automaton then induces the desired strategies.

We define U as an APT. Consider an ESL formula ψ(z, h). Consider a strategy-
history tree 〈Σ∗, (τs, τh)〉. Recall that ψ should hold along the path that starts at the root
of the tree, goes through h, and then continues to outcome(z)h. Thus, adding history
variables to strategy logic results in a memoryful logic [16], in which LTL formulas
have to be evaluated not along a path that starts at the present, but along a path that
starts at the root and goes through the present. The memoryful semantics imposes a real
challenge on the decidability problem, as one has to follow all the possible runs of a
nondeterministic automaton for ψ, which involves a satellite implementing the subset
construction of this automaton [16]. Here, we use instead the τh labeling of the node
with {�,⊥} elements.
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The definition of the APTAΨ for [[Ψ ]]G works by induction on the structure of Ψ . At
the base level, we have formulas of the form ψ(z, h), where ψ is an LTL formula, z is
a strategy profile, and h is a history variable. The constructed automaton then has three
tasks. The first task is to check that the {⊥,�} labeling is legal; i.e. there is a unique
path in the tree marked by �’s. The second task is to detect the single path that goes
through h and continues from h according to the strategy profile z. The third task is to
check that this path satisfies ψ. The inductive steps then built on APT complementation,
intersection, union and projection [18]. In particular, as in strategy logic, quantification
over a strategy variable for agent i is done by “projecting out” the corresponding Σi

label from the tree. That is, given an automaton A for Ψ , the automaton for ∃zi.Ψ
ignores theΣi component that refers to zi and checksA on a tree where this component
is guessed. The quantification over history variables is similar. Given an automaton A
for Ψ the automaton for ∃h.Ψ ignores the {⊥,�} part of the label that corresponds to
h and checksA on a tree where the {⊥,�} part of the label is guessed.

Theorem 1. Let Ψ be an ESL formula over G. Let d be the alternation depth of Ψ . We
can construct an APTAΨ such thatAΨ accepts [[Ψ ]]G and its emptiness can be checked
in time (d+ 1)-EXPTIME in the size of Ψ .

Solving Rational Synthesis We can now reduce rational-synthesis to APT emptiness.
The following theorem states that the complexity of solving rational synthesis for the
three common solution concepts is not more expensive than traditional synthesis.

Theorem 2. LTL rational-synthesis is 2EXPTIME-complete for the solution concepts
of dominant strategy, Nash equilibrium, and subgame-perfect equilibrium.

5 Solution in the Multi-valued Setting

As discussed in Section 1, classical applications of game theory consider games with
quantitative payoffs. The extension of the synthesis problem to the rational setting calls
also for an extension to the quantitative setting. Unfortunately, the full quantitative set-
ting is undecidable already in the context of model checking [1]. In this section we
study a decidable fragment of the quantitative rational synthesis problem: the payoffs
are taken from finite De-Morgan lattices. A lattice 〈A,≤〉 is a partially ordered set in
which every two elements a, b ∈ A have a least upper bound (a join b, denoted a ∨ b)
and a greatest lower bound (a meet b, denoted a∧b). A lattice is distributive if for every
a, b, c ∈ A, we have a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). De-Morgan lattices are distribu-
tive lattices in which every element a has a unique complement element ¬a such that
¬¬a = a, De-Morgan rules hold, and a ≤ b implies ¬b ≤ ¬a. Many useful payoffs
are taken from finite De-Morgan lattices: all payoffs that are linearly ordered, payoffs
corresponding to subsets of some set, payoffs corresponding to multiple view-points,
and more [12,13].

We specify quantitative specifications using the temporal logic latticed LTL (LLTL,
for short), where the truth value of a specification is an element in a lattice. For a strategy
profileπ and an LLTL objectiveϕi of Agent i, the payoff of Agent i in π is the truth value
of ϕi in outcome(π). A synthesizer would like to find a profile π in which payoff0(π)
is as high as possible. Accordingly, we define the latticed rational synthesis as follows.
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Definition 2 (Latticed Rational Synthesis). Consider a solution concept γ. The prob-
lem of latticed rational synthesis (with solution concept γ) is to return, given LLTL for-
mulas ϕ0, . . . , ϕn and a lattice value v ∈ L, a strategy profile π = 〈π0, π1, . . . , πn〉 ∈
Π0×Π1×· · ·×Πn such that (a) payoff0(π) ≥ v and (b) the strategy profile 〈π1, . . . , πn〉
is a solution in the game Gπ0 with respect to the solution concept γ.

In the Boolean setting, we reduced the rational-synthesis problem to decidability of
ESL. The decision procedure for ESL is based on the automata-theoretic approach,
and specifically on APT’s. In the lattice setting, automata-theoretic machinery is not as
developed as in the Boolean case. Consequently, we restrict attention to LLTL specifi-
cations that can be translated to deterministic latticed Büchi word automata (LDBW),
and to the solution concept of Nash equilibrium.6

An LDBW can be expanded into a deterministic latticed Büchi tree automata (LDBT),
which is the key behind the analysis of strategy trees. It is not hard to lift to the latticed
setting almost all the other operations on tree automata that are needed in order to solve
rational synthesis. An exception is the problem of emptiness. In the Boolean case, tree-
automata emptiness is reduced to deciding a two-player game [10]. Such games are
played between an ∨-player, who has a winning strategy iff the automaton is not empty
(essentially, the ∨-player chooses the transitions with which the automaton accepts a
witness tree), and a ∧-player, who has a winning strategy otherwise (essentially, the
∧-player chooses a path in the tree that does not satisfy the acceptance condition). A
winning strategy for the ∨-player induces a labeled tree accepted by the tree automaton.

In latticed games, deciding a game amounts to finding a lattice value l such that the∨-
player can force the game to computations in which his payoff is at least l. The value of
the game need not be achieved by a single strategy and algorithms for analyzing latticed
games consider values that emerge as the join of values obtained by following different
strategies [13,27]. A labeled tree, however, relates to a single strategy. Therefore, the
emptiness problem for latticed tree automata, to which the latticed rational synthesis is
reduced, cannot be reduced to solving latticed games. Instead, one has to consider the
single-strategy variant of latticed games, namely the problem of finding values that the
∨-player can ensure by a single strategy. We address this problem below.

Theorem 3. Consider a latticed Büchi game G. Given a lattice element l, we can con-
struct a Boolean generalized-Büchi game Gl such that the ∨-player can achieve value
greater or equal l in G using a single strategy iff the ∨-player wins in Gl. The size of
Gl is bounded by |G| · |L|2 and Gl has at most |L| acceptance sets.

Using Theorem 3, we can solve the latticed rational synthesis problem in a fashion sim-
ilar to the one we used in the Boolean case. We represent strategy profiles byΣ-labeled
Σ-trees, and sets of profiles by tree automata. We construct two Boolean generalized-
Büchi tree automata. The first, denoted A0, for the language of all profiles π in which
payoff0(π) ≥ v, and the second, denoted AN , for the language of all Nash equilibria.
The intersection of A0 and AN then contains all the solutions to the latticed rational

6 A Büchi acceptance conditions specifies a subset F of the states, and an infinite sequence
of states satisfies the condition if it visits F infinitely often. A generalized Büchi condition
specifies several such sets, all of which should be visited infinitely often.
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synthesis problem. Thus, solving the problem amounts to returning a witness to the
nonemptiness of the intersection, and we have the following.

Theorem 4. Latticed rational-synthesis for objectives in LDBW and the solution con-
cept of Nash equilibrium is in EXPTIME.

We note that the lower complexity with respect to the Boolean setting (Theorem 2) is
only apparent, as the objectives are given in LDBWs, which are less succinct than LLTL
formulas [12,15].

6 Discussion

While various solution concepts have been studied in the context of formal verifica-
tion and infinite concurrent games [3,4,5,6,7,28], this is the first paper to introduce the
natural problem of rational synthesis. Rational Synthesis asks whether and how one
can synthesize a system that functions in a rational (self-interest) environment. As in
traditional synthesis, one cannot control the agents that constitute the environment. Un-
like traditional synthesis, the agents have objectives and will follow strategies that best
guarantee their objectives are met.

Both the question and solution separate the game-theoretic considerations from the
synthesis technique, and can be generalized to other/new solution concepts. We showed
that for the common solution concepts of dominant strategies equilibrium, Nash equi-
librium, and subgame perfect equilibrium, rational synthesis has the same complexity
as traditional synthesis. We also took a first step in addressing the question in the quan-
titative setting.

Acknowledgement. We thank Roderick Bloem for helpful comments on an earlier
draft of this paper.
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